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A dense SNP-based linkage map for Atlantic
salmon (Salmo salar) reveals extended
chromosome homeologies and striking
differences in sex-specific recombination patterns
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Abstract

Background: The Atlantic salmon genome is in the process of returning to a diploid state after undergoing a
whole genome duplication (WGD) event between 25 and100 million years ago. Existing data on the proportion of
paralogous sequence variants (PSVs), multisite variants (MSVs) and other types of complex sequence variation
suggest that the rediplodization phase is far from over. The aims of this study were to construct a high density
linkage map for Atlantic salmon, to characterize the extent of rediploidization and to improve our understanding
of genetic differences between sexes in this species.

Results: A linkage map for Atlantic salmon comprising 29 chromosomes and 5650 single nucleotide
polymorphisms (SNPs) was constructed using genotyping data from 3297 fish belonging to 143 families. Of these,
2696 SNPs were generated from ESTs or other gene associated sequences. Homeologous chromosomal regions
were identified through the mapping of duplicated SNPs and through the investigation of syntenic relationships
between Atlantic salmon and the reference genome sequence of the threespine stickleback (Gasterosteus
aculeatus). The sex-specific linkage maps spanned a total of 2402.3 cM in females and 1746.2 cM in males,
highlighting a difference in sex specific recombination rate (1.38:1) which is much lower than previously reported
in Atlantic salmon. The sexes, however, displayed striking differences in the distribution of recombination sites
within linkage groups, with males showing recombination strongly localized to telomeres.

Conclusion: The map presented here represents a valuable resource for addressing important questions of interest
to evolution (the process of re-diploidization), aquaculture and salmonid life history biology and not least as a
resource to aid the assembly of the forthcoming Atlantic salmon reference genome sequence.

Background
Atlantic salmon (Salmo salar) belongs to the subfamily
Salmoninae in the order Salmoniformes. The common
ancestor of the salmonid fishes is suspected to have
undergone a whole genome duplication (WGD) 25-100
million years ago [1]. Today, salmonids have karyotypes
containing various numbers of metacentric and acro-
centric chromosomes likely arising through

Robertsonian fissions and fusions of ancestral acro-
centric chromosomes [2]. Atlantic salmon possesses a
karyotype with 72-74 chromosome arms, compared to
approximately 100 chromosome arms found in other
family members. The presence of multivalent pairing at
meiosis and evidence of tetrasomic inheritance [3] sug-
gest that the post-tetraploidization return to disomic
inheritance is not yet complete. A model of “secondary
tetrasomy” in which homologous chromosomes first
pair and then recombine in regions proximal to the cen-
tromere before undergoing homeologous pairing and
recombination toward the distal end of the chromosome
has been suggested for the salmonid species [1]. Further,
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Ohno et al. [4] suggested that the genomes of salmonids
have been reverting toward a diploid state through the
differentiation of duplicated chromosome sets into dis-
tinct pairs of homeologs. How an inherently unstable
duplicated genome reverts to a stable diploid state is
poorly understood. Although large-scale deletions, gene
silencing and chromosomal rearrangements are all
thought to be a part of this process, it is not known if
these events occur randomly along different lineages or
if there is a burst of activity immediately after the dupli-
cation followed by stability in the resulting genomes [5].
A linkage map constructed from carefully chosen

genetic markers could be a valuable tool to investigate
some of these questions. Marker development and con-
struction of genetic maps characterizing the inheritance
patterns of traits and markers have proven invaluable
for addressing important biomedical, agricultural, ecolo-
gical and evolutionary questions. Genetic maps in spe-
cies of the subfamily Salmoninae [6-15], including
Atlantic salmon, have relied primarily on microsatellite
markers. The biallelic nature of single nucleotide poly-
morphisms (SNPs) makes them less informative, but
they are abundant and highly suitable for cost effective
high-throughput genotyping. As a result SNPs have
emerged as the genetic marker of choice for large-scale
linkage and association studies, genomic predictions,
pedigree and broodstock analysis, linkage disequilibrium
and haplotype mapping, and even population biology
studies. If SNPs are developed from sequences asso-
ciated with genes (e.g. expressed sequence tags; ESTs)
they become particularly useful in comparative mapping.
The interpretation of SNP data in Atlantic salmon is
complicated by the WGD, which has made it difficult to
differentiate between single locus SNPs and the more
complex paralogous sequence variants (PSVs) and multi-
site variants (MSVs), which arise from gene duplicates
[16,17].
Recently we have developed an Illumina iSelect SNP

genotyping chip, containing approximately 6 K SNP-
assays. Approximately half of the SNPs on the array
were identified from EST alignments [18,19], with most
of the remainder coming from 454 sequencing of a ran-
dom genomic sample collected by preparing reduced
representation libraries from individual and pooled
DNA samples. We used this chip to genotype a large set
of family material from a Norwegian aquacultural popu-
lation and to construct a dense linkage map for Atlantic
salmon. The fact that half of the SNPs were developed
from ESTs or other gene associated sequences, facili-
tated identification of homeologous regions in Atlantic
salmon genome and allowed us to build syntenic rela-
tionships between Atlantic salmon and the reference
genome sequence of the threespine stickleback.

Results and discussion
Linkage map construction
Linkage mapping based on genotyping of 3297 Atlantic
salmon from 143 families resulted in a linkage map with
a total of 5650 SNPs. Linkage groups were translated to
chromosomes following the nomenclature suggested by
Phillips et al. [20] after comparing positions of markers
included in the studies of Moen et al. [21], Danzmann
et al. [6] and Lorenz et al. [22]. Our linkage mapping
identified 29 linkage groups which agrees with the most
common karyotype in European Atlantic salmon. Thus,
the 29 linkage groups reported here likely correspond to
the 29 chromosome pairs of the ‘European karyotype’
reported by Phillips et al. [20].

Difference in recombination patterns between sexes
Previous studies in Atlantic salmon have reported
extreme differences in recombination rates between the
sexes, with female:male ratios ranging from ~5:1 to
8.26:1 in two studies of farmed Norwegian salmon
[8,21] and 7.05:1 to 7.23:1 in two SALMAP families [6].
In contrast to these previous reports, the linkage maps
presented in this study (Table 1) show a smaller overall
difference in recombination rate between sexes (1.38:1).
The reason for this marked difference in reported
recombination rates is likely to be our maps improved
marker coverage in telomeric regions. Since male
recombination is often elevated in telomeres [6,21] the
more comprehensive coverage of these regions in our
study has resulted in a more even recombination rate
between sexes. The largest sex related differences in
recombination rate were found for chromosomes ssa02,
ssa08 and ssa17 showing female:male ratios ranging
from 4.51:1 to 7.39:1. In contrast seven of the smaller
chromosomes (ssa15, ssa19, ssa21, ssa22, ssa23, ssa25
and ssa27) showed similar or higher recombination rate
in males than females (see Table 1). Thus, the results
clearly show that the differences between sexes, with
regards to genetic recombination, lie primarily in the
distribution of recombination events, not in the total
map lengths. These results are supported by the most
recent linkage maps constructed for rainbow trout [13]
and it is quite likely that the male and female map
lengths will converge further when marker density is
increased.
Maps for the 29 chromosomes including marker infor-

mation, informative meioses and map positions are pre-
sented in Additional file 1
(SalmonLinkageMapSept2010.txt). Previous studies in
Atlantic salmon have also reported large regional differ-
ences in recombination between the two sexes where
females recombine all along the chromosomes and
males show strongly localized recombination in

Lien et al. BMC Genomics 2011, 12:615
http://www.biomedcentral.com/1471-2164/12/615

Page 2 of 10



telomeric regions [6]. Increased recombination in telo-
meric regions for some male chromosomes was evident
in our study. This is exemplified in Figure 1, which is
an illustration of chromosome ssa01 displaying both the
male and female maps. For seven metacentric chromo-
somes (ssa02 to ssa08), however, we detected elevated
recombination at only one of the telomeres. The regio-
nal recombination pattern differences between sexes are
illustrated in linkage maps presented in Additional file 2
(chromosomes.zip).

Clustering and mapping of MSVs
Striking evidence for the salmonid WGD event is pre-
sent today in the Atlantic salmon genome. SNP markers

within duplicated sequences (multisite-variants; MSVs
[23]) differ from typical single locus diploid SNPs in
that their assay signal reflects a mixture of four alleles
(two alleles in each duplicon). MSVs are further subdi-
vided into MSV-3s; where only one duplicon or paralo-
gue is variable, and MSV-5s; where both paralogues are
variable. The nomenclature is chosen to reflect three or
five cluster patterns observed when data is inspected
using Illumina’s GenomeStudio Genotyping Analysis
Module (Illumina, San Diego, CA). Based on automated
clustering of genotype data using the beadarrayMSV
[17] and manual inspection of data using the GenomeS-
tudio Genotyping Analysis Module (Illumina, San
Diego, CA) we estimate that approximately 21% of mar-
kers are MSVs, which is higher than the 9.5% previously
estimated from microsatellite data [6]. Despite the ran-
dom nature of SNP discovery, the MSVs do not distri-
bute evenly across all linkage groups (see Figure 2). For
some chromosomes, > 40% of mapped markers are
MSVs (ssa02, ssa08, ssa17 and ssa26), while in contrast
many other chromosomes contain fewer than 10%
MSVs (ssa13, ssa14, ssa15, ssa20, ssa21, ssa22, ssa23,
ssa24 and ssa25), reflecting the pseudo-tetraploidy of
the salmon genome. The apparent nonrandom distribu-
tion of MSVs argues strongly for the development of
tools that can be applied for automated scoring (cluster-
ing), filtering and mapping of complex SNPs, as discard-
ing such markers will bias map construction and create
information gaps in the linkage map. Due to the regio-
nal differences in recombination rates between sexes,
such information gaps may also be sex-biased. Recently
an R-package, beadarrayMSV, has been developed for
analysis of SNP markers in mosaic tetraploid species
[17]. The program package also enables efficient scoring
and integration of markers that are variable in both
paralogs (MSV-5s).

Identification of homeologous chromosome regions
It has been suggested that the common ancestor of the
salmonids had a typical teleost karyotype comprising
24-25 pairs of acrocentric chromosomes [24]. If true,
then it would be reasonable to expect 24-25 pairs of
duplicated regions in the present-day salmonids. A
recent study investigating conservation of large syntenic
blocks between Atlantic salmon and rainbow trout sup-
ports this hypothesis by revealing good correspondence
between 50 haploid chromosome arms in rainbow trout
and equivalent segments in Atlantic salmon [20]. We
have investigated the hypothesis by assessing the posi-
tions of MSV-5s on the linkage map. As shown in Table
2 the majority of MSV-5s map to chromosomes 2, 3, 4,
5, 6, 7 and 17. More specifically, mapping of MSVs seg-
regating at both of their homeologous loci suggests
homeologies between 2p-5q, 3q-6p, 4p-8q and 7q-17qb.

Table 1 Summary of the Atlantic salmon linkage map

Linkage group size
(cM)

Chromosome Number of
SNPs

Female
map

Male
map

Female:male
ratio

ssa01 386 135.3 130.1 1.04

ssa02 241 121.8 27 4.51

ssa03 291 115.4 61 1.89

ssa04 224 112.4 99.1 1.13

ssa05 255 116.6 54.9 2.12

ssa06 251 119.9 68.4 1.75

ssa07 158 114 72.2 1.58

ssa08 71 56.2 7.6 7.39

ssa09 311 106.8 79.1 1.35

ssa10 296 88.1 65.8 1.34

ssa11 233 85.1 58.4 1.46

ssa12 242 118.6 66.5 1.78

ssa13 285 89.7 84.1 1.07

ssa14 206 69.2 65.1 1.06

ssa15 215 80.1 82.3 0.97

ssa16 192 63 18.6 3.39

ssa17 166 69.3 11.3 6.13

ssa18 164 73.8 37.7 1.96

ssa19 157 66.3 71.6 0.93

ssa20 177 63.3 49.2 1.29

ssa21 107 53.9 66.7 0.81

ssa22 160 58.8 62.5 0.94

ssa23 126 51.4 58.1 0.88

ssa24 115 58.7 58.6 1.00

ssa25 117 55 56.2 0.98

ssa26 145 81.6 77.5 1.05

ssa27 162 53.6 57.7 0.93

ssa28 96 53.7 44.9 1.20

ssa29 101 71.4 60.7 1.18

5650 2403 1752.9 1.37
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Figure 1 Sex specific linkage maps for Atlantic salmon chromosome 1 (ssa01). The physical size and appearance of the chromosome is
adopted from Phillips et al. (2009). Approximate genetic distances are given to the right of the female map and to the left of the male map.
The numbers opposite denote indexes to individual markers as given in Additional Data. Markers homologous to chromosome arm segments in
stickleback or salmon are indicated with colours correponding with one of the chromosome arms. The approximate separation of the female
genetic map is based on this information. Red lines extend to the set of markers with limited recombination in the male map. Large regional
differences are seen between the maps, with most of the male recombination taking place near the telomeric ends.
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A smaller number of MSV-5s suggest homeology
between 2q-12qa, 11qa-26, 13qa-15qb and 19qb-29.
To validate these putative homeologies, and to identify

other homeologous regions, sequences flanking mapped
SNPs and MSVs were aligned against each other using
BLAST [25] to identify paralogs. The BLAST analysis
generated a list of 206 SNP-bearing sequences with
BLAST similarities to two Atlantic salmon chromo-
somes, for which 98 had been previously identified from
MSV-5 data (Table 2). To safeguard against false posi-
tives homeology between two chromosomes was deter-
mined by a minimum of three SNP-bearing sequences.
This search provided additional evidence for the eight
homeologous regions identified by MSV-5 mapping and
highlighted 14 new regions, producing a total of 22
regions (Table 2). Among these, six homeology predic-
tions have been reported in previous studies [6,20].
To further develop our understanding of homeology

within Atlantic salmon, sequences flanking mapped
SNPs and MSVs were compared with the stickleback
reference genome. Our ability to identify reliable BLAST
similarities in stickleback was strengthened considerably
by the high proportion of salmon markers (2696) gener-
ated from ESTs or other gene associated sequences.
Once again, three BLAST similarities for each chromo-
some were required to assert synteny between

stickleback and homeologous regions in salmon. As
shown in Figure 3, the alignment produced clear pat-
terns where groups of mapped salmon SNPs matched
up with particular chromosomal regions in stickleback.
No discrepancies in homeologies were found when com-
paring the results from this approach to the other two
approaches described above. The alignment against
stickleback increased the number of paired homeologous
regions to 25 (Table 2) which supports the results of
Phillips et al. [20]. Most homeologies were unambigu-
ous, with the exception of the homeologs of ssa1qb and
ssa4q which seems to be a fusion of ssa11qb and
ssa13qb, and ssa10 for which we could not uniquely
separate matching regions on ssa16qa and ssa23.

Recombination patterns and the post-tetraploidization
process
A key event during re-diploidization is the switch from
tetrasomic to disomic inheritance, i.e. from having four
chromosomes forming a quadrivalent to having two
pairs each forming a bivalent during meiosis. Most pre-
sent-day salmonids seem to have restored disomic
inheritance across most of the genome as a part of the
post-tetraploidization events, but meiotic multivalent
and tetrasomic inheritance, especially in males, is well
documented for several species within the Salmonidae e.

Figure 2 The proportion of MSVs as a percentage of the total number of markers for each Atlantic salmon chromosome.
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g., rainbow trout [3] and brown trout [9]. The origin of
such sex differences remains unclear, although it has
been suggested that multivalent formation may be con-
strained during female meiosis due to greater specificity
in the initiation of chromosome pairing relative to males
[9]. A two-stage model of chromosome pairing has been
proposed in which homologous chromosomes pair first
to ensure disjunction of homeologs, followed by pairing
between homeologous regions [1]. According to this
model, loci near the centromeres would show disomic
inheritance while more distal loci show tetrasomic
inheritance, or secondary tetrasomy. Homeologous chro-
mosomal regions, which form multivalents with their
ancestral counterpart during meiosis, are believed to
retard re-diploidization while segments more proximal
to the centromere are allowed to diverge at a faster rate
[1]. Our linkage data in combination with mapping of
homeologous regions in the salmon genome provide

substantial support for the presence of these mechan-
isms in Atlantic salmon. The majority of chromosomes
are characterized by strongly localized recombination
towards telomere regions in males. However, for seven
metacentric chromosomes (ssa02 to ssa08) elevated
recombination was found only at one of the telomeres.
For the majority of these chromosome arms (5q, 3q, 4p,
6p, and 7q), low recombination rates in males coincides
with extensive homeologies between chromosome pairs
(2p-5q, 3q-6p, 4p-8q and 7q-17qb) demonstrated by the
presence of many MSV-5s. Further support for homeo-
logous chromosome pairing in these regions is given by
two-point linkage analyses, which show considerable
pseudo-linkage between markers on 2p-5q, 3q-6p, 4p-8q
and 7q-17qb (results not shown). Competitive crossing-
over in the quadrivalents during meiosis may explain
why the expected, increased male recombination is not
observed in some of these regions as recombination

Table 2 Homeologous chromosome regions in the Atlantic salmon genome identified by mapping of MSV-5s,
sequence alignments within salmon SNP-sequences (Salmon BLAST) and alignments against the stickleback genome
sequence (Stickleback BLAST)

Mapping approach

Homeologs MSV-5s Salmon BLAST Stickleback BLAST Danzmann et al (2008)

1p-9qa 4 37

1qa-18qa 3 29

1qb-11qb/13qb 6 52

2p-5q 39 48 67 9

2q-12qa 1 5 33 5 (12qb)

3p-14qa 41

3q-6p 7 14 67 9

4p-8q 14 16 21 4

4q-11qb/13qb 11 58

5p-9qb 7 61

6q-15qa 3 41

7p-18qb 18

7q-17qb 33 34 35 5 (17qa)

9qc-20qa 4 36

10-16qa/23 3 112

11qa-26 2 10 54 1

12qb-22 7 56

13qa-15qb 1 7 40

14qb-27 11 57

16qb-17qa 7 19 5 (16qa-17qb)

18qa-28 14

19qa-28 4 24

19qb-29 1 3 38

20qb-24 5 52

21-25 5 51

MSV-5s are nested in the Salmon BLAST and Stickleback BLAST numbers are the total counts of SNP-bearing sequences aligning with the Stickleback genome
and supporting the homeolog pairing.
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between homeologs prevents recombination between
sister chromatids. In contrast both 2p and 8q seem to
have elevated recombination at the telomere ends show-
ing homeology with other chromosome regions. These
chromosome arms contain heterochromatin rich regions
which generate a strong signal with DAPI staining [20].
Heterochromatin rich regions may reduce crossing over
[26] which may serve as an explanation for this differ-
ence. Notably, both ssa02 and ssa08, together with ssa17
which builds extensive homeology with 7q, demonstrate
the highest female:male recombination rates in our data-
set. It is therefore tempting to suggest that the homeo-
log chromosome pairing causes an overall reduction in
male recombination for these three chromosomes.
Over the last decade researchers have begun to

include genetic marker information in their strategies to
improve salmonid aquaculture production efficiency
[27]. Although chromosomal segments have been identi-
fied that are associated with economically important
traits (e.g. [28-31]) the density of available marker maps

has been insufficient for performing whole genome wide
association (GWA) mapping in Atlantic salmon. The
development of the 6 K SNP-chip, together with the
dense linkage map presented in this paper, provide sig-
nificant steps forward towards fine-mapping quantitative
trait loci (QTL) affecting health and productivity, as well
as revealing the biological mechanisms underlying these
traits.
To date, no whole genome sequence exists for any

member of the family Salmonidae. Thus building synte-
nic relationships with the sequenced and functionally
well-characterized model teleost species zebrafish
(Danio rerio), fugu (Fugu rubripes), Tetraodon (Tetrao-
don nigroviridis), medaka (Oryzias latipes), and three-
spined stickleback (Gasterosteus aculeatus) may extrapo-
late valuable information. Although the data presented
broadly reveals conservation of synteny groups between
Atlantic salmon and stickleback, significant rearrange-
ments of synteny blocks are expected along comparative
chromosomes. As the densities and resolution of
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Stickleback chromosomes 
Figure 3 Figure reporting BLAST matches between markers on homeologous Atlantic salmon chromosomes and stickleback
chromosomes. Patterns exist where groups of mapped SNPs from different Salmon chromosomes match a particular chromosome or region in
stickleback. Within each grid square the relative hit positions are indicated horizontally for stickleback and vertically for salmon chromosomes.
For example, SNPs on Ssa13qa and 15qb (red squares) align to positions across the full length of stickleback chromosome 12, providing
evidence that Ssa13qa and 15qb are homeologues.
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markers in the Atlantic salmon linkage maps increase,
and the sequencing and assembly of the salmon genome
advance, the extent of such rearrangements will be bet-
ter resolved.
Work is in progress to generate a complete reference

genome for Atlantic salmon [32]. The high-resolution
linkage map presented in this work can be integrated
with other data and become a valuable resource to
guide and assist assembly of the very complex salmon
genome. Even after the salmon genome is completely
sequenced, the map will continue to be a useful tool to
link observable phenotypes and animal genotypes to
underlying genes and molecular mechanisms influencing
economically important traits.

Conclusions
The dense linkage map presented was used to outline
the distribution of homeologous regions within the
Atlantic salmon genome. This linkage map will be a
valuable resource for addressing important aquaculture,
ecological and evolutionary questions and to assist in
the assembly of the forthcoming reference genome
sequence for Atlantic salmon.

Methods
SNP-chip
A custom design Illumina iSelect SNP-array, containing
approximately 6 K working SNP-assays was developed
in-house at CIGENE. Approximately half of markers
were identified from EST alignments [18,19], with the
remainder detected following 454 sequencing of reduced
representation libraries from eight individual salmon
belonging to a commercial breeding population in
Norway.
Markers integrated in the linkage map were generated

from the following sources:

i) 2929 from sequencing of genome complexity
reduction (GCR) libraries using 454 technology,
ii) 2824 from EST alignments [18,19],
iii) 124 from low-scale targeted re-sequencing of
BAC-end sequences [22] and
iv) 42 from other gene related sequences.

Classification of markers, genotyping and SNP filtering
Samples were genotyped following standard protocols
for iSelect SNP-array. Bead-arrays were scanned on an
iScan reader using a modified Infinium II scan settings
protocol which records bead-level intensity data in .txt
format. A large fraction of markers in the salmon gen-
ome showed polyploidy caused by the WGD in the early
evolution of the Salmonidae family. Such markers may
be classified as multisite variants or MSVs as suggested

by Fredman et al. [23]. In instances where markers seg-
regate in one of the paralogs with the other being fixed,
the samples cluster into three groups depending on the
(mixed) allelic ratio of the marker in the sample. These
are denoted MSV-3 and can be distinguished from regu-
lar SNPs in that the clusters are much more tightly
positioned. Illumina’s GenomeStudio Genotyping Analy-
sis Module (v.1.6.3) may be tuned to cluster some of the
MSV-3s; however they will be regarded as regular SNPs.
MSVs polymorphic in both paralogs were revealed by
five separate clusters and therefore were classified as
MSV-5s. Unfortunately the current version of GenomeS-
tudio is not designed to call polyploid genotypes and
consistently failed to call or mis-called MSV-5s. In order
to improve genotyping efficiency of the data we devel-
oped a pipeline for validation, quality filtering and allele
scoring in Atlantic salmon. The pipeline efficiently dif-
ferentiates between reliable and unreliable SNP assays
and improves data confidence. A key element in the
pipeline is our development of the R-package beadar-
rayMSV [17] made freely available on the web at http://
cran.r-project.org/.

Family material
Atlantic salmon genomic DNA was extracted from fin-
clips provided by the Norwegian breeding company
Aqua Gen. Close to 3500 fish (offspring and parents)
distributed among a mixture of half-sib and full-sib
families were genotyped using iSelect SNP-array follow-
ing standard protocols (Illumina, San Diego, CA). After
genotyping families were filtered for potential pedigree
errors which resulted in a final set 3297 of salmon being
used for the linkage map construction.
Modified versions of the CRIMAP 2.4 software [33],

which can handle larger numbers of markers segregating
in complex pedigrees, were utilized for the linkage ana-
lysis. Initially the AUTOGROUP option of a CRIMAP
version, provided by Xuelu Liu (Monsanto, Saint Louis,
MO, USA), was used to place SNPs into linkage groups
based on twopoint LOD scores. The SNPs were
included stepwise starting with the most informative
SNPs together with SNPs with a known chromosomal
position from the previous studies of Moen et al. [21],
Danzmann et al. [6] and Lorenz et al. [22]. After the
initial grouping of SNPs to 29 linkage groups, markers
were ordered within group using the BUILD and
FLIPSN options of CRIMAP. Due to the extremely low
recombination rate in males across the vast majority of
the genome the initial order of markers were deter-
mined based on female meioses only. An in-house mod-
ified version of CRIMAP was developed to deal with the
larger numbers of markers and pedigree in the analyses.
Subsequently marker orders were determined in both
sexes using a combination of FLIPSN, CHROMPIC and
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FIXED of the same program. After determining the
most likely SNP-order within linkage groups double
recombinants were identified by CHROMPIC option of
CRIMAP and a script were written to correct erroneous
genotypes. MSV-5 markers could not be directly
mapped as they display the mean signal from two sepa-
rate loci. As a consequence MSV-5 marker alleles were
determined within families by beadarrayMSV as
described by Gidskehaug et al. [17] and pooled with
other SNP genotypes in a combined analysis. Sex-speci-
fic multipoint linkage maps were constructed using the
FIXED option of CRIMAP. An R-script was written for
graphical visualization of linkage groups representing 29
chromosomes in Atlantic salmon following the nomen-
clature of Phillips et al., [20].

BLAST searches
SNP sequences were compared with each other using
megablast in order to identify paralogous genes and
identify homeologous chromosomal regions within the
Atlantic salmon genome. Megablast was also used when
searching for homeologous regions in Atlantic salmon
that match up with conserved syntenic groups in the
sequenced stickleback genome. Megablast searches were
performed on a local server running the Galaxy tool
(http://main.g2.bx.psu.edu/.

Additional material

Additional file 1: A total of 5918 marker were mapped to linkage
groups by two point linkage analyses. Among these, 5650 markers
were integrated into the linkage map. The remaining 268 markers were
not integrated due to insufficient statistical support or because they
substantially expanded the multipoint linkage map. The columns in table
are ID of the marker, classification of markers, Atlantic salmon
chromosomes number, order of markers within each linkage group,
female linkage map in cM, male linkage map in cM, number of meioses,
sequence flanking the marker, length of the flanking sequence and
dbSNP accession number.

Additional file 2: Graphical visualization of linkage maps. The
sections of the large acrocentric chromosomes proximal and distal to the
central block of repetitive DNA are labeled qa and qb, respectively. The
largest acrocentric chromosome pair has two blocks of repetitive DNA
dividing the arm into three parts: 9qa, 9qb and 9qc.
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