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Abstract

Lovász invoked topological colouring bounds in proving Kneser’s Conjecture. Subse-

quently, numerous applications of topological techniques to graph colouring problems have

arisen. However, even today, little is known about how to construct a graph with a partic-

ular topological colouring bound, or about the structure of such graphs. The aim of this

thesis is to remedy this deficit.

First, we will perform a review of topological techniques used in bounding the chromatic

number and discuss constructing graphs with particular topological colouring bounds. Then

we will derive necessary conditions for a graph to attain a particular topological colouring

bound, and use these conditions to analyze the structure of such graphs. In particular, we

provide support for some open problems in graph theory by verifying the problems under

additional assumptions on topological colouring bounds. We also discuss the relationship

between colour critical graphs with tight topological colouring bounds and quadrangulations

of surfaces.
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Chapter 1

Topological Lower Bounds

1.1 Introduction

This thesis focuses its attention on the study of topological lower bounds on the chro-

matic number of a graph (which we will sometimes refer to as topological colouring bounds).

Such bounds have played significant roles in solving a variety of difficult problems in graph

theory over the years beginning, of course, with Lovász’s seminal work on proving Kneser’s

Conjecture by establishing a sharp topological lower bound on the chromatic number of

the Kneser graphs [24]. For readers unfamiliar with Kneser’s Conjecture, we shall recall

that it asserts that the collection of all n-element subsets of a 2n+k element set cannot be

partitioned into k+1 classes, so that every pair of n-sets within the same class has non-

empty intersection. Inspired by this problem, the Kneser graphs were introduced as graphs

whose vertices were the n-element subsets of a (2n+k)-element set and whose edges joined

vertices representing disjoint sets. Consequently, colourings of Kneser graphs correspond

with partitions of the n-sets into classes such that pairs of vertices in the same class have

non-empty intersection. Thus, if we could prove that the Kneser graph corresponding with

the n-element subsets of a 2n+k element set was not k-colourable, then Kneser’s Conjecture

would be proven. This was the approach which Lovász took to establishing this conjecture,

and it will be our approach as well when we tackle this problem later in this chapter.

Of course, there are now extremely short proofs of Kneser’s Conjecture using only el-

ementary methods, such as Greene’s proof [13]. However, our interest in this chapter will

be in generalizing methods for finding topological colouring bounds from the Kneser graphs
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to arbitrary graphs. The second chapter of this thesis will then study how one goes about

constructing interesting examples of graphs for which these topological lower bounds are

sharp, while the third chapter will discuss the structure of such graphs.

Unfortunately, in order to cover so much material, we have had to assume the reader is

familiar with a rather wide variety of content. To the best of our ability, we have strove to

keep these prerequisites fairly elementary. However, the reader wholly unfamiliar with one

of these topics should like consult one of the references provided.

Firstly, we will generally assume that the reader is familiar with the basic material on

simplicial complexes and posets contained in Chapter 1 of Matoušek’s book on using the

Borsuk-Ulam [27]. Abstract simplicial complexes are, of course, collections of finite subsets

closed under inclusion, and they have associated with them geometric realizations which

are topological spaces which may be embedded in Rn for a sufficiently high n. We will

generally ignore the distinction between an abstract simplicial complex and its geometric

realization unless there is some reason to distinguish between the two notions. We will also

discuss simplicial maps, which are maps between simplicial complexes which map simplices

to simplices. These maps induce continuous maps between the geometric realizations of the

simplicial complexes between which they map. The face poset of a simplicial complex K

is the poset P (K) which is the set of all non-empty simplices of K ordered by inclusion,

while the order complex of a poset P is the simplicial complex ∆(P ) whose vertices are the

elements of P and whose simplices are all the chains of P . The barycentric subdivision of

a simplicial complex K is defined by sd(K) = ∆(P (K)). We will also assume that readers

are familiar with basic poset terminology such as the notions of chains, anti-chains, linear

orders and dual posets.

Readers familiar with basic topology will, of course, recognize barycentric subdivision as

a particularly simple example of a homotopy equivalence. More generally, given topological

spaces X and Y , a continuous map f : X → Y is termed a homotopy equivalence of X and

Y if for some map g : Y → X, g ◦ f = idX and f ◦ g = idY . In this case, we term the

map g the homotopy inverse of f . We say that X and Y are homotopy equivalent if there

is a homotopy equivalence between them. For any two continuous functions f, g : X → Y ,

we will say that f and g are homotopy equivalent if there exists a continuous function

H : X × [0, 1] → Y such that H(x, 0) = f(x) and H(x, 1) = g(x). Such an H is termed a

homotopy between f and g. As is standard in the study of maps between topological spaces,
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we will assume in what follows that, unless otherwise stated, all maps between topological

spaces are continuous.

A particularly useful kind of homotopy equivalence between topological spaces is defor-

mation retraction. Given a topological space X, a map F : X × [0, 1] → X is termed a

deformation retraction from X onto a subspace A ⊂ X provided that for each x ∈ X and

a ∈ A, F (x, 0) = x, F (x, 1) ∈ A and F (a, 1) = a.

In addition to understanding the notion of homotopy, readers should be familiar with the

notion of a Hausdorff space (all topological spaces treated in this thesis will be Hausdorff

spaces), as well as quotient spaces. Formally, the quotient space of a topological space

X together with some equivalence relation ∼ on X is a topological space formed from X

by identifying all the points identified by ∼. The topology of the quotient space, which

is usually denoted by X/ ∼ is given by letting the open sets of X/ ∼ be those sets whose

preimage is open in X under the projection mapping from X onto X/ ∼. Readers unfamiliar

with quotient spaces should consult [33] and Chapter 0 of [16]. In particular, we will freely

use the result from Chapter 0 of [16] that taking the quotient of any topological space X

by a contractible space is a homotopy equivalence. The only other topological notions we

will assume are the basic definitions of the boundary operator and homology groups for

simplicial complexes. We will not restate these definitions here, as they are rather lengthy,

but these notions are quite elementary, and may be found in either Massey’s textbook [26]

or Chapter 1 of Munkres’ book [32].

We will also freely use basic ideas from graph theory, such as those found in Bondy and

Murty’s classic textbook [4]. Moreover, we will assume throughout the rest of this thesis,

that unless otherwise explicitly stated, all graphs are simple and have no isolated vertices.

We will define most of the non-standard notation we use. However, we still feel that it is

prudent to inform the reader that in what follows [n] = {1, 2, ..., n}, 2A denotes the power

set of the set A, and we will write NG(v) for the neighbourhood of a vertex v ∈ V (G) in

order to clearly distinguish between the neighbourhood of a vertex and the neighbourhood

complex (a simplicial complex which we will introduce later in this chapter).

1.2 The Box Complex

In attempting to place lower bounds on the chromatic number of a graph, Lovász began
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by studying the neighbourhood and Lovász complexes of a graph. However, formulating

the bounds we can derive from studying these complexes is rather difficult and technical if

one wishes to be precise. Consequently, we will begin our study with a simplicial complex

which only became of significant interest in more recent years, but which allows for a clearer

and more concise presentation: the box complex.

Informally, the box complex of a graph G may be thought of as the simplicial complex

which has as its simplices all complete bipartite subgraphs of G. More precisely, following

Matoušek [27], we define the box complex of a graph G, denoted by B(G), as the simplicial

complex defined on the ground set V (G)× [2] with the following simplices:

B(G) := {A1]A2 : A1, A2 ⊆ V (G), A1∩A2 = ∅, G[A1, A2] is complete bipartite, CN(A1) 6=
∅ 6= CN(A2)}.

In this definition, by the notation A]B we denote the set A×{1}∪B×{2}. G[A1, A2]

is the graph with vertex set A1 ∪ A2 such that uv ∈ E(G) is an edge of G[A1, A2] if and

only if u ∈ A1 and v ∈ A2. The function CN : 2V (G) → 2V (G) is the function which maps

any set of vertices A ∈ 2V (G) to CN(A) := {v ∈ V (G) : v ∼ a ∀a ∈ A} ⊆ V (G) \A.

We naturally think of colourings of a graph G as graph homomorphisms from G to Kn.

Moreover, it has long been known that graphs together with graph homomorphisms form a

category, as do topological spaces together with continuous maps. Thus, in order to place a

lower bound on the chromatic number of G, our strategy will be to find a functor from the

category of graphs to the category of topological spaces, and then study the obstructions to

the existence of graph homomorphisms by studying topological obstructions to the existence

of continuous maps between topological spaces. Of course, this is not quite right, as the

constant map is always a continuous map between any two non-empty topological spaces,

so we will need to place some restrictions on our topological spaces and maps. One such

restriction which is particularly well-studied in topology is to require our topological spaces

to admit fixed point free involutions, while our maps must not only be continuous, but must

commute with the involutions defined (we call such maps equivariant maps). In summary,

we would like to have the following commutative diagram:
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G

��

graph

hom.
// Kn

��
B(G)

equiv.

map
// B(Kn)

In what follows, we will refer to topological spaces with fixed point free involutions

(such as the box complex) as Z2-spaces and the equivariant maps between such spaces as

Z2-maps.

Having introduced all the terminology and ideas necessary, we can now proceed to

establish a topological lower bound on the chromatic number in terms of the topology of

the box complex. In order to do so, we first establish the following lemma.

Lemma 1. Let G, H and L be graphs, and let B(G), B(H) and B(L) be their box complexes.

Then the following statements hold:

(a) the function ν : B(G)→ B(G) which is induced on the simplices of B(G) by the vertex

map ν(v, i) = (v, 3− i) for all (v, i) ∈ V (B(G)) is a simplicial fixed point free involution on

B(G);

(b) given a graph homomorphism f : G → H, the map B(f) : B(G) → B(H) which is

induced on the simplices of B(G) by the vertex map B(f)(v, i) = (f(v), i) for all (v, i) ∈
V (B(G)) is a simplicial Z2-map;

(c) B is a functor from the category of graphs to the category of Z2-spaces;

(d) B(Kn) ∼= Sn−2.

Proof. (a) For all A,B ⊆ V (G), ν(A]B) = B]A, so ν is simplicial, as ifG[A,B] is complete

bipartite, then so is G[B,A]. Additionally, ν2(A]B) = A]B, so ν is an involution. Finally,

ν is fixed point free, as, since A ∩B = ∅, (A ]B) ∩ (B ]A) = ∅.

(b) As f is a graph homomorphism, it maps complete bipartite subgraphs to complete

bipartite subgraphs. Consequently, B(f) is simplicial. Additionally, if we let f̃ : 2V (G) →
2V (G) be the map induced on the subsets of V (G) by f , then for all A,B ⊆ V (G), B(f)(ν(A]
B)) = B(f)(B ]A) = f̃(B) ] f̃(A) = ν(f̃(A) ] f̃(B)) = ν(B(f)(A ]B)).

(c) Given (a) and (b), to show that B is a functor from the category of graphs to the

category Z2-spaces, all that remains is to note that that the image under B of the identity

homomorphism is the identity Z2-map, and to observe that for all f : G → H, for all
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g : H → L, and for all A,B ⊆ V (G), B(g ◦ f)(A ] B) = (g̃ ◦ f̃)(A) ] (g̃ ◦ f̃)(B) =

(B(g) ◦B(f))(A ]B).

(d) The boundary of the n-dimensional cross-polytope ♦n is a triangulation of Sn−1 which

may be naturally represented as an abstract simplicial complex by the n-fold join of two

points which we shall call a and b. Here we recall that the join of two simplicial complexes

X and Y is {A ] B : A ∈ X, B ∈ Y }. The n-fold join is simply the operation which

successively joins n simplicial complexes. If we abbreviate the n-fold join of the simplicial

complex {{a}, {b}} by a sequence x1x2x3...xn, where each xi = a or b, then we observe

that the facets of the abstract simplicial complex representing ♦n are all such sequences.

Moreover, the antipodal action on ♦n is induced on sequences by the vertex map which

takes a to b and b to a.

Similarly, if we fix an ordering of the vertices of Kn and take any bipartition of V (Kn)

except for V (Kn)]∅ or ∅]V (Kn), then we see that (identifying as with vertices on the first

side of the bipartition and bs with vertices on the second side), we have an obvious bijection

between the facets of B(Kn) and the facets of the abstract simplicial complex representing

♦n, excluding the two antipodal facets aaa...a and bbb...b. Thus, B(Kn) ∼= Sn−2.

We now have proved all the results we need in order to establish a topological lower

bound on the chromatic number except for one fact. Unfortunately, this fact, the Borsuk-

Ulam Theorem, will require a lengthy and technical proof if we restrict ourselves to the ideas

developed thus far in this thesis. Consequently, while we state the Borsuk-Ulam Theorem

here, we will postpone its proof until later in the chapter, at which point we will derive the

Borsuk-Ulam Theorem as a corollary of Ky Fan’s Theorem (which we will explicitly prove).

Now, Let Sna be the n-sphere together with the usual antipodal mapping x → −x. This is

certainly a Z2-space, so we can state the Borsuk-Ulam Theorem as follows.

Borsuk-Ulam Theorem. If f : Sna → Sma is a Z2-map, then n ≤ m.

Now, for any Z2-space X, let us define the index of X, denoted by Ind(X), as the

smallest integer n such that there exists a Z2-map from X to Sna . Similarly, we define the

coindex of X, denoted by Coind(X), as the largest integer n such that there exists a Z2-map

from Sna to X.
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Observation 1. Let X and Y be Z2-spaces, and let f : X → Y be a Z2-map. Then

Coind(X) ≤ Ind(Y ). In particular, Coind(X) ≤ Ind(X).

Proof. Suppose that there exist Z2-maps g : Sna → X and h : Y → Sma . Then we have the

following composition of maps:

Sna → X → Y → Sma

Thus, by the Borsuk-Ulam Theorem, n ≤ m. Consequently, Coind(X) ≤ Ind(Y ), and,

taking X = Y and f = idX , we see that Coind(X) ≤ Ind(X).

Now, arguing similarly, we will establish that the index and, consequently, the coindex

of the box complex yield topological lower bounds on the chromatic number.

Theorem 1. Let G be a graph and B(G) be its box complex. Then Coind(B(G)) + 2 ≤
Ind(B(G)) + 2 ≤ χ(G).

Proof. Suppose that G can be coloured with χ(G) colours. Then there exists a graph

homomorphism f : G → Km. Thus, by Lemma 1, there exists a Z2-map B(f) : B(G) →
Sχ(G)−2, whence, Ind(B(G)) ≤ χ(G)− 2.

1.3 Topological Connectivity

While we were able to establish topological lower bounds on the chromatic number in

the last section using the index and coindex of the box complex, the careful reader will

have noticed that we did not provide any straightforward method of computing either of

these invariants for an arbitrary Z2-space. This is because attempting to directly compute

these invariants using elementary methods is difficult. Consequently, in applications of

topological methods, a more readily computable parameter, the topological connectivity of

a Z2-space (which we will simply refer to as connectivity from this point on), frequently

plays an important role in bounding the chromatic number of a graph. The main focus of

this section will be on defining this new parameter for an arbitrary Z2-space and explaining

how it can be used to bound the chromatic number of a graph.

To begin with, we will need to define the homotopy groups of a topological space. So,

let us fix a base point a ∈ Sn, a topological space X and a base point b in X. Then the

7



kth homotopy group πk(X, b) of X is the set of homotopy classes of maps f : Sn → X

which map the base point a to the base point b. Now, let us call a topological space X

n-connected if πk(X) = 0 for all 0 ≤ k ≤ n. From this definition, we can easily derive a few

useful equivalent characterizations.

Proposition 1. The following are equivalent for all i ∈ Z+:

(a) πi(X,x0) = 0 for all x0 ∈ X;

(b) every map f : Si → X is homotopic to a constant map;

(c) every map f : Si → X extends to a map from Di+1 → X, where Di+1 is (i + 1)-ball

(i.e. the space enclosed by Si).

Another equivalent formulation of n-connectedness, which we will not prove (for a proof,

we refer the reader to [16]), is given by the well-known Hurewicz Theorem. This theorem

allows us to compute the connectedness of a simply connected space (i.e. a space X for

which π1(X,x0) = 0 for all x0 ∈ X) by examining its homology groups. This simplifies our

study of connectivity considerably for simply connected spaces.

Hurewicz Theorem. Let X be a nonempty topological space and let n ∈ Z+. Then if X

is (n− 1)-connected, then for 2 ≤ i ≤ n, and for all x0 ∈ X, πi(X,x0) ∼= Hi(X).

Now, let us prove a proposition from which a topological lower bound on the chromatic

number based upon the connectivity of the box complex will follow as a corollary.

Proposition 2. Let X and Y be regular CW-complexes with fixed point free involutions

γ and ν. Additionally, suppose that for some k ≥ 0, dimX ≤ k, Y is (k − 1)-connected,

and there exists a Z2-map f : X(d) → Y for some d ≥ −1. Then there exists a Z2-map

g : X → Y which extends f .

Proof. Firstly, let us note that if d = −1, then this means that there is no map f . In this

case, let us extend g to the 0-skeleton of X as follows: for each orbit {a, b} of the action

of Z2 on X (which consists of two vertices of X), map a to an arbitrary point y ∈ Y , and

then map b to ν(y). This completes the base case in our inductive argument, so we may

now proceed to the inductive step.

Suppose that g is defined on the (i − 1)-skeleton of X for some i ≥ 1. Then we may

extend it to the i-skeleton as follows. Let (σ, τ) be a pair of i-dimensional cells of X

8



such that γ(σ) = τ . Note that the boundary of σ (∂σ) is an (i − 1)-sphere. Then, as

i−1 ≤ dimX−1 ≤ k−1, by Proposition 1, the restriction of g to ∂σ extends to σ. In order

to extend g to τ , we simply compose with the involution γ: g|τ := (g|σ) ◦ γ. Performing

this extension on each pair of i-dimensional cells of X such that γ(σ) = τ completes the

proof.

In what follows, let us denote the connectivity of a topological space X by conn(X).

Corollary 1. Let X be a Z2-space. Then conn(X) + 1 ≤ Coind(X) ≤ Ind(X).

Proof. Let X be (k − 1)-connected. Then, since Ska is k-dimensional, by Proposition 2,

there exists a Z2-map g : Ska → X, whence Coind(X) ≥ k. Consequently, by Observation

1, conn(X) + 1 ≤ Coind(X) ≤ Ind(X).

Corollary 2. For any graph G, χ(G) ≥ conn(B(G)) + 3.

Proof. This is a trivial consequence of Theorem 1 and Corollary 1.

1.4 Ky Fan’s Theorem and the Borsuk-Ulam Theorem

In the previous sections, we have made repeated use of the Borsuk-Ulam Theorem.

This section will be devoted to deriving this theorem as a corollary of one of two equivalent

variants of Ky Fan’s Theorem, a result which we will make use of in the third section of this

thesis. We will begin by proving the Borsuk-Ulam Theorem from the first of our variants

of Ky Fan’s Theorem, and then we will derive both of the versions of Ky Fan’s Theorem we

will require from a combinatorial lemma. Ky fan’s Theorem is, of course, due to Ky Fan

[23], but the proof of the combinatorial lemma we will use is a more recent, constructive

result of Prescott and Su [34].

Ky Fan’s Theorem.

(1) Let A be a finite collection of subsets covering Sn, which are either all open or all closed.

Furthermore, assume that there is a linear order on A, and that for all A ∈ A, A∩−A = ∅.
Then there exist sets A1 < A2 < ... < An+2 in A and a point x ∈ Sn such that (−1)ix ∈ Ai
for all i ∈ [n+ 2].

(2) Let A be a finite collection of subsets of Sn such that ∪A∈A(A ∪ −A) = Sn, which are
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either all open or all closed. Furthermore, assume that there is a linear order on A, and

that for all A ∈ A, A ∩ −A = ∅. Then there exist sets A1 < A2 < ... < An+1 in A and a

point x ∈ Sn such that (−1)ix ∈ Ai for all i ∈ [n+ 1].

With Ky Fan’s Theorem in hand, we will now proceed to swiftly derive the Borsuk-Ulam

Theorem.

Borsuk-Ulam Theorem. If f : Sna → Sma is a Z2-map, then n ≤ m.

Proof. Firstly, note that inclusion is always a Z2-map i : Sma → Sn−1
a if n > m. Conse-

quently, it suffices to show that there is no Z2-map f : Sna → Sn−1
a . To see this fact, let

us cover Sn−1 by closed sets A1, ..., An+1 such that Ai ∩ −Ai = ∅ as follows. Consider

an n-simplex in Rn containing 0 in its interior, and project its n + 1 facets centrally from

0 onto Sn−1. The images of the faces in Sn−1 are n + 1 closed sets A1, ..., An+1 cover-

ing Sn−1 such that Ai ∩ −Ai = ∅. Therefore, if f : Sna → Sn−1
a were a Z2-map, then

f−1(A1), ..., f−1(An+1) would be a collection of n+ 1 closed sets covering Sn such that for

all i ∈ [n+ 1], f−1(Ai) ∩ −f−1(Ai) = ∅. This contradicts Ky Fan’s Theorem (1).

We will now proceed to prove the two variants of Ky Fan’s Theorem we have introduced.

However, in order to do so, we will first need to introduce some definitions.

A labeling of a triangulation K of Sn is an assignment of an integer to each vertex of the

triangulation. A simplex in a labeled triangulation will be termed an alternating simplex if

its vertex labels have distinct absolute values and alternate in sign when arranged in order

of increasing absolute value. we will also call the sign of the smallest label in absolute value

of an alternating simplex the sign of that simplex. Similarly, we will say that a simplex is

almost-alternating if it is not alternating, but it can be made alternating by deleting one of

its vertices. The sign of an almost-alternating simplex is the sign of any one of its facets.

We should note here that the sign of an almost-alternating simplex is easily seen to be

well-defined, as if deleting the the vertex with the smallest label in absolute value makes an

almost-alternating simplex σ alternating, then the smallest two labels of σ must have the

same sign.

Now, Ky Fan’s combinatorial lemma does not apply to any triangulation of Sn. In fact,

the original proof called for K to be a barycentric subdivision of the octahedral subdivision
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of Sn. Recall, that the octahedral subdivision of Sn is the subdivision of Sn into 2n n-

simplices using the coordinate hyperplanes of Rn+1. Such triangulations have an important

property which we should recall. We will say that a triangulation K of Sn is symmetric if

σ ∈ K implies that −σ ∈ K. Furthermore, we will say that a symmetric triangulation is

aligned with hemispheres if there exists a sequence of subcomplexes of K H0 ⊂ ... ⊂ Hn such

that each Hd is both homeomophic to a d-ball and contained in the d-skeleton of K, while

for 1 ≤ d ≤ n, ∂Hd = ∂(−Hd) = Hd ∩−Hd = Hd−1 ∪−Hd−1
∼= Sd−1. It is easy to see that

we can use the coordinate hyperplanes in Rn+1 to construct a sequence H0 ⊂ ... ⊂ Hn with

the aforementioned properties for the octahedral subdivision K of Sn, so we may observe

that K is a symmetric triangulation aligned with hemispheres. In a symmetric triangulation

K aligned with hemispheres, for any σ ∈ K, we will term the minimal Hd or −Hd which

contains σ the carrier hemisphere of σ. We now have enough terminology available to state

and prove Ky Fan’s combinatorial lemma in the mildly generalized form due to Prescott

and Su [34].

Lemma 2. Let K be a symmetric triangulation of Sn aligned with hemispheres. Further-

more, suppose that K has a labeling using the labels

{±1,±2, ...,±m} such that (i) the labels of antipodal vertices sum to 0 (the labeling is

anti-symmetric) and (ii) the labels at adjacent vertices never sum to 0 (the labeling is com-

plementary). Then the number of positive alternating n-simplices is odd and equal to the

number of negative alternating n-simplices. In particular, m ≥ n+ 1.

Proof. To prove our lemma, we will construct an auxiliary graph associated with K whose

paths have as endpoints either alternating n-simplices or 0-simplices. Consequently, we will

derive our theorem by simply counting the endpoints of the paths obtained.

In order to define our auxiliary graph, we will need a few definitions. Let us call an

alternating or almost-alternating simplex agreeable if the sign of the simplex matches the

sign of its carrier hemisphere. For example, if it is agreeable, a simplex with its smallest

label negative must be carried by some hemisphere −Hd.

Now, let us define the auxiliary graph G. A simplex σ ∈ K carried by the hemisphere

±Hd is a vertex of G if it is one of the following:

(1) an agreeable alternating (d− 1)-simplex;

(2) an agreeable almost-alternating d-simplex; or
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(3) an alternating d-simplex.

A pair of vertices representing the simplices σ and τ are adjacent if they satisfy the

following conditions:

(a) one is a facet of the other;

(b) σ ∩ τ is alternating; and

(c) the sign of σ ∩ τ and the sign of the carrier hemisphere of σ ∪ τ are the same.

Now, let us study the neighbourhood of each of G’s vertices. For the moment, we will

not discuss simplices carried by either ±H0 or ±Hn. Naturally, with this restriction, there

are three cases: one for each of the kinds of vertices we defined above.

Case 1: If σ is an agreeable alternating (d − 1)-simplex with carrier ±Hd, then it is a

facet of precisely two d-simplices, each of which (as only one vertex is added), must be

either agreeable or almost-agreeable in in the same carrier as σ. Thus, the adjacency con-

ditions (a)-(c) are satisfied between these two simplices and σ, so the vertex representing σ

in G has degree two.

Case 2: If σ is an agreeable almost-alternating d-simplex with carrier ±Hd, then it has

two facets which are agreeable alternating (d − 1)-simplices (which are obtained by delet-

ing one of the exactly two vertices which appear consecutively and with the same sign in

the almost-alternating d-simplex). Adjacency condition (b) is then trivially satisfied, and

(c) is satisfied because an almost-alternating simplex must have the same sign as its two

alternating facets. None of σ’s other facets satisfy (b), and the same is true for any (d+ 1)-

simplices of which σ is a facet, so, once again, the vertex representing σ in G has degree two.

Case 3: If σ is an alternating d-simplex with carrier ±Hd, then the only way to obtain

an alternating facet of σ whose sign agrees with the sign of the carrier hemisphere of σ is to

delete the smallest label in absolute value (if σ is not agreeable) or to delete the largest label

in absolute value (if σ is agreeable). Thus, the vertex representing σ has degree at least 1.

Additionally, σ is the facet of two simplices: one in Hd+1 and one in −Hd+1, but, of course,

it may only be adjacent to one of these. Thus, just as before, the vertex representing σ in

G has degree two.

So, all those vertices which represent simplices not carried by either±H0 or ±Hn have
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degree two. If σ is carried by ±H0, then it is the point ±H0, which is an alternating simplex

with no facets. Thus, the vertex representing it has degree 1. If it is carried by ±Hn, then it

is not the facet of any other simplex, so, if it is agreeable almost-alternating, then the vertex

representing it has degree two, and, if it is alternating, then the vertex representing it has

degree 1. Thus, all vertices of G have degree two except for the vertices representing ±H0

and those representing alternating n-simplices. Thus, G is a collection of disjoint cycles and

paths in which the endpoints of the paths represent either alternating n-simplices or ±H0.

Now, note that if we start with a path in G v1v2...vk formed from the simplices repre-

senting σ1, σ2, ..., σk, and consider the vertices representing the simplices −σ1,−σ2, ...,−σk,
then we observe that the vertices representing these simplices form a path in G as well.

Let’s call this new path the antipodal path of our original path. Observe that no path in G

may have antipodal endpoints, as, in this case either the central vertex or central pair of

vertices would need to represent antipodal simplices (which cannot occur). Thus, all paths

of G must come in pairs, which means that the number of endpoints of these paths is a

multiple of 4. Consequently, there are twice an odd number of alternating n-simplices in

K. Thus, as each positive alternating n-simplex has a negative alternating n-simplex as its

antipode, there are an odd number of positive alternating n-simplices and an equal number

of negative alternating n-simplices, as required.

With Prescott and Su’s lemma in hand, we can now proceed to establish the precise

statement of Ky Fan’s theorem which we shall use in a manner quite similar to the remainder

of Ky Fan’s original proof [23]. To accomplish this goal, we will prove a theorem from which

version (1) and version (2) of Ky Fan’s theorem follow as corollaries (we will only prove the

first version explicitly, as the proof of the second version is nearly identical).

Our proof will require a few basic definitions and facts from measure theory which we

will state here. The general topology textbook [33] provides more complete coverage for

the interested reader. The Lebesgue number of a collection of closed subsets C of a metric

space X is any number ε > 0 such that if any subset A ⊆ X of diameter ≤ ε intersects all of

the elements of some subcollection C′ of C, then the intersection of all the elements of C′ is

non-empty. Similarly, the Lebesgue number of an open cover O of a metric space X is any

number ε > 0 such that if a subset A ⊆ X has diameter < ε, then A is contained in at least

one element of O. It is a basic result of topology (often called the Lebesgue number lemma)
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that any open cover of compact metric space (such as the sphere) has at least one Lebesgue

number and that any finite collection of closed sets has at least one Lebesgue number. Also,

let us define the mesh of a simplicial complex K as the maximum diameter of any simplex

in K. Note that taking the barycentric subdivision of K reduces the mesh, so, by taking

barycentric subdivisions repeatedly, we can ensure that the mesh of the triangulation of a

space is as small as we wish.

Theorem 2. Let n and m be two positive integers, and let

{A1,−A1, A2,−A2, ..., Am,−Am} be 2m closed subsets of Snsatisfying the following two

conditions:

(i) for any two antipodal points x and −x in Sn, there exists an index i ∈ [m] such that

x ∈ Ai and −x ∈ −Ai;
(ii) Ai ∩ −Ai = ∅ for all i ∈ [m].

Then there exist n+ 1 indices k1, k2, ..., kn+1 such that 1 ≤ k1 < k2 < ... < kn+1 ≤ m such

that Ak1 ∩ −Ak2 ∩Ak3 ∩ −Ak4 ∩ ... ∩ (−1)nAkn+1 6= ∅.

Proof. Let {A1, A2, ..., Am} be a finite collection of closed sets satisfying the hypotheses

of our theorem. For each i ∈ [m], let di be the distance between Ai and −Ai, and let d0

be the Lebesgue number of the collection {A1,−A1, A2,−A2, ..., Am,−Am} (which exists

because Sn is a compact metric space). Then take K to be a simplicial complex formed by

taking the barycentric subdivision of the octahedral subdivision of Sn until the mesh of K

is strictly less than min{d0, d1, ..., dm}.
Now, to apply Lemma 2, we need an anti-symmetric labeling of K with no comple-

mentary edges by the the labels {±1,±2, ...,±m}. One natural way of specifying such a

labeling is given by hypothesis (i) in our theorem. Condition (i) guarantees that for any pair

of antipodal points x and −x in Sn, there is at least one index i ∈ [m] such that x ∈ Ai and

−x ∈ −Ai. So, for each pair of antipodal points, we can simply pick one of these indices i

and assign x the label i, while assigning −x the label −i. This takes care of anti-symmetry.

Also, complementarity is satisfied, as we assumed that the mesh of K was less than each di.

Thus, by Lemma 2, there exists a positive alternating n-simplex with labels k1, k2, ..., kn+1

such that 1 ≤ k1 < k2 < ... < kn+1 ≤ m in K. Due to the way we constructed our label-

ing, this n-simplex has one vertex in each of the sets Ak1 ,−Ak2 , Ak3 ,−Ak4 , ..., (−1)nAkn+1 .

Thus, the intersection of these n+ 1 sets in non-empty, as, since we chose the mesh of K to

14



be less than d0, the n-simplex we have described is a subset of Sn satisfying the conditions

of the Lebesgue number lemma.

The following corollary follows immediately from Theorem 2.

Corollary 3. Let n and m be two positive integers, and let

{A1,−A1, A2,−A2, ..., Am,−Am} be 2m closed subsets covering the n-ball Dn and satisfying

the following two conditions:

(i) for any two antipodal points x and −x on the boundary Sn−1 of Dn, there exists an

index i ∈ [m] such that x ∈ Ai and −x ∈ −Ai;
(ii) Ai ∩ −Ai = ∅ for all i ∈ [m].

Then there exist n+ 1 indices k1, k2, ..., kn+1 such that 1 ≤ k1 < k2 < ... < kn+1 ≤ m such

that either Ak1 ∩−Ak2 ∩Ak3 ∩−Ak4 ∩ ... ∩ (−1)nAkn+1 6= ∅ or −Ak1 ∩Ak2 ∩−Ak3 ∩Ak4 ∩
... ∩ (−1)n+1Akn+1 6= ∅.

Now, finally, let us quickly establish the version of Ky Fan’s Theorem which we shall

need.

Corollary 4. Let A be a finite collection of subsets covering Sn, all of which are either

open or closed. Furthermore, assume that there is a linear order on A, and that for all

A ∈ A, A ∩ −A = ∅. Then there exist sets A1 < A2 < ... < An+2 in A and a point x ∈ Sn

such that (−1)ix ∈ Ai for all i ∈ [n+ 2].

Proof. Following Ky Fan, let’s first prove this result just for closed sets by considering the

(n + 1)-ball Dn+1 of which Sn is the boundary. For each set Ai in A, let Ci be the closed

set which consists of the union of all segments joining the origin to a point of Ai, and let

C−i = −Ai. Then, applying Corollary 3 to the (n+1)-ball together with the 2m sets {±Ci},
we see that there must exist n + 2 indices 1 ≤ k1 < k2 < ... < kn+2 ≤ m such that either

Ck1 ∩ −Ck2 ∩ Ck3 ∩ −Ck4 ∩ ... ∩ (−1)n+1Ckn+2 6= ∅ or −Ck1 ∩ Ck2 ∩ −Ck3 ∩ −Ck4 ∩ ... ∩
(−1)n+2Ckn+2 6= ∅. Since for any index i, C−i = −Ai ⊆ Sn, in either case, we are done.

To see that the same result holds for open sets as well, it suffices to recall an easy

argument of Greene [13]. Suppose that Sn is covered by a collection of open sets A =

{A1, ...Am}. Now, select a Lebesgue number d0 for this open cover (which exists, as Sn

is compact). This is a number such that for any xi ∈ Sn, the closed ball given by the

closure ¯B(xi, d0) of the open ball B(xi, d0). Note that, by compactness, there exists a finite
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collection O of open balls B(xi, d0) which cover Sn. Now, for each index j, let Cj be the

union of all the closed balls ¯B(xi, d0) such that B(xi, d0) is in O which are contained in

Aj . Then, each of the sets Cj is closed, and the union of all such Cj covers Sn. These sets

also satisfy the other hypotheses of our corollary. Consequently, our corollary must hold for

this particular collection of closed sets, which is easily seen to imply that it holds for the

collection of open sets A = {A1, ...Am}.

1.5 Kneser Graphs

In the introduction to this section, we stated that we would prove Kneser’s conjecture by

examining simplicial complexes associated to any given graph whose topological properties

are closely tied the chromatic number of the graph. We then proceeded to show that the

box complex was a simplicial complex associated to any graph whose connectivity placed

a lower bound on the chromatic number of a graph. However, while the box complex is

extremely convenient for theoretical purposes, as it admits an explicit and intuitive fixed

point free involution, for actually proving Kneser’s conjecture, it is more convenient to work

with a different simplicial complex known as the neighbourhood complex of a graph.

For any graph G, the neighbourhood complex N(G) is defined to be the simplicial com-

plex on the vertex set V (G) whose maximal simplices with respect to inclusion are the

neighbourhoods of the vertices of G. Equivalently, we can define the neighbourhood com-

plex as N(G) := {A ⊆ V (G) : CN(A) 6= ∅}. In the next chapter, a subcomplex of the first

barycentric subdivision of the neighbourhood complex known as the Lovász complex will

also be of interest to us, so we will define it here as well. The Lovász complex L(G) is the

simplicial complex whose vertex set is {A ⊆ V (G) : CN2(A) = A} and which has as its

simplices all the chains of elements of its vertex set under the ordering given by inclusion.

We briefly observe that, as with the box complex, L(G) admits an intuitive fixed point free

involution, in this case induced by the action of CN on the vertex set of L(G). To see this

fact, observe that for all Ai, Aj ∈ V (L(G)), Ai ⊂ Aj ⇒ CN(Ai) 6= Aj and CN(Aj) 6= Ai.

Consequently, for any simplex A corresponding to a chain A1 ⊂ ... ⊂ An of vertices of L(G),

A ∩ CN(A) = ∅. In particular, A 6= CN(A).

Rather than tediously reproving the results we have already established for the box

complex, it is far more convenient to simply prove that B(G), N(G) and L(G) are homotopy
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equivalent. One easy way to prove this fact is by introducing the notion of a collapse.

Let K be a simplicial complex, and let σ, τ ∈ K. Moreover, suppose that the following

statements hold:

(1) τ ⊂ σ and dimσ = dimτ + 1;

(2) σ is a maximal simplex; and

(3) σ is the only maximal simplex of K which contains τ .

Then we say that the simplicial complex K \ {τ, σ} is an elementary collapse of K. We

call a sequence of elementary collapses, the first of which is an elementary collapse of K, a

collapse of K. It is easy to see that an elementary collapse (and, consequently, a collapse)

is a homotopy equivalence, as it is a retraction, and the inclusion map from K \{τ, σ} to K

is its homotopy inverse. When it causes no ambiguity, we will often denote an elementary

collapse from K to K \ {τ, σ} by (τ, σ).

Finding a collapsing sequence from a simplicial complex to a subcomplex of said complex

can be rather complicated, so various tools exist to simplify the problem of finding collapsing

sequences. We will examine two such tools: closure operators and discrete Morse functions.

We will call an order-preserving map f from a poset P to itself a descending closure

operator if f2 = f and f(x) ≤ x for all x ∈ P . Analogously, we term an order-preserving

map f from a poset P to itself a ascending closure operator if f2 = f and f(x) ≥ x for

all x ∈ P . That ascending and descending closure operators induce collapses is a necessary

result for many of the proofs we will give in this thesis. However, in order to establish this

fact, we will need to recall the definition of the link of a simplex σ ∈ K:

lkK(σ) := {τ ∈ K : σ ∩ τ = ∅ and σ ∪ τ ∈ K}.

Using the link, Kozlov has given a particularly elegant proof the fact that ascending and

descending closure operators induce collapses [21], which we will reproduce here.

Theorem 3. Let P be a poset, and let f be a descending closure operator. Then the order

complex ∆(P ) of P collapses onto ∆(f(P )). Consequently, by considering the dual poset,

we observe that the same is true for an ascending closure operator.

Proof. The proof proceeds by induction on |P | − |f(P )|.
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If |P | = |f(P )|, then f must be the identity map if it is a descending closure operator.

Thus, ∆(f(P )) is obtained by ∆(P ) by a trivial collapse (one in which no elementary

collapses occur).

Now, let us suppose that P \ f(P ) 6= ∅, and let x be one of the minimal elements of

P \ f(P ). Also, note that for any x ∈ P , by the definition of the link and order complex,

we have the following equality:

lk∆(P )(x) = ∆(P>x) ∗∆(P<x).

Now, note that, as x is one of the minimal elements of P \ f(P ), f fixes every element

of P<x. Consequently, as f is an order-preserving map, f(x) must be a maximal element of

P<x. Therefore, we have the following equation:

lk∆(P )(x) = ∆(P>x) ∗∆(P<f(x)) ∗ {f(x)}.

Consequently, lk∆(P )(x) is a cone with apex f(x), so if we let A1, ..., An be the simplices

of ∆(P>x) ∗ ∆(P<f(x)) ordered so that the dimension is weakly decreasing, then (A1 ∪
{x}, A1 ∪ {x, f(x)}), ..., (An ∪ {x}, An ∪ {x, f(x)}) is a sequence of elementary collapses

leading from ∆(P ) to ∆(P \ {x}).
Moreover, as f restricted to P \ {x} remains a descending closure operator, by our

induction hypothesis, ∆(P \{x}) collapses onto ∆(f(P \{x})) = ∆(f(P )). Thus, composing

the two collapses which we have obtained, we see that ∆(P ) collapses onto ∆(f(P )), as

required.

Now, we can easily establish that B(G), N(G) and L(G) are homotopy equivalent by

exhibiting explicit descending closure operators linking B(G) to N(G), and then exhibiting

an explicit deformation retraction from N(G) to L(G). The second of these proofs is

a standard argument which may be found in either Lovász’s original paper on Kneser’s

Conjecture [24] or Matoušek’s book on using the Borsuk-Ulam Theorem [27].

Proposition 3. B(G) is homotopy equivalent to N(G).
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Proof. Firstly, let us note that N(G) is isomorphic to a subcomplex of B(G). In particular,

the map g : N(G)→ B(G) defined by g(A) = A]∅ for all A ∈ N(G) is a bijection between

the set of simplices of N(G) and the set of simplices A ] ∅ such that A ] ∅ ∈ B(G).

Now, let us take the face poset of B(G) P (B(G)) and define the poset map f :

P (B(G)) → P (B(G)) by f(A ] B) → A ] ∅ for all A ] B ∈ P (B(G)). Then we note

that, for any A ] B,C ]D ∈ B(G), if A ] B ⊆ C ]D, then A ] ∅ ⊆ C ] ∅, so f is order-

preserving. Moreover, f2 = f and f(A ] B) = A ] ∅ < A ] B for any A ] B ∈ P (B(G)).

Thus, f is a descending closure operator, whence, by Proposition 3, B(G) collapses onto

the order complex of f(P (B(G))), which is isomorphic to the first barycentric subdivision

of N(G). This isomorphism is induced by the isomorphism g between the vertex sets of

P (N(G)) and f(P (B(G))) defined in the first paragraph of this proof.

Proposition 4. N(G) is homotopy equivalent to L(G).

Proof. It suffices to construct a deformation retract from the barycentric subdivision of

N(G) onto L(G). That is to say, we wish to construct a homotopy from ∆(P (N(G)))× [0, 1]

to ∆(P (N(G))) which fixes L(G).

In what follows, let us represent the barycentric subdivision ofN(G) byN1 := ∆(P (N(G))).

The simplicial complex L(G) is a subcomplex of N1, and it is not difficult to see that

CN2 : V (N1) → V (L(G)) is a simplicial map of N1 into L(G), as for any A,B ∈ V (N1),

A ⊆ B implies that CN2(A) ⊆ CN2(B). Now, thinking of our simplicial complexes as

topological spaces, we define a function which will be useful in constructing our desired

homotopy. Define a map f : N1 → L(G) as the canonical affine extension of CN2. We will

now show that f is a homotopy of N1 with itself which fixes L(G).

Let x ∈ N1. Furthermore, suppose that the simplex A1 ⊂ A2 ⊂ ... ⊂ An of N1 contains

x in its interior (this must be the case for some simplex in N1). Then f(x) lies in the sim-

plex of N1 spanned by CN(A1), CN(A2), ..., CN(An). Now, all of A1, A2, ..., An, CN(A1),

CN(A2), ..., CN(An) are vertices in the first barycentric subdivision of the simplex CN2(An)

of N(G), and so both x and f(x) lie in a common simplex. Thus, for any t ∈ [0, 1], the

point (1 − t)x + tf(x) ∈ N1 is well-defined, and, consequently, F : N1 × [0, 1] → N1 given

by F (x, t) = (1− t)x+ tf(x) is the required homotopy fixing L(G).

At this point, we turn to the proof of Kneser’s conjecture. We will establish this result

in two steps. Firstly, we will use the theory of closure operators which we have developed
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to show that the neighbourhood complex of a Kneser graph is homotopy equivalent to the

order complex of a particular subposet of the boolean lattice. Then we will determine the

connectivity of this order complex using discrete Morse theory. Of course, if we wish to

apply discrete Morse theory, we had best introduce the techniques we shall require, so we

will now proceed to establish two of the area’s most fundamental results by elementary

arguments.

Firstly, let us show that the existence of a sequence of elementary collapses from a

simplicial complex K to a subcomplex K ′ of K is equivalent to the existence of a discrete

Morse function on K (the primary tool used in discrete Morse theory) which has K ′ as its

collection of critical simplices. More precisely, we will display equivalence with the existence

of acyclic matchings, a notion in Chari’s [6] reformulation of discrete Morse theory for posets

which precisely corresponds with Forman’s [11] notion of a discrete Morse function in the

original theory.

For any poset P , we define a partial matching on P to be a pair (A, f), where A ⊆ P is

a set, and f : A→ P \A is an injective map such that f(x) > x for all x ∈ A. Then, for any

partial matching of P , we will term the elements of P \ (A ∪ f(A)) critical elements. Such

a partial matching on P is called acyclic if there exists no sequence of distinct elements

a1, ..., an ∈ A (for n ≥ 2) such that f(a1) > a2, f(a2) > a3, ..., f(an) > a1.

The motivation behind the terminology ’partial acyclic matching’ originates in the con-

nection between posets and directed graphs. As we will freely make use of this connection,

let us recall it here. Given a poset P , we may always associate with it a digraph D(P ) as

follows: take V (D(P )) = V (P ), and let the arcs of D(P ) be the edges of the Hasse diagram

of P oriented downward. Then, given a partial matching (A,f) on a poset P , we may

construct the digraph D(A,f) associated with the partial matching (A,f) by first taking

the digraph D(P ) and then reorienting all the edges {a, f(a)} such that a ∈ A upward.

Now, note that the collection of edges {a, f(a)} such that x ∈ A form a matching in the

undirected graph obtained by forgetting the orientation on the arcs of D(P ). Moreover, if

(A,f) is acyclic, then the digraph D(A,f) has no directed cycles, as any such directed cycle

expressed as a cyclically ordered sequence of elements of P would need to contain a subse-

quence (for some n ≥ 2) (a1, f(a1), a2, f(a2), ..., an, f(an)) such that a1, a2, ..., an ∈ A and

f(a1) > a2, f(a2) > a3, ..., f(an) > a1, contradicting the fact that (A,f) is a partial acyclic

matching. The key point to note here is that given a partial acyclic matching (A,f) on a
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poset P , we may construct the acyclic digraph D(A,f) whose upward oriented edges form

a matching in the undirected graph obtained from D(A,f) by forgetting the orientation of

its arcs.

Proposition 5. Let K be a simplicial complex, and let K ′ be a subcomplex of K. Then the

following are equivalent:

(a) there is a sequence of elementary collapses leading from K to K ′.

(b) there is a partial acyclic matching on the poset P (K) whose critical simplices are pre-

cisely those in P (K ′).

Proof. Firstly, suppose that (x1, y1), (x2, y2), ..., (xn, yn) is a sequence of elementary col-

lapses from K to K ′. The let us define a partial matching f : A := {xi}ni=1 → P (K) \ A
by f(xi) = yi for all i ∈ [n]. Now, suppose that (for some s ∈ [n]) there is a sequence of

distinct elements a1, ..., as ∈ A such that f(a1) > a2, f(a2) > a3, ..., f(as) > a1. Then, by

the definition of an elementary collapse, we know that the elementary collapse (a1, f(a1))

precedes (a2, f(a2)), which precedes (a3, f(a3)),..., which precedes (as, f(as)), and that,

consequently, it is not the case that f(as) > a1, which is a contradiction. Thus, (A,f) is

a a partial acyclic matching on the poset P (K) whose critical cells are precisely those in

P (K ′), as required.

Now, let us proceed to establish the converse by induction on |K \K ′|. If K = K ′, then

there is a trivial (empty) sequence of elementary collapses from K to K ′. Now, suppose

that K \K ′ 6= ∅ and that we have a partial acyclic matching (A,f) on P (K) whose critical

simplices are precisely those in P (K ′). Then observe that at least one vertexai ∈ A must

be a source of the acyclic digraph D(A,f), as, since K ′ is a subcomplex of K, it cannot be

the case that ai < b for any ai ∈ A and b ∈ P (K ′). Thus, vertices ai ∈ A may only be

directly below vertices ai ∈ A or vertices f(ai) ∈ f(A). However, if every vertex ai ∈ A is

either directly below some vertex aj 6= ai such that aj ∈ A or directly below some vertex

f(aj) such that aj 6= ai is in A, then we can construct a directed cycle in D(A,f) as follows.

Begin at any ai ∈ A. Either there is an arc from aj ∈ A for some aj 6= ai to ai, or there is

arc from f(aj) ∈ f(A) for some aj 6= ai to ai. In either case, trace the arc from its endpoint

ai back to the initial point of the arc. This initial point is either a vertex aj ∈ A, in which

case we repeat the previous argument to discover a new vertex, or is a vertex f(aj) ∈ f(A),

in which case we trace backwards along the arc from aj to f(aj) to discover the vertex aj .
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Repeatedly tracing backwards along arcs as described above until we repeat a vertex, we

observe that we must eventually repeat a vertex, as there are only finitely many vertices in

A ∪ f(A). This constructs a directed cycle in D(A,f), which cannot exist, so we see that

there must be some vertex ai ∈ A which is only directly below the vertex f(ai) ∈ f(A).

Thus, we can collapse K to K \ {ai, f(ai)}, so, as K \ {ai, f(ai)} collapses to K ′ by our

inductive hypothesis, we see that there is a sequence of elementary collapses from K to K ′,

as required.

However, while the argument above will be extremely useful to us in later sections

of this thesis, in order to prove Kneser’s conjecture, we shall require a more topological

generalization of this result. However, in order for this generalization to make sense, we

will need to introduce the idea of a CW-complex.

Following Massey [26], we define a CW-complex to be a topological space X together

with an ascending sequence of closed subspaces of X

X0 ⊆ X1 ⊆ X2 ⊆ ... ⊆ Xn

for some n ∈ N which satisfy the following conditions:

(i) X0 has the discrete topology;

(ii) for n > 0, Xn is obtained from Xn−1 by adjoining a collection of n-cells Dn
α to Xn−1

via maps fα : Sn−1 → Xn−1 (i.e. Xn is the quotient space of Xn−1
⊔
αD

n
α under the

identification x ∼ fα(x) for all x ∈ ∂Dn
α, where

⊔
denotes disjoint union);

(iii) X is the union of the subspaces Xi for i ≥ 0.

For any CW-complex X, we will say that a subspace A ⊆ X is a subcomplex of X if it

is a union of cells of X such that the closure of each cell in A is contained in A. A itself is

obviously a CW-complex, as the fact that the closure of each cell fα(Dn
α \∂Dn

α) in A is in A

guarantees that the image of each attaching map fα : Sn−1 → Xn−1 is in A. Additionally,

we will term a CW-complex X regular if all its attaching maps fα are homeomorphisms.

Before proceeding further, let us note two useful facts about CW-complexes. Firstly,

any simplicial complex K is easily seen to be a regular CW-complex by simply taking its

n-simplices as its n-cells for each n ∈ N. Secondly, we may easily define the homology

groups of a CW-complex in a manner analogous to our definition of the homology groups
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of a simplicial complex. It is then possible to prove with some effort [26] that if X is a CW-

complex with no n-dimensional cells, then Hn(X) = 0. Additionally, it may be shown that

that if X is a 0-connected CW-complex with no 1-dimensional cells, then X is 1-connected.

These results may seem trivial at first glance, but they do require some technical machinery

such as the cellular approximation theorem in order to prove formally. We are not interested

in this machinery, so we will omit the proofs of these assertions, referring the reader to [16]

for a full development of the theory of CW-complexes.

The particularly insightful reader will likely have noticed by this point that we could

have proven Proposition 5 for any regular CW-complex and its subcomplexes using a very

similar argument. We will not need this generality, but we will need an extension of this

result (which was originally proved by Forman [10], although we prefer to mimic Kozlov’s

subsequent proof [21]). The proof of this extension will once again require a basic fact about

CW-complexes which we will state without proof. This result is proved in nearly all texts

which introduce the notion of a CW-complex, as it guarantees that CW-complexes with

the same cells and homotopy equivalent attachment maps have the same homotopy type

(without which the definition of a CW-complex is very hard to work with). One example

of such a text is [21].

Proposition 6. Let Xn and X̃n be two homotopy equivalent topological spaces, and let

h : Xn → X̃n be a homotopy equivalence. Moreover, suppose that Dn+1
α is a cell with

attachment maps fα : ∂Dn
α → Xn and f̃α : ∂Dn+1

α → X̃n such that h ◦ fα = f̃α. Then the

topological space XntfαDn+1
α is homotopy equivalent to X̃ntf̃αD

n+1
α , where by XntfαDn+1

α ,

we denote the disjoint union of Xn and Dn+1
α together with the identification given by f

(and similarly for X̃n tf̃α D
n+1
α ).

In addition to the proposition above, we will also need to know a little bit about the

connection between partial acyclic matchings and linear extensions. Recall that a linear

extension of a poset P is a total order L on the same ground set as P such that if x ≤ y in

P , then x ≤ y in L.

Proposition 7. A partial matching (A, f) on a poset P is acyclic if and only if there exists

a linear extension L of P such that for all a ∈ A, a and f(a) follow consecutively in L.

Proof. Firstly, let us suppose that L is a linear extension of P which admits a partial

matching (A, f) such that for all a ∈ A, a and f(a) follow consecutively in L. Then, for a
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contradiction, let us also suppose that we have a sequence of distinct elements a1, a2, ..., an ∈
A (for some n ≥ 2) such that f(a1) > a2, f(a2) > a3, ..., f(an) > a1. Since each pair

(ai, f(ai)) appears consecutively in L, we must also have f(a1) > a1 > f(a2) > a2 > ... >

f(an), which contradicts the inequality f(an) > a1. Consequently, if L is a linear extension

of P which admits a partial matching (A, f) such that for all a ∈ A, a and f(a) follow

consecutively in L, then (A, f) is acyclic.

Conversely, if we are given an acyclic matching (A, f) on P , then we can inductively

define a linear extension L of P . At each inductive step, we let T be the set of elements

of P which are already ordered according to L, and let W be the set of minimal elements

of P \ T . We begin with T = ∅. Then, at each step, either there exists a critical element

c ∈W of (A, f), or all the elements of W are in the matching given by (A, f).

If there exists a critical element c ∈ W of (A, f), then we may simply add c to L as

the largest element and proceed with T ∪ {c}. Otherwise, all the elements of W are in the

matching given by (A, f). In this case, consider the induced subgraph of D(A, f) induced

by W ∪ f(W ). If there exists an a ∈ W such that the only element of P smaller than

f(a) is a itself, then we may add the elements a and f(a) on top of L and proceed with

T ∪ {a} ∪ {f(a)}. If not, then the outdegree of each element f(a) is at least one. Thus, as

each element of the induced subgraph of D(A, f) induced by W ∪ f(W ) has outdegree at

least one, G must have a directed cycle, contradicting the acyclicity of (A, f).

Hence, as P is finite, the inductive process given above always concludes with the re-

quired linear extension L of P .

We can now state the result regarding partial acyclic matchings which we have been

pursuing. Here, as we are proving a result about CW-complexes, we will need a more topo-

logical notion of an elementary collapse (which is easily seen to generalize the combinatorial

notion we introduced earlier). Let X be a topological space, and let Y be a subspace of X.

Then we say that Y is obtained from X by an elementary collapse if X can be represented

as a result of attaching a ball Dn
α to Y along one of the hemispheres of Dn

α. More precisely,

Y is obtained from X by an elementary collapse if there exists a map f̃α : Dn
α → Y such

that X = Y tf̃α D
n−1
α is one of the closed hemispheres bounded by ∂Dn

α.

Proposition 8. Let X be a regular CW-complex, and let P (X) be its face poset. Moreover,

let (A, f) be a partial acyclic matching on P (X), and, for each i ∈ N, let ci denote the
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number of critical i-dimensional cells of P (X) with respect to (A, f). Then X is homotopy

equivalent to some CW-complex Xc which has precisely ci i-dimensional cells for each i ∈ N.

Proof. Following Kozlov [21], we will proceed by induction on |P (X)|. Note that, if

|P (X)| = 1, then there can be no matched cells, so the proposition is vacuously true.

For the induction step, let us take the linear extension L of P (X) such that for all a inA

a and f(a) follow consecutively in L. That such a linear extension exists is guaranteed by

Proposition 7. Additionally, let us suppose that σ is the largest cell in L. Now, either σ is

critical or not. Thus, our proof divides into two cases.

Case 1: Suppose that σ is critical. Then let X̃ = X \ Int(σ), and let g : ∂σ → X be

the attaching map of σ in X. The partial acyclic matching on P (X) restricted to X̃ re-

mains acyclic, as all we have done is deleted a cell, and the critical cells of P (X̃) are the

same as those of P (X) save that the cell σ is missing. Thus, by induction, there exists a

CW-complex X̃c with the correct number of i dimensional cells for each i (except that we

are off by one in the dimension of σ) and a homotopy equivalence h : X̃ → X̃c. Hence, by

Proposition 6, X = X̃ tg σ ∼= X̃c th◦g σ. Therefore, if we set Xc = X̃c th◦g σ, then we see

that we have X ∼= Xc, as required.

Case 2: Now, suppose that σ is not critical. In this case, f−1(σ) and σ are matched,

and, by the proof of the Proposition 7, f−1(σ) is maximal in P (X) \ {σ}. So, let X̃ =

X \ (int(σ)∪ int(f−1(σ))). Now, note that removing (f−1(σ), σ) is an elementary collapse,

so there exists a homotopy equivalence h : X → (̃X). At the same time, by induction, there

exists a CW-complex X̃c with ci i-dimensional cells for each i and a homotopy equivalence

h̃ : x̃ → X̃c. Consequently, setting Xc = X̃c, we see that h̃ ◦ h : X → Xc is the desired

homotopy equivalence, completing the proof.

We are now ready to attack Kneser’s Conjecture directly. As we promised at the be-

ginning of this section, we will first show that the neighbourhood complex of any Kneser

graph is homotopy equivalent to a particular subposet of the boolean lattice, and then will

explicitly find the connectivity of the order complex of this subposet using discrete Morse

theory. Before proceeding, however, we should recall the definition of the Kneser graphs

and of the definition of the boolean lattice. Given a pair of positive integers n and k, the
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Kneser graph KGn,k is the graph whose vertices are all k-element subsets of [n], and in

which two vertices are connected if the sets to which they correspond are disjoint. Perhaps

the best known example of a Kneser graph is the ubiquitous Petersen graph: KG5,2. Given

some set X, the boolean lattice of X is the poset on the ground set 2X whose elements are

ordered by inclusion.

Lemma 3. For any positive integers n and k for which the Kneser graph KGn,k is defined,

the neighbourhood complex of KGn,k is homotopy equivalent to the order complex of the

subposet of the Boolean lattice induced on {B ⊆ [n] : k ≤ |B| ≤ n− k}.

Proof. Firstly, let us define a map PSk : 2[n] → 22[n] which maps any A ⊆ [n] to the

collection of all subsets of A which have cardinality k. Then, using this map, let us define

an order-preserving map f : P (N(KGn,k)) → P (N(KGn,k)) by f(A) = PSk(∪A), where

A is a non-empty collection of k-subsets of [n], and ∪A is the union of all subsets in the

collection A. So, for example, f({{1, 2}, {2, 3}}) = {{1, 2}, {1, 3}, {2, 3}}. Observe that

f2 = f and A ⊆ f(A) for any A ∈ P (N(KGn,k)). Thus, f is an ascending closure operator,

so, by Theorem 3, ∆(P (N(KGn,k))) collapses onto ∆(im(f)), which is isomorphic as a

poset to {B ⊆ [n] : k ≤ |B| ≤ n− k}.

Wachs [39] and Kozlov [21] have separately shown that order complex of the poset above

is homotopy equivalent to a wedge of spheres of dimension n − 2k. However, their proofs

use methods beyond the scope of this thesis, so we will instead establish a simpler result by

a much easier proof.

Lemma 4. The order complex of {B ⊆ [n] : k ≤ |B| ≤ n − k} is (n − 2k − 1)-connected

provided that n− 2k is at least two.

Proof. Let’s define a partial matching (A,f) on {B ⊆ [n] : k ≤ |B| ≤ n − k} as follows. A

consists of all sets in {B ⊆ [n] : k ≤ |B| ≤ n − k} which both do not contain 1 and have

cardinality at most n − k − 1. For any B ∈ A, f(B) = B ∪ {1}. This partial matching is

acyclic because one can only go up in the poset by adding a 1 to a set, while it is impossible

to go down by deleting 1 from a set. The only simplices which remain unmatched are the

sets of cardinality k which contain a 1 and the sets of cardinality n−k which do not contain

a 1. Consequently, by Proposition 8, the order complex of {B ⊆ [n] : k ≤ |B| ≤ n − k}
is homotopy equivalent to a CW-complex with no cells besides 0-cells and (n − 2k)-cells.
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We know that this complex is 0-connected, as we can easily see that the order complex of

{B ⊆ [n] : k ≤ |B| ≤ n−k} is 0-connected provided thatn−2k is at least two. Consequently,

as the order complex of {B ⊆ [n] : k ≤ |B| ≤ n − k} is homotopy equivalent to a CW-

complex which is 0-connected and has no cells of dimension 1 ≤ i ≤ n− 2k − 1, it must be

(n− 2k − 1)-connected.

From the two lemmas we have just proven together with the fact that the connectivity

of N(G) provides a lower bound on the chromatic number, we can now effortlessly derive

the lower bound on the chromatic number of the Kneser graphs needed in order to establish

Kneser’s Conjecture.

Theorem 4. For any positive integers n and k for which the Kneser graph KGn,k is defined,

χ(KGn,k) ≥ n− 2k + 2.
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Chapter 2

Constructions

2.1 Introduction

Having introduced a method for finding topological lower bounds on the chromatic

number, one naturally becomes interested in when besides for Kneser graphs such bounds

are sharp. In particular, we will say that a graph is topologically k-chromatic if its chromatic

number is k, and one of the topological lower bounds noted in the previous section is tight.

As it turns out, finding interesting classes of topologically k-chromatic graphs is fairly

difficult. Cliques, bipartite graphs and odd cycles are obvious examples, but, besides these

graphs and the Kneser graphs, it was decades after Lovász’s original paper’s publication

before any significant progress was made in understanding either how to construct topo-

logically k-chromatic graphs or what sort of properties are common to graphs in this class.

However, there are a few easy structural observations one can make which are useful in

guiding our intuition. We collect these results in the following proposition.

Proposition 9. Let G be a graph and N(G) be its neighbourhood complex. Then the

following hold:

(a) N(G) is not contractible;

(b) G is both connected and non-bipartite if and only if N(G) is connected (0-connected);

(c) if G has girth ≥ 5, then G is not topologically k-chromatic for any k ≥ 4.

Proof. (a) The dimension of N(G) is equal to ∆(G) − 1. If N(G) is contractible, then all

its homology groups vanish. Consequently, we have that χ(G) ≥ ∆(G) + 2. However, this
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cannot be, as χ(G) ≤ ∆(G) + 1 for any graph G.

(b) Let us consider the 1-skeleton of N(G) as a graph on V (G). Note that in this new

graph, which we will denote by N(G), any two vertices u and v are adjacent in N(G) if and

only if u and v are the endpoints of a path of length two in G. Thus, if G is disconnected,

then N(G) is disconnected. Similarly, if G is connected and bipartite, then the bipartite

classes of G are in different connected components of N(G), so N(G) is disconnected.

Finally, suppose that G is connected and non-bipartite. Then G contains an odd cycle

C = c1c2...c2r+1 for some r ∈ N. For each vertex v ∈ V (G), there is a path in N(G) to some

vertex ci in C. If i is odd, then cici−2...c1 is a path from ci to c1 in N(G). If i is even, then

cici−2...c2rc1 is a path from ci to c1 in N(G). In either case, we observe that all vertices of

N(G) are connected to the vertex c1 ∈ V (N(G)). Thus, N(G) is connected.

(c) We will prove that graphs of girth greater than or equal to 5 cannot be topologically

k-chromatic for any k ≥ 4 by showing that the Lovász complex L(G) of such a graph is

1-dimensional. To see this, suppose for a contradiction that A ⊂ B ⊂ C is a 2-simplex of

L(G). This means that CN(C) ⊆ CN(B) ⊆ CN(A). Thus, as CN2(A) = A, CN2(B) = B,

CN2(C) = C, A 6= B and B 6= C, there must exist a vertex u ∈ (CN(A)∩CN(B))\CN(C),

as well as a vertex v ∈ CN(A) ∩ CN(B) ∩ CN(C). Hence, as these two sets are disjoint,

and all elements of both A and B (of which there are at least two) are adjacent to both u

and v, G contains a 4-cycle, contradicting our assumption that it has girth greater than or

equal to 5.

While the proposition above is not very exciting on its own, its implications for the prob-

lem of constructing interesting classes of topologically k-chromatic graphs are significant.

First of all, part (a) tells us that N(G) is never contractible. In some sense, this fact indi-

cates why straightforward constructions are elusive. In topology, most constructions involve

either gluing together contractible spaces or gluing together spaces along a contractible in-

tersection. However, since graphs and subgraphs never correspond with contractible spaces,

most sensible ways of combining graphs to form new graphs such as unions, clique sums

and Hajos sums do not have straightforward translations into the realm of topology. We

also cannot easily create graph operations mimicking topological construction techniques.

Consequently, we will have to be somewhat craftier if we want to create new topologically

k-chromatic graphs from known examples.
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Part (b) of Proposition 9 tells us, in essence, that connected, topologically 2- and 3-

chromatic graphs are precisely the usual bipartite and 3-chromatic graphs, so we may safely

restrict our attention to the study of topologically k-chromatic graphs for k ≥ 4.

Part (c) places a significant restriction on the classes of graphs which may be topologi-

cally k-chromatic for k ≥ 4, and also suggests a place to start in considering topologically

k-chromatic graphs. Namely, we might ask what can be said about topologically k-chromatic

graphs of girth 4. Are there many such graphs? As it happens, topologically k-chromatic

graphs of girth 4 abound for any given k, and we can easily construct a wide variety of

such graphs using a graph operation which corresponds with suspending the neighbour-

hood complex and generalizes the Mycielski construction originally used by Mycielski in

1955 to construct triangle-free graphs of arbitrarily high chromatic number. The details of

this construction, will be the focus of the next section, while many of its implications will

play prominent roles in the next chapter.

2.2 The Generalized Mycielskian and Suspensions

One early use of topological lower bounds on the chromatic number arising from the

study of simplicial complexes associated with graphs is in constructing graphs of arbitrarily

large chromatic number. To do so, what is necessary is to pick a construction which has

a well-understood effect on the topology of one’s complex. In particular, we would like to

pick a construction which, given a graph G, produces a new graph which always (or all

but finitely often if we can apply the construction an arbitrary number of times) increases

the topological lower bound on the chromatic number. One of the most powerful and

well-studied of such constructions is the generalized Mycielskian of a graph.

Formally, following Gyárfás, Jensen and Stiebitz [15], we define the generalized My-

cielskian of a graph G for any fixed r ≥ 1. Mr(G) = Mr(G, p1, p2, ..., pr), where, for

1 ≤ i ≤ r, pi denotes a bijection pi : V (G) → Xi. Here, the map p1 is the identity map

on V (G) = X1, and the sets X2, ..., Xr are any sets in bijective correspondence with V (G)

such that all the Xi such that i ∈ [r] are pairwise disjoint. Additionally, for 1 ≤ i ≤ r − 1,

let Ei = {pi(x)pi+1(y) : xy ∈ E(G)}, and let Er = {pr(x)z : x ∈ V (G)}, where z is a

vertex not contained in any of X1, ..., Xr. Then the vertex and edge sets of the generalized

Mycielskian of G are as follows.
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V (Mr(G)) := (

r⋃
i=1

Xi) ∪ {z} (2.1)

E(Mr(G)) := E(G) ∪
r⋃
i=1

Ei (2.2)

While it is actually quite straightforward, the preceding definition may look a tad con-

fusing at first glance, so we shall ease into its use with an easy example and a historically

motivated proposition.

Firstly, for our example, we will draw the graph M2(C5) to clarify the definition above.

M2(C5)
C5

Figure 2.1: An Example of the Generalized Mycielskian Construction

In this example (and in general, as well), the base of M2(C5) corresponds with a copy

of G = (V (G), E(G)) = (X1, E(G)). Above this first level, we have r − 1 = 2 − 1 = 1

successive levels, the ith of which has vertex set Xi. Vertices within a given level are not

joined by any edges, but vertices in the ith level are joined to those in the (i+ 1)th level by

the edges in Ei = {pi(x)pi+1(y) : xy ∈ E(G)}. This continues until we reach the rth, all of

whose vertices are adjacent to the vertex z.

Readers familiar with the usual Mycielskian construction introduced by Jan Mycielski

in 1955 to construct triangle-free graphs of arbitrarily high chromatic number will observe

that this usual Mycielskian corresponds with the r = 2 case of the generalized Mycielskian

construction we have introduced. That M2(G) is triangle-free provided that G is triangle-

free is obvious, so we need make only one observation to conclude that {M l
2(C5) : l ∈ N}
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is a collection of triangle-free graphs with members of arbitrarily high chromatic number.

Moreover, by identical reasoning, for any triangle-free graph G, {M l
2(G) : l ∈ N} is a

collection of triangle-free graphs with members of arbitrarily high chromatic number.

Proposition 10. χ(M2(G)) = χ(G) + 1.

Proof. Let G be a graph with chromatic number k, and let c be a colouring of G which

partitions the vertices of G into colour classes C1, C2, ..., Ck. Firstly, let us note that if we

let c(p2(v)) = c(p1(v)) for all v ∈ V (G), and let z be the sole element of some new colour

class Ck+1, then we obtain a (k + 1)-colouring for M2(G). Thus, χ(M2(G)) ≤ χ(G) + 1.

Now, suppose that we have a k-colouring for M2(G) c which partitions V (M2(G)) into

colour classes C1, C2, ..., Ck. Then note that for each i ∈ [k], there is some vertex vi ∈ Ci|V (G)

such that the restriction of the neighbourhood of vi to V (G) has at least one representative

from each colour class Cj satisfying i 6= j (as otherwise we could recolour each vertex in

Ci|V (G) with a different colour, resulting in a (k − 1)-colouring of G). Moreover, NG(vi) ⊆
NM2(G)(p2(vi)), so p2(vi) /∈ Cj for any j 6= i. Thus, for each i ∈ [k], the class Ci has some

representative p2(vi). However, as z ∼ p2(v) for all v ∈ V (G), z /∈ Cj for any j ∈ [k].

Consequently, χ(M2(G)) ≥ χ(G) + 1, as required.

At this time, we should also note a mild generalization of the first half of the proof of

Proposition 10.

Proposition 11. For all r ∈ N, χ(Mr(G)) ≤ χ(G) + 1.

Proof. Given a k-colouring c of any graph G with chromatic number k, let us colour Mr(G)

as follows: for all i ∈ [r] and for all v ∈ V (G), c(pi(v)) = c(p1(v)) = c(v), and let z be

the sole element of some new colour class Ck+1. Then this (k + 1)-colouring is proper

precisely because the colouring c of G is proper, so we observe that χ(Mr(G)) ≤ χ(G) + 1,

as required.

However, while, for r = 1, 2, χ(Mr(G)) = χ(G) + 1, it is not the case that this equality

holds for general r. In particular, the graph G shown in Figure 2.2 is a counterexample to

this assertion, as it satisfies χ(M3(G)) = χ(G) = 4.

As we suggested at the beginning of this section, the key to using the generalized Myciel-

skian construction as a tool for increasing the chromatic number of a graph is understanding
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Figure 2.2: A Graph for which Applying the Generalized Mycielskian Construction does

not Always Increase the Chromatic Number

its topological properties. Now, we will describe a theorem of Gyárfás, Jensen and Stiebitz

[15] which displays precisely how the generalized Mycielskian construction effects the topol-

ogy of the neighbourhood complex. While not essential, we can make our lives easier by

proving this result in two steps. Firstly, we will prove that the result of this construction

applied to the neighbourhood complex of a graph G is isomorphic to the neighbourhood

complex to the generalized Mycielskian of G. This is essentially just a reorganization of the

simplices of the neighbourhood complex of the generalized Mycielskian of a graph into a

more convenient form. We will then show that the result construction we have defined on

any simplicial complex K is homotopy equivalent to S(K) from which it follows that the

neighbourhood complex of the generalized Mycielskian of a graph G is homotopy equivalent

to S(N(G))).

Let K be a simplicial complex. Then for r ≥ 1, we construct a new simplicial com-

plex Mr(K) = Mr(K, q1, q2, ..., qr) as follows. For 1 ≤ i ≤ r let qi : V (K) → Yi be a

bijection, where Y1, ..., Yr are any pairwise disjoint sets in bijection with V (K) accord-

ing to the bijection qi. Additionally, let ∆0 = {A : ∅ 6= A ⊆ Y1}, for 1 ≤ i ≤ r − 1 let

∆i := {A : ∅ 6= A ⊆ qi(B)∪qi+1(B) for some B ∈ K}, and let ∆r = {A : ∅ 6= A ⊆ qr(B)∪{z}
for some B ∈ K}, where z is some additional vertex in none of the Yi. Then the vertices

and simplices of Mr(K) are as follows.

V (Mr(K)) := (

r⋃
i=1

Yi) ∪ {z} (2.3)

∆(Mr(K)) :=

r⋃
i=1

∆i (2.4)
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Now, before we dive right into proving Gyárfás, Jensen and Stiebitz’s theorem, let us

build some intuition about the construction we have just defined. Consider the following

pictorial representation of the generalized Mycielskian construction applied to some graph

G for some fixed r ∈ N.

G X1

X2

Xr−1

Xr

z

Figure 2.3: A Pictorial Representation of the Generalized Mycielskian Construction

Note that the collection of simplices of Mr(N(G)) which we call ∆0 looks just like the

neighbourhood of z, so if it were to happen that Mr(N(G)) and N(Mr(G)) were precisely

the same simplicial complex, then most likely Y1 = q1(V (N(G))) = Xr. Now, if we make

this assumption and want our new construction to correspond with the neighbourhood

complex of the generalized Mycielskian, then, as ∆1 := {A : ∅ 6= A ⊆ q1(B) ∪ q2(B) for

some B ∈ N(G)}, we must have that Y2 = q2(V (N(G))) = Xr−2. Similar reasoning then

continues to determine that Yi = qi(V (N(G))) = Xr−2i+2 until we reach either X2 or

X1 (which one we arrive at first, of course, depends on the parity of r). If we reach X2

first (r is even), then, by identical reasoning, the next Yi must be X1, after which we are

forced to proceed in defining the remaining Yi by successively increasing odd Xj starting

from X3. For the odd r case, we reason identically, save that we proceed upwards along

even indices in defining the remaining Yi. Eventually, we will then find that we will have

defined all sets Yi in terms of the sets Xj and identified all the simplices of N(Mr(G)),
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except for those corresponding to the neighbourhoods of vertices in Xr, with the simplices

in
⋃r−1
i=1 ∆i. However, this is perfect, as we now simply observe that ∆r consists of precisely

those simplices corresponding to the neighbourhoods of vertices in Xr. In summary, we

have proved the lemma below.

Lemma 5. For any graph G and for all r ≥ 1, Mr(N(G)) ∼= N(Mr(G)).

With the lemma above at our disposal, we can now establish Gyárfás, Jensen and

Stiebitz’s result with relative ease. We will, however, need to introduce a new definition.

The suspension S(K) of a simplicial complex K is the simplicial complex K ∗ S0. Using

this definition, one can easily establish that the geometric realization of S(K) is homotopy

equivalent to the quotient space (K × [0, 1]) \ (K × {0},K × {1}). We will need both of

these characterizations.

Theorem 5. For any graph G and for all r ≥ 1, N(Mr(G)) is homotopy equivalent to

S(N(G)).

Proof. Firstly, let us use the identification in Lemma 5, to note thatMr(N(G)) = N(Mr(G)).

Thus, it is more than sufficient to show that Mr(K) is homotopy equivalent to S(K) for

any simplicial complex K. To do so, let us note that that for any 1 ≤ i ≤ r, the simplicial

complex defined by Ki := (Yi, {qi(A) : A ∈ K}) is an isomorphic copy of K. Moreover,

using this notation, we observe that (Yr ∪ {z},∆r) is the cone of Kr with apex z, and

(Y1,∆0) is a simplex. Consequently, both of these subcomplexes of Mr(K) are collapsible

(as simplices are collapsible, and, for any cone K ∗ {x}, provided that K is non-empty, for

any point x, we can always collapse K ∗ {x} to (K ∗ {x}) \ {A,A ∪ {x}}, where A is any

maximal simplex of K, resulting in the cone (K \ {A}) ∗ {x}). So, let’s make note of the

fact that these subcomplexes are collapsible, and then consider the other subcomplexes of

Mr(K).

For each 1 ≤ i ≤ r − 1, (Yi ∪ Yi+1,∆i) is equal to Ki ∗Ki+1. Now, taking advantage of

the equivalence between the simplicial and geometric definitions of the join (a proof of this

equivalence is sketched in [27]), we observe that as all of the Ki are isomorphic ot K, each

of the Ki ∗Ki+1 is homotopy equivalent to K × I. Moreover, for each 1 ≤ i ≤ r − 1, the

intersection of Ki−1 ∗Ki and Ki ∗Ki+1 is Ki. Thus,

(
⋃r
i=1 Yi,

⋃r−1
i=1 ∆i)
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is homotopy equivalent to K × [0, r − 1].

Consequently, as Mr(K) consists of the union above together with its collapsible sub-

complexes (Yr ∪ {z},∆r) and (Y1,∆0), we see that, upon collapsing these collapsible sub-

complexes to single vertices in Yr and Y1, respectively, Mr(K) is homotopy equivalent to

the quotient space K × [0, r − 1]/ ∼, where (x, 0) ∼ (y, 0) and (x, r − 1) ∼ (y, r − 1) for all

x, y ∈ K, which is homotopy equivalent to K×I/ ∼, where (x, 0) ∼ (y, 0) and (x, 1) ∼ (y, 1)

x, y ∈ K. However, this is precisely the definition of the suspension S(K) of the geometric

realization of a simplicial complex K. Therefore, Mr(K) is homotopy equivalent to S(K)

for any simplicial complex K, which completes our proof.

With the theorem we have just proven in hand, all that remains is to determine the

connectivity of the suspension of a simplicial complex in terms of the connectivity of the

original complex. This relation is determined by a straightforward corollary of the well-

known Mayer-Vietoris and Seifert and Van Kampen theorems from algebraic topology.

These theorems may be found in nearly any text on the subject, but for proofs of the

versions we prefer, we suggest that the interested reader consult [32] and [26], respectively.

Seifert and Van Kampen Theorem. Let X be a topological space, and suppose that U

and V are path-connected open sets of X such that X = U∪V , U∩V 6= ∅ and U∩V is path-

connected. Select a base point x0 ∈ U ∩ V for all fundamental groups under consideration.

Then let H be any group, and let f1, f2, f3 be any three group homomorphisms such that the

following diagram commutes:

π(U)
f1

!!CC
CC

CC
CC

π(U ∩ V )

g1
99sssssssss f3 //

g2

%%KKKKKKKKK H

π(V )

f2

=={{{{{{{{

where the group homomorphisms g1 and g2 are induced by the usual inclusion maps.

Then there exists a unique group homomorphism h : π1(H)→ H such that the following

diagram is commutative for each of Y = U, V, U ∩ V and j = 1, 2, 3, respectively:
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π1(X)

h

��

π1(Y )

i
::uuuuuuuuu

fj

$$JJJJJJJJJJ

H

where i is the group homomorphism induced by the usual inclusion map for each of Y =

U, V, U ∩ V .

Mayer-Vietoris Theorem. Let K be a simplicial complex, and let K0 and K1 be subcom-

plexes of K such that K = K0∪K1. Additionally, let A := K0∩K1. Then there is an exact

sequence

...→ Hp(A)→ Hp(K0)⊕Hp(K1)→ Hp(K)→ Hp−1(A)→ ...

called the Mayer-Vietoris sequence of (K0,K1). Moreover, the same exact sequence exists

in reduced homology provided that A 6= ∅.

Corollary 5. Let K be an n-connected simplicial complex. Then S(K) is (n+1)-connected.

Proof. Our proof proceeds in three steps. Firstly, we observe that the suspension of a

disconnected simplicial complex is 0-connected, as each of the the two new vertices added

to K are joined to all of K’s vertices by 1-simplices (edges).

Secondly, using the Seifert-Van Kampen theorem, we can establish that the suspension

of a 0-connected simplicial complex is 1-connected. To do so, recall that, for some arbitrary

points a and b, S(K) := K ∗ {a, b}, so the complements of a and b, respectively, are K ∗ {b}
and K ∗ {a}. Both of these are cones of K, and we showed in the proof of Theorem 5

that cones are collapsible. Thus, S(K) is the union of two contractible simplicial complexes

whose intersection is the 0-connected (path-connected) simplicial complex K. Consequently,

by the Seifert and Van Kampen theorem (here, we do not concern ourselves with the choice

of base point, as, for path-connected spaces, all choices of base points lead to isomorphic

fundamental groups [26]), π1(S(K)) = π1(K ∗{a})∪π1(K ∗{b}) is equal to the free product

of π1(K ∗ {a}) and π1(K ∗ {b}), both of which are 0. Thus, π1(S(K)) = {0}, whence S(K)

is 1-connected.

37



Finally, we will use a Mayer-Vietoris sequence in reduced homology to establish that

for any simplicial complex K, and for all p ∈ N, H̃p(S(K)) ∼= H̃p−1(K). Taken together

with the Hurewicz theorem, this result implies that for all n ≥ 1, if K is n-connected, then

K is (n + 1)-connected. So, using once more the fact that S(K) is the union of K ∗ {a}
and K ∗ {b}, a pair of contractible simplicial complexes with intersection K, we have the

following Mayer-Vietoris sequence (in which we let X := K ∗ {a} and Y := K ∗ {b}):

...→ H̃p(X)⊕ H̃p(Y )→ H̃p(S(K))→ H̃p−1(K)→ H̃p−1(X)⊕ H̃p−1(Y )→ ...

Hence, as H̃p(X) and H̃p(Y ) are both trivial, we observe that H̃p(S(K)) ∼= H̃p−1(K), as

required.

In essence, this corollary tells us that if B(G), N(G) or L(G) is n-connected and χ(G) =

n + 3, then for any r ∈ N, Mr(G) is topologically (n + 4)-chromatic. For example, by

precisely this reasoning, as we established in Proposition 9 that any connected 3-chromatic

graph G has a 0-connected neighbourhood complex, it follows that applying any generalized

Mycielskian transformation to such a G yields a topologically 4-chromatic graph. However,

we should caution the reader here, as it is not the case that applying any generalized

Mycielskian transformation to any topologically k-chromatic graph yields a topologically

(k+1)-chromatic graph. In particular, in his Ph.D. thesis, Peter Csorba studied non-tidy

Z2-spaces (spaces whose coindex and index are not equal). For such spaces, it may happen

that conn(X) < ind(X) = ind(S(X)). That there exist graphs whose box complexes have

this property is a result of Csorba [7] which will not be discussed in this thesis. Fortunately,

in most of our applications, we will obtain our topological lower bounds through determining

connectivity, in which case Corollary 5 tells us that applying any generalized Mycielskian

construction to a topologically n-chromatic graph yields a topologically (n + 1)-chromatic

graph.

2.3 Categorical Products and Unions of Graphs

In this section, we will study two constructions which have a well-understood effect upon

the topology of the box complex of a graph. Understanding how taking categorical products

effects the topology of the box complex will allow us to establish a topological version of
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Hedeteniemi’s conjecture, and will also provide us with insights into some properties of

topologically k-chromatic graphs in the next chapter. Applications of the result we shall

prove on unions of graphs will not be quite so immediately apparent, but it can frequently

be used to simplify theoretical computations involving the box complex when G is a union

of induced subgraphs.

Now, let us recall the definition of the categorical product of a pair of graphs. Given

a pair of graphs G and H, we say that the categorical product G × H of G and H is

the graph with V (G × H) := V (G) × V (H) and E(G × H) := {{g1h1, g2h2} : g1, g2 ∈
G, h1, h2 ∈ H, g1 ∼ g2, h1 ∼ h2}. An important and long studied conjecture in the study of

the categorical products is Hedetniemi’s conjecture, which we will now state.

Hedetniemi’s Conjecture. Let G and H be graphs. Then χ(G×H) = min{χ(G), χ(H)}.

Of course, proving that χ(G×H) ≤ min{χ(G), χ(H)} is easy. In fact, if, without loss

of generality, we suppose that χ(G) ≤ χ(H), then it suffices, to simply colour every vertex

gihi ∈ G×H with the colour of gi, since this is a colouring with χ(G) colours, and for any

g1h1 ∼ g2h2 in G×H, we must have g1 ∼ g2.

Unfortunately, establishing the lower bound on the chromatic number is far more dif-

ficult. However, this makes Hedetniemi’s conjecture a natural result to approach using

methods for placing topological lower bounds on the chromatic number of a graph. Of

particular use to us is the following theorem (which is a special case of a result of Kozlov

[22]).

Theorem 6. For any graphs G and H, B(G×H) ∼= B(G)×B(H).

Proof. Our strategy is to define an ascending closure operator on P (B(G×H)) whose image

is isomorphic to P (B(G)) × P (B(H)). Note, that here we are using a new product: the

product of posets. For a pair of posets P and Q, this product is defined on the ground

set V (P ) × V (Q) by p1q1 ≤ p2q2 if p1 ≤ p2 and q1 ≤ q2. It is also important to think

of the product of CW-complexes carefully. We have not offered any proof thus far that

the product space of a pair of simplicial complexes is a simplicial complex, and we will

not do so. Instead, we think of B(G) and B(H) as regular CW-complexes, and make

note of the definition of the product of two regular CW-complexes offered by Massey [26].

He establishes that this definition actually gives a regular CW-complex which corresponds
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precisely with the definition of the product of topological spaces. We will use this result,

but omit its proof.

Let K and L be a pair of regular CW-complexes. Then we define their product K × L
as the CW-complex which has as its n-skeleton

Xn :=
⋃
p+q=nK

p × Lq

where Kp is the p-skeleton of K and Lq is the q-skeleton of L. In this case, we see that

the product of a p-cell and a q-cell is a single (p+ q)-cell, and the attaching map of such a

product cell is the product of the attaching maps.

With this definition in hand, we easily observe that a (p + q)-cell A1 × B1 ∈ K × L is

contained in a cell A2×B2 ∈ K×L if and only if A1 ⊆ A2 and B1 ⊆ B2. Consequently, the

order complex operator commutes with the product of posets, so we see that ∆(P (B(G))×
P (B(H))) = ∆(P (B(G))) × ∆(P (B(H))) ∼= B(G) × B(H). Thus, if we can find the

ascending closure operator we desire, then our proof will be complete.

Firstly, let’s denote by pG : V (G)× V (H)→ V (G) and pH : V (G)× V (H)→ V (H) the

usual projection mappings. Then 2pG : 2V (G)×V (H) → 2V (G) and 2pH : 2V (G)×V (H) → 2V (H)

are the corresponding mappings induced on the power set of V (G)× V (H).

Now, define f : P (B(G×H))→ P (B(G×H)) by

f(A ]B) := (2pG(A)× 2pH (A)) ] (2pG(B)× 2pH (B))

for all A ]B ∈ P (B(G×H)).

Before proceeding further, we should show that this map is well-defined. To do so, we

must demonstrate that for any A ] B ∈ P (B(G × H)), f(A ] B) = (2pG(A) × 2pH (A)) ]
(2pG(B) × 2pH (B)) ∈ P (B(G × H)). So suppose that aGaH ∈ 2pG(A) × 2pH (A) and that

bGbH ∈ 2pG(B) × 2pH (B). Then for each pair of vertices vG ∈ aG and uG ∈ bG, vG ∼ uG.

Similarly, for each pair of vertices vH ∈ aH and uH ∈ bH , vH ∼ uH . Thus, uGuH ∼ vGvH ,

whence all the vertices of aGaH are joined to all the vertices of bGbH in the graph G×H.

Consequently, as we desired, im(f) ⊆ P (B(G×H)).

Now, since the map f which we have defined is order-preserving, while f2 = f and

A ] B ⊆ f(A ] B) are obvious from the definition of f , consequently, f is an ascending

closure operator. Therefore, by Theorem 3, ∆(P (B(G × H))) collapses onto ∆(im(f)).
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Hence, all that remains is to show that im(f) is isomorphic to P (B(G)) × P (B(H)). So

define g : P (B(G))× P (B(H))→ im(f) by

g((AG ]BG)× (AH ]BH) := (AG ×AH) ] (BG ×BH)

for all AG ] BG ∈ P (B(G)) and for all AH ] BG ∈ P (B(H)). The well-definedness of g

follows from a similar argument to the one we gave above for the well-definedness of f , and

injectivity is trivial. Additionally, g is surjective, as if (AG × AH) ] (BG × BH) ∈ im(f),

then there exist complete bipartite subgraphs A and B of G ×H such that AG = 2pG(A),

AH = 2pH (A), BG = 2pG(B) and BH = 2pH (B). Consequently, by the definition of the

categorical product, AG ] BG is a complete bipartite subgraph of G, and AH ] BH is a

complete bipartite subgraph of H, as required.

Knowing that the box product of the categorical products of a pair of graphs is homotopy

equivalent to the topological product of the box complexes of the graphs is extremely useful,

as the behaviour of the fundamental group and homology groups under the topological

product is extremely well-understood. In particular, we have the following two well-known

propositions (proofs of which may be found in [26] and [32], respectively).

Proposition 12. If X and Y are path-connected topological spaces, then π1(X × Y ) ∼=
π1(X)× π1(Y ).

Proof. Let X and Y be path-connected topological spaces, and let Z be a topological space.

Then, in the product topology, a map f : Z → X × Y is continuous if and only if the maps

g : Z → X and h : Z → Y defined by f(z) = (g(z), h(z)) for all z ∈ Z are both continuous.

Thus, the existence of a map f : S1 → X × Y is equivalent to the existence of a pair of

maps g : S1 → X and h : S1 → Y . Similarly, the existence of a homotopy ft : S1 → X × Y
is equivalent to the existence of a pair of homotopies gt : S1 → X and ht : S1 → Y .

Consequently, the map r : π1(X × Y ) → π1(X) × π1(Y ) defined by r([f ]) = ([g], [h]) is a

bijection and group homomorphism. Thus, π1(X × Y ) ∼= π1(X)× π1(Y ), as required.

Kunneth Theorem. Let X and Y be topological spaces, and let F be a field. Then for all

k ∈ Z+

⊕
i+j=kHi(X,F )⊗Hj(Y, F ) ∼= Hk(X × Y, F ).
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Thus, we easily see that, by Hurewicz’s theorem, if B(G) and B(H) are n-connected,

for some n ∈ N, then B(G)×B(H) is n-connected as well. Indeed, we have now established

the following theorem (sometimes called a topological version of Hedetniemi’s conjecture).

Theorem 7. If B(G) and B(H) are (k − 3)-connected, then G × H is topologically k-

chromatic.

The proposition we will now state on unions of graphs is a result of Csorba which he

used (in conjunction with other tools) in order to determine that the box complex of any

chordal graph is homotopy equivalent to a wedge of spheres [8]. We will not reproduce all

of Csorba’s work on this problem here, but will prove the result on unions of graphs which

we discussed at the beginning of this section using discrete Morse theory.

Proposition 13. Let G be the union of two distinct induced subgraphs G1 and G2. Then

B(G) is homotopy equivalent to B(G1) ∪B(G2).

Proof. Firstly, let us note that B(G1)∪B(G2) ⊆ B(G), so we may let S = B(G)\ (B(G1)∪
B(G2)). We will also let N = G1 ∩G2 be the intersection graph of G1 and G2 (the induced

subgraph of G on the vertex set V (G1) ∩ V (G2)).

Now, let A1]A2 be a simplex of S. By the definition of S and the definition of G, A1∪A2

must contain a vertex u ∈ V (G1) \ V (N) and a vertex v ∈ V (G2) \ V (N). Additionally,

note that we cannot have u ∈ Ai and v ∈ Ai+1(mod2) for either i = 1 or i = 2, as uv /∈ E(G).

Moreover, if for either i = 1 or i = 2 we have x, y ∈ Ai, then Ai+1(mod2) ⊆ N since G[A1, A2]

is complete bipartite. Consequently, we obtain that if A1 ]A2 ∈ S, then either

(1) A1 ⊂ N , A2 ∩ (V (G1) \ V (N)) 6= ∅ and A2 ∩ (V (G2) \ V (N)) 6= ∅; or

(2) A2 ⊂ N , A1 ∩ (V (G1) \ V (N)) 6= ∅ and A1 ∩ (V (G2) \ V (N)) 6= ∅.
Now, suppose that we let V (N) = [n] for some positive integer n and let A ⊆ V (G) be

a set satisfying NG(A) ∩ V (N) 6= ∅. For such an A, we then define a vertex g(A) ∈ V (N)

by g(A) = min{CNG(A) ∩ V (N)}. With this definition in hand, we are ready to define a

useful partial matching on P (B(G)). Note that for any A1 ] A2 ∈ P (B(G)), either (1) or

(2) holds.

For any A1 ]A2 ∈ S satisfying (1), we define f(A1 ]A2) = (A1 ∪ g(A2))]A2 whenever

g(A2) ∈ A1. Similarly, for any A1 ] A2 ∈ S satisfying (2), we define f(A1 ] A2) = A1 ]
(A2 ∪ g(A1)) whenever g(A1) ∈ A2.
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We want to show that, in either case, f is a partial acyclic matching. To establish this

fact, we must first show that f is well-defined. By symmetry, it is sufficient to demonstrate

this fact for any A1 ] A2 ∈ S which satisfies (1). If g(A2) /∈ A1, then, since g(A2) ∈
CNG(A2), (A1 ∪ g(A2)) ]A2 ∈ P (B(G)), as required.

We will show acyclicity by contradiction. Once again, we will only prove the result

we need for A1 ] A2 ∈ S satisfying (1), but, by symmetry, it holds in both cases. If

we want to form a directed cycle in D(A, f), then we may assume that the cycle begins

with the simplex A1 ] A2 satisfying (1), and then immediately goes up to the simplex

f(A1 ] A2) = (A1 ∪ g(A2)) ] A2. Note that when we go up, we can only add either a

vertex of N and that A1 ⊆ N . Thus, by going upwards, we can only reach simplices which

satisfy (1). In going down, we must delete something. If that something is in A2, then we

cannot have a cycle, as we cannot add by a matching to the second set. If we delete from

A1, then the resulting simplex is already matched to a vertex below it by deleting g(A2).

Consequently, once more, we cannot have a cycle.

Thus, as the critical simplices of the matching are the simplices of B(G1) ∪ B(G2), we

are done by Proposition 5.

2.4 Folds

In the last section, we discussed global constructions one can perform on a graph which

have a well-understood effect on the homotopy type of the box complex associated to a

graph. However, there is also a place for local operations. Unfortunately, most of our usual

operations from graph theory do not seem to have effects on the topology of B(G) which

are both useful and easily understood. In order to obtain easily an understood and useful

effect (such as homotopy equivalence), we generally have to place fairly stringent demands

upon the local structure of G. Perhaps, the best known local operation we can perform on

a graph which preserves its homotopy type is folding a graph at a vertex v, and, as we will

see, folding requires quite strong conditions on the local structure of G near v.

Let G be a graph, and let v ∈ V (G). Then we call the graph G − v a fold of G if

there exists a vertex u ∈ V (G) such that u 6= v and N(v) ⊆ N(u). We can easily prove

folding induces a homotopy equivalence between B(G) and B(G − v) using ascending and

descending closure operators.
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Theorem 8. Let G− v be a fold of G. Then B(G− v) ∼= B(G).

Proof. Firstly, note that as G−v is a fold of G, there exists some u ∈ V (G) such that u 6= v

and N(v) ⊆ N(u). Additionally, it will be useful to define X, a subposet of P (B(G)), as

the the collection of all A ] B ∈ P (B(G)) such that A ∩ {u, v} 6= v and B ∩ {u, v} 6= v.

Note that P (B(G− v)) ⊆ X ⊆ P (B(G)).

The strategy of our proof will be to construct an ascending closure operator f : P (B(G))→
X, and then we will construct a descending closure operator g : X → P (B(G− v)). So let

us begin be defining f on an arbitrary A ]B ∈ P (B(G)).

f(A ]B) =


(A ∪ {u}) ]B if v ∈ A
A ] (B ∪ {u}) if v ∈ B

A ]B otherwise

Note here, that, by definition of B(G), it cannot be the case that v ∈ A and v ∈ B.

Thus, as N(v) ⊆ N(u), (A ∪ {u}) ]B is a complete bipartite subgraph of X provided that

v ∈ A, and, similarly, A ] (B ∪ {u}) is a complete bipartite subgraph of X provided that

v ∈ B, f is well-defined. Hence, as f is also easily seen to be order-preserving, f2 = f and

f(A]B) ≥ A]B for any A]B ∈ P (B(G)), f is an ascending closure operator. Moreover,

im(f) = X, so ∆(P (B(G))) collapses onto ∆(X).

Now, let’s show that ∆(X) collapses onto ∆(P (B(G − v))). To do so, define g : X →
P (B(G− v)) by

g(A ]B) =


(A \ {v}) ]B if v ∈ A
A ] (B \ {v}) if v ∈ B

A ]B otherwise

We observe that g is obviously order-preserving, g2 = g and g(A ]B) ≤ A ]B for any

A ] B ∈ X, so all that remains in order to show that g is a descending closure operator

is to note that g is well-defined. Well-definedness follows from the fact that the image of

g corresponds with the complete bipartite subgraphs of G which do not contain v, all of

which are represented by elements of X. Moreover, as the complete bipartite subgraphs of

G which do not contain v are precisely those represented by simplices in B(G− v), we see

that im(g) = P (B(G− v)), whence ∆(X) collapses onto ∆(P (B(G− v))).
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Consequently, as homotopy equivalence is transitive, B(G− v) ∼= B(G).

Here, we should note that folding obviously does not increase the chromatic number of

G, and, so, consequently, it is an example of a local operation which not only preserves the

homotopy type of the box complex, but also preserves the property of being topologically

k-chromatic.
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Chapter 3

Structure

3.1 The Zig-Zag Theorem

In the previous chapter, we introduced a number of methods for constructing graphs with

topological colouring bounds. However, besides a brief proposition in the introduction of

the chapter providing some simple necessary conditions for a graph to have a particular

topological colouring bound, we refrained from saying anything about the structure and

properties of these graphs. In this chapter, our focus will be upon fleshing out the the

structure of graphs which admit topological colouring bounds. Perhaps the most important

result in this direction is the Zig-Zag Theorem of Simonyi and Tardos [37]. The result itself

is not difficult given Ky Fan’s Theorem (which we established in Chapter 1). However, its

proof will require studying a slightly different box complex than the one we have used up

to this point.

B0(G) := {A1 ]A2 : A1, A2 ⊆ V (G), A1 ∩A2 = ∅, G[A1, A2] is complete bipartite }.

This complex differs from our previous box complex in that we have dropped the con-

dition that CN(A1) 6= ∅ 6= CN(A2). Consequently, we now have the simplices V (G) ] ∅
and ∅ ] V (G), which were absent from B(G). For the moment, we will not address the

relation between the topologies of our two box complexes in favour of swiftly establishing

the Zig-Zag Theorem. However, once this is done, we will show that our new box complex

is actually homotopy equivalent to the suspension of our old box complex.

Zig-Zag Theorem. Let G be a graph such that Coind(B0(G)) ≥ t − 1, and let c be any
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proper colouring of G with any number of colours. Moreover, suppose that the colours of

c are linearly ordered. Then G contains a complete bipartite subgraph Kd t
2
e,b t

2
c such that

all t vertices of this subgraph are assigned distinct colours by c and such that these colours

appear alternating on the two sides of the complete bipartite subgraph with respect to their

order.

Proof. As Coind(B0(G)) ≥ t − 1, there exists a Z2-map f : St−1 → B0(G). We want to

apply Ky Fan’s theorem to open sets representing the colour classes of the proper colouring

given to us by our theorem, so we will now define open sets covering St−1 based upon the

colouring c which meet the hypotheses of Ky Fan’s theorem.

For any colour i, let’s define a set Ai ⊆ St−1 by letting x ∈ Ai if and only if for the

minimal simplex of B0(G) containing f(x), which we shall denote by Ux ] Vx, there exists

a vertex z ∈ Ux such that c(z) = i. Each of these sets Ai is then the preimage of a union

of open sets, so it is open. Additionally, while the collection of sets {Ai} may not cover

the sphere, we can easily show that ∪i(Ai ∪ −Ai) = St−1. To see this fact, note that if

x ∈ −Ai, then −x ∈ Ai, which happens precisely when there exists a vertex y ∈ U−x such

that c(y) = i. Now, note that U−x = V(x), so, for each x ∈ St−1, either Ux or Vx is non-

empty. Consequently, ∪i(Ai∪−Ai) = St−1, as required. Now, seeking a contradiction, let us

suppose that for some colour i we have Ai∩−Ai 6= ∅, and let x be a point in this intersection.

Then there exists a vertex y ∈ Ux and a vertex z ∈ Vx such that c(y) = c(z) = i. However,

the definition of B0(G) tells us that y and z are connected in G, contradicting the fact that

c is a proper colouring. Thus, for any colour i, Ai ∩−Ai 6= ∅, so the collection of open sets

{Ai} satisfies the hypotheses of version (2) of Ky Fan’s Theorem.

Applying version (2) of Ky Fan’s Theorem to our collection of sets {Ai}, we see that

for any linear ordering of the colours i1 < i2 < ... < it of c, there exists a point x ∈ St−1

such that (−1)jx ∈ Aij for each j ∈ [t]. Consequently, for each such j, there exists a vertex

zj ∈ U(−1)jx such that c(zj) = ij . Now, noting that U(−1)jx = Ux for even j and U(−1)jx = Vx

for odd j, we see that the complete bipartite subgraph with sides {zj : j is even} and

{zj : j is odd} is a subgraph of G with the properties we desire.

Consequently, as we may linearly order the colours of any given colouring of a graph G

however we like, we actually obtain many totally multicoloured copies of Kd t
2
e,b t

2
c. If we

restrict ourselves to examining topologically t-chromatic graphs, then we actually obtain all
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possible colourings.

The relationship between B0(G) and B(G) is not difficult to establish, and the proof is

quite similar to a number of arguments we made in Chapter, so we state this relationship

without proof. In its full generality, this result was originally proved by Csorba in [7].

Proposition 14. B0(G) is homotopy equivalent to the suspension of B(G).

Consequently, we can easily discern the relationship between the coindex of the B0(G)

and the coindex of B(G).

Observation 2. For any Z2-space X, Coind(susp(X)) ≥ Coind(X) + 1.

Proof. Recall the topological definition of suspension. For any topological space X, the

suspension of X is the topological space obtained from X × [−1, 1] by identifying all the

points in X × {−1} and all the points in X × {1}. Consequently, if ν is a fixed point-free

involution on X, then the map τ : X × [−1, 1]→ X × [−1, 1] defined by τ(x, t) = (ν(x),−t)
is a fixed point free involution on X× [−1, 1]. Thus, given any Z2-map f : Snα → X, the map

g : susp(Snα) ∼= Sn+1
α → susp(X) defined by g(x, t) = (f(x), t) is a Z2-map. Consequently,

Coind(susp(X)) ≥ Coind(X) + 1, as required.

An obvious consequence of this result is that if Coind(B(G)) ≥ t−2, then Coind(B0(G)) ≥
t − 1, so we may apply the Zig-Zag Theorem to graphs with topological colouring bounds

of the kinds we considered in the first two chapters. Applications of this kind will play

prominent roles in the next two sections of this chapter.

3.2 Circular Chromatic Number

For positive integers p and q, a colouring c : V (G) → [p] of a graph G is called a (p,q)-

colouring if, for any pair of adjacent vertices u and v in G, q ≤ |c(u) − c(v)| ≤ p − q.

Given this definition, we then define the circular chromatic number of G as χc(G) := {pq :

G has a (p, q)− colouring}.
Interest in the circular chromatic number has grown in recent years as an interesting

refinement of the usual chromatic number. Two useful references on this subject are Bondy

and Hell’s paper [3], which introduces the circular chromatic number (although they call

it the star chromatic number) in an intuitive combinatorial setting and Zhu’s wide-ranging
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survey of the area [43]. In the first of these (along with many other places), one will find

the easy fact that for any graph G, χ(G)− 1 < χc(G) ≤ χ(G). More interesting for us are

two conjectures Zhu proposed near the end of his survey. First, he wondered whether there

might be a version of Hedetniemi’s conjecture for the circular chromatic number, and then

he asked whether the circular chromatic number always equals the chromatic number for

Kneser graphs. As far as we know, both of these problems are still open. However, the

second of these questions may be answered for Kneser graphs with even chromatic number

by the proposition below (originally proved by Simonyi and Tardos [37]). Determining

whether or not χc(G×H) = min{χc(G), χc(H)} is, naturally, far harder. However, we will

also provide some support for this conjecture by proving this statement for graphs with

topological colouring bounds.

Proposition 15. Let t be an even positive integer, and let G be a topologically t-chromatic

graph. Then χc(G) = t.

Proof. This fact follows easily from the Zig-Zag Theorem, as, by said theorem, given any

t-colouring c of any topologically t-chromatic graph (for even t) G, G contains a copy

of K t
2
, t
2

as a subgraph which is multicoloured by the colours of c. Moreover, given any

linear ordering of the colours of c, the colours of c appear in an alternating manner on

the two sides of K t
2
, t
2
. Thus, if we let these colours be c1 < c2 < ... < ct, then, as, for

each i ∈ [t − 1], the vertex coloured ci is adjacent to the vertex coloured ci+1, we have

ci+1 ≥ ci + q, whence ct ≥ c1 + (t − 1)q. Additionally, as t is even, the vertices coloured

c1 and ct are adjacent, so we also have ct − c1 ≤ p − q. Combining our two inequalities,

we then have p − q ≥ ct − c1 ≥ (t − 1)q, whence p
q − 1 ≥ t − 1, which implies that p

q ≥ t.

Therefore, t = χ(G) ≥ χc(G) ≥ t, from which it follows that χc(G) = t.

Corollary 6. Let k and l be positive integers such that k is even and k ≤ l. Then if G and

H are topologically k- and l-chromatic graphs, then χc(G×H) = χc(G).

Proof. This corollary follows easily by combining Theorem 7 with Proposition 15.

3.3 Quadrangulations and Colour-Critical Graphs

In chapter 2, we devoted much effort to examining the topological properties of the general-

ized Mycielskian construction. However, this construction is also related rather intimately

49



to quadrangulations of the projective plane and edge-critical graphs. For the remainder

of this section, when we refer to critical graphs, we will always mean edge-critical graphs.

Following Mohar, Simonyi and Tardos [30], we define the quadrangulation of a surface S to

be a loopless graph embedded on S in such a way that all of its faces are quadrilaterals. The

focus of this section will be on connections between the 4-critical topologically 4-chromatic

graphs and quadrangulations of the projective plane. However, this focus will not stop us

from dealing with more general results, such as the following proposition due to Gyárfás,

Jensen and Stiebitz [15].

Proposition 16. Let G be a k-critical graph (k ≥ 2). Then if χ(Mr(G)) = k+ 1 (for some

r ∈ Z+), then Mr(G) is (k + 1)-critical.

Proof. It suffices to show that Mr(G) − e has a k-colouring for every edge e ∈ E(Mr(G)).

Following Gyárfás, Jensen and Stiebitz, we will distinguish three cases.

Case 1. If e ∈ E(G), then there exists a (k − 1)-colouring of G− e, whence, as Mr(G)−G
is bipartite, we can extend this colouring to a k-colouring of Mr(G)− e.

Case 2. If e = pi(a)pi+1(b) for some 1 ≤ i ≤ r − 1, then ab ∈ E(G). There is a (k − 1)-

colouring c of G− ab, as G is k-critical, so, since G is not (k− 1)-colourable, we must have

that c(a) = c(b).

Now, define a map g as follows for any 1 ≤ j ≤ i and any x ∈ V (G):

g(pj(x)) =

 c(x) if x 6= b

k if x = b.

Furthermore, let g(pi+1) = c(x) for all x ∈ V (G). Then g is a k-colouring of the

subgraphMr(G)[X1 ∪X2 ∪ ... ∪Xi+1] which we may extend to a k-colouring of Mr(G)− e
by letting g(pl(x)) = c(x) for all l ≥ i+ 1.

Case 3. If e = pr(x)z for some vertex x ∈ V (G), then, as G is k-critical, there is a k-

colouring c of G such that c(y) = k only for y = x. So, if we color each vertex pi(x) with

c(x) and colour the new vertex z with the colour k, then this colouring is a k-colouring of

Mr(G)− e.
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To connect the 4-critical quadrangulations of the projective plane with the 4-critical

generalized Mycielskians, we naturally observe that any generalized Mycielskian of an odd

cycle is a 4-critical graph (as, by the results of chapter 2, it is 4-chromatic). It is also a

4-critical quadrangulation of the projective plane, as we can see by considering adding rows

(for higher r) and lengthening the central cycle in Figure 3.1.

M5(C11)

Figure 3.1: The Generalized Mycielskian Construction Applied to an Odd Cycle Drawn as

a Quadrangulation of the Projective Plane

These 4-critical quadragulations of the projective plane have an additional property

originally established by Youngs [42]. Youngs proved that a non-bipartite quadrangulation

of the projective plane is 4-critical if and only if all of its 4-cycles are facial. Having

established that any generalized Mycielskian of an odd cycle is 4-critical, it is not hard to

establish a converse.

Corollary 7. Let G be 3-chromatic. Then Mr(G) is 4-critical if and only if G is an odd

cycle.
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Proof. That Mr(G) is 4-critical if G is an odd cycle is established in Proposition 16. Con-

versely, if Mr(G) is 4-critical, then deleting any one of its edges must result in a 3-chromatic

graph. In particular, this holds for any edge e ∈ E(G). However, observe that if G is

3-chromatic, then if we delete all of its edges except for an odd cycle, the generalized

Mycielskian of the resulting graph is still 4-chromatic. This generalized Mycielskian is a

subgraph of Mr(G), so, unless G has no edges besides those in some odd cycle, it may not

be 4-critical.

Thus far, we have said nothing about topological coluring bounds in this section. That

will now change, as we will first prove and then establish a converse to a result of Mohar,

Simonyi and Tardos which shows that all the 4-critical quadrangulations of the projective

plane are homotopy equivalent to the 2-sphere.

In order to prove Mohar, Simonyi and Tardos’ result, as well as its converse, we must

first review some notation and basic results from the theory of covering spaces. Many

references exist which cover this subject, but we would recommend chapter 8 of Seifert and

Threfall’s textbook [36] which proves the standard results on covering spaces which we will

state here without proof.

Let S be a topological space and T be a covering space for S. Then the fundamental

group π(T ) of T projects onto a subgroup of π(S) which depends on the choice of the initial

point of the closed paths of T . All these subgroups are conjugate in π(S). If all these

subgroups are the same, then the subgroup H to which π(T ) projects in π(S) is normal,

and we call T a regular covering of S.

Observation 3. The number of sheets of the covering T of S is equal to the index of the

subgroup H in π(S). Consequently, if T is a 2-sheeted covering of S, then H is normal,

whence T is a regular covering.

Mohar, Simonyi and Tardos’s result relies heavily on the concept of the medial graph.

For any graph G embedded on a surface S, the medial graph of G, denoted by M(G), and

also embedded on S, is defined as follows. The vertices of M(G) corresponding with the

edges of G, while we join the vertices of M(G) by edges according to the following rule.

For each vertex v ∈ V (G), let e1, ..., ek be the edges incident with v in the cyclic order

these edges leave v. Then, for 1 ≤ i ≤ k, we join the vertex representing ei in M(G) and

the vertex representing ei+1 in M(G) by an edge. In the same way, we join the vertex
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representing ek in M(G) to the vertex representing e1 in M(G). Consequently, we obtain a

4-regular graph embedded in S which has 2 types of faces. We call a face of M(G) a star

face if it contains a vertex of G, and term M(G)’s other faces cycle faces. Below, in Figure

3.2, we have drawn M(K4) embedded on the projective plane as an example. In this case,

the four star faces are the 3-cycles, while the three 4-cycles are cycle faces. Observe that

the vertices in a cycle face of M(G) correspond to the edges of a facial walk in G.

Figure 3.2: The Complete Graph on Four Vertices Drawn as a Quadrangulation of the

Projective Plane and its Medial Graph

Usign the notation we have introduced for medial graphs, let f be a map which maps

each vertex ve ∈M(G) to the class{a} ] {b} in B(G)/ν, where ν is the usual Z2-action on

B(G) and e = xy. Then f extends to the edges of M(G) (mapping them these edges to

1-cells of B(G)). f also extends to the faces of M(G) as follows: the image of a cycle face

corresponding to the face xyzt in G will be the simplex {x, z} ] {y, t}, and the image of

the star face containing any vertex v ∈ V (G) is contained within the simplex {v} ]NG(v).

This makes f a simplicial (and, consequently, continuous) map f : S → B(G)/ν.

Now, note that the map f lifts to a map g : T → B(G), where T is a double cover of S.

The involution of T which exchanges points which have the same image in S is an obvious

fixed point free involution on T , so we observe that T is a Z2-space and g is a Z2-map.

Additionally, it is easy to see that T is the union of two disjoint copies of S if and only if G

is bipartite. Taking the argument above together with the correspondence we established
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previously between box complexes and neighbourhood complexes, we have the following

proposition.

Proposition 17. Let G be a non-bipartite quadrangulation of a surface S in which all 4-

cycles of G are facial. Then N(G) is homotopy equivalent to some 2-sheeted covering T of

S.

Proof. Consider the maximal simplices of B(G). These correspond with maximal complete

bipartite subgraphs of G, which are the face cycles and stars of vertices. That G may not

have any vertices of degree strictly less than 3 is clear, and, if G is 3-regular, then we can

easily see that T and B(G) are homeomorphic, as we can choose g to be a homeomorphism.

Moreover, if G is not 3-regular, then, as the only edges of a d-cycle on the boundary of

these cells appear in other cells, we can collapse all higher dimensional cells of B(G) until

we obtain a simplicial complex homeomorphic to T .

Proposition 17 has three important implications. The first two of these are due to

Mohar, Simonyi and Tardos, while the last one is new.

Theorem 9. Let G be a non-bipartite quadrangulation of the projective plane. Then G is

topologically 4-chromatic.

Proof. The upper bound on the chromatic number is proved easily by Youngs [42]. Our

interest is in the lower bound.

Consider the map f : T → B(G) which we constructed above. As T is a double cover

of the projective plane which is not a union of two disjoint copies of the projective plane,

we observe that T must be the 2-sphere. Thus, there exists a Z2-map form the 2-sphere to

B(G), whence Coind(B(G)) ≥ 2, which implies that χ(G) ≥ 4, as required.

Theorem 10. Let G be a non-bipartite quadrangulation of the projective plane in which all

of G’s 4-cycles are facial. Then N(G) is homotopy equivalent to the 2-sphere.

Proof. By Proposition 17, T and N(G) are homotopy equivalent. Thus, by the proof of

Theorem 9, N(G) is homotopy equivalent to the 2-sphere.

We can also derive a converse to this result.
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Theorem 11. Let G be a quadrangulation of a surface S in which all the 4-cycles of G are

facial and such that N(G) is 1-connected. Then G is a quadrangulation of the projective

plane.

Proof. The neighbourhood complex of G is 1-connected, so the fundamental group of N(G)

is trivial. Proposition 17 tells us that N(G) and T have the same fundamental group, so

the fundamental group of T is trivial, whence H is the trivial group. Thus, by Observation

3, the fundamental group of S must have order two (as the index of H in π(S) must be

two). Consequently, π(S) ∼= Z2. Therefore, S must be the projective plane, as this is the

only surface with fundamental group Z2.

Consequently, we see that bipartite quadrangulations of surfaces in which all 4-cycles

are facial are disconnected, while the non-bipartite quadrangulations of surfaces in which all

4-cycles are facial separate into those which quadrangulate the projective plane (which are

1-connected), and all other non-bipartite quadrangulations of surfaces in which all 4-cycles

are facial (which are 0-connected).

Additionally, let us note that the Zig-Zag Theorem suggests that the 4-critical topologi-

cally 4-chromatic graphs all share important properties with the 4-critical quadrangulations

of the projective plane. In particular, the following result is a straightforward consequence

of the Zig-Ziag Theorem and the definition of a 4-critical graph.

Proposition 18. Let G be a 4-critical, topologically 4-chromatic graph. Then, for any

vertex v of G, there exists a colouring c of G in which v is the only vertex of v coloured with

the colour 4. Consequently, in this colouring, v must be incident with 3 distinct multicoloured

4-cycles. By similar reasoning, every edge of G must be an edge of at least two 4-cycles.

This result generalizes Mohar’s result that the number of multicoloured faces in a non-

bipartite quadrangulation of the projective plane is odd [31].

3.4 Odd Girth and Counting Colourings

In the second chapter of this thesis, we established that if the girth of a graph G is greater

than or equal to 5, then that G is not topologically k-chromatic for any k ≥ 4. However,

using a construction of Lovász and Greenwell [25] together with the results we established
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on the categorical product of graphs and generalized Mycielskian construction in chapter

2, it is not hard to construct infinitely many topologically k-chromatic graphs for any

given k which not only have arbitrarily high odd girth, but are also uniquely colourable.

Additionally, using these same results, it is also not hard to see how one can construct

topologically k-chromatic graphs, for any positive integer k ≥ 4, which have any given

number of colourings.

To begin with, let us prove Lovász and Greenwell’s result.

Theorem 12. Suppose that G is a connected graph such that any two n-colourings of G

colour at least two vertices differently. Then each n-colouring of Kn×G is induced by either

an n-colouring of Kn or an n-colouring of G.

Proof. Following Lovász and Greenwell, we separate our proof into two cases.

Case 1. Firstly, suppose that there is an x ∈ V (G) such that an n-colouring c of Kn × G
assigns the vertices of Kn×G (1, x), (2, x), ..., (n, x) different colours. Now, let some vertex

y of G be adjacent to x. Then, for any two distinct vertices r, s ∈ V (Kn), c(r, y) 6= c(s, x),

whence c(s, y) = c(s, x). Thus, as G is connected, c(i, x) is independent of x, whence it is

induced by the colouring of Kn

Case 2. Conversely, suppose that for all v ∈ V (G), there exist distinct vertices i, j of

Kn such that c(i, x) = c(j, x). For each such x, let us denote this colour by c′(x). Now, fix

a point x ∈ V (G) and define

ck(y) =

 c′(y) if y 6= x

c(k, x) if y = x

If u, v ∈ V (G) (we may assume that u 6= x) and u ∼ v, then ck(u) = c′(u) = c(i, u) =

c(j, u) for some i 6= j. Additionally, whether v = x or not, ck(v) = c(m, v) for some m. We

may additionally assume that i 6= m (as otherwise we may argue inductively from j 6= m).

Consequently, (i, u) ∼ (m, v), whence ck(u) = c(i, u) 6= c(m, v) = ck(v). Thus, ck is an

n-colouring of G.

Now, as the colourings c1, ..., cn differ only in x, by our assumption on G, they are
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identical. Thus, for any vertices i, j ∈ V (Kn), c(i, x) = c(j, x), which implies that the

colouring c is induced by ck of G.

From this theorem, a number of corollaries are immediately apparent. These corollaries

have consequences for our work in light of the results we derived in Chapter 2 on the

topological properties of the categorical product of graphs.

Corollary 8. If χ(G) > n and G is connected, then Kn ×G is uniquely n-colourable.

Corollary 9. (Kn)k has exactly k n-colourings.

Corollary 10. For any fixed positive integers k and n ≥ 2, Kk
n and M1(Kk

n−1) are topo-

logically n-chromatic graphs with precisely k n-colourings.

Proposition 19. For any positive integers n, l ≥ 3 there exist infinitely many uniquely

n-colourable, topologically n-chromatic graphs with odd girth greater than or equal to l.

Proof. By Theorem 12, for any graph G, if the chromatic number χ(G) > n and G is

connected, then Kn×G is uniquely n-colourable. By Theorem 6, is the graph G is at least

n-connected, then so is Kn × G. Morevoer, the odd girth of G is equal to the maximum

of the odd girth of Kn and the odd girth of G. So, consider letting G = Mn
l (Q) for some

non-bipartite quadrangulation of the projective plane all of whose 4-cycles are facial and

which has odd girth at least l. That such a quadrangulation exists for any choice of l is

easy to see. We construct a few small cases below in Figure 3.3 from which it is simple

to construct the rest. Then G = Mn
l (Q) is a topologically (n + 4)-chromatic which has

odd girth l. Consequently, by Theorem 7, the graph Kn × G is a uniquely n-colourable,

topologically n-chromatic graph with odd girth greater than or equal to l, as are all graphs

Kn ×G with G = M r
l (Q) for some r ≥ n.

3.5 Concluding Remarks

When we began working on this thesis, our aim was to come to a better understanding of

the methods used for constructing graphs with large topological colouring bounds, as well as

to examine tools used for efficiently computing topological colouring bounds in a theoretical
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Figure 3.3: Quadrangulations of the Projective Plane all of whose 4-cycles are Facial and

which have Odd Girth 3, 5 and 7

setting. As we worked on these problems, we repeatedly found that the graphs we studied

seemed to all have a high degree of structural similarity. This observation then motivated

the main objective of this thesis, which was to bring together results spread throughout the

literature, and, if necessary, prove new results, in order to forge links between structural

graph theory and topological colouring bounds.

Of course, this is an extremely hard and broad problem. While we attempted to be as

exhaustive as possible, there is no doubt that we have done little more than scratch the

surface of the links which may be forged between structural graph theory and topological

colouring bounds. An area we feel might be particularly fruitful for future work is the study

of k-critical topologically k-chromatic graphs. In the k = 4 case, these graphs seem to be

closely connected to the 4-critical quadrangulations of the projective plane, while for higher

k, while many such graphs exist, the Zig-Zag Theorem places quite stringent demands upon

their local structure.

This thesis is also far from a complete account of the constructions which may be used

in order to construct graphs with large topological colouring bounds. In particular, in the

interest of brevity, we chose to exclude both the Schrijver graphs (which are also sometimes

called stable Kneser graph) and Csorba’s technique for constructing graph complexes with

any possible given topology. Moreover, by placing suitably strict conditions on the graphs

at hand, it is frequently possible to show that constructions which do not normally have

easily understood topological behaviour have tamer behaviour under these conditions. A

number of recent papers in the literature have, in fact, proved interesting results using
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precisely these sorts of methods. No doubt there is far more to discover here, as well.

In summary, we have reworked, synthesized and frequently generalized a variety of

results on the structure of graphs with notable topological colouring bounds, as well as their

construction, placing a particular focus upon proving results using elementary combinatorial

methods. As we have stated, this is far from the last word on this subject, however, we

would hope that it at least provides a starting point from which further exploration into the

connections between structural graph theory and topological colouring bounds may begin.
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