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This paper studies the distributed caching managements for the current flourish of the streaming applications in multihop wireless
networks. Many caching managements to date use randomized network coding approach, which provides an elegant solution for
ubiquitous data accesses in such systems. However, the encoding, essentially a combination operation, makes the coded data
difficult to be changed. In particular, to accommodate new data, the system may have to first decode all the combined data
segments, remove some unimportant ones, and then reencode the data segments again. This procedure is clearly expensive
for continuously evolving data storage. As such, we introduce a novel Cooperative Coding and Caching (C3) scheme, which
allows decoding-free data removal through a triangle-like codeword organization. Its decoding performance is very close to the
conventional network coding with only a sublinear overhead. Our scheme offers a promising solution to the caching management
for streaming data.

1. Introduction

Multihop wireless networks as wideband Internet access
solutions have been widely researched nowadays, and pro-
mote some real deployments for communities [1–4]. Since
then, the requirement for supporting streaming applications
in such infrastructures becomes more and more imperative
[5, 6]. Path caching is a common used technology in wired
networks for delivering media streaming efficiently, which
can reduce the client-perceived access delays as well as
server/network loads [7]. In the wireless paradigm, for the
broadcast nature of wireless transmission, it is more direct
and intuitive to cache streaming data on the way. Many works
have been done to exploit the caching benefits in multihop
wireless networks [8–10].

In the caching-enhanced multihop wireless networks,
single wireless node usually has limited space for caching
and can only save part of streaming data. It is common
for a client to fetch data segments from multiple relay

nodes. In this way, the caching-enhanced multihop wireless
networks as a whole can be treated as distributed storage
systems. However, previous works spend little attentions to
the caching management, and data are unevenly distributed
in the networks. Usually, a sophisticated caching searching
algorithm is needed [10]. Recently, network coding, in
particular, random linear coding, has been suggested as
an elegant solution for distributed storage managements
[11–13]. In a network-coding-based storage system, the
original data segments (say N) are combined through
linear operations with independent coefficient vectors. The
combined data segments are of the same size as the original
segments and are equivalent in decodability. Each relay node
can therefore record a subset of the combined data segments,
and a client is able to decode all the original data segments as
long as N combined data segments are retrieved.

This combination process however makes the caching
storage inflexible to change. More explicitly, since media
data are usually coded as different important segments
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before transmission for providing scalable streaming abilities
[14], if unimportant data segments are to be removed to
accommodate new data, the system needs to first decode all
the data segments, remove the unimportant ones, and then
re-encode the data segments again. This operation is time-
and resource consuming [15]. Even worse, given that a node
can only store a partial set of the data segments, it is generally
impossible for each single node to carry out the decoding
operation.

To effectively solve this problem, we introduce a novel
Cooperative Coding and Caching (C3) scheme. C3 extends
the conventional random network coding [16], and enables
decoding-free data removal through a triangle-like codeword
organization. Its decoding performance matches that of the
conventional network coding with only a sublinear overhead.
It also enables retrieval of only a subset of the data. As such,
it offers a promising solution to the caching management of
streaming data in multihop wireless networks.

In this paper, we present the theoretical foundations of
C3 and a set of general rules for applying C3 in the caching
management. We then demonstrate the actual benefits of C3

for streaming applications in multihop wireless networks.
Again, we show that, while conventional network coding is
capable to achieve high throughput, it cannot easily manage
streaming data.

The remainder of the paper is organized as follows.
We first present the system model, and demonstrate the
superiority and problems when directly applying network
coding to the system in Section 2. In Section 3, we offer the
theoretical foundations of cooperative coding and caching.
We discuss the design issues of C3-based cache management
in Section 4. Our preliminary simulation results are shown in
Section 5. In Section 6, we discuss the related work. Finally,
Section 7 concludes the paper and presents some future
directions.

2. Preliminaries

2.1. Model and Notation. We now give the a formal descrip-
tion of the system. Our caching model is quite similar with
the caching model of Ditto [9]. The main difference is that
we apply our novel coding schema to manage cached data.

We consider a multihop wireless network of N nodes,
each with a buffer of size B. Assume that we only want to
cache totally N data segments for one session for the limited
caching space. In general, we have N > B, that is, no single
node can store all the data of a session. A media server located
in the Internet which can be accessed by the clients of the
multihop wireless network through gateway (GW). Media
files are split into equally sized data segments. When a media
file is first requested, there is no information about the media
file in the network before; then the request will be sent to
the Internet media server directly. A second or later requests
will benefit from previous transmissions through caching.
Requesting for the same media file in a community is a quite
common user behavior as suggested by recent progresses in
the traffic analysis and social networks. Wireless node in the
network will cache all successfully received data segments.

Data segment receiving can happen either when the node
is on the routing path or when it is beside the path but
can overhear the transmission. The system is continuously
evolving with new streaming data coming and existing data
being obsolete, though the total number of useful data
segments is always N .

Since user requests are probably random from all parts
of the wireless network, it is reasonable to assume that data
segments are randomly distributed inside the network. We
do not assume any indexing service (no matter centralized
or distributed) in the network. For a client to retrieve the N
data segments stored in the wireless network, it will simply
broadcast the request to the nearest M neighbor nodes,
which are not necessarily exactly nearest for performance
tradeoff. It can be easily realized by sending out M requests
and one request can be processed by only one node. Every
node has a proxy module just like what they have in the study
by Ditto. Every proxy can serve the data to its previous hop,
either from its local cache or by requesting it from its next-
hop proxy [9]. Without loss of generality, we assume that
each node will provide one data segment from its storage
space. Clearly, to obtain all the N data segments, we must
have M ≥ N , and even so, not all the data segments
are necessarily obtained in such kind of retrieving scheme.
Therefore, we define a success ratio, which serves as the major
evaluation criterion in our study, as follows

Definition 1 (success ratio). The success ratio is the probabil-
ity that a data retrieval scheme successfully retrieves all the N
data segments. The default settings of M and B are M = N
and B = 1, which are their lower bounds for valid schemes.

2.2. Network-Coding-Based Caching: Superiority and Prob-
lems. We now show that network coding, in particular,
random linear coding, can significantly improve the success
ratio over a codingless caching system. With random linear
coding, all data segments are stored in a combined fashion.
More specifically, assume that the original data segments are
cj , j = 1, 2, . . . ,N ; a coded data segment fi (also referred to

as a combined data segment) is generated as
∑N−1

j=0 βj × cj ,
where β = (β0,β1, . . . ,βN−1) is a coefficient vector, each item
of which is randomly generated from a finite field Fq. It is
worth noting that the size of each fi remains equal to cj . We
define the cardinality of fi to be the number of original data
segments it contains, and the full cardinality of the system is
the highest possible number, that is, N .

To obtain the N original data segments, one can simply
collect any N combined data segments and then decode
through solving a set of linear equations. Here, a necessary
condition for successful decoding is that the coefficient
vectors must be linearly independent. This is generally true
if the coefficient is generated from a large enough field
size q [12]. As shown in [17], the probability of linear
independency is over 99.6% for q = 28, and this is almost
independent of N . As such, for the network-coding-based
data storage and collection scheme, the success ratio with
M = N and B = 1 is close to 100%.
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Besides the combined data segments, the coefficient
vectors also have to be collected by the client for decoding.
Such overheads, generally of a few bytes, are much lower than
the data volume, and the benefit of network coding thus well
dominates these costs.

Unfortunately, while in conventional network coding it is
easy to combine new data segments to existing data segments
and increase the cardinality, the reverse operation is very
difficult. Specifically, to remove an original data segment, we
have to first decode the combined data segments, remove
the unnecessary original data segments, and then recombine
the remaining data segments. This is time and resource
consuming. Even worse, it is often impossible to perform
these operations in a single node given that B < N , as
decoding requires N combined data segments.

As such, for the streaming application in multihop
wireless networks, caching storage systems are continuously
evolving; if we keep unimportant or obsolete data segments
in the system, then the clients have to download more and
more unnecessary data segments to successfully decode the
expected useful data segments. Eventually, the buffer will
overflow, and the system simply crashes. This becomes a
key deficiency for applying conventional network coding
in continuous data management. A related problem is that
network coding has no flexibility in retrieving partial data
sets only, for example, a set of the most important m original
data segments that comprise the most important frames of a
media file, where m < N .

3. Cooperative Coding and Caching: Basic Idea

In this section, we show a new coding scheme that conve-
niently solves the problem of data removal, thus facilitating
caching management for streaming data. Our coding scheme
enables the combination of only part of the original data
segments, and we refer to it as Cooperative Coding and
Caching (C3); compre for example Network Coding (NC) and
no coding at all (Non-NC ).

3.1. Overview of Cooperative Coding and Caching

3.1.1. Code words. In C3, instead of having full cardinality
only, the combined data segments may have different
cardinalities, from 1 to N . In addition, for each original data
segment ci, where i denotes the time sequence, there is a
weight wi associated to this data. The definition of weight
in our streaming application combines the time stamp of
the data segment and its relative importance to the media
playback performance. Figure 1 shows an example of our
weight assignment schema for a video clip. In the figure,
data segments are classified into I, P, B three categories,
which correspond to the I-frame, P-frame, and B-frame of
the video to be streamed. Generally speaking, I-frame is
the most important data for video playback, then the P-
frame, and then the B-frame. So, in a batch, data segments
corresponding to the I-frame are assigned with the highest
weights.
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Figure 1: Demo of weight assignment for streaming data starting
from wx.

f 0 = [c3, c2, c1, c0] ,

f 1 = [c3, c2, c1] ,

f 2 = [c3, c2] ,

f 3 = [c3] .

Figure 2: An example of C3 for N = 4 and weight w3 � w2 � w1 �
w0. The time index is not shown in this example.

It is worth noting that the weight assignment schema
can be application specific, and our C3 solution can be
applied to all kinds of weight definitions which respect the
following constraint. The only constraint is an operator �,
which should follow the following. (1) (Transitive) for any
wi, wj , wk, if wi � wj and wj � wk, then wi � wk; and (2)
for every wi, wj , either wi � wj or wi ≺ wj . We have the
following convention in this paper: wj � wj′ if j > j′ and
we say that the weight of cj is higher than cj′ if j > j′, and
c j is a more recent data segment than that c j

′
if j > j′. For

simplicity, we will use only the subscript or superscript for a
data segment if the context is clear. Thus, for a data segment
with weight index i and time index j, we use ci

.= c j to denote

that they are the same data segment, that is, c
j
i . For original

data segments c0, c1, . . . , cN−1, we have a coding base B =
{ f k | f k = ∑N−1

j=k βj × cj , k ∈ [0, . . . ,N − 1], βj ∈ Fq}. We

omit βj in the following and use f k = [cN−1, cN−2, . . . , ck] for
ease of exposition. The coding base for N = 4 is illustrated in
Figure 2. The storage for each node is S = { f ki | f ki ∈ B, 0 ≤
i ≤ B− 1}. Intuitively, each node stores a few combined data
segments selected from the coding base B.

Notice that, if k̂ denotes the cardinality of a combined
data segment, then the cardinality of f k can be calculated

by k̂ = N − k. The cardinality difference of f k1 and f k2 is
|k1 − k2|. We may drop the superscript and use fi provided
that k is clear in the context to represent the ith combined
data segment in this node.

A salient feature of this triangle-like coding scheme is the
decoding-free data removal; that is, to remove the current
least important original data segment c0 in the system, we
can simply drop the combined data segments containing c0.
Intuitively, c0 is included in the combined data segments
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with the highest cardinality. The amount of these combined
data segments consists of only a fraction of the combined
data segments in the system and a removal of them will
not adversely affect the success ratio of the system (recall
that, with conventional network coding, all combined data
segments have to be deleted in this case). Figure 3 illustrates
a concrete example, where the new data segment c4 is to
replace data segment c0. To simplify our example, we assume
that c4

.= c4, that is, c4 also has the highest weight. We see
that, after data replacement, all f = [c3, c2, c1, c0] are replaced
by f = [c4], and the cardinalities of other combined data
segments increase by one. This data replacement operation
is decoding free and the system remains stable. A general
observation can be drawn as follows.

Observation 1. For original data segments ci and cj , where i >
j (i.e., wi � wj), ci will be deleted no earlier than cj from the
system. This is true irrespective to any data removing scheme.

Once we have data cached in the wireless subnet, two
kinds of data request routing protocols can be applied
depending on whether the data segments have been cached
or not. First, when the requested segments can be retrieved
inside the wireless network, then m data requests will be
broadcasted to its neighbors. Every neighbor can only reply
to one request, and has to decide whether to forward the
request or just reply to it depending on its history record.
Second, when the requested segments cannot be retrieved
inside the wireless network, any unicast routing protocol in
multihop wireless network can be used. We use the OSLR
routing protocol in our model in this case. Though nodes on
the route will cooperatively cache data segments when the
traffic comes from outside of the wireless network, they will
only respond to data requests on demand of the sink node.
And packets will travel along the reverse route path of the
request.

3.2. Distribution of Cardinality. Cooperative coding and
caching intrinsically manages the shape (i.e., cardinality) of
the combined data segments. It is not difficult to see that, for
a client retrieval, if the contacted nodes provide combined
data segments with high cardinalities, then the success ratio
will be higher. We summarize this in the following two
observations.

Observation 2. The success ratio is maximized if every node
provides the client the combined data segment with the
highest cardinality from its buffer.

Observation 3. Consider time instances t1 and t2. If at t1 the
probability for each node to provide high-cardinality data
segments is greater than at t2, then success ratio for a data
retrieval at t1 is higher than that at t2.

Generally speaking, in each particular time instance, it
is ideal for the system to have combined data segments of
cardinalities as high as possible. In an extreme case, if all the
combined data segments in the system have cardinality N ,
the success ratio is 100% but the system is essentially reduced

s0 :
{
f0 = [c3, c2, c1, c0] , f1 = [c3, c2]

}
,

s1 :
{
f0 = [c3, c2, c1] , f1 = [c3]

}
,

s2 :
{
f0 = [c3, c2, c1] , f1 = [c3, c2]

}
,

s3 :
{
f0 = [c3, c2] , f1 = [c3]

}
,

s4 :
{
f0 = [c3, c2, c1, c0] , f1 = [c3]

}
,

s5 :
{
f0 = [c3, c2, c1] , f1 = [c3, c2]

}
.

(a) C3 before using c4 to replace c0

s0 :
{
f0 = [c4] , f1 = [c4, c3, c2]

}
,

s1 :
{
f0 = [c4, c3, c2, c1] , f1 = [c4, c3]

}
,

s2 :
{
f0 = [c4, c3, c2, c1] , f1 = [c4, c3, c2]

}
,

s3 :
{
f0 = [c4, c3, c2] , f1 = [c4, c3]

}
,

s4 :
{
f0 = [c4] , f1 = [c4, c3]

}
,

s5 :
{
f0 = [c4, c3, c2, c1] , f1 = [c4, c3, c2]

}
.

(b) C3 after using c4 to replace c0

Figure 3: Data cached in 6 wireless nodes (s0 through s5) each
with two buffer units. We omit the coefficients for each combined
data segment for ease of exposition; however, it should be known
that f 0 ∈ s0 is not the same as f 0 ∈ s4 as they are coded with
different coefficient vectors. (a) shows C3 before insertion of c4, and
(b) shows C3 after the insertion of c4 and removal of c0. After this
data replacement operation, the system is fairly stable in terms of
the cardinalities of the combined data segments.

to the case of conventional network coding. Once a new
data segment arrives, all the combined data segments will
have to be deleted to make room for the new segment. For
subsequent client retrievals, no data segment but the newest
one can be answered.

As said, client requests could come from any part of
the wireless networks, so it is reasonable to assume that
cached data are uniform distributed inside the network
storage. We now consider the performance of C3 with a
uniform cardinality distribution throughout the lifetime of
the system. This distribution does not favor data arrivals
or client retrieval at any particular time, and can serve as a
baseline for further application-specific optimizations.

3.3. Performance Analysis of C3. With the uniform distribu-
tion, we can focus on the success ratio of a single client data
retrieval. Since the cardinality of each data segment is not
necessarily N in C3, it is possible that the success ratio is less
than 100%. Let B = 1 for each node and the success ratio for
obtaining i data segments by collecting i data segments using
C3 be F(i). We quantify the success ratio in this scenario as
follows.

Theorem 2. Define F(0) = 1, then the success ratio

F(N) =
(

1
N

)N N−1∑

i=0

(
N

N − i

)

F(i)ii. (1)
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Proof. The basic idea of our proof is to find the sets of
combined data segments that are decodable, referred to as
valid sets. For example, a set of combined data segments
with cardinality 1 through N are decodable, and the set of
combined data segments with all cardinalities being 1 is not
decodable. The success ratio is given by the number of valid
sets over the total number of possible sets of combined data
segments; the latter is NN .

A valid set can be constructed as follows: pick N − i
combined data segments of cardinality N and i combined
data segments with cardinality less or equal to i. These i
combined data segments should be a valid set (decode-able)
in terms of i. For example, if N = 4, a valid set may consist
of two combined data segments of cardinality 4 and two
combined data segments with cardinality less than or equal
to 2. The number of the latter is F(i)ii. Since the retrieval
can be of any sequence,we need to fit all these combined data
segments intoN pickup sequences. For thoseN−i combined
data segments with cardinality N , there are

(
N
N−i
)

locations
to fit in. Notice that we do not need to shuffle the i combined
data segments with smaller cardinalities as F(i)ii has already
contained all possible shuffles. Therefore, the total number
of valid sets is

∑N−1
i=0

(
N
N−i
)
F(i)ii after summing up all i ∈

[0,N − 1], and the theorem follows.

We further derive an upper bound and lower bound for
C3.

Theorem 3. The upper and lower bounds of the success ratio
are 1− ((N − i)/N)N and

∏N−1
i=0 ((N − i)/N), respectively.

Proof. The success ratio is upper bounded by successfully
obtaining the combined data segments with the highest
cardinality. This probability is 1/N due to the uniform
distribution. The probability of not getting it in N picks is
((N − i)/N)N , giving an upper bound 1− ((N − i)/N)N .

The success ratio of getting a set of combined data
segment with cardinality 1 through N is (1/N)NN !, which is
equal to

∏N−1
i=0 ((N− i)/N). This is clearly a lower bound.

For comparison, we also calculate the success ratio of
Non-NC, as follows.

Observation 4. If the distribution of the data segments is
uniform, the success ratio for obtaining all N data segments
by randomly collecting N data segments (Non-NC) is
∏N−1

i=0 ((N − i)/N).

A preliminary comparison of the success ratios can be
found in Figure 4. Detailed comparisons as well as practical
enhancements which substantially improve the success ratio
will be presented in the following sections.

The probabilistic nature of success ratio only provides us
a rough idea of how many combined data segments should be
retrieved. If decoding cannot be carried out after retrieving a
certain number of combined data segments, then the clients
have to retrieve additional data segments. This may not be
acceptable for delay-sensitive applications. An ideal case is
thus to inform the client of exactly how many combined data
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Figure 4: Success ratio as a function of N (in default value M = N
and B = 1).

segments should be retrieved so that they are guaranteed to
decode out the necessary information.

Before we give a concrete solution, we first illustrate the
basic idea to achieve this. As shown in Observation 2, if
each node sends a combined data segment with the highest
cardinality in its buffer, the success ratio will be improved.
In addition, if a node can always provide a combined
data segment that has sufficiently high cardinality, then
the success ratio will also be improved. We quantify these
observations as follows. For each node, if it has a buffer size
of
√
N + 1, then it is able to store the data segments with

cardinality starting from 1 to N +
√
N , that is, the cardinality

difference of fi and fi+1 is
√
N for all i ∈ [0,

√
N]. Notice that

we have extended the maximum cardinality of the system to
N +

√
N . At anytime the node can provide a data segment

with cardinality in [N ,N +
√
N]. Consequently, if the client

queries N +
√
N nodes, and each node provides its combined

data segment with cardinality no less than N , there will be
N +

√
N linear equations with the rank of the coefficient

matrix being at leastN and at mostN+
√
N . Thus, the system

can guarantee a successful decoding of all N original data
segments. Formally speaking, we have the following.

Theorem 4. The success ratio of C3 with B = √
N + 1 and

M = N +
√
N is identical to the success ratio of NC with B = 1

and M = N , that is, 100%.

Proof. A rigorous proof can be found in [18].

This theorem shows that the success ratio of C3 is identi-
cal with NC, with only a sublinear sacrifice of buffer size and
retrieval cost. Yet it achieves continuous data management.
This theorem also gives us important information; that is, to
improve the success ratio of C3, it is also important to have a
balanced cardinality distribution within each single node, as
each node is able to provide a combined data segment with
fairly high cardinality at any time.
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3.4. Maintaining Uniform Distribution of Cardinality. We
have shown the performance of C3 under a uniform
cardinality distribution. It remains to show how a uniform
distribution can be achieved and maintained in this dynam-
ically evolving system.

At first, we need to initial the caching system to have
uniform distributed cardinality. And this can be done easily
in a centralized way. For example, we take the gateway node
as the initialization control node. If there are P nodes in the
network willing to cache the application data, then each of
them will provide its reserved capacity to the gateway. Say
that if we have B ∗ P units for caching, then the gateway will
use a random generator to uniformly distribute cardinality
vector to each node. And the overhead could be very low,
since we only have to send P packets, each of which has
the payload of B ∗ log2N bits. The overhead can be further
decreased, if we piggyback those cardinality initialization
vectors to some real data packets. After initialization, we will
apply a simple data replacement strategy to maintain this
uniformity.

Assume that a new data segment ci
.= c j is generated

to replace c0. Our data replace procedure is as follows. (1)
Remove f 0 = [cN−1, . . . , c0]. (2) For each node containing
f i+1 = [cN−1, . . . , ci+1], duplicate f i+1 and combine f i+1 with
ci to produce new f i = [cN−1, . . . , ci]. (3) For each node
containing f i−k, k = 1 . . . i−1, combine ci with f i−k. (4) Send
f i to the nodes which just removed f 0. duplicate additional
f i to send if there are more nodes with f 0. And finally (5)
delete unnecessary f i if there are fewer nodes with f 0 to send.

Theorem 5. If the cardinality is uniformly distributed, then
after the above data replacement procedure, the distribution of
the cardinality remains uniform, and the number of combined
data segments stored in each node remains unchanged.

Proof. The above procedure uses the new combined data
segment to replace the deleted f 0. Therefore, the set of nodes
which removed f 0 was refilled by f i. The set of nodes which
duplicated combined data segment f i either sent this data
segment out or discarded it. Thus, the number of combined
data segments stored in each node is unchanged.

If the distribution of the cardinality is uniform, then the

probability that a combined data segment has cardinality k̂ is

1/N for all k̂ = 1 . . . N . After the data replacement with new
data segment ci, the probability of a combined data segment

having cardinality 1 < k̂ < i remains unchanged. The
probability of a combined data segment having cardinality
i is the same as that having cardinality N before data
replacement, which is 1/N . The probability of a combined
data segment having cardinality i + k, 1 ≤ k ≤ N − i is
the same as that having cardinality i + k + 1 before data
replacement, which again is 1/N . Thus the distribution of
cardinality remains uniform.

Depending on applications, one may choose other,
maybe simpler, data replacement schemes to maintain the
uniformity. For example, if the new data segment is always
the one with the highest weight, then new data segment can

Algorithm Data Replacement (c j)
c j : new data segment;
estimate w(c j); ci

.= c j

if ∀kw(c j) < w(ck), delete c j

for l = 1 . . . B
if cardinality ( fl) < N ,

if ( fl) contains ci−1,
fl = βici + fl ;

else if f i+1
l = [cN−1, . . . , ci+1],

duplicate f il and save as f i+1
l

f il+1 = f il + βici
if ∃ fi whose cardinality is greater than N

delete fi

Algorithm 1: Pseudocode for data replacement.

automatically replace f 0 and no transmission is necessary
(see the example in Figure 3).

We have yet to show how the uniform/balanced car-
dinality in each node can be maintained. In a naive case,
the nodes just exchange the combined data segments with
others to make their cardinality balanced. This introduces
high transmission overhead. Although in some applications
the paramount objective is high success ratio for each client
access [13], we will show some optimization schemes to
substantially reduce this overhead in the next section.

4. C3 for Caching Management

We now detail the caching management through C3 in
multihop wireless networks. The management behavior
mainly contains two operations: one is the data replacement,
and the other is the data retrieval.

4.1. Data Replacement. When a new data segment c j is
successfully received by a node, the node will perform the
data replacement algorithm, as shown in Algorithm 1. This
algorithm maintains the uniform distribution of cardinality
in the entire network while replacing the less important
original data segment by new data segment c j if there is no
available space.

As mentioned previously, we need to distribute some
combined data segments to balance the distribution of
cardinality in node level. Consider that we need a strictly
balanced distribution; that is, the cardinality difference
between two neighboring combined data segments fi and
fi+1 is strictly

√
N in a node. Since combining the new

data segment will make some of the data segments have a
difference of

√
N + 1, a naive scheme will have to adjust the

data segments in the entire system. This overhead is incurred
each time a new data segment arrives. To avoid it, we propose
the following alternative scheme.

In this new strategy, a valid cardinality difference of fi
and fi+1 is not strictly

√
N , but in between (1/2)

√
N and

2
√
N . Therefore, to balance the cardinality distribution in

each node, we only need to transmit data segments in two
scenarios given as follows. (1) If the cardinality difference
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between two combined data segments is greater than 2
√
N ,

then the node just needs to obtain one combined data
segment that can fit in the gap from other node. And (2) if the
cardinality difference between two combined data segments
is less than (1/2)

√
N , then the node just need to send out

the data segment of cardinality in the middle. Since the
cardinality difference of the data segments is doubled, if each
node has a buffer size of 2

√
N , it is easy to redefine the

cardinality difference and still guarantee that the cardinality
difference in each node is at most

√
N using the new scheme.

Formally speaking, we have the following.

Corollary 6. Given a buffer space 2
√
N , and the number of

nodes contacted to beN +
√
N , C3 with the new caching scheme

in each node still achieves the same success ratio.

The gaps of (1/2)
√
N and 2

√
N are not unique. They

can be generalized to (1/k)
√
N and k

√
N or other numbers

depending on the buffer size on each node. In a practical
heterogenous system, if O(

√
N) buffer size cannot be guar-

anteed, several nodes can collaborate as a cluster to form a
combined buffer and provide data segments with reasonably
high cardinality.

4.2. Partial Data Retrieval. While we have focused on
retrieving N data segments, our C3 is indeed flexible in
retrieving a subset of the segments and with different quality
of services. Specifically, for a client that wants to retrieve
the most important m data segments (m ≤ N), there are
two possible services available. (1) Guaranteed Service. The
client contacts m +

√
m nodes and send a request message

to each of them. This request message includes the type of
the service (guaranteed service) and m. Each queried node
will send back a data segment with the highest cardinality
no greater than m +

√
m. (2) Probabilistic Service. The client

sends retrieval request message to m nodes. This request
message includes the type of service (probabilistic service).
The nodes queried will send back combined data segment
with cardinality no less than m. While downloading the
combined data segments, the client simultaneously performs
decoding operations. If it cannot decode out the original
data segments, it will send additional requests to other
nodes for additional combined data segments. This will
help with optimizing the cost if there is no stringent delay
requirement.

5. Simulation Results

In this section, we present our preliminary simulation results
for C3-based caching data management. We deploy 1000
static wireless nodes in the system. The default number
of data segments to be cached for a source is N = 50
and the default buffer size B allocated for that source is
1. We examine other possible values in our simulation as
well. The linear equations in network coding are solved
using the Gaussian Elimination [19], and the coefficient
field is q = 28, which can be efficiently implemented in
a 8-bit or more advanced microprocessor [20]. To mitigate
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Figure 6: Number of combined data segment retrieved as a
function of N .

randomness, each data point in a figure is an average of 1000
independent experiments.

Figure 5 shows the success ratio as a function of the
number of data segments retrieved (N). Not surprisingly,
the success ratio increases when N increases for both C3 and
Non-NC, but the improvement C3 is more substantial. For
example, if 100 data segments are to be retrieved, the success
ratio is about 80% for C3; for Non-NC, after retrieving 200
data segments, the success ratio is still 40% only.

In our next experiment, the client will first randomly
retrieve 50 data segments, and if some original data segments
are missing (for Non-NC) or the combined data segments
cannot be decoded (for C3), then the client will send
additional requests one by one, until all the 50 data segments
are obtained by successful decoding. The results are shown in
Figure 6. It is clear thatC3 outperforms Non-NC for different
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Figure 7: Success ratio as a function of M with different buffer size.

N ’s. It can be seen that the number of data segment collected
is linear with respect to the number of required data (N),
but the slope for C3 is much smaller. As a result, when N is
greater than 50, the cost with Non-NC is 3 to 4 times higher
than that with C3.

We then increase the buffer size from B = 1 to 2 and
3 to investigate its impact. We require the nodes to provide
the data segment of the highest cardinality for each client
access. By carefully managing the buffer of each node, the
cardinality of the combined data segments each node could
provide is no less than N/2 and 2N/3 for B = 2 and B = 3,
respectively. The results are shown in Figure 7, where a buffer
size expansion from 1 to 2 has a noticeable improvement
in success ratio, and a buffer of 3 segments delivers almost
optimal performance. This is not surprising because there is
a higher degree of freedom for storing and uploading data
in a larger buffer space. Notice that, on the contrary, the
performance of Non-NC will not improve with the buffer
size expansion as the nodes are unaware of which original
data segments other nodes will provide to the client.

We further explore the impact of the cardinality N . In
Figure 8, we depict the decoding ratio for different number
of original data segments (N = 20, 50, and 100). The x-axis
denotes the ratio between the number of data collected and
the cardinality, that is, λ = M/N . We can see from Figure 8
that their differences are insignificant, and generally reduced
when M increases. Recall that the performance of Non-NC
decreases sharply when N increases, while NC is marginally
affected by N only. These simulation results thus reaffirm
that C3 inherits the good scalability of NC.

6. Related Work

Proxy caching for media streaming over wired networks has
been exploited for a long history [7]. Nowadays, as the rapid
development of multihop wireless networks such as wireless
mesh networks [1], proxy caching for media streaming in
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Figure 8: Success ratio as a function of λ =M/N .

multihop wireless networks has also been discussed [7, 9,
10]. Different caching mechanisms have been proposed.
However, previous works seldom pay attention to the caching
data management. This paper takes advantages of coding
to facilitate the caching management for streaming data in
multihop wireless networks.

Network coding was first introduced in [21] to improve
multicast throughput. To maximize the benefit of network
coding, the linear codes should be constructed carefully such
that the output at each destination is solvable. Randomized
network coding was introduced in [16], which adopts
randomly generated coefficient vectors, thus making the
calculation of alphabet decentralized.

There are numerous recent studies applying conventional
network coding and/or random linear coding in piratical sys-
tems. Examples include network diagnosis [13], router buffer
management [22], energy improvement in wireless networks
[23], data gossiping [24], as well as data dissemination in
sensor networks [11] and in peer-to-peer networks [15].

For storage systems, various erasure codes have long been
employed [25, 26]. Yet most of them require a central server
for code block calculation; random linear coding is thus
suggested for distributed storage [12]. A careful comparison
between no coding, erasure codes, and random linear codes
can be found in [12] as well.

While many of the studies have faced the problem of
continuous data management, for example, in [20, 22, 27],
their common solution is to cut the data flow in generations,
that is, time periods, and combine all the original data
segments in one generation. The length of a generation
depends on the application and the choice is often experience
based.

Our study on cooperative coding and caching extends
the network coding design from a different aspect, namely,
decoding-free data removal. We solve this problem by a
novel triangle-like coding method, which largely inherits the
power of network coding, and yet well matches the demands
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from continuous data management. While the cardinality-
maximized combination process in network coding is the
major source that improves its efficiency, our results show
that the opposite direction, encoding only partial set of
data segments, is worth consideration as well. Our initial
study on C3 with an application on data collection in sensor
networks was presented in [17]. This paper extends [17] in
the following aspects. First, we introduce the weight factor
for the original data segments. This offers great flexibility in
managing nonhomogeneous data, and in particular, data in
a time series as shown in this paper. Second, this paper offers
a more in-depth discussion on the effect of the cardinality
distribution, which is an important factor for the system
to evolve efficiently and effectively. Finally, we apply the C3

in the caching management of streaming data in multihop
wireless networks.

7. Conclusion and Future Work

In this paper, we introduced a novel solution for caching
management of streaming data in multihop wireless net-
works, Cooperative Coding and Caching (C3), which effec-
tively solves the problem of removing obsolete information
in coded data segments. The problem is a major deficiency
of the conventional network coding. We provided general
design guidelines for C3 and presented a theoretical analysis
of its performance. We then addressed a series of practical
issues for applying C3 in the streaming applications under
multihop wireless networks.

Our C3 offers a new look into the random linear combi-
nation process in conventional network coding. In network
coding research, it is known that the higher the cardinality
is, the more the benefits one may expect. Therefore, many
existing schemes have focused on achieving a full cardinality
in data combination. For example, the proposals in [11,
12, 15, 24] generally increase the cardinality by combining
as much data as possible in intermediate nodes and then
forward to others. Our work on cooperative coding and
caching, however, shows that the opposite direction is worth
consideration as well.

Nevertheless, there are still many unsolved issues for
C3. Theoretically, we suspect whether the overhead of

√
N

reaches the potential limit of C3? Practically, we need more
measurement works to examine the performance of C3,
such as estimating the expected delay and buffering time
for node that is sending the request. At least, considering
the recent flourish of data streaming in numerous fields, we
believe that C3 may be applied in many related applications
beyond caching management for steaming in wireless net-
works.
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