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Abstract

Many kernel-based clustering algorithms do not scale up to high-dimensional large datasets.

The similarity matrix, on which these algorithms rely, calls for O(N2) complexity in both

time and space. In this thesis, we present the design of an approximation algorithm to cluster

high-dimensional large datasets. The proposed design enables great reduction of the similar-

ity matrix’s computing time as well as its space requirements without significantly impacting

the accuracy of the clustering. The proposed design is modular and self-contained. There-

fore, several kernel-based clustering algorithms could also benefit from the proposed design

to improve their performance. We implemented the proposed algorithm in the MapReduce

distributed programming framework and experimented with synthetic datasets as well as

a real dataset from Wikipedia that has more than three million documents. Our results

demonstrate the high accuracy and the significant time and memory savings that can be

achieved by our algorithm.

Keywords: distributed clustering; clustering of large datasets; kernel-based clustering;

locality sensitive hashing; MapReduce framework;
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Chapter 1

Introduction

In this chapter, we provide a brief introduction to clustering algorithms. We then introduce

the problem we address in this thesis and summarize our contributions. The organization

of this thesis is given at the end of this chapter.

1.1 Introduction

Clustering, as a form of unsupervised learning, refers to the problem of trying to find hidden

structure in unlabeled data [4]. Since the examples given to the learner are unlabeled, there

is no error or reward signal to evaluate a potential solution. This distinguishes unsupervised

learning from supervised learning and reinforcement learning [4]. Data clustering is seen as

an increasingly important tool by modern business to transform unprecedented quantities

of digital data into business intelligence giving an informational advantage. It is currently

used in a wide range of profiling practices, such as marketing, surveillance, fraud detection,

and scientific discovery [12]. In this thesis, we will focus on kernel-based clustering methods

and their optimizations.

Kernel-based methods were introduced into the Machine Learning field by Aizerman et

al. [1] in 1964 and have been successfully applied to a wide range of research problems

such as classification [29], clustering [46], and dimension reduction [56]. Besides intrinsic

kernel-based algorithms such as Spectral Clustering [46], many other clustering methods

have been modified to incorporate kernels (e.g., K-means [27] and linear Support Vector

Machine (SVM) [15]).

Estimation and learning methods utilizing positive definite kernels have become rather

1



CHAPTER 1. INTRODUCTION 2

popular in Machine Learning. Since these methods have a stronger mathematical slant

than earlier Machine Learning methods (e.g., neural networks [23]), there is also significant

interest in the statistics and mathematics community for these methods. The key idea

behind Kernel-based methods is to implicitly map the data into a high dimensional feature

space, where each coordinate corresponds to one feature of the data items. This transforms

the data into a set of points in the Euclidean space. Since the mapping can be quite general

(not necessarily linear, for example), the relations found in this way are general. This is

called the kernel trick, the mapping to the new space is defined by a function called the

kernel function [8].

Applying kernel-based clustering algorithms to high-dimensional large-scale datasets is

challenging: the similarity matrix [64] takes O(N2) complexity both in time and in space

to compute and store. Moreover, most of the clustering algorithms suffer from the “curse

of dimensionality” [23] that comes with high-dimensional data.

1.2 Problem Statement and Thesis Contributions

Our goal is to concurrently optimize the computing time and reduce memory requirement

when running kernel-based clustering algorithms on large-scale high-dimensional datasets.

At the same time, the proposed method offers great opportunity to parallelize the execution

of kernel-based clustering algorithms on Multi-Core machines or cluster computing devices.

1.2.1 Problem Statement

As discussed in [64] [13], the computational resources required by kernel-based clustering,

e.g. Spectral Clustering, in processing large-scale data are often prohibitively high. One

common known issue is that similarity matrix takes O(N2) time and space to compute and

store. Further, many techniques based on kernel methods require even more time (larger

than O(N2)) to compute. If faced with large datasets, these algorithms will simply fail to

run, either due to memory insufficiency, or unacceptable long processing time.

It is identified that the intolerable size of similarity matrix is the root of computa-

tional incapability for most kernel-based Machine Learning algorithms when faced with

large datasets. We propose to apply Locality Sensitive Hashing [43] to the original dataset

and divide the dataset into several buckets, each of which contains points that are close to

each other. We then run clustering algorithms with the approximated similarity matrix.
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Furthermore, we leverage MapReduce framework [18] to parallelize the algorithm on cluster

devices.

The proposed method not only works for kernel-based clustering algorithms such as

Spectral Clustering [46] and affinity propagation [22], other algorithms running on large-

scale datasets and seek for preprocessing data partitioning can also benefit from it.

1.2.2 Contributions

We propose an optimizing algorithm to improve the execution time and memory space de-

mand of kernel-based clustering algorithms when clustering high-dimensional large datasets.

Particularly, our contributions can be summarized as follows:

• We present the design of an algorithm which reduces the running time and memory

demand of kernel-based clustering algorithms by approximating the similarity matrix.

The proposed design is modular and can be used as an improvement preprocessing

step in many clustering algorithms.

• We identify that existing kernel-based algorithms can be hardly parallelized due to

shared usage of one single similarity matrix. The proposed scheme addresses this

problem and enables the easy parallelization of kernel-based clustering algorithms. We

show how the parallelization is achieved using MapReduce framework on commodity

machines. We conduct experiments on a cluster of machines as well as Amazon Elastic

MapReduce cluster to show performance gain.

• The experimental results show that the proposed algorithm can successfully retain the

clustering accuracy (within 10% above Spectral Clustering), greatly reduce computing

time (with the reduction ratio of 13 and more when comparing against Spectral Clus-

tering, and with the reduction ratio of 10 and more when comparing against Parallel

Spectral Clustering), and significantly reduce the memory footprint.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we introduce the MapReduce

framework, and also provide a brief review on main classes of clustering algorithms and

their respective parallelized implementation. In Chapter 3, we give an overview on Locality
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Sensitive Hashing and how they can be used in our distributed environment, then move on

to describe the proposed algorithm and conduct an analytical analysis on the effectiveness of

the proposed framework. In Chapter 4 and Chapter 5, We describe the setup of our testbed

and Amazon Elastic MapReduce cluster, discuss the experimental methodology and present

the experimental results using synthetic dataset and Wikipedia dataset. We conclude the

thesis in Chapter 6.



Chapter 2

Background and Related Work

In this chapter, we first give a short introduction to the MapReduce framework and one of its

implementation Hadoop, then briefly review the main classes of clustering techniques used

in Machine Learning fields and their distributed implementations. After that, we summarize

previous works that are related to our work.

2.1 MapReduce Framework

2.1.1 Introduction to MapReduce

MapReduce is a programming model introduced by Google [18] in 2004 to support dis-

tributed computing on large datasets. The framework is inspired by the map and reduce

functions commonly used in functional programming.

• Map step: A master node takes the input, partitions it into smaller sub-problems, and

distributes them to worker nodes. A worker node may do this again in turn, leading

to a multi-level tree structure. The worker node processes that smaller problem, and

passes the answer back to its master node.

The map function is applied in parallel to every item in the input dataset. This

produces a list of (k2, v2) pairs for each call. After that, the MapReduce framework

collects all pairs with the same key from all lists and groups them together, thus

creating a group of values for each different key.

Map(k1, v1) → list(k2, v2)

5
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• Reduce step: Each reduce call typically produces either one value v3 or an empty

return. The returns of all calls are collected as the desired result list. Therefore,

the MapReduce framework transforms a list of (key, value) pairs into a list of values.

This behavior is different from the typical functional programming map and reduce

combination, which accepts a list of arbitrary values and returns one single value that

combines all the values returned by map.

Reduce(k2, list(v2)) → list(v3)

The advantage of MapReduce is that it allows for distributed processing of the map

and reduce operations. Provided each map operation is independent of the others, all maps

can be performed in parallel, though in practice it is limited by the data source and/or the

number of CPUs near that data. Similarly, a set of reducers can perform the reduction

phase, it only requires that all outputs of the map operation that share the same key are

presented to the same reducer. While this process can often appear inefficient compared

to algorithms that are more sequential, MapReduce can be applied to significantly larger

datasets than commodity servers can handle. The parallelism also offers some possibility

of recovering from partial failure of servers or storage during the operation: if one map or

reduce fails, the work can be rescheduled, assuming the input data is still available.

2.1.2 Hadoop Architecture

Apache Hadoop is a software framework that supports data-intensive distributed applica-

tion and was inspired by Google’s MapReduce and Google File System (GFS). Hadoop is a

client/server computing paradigm, and conceptually, it is made up of two parts. From

the perspective of MapReduce, the master is called JobTracker, the clients are called

TaskTracker. The master is responsible for scheduling the jobs’ component tasks on the

clients, monitoring them and re-executing the failed tasks. The clients execute the tasks as

directed by the master. From the perspective of Hadoop Distributed File System (HDFS),

a HDFS cluster primarily consists of a NameNode that manages the file system metadata

and DataNodes that store the actual data.

There are two performance-critical components in Hadoop, data placement policy and

task scheduling policy.
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Data Placement Policy

HDFS stores each file as a sequence of blocks; all blocks in a file except the last block are

the same size (64MB by default). The blocks of a file are replicated for fault tolerance.

Network locations such as nodes and racks are represented as a tree, which reflects

the network distance between locations. The namenode uses the network location when

determining where to place block replicas. The jobtracker uses network location to determine

where the closest replica is as input for a map task that is scheduled to run on a tasktracker.

Hadoop’s strategy is to place the first replica on the same node as the client (for clients

running outside the cluster, a node is chosen at random, although the system tries not to

pick nodes that are too full or too busy). The second replica is placed on a different rack

from the first one at random. The third replica is placed on the same rack as the second,

but on a different node chosen at random. Further replicas are placed on random nodes in

the cluster, although the system tries to avoid placing too many replicas on the same rack

[62].

Task Scheduling Policy

A task assignment is initiated by a TaskTracker, then JobTracker responses. Tasks are

assigned in response to heartbeats (status messages) received from the clients every few

seconds. Within the message of a heartbeat, a tasktracker indicates whether it is ready to

grab a new task, and if it is, the jobtracker will allocate it a task. Each client has a fixed

number of map slots and reduce slots for tasks. The default scheduler fills empty map task

slots before reduce task slots, therefore, if the tasktracker has at least one empty map task

slot, the jobtracker will select a map task. Otherwise, it will select a reduce task. This is

to ensure that maximum effort is given to run map tasks in order to finish them early, since

reduce tasks can not run without the intermediate result produced by map tasks.

Hadoop’s built-in scheduler runs jobs in FIFO order, with five priority levels. When

a task slot becomes free, the scheduler scans through jobs in the order of priority and

submission time to find one with a task of the required type.

For map tasks, the scheduler uses a locality optimization technique. After selecting a

job, the scheduler picks the map task in the job with data closest to the slave, on the same

node if possible, otherwise on the same rack, or finally on a remote rack.

However, for reduce tasks, each reduce task has to copy its portion of the results from
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all the map tasks, and can only apply the user’s reduce function once it has results from all

maps. Therefore, little locality can be observed in reduce step. The jobtracker just takes

the next in the reduce tasks’ list and assign it to the tasktracker.

2.1.3 Other Parallel Distributed Programming Models

OpenMP (Open Multi-Processing) [54] is an API (Application Programming Interface) that

supports multi-platform shared memory multiprocessing programming. Therefore, this pro-

gramming model entails that all threads have access to the same, globally shared memory.

Data can be shared or private, shared data is accessible by all thread, while private data

can be accessed only by the threads that owns it. However, this model only runs effi-

ciently in shared-memory multiprocessor platforms, and its scalability is limited by memory

architecture [54].

Message Passing Interface (MPI) [25] is an Application Programming Interface speci-

fication that allows processes to communicate with one another by sending and receiving

messages. Besides many other applications, it is a standard for parallel programs running

on computer clusters and supercomputers, where the cost of accessing non-local memory

is high. Moreover, programmes that create tasks dynamically or place multiple tasks on a

processor can require substantial refinement before they can be implemented in MPI, since

the programme itself has to deal explicitly with message passing, and the implementation

is difficult to debug [25].

Compared against the above two paradigms, MapReduce, being a paradigm-oriented

programming model, provides uniform Map and Reduce interfaces and most of the paral-

lelization and synchronization work is handled by the framework itself [62]. It allows for

distributed processing of the map and reduce operations, each map operation is independent

of the others, all maps can be performed in parallel. Similarly, a set of reducers can perform

the reduction phase. Various implementations of MapReduce framework in different pro-

gramming languages are available, for example, Misco is a MapReduce designed for mobile

devices and is implemented in Python. Greenplum is a commercial MapReduce implemen-

tation, with support for Python, Perl, SQL and other languages. We choose Hadoop - a

Java MapReduce implementation to do the experiments.
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Distance Formula

Euclidean distance ||x − y||2 =
√∑

i
(ai − bi)2

Squared Euclidean distance ||x − y||22 =
∑
i
(ai − bi)2

Manhattan distance ||x − y||1 =
∑
i
|ai − bi|

Maximum distance ||x − y||∞ = maxi |ai − bi|
Mahalanobis distance

√
(a − b)T S−1(a − b)where S is the covariance matrix

Cosine distance a·b
||a||||b||

Table 2.1: Distance measurement.

2.2 Overview of Clustering Algorithms

Clustering is an unsupervised data pattern extraction process that aims at grouping similar

patterns into the same category based on certain measures of “distance” [4]. Cluster analysis

aims to discover clusters or groups of samples such that samples within the same group are

more similar to each other than they are to the samples of other groups. It is a kind

of statistical data analysis widely used in many fields, including Machine Learning, Data

Mining. It has led to the design and analysis of a wide spectrum of algorithms.

When talking about clustering, a distance measurement is needed to represent the close-

ness of two points. Commonly used distance of measurements are listed in Table. 2.1. In

this thesis, Euclidean distance is used as the default measurement if not otherwise noted.

The similarity matrix (also known as Gram matrix or G-matrix) is a matrix of scores

which expresses the similarity between data points. Let {Xi}N
i=1 be a set of points in RD (D

is the dimensionality), the similarity matrix is an N × N matrix, the (i, j)th entry is given

by

Sij = ||Xi − Xj ||2, (2.1)

where (||expressions||2 stands for L2 distance or Euclidean distance).

Similarity matrix plays a crucial role in kernel-based methods. Techniques such as linear

Support Vector Machines (SVM) Gaussian Processes [32] can only extract structure from the

original dataset by computing linear functions, e.g., functions in the form of dot products.

When there are nonlinear structures in the data, the above mentioned linear techniques will
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lose effectiveness [15]. Kernel-based learning methods have proved to be useful in the above

mentioned scenarios [15]. For instance, in kernel-based SVM [15], data items are mapped

into high-dimensional space, where information about their mutual positions (in the form of

inner products) is used for constructing classification, regression, or clustering rules. Kernel-

based algorithms exploit the information encoded in the inner product between all pairs of

data items and are successful in part because there is often an efficient method to compute

inner products between very complex or even infinite dimensional vectors. Thus, kernel-

based algorithms provide a way to deal with nonlinear structure by reducing nonlinear

algorithms to algorithms that are linear in some feature space that is nonlinearly related

to the original input space. Moreover, Similarity matrices are also widely used in sequence

alignment in biomedical studies [24]. Higher scores are given to more-similar characters,

and lower or negative scores for dissimilar characters. Nucleotide similarity matrices are

used to align nucleic acid sequences [24].

There are several genres of clustering algorithms. In the following sections, we introduce

some important classes and explain how they can be implemented in a distributed manner.

2.3 Hierarchical Clustering Algorithms

Hierarchical algorithms [10] find successive clusters using previously established clusters.

These algorithms usually are either agglomerative (bottom-up) or divisive (top-down). Ag-

glomerative algorithms begin with each element as a separate cluster and merge them into

successively larger clusters. Divisive algorithms begin with the whole set and proceed to

divide it into successively smaller clusters.

For agglomerative approach, given a set of N points to be clustered, and an N × N

distance (or similarity) matrix, the process of hierarchical clustering is as follows:

• Step 1 : Start by assigning each item to its own cluster, so that if we have N items,

we now have N clusters, each containing just one item. Let the distances (similarities)

between the clusters equal the distances (similarities) between the items they contain.

• Step 2 : Find the closest (most similar) pair of clusters and merge them into a single

cluster, so that now we have one less cluster.

• Step 3 : Compute distances (similarities) between the new cluster and each of the old

clusters.
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• Step 4 : Repeat steps 2 and 3 until all items are clustered into a single cluster of size

N .

Step 3 can be done in different ways, which is what distinguishes single-link from

complete-link and average-link clustering. In single-link clustering [10], we consider the

distance between one cluster and another cluster to be equal to the shortest distance from

any member of one cluster to any member of the other cluster. If the data consist of

similarities, we consider the similarity between one cluster and another cluster to be equal

to the greatest similarity from any member of one cluster to any member of the other cluster.

In complete-link clustering [10], we consider the distance between one cluster and another

cluster to be equal to the longest distance from any member of one cluster to any member

of the other cluster. In average-link clustering, we consider the distance between one cluster

and another cluster to be equal to the average distance from any member of one cluster to

any member of the other cluster.

It is inefficient to apply the agglomerative model to MapReduce, because each distributed

task needs the entire dataset to make choices about appropriate clusters. It also needs a

list of clusters at its current level such that it does not add a data point to more than one

cluster at the same level. This is a class of applications that is unsuitable for MapReduce

[62].

2.4 Partitional Clustering Algorithms

Partitional algorithms typically determine all clusters at once, and can also be used as

divisive algorithms in the hierarchical clustering described in Section 2.3.

2.4.1 K-means

K-means [27] follows a simple and easy way to classify a given dataset through a certain

number of clusters (assume k clusters fixed as a priori). The main idea is to define k

centroids, one for each cluster. These centroids should be placed in a clever way, because

different location causes different result. Therefore, a good choice is to place them as much

as possible far away from each other. The next step is to take each point belonging to a

given dataset and associate it to the nearest centroid. When no point is pending, the first

step is completed and an early clustering is done. At this point we need to re-calculate
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k new centroids as centers of the clusters resulting from the previous step. After we have

these k new centroids, a new binding has to be done between the same dataset points and

the nearest new centroid. A loop has been generated. As a result of this loop we may notice

that the k centroids change their location step by step until no more changes are done. In

other words centroids do not move any more.

This algorithm aims at minimizing an objective function, in this case a squared error

function. The objective function is:

J =
k∑

j=1

N∑
i=1

||x(j)
i − cj ||2, (2.2)

where ||x(j)
i −cj ||2 is a chosen distance measure between a data point x

(j)
i and the cluster

center cj , the algorithm is composed of the following steps:

• Step 1 : Place k points into the space represented by the objects that are being

clustered. These points represent initial group centroids.

• Step 2 : Assign each point to the group that has the closest centroid.

• Step 3 : Recalculate the positions of the k centroids when all points have been as-

signed.

• Step 4 : Repeat Steps 2 and 3 until the centroids no longer move. This produces a

separation of the points into groups from which the objective function to be minimized

can be calculated.

A MapReduce parallel algorithm for K-means clustering has been proposed by Zhao et

al. [49]. Initially k points are chosen as the cluster centers. Each map function gets a

partition of the data and accesses this partition in each iteration. The variable data is the

current cluster centers calculated during the previous iteration, hence it is used as the input

value for the map function. All the map functions get this same input data (current cluster

centers) at each iteration and computes partial cluster centers by going through its dataset.

Note that each map function can identify the nearest cluster for its data points because

it has access to all cluster centers. Thus, each map function is able to update the cluster

membership for its data points. A reduce function computes the average of all points for
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each cluster based on the updated membership and produces the new cluster centers for the

next step. Once it gets these new cluster centers, it calculates the difference between the

new cluster centers and the previous cluster centers and determines if it needs to execute

another cycle of MapReduce computation.

2.4.2 Affinity Propagation

Frey and Dueck present an algorithm called affinity propagation [22] which clusters data

points via passing messages between the points. Affinity propagation clusters data by diffu-

sion in the similarity matrix. Input consists of a collection of real-valued similarities between

data points. These are represented by s(i, k) which describes how well data point k is suited

to be exemplar for data point i. In addition, each data point is supplied with a preference

value s(k, k) which specifies a priori on how likely each data point is to be an exemplar.

There are two kinds of messages exchanged between data points, responsibilities and

availabilities. Responsibility r(i, k) reflects the accumulated evidence for how well-suited

point k is to serve as the exemplar for point i, taking into account other potential exemplars

for point i. Responsibility is sent from point i to candidate exemplar k. Availability a(i, k)

reflects accumulated evidence for how appropriate it would be for point i to choose k as

its exemplar, taking into account the support from other points that point k should be an

exemplar. Availability is sent from candidate exemplar k to data point i. In general the

algorithm works in three steps:

• Update responsibilities given availabilities. Initially this is a data driven update. Over

time it lets candidate exemplars compete for ownership of the data.

• Update availabilities given the responsibilities. This gathers evidence from data points

as to whether a candidate exemplar is a good exemplar.

• Monitor exemplar decisions by combining availabilities and responsibilities. Terminate

if reaching a stopping point (e.g. insufficient change). The update rules require simple

local computations and messages are exchanged between pairs of points with known

similarities.

The update is done according to the following formulas:

r(i, k) = (1 − λ) × r(i, k) + λ × (s(i, k) − max
k′:k′ ̸=k

(a(i, k′) + s(i, k′))), (2.3)
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a(i, k) = (1 − λ) × a(i, k) + λ × min{0, r(k, k) +
∑

i′:i′ ̸⊂i,k

max(0, r(i′, k))}, (2.4)

a(k, k) = (1 − λ) × a(k, k) + λ ×
∑

i′:i′ ̸=k

max(0, r(i′, k)), (2.5)

where λ is the damping factor used to avoid numerical oscillations.

We can see from the above formulas, in every iteration, it involves both row scan and

column scan, therefore, it is impossible to parallelize the whole process use MapReduce.

One possible method is to parallelize r matrix calculation and a calculation separately in

a single loop. Wang et al. [60] propose a method to parallelize Affinity propagation. To

parallelize r(i, k), all the values of a(i, k′) and s(i, k′) are taken as map input. In reduce

part, all the values taking i as key are passed into the reduce function as a list. To parallelize

a(i, k), all the values of r(i′, k) are taken as input, since all the key/value pairs are indexed

by the column after r(i, k) calculation, all the values in the k-th column are organized as a

list.

2.5 Soft Clustering Algorithms - Dirichlet Process Clustering

(DPC)

“Soft”, in this context, means that a point can fall into two (or more than two) clusters. The

algorithms in this genre use probabilistic generative models. Dirichlet Process Clustering

(DPC) [7] falls into this genre.

The calculation goes in an iterative manner. There are mainly three steps in each

iteration [7]:

• Assign the input data points to a certain cluster.

• Update the model by computing the posterior probabilities and new model parameters

by sampling from a Dirichlet distribution.

• Repeat the second step until convergence is reached.
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One way of parallelizing DPC using MapReduce framework is described in [49]. In every

iteration, there are map and reduce functions. In map function, it assigns the input data

points to a certain cluster, then emits the pair < pointID, clusterID >. In reduce function,

it updates the models by computing the posterior probabilities and new model parameters.

Then it emits the pair as the output of this iteration. This loop goes for a predefined

iterations.

2.6 Spectral Clustering

Spectral Clustering [46] is a class of methods based on eigen decomposition of affinity,

dissimilarity or kernel matrices [46]. Many clustering methods are strongly tied to Euclidean

distance, making assumptions that clusters form convex regions in Euclidean space. Spectral

methods are more flexible, capturing a wider range of geometries. Spectral Clustering is

widely used in Document Clustering [66], Image Segmentation [61]. Moreover, there is a

substantial theoretical literature supporting Spectral Clustering [46].

The idea of Spectral Clustering is to form a pairwise similarity matrix S, compute

Laplacian matrix L and compute eigenvectors of L. It is shown that the second eigenvector

of the normalized graph Laplacian is a relaxation of a binary vector solution that minimizes

the normalized cut on a graph [46].

Given a set of points {Xi}N
i=1 in Rd (d is the dimensionality), The algorithm proceeds

as follows:

• Step 1 : Form the similarity matrix S ∈ RN×N defined by Sij = exp(−||Xi −
Xj ||2/2σ2) if i ̸= j, and Sii = 0.

• Step 2 : Define D to be the diagonal matrix whose (i, i)-element is the sum of S’s

i-th row, and construct the matrix L = D−1/2AD−1/2.

• Step 3 : Find V1, V2..., Vk, the top k eigenvectors of L, and form the matrix X =

[V1V2...Vk] ∈ RN×k by stacking the eigenvectors in columns.

• Step 4 : Form the matrix Y from X by renormalizing each of X’s rows to have unit

length, Yij = Xij/(
√∑

j
X2

ij).

• Step 5 : Treat each row of Y as a point in Rk, cluster them into k clusters using

K-means [27].
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• Step 6 : Assign the original point Xi to cluster j if and only if row i of the matrix Y

is assigned to cluster j.

The scaling parameter σ2 controls how rapidly the affinity Sij decreases with the distance

between Xi and Xj . The eigenvectors of a square matrix are the non-zero vectors that, after

being multiplied by the matrix, remain parallel to the original vector. For each eigenvector,

the corresponding eigenvalue is the factor by which the eigenvector is scaled when multiplied

by the matrix.

The advantages of Spectral Clustering can be summarized as follows:

• Spectral Clustering performs well with non-Gaussian clusters [46].

• As opposed to K-means clustering, which results in convex sets, Spectral Clustering

can solve problems such as intertwined spirals, because it does not make assumptions

on the form of the cluster. This property comes from the mapping of the original

space to an eigen space.

• Spectral Clustering does not intrinsically suffer from the problem of local optima [46].

Spectral Clustering performs significantly better than the linkage algorithm [41] even

when the clusters are not well separated.

Spectral Clustering is parallelized in MapReduce framework [49]. In Laplacian matrix

computing part, since it involves matrix multiplication, the parallelization computes each

entry in Laplacian matrix separately and reduces the results into one single matrix. In

the K-means clustering part, it is parallelized in a way that is introduced in Section 2.4.

Spectral Clustering has also been parallelized using MPI by Chen et al. [13].

2.7 Challenges in Clustering Large Datasets

Clustering large-scale datasets using kernel-based methods is challenging. The difficulties

are summarized into three folds:

• The similarity matrix, on which many kernel-based clustering algorithms rely, needs

O(N2) complexity in time to compute. When running on large datasets, it can be

intolerably long.
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• The similarity matrix needs O(N2) memory space to store. Although the state-of-art

high performance computers have very large DRAM, when applying large datasets,

the memory will still be insufficient and thrashing is likely to occur in the paging

system, which make the running process even slower.

• Most of the clustering algorithms suffer from “curse of dimensionality” [23] that comes

with high-dimensionality data. Essentially, the amount of data to sustain a given spa-

tial density increases exponentially with the dimensionality of the input space, or

alternatively, the sparsity increases exponentially given a constant amount of data,

with points tending to become far apart from one another. In general, this will ad-

versely impact any method based on spatial density, unless the data follows certain

simple distributions.

2.8 Related Work

Clustering large datasets is an actively researched area [68] [12] [36]. For example, Kulis and

Grauman [36] target large-scale scalable image search. They generalize locality-sensitive

hashing to accommodate arbitrary kernel functions, therefore permitting sub-linear time

approximate similarity search. Another example is BIRCH [68], which is a method for pre-

clustering large datasets. BIRCH incrementally groups the data as tightly as possible based

on similarity in their attributes. In the process, it constructs as many representatives of the

original data as the available memory can contain. If the amount of space taken by the data

runs out during the BIRCH process, the tightness of the groupings is relaxed, the groupings

are internally re-assigned, and the processing of the data continues. Therefore, by monitor-

ing the system’s available memory, BIRCH can dynamically adjust the clustering policies.

Chen and Liu [12] propose “iVIBRATE”, which is an interactively visualization based three-

phase framework for clustering large datasets. Two main components of iVIBRATE are its

visual cluster rendering subsystem, which enables human to join the large-scale iterative

clustering process through interactive visualization, and its Adaptive ClusterMap Label-

ing subsystem, which offers visualization-guided disk-labeling solutions that are effective in

dealing with outliers, irregular clusters, and cluster boundary extension. However, when

presented with high-dimensional large-scale datasets, the visual presentation will not work

because of human’s incapability of high-dimensional data perception.

Clustering in high dimensional spaces is problematic as well [5]. The problem of high
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dimensionality is typically addressed by feature selection and dimension reduction techniques

[56]. Radovanovic et al. [53] study the number of times a point appears among the k nearest

neighbors of other points in a dataset. They identify that, as dimensionality increases, this

distribution becomes considerably skewed and points with very high occurrences emerge.

This is a new property that is discovered in high-dimensional datasets. Murtagh et al. also

explore hierarchical clustering on high-dimensional datasets using ultrametric embedding

[44]. An ultrametric is a metric which satisfies the following triangle inequality: d(x, z) ≤
max(d(x, y), d(y, z)) for all points x, y and z. By quantifying the degree of ultrametricity

[3] in a dataset, Bartal et al. show that ultrametricity becomes pervasive as dimensionality

and/or spatial sparsity increases.

Clustering optimization for specific applications has also been studied. For example,

in [40], Manku utilizes simHash [11] to generate a signature for each web page and then

separate web-scale dataset apart into different buckets. However, their work is optimized

for a specific application and is potentially difficult to generalize, while our work is designed

to fit the majority of main stream kernel-based clustering algorithms.

Research on speeding up the execution of Spectral Clustering can be summarized in

two directions. One direction is subsampling approach, selecting data points following some

form of stratification procedure. One of the best known approximation schemes is sampling

using the Nystrom method [63]. This method allows extrapolation of the complete grouping

solution using only a small number of typical samples. Fowlkes et al. [21] propose using the

Nystrom extension to approximate the eigenvectors of the affinity matrix. They investigate

the Nystrom extension solution to the Normalized Cut problem [46] in Spectral Clustering

and apply the method in image segmentation. In [57], Schuetter et al. extend the above

mentioned method and propose a multiple subsample approach that improves the accuracy

of the Nystrom extension.

The other direction is approximating the affinity matrix. Cullum and Willoughby [16]

introduce the Lanczos algorithm, which uses a sparse eigensolver to do the decomposition.

Matrix sparsity can be created by computing entries for only those elements within an ϵ-

neighborhood of each other, or for nearest neighbors. However, this method still runs in

O(N2) time. Drineas et al. [19] develop an algorithm to compute a low-rank approximation

to similarity matrix. The low-rank approximation problem is to approximate a matrix by

one of the same dimension but smaller rank with respect to some norm, e.g., the Frobenius

norm. They use a data-dependent nonuniform probability distribution to randomly sample
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the columns.

We identify two recent works that are close to ours [64] [13]. Yan et al. [64] propose

leveraging K-means to pre-process the original datasets and pre-group them. Although

we share the same rationale, as shown later in the thesis, our method can be applied to

many clustering algorithms beyond the Spectral Clustering algorithm. Also, the method

in [64] does not consider the complexity when partitioning the original dataset. On the

contrary, our method can achieve O(N) when doing the partitioning step, and the constant

factor in O(N) is small. Chen et al. [13] propose parallel Spectral Clustering method that

approximates the affinity matrix and compare it against the Nystrom extension method. The

method forms the sparse matrix via retaining a group of nearest neighbors. To retain nearest

neighbors, for every point in the dataset, the method computes the similarity between this

point and others. It keeps a heap to retain the closest points. The method is essentially a

variation of k-nearest neighbor search [46]. The advantage of the method is small memory

footprint. However, the method still has to compute the similarity for every pair of points,

thus its time complexity remains unchanged at O(N2). On the contrary, our method can

achieve O(N) complexity in the preprocessing step with MapReduce framework, and it

only computes the similarity values between a subset of data points instead of all points.

Therefore, the proposed method can achieve sub-quadratic complexity in both time and

space.

We compare the proposed method, which we call distributed Spectral Clustering (DASC)

against three existing methods: the original Spectral Clustering algorithm (denoted as SC)

[46], Parallel Spectral Clustering (denoted as PSC) [13] and Nystrom approximation method

(denoted as NY ST ) [21]. SC serves as the baseline comparison, PSC uses nearest-neighbor-

search to reduce the size of similarity matrix and is parallelized using MPI, and NY ST is

a recently proposed scheme which leverages K-means to pre-group neighboring points and

produces a set of reduced representative points for Spectral Clustering.



Chapter 3

Proposed Distributed Spectral

Clustering Algorithm

3.1 Overview

Kernel-based clustering techniques perform computation based on similarity matrix. In or-

der to reduce the complexity of this expensive operation, which is O(N)2 where N is the

dataset size, we propose a preprocessing step using Locality Sensitive Hashing to approx-

imate the similarity matrix. In the similarity matrix, every element reflects the similarity

between two points. The larger the element is, the closer those two points are. In the

proposed algorithm, those small elements in the original similarity matrix will not be com-

puted and they will be omitted. The proposed method decides whether or not to compute

an element in similarity matrix using Locality Sensitive Hashing [43]. Every point in the

dataset is labeled with a signature, identical or similar signatures mean that the correspond-

ing points are close to each other, thus their similarity value is large. Big difference between

two signatures means that the corresponding points are far away from each other, thus they

are unlikely to be in the same cluster and their similarity value is small. Therefore, we do

not compute similarity for such two points.

There are several steps in the proposed algorithm. In the first step, the algorithm iterates

through the dataset once to generate signatures. In the second step, points whose signatures

are similar to each other are projected into one bucket. In the third step, similarity values

are computed for the points in each bucket to form the approximated matrix. In the fourth

20
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step, Spectral Clustering algorithm will run on the approximated similarity matrix and

output the clustering results.

In the following sections, we will first review different families of Locality Sensitive

Hashing and then describe the proposed algorithm and implementation details.

3.2 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) is a probabilistic dimension reduction technique [43]. The

idea is to hash points such that the probability of collision is much higher for close points

than for those that are far apart. Those points whose hashing values collide with each other

fall into the same bucket. Then, one can determine nearby neighbors by hashing the query

point and retrieving elements stored in buckets containing that point.

For a domain S of the points set with distance measurement D, an LSH family is defined

as follows [43].

Definition 1 (LSH Family) A family H = {h : S → U} is called (d1, d2, p1, p2)-sensitive

for D if for any x, y ∈ S, we have:

• if x ∈ B(y, d1) then PrH [h(x) = h(y)] ≥ p1,

• if x ̸∈ B(y, d2) then PrH [h(x) = h(y)] ≤ p2,

where p1 > p2, d1 < d2, and B(y, d) is square area centered at y with radius d. The

behavior is shown in Fig. 3.1.

3.2.1 Stable Distributions

According to [47], a distribution is a stable distribution if it satisfies the following property:

Let X1 and X2 be independent copies of a random variable X. Random variable X is said

to be stable if for any constants a and b the random variable a · X1 + b · X2 has the same

distribution as c ·X + d with some constants c and d. The distribution is said to be strictly

stable if this holds with d = 0.

A distribution D over R is called p − stable, if there exists p ≥ 0 such that for any

n real numbers v1, ..., vn and independent identically distributed variables X1, ..., Xn with

distribution D, the random variable
∑
i

vi · Xi has the same distribution as the variable

(
∑
i
|vi|p)1/p · X, where X is a random variable with distribution D.



CHAPTER 3. PROPOSED DISTRIBUTED SPECTRAL CLUSTERING ALGORITHM22

Figure 3.1: Behavior of a (d1, d2, p1, p2)-sensitive function.

In the case of RD with L2 distance, p-stable distribution is defined as:

H(v) =< h1(v), h2(v), ..., hM (v) >, (3.1)

hi(v) = ⌊ai · vi + bi

W
⌋, i = 1, 2, ...,M, (3.2)

where ai ∈ RD is a vector with entries chosen independently from the Gaussian distribu-

tion N(0, 1) and bi is drawn from the uniform distribution U [0,W ). For different i, ai and

bi are sampled independently. The parameters M and W control the locality sensitivity of

the hash function.

3.2.2 Random Projection

The random projection method [9] is designed to approximate the cosine distance between

vectors. The idea of this technique is to choose a random hyperplane (defined by a normal

unit vector r) at the outset and use the hyperplane to hash input vectors.
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Figure 3.2: Two vectors in three dimensions making an angle.

Given two vectors x and y, the cosine of the angle between them is the dot product x · y
divided by the L2−norm of x and y, for instance, their Euclidean distances from the origin.

In Figure 3.2, it can be observed that two vectors x and y make an angle θ between them. It

should be noted that the vectors may be in a many-dimension-space, however, they always

define a plane, and the angle between them is measured in this plane. Given an input vector

v and a hyperplane defined by r, we let h(v) = sgn(v · r) = ±1. Each possible choice of r

defines a single function. Let H be the set of all such functions and let D be the uniform

distribution. For two vectors u,v, we have:

Pr[h(u) = h(r)] = 1 − θ(u, v)
π

, (3.3)

where θ(u, v) is the angle between u and v.

Given m functions in this family, there will be m bits in the result for every input data

point. These m bits are concatenated and serve as a unique signature for the input vector.

Points having a large portion of corresponding bits identical are considered to be close to

each other.
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3.2.3 Summary of Locality Sensitive Hashing

Besides what is covered above, there are other Locality Sensitive Hashing families. For

instance, Min-Wise Independent Permutations [14], which uses Jaccard Index [33] to group

similar documents together. The documents do not contain explicit numerical features.

Locality Sensitive Hashing for Hamming distance operates on binary sequences when the

input points live in the Hamming space. For p-stable distribution, Equation (3.2) essen-

tially projects a multi-dimensional vector onto one-dimensional space. We need to tune the

parameters bi, W and M in Equation (3.2) based on the data characteristics. Also, the

basic Locality Sensitive Hashing index requires large W , M to satisfy certain recall. This

trades space for fast query time. The hash function we use to generate the signatures falls

into the family of Random Projection. The advantage of this family is that, after applying

hashing function once, we only need one bit to store the result. This characteristic saves a

lot of storage space. It has been shown that Random Projection has the best performance in

high-dimensional data clustering [20]. Also, with Random Projection, we can compare the

generated signatures using hamming distances for which efficient algorithms are available

[11].

3.3 Distributed Approximate Spectral Clustering

The proposed algorithm approximates the similarity matrix, speeds up the execution of

kernel-based clustering techniques and reduce the memory footprint. Moreover, it can be

parallelized easily using MapReduce framework.

For quick reference, we list all symbols used in this chapter in Table 3.1.

The approximation scheme goes in the following steps, Step 3 to Step 8 are the steps

in Spectral Clustering:

• Step 1 : Create signatures for data points. Every point in the dataset is represented

by an index and a group of numerical features. The signature is an M -bit string, each

bit is generated as follows: one feature in the dimensionality space is selected. This

feature is then compared with a threshold. If the feature is larger than the threshold,

the resulting bit is set to 1, otherwise it is set to 0. This process goes M times, and

the resulting bits are concatenated to make the signature. The complexity of this step

is O(M · N). This hash function falls into Random Projection family, because every
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Symbol Description
X1, ..., XN ∈ Rd Data point

N Total number of points in the dataset
d Dimensionality (feature space)

Dim[i](i ∈ [0, d − 1)) Dimension space
K Number of desired clusters
C The number of machines in cluster
M The length of the binary signature
P Minimum number of identical bits in two binary signatures
T The number of buckets generated

S ∈ RN×N Similarity matrix
L ∈ RN×N Laplacian matrix

D Diagonal matrix, Dii =
N∑

j=1
Sij

A Symmetric tridiagonal matrix

Table 3.1: List of symbols used in this chapter.

time we apply this hash function, we project all the points in a dataset onto a line.

After that, the hashing result is determined by comparing the projection value against

a threshold.

• Step 2 : All points that have near-duplicate signatures are projected into one bucket.

Near-duplicate signatures mean that for two M -bit binary numbers, there are at least

P bits in common. Suppose the total number of different signatures generated is T ,

the complexity of this step is O(T 2).

• Step 3 : Compute the sub similarity matrix in every bucket. Suppose we have alto-

gether T different signatures, we then have T buckets, each of which has Ni (where

0 ≤ i ≤ T−1 and
T−1∑
i=0

Ni = N) points, the overall complexity of this step is
T−1∑
i=0

O(N2
i ).

The similarity function is:

Sij = exp(−||Xi − Xj ||2

2σ2
), (3.4)

where σ is a scaling parameter to control how rapidly the similarity Sij reduces with

the distance between Xi and Xj .
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• Step 4 : Construct the Laplacian matrix for each sub similarity matrix Si in Step 3 :

Li = D
−1/2
i SiD

−1/2
i , (3.5)

where D
−1/2
i is the inverse square root of Di, Di is diagonal matrix. For an Ni × Ni

diagonal matrix, the complexity of finding inverse square root is O(Ni). Moreover,

the complexity of multiplying an Ni × Ni diagonal matrix with an Ni × Ni matrix is

O(N2
i ). Therefore, the complexity of this step is O(

T−1∑
i=0

N2
i ).

However, if the similarity matrix is sparse, the actual running time can be greatly

reduced, as we can skip the computation of zero entries in similarity matrix. For a

similarity matrix that contains U non-zero entries, the complexity of multiplying it

with a diagonal matrix is O(U).

• Step 5 : Find V1, V2..., VKi , the first Ki eigenvectors of Li, and form the matrix

Xi = [V1V2...VKi ] ∈ RNi×Ki by stacking the eigenvectors in columns. To do this, we

first transform Li into a symmetric tridiagonal matrix Ki×Ki Ai. The transformation

routine is shown in Fig. 3.3. The tridiagonal matrix Ai is constructed using the derived

αi and βi (i ∈ [1, Ki]) in Fig. 3.3.

The complexity of the transformation is Ki · Ni. However, if Li is a sparse matrix,

the actual running time can be greatly reduced, as we can skip the computation of

zero entries. This transformation preserves the eigenvectors and the eigenvalues of

the original matrix, and can greatly speed up the following QR decomposition [16].

Specifically, QR decomposition on a tridiagonal matrix has complexity of O(Ki), in

contrast, QR decomposition on a general matrix is O(K3
i ) [52].

Following this, we do eigen decomposition on Ai using QR decomposition, as men-

tioned above, the complexity is O(Ki). Therefore, the total complexity of this step is

O(
T−1∑
i=0

(Ki · Ni)).

• Step 6 : Form the matrix Y from X by renormalizing each of X’s rows to have unit

length, Yij = Xij/(
√∑

j
X2

ij). The complexity of this step is O(N).
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Algorithm 1: TransformationToTridiagonalMatrix
/* LLL is the matrix, q1q1q1 is a random vector with |q1q1q1| = 1 */1

q0q0q0 = 0̄00 ;2

β1 = 0 ;3

for i = 1 to k do4

uuu = LLLqiqiqi − βqi−1qi−1qi−1;5

αi = uuu · qiqiqi;6

uuu = uuu − αiqiqiqi;7

βi+1 = |uuu|;8

qi+1qi+1qi+1 = uuu/βi+1 ;9

end10

/* Construct A */11

12

A =



α1 β2

β2 α2 β3

β3
. . . . . .
. . . αk−1 βk

βk αk



Figure 3.3: Transformation to tridiagonal matrix routine.
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• Step 7 : Treat each row of Y as a point in RKi , cluster them into Ki clusters using

K-means [27]. The complexity of this step is O(
T−1∑
i=0

(Ki · Ni)).

• Step 8 : Assign the original point Xi to cluster j if and only if row i of the matrix Y

is assigned to cluster j. The complexity of this step is O(N).

After Step 1 and Step 2 , points in every bucket run Spectral Clustering (from Step

3 to Step 8 ). Therefore, the total complexity of the proposed algorithm is:

TimeComplexity = O(M · N) + O(T 2) +
T−1∑
i=0

[
2 · O(N2

i ) + 2 · (Ki · Ni)
]
+ 2 · N. (3.6)

The hyperplane value and threshold value are important factors in the hash function.

The threshold value controls at which threshold we separate the original dataset apart, the

hyperplane value controls which feature space to compare with the corresponding threshold.

We use the principle of k-dimensional tree (k-d tree) [35] to set hyperplane value and thresh-

old value. The k-d tree is a binary tree in which every node is a k-dimensional point. Every

non-leaf node can be thought of as implicitly generating a splitting hyperplane that divides

the space into two parts, known as subspaces. Points to the left of this hyperplane are rep-

resented by the left subtree of that node and points right of the hyperplane are represented

by the right subtree. The hyperplane direction is chosen in the following way: every node

in the tree is associated with one of the k-dimensions, with the hyperplane perpendicular to

that dimension’s axis. For example, if for a particular split the “x” axis is chosen, all points

in the subtree with a smaller “x” value than the node will appear in the left subtree and

all points with larger “x” value will be in the right subtree. In such a case, the hyperplane

would be set by the x-value of the point, and its normal would be the unit x-axis.

To determine the hyperplane array, we look at each dimension of the dataset, and

calculate the numerical span for all the dimensions (denoted as span[i], i ∈ [0, d)). Numerical

span is defined as the difference of the largest value and the smallest value in this dimension.

For example, in Dim[j], the largest value is 0.9 and the smallest value is 0.1, then the

numerical span associated with this dimension is 0.8. We then rank the dimensions according

to their numerical spans. The possibility of one hyperplane[i] being chosen by the hash

function is proportional to:
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prob = span[i]/
d−1∑
i=0

span[i]. (3.7)

This is to ensure dimensions with large span have more chance to be selected. More

analysis can be found in Sec. 3.6.

For each dimension space Dim[i], the associated threshold is determined as follows:

between the minimum (denoted as min[i]) and maximum (denoted as max[i]) in Dim[i], we

create 20 bins (denoted as bin[j], j ∈ [0, 19]), bin[j] will count the number of points whose

i − th dimension fall into the range [min[i] + j × span[i]/20,min[i] + (j + 1) × span[i]/20).

We then find out the minimum in array bin (denoted as bin[s]), the threshold associated

with Dim[i] is set to Dim[i] = min[i] + s × span[i]/20.

Fig. 3.4(a) illustrates the scenario when we compute the similarity matrix from the

original dataset without approximation. Since both space complexity and time complexity of

computing the similarity matrix are O(N2) for a dataset containing N points, the similarity

matrix will take too much time to compute. The failure of computing similarity matrix will

render Spectral Clustering unfeasible to run. Our proposal is illustrated in Fig. 3.4(b): add

a pre-processing step on top of similarity matrix computation to separate the raw dataset

apart into several buckets according to their proximity and locality measurements. Then,

build the similarity matrix separately for each partition of data.

3.4 MapReduce Implementation of DASC Algorithm

MapReduce [18] is a programming model for writing applications that can rapidly process

vast amount of data in parallel on a cluster. Hadoop [62] is an open source implementation

of MapReduce. Hadoop makes it possible to run applications on systems with thousands

of nodes, these nodes can be of different computing power. We present the design of the

proposed DASC algorithm using the MapReduce programming model and we implement it

in the opensource Hadoop platform. A MapReduce job is a unit of work to be performed: it

consists of the input data, the MapReduce program, and configuration information. Hadoop

runs the job by dividing it into tasks. There are two types of tasks: map tasks and reduce

tasks.

Table. 3.2 illustrates different parts of a MapReduce job. We parallelize the proposed
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(a) Unoptimized Spectral Clustering.

(b) Proposed distributed Spectral Clustering (DASC).

Figure 3.4: Spectral Clustering and DASC.
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Component Handled By

Configuration of the job User
Input splitting and distribution Hadoop

Start of the individual map tasks
with their input split

Hadoop

Map function, called once for
each input key/value pair

User

Shuffle, which partitions and sorts
the per-map output

Hadoop

Sort, which merge sorts the shuffle output
for each partition of all map outputs

Hadoop

Start of the individual reduce tasks,
with their input partition

Hadoop

Reduce function, which is called once
for each unique input key, with all of the input values that share that key

User

Collection of the output and storage
in the configured job output directory

Hadoop

Table 3.2: Components of a MapReduce job.

DASC algorithm using the MapReduce framework. In this section, we first explain the

implementation of DASC, then go on to the configuration of MapReduce tasks.

3.4.1 Implementation of DASC

MapReduce works by breaking the processing into two phases: the map phase and the

reduce phase. Each phase has key-value pairs as input and output, the types of which are

chosen by user. The user also specifies two functions: the map function and the reduce

function. We first introduce the parallelization of Step1 - Step3 described in Section 3.3,

then move to the parallelization of Step4 - Step8 .

In map function, the input key-value pair is (index, inputV ector), where index is the

index of a data point, and inputV ector is a numerical array associated with the point.

The output key-value pair is (signature, index), where signature is a binary sequence, and

index is the same as the input notation. The pseudocode is shown in Fig. 3.5.

In reduce function, the input key-value pair is (signature, listof(index)), where signature

is a binary sequence, and index is the index of a data point. The reduce function is passed

with a list of data points that fall into the same bucket, and it will compute the sub simi-

larity matrix following Equation (3.4), and output the computed result. The pseudocode is
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Algorithm 2: mapper(index, inputVector)
/*a mapper is fed with one inputV ector per time,1

which comprises of d dimensions*/2

String Sig = ”” ;3

for i = 1; i ≤ M ; i + + do4

Threshold = get threshold(i) ;5

Hyperplane = get hyperplane(i) ;6

if inputV ector[Hyperplane] ≤ Threshold then7

p = 1 ;8

else9

p = 0 ;10

end11

Convert p to String and add to the tail of Sig ;12

end13

emitPair(Sig, index) ;14

Figure 3.5: DASC Map function.

shown in Fig. 3.6.

Approximation error can occur if the following scenario happens. For two points in two

separate buckets, they share the majority of corresponding bits in the signature. This means

two such points differ from each other in a very small portion, and thus, it is reasonable to say

that they still lie close to each other. Suppose we do not have the proposed approximation

step and the original dataset goes directly to Spectral Clustering, then two such points still

have a high chance to go into one cluster. If we use the proposed approximation step and

two such points are projected into different buckets, the underlying Spectral Clustering will

cluster the points separately in each bucket, so these two points may go to different clusters.

This is how the approximation error is incurred.

Manku et al. [40] have similar problem in large scale web search. They work on finding

similar documents when a document is queried. In their work, every document is repre-

sented by a binary fingerprint, similar fingerprints stand for similar documents. When a

document query is submitted, the system not only returns the documents that have identical

fingerprints, but it also returns those documents that have the majority of fingerprint bits

in common.

In order to reduce this approximation error, in between map and reduce functions, we use

a similar step that merges two buckets whose signatures share no less than P bits into one
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Algorithm 3: reducer (signature, ArrayList indexList )
/*Compute the sub similarity matrix */1

Length = getLength(indexList) ;2

for i = 1; i ≤ Length; i + + do3

for j = 1; j ≤ Length; j + + do4

if i ̸= j then5

subSimMat[i, j] = simFunc(i, j) ;6

else7

subSimMat[i, j] = 0 ;8

end9

end10

end11

Output to F ile(subSimMat) ;12

Figure 3.6: DASC Reduce function.

bucket. For example, if there are two buckets whose signatures are 0110000 and 0110100,

then the points in these two buckets will be merged together. Effectively, the two files on

disk containing these points will be combined to form a new file.

This step goes in the following way: Every two binary signatures of length M bits

generated in the map function go through a pair-wise comparison phase. If they share at

least P bits, the files containing the points will be merged together into a new file, effectively,

the point indices in the original two files are put into a new file. These two signatures will be

removed from the signature pool. This is to prevent the occurrence of the following situation:

if there are three signatures, A: 0010, B: 0011 and C: 0001, after we finish merging A and B,

if we do not remove A and B from the signature pool, we will later merge B and C together.

This will essentially be erroneous because A and C have only two bits in common.

The process of comparing two signatures is also optimized for performance, we use

the following bit manipulation to do the comparison between two M -bit-length sequence

(denoted as A and B):

ANS = (A ⊕ B)(A ⊕ B − 1), (3.8)

If ANS is 0, it means A and B have only 1 bit in difference, thus they will be merged

together. Otherwise, A and B should not be merged. The complexity of this operation is

O(1).



CHAPTER 3. PROPOSED DISTRIBUTED SPECTRAL CLUSTERING ALGORITHM34

After the sub similarity matrices have been computed, we run Spectral Clustering on

each matrix.

In Step 4 , to compute diagonal matrix D, since the computation of one entry Dii in

D only needs the information of the ith row in S, this process is parallelized for every

row. In the map function, the input pair is (rowIndex, rowV ector), the output pair is

(rowIndex, Sum), where Sum is the summation of all the entries in vector rowV ector. The

pseudocode of the Map function is shown in Fig. 3.7.

Algorithm 4: mapper(rowIndex, rowVector)
/*a mapper is fed with one rowV ector1

comprised of N entries */2

Float result = 0 ;3

for i = 1; i ≤ N ; i + + do4

result+ = rowV ector[i] ;5

end6

String resultString = result.toString() +′ ′ + rowIndex ;7

emitPair(1, resultString) ;8

Figure 3.7: Map function of diagonal matrix computation.

The pseudocode of the Reduce function is shown in Fig. 3.8.

Algorithm 5: reducer (key, ArrayList values )
/*Construct diagonal matrix */1

Length = getLength(values) ;2

for i = 1; i ≤ Length; i + + do3

diagMat[i, i] = values[i] ;4

end5

Output to F ile(diagMat) ;6

Figure 3.8: Reduce function of diagonal matrix computation.

After D has been computed, we come to L = D−1/2SD−1/2. This involves matrix

multiplication. Because D is a diagonal matrix, D−1/2 is also diagonal matrix. Matrix pre-

multiplication with a diagonal matrix and matrix postmultiplication with a diagonal matrix

are both very efficient. We use matrix IM to denote the intermediate matrix generated,

the size of D and S is N .
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IMij =
N−1∑
k=0

(D−1/2
ik · Skj) = D

−1/2
ii · Sij , (3.9)

Lij =
N−1∑
k=0

(IMik · D−1/2
kj ) = IMij · D−1/2

jj , (3.10)

Therefore, we have:

Lij = D
−1/2
ii · Sij · D−1/2

jj . (3.11)

The process is parallelized on every entry. For every entry Lij , the map function fetches

D
−1/2
ii , D

−1/2
jj and Sij , and performs dot product multiplication. The output pair is (i ·

n + j, productV alue). Therefore, if the size of the matrix is N × N , we use N2 tasks to

parallelize it. The pseudocode of the Map function is shown in Fig. 3.9.

Algorithm 6: mapper(Index, tuple)
/*a mapper is fed with one tuple < Dii, Sij , Djj > */1

Float result = 0 ;2

dii = tuple[0] ;3

sij = tuple[1] ;4

djj = tuple[2] ;5

result = dii ∗ sij ∗ djj ;6

String resultString = result.toString() +′ ′ + Index ;7

emitPair(1, resultString) ;8

Figure 3.9: Map function of Laplacian matrix computation.

The pseudocode of the Reduce function is shown in Fig. 3.10.

In Step 5 , we are to compute the eigenvectors and eigenvalues of L. The naive method

involves finding the roots of the characteristic polynomial of the matrix. However, for large

matrices, this method is simply not feasible [45]. There are several approximation methods

to compute eigenvectors and eigenvalues, such as Inverse Iteration [30] and Rayleigh quotient

iteration [50]. In this work, Lanczos method [48] is used to compute the eigenvectors. The

Lanczos method is good for the eigen decomposition of large sparse matrices [16].

Lanczos method transforms the original matrix L into a real symmetric tridiagonal

matrix A, whose eigenvalues are more easily computed. This transformation is orthogonal,
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Algorithm 7: reducer (key, ArrayList values )
/*Construct Laplacian matrix */1

Length = getLength(values) ;2

for i = 1; i ≤ Length; i + + do3

for j = 1; j ≤ Length; j + + do4

LapMat[i, j] = values[i ∗ N + j] ;5

end6

end7

Output to F ile(LapMat) ;8

Figure 3.10: Reduce function of Laplacian matrix computation.

hence preserves the eigenvalues of L. In each round, matrix multiplication of a matrix by a

vector is parallelized on every row. Because L is symmetric matrix, the parallelization on

every row does not call for synchronization. The first k eigenvectors of L are found out.

The matrix X = [V1V2...Vk] ∈ RN×k forms by stacking the eigenvectors in columns. The

pseudocode of the Map function is shown in Fig. 3.11.

Algorithm 8: mapper(Index, tuple)
/*a mapper is fed with one tuple < Lrow, q >1

Lrow is one row in L, q is a vector*/2

Vector Lrow = tuple[0] ;3

Vector q = tuple[1] ;4

Float result = 0 ;5

for j = 1; j ≤ N ; j + + do6

result+ = Lrow[j] · q[j] ;7

end8

String resultString = result.toString() +′ ′ + Index ;9

emitPair(1, resultString) ;10

Figure 3.11: Map function of matrix vector multiplication in Lanczos method.

The pseudocode of the Reduce function is shown in Fig. 3.12.

Step 6 is normalization of matrix X by the column. The computation is parallelized by

the column since the normalization of every column has nothing to do the other columns.

In the map function, the input pair is (ColumnIndex, ColumnV ector), the output pair is

(ColumnIndex, NormalizedColumnV ector), and the reduce function is left empty. The

pseudocode of the Map function is shown in Fig. 3.13.
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Algorithm 9: reducer (key, ArrayList values )
/*Construct resulted q vector */1

Vector q ;2

Length = getLength(values) ;3

for j = 1; j ≤ Length; j + + do4

q[j] = values[j] ;5

end6

Output to F ile(q) ;7

Figure 3.12: Reduce function of matrix vector multiplication in Lanczos method.

Algorithm 10: mapper(ColumnIndex, ColumnVector)
/*a mapper normalizes a column in X */1

Float magnitude = 0 ;2

for j = 1; j ≤ N ; j + + do3

magnitude+ = ColumnV ector[j] · ColumnV ector[j] ;4

end5

magnitude = sqrt(magnitude) ;6

for j = 1; j ≤ N ; j + + do7

ColumnV ector[j]+ = ColumnV ector[j]/magnitude ;8

end9

emitPair(ColumnIndex, ColumnV ector) ;10

Figure 3.13: Map function of normalization.

In Step 7 and Step 8 , we come to the final step, which is K-means clustering. The

parallelization strategy is described in Section 2.4.

3.4.2 Configuration of DASC in MapReduce Framework

The configuration parameters of MapReduce are tuned to achieve good performance. Two

of the important factors for performance are input split size and replication factor.

Hadoop divides the input of a MapReduce job into fixed-size pieces called input splits.

Hadoop creates one map task for each split, and it runs the user-defined map function for

each record in the split. Having many splits means the time taken to process each split

is small compared to the time to process the whole input. So if we are processing the

splits in parallel, the processing is better load-balanced if the splits are small, since a faster

machine will be able to process proportionally more splits over the course of the job than
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Parameter Value
heap-size for Maps 1024 MB

heap-size for Reduces 1024 MB
HDFS block size 64 MB

MapReduce task timeout 1800000 ms
Memory-limit while sorting data 200 MB

Size of read/write buffer used in SequenceFiles 128 KB
Size of read/write buffer 4 KB

Maximum number of tasks run simultaneously on one node 2
Number of map tasks 256

Number of reduce tasks 10

Table 3.3: Parameters used in the implementation.

a slower machine. Even if the machines are identical, failed processes or other jobs running

concurrently make load balancing desirable, and the quality of the load balancing increases

as the splits become more fine-grained. On the other hand, if splits are too small, then the

overhead of managing the splits and map task creation begins to dominate the total job

execution time. In the experiments, the split size is set to be the size of the HDFS block,

which is 64 MB, based on the following reason: It is the largest size of input that can be

guaranteed to be stored on a single node. If the split spans two blocks, it is unlikely that

any HDFS node stores both blocks, thus some of the split would have to be transferred

across the network to the node running the map task, which is less efficient than running

the whole map task on local data.

The number of replicas of a file in HDFS is called the replication factor of that file. As

described in Section 2.1.2, a map task will consult the namenode to locate the position of the

input file. If the input file is not on its local machine, it will bring the input data from another

node where the data resides. It will cost extra node-to-node network communication. In

the cluster we experiment on, all nodes are connected by a high-speed router, thus forming

a single rack (no out-of-rack access). So we set the replication factor to 1.

For the number of map tasks, it has been suggested in [62] that the right number of

Maps is around 10-100 maps/node. Therefore, considering there are five nodes in the clus-

ter, we set this parameter to 256. For the number of reduce tasks, it has been suggested

in [62] that the right number of reduces is 0.95·(NumberOfNodes·tasktracker.tasks.max).

NumberOfNodes is the total number of TaskTracker machines, and tasktracker.tasks.max
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is the number of maps/reduces spawned simultaneously on a TaskTracker. At 0.95 all of

the reduces can launch immediately and start transfering map outputs as the maps finish.

In our implementation, the parameter tasktracker.tasks.max is 2. Therefore, we set the

number of reduce tasks to 10.

3.5 Speedup and Memory Consumption Analysis

Given a collection of data (the size is N), the proposed method aims to project nearby

points into one bucket and only compute the similarity values between the point pairs that

appear in the same bucket. We give a quantitative analysis of the reduction of similarity

matrix size using the proposed method.

The space complexity for computing the whole matrix is O(N2). For the approximated

similarity matrix, suppose there are altogether B number of buckets, and there are Ni

number of points in bucket i, where 0 ≤ i ≤ B − 1, and
B−1∑
i=0

Ni = N . The space complexity

is:
B−1∑
i=0

N2
i . Therefore, the space usage reduction ratio is given as:

SpaceReductionRatio =

B−1∑
i=0

N2
i

N2
.

(3.12)

If all the buckets contain equal number of points, Ni = N
B where 0 ≤ i ≤ B − 1. Eq.

3.12 can be rewritten as:

SpaceReductionRatio =

B−1∑
i=0

N2
i

N2
=

B · (N
B )2

N2
=

1
B

.
(3.13)

Moreover, the memory is distributed across the cluster machines.

In the aspect of computing time reduction, the time complexity for computing the whole

matrix is O(N2). For the approximated similarity matrix, suppose there are altogether B

number of buckets, and there are Ni number of points in bucket i, these points form Ki

clusters, where 0 ≤ i ≤ B−1, and
B−1∑
i=0

Ni = N . We run Spectral Clustering on each bucket.

M is the length of signature bits. Therefore, the time reduction ratio is given as:

TimeReductionRatio =
M · N + B2 + 2 · N +

B−1∑
i=0

[
2 · N2

i + 2 · (Ki · Ni)
]

2 · N2 + 2 · (K · N) + 2 · N
.

(3.14)
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If all the buckets contain equal number of points, Ni = N
B where 0 ≤ i ≤ B − 1. Eq.

3.14 can be rewritten as:

TimeReductionRatio =
M · N + B2 + 2 · N +

B−1∑
i=0

[
2 · N2

i + 2 · (Ki · Ni)
]

2 · N2 + 2 · K · N + 2 · N

=
M · N + B2 + 2 · N + B ·

[
2 · (N

B )2 + 2 · (K
B · N

B )
]

2 · N2 + 2 · K · N + 2 · N

=
M + B2

N + 2 − 2
B

2 · (1 + N + K)
+

1
B

.

(3.15)

Furthermore, the approximated similarity matrix can be fed into the following-up clus-

tering technique in a parallelized manner. This will bring about further computing time

reduction.

3.6 Accuracy Analysis

In this section, we analyze why the proposed method can accurately cluster high-dimensional

large datasets. The proposed algorithm can be divided into two parts: the first part is signa-

ture generation and similarity matrix computation, the second part is Spectral Clustering.

Given an N×d dataset, in dimension i (where i ∈ [0, d)), if a group of points have similar

values (for example, they all have values around 0.8 in dimension i), it is likely that they

belong to the same cluster. Also, if there are two groups A and B, in dimension i, points

in group A are all far away from points in group B (for example, points in group A have

values around 0.8 and points in group B have values around 0.2), it is likely that these two

groups of points belong to two separate clusters. Our hash function is essentially following

the above reasoning to do partitioning. In point signature generation part, in every hashing

iteration, the hash function selects the values in dimension i (where i ∈ [0, d)) to check. In

fact, the hash function is projecting all the points onto a line, as is shown in Fig. 3.14.

After projecting the points onto a line, numerical span is the maximum distance between

two projections of all points. The hash function builds upon the fact that, if all projections

lie in a small line segment, the cluster formation is hard to differentiate, and the probability

of misclassification arises. When the hash function chooses which dimension to examine,

the probability of a dimension being chosen will grow as the numerical span increases, as in

Eq. (3.7).
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Figure 3.14: The effect of hash function. Figure 3.15: An example of counting range
histogram.

We also need to decide how to split the dataset into two. It has been discussed in [58]

that, by choosing a splitting plane at the place where fewest points appear in dimension i,

we can reduce the number of points that are wrongly clustered. Therefore, to determine

the splitting point, the hash function finds out a segment in dimension i that has the lowest

density.

As shown in Sec. 3.3, for each dimension i (where i ∈ [0, d)), we create 20 equal-length

segments and count the number of points falling into each segment. After this step, we form

a histogram, as in Fig. 3.15. The starting point of the segment with the lowest count is used

as the splitting point. For example, in Fig. 3.15, when performing partitioning, because

the Range[0.35, 0.45] has the smallest count of the points compared to other ranges, it is

reasonable to say that this range has the biggest possibility to be the borderline of two

clusters, therefore, threshold 0.35 is used to partition the dataset.

After the dataset partitioning, Spectral Clustering will run as the second step to cluster

the dataset. Every entry in similarity matrix corresponds to a nonlinear transformation of

the distance between two points. Also, in order to deal with a dataset that is non-linearly

separable in input space, Spectral Clustering works by first computing eigenvectors of the

affinity matrix, and then do K-means clustering to get the final result.



Chapter 4

Experimental Evaluation on

Synthetic Datasets

In this chapter, we evaluate the proposed algorithm on a cluster. We describe the setup

of the experiment, then explain the evaluation metrics. After that, we present evaluation

results of the proposed method, and compare them with the results of current optimization

techniques that use parallel programming paradigms and approximation methods.

4.1 Experimental Setup

The experiments are conducted on a cluster made up of five machines, each of which is

equipped with Intel Core2 Duo Processor E6550 (4M Cache, 2.33 GHz, 1333 MHz FSB) and

1 GB DRAM. One machine in the cluster serves as the master (job tracker) and the others

are slaves (task trackers). The dataset used in the experiment is 64-dimension randomly

generated data, each dimension takes a real value chosen from the period [0, 1]. We use the

range [0,1] because dataset normalization is a standard preprocessing step in Data Mining

applications [4]. The size of the dataset ranges from 1024 to 4 million data points.

The software stack that runs on each machine of the cluster and the property of the

dataset are illustrated in Table 4.1.

In K-means, once the initial centers are chosen, the distance is calculated from every

point in the dataset to each of the centers and each point is assigned to the particular cluster

center whose distance is closest. After the assignment of points to cluster centers, each

42
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OS Ubuntu Linux 2.6.27-14
JDK Version 1.6.0

Hadoop Version 0.20.2
Dataset property 64 dimension, every component of vector Xi is [0,1]

Table 4.1: DASC method experiment setup.

cluster center is recalculated to form the new centroid of its member points. This process is

then iterated until convergence is reached. That is, the cluster centers shift by less than a

pre-determined convergence delta value. In the experiment, we set the maximum iteration

number of K-means (the last step of Spectral Clustering) to 10, and convergence delta is set

to 0.5, and cluster number to 3. We monitor the running process of the experiments, and

find out when convergence delta is equal to 0.5, the iteration number is always below 10.

This phenomenon also shows that the preprocessing steps preceding K-means are effective.

By the time the algorithm reaches K-means, the data is already easy to be clustered apart.

We set the parameter of how many buckets to generate from the original dataset as

follows: presented with a dataset with size N , the bit length of the signature M generated

is set to M = ⌊ log N
2 ⌋ − 1. P is the minimum number of identical bits in two binary

signatures. We set the P value to M − 1. This is based on the reason that if P is set to a

smaller value, more initial buckets of points will potentially be merged together, leading to

less degree of parallelization. Another reason is that, setting P = M −1 will enable efficient

O(1) comparison operation. This bit comparison operation is shown in Eq. (3.8) between

two signatures.

We implement the proposed method DASC by modifying Mahout, and compare the

proposed method against three other methods. One is the basic distributed Spectral Clus-

tering method (SC), we use the existing implementation of SC in Mahout. The other one is

Parallel Spectral Clustering (PSC) in [13]. PSC is implemented by Chen [13] in C++ using

PARPACK library [37] as underlying eigenvalue decomposition package and F2C to compile

fortran code. The parallelization is based on MPI. The implementation is comprised of five

steps:

• Step 1 : Compute the distance matrix. In this step, we set the number of nearest

neighbors of one point to N
40 , Arnoldi length [38] is set to the double of the number of

clusters.
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OS Ubuntu Linux 2.6.27-14
GCC 4.3.3

MPICH Version 1.3.2p1
Dataset property 64 dimension, every component of vector Xi is [0,1]

Table 4.2: PSC method experiment setup.

• Step 2 : Convert the distance matrix to similarity matrix and compute the Laplacian

matrix L. The conversion follows:

similarity = exp−(distance·distance)/(2·γ1), (4.1)

where γ1 is the corresponding row average of the distance matrix.

• Step 3 : Compute the first k eigenvectors of L using iterative procedure called “im-

plicitly restarted” Arnoldi [13], and construct X ∈ RN×k, whose columns are the k

eigenvectors.

• Step 4 : Compute the normalized matrix Y from X.

• Step 5 : Use K-means to cluster the points int k groups.

The PSC method experiment setup is shown in Table 4.2.

The third method is the Nystrom extension (NYST), we use the existing implementation

by Shi [57]. NYST performs the following steps:

• Step 1 : Compute the top eigenvectors V1, V2,..., Vk of similarity matrix using a

Gaussian kernel.

• Step 2 : Find the eigenvectors with no sign change up to a small threshold ε. Larger

values of ε lead to more eigenvectors having the no sign change property, which results

in more groups being detected by the algorithm. Smaller values of ε result in fewer

groups. For d-dimensional vector v taking values at locations X1,..., Xd, ε = 1
d

d
max
i=1

Xi.

• Step 3 : Cluster the collection of all no sign change eigenvectors.

• Step 4 : Combine eigenvectors within each cluster found in step 3 to obtain a single

eigenvector for that group.
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OS Ubuntu Linux 2.6.27-14
Matlab R2009a

Dataset property 64 dimension, every component of vector Xi is [0,1]

Table 4.3: Nystrom method experiment setup.

• Step 5 : Extend each group eigenvector to all observations in the original dataset and

use these vectors to assign cluster labels.

Nystrom method is implemented in Matlab, the experiment setup is shown in Table 4.3.

4.2 Performance Metrics

We consider the following performance metrics: accuracy, processing time and memory

usage.

Accuracy is measured from both low-level matrix property and from high-level clustering

algorithm aspect. At the matrix level, we use Frobenius Norm [42]. For the high level, we

compare the clustering results of different methods.

4.2.1 Low Level Accuracy Metric

The Frobenius norm (denoted as Fnorm hereinafter) is one of the matrix norms [42], which

is also called the Euclidean norm. The Frobenius norm of an M × N matrix A is defined

as:

||A|| = Fnorm =

√√√√ M∑
i=1

N∑
j=1

|aij |2. (4.2)

Fnorm is easy to compute and it can be used to assess how close two matrices are. We

use it to compare the approximated similarity matrix versus the original one.

For an M × N matrix A, by singular value decomposition, A can be decomposed into

the product of three matrices as follows:
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A = UΣV H (4.3)

= U

Σk 0

0 0

 V H ,

where U and V are two unitary matrices and Σk is a k × k diagonal matrix containing

the k ordered positive definite singular values σ1 ≥ σ2... ≥ σk ≥ 0. The variable k is the

rank of A and represents the number of linearly independent columns in it. The Frobenius

norm is invariant under unitary transformations, therefore, we have:

||A|| =

√√√√ k∑
m=1

σ2
m. (4.4)

According the Eq. (4.4), the larger the FnormRatio is, the closer the sum of singular

values in the approximated similarity matrix is to that of the original matrix. If FnormRatio

is equal to 0.9, it means 90% of the sum of singular values in the original similarity matrix

is preserved in the approximated one. Therefore, the approximated similarity matrix is very

close to original one.

Fnorm is used in [67] to develop a new affinity matrix normalization scheme in Spectral

Clustering. Anagnostopoulos et al. [2] propose an approximation algorithm for co-clustering

problem and use Fnorm for evaluation purpose. Yang and Yang [65] compare the proposed

Yang distance against Fnorm in two-dimensional principal component analysis.

4.2.2 High Level Clustering Accuracy Metrics

We compare the clustering results of different algorithms using two metrics. The first one is

the Davies-Bouldin index (DBI) [17] is a function of the ratio of the sum of within-cluster

scatter to between-cluster separation. It uses both the clusters and their sample means. It

is calculated by the following formula:

DBI =
1
C

C∑
i=1

max
j:i̸=j

{ σi + σj

d(ci, cj)
}, (4.5)

where C is the number of clusters, cx is the centroid of cluster x, σx is the average

distance of all elements in cluster x to centroid cx, and d(ci, cj) is the distance between
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centroids ci and cj . Clustering algorithm that produces the smallest index is considered the

best algorithm based on this criterion. DBI has been shown to be a robust strategy for the

prediction of optimal clustering partitions [17]. Guerif et al. [26] leverage DBI to determine

the best number of clusters in the clustering process of Self-Organizing Maps (SOM). It is

also the evaluation index used and discussed in [55] and [58].

The second metric we use to compare clustering results is the average squared error

(ASE) measurement [31], which serves as a clustering criterion for many classic clustering

techniques, such as k-medoids algorithm [34]. ASE is also used in [22] for validation purposes.

The squared distance e2
k (where 1 ≤ k ≤ C) for each cluster k is the sum of the squared

Euclidean distances between each point in k and its centroid, and the average squared error

for the entire dataset is expressed by:

ASE =
1
N

∑
k

e2
k =

1
N

∑
k

(
Nk−1∑
j=0

d(Xj , Ck))2, (4.6)

where N is the size of the dataset, Nk is the number of points in cluster k.

4.2.3 Processing Time and Memory Footprints

Processing time is the running time of the program. Since every entry in the the similarity

matrix is of type float (4 bytes), the memory usage is MemUsage = 4 × Num Entries,

where Num Entries is the number of entries in the similarity matrix.

4.3 Results and Analysis

4.3.1 Accuracy

Frobenius Norm

Fig. 4.1 shows Frobenius Norm value of approximated matrix compared to that of the

original matrix. The x-axis stands for how many buckets the original dataset is partitioned

into. For example, when the value in x-axis is 8, the original dataset is divided into 28

partitions. The y-axis stands for the FnormRatio, which is defined as the Fnorm value of

the approximated matrix to the original full similarity matrix.

We choose M to be ⌊ log N
2 ⌋ − 1 when the total number of points is N . Because it is

shown in Fig. 4.1 that when we follow this formula, the ratio of Frobenius Norm between
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Figure 4.1: Comparison between approximated similarity matrix and original matrix
using Frobenius norm.

the approximated similarity matrix and the original similarity matrix will all be above

87.6%, thus it is a good approximation. For a dataset (represented by a line in Fig. 4.1),

the more partitions we have, the more information we lose. If we look into this problem

in a matrix perspective, having less number of buckets means, in one single bucket, more

close-by points have the potential to be clustered in the final stage. On the other hand, if

we generate more buckets, the selection bar of entering the same bucket has been raised.

Although points that fall in the same bucket are still close to each other, some other points,

which are at the boundary of the bucket, will fall into another bucket. Also, if the size of the

dataset is increased and keep the bucket number unchanged, on average, more points will

fall into the same bucket, the potential clustering quality of underlying Spectral Clustering

will be positively influenced.
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Figure 4.2: DBI comparison.
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Figure 4.3: ASE comparison.

SC DASC PSC
1024 points 79.2 90.1 12.1
2048 points 256.3 187.5 42.2
4096 points 826.9 346.1 160.5
8192 points 3041.2 703.8 610.2
16384 points 12328.8 1562.6 2318.8

Table 4.4: Processing time comparison from 1024 to 16384 points (in second).

DBI, ASE

Fig. 4.2 and Fig. 4.3, respectively, show DBI value (the distance of two points is the L2

distance) and ASE value comparison. The values in x-axis stand for the size of the dataset,

the values in y-axis stand for the corresponding value of DBI and ASE.

In Fig. 4.2 and Fig. 4.3, the curves for the Nystrom method terminates at 214 number

of points. The reason is that when applying larger dataset on the Nystrom method, the

machine is overwhelmed by large memory consumption. As is shown in Fig. 4.2, the DBI

value that DASC achieves is very close to the result achieved by SC. Therefore, DASC

can accurately cluster the dataset. When checking the DASC curve alone, the DBI values,

although go through some slight up and downs, in general, they stay in the range between 1

to 1.3 and always close to the SC’s curve. If we look at the definition of DBI, the numerator

is the sum of the average distance of all points in one cluster to its centroid, and the

denominator is the distance between the centroids of two clusters. When the DBI value is
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Figure 4.4: Running time comparison.
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Figure 4.5: Memory consumption
comparison.

larger than one, it can be inferred that the shape of certain cluster is long-stretched. But

within the cluster, the points tightly reside in a high-dimensional cubic. This is the desired

result we want to achieve. On the contrary, PSC and NYST do not perform as good as

DASC.

In Fig. 4.3, the average squared distance measures how close the points in the clusters

are to their respective centroids. Small ASE value indicates better clustering result. The

figure shows that DASC outperforms the PSC and NYST methods. DASC curve stays close

to SC, while PSC and NYST are about 30% and 40%, respectively, apart from SC. When

the dataset grows larger, the PSC performance tends to deteriorate, as the average distance

value grows slightly.

4.3.2 Processing Time

Fig. 4.4 and Table 4.4 show the processing time of DASC, PSC and SC. DASC, PSC and

SC all run on the five-node cluster. It can be observed that, starting from 214 dataset, the

processing time of the SC method substantially increases. However, the increment ratio of

the DASC method is kept to a small value between 1.1 to 1.3. DASC considerably improves

the running time, because after the partitioning of the dataset, each subset of points will

go separately into their own underlying clustering phase. Therefore, there can be several

eigen decomposition subroutines going on in the cluster. It should also be noted that, for
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the comparison between the results of PSC and DASC, one big drawback of PSC is that, in

order to find out a group of nearest neighbors for a data point, it still needs to do pair-wise

computation. The time complexity is still not improved. This can be mitigated by using rich

computing power (such as multicore machines or a cluster) on small size dataset, however,

when the dataset grows even larger, the disadvantage of it is obvious. PSC uses sparse

matrix to store the similarity matrix. It should be noted that, the reduction in memory

usage does not correlate with the reduction of computing time. The computing time is not

improved because it still scans through the dataset N2 times.

4.3.3 Memory Consumption

Fig. 4.5 illustrates the similarity matrix memory consumption of DASC, SC and PSC. SC

is the most memory consuming, because it has to store every entry in the similarity matrix.

PSC performs good in the initial stage. However, when the dataset grows, the memory

consumption increases rapidly. The reason is that, as the data amount gets bigger, PSC

increases the number of the nearest neighbors to retain the accuracy of the approximted

matrix. However, the growing slope is smaller than that of SC. DASC outperforms PSC

and SC in the aspect of memory footprint, the slope is much flat in comparison to the

other two methods. For example, for a dataset of size 218 points, there is a factor of 25

reduction in memory footprint when comparing the proposed DASC algorithm against PSC

algorithm. The reduction factor is higher for larger datasets. It should also be mentioned

that, in the figures represented above, SC and PSC curves terminate at 215 points and 218,

respectively, because of the large complexity of computing time, and the subsequent memory

insufficiency.

4.3.4 Summary

In this section, we evaluated the proposed DASC algorithm using synthetic datasets and

compared it against three closest algorithms in literature: SC [46], PSC [13] and NYST

methods [39] which approximate and parallelize Spectral Clustering. The experimental

results show that DASC can successfully retain the clustering accuracy (within 10% above

SC in DBI value, and within 16% above SC in ASE value), greatly reduce computing time

(with the reduction ratio of 13 and more when comparing against SC, and with the reduction

ratio of 10 and more when comparing against PSC), and significantly reduce the memory
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footprint.



Chapter 5

Experimental Evaluation on

Large-Scale Wikipedia Dataset

In this chapter, we evaluate the proposed algorithm on the five-node cluster testbed de-

scribed in Chapter 4 as well as in Amazon Elastic MapReduce cluster. The dataset we use

is real-life Wikipedia semantic dataset. We describe how the Wikipedia dataset is crawled

and how the raw dataset is processed. We also introduce the setup of the experiments, then

explain the evaluation metrics. After that, we present evaluation results of the proposed

method, and compare it with the results of PSC and SC algorithms.

5.1 Dataset Crawling and Processing

Wikipedia is a rich corpus source for text clustering. It has millions of articles along with

good category hierarchy. Hereinafter, the whole dataset is denoted as the corpus, a web

page is denoted as a document, and a word that appears in the corpus is denoted as a

term .

We developed a crawler in Python. The crawler utilizes urllib and urllib2 libraries. It

starts crawling from an indexing page:

http://en.wikipedia.org/wiki/Portal:Contents/Categories

The page lists the categories and their links. The organization of one category is as

follows: One category has several sub-categories and some pages associated with it. It can

be modeled as a tree structure, and the web pages are the leaf nodes, and other nodes have

53
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sub-categories.

For these sub-category links, Wikipedia also differentiates them into two genres, both

are encoded in HTML files: One genre is identified with CategoryTreeBullet , meaning

the sub-category this link points to also contains its own sub-categories, another genre is

identified with CategoryTreeEmptyBullet , meaning this sub-category only contains the

leaf nodes.

The crawling process goes in several steps:

• Get the tree structure.

• Get the links of the leaf nodes and associate them with the corresponding category.

• Get the content of the leaf nodes (the HTML files).

The web crawler downloaded 3,550,567 documents, forming 579,144 categories. HTML

files are further processed as follows:

• Remove tags in the files and leave the raw text.

• Keep the summary only.

The reason why we trim a document to leave the summary only is that, in most cases,

one document is very large in size and it contains too many terms. We need to compute

the tf-idf (term frequency-inverse document frequency) value for every term in the whole

dataset. This is unrealistic given the huge amount of terms. On the contrary, the summary

of a document contains the digest of the article, it contains the key terms associated with

this document. These key terms play an important role in document clustering. Note that

clustering based only on the document summary is more challenging than based on whole

datasets.

5.2 Converting Semantic Corpus into Numerical Dataset

The corpus goes through the following steps, and tf-idf is calculated for every term in the

corpus.

• Convert characters to lowercases.
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• Remove punctuation.

• Remove stop words.

• Stem all terms.

We use Apache Lucene [28] to process the corpus. Apache Lucene is a text search engine

library. The stop-word list we use is concatenated from several lists to capture the majority

of the stop words. Stemming is the process for reducing inflected (or sometimes derived)

words to their stem, base or root form. The stem does not need to be identical to the

morphological root of the word, it is usually sufficient that related words map to the same

stem, even if this stem is not in itself a valid root. In our experiments, we use Porter

stemming algorithm [51] in Lucene library to do this step.

We derive tf-idf values from the corpus and form the numerical dataset. The term count

in a specific document is the number of times a given term appears in that document.

This count is usually normalized to prevent a bias towards longer documents. It gives a

measure of the importance of the term t within the particular document d. We have the

term frequency tf(t, d) defined as:

tf(t, d) =
occurrence of t

total number of terms in d
. (5.1)

The inverse document frequency is a measure of the general importance of the term,

obtained by dividing the total number of documents by the number of documents containing

the term, therefore, idf(t) is defined as:

idf(t) = log
|D|

1 + |d : t ∈ d|
, (5.2)

where |D| is the total number of documents in the corpus, and |d : t ∈ d| is the number

of documents where the term t appears.

Thus, tf-idf(t,d) = tf(t, d) · idf(t).

Since the number of terms contained in one document is much smaller than the total

number of terms in the corpus, the numerical dataset contains a lot of zeros. In order to

save disk space and memory usage, we use sparse matrix to store the dataset.
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Figure 5.1: Clustering accuracy.
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Figure 5.2: Dimensionality increase of
Wikipedia dataset.
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Figure 5.3: Time of dataset generation.

5.2.1 Reducing Feature Set

One problem encountered during the process is that, if we include every term that appears

in the corpus, the dimensionality of this three million document dataset will be huge. We

tackle this problem in the following manner: after getting the tf-idf values for one document,

we rank these tf-idf values in descending order and keep only the first F terms. The reason

is that when computing the cosine distance in later steps, smaller values will contribute less

to the result. Omitting the trailing tf-idf values brings a small amount of inaccuracy to the

result, but speeds up the computation dramatically.

We conduct an empirical experiment to tune the parameter F . We take 1,084 docs from
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the corpus, these 1,084 docs contains 11,102 different terms. We run Spectral Clustering

on the datasets generated using F from 6 to 16 and compare the clustering accuracy. The

clustering accuracy is the ratio of correctly clustered docs to the total number of docs. The

clustering accuracy comparison is shown in Figure 5.1. The increase of term dimensionality

is shown in Fig. 5.2. The increase in dataset generation time is shown in Fig. 5.2. It can

be seen that, after F reaches 11, the accuracy improvement is trivial. On the contrary, the

increases of term dimensionality and computation time are significant. Therefore, we use

F = 11 in the experiments.

5.2.2 Similarity Matrix Computation

For the similarity matrix computation, we use cosine distance to compute the similarity

between two documents. In document clustering, cosine distance has been widely used [59]

[6]. The cosine distance between two vectors (two documents) is defined as:

similarity(A,B) = cos(θ) =
A · B

||A|| · ||B||
, (5.3)

where A · B represents the inner product of A and B, ||A|| represents the magnitude of

vector A.

5.3 Experimental Setup

The experiments are conducted in two separate clusters. The first cluster is the five-machine

cluster testbed introduced in Sec. 4.1. We run PSC, DASC and SC on this five-machine

cluster. We compare the results of DASC against those of PSC and SC. The second cluster

is Amazon Elastic MapReduce cluster (denoted as EMR). We run DASC on EMR and

compare the performance against that of DASC running in the five-machine cluster.

5.3.1 Experimental Setup of Five-Machine Cluster

The first cluster is the five-machine cluster testbed introduced in Sec. 4.1. Configurations

can be found in Sec. 4.1. The datasets are taken from the crawled Wikipedia dataset,

the size of the datasets range from one thousand to two million points. The clustering

information is listed in Table. 5.1.
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Dataset size Number of categories
1024 17
2048 31
4096 61
8192 96
16384 201
32768 330
65536 587
131072 1225
262144 2825
524288 5535
1048576 14237
2097152 42493

Table 5.1: Clustering information of Wikipedia dataset.

5.3.2 Experimental Setup of Amazon Elastic MapReduce Cluster

The second cluster is Amazon Elastic MapReduce cluster. The setup is as follows: there are

64 machines in the cluster, each machine has 1.7 GB memory, 350 GB of disk storage and

runs Hadoop 0.20.2 on top of Debian Linux. We list the setting of important parameters in

Table. 5.2. The dataset is the whole Wikipedia dataset comprised of 3,550,567 docs. We

use the method in Sec. 5.2 to do data processing.

EMR works in conjunction with Amazon EC2 to create a Hadoop cluster, and with

Amazon S3 to store scripts, input data, log files, and output results. Our experiments on

EMR go in the following steps:

• Upload to Amazon S3 the input data, as well as the mapper and reducer executables

that process the data, and then send a request to EMR to start a job flow.

• Start a Hadoop cluster and run Hadoop on each node. Hadoop executes a job flow by

downloading data from Amazon S3 to core and task nodes.

• Process the data and upload the results from the cluster to Amazon S3.

A job flow is a collection of processing steps that EMR runs on a specified dataset using

a set of Amazon EC2 instances. A job flow consists of one or more steps. Our experiment is

a job flow, which is comprised of several steps. The first step is dataset partitioning step. In

this step, we partition the dataset into buckets. Every bucket is a file stored in S3 containing
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Parameter Value
Hadoop jobtracker heapsize 768 MB
Hadoop namenode heapsize 256 MB
Hadoop tasktracker heapsize 512 MB
Hadoop datanode heapsize 256 MB

Maximum map tasks in tasktracker 4
Maximum reduce tasks in tasktracker 2

Data replication ratio in DFS 3

Table 5.2: Elastic MapReduce cluster setup.

points in the corresponding bucket. After the first step, a group of Spectral Clustering steps

are added into the job flow. Each Spectral Clustering step runs on a bucket. The job flow

terminates after all the buckets are processed.

5.4 Performance Metrics

We consider the following performance metrics: clustering accuracy, processing time and

memory usage. Clustering accuracy is measured by the ratio of correctly clustered number

of points to the total number of points. Processing time is the running time of the program.

Since every entry in the the similarity matrix is of type float (4 bytes), the memory usage

is MemUsage = 4 × Num Entries, where Num Entries is the number of entries in the

similarity matrix.

5.5 Experimental Results on Wikipedia Dataset

5.5.1 Accuracy

Fig. 5.4 shows the clustering accuracy comparison. The values in x-axis stand for the size

of the dataset, the values in y-axis stand for the clustering accuracy ratio (in percentage).

It can be observed that, SC has the highest accuracy, it uses the similarity matrix without

approximation to do clustering. For DASC and PSC, they use approximated matrices for

Spectral Clustering, but the accuracies of DASC and PSC are both close to that of SC,

and DASC performs better than PSC. This result reveals two things: firstly, the method of

converting the raw Wikipedia corpus into numerical dataset can successfully preserve the

semantic meaning of each document, and help the clustering algorithms yield good results.
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Secondly, the preprocessing step in DASC can successfully partition the original dataset

into buckets according to the documents’ similarity.

5.5.2 Memory Consumption

Fig. 5.5 shows the memory consumption comparison of DASC, SC and PSC. It can be seen

that, memory footprint nearly quadruples for SC and PSC when the dataset size doubles,

the memory footprint is very large when using large dataset. PSC is superior to SC in the

aspect of memory usage. The reason is that, for every point in the dataset, it only keeps

a portion of large similarity entries in the matrix, thus it takes smaller amount of memory

space. The figure also shows that the memory usage of the proposed DASC is smaller than

those of PSC and SC. The reason is that, instead of computing pair-wise similarity across

all the data points, it computes sub-similarity matrix on every bucket’s basis. Therefore, it

can handle much larger datasets. Moreover, DASC enables the parallel computing of several

Spectral Clustering tasks on a cluster. The memory pressure on a single machine in the

cluster is alleviated by its peers.

5.5.3 Processing Time

Fig. 5.6 and Table 5.3 show the processing time comparison of DASC, SC and PSC. SC

works on a fully filled similarity matrix. PSC works on an approximated similarity matrix,

this matrix only retains the entries that are close to a point using a threshold. However, the

common feature SC and PSC share is that, in the whole process, there is one single Spectral

Clustering instance on the original dataset. As is shown in Sec. 3.3, similarity matrix

computation and Laplacian matrix computation both require quadratic time to compute,

the computing time of SC and PSC grow very rapidly with the growth of dataset. In contrast,

DASC initiates a group of Spectral Clustering instances, each of which is based on a subset of

the original dataset. Each instance deals with a small portion of the whole dataset. What’s

more, there is no dependency over the instances, DASC runs the instances simultaneously in

the cluster machines. It achieves sub-quadratic computing time. Therefore, DASC achieves

significant speedup. This reduction of computing time also makes it possible to process

larger datasets.
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Figure 5.4: Clustering accuracy comparison
on Wikipedia dataset.
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Figure 5.5: Memory usage comparison on
Wikipedia dataset.
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Figure 5.6: Processing time comparison on
Wikipedia dataset.

SC DASC PSC
1024 points 99.8 109.9 16.6
2048 points 419.0 252.1 63.3
4096 points 1499.9 523.7 240.8
8192 points 5248.3 1009.7 915.3
16384 points 18612.8 2057.1 3478.2

Table 5.3: Processing time comparison from 1024 to 16384 points using Wikipedia
datasets (in second).
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Criterion EMR 5-node cluster
Accuracy 96.6% 95.8%

Memory usage 72492 KB 71488 KB
Processing time 49 hours and 51 minutes 295 hours and 34 minutes

Table 5.4: Wikipedia dataset clustering results on EMR and 5-node cluster.

5.5.4 Scalability and Experimental Results Using Amazon Elastic MapRe-

duce

In this section, we compare the performance of DASC running on two different clusters.

These two clusters are five-machine cluster testbed introduced in Sec. 4.1 and Amazon

Elastic MapReduce cluster (EMR) introduced in Sec. 5.3.2. Through comparison, we show

that the proposed DASC algorithm is highly scalable, the computing time can be greatly

reduced when we increase the underlying computing power. The experimental result is listed

in Table 5.4.

We can see from Table 5.4 that when using more machines to run DASC on the large-

scale Wikipedia dataset, the running time is reduced significantly. The reduction ratio is

about 83.4%. At the same time, memory usage and clustering accuracy are not affected. It

should be noted that, on the 5-node cluster, we run DASC alone without the interference

from other computing intensive applications. On the contrary, the EMR cluster is shared

by Amazon clients, we do not have exclusive access to the cluster. Therefore, in a certain

period of time, there might be a surge in simultaneously running applications, our share of

CPU time and possible IO delay will then churn.

5.5.5 Summary

In this section, we evaluated the proposed DASC algorithm using real-life Wikipedia datasets

and compared it against two closest algorithms in literature: SC [46], PSC [13]. The ex-

perimental results show that DASC can successfully group Wikipedia documents on similar

topics into separate clusters (with around 95% accuracy), greatly reduce computing time

(with the reduction ratio of 16 when comparing against SC, and with the reduction ratio

of 10 when comparing against PSC), and significantly reduce the memory usage. By com-

paring the clustering performances of running Wikipedia dataset on five node cluster and

64 node Amazon Elastic MapReduce cluster, we show that the proposed algorithm DASC
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has great scalability. If the underlying computing power is increased, the running time of

DASC reduces significantly.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Large-scale datasets are prevalent in data mining applications nowadays. Many kernel-

based clustering techniques in the Machine Learning field are not scalable to large datasets,

either because of unacceptable running time or significant memory usage. In this thesis,

we studied the problem of approximating similarity matrices to facilitate the computation

of kernel-based techniques on large datasets. The proposed method can significantly re-

duce the running time and the memory consumption of kernel-based techniques, while at

the same time retain clustering accuracy. We showed that the proposed approximation

method outperforms other similar solutions that approximate the similarity matrices and

parallelized the computation process. We implemented the proposed idea using the MapRe-

duce framework, conducted extensive experiments on a cluster testbed as well as in Amazon

Elastic MapReduce cloud system. The evaluation study confirms the significant potential

performance gain. It shows that the proposed method can handle large-scale datasets with

good clustering accuracy. Specifically, comparing against the original Spectral Clustering,

the proposed approximate method can achieve (i) up to 76% memory footprint reduction,

(ii) good clustering accuracy (the clustering error is within 8%). Moreover, the proposed

method is highly scalable, the degree of parallelization is adaptive to the size of the nodes in

the cluster. Therefore, if the cluster size is increased, the processing time is greatly reduced.

64



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 65

6.2 Future Work

The work in this thesis can be extended in multiple directions. For example, in order to

reduce the number of points to be processed, we can first select some representative points

using a coarse-grained low-complexity clustering technique, such as Canopy Clustering.

After that, use the resulted centroids to do Spectral Clustering. We can also implement

the proposed method as a pluggable library that runs preceding the kernel-based clustering

techniques to enable them to process large-scale datasets. Another possible extension is to

investigate the interaction between the proposed method and the cloud computing hardware.

Finally, it is interesting to study how raw datasets (semantic corpus, graphs, social network

links, etc) can be processed to better preserve and reveal the innate clustering information

such that clustering process can yield better performance.
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