
MULTI-LEVEL RELATIONSHIP OUTLIER DETECTION

by

Qiang Jiang

B.Eng., East China Normal University, 2010

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

c© Qiang Jiang 2012

SIMON FRASER UNIVERSITY

Summer 2012

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Qiang Jiang

Degree: Master of Science

Title of Thesis: Multi-Level Relationship Outlier Detection

Examining Committee: Dr. Binay Bhattacharya

Chair

Dr. Jian Pei, Professor, Computing Science

Simon Fraser University

Senior Supervisor

Dr. Wo-Shun Luk, Professor, Computing Science

Simon Fraser University

Supervisor

Dr. Jiangchuan Liu, Professor, Computing Science

Simon Fraser University

SFU Examiner

Date Approved:

ii

lib m-scan11
Typewritten Text
24 July 2012

Partial Copyright Licence

Abstract

Relationship management is critical in business. Particularly, it is important to detect

abnormal relationships, such as fraudulent relationships between service providers and con-

sumers. Surprisingly, in the literature there is no systematic study on detecting relationship

outliers. Particularly, no existing methods can detect and handle relationship outliers be-

tween groups and individuals in groups. In this thesis, we tackle this important problem

by developing a simple yet effective model. We identify two types of outliers and devise

efficient detection algorithms. Our experiments on both real data sets and synthetic ones

confirm the effectiveness and efficiency of our approach.

iii

To my parents.

iv

“Learn from yesterday, live for today, hope for tomorrow.”

— Albert Einstein(1879 - 1955)

v

Acknowledgments

I would like to express my deepest gratitude to my senior supervisor, Dr. Jian Pei, who

provides creative ideas for my research and warm encouragement for my life. Throughout

my master study, he shared with me not only valuable knowledge and research skills but

also the wisdom of life.

My gratitude also goes to my supervisor, Dr. Wo-Shun Luk, for reviewing my work

and helpful suggestions that helped me to improve my thesis. I am grateful to thank Dr.

Jiangchuan Liu and Dr. Binay Bhattacharya, for serving in my examing committee.

Many thanks to my friends, Guanting Tang, Xiao Meng, Da Huang, Guangtong Zhou

and Hossein Maserrat, for their kind help during my study at SFU.

My sincerest gratitude goes to my parents. Their endless love supports me to overcome

all the difficulties in my study and life.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents vii

List of Tables ix

List of Figures x

1 Introduction 1

2 Related Work 4

2.1 Outlier Detection . 4

2.1.1 Detection Methods . 4

2.2 Data Warehouse . 7

2.2.1 Data Cubes . 7

2.2.2 Cubing Methods . 8

3 Multi-level Relationship Outliers 10

3.1 Multi-level Relationships . 10

3.2 Relationship Outliers and Categorization . 14

vii

4 Detection Methods 19

4.1 Framework . 19

4.2 The Top-down Cubing (TDC) Approach . 20

4.2.1 Top-down Cubing . 20

4.2.2 Outlier Detection Using TDC . 20

4.2.3 Example of TDC . 21

4.3 The Bottom-up Cubing (BUC) Approach . 24

4.3.1 Bottom-up Cubing . 24

4.3.2 Outlier Detection Using BUC . 24

4.3.3 Example of BUC . 25

4.4 The Extended BUC (eBUC) approach . 27

4.4.1 Outlier Detection Using eBUC . 27

4.4.2 Example of eBUC . 29

4.5 Outlier Type Determination . 31

4.5.1 Framework . 31

4.5.2 KL-divergence . 32

4.5.3 Kernel Density Estimation . 33

4.5.4 Using KL Divergence as Similarity . 33

4.5.5 Computing KL-divergence . 34

5 Experiment Results 37

5.1 Case Studies of Outliers . 37

5.2 Efficiency and Scalability . 38

6 Conclusion 46

Bibliography 48

viii

List of Tables

4.1 TDC algorithm example: original table . 23

4.2 BUC algorithm example: original table . 27

4.3 eBUC algorithm example: original table . 29

4.4 eBUC algorithm example: base table . 31

5.1 Examples of relationship outliers . 38

5.2 Base-level relationships of R1 . 38

5.3 Base-level relationships of R2 . 39

ix

List of Figures

2.1 Lattice of Cuboids . 8

3.1 The patient lattice in Example 2. 11

3.2 The doctor lattice in Example 2. 11

4.1 TDC cubing . 21

4.2 TDC algorithm example . 23

4.3 BUC cubing . 25

4.4 BUC algorithm example . 28

4.5 eBUC algorithm example . 31

5.1 The running time of TDC, BUC and eBUC with respect to the number of

tuples . 39

5.2 The running time of TDC, BUC and eBUC 40

5.3 Number of Detected Outliers . 42

5.4 The running time of TDC, BUC and eBUC with different distributions 43

5.5 Scalability on synthetic data. 44

5.6 Number of detected outliers . 44

x

Chapter 1

Introduction

Relationship management is among the most important aspects in business today. Many

business intelligence tools have been developed to automate and improve relationship man-

agement [3] [34] [11], such as relationships among business customers, employees, service

providers, and channel partners. Some example applications are Customer Relationship

Management (CRM), Supply Chain Management (SCM), Human Resource Management

(HRM), and Enterprise Resource Planning (ERP).

Data analysis for relationship management has been of great interest in research and

development. For example, clustering analysis on relationships, which has been extensively

studied [10] [39] [25], identifies and groups similar relationships between parties. Such similar

relationships can be used in, for instance, marketing campaigns. In recommender systems,

if the relationship between a customer c and a company is similar to those between a group

of customers C and the same company, then some popular products or services C purchased

may be recommended to c.

In this thesis, we focus on an interesting task of relationship analysis, that is, relationship

outlier detection. The task is to identify abnormal relationships between parties.

Relationship outliers are interesting and useful in many applications. For example, in

a medical insurance company, the relationship between a patient and a medical service

provider is interesting to the business fraud detection unit if the patient visits the service

provider much more frequently than normal, or the provider often charges the patient at a

much higher rate than normal. Detecting such outlying relationships is particularly valuable

in business.

Although outlier detection has been studied extensively [23] [31] [6], most of the existing

1

CHAPTER 1. INTRODUCTION 2

work focuses on mining outliers from a set of objects. Surprisingly, to the best of our

knowledge, there does not exist any systematic study on mining outliers about relationships.

One may wonder whether we can straightforwardly model a relationship as an object and

thus simply apply the existing outlier detection techniques to tackle the relationship outlier

detection problem. One critical challenge here is that relationships often form hierarchies.

Therefore, relationship outlier detection has to be conducted correspondingly in a multi-

level, hierarchical manner.

Example 1 (Motivation). As a concrete motivation example, consider the scenario in the

medical insurance company example we just discussed. We are interested in the relation-

ships between patients and medical service providers. The patients may form groups and

a hierarchy according to their genders, locations, and ethnic groups. The medical service

providers may also form groups according to their qualifications, experience, and operation

locations. The relationships are not only between individual patients and service providers,

but also can exist between patient groups and provider groups at different levels. How to

detect outliers at different levels and analyze them is a sophisticated problem.

For example, suppose on average each patient visits a therapist 4 times a month, which

is regarded as a normal relationship. A patient visiting a therapist 8 times a month may

not look too abnormal a relationship, since some patients do need more frequent treatments.

However, a group of patients living in the same address each visiting a group of therapists

operating in the same location 8 times a month may look suspicious, since it is unlikely

everyone in a family needs the same pattern of treatment. Some service provider at that lo-

cation may be involved in some fraudulent transactions. Detecting such relationship outliers

at multiple-levels is very interesting and practically useful, but, at the same time, technically

far from trivial.

Detecting relationship outliers is a general problem with many business applications. For

example, finance trading between an agent and a customer can be modeled as a relationship

between the two parties. Detecting relationship outliers from such relationship data can

help to identify possible frauds in trading and discover customers who need special atten-

tion. More generally, the relationship can encompass more than two parties. For example,

customers credit card purchases can be modeled as a relationship crossing three parties:

customers, banks, and vendors. Detecting outliers from such relationships in a multi-level

and hierarchical way may help to detect frauds and organized crimes.

CHAPTER 1. INTRODUCTION 3

In this thesis, we tackle the problem of relationship outlier detection, and make the

following contributions.

• We deal with the multi-level relationships where attributes form hierarchies.

• We develop a simple yet effective model, and identify two types of outliers.

• Based on the well adopted statistical model-based outlier detection theme, we devise

efficient algorithms.

• We conduct extensive experiments on both real data sets and synthetic data sets. Our

results verify the effectiveness and the efficiency of our approach.

The rest of the thesis is organized as follows. In Section 2, we review the related work

on outlier detection and data warehouse. In Section 3, we present our model on multi-

level relationship outliers. We develop the detection methods in Section 4, and report our

experimental results in Section 5. We conclude the thesis in Section 6.

Chapter 2

Related Work

This thesis is related to existing technical work on outlier detection and data warehouse,

especially, data cube computation.

2.1 Outlier Detection

“An outlier is an observation which deviates so much from the other observations as to arouse

suspicions that it was generated by a different mechanism” [21]. Although there is seemingly

no universally accepted definition, the widely cited characterization of outliers is based on a

statistical intuition that objects are generated by a stochastic process (a generative model),

as such, objects that fall in the regions of high probability for the stochastic model are

normal whereas those in the regions of low probability are outliers [20]. Outliers can be

classified into three categories: global, contextual, and collective outliers.

There are a few excellent surveys on outlier detection techniques [1] [2] [7] [24]. Here,

we review the major methods briefly.

2.1.1 Detection Methods

Outlier detection is the process of finding objects that exhibit behaviors that are very

different from the expectation. There are many outlier detection methods in the literature

and in practice. Outlier detection methods can be categorized according to whether or not

prior knowledge is available to model both normality and abnormality. Prior knowledge

typically consists of samples that are tagged as normal or abnormal by subject matter

4

CHAPTER 2. RELATED WORK 5

experts. If the prior knowledge is available, detection approach is analogous to supervised

classification. If, on the other hand, there is no prior knowledge, the detection approach is

effectively a learning scheme analogous to unsupervised clustering [23].

The Knowledge Based Approach

If samples labeled by domain experts can be obtained, they can be used to build outlier

detection models. The methods using domain knowledge and labeled samples are called

the knowledge based approaches and can be divided into supervised and semi-supervised

methods.

Supervised methods model data normality and abnormality based on the samples la-

beled by domain experts. Outlier detection can then be modeled as a classification problem

to learn a classifier that can recognize outliers. Classification algorithms require a decent

spread of both normal and abnormal data; however, in reality, the population of outliers is

much smaller than that of normal objects. Thus, additional considerations for handling im-

balanced data must be taken into account and techniques, such as oversampling or artificial

outliers have been devised [28] [29] [8] [35] [41] [40].

Semi-supervised outlier detection methods [18] [12] can be regarded as applications of a

semi-supervised learning approach where the normal class is taught but the algorithm learns

to recognize abnormality. For example, when only a small number of normal samples are

available, unlabeled objects that are similar to normal objects can be added to supplement

and train a model for normal objects. Or, the model can be incrementally tuned as more

labeled normal objects become available. The model of normal objects can then be used to

detect outliers. It is suitable for static or dynamic data as it only learns one class (i.e. the

normal class) that provides the model of normality. As such, it aims to define a boundary

of normality.

The Assumption Based Approach

In this category, the outlier detection methods make certain assumptions about outliers

against the rest of the data. According to the assumptions made, the methods can be

categorized into three types: statistical methods, proximity-based methods, and clustering-

based methods.

• The general idea behind statistical methods [5] [33] for outlier detection is to learn

CHAPTER 2. RELATED WORK 6

a generative model fitting the given data set, and then identify those objects in low-

probability regions of the model as outliers. The effectiveness of statistical methods

depends highly on whether or not the assumptions made for the statistical model hold

true for the given data. Statistics based methods typically operate in two phases: the

training phase in which the model (i.e. distribution parameters) is estimated, and the

testing phase where a test instance is compared to the model to determine if it is an

outlier or not.

The statistical methods can be divided into two categories: parametric and nonpara-

metric methods, according to how the models are specified and learned. Parametric

methods assume that the normal data objects are generated by a parametric distri-

bution with parameter, Θ. The probability density function of the parametric distri-

bution, f(x,Θ), gives the probability that object x is generated by the distribution.

The smaller the value, the more likely x is an outlier. Nonparametric methods do

not assume any knowledge of data distribution; instead, they attempt to determine

the distributions from the input data. One of the most widely used techniques is his-

togram analysis [17] [14] [13] where model estimation involves counting the frequency

of occurrences of data instances; thereby estimating the probability of occurrence of

a data instance.

• Proximity-based methods assume that an object is an outlier if the nearest neighbors of

the object are far away in a feature space. In other words, if the proximity of an object

to its neighbors significantly deviates from the proximity of most of the other objects

to their neighbors in the same data set, then object is an outlier. The effectiveness of

proximity-based methods relies heavily on the proximity (or distance) measure used.

However, in some applications, such measures cannot be easily obtained. Furthermore,

proximity-based methods often have difficulty in detecting a group of outliers if the

outliers are close to one another. There are two types of proximity-based outlier

detection methods; distance based methods [30] and density based methods [16].

• The basic premise of unsupervised outlier detection methods is that the normal objects

probably are clustered and follow a pattern far more often than outliers. The idea is to

find clusters first and objects that do not belong to any cluster are flagged as outliers.

Clustering-based methods assume that the normal data objects belong to large and

dense clusters while outliers belong to small or sparse clusters or do not belong to any

CHAPTER 2. RELATED WORK 7

cluster at all. However, objects that do not belong to clusters may be simply noise

instead of outliers. Further, it is often costly to find clusters. Since outliers are assumed

to occur far less frequently than normal objects, it does not make economic sense to

undertake a laborious process of developing clusters for normal objects only to find a

few outliers in the end. Recent unsupervised outlier detection methods [22] [15] [44]

incorporate ideas to handle outliers without explicitly and completely finding clusters

of normal objects.

Although there are extensive studies on outlier detection, to the best of our knowledge,

there is no systematic exploration on outlying relationship detection, which is the topic of

this thesis.

2.2 Data Warehouse

“A data warehouse is a subject-oriented, integrated, time-variant, and non-volatile collec-

tion of data organized in support of management decision making process” [26]. A data

warehouse consolidates and generalizes data in a multidimensional space. The construction

of a data warehouse involves data cleansing, integration, and transformation, hence, can be

regarded as an important preprocessing step for data mining. Multidimensional data min-

ing, also known as exploratory multidimensional data mining, or online analytical mining,

integrates Online Analytical Processing (OLAP) with data mining to uncover knowledge in

multidimensional databases.

2.2.1 Data Cubes

A data cube [19] allows data to be modeled and viewed in multiple dimensions; thus, is the

fundamental constituent of multidimensional model for data warehouses. Each data cube

consists of facts and dimensions. OLAP is an approach to swiftly answer multidimensional

analytical queries run against data cubes. The primary means for ensuring optimal OLAP

performance is through aggregations.

In data warehouse research literature, an n-dimensional data cube is often referred to

as a lattice of cuboids. Given a set of dimensions, a cuboid for each possible subset of given

dimensions can be generated, showing data at a different level of summarization, or SQL

group-by (i.e. each can be represented by a cuboid). A collection of cuboids for all possible

CHAPTER 2. RELATED WORK 8

Figure 2.1: Lattice of Cuboids

dimension subsets form a lattice of cuboids. Figure 2.1 illustrates the lattice of cuboids,

constituting a 4-D data cube for dimensions: A, B, C, and D.

The lattice that holds the lowest level of summarization (i.e. the most specific one) is

referred to as the base cuboid while the lattice that holds the highest level of summarization

(i.e. the least specific one) is referred to as the apex cuboid and it is typically denoted by

“all”. It is the grand total summary over all 4 dimensions and refers to the case where

group-by is empty.

2.2.2 Cubing Methods

If the whole data cube is pre-computed (i.e. all cuboids are computed), queries run against

the cube will return results very fast; however, the size of a data cube for n dimensions,

D1, ..., Dn with cardinalities |D1|, ..., |Dn| is Πn
i=1(|Di|+ 1). The size increases exponentially

with the number of dimensions, and the space requirement will quickly become unattainable.

This problem is known as the curse of dimensionality. The goal of OLAP is to retrieve

information in the most efficient manner possible. To this end, there are 3 options; no

materialization (no pre-computation at all), full materialization (pre-compute everything),

and partial materialization (somewhere between the two extremes).

Partial materialization represents an interesting trade-off between the response time

and the storage space. Among the widely considered strategy is the Iceberg Cubes which

contain only the cells that store aggregate values that are above some minimum support

threshold, referred to as min sup. Two major approaches, top-down and bottom-up, have

CHAPTER 2. RELATED WORK 9

been developed for efficient cube computation.

The Top-Down Approach

The Top-Down approach [45] [36] [42], represented by Multi-Way Array Cube, or Multi-

Way, aggregates simultaneously on multiple dimensions. It uses a compressed sparse array

structure to load the base cuboid and compute the cube. For efficient use of main memory,

the array structure is partitioned into chunks, and by ordering the chunks and loading only

the necessary ones into memory, it computes multiple cuboids simultaneously in one pass.

The Top-Down approach cannot take advantage of the Apriori pruning because the ice-

berg condition can only be used after the whole cube is computed. This is due to the fact

successive computation does not have the anti-monotonic property.

The Bottom-Up Approach

Bottom-Up Computation (BUC) [4] begins with apex cuboid toward the base cuboid. BUC

is an algorithm to compute sparse and iceberg cubes. It counts the frequency of values of the

first single dimension and then partitions the table based on the frequent value of the first

dimension such that only those tuples that meet the minimum support are examined further.

Unlike the Top-Down approach, the Bottom-Up approach can exploit Apriori pruning when

computing Iceberg Cubes. The performace of BUC is sensitive to skew in the data and to

the order of the dimensions.

Chapter 3

Multi-level Relationship Outliers

In this section, we formulate the problem of detecting multi-level relationship outliers. We

first model multi-level hierarchical relationships. Then, we model and categorize relationship

outliers.

3.1 Multi-level Relationships

Let us start with a simple example.

Example 2 (Fact table). Consider a table

FACT =(patient-id, gender, age-group, doctor-id, location, qualification,

avg-charge, count).

The table records the relationships between two parties: patients and medical doctors.

The attributes in the table can be divided into three subsets.

• The information about patients, including patient-id, gender, and age-group. While

each patient, identified by her/his patient-id, is at the lowest granularity level, pa-

tients form groups and a hierarchy using attributes gender and age-group. The pa-

tient groups form a lattice, called the patient lattice, as shown in Figure 3.1.

In the figure, we use a symbol ∗ to indicate that an attribute is generalized. For

example, (gender, ∗) means the two groups formed by gender, that is, the group of

female patients and the one of male patients.

10

CHAPTER 3. MULTI-LEVEL RELATIONSHIP OUTLIERS 11

(patient−id, gender, age−group)

(*, *)

(gender, *) (*, age−group)

(gender, age−group)

Figure 3.1: The patient lattice in Example 2.

(doctor−id, location, qualification)

(*, *)

(location, *) (*, qualification)

(location, qualification)

Figure 3.2: The doctor lattice in Example 2.

• The information about doctors, including doctor-id, location, and qualification.

Similar to the case of patients, individual doctors, identified by their doctor-ids, are

at the lowest granularity level. Moreover, doctors form groups in a lattice hierarchy

using attributes location and qualification, called the doctor lattice, as shown in

Figure 3.2.

• The information about the relationship between a patient and a doctor, including

avg-charge and count. This information can be aggregated from the correspond-

ing transactions where patients and doctors are involved. The aggregate information

reflects the nature of the relationships.

We are interested in the relationships between patients and doctors. A relationship may

involve a patient and a doctor, a group of patients and a doctor, a patient and a group of

doctors, and a group of patients and a group of doctors. In general, a relationship involves

an entry in the patient lattice and an entry in the doctor lattice.

CHAPTER 3. MULTI-LEVEL RELATIONSHIP OUTLIERS 12

Let us formalize the ideas discussed in Example 2.

Definition 1 (Fact table). In this thesis, we consider a fact table F about k parties, whose

attributes can be partitioned into k + 1 subsets Fi (1 ≤ i ≤ k + 1). That is, F = ∪k+1
i=1 Fi.

• The subset Fi(1 ≤ i ≤ k) contains the information about the i-th party. We assume

that a tuple of unique values on Fi corresponds to an entity of the i-th part in reality.

In the rest of the thesis, we also call Fi the party i.

• The subset Fk+1 contains the information about the relationship among the k instances

from the k parties in a tuple, one from each. We call Fk+1 the measurement.

• We assume that ∪ki=1Fi is a key of the table F . That is, no two tuples have the same

values on all the attributes in ∪ki=1Fi. In other words, for a unique set of k instances

from the k parties, one from each, there is only one tuple describing it.

For the easy of presentation and understanding, in the rest of the thesis, we often confine

our discussion to only 2 parties. However, our techniques can be straightforwardly extended

to arbitrarily multiple parties.

We introduce the notion of groups as follows.

Definition 2 (Groups). For the domain of each attribute in ∪ki=1Fi, we introduce a meta

symbol ∗, which indicates that the attribute is generalized.

Consider a tuple t that takes values on the attributes in Fi. We say t to represent a

base level group of party i if t takes a non-∗ value on every attribute in Fi. Otherwise, t

is called an aggregate group of party i.

For groups t1 and t2 such that t1 6= t2, t1 is an ancestor of t2 and t2 a descendent of

t1, denoted by t1 ≺ t2, if for every attribute in ∪ki=1Fi where t1 takes a non-∗ value, t2 takes

the same value as t1.

Example 3 (Groups). Using the schema in Example 2, a patient (p12, male, 30-40) is a

base level group. A group (*, *, 30-40) is an aggregate patient group. (*, *, 30-40) ≺ (p12,

male, 30-40).

We can show the following immediately.

Lemma 1. For a party Fi where the domain of every attribute is finite, all groups including

the base level groups and the aggregate groups form a lattice under the relation ≺.

CHAPTER 3. MULTI-LEVEL RELATIONSHIP OUTLIERS 13

Proof. The lemma follows with the definition of lattice immediately.

In theory, we can loosen the requirement in Lemma 1. As long as the domain of every

attribute is either finite or countable, the lemma still holds. We notice that in practice a

fact table is always finite and thus the domains of the attributes can be regarded finite in

the analysis.

From the relational database point of view, groups can be regarded as a group-by tuples

on subsets of attributes in a party.

Example 4 (Group as group-by). Consider the fact table FACT in Example 2. The group

of patients according to gender are group-by tuples on attribute gender. Moreover, using

group-by on attributes gender and age-group, we can form patient groups according to the

combinations of those two attributes.

Now, we can generalize our notion of relationships.

Definition 3 (Relationship). Given a fact table F of k parties, we extend the domain of each

attribute in ∪ki=1Fi such that meta-symbol ∗ is included as a special value. A relationship

is a group-by tuple t ∈ F . That is, for every attribute in ∪ki=1Fi, t takes either a value in

the domain of the attribute, or meta-symbol ∗.

Apparently, if all groups are base level ones, a relationship is simply a tuple in the fact

table. Recall that the measurement attributes Fk+1 describe the relationship. When a

relationship contains some aggregate groups, how can we describe the relationship using the

measurement attributes? We can seek help from an aggregate function.

Definition 4 (Measurement of a relationship). Consider a fact table F of k parties. Let

aggr : 2Fk+1 → Fk+1

be an aggregate function. For any aggregate relation t, the measurement of t is defined as

t.Fk+1 = aggr({s.Fk+1|s ∈ F, s is a descendant of t}).

In other words, the measure of a relationship is the aggregate of the measurements of all

base level relationships that are descendant of the target relationship.

CHAPTER 3. MULTI-LEVEL RELATIONSHIP OUTLIERS 14

Example 5 (Measurement of relationship). Consider the fact table FACT in Example 2

again. The measurement of the relationship between aggregate groups “female patients” and

“doctors in BC” can be computed by aggregating the average from all relationships between

every female patient and every doctor in BC that appear in the fact table. Here, the aggregate

function is

aggr({(avgi, counti)}) = (

∑
i avgi × counti∑

i counti
,
∑
i

counti).

In the rest of the thesis, we use average as the aggregate function due to its popular ap-

plications in practice. Moreover, for the sake of simplicity, we overload the term relationship

to include both the groups and the measurement.

We have the following result about the relationships.

Theorem 1 (Relationship lattice). Given a fact table F of k parties, if the domain of every

attribute in ∪ki=1Fi is finite, then all relationships form a lattice L =
∏k

i=1 LFi, where LFi

is the lattice of party Fi. Moreover, |L| = |
∏k

i=1 LFi | =
∏

A∈∪ki=1Fi
(|A|+ 1).

Proof. Suppose that there are k parties. Let gi and g′i be two groups in party Fi (1 ≤ i ≤ k)

such that gi � g′i, that is, either gi ≺ g′i or gi = g′i. Then, for relationships (g1, . . . , gk)

and (g′1, . . . , g
′
k) on ∪ki=1Fi, we define (g1, . . . , gk) � (g′1, . . . , g

′
k). The claim that ∪ki=1Fi is a

lattice based on ≺ follows the definition of lattice immediately. Due to the construction of

the relation ≺, the theorem holds.

Based on the theorem, the size of the space of relationships is exponential to the number

of parties.

3.2 Relationship Outliers and Categorization

Now, let us model outliers in relationships. Outliers can be modeled in many possible ways.

In this thesis, we follow the statistical outlier model that is simple and popularly used in

business, industry and many applications.

Given a set of samples where each sample carries a numeric measurement, we can calcu-

late the average m and the standard deviation δ. The well known Chebyshev inequality [9]

tells the following.

CHAPTER 3. MULTI-LEVEL RELATIONSHIP OUTLIERS 15

Theorem 2 (Chebyshev inequality [9]). Let X be a random variable with finite expected

value m and non-zero variance δ. For any real number l > 0,

Pr(|X −m| ≥ lδ) ≤ 1

l2
.

Therefore, we can experimentally use the l as outlier threshold. The samples that are

more than lδ away from m are considered outliers.

Definition 5 (Outliers). Given a fact table F and an outlier threshold l, where Fk+1 con-

tains only one attribute, let ~m and δ be the mean and the standard deviation, respectively,

of Fk+1 of all base level relationships. A relationship t is an outlier if |t.Fk+1 − ~m| > lδ.

Please note that we can easily extend Definition 5 to fact tables containing multiple

measurement attributes.

We may find multiple outlier relationships. Are there any redundancy among relation-

ship outliers? We have the following observation.

Theorem 3 (Weak Monotonicity). Consider a fact table F of k parties and average is used

as the aggregate function. Let t be an aggregate relationship and A ∈ ∪ki=1Fi be an attribute

where t takes value ∗. If t is an outlier, then there exists at least one relationship outlier t′

such that (1) t′ = t on all attributes in ∪ki=1Fi − {A}, and (2) t′.A 6= ∗.

Proof. We prove the theorem by contradiction. It is clear to know that if the relationship

t′ satisfies both conditions, then t′ must be a child of the relationship t. Let us assume all

children are not outliers. Then t′ is not an outlier relationship. From Definition 5, if t is an

outlier relationship then |t.Fk+1 − ~m| > lδ. Suppose the children of t is ti (1 ≤ i ≤ n), then

t′ ∈ ti. From Definition 4 we can get

t.Fk+1 =

∑n
i=1 ti.Fk+1

n
.

In our assumption all children are non-outlier relationships. Then we can get

|ti.Fk+1 − ~m| ≤ lδ

Then

~m− lδ ≤ ti.Fk+1 ≤ ~m+ lδ

CHAPTER 3. MULTI-LEVEL RELATIONSHIP OUTLIERS 16

n(~m− lδ) ≤
n∑

i=1

ti.Fk+1 ≤ n(~m+ lδ)

~m− lδ ≤
∑n

i=1 ti.Fk+1

n
≤ ~m+ lδ

|
∑n

i=1 ti.Fk+1

n
− ~m| ≤ lδ

Then, we can get

|t.Fk+1 − ~m| ≤ lδ

A contradiction.

According to Theorem 3, if an aggregate relationship t is an outlier, then some de-

scendant relationships of t must also be outliers. Then whether an aggregate relationship

as an outlier provides significant extra information than its descendant outliers depends

on whether it can summarizes those descendant outliers. Based on this observation, we

categorize relationship outliers into two types.

• An aggregate relationship outlier t is a type-I outlier if most base level relationships

in t are not outliers. In other words, t being an outlier is caused by a small number

of descendants being outliers. Consequently, t itself may not be very interesting in

terms of being an outlier. Instead, some outlying descendants are more interesting

and should be checked.

• An aggregate relationship outlier t is a type-II outlier if many base level relationships

in t are outliers. In other words, t is a good summary of a set of outlying descendants.

Therefore, t is interesting in outlier detection.

To quantitatively define the two types of outlier, we use Kullback-Leibler divergence

(KL-divergence for short) [32].

KL-divergence is a measure of the difference between two distributions in information

theory [32]. The smaller the KL-divergence, the more similar the two distributions. It

shows effectiveness to measure the similarity between uncertain objects in the paper [27]

because the distribution difference cannot be captured by geometric distances directly. KL-

divergence is a non-symmetric measurement, which means the difference from distribution

P to Q is generally not the same as that from Q to P .

CHAPTER 3. MULTI-LEVEL RELATIONSHIP OUTLIERS 17

Definition 6 (Kullback-Leibler divergence [32]). In the discrete case, for probability distri-

butions P and Q of a discrete random variable their KL-divergence is defined to be

KL(P |Q) =
∑
x∈D

P (x) ln
P (x)

Q(x)

In the continuous case, for distributions P and Q of a continuous random variable, KL

divergence is defined to be

KL(P |Q) =

∫
D
p(x) ln

p(x)

q(x)
dx,

where p and q denote the densities of P and Q, respectively.

In both discrete and continuous cases, KL divergence is only defined if P and Q both

sum to 1 and if Q(x) > 0 for any i such that P (x) > 0. If the quantity 0 ln 0 appears in the

formula, it is interpreted as zero, that is 0 ln 0 = 0.

The smaller the KL-divergence, the more similar the two distributions. KL-divergence

is non-negative, but not symmetric, that is, in generally KL(P |Q) 6= KL(Q|P).

The KL-divergence is always non-negative, which is a result know as Gibb’s inequality.

That is, KL(P |Q) ≥ 0 with equality if and only if P = Q almost everywhere.

Definition 7 (Types of outlier). Let t be a relationship outlier. Let S be the set of base

level relationships that are descendants of t. S can be divided into two exclusive groups: S0,

the subset of normal relationships, and S1, the subset of relationship outliers. S = S0 ∪ S1
and S0 ∩ S1 = ∅.

Relationship t is a type-I outlier if KL(S|S1) ≥ KL(S|S0); otherwise, t is a type-II

outlier.

Now, the problem is to find all outlier relationships and their types.

CHAPTER 3. MULTI-LEVEL RELATIONSHIP OUTLIERS 18

Chapter 4

Detection Methods

In this section, we develop outlier detection methods to find all relationship outliers and

their types. We present the framework of the detection methods in Section 4.1. Two

detection methods to find multi-level relationship outliers are shown in Section 4.2 and Sec-

tion 4.3. And then we improve our methods in Section 4.4. In Section 4.5 we introduce using

Kullback-Leibler divergence as similarity to determine which type the outlier relationship is

in.

4.1 Framework

The framework of our method is presented in pseudo-code in Algorithm 1, which consists

of two steps:

• Choose from 3 possible cubing approaches to detect multi-level relationship outliers:

the group generalization approach (top-down cubing, TDC [45] for short), the group

specification approach (bottom-up cubing, BUC [4] for short) and extended BUC

(eBUC [43]) approach. Details of the first two cubing algorithms are shown in Sec-

tion 4.2 and Section 4.3. We can get a list of relationship outliers after the cubing.

Later in Section 4.4, we improve the BUC algorithm to eBUC [43], which is more

efficient for iceberg cube computation.

• For those aggregate outliers (which means there is at least one star in ∪ki=1Fi), we use

KL divergence to determine their types. The definition and implementation of KL

divergence are in Section 4.5.

19

CHAPTER 4. DETECTION METHODS 20

Algorithm 1: Relationship-outlier-detection(input)

Input : input: The relationships to detect.
Output: outlierRec: Stores the detected relationship outliers.

outlierType: The outlier type of the relationships.
1 Relationship-outlier-detection(input)
2 CubingAlgorithm← {TDC,BUC, eBUC};
3 for CubingAlgorithm do
4 if isOutlier then
5 outlierRec.add();
6 if isAggregateOutlier then
7 compute KL-divergence;
8 write outlierType;

9 end

10 end

11 end

4.2 The Top-down Cubing (TDC) Approach

4.2.1 Top-down Cubing

The top-down cubing (TDC) [45] algorithm starts from the base level groups, groups that

do not have any descendant, to the more general levels.

Top-down cubing, represented by Multiway Array Cube, is to aggregate simultaneously

on multiple dimensions. It uses a multidimensional array as its basic data structure. The

cubing process of TDC on a 4-D data cube is presented in Figure 4.1. We present how to

detect outliers using TDC in Section 4.2.2.

4.2.2 Outlier Detection Using TDC

By Definition 5, we notice that given a fact table F and a threshold parameter l, a rela-

tionship is defined as an outlier if |t.Fk+1 − ~m| > lδ, where m is the average and δ is the

standard deviation of the samples. We use two cubing methods to process the cube lattice

in top-down and bottom-up manners. In our example, we use the average charge amount

as the aggregate measurement.

t.Fk+1 = aggr({s.Fk+1|s ∈ F, s is a descendant of t}).

aggr({(avgi, counti)}) = (

∑
i avgi × counti∑

i counti
,
∑
i

counti).

CHAPTER 4. DETECTION METHODS 21

Figure 4.1: TDC cubing

Details of the TDC algorithm are provided in Algorithm 2. In the beginning, dimensionRec

contains full dimensions, for example, if the relational input table has 4 dimensions A, B,

C and D, then dimensionRec = {A,B,C,D}. Then we scan each combination of the di-

mensions in dimensionRec and get the average value. If the average value is in the defined

outlier range, then we add the relationship into the outlierRec. If the relationship is a base

level group, we add it into the baseGroup list and set the Boolean value isOutlier, which

is to indicate whether this base level relationship is an outlier or not. If the outlier rela-

tionship is an aggregate group, we add it into the aggregateOutlier list. For the aggregate

groups, we continue to compute the KL-divergence value using the function computeKL-

divergence(). The concept of KL-divergence and details of how this function works are

presented in section 4.5. Then we set the current dimension in dimensionRec to ALL (for

example, dimensionRec= {∗, B,C,D}) and recursively call itself with the start dimension

incremented by 1.

4.2.3 Example of TDC

In this section, we give a running example using the top-down cubing.

Suppose the input table F = (A,B,C,D,M), where A, B, C and D are dimensions

and M is the measurement value. The table has 4 dimensions, namely A = {a1, a2},
B = {b1, b2}, C = {c1, c2} and D = {d1, d2}. The original table is listed in Table 4.1, and

the cubing process is in Figure 4.2.

CHAPTER 4. DETECTION METHODS 22

Algorithm 2: TDC(input, startDim, l)

Input : input: The relationships to aggregate.
startDim: The starting dimension for this iteration.
l: The threshold parameter.

Global : constant numDims: The total number of dimensions.
constant m: The average value of the sample relationships.
constant δ: The standard deviation of the sample relationships.

Output: outlierRec: Stores the detected relationship outliers.
1 TDC(input, startDim, l)
2 for i← startDim to numDims do
3 currentGroup← dimensionRec . Current combination of dimensions
4 avg ← aggregate(currentGroup)
5 if |avg −m| > lδ then
6 if currentGroup is base then
7 baseGroup.add(currentGroup);
8 baseGroup.isOutlier = true;

9 else
10 aggregateOutlier.add(currentGroup);
11 computeKL− divergence(currentGroup); . Get outlier type

12 end
13 outlierRec.add(currentGroup);

14 else
15 if currentGroup is base then
16 baseGroup.add(currentGroup);
17 baseGroup.isOutlier = false;

18 end

19 end
20 dimensionRec[d] = ALL;
21 TDC(input, d+ 1, l);
22 dimensionRec[d] = d;

23 end

CHAPTER 4. DETECTION METHODS 23

Id A B C D M

1 a1 b1 c1 d1 m1

2 a1 b1 c2 d1 m2

3 a1 b2 c2 d2 m3

4 a2 b1 c1 d1 m4

5 a2 b2 c1 d1 m5

6 a2 b2 c2 d2 m6

Table 4.1: TDC algorithm example: original table

For the first recursive call (Figure 4.2(a)), the TDC algorithm scan the whole table

because it starts from the most generalized groups. So the first recursion starts from the

relationship (A,B,C,D).

The cubing process in Figure 4.1 shows that the second recursion of TDC cubing is in

the relationship (∗, B,C,D). We list the cubing example of the second, third, fourth and

fifth recursions in Figure 4.2(b), Figure 4.2(c), Figure 4.2(d) and Figure 4.2(e) respectively.

Id Relationship Measure

1 (a1, b1, c1, d1) m1

2 (a1, b1, c2, d1) m2

3 (a1, b2, c2, d2) m3

4 (a2, b1, c1, d1) m4

5 (a2, b2, c1, d1) m5

6 (a2, b2, c2, d2) m6

(a) first recursion (A,B,C,D)

Id Relationship Measure

1 (∗, b1, c1, d1) m1+m4
2

2 (∗, b1, c2, d1) m2

3 (∗, b2, c1, d1) m5

4 (∗, b2, c2, d2) m3+m6
2

(b) second recursion (∗, B,C,D)

Id Relationship Measure

1 (∗, ∗, c1, d1) m1+m4+m5
3

2 (∗, ∗, c2, d1) m2

3 (∗, ∗, c2, d2) m3+m6
2

(c) third recursion (∗, ∗, C,D)

Id Relationship Measure

1 (∗, ∗, ∗, d1) m1+m2+m4+m5
4

2 (∗, ∗, ∗, d2) m3+m6
2

(d) fourth recursion (∗, ∗, ∗, D)

Id Relationship Measure

1 (∗, ∗, ∗, ∗) m1+m2+m3+m4+m5+m6
6

(e) fifth recursion (∗, ∗, ∗, ∗)

Figure 4.2: TDC algorithm example

The algorithm will continue after the five recursions according to the cubing process in

CHAPTER 4. DETECTION METHODS 24

Figure 4.1. When the algorithm finishes the top-down cubing, we can get a list of outliers

and the types of aggregate outliers.

4.3 The Bottom-up Cubing (BUC) Approach

4.3.1 Bottom-up Cubing

The bottom-up cubing algorithm [4] is to build the cube by starting from a group-by on a

single attribute, then a group-by on a pair of attributes, then a group-by on three attributes,

and so on. It processes the cube lattice from the most general group to the base level groups.

The cubing process of BUC on a 4-D data cube is presented in Figure 4.3. BUC begins with

apex cuboid and counts the frequency of the first single dimension and then partitions the

table based on the frequent values. And then it recursively counts the value combinations for

the next dimension and partitions the table in the same manner. BUC can take advantage

of Apriori pruning because if a given cell does not satisfy minimum support, then neither

will any of its descendants. We will present how to detect outliers for our problem using

BUC in Section 4.3.2.

4.3.2 Outlier Detection Using BUC

Details of the algorithm are provided in Algorithm 3. We can use BUC to compute all

aggregate cells, and use the outlier determination criteria |t.Fk+1 − ~m| > lδ as a post-

processing step to capture all outliers, where ~m and δ are the average and the standard

deviation of Fk+1 of all relationships among the base level groups.

The first step of the BUC algorithm is to aggregate the entire input and write the

result. To get aggregate value we need to scan input. When scanning the whole table,

we can get results of baseGroup list as a byproduct. The for loop in line 14 controls the

current dimension, and partitions the current input. On return from Partition(), dataCount

contains the number of records for each distinct value of the d-th dimension while dataAvg

contains the average value of all the samples in the d-th dimension. If the average value is

in the defined outlier range, we add the current dimension and measurement information

into the final outlierRec list. Then the partition becomes the input relation in the next

recursive call with the start dimension incremented by 1. We store the detected outliers into

outlierRec and all the aggregate ones into aggregateOutlier list. For an aggregate outlier

CHAPTER 4. DETECTION METHODS 25

Figure 4.3: BUC cubing

group, we compute the KL-divergence of its descendants to get the outlier type. Details of

the function computeKL-divergence() is described in section 4.5.

One tricky here is that the BUC relies on the monotonicity of iceberg conditions. How-

ever, the iceberg condition in our problem is not monotonic. To tackle with the problem in

this thesis, BUC cannot take advantage of Apriori pruning because the measure here is not

the count value. We use the average as measure, which does not hold the property that if

a given cell is not an outlier, then neither will any of its descendant.

Fortunately, Theorem 3 identifies a weak monotonic property of the iceberg condition

in our problem. We thus can adopt some special iceberg cube computation methods for

weak monotonic conditions. Specifically, we use eBUC [43], which “looks ahead” to check

whether an aggregate cell is an ancestor of some outliers. Details of eBUC are presented in

Section 4.4

4.3.3 Example of BUC

In this section, we give a running example using the bottom-up cubing.

Suppose the input table F = (A,B,C,D,M), where A, B, C and D are dimensions

and M is the measurement value. The table has 4 dimensions, namely A = {a1, a2},
B = {b1, b2}, C = {c1, c2} and D = {d1, d2}. The original table is listed in Table 4.2, and

the cubing process is in Figure 4.4.

For the first recursive call (Figure 4.4(a)), the BUC algorithm aggregates the whole

CHAPTER 4. DETECTION METHODS 26

Algorithm 3: BUC(input, startDim, l)

Input : input: The relationships to aggregate.
startDim: The starting dimension for this iteration.
l: The threshold parameter.

Global : constant numDims: The total number of dimensions.
constant m: The average value of the sample relationships.
constant δ: The standard deviation of the sample relationships.
dataAvg[numDims]: Stores the average value of each partition.
dataCount[numDims]: Stores the size of each partition.

Output: outlierRec: Stores the detected outlier relationships.
1 BUC(input, startDim, l)
2 for currentGroup← tuple do . To Agrrgate(input) and get baseGroup
3 avg = currentGroup.measure;
4 if |avg −m| > lδ then
5 baseGroup.isOutlier = true;
6 outlierRec.add(currentGroup);

7 else
8 baseGroup.isOutlier = false;
9 end

10 end
11 if input.count()==1 then
12 WriteAncestors(input[0], startDim) ;
13 return;

14 end
15 for d← startDim to numDims do
16 Let C = cardinality[d];
17 Partition(input, d, C, dataCount[d], dataAvg[d]);
18 Let k ← 0;
19 for i← 0 to C do
20 Let c = dataCount[d][i], a = dataAvg[d][i];
21 currentGroup← dimensionRec . Current combination of dimensions
22 if |avg −m| > lδ then
23 if currentGroup is aggregate then
24 aggregateOutlier.add(currentGroup);
25 computeKL− divergence(currentGroup); . Get outlier type

26 end
27 outlierRec.add(currentGroup);

28 end
29 BUC(input[k...k + c], d+ 1, l);
30 dimensionRec[d] = d;
31 k+ = c;

32 end
33 outputRec.dim[d] = ALL;

34 end

CHAPTER 4. DETECTION METHODS 27

Id A B C D M

1 a1 b1 c1 d1 m1

2 a1 b1 c2 d1 m2

3 a1 b2 c2 d2 m3

4 a2 b1 c1 d1 m4

5 a2 b2 c1 d1 m5

6 a2 b1 c1 d2 m6

Table 4.2: BUC algorithm example: original table

table. So the first recursion starts from the relationship (∗, ∗, ∗, ∗).
The cubing process in Figure 4.3 shows that the second recursion of BUC cubing is in

the relationship (A, ∗, ∗, ∗). We list the cubing example of the second, third, fourth and fifth

recursions in Figure 4.4(b), Figure 4.4(c), Figure 4.4(d) and Figure 4.4(e) respectively.

The algorithm will continue after the five recursions according to the cubing process in

Figure 4.3. When the algorithm finishes the bottom-up cubing, we can get a list of outliers

and the types of aggregate outliers.

4.4 The Extended BUC (eBUC) approach

Although BUC is efficient to compute the complete data cube, it cannot take advantage of

the Apriori property to prune in our problem. This is because our problem here does not

satisfy the monotonic condition that if an aggregate relationship is not an outlier, then any

descendent of it must also not be an outlier. If we use BUC directly, we need to compute

the whole data cube without any pruning. To make the BUC algorithm more efficient for

our problem, we use the extended BUC approach [43].

4.4.1 Outlier Detection Using eBUC

The key idea of the eBUC takes advantage of the week monotonic in Theorem 3. If an

aggregate relationship t is an outlier, then there exists at least one descendent of t that is

also an outlier.

Details of the eBUC algorithm is in Algorithm 4. The eBUC algorithm follows the

structure of the BUC algorithm using depth-first search. It first aggregates the whole table

and computes the base level relationships to get a list of base-level relationship outliers as

a byproduct. The difference between eBUC and BUC is that, when eBUC encounters an

CHAPTER 4. DETECTION METHODS 28

Id Relationship Measure

1 (∗, ∗, ∗, ∗) m1+m2+m3+m4+m5+m6
6

(a) first recursion (∗, ∗, ∗, ∗)

Id Relationship Measure

1 (a1, ∗, ∗, ∗) m1+m2+m3
3

2 (a2, ∗, ∗, ∗) m4+m5+m6
3

(b) second recursion (A, ∗, ∗, ∗)

Id Relationship Measure

1 (a1, b1, ∗, ∗) m1+m2
2

2 (a1, b2, ∗, ∗) m3

3 (a2, b1, ∗, ∗) m4+m6
2

4 (a2, b2, ∗, ∗) m5

(c) third recursion (A,B, ∗, ∗)

Id Relationship Measure

1 (a1, b1, c1, ∗) m1

2 (a1, b1, c2, ∗) m2

3 (a1, b2, c2, ∗) m3

4 (a2, b1, c1, ∗) m4+m6
2

5 (a2, b2, c1, ∗) m5

(d) fourth recursion (A,B,C, ∗)

Id Relationship Measure

1 (a1, b1, c1, d1) m1

2 (a1, b1, c2, d1) m2

3 (a1, b2, c2, d2) m3

4 (a2, b1, c1, d1) m4

5 (a2, b2, c1, d1) m5

6 (a2, b1, c1, d2) m6

(e) fifth recursion (A,B,C,D)

Figure 4.4: BUC algorithm example

CHAPTER 4. DETECTION METHODS 29

aggregate relationship t, it “looks ahead”. That is, eBUC checks whether t is an ancestor

of some base-level ourlier relationships. If not, then following Theorem 3, t cannot be an

outlier relationship. Moreover, any descendent of t is not an ancestor of a base-level outlier

relationship. So we do not need to search further to any descendent of t.

4.4.2 Example of eBUC

In this section, we show a running example using eBUC approach. The input table F =

(A,B,C,M), where A, B and C are dimensions and M is the measurement value. The

table has 3 dimensions, namely A = {a1, a2}, B = {b1, b2, b3} and C = {c1, c2}. The

original table is listed in Table 4.3. The average value of the whole table is 17.25 and the

standard deviation is 31.12. Follow the outlier condition that |t.Fk+1 − ~m| > lδ, we can

first get the base table class (Table 4.4) when eBUC runs (l = 1). In this example, we

only have one base-level outlier relationship (a2, b3, c2). Any aggregate relationship that is

not an ancestor of it will be pruned. In Figure 4.5(b), the relationship (a1, ∗, ∗) is pruned

because it is not an ancestor of (a2, b3, c2). Therefore, any descendent of (a1, ∗, ∗) will also

be pruned. In Figure 4.5(c), we only check the descendents of (a2, ∗, ∗).

Id A B C M

1 a1 b1 c1 7

2 a1 b1 c2 9

3 a1 b2 c1 4

4 a1 b2 c2 7

5 a1 b3 c1 10

6 a1 b3 c2 8

7 a2 b1 c1 5

8 a2 b1 c2 11

9 a2 b2 c1 7

10 a2 b2 c2 15

11 a2 b3 c1 4

12 a2 b3 c2 120

Table 4.3: eBUC algorithm example: original table

CHAPTER 4. DETECTION METHODS 30

Algorithm 4: eBUC(input, startDim, l)

Input : input: The relationships to aggregate.
startDim: The starting dimension for this iteration.
l: The threshold parameter.

Global : constant numDims: The total number of dimensions.
constant m: The average value of the sample relationships.
constant δ: The standard deviation of the sample relationships.
dataAvg[numDims]: Stores the average value of each partition.
dataCount[numDims]: Stores the size of each partition.

Output: outlierRec: Stores the detected relationship outliers.
1 eBUC(input, startDim, l)
2 for currentGroup← tuple do . To Agrrgate(input) and get baseGroup
3 avg = currentGroup.measure;
4 if |avg −m| > lδ then
5 baseGroup.isOutlier = true;
6 outlierRec.add(currentGroup);

7 else
8 baseGroup.isOutlier = false;
9 end

10 end
11 if input.count()==1 then
12 WriteAncestors(input[0], startDim) ;
13 return;

14 end
15 for d← startDim to numDims do
16 Let C = cardinality[d];
17 Partition(input, d, C, dataCount[d], dataAvg[d]);
18 Let k ← 0;
19 for i← 0 to C do
20 Let c = dataCount[d][i], a = dataAvg[d][i];
21 currentGroup← dimensionRec . Current combination of dimensions
22 if currentGroup is an ancestor of some base-level outlier then
23 if |avg −m| > lδ then
24 if currentGroup is aggregate then
25 aggregateOutlier.add(currentGroup);
26 computeKL− divergence(currentGroup); . Get outlier type

27 end
28 outlierRec.add(currentGroup);

29 end
30 eBUC(input[k...k + c], d+ 1, l);
31 dimensionRec[d] = d;

32 end
33 k+ = c;

34 end
35 outputRec.dim[d] = ALL;

36 end

CHAPTER 4. DETECTION METHODS 31

Id A B C M Class

1 a1 b1 c1 7 Normal

2 a1 b1 c2 9 Normal

3 a1 b2 c1 4 Normal

4 a1 b2 c2 7 Normal

5 a1 b3 c1 10 Normal

6 a1 b3 c2 8 Normal

7 a2 b1 c1 5 Normal

8 a2 b1 c2 11 Normal

9 a2 b2 c1 7 Normal

10 a2 b2 c2 15 Normal

11 a2 b3 c1 4 Normal

12 a2 b3 c2 120 Outlier

Table 4.4: eBUC algorithm example: base table

Id Relationship Pruned

1 (∗, ∗, ∗) No

(a) first recursion (∗, ∗, ∗, ∗)

Id Relationship Pruned

1 (a1, ∗, ∗) Y es

2 (a2, ∗, ∗) No

(b) second recursion (A, ∗, ∗, ∗)

Id Relationship Pruned

1 (a2, b1, ∗) Y es

2 (a2, b2, ∗) Y es

3 (a2, b3, ∗) No

(c) third recursion (A,B, ∗, ∗)

Figure 4.5: eBUC algorithm example

4.5 Outlier Type Determination

In this section, we present how to determine the outlier type of aggregate relationships.

First we show the framework of the outlier type determination in Section 4.5.1.

4.5.1 Framework

We have two types of outliers: type-I outlier means that most relationships among its

base level groups are not outliers; and type-II outliers means many relationships among

its base level groups are outliers. In this thesis, we propose to use KL-divergence as a

similarity measure to determine whether an aggregate outlier relationship is more similar

CHAPTER 4. DETECTION METHODS 32

to its non-outlier or outlier base level groups.

We organize the type determination section in 4 steps:

• Firstly, we give an introduction and definition of KL-divergence in Section 4.5.2.

• Secondly, to use KL-divergence as a similarity measure for continuous domain in our

problem, we need to estimate the probability density function by kernel density esti-

mation (Section 4.5.3).

• Thirdly, we present how to use KL-divergence as similarity in Section 4.5.4.

• At last, we present our function to compute the KL-divergence and to determine the

outlier type in Section 4.5.5.

4.5.2 KL-divergence

The concept of Kullback-Leibler divergence was originally introduced by Solomon Kullback

and Richard Leibler in 1951 [32]. In probability theory and information theory, Kullback-

Leibler divergence is used to measure the difference between two probability distributions.

The smaller the KL-divergence, the more similar the two distributions. It should be noted

that the KL-divergence is a non-symmetric measure. The difference from distribution P to

distribution Q is generally not the same as that from Q to P .

Recall the definition of KL-divergence in Chapter 3.

Definition 8 (Kullback-Leibler divergence [32]). In the discrete case, for probability distri-

butions P and Q of a discrete random variable their KL divergence is defined to be

KL(P |Q) =
∑
x∈D

P (i) ln
P (i)

Q(i)

In the continuous case, for distributions P and Q of a continuous random variable, KL

divergence is defined to be

KL(P |Q) =

∫
D
p(x) ln

p(x)

q(x)
dx,

where p and q denote the densities of P and Q.

In both discrete and continuous cases, KL divergence is only defined if P and Q both

sum to 1 and if Q(i) > 0 for any i such that P (i) > 0. If the quantity 0 ln 0 appears in the

formula, it is interpreted as zero, that is 0 ln 0 = 0.

CHAPTER 4. DETECTION METHODS 33

4.5.3 Kernel Density Estimation

In our fact table F = ∪k+1
i=1 Fi, Fi(1 ≤ i ≤ k) contains the information about the i-th party

while Fk+1 contains the information about the relationship among k instances from the k

parties, which is also called the measurement. If the measurement is continuous, we use

kernel density estimation to estimate the probability density function.

Kernel density estimation [37] [38] is a non-parametric way to estimate the probability

density function of a random variable. Let (x1, x2, x3, ..., xn) be an independent and iden-

tically distributed (iid for short) sample drawn from some distribution with an unknown

density f , the kernel density estimator is

f̂h(x) =
1

nh

n∑
i=1

K(
x− xi
h

)

Where K(·) is the kernel and h > 0 is the smoothing parameter called the bandwidth, h is

to control the level of smoothing. A range of kernel functions are commonly used, in this

thesis, we use the popular adopted Gaussian kernels and the Gaussian approximation [38],

and set h = 1.06 × δ|P |−
1
5 as suggested by [38], where δ is the standard deviation of the

samples in P . In 1-dimensional case, the density estimator is

P (x) =
1

|P |
√

2πh

∑
p∈P

e−
(x−p)2

2h2

4.5.4 Using KL Divergence as Similarity

This section presents how KL divergence is used as similarity to measure two distributions.

We borrow the idea from [27]. We apply the continuous case in our data set since the

measurement in this thesis is continuous.

Given two distributions P and Q, KL(P |Q) returns the difference of distribution of Q

given the distribution of P . Therefore, the larger the KL divergence, the more different

between the two distributions.

Given the samples of P and Q, by the law of large numbers we have

lim
x→∞

1

m

m∑
i=1

ln
P (pi)

Q(pi)
= KL(P |Q),

where P = {p1, p2, ..., pm} is the set of samples. Furthermore, the KL divergence can be

estimated as

K̂L(P |Q) =
1

m

m∑
i=1

ln
P (pi)

Q(pi)

CHAPTER 4. DETECTION METHODS 34

In this thesis, we compare the KL divergence of a detected aggregate outlier relationship

with its non-outlier and outlier relationship descendants. According to Definition 7 in

Chapter 3, let t be an aggregate outlier relationship and S be the set of relationships that

are descendants of t and involve only base level groups. S0 and S1 are exclusive subsets of

S, where S0 denotes the non-outlier relationships and S1 denotes the outlier relationships.

We have S = S0 ∪ S1 and S0 ∩ S1 = ∅. If KL(S|S1) ≥ KL(S|S0), t is a type-I outlier

(most base level groups are not outliers); otherwise, it is a type-II outlier (many base level

relationships are outliers). So, for an aggregate relationship outlier t, we compare

KL(S|S0) =
1

m

m∑
i=1

ln
S(si)

S0(si)

and

KL(S|S1) =
1

m

m∑
i=1

ln
S(si)

S1(si)

where S = {s1, s2, ..., sm}. The domain of S is always bounded by the lowest and largest

values in S.

4.5.5 Computing KL-divergence

There is a function computeKL-divergence() in Algorithm 2 and Algorithm 3. This subsec-

tion will show how this function works to get the outlier type. Details of the function is

presented in Algorithm 5.

For the TDC algorithm, we cube the input from the most generalized level. So we can

get the baseGroup list containing all the base level relationships from the first recursive call.

For the BUC and eBUC algorithms, we can get the same list from the Aggregate(input)

process. The baseGroup list records both the dimension information of the relationship and

a flag isOutlier to indicate whether this base group is an outlier or not.

When the cubing algorithms encounter an aggregate group which is detected as an

outlier, it continues to call the function computeKL-divergence. Input of this function is

the aggregate relationship outlier, and the output is the outlier type of this relationship.

First, we scan the baseGroup list to get the set S0 (non-outlier descendant) and S1 (outlier

descendant). Then compute the KL-divergence value using the formula in Section 4.5.4. If

KL(S|S1) ≥ KL(S|S0), then this is a type-I outlier; otherwise, it is a type-II outlier.

CHAPTER 4. DETECTION METHODS 35

Algorithm 5: ComputKL-divergence(aggregateOutlier)

Input : aggregateOutlier: The detected outlier aggregate group.
Global : baseGroup: The base level groups
Output: outlierType: The outlier type of the input.

1 ComputeKL-divergence(aggregateGroup)
2 for currentGroup← baseGroup do
3 S0 ← currentGroup.isOutlier = false;
4 S1 ← currentGroup.isOutlier = true;

5 end
6 compute KL(S|S0), KL(S|S1);
7 if KL(S|S1) ≥ KL(S|S0) then
8 outlierType = Type-I;
9 else

10 outlierType = Type-II;
11 end

CHAPTER 4. DETECTION METHODS 36

Chapter 5

Experiment Results

We conducted extensive experiments on both real and synthetic data sets to evaluate our

outlier detection methods.

Our programs were implemented in C++ using Microsoft Visual Studio 2010. All ex-

periments were conducted on a PC computer with an Intel Core Duo E8400 3.0 GHz CPU

and 4 GB main memory running the Microsoft Windows 7 operating system.

5.1 Case Studies of Outliers

To test the effectiveness of our methods, we used a real data set related to service busi-

ness. For the sake of privacy protection, the data is anonymized and the location and

service information is coded in a way that it cannot be mapped back to the original data

meaningfully.

The data set contains two parties: the consumers and the service providers. The cus-

tomers are described by two attributes: gender and age-group. The service providers are

described by two attributes: location and service. We used the attribute amount as the

measurement. The average amount, as calculated in Example 5, is used for each aggregate

relationship. The fact table contains 5,895 base level relationships. The average amount at

the base level is 63.50 and the standard deviation is 83.51.

Table 5.1 shows two relationship outliers as examples detected by our methods using

threshold l = 2. To fully understand those two outliers, we list all base-level relationships

of them in Tables 5.2 and 5.3, respectively.

As shown in Table 5.2, R1 has 8 base level relationships. Among them, 6 are normal

37

CHAPTER 5. EXPERIMENT RESULTS 38

Id
Outlier Relationship Type

(gender, age, location, code)

R1 (Female, ∗, A101, S91) I

R2 (Female, ∗, A101, S31) II

Table 5.1: Examples of relationship outliers

Id
Base-level Relationships

Amount
Normal or

(gender, age, location, code) outlier
1 (Female, 21-40, A101, S91) 125.00 Normal
2 (Female, 41-60, A101, S91) 0.00 Normal
3 (Female, 41-60, A101, S91) 230.00 Normal
4 (Female, 41-60, A101, S91) 222.50 Normal
5 (Female, 41-60, A101, S91) 200.00 Normal
6 (Female, 41-60, A101, S91) 160.00 Normal
7 (Female, 41-60, A101, S91) 1106.25 Outlier
8 (Female, 41-60, A101, S91) 1900.00 Outlier

Table 5.2: Base-level relationships of R1

cases and 2 are outliers. For R1, KL(S|S0) = 2.39 and KL(S|S1) = 63.74. KL(S|S0) <
KL(S|S1). The distribution of R1 is more similar to the distribution of its normal base

level descendant relationships. Thus, R1 is of type I. R1 being a type-I outlier indicates

that R1 contains some base level strong outliers (those of amount 1000.00 or more), but the

majority in R1 is still normal. To this extent, R1 as an outlier may not be very interesting.

Instead, those outlier descendants of R1 should be checked.

As shown in Table 5.3, R2 has 10 base-level relationships. Among them, 2 are normal

cases and 8 are outliers. KL(S|S0) = 5.01182 and KL(S|S1) = 0.454034. KL(S|S0) >
KL(S|S1). The distribution of R1 is more similar to the distribution of its outlier base level

descendant relationships. R2 is of type II. R2 being a type-II outlier indicates that most of

the base level descendant relationships of R2 are outliers, and can be summarized using R2.

5.2 Efficiency and Scalability

We tested the efficiency of the outlier detection methods on both real data set and the

synthetic ones. We compare three cubing methods: TDC [45], BUC [4] and eBUC [43].

TDC and BUC compute the whole cube while eBUC uses the outlier detection criterion

directly to compute an iceberg cube.

We used a larger real data set to test the efficiency, and use random samples of various

CHAPTER 5. EXPERIMENT RESULTS 39

Id
Base-level Relationships

Amt
Normal or

(gender, age, location, code) outlier
1 (Female, 41-60, A101, S31) 135.00 Normal
2 (Female, 41-60, A101, S31) 130.03 Normal
3 (Female, 41-60, A101, S31) 694.00 Outlier
4 (Female, 41-60, A101, S31) 694.00 Outlier
5 (Female, 41-60, A101, S31) 694.00 Outlier
6 (Female, 41-60, A101, S31) 555.20 Outlier
7 (Female, 41-60, A101, S31) 402.67 Outlier
8 (Female, 41-60, A101, S31) 624.60 Outlier
9 (Female, 41-60, A101, S31) 555.20 Outlier
10 (Female, 41-60, A101, S31) 555.20 Outlier

Table 5.3: Base-level relationships of R2

0 10 20 30
0

20

40

60

80

of tuples (×1000)

ru
nt

im
e

(s
)

TDC
BUC
eBUC

Figure 5.1: The running time of TDC, BUC and eBUC with respect to the number of tuples

sizes of the data set to test the scalability. Figure 5.1 shows the scalability of the three

methods on the database size, where the outlier threshold l = 1. Please note that the

smaller the value of l, the more outliers and thus the less pruning power eBUC has. The

three methods have linear scalability. The runtime of TDC and BUC is very close. eBUC

clearly can take the advantage of direct pruning using the outlier detection criterion, and

thus has faster runtime.

Figure 5.2 shows the scalability of the three methods with respect to parameter l and

number of base level relationships on the real data set. The larger the value of l, the less

outliers, and thus the less computation is needed in all three methods to determine the types

of the outliers. Comparing to TDC and BUC, eBUC can further use the outlier criterion to

prune normal relationships during the cubing process and thus reduces the runtime further.

CHAPTER 5. EXPERIMENT RESULTS 40

1 2 3 4
18

20

22

24

26

l

ru
nt

im
e

(s
)

TDC
BUC
eBUC

(a) number of tuples=5,000

1 2 3 4
22

24

26

28

30

l

ru
nt

im
e

(s
)

TDC
BUC
eBUC

(b) number of tuples=10,000

1 2 3 4
32

34

36

38

40

l

ru
nt

im
e

(s
)

TDC
BUC
eBUC

(c) number of tuples=15,000

1 2 3 4
40

42

44

46

48

50

l

ru
nt

im
e

(s
)

TDC
BUC
eBUC

(d) number of tuples=20,000

1 2 3 4
48

50

52

54

56

58

l

ru
nt

im
e

(s
)

TDC
BUC
eBUC

(e) number of tuples=25,000

1 2 3 4
50

55

60

65

70

l

ru
nt

im
e

(s
)

TDC
BUC
eBUC

(f) number of tuples=30,000

Figure 5.2: The running time of TDC, BUC and eBUC

CHAPTER 5. EXPERIMENT RESULTS 41

The larger the value of l, the more advantage eBUC has. This figure also indicates that the

determination of types of outliers takes substantial cost.

Figure 5.3 shows the numbers of relationship outliers with respect to parameter l and

number of base level relationships on the real data set. As explained, the larger the value

of l, the less outliers. The trend in Figure 5.3 is consistent with the runtime trend in

Figure 5.2. Moreover, most of the outliers detected are aggregate ones. There are much

more type-II outliers than type-I ones. The results clearly justify the effectiveness of our

method in summarizing the outlier information.

We also tested the efficiency and scalability using synthetic data sets. We generated

synthetic data sets with dimension attributes in discrete domains and measurement in con-

tinuous domain. We consider 3 factors in out experiments, the dimensionality d, the number

of tuples n in the data set and the distribution on the dimensions (uniform distribution ver-

sus normal distribution).

To be specific, we generated two data sets, each of 100, 000 tuples and 4 dimensions.

The cardinality in each dimension is 20. The tuples in the first data set follow the uniform

distribution in each dimension, and the tuples in the second data set follow the (discretized)

normal distribution. That is, we used the normal distribution µ = 10 and θ = 2 to generate

synthetic data, and round the values to 20 bins in the range of [1, 20]. Figure 5.4 shows the

results, where threshold parameter l = 1. Clearly, our outlier detection methods work much

faster on the data set of normal distribution, where outliers are meaningful.

Figure 5.5 shows the scalability of our detection methods on the synthetic data set

following normal distribution. In Figure 5.5(a), the number of tuples is set to 10, 000.

The runtime increases dramatically when the dimensionality goes up. This is as expected

since computing a data cube of high dimensionality is known challenging. In Figure 5.5(b),

the dimensionality is set to 4, and the number of tuples varies from 100, 000 to 1 million.

Interestingly, the runtime grows slower than the number of tuples. The reason is given the

cardinality of each dimension, the number of possible groupbys is fixed. When a fact table

becomes very large, many aggregate cells will be populated with a non-trivial number of

tuples where the number of groupbys grows slower (Figure 5.6). The results clearly show

that our methods are scalable on large data sets.

CHAPTER 5. EXPERIMENT RESULTS 42

1 2 3 4
0

200

400

600

l

of

 o
ut

lie
rs

All cases
Aggregate cases
Type I
Type II

(a) number of tuples=5,000

1 2 3 4
0

200

400

600

800

1000

l

of

 o
ut

lie
rs

All cases
Aggregate cases
Type I
Type II

(b) number of tuples=10,000

1 2 3 4
0

500

1000

1500

l

of

 o
ut

lie
rs

All cases
Aggregate cases
Type I
Type II

(c) number of tuples=15,000

1 2 3 4
0

500

1000

1500

l

of

 o
ut

lie
rs

All cases
Aggregate cases
Type I
Type II

(d) number of tuples=20,000

1 2 3 4
0

500

1000

1500

l

of

 o
ut

lie
rs

All cases
Aggregate cases
Type I
Type II

(e) number of tuples=25,000

1 2 3 4
0

500

1000

1500

2000

l

of

 o
ut

lie
rs

All cases
Aggregate cases
Type I
Type II

(f) number of tuples=30,000

Figure 5.3: Number of Detected Outliers

CHAPTER 5. EXPERIMENT RESULTS 43

1 2 3 4
0

200

400

600

800

l

ru
nt

im
e

(s
)

Uniform
Normal

(a) TDC algorithm

1 2 3 4
0

200

400

600

800

l

ru
nn

tim
e

(s
)

Uniform
Normal

(b) BUC algorithm

1 2 3 4
0

200

400

600

800

l

ru
nn

tim
e

(s
)

Uniform
Normal

(c) eBUC algorithm

Figure 5.4: The running time of TDC, BUC and eBUC with different distributions

CHAPTER 5. EXPERIMENT RESULTS 44

2 4 6 8
0

1

2

3

4
x 10

4

Dimensionality

ru
nt

im
e

(s
)

TDC
BUC
eBUC

(a) Dimensionality

0 1 2.5 5 7.5 10

x 10
5

0

100

200

300

400

of tuples

ru
nt

im
e

(s
)

TDC
BUC
eBUC

(b) Database size

Figure 5.5: Scalability on synthetic data.

0 1 2.5 5 7.5 10

x 10
5

0

2

4

6
x 10

4

of tuples

#
 o

f
o
u
tl
ie

rs

All cases

Aggregate cases

Figure 5.6: Number of detected outliers

CHAPTER 5. EXPERIMENT RESULTS 45

Chapter 6

Conclusion

In this thesis, we tackle the problem of detecting multi-level relationship outliers. Rela-

tionship is very important in business. Good relationships build a win-win situation for

both consumers and providers. On the other hand, fraudulent relationships destroy normal

business patterns and make a vicious circle between consumers and providers. In this thesis,

we develop a simple yet effective model to detect and handle relationship outliers between

groups and individuals in groups. The most important thing is that the attributes in the re-

lationships form a hierarchy so that traditional outlier detection methods cannot directly be

used in our problem. We apply three algorithms: TDC, BUC and eBUC for cubing. We use

KL-divergence as similarity to identify the outlier type. In business, the most challenging

thing for business analysts is that, they do not know the fraud pattern for the existing rela-

tionships. The outlier type in this thesis means fraud pattern. Once we know how the most

popular fraud pattern looks like, we can come up with policies to prevent such situation.

We use KL-divergence as similarity measure because relationships are complicated and not

independent. Merely compare the values of two relationships is not sufficient to estimate

their similarity. We need to see the distributions of the two relationships. KL-divergence is

tested to be useful to find potential outlier patterns in our data set. The detected outlier

results show that our detection methods are effective. The running time tested on both real

and synthetic data sets shows that our detection methods are efficient.

As future work, there are several interesting directions we can further work on.

• Extending our techniques to arbitrarily multiple parties. In this thesis, we only tackle

a fact table of 2 parties. In the future we can test our detection methods on data sets

46

CHAPTER 6. CONCLUSION 47

with multiple parties. The problem will be much more complicated and challenging.

• Improve the cubing process. In this thesis, we use eBUC algorithm to improve the

BUC cubing. It has been tested that eBUC is more efficient than BUC for our problem.

One interesting question is that, can we do even better? The answer is yes. We can

further improve the cubing process using Dynamic Ordering (DYNO). In [43], DYNO

shows better performance than eBUC.

• Refine the results with data summarization to make our methods more useful in busi-

ness. Our methods can detect a list of outlier relationships, however, to make it useful

in business we need to further refine it. For example, we can apply algorithm in [43]

to get “probable groups”. Probable group is an aggregate cell that satisfies some re-

quirement like “What are the groups of relationships that have 80% or more outlier

descendants?” We can generate the most general probable groups. For example, if

both relationships (female, 20, B.C.) and (∗, 20, B.C.) are probable, we only return

the latter one. In this way, the pattern of fraudulent relationships between service

providers and consumers will be succinct and the detected results can be better un-

derstood by business people.

Bibliography

[1] M. Agyemang, K. Barker, and R. Alhajj. A comprehensive survey of numeric and
symbolic outlier mining techniques. Intell. Data Anal., 10:521–538, 2006.

[2] Z. A. Bakar, R. Mohemad, A. Ahmad, and M. M. Deris. A comparative study for
outlier detection techniques in data mining. In Proc. 2006 IEEE Conf. Cybernetics and
Intelligent Systems, pages 1–6, Bangkok, Thailand, 2006.

[3] M. Berry and G. Linoff. Mastering data mining: The art and science of customer
relationship management. John Wiley & Sons, Inc., 1999.

[4] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cube.
ACM SIGMOD Record, 1999.

[5] R. J. Bolton and D. J. Hand. Statistical fraud detection: A review. Statistical Science,
17:235–249, 2002.

[6] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Com-
puting Surveys (CSUR), 2009.

[7] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Com-
puting Surveys, 41:1–58, 2009.

[8] N.V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on learning from
imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1):1–6, 2004.

[9] P.L. Chebyshev. Sur les valeurs limites des intégrales. Imprimerie de Gauthier-Villars,
1874.

[10] J.B.R. Cheng and AR Hurson. Effective clustering of complex objects in object-oriented
databases. ACM SIGMOD Record, 1991.

[11] M.C. Cooper, D.M. Lambert, and J.D. Pagh. Supply chain management: more than a
new name for logistics. The International Journal of Logistics Management, 1997.

[12] D. Dasgupta and N.S. Majumdar. Anomaly detection in multidimensional data using
negative selection algorithm. In Proc. 2002 Congress on Evolutionary Computation
(CEC’02), pages 1039–1044, Washington DC, 2002.

48

BIBLIOGRAPHY 49

[13] E. Eskin. Anomaly detection over noisy data using learned probability distributions.
In Proc. 17th Int. Conf. Machine Learning (ICML’00), 2000.

[14] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for
unsupervised anomaly detection: Detecting intrusions in unlabeled data. In Proc. 2002
Int. Conf. of Data Mining for Security Applications, 2002.

[15] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for
unsupervised anomaly detection: Detecting intrusions in unlabeled data. Applications
of Data Mining in Computer Security, 6:77–102, 2002.

[16] M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Proceedings of the 2nd International
Conference on Knowledge Discovery and Data mining, volume 1996, pages 226–231.
AAAI Press, 1996.

[17] T. Fawcett and F. Provost. Adaptive fraud detection. Data Mining and Knowledge
Discovery, 1:291–316, 1997.

[18] R. Fujimaki, T. Yairi, and K. Machida. An approach to spacecraft anomaly detection
problem using kernel feature space. In Proc. 2005 Int. Workshop on Link Discovery
(LinkKDD’05), pages 401–410, Chicago, Illinois, 2005.

[19] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational oper-
ator generalizing group-by, cross-tab and sub-totals. In Proc. 1996 Int. Conf. Data
Engineering (ICDE’96), pages 152–159, New Orleans, Louisiana, Feb. 1996.

[20] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques, 3rd Edition.
Morgan Kaufmann, 2011.

[21] D.M. Hawkins. Identification of outliers. Chapman and Hall London, 1980.

[22] Z. He, X. Xu, and S. Deng. Discovering cluster-based local outliers. Pattern Recognition
Letters, 24(9):1641–1650, 2003.

[23] V. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial Intel-
ligence Review, 2004.

[24] V. J. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial
Intelligence Review, 22:85–126, 2004.

[25] J. Huang, H. Shimizu, and S. Shioya. Clustering gene expression pattern and extracting
relationship in gene network based on artificial neural networks. Journal of bioscience
and bioengineering, 2003.

[26] W.H. Inmon. Building the data warehouse. Wiley-India, 2005.

BIBLIOGRAPHY 50

[27] B. Jiang, J. Pei, Y. Tao, and X. Lin. Clustering uncertain data based on probability
distribution similarity. IEEE Transactions on Knowledge and Data Engineering, 2011.

[28] M.V. Joshi, R.C. Agarwal, and V. Kumar. Mining needle in a haystack: classifying
rare classes via two-phase rule induction. In ACM SIGMOD Record, volume 30, pages
91–102. ACM, 2001.

[29] M.V. Joshi, R.C. Agarwal, and V. Kumar. Predicting rare classes: Can boosting make
any weak learner strong? In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 297–306. ACM, 2002.

[30] E.M. Knorr and R.T. Ng. Algorithms for mining distance-based outliers in large
datasets. In Proceedings of the International Conference on Very Large Data Bases,
pages 392–403. Citeseer, 1998.

[31] Y. Kou, C.T. Lu, S. Sirwongwattana, and Y.P. Huang. Survey of fraud detection
techniques. In IEEE International Conference on Networking, Sensing and Control.
IEEE, 2004.

[32] S. Kullback and R.A. Leibler. On information and sufficiency. The Annals of Mathe-
matical Statistics, 1951.

[33] C. X. Lin, B. Zhao, Q. Mei, and J. Han. A statistical model for popular event tracking
in social communities. In Proc. 2010 ACM SIGKDD Conf. Knowledge Discovery and
Data Mining (KDD’10), Washington D.C., July 2010.

[34] A. Payne and P. Frow. A strategic framework for customer relationship management.
Journal of Marketing, 2005.

[35] C. Phua, D. Alahakoon, and V. Lee. Minority report in fraud detection: classification
of skewed data. ACM SIGKDD Explorations Newsletter, 6(1):50–59, 2004.

[36] K. Ross and D. Srivastava. Fast computation of sparse datacubes. In Proc. 1997 Int.
Conf. Very Large Data Bases (VLDB’97), pages 116–125, Athens, Greece, Aug. 1997.

[37] D.W. Scott. Multivariate density estimation. Wiley Online Library, 1992.

[38] B.W. Silverman. Density estimation for statistics and data analysis. Chapman &
Hall/CRC, 1986.

[39] A. Strehl and J. Ghosh. Relationship-based clustering and visualization for high-
dimensional data mining. INFORMS Journal on Computing, 2003.

[40] R. Vilalta and S. Ma. Predicting rare events in temporal domains. In Data Mining,
2002. ICDM 2002. Proceedings. 2002 IEEE International Conference on, pages 474–
481. IEEE, 2002.

BIBLIOGRAPHY 51

[41] G.M. Weiss and H. Hirsh. Learning to predict rare events in event sequences. In
Proceedings of the Fourth International Conference on Knowledge Discovery and Data
Mining, pages 359–363, 1998.

[42] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing: Computing iceberg cubes by
top-down and bottom-up integration. In Proc. 2003 Int. Conf. Very Large Data Bases
(VLDB’03), pages 476–487, Berlin, Germany, Sept. 2003.

[43] H. Yu, J. Pei, S. Tang, and D. Yang. Mining most general multidimensional summa-
rization of probable groups in data warehouses. In Proceedings of the 17th international
conference on Scientific and statistical database management. Lawrence Berkeley Lab-
oratory, 2005.

[44] K. Zhang, S. Shi, H. Gao, and J. Li. Unsupervised outlier detection in sensor networks
using aggregation tree. Advanced Data Mining and Applications, pages 158–169, 2007.

[45] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for si-
multaneous multidimensional aggregates. In Proc. 1997 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’97), pages 159–170, Tucson, AZ, May 1997.

