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a Thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the

School of Computing Science

Faculty of Applied Sciences

c© Oliver van Kaick 2011

SIMON FRASER UNIVERSITY

Fall 2011

All rights reserved. However, in accordance with the Copyright Act of

Canada, this work may be reproduced without authorization under the

conditions for Fair Dealing. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly

if cited appropriately.



APPROVAL

Name: Oliver van Kaick

Degree: Doctor of Philosophy

Title of Thesis: Matching dissimilar shapes

Examining Committee: Dr. Torsten Möller
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Abstract

In this thesis, we address the challenge of computing correspondences between dissimilar

shapes. This implies that, although the shapes represent the same class of object, there

can be major differences in the geometry, topology, and part composition of the shapes as a

whole. Additionally, the dissimilarity can also appear in the form of a shape that possesses

additional parts that are not present in the other shapes. We propose three approaches for

handling such shape dissimilarity. The first two approaches incorporate additional knowl-

edge that goes beyond a direct geometric comparison of the shapes. In the first approach, of

a supervised nature, the knowledge is provided by the user as a training set of manually seg-

mented and labeled shapes. The training set is used in conjunction with shape descriptors

to learn classifiers that distinguish different semantic classes of parts. The second approach,

which is unsupervised, derives the knowledge automatically from a set of shapes. If all the

shapes in the set roughly possess the same semantic part composition, we can derive their

common structure by analyzing the shapes simultaneously, rather than individually. This is

achieved by clustering shape segments in a descriptor space with a spectral method, which

makes use of third-party connections between shape parts. We show that these approaches

allow us to compute correspondences for shapes that differ significantly in their geometry

and topology, such as man-made shapes. In the third approach, we compute partial corre-

spondences between shapes that have additional parts in relation to each other. To address

this challenge, we propose a new type of shape descriptor, called the bilateral map, whose

region of interest is defined by two points. The region of interest adapts to the context of

the two points and facilitates the selection of the scale and shape of this region, making

this descriptor more effective for partial matching. We demonstrate the advantages of the

bilateral map for computing partial and full correspondences between pairs of shapes.

Keywords: shape correspondence; co-segmentation; prior knowledge; shape descriptor
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Preface

The ideas presented in this thesis resulted from our observations in previous projects. I

had chosen shape correspondence as the topic for my PhD research and worked on a

project where we used ant colony optimization to compute correspondences between 2D

contours [van Kaick et al. 2007]. We optimized what is now considered a classical objective

function for correspondence: a function that seeks to maximize the similarity between shape

descriptors and the distances between pairs of points (an isometry criterion).

However, it became clear from this project that to compute correspondences between

dissimilar shapes, involving significant differences in geometry and topology, just comparing

the geometry of the shapes is not sufficient. Thus, the idea arose of using some form of

prior or additional knowledge to establish the correspondences. It was not obvious, at first,

how to represent such knowledge, since a correspondence is a relation or mapping from one

shape to another. However, we noticed that shape correspondence based on prior knowledge

could be formulated as the problem of recognizing parts of the shapes.

With this realization, works such as Inducing Semantic Segmentation from an Exam-

ple [Schnitman et al. 2006] served as an inspiration for developing our project on supervised

part correspondence, where we use a training set of labeled shapes to establish correspon-

dences between pairs of unknown shapes. Next, we verified that the need for a training set

could be lifted by using the knowledge inherent to a set of shapes of the same class. The

knowledge of the set is used to perform an unsupervised co-segmentation of the shapes.

Finally, it still remained a challenge to compute correspondences between pairs of dis-

similar shapes without the aid of a set. In this case, we can assume that there is at least

a partial match between the shapes. However, the difficulty then lies in the local shape

descriptors, which are not well adapted for partial matching. Thus, the bilateral map was

developed as a promising descriptor more suited for cases requiring partial correspondences.
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This thesis includes material that was previously published in three separate papers and one

additional paper that is currently under review. These papers correspond to the following

chapters in the thesis:

• Chapter 2 contains a review of related work on shape correspondence. Parts of

this chapter appeared in the paper “A Survey on Shape Correspondence”, Computer

Graphics Forum, 2011 [van Kaick et al. 2011a].

• Chapter 3 describes the supervised approach for part correspondence, which appeared

in the paper “Prior Knowledge for Part Correspondence”, Computer Graphics Forum

(Proc. Eurographics), 2011 [van Kaick et al. 2011b].

• Chapter 4 discusses the unsupervised approach for co-segmentation of a set of shapes,

which appeared in “Unsupervised Co-Segmentation of a Set of Shapes via Descriptor-

Space Spectral Clustering”, ACM Trans. on Graphics (Proc. SIGGRAPH Asia),

2011 [Sidi et al. 2011]. Note that this is a paper with equal contribution from the first

two authors.

• Chapter 5 describes a new type of shape descriptor conceived for partial matching

tasks; the bilateral maps. The content of this chapter also appears in a publication

currently under review.

A few additional papers also resulted from this research on shape correspondence and related

areas. However, these papers are not included in this work since their focus does not fall

under the scope of the thesis:

• “Contour Correspondence via Ant Colony Optimization”, Proc. Pacific Graphics,

2007 [van Kaick et al. 2007], where correspondences between 2D contours are computed

by making use of the ant colony metaheuristic.

• “Learning Fourier Descriptors for Computer-Aided Diagnosis of the Supraspinatus”,

Academic Radiology, 2010 [van Kaick et al. 2010], where machine learning and local

shape descriptors are used to classify muscles into different pathology classes.
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Chapter 1

Introduction

Establishing a meaningful correspondence between two or more shapes is a fundamental

task in several fields, including computer graphics, computer vision, and medical imaging.

The problem consists in finding a meaningful mapping or relation between the elements of

the shapes. Shape correspondence has been commonly studied in the context of mapping

feature points detected on the shapes, however, it can also be posed as the problem of finding

which parts of two shapes are related to each other. For example, in Figure 1.1 (a), the

correspondence correctly maps segments representing the handles, bases and bodies of the

vases across the pair. We call such a result a part correspondence or coherent segmentation

(co-segmentation) of the shapes. Note that we can obtain a co-segmentation of a pair of

shapes (Figure 1.1) or a set of several shapes (Figure 1.4).

Shape correspondence is a relevant problem since it lies at the core of crucial tasks such

as surface registration [Gelfand et al. 2005; Jain et al. 2007; Aiger et al. 2008; Chang and

Zwicker 2008] and reconstruction [Mitra et al. 2007; Wand et al. 2007; Sharf et al. 2008;

Pekelny and Gotsman 2008]. It is also a requirement of several important applications, such

as deformation [Sumner and Popović 2004], texture [Dinh et al. 2005], and style transfer [Xu

et al. 2010], shape morphing [Alexa 2002], statistical shape modeling [Davies et al. 2008],

and change detection [Mirzaalian et al. 2009]. Establishing a correspondence is also one

option for solving the tasks of shape retrieval [Funkhouser and Shilane 2006; Tangelder and

Veltkamp 2008] and recognition [Forsyth and Ponce 2003].

Traditional methods for computing a correspondence assume that the shapes are similar.

We call these methods content-driven, since they compute a solution solely by comparing

the geometry and structure of the shapes. One category of content-driven approaches obtain

1



CHAPTER 1. INTRODUCTION 2

(a) (b)

Figure 1.1: Correspondence between dissimilar man-made shapes. (a) A meaningful corre-
spondence between shape parts is shown, where corresponding parts are implied by matching
colors. Note the significant geometric and topological differences between the two shapes.
The correspondence was obtained with our supervised knowledge-driven approach. (b) A
feature-to-feature correspondence, where the matched feature points are shown with corre-
sponding colors. The implied alignment is shown to the far right. This result was obtained
with a state-of-the-art feature matching method (the deformation-driven method of Zhang
et al. [2008]), which is not able to handle such a challenging case of dissimilar shapes.

a correspondence by registering the shapes: the two shapes are first aligned and then the

correspondence is derived from the proximity of the aligned shapes. This can be done in a

rigid [Rusinkiewicz and Levoy 2001; Gelfand et al. 2005; Aiger et al. 2008] or non-rigid [Elad

and Kimmel 2003; Anguelov et al. 2004; Jain et al. 2007; Chang and Zwicker 2008] manner.

On the other hand, the most common approach for more general shape correspondence is

based on the feature matching approach, where feature points are detected on the shapes and

matched according to their geometric similarity. This can be done by comparing local shape

descriptors extracted at the feature points, by using an approximate isometry criterion, or

a combination of both [Anguelov et al. 2004; Funkhouser and Shilane 2006; Bronstein et al.

2008b; Zhang et al. 2008; Huang et al. 2008; Tevs et al. 2009; Lipman and Funkhouser

2009; Kim et al. 2010]. Structural approaches proceed similarly by matching features on a

skeleton of the shapes [Au et al. 2010; Shapira et al. 2008; Tang and Hamarneh 2008].

Content-driven shape correspondence is, of course, a reasonable and effective approach

when the shapes possess enough similarity. However, a common requirement in recent ap-

plications is to compute correspondences between dissimilar shapes. That is, shapes that

represent the same type of object or which possess common portions, but that are highly
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dissimilar when compared as a whole. This can be the case when establishing correspon-

dences between several objects of the same semantic category that are available in an on-line

shape repository, or when we would like to simultaneously analyze a set of varied shapes.

In such challenging cases involving shapes that are dissimilar, both in geometry and topol-

ogy, content-driven methods are less effective, since traditional criteria commonly used in

the solution search are less meaningful. For example, assumptions such as the similarity of

shape descriptors or approximate isometry break down, since the large amount of variation

in the shapes significantly reduces the usefulness of such criteria (Figure 1.1).

1.1 Overview

In this thesis, we propose methods for computing correspondences between dissimilar shapes,

implying that these shapes can have pronounced differences in their geometry, topology and

part composition. First, we propose two knowledge-driven methods that incorporate addi-

tional information about the shapes into the correspondence computation. These methods

depart from traditional correspondence approaches and are able to match shapes with sig-

nificant variability, which is typical of man-made objects. Next, we propose a new shape

descriptor, the bilateral map, that is better suited for partial matching tasks and can be

used with traditional feature matching approaches. The bilateral map is able to handle

shapes that are dissimilar because they possess additional parts that should be ignored in

the matching. We discuss these contributions in the following subsections.

1.1.1 Knowledge-driven correspondence methods

As motivated in Figure 1.1, traditional content-driven methods do not perform well in

the task of matching dissimilar shapes. To solve such challenging correspondence cases, it

becomes necessary to perform a semantic analysis of the shapes. That is, if we are able to

detect and recognize the parts that compose the shapes, then we can also establish their

correspondence. In this thesis, we propose to perform a semantic analysis of the shapes with

the aid of additional knowledge about the shapes. We introduce two different methods to

incorporate knowledge into the correspondence computation, obtaining one supervised and

one unsupervised knowledge-driven approach.
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Figure 1.2: Part correspondence results via our supervised approach. Notice that our
method succeeds even under significant geometric and topological dissimilarity between
parts, while purely content-driven methods would fail.

1.1.2 Prior knowledge for part correspondence

In the supervised approach, prior knowledge about the class of shapes under consideration is

given by a training dataset of manually segmented and labeled shapes. Thus, the knowledge

is explicitly modeled by a human operator and provided in advance to the algorithm. Next,

the correspondence between two unknown query shapes is obtained by comparing their parts

with the parts of shapes in the dataset, and also by incorporating cues derived from the

direct similarity of the shapes.

This comparison is done in practice by extracting shape descriptors from the training

shapes and learning classifiers to distinguish the different classes of parts. Once we are given

a pair of query shapes for which we want to compute a correspondence, we extract the same

collection of shape descriptors and use the classifiers to perform a probabilistic semantic

labeling of the shapes. We also add content information into the approach in the form

of pairwise correspondences between faces with similar descriptors. Finally, the pairwise

assignments are combined with the probabilistic labels and the connectivity of the meshes

to perform a joint labeling, where we assign deterministic labels to the shapes according to

a cost function. The part correspondence is then inferred from segments that were assigned

the same label, as shown in Figure 1.1 (a).

Selected results of using this approach on a collection of organic and man-made shapes

are shown in Figure 1.2. Notice the meaningful correspondences that are obtained for shapes
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Figure 1.3: Unsupervised co-segmentation. In the original descriptor space (left), two seg-
ments in the same semantic class (two pink handles) can be far apart, while unrelated
segments (a pink handle and a yellow neck) can be close. It is challenging to cluster this
space without any knowledge of the semantic classes. However, the handles are drawn close
in the diffusion map (right) through third-party connections. The third parties, which are
all the segments lying in-between the two handles, establish several paths between the two
segments, given by the high similarities between pairs of points. These multiple paths create
a strong connection between the two handles.

with significant variations in their geometry (different shapes of light bulbs, vase bodies and

necks, and candelabra parts) topology (chair legs, light bulb supports), and part composition

(one vs. three candles, one vs. two vase handles). We discuss this method in Chapter 3.

1.1.3 Unsupervised co-segmentation of a set of shapes

In the unsupervised approach, the knowledge is not given explicitly by the user, but rather

derived automatically from the shapes. If we are given a set of shapes that roughly belong

to the same semantic class, it appears obvious that more knowledge can be inferred by

analyzing the set as a whole, rather than analyzing each shape individually. Thus, this



CHAPTER 1. INTRODUCTION 6

Figure 1.4: Results of our unsupervised co-segmentation approach. Corresponding segments
in each class are shown with the same color. Notice how the segmentation and labeling is
coherent for many of the parts in each set.

approach takes advantage exactly of this observation: We can extract knowledge about the

shapes in an automatic manner by analyzing the shapes simultaneously and inferring their

common structure. Next, the extracted knowledge can be used to obtain a co-segmentation

of the shapes in the set.

More specifically, we start by obtaining an initial segmentation of the shapes in the

set and computing a collection of shape descriptors for the resulting segments. Next, we

perform clustering in the descriptor space to obtain the classes of potential shape parts.

However, performing the clustering directly in the descriptor space is problematic, since

unrelated segments can be quite close, while two segments in the same class can be far

away. This is illustrated in Figure 1.3. The left of the figure shows a 2D embedding of

the descriptor collection for a set of example segments. As we can see, a simple clustering

algorithm will not be able to find meaningful clusters in such a space. To resolve this

problem, we first compute a diffusion map of the space of combined shape descriptors.

Diffusion maps are a form of spectral embedding [Nadler et al. 2005] which unfold the non-

linear and anisotropic structures that exist in the data. Then, a simple clustering algorithm

can succeed by working in the embedded space (Figure 1.3, right). Unfolding the non-linear

clusters is possible because of the third-party connections that exist in the data. That is,

even if two shapes possess parts that are significantly dissimilar, we can still establish a link

between them if there are other parts in the set (third parties) that create such a connection.

Finally, once the clusters of parts are obtained, we create a statistical model for each
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Figure 1.5: An example of partial matching. Our goal is to establish a correspondence
between Neptune’s statue (left) and the human (right), by matching the yellow parts and
ignoring the extraneous parts shown in green and blue.

part class and use it to compute the final co-segmentation of the set. This is achieved

by performing a graph cuts labeling of the shapes with the aid of the statistical models

and traditional segmentation cues, such as the strength of concavities. The result is a

segmentation of all the shapes that is consistent across the set (a co-segmentation), which

also implies a correspondence between any pair of shapes.

Figure 1.4 shows results of our co-segmentation approach on two sets of man-made

shapes. Notice that the important classes of parts are detected: candles, flames, and holders

of the candelabra; and bases, bodies, handles, and necks of the vases. Notice also how the

segmentations are consistent across each set. We describe this method in Chapter 4.

1.1.4 Bilateral maps for partial matching

One specialization of the correspondence problem occurs when we require a correspondence

only between the common portions of two shapes, as in the example shown in Figure 1.5.

This can be a requirement when one of the shapes has additional or extraneous parts in

relation to the other shape, and these parts should not be considered in the correspondence.

For example, this is the case when dealing with incomplete shapes, shapes composed of a

mixture of parts from multiple classes, or also when matching 3D scans that only partially

overlap, such as different views of the same object.
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(a) (b) (c)

Figure 1.6: Bilateral maps for partial matching. Descriptor bins are shown with alternating
colors and the gray portions of the shapes are not part of the region of interest. Notice how
the region captured between the head and right hand on both shapes is similar in (a) and
(b), and does not include extraneous parts of the Neptune model, i.e., the spear and base.
Compare to the traditional geodesic map for the right hand of the Neptune in (c), where
extraneous parts are included even when using a reduced radius of coverage.

Partial matching is generally regarded as a harder problem than computing a full cor-

respondence since it can be seen as composed of two sub-problems: first, we need to find

the common parts of the shapes, and then we have to establish a correspondence between

these parts [Gal and Cohen-Or 2006; Zhang et al. 2008]. As a consequence, this increases

the size of the search space and also makes it difficult to define a proper objective function

that describes our correspondence goal.

In this context, we can also use a feature matching approach to establish a correspon-

dence, where detected feature points are characterized by local shape descriptors. A variety

of such descriptors have been proposed in the literature, however, the most effective de-

scriptors represent the context around a point, as in the popular shape context descriptor

for images [Belongie et al. 2002]. This descriptor is commonly extended to 2D manifolds by

laying out a grid on the surface around a point [Gatzke et al. 2005; Kalogerakis et al. 2010].

However, these descriptors are not ideal for partial matching, since they can be affected by

changes in the topology of the shapes or by the existence of additional parts. Simply mod-

ifying the scale of the region of interest of the descriptors is not necessarily more effective,

as shown in the example in Figure 1.6 (c).
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(a) (b)

Figure 1.7: Correspondence results obtained with our bilateral maps. Corresponding points
are shown with matching colors, and we connect some interesting matches with the blue
curves. Notice that our descriptors enable a simple algorithm to find meaningful matches
between shapes with missing parts (a), and shapes that include extraneous parts (b).

In this thesis, we propose a new type of local shape descriptor, the bilateral map, to

handle partial matching cases. Instead of defining a region of interest around a single point

and constraining it to a fixed radius, we compute a descriptor whose context is constrained

by a pair of points, as shown in Figure 1.6 (a) and (b). More specifically, we compute the

shortest path on the surface between the pair of points, and define a context region in the

vicinity of the path. Our main observation is that it is more advantageous to define regions

of interest anchored by two points instead of one point. This is demonstrated by several

advantages that our bilateral map has over descriptors centered at a single point. First, the

context region is adaptive. Since it is constrained to lie between the two reference points, it

only includes portions of the shape that capture the structural relationship between these

two points. Portions of the shape that are not relevant to the reference points and that may

be potentially missing in other shapes are selectively ignored by the descriptor (contrast

Figure 1.6 (b) to (c)). Secondly, given that the region of interest is adaptive, the selection

of the scale of this region is greatly facilitated, since then the region extent parameter can

be set to be proportional to the length of the path between the two points.

In Figure 1.7, we show two examples of correspondences computed with our bilateral

maps and a simple matching algorithm. Notice how the descriptors are able to guide the al-

gorithm to find meaningful matches for shapes with missing parts in (a) or differing topology

in (b). The bilateral map is discussed in detail in Chapter 5.
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1.2 Contributions

The contribution of this thesis is to introduce methods for matching dissimilar shapes. This

problem has recently gained prominence in the fields of shape analysis and computer graph-

ics, driven by applications that require the analysis of dissimilar shapes, such as assembly-

based shape creation [Chaudhuri et al. 2011], which calls for a part correspondence across

a set of dissimilar shapes, and deformation-transfer between shapes from different semantic

categories [Baran et al. 2009] (e.g., transferring the motion from a hand to a human char-

acter). Matching dissimilar shapes has become a well-recognized challenging problem, and

traditional methods are inadequate for this task, since they rely solely on the comparison

of the local similarity of the shapes or on an isometry-preservation criterion. The impact of

this thesis is to introduce three contributions to address this emerging problem. We believe

that these contributions can also serve as the basis and inspiration for future work.

1. We propose one of the first methods to incorporate prior knowledge for matching

dissimilar shapes (along with the method of Kalogerakis et al. [2010]).

Knowledge-driven methods are advantageous when the shapes represent the same

class of object but can differ significantly in their part composition, i.e., when the

geometry of the parts and how they connect to each other can drastically change from

one shape to the other. Moreover, our method is the first to address specifically the

correspondence problem and also to incorporate direct content comparison. That is,

we combine the prior knowledge with the classical geometric comparison between the

shapes, so that we can benefit from this information if the shapes presented to the

algorithm are in fact similar. The idea of incorporating prior knowledge for shape

analysis is quite general, and we believe that other representations for adding such

knowledge could be devised in the future.

2. We introduce the first method to analyze a set of dissimilar shapes in an unsupervised

manner and compute their co-segmentation, where the shapes in the set can vary

significantly in their geometry and part composition.

By analyzing the set as a whole we are able to derive additional knowledge about the

shapes and use this knowledge in the co-segmentation. Our method based on third-

party connections in a descriptor space is more flexible than previous work based

on geometric alignment [Golovinskiy and Funkhouser 2009; Xu et al. 2010], since
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these methods assume that the shapes can be properly aligned and derive the part

correspondence from such an alignment. This restricts the class of shapes that can

be handled, and no learning on the part composition of the shapes is performed. Our

method, on the other hand, is able to handle a richer variety of shapes. We believe

that the concept of analyzing a set of shapes via third-party connections is general

and could be used for other applications.

3. We deviate from the traditional definition of local shape descriptors, which are typi-

cally centered at a single point, and propose a new descriptor defined by two feature

points; the bilateral map. We show that the bilateral map is a more promising alter-

native for partial matching tasks.

We alleviate the problem of having to search for a common portion that can be matched

between two shapes by constructing a descriptor that naturally captures partial regions

of interest on the shapes. By confining the region of interest to the context between

two feature points, we are able to capture partial regions without the need of part

detection, while also simplifying the scale selection problem which is a difficulty when

single-point descriptors are used. This descriptor is a first promising alternative for

partial matching and could lead to the development of more refined descriptors that

naturally capture partial regions of the shapes.

1.3 Organization

The reminder of this thesis is organized as follows. In Chapter 2, we discuss the problem of

shape correspondence in more detail and review the techniques proposed in the literature

to solve this problem. Chapter 3 and Chapter 4 respectively present our supervised and

unsupervised methods for knowledge-driven correspondence. Chapter 5 discusses the bilat-

eral maps for partial matching. Finally, Chapter 6 presents our conclusions and discusses

directions for future work.



Chapter 2

Background and related work

In this chapter, we review the problem of shape correspondence and discuss the techniques

that can be used to solve the problem in the classical setting. In subsequent chapters, we

review works more closely related to each contribution proposed in this thesis.

2.1 Problem definition

Finding a meaningful correspondence between two or more shapes is a fundamental shape

analysis task. The problem can be generally stated as: given input shapes S1,S2, . . . ,SN ,

find a meaningful relation (or mapping) between their elements, e.g., see Figure 2.1. The

elements can be primitives such as points, feature points, faces, skeletal features, or higher-

level entities such as parts. Under different contexts, shape correspondence has also been

referred to as registration, alignment, or simply matching. Shape correspondence is a key

algorithmic component in tasks such as 3D scan alignment and space-time reconstruction,

as well as an indispensable prerequisite in diverse applications including attribute transfer,

shape interpolation and statistical modeling.

The correspondence problem has been traditionally studied in the image analysis com-

munities, but in this work we focus on methods operating on geometric shapes represented

by triangle meshes, as opposed to images or volumes. 3D shapes provide explicit geometry

information, but generally lack a simple parameterization domain. Another distinction is

that image analysis often benefits from rich local descriptors based on color and texture,

while the descriptors computed for shapes are generally not as distinctive.

Several specializations of the correspondence problem can be considered. One may ask

12
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Figure 2.1: A meaningful correspondence (blue lines) between a sparse set of feature points
on two shapes. Note the large amount of geometric variations between the shapes which
make the computation of such a correspondence difficult.

whether it is meaningful to establish a correspondence in full, as in Figure 2.1, or only for

part of the shapes, as in Figure 2.2. The additional need to find the common parts of the

shapes not only increases the search space but also makes it difficult to define a proper ob-

jective function, making the partial correspondence problem harder [Gal et al. 2007; Zhang

et al. 2008]. One may also consider the density of the correspondence computed. Sparse

correspondence only seeks to identify and match a small set of landmark points. However,

it is as difficult as its dense counterpart, since the challenging aspect of the correspondence

search remains essentially the same — in both cases it is necessary to consider the global

structures of the shapes and possibly the semantics of their parts to obtain a meaningful

solution. Often, a dense correspondence is derived from a sparse one via some form of in-

terpolation [Alexa 2002; Kraevoy and Sheffer 2004], although the computation of a dense

correspondence can also present challenges in certain circumstances, e.g., in the case of

partial matching or when there are topological differences between the shapes.

Defining what is a meaningful correspondence depends on the task at hand. The task

can range from the simpler case of identifying portions of the shapes that are geometrically

similar, to the more complex problem of relating elements that represent the same parts or

serve the same function on the shapes. In the latter case, the matching parts may differ

significantly in their geometry, structure within the context of the whole shape, or even

topology. An example of such a semantic correspondence problem is shown in Figure 2.3.

In general, computing such correspondences is difficult since it involves understanding the

structure of the shapes at both the local and global levels, and possibly understanding the
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Figure 2.2: An example of a partial correspondence problem. The goal here is to establish
a correspondence between Neptune’s statue (left) and the human (right), by relating the
parts in yellow and ignoring the extra parts shown in green and blue.

functionality of the shape parts.

Classical applications of shape correspondence, such as 3D scan alignment or shape

morphing, call for traditional solutions which include rigid alignment and feature match-

ing. Rigid alignment is typically solved with methods based on sampling and verifying

candidate transformations [Irani and Raghavan 1996], or by applying the iterative closest

point algorithm or one of its variations [Rusinkiewicz and Levoy 2001]. In the case of fea-

ture matching, shape descriptors are computed for representative points sampled from the

shapes, and the correspondence is constructed by selecting the assignments that maximize

the similarity between the descriptors. Additional constraints can also be incorporated,

such as the preservation of distances between points (isometry assumption).

More recent works have attempted to deal with large variations in the shapes, to the point

where rigid alignment is no longer suitable. On one hand, emerging techniques for surface

deformation have been successfully applied to non-rigid registration of surfaces [Huang et al.

2008; Zhang et al. 2008]. On the other hand, progress in matching approximately isometric

shapes has also been made in recent works [Bronstein et al. 2008a; Lipman and Funkhouser

2009]. Finally, there has been a recent trend to look beyond low-level geometric information

and to incorporate high-level shape semantics into the shape analysis pipeline. Examples

of such works include techniques for segmenting a mesh into parts [Shamir 2008], finding



CHAPTER 2. BACKGROUND AND RELATED WORK 15

Figure 2.3: An example of a collection of man-made shapes (liquid containers) for which
computing a correspondence is a challenging problem. Note how the shapes can be consti-
tuted by different types and numbers of parts (e.g., one or two handles, neck, base), how
the parts of a same type can vary in their geometry (e.g., long vs. short handles), and how
they can connect to each other in different manners.

analogies between these parts [Shalom et al. 2008], transferring information [Sumner and

Popović 2004] or part styles [Xu et al. 2010] from one shape to another, extracting the high-

level structure of the shapes for manipulation or deformation [Xu et al. 2009a; Gal et al.

2009], and using prior knowledge to learn how to label a shape [Kalogerakis et al. 2010] or

establish a correspondence, as done in this thesis [van Kaick et al. 2011b; Sidi et al. 2011].

Computing a correspondence between shapes is one of the key problems that can benefit

from semantically-driven techniques, since the goal is to understand the structure of the

shapes in order to find a meaningful correspondence between their parts.

2.2 Applications of correspondence

In this section, we discuss what we view as the most important applications that make use

of correspondence methods.

Shape registration. Given a number of scans in arbitrary initial positions, the goal of

registration is to match regions that correspond across the scans, so that the scans can be

aligned and the target object can be fully reconstructed. In certain situations, it can be as-

sumed that the shapes do not change during the scanning (rigid registration) [Rusinkiewicz

and Levoy 2001; Aiger et al. 2008]. However, it can also be the case that the acquisition

process introduces non-linear distortions, or the shapes are free to deform during the ac-

quisition, which creates the need for non-rigid registration [Anguelov et al. 2004; Jain et al.
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2007; Brown and Rusinkiewicz 2007; Chang and Zwicker 2008; Huang et al. 2008].

Time-varying surface reconstruction. The goal in this task is to reconstruct a 3D

shape that was scanned over time while moving and deforming. The challenge is to take

the great amount of generated data and organize it into one single model that represents

the deforming shape. Correspondence methods are central to time-varying surface recon-

struction, since the point sets of different time frames have to be registered to yield the final

model [Mitra et al. 2007; Wand et al. 2007; Sharf et al. 2008; Pekelny and Gotsman 2008;

Li et al. 2009; Chang and Zwicker 2009; Tevs et al. 2009; Zheng et al. 2010].

Shape interpolation. In interpolation or morphing, one shape is gradually transformed

into another. The transformation has to satisfy certain aesthetic requirements, so that the

gradual change of the shape is visually pleasing [Alexa 2002]. One important property in this

aspect is that the correspondence between the reference shape and the target shape should

be meaningful, i.e., it should relate parts in the shapes that are semantically equivalent.

Information transfer. A task that is becoming common is to transfer information from

a source 3D object to a target 3D object, especially to enable the reuse of attributes or

motion information associated to the source shape. Examples include transferring a de-

formation or morph from one mesh to another [Sumner and Popović 2004], transferring

textures while deforming a mesh [Dinh et al. 2005], and transferring the style of one group

of shapes to another [Xu et al. 2010]. Such tasks clearly require a correspondence, since the

motion, attribute or style of each element on the source shape has to be transferred to its

corresponding element on the target shape.

Symmetry detection. The symmetries of a shape can act as an important cue when

solving several tasks, such as registration, segmentation, compression, modeling and edit-

ing [Golovinskiy et al. 2007a]. Detecting the symmetries of a shape (a set of transformations

that when applied to the shape do not modify its geometry) can be posed as the problem

of finding a correspondence from the shape to itself. Therefore, it is natural that symmetry

detection algorithms possess many similarities with correspondence methods, such as the

use of transformation or point sampling for extrinsic [Mitra et al. 2006; Podolak et al. 2006]

or intrinsic [Xu et al. 2009b; Kim et al. 2010] symmetry detection, or the use of spectral

embeddings [Ovsjanikov et al. 2008; Lipman et al. 2010].
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Recognition and retrieval. Understanding a scene described by a range image is one of

the classic challenges in computer vision [Forsyth and Ponce 2003]. Shape correspondence

is one of the approaches that can be used for this task. By establishing a correspondence

between a query shape and the models in a dataset, the identity of the query shape is

inferred from the best match to one of the models (according to a correspondence quality

measure). A similar procedure can be utilized for retrieval [Funkhouser and Shilane 2006].

Statistical shape modeling. The analysis of anatomical structures such as organs or

bones can be facilitated when a statistical shape model is available. These models are useful

for extracting shapes from images or volumes, since they are able to describe the valid

variations in the appearance and the size of a shape. Such models are typically constructed

while computing a group correspondence for a collection of shapes that represent a common

anatomical structure [Davies et al. 2008].

Change detection. Another application of correspondence is to track changes in a shape

(e.g. displacements, growth) over time. In the medical field, an example application is

to track the change in the number and density of moles on a patient’s skin (for cancer

prediction), which can be posed as a problem of point cloud correspondence [Mirzaalian

et al. 2009]. In remote sensing, one example is to track the change over time in the layout

of cities and their land usage [Leclerc et al. 2000].

2.3 Correspondence problems and related methods

Now, we give an overview of the different types of correspondence problems and describe

representative methods that can be used to obtain a solution. We can derive a correspon-

dence directly from the similarity of the elements, or we can first align the shapes and then

derive a correspondence from the proximity of the aligned elements. Moreover, we can also

iterate between the two procedures. These options directly affect which strategy should

be selected to find the correspondence. It is worth noting that the alignment between the

shapes is a side product of the computation which is useful and sometimes essential to the

underlying application. The distinction between these cases is illustrated in Figure 2.4.
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(b) (c) (d)(a)

Figure 2.4: Different manners of solving the correspondence problem for the input shapes
shown in (a) and their feature points (indicated by the dots): (b) computing a correspon-
dence without explicitly bringing the shapes into alignment, (c) computing a global rigid
transformation to align the two shapes, and (d) computing local non-rigid transformations
for the shape primitives to deform one shape into the other.

2.3.1 Similarity-based correspondence

One of the fundamental ways of computing a correspondence is to estimate the similarity

between shape elements or feature points collected from two different shapes and derive a

correspondence from those estimates, which is sometimes called the feature matching ap-

proach. The elements are commonly characterized by shape descriptors. A correspondence

is then obtained by selecting assignments between pairs of elements while optimizing an

objective function composed of two terms. The first term seeks to maximize the similarity

between the descriptors of corresponding elements, while the second term seeks to minimize

the distortion that would be introduced in the shapes if they were deformed to align their

corresponding elements. However, the second term is estimated without explicitly aligning

the shapes. Ideally, satisfying these objectives should translate into a solution that is ge-

ometrically or semantically meaningful. Feature matching can be applied in any context

where it is possible to compute descriptors for the elements. Example applications include

registration of 3D scans [Castellani et al. 2008] and deforming surfaces [Anguelov et al.

2004], or skeleton matching [Biasotti et al. 2006].

A correspondence problem that takes into account only the similarity of shape descrip-

tors can be solved effectively with the simplex algorithm by posing it as a linear assign-

ment [Papadimitriou and Stieglitz 1982]. If the correspondence is constrained to a one-

to-one mapping, the problem becomes that of finding an optimal matching in a weighted
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bipartite graph, which can be solved more efficiently with the Hungarian algorithm in O(n3)

time, where n is the number of feature points in each shape [Papadimitriou and Stieglitz

1982]. In the general case, when a distortion term is also part of the objective, we have a

Quadratic Assignment Problem (QAP) that is NP-hard. One group of methods in the liter-

ature computes quadratic assignments through integer optimization, which is relaxed to the

continuous setting and solved with a continuous optimization technique. Examples include

the softassign technique [Gold and Rangarajan 1995] (which iteratively normalizes rows and

columns of an affinity matrix), concave programming [Maciel and Costeira 2003], approxi-

mations based on linear programming [Berg et al. 2005], spectral clustering [Leordeanu and

Hebert 2005], or relaxation labeling [Zheng and Doermann 2006]. It can also be formulated

in probabilistic terms and solved as a convex optimization problem [Zass and Shashua 2008].

Another group of methods solves the problem in the discrete setting without resorting

to the continuous domain. One common solution approach in the discrete case is to solve

the problem by computing an optimal labeling of a graph, e.g., the problem can be posed

in terms of a Markov network where the set of labels corresponds to matching points on

the target shape [Anguelov et al. 2004; Zheng et al. 2010]. Other methods make use of

metaheuristics for combinatorial optimization, such as ant colony optimization [van Kaick

et al. 2007]. One more option is to sample the space of correspondences in search of a

solution, guided by an isometry criterion and importance sampling [Tevs et al. 2009].

Finally, one specific group of methods in discrete optimization finds a solution by making

use of tree-based search techniques, such as branch-and-bound or priority search [Gelfand

et al. 2005; Funkhouser and Shilane 2006; Zhang et al. 2008; Au et al. 2010; Xu et al.

2010]. During the tree expansion, each node represents a partial solution. A full solution

is found by following the path from the root of the tree to one of its leaves. Although

the specific strategy in which the tree is expanded differs from method to method, these

techniques usually involve three important steps: expanding a node that represents a partial

solution (branching), estimating how far the partial solution is from the optimum solution

(bounding), and eliminating nodes that will not lead to the optimum solution (pruning).

Solutions are mainly represented as collections of assignments between pairs of feature

points, and the expansion step involves adding a new pairwise assignment to a given solu-

tion. Bounding and pruning can be performed by verifying the quality of the registration

given by the current solution, either by aligning the shapes [Gelfand et al. 2005] or by

deforming one shape into the other [Zhang et al. 2008]. Other pruning methods include
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testing the compatibility between pairwise assignments, such as quantifying the distortion

introduced in the Euclidean [Gelfand et al. 2005; Funkhouser and Shilane 2006] or geodesic

distances [Zhang et al. 2008; Au et al. 2010] between pairs of points, or testing the agree-

ment in the spatial configuration of the shapes [Au et al. 2010]. Naturally, the descriptors

computed for the feature points are also considered in the bounding and pruning steps.

2.3.2 Rigid alignment

Under certain assumptions, it is possible to pose the correspondence problem as a search

for a geometric transformation that aligns the shapes. One example application is the rigid

alignment of geometry scans used for shape acquisition. The goal here is to capture a real-

world static 3D shape and obtain its digital representation. However, it may not be possible

to capture the entire object in a single scanning pass due to self-occlusions and physical

constraints of the scanner, so it is often necessary to acquire multiple scans and optimally

align them to reconstruct the full object [Turk and Levoy 1994; Rusinkiewicz and Levoy

2001; Gelfand et al. 2005; Aiger et al. 2008]. The key characteristic of the rigid alignment

problem is that the objects do not change from one scanning pass to another. Thus, it is

assumed that each scan can be transformed with a single rigid transformation to align it

perfectly with the other scans. Rigid transformations comprise translations and rotations,

and one of their important properties is that they reside in a low-dimensional space.

Scan alignment is just one example of many applications that rely on the assumption

of rigidity in the datasets. For two shapes given as 3D point sets S and Z, the problem

of rigid alignment can be posed as: find the rigid transformation that, when applied to

S, maximizes the number of points in S that align to points in Z. This goal is usually

dependent on a threshold ε that indicates when two points are close enough and can be

considered as matching to each other [Irani and Raghavan 1996].

Following this formulation, alignment with rigid or even affine transformations is a prob-

lem with a clear objective function, and efficient algorithms also exist to optimally solve such

instances, such as constrained transformation search [Huttenlocher 1991; Aiger et al. 2008]

or geometric hashing [Wolfson and Rigoutsos 1997]. However, as the complexity of these

algorithms is still at least quadratic in the number of input elements, heuristics can be used

to speed up the solution search, e.g., by exploring candidate assignments suggested by the

feature matching approach [Aiger et al. 2008], randomizing steps of the algorithms [Fis-

chler and Bolles 1981; Irani and Raghavan 1996], or by making use of votes as in pose
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clustering [Stockman 1987; Olson 1997]. Alternatively, a local-search algorithm such as the

Iterative Closest Point (ICP) [Rusinkiewicz and Levoy 2001] can also be used.

2.3.3 Non-rigid alignment

Following our previous example of scan alignment, it might be necessary to lift the assump-

tion that each scan can be perfectly aligned with a rigid transformation, e.g., when large

amounts of noise are present in the scans. More significant examples of datasets that cannot

be rigidly aligned include the correspondence of articulated shapes [Elad and Kimmel 2003;

Anguelov et al. 2004; Jain et al. 2007; Chang and Zwicker 2008; Huang et al. 2008], where

certain parts of the shapes can bend independently, the correspondence of anatomical shapes

(e.g., organs) [Audette et al. 2000], which can deform in an elastic manner and introduce

stretching to localized portions of the shape, and finally the correspondence of shapes with

different geometries but that represent a class of objects with parts that are semantically

related [Zhang et al. 2008]. In the latter case, we can see the problem as that of establishing

a correspondence between shapes that can differ in both local stretching and bending.

In this setting, it becomes necessary to add more freedom to how the shapes can be

brought into correspondence. This can be achieved by generalizing two aspects of the prob-

lem. First, non-rigid (possibly non-linear) transformations can be taken into consideration,

e.g, thin-plate splines [Chui and Rangarajan 2003]. Secondly, these transformations can be

applied separately to local portions of the shape. For example, the transformation applied

to a shape can be represented as a set of per-vertex displacement vectors [Pauly et al. 2005]

or per-vertex affine transformations [Sumner and Popović 2004]. Then, finding the best

transformation amounts to computing the displacements that bring each vertex in corre-

spondence with the target shape. The distinction from the rigid case is that the space of

geometric transformations being considered is now inherently high-dimensional.

Due to the high-dimensional nature of the solution space, these problems are typically

solved with a form of local or approximate search including a regularization term, e.g., gra-

dient descent [Allen et al. 2003] or a combination of the non-linear transformations with

the feature matching approach [Chui and Rangarajan 2003]. However, although heuristic

solution methods are available, the quality of the results will typically depend on the com-

plexity of the problem instance and the level of approximation introduced by the methods.

As in the case of feature matching approaches, if there are more constraints available, they

can be used to guide the algorithms more effectively to a correct solution.
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Alternative methods for non-rigid correspondence include posing the problem as the

piece-wise alignment of detected parts [Chang and Zwicker 2008], or using non-linear variants

of the ICP algorithm, either by computing a warp function based on thin-plate splines [Chui

and Rangarajan 2003; Brown and Rusinkiewicz 2007], or substituting the rigid transforma-

tion with a deformation based on rigid-body components [Huang et al. 2008]. Another

possibility, especially for articulated shapes, is to first embed the shapes in a space where

the configuration of the rigid parts is normalized, and then treat the problem simply as a

case of rigid alignment in this embedding space. The embedding can be obtained with tech-

niques such as Multi-Dimensional Scaling (MDS) [Elad and Kimmel 2003; Bronstein et al.

2006; Bronstein et al. 2008a], the GPS embedding [Rustamov 2007], or the spectral trans-

form [Jain et al. 2007; Mateus et al. 2008; Sahillioğlu and Yemez 2010]. A comprehensive

coverage of different forms of embeddings is given in [Zhang et al. 2010].

2.3.4 Time-varying registration

Due to recent technological advances, an application that is attracting attention is the

reconstruction of 3D shapes acquired over time while moving and deforming. In this setting,

a fixed number of scans is acquired per time step, and these scans have to be registered to

allow the reconstruction of both the object and the motion sequence [Mitra et al. 2007;

Wand et al. 2007; Sharf et al. 2008; Pekelny and Gotsman 2008; de Aguiar et al. 2008; Li

et al. 2009; Gall et al. 2009; Chang and Zwicker 2009; Tevs et al. 2009; Zheng et al. 2010].

Although this may seem like another instance of the non-rigid alignment problem, there

are certain particularities that make this problem unique. In the classic registration problem,

it is assumed that all the scans can be registered to compose a single and coherent object.

On the other hand, the time-varying setting introduces the additional difficulty that the

shape might have deformed significantly from one frame to the other. Therefore, scans

acquired later in time may only be registered to the earlier scans if the deformation is taken

into account. Moreover, additional challenges are the large amount of missing data (due

to occlusion) that can be present in each frame [Pekelny and Gotsman 2008], and datasets

that were captured over sparse time frames [Chang and Zwicker 2009; Zheng et al. 2010].

However, the addition of temporal constraints can also help in reducing the size of the search

space (e.g., kinematic constraints [Mitra et al. 2007]).

For obtaining correspondences in such a setting, variants of the ICP algorithm have been

utilized [Wand et al. 2007; Pekelny and Gotsman 2008; Wand et al. 2009; Li et al. 2009].
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Figure 2.5: A progression of development in shape correspondence methods.

If a sufficient number of scans is acquired per time unit, it can be assumed that only small

changes take place in the spatial configuration of the shapes (rigid-body components can be

consistently tracked), which facilitates the computation. Other methods pose the problem

as the reconstruction of a space-time surface [Mitra et al. 2007; Süßmuth et al. 2008; Sharf

et al. 2008], or extract a skeleton that is coherent for all time frames [Zheng et al. 2010].

2.4 Discussion

In Figure 2.5, we show a progression in the development of solutions to shape correspon-

dence. On one hand, significant progress has been made to compute rigid or pose-invariant

alignments (through the correspondence of approximately isometric shapes). Since these

problems have well-defined objectives, remaining work is mainly focusing on improving ef-

ficiency and accuracy, or on handling more difficult specializations of the problem, such as

partial matching. In part, the success in these areas is also due to the fact that the corre-

spondence can be obtained reliably from purely geometric information extracted from the

shapes, and shape alignment can be described in terms of unambiguous transformations or

objective functions.

On the other hand, finding a meaningful correspondence between shapes belonging to

the same class but differing (sometimes significantly) in their geometry, structure, or even

topology, remains a challenge. Traditional methods which rely on assumptions of rigidity,

isometry, or sufficient geometric similarity between corresponding parts are simply inade-

quate. Man-made shapes such as the ones shown in Figure 2.3 are particularly challenging
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to deal with, since these objects often differ not only by geometric deformations, but also

by their part constitutions. Shape correspondence then departs from the low-level sphere

of geometry analysis and becomes the higher-level problem of semantic reasoning, where we

seek to recognize the parts of shapes and infer their semantics or functionality. A meaningful

correspondence can then be established between the recognized parts. The utilization of

prior knowledge is seen as a promising solution, where the main difficulty is how to model

the knowledge and make use of it effectively.

Some recent works have taken the first steps towards knowledge-driven shape correspon-

dence. Knowledge can be incorporated by utilizing a set of examples where a few landmark

points have already been matched by an expert user [Ward and Hamarneh 2007], by using

a set of examples already in full correspondence [Pitiot et al. 2007], or by relying on a set of

pre-segmented and pre-labeled shapes, so that classifiers can be trained on these examples

and applied to label the primitives of an unknown shape, as in the work of Kalogerakis et

al. [2010] or the work in this thesis [van Kaick et al. 2011b] (Chapter 3). Another direction

is to learn how the terms in the various objective functions should be weighted, depending

on the restricted domain of the problem that we are considering [Caetano et al. 2009]. One

more possibility is to consider group information when performing correspondence-related

tasks, such as skeletonization [Ward and Hamarneh 2009] or consistent segmentation of a

set of shapes [Golovinskiy and Funkhouser 2009]. The results of co-segmentation can be

greatly improved by directly addressing the nonhomogeneous part scaling [Xu et al. 2010],

or by performing an analysis of the part constitution of the shapes, as proposed in this

thesis [Sidi et al. 2011] (Chapter 4).



Chapter 3

Prior knowledge for part

correspondence

The majority of geometry processing methods in the graphics community have relied on

low-level reasoning and operated on low-level features. Recently, there has been a research

trend towards higher-level geometry processing, particularly the analysis of shapes at a

more semantic level [Attene et al. 2009; Gal et al. 2009; Simari et al. 2009; Xu et al.

2009c; Kalogerakis et al. 2010; Mitra et al. 2010]. Shape correspondence is a fundamental

problem that often requires a higher-level understanding of shapes. Applications such as

attribute transfer [Sumner and Popović 2004; Baran et al. 2009], morphing [Alexa 2002],

shape synthesis [Anguelov et al. 2005; Xu et al. 2010], and object recognition [Berg et al.

2005] are often meant to employ correspondences between shape parts which possess the

same meaning or functionality rather than mere geometric similarity.

Classical approaches to shape correspondence are mainly content-driven [Funkhouser

and Shilane 2006; Jain et al. 2007; Zhang et al. 2008; Lipman and Funkhouser 2009; Au

et al. 2010; van Kaick et al. 2011a], focusing solely on the geometrical and structural similari-

ties between the shapes to be matched. However, both criteria can be violated in challenging

scenarios where there are large variations in the geometry or topology of the corresponding

parts, as the examples in Figures 3.1 and 3.2 show. Shape correspondence under these cir-

cumstances is simply beyond pure geometry analysis and requires a semantic analysis of the

shapes. Such an analysis necessitates the use of prior knowledge: to find a correspondence

between parts that may be highly dissimilar geometrically, we need to invoke our memory of

25
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Figure 3.1: Meaningful correspondence between shape parts under significant geometric
and topological discrepancies is made possible by incorporating prior knowledge. Notice the
missing neck on one shape in the right pair, and the matching of one to multiple handles in
both pairs. Corresponding parts on each pair are implied by matching colors.

similar parts that correspond to each other (a recognition process). This knowledge is then

used to establish a correspondence between the unknown parts. Incorporating recognition

into shape correspondence results in a knowledge-driven approach. The power of knowledge

is exemplified when pure geometry analysis simply cannot succeed (Figure 3.1).

In this chapter, we introduce an approach to shape correspondence which incorporates

prior knowledge. Aiming to mimic the human cognitive process where recognition is known

to be primarily part-based [Marr 1982; Hoffman and Richards 1987], we compute part

labels (a recognition process) in conjunction with correspondence. The result is thus a part

correspondence in contrast to correspondences between low-level feature points, as done in

most works to date (Chapter 2). The prior knowledge is imparted through a training set of

pre-segmented models with semantic labels. The training set serves as a knowledge medium

allowing to find the correspondence between geometrically dissimilar parts. With the prior

knowledge, we learn a probabilistic semantic label for each face of a query shape (one of

the shapes to be matched). The labeling is derived, with the aid of a classifier, from the

similarity of the descriptors of the faces to those of a class in the training set.

Part correspondence may be established based solely on knowledge and individual la-

beling of the query shapes. However, this may lead to an unsatisfactory outcome when

the knowledge set is incomplete or produces indeterminate recognition results. Such cases

may have to rely, at least partially, on a direct comparison between the query shapes. We

combine the use of knowledge with content-driven analysis, where the latter is based on
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Figure 3.2: The set of man-made shapes used in our work. Note the large intra-class
geometric and topological variability.

geometric similarity between the query shapes. The final correspondence is thus obtained

through a joint labeling of the query shapes. The joint labeling makes use of the knowledge-

driven probabilistic labels as well as feature pairings between query shapes to extract the

actual parts that we seek to recognize and match across the shapes. The pairing of features

incorporates the direct similarity between local regions of the query shapes.

Our contribution in this chapter is two-fold. First, we show that the incorporation of

prior knowledge to shape correspondence is effective. In particular, it leads to significant

improvement over classical approaches on query shapes exhibiting large intra-class part

variability in geometry or topology (see Figures 3.1 and 3.2). Second, we show that the joint

labeling approach is able to combine the knowledge-driven and content-driven analyses so

that they complement each other in instances where using solely the knowledge or the local

geometric similarity of the shapes is insufficient.
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3.1 Related work

As discussed in detail in Chapters 1 and 2, content-driven approaches to shape correspon-

dence compare a pair of shapes based on geometric similarities between matched features,

an approximate isometry criterion, or a combination of both [Funkhouser and Shilane 2006;

Bronstein et al. 2008a; Zhang et al. 2008; Lipman and Funkhouser 2009; van Kaick et al.

2011a]. The computational paradigm is an optimization or discrete search guided by these

criteria. The recent methods of Zhang et al. [2008] and Au et al. [2010] both allow large

shape variations, but only to a certain extent, as they are still confined by the premise of

geometric similarity and do not model shape semantics.

Part correspondence brings relevance to the segmentation problem. Many approaches to

meaningful shape segmentation [Shamir 2008] follow the minima rule [Hoffman and Richards

1987], where segment boundaries are defined near concave regions. Other methods iden-

tify shape parts based on their geometric characteristics such as convexity and compact-

ness [Kraevoy et al. 2007]. Clustering using an intrinsic surface metric or curvature is also

common [Katz and Tal 2003; Liu and Zhang 2007]. Structural approaches mainly focus

on skeleton topology [Au et al. 2010; Shapira et al. 2008]. While satisfactory individual

segmentation results can be obtained, these approaches are not designed to find a consis-

tent segmentation between the shapes, i.e., a segmentation that partitions the models into

similar parts that correspond across the shapes.

Golovinskiy and Funkhouser address the consistent segmentation problem [2009] where

the connection between matching parts is initially built by a global rigid alignment using

iterative closest point. No shape semantics are incorporated and their approach is not

designed to handle large intra-class geometric variations such as stretching. Recent work

of Xu et al. [Xu et al. 2010] handles non-homogeneous part stretching by grouping the

shapes based on their style and then performing part correspondence. Perhaps the first

work on explicitly incorporating prior knowledge into shape segmentation is that of Simari

et al. [2009], where a multi-objective optimization is performed to segment and label a given

shape. However, the user is required to provide semantic knowledge specific to the shape or

shape parts and formulate such knowledge to fit the optimization framework; no training

set or learning is used.

The ability to tag, annotate, or label a shape lies at the heart of semantic shape anal-

ysis. Manual annotation allows the user to either semantically label parts or to apply an
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ontology to the structure of the shapes [Attene et al. 2009]. Another group of approaches

is based on correspondence analysis guided by shape geometry. As an application of their

skeleton-driven correspondence algorithm, Au et al. [2010] assign semantic tags to the skele-

ton features of a subject shape by fully matching it to each labeled shape in a training set

and then applying a simple majority voting to determine the tags. Shapira et al. [2009] tag

parts in a similar manner, but rely on a part-in-whole contextual signature to retrieve the

most relevant parts.

Recently, Kalogerakis et al. [2010] present a method to learn the semantic labels of a

shape based on training data. This work is significant as it is the first generic learning-based

method for semantic shape segmentation. Our work shares similarities with this method,

such as the use of a training set of pre-segmented and pre-labeled shapes and classifiers to

recognize the shape parts. However, we apply prior knowledge to solve the correspondence

problem and augment knowledge-driven analysis with content-driven analysis via the joint

labeling approach.

Recognition by correspondence is a classical paradigm in computer vision [Basri and

Jacobs 1997], as are semantic segmentation, labeling, and classification in images based

on learning [Levin and Weiss 2006; Schnitman et al. 2006]. Such approaches are rare in

shape analysis however. Images are typically feature-rich, with color and texture cues

as well as foreground and background contrasts, which exemplify the usefulness of local

feature patches. However, for typical 3D models of the kind we consider (Figure 3.2), the

distinctiveness of local surface features is significantly reduced. Also, one may be confined

to a limited training set which still contains diverse intra-class shape variations. While

image-based methods can typically benefit from the availability of large data collections to

form adequate training sets or the knowledge base, the same cannot be said about 3D model

collections. These are some of the challenges we wish to address in our work.

3.2 Overview

In this section, we present an overview of our approach to incorporate prior knowledge

for part correspondence; see Figures 3.3 and 3.4 for an illustration. Full details of the

algorithmic components are covered in subsequent sections.
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Figure 3.3: Probabilistic semantic labeling. Given a query shape (the gray vase), we first
label each of its faces with per-label classifiers. The result is a label probability vector per
face (shown as a color-blend on the surface of the bottom shape). The classifiers are learned
from the training set (shown around the query with their ground-truth labeling).
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Problem setting. The central problem that we are addressing here is the computation

of a meaningful correspondence between a source shape S1 and a target shape S2 (the query

shapes). In our case, we require a correspondence that is defined at the part level, i.e.,

it maps groups of triangular faces on S1 to groups of faces of equivalent parts on S2, as

opposed to a mapping of feature points from one shape to the other.

Content-driven analysis. A straightforward way to establish the correspondence be-

tween S1 and S2 is by computing a set of shape descriptors and matching the faces based on

these descriptors, which we refer to as the feature matching approach. In this context, one

extracts for each face on each shape a set of descriptors that capture information about its

geometric properties and context, resulting in a vector of scalar values associated to each

face. Ideally, by measuring the distance between two such vectors with an appropriate met-

ric we obtain an indication of the similarity of their corresponding faces (or the surrounding

regions of the faces). Now, a correspondence between S1 and S2 can be computed by any

algorithm that computes a correspondence based on the vector distances (examples for such

an algorithm are bipartite matching or quadratic optimization, as discussed in Chapter 2).

Incorporation of semantic knowledge. One of our goals is to show that a more mean-

ingful correspondence is obtained when semantic information is added to the solution. This

is especially effective when the shapes vary greatly in geometry and part constitution. In

the knowledge-driven component of our approach, semantic information is derived from a

set of training shapes and characterized by classifiers for part labels. The shapes in the

training set are pre-segmented and tagged with semantic labels. The labeling is defined at

the face level. Next, we compute shape descriptors for the faces of each training shape and,

based on the descriptors, we train a classifier Kl for each label l, using the faces labeled l as

positive examples of the label, and the remaining faces as negative examples. The learning

phase results in one model per part type, each capturing the discriminative properties of

the faces that belong to the label.

Probabilistic semantic labeling. Now, given a face fi on a query shape, we compute

the same set of descriptors and estimate p(l|fi), the probability of fi having the label l.

p(l|fi) is obtained by applying the classifier Kl to the descriptors of face fi. By applying all

the classifiers, the face receives a label probability vector composed of the probabilities for

all possible labels l (Figure 3.3). In Section 3.3, we elaborate on the probabilistic labeling.



CHAPTER 3. PRIOR KNOWLEDGE FOR PART CORRESPONDENCE 32

Joint labeling and part correspondence. Each face belonging to each of the query

shapes has now an associated probabilistic label. It would be possible to use the labels

in place of our original descriptors and obtain the correspondence via a feature matching

algorithm. However, we are interested in combining knowledge and geometric shape content,

and we also require a correspondence that is defined at the part level. Therefore, we find

the solution with a method that extracts segments from the shapes while simultaneously

considering their correspondence. This step of the algorithm is achieved with our joint

labeling (illustrated in Figure 3.4).

The joint labeling takes into simultaneous consideration the probabilistic semantic labels

of each face (based on knowledge/training), the mesh connectivity (captured by intra-mesh

arcs between pairs of faces on the same shape), and connections between the faces of the two

query shapes (feature pairing by inter-mesh arcs). The output of the joint labeling is a set

of parts for each shape and their correspondence. The inter-mesh arcs come from candidate

assignments extracted from the similarity of shape descriptors. Details on the joint labeling

are described in Section 3.4.

The joint labeling has two advantages over the labeling based only on knowledge. First,

there are practical limitations for the knowledge representation, such as the size and vari-

ability of the training set and accuracy of the shape descriptors. In this case, the inter-mesh

edges complement the knowledge with extra information on the direct similarity between

portions of the shapes. Moreover, even if the training set were large enough, covering an

infinitude of variations, there would still be cases where a purely knowledge-driven approach

could fail, such as when identical parts appear on different locations of a shape, or when

there exist ambiguities in the functional role of the parts. The addition of content analysis

contributes to the disambiguation of such cases.

3.3 Prior knowledge and probabilistic semantic labeling

Training set. The first step towards the development of our correspondence approach

is to create a knowledge base from a dataset of training shapes. This dataset contains

manually segmented shapes and the semantic labeling of each part (e.g., labels such as

“leg” and “seat” for chairs). Thus, each mesh face is associated to a semantic label. An

example dataset, used in part of our experiments, is shown in Figure 3.2.
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Shape descriptors. Next, we compute a collection of descriptors for each face of all the

training shapes. These descriptors should capture different properties of the faces, such as

the local geometry of the shape around the face and its context in relation to the whole

shape. The purpose of using a collection of descriptors is that their union should be rich

enough to distinguish the faces of different classes. We extract descriptors based on principal

component and curvature analysis in the neighborhood of a face at multiple scales, the shape

diameter function [Shapira et al. 2008], average of geodesic distances starting from each face,

and the binning of face areas into geodesic maps. Some of these descriptors are similar to

those that appear in the learning approach of Kalogerakis et al. [2010].

Classifier training. Finally, we group the faces from the training set according to their

labels. Suppose that for each label l, we are given nl training faces coming from different

shapes and grouped into the set Fl. We compute the descriptors for each face in this set and

denote the full set of descriptor vectors as Dl. Then, for each label l, we train a classifier Kl
with the descriptors Dl as positive examples of the label, and with the descriptors Dl̄ = ∪Dl′ ,

with l′ 6= l, as negative examples. Notice that instead of training a set of per-label classifiers,

a single multi-class classifier could also be used to take advantage of shared decision rules.

To train a classifier, we use the “gentleboost” algorithm, which has several advan-

tages in relation to other choices, such as performing automatic feature selection, being

a time-efficient training algorithm, and attaching confidence values to each classification de-

cision [Kalogerakis et al. 2010]. By adjusting the importance weight given to each training

sample, it is also possible to account for unbalanced datasets. Details on this algorithm

can be found in [Friedman et al. 2000]. The unnormalized confidence values returned by

each classifier can be transformed into probabilities with the softmax activation function (a

generalization of the logistic function to multiple variables).

Probabilistic semantic labeling. Now, given an unknown face fi on a query shape, we

compute its associated set of descriptors Di and use the classifier Kl to estimate p(l|Di),

the probability that face fi should belong to class l based on its descriptors Di. The

probabilistic labeling is performed for all faces on the two query shapes S1 and S2. One

of our key contributions here is to show that computing a correspondence based on the

semantic labeling provides superior results when compared to those computed directly from

the similarity of the descriptors.
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Figure 3.4: Joint labeling. Given a pair of shapes (to the left), we obtain their optimized
labeling by making use of their probabilistic labels (Figure 3.3), intra-mesh arcs (blue lines)
coming from the shapes’ connectivity, and feature pairings given by the inter-mesh arcs
(red lines) added between faces with similar descriptors. The result (to the right) is a
segmentation of the shapes and correspondence at the segment level (indicated by matching
colors). The probability vectors and the final deterministic labels are shown for two pairs of
faces (before and after the joint labeling). The classes are: Handle (Hd), Neck (Ne), Body
(Bd), and Base (Bs).

3.4 Part correspondence via joint labeling

After obtaining the probabilistic labeling of the faces on the query shapes, we utilize this

information in a joint labeling scheme (i.e. labeling both query shapes simultaneously) to

obtain the final result. By posing the correspondence problem as that of label optimization,

we are able to simultaneously incorporate both the semantic information and local similarity

of the two query shapes into the computation, while also extracting as a result semantic parts

from the query shapes and their correspondence. This process is inspired by methods for

consistent segmentation and labeling [Golovinskiy and Funkhouser 2009; Xu et al. 2010; Ng

et al. 2010], although we deviate from their scheme and do not make use of rigid alignment.
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Joint labeling. The label optimization problem is defined as the assignment of labels

to the nodes of a graph such that a given energy is minimized [Ng et al. 2010; Shapira

et al. 2009; Kalogerakis et al. 2010]. The set of assigned labels is the same one used in

the definition of the semantic information. Given a query shape S1, we define a graph

GS1 = {VS1 , ES1}, where the nodes VS1 are the faces of the mesh and the arcs in ES1

connect two faces if they are adjacent on the mesh. A similar graph can be defined for a

shape S2. We perform the joint labeling on a graph G = {V,E}, where V = VS1 ∪ VS2 and

the connectivity of the graph is given by E = Eintra ∪ Einter, where Eintra and Einter are

two types of arcs: intra-mesh and inter-mesh arcs. The intra-mesh arcs are simply given by

Eintra = ES1 ∪ ES2 . The inter-mesh arcs Einter connect faces in S1 to faces in S2.

Feature pairing. We select a set of pairwise assignments from S1 to S2, based on the

similarity of shape descriptors, to constitute the inter-mesh arcs. Here, an assignment

is simply a correspondence from a face in S1 to a face in S2. However, to increase the

quality of the assignments, we also incorporate a learning procedure into this step. We

learn which shape descriptors are most discriminative in distinguishing correct from incorrect

assignments. The learning is performed on assignments derived from the training set. Since

a large collection of descriptors is available, the learning also has the advantage of weighting

the influence of each descriptor in the similarity computation.

First, we derive a set of training assignments A from the dataset of training shapes. For

each type of shape descriptor, we compute the similarity between all possible pairs of faces

in a sample of training shape pairs. Suppose that two training shapes are denoted as T1 and

T2. For each face in T1, we select the k first pairwise assignments with the highest similarity

for each descriptor and add them to the set A. The similarity is given by the inverse of the

Euclidean distance between the descriptors of the two faces, while k is set to 10 throughout

our experiments. We choose a small k so that we can capture the relation between the

highest descriptor similarities and the correctness of the assignments. Each assignment in

A is either labeled as true, if it maps two faces with the same label, or false, if the labels are

different. Next, we associate to each assignment in A a vector that stores the similarity of

each descriptor. We use such vectors to train a classifier using the “gentleboost” algorithm.

The outcome of the training is a classifier that allows us to label a candidate assignment

with true or false, based on the vector of similarities obtained by considering multiple shape

descriptors, while also assigning a confidence to this decision. Finally, given a pair of query
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shapes, we select candidate assignments with the same procedure used for the training

data. We apply the classifier and select the top 20% assignments with the most confidence

of having the label true, to obtain a small yet reliable set of inter-mesh arcs.

Labeling energy. The energy to be minimized by the labeling is composed of two types

of terms: unary and binary. The unary term (or data term) takes into consideration how

likely it is that a given node has a specific label. This is encoded by a labeling cost assigned

to each face. The binary terms consider the connectivity between faces (intra- and inter-

mesh) and quantify how likely it is that two neighboring nodes have a specific pair of labels,

according to a pairwise cost. We define the energy of the labeling l as

E(l) =
∑
u∈V
Edata(u, lu) +

∑
uv∈Eintra

Eintra(u, v, lu, lv) +∑
uv∈Einter

Einter(u, v, lu, lv),
(3.1)

where lu and lv are the labels of nodes u and v, respectively, and Edata and Eintra, Einter are

the unary and binary terms.

The unary (data) term is given by

Edata(u, lu) = −au log p(lu|Du), (3.2)

where p(lu|Du) is the probability of node u having label lu, based on the classifiers applied

to the face descriptors Du, and au is the area of the face corresponding to node u. The

weight au ensures that the cost is given in terms of labeling the total shape area.

The intra-mesh binary term is defined as

Eintra(u, v, lu, lv) = L(lu, lv)[ωθ θuv + ω` `uv], (3.3)

where we take into account the compatibility L(lu, lv) between two labels, as well as the

edge length `uv and dihedral angle θuv between faces u and v, similarly as done in [Shapira

et al. 2009] and [Kalogerakis et al. 2010]. The label compatibility term L is derived from the

training data in the form of statistics that quantify how likely it is that two labels appear

neighboring each other. L(l, l) = 0 if two faces share the same label l. The parameters ωθ

and ω` regulate how much the angle and edge length contribute to the total energy.

Finally, the inter-mesh term is given by

Einter(u, v, lu, lv) = L(lu, lv)[ωη ηuv], (3.4)
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where ηuv is the confidence that the assignment between faces u and v is correct, and ωη

regulates the influence of the inter-mesh term to the total energy. Thus, the higher the

confidence value attached to the assignment, the more the cost is increased if the assigned

labels are different.

Graph-cut optimization. We use multi-label graph-cuts to assign labels to the nodes in

an optimal manner. More specifically, the α-β swap algorithm is utilized [Boykov et al. 2001],

since the pairwise costs L do not define a metric. By minimizing the given energy, we obtain

the most likely label for each face while also avoiding the creation of small disconnected

segments. The optimal parameters ωθ, ω`, and ωη are obtained by performing a grid search

on training data separated for this purpose. This procedure is explained in Section 3.5.

3.5 Experimental results

In this section, we present a set of experiments aimed at evaluating our approach for shape

correspondence. We also contrast our results to other state-of-the-art methods.

Datasets. We utilize two datasets in our experiments. All the shapes are pre-segmented

and labeled, implying that the ground-truth label for each mesh face is known. We designed

the first dataset, shown in Figure 3.2, composed of four classes of man-made shapes with

large geometric and topological variability. Notice that the presence of some of the semantic

parts is optional, and certain parts can appear more than once on each shape. The second

dataset consists of a selected subset of classes from the mesh segmentation benchmark [Chen

et al. 2009]. The selected classes are listed in Table 3.1 and examples appear in Figure 3.5

(a)-(e). We utilize the segmentations and labelings created for these shapes by Kalogerakis

et al. [2010]. We selected classes that possess shapes in different poses (e.g., Human or

Hand) and shapes with considerable structural and geometric variability (e.g., FourLeg), as

opposed to models with a predictable structure. Also note that the segmentations for the

first dataset were created by a single user with a pre-defined goal, while the second dataset

is given by the average segmentation for each class. With this setting, we demonstrate that

our method is robust against variations in the dataset design process.

Correspondence results. Figure 3.5 shows a set of visual results. To generate these

correspondences, we selected for each class a random subset of 60% of the shapes as the
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Figure 3.5: Part correspondence results via joint labeling. Aside from the failure cases
in (j), (t), and (y), our method succeeds even under significant geometric and topological
variations between the matched parts, while purely content-driven methods would fail (see
Figure 3.7 for a comparison). Corresponding segments between a pair of shapes are shown
with the same color.
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Figure 3.6: Joint labeling improves upon the use of prior knowledge alone. (a) and (c):
correspondences obtained using probabilistic labels only, without content analysis. (b) and
(d): results from joint labeling. The latter is effective in implying the correct correspondence
for mislabeled parts when there is sufficient part-to-part similarity.

training set, and delegated the remaining shapes to be test cases. A random subset of 3/4 of

the training shapes was used to learn the classifiers, while the remaining 1/4 of shapes was

used to select the best parameters for the joint labeling. We perform a two-level grid search

on the three parameters ωθ, ω`, and ωη and select those that result in the best labeling of

the selected 1/4 of the training data, according to the ground truth. Next, we compute the

joint labeling for all the pairs of test shapes. Some of these pairs of test shapes are shown

in Figure 3.5.

Firstly, we see in Figure 3.5 (a)-(e) that our method is able to establish meaningful

correspondences for queries that are also handled by content-driven methods. In addition to

that, and more importantly, we also observe that the prior knowledge is effective in matching

shapes whose parts differ by significant geometric changes. Examples include matching

different types of candelabra in (f)-(j), different lights and bases in (k)-(o), variations in the

recipients and bases in (p)-(t), and seat rests with different railings in (u)-(x). Our method

is also able to handle topological variations, as the different lamp supports in (k)-(m), and
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variations in chair legs as in (u) and (y). Finally, our method is also successful in matching

shapes with different numbers of parts, such as the multiple wax candles in (h)-(j), and the

different numbers of handles in (r) and (s). Notice that the presence of additional parts, such

as the handles in (p) and (q), do not affect the accuracy of the results. Figure 3.5 also shows

cases where our method did not provide the most accurate correspondence, mainly due to

the lack of sufficient prior knowledge and limitations in the shape descriptors. Examples

are the missed candle flame in (j), the extra handle added to the top of the vase in (t), and

the rest and arms of the chair in (y) that were not properly separated from the seat.

In cases of insufficient knowledge, an accurate correspondence can still be obtained via

joint labeling when there is enough similarity between parts of the shapes. Such examples

can be seen in Figure 3.6. In (a), the correspondence is computed based purely on the

knowledge, i.e., only the unary and intra-mesh terms enter the labeling. Part of the support

of the candelabrum on the right is mistakenly labeled as a handle and, therefore, does not

have a corresponding part on the shape on the left. However, when the content of the

shapes is also taken into consideration (i.e., the inter-mesh term is added), we obtain the

more accurate correspondence in (b), since the descriptors of the thin structures on both

shapes are similar. We observe an analogous situation in (c), where the seat of the chair

is mistakenly labeled as a backrest, due to the geometric distortion present in the model.

In (d), the joint labeling is also able to obtain the correct part correspondence, guided by

the similarity of the seats. We point out that both knowledge and content are essential for

finding the correct correspondence in these cases.

In Table 3.1, we show a statistical evaluation of the correspondence results we obtained.

For each shape class, we performed 5 experiments in the same manner as described before

(60% training shapes and 40% test shapes). We average the accuracy over all the pairs

of test shapes in each experiment. The accuracy for a single pair of shapes S1 and S2 is

calculated with a function that measures the quality of the correspondence between the two

shapes. It is given by

Accuracy(l, t) =

∑
i∈S1

∑
j∈S2 ai aj |δ(li = lj) + δ(ti = tj)− 1|∑

i∈S1
∑

j∈S2 ai aj
, (3.5)

where ai is the area of face i, l is the labeling of the shapes returned by our method, t is the

ground-truth labeling, and δ(x = y) is 1 only if x = y. This quantity measures how many

of the faces that have the same label in the ground-truth are also found in corresponding

segments, independently of which labels were assigned to the faces. It also captures the
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Table 3.1: Statistical evaluation of the correspondence results.

Class Corr.

Candelabra 88%
Chairs 87%
Lamps 97%
Vases 86%

Class Corr.

Airplanes 92%
Ants 96%
Birds 86%
Fish 92%

Class Corr.

Four-legged 82%
Hands 80%
Humans 90%
Octopuses 96%

notion that two faces that do not possess the same label in the ground-truth should not be

assigned to corresponding segments. The weighting is chosen so that the correspondence

accuracy is given in terms of the total shape area.

We can see that the average accuracy for the first dataset (classes of man-made shapes

with significant variability) is 90%, while for the second dataset (organic shapes), it is 89%.

We attribute the failure cases to a few factors. Firstly, shapes that have parts with no

counterparts in the prior knowledge can occur in the test set. An example is the chair

shown before in Figure 3.5 (y), contrasted to the other shapes in the dataset (Figure 3.2).

Secondly, the descriptors may not be sufficient to distinguish certain parts of the shapes,

such as the different fingers in the hands. Finally, a small fraction of the errors is also due to

imperfections in the labeling, such as dislocated borders which happen when the inter-mesh

and intra-mesh terms compete in the optimization. Such cases can be adjusted, for example,

with post-processing that displaces the borders to concave regions [Shamir 2008].

When comparing the statistical results of the approach using only prior knowledge (unary

and intra-mesh terms) to that of the joint labeling (incorporating the inter-mesh term), we

find that both approaches are comparable, with a deviation of ±5% in the accuracies. The

joint labeling does not lead to a significant increase in the accuracies since the inter-mesh

term is primarily designed to handle cases such as those in Figure 3.6, where the content

aids in improving the correspondence for certain portions of the shapes that do not appear

in the knowledge. Such cases are not very frequent in the datasets, but could be prevalent

in certain situations (e.g., a collection of shapes modeled by reusing existing parts).

Comparison to classical approach. We compare our approach with two state-of-the-

art content-driven methods that are considered to be comparatively competitive at han-

dling general deformation between models. In Figure 3.7, we show a comparison with the

deformation-driven approach of Zhang et al. [Zhang et al. 2008], which finds a matching
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Figure 3.7: Comparison to content-driven correspondence approach on geometrically dissim-
ilar models. (a) and (c): results from the deformation-driven method of Zhang et al. 2008,
including the induced deformation and the matching feature points. (b) and (d): results
from our joint labeling method.

between sparse sets of feature points. As we can see, when the corresponding parts differ

sufficiently in their scales or geometric properties, this method fails as it is still formulated in

terms of matching the geometry of the shapes. Notice that these two shapes are incorrectly

matched not only because the method tries to find the best non-rigid alignment between

the two shapes; as can be seen, it is also difficult to extract coherent feature points on these

two shapes, and the shape descriptors of corresponding points are dissimilar due to the

different part composition of the shapes (especially if the descriptors capture the context

or neighborhoods of the points). Our method on the other hand finds a correspondence

between two shapes by using knowledge as the medium; it succeeds since the resulting cor-

respondences have sufficient support from the training set. We also compared our method

to that of Shapira et al. [2009]. However, when presented with the query examples shown
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in Figure 3.7, the partitioning of the shapes obtained with this method differed significantly

from one shape to the other, preventing the method from establishing a meaningful corre-

spondence. Other recent works on content-driven shape correspondence, e.g., [Lipman and

Funkhouser 2009; Au et al. 2010], are not expected to succeed on these examples either

as they are also based on geometric similarities between matched features, an approximate

isometry criterion, or a combination of both.

Timing. The most expensive procedure in the knowledge-driven framework is classifier

learning. For a training set ranging from 20 to 30 models with average size of 30K triangles,

this step can take 10 hours in an AMD Opteron 1GHz processor. Then, applying the

classifiers on two queries and performing the joint labeling runs in the order of minutes.

3.6 Discussion

The key idea presented in this chapter is that challenging cases of 3D shape correspondence

can be solved effectively by incorporating prior knowledge. At the same time, considering

the direct geometric similarity between the query shapes is still advantageous, particularly

when the knowledge base is incomplete or leads to indeterminate recognition results. Thus,

we introduced an effective approach via joint labeling, which combines knowledge-driven

probabilistic semantic labeling with content-driven analysis. The content analysis is incor-

porated in the form of assignments between similar local regions of the shapes. We demon-

strated significant improvement on shape correspondence results over classical approaches,

particularly when the query shapes exhibit large geometric or topological variations.

Limitations. While the idea of joint labeling is quite general, the content analysis com-

ponent of our approach is still fairly primitive in terms of the feature similarity employed.

Also, there still remain failure cases as shown in Figure 3.5. We believe that this can be

attributed to our current reliance on low-level shape descriptors in the content-driven anal-

ysis as well as in the recognition step, where a query shape is compared to shapes in the

training set. More advanced geometric analysis tools incorporating criteria such as shape

symmetry [Golovinskiy et al. 2007b] or style-content separation [Xu et al. 2010] may lead

to improvements.
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Future directions. It would be interesting to explore the possibility of avoiding the need

for pre-classifying the training shapes. Either we could integrate the recognition of the

training parts with the recognition of the shapes, or we could avoid it altogether by devel-

oping generic labels and classifiers that capture the general notion of handle and base, rather

than a cup handle or a lamp base, for example. In hindsight, what ultimately makes the

correspondence approach effective under challenging circumstances, particularly for many

classes of man-made shapes, is the ability to learn the functionality of the parts. Recogniz-

ing functionality is clearly a difficult problem. It calls for intermediate-level descriptors that

are able to capture properties such as flatness, concavity, and symmetry that are required in

order to achieve a certain functionality. Learning functionalities of parts for shape analysis

is certainly an interesting direction for future work.



Chapter 4

Unsupervised co-segmentation of a

set of shapes

As motivated in Chapters 2 and 3, high-level analysis of 3D shapes has received increased

attention in recent works. There are methods that infer high-level knowledge about a

given shape from its geometry [Fu et al. 2008; Mitra et al. 2010]. There are also works

which utilize semantic knowledge to segment a given shape [Simari et al. 2009; Kalogerakis

et al. 2010] or establish a correspondence between a pair of shapes [van Kaick et al. 2011b]

(described in Chapter 3). The problem of analyzing a set of shapes as a whole has received

less attention [Golovinskiy and Funkhouser 2009; Xu et al. 2010]. The interesting question

about co-analysis of a set of shapes is whether more knowledge can be inferred from the set

rather than from an individual or pairs of shapes alone. For example, can we better segment

the shapes given as a set rather than as individuals? While it seems obvious that a set of

shapes contains more knowledge than each individual, it remains a challenge, particularly in

the unsupervised setting, to extract appropriate knowledge inherent to the set to facilitate

fundamental analysis tasks such as segmentation and correspondence.

In this chapter, we investigate the problem of unsupervised co-segmentation of a set

of shapes, where our goal is to reveal the semantic shape parts and establish their corre-

spondence across the set. In our setting, the input shapes belong to a common family,

that is, loosely speaking, they share the same functionality and general form. However,

their corresponding parts are not necessarily similar; see Figure 4.1. The co-segmentation

is unsupervised in that there is no training set which provides any knowledge to assist the

45
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Figure 4.1: Unsupervised co-segmentation of a highly varied set of container objects using
our algorithm. Corresponding parts differ in their shape, pose, position, and cardinality.

analysis, as opposed to works such as [Kalogerakis et al. 2010] and the work described in

Chapter 3, where the ability to properly match geometrically dissimilar parts is critically

supported by the existence of relevant prior knowledge in the training set. It should also be

noted that the analyses performed in the above works do not represent a co-analysis of a

set . The work in this chapter can be seen to complement these knowledge-driven approaches

with knowledge extracted from a target set.

The setting and objective of our analysis share similarities with the recent works of

Golovinskiy and Funkhouser [2009] and Xu et al. [2010], which both compute an unsuper-

vised co-segmentation of a set of shapes. The method in [Golovinskiy and Funkhouser 2009]

pre-aligns the set of shapes and then combines criteria for intra-shape segmentation and

inter-shape proximity to cluster mesh faces across the set. Xu et al. [2010] apply a similar

co-segmentation scheme with the focus being to remove non-homogeneous part scales from
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the analysis equation. In our setting, the set consists of shapes with a variety of non-rigid,

geometric, and even topological differences; see Figure 4.1. The dissimilarity between cor-

responding parts is so pronounced that simply spatially aligning the shapes is not effective.

Towards this end, our approach allows correspondence to be inferred indirectly through

third parties in the set and the analysis is performed in a descriptor space; see Figure 4.2.

Specifically, we treat the unsupervised co-segmentation of a set of shapes as a clustering

problem. The clustering is performed in a space of shape descriptors rather than on the

spatial coordinates of the shapes themselves. This allows the handling of corresponding parts

which may differ in pose, location, and even cardinality. Obviously, such variations would

challenge any technique based on spatial alignment or direct clustering of shape geometry,

e.g., [Golovinskiy and Funkhouser 2009], as shown in Figure 4.3. In addition, the descriptor

clustering approach allows us to make use of a key enabling feature of the input set, namely,

third-party connections. Even if two shapes possess parts that are significantly dissimilar,

we can still establish a link between them if there are other parts in the set (third parties)

that create such a connection, resulting in a successful co-segmentation. Figure 4.4 provides

a concrete example. In contrast, spatial-domain alignment and clustering alone is unable to

fully utilize the existence of third-party connections.

When performing the analysis in a descriptor space, the clusters that characterize the

different shape parts do not necessarily take on an isotropic form; they may be elongated so

that two corresponding parts which should belong to the same cluster are relatively far apart,

e.g., see Figure 4.2. To this end, we perform spectral clustering with the aid of diffusion

maps, which take the non-linear and anisotropic structures in the data and unfold them

into a new space, so that the similarities between data points are translated into geometric

proximity. A simple clustering algorithm can then succeed in the embedded space by simply

considering Euclidean distances.

We show that our unsupervised approach is able to co-segment families of shapes with

significant geometric variations, achieving results that are competitive to supervised ap-

proaches [Kalogerakis et al. 2010; van Kaick et al. 2011b].

4.1 Related work

Shape segmentation [Shamir 2008] and correspondence [van Kaick et al. 2011a] are two

of the most fundamental problems in high-level shape analysis. To segment a shape into
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Figure 4.2: Challenge of unsupervised co-segmentation amid significant geometric variation
(left) and effectiveness of descriptor-space spectral clustering (right). In the original descrip-
tor space (left), two segments in the same semantic class (two pink handles) can be far apart,
while unrelated segments (a pink handle and a yellow neck) can be closer. It is challenging
to resolve this without any knowledge of the semantic classes. However, the handles are
drawn close in the diffusion map (right) through third-party connections. The third parties,
which are all the segments lying in-between the two handles, establish several paths between
the two segments, given by the high similarities between pairs of points. These multiple
paths create a strong connection between the two handles. Note that the two plots are 2D
embeddings of the descriptor space, obtained with multidimensional scaling.
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(a) (b)

Figure 4.3: Co-segmentation in descriptor space (left) vs. in spatial domain [Golovinskiy
and Funkhouser 2009] (right). The use of descriptor-space clustering enables our method
to handle variations in part placement and cardinality (see the handles). Co-segmentation
results via spatial alignment are less meaningful.

meaningful parts, and to compare or find a correspondence between these parts, we need to

understand the high-level structure of the shapes. Much effort has been devoted to solving

these problems, however, the endeavor has been mainly focused on analyzing only one shape

or a pair of shapes at a time.

The question that naturally follows is whether we can benefit from simultaneously ana-

lyzing a set of shapes from the same family, since intuitively more information is then avail-

able. In the image domain, positive results for co-segmentation have been demonstrated,

e.g., by using a generative model to match the appearance histogram of two images and

enforce spatial coherency [Rother et al. 2006], or by making use of discriminative clustering,

which seeks maximal separation of the classes [Joulin et al. 2010].

In the case of shapes, a first indication of the advantage of set analysis appears in the

works of Kalogerakis et al. [2010] and van Kaick et al. [2011b] (described in Chapter 3),

where the knowledge is represented in the form of discriminative part models which are

learned from a set of manually segmented and labeled shapes. The models can then be used

to segment and label an unknown shape from the same class [Kalogerakis et al. 2010], or to

establish a part correspondence between a pair of shapes [van Kaick et al. 2011b]. Although

the knowledge is defined in terms of a set of shapes, it is still manually created and not

automatically inferred from the set.

The works of Golovinskiy et al. [2009] and Xu et al. [2010] take a concrete step to-

wards co-analysis of shapes and propose methods that infer knowledge from the set alone.

In [Golovinskiy and Funkhouser 2009], the co-segmentation is posed as a graph clustering

problem. In this graph, each node corresponds to a face in one of the meshes, and the edges
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(a) (b) (c)

Figure 4.4: The power of third-party connections. When presented with a set containing only
two rather dissimilar shapes (a), our co-segmentation scheme returns a less-than-satisfactory
result. However, when the set is augmented with the two “in-between” shapes (b), they
serve as third-parties which help establish a link between the dissimilar parts, providing a
meaningful co-segmentation of the set. In contrast, a method based on spatial alignment
and clustering [Golovinskiy and Funkhouser 2009] does not benefit from this property and
leads to a less meaningful co-segmentation (c).

come from: (1) the individual connectivity of the shapes, and (2) from a set of correspon-

dence edges connecting faces that are geometrically close. The correspondence edges are

added after the shapes were aligned to each other. The clustering of this graph naturally

provides a per-shape segmentation that is coherent across the group; the method is however

limited to shapes that can be spatially aligned; see Figures 4.3 and 4.4.

To overcome limitations of global alignment and scaling [Kazhdan et al. 2004; Golovin-

skiy and Funkhouser 2009], Xu et al. [2010] classify the input shapes into different styles

according to the scales of the shape parts. Co-segmentation based on graph clustering is then

applied only to the shapes within each style cluster, and is modified to take into considera-

tion the parts and derive the correspondence edges from part similarity. This modification

allows the co-analysis to succeed for a larger variety of shapes, especially those whose parts

differ by non-homogeneous part scaling.

We are interested in co-segmenting shapes with more variability than those in [Golovin-

skiy and Funkhouser 2009; Xu et al. 2010], such that corresponding parts can be rather

dissimilar geometrically as well as topologically. Therefore, we deviate from the scheme

of spatial alignment or clustering the shape parts in the spatial domain where the shapes

reside. Instead, we automatically derive statistical models that describe the different parts

of the shapes in a space of shape descriptors and utilize spectral clustering to account for
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Figure 4.5: Overview of the steps in our co-analysis. (a) An individual segmentation is
computed for each shape. (b) The segments from all the shapes are embedded into a common
space by using diffusion maps based on a similarity matrix, where darker colors in the matrix
entries indicate higher similarities. (c) The segments are clustered in the embedded space.
(d) A statistical model is created to describe each cluster. (e) The statistical model is used
to label the shapes and obtain the final co-segmentation of the set.

clusters of arbitrary shapes.

In an independent work, Huang et al. [2011] describe an unsupervised algorithm that

jointly segments shapes in a heterogeneous shape library, obtaining results comparable to

supervised approaches on a benchmark test. However, unlike our approach, this technique

does not guarantee that the segmentations of all shapes within a shape class are consistent,

that is, parts that share the same semantic meaning do not necessarily carry the same label.

There has been a large body of works in geometry processing using spectral meth-

ods [Zhang et al. 2010]. Spectral clustering via diffusion maps is also not new. The mesh

segmentation work of de Goes et al. [2008] specifically applies the diffusion distance, as we

do in our work. All these solutions exploit special properties of the spectral embedding.
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However, the computed embeddings have always been a transformation from the spatial

coordinates of individual input shapes. Our work computes spectral embeddings of shape

descriptors. The descriptors of all the shapes in the set take part in the embedding, enabling

us to perform a co-analysis.

4.2 Overview

Our co-analysis method takes as input a set of meshes from a given family and computes

their co-segmentation and labeling. The co-analysis also provides a correspondence among

the segments of any pair or group of shapes in the set, since the segments corresponding

to the same part class will possess a common label. The label does not necessarily carry

a semantic meaning, but serves more as a part index. For each family of shapes, the user

also provides the maximum number of labels L that should be recovered from the set.

This number loosely corresponds to the number of different kinds of semantic parts that

constitute the shapes, e.g., L = 4, for a set of vases that can have a base, body, handle, and

neck. Note that some types of parts can repeat or be omitted on the shapes, e.g., there can

exist vases with multiple handles and vases without a base.

To carry out the co-analysis, we start with a per-object segmentation of each shape in

the input set. Then we extract shape descriptors for the initial sets of segments. Next,

based on the descriptors, we cluster the segments using diffusion maps. Finally, we build

a statistical model for each cluster, which is used to obtain the final co-segmentation and

labeling of the shapes in the set. We describe these steps as follows (see Figure 4.5).

Per-object segmentation. The first step in the co-analysis is to obtain an individual

segmentation for each shape in the input set. We achieve this by grouping the mesh faces

with mean-shift clustering based on shape descriptors defined for the faces, although any

reasonable alternative can be used here. More details are given in Section 4.3. The outcome

of this procedure is a set of candidate segments per shape. The purpose of the per-object

segmentation is to facilitate the co-analysis, since we are interested in analyzing shape parts,

rather than lower-level primitives. However, notice that the final co-segmentation given by

our algorithm is a refined labeling performed at the face level (Section 4.5), which allows us

to correct imperfections that appear in the per-object segmentation.



CHAPTER 4. UNSUPERVISED CO-SEGMENTATION OF A SET OF SHAPES 53

Figure 4.6: Result of the co-segmentation refinement (bottom) applied on an initial co-
segmentation (top). Notice how boundaries are displaced to better locations (candles) and
some mislabeled segments receive the correct label after the refinement (chairs). The co-
segmentation is performed independently for each class.

Descriptor-space spectral clustering. All the candidate segments produced by the per-

object segmentation are embedded into a common space via diffusion maps. The embedding

translates the similarity between segments into spatial proximity, so that a clustering method

based on Euclidean distance will be able to find meaningful clusters in this space; see

Figure 4.2 for an example. To define the embedding, an affinity matrix is constructed

from the similarities between pairs of segments. The similarities are given by the distance

between descriptors defined at the segment level. The embedding is then given by the

first few scaled eigenvectors of the affinity matrix. Note that the embedding is constructed

from the similarities among all the segments in the set. This implies that, even if two

corresponding parts are far apart in the original descriptor space, they may end up close-

by in the embedding if other parts in the set (third parties) imply their correspondence

by transitivity. We obtain an initial co-segmentation by clustering the segments in the

embedded space. All the segments in a single cluster potentially represent a certain class of

parts, e.g., base, body, handle, or neck of a vase. This step is carried out with a hierarchical
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clustering scheme. We elaborate on descriptor-space clustering in Section 4.4.

Statistical model and refined co-segmentation. A statistical model is then built to

describe each cluster of parts and used to label the shapes. The advantage of this final step of

the method is that it allows us to correct errors that appear in the initial segmentation, since

now we perform a more detailed labeling of the shapes (Figure 4.6). More specifically, the

statistical model is defined in terms of Gaussian models learned from the shape descriptors.

We derive the probability of labeling each face with a given class by how well the descriptors

of the face fit the part model. Next, we obtain the best segmentation for each shape by

applying graph cuts labeling based on these probabilities. The final result is a refined co-

segmentation and coherent labeling of all the shapes in the set. More details on this step of

the algorithm are given in Section 4.5.

4.3 Descriptors and per-object segmentation

Shape descriptor extraction. We normalize the shapes for overall scale, and compute a

set of shape descriptors that are used in the different steps of the co-analysis. The algorithm

works with faces and segments (a group of connected faces). Thus, we compute descriptors

both at the face-level and at the segment-level. First, we obtain an upright orientation of

each shape [Fu et al. 2008] and define a subset of the face-level descriptors based on the

reoriented shapes. More specifically, we record for each face, the geodesic distance from the

base of the shape to the face, and the angle between the normal of the face and the upright

orientation vector. Finally, we also make use of the shape diameter function [Shapira et al.

2009], which gives an estimate of the thickness of the shape at the face.

For the segment-level descriptors, we compute histograms that capture the distribution

of each face-level descriptor for all the faces in the segment. For a segment si and the

face-level descriptor d, we denote the histogram as hdi . We also include two descriptors only

defined at the segment level. ai is the segment area normalized by the total shape area.

gi is a vector of three components that describes the overall geometry of the segment. We

have gi = [γl γp γs], where

γl =
λ1 − λ2

λ1 + λ2 + λ3
, γp =

2(λ2 − λ3)

λ1 + λ2 + λ3
, and (4.1)

γs =
3λ3

λ1 + λ2 + λ3
, with λ1 ≥ λ2 ≥ λ3 ≥ 0. (4.2)
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These terms give an indication of how linear (cigar-shaped), planar and spherical the shape

of the segment is. λ1, λ2, and λ3 are the three eigenvalues obtained when applying principal

component analysis to all the vertices that are part of the segment.

Per-object segmentation. Using the shape descriptors, we compute a per-object seg-

mentation for each shape in the set. Although any reasonable segmentation algorithm can

be used for this step, we opted to use the mean-shift algorithm [Comaniciu and Meer 2002],

where we cluster the mesh faces into larger segments. Mean-shift operates by finding the

modes (local maxima of density or cluster centers) of points in feature space. The advantage

of using mean-shift lies in its non-parametric nature, i.e., the number of clusters does not

have to be known in advance. Instead, the algorithm requires an estimation of the clustering

bandwidth parameter, which is the radius of support around the neighborhood of a point

used to compute the point’s mean. However, the bandwidth can be typically estimated

from the data, e.g., as done in shape analysis [Shamir et al. 2006]. Following a similar

procedure, we manually fix the bandwidth in our experiments to a percentage of the range

of each descriptor. The actual distance measure used for the clustering is derived from the

descriptors, but defined in terms of diffusion distances (Section 4.4). Finally, disconnected

clusters are broken into separate segments according to their connectivity.

The output of this step is a set of candidate segments for each object. Notice that

the result can constitute an over-segmentation of the shapes, i.e., a semantic part might be

composed of more than one segment. However, our goal here is to obtain candidate segments

as suggested by the shape descriptors. These segments will be utilized in the co-analysis of

the set, which will then provide a refined segmentation and coherent labeling of the shapes.

4.4 Descriptor-space spectral clustering

We recall that one of our goals in the co-analysis is to extract information on what types

of parts compose the shapes in the set. With this objective in mind, we take the segments

computed individually for each shape (as described in the previous section) and cluster

them into groups of similar segments. Next, we derive a statistical model for each cluster

to represent each type of part that appears in the set. More details are given in Section 4.5.

However, it is important to notice that the objects that we consider can have a large

amount of variability. Thus, a simple clustering algorithm will not group the segments into
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the proper classes, since the segments are non-uniformly distributed in descriptor space. The

shape of the clusters can be highly anisotropic or even non-linear. To overcome this difficulty,

we first embed the segments into a new space with the aid of diffusion maps, where the

Euclidean distance between two segments will better reflect their similarity. Then, clustering

in the embedding will provide a more accurate grouping of segments. The usefulness of

applying the diffusion maps for co-segmentation is illustrated in Figure 4.2.

Embedding computation. We start with the set of segments obtained from all the

shapes, S = {s1, . . . , sn}. The dissimilarity between two segments si and sj is given by

D(si, sj) =

√√√√ nd∑
d=1

EMD2(hdi , h
d
j ) + |ai − aj |2 + ‖gi − gj‖22, (4.3)

where hdi , ai, and gi are the segment-level descriptors discussed in Section 4.3 and nd = 3.

EMD is the earth-mover’s distance, a common measure of the dissimilarity between two

probability distributions, since the hdi are histograms.

Next, we construct an affinity matrix W , with

Wi,j = exp(−D(si, sj)/2σ
2). (4.4)

Note that, in our method, we obtain the pairwise affinities by applying a Gaussian kernel to

the segment dissimilarities, but other choices for the kernel are also possible [Nadler et al.

2005]. By defining a diagonal matrix Di,i =
∑

jWi,j , we obtain the normalized M = D−1W .

M can be seen as a stochastic matrix, with Mi,j being the probability of a transition from

segment si to segment sj in one time step. The transition probability can be interpreted as

the strength of the connection between the two segments.

Finally, we compute the eigendecomposition of the matrix M , obtaining eigenvalues

λ0 = 1 > λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ 0 and eigenvectors ψ0, . . . , ψn−1 [Nadler et al. 2005;

Coifman and Lafon 2006]. The diffusion map at time t is then given by

Ψt(s) = (λt1ψ1(s), . . . , λtn−1ψn−1(s)), (4.5)

where Ψt(s) defines the coordinates of segment s in the embedding or map. The eigenvector

ψ0 is constant and is thus discarded (according to the Perron-Frobenius theorem, every

stochastic matrix has such a vector if all row sums are equal to one).
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Interpretation. The main result regarding diffusion maps is that the Euclidean distance

between two points x and y on the map is equal to the diffusion distance between the two

points [Nadler et al. 2005]. The diffusion distance is given by

D2
t (x, y) =

∑
z

(p(t, z|x)− p(t, z|y))2w(z), (4.6)

where p(t, z|x) is the probability of transition from x to z in t time steps, and w(z) weights

the local density at z, giving more weight to low density points. The larger the number

of short paths that exist between x and y, the more the distance will decrease, giving an

indication of how strongly the two points are connected. The time parameter t can be

varied to analyze the structure of the points at different scales [Coifman and Lafon 2006].

An alternative interpretation is to see the map as the state of a dynamic system after t steps

of a diffusion process have taken place.

Implementation. We compute the diffusion map using only the first three eigenvectors,

since the diffusion distance can be well approximated in this manner [Nadler et al. 2005].

Moreover, we select t = 3 for computing the embedding of all the segments and t = 5 for

the initial per-object segmentation (as described in Section 4.3).

Clustering. After obtaining the diffusion maps, we cluster the segments in the embedded

space with an agglomerative hierarchical algorithm. We start with each segment as an initial

cluster and, during the incremental construction of the hierarchy, we merge the current

pair of clusters with minimal distance. The distance between two clusters is given by the

Euclidean distance between their centroids. The final number of clusters is provided by the

user and corresponds approximately to the number of semantic parts that constitute the

shapes. The result of the clustering is a grouping of the segments into the potential classes

of parts that exist in the set.

4.5 Statistical model and co-segmentation

Statistical model. We now derive a statistical model for each class of parts. The models

are constructed from the clusters of segments, based on the shape descriptors.

For each cluster ci, we collect the descriptor values for all the faces of all the segments

in the cluster. Based on the observed values, we estimate a multi-dimensional Gaussian to
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model the class,

p(f |ci) = p(Df , µi,Σi) = C e−
1
2

(Df−µi)T Σ−1
i (Df−µi), (4.7)

where µi and Σi are the parameters that model the i-th class, Df are the descriptors of face

f , and C is the Gaussian’s normalization constant. The parameter dimensions are 3×1 and

3×3, respectively, as we use three face-level descriptors. The parameters are estimated with

a standard expectation-maximization approach. We observed that this scheme provides a

simple, yet effective, class model, e.g., as opposed to more complex models such as mixtures

of Gaussians.

Finally, the probability that an unknown face f belongs to class ci is given by Bayes’

Theorem,

p(ci|f) ∝ p(f |ci)p(ci), (4.8)

where the prior p(ci) is taken as the sum of the area of the segments that are part of cluster

ci, normalized by the total area of all segments in the set.

Refined co-segmentation. The statistical model for each class is used to perform the

final co-segmentation. We pose the co-segmentation as a labeling optimization which is

solved individually for each shape. The group information enters the optimization through

the data term of the labeling energy.

Given a mesh, we define the graph G = {V,E}, where the nodes V are given by the

faces of the mesh and an arc {u, v} ∈ E if the faces u and v are neighbors on the mesh. The

optimization is then posed as finding the labeling l that minimizes the energy

E(l) =
∑
u∈V
Edata(u, lu) +

∑
uv∈E

Esmooth(u, v, lu, lv) , (4.9)

where lu and lv are the labels assigned to nodes u and v, respectively, and Edata and Esmooth

are the data and smoothness energy terms.

The data term is given by

Edata(u, lu) = −ωdata log(p(clu |u)), (4.10)

where p(clu |u) is the probability that node u is part of cluster clu , given by the statistical

model of cluster clu , and ωdata is a constant that regulates the influence of the data term

in the total energy. The cost of assigning a specific label to the node increases according to

how unlikely it is that the face belongs to the corresponding class.
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Similarly to [Shapira et al. 2009], the smoothness term is defined as

Esmooth(u, v, lu, lv) =

{
0, if lu = lv

− log(θuv/π) `uv, otherwise,
(4.11)

where `uv is the length of the edge between the faces corresponding to u and v, and θuv is

the dihedral angle between the two faces.

To obtain the labeling that minimizes the energy E , we use graph cuts optimiza-

tion [Boykov et al. 2001]. More specifically, the multi-label α-expansion algorithm is utilized,

since the smoothness term defines a metric in the space of labels.

The result of the labeling optimization is a co-segmentation of the set, since the labeling

energy is based on the statistical models obtained from the co-analysis. Thus, in addition

to an individual segmentation for each shape, we also obtain a correspondence among the

segments, so that two segments on two different shapes correspond to each other if they

possess the same label. Notice also that this step allows us to correct errors that appear

in the initial co-segmentation, such as displaced boundaries and mislabeled segments. An

example of the refinement is shown in Figure 4.6.

4.6 Experimental Results

In this section, we evaluate our unsupervised co-segmentation method and present quali-

tative and quantitative results. We also compare our method with the state-of-the-art in

co-segmentation and with a supervised approach. Since our goal in this work is to present

a fully unsupervised approach, all the results were obtained with a fixed set of parameters.

Datasets and methodology. We use seven classes of shapes in our experiments: cande-

labra, chairs, four-legged animals, goblets, guitars, lamps, and vases. The sets of man-made

shapes are composed of objects that possess significant variability, i.e., a common type of

part can appear with different topologies and geometries across the set, and it can be absent

or appear multiple times on a shape. We modeled two new classes of man-made shapes for

this work, while the remaining classes appeared in [van Kaick et al. 2011b] (Chapter 3).

We manually segmented and labeled each shape, according to a specific labeling scheme for

each class. This provides a ground-truth label for each face. We also selected one set of

organic shapes (four-legged animals) from the Princeton Segmentation Benchmark [Chen

et al. 2009], and use the ground-truth labeling created by Kalogerakis et al. [2010]. Note



CHAPTER 4. UNSUPERVISED CO-SEGMENTATION OF A SET OF SHAPES 60

that the ground truth is only used for a statistical evaluation and is not utilized by our

algorithm. The co-segmentation is performed separately for each class.

Co-segmentation and labeling. Visual results of our co-segmentation are shown in

Figure 4.7. Notice how, despite the great variability in the shape parts, our co-analysis

is able to extract the common parts in the set and yield a coherent labeling. We point

out illustrative examples. For candelabra, the method is able to identify the flames and

wax candles of different sizes across the set, and separate them from the bases and holders,

which appear in rich varieties. Also, the multiplicity of the flames and candles does not

pose a problem to the method. Moreover, the lamps and goblets are successfully segmented

and labeled into their three constituent parts, even though the geometry or thickness of the

corresponding parts varies. Notice also the different topologies of the lamp supports that

are detected. Chairs are also co-segmented into their main constituent parts, and we obtain

a correspondence between legs of different topologies, including star-shaped legs and legs

with railings. In the vases, handles of different sizes and shapes are identified, as well as

bodies with very different geometries, including spherical, cylindrical, or flat bodies. We

also see how the various types of guitar bodies are separated from the necks. Finally, we

observe that the co-analysis is also successful when applied to a set of organic shapes with

significant variability. Heads with short or long necks are correctly labeled, as well as the

various animal bodies and legs.

We also notice a few shortcomings in the results. The small handles that appear on

the candelabra are not properly separated from the holders, and similarly the small guitar

headstocks are not separated from the fretboards. The cylindrical sections in the chair

backrests are assigned to the same clusters as the seats. And, the animal tails are fused

with the segments that represent the bodies, while some of the ears and horns are fused with

the heads and necks. These problems appear due to imperfections in the clustering, which

assigns an incorrect label to these parts. Another shortcoming includes the chair made up

of thin wires on the front row, which is mislabeled. We attribute the problem to the lack of

information available to the co-segmentation: this shape has unique parts that do not have

similar counterparts in the set. This is an intrinsic limitation of our approach.

To assess the quality of the results in a quantitative manner, we show a statistical

evaluation in Table 4.1. The first column indicates the number of shapes in the class, the

second column corresponds to the labeling accuracy of the initial co-segmentation, and the
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Figure 4.7: Results of our co-segmentation on a variety of shapes. Corresponding segments
in each class are shown with the same color. Notice how the segmentation and labeling is
coherent for many of the parts in each set. The results for all the sets were obtained with
the same parameters and shape descriptors. Labeling accuracy statistics for each class are
shown in Table 4.1.



CHAPTER 4. UNSUPERVISED CO-SEGMENTATION OF A SET OF SHAPES 62

Table 4.1: Average co-analysis labeling accuracy.

Class Num. shapes Initial lab. Refined lab.

Candelabra 28 73.0 84.4

Chairs 20 78.6 84.8

Four-legged 20 75.9 77.3

Goblets 12 98.0 98.2

Guitars 44 86.4 87.2

Lamps 20 93.8 94.3

Vases 28 84.5 87.4

third column shows the labeling accuracy after the refinement. Each entry is the average

accuracy for all the shapes in the class. The accuracy for a single shape is given by

Accuracy(l, t) =

∑
i ai δ(li = ti)∑

i ai
, (4.12)

where ai is the area of face i, l is the labeling returned by the co-segmentation, t is the

ground-truth labeling, and δ(x = y) is 1 only if x = y. This measure captures the amount of

area of the shape that is labeled correctly by the co-segmentation [Kalogerakis et al. 2010].

Since our co-segmentation does not return labels associated to specific semantic classes,

before computing the accuracy we find the best one-to-one matching between our labels

and the ground-truth labels. The matching is used coherently for the whole set.

The average labeling accuracy for all the classes is about 84% for the initial co-

segmentation, and 88% for the refined labeling. We notice that, with the exception of

one class, the accuracies are at least 84% or higher. We attribute the 10% accuracy gap be-

tween certain classes, e.g., candelabra vs. lamps, to the greater part variability that appears

on the candelabra, chairs, and vases. Notice also a 4% improvement from the initial to the

refined co-segmentation. This difference arises as a result of the boundary refinement, where

parts that were oversegmented or wrongly labeled in the initial co-segmentation are properly

labeled and have their segmentation refined with the statistical models (Figure 4.6).

Effect of the set. In Figure 4.8, we demonstrate the power of the set by evaluating how

the co-segmentation accuracy improves when the set is enriched. For each class, we start

with a pair of shapes and incrementally increase the set size by adding one shape at a time
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Figure 4.8: The power of the set demonstrated for all the classes. As the number of shapes
in the set increases (x-axis), the accuracy of the co-segmentation (y-axis) shows a clear trend
of improvement.

to the set. To isolate the effect of the graph cuts refinement, we perform only the initial

labeling for each subset and report the labeling accuracy according to (4.12). The x-axis

denotes the subset size, while the y-axis is the accuracy for processing the subset.

For all the classes, the general trend of the curves clearly demonstrates that the

co-segmentation accuracy is improved as more shapes are added to the set. The non-

monotonicity of the accuracy plots occurs when a difficult or unique exemplar is added to

the set. The accuracy is then recovered or improved once additional shapes providing more

information are added to the set. Note that the curves can change according to the specific

order in which the shapes are added to the set. We particularly chose orderings that better

reveal the monotonic behavior of the algorithm. Random orderings lead to more points that

break the monotonicity, however, the overall upward trend of the curves remains the same.
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Comparison to the state-of-the-art. Figure 4.9 shows the results obtained by applying

the method of Golovinskiy and Funkhouser [2009] on the same sets of shapes1. Notice that

this method obtains satisfactory results for sets that can be properly aligned with similarity

transformations, e.g., chairs. However, when the shapes possess significant variability in

topology (vases and candelabra) or pose (four-legged animals), the segmentations either

miss important parts of the shapes (the animal heads), or are not meaningful at all (as

in the vases and candelabra). This is due to the fact that this method derives the relation

between the parts of different shapes from their proximity after alignment. It is not possible,

even after a perfect alignment, to derive a correspondence between the parts of some of the

vases just from proximity. Our method, on the other hand, is more robust in this regard,

since it makes use of shape descriptors to handle more shape variability, and derives the

inter-shape relations from third parties in the set.

Comparison to a supervised approach. We also compare our unsupervised co-

segmentation to the supervised approach of Kalogerakis et al. [2010]. The authors of this

approach kindly provided the results of applying their method on four sets that we use in

this work. In each experiment, 70% of the shapes in a set were randomly selected as training

data, while the remaining 30% were used as test shapes on which the labeling accuracy was

evaluated. These experiments were repeated 5 times for each class, and the results were av-

eraged. The accuracy for a single shape was also computed with the measure in (4.12). The

accuracies obtained are: 80.9%, 91.6%, 97.3%, and 96.0%, for candelabra, chairs, lamps,

and vases, respectively. Although a direct comparison of the accuracies of both approaches

does not represent a meticulous evaluation, due to the splitting of the dataset into train and

test sets with the supervised approach, we believe that in this manner we are nevertheless

capturing the accuracy of the supervised approach in an average case.

By comparing these numbers with Table 4.1, we see a difference of at most 10% between

the two approaches. We conclude that such close results demonstrate the high potential

of the unsupervised co-segmentation. Although the results of the supervised approach are

more accurate on average, we recall that it requires the preparation of a reasonably-sized

training set, since the shapes have to be manually segmented and labeled. Additionally, a

separate training set is necessary for each different class of shapes, and the approach only

extracts a labeling that follows the pattern of the training examples. If a different training

1The authors kindly provided their implementation to us.
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Figure 4.9: Comparison to the approach in [Golovinskiy and Funkhouser 2009]. In contrast
to our co-analysis results in Figure 4.7, we observe that this method provides good results for
sets of shapes that can be spatially aligned (chairs), but less meaningful co-segmentations
for shapes with great part variability (candelabra).
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set is given, the results can change considerably. The unsupervised approach, on the other

hand, derives its knowledge automatically from the set. Finally, we conjecture that the

accuracies for the unsupervised approach can possibly be increased with the enhancement

of certain components of the method, such as the shape descriptors and statistical models.

Performance. Our implementation is fairly efficient, executing in 10 minutes for a set

of 30 shapes in an AMD Opteron 2.4GHz with 8GB of memory. In contrast, supervised

approaches such as those in [Kalogerakis et al. 2010] and [van Kaick et al. 2011b] (Chapter 3)

can take on the order of hours for similarly-sized training sets and hardware configuration.

The faster performance of the unsupervised co-segmentation is mainly due to two aspects:

1. The supervised approaches involve classifier training with complex algorithms such as

boosting. 2. We perform most of the analysis at the segment-level, rather than face-level, a

natural approach to greatly reduce the complexity of the method.

4.7 Discussion

We presented a method for co-segmentation of a set of shapes via descriptor-space spectral

clustering. The question inherent to co-analysis is whether we can extract more information

by analyzing a set simultaneously, instead of analyzing only individual shapes or pairs of

shapes. Our investigation leads to an affirmative answer as we have shown that the set

makes it possible for semantically related parts that differ in geometry and even topology

to be linked via third-party connections. By performing the analysis in a descriptor space

and exploiting the power of spectral clustering, we are able to properly co-segment sets of

shapes exhibiting significant variability.

Ultimately, we would like to subject our co-segmentation approach to large-scale tests.

Existing benchmarks for shape segmentation do not quite serve the purpose however. The

Princeton Segmentation Benchmark (PSB) [Chen et al. 2009] consists of multiple segmen-

tations per shape that were created individually via automatic methods or manual efforts

without taking the sets into account, i.e., they are not necessarily consistent across each

shape class. While Kalogerakis et al. [2010] provide a ground-truth labeling of the PSB

data which is consistent across the sets, it is not obvious that this is the proper ground-

truth to compare to. The ground-truth is prepared to guide the supervised algorithm to

what the user desires to extract from the shapes. As Kalogerakis et al. clearly showed in
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their paper, if an alternative ground-truth is prepared, the algorithm extracts a different

segmentation. Hence a comparison to such a user-designed ground-truth is problematic.

The ideal ground-truth would reflect the part composition of the set as given by the geom-

etry of the shapes and the variability of the parts. The preparation of rigorous large-scale

tests for co-segmentation of sets requires significant effort and we leave that for future work.

Nevertheless, we evaluated our approach on a moderately-sized dataset with seven classes

of shapes, and compared the co-segmentation to one possible ground-truth prepared by a

human. We showed that the result is close to the user-designed segmentations, implying

that it does possess semantic meaning.

Limitations. The main limitation of our approach stems from the obvious fact that the

quality of the results is entirely dictated by the input set. It may be possible that there is

no link between two semantically related segments since the third parties that may establish

such a link are missing, e.g., the wired chair and peculiar vases in Figure 4.7 are unique

entities; there are no third parties that relate the parts of these shapes across the set. Also,

while related parts can be properly linked via the set, imperfect clustering results may cause

unrelated segments to be assigned to the same label, e.g., the small candelabra handles and

animal parts in Figure 4.7.

Moreover, the success of our approach is inherently tied to the quality or usefulness of the

shape descriptors. Firstly, one limitation of our current descriptors is that their computation

requires the input models to be manifold meshes. Secondly, and more importantly, the

dependence on shape descriptors leads to the difficult question of what information should

be extracted to provide sufficient knowledge about the shapes. Nevertheless, our approach

will naturally benefit from incorporating more sophisticated descriptors, e.g., of a structural

nature [Biasotti et al. 2008; Shapira et al. 2009]. Another point for practical improvement

is the incorporation of more advanced statistical models to represent the clusters of parts.

Future directions. Our current results do not yet surpass those of supervised approaches

that are supported by well-built training sets [Kalogerakis et al. 2010; van Kaick et al. 2011b].

However, our set-driven co-segmentation has the potential of outperforming a supervised

approach when the knowledge of the latter is insufficient. Perhaps more effective would

be a semi-supervised approach, where the user needs to provide only a reduced amount of

knowledge and the algorithm can maximally exploit the knowledge in the input set, or a

setting where the user only corrects the parts erroneously labeled so that the system actively
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learns and adapts the co-segmentation of the set.

The question of how much we can learn from a set is still open for further study, and

could lead to novel approaches that take advantage of group information in innovative ways.

Another direction for further research is to develop domain-specific shape descriptors, so that

the co-analysis can be specialized to specific classes, e.g., humanoid characters, creatures,

tools, or vehicles.



Chapter 5

Bilateral maps for partial matching

Feature analysis forms the basis of many shape analysis techniques, where feature points are

detected on the shapes and characterized by local shape descriptors. The descriptors are lo-

cal since they are used to represent the individual feature points, not to compare two shapes

as a whole. Important tasks such as segmentation [Shamir 2004], shape retrieval [Tangelder

and Veltkamp 2008], correspondence [van Kaick et al. 2011a], and symmetry detection [Mi-

tra et al. 2006; Xu et al. 2009b], can all be solved with the aid of local shape descriptors.

A variety of such descriptors have been proposed in the literature, where a point can be

represented either by a scalar property (e.g., curvature [Manay et al. 2006] or local vol-

ume [Shapira et al. 2009]), or more effectively by representing the context around the point,

as in the popular shape context descriptor [Belongie et al. 2002]. The latter is commonly

extended to 2D manifolds by laying out a concentric grid on the surface around a point and

then aggregating the geometric properties of points or faces that fall within each grid cell

or bin, e.g., curvature [Gatzke et al. 2005] or area [Kalogerakis et al. 2010] can be summed.

We call this descriptor a geodesic map. The main characteristic of all of these local shape

descriptors is that they capture a region of interest centered at a single feature point.

When dealing with incomplete shapes, shapes composed of a mixture of parts from mul-

tiple classes, or shapes that possess significant topological variability, it becomes necessary

to use descriptors that enable partial matching. As shown with the example in Figure 5.1,

if we wish to match a human model to the Neptune, the extraneous parts of the Neptune

(spear and base) should not be included in the context. Otherwise, the effectiveness of the

descriptors is reduced, affecting the quality of retrieval and correspondence results. One

69
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(a) (b) (c)

Figure 5.1: Bilateral maps for partial matching. Descriptor bins are shown with alternating
colors and the gray portions of the shapes are not part of the region of interest. Notice how
the region captured between the head and right hand on both shapes is similar in (a) and
(b), and does not include extraneous parts of the Neptune model, i.e., the spear and base.
Compare to the traditional geodesic map for the right hand of the Neptune in (c), where
extraneous parts are included even when using a reduced radius of coverage.

solution is to first segment the shape into meaningful parts and then eliminate the extra-

neous parts from the descriptor’s context. However, obtaining a meaningful segmentation

of a shape is a difficult problem [Shamir 2004], as well as determining what regions are ex-

traneous. Thus, we would rather make the descriptors independent of such a requirement.

A more straightforward solution for this problem is to assign a scale or radius parameter

to the descriptor, to reduce its region of coverage (context), as shown in Figure 5.1 (c).

However, automatically selecting the proper scale is not a trivial problem, and it is clear

that this solution still has deficiencies as, no matter what radius is selected, the context of

certain feature points will always include undesired portions of the models (as happens with

Neptune’s right hand).

In this chapter, we propose a new type of local shape descriptor that we call the bilateral

map (Figure 5.1), which is designed to circumvent these problems. Instead of defining a

region of interest around a single point and constraining it to a fixed radius, we compute a

descriptor whose context is constrained by a pair of points. More specifically, we compute

the shortest path on the surface between the pair of points, and define a context region in

the vicinity of the path (Figure 5.2 (a)). Next, we define equally spaced bins in this region,
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(a) (b)

Figure 5.2: Bilateral map construction. (a) Starting from the shortest geodesic path between
the two reference points (in red), we define the region of interest around the path (in yellow).
(b) The region is then divided into equally spaced bins (shown in alternating colors) along
the shortest path.

with bin boundaries along the path (Figure 5.2 (b)). Finally, we aggregate a geometric

property of all the faces or points that fall into each bin, as in the geodesic maps. For

example, the area of the faces or curvature of the points.

Our main observation is that it is more advantageous to define regions of interest an-

chored by two points instead of one point. This is demonstrated by several advantages that

our bilateral map has over descriptors centered at a single point. First, the context region

is adaptive. That is, since it is constrained to lie between the two reference points, it only

includes portions of the shape that capture the structural relationship between these two

points. Portions of the shape that are not relevant to the reference points and that may be

potentially missing in other shapes are ignored by the descriptor (contrast Figure 5.1 (b) to

(c)). Secondly, given that the region of interest is adaptive, the selection of the scale of this

region is facilitated, since then the region extent parameter can be set to be proportional

to the length of the path between the two points. Finally, the bilateral approach is also

less sensitive to moderate topological changes, in comparison to other descriptors that also

depend on geodesics. Notice also that the descriptors are constructed without the need for

part detection or a meaningful segmentation of the models.

Despite these advantages, one may expect an increase of cost in using the bilateral maps,
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since given a set of feature points, we now need to examine a quadratic number of descriptors

instead of a linear number of descriptors as for the single-point approach. Nevertheless, it

turns out that the most successful correspondence approaches already require an analysis of

the compatibility between pairs of matches, such as recent search-based methods [Gelfand

et al. 2005; Zhang et al. 2008; Au et al. 2010], sampling-based algorithms [Tevs et al. 2011],

or spectral matching methods [Leordeanu and Hebert 2005]. Thus, the additional cost

of the bilateral maps is mainly their computation, since the quadratic complexity of the

correspondence algorithm remains the same. Moreover, our descriptors naturally fit into

such approaches, since they can be added directly to the estimate of pairwise compatibility,

along with other constraints such as isometry preservation (Chapter 2).

We demonstrate the effectiveness of the new descriptors with several experiments on

shape correspondence and retrieval, and evaluate the quality of the results in a qualitative

and quantitative manner. We show that, by making use of the bilateral maps in a simple

framework, we obtain better results than when using a similar descriptor centered at a single

point. Moreover, we also obtain improved results for partial and complete retrieval when

comparing to a state-of-the-art approach; the persistent heat signature of Dey et al. [Dey

et al. 2010]. Although the design of the bilateral maps was motivated by partial matching

problems, they can also be used for full matching, since in this case their performance is

similar to that of single-point descriptors.

5.1 Related work

Shape matching. A prominent problem in shape analysis is the development of means

to compare the geometry of shapes, be them the full models or parts. This problem is

at the heart of shape retrieval [Iyer et al. 2005; Tangelder and Veltkamp 2008] and corre-

spondence [van Kaick et al. 2011a] (Chapter 2). When matching shapes with significant

variability and missing data, it is important that the above applications are able to perform

partial matching. Partial matching is difficult since, before computing the similarity of the

shapes, we first need to find the common portions of the shapes. This requires the care-

ful design of descriptors that are less sensitive to variations in the part composition of the

models and also a mechanism to search for a partial match. The latter can be achieved, for

example, by detecting a sharp increase in the objective function when outlier regions are ex-

cluded from the match [Gelfand et al. 2005; Zhang et al. 2008], or by making use of voting
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methods, which select only the most plausible correspondences [Lipman and Funkhouser

2009; Au et al. 2010].

There are also approaches that compute a partial correspondence without relying on

shape descriptors, such as the methods of Bronstein and Bronstein for rigid [Bronstein and

Bronstein 2008b] and non-rigid [Bronstein and Bronstein 2008a] matching. Their approach

optimizes a type of Mumford-Shah functional, commonly used for image segmentation. This

results in a numerical optimization solved with a quasi-Newton minimization algorithm.

Local shape descriptors. A great variety of local shape descriptors have been proposed

in the literature, since the most common approach to address shape correspondence and

retrieval is to utilize descriptors as a more suitable representation for shape comparison.

Simple descriptors capture scalar properties of points, such as the integral invariants [Manay

et al. 2006], or the shape diameter function [Shapira et al. 2009].

Descriptors that go beyond scalar properties can be obtained by explicitly representing

a region of interest or context around the points. The shape context descriptor of Belongie

et al. [2002] is based on laying out a grid on this region and then counting the number of

feature points that fall into the bins implied by the grid. A direct extension of this descriptor

to 3D has been proposed [Körtgen et al. 2003], as well as a version that defines the grid

relative to the surface orientation; the spin images [Johnson and Hebert 1999]. Kazhdan et

al. [2003] propose to encode such contextual descriptors in a rotationally-invariant manner

by using spherical harmonics. A natural extension of shape context to manifolds is to lay

out the grid on the surface of the models, and then aggregate the curvature [Gatzke et al.

2005] or area [Kalogerakis et al. 2010] of the surface portion that falls into the bins [Heider

et al. 2011]. More elaborate representations propose to encode multiple local properties of

the region of interest with a statistical model [Castellani et al. 2008].

However, these descriptors provide little flexibility to capture partial regions of the

shapes, since what can be regulated is mainly the size of the context region. Thus, multi-

scale descriptors have been proposed that are more suitable in this type of scenario, such as

the multi-scale features of Li and Guskov [2005], or integral invariants captured at different

scales [Manay et al. 2006]. However, the context region captured by these descriptors is still

isotropic and non-adaptive (the shape of the region is fixed, independently of where it lies

on the shape).

Gal and Cohen-Or propose a descriptor designed specifically for partial matching, where
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salient regions are extracted from the models and stored as a full geometry that is later

matched with geometric hashing [Gal and Cohen-Or 2006]. Another possibility for partial

matching is to include part information to limit the context of the descriptors, e.g., by

making use of the isophotic metric [Pottmann et al. 2004] or a part-aware metric [Liu et al.

2009]. Finally, a representation that has achieved considerable success in shape matching

is the heat kernel signature [Dey et al. 2010; Ovsjanikov et al. 2010], which can tolerate

significant variability and missing data. However, this signature also suffers from the scale

selection problem, as it is based on isotropic heat diffusion starting from one point, and

hence can be seen as a multi-scale approach.

In contrast to these works, the bilateral maps go beyond the multi-scale or fixed-size

context representations, but do not require part detection, since the partial regions of the

shapes are defined by pairs of points.

5.2 Descriptor construction

In this section, we discuss in detail the construction of the bilateral maps, exemplified in

Figure 5.2. First, given a pair of reference points (p, q), we define a region of interest around

the shortest geodesic path between the two points (Figure 5.2 (a)). The way in which we

define this region is explained below. Next, we compute the shortest geodesic distance from

each face within the region of interest to the point p, defining a scalar distance field. By

dividing the range of possible scalar values into b equal intervals, we are able to divide the

region into b segments or bins. The boundaries of the bins cross perpendicularly to the

path (Figure 5.2 (b)). Finally, for each bin, we aggregate a local property of all the faces or

vertices that fall into the bin and use the result as the scalar value that represents the bin.

In this work, we sum the area of all the faces in the bin, although other properties, such as

curvature, can be utilized. The resulting descriptor is a b-dimensional vector. To normalize

the descriptor, we divide each vector entry by the sum of all entries.

Notice that our construction provides a directional descriptor. That is, the descriptor

for (p, q) is different from the one computed for (q, p). This is in fact a desired and impor-

tant property, since an undirected construction could result in the incorrect switching of

corresponding points.
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(a) (b) (c)

Figure 5.3: Definition of the region of interest for the bilateral map. (a) An initial region
(in yellow) is defined as an offset from the shortest path (in red). (b) A filtering region (in
yellow at the center) is defined by intersecting the expanding fronts from the two feature
points. (c) The final region of interest is given by the intersection of (a) and (b).

Region of interest. Our goal is to capture a region around the geodesic path, and to avoid

including extraneous portions of the models, especially those that lie beyond the reference

points. Thus, we proceed as shown in Figure 5.3. First, we create a scalar field given by

the smallest distance from each face to the path. All the faces with the distance below a

threshold θ define our initial region (Figure 5.3 (a)). Before thresholding, we divide all the

distances by the shortest geodesic distance between p and q, so that the threshold becomes

relative to the path length. The parameter θ can be seen as the relative width of the initial

region. We use a fixed θ throughout our experiments and show that this constrained scheme

is robust. Next, we define a filtering region to exclude portions of the shape that lie beyond

the reference points. Given that δ is the shortest geodesic distance between p and q, we

compute the intersection of all the faces that are at most a distance of δ away from p and all

the faces that are at most δ away from q. In this manner, we obtain a region that excludes

the faces “behind” p and q (Figure 5.3 (b)) – assuming that there are no small topological

tunnels or handles. Finally, we intersect the initial and filtering regions to define our region

of interest (Figure 5.3 (c)).

Adaptiveness and scale selection. Our bilateral maps have several advantages over

approaches centered at a single point. Firstly, instead of selecting a free parameter to

define the scale of the region of interest, which could assume any arbitrary value, we only

have to select the relative width of the bilateral maps. Since the threshold that we require
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(a) (b) (c) (d)

Figure 5.4: Lesser sensitivity of the bilateral maps to topological changes. When a topo-
logical shortcut exists in (a), the descriptors capturing the region between the two feet are
significantly different in (a) and (b). However, notice that many of the remaining descriptors
are still intact, e.g., between the foot and left hand in (c) and (d), between the foot and
points on the head, etc.

for the construction is relative to the distance between the two points, such a constrained

parameter can be easily set to work well for a variety of shapes, as we show in our experiments

in Section 5.3. Secondly, the geometry of the region of interest is adaptive and captures

mainly the parts of the shape that lie between the reference points (Figure 5.1 (a) and (b)).

In contrast to other descriptors, the region does not simply expand isotropically towards all

directions; it is anisotropically constrained by the geodesic path.

Lesser sensitivity to topological changes. Since our construction is based on the

geodesic path between two reference points, the bilateral maps are affected when the path

is drastically changed. This will happen when a topological shortcut is created on the shape

(Figure 5.4). Note that this is an inherent limitation of all descriptors relying on geodesic

distances. Nevertheless, we observe that most of the bilateral maps will still remain intact

when such a shortcut is created, since it affects predominantly the descriptor corresponding

to the two reference points that are short-circuited with the change (Figure 5.4). In the

bilateral approach, each feature point is associated to multiple descriptors. Thus, if one
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of these descriptors is affected, there still remain several other descriptors to guide the

algorithm. This property makes the full set of bilateral maps of similar shapes less sensitive

to moderate topological changes. Note that this is not the case for single-point descriptors

based on a geodesic neighborhood, since each feature point has a single associated descriptor

which is then modified and unable to provide a proper match for the point.

Suitability to existing correspondence methods. Another advantage of our bilateral

maps is that they can be used with existing correspondence approaches without the need of a

major modification to these methods. Recent correspondence methods work by minimizing

an objective similar to

π∗ = argmin
π

∑
p∈S1

dissim(Dp, Dπ(p)) +

α
∑
p,q∈S1

|distS1(p, q)− distS2(π(p), π(q))| ,
(5.1)

where π∗ is the optimal correspondence that we seek, p, q are points on shape S1, π(p), π(q)

are their corresponding points on shape S2, dissim is the dissimilarity between the descriptors

Dp and Dπ(p), and distSi is the geodesic distance on shape Si. This objective function

captures the notion that two pairs of points should be matched if the distance between

the points is similar on each shape, and the descriptors of the matching points are also

similar [Leordeanu and Hebert 2005; Zhang et al. 2008]. α regulates the balance between

the geodesic inconsistency and the descriptor dissimilarity in the objective function.

Thus, to use our descriptors, we can simply replace the first term of the objective by∑
p,q∈S1

dissim(D(p,q), D(π(p),π(q))) (5.2)

where D(p,q) are now the bilateral maps defined over pairs of points. Notice that, if we

assume that the method uses the same set of points to test for distance preservation, then

the method already had to consider O(n2) pairs with the objective in (5.1), where n is

the number of feature points on S1. Thus, the general complexity of optimizing (5.1) is

not increased with this modification; only the time required to compute the descriptors is

increased. However, also note that, when computing geodesic distances for n feature points,

we have a time complexity of O(n(|E|+ |V |log|V |)), where |V | and |E| are respectively the

total number of vertices and edges in the mesh. Thus, when using descriptors based on

geodesic neighborhoods, this computation might dominate over the matching complexity.
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Similarly, for other applications such as shape retrieval, we will also have an increase in

the time required to compute the descriptors. However, as we show in Section 5.3, typically

a simple scheme is used to match the signatures of two shapes. Thus, in practice, we may

be able to find a balance between the number of features extracted from the shapes and the

quadratic number of descriptors generated.

5.3 Experiments and results

In this section, we demonstrate the effectiveness of the bilateral maps in the contexts of shape

correspondence and retrieval. For all the experiments, the same descriptor parameters are

used: number of bins b = 20, and descriptor width θ = 0.35.

5.3.1 Shape correspondence

Correspondence algorithm. A variety of methods that make use of local shape de-

scriptors for correspondence have been proposed in the literature (Chapter 2). We chose

to evaluate the bilateral maps within a simple framework, so that the effectiveness of the

descriptors can be easily isolated from the correspondence algorithm and compared in a

more direct manner to a compatible single-point counterpart.

Given two meshes M1 and M2, we sample 50 feature points uniformly across each

surface and compute the bilateral maps for all the pairs of points. Next, we apply a two-

step scheme to compute a correspondence between the shapes. The first step is a simple

voting procedure. For each bilateral map onM1, we find the most similar map onM2, and

place a vote on the two pairwise matches implied by the two descriptors. We utilize the

`1-norm to measure the dissimilarity between two descriptors. At the end of the voting, we

select for each feature point in M1, the matching point in M2 with most votes.

Due to the descriptiveness of the bilateral maps, this simple procedure already provides

a good set of candidate correspondences. However, there is no enforcement of global con-

sistency, as the descriptors for symmetric regions of the shapes can be similar. Thus, in the

second step, we filter the pairwise matches returned by the voting according to a consistency
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 5.5: Correspondence results obtained with our bilateral maps on a set of example
pairs. Corresponding points are shown with matching colors, and we connect some interest-
ing matches with the blue curves. Notice that our descriptors enable a simple algorithm to
find meaningful matches between complete shapes in different poses (a), shapes with missing
parts (b)-(e), and shapes that include extraneous parts or possess different topology (f)-(i).
The same region offset θ was used in all examples.
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criterion similar to that in equations 5.1 and 5.2,

consistency(p, π(p)) =
∑
q∈M1

dissim(D(p,q), D(π(p),π(q)))

+ α
∑
q∈M1

|distM1(p, q)− distM2(π(p), π(q))| .
(5.3)

We set α = 0.7 in the experiments, after normalizing both terms to the range [0, 1], and select

only the top 70% matches that pass the filtering criterion. We repeat this filtering procedure

twice, since the consistency criterion for certain points changes after a first filtering pass.

Results. In Figure 5.5, we show visual examples of correspondences computed with our

bilateral maps and the algorithm described above. Notice how the descriptors are able

to guide the algorithm to find meaningful matches for shapes with missing parts or even

differing topology. In (a), the method is applied to a pair of complete shapes, to show

that the bilateral maps are also suitable for computing full correspondences between shapes

in different poses, as they are intrinsic descriptors. The examples in (b)-(i) present cases

requiring partial matching. We see that in a simple case where a shape is matched to a

version of itself cut in half, shown in (b), the descriptors are able to provide the correct

matches between all the selected feature points. In (c)-(e), we see that the bilateral maps

are effective for matching incomplete shapes, with missing arms or legs.

Finally, in (f)-(i), we show the effectiveness of the bilateral maps for matching hybrid

shapes or shapes with topological differences. In (f), we see a correspondence computed for

our motivating example of the human vs. Neptune, where the front and back of the shapes

are shown. The correspondence correctly ignores the feature points on the extraneous

regions, although the right arm of the human is matched to Neptune’s left arm. In (g), we

see a human matched to a single manifold composed of two humans holding hands. We see

that all the correspondences are meaningful up to symmetry switching, although our simple

algorithm does not enforce that the human is matched to the parts of a single human in

the composed shape. In (h), we see another meaningful correspondence computed for two

shapes with extraneous regions (human body and horse’s head). In the example in (i), the

left elephant has a different topology from the one on the right (its head, trunk, and tusks

are connected to a front leg), but correct matches are still obtained between the trunks,

tusks, and the bodies of the elephants.
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(a) (b)

(c)

(d) (e)

(f)

Figure 5.6: Correspondence results obtained with the bilateral maps in (a)-(c), compared
to the results obtained with the single-point geodesic maps in (d)-(f). The single-point
descriptors require the selection of the best scale for computing the correspondence, and the
results are not as meaningful as those obtained with the bilateral maps, especially in the
highlighted regions.
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Comparison to single-point descriptors. Figure 5.6 presents a comparison of the bi-

lateral maps to a traditional single-point geodesic map. There certainly exist more advanced

local shape descriptors in the literature, for example, the persistent heat signature of Dey et

al. [2010]. However, we chose to compare to the geodesic maps since they use the same type

of intrinsic binning as the bilateral maps, and they are also based on collecting the area of

the faces that fall within each bin. In this manner, we are able to evaluate more directly

the effect of using pairs of points instead of single points. (But note that we compare to the

heat signature in the next section in terms of shape retrieval).

For the single-point descriptors, we compute the geodesic maps at five different scales.

The extent of the descriptors is set to 20%, 40%, 60%, 80%, and 100% of the longest geodesic

path on each shape. Each descriptor is composed of 20 concentric bins. Next, we compute

correspondences with each scale and select the best result for each example in Figure 5.6

(d)-(f). To establish the correspondence, we select for each feature point, the matching

point with the greatest similarity. Then, we also filter the correspondence with the criterion

in Equation 5.3, using the average dissimilarity of the two single-point descriptors that are

part of each pair.

By contrasting the results of the bilateral maps in Figure 5.6 (a)-(c) to the results of

the single-point descriptors in (d)-(f), we see that the bilateral maps are more effective

in performing partial matching, without the need to change the scale parameter. When

selecting the proper scale, the single-point descriptors are able to match important features

such as the head and arms of the humans, and the body of the elephants. However, we see

that incorrect matches are established between some of the extraneous parts of the shapes;

for example, between the base of the Neptune and various parts of the human, or the front

leg of the first elephant and the body of the second elephant. The existence of extraneous

regions and topological changes have a stronger impact on the single-point descriptors than

on the bilateral maps. The single-point approach completely fails in (d), since the geodesic

maps of the two shapes are significantly different.

Topological changes. One advantage of the bilateral maps is that, if two shapes possess

moderate topological differences, we can still obtain a meaningful correspondence between

the two. As discussed in Section 5.2, although some of the descriptors are modified when one

of the shapes suffers topological changes, enough of the multiple bilateral maps associated

to each feature still remain intact if only a few topological shortcuts are created.
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(a) (b)

(c) (d)

Figure 5.7: Examples of lesser sensitivity of the bilateral approach to topological changes.
Note that more meaningful correspondences are obtained with the bilateral map in (a)-(b),
compared to the geodesic map in (c)-(d), on shapes with moderate topological differences.

We already illustrated the lesser sensitivity of the bilateral maps to topological differences

with the example of matching a human to Neptune in Figure 5.5 (f) and the elephants in

Figure 5.5 (i). We show two additional examples in Figure 5.7, contrasting them to the

single-point geodesic map. In (a), we see that creating a topological shortcut between the

two legs of a human has no noticeable effect in the correspondence results when this human

is matched to itself with the bilateral maps. The geodesic maps also provide a meaningful

correspondence, although there are no matches at the end of the legs, since the descriptors

at any scale are different in this region. In (b), the bilateral maps are able to match two

hands with different topologies (the index finger and thumb are connected in the first hand),
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although the specific parts where the differences occur are not matched, since many of the

descriptors are dissimilar there. The geodesic maps also provide many good correspondences.

However, since we have to select a smaller scale for this descriptor to be able to ignore the

topological differences, this also creates some confusion in the correspondences, such as the

index finger being matched to the middle finger.

Figure 5.8: Quantitative evaluation of correspondences computed with the bilateral maps
and geodesic maps at five different scales on a set of incomplete humans. The x-axis denotes
the correspondence error given in terms of geodesic distances, while the y-axis denotes the
percentage of correspondences with such an error. Note the overall better performance of
the bilateral maps.

Quantitative evaluation. We also compare the bilateral maps to the single-point

geodesic maps in a quantitative manner. We selected 13 incomplete humans from the

dataset for partial shape retrieval of Dey et al. [2010]. These humans have missing parts

or missing data in the form of multiple holes on the meshes. Next, we computed corre-

spondences between each human and 8 other randomly selected humans. We used the same
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algorithms described above for the bilateral maps and the geodesic maps and the same sets

of feature points for each shape.

To evaluate a resulting correspondence, we first created a ground-truth for each shape.

We selected 36 consistent landmark points on each shape, as in the benchmark of Kim

et al. [Kim et al. 2011]. In the case of features appearing in missing parts, we placed the

ground-truth at the location nearest to the landmark. For example, if a human is missing its

left leg from the knee downwards, we placed the landmark corresponding to the left toe at

the location of the left knee. Since the descriptors are computed on automatically-extracted

features, we measure the distance of these feature points to the landmarks to measure the

accuracy of a correspondence. This is done by representing each feature point by a vector

of geodesic distances to the landmarks. By finding the best match for such vectors between

two shapes, we establish the ground-truth for the feature points.

Once we are given a correspondence π computed with one of the descriptors, we compute

its error in relation to the ground-truth correspondence πgt by adding up the geodesic

distance from each selected point to the ground-truth point,

Error(π, πgt) =
∑
p∈M1

dM2(π(p), πgt(p)). (5.4)

The geodesic distances dM2 are normalized by
√

Area(M2) [Kim et al. 2011].

Figure 5.8 shows the results of this experiment. Each curve denotes the percentage of

correspondences that have an error below a given geodesic distance. It can be clearly seen

that the bilateral maps have more correspondences with lower errors than the geodesic maps

computed at any of the 5 given scales. 70% of the correspondences given by the bilateral

maps have an error of 0.27 or less, while the error is 0.37 for the same percentage of the best

scale geodesic maps. Note also that, for this dataset, the geodesic maps with larger scales

(80% and 100% of the maximum geodesic distance on each mesh) gave the best results for

single-point descriptors, since these larger scales better capture the human structure.

Limitations. The bilateral maps also possess some limitations, which can be observed in

Figure 5.5. As common with intrinsic descriptors [Kim et al. 2011], when the shapes have

strong intrinsic symmetries, e.g., left- and right-halves of a human, the bilateral maps and

geodesic consistency are unable to tell the symmetries apart. Moreover, as seen in Figure 5.5

(f) and (i), matches are not established for one arm of the Neptune, or the front legs of the
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Table 5.1: Retrieval results on a dataset of complete and incomplete shapes. Each table
entry shows top-3 and top-5 hit rates for our bilateral maps, PHS, and EVD.

Queries Ours PHS EVD

32 incompl. 91% / 94% 88% / 91% 62% / 62%
18 compl. 100% / 100% 78% / 83% 100% / 100%
50 total 94% / 96% 84% / 88% 76% / 76%

elephants. This happens since there are several topological shortcuts in these regions, and

many of the descriptors become distinct.

5.3.2 Shape retrieval.

Dataset and methodology. We show results of using our bilateral maps for shape re-

trieval and also compare to the method of Dey et al. [2010]. Their method utilizes the

persistent heat kernel signature (PHS) to detect interest points on the shapes and also to

define shape signatures for retrieval. Their work is the first to evaluate results specifically on

incomplete shapes and also to build a dataset for this purpose. We perform the comparison

by evaluating the bilateral maps on Dey et al’s dataset. The dataset is composed of 300

shapes organized into 21 classes (humans, horses, chairs, etc.). Its query set is composed of

18 complete shapes and 32 incomplete shapes, while the target set contains 197 complete

and 101 incomplete shapes.

To perform the retrieval, we also utilize a procedure similar to that used by Dey et

al. First, we compute the bilateral maps for 20 interest points uniformly sampled on each

shape. We take the resulting 380 descriptors to create the signature of each shape. Next,

during the retrieval phase, the matching score between two shapesM1 andM2 is given by

the expression [Dey et al. 2010]∑
f1∈F1

min
f2∈F2

‖f1 − f2‖1 +
∑
f2∈F2

min
f1∈F1

‖f1 − f2‖1, (5.5)

where F1 and F2 are the sets of signatures forM1 andM2, respectively, f1 ∈ F1 and f2 ∈ F2

denote single descriptor vectors in the signature set, and ‖ . . . ‖1 is the `1-norm. This score

is simple and efficient to compute for large datasets.
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For each query, the target shapes are ordered according to the score in (5.5) and the

results are evaluated in terms of the top-3 and top-5 hit rates. Basically, given a query

shape, we have a top-k hit if a shape from the same class is retrieved within the top k

matches. For a class with N shapes, the top-k hit rate is the percentage of top-k hits with

respect to N .

Results. Table 5.1 shows the retrieval hit rates for our descriptors, compared to the

method of Dey et al. [2010] (PHS) and the Eigenvalue descriptor method (EVD) of Jain and

Zhang [2007]. We see that, although PHS and EVD have different performances on complete

and incomplete shapes, our descriptors provide better results than these two methods on

both types of shapes. Thus, although the bilateral maps were designed for partial matching,

their performance is not dropped when they are used to match complete shapes.

5.4 Discussion

The key idea in this chapter is to show that it is worthwhile to consider two points instead

of one point in defining regions of interest for local shape descriptors. To demonstrate

this point, we proposed the bilateral map, which anisotropically adapts its shape to the

region comprised between two points. We showed that the bilateral map offers a promising

alternative to the classic descriptor definition for tasks such as shape correspondence and

retrieval. The bilateral map was designed to deal better with the partial matching problem,

but we showed that this does not hinder its performance on the full matching problem. Also,

if we assume that the same feature points are used for testing the preservation of distances,

then the increase in complexity when going from one point to a pair of points is often

absorbed by the complexity of the correspondence algorithm that utilizes the descriptors.

We have shown results when using the bilateral maps within a simple correspondence

framework, to more easily evaluate the effectiveness of the descriptors. However, these

descriptors can potentially help to improve the results of more elaborate methods based

on the feature analysis approach. For example, they can be used within recent search-

based algorithms [Gelfand et al. 2005; Zhang et al. 2008; Au et al. 2010], sampling-based

algorithms [Tevs et al. 2011], or even to guide transformation-based [Lipman and Funkhouser

2009; Kim et al. 2011] or registration-based methods [Bronstein and Bronstein 2008a] more

rapidly towards a good solution. Moreover, we evaluated the bilateral maps by collecting the
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area of the faces that fall within each bin. However, the descriptor can be potentially used

with other geometric properties, such as curvature [Gatzke et al. 2005], the shape diameter

function [Shapira et al. 2009], or even with more sophisticated scalar fields, such as the heat

diffusion field [Dey et al. 2010].

Future directions. It would be interesting to investigate higher-order generalizations of

the proposed descriptors. For example, by going one step further and considering three

points on a surface, we can define a region that can also be potentially used for matching.

A two-dimensional grid can then be defined for binning this region. This generalization

lifts the need to specify a threshold θ for the width of the descriptors, as in the case of the

bilateral maps, although the complexity of the matching algorithm then becomes cubic on

the number of feature points.

In this work, the comparisons between single-point descriptors and the bilateral maps

have been performed by using the same sets of feature points. This might give an advantage

to the bilateral maps, since more descriptors or signatures are generated. It would be

informative to perform a comparison where the same number of descriptors is used in both

paradigms, although a meaningful criterion has to be devised to select which feature points

should be used in each paradigm.

The last point leads to another interesting topic for future investigation, feature sampling,

which is a difficult problem when the goal is to capture features that appear consistently

across two different shapes. We evaluated the proposed bilateral maps with feature points

uniformly sampled across the surfaces. However, an interesting question is whether there

is a feature sampling approach that is more suitable for the new descriptors. Previous

works proposed to use sampling schemes based on extremity selection [Zhang et al. 2008],

saliency [Castellani et al. 2008] or information criteria such as entropy [Tevs et al. 2011],

but the particular choice of method is highly correlated with the category of shapes being

considered. Perhaps the best way of selecting feature points on surfaces is to use an approach

similar to that of Tevs et al. [2011], where the feature sampling is part of the correspondence

computation and, potentially, could even be made part of the descriptor construction.



Chapter 6

Conclusion and future directions

In this thesis, we addressed the challenge of establishing a correspondence between dis-

similar shapes. That is, although the shapes represent the same class of object or possess

similar subportions, the shapes as a whole can have significant differences in their geometry,

topology and part composition. Our contribution is to propose solutions to this problem on

two different fronts.

First, we proposed two algorithms, one supervised and one unsupervised, that incor-

porate additional knowledge about the shapes. The knowledge is used to establish a part

correspondence or co-segmentation of the shapes. In the supervised approach, the addi-

tional knowledge is obtained from a training set of segmented and labeled shapes. In the

unsupervised method, the knowledge is extracted from the co-analysis of a set of shapes,

which reveals the common semantic types of parts that exist in the set. We showed that

such approaches allow us to obtain meaningful co-segmentation results for dissimilar shapes.

Secondly, we proposed a new type of shape descriptor, the bilateral map, to compute

partial correspondences between shapes. The assumption is that the shapes possess a similar

portion, although each shape can have additional parts that do not exist in the other shape.

The key feature of the bilateral map is that its region of interest is defined by two points.

In that manner, portions of the shapes that are not important for the context of these two

points are selectively ignored in the matching. We showed that this descriptor is a promising

alternative to classical descriptors for establishing partial matches.

89
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Future directions. There are several directions in which our contributions could be im-

proved or extended to address new types of problems.

Firstly, both knowledge-driven approaches can benefit from incorporating more advanced

shape descriptors. For example, descriptors that capture more structural information, such

as symmetry [Golovinskiy et al. 2007b], part [Liu et al. 2009] or skeletal [Au et al. 2008] infor-

mation, as well as descriptors that would allow these methods to be applied to non-manifold

meshes. Another possibility is to add descriptors that capture partial shape information,

such as our bilateral map. The methods could also be adapted to particular fields with the

use of domain-specific descriptors, e.g., when we know the expected part constitution of the

shapes. Ultimately, the goal in a semantic analysis of shapes would be to obtain descriptors

that capture the functionality of the shape parts.

While designing shape descriptors is one of the important tasks in shape analysis, if we

are given multiple descriptors, another challenge is to select the set of descriptors that best

capture the properties of a part class. In this context, the knowledge-driven approaches can

also benefit from incorporating more advanced feature selection methods to aid in this task.

Secondly, each of the knowledge-driven approaches has its specific applicability. For

example, the supervised approach can be steered to segment the shapes in the exact manner

that the user specifies through the training set. The unsupervised approach does not require

the construction of such a training set, but automatically derives the part composition that

is implied by the set of shapes, although the result does not necessarily conform to what

the user desires. Thus, it seems advantageous to combine these two methods into a semi-

supervised or active learning framework [Settles 2010], where the user needs to provide less

input (perhaps interactively), and the method derives all the remaining knowledge from the

set, e.g., as applied to the segmentation of individual 3D shapes [Top et al. 2011].

A related challenge is to extend the unsupervised co-segmentation to a multi-class sce-

nario, where the input consists of more than one class of shapes. In this case, the co-

analysis would have to classify the shapes into their semantic categories and compute the

co-segmentation of each class. Ideally, these two steps would be performed simultaneously,

so that the shape classification and part analysis could benefit from each other.

Finally, we proposed a promising descriptor for partial matching with the bilateral map.

However, there are still aspects of the problem that can be addressed more directly. First,

the bilateral map could be made more effective by defining its region of interest based on

other types of distance fields, e.g., incorporating part-specific information [Liu et al. 2009;
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Dey et al. 2010]. Secondly, we are still using an isometry criterion to filter correspondences

in our experiments. It would be interesting to propose an improved isometry criterion that is

more specific to partial matching, where the distances between feature points are normalized

relative to the partial match. Finally, the sampling of feature points could be integrated

with the descriptor construction and computation of the partial correspondence.
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Süßmuth, J., Winter, M., and Greiner, G. 2008. Reconstructing animated meshes

from time-varying point clouds. Computer Graphics Forum (Proc. SGP) 27, 5, 1469–1476.

Tang, L., and Hamarneh, G. 2008. SMRFI: Shape matching via registration of vector-

valued feature images. In Proc. Computer Vision and Pattern Recognition (CVPR), 1–8.



BIBLIOGRAPHY 102

Tangelder, J. W. H., and Veltkamp, R. C. 2008. A survey of content based 3D shape

retrieval methods. Multimedia Tools and Applications 39, 3, 441–471.

Tevs, A., Bokeloh, M., Wand, M., Schilling, A., and Seidel, H.-P. 2009. Isometric

registration of ambiguous and partial data. In Proc. IEEE Conf. on CVPR, 1185–1192.

Tevs, A., Berner, A., Wand, M., Ihrke, I., and Seidel, H.-P. 2011. Intrinsic

shape matching by planned landmark sampling. Computer Graphics Forum (Proc. EU-

ROGRAPHICS) 30 , 543–552.

Top, A., Hamarneh, G., and Abugharbieh, R. 2011. Active learning for interactive

3D image segmentation. Lecture Notes in Computer Science (Proc. MICCAI), 603–610.

Turk, G., and Levoy, M. 1994. Zippered polygon meshes from range images. In Proc.

SIGGRAPH, 311–318.

van Kaick, O., Hamarneh, G., Zhang, H., and Wighton, P. 2007. Contour corre-

spondence via ant colony optimization. In Proc. Pacific Graphics, 271–280.

van Kaick, O., Ward, A., Hamarneh, G., Schweitzer, M., and Zhang, H. 2010.

Learning fourier descriptors for computer-aided diagnosis of the supraspinatus. Academic

Radiology 17, 8, 1040–1049.

van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. 2011. A survey on

shape correspondence. Computer Graphics Forum 30, 6, 1681–1707.

van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen-Or, D., Wolf, L.,

and Hamarneh, G. 2011. Prior knowledge for part correspondence. Computer Graphics

Forum (Proc. EUROGRAPHICS) 30, 2, 553–562.

Wand, M., Jenke, P., Huang, Q.-X., Bokeloh, M., Guibas, L., and Schilling, A.

2007. Reconstruction of deforming geometry from time-varying point clouds. In Proc.

Symp. on Geom. Processing (SGP), 49–58.

Wand, M., Adams, B., Ovsjanikov, M., Berner, A., Bokeloh, M., Jenke, P.,

Guibas, L., Seidel, H.-P., and Schilling, A. 2009. Efficient reconstruction of non-

rigid shape and motion from real-time 3D scanner data. ACM Trans. on Graphics 28, 2,

1–15.



BIBLIOGRAPHY 103

Ward, A. D., and Hamarneh, G. 2007. Statistical shape modeling using MDL incor-

porating shape, appearance, and expert knowledge. Lecture Notes in Computer Science

(Proc. MICCAI) 4791 , 278–285.

Ward, A. D., and Hamarneh, G. 2009. The groupwise medial axis transform for fuzzy

skeletonization and pruning. IEEE PAMI Accepted for future publication.

Wolfson, H. J., and Rigoutsos, I. 1997. Geometric hashing: an overview. IEEE

Computational Science & Engineering 4, 4, 10–21.

Xu, K., Zhang, H., Tagliasacchi, A., Liu, L., Li, G., Meng, M., and Xiong, Y.

2009. Partial intrinsic reflectional symmetry of 3d shapes. ACM Trans. on Graphics

(Proc. SIGGRAPH Asia) 28, 5, 1–10.

Xu, K., Zhang, H., Tagliasacchi, A., Liu, L., Li, G., Meng, M., and Xiong, Y.

2009. Partial intrinsic reflectional symmetry of 3D shapes. ACM Trans. on Graphics

(Proc. SIGGRAPH Asia) 28, 5, 1–10.

Xu, W., Wang, J., Yin, K., Zhou, K., van de Panne, M., Chen, F., and Guo, B.

2009. Joint-aware manipulation of deformable models. ACM Trans. on Graphics (Proc.

SIGGRAPH) 28, 3, 1–9.

Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., and Cheng, Z. 2010. Style-

content separation by anisotropic part scales. ACM Trans. on Graphics (Proc. SIG-

GRAPH Asia) 29, 5, 1–9.

Zass, R., and Shashua, A. 2008. Probabilistic graph and hypergraph matching. In Proc.

IEEE Conf. on CVPR.

Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., and Tagliasac-

chi, A. 2008. Deformation-driven shape correspondence. Computer Graphics Forum

(Proc. SGP) 27, 5, 1431–1439.

Zhang, H., van Kaick, O., and Dyer, R. 2010. Spectral mesh processing. Computer

Graphics Forum 29, 6, 1865–1894.

Zheng, Y., and Doermann, D. 2006. Robust point matching for nonrigid shapes by

preserving local neighborhood structures. IEEE PAMI 28, 4, 643–649.



BIBLIOGRAPHY 104

Zheng, Q., Sharf, A., Tagliasacchi, A., Chen, B., Zhang, H., Sheffer, A., and

Cohen-Or, D. 2010. Consensus skeleton for non-rigid space-time registration. Computer

Graphics Forum (Proc. EUROGRAPHICS) 29, 2, 635–644.


	Approval
	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Preface
	Introduction
	Overview
	Knowledge-driven correspondence methods
	Prior knowledge for part correspondence
	Unsupervised co-segmentation of a set of shapes
	Bilateral maps for partial matching

	Contributions
	Organization

	Background and related work
	Problem definition
	Applications of correspondence
	Correspondence problems and related methods
	Similarity-based correspondence
	Rigid alignment
	Non-rigid alignment
	Time-varying registration

	Discussion

	Prior knowledge for part correspondence
	Related work
	Overview
	Prior knowledge and probabilistic semantic labeling
	Part correspondence via joint labeling
	Experimental results
	Discussion

	Unsupervised co-segmentation of a set of shapes
	Related work
	Overview
	Descriptors and per-object segmentation
	Descriptor-space spectral clustering
	Statistical model and co-segmentation
	Experimental Results
	Discussion

	Bilateral maps for partial matching
	Related work
	Descriptor construction
	Experiments and results
	Shape correspondence
	Shape retrieval.

	Discussion

	Conclusion and future directions
	Bibliography



