
LIFTED UNIT PROPAGATION

by

Pashootan Vaezipoor

B.Sc., Amirkabir University of Technology, 2008

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the

School of Computing Science

Faculty of Applied Sciences

c© Pashootan Vaezipoor 2012

SIMON FRASER UNIVERSITY

Spring 2012

All rights reserved. However, in accordance with the Copyright Act of

Canada, this work may be reproduced without authorization under the

conditions for “Fair Dealing.” Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly

if cited appropriately.

APPROVAL

Name: Pashootan Vaezipoor

Degree: Master of Science

Title of Thesis: Lifted Unit Propagation

Examining Committee: Dr. Oliver Schulte

Chair

Dr. David G. Mitchell, Senior Supervisor

Dr. Evgenia Ternovska, Supervisor

Dr. James Delgrande, SFU Examiner

Date Approved: March 13, 2012

ii

Partial Copyright Licence

Abstract

Recent emergence of effective solvers for propositional satisfiability (SAT) and related problems

has led to new methods for solving computationally challenging industrial problems, such as NP-

hard search problems in planning, software design, and hardware verification. This has produced a

demand for tools which allow users to write high level problem specifications which are automat-

ically reduced to SAT. We consider the case of specifications in first order logic with reduction to

SAT by grounding. For realistic problems, the resulting SAT instances can be prohibitively large.

A key technique in SAT solvers is unit propagation, which often significantly reduces instance size

before search for a solution begins. We define ”lifted unit propagation”, which is executed before

grounding. We show that instances produced by a grounding algorithm with lifted unit propaga-

tion are never larger than those produced by normal grounding followed by UP, and demonstrate

experimentally that they are sometimes much smaller.

iii

To an everlasting friend,

Karan Vaezipoor

iv

“Simplicity is a great virtue but it requires hard work to achieve it and education to appreciate it.

And to make matters worse: complexity sells better. ’

— Edsger W. Dijkstra

v

Acknowledgments

I hereby would like to thank, my senior supervisor, David Mitchell for introducing this line of re-

search and more importantly teaching me how to think and write in terms of logic. I also want to

thank my colleagues and lab-mates, specifically Amir Aavani, for their valuable comments and sup-

port. Lastly I want to thank my parents for demonstrating by example, the true definition humanity.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents vii

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Structure of the Text . 4

2 Preliminaries 6
2.1 First-order Logic . 6

2.1.1 Syntax . 7

2.1.2 Semantics . 8

2.1.3 Equivalence of Formulas and Negation Normal Form 9

2.1.4 Partial Structures . 11

2.2 Datalog . 14

2.2.1 Syntax . 14

vii

2.2.2 Semantics . 15

2.3 Some Notes on Computational Complexity . 16

2.3.1 NP Search Problems . 17

3 FO Model Expansion and Grounding 18
3.1 Formal Definition of Model Expansion and Grounding 19

3.2 Top-Down Grounding . 20

3.3 Relational Algebraic Grounding . 21

3.4 Transformation to CNF and Unit Propagation . 25

3.4.1 Autarkies and Autark Subformulas . 27

3.5 Conclusion . 27

4 Lifting Unit Propagation 29
4.1 Bound Structures . 29

4.2 Top-down Grounding over a Bound Structure . 31

4.3 LUP Structures . 31

4.3.1 A Datalog Program for LUP Structure Construction 36

4.3.2 An Algorithm for Construction of LUP Structures 38

4.3.3 Bottom Up Grounding with LUP Bounds 40

5 Experiments 41

6 Discussion 45

Bibliography 47

viii

List of Tables

4.1 Rules for Bounds Computation . 37

5.1 Impact of LUP on the size of the grounding. 42

5.2 Impact of LUP on reduction in grounding and (SAT) solving time. 42

5.3 Comparison between the effectiveness of LUP and GIDL Bounds on reduction in

grounding size. 44

5.4 Comparison of solving time for Enfragmo and IDP, with and without LUP/GIDL

bounds. 44

ix

List of Figures

1.1 Overview of a typical ground-based system (like Enfragmo). 2

2.1 Ordering on truth values for partial structures. 12

3.1 Top-down grounding steps. 22

3.2 Result of reduced grounding on ground formula tree. 23

4.1 Structures and the vocabularies on which they are defined. 30

x

Chapter 1

Introduction

In the course of the last decade, we have witnessed a giant leap in the performance of propositional

solvers, such as Satisfiability (SAT) solvers and Answer Set Programming (ASP) Solvers, thanks to

research targeted at devising effective methods and heuristics, and also solver competitions held by

the respective research communities. Having these efficient solvers, one can now aim for solving

real-world problems that arise in industry. But the intrinsic complexity of these problems makes low-

level modelling of them, say at SAT level, extremely hard or in some cases impossible. This, along

with other incentives, has led to the emergence of systems that employ the declarative programming

paradigm, to specify the problem at a higher level and use these propositional solvers to compose

an answer for it.

The declarative nature of these languages implies that instead of describing the steps required to

find the answer, the programmer, in a rigorous manner, states what the answer should look like. A

declarative programming language for search problems provides a syntax to describe the relationship

between the problem instance and the solution.

Fagin’s theorem [12] states that the set of all properties expressible in existential second-order

logic (∃SO) is precisely the complexity class NP. The theorem suggests a natural declarative problem

solving approach for NP-complete problems: Represent a problem with an ∃SO formula ϕ, and

solve instances by reduction to SAT or some other fixed NP-complete problem. In the case of

search problems, we must find interpretations of the existentially quantified second order variables,

which provide a solution. So, the task becomes that of expanding a given structure to give suitable

interpretations for those relation symbols.

As an example, consider the classical NP-complete problem of graph 3-colouring. The instance

graph is a finite structure and the problem specification is described by the following first-order (FO)

1

CHAPTER 1. INTRODUCTION 2

formula (Note that the ∃SO quantifiers are omitted from the specification):

∀x(R(x)∨B(x)∨G(x)) ∧

∀x[¬(R(x)∧B(x)) ∧ ¬(R(x)∧G(x)) ∧ ¬(B(x)∧G(x))] ∧

∀x∀y[E(x, y) ⊃ (¬(R(x)∧R(y)) ∧ ¬(B(x)∧B(y)) ∧ ¬(G(x)∧G(y)))]. (1.1)

Now the task is to expand the instance to containt an interpretation for the {R,B,G} relations,

which correspond to a possible colouring of the instance graph. For a specific logic L, the task is

called L-Model Expansion, abbreviated L-MX. In this thesis our focus is on specifications in the

form of first-order formulas, so the model expansion task would be FO-MX.

Many systems have specifications given in extensions or restrictions of classical FO, including:

IDP [?], MXG [25], Enfragmo [6, 7], ASPPS [11], and Kodkod [28]. Specifications for ASP sys-

tems, such as DLV [20] and clingo [13], are (extended) normal logic programs under stable model

semantics. The focus of this thesis is on Enfragmo which was built in our team at SFU.

Conversion to SAT, or grounding, is central in many of these systems. Given the problem specifi-

cation ϕ and the problem instanceA (see Figure 1.1), the grounder, roughly, must produce a ground

formula ψ which is logically equivalent to ϕ over the domain of A. Then ψ can be transformed

into a propositional CNF formula, and given as input to a SAT solver. If a satisfying assignment is

found, a solution toA can be constructed from it in terms of a new structure B. ASP systems use an

analogous process.

A “naive” grounding of ϕ over a finite domain A can be obtained by replacing each sub-formula

of the form ∃xψ(x) with
∨
a∈A ψ(ã), where ã is a constant symbol which denotes domain element

a, and similarly replacing each subformula ∀xψ(x) with a conjunction. For a fixed FO formula

ϕ, this can be done in time polynomial in |A|. Most grounders use refinements of this method,

implemented top-down or bottom-up, and perform well on simple benchmark problems and small

instances. However, as we tackle more realistic problems with complex specifications and instances

Figure 1.1: Overview of a typical ground-based system (like Enfragmo).

CHAPTER 1. INTRODUCTION 3

having large domains, the produced groundings can become prohibitively large. This can be the

case even when the formulas are “not too hard”. That is, the system performance is poor because of

time spent generating and manipulating this large ground formula, yet an essentially equivalent but

smaller formula can be solved in reasonable time. In this thesis we present one direction to develop

techniques which scale effectively to complex specifications and large instances.

Most efficient SAT solvers employ a version of the Davis-Putnam-Logemann-Loveland (DPLL)

algorithm which begins by executing unit propagation (UP) on the input formula (note that other

pre-processings might be done by SAT solvers but that is not a part of the original DPLL algorithm).

This initial application of UP often eliminates a large number of variables and clauses, and is done

very fast. However, it may be too late: the system has already spent a good deal of time generating

large but rather uninteresting (parts of) ground formulas, transforming them to CNF, moving them

from the grounder to the SAT solver, building the SAT solver’s data structures, etc. This suggests

trying to execute a process similar to UP before or during grounding.

One version of this idea was introduced in [34, 36]. The method presented there involves com-

puting a symbolic and incomplete representation of the information that UP could derive, obtained

from ϕ alone without reference to a particular instance structure. For brevity, we refer to that method

as GWB, for “Grounding with Bounds”. In [34, 36], the top-down grounder GIDL [33] is modi-

fied to use this information, and experiments indicate it significantly reduces the size of groundings

without taking unreasonable time.

In [31] we proposed an alternative approach to this method which involves constructing a con-

crete and complete representation of the information that UP can derive about a grounding of ϕ over

A, and then using this information during grounding to reduce grounding size. This thesis elaborates

more on that method, which is called lifted unit propagation (LUP).

The LUP method is roughly as follows.

1. Modify instance structure A to produce a new (partial) structure which contains information

equivalent to that derived by executing UP on the CNF formula obtained from a grounding

of ϕ over A. We call this new partial structure the LUP structure for ϕ and A, denoted

LUP(ϕ,A).

2. Run a modified (top-down or bottom-up) grounding algorithm which takes as input ϕ and

LUP(ϕ,A), and produces a grounding of ϕ over A.

The modification in step 2 relies on the idea that a tuple in LUP(ϕ,A) indicates that a particular

subformula has the same (known) truth value in every model. Thus, that subformula may be replaced

CHAPTER 1. INTRODUCTION 4

with its truth value. So the intuition is that the CNF formula obtained by grounding over LUP(ϕ,A)

is at most as large as the formula that results from producing the naive grounding and then executing

UP on it. Our experiments not only confirm that claim, but also show that in some cases the size

of CNF formula is even much smaller than this, because the grounding method eliminates some

“autark sub-formulas” which UP does not eliminate, as explained in Section 3.4.1 and Chapter 5.

We compute the LUP structure by constructing, from ϕ, an inductive definition of the relations

of the LUP structure for ϕ andA (see Section 4.3.1). A semi-naive method for evaluating this induc-

tive definition, based on relational algebra, has been implemented that works within the grounder

Enfragmo. We also computed the definitions using the ASP grounders Gringo and DLV, but these

were not faster.

The computed LUP structure can be used during grounding, with small modifications to the

grounding algorithms. For top-down grounding (see Section 4.2), we modify the naive recursive

algorithm to check the derived information in LUP(ϕ,A) at the time of instantiating each sub-

formula of ϕ.

For bottom-up grounding (see Section 4.3.3), we revise the bottom-up grounding method based

on the extended relational algebra described in [23, 27], which is the basis of grounders our group

has been developing. The change required to ground using LUP(ϕ,A) is a simple revision to the

base case.

1.1 Structure of the Text

What follows is the structure of the thesis:

• In Chapter 2, we provide some background material on classical logic, partial structures and

theory of Datalog. These are theoretical foundations on which the following chapters are

established. At the end of the chapter we provide some complexity background regarding the

NP search problems.

• In Chapter 3, we first formally define the notion of Model Expansion and then we give two

grounding algorithms that can be used for MX, namely: top-down grounding, and relational

algebraic grounding, where the later is an example of bottom-up grounding. Finally, we

present methods for CNF transformation and formally define unit propagation and Autarkies

and we designate the notations that are going to be used in later chapters to refer to these

notions.

CHAPTER 1. INTRODUCTION 5

• We begin Chapter 4 by introducing a special kind of partial structures, bound structures, and

we define the notion of grounding over such structures. In Section 4.2 we provide a top-down

grounding algorithm capable of grounding over bound structures and we use that algorithm as

a theoretical touchstone for the actual algorithm that we have used in practice. In Section 4.3

we introduce LUP structures as a special type of bound structure and we prove that grounding

over such structure results in ground formulas that are at most as large as the result of con-

ventional grounding algorithm followed by unit propagation. Later, in section 4.3.1, we use

Datalog programs to construct LUP structures and we provide an algorithm to evaluate those

programs. Finally in Section 4.3.3, we present a modification to the bottom-up algorithm of

Section 3.3 so that it can ground over LUP structures.

• In Chapter 5 we present an experimental evaluation of the performance of our grounder En-

fragmo with LUP. This evaluation is limited by the fact that our LUP implementation does not

support specifications with arithmetic or aggregates, and a shortage of interesting benchmarks

which have natural specifications without these features. Within the limited domains we have

tested, we found that:

1. CNF formulas produced by Enfragmo with LUP are always smaller than the result of

running UP on the CNF formula produced by Enfragmo without LUP, and in some cases

much smaller.

2. CNF formulas produced by Enfragmo with LUP are always smaller than the ground

formulas produced by GIDL, with or without GWB turned on.

3. Grounding over LUP(ϕ,A) is always slower than grounding without, but CNF trans-

formation with LUP is almost always faster than without.

4. Total solving time for Enfragmo with LUP is sometimes significantly less than that of

Enfragmo without LUP, but in other cases is somewhat greater.

5. Enfragmo with LUP and the SAT solver MiniSat always runs faster than the IDP system

(GIDL with ground solver MINISAT(ID)), with or without the GWB method turned on

in GIDL .

• Determining the extent to which these observations generalize is future work which is dis-

cussed in Chapter 6.

Chapter 2

Preliminaries

In this chapter we review some of the background material from mathematical logic and introduce

the notation that will be used throughout this thesis. First we introduce classical first-order logic

(FO), then we introduce the notion of partial structures. After that, we introduce Datalog, which is a

particular logic programming language. Finally, we present some standard material on SAT solving

and conversion to SAT.

2.1 First-order Logic

Definition 2.1.1. A vocabulary is composed of a set of constant symbols, like {c1, c2, . . . , cn, . . .},
predicate symbols, like {P1, P2, . . . , Pn, . . .}, and functions symbols, like {f1, f2, . . . , fn, . . .},
where each predicate and function symbol has a specific arity, which is the number of its argu-

ments.

We use P/n to emphasise that the arity of predicate symbol P is n. Note that the constant

symbols are in fact 0-ary function symbols.

Throughout the text we use capital letters to refer to predicate symbols and lower case letters to

refer to function symbols.

Definition 2.1.2 (Structure). If σ is a vocabulary, a σ-structure A = 〈A, {cAi }, {PAi }, {fAi }〉 con-

sists of a domain A, along with an interpretation for constant, predicate and function symbols, as

follows:

• each constant symbol ci of σ is mapped to an element cAi from the domain A,

6

CHAPTER 2. PRELIMINARIES 7

• each k-ary predicate symbol Pi of σ is mapped to a k-ary relation PAi over A, i.e. PAi ⊆ Ak,

• each k-ary function symbol fi of σ is mapped to a k-ary function fAi over A, i.e. fAi : Ak →
A.

We use upper case script letters (e.g. A, B) for structures, and the domain of a structure is

denoted by a Roman letter corresponding to the name of the structure, for example, domains of

structures A and B are denoted by A and B, respectively. Throughout the thesis, all structures are

finite (a structure is finite if its associated domain is finite).

Example 2.1.1. Consider vocabulary σ containing two constant symbols s and d, a binary relationE

and a binary function symbol w. Then a flow graph with weighted edges, G = 〈V, sG , dG , EG , wG〉
with source node sG and destination dG is a structure for σ, where V is the set of vertices, and EG is

the edge relation.

Typically when we are describing structures, we drop the superscript, so the graph structure of

Example 2.1.1 would be denoted by G = 〈V, s, d, E,w〉.

2.1.1 Syntax

We inductively define terms and formulas of the first-order logic over vocabulary σ as follows. We

assume an infinite set of variables:

• Each variable x is a term.

• Each constant symbol c is a term.

• If f is a k-ary function symbol and t1, . . . , tk are terms, then f(t1, . . . , tk) is also a term.

• if t1 and t2 are terms, then t1 = t2 is an atomic formula.

• If P is a k-ary predicate symbol and t1, . . . , tk are terms, then P (t1, . . . , tk) is an atomic

formula.

• If ψ1 and ψ2 are two formulas, then ¬ψ1, ψ1 ∧ ψ2 and ψ1 ∨ ψ2 are formulas.

• If ψ is a formula, then ∀xψ and ∃xψ are formulas.

Symbols ∧, ∨ and ¬ are called connectives and ∀ and ∃ are called quantifiers. When a formula

does not have any connectives or quantifiers we call it an atom. A literal is an atom (positive literal)

or the negation of an atom (negative literal).

CHAPTER 2. PRELIMINARIES 8

Definition 2.1.3 (Bound Variable). A variable occurrence x is bound if it occurs in a sub-formula

of the form ∀xϕ or ∃xϕ and free otherwise.

A formula is called a sentence if it does not have any free variables. We denote the set of free

variables x̄ of formula ϕ by ϕ(x̄), where x̄ is a tuple of variables. We also write c̄) to refer to tuples

of constant symbols. We sometimes use ∀x̄ϕ and ∃x̄ϕ as shorthands for formulas ∀x1, . . . ,∀xnϕ
and ∃x1, . . . ,∃xnϕ respectively, if x̄ is a tuple of variables x1, . . . , xn. A formula that does not have

any quantifiers is call it a quantifier-free formula.

We use ϕ ⊃ ψ, ϕ↔ ψ and t1 6= t2 as abbreviations for formulas ¬ϕ ∨ ψ, (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ)

and ¬(t1 = t2), respectively.

A substitution is a set of pairs (t/t′), where t and t′ are terms. If θ is a substitution, then ϕ[θ]

denotes the result of substituting t′ for each occurrence of t in ϕ, for every (t/t′) in θ. We assume

that all of the variables of t′ are free in ϕ[t/t′].

2.1.2 Semantics

The value of a first-order formula, with respect to structure A, can be determined in an inductive

manner based on the value of its constituting terms:

The value of a k-ary term t with free variables x̄ under structure A at ā ∈ An is denoted by

tA(ā) and is defined as follows 1:

• if t is a constant symbol c, then tA is cA.

• if t is a variable xi, then the value of tA(ā) is ai.

• if t is of the form f(t1, . . . , tk), where f is a k-ary function symbol, then the value of tA(ā),

in which ā ∈ Ak, is fA(tA1 (ā), . . . , tAk (ā)).

The fact that subformula ϕ(x̄) is true according to structure A at point ā is denoted by A |=
ϕ(x̄)[x̄/ā] and is determined as follows:

• if ϕ is (t1 = t2), then A |= ϕ(x̄)[x̄/ā] iff tA1 (ā) = tA2 (ā).

• if ϕ is P (t1, . . . , tk), then A |= ϕ(x̄)[x̄/ā] iff (tA1 (ā), . . . , tAk (ā)) ∈ PA.

1Note that we assume an ordering on the set of variables, and tuples of domain elements evaluate those variables based
on that ordering.

CHAPTER 2. PRELIMINARIES 9

• if ϕ is ¬ψ, then A |= ϕ iff A 6|= ψ.

• if ϕ is (ψ1 ∧ ψ2), then A |= ϕ iff A |= ψ1 and A |= ψ2.

• if ϕ is (ψ1 ∨ ψ2), then A |= ϕ iff A |= ψ1 or A |= ψ2.

• if ϕ(x̄) is ∀yψ(x̄, y), then A |= ϕ(x̄)[x̄/ā] iff A |= ψ(x̄, y)[(x̄/ā) ∪ (y/a′)] for every a′ ∈ A
.

• if ϕ(x̄) is ∃yψ(x̄, y), then A |= ϕ(x̄)[x̄/ā] iff A |= ψ(x̄, y)[(x̄/ā) ∪ (y/a′)] for some a′ ∈ A.

Let τ = vocab(ϕ), where vocab(ϕ) is the vocabulary under which sentence ϕ is defined. A

sentence ϕ is satisfiable iff there is a τ -structure A in which ϕ is true. In that case, A is a model for

ϕ. A formula ϕ(x̄) is satisfiable iff the sentence ∃x̄ϕ(x̄) is satisfiable. A sentence ϕ is valid iff it is

true in every τ -structure. Validity of sentence ϕ is denoted by: |= ϕ.

Examples of valid and unsatisfiable formulas are ∀x(E(x) ∨ ¬E(x)) and ∃x(E(x) ∧ ¬E(x)),

respectively. We respectively use the notations > and ⊥ to denote a valid and unsatisfiable formula.

2.1.3 Equivalence of Formulas and Negation Normal Form

Sentences ϕ1 and ϕ2 are logically equivalent iff ϕ1 ↔ ϕ2 is valid. We use “⇔” to indicate that

two formulas are logically equivalent. It is immediate from this definition that if two formulas are

equivalent, then they have identical sets of models.

The correctness of the following equivalences can be determined from the FO semantics:

1. Distributivity Laws:

ϕ ∧ (ψ ∨ µ)⇔ (ϕ ∧ ψ) ∨ (ϕ ∧ µ) (2.1)

ϕ ∨ (ψ ∧ µ)⇔ (ϕ ∨ ψ) ∧ (ϕ ∨ µ) (2.2)

2. Negation:

¬¬ϕ⇔ ϕ (2.3)

¬(ϕ ∨ ψ)⇔ ¬ϕ ∧ ¬ψ (2.4)

¬(ϕ ∧ ψ)⇔ ¬ϕ ∨ ¬ψ (2.5)

¬∀ϕ⇔ ∃¬ϕ (2.6)

¬∃ϕ⇔ ∀¬ϕ (2.7)

CHAPTER 2. PRELIMINARIES 10

3. Flattening Terms (where ϕ is an atomic formula):

ϕ⇔ ∃x (x = t ∧ ϕ[t/x]) (2.8)

ϕ⇔ ∀x (x = t ⊃ ϕ[t/x]) (2.9)

Often systems witch have their input expressed in first order logic, transform the input into an

equivalent formula that tends to be syntactically more manageable. In later chapters we require

our formula to be in Negation Normal Form (NNF), meaning that the only negated subformula are

atoms. Every τ -sentence can be transformed to an equivalent τ -sentence in NNF by repeated use of

equivalences 2.3 to 2.7.

In addition, throughout the thesis, we always assume that terms containing n(> 0)-ary function

symbols do not appear as arguments for predicate symbols, except for equality. For example, the

formula ∀x, ȳ P (x, f(ȳ)) is not acceptable, due to existence of function symbol f(ȳ) inside pred-

icate symbol P . If a formula does not have any such predicates, we say that it is in Term Normal

Form. In fact any formula can be transformed to an equivalent formula in TNF, by the application

of equivalences 2.8 and 2.9. In case of the above formula, if we apply equivalence 2.8, we obtain

∀x, y ∃z(z = f(ȳ) ∧ P (x, z)) in TNF.

Graph of a Function

Another assumption that we consider about vocabularies in the later chapters of this thesis is for

them to be function-free. This assumption does not restrict our domain of discourse, since one can

replace functions with their graphs and add some safety sentences to the formula. The graph of a

function like f(x) is a binary relation F (x, y), where y is the value of f at x. For instance if f is the

square function, then F (2, 4) is true while F (2, 5) is false.

The safety sentences are added to reflect the essence of function symbols and their totality, over

to the predicate symbols that are modelling them. In other words, the fact that the result of a function

at some point is a unique element of the domain and also the fact that a function is defined over all

domain elements, should be hard coded into the formula, by means of the safety sentences:

For every function symbol f(x̄) in the vocabulary, we add the following sentences about it’s graph

to our formula:

∀x̄, y1, y2 (F (x̄, y1) ∧ F (x̄, y2) ⊃ y1 = y2) (2.10)

CHAPTER 2. PRELIMINARIES 11

∀x̄ ∃y F (x̄, y) (2.11)

Example 2.1.2. Consider the formula ∀x, ȳ P (x, f(ȳ)) that we had before. After bringing the func-

tion out of the predicate symbol we have ∀x, ȳ ∃z(z = f(ȳ)∧P (x, z)). At this point the subformula

z = f(ȳ) can be replaced by the graph of f , provided that we add the safety sentences. The final

formula would be:

∀x, ȳ (∃zP (x, z) ∧ F (ȳ, z))∧

∀ȳ, z1, z2 (F (ȳ, z1) ∧ F (ȳ, z2) ⊃ z1 = z2)∧

∀ȳ ∃z F (ȳ, z).

A vocabulary that does not contain any function symbols is called a relational vocabulary and a

structure of such vocabulary is called a relational structure.

2.1.4 Partial Structures

A relational τ -structure A consists of a domain A together with a relation RA⊆Ak for each k-ary

relation symbol of τ . We will make use of partial structures, in which the interpretation of a relation

symbol may be only partially defined. For this, it is convenient to view a structure in terms of the

characteristic functions of the relations. Partial τ -structureA consists of a domain A together with a

k-ary function χAR : Ak → {>,⊥,∞}, for each k-ary relation symbol R of τ . Here and throughout

the text, > denotes true, ⊥ denotes false, and∞ denotes undefined. If each of these characteristic

functions is total, then A is total. We may sometimes abuse terminology and call a relation partial,

meaning the characteristic function interpreting the relation symbol in question is partial.

For any (total) τ -structure A, each τ -sentence ϕ is either true or false in A (A |= ϕ or A 6|= ϕ),

and each τ -formula ϕ(x̄) with free variables x̄, defines a relation

ϕA = {ā ∈ A|x̄| : A |= ϕ(x̄)[x̄/ā]}. (2.12)

Similarly, for any partial τ -structure, each τ -sentence is either true, false or undetermined in A, and

each τ -formula ϕ(x̄) with free variables x̄ defines a partial function

χAϕ : Ak → {>,⊥,∞}. (2.13)

In the case that χAϕ is total, it is the characteristic function of the relation (2.12).

CHAPTER 2. PRELIMINARIES 12

⊥

∞

>

Figure 2.1: Ordering on truth values for partial structures.

Semantics of Partial Structures

To grasp the above concept of evaluating the sentences and formulas under partial structures, we pro-

vide the natural adaptation of standard FO semantics to the case of partial relations. Our semantics

adhere to Kleene’s 3-valued semantics [19].

Considering the lattice of Figure 2.1, the value of subformula ϕ(x̄) according to structure A at

point ā is determined as follows:

• if ϕ is (t1 = t2), then χAϕ (ā) =

> if tA1 (ā) = tA2 (ā)

⊥ if tA1 (ā) 6= tA2 (ā).

• if ϕ is P (t1, . . . , tk), then χAϕ = χAP .

• if ϕ is ¬ψ, then χAϕ (ā) = ¬χAψ (ā).

• if ϕ is (ψ1 ∧ ψ2), then χAϕ (ā) = Min{χAψ1
(ā), χAψ2

(ā)}.

• if ϕ is (ψ1 ∨ ψ2), then χAϕ (ā) = Max{χAψ1
(ā), χAψ2

(ā)}.

• if ϕ(x̄) is ∀yψ(x̄, y), then χAϕ (ā) =
∏
a′∈A

χAψ (ā, a′).

• if ϕ(x̄) is ∃yψ(x̄, y), then χAϕ (ā) =
∑
a′∈A

χAψ (ā, a′).

Where Max and Min are respectively the greatest lower bound and least upper bound operators .

We used the curly dot notations to distinguish them from regular ∧ and ∨.

CHAPTER 2. PRELIMINARIES 13

Ordering on Partial Structures

There is a natural partial order on partial structures for any vocabulary τ , which we may denote by

≤, where A ≤ B iff A and B agree at all points where they are both defined, and B is defined at

every point A is. If A ≤ B, we may say that B is a strengthening of A. When convenient, if the

vocabulary of A is a proper subset of that of B, we may still call B a strengthening of A, taking

A to leave all symbols not in its vocabulary, completely undefined. We will call B a conservative

strengthening of A with respect to formula ϕ if B is a strengthening of A and in addition every total

structure which is a strengthening of A and a model of ϕ is also a strengthening of B.

Example 2.1.3. Let ϕ be the sentence:

∀x, y, z (Father(x, y) ∧ Father(y, z)) ⊃ GParent(x, z)

over vocabulary P = {Father/2, GParent/2} and consider partial P-structures A, B and C, all

defined over domain {Lohraspa, V ishtaspa, Peshotanu, Spentodata}, as follows:

χAFather(x, y) = χBFather(x, y) = χCFather(x, y) =

> (x, y) ∈ {(Lohraspa, V ishtaspa),

(V ishtaspa, Peshotanu)}

⊥ o.w.

χAGParent(x, y) =∞

χBGParent(x, y) =

> (x, y) ∈ {(Lohraspa, Peshotanu)}

∞ o.w.

χCGParent(x, y) =

> (x, y) ∈ {(Lohraspa, Spentodata)}

∞ o.w.

Both B and C are strengthenings of A, but only B is a conservative strengthening of A w.r.t. ϕ,

since GParent(Lohraspa, Peshotanu) is true in every model of ϕ that is a strengthening of A,

while there is a strengthening ofA that is a model of ϕ in whichGParent(Lohraspa, Spentodata)

is false.

CHAPTER 2. PRELIMINARIES 14

2.2 Datalog

Later in the thesis we perform a computation that can be conviniently described in the logic program-

ming paradigm. In fact the programs that we deal with are in a very restricted logic programming

language that is equivalent to the deductive database query language Datalog [9, 8]. Datalog has

emerged from the integration of logic programming and databases and it is used to infer additional

facts about the data stored in a database.

2.2.1 Syntax

A Datalog program ∆ consists of a set of facts and a set of rules, denoted respectively by Fact(∆)

and Rule(∆). The facts are a set of assertions about the entities under consideration, for example

“Lohraspa is the father of Vishtaspa”. The rules impose some relations on these entities and allow

for further deduction of facts from other facts. For example “If X is the father of Y and Y is the

father of Z, then X is the grandparent of Z” constitutes a rule. Obviously, Fact(∆) ∪ Rule(∆) = ∆.

The set of constant symbols occurring in a Datalog program ∆ is denoted by adom(∆).

Rules and facts of Datalog are given as Horn clauses, of the form:

L0(x̄0) ← L1(x̄1), . . . , Ln(x̄n) (2.14)

where x̄i are tuples of variables. The left-hand side is called the head and the right-hand side is called

the body. The facts can be thought of as rules with empty body. For instance the aforementioned

fact and rule about fathers and grandparents can be represented in Datalog as:

Father(Lohraspa, V ishtaspa).

GParent(x, z) ← Father(x, y), Father(y, z).

Where x, y and z are variables. An atom, fact or rule that contains no variables is called ground.

Any Datalog program ∆ must satisfy the following safety conditions:

• Each fact of ∆ is ground.

• Every variable appearing in the head of a rule r of ∆ must also appear in the body of the r.

CHAPTER 2. PRELIMINARIES 15

2.2.2 Semantics

A Datalog program ∆ can be associated to a set of FO formulas: Every fact is a ground predicate

and every rule like 2.14 can be converted to a FO formula like:

∀x̄1, . . . , x̄n(L1(x̄1) ∧ . . . ∧ Ln(x̄n) ⊃ L0(x̄0)) (2.15)

The vocabulary of ∆ is denoted by vocab(∆). A ground factL(ā) is satisfied under a vocab(∆)-

structure A iff ā ∈ LA. Note that in the Datalog literature, a structure is regarded as a set of

facts, that’s why we used a different notation to emphasize this distinction. One can turn a Datalog

structure A to a first order structure A by setting the value of a relation PA true at ā, if P (ā) is a

fact in A and setting it to false otherwise. A Datalog rule r is true under A iff its corresponding FO

formula is satisfied by A for every evaluation of the free variables of r. Structure A is a model for

∆ (denoted by A |= ∆) iff every fact and rule of ∆ is true under A .

We denote by HB(∆) the set of all possible atoms that we can express in the language of Datalog

program ∆, i.e. the set of all atoms, L(a1, . . . , an), where a1, . . . , an are constant symbols in

adom(∆). A structure, then, is a subset of this set, containing the facts that are true under itself.

A fact L(ā) ∈ HB(∆) is a logical consequence of (or follows from) ∆ iff every structure A that

satisfies ∆ also satisfies L(ā). If L(ā) follows from ∆, we write ∆ |= L(ā). Intuitively, facts that

follow from a Datalog program are the answers obtained by running that program.

Definition 2.2.1 (cons(∆)). The set of all logical consequence facts of a datalog program ∆ is

denoted by cons(∆), which is equal to the intersection of all models of ∆:

cons(∆) = {L(ā) ∈ HB(∆) |∆ |= L(ā)} (2.16)

= ∩ {A | A |= ∆}. (2.17)

The set cons(∆) is called the minimal model of ∆.

Fixpoint Characterization of cons(∆)

There is a fixpoint characterization for cons(∆) which, to a good extent, mimics the actual imple-

mentation of this operator in practice (see Chapter 4). Let Infer1(∆) be the set of facts that can be

inferred from the set of Datalog clauses ∆ in a single step. It means that the result of this function

is the set of heads of rules in ∆ whose bodies are satisfied by only the facts in ∆. Then cons(∆)

CHAPTER 2. PRELIMINARIES 16

can be characterized by the least fixpoint of a mapping T∆ : 2HB(∆) → 2HB(∆). The mapping is

defined as:

T∆(A) = A ∪ Fact(∆) ∪ Infer1(Rule(∆) ∪ A). (2.18)

where A can be viewed both as a set of facts and a structure.

The set of models of ∆ coincides with the set of fixpoints of T∆. It is easy to see that the least

fixpoint of T∆ is the same as the minimal model of ∆. So cons(∆) can be computed by a least

fixpoint operation on T∆, i.e. computing T∆(∅), T∆(T∆(∅)), T∆(T∆(T∆(∅))), ... until the result

of an application of T∆ is equal to its predecessor.

2.3 Some Notes on Computational Complexity

Throughout the thesis we focus on a class of problems known as NP search problems. In this section

we formally define this complexity class.

The input of a computational problem can be regarded as a string over a set of elements, called

the domain, and the output should have a certain property. Usually the problem is described in terms

of that property. Formula 1 of the Introduction section, for instance, gives the property of interest

for the graph 3-colouring problem.

Among different types of computational problems are decision problems and search problems

[29]:

The output of a decision problem, given the input, is just a Yes/No answer. In other words we are

only interested to see if the input satisfies the property. For instance, again for the graph 3-colouring

problem, given an undirected graph G = {V,E}, we are asked to verify wether there is a way to

assign colours (i.e. find the mapping c : V → {R,B,G}), picked from the set {R,B,G}, to the

vertices of G such that no two adjacent vertices are unicoloured.

For the search version, we have to come up with an answer that is in some relation with the input.

More formally, given input x and a relation R, we want to find an “answer” y such that (x, y) ∈ R.

This way the problem is even more challenging, because we not only are asked to determine wether

an answer exists, we have to construct it also. For the graph 3-colouring problem, the mapping that

assigns colours to vertices and adheres to the aforementioned criteria, itself, is the answer, if such a

mapping exists.

CHAPTER 2. PRELIMINARIES 17

2.3.1 NP Search Problems

If a decision problem asymptotically can be solved in polynomial time, we say that the problem lies

in class P. Conventionally, we call the problems of this class to be solvable in a “feasible” time, where

feasible refers to the rate of growth rather than the actual time needed to solve specific instances.

A decision problem L is a NP decision problem if there exists a polynomial time computable

relation R and a constant c s.t. x ∈ L iff there exists a y, |y| ≤ |x|c such that R(x, y) accepts.

A NP search problem can be though of as the search version of a decision problem, where for

any given input x, an answer y (where |y| ≤ |x|c for a constant c) can be checked in polytime.

Chapter 3

FO Model Expansion and Grounding

As mentioned in previous chapters, the combinatorial search problems targeted in this thesis all

reside in the class of NP problems. Based on Cook’s theorem [10] that any problem in NP can be

reduced in polytime to SAT, one can devise a framework to solve NP problems by conversion to

SAT and employment of efficient SAT-solvers as an off-the-shelf component of the framework.

A natural formalization of these NP search problems and their specifications is the logical task

of model expansion. Several benefits can be achieved by formalizing in logic, one of which is access

to the rich theoretical results in the field of descriptive complexity [17] where the correspondence

between expressiveness of logics and computational complexity is established. This field provides

tools to control the expressive power of the modelling language, which in turn calibrates the solver

framework to target the problems at a specific complexity class.

For example Fagin’s theorem [12] states such a relationship between ∃SO and complexity class

NP. In [24], this theorem is rephrased to the statement that FO-MX can express every problem in

NP. This result has two practical consequences: First, it provides assurance that all NP problems

can be expressed in FO-MX; secondly, the statement that no problem outside of complexity class

NP is expressible in FO-MX guarantees a polytime algorithm to convert (i.e. ground) the expressed

problems to SAT.

In this chapter we first formally define the notion of MX and grounding. Then we provide

algorithms to perform the grounding. The algorithms are categorized into top-down and bottom-up

depending on where in the FO formula tree they start the conversion. Section 3.2 describes top-

down grounding, while section 3.3 gives a bottom-up version based on relational algebra. Finally,

in section 3.4 we discuss some technical issues regarding the transformation of the ground formula

to conjunctive normal form (CNF).

18

CHAPTER 3. FO MODEL EXPANSION AND GROUNDING 19

3.1 Formal Definition of Model Expansion and Grounding

Here, we define MX [22] for the special case of FO. A structure B for vocabulary σ ∪ ε is an

expansion of σ-structureA iffA and B have the same domain (A = B), and interpret their common

vocabulary identically, i.e., for each symbol R of σ, RB = RA. Also, if B is an expansion of

σ-structure A, then A is the reduct of B defined by σ. Note that expansion is a special case of

strengthening. In fact, if B is a complete strengthening of A, then it is an expansion for A.

Definition 3.1.1 (Model Expansion for FO).

Given: A FO formula ϕ on vocabulary σ ∪ ε and a σ-structure A,

Find: an expansion B of A that satisfies ϕ.

In the present context, the formula ϕ constitutes a problem specification, the structureA a prob-

lem instance, and expansions ofA which satisfy ϕ are solutions forA. Thus, we call the vocabulary

of A, the instance vocabulary, denoted by σ, and ε the expansion vocabulary. We sometimes say ϕ

is A-satisfiable if there exists an expansion B of A that satisfies ϕ.

Example 3.1.1. Let ϕ be formula 1.1 of Chapter 1. A finite structure A over vocabulary σ = {E},
whereE is a binary relation symbol, is a graph. Given graphA = G = (V ;E), there is an expansion

B ofA that satisfies ϕ, iff G is 3-colourable. So ϕ constitutes a specification of the problem of graph

3-colouring. To illustrate:
A︷ ︸︸ ︷

(V ;EA, RB, BB, GB)︸ ︷︷ ︸
B

|= ϕ

An interpretation for the expansion vocabulary ε := {R,B,G} given by structure B is a colouring

of G, and the proper 3-colourings of G are the interpretations of ε in structures B that satisfy ϕ.

Given ϕ andA, we want to produce a CNF formula (for input to a SAT solver), which represents

the solutions to A. This is done in two steps: grounding, followed by transformation to CNF. The

grounding step produces a ground formula ψ which is equivalent to ϕ over expansions of A. To

produce ψ, we bring domain elements into the syntax by expanding the vocabulary with a new

constant symbol for each domain element. For A, the domain of A, we denote this set of constants

by Ã. For each a ∈ A, we write ã for the corresponding symbol in Ã. We also write ˜̄a, where ā is a

tuple.

CHAPTER 3. FO MODEL EXPANSION AND GROUNDING 20

Definition 3.1.2 (Grounding of ϕ over A). Let ϕ be a formula of vocabulary σ ∪ ε, A be a finite

σ-structure, and ψ be a ground formula of vocabulary µ, where µ ⊇ σ∪ε∪Ã. Then ψ is a grounding

of ϕ over A if and only if:

1. if ϕ is A-satisfiable then ψ is A-satisfiable;

2. if B is a µ-structure which is an expansion of A and gives Ã the intended interpretation, and

B |= ψ, then B |= ϕ.

We call ψ a reduced grounding if it contains no symbols of the instance vocabulary σ.

Definition 3.1.2 is a slight generalization of that used in [23, 27], in that it allows ψ to have

vocabulary symbols not in σ ∪ ε ∪ Ã. This generalization allows us to apply a Tseitin-style CNF

transformation (see Section 3.4) in such a way that the resulting CNF formula is still a grounding

of ϕ over A. If B is an expansion of A satisfying ψ, then the reduct of B defined by σ ∪ ε is

an expansion of A that satisfies ϕ. For the remainder of the paper, we assume that ϕ is in NNF

(see Section 2.1.3) and that ⊃ and↔ symbols are replaced with their equivalences, as described in

Section 2.1.3.

3.2 Top-Down Grounding

Algorithm 1 produces the “naive grounding” of ϕ over A mentioned in Chapter 1. We allow con-

junction and disjunction to be connectives of arbitrary arity. That is (∧ ϕ1 ϕ2 . . . ϕi) is a formula,

not just an abbreviation for some parenthesization of (ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕi). The initial call to Algo-

rithm 1 is NaiveGndA(ϕ, ∅), where ∅ is the empty substitution, after that the algorithm works in a

top-down manner.

Algorithm 1 Top-Down Naive Grounding of NNF formula ϕ over A

NaiveGndA(ϕ, θ)=

P (x̄)[θ] if ϕ is an atom P (x̄)

¬P (x̄)[θ] if ϕ is a negated atom ¬P (x̄)∧
i NaiveGndA(ψi, θ) if ϕ =

∧
i ψi∨

i NaiveGndA(ψi, θ) if ϕ =
∨
i ψi∧

a∈A NaiveGndA(ψ, [θ ∪ (x/ã)]) if ϕ = ∀x ψ∨
a∈A NaiveGndA(ψ, [θ ∪ (x/ã)]) if ϕ = ∃x ψ

The ground formula produced by Algorithm 1 is not a grounding of ϕ over A (according to

Definition 3.1.2), because it does not take into account the interpretations of σ given by A. To

CHAPTER 3. FO MODEL EXPANSION AND GROUNDING 21

produce a grounding of ϕ over A, we may conjoin a set of atoms giving that information with

NaiveGndA(ϕ, ∅):

NaiveGndA(ϕ, ∅) ∧
∧
P∈σ
ā∈A|P |

P (x̄)[x̄/˜̄a] (3.1)

We can further produce a reduced grounding from 3.1 by “evaluating out” all atoms of the in-

stance vocabulary. From now on we use NaiveGndA(ϕ) to refer to the resulting reduced grounding

of formula ϕ over A.

Example 3.2.1. Let ϕ be the formula ∀x, y (¬Edge(x, y) ∨ (C(x) ∧ C(y))) defined over domain

A = {1, 2, 3}. Figure 3.1 shows the progress of Algorithm 1 on this formula. If we have A =

G = {(1, 2), (2, 1), (2, 3), (3, 2)} as our problem instance, the set of atoms to be conjoined with

NaiveGndA(ϕ, ∅) to produce the naive grounding is:

{E(1, 2), E(2, 1), E(2, 3), E(3, 2),

¬E(1, 1),¬E(2, 2),¬E(3, 3),

¬E(1, 3),¬E(3, 1)}.

Using this, we can evaluate out some parts of the tree and remove them from the final ground

formula, hence producing a reduced grounding of ϕ with respect toA (see Figure 3.2). For instance,

in the left-most branch of Figure 3.2, since we know that E(1, 1) is false, we can replace it accord-

ingly. Now, the value of the ∨ operator can be set to true, regardless of the value of the other branch.

But true is the zero element of ∧, so we can remove the ∨ branch all together.

3.3 Relational Algebraic Grounding

The grounding algorithm used in Enfragmo constructs a grounding by a bottom-up process that

parallels database query evaluation, based on an extension of the relational algebra. We give a

rough sketch of the method here: further details can be found in, e.g., [25, 27]. Given a structure

(database) A, a boolean query is a formula ϕ over the vocabulary of A, and query answering is

evaluating whether ϕ is true, i.e., A |= ϕ. In the context of grounding, ϕ has some additional vo-

cabulary beyond that of A, and producing a reduced grounding involves evaluating out the instance

vocabulary, and producing a ground formula representing the expansions of A for which ϕ is true.

CHAPTER 3. FO MODEL EXPANSION AND GROUNDING 22

Fi
gu

re
3.

1:
To

p-
do

w
n

gr
ou

nd
in

g
st

ep
s

of
fo

rm
ul

a
∀x
,y

(¬
E
d
g
e(
x
,y

)
∨

(C
(x

)
∧
C

(y
))

)
ov

er
do

m
ai

n
A

=
{1
,2
,3
}:

(a
)

T
he

FO
fo

rm
ul

a
tr

ee
.

(b
)

&
(c

)
&

(d
)

E
va

lu
at

io
n

of
qu

an
tifi

er
s

fr
om

to
p

to
bo

tto
m

(r
ed

no
de

s
de

no
te

th
e

ne
xt

qu
an

tifi
er

to
be

ev
al

ua
te

d)
.

(e
)

T
he

fin
al

gr
ou

nd
fo

rm
ul

a
tr

ee
.

CHAPTER 3. FO MODEL EXPANSION AND GROUNDING 23

Fi
gu

re
3.

2:
C

ir
cl

ed
su

bt
re

es
sh

ow
th

e
su

bf
or

m
ul

as
th

at
ca

n
be

re
m

ov
ed

fr
om

th
e

gr
ou

nd
fo

rm
ul

a
in

re
du

ce
d

gr
ou

nd
in

g.

CHAPTER 3. FO MODEL EXPANSION AND GROUNDING 24

For each sub-formula α(x̄) with free variables x̄, we call the set of reduced groundings for α

under all possible ground instantiations of x̄ an answer to α(x̄). We represent answers with tables on

which the extended algebra operates. An X-relation, in databases, is a k-ary relation associated with

a k-tuple of variables X, representing a set of instantiations of the variables of X. The grounding

method uses extended X-relations, in which each tuple ā is associated with a formula. In particular,

if R is the answer to α(x̄), then R consists of the pairs (ā, α(˜̄a)). Since a sentence has no free

variables, the answer to a sentence ϕ is a zero-ary extended X-relation, containing a single pair

(〈〉, ψ), associating the empty tuple with formula ψ, which is a reduced grounding of ϕ.

The relational algebra has operations corresponding to each connective and quantifier in FO:

complement (negation); join (conjunction); union (disjunction), projection (existential quantifica-

tion); division or quotient (universal quantification). Each generalizes to extended X-relations. If

(ā, α(˜̄a)) ∈ R then we write δR(ā) = α(˜̄a). For example, the join of two extended relations is

defined as follows:

Definition 3.3.1 (R on S). The join of extended relations X-relation R and extended Y -relation S
(both over domain A), denoted R on S, is the extended X ∪ Y -relation {(ā, ψ) | ā : X ∪ Y →
A, ā|X ∈ R, ā|Y ∈ S, and ψ = δR(ā|X) ∧ δS(ā|Y)};

It is easy to show that, if R is an answer to α1(x̄) and S is an answer to α2(ȳ) (both wrt A),

thenR on S is an answer to α1(x̄) ∧ α2(ȳ). The analogous property holds for the other operators.

To ground a σ∪ε formula ϕ on a σ-structureAwith this algebra, we define the answer to atomic

formula P (x̄) as (ā, ρ), where:

ρ =

P (˜̄a) if P ∈ ε

> if P ∈ σ and ā ∈ PA

⊥ if P ∈ σ and ā 6∈ PA.

(3.2)

Then we apply the algebra inductively, bottom-up, on the structure of the formula. At the top,

we obtain the answer to ϕ, which is a relation containing only the pair (〈〉, ψ), where ψ is a reduced

grounding of ϕ wrt A.

Proposition 3.3.1. Let (〈〉, ψ) be the answer to sentence ϕ after initialization (3.2) of atomic for-

mulas according to structure A, then:

NaiveGndA(ϕ) ≡ ψ

CHAPTER 3. FO MODEL EXPANSION AND GROUNDING 25

Note that if we set the answer to the instance predicates the same way as the expansion predi-

cates, then what we get as the answer to ϕ (i.e. (〈〉, ψ)) is a naive grounding of ϕ over A which is

equivalent to 3.1.

Example 3.3.1. Let σ = {P} and ε = {E}, and letA be a σ-structure withPA = {(1, 2, 3), (3, 4, 5)}.
The following extended relationR is an answer to ϕ1 ≡ P (x, y, z) ∧ E(x, y) ∧ E(y, z):

x y z ψ

1 2 3 E(1, 2) ∧ E(2, 3)

3 4 5 E(3, 4) ∧ E(4, 5)

Observe that δR(1, 2, 3) = E(1, 2) ∧E(2, 3) is a reduced grounding of ϕ1[(1, 2, 3)] = P (1, 2, 3) ∧
E(1, 2) ∧ E(2, 3), and δR(1, 1, 1) = ⊥ is a reduced grounding of ϕ1[(1, 1, 1)].

The following extended relation is an answer to ϕ2 ≡ ∃zϕ1:

x y ψ

1 2 E(1, 2) ∧ E(2, 3)

3 4 E(3, 4) ∧ E(4, 5)

Here, E(1, 2) ∧ E(2, 3) is a reduced grounding of ϕ2[(1, 2)]. Finally, the following represents an

answer to ϕ3 ≡ ∃x∃yϕ2, where the single formula is a reduced grounding of ϕ3.

ψ

[E(1, 2) ∧ E(2, 3)] ∨ [E(3, 4) ∧ E(4, 5)]

3.4 Transformation to CNF and Unit Propagation

Transformation of a formula in NNF to CNF is achievable by repeated application of the distributiv-

ity law (Equivalence 2.2) to move the disjunctions deeper in the formula tree, and as a result moving

conjunctions up at the same time. But this technique might produce a CNF that is exponentially

larger than the size of the input formula.

The method of Tseitin [30] for CNF transformation guarantees a linear increase in the size of

the CNF formula. The resulting formula is not equivalent to the first formula, but they are equisat-

isfiable, meaning that if one is satisfiable the other one is also satisfiable. Moreover, every model

for the resulting CNF formula is also a model for the original formula, which is important for model

expansion.

We use Tseitin’s method with two modifications. The method, usually presented for proposi-

tional formulas, involves adding a new atom corresponding to each sub-formula. Here, we use a

CHAPTER 3. FO MODEL EXPANSION AND GROUNDING 26

version for ground FO formulas, so the resulting CNF formula is also a ground FO formula, over

vocabulary τ = σ ∪ ε ∪ Ã ∪ ω, where ω is a set of new relation symbols which we call “Tseitin

symbols”. To be precise, ω consists of a new k-ary relation symbol dψe for each subformula ψ of ϕ

with k free variables. We also formulate the transformation for formulas in which conjunction and

disjunction may have arbitrary arity.

Let γ = NaiveGndA(ϕ, ∅). Each subformula α of γ is a grounding over A of a substitution

instance ψ(x̄)[θ], of some subformula ψ of ϕ with free variables x̄. To describe the CNF transfor-

mation, it is useful to think of labelling the subformulas of γ during grounding as follows. If α is a

grounding of formula ψ(x̄)[θ], label α with the ground atom dψe(x̄)[θ]. To minimize notation, we

will denote this atom by α̂, setting α̂ to α if α is an atom. Now, we have for each sub-formula α of

the ground formula ψ, a unique ground atom α̂, and we carry out the Tseitin transformation to CNF

using these atoms.

Definition 3.4.1. For ground formula ψ, we denote by CNF(ψ) the following set of ground clauses.

For each sub-formula α of ψ of form:

1. (∧i αi), include in CNF(ψ) the set of clauses {(¬α̂ ∨ α̂i)} ∪ {(∨i¬α̂i ∨ α̂)}

2. (∨i αi), include in CNF(ψ) the set of clauses {(α̂ ∨ ¬αi)} ∪ {(∨iαi ∨ ¬α̂)}

3. (¬α1), include in CNF(ψ) the set of clauses {(¬α̂ ∨ α1)} ∪ {(α̂ ∨ α1)}.

If ψ is a grounding of ϕ over A, then CNF(ψ) is also. The models of ψ are exactly the reducts

of the models of CNF(ψ) defined by σ ∪ ε ∪ Ã. CNF(ψ) can trivially be viewed as a propositional

CNF formula. This propositional formula can be sent to a SAT solver, and if a satisfying assignment

is found, a model of ϕ which is an expansion of A can be constructed from it.

Definition 3.4.2 (UP(γ)). Let γ be a ground FO formula in CNF. Define UP(γ), the result of

applying unit propagation to γ, to be the fixed point of the following operation:

If γ contains a unit clause (l), delete from each clause of γ every occurrence of ¬l, and

delete from γ every clause containing l.

Now, CNF(NaiveGNDA(ϕ)) is the result of producing the naive grounding of ϕ over A, and

transforming it to CNF in the standard way, and UP(CNF(NaiveGNDA(ϕ))) is the formula ob-

tained after simplifying it by executing unit propagation. These two formulas provide reference

points for measuring the reduction in ground formula size obtained by LUP in later chapters.

CHAPTER 3. FO MODEL EXPANSION AND GROUNDING 27

3.4.1 Autarkies and Autark Subformulas

In the literature, an autarky [26] is informally a “self-sufficient“ model for some clauses which

does not affect the remaining clauses of the formula. An autark subformula is a subformula which is

satisfied by an autarky. To see how an autark subformula may be produced during grounding, let λ =

γ1∨γ2 and imagine that the value of subformula γ1 is true according to our bound structure. Then λ

will be true, regardless of the value of γ2, and the grounder will replace its subformula with its truth

value, whereas in the case of naive grounding, the grounder does not have that information during the

grounding. So it generates the set of clauses for this subformula as: {(¬λ∨γ1∨γ2), (¬γ1∨λ), (¬γ2∨
λ)}. Now the propagation of the truth value of λ1 and subsequently λ, results in elimination of all

the three clauses, but the set of clauses generated for γ2 will remain in the CNF formula. We call γ2

and the clauses made from that subformula autarkies.

The example suggests that this is a common phenomena and that the number of autarkies might

be quite large in many groundings, as will be seen in Chapter 5.

3.5 Conclusion

In this chapter we discussed the notion of model expansion and grounding in theory and then pro-

vided two grounding algorithms: a top-down and a bottom-up algorithm. MXG grounder [25],

and Enfragmo [6, 7] are examples of bottom-up grounders that employ algebraic database theory

to do the grounding. This enables them to use the best practices and optimization techniques from

database theory.

Another example of a bottom-up grounder is the grounder of the Alloy system [18] , called

Kodkod [28]. Alloy uses a mixture of FO logic and relational algebraic operators in its specifica-

tion language. The system is used for model-checking of software abstractions expressed in Alloy’s

specification language. Kodkod is the program that translates the specification directly to SAT. Kod-

kod represents the predicates (atomic formulas) as sparse matrices and translates logical operators

on those atomic formulas to matrix operations.

Top-down grounding is the technique used in the grounder of the IDP system [35], GIDL [33].

The system first tries to find some bounds on the subformulas of the input theory (formula) and then

uses that information to reduce the size of the ground formula. Finally the ground formula is give to

a SAT solver with a richer syntax (with sets, aggregates and inductive definitions) than typical CNF

solvers.

CHAPTER 3. FO MODEL EXPANSION AND GROUNDING 28

In later chapters we focus on Enfragmo, and in Chapter 5 we compare the bounds computation

technique of GIDL with LUP.

Chapter 4

Lifting Unit Propagation

In this chapter we present a grounding algorithm that produces groundings of ϕ over a specific class

of partial structures, which we call bound structures, related to ϕ and A. These partial structures

are called bound structures because they bound the sets of tuples of domain elements on which the

subformulas are true/false. For instance, if a bound structure sets the value of subformula ψ to true

(resp. false) at ā, then it is bounding the set of tuples on which ψ is false (resp. true). This naming

was first introduced in [34]. One gets smaller groundings by replacing the subformulas with their

values during the grounding. These values are obtained from the bound structure.

Building on the notion of bound structures we define Lifted Unit Propagation (LUP) structures

and we show that top-down grounding over this special bound structure produces ground formulas

which, after CNF generation, unit propagation cannot simplify any further. In other words, the

ground formula is as small as it can be relative to doing normal grounding and UP afterwards.

Intuitively, we bring forward the work of UP before the grounding and we do it in a higher level,

hence the word “lifted”.

Later we show how to use Datalog programs for construction of LUP structures and finally we

claim that the same result as top-down grounding over LUP structures can be obtained by bottom-

up grounding over the same structure. In fact, the bottom-up adaptation is the method that was

implement in the grounder Enfragmo, since it is a bottom-up grounder.

4.1 Bound Structures

The specific structures of interest are over a vocabulary expanding the vocabulary of ϕ in a certain

way. We will call a vocabulary τ a Tseitin vocabulary for ϕ if it contains, in addition to the symbols

29

CHAPTER 4. LIFTING UNIT PROPAGATION 30

Figure 4.1: Structures and the vocabularies on which they are defined.

of ϕ, the set ω of Tseitin symbols for ϕ (see Section 3.4). We call a τ -structure a “Tseitin structure

for ϕ” if the interpretations of the Tseitin symbols respect the special role of those symbols in the

Tseitin transformation. For example, if α is α1 ∧ α2, then Â must not make α̂A ↔ α̂1
A ∧ α̂2

A

false (according to the FO semantics for partial structures of Section 2.1.4). The vocabulary of the

formula CNF(NaiveGndA(ϕ)) is a Tseitin vocabulary for ϕ, and every model of that formula is a

Tseitin structure for ϕ.

Definition 4.1.1 (Bound Structures). Let ϕ be a formula, and A be a structure for a subset of the

vocabulary of ϕ. A bound structure Â for ϕ and A is a partial Tseitin structure for ϕ that is a

conservative strengthening of A with respect to ϕ.

Intuitively, a bound structure provides a way to represent the information from the instance

together with additional information, including information about the Tseitin symbols in a grounding

of ϕ, that we may derive (by any means), provided that the information does not eliminate any

possible expansions of the instance that model ϕ (see Figure 4.1).

Let τ be the minimum vocabulary for bound structures for ϕ andA (i.e. the dotted part of Figure

4.1 is empty). The bound structures for ϕ and A with vocabulary τ form a lattice under the partial

order≤. The minimum element of this lattice isA (expanded with empty τ −σ relations), while the

maximum element is defined exactly for the atoms of CNF(NaiveGndA(ϕ)) which have the same

CHAPTER 4. LIFTING UNIT PROPAGATION 31

truth value in every Tseitin τ -structure that satisfies ϕ, i.e. the true atoms in the intersection of all

the Tseitin τ -structures that satisfy ϕ1.

Definition 4.1.2 (Grounding over a bound structure). Let Â be a bound structure for ϕ and A. A

formula ψ, over a Tseitin vocabulary for ϕ which includes Ã, is a grounding of ϕ over Â iff

1. if there is a total strengthening of Â that satisfies ϕ, then there is one that satisfies ψ;

2. if B is a total Tseitin structure for ϕ which strengthens Â, gives Ã the intended interpretation

and satisfies ψ, then it satisfies ϕ.

A grounding ψ of ϕ over Â need not be a grounding of ϕ over A. If we conjoin with ψ ground

atoms representing the information contained in Â, then we do obtain a grounding of ϕ over A.

In practice, for ψ which is a reduced grounding, we just send CNF(ψ) to the SAT solver, and if a

satisfying assignment is found, we add the missing information back in at the time we construct a

model for ϕ (see Figure 1.1 of the Chapter 1).

4.2 Top-down Grounding over a Bound Structure

Algorithm 2 produces a grounding of ϕ over a bound structure Â for A and ϕ. Gnd and Simpl are

defined by mutual recursion. Gnd performs expansions and substitutions, while Simpl performs

lookups in Â to see if the grounding of a sub-formula may be left out. Eval provides the base cases,

evaluating ground atoms over σ ∪ ε ∪ Ã ∪ ω in Â.

The stronger Â is, the smaller the ground formula produced by Algorithm 2. For instance, if

we set Â to be undefined everywhere (i.e., to just give the domain), then Algorithm 2 produces

NaiveGndA(ϕ, ∅). On the other hand, if Â is set to A, we get the reduced grounding obtained by

NaiveGndA(ϕ). Ultimately, if we set Â to be the intersection of all the Tseitin τ -structures that

satisfy ϕ (the aforementioned maximum bound structure), we get the smallest possible grounding ϕ

over A using Algorithm 2.

Proposition 4.2.1. Algorithm 2 produces a grounding of ϕ over Â.

4.3 LUP Structures

Section 4.2 introduced bound structures and how to ground over them. LUP(ϕ,A) is a special

kind of bound structure in the sense that grounding over this bound structure and subsequent CNF

1This is the structure produced by “Most Optimum Propagator” in [36].

CHAPTER 4. LIFTING UNIT PROPAGATION 32

Algorithm 2 Top-Down Grounding over Bound Structure Â for ϕ and A

GndÂ(ϕ, θ) =

EvalÂ(P, θ) ϕ is an atom P (x̄)

¬EvalÂ(P, θ) ϕ is a negated atom ¬P (x̄)∧
i SimplÂ(ψi, θ) ϕ =

∧
i ψi∨

i SimplÂ(ψi, θ) ϕ =
∨
i ψi∧

a∈A SimplÂ(ψ, θ ∪ (x/ã)) ϕ = ∀x ψ∨
a∈A SimplÂ(ψ, θ ∪ (x/ã)) ϕ = ∃x ψ

EvalÂ(P, θ) =

> Â |= P [θ]

⊥ Â |= ¬P [θ]

P (x̄)[θ] o.w

SimplÂ(ψ, θ) =

> Â |= dψe[θ]
⊥ Â |= ¬dψe[θ]
GndÂ(ψ, θ) o.w.

transformation makes unit propagation on the resulting ground formula redundant. In other words,

the resulting ground formula is as small as it can get with respect to UP, so doing UP on it would

not make it any smaller. In this section we define LUP(ϕ,A), and a method for constructing it.

Definition 4.3.1 (LUP(ϕ,A)). Let Units denote the set of unit clauses that appear during the

execution of UP on CNF(NaiveGndA(ϕ)). If Units is:

• Unsatisfiable: then no LUP structure exists.

• Satisfiable: then the LUP structure for ϕ and A is the unique bound structure for ϕ and A for

which:

χAdψe(ā) =

> dψe(˜̄a) ∈ Units

⊥ ¬dψe(˜̄a) ∈ Units

∞ o.w.

(4.1)

for every subformula ψ of ϕ.

Theorem 4.3.2. If Units is satisfiable, then the LUP structure of Definition 4.3.1 exists, and it is a

unique bound structure for ϕ and A.

Proof. (Sketch) We have to show that the above construction method yields a unique bound struc-

ture, provided that Units is satisfiable. In other words, we have to show that given the precondition,

CHAPTER 4. LIFTING UNIT PROPAGATION 33

there exists a partial structure Â that is a unique Tseitin structure and a conservative strengthening

of the instance structure A. Uniqueness is immediate, due to the construction method. Now, since

Units is satisfiable, it means that no two unit clauses are contradictory, i.e. for any atom α, not both

α and ¬α can be in Units. Based on this, and based on the fact that unit propagation does not violate

semantical relation between the Tseitin atoms, one can prove, in a case by case manner, that there

are no inconsistencies in the values of the Tseitin predicates and hence Â is a Tseitin structure.

Now it only remains to prove that Â is a conservative strengthening of A. It is a strengthening,

because it has the same value asA whereverA is defined (remember from Section 3.2 that the inter-

pretations of instance vocabulary are included as units in CNF(NaiveGndA(ϕ))). And finally Â is

a conservative strengthening of ϕ and A, because every possible model of ϕ that is a strengthening

of A is also a strengthening of Â. To see this, observe that no possible satisfying assignments for

CNF(NaiveGndA(ϕ)) is lost by unit propagation. In other words, the value of any atom that UP

infers remains the same in all possible satisfying assignments. By the same token, every possible

model of ϕ that is a strengthening of A has the same value as LUP(ϕ,A) wherever they are both

defined.

It is instructive to talk about the boundary conditions regarding the above definition. For in-

stance, satisfiability of Units plays a crucial role in the existence of LUP structure. Unsatisfiability

of that set means that the given formula ϕ is not A-satisfiable, because UP could find the unsatis-

fiability of CNF(NaiveGndA(ϕ)). In that case no LUP structure can exists, by the definition. In

another case, the formula might still not be A-satisfiable but UP cannot detect that. In this case

an LUP structure does exists, but the resulting ground formula obtained by grounding over that

structure would not be satisfiable.

On the other hand, if unit propagation alone can determine that CNF(NaiveGndA(ϕ)) is satis-

fiable, then ϕ’s Tseitin predicate in the LUP structure would be set to >. In that case the result of

GndLUP(ϕ,A)(ϕ, ∅) would be just an empty formula.

Since Algorithm 2 produces a grounding, according to Definition 4.1.2, for any bound structure,

it produces a grounding for ϕ over LUP(ϕ,A). Now we have to show that grounding over a struc-

ture with above properties, frees us from doing unit propagation on the ground formula. In other

words, we must show that CNF(GndLUP(ϕ,A)(ϕ, ∅)) produces a smaller grounding compared to

UP(CNF(NaiveGndA(ϕ))) without eliminating any satisfying assignments (and ultimately models

for ϕ). While conservation of models is immediate from the fact that LUP(ϕ,A) is a bound struc-

ture for A and ϕ, containment of CNF(GndLUP(ϕ,A)(ϕ, ∅)) inside UP(CNF(NaiveGndA(ϕ)))

CHAPTER 4. LIFTING UNIT PROPAGATION 34

requires some elaboration. The following theorem states this more formally:

Theorem 4.3.3. Let ϕ be a formula over τ (= σ ∪ ε) and A a σ-structure. Then:

CNF(GndLUP(ϕ,A)(ϕ, ∅)) ⊆ UP(CNF(NaiveGndA(ϕ))). (4.2)

Remark 4.3.4. The “⊆” symbol in Theorem 4.3.3 is an extension of the same symbol in set theory.

If A and B are two sets of clauses, then A ⊆ B iff every clause c in A is also in B or there is a

clause c′ in B which c is a subset of.

Proof. From Proposition 4.3.2 and Algorithm 2, and from the fact that LUP(ϕ,A) is a conservative

strengthening of A we already know that:

CNF(GndLUP(ϕ,A)(ϕ, ∅)) ⊆ CNF(NaiveGndA(ϕ)). (4.3)

To prove the theorem we must show that whatever UP can eliminate from CNF(NaiveGndA(ϕ))

is already eliminated from CNF(GndLUP(ϕ,A)(ϕ, ∅)). In order to do that we have to identify the

type of clauses that are eliminated by UP. Based on Definition 3.4.2 there are two types of clauses

that are removed by unit propagation: The unit clause itself, and any other clause that contains

that unit literal. The unit clauses are removed from GndLUP(ϕ,A)(ϕ, ∅) by either Simpl or Eval

functions. Now for non-unit clauses removed by UP, observe that they belong to the set of clauses

generated for a ∨, ∧ or ¬ connective in the ground formula. We prove the claim for ∨ connective,

which is either the result of unwinding an existential quantifier or a simple disjunction in the input

formula. Similar arguments work for other connectives.

Without loss of generality let the connective have only two oprands and let it be a disjunction

in the input formula (and not an unwinding of some existential quantifier): ψ(x̄) = ψ1(x̄) ∨ ψ2(x̄).

The set of clauses created for this connective in CNF(NaiveGndA(ϕ)) would be:

1. (¬dψe ∨ dψ1e ∨ dψ2e)[θ]

2. (¬dψ1e ∨ dψe)[θ]

3. (¬dψ2e ∨ dψe)[θ]

The following cases show the scenarios in which one of these clauses can be eliminated. For

each case we show that the removal of that clause by UP from CNF(NaiveGndA(ϕ)) is accounted

for in GndLUP(ϕ,A)(ψ, θ) (We remove the substitution function [θ] for better readability, but its

existence is assumed):

CHAPTER 4. LIFTING UNIT PROPAGATION 35

i. (dψe) is a unit. In this case UP removes the second and third clause, turning the first clause into

a binary clause of (dψ1e ∨ dψ2e), which might lead to an autarky (see Section 3.4.1). Better

result is achieved by GndLUP(ϕ,A)(ψ, θ). Simpl leaves out the whole branch for dψe and

none of the above clauses are generated. So in this case GndLUP(ϕ,A)(ψ, θ) is even performing

better, by not generating an autarky.

ii. (¬dψe) is a unit. Same as in (i), GndLUP(ϕ,A)(ψ, θ) does not generate any clauses for the

subformula.

iii. (dψ1e) is a unit. UP eliminates the first clause, makes the second clause a unit clause (dψe)
and finally eliminates the third clause because of dψe. Now to argue that GndLUP(ϕ,A)(ψ, θ)

produces the same result, we have to take into account that (dψe) becomes a unit clause so it

is in Unit and as in (i) Simpl leaves out the whole branch for it. So again GndLUP(ϕ,A)(ψ, θ)

does not generate any clauses for this subformula.

iv. (¬dψ1e) is a unit. UP eliminates the second clause and turns the first clause into a binary clause.

The resulting clauses would be {(¬dψe ∨ dψ2e), (dψe ∨ ¬dψ2e)}, which means that dψe and

dψ2e are logically equivalent. Exact result is obtained from GndLUP(ϕ,A)(ψ, θ), by leaving out

the ψ1 branch from the grounding by either Simpl or Eval functions. More clearly, since dψ1e
is false and false is the zero element of ∨, the value of dψe only depends on dψ2e, hence dψe
and dψ2e are logically equivalent.

v. The two cases for dψ2e is similar to dψ1e.

By the above reasoning we have shown that any clause that is eliminated by UP on the ground

instance CNF(NaiveGndA(ϕ)) is not in CNF(GndLUP(ϕ,A)(ψ, θ)), and thus the proof is complete.

One important observation from the proof of Theorem 4.3.3 is that in some cases (such as (i)

and (iii)) some parts of the ground formula form autarkies and hence can be left out from the final

grounding, since their value does not have any effect on the satisfiability of the finally produced

CNF formula, but CNF(NaiveGndA(ϕ)) is unable to identify them. This is one of the benefits of

doing LUP, because during grounding over LUP(ϕ,A), the grounder has extra information, thanks

to the bound structure, and can use that information to prevent itself from grounding subformulas

that would lead to autarkies. autarky removal, as can be seen in Chapter 5, is an important factor in

the dominance of LUP grounding over normal grounding.

CHAPTER 4. LIFTING UNIT PROPAGATION 36

4.3.1 A Datalog Program for LUP Structure Construction

To construct LUP(ϕ,A), we use a Datalog program ∆LUP(ϕ,A) obtained from ϕ and A. In order

to generate the Datalog program one has to traverse the formula tree and for each subformula in that

tree create a Datalog rule depending on the type of the subformula (the type of the top-most operator

of that subformula). In this Datalog program, we use distinct vocabulary symbols for the sets of

tuples which Â sets to true and false for each Tseitin symbol (i.e. subformula of ϕ). The algorithm

works based on the notion of True (False) bounds:

Definition 4.3.5 (Formula-Bound). A True (resp. False) bound for a subformula ψ(x̄) according to

bound structure Â is the relation denoted by Tψ (resp. Fψ) such that:

1. ā ∈ Tψ ⇔ dψeÂ(ā) = >

2. ā ∈ Fψ ⇔ dψeÂ(ā) = ⊥

Naturally, when dψeÂ(ā) =∞, ā is not contained in either Tψ or Fψ.

Table 4.1 provides a set of generic rules, based on which, the Datalog rules for a specific formula

are created. The type column indicates the type of the subformula in ϕ, and the rules columns

identify the Datalog rules generated for this subformula. As mentioned before, one has to traverse

ϕ and depending on the type of the top-most operator, create the appropriate rules from Table 4.1.

These rules reflect the reasoning that UP can do. For example consider rule (∨iψi) of ↓t for

γ(x̄) = ψ1(x̄1) ∨ · · · ∨ ψN (x̄N), and for some i ∈ {1, . . . , N}:

Tψi
(x̄i)← Tγ(x̄) ∧

∧
j 6=i

Fψj
(x̄j).

This states that when a tuple ā satisfies γ but falsifies all disjuncts, ψj , of γ except for one,

namely ψi, then it must satisfy ψi.

Up to now we have created the rules of ∆LUP(ϕ,A). Observe that we only used the formula ϕ

and the domain of the input structure A to do this and we have not yet incorporated the information

about the relations of A (i.e. the instance predicates). That information is represented as the facts

of the datalog program. More formally, for every P ∈ σ and ā ∈ Ak, Fact(∆LUP(ϕ,A)) contains

TP (ā) if ā ∈ PA, and contains FP (ā) if ā 6∈ PA.

We also assume that ϕ is A-satisfiable, so we can also encode this information as a fact by

adding Tϕ to Fact(∆LUP(ϕ,A)). Note that this is only an assumption to start the process.

CHAPTER 4. LIFTING UNIT PROPAGATION 37

type ↓t rules
(∨iψi) Tψi

(x̄i) ← Tγ(x̄) ∧
∧
j 6=i Fψj

(x̄j), for each i
(∧iψi) Tψi

(x̄i) ← Tγ(x̄), for each i
∃y ψ(x̄, y) Tψ(x̄, y) ← Tγ(x̄) ∧ ∀y′ 6=y Fψ(x̄, y′)
∀y ψ(x̄, y) Tψ(x̄, y) ← Tγ(x̄)
P (x̄) TP (x̄) ← Tγ(x̄)
¬P (x̄) FP (x̄) ← Tγ(x̄)

type ↑t rules
(∨iψi) Tγ(x̄) ←

∨
i Tψi

(x̄i), for each i
(∧iψi) Tγ(x̄) ←

∧
i Tψi

(x̄i), for each i
∃y ψ(x̄, y) Tγ(x̄) ← ∃y Tψ(x̄, y)
∀y ψ(x̄, y) Tγ(x̄) ← ∀y Tψ(x̄, y)
P (x̄) Tγ(x̄) ← TP (x̄)
¬P (x̄) Tγ(x̄) ← FP (x̄)

type ↓f rules
(∨iψi) Fψi

(x̄i) ← Fγ(x̄), for each i
(∧iψi) Fψi

(x̄i) ← Fγ(x̄) ∧
∧
j 6=i Tψj

(x̄j), for each i
∃y ψ(x̄, y) Fψ(x̄, y) ← Fγ(x̄)
∀y ψ(x̄, y) Fψ(x̄, y) ← Fγ(x̄) ∧ ∀y′ 6=y Tψ(x̄, y′)
P (x̄) FP (x̄) ← Fγ(x̄)
¬P (x̄) TP (x̄) ← Fγ(x̄)

type ↑f rules
(∨iψi) Fγ(x̄) ←

∧
i Fψi

(x̄i), for each i
(∧iψi) Fγ(x̄) ←

∨
i Fψi

(x̄i), for each i
∃y ψ(x̄, y) Fγ(x̄) ← ∀y Fψ(x̄, y)
∀y ψ(x̄, y) Fγ(x̄) ← ∃y Fψ(x̄, y)
P (x̄) Fγ(x̄) ← FP (x̄)
¬P (x̄) Fγ(x̄) ← TP (x̄)

Table 4.1: Rules for Bounds Computation

CHAPTER 4. LIFTING UNIT PROPAGATION 38

Now having the facts, we may evaluate the rules, thus obtaining a set of concrete bounds for the

subformulas of ϕ.

Example 4.3.1. Let ϕ = ∀x ¬I1(x) ∨ E1(x), σ = {I1, I2}, and A =
(
{1, 2, 3, 4}; IA1 = {1}

)
. The

relevant rules generated based on Table (4.1) are:

T¬I1(x)∨E1(x)(x)← Tϕ

TI1(x)← I1(x)

F¬I1(x)(x)← TI1(x)

TE1(x)(x)← T¬I1(x)∨E1(x)(x) ∧ F¬I1(x)(x)

TE1(x)← TE1(x)(x)

We find that TE1 = {1}; in other words: E1(1) is true in each model of ϕ expanding A.

4.3.2 An Algorithm for Construction of LUP Structures

Our method for constructing LUP(ϕ,A) is given in Algorithm 3. Several lines in the algorithm

require explanation. In line 1, the ↓f rules are omitted from the set of constructed rules. Because ϕ

is in NNF, the ↓f rules do not contribute any information to the set of bounds. To see this, observe

that every ↓f rule has an atom of the form Fγ(x̄) in its body. Intuitively, for one of these rules

to contribute a defined bound, certain information must have previously been obtained regarding

bounds for its parent. It can be shown, by induction, that, in every case, the information about a

bound inferred by an application of a ↓f rule must have previously been inferred by a ↑f rule. In

line 2 of the algorithm we compute bounds using only the two sets of rules, ↓t and ↑f . This is

justified by the fact that applying {↑t, ↓t, ↑f} to a fixpoint has the same effect as applying {↓t, ↑f}

Algorithm 3 Computation of LUP(ϕ,A)

1: Construct the rules {↑t, ↓t, ↑f}
2: Compute bounds by evaluating the inductive definition {↓t, ↑f}
3: if Bounds are inconsistent then
4: return “A has no solution”
5: {This corresponds to the case were Units are unsatisfiable in Definition 4.3.1 and hence no

LUP structure exists.}
6: end if
7: Throw away Tψ(x̄) for all non-atomic subformulas ψ(x̄)
8: Compute new bounds by evaluating the inductive definition {↑t}
9: return LUP structure constructed from the computed bounds, according to Definition 4.3.5 .

CHAPTER 4. LIFTING UNIT PROPAGATION 39

to a fixpoint and then applying the ↑t rules afterwards. So we postpone the execution of the ↑t rules

to line 7.

Line 3 checks for the case that the definition has no model, which is to say that the rules allow

us to derive that some atom is both in the true bound and the false bound for some subformula. This

happens exactly when UP applied to the naive grounding would detect inconsistency.

Finally, in lines 7 and 8 we throw away the true bounds for all non-atomic subformulas, and

then compute new bounds by evaluating the ↑t rules, taking already computed bounds (with true

bounds for non-atoms set to empty) as the initial bounds in the computation. To see why, observe

that the true bounds computed in line 2 are based on the assumption that ϕ is A-satisfiable. So dϕe
is set to true which stops the top-down bounded grounding algorithm of Section 4.2 from producing

a grounding for ϕ. That is because the Simpl function, considering the true bound for the ϕ, simply

returns> instead of calling GndÂ(., .) on subformulas of the ϕ. This also holds for all the formulas

with true-bounds, calculated this way, except for the atomic formulas. So, we delete these true

bounds based on the initial unjustified assumption, and then construct the correct true bounds by

application of the ↑t rules, in line 7. This is the main reason for postponing the execution of ↑t rules.

Finally, the algorithm returns the LUP structure. The following proposition states this more

formally:

Proposition 4.3.1. Let ϕ be a formula over σ ∪ ε and A a σ-structure. Algorithm 3 outputs

LUP(ϕ,A) if such structure exists for ϕ and A, and returns “A has no solution” otherwise.

Implementation

The bottleneck of Algorithm 3 is the fixpoint computation of line 2. This computation can be

regarded as solving a system of relational equations: Each true/false bound is a relation and every

rule is an equation:

Ri = Ei(R1, . . . , Rn) (for i = 1 . . . n). (4.4)

The result of each Ri is determined by doing a relational algebraic operation on other relations,

based on the equation Ei that defines Ri. In Datalog community [9] the Gauss-Seidel algorithm is

considered as a relational adaptation of the fixpoint characterization of cons(∆) operator of Section

2.2.2 in solving Datalog programs. The algorithm starts by initializing the Ris. Then computation

of equations is iterated until the values of Ris do not change in two consecutive iterations, i.e. when

the system reaches a fixpoint.

CHAPTER 4. LIFTING UNIT PROPAGATION 40

A modified version of this algorithm is used in the implementation of LUP, namely the semi-

naive method. Let Dk
i = Rki −R

k−1
i , which is the set of new tuples that are added to relation Ri in

iteration k. The semi-naive method uses the body of the Gauss-Seidel algorithm but instead of using

the whole relation, which can be quit large, at each stage, like k + 1, it only uses the differential of

that relation at stage k and stage k − 1, namely Dk. This way, because the differentials are much

smaller compared to the whole relations, computation of the equations would be faster and thus the

overall performance of the fixpoint computation.

4.3.3 Bottom Up Grounding with LUP Bounds

We can modify the bottom-up reduced grounding algorithm of Section 3.3 to ground usingLUP(ϕ,A).

We only need to change the base case for expansion predicates. To be precise, we set the answer to

P (x̄) to the set of pairs (ā, ρ) such that:

ρ =

P (˜̄a) if PLUP(ϕ,A)(ā) =∞

> if PLUP(ϕ,A)(ā) = >

⊥ if PLUP(ϕ,A)(ā) = ⊥.

(4.5)

Note that the above initialization method works even ifP is an instance predicate, becauseLUP(ϕ,A)

is a strengthening of instance structure A.

Proposition 4.3.2. Let (〈〉, ψ) be the answer to sentence ϕ after initialization (4.5) of atomic for-

mulas according to LUP(ϕ,A), then:

GndLUP(ϕ,A)(ϕ, ∅) ≡ ψ

where GndLUP(ϕ,A)(ϕ, ∅) is the result of top-down grounding Algorithm 2 of ϕ over LUP structure

LUP(ϕ,A).

This bottom-up method uses only the reduct of LUP(ϕ,A) defined by σ ∪ ε∪ Ã, not the entire

LUP structure. Also observe that the above bottom-up grounding algorithm mimics the second

phase of Algorithm 3, i.e., a bottom-up truth propagation, except that it also propagates the falses.

So, for bottom up grounding, we can omit line 8 from Algorithm 3.

Chapter 5

Experiments

In this chapter we present an empirical study of the effect of LUP on grounding size and on ground-

ing and solving times. We also compare LUP with GWB in terms of these same measures. The

implementation of LUP is within our bottom-up grounder Enfragmo, as described in this paper,

and the implementation of GWB is in the top-down grounder GIDL , which is described in [34, 36].

GIDL has several parameters to control the precision of the bounds computation. In our experiments

we use the default settings. We used MINISAT as the ground solver for Enfragmo. GIDL produces

an output specifically for the ground solver MINISAT(ID), and together they form the IDP system

[35].

We report data for instances of three problems: Latin Square Completion, Bounded Spanning

Tree and Sudoku. The instances are latin square.17068* instances of Normal Latin Square Com-

pletion, the 104 rand 45 250 * and 104 rand 35 250 * instances of BST, and the ASP contest 2009

instances of Sudoku from the Asparagus repository1. All experiments were run on a Dell Precision

T3400 computer with a quad-core 2.66GHz Intel Core 2 processor having 4MB cache and 8GB of

RAM, running CentOS 5.5 with Linux kernel 2.6.18.

In Tables 5.1 and 5.4, columns headed “Literals” or “Clauses” give the number of literals or

clauses in the CNF formula produced by Enfragmo without LUP (our baseline), or these values for

other grounding methods expressed as a percentage of the baseline value. In Tables 5.2 and 5.3, all

values are times seconds. All the given values are the means for the entire collection of instances.

Variances are not given, because they are very small. We split the instances of BST into two sets

based on the number of nodes (35 or 45), because these two groups exhibit somewhat different

1http://asparagus.cs.uni-potsdam.de

41

CHAPTER 5. EXPERIMENTS 42

behaviour, but within the groups variances are also small. In all tables, the minimum (best) values

for each row are in bold face type, to highlight the conditions which gave best performance.

Table 5.1 compares the sizes of CNF formulas produced by Enfragmo without LUP (the base

line) with the formulas obtained by running UP on the baseline formulas and by running Enfragmo

with LUP. Clearly LUP reduces the size at least as much as UP, and usually reduces the size much

more, due to the removal of autarkies.

Enfragmo Enfragmo+UP (%) Enfragmo+LUP (%)
Problem Literals Clauses Literals Clauses Literals Clauses

Latin Square 7452400 2514100 0.07 0.07 0.07 0.07
BST 45 22924989 9061818 0.96 0.96 0.24 0.24
BST 35 8662215 3415697 0.95 0.96 0.37 0.37
Sudoku 2875122 981668 0.17 0.18 0.07 0.08

Table 5.1: Impact of LUP on the size of the grounding. The first two columns give the numbers
of literals and clauses in groundings produced by Enfragmo without LUP (the baseline). The other
columns give these measures for formulas produced by executing UP on the baseline groundings
(Enfragmo+UP), and for groundings produced by Enfragmo with LUP (Enfragmo+LUP), expressed
as a fraction baseline values.

Enfragmo Enfragmo with LUP Speed Up Factor
Problem Gnd Solving Total Gnd Solving Total Gnd Solving Total

Latin Square 0.89 1.39 2.28 3.27 0.34 3.61 -2.38 1.05 -1.33
BST 45 6.08 7.56 13.64 2 1.74 3.74 4.07 5.82 9.9
BST 35 2.13 2.14 4.27 1.07 0.46 1.53 1.06 1.68 2.74
Sudoku 0.46 1.12 1.59 2.08 0.26 2.34 -1.62 0.86 -0.76

Table 5.2: Impact of LUP on reduction in both grounding and (SAT) solving time. Grounding time
here includes LUP computations and CNF generation.

Total time for solving a problem instance is composed of grounding time and SAT solving time.

Table 5.2 compares the grounding and SAT solving time with and without LUP bounds. It is evident

that the SAT solving time is always reduced with LUP. This reduction is due to the elimination of the

unit clauses and autark subformulas from the grounding. Autark subformula elimination also affects

the time required to convert the ground formula to CNF which reduces the grounding time, but in

some cases the overhead imposed by LUP computation may not be made up for by this reduction.

CHAPTER 5. EXPERIMENTS 43

As the table shows, when LUP outperforms the normal grounding we get factor of 3 speed-ups,

whereas when it loses to normal grounding the slowdown is by a factor of 1.5.

Table 5.3 compares the size reductions obtained by LUP and by GWB in GIDL . The output

of GIDL contains clauses and rules. The rules are transformed to clauses in (MINISAT(ID)). The

measures reported here are after that transformation. LUP reduces the size much more than GWB,

in most of the cases. This stems from the fact that GIDL ’s bound computation does not aim for

completeness wrt unit propagation. This also affects the solving time because the CNF formulas

are much smaller with LUP as shown in Table 5.4. Table 5.4 shows that Enfragmo with LUP and

MINISAT is always faster than GIDL with MINISAT(ID) with or without bounds, and it is in some

cases faster than Enfragmo without LUP.

CHAPTER 5. EXPERIMENTS 44

E
nf

ra
gm

o
(n

o
L

U
P)

G
ID

L
(n

o
bo

un
ds

)
E

nf
ra

gm
o

w
ith

L
U

P
G

ID
L

w
ith

bo
un

ds
Pr

ob
le

m
L

ite
ra

ls
C

la
us

es
L

ite
ra

ls
C

la
us

es
L

ite
ra

ls
C

la
us

es
L

ite
ra

ls
C

la
us

es
L

at
in

Sq
ua

re
74

52
40

0
25

14
10

0
0.

74
0.

84
0.

07
0.

07
0.

59
0.

61
B

ST
45

22
92

49
89

90
61

81
8

0.
99

1.
02

0.
24

0.
24

0.
25

0.
24

B
ST

35
86

62
21

5
34

15
69

7
1.

01
1.

04
0.

37
0.

37
0.

39
0.

39
Su

do
ku

28
75

12
2

98
16

68
0.

56
0.

6
0.

07
0.

08
0.

38
0.

39

Ta
bl

e
5.

3:
C

om
pa

ri
so

n
be

tw
ee

n
th

e
ef

fe
ct

iv
en

es
s

of
L

U
P

an
d

G
ID

L
B

ou
nd

s
on

re
du

ct
io

n
in

gr
ou

nd
in

g
si

ze
.

T
he

co
lu

m
ns

un
de

r
E

nf
ra

gm
o

sh
ow

th
e

ac
tu

al
gr

ou
nd

in
g

si
ze

w
he

re
as

th
e

ot
he

rc
ol

um
ns

sh
ow

th
e

ra
tio

of
th

e
gr

ou
nd

in
g

si
ze

re
la

tiv
e

to
th

at
of

E
nf

ra
gm

o
(w

ith
ou

tL
U

P)
.

E
nf

ra
gm

o
ID

P
E

nf
ra

gm
o+

L
U

P
ID

P
(B

ou
nd

s)
Pr

ob
le

m
G

nd
So

lv
in

g
To

ta
l

G
nd

So
lv

in
g

To
ta

l
G

nd
So

lv
in

g
To

ta
l

G
nd

So
lv

in
g

To
ta

l
L

at
in

Sq
ua

re
0.

89
1.

39
2.

28
3

4.
63

7.
63

3.
27

0.
34

3.
61

2.
4

3.
81

6.
21

B
ST

45
6.

08
7.

56
13

.6
4

7.
25

20
.8

4
28

.0
9

2
1.

74
3.

74
1.

14
4.

45
5.

59
B

ST
35

2.
13

2.
14

4.
27

2.
63

6.
31

8.
94

1.
07

0.
46

1.
53

0.
67

2.
73

3.
4

Su
do

ku
0.

46
1.

12
1.

59
1.

81
1.

3
3.

11
2.

08
0.

26
2.

34
2.

85
0.

51
2.

37

Ta
bl

e
5.

4:
C

om
pa

ri
so

n
of

so
lv

in
g

tim
e

fo
rE

nf
ra

gm
o

an
d

ID
P,

w
ith

an
d

w
ith

ou
tL

U
P/

G
ID

L
bo

un
ds

.

Chapter 6

Discussion

In the context of grounding-based problem solving, we have described a method we call lifted unit

propagation (LUP) for carrying out a process essentially equivalent to unit propagation before and

during grounding. Our experiments indicate that the method can substantially reduce grounding size

– even more than unit propagation itself, and sometimes reduce total solving time as well.

Our work was motivated by the results of [34, 36], which presented the method we have referred

to as GWB. In GWB, bounds on sub-formulas of the specification formula are computed without

reference to an instance structure, and represented with FO formulas. The grounding algorithm

evaluates instantiations of these bound formulas on the instance structure to determine that certain

parts of the naive grounding may be left out. If the bound formulas exactly represent the information

unit propagation can derive, then LUP and GWB are equivalent (though implemented differently).

However, generally the GWB bounds are weaker than the LUP bounds, for two reasons. First, no FO

formula can define the bounds obtainable, with respect to an arbitrary instance structure. Second, to

make the implementation in GIDL efficient, the computation of the bounds is heuristically truncated.

This led us to ask how much additional reduction in formula size might be obtained by the complete

LUP method, and whether the LUP computation could be done fast enough for this extra reduction

to be useful in practice.

Our experiments with the Enfragmo and GIDL grounders show that, at least for some kinds of

problems and instances, using LUP can produce much smaller groundings than the GWB imple-

mentation in GIDL . In our experiments, the total solving times for Enfragmo with ground solver

MINISAT were always less than those of GIDL with ground solver MINISAT(ID). However, LUP

reduced total solving time of Enfragmo with MINISAT significantly in some cases, and increased

it — albeit less significantly — in others. Since there are many possible improvements of the LUP

45

CHAPTER 6. DISCUSSION 46

implementation, the question of whether LUP can be implemented efficiently enough to be used all

the time remains unanswered.

Investigating more efficient ways to do LUP, such as by using better data structures, is a subject

for future work, as is consideration of other approximate methods such, as placing a heuristic time-

out on the LUP structure computation, or dovetailing of the LUP computation with grounding.

We also observed that the much of the reduction in grounding size obtained by LUP is due to

identification of Autark sub-formulas. These cannot be eliminated from the naive grounding by unit

propagation. Further investigation of the importance of these in practice is another direction we are

pursuing. One more direction we are pursuing is the study of methods for deriving even stronger

information than that represented by the LUP structure, to further reduce ground formula size, and

possibly grounding time as well.

Bibliography

[1] The Asparagus Library of Examples for ASP Programs, http://asparagus.cs.uni-potsdam.de/.

[2] Proceedings of the Ninth International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’07), volume 4483 of Lecture Notes in Artificial Intelligence. Springer-
Verlag, 2007.

[3] Tools and Algorithms for the Construction and Analysis of Systems, 13th International Confer-
ence, TACAS 2007, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007, Proceedings, volume 4424
of LNCS. Springer, 2007.

[4] Logic for Programming, Artificial Intelligence, and Reasoning - 16th International Confer-
ence, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised Selected Papers, volume 6355
of LNCS. Springer, 2010.

[5] Advances in Artificial Intelligence - 24th Canadian Conference on Artificial Intelligence,
Canadian AI 2011, St. John’s, Canada, May 25-27, 2011. Proceedings, volume 6657 of LNCS.
Springer, 2011.

[6] Amir Aavani, Shahab Tasharrofi, Gulay Ünel, Eugenia Ternovska, and David G. Mitchell.
Speed-up techniques for negation in grounding. In LPAR (Dakar) [4], pages 13–26.

[7] Amir Aavani, Xiongnan (Newman) Wu, Eugenia Ternovska, and David G. Mitchell. Ground-
ing formulas with complex terms. In Canadian Conference on AI [5], pages 13–25.

[8] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[9] S Ceri, G Gottlob, and L Tanca. What you always wanted to know about datalog (and never
dared to ask). IEEE Transactions on Knowledge and Data Engineering, 1(1):146–166, 1989.

[10] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third
annual ACM symposium on Theory of computing, STOC ’71, pages 151–158, New York, NY,
USA, 1971. ACM.

[11] D. East and M. Truszczynski. Predicate-calculus based logics for modeling and solving search
problems. ACM Trans. Comput. Logic (TOCL), 7(1):38 – 83, 2006.

47

BIBLIOGRAPHY 48

[12] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Complexity
of computation, SIAM-AMC proceedings, 7:43–73, 1974.

[13] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. A user’s
guide to gringo, clasp, clingo, and iclingo. Unpublished draft, 2008.

[14] M. Gebser, T. Schaub, and S. Thiele. Gringo: A new grounder for answer set programming. In
Proceedings of the Ninth International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’07) [2], pages 266–271.

[15] E. Graedel. Finite Model Theory and Descriptive Complexity, pages 125–230. Springer, 2007.

[16] E. Graedel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M.Y. Vardi, Y. Venema, and S. We-
instein. Finite Model Theory and Applications. Springer, 2007.

[17] N. Immerman. Descriptive complexity. Springer Verlag, New York, 1999.

[18] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, 2006.

[19] S.C. Kleene. Introduction to Metamathematics. Bibliotheca Mathematica. North-Holland,
1952.

[20] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The dlv system for knowledge representation and reasoning. ACM
Trans. Comput. Log., 7(3):499–562, 2006.

[21] L. Libkin. Elements of Finite Model Theory. Springer Verlag, 2004.

[22] David Mitchell and Eugenia Ternovska. Knowledge representation, search problems and
model expansion. In Knowing, Reasoning and Acting: Essays in Honour of Hector J. Levesque,
pages 347–362, 2011.

[23] David Mitchell, Eugenia Ternovska, Faraz Hach, and Raheleh Mohebali. Model expansion
as a framework for modelling and solving search problems. Technical Report TR 2006-24,
December 2006.

[24] David G. Mitchell and Eugenia Ternovska. A framework for representing and solving NP
search problems. In Veloso and Kambhampati [32], pages 430–435.

[25] Raheleh Mohebali. A method for solving NP search based on model expansion and grounding.
Master’s thesis, Simon Fraser University, 2004.

[26] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2n steps. Discrete Appl.
Math., 10:287–295, March 1985.

[27] M. Patterson, Y. Liu, E. Ternovska, and A. Gupta. Grounding for model expansion in k-guarded
formulas with inductive definitions. In Proc. IJCAI’07), 2007.

BIBLIOGRAPHY 49

[28] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In TACAS [3], pages
632–647.

[29] Luca Trevisan. Lecture notes on computational complexity. 2004.

[30] G.S. Tseitin. On the complexity of derivation in propositional calculus, pages 115 – 125. 1968.

[31] Pashootan Vaezipoor, David Mitchell, and Maarten Mariën. Lifted unit propagation for effec-
tive grounding. CoRR, abs/1109.1317, 2011.

[32] Manuela M. Veloso and Subbarao Kambhampati, editors. Proceedings, The Twentieth National
Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial
Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA. AAAI Press / The
MIT Press, 2005.

[33] Johan Wittocx, Maarten Mariën, and Marc Denecker. GidL: A grounder for FO+. In In Proc.,
Twelfth International Workshop on NMR,, pages 189–198, September 2008.

[34] Johan Wittocx, Maarten Mariën, and Marc Denecker. Grounding with bounds. In AAAI, pages
572–577, 2008.

[35] Johan Wittocx, Maarten Mariën, and Marc Denecker. The IDP system: a model expansion
system for an extension of classical logic. In Marc Denecker, editor, LaSh, pages 153–165,
2008.

[36] Johan Wittocx, Maarten Mariën, and Marc Denecker. Grounding FO and FO(ID) with bounds.
J. Artif. Intell. Res. (JAIR), 38:223–269, 2010.

