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Abstract

We consider models defined by a set of moment restrictions that may be subject to

weak identification. Following the recent literature, the identification of the structural

parameters is characterized by the Jacobian of the moment conditions. We unify

several definitions of identification that have been used in the literature, and show how

they are linked to the consistency and asymptotic normality of GMM estimators. We

then develop two tests to assess the identification strength of the structural parameters.

Both tests are straightforward to apply. In simulations, our tests are well-behaved

when compared to contenders, both in terms of size and power.

Keywords: GMM; Weak IV; Test; Misspecification.

JEL classification: C32; C12; C13; C51.

1 Introduction

Hansen’s (1982) seminal paper on the Generalized Method of Moments (GMM) has provided

a unified asymptotic theory that encompasses the classical econometric tools of estimation
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and inference about structural parameters based on instrumental variables (IV). Such a uni-

fied asymptotic theory delivers asymptotically normal estimators with asymptotic variances

that can be estimated easily to build Wald-type confidence sets. However, over the last

30 years, the practice of GMM has shown that these asymptotically normal distributions

may be poor approximations of the actual distributions met in finite samples. Such distor-

tions, observed even for relatively large samples, might be explained by the weak correlation

between instruments and explanatory variables.

The weak instrument literature has proposed two kinds of alternative asymptotics to cap-

ture actual finite samples estimator’s distributions. On the one hand, Staiger and Stock’s

(1997) asymptotic approximation (see also Stock and Wright (2000) for its non-linear gen-

eralization) is such that IV estimators have non-standard distributions. On the other hand,

a more recent literature still considers the IV estimators as approximately normal, but such

that the standard asymptotic variance estimators may not be as reliable as in the strong

instrument approach. While several authors, including Hansen, Hausman and Newey (2008)

in the linear case, and Newey and Windmeijer (2009) in the non-linear case, have justified

such adjustments of Gaussian-based confidence intervals by the so-called many-instrument

asymptotics, others are more agnostic and simply acknowledge that slower rates of conver-

gence towards normality may occur: see e.g. Hahn and Kuersteiner (2002) in the linear

case, Antoine and Renault (2009) and Caner (2010) in the non-linear case. In this respect,

the fact that the number of instruments may be seen as going to infinity with the sample

size is only one possible interpretation of these non-standard rates.

More generally, the weak instrument literature can be understood by considering the reduced

rank setting as the limit of a sequence of Data Generating Processes (DGP) indexed by

the sample size. Antoine and Renault (2009) have characterized how various degrees of

identification weakness (as defined by the rate of convergence towards reduced rank along the

sequence of drifting DGPs) lead to various rates of convergence for estimators of structural

parameters. Besides the extreme case of weak identification studied by Staiger and Stock

(1997) and Stock and Wright (2000), we show that only a slightly less severe identification

issue, or so-called near-weak identification, ensures asymptotic normality (albeit at a slower

rate than standard root-T), allowing almost standard GMM inference; see also Antoine and

Renault (2009).
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Our first contribution is to unify several definitions of identification that have been used in

the literature, and to show how they are linked to the asymptotic properties of GMM estima-

tors. We also discuss the identification of subvectors. From there, our second contribution

is to propose simple test procedures to assess the identification strength of the structural

parameters and the validity of the moment restrictions. Such tests should provide user-

friendly guidelines to practitioners. For instance, our tests for identification strength aim

at concluding that, up to some type 1 error, standard GMM inference can be applied safely

(and possibly efficiently). All the tests we propose are straightforward to apply since based

on squared norms of the moment conditions computed at a suitable estimator, in the spirit

of Sargan (1958) and Hansen’s (1982) J-test for overidentification. In addition, our tests

have good power properties as illustrated in our Monte-Carlo simulations. This is in con-

trast with what one commonly thinks about J-tests. Beyond the Monte-Carlo evidence,

we also provide some theoretical arguments to understand why our testing procedures may

have power to identify instruments’ strength or validity. The key intuition is that the GMM

optimal weighting matrix automatically sets the focus on the most informative moment

conditions. As a result, an inflation of the number of moment conditions may not hurt so

much the power of the test.

Our tests for identification strength are inspired by Dufour’s (1997) seminal observation

that, when the degree of overidentification can be arbitrarily small, valid confidence sets

should be infinite with a positive probability. In terms of tests, it is akin to consider that

a null hypothesis written as an infinite distortion of the true value may deliver a positive

p-value. This is the key idea behind our two tests for identification. Both tests consider the

null hypothesis that no standard asymptotic theory (as discussed above) is reliable.

In linear settings, we simply test the null hypothesis of weak identification against near-weak

identification. We consider a J-test statistic of overidentification computed at a distorted

GMM estimator. The distortion is such that it cannot be detected under the null, but allows

the test to reject consistently under the alternative in spite of the fact that the test can be

conservative. Practical considerations for the choice of such distortion are also discussed.

In non-linear settings, we explain why we cannot directly test the null hypothesis of weak

identification against near-weak identification. As a result, we have to rely on the sufficient

condition for near-weak identification put forward by Antoine and Renault (2009), namely
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near-strong identification. Our second test is a conservative test regarding the null that

some components of the vector of structural parameters are not near-strongly identified.

We also use a J-test statistic of overidentification computed at a distorted GMM estimator.

Both tests are conservative since, under the null, no standard asymptotic theory is available.

By contrast, when the null hypothesis is rejected, the practitioner can safely apply standard

inference procedures, like the overidentification test, or the Wald test, since studentization

protects her against possibly slower rates of convergence (see e.g. Antoine and Renault

(2009) and Newey and Windmeijer (2009)). Note also that both our tests set the focus on

testing identification strength of subvectors which is in contrast with respect to common

practice.

Other test procedures have been proposed in the literature to detect weak identification in

linear settings. In simulations, we compare our tests to detect identification strength to the

rule-of-thumb proposed by Staiger and Stock (1997) and to the tests based on the 2SLS bias

and size distortion proposed by Stock and Yogo (2005). The test proposed by Hahn and

Hausman (2003) tests the null of strong identification and is not considered here. Detecting

weak identification in non-linear settings is an open area of research1, and our second test

provides some partial answers to this issue.

The paper is organized as follows. In section 2, we introduce our framework and char-

acterize the identification strength of structural parameters through the Jacobian of the

moment restrictions. We also show how it is linked to the asymptotic properties of GMM

estimators. In section 3, we propose two tests to assess the identification strength of the

structural parameters in linear and non-linear settings. In section 4, we illustrate the finite

samples performance of our tests though Monte-Carlo simulations. We consider the linear

IV regression model and a (persistent) AR(1) model calibrated to interest rate data. Section

5 concludes. The proofs of the main results are gathered in the Appendix.

The following notation is used throughout the paper. The symbols ”
p→” and

d→” denote

convergence in probability and in distribution, while ”Plim” denotes the probability limit

of a random expression. op(1) denotes a random variable that converges to 0 in probability,

whereas Op(1) denotes a random variable that is bounded in probability. For any (k, p)-

1The test proposed by Wright (2003) using the estimated curvature of the objective function is actually

a test for non-identification.
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matrix M , ”M ′” denotes the transpose matrix of M , Rank(M) denotes the rank of M ,

and ‖M‖ ≡ max{
√
λ , λ is an eigenvalue of M ′M}. Iq denotes the identity matrix of size

q. χ2(k) denotes the central chi-square random variable with k degrees of freedom. ”With

respect to” is written ”w.r.t”.

2 General framework

2.1 Identification strength

We consider the true unknown value θ0 of the parameter θ ∈ Θ ⊂ R
p defined as the solution

of the moment conditions,

E[φt(θ)] = 0 for some known function φt(.) of size K. (2.1)

Since the seminal work of Stock and Wright (2000), the weakness of the moment conditions

(or instrumental variables) is usually captured through a drifting DGP such that the in-

formational content of the estimating equations shrinks towards zero (for all θ) while the

sample size T grows to infinity. The strength of identification of the parameters is then

reflected by the Jacobian of the moment equations with respect to the parameters. We

maintain the assumptions that the moment function φt(.) is continuously differentiable with

respect to θ on the interior of the set of possible parameter values Θ, int(Θ), and that the

true unknown value θ0 belongs to int(Θ). We now unify several definitions of identification

strength of θ that have been used in the literature.

Definition 2.1. (Identification strength of θ)

The identification strength of θ is characterized by a sequence MT of deterministic nonsin-

gular matrices of size p such that

Γ(θ0) ≡ Plim

[

∂φT (θ
0)

∂θ′
MT

]

exists and is full-column rank. (2.2)

We borrow the terminology ”identification strength” to Kleibergen and Mavroeidis (2009)

who set the focus (see their Assumption 6) on the special case where

∂φT (θ
0)

∂θ′
= Γ(θ0)M−1

T .
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They stress the importance of characterizing the identification strength of θ to draw valid

inference about some other parameters of the model of interest. The faster the sequence of

matrices MT diverges to infinity, the lesser θ is identified. It is actually strongly identified

when MT can be taken as the identity matrix. The concept of identification strength has

been extensively studied in Antoine and Renault (2009, 2010). In the context of many

instruments, it is revisited in Assumption 1(ii) in Newey and Windmeijer (2009). An im-

portant message of all these papers is that different linear combinations of θ may display

different strengths (or degrees) of identification. More generally, the identification strength

of the possible linear combinations of θ is tightly related to the rate of convergence of the

eigenvalues of (MTM
′
T ) to infinity, while the eigenvectors describe the linear combinations

corresponding to different degrees of identification (see Antoine and Renault (2009, 2010)

and assumption 4 below). The role of the sequence of matrices MT in the asymptotic dis-

tributional theory of the GMM estimator of θ is well-understood, at least in the linear case,

as first pointed out by Staiger and Stock (1997) and reminded in the example below.

Example 2.1. (Linear IV regression)

We consider the following structural linear equation,

yt = x′tθ
0 + ut for t = 1, · · · , T,

where the p explanatory variables xt may be endogenous. The true unknown value θ0 of

the structural parameter is identified through K ≥ p instrumental variables zt uncorrelated

with ut. In other words, the estimating equations for standard IV estimation are

φT (θ̂T ) =
1

T
Z ′
(

y −Xθ̂T

)

= 0 , (2.3)

where X (respectively Z) is the (T, p) (respectively (T,K)) matrix which contains the avail-

able observations of the p explanatory variables (respectively the K instrumental variables)

and θ̂T denotes the standard IV estimator of θ. The reduced form equation for X can be

written as

X = ZΠT + V , (2.4)

where the K columns of Z and the p columns of V are uncorrelated. Note that, at the price

of more tedious notations, one could easily accommodate the general model considered in
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Staiger and Stock (1997) where additional exogenous variables W show up in both the

structural and the reduced form equation. Actually, everything can be understood in the

more general setting by considering orthogonal projections on the orthogonal space of the

range of W . Then, we have

∂φT (θ)

∂θ′
= −Z

′X

T
= −Z

′Z

T
ΠT − Z ′V

T
. (2.5)

Under standard regularity conditions, (Z ′V/T ) and (Z ′Z/T ) converge respectively towards

zero and a nonsingular matrix ΣZ . Therefore, (2.5) can be used to reinterpret the above

definition 2.1 in terms of an asymptotic specification of the matrix ΠT ,

ΠT = ΠM−1
T with Rank(Π) = p . (2.6)

In other words, instead of a fixed full-column rank matrix Π, drifting reduced form parame-

ters ΠT are used to capture the fact that identification may be weaker than usual (e.g. when

coefficients of MT go to infinity). Staiger and Stock (1997) actually define weak identifica-

tion by considering ΠT = Π/
√
T , that is MT =

√
T Ip. The conformity between condition

(2.6) and definition 2.1 follows from (2.5) by noting that we have for all θ ∈ Θ,

∂φT (θ)

∂θ′
MT = −Z

′Z

T
Π− Z ′V√

T

MT√
T
.

In the weak identification case (MT /
√
T = Ip), an extension of definition 2.1 would lead to

consider a random matrix Γ(θ0) since the Jacobian matrix rescaled by
√
T is asymptotically

normal as Z ′V/
√
T . The effects of this randomness have been documented by Kleibergen

(2005) for a score test on the whole parameter vector. By contrast, such randomness is

implicitly precluded in Kleibergen and Mavroeidis (2009) (see their Assumption 6) for the

Jacobian matrix of parameters not under test. The only way to ensure that the matrix

Γ(θ0) in definition 2.1 is not random is to assume, in addition, that

lim
T

(

MT√
T

)

= 0 . (2.7)
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Condition (2.7) has been dubbed near-weak identification by Hahn and Kursteiner (2002)

who typically consider

MT = T λIp with 0 < λ < 1/2 .

The extreme cases λ = 0 and λ = 1/2 correspond respectively to strong and weak identifi-

cation. Precluding the extreme case of weak identification, or, in other words, maintaining

the rank condition (2.6) with the upper bound (2.7) on the rate of weakness is key to get

asymptotic normality of the IV estimator θ̂T with standard studentized statistics. To see

this, simply rewrite (2.3) as

Z ′X

T
(θ̂T − θ0) =

Z ′u

T

⇔ Z ′Z

T
Π
√
TM−1

T (θ̂T − θ0) +
Z ′V√
T

MT√
T

√
TM−1

T (θ̂T − θ0) =
Z ′u√
T
. (2.8)

Under standard regularity conditions, (2.8) delivers asymptotic normality of

√
TM−1

T (θ̂T − θ0) ,

after noting that, thanks to (2.7), we have

ΣZΠ
√
TM−1

T (θ̂T − θ0) =
Z ′u√
T

+ oP (1) , (2.9)

with ΣZΠ full-column rank and Z ′u/
√
T asymptotically normal. Of course, since near-weak

identification entails some coefficients of the matrix MT diverging to infinity (albeit not as

fast as
√
T ), the rate of convergence of the IV estimator to normality may be slower than√

T . The fact that the matrix MT may not be proportional to the identity matrix (and not

even diagonal) allows for linear combinations of θ to have different degrees of identification.

AssumingMT diagonal means that different identification strengths are assigned to different

columns of ZΠ, and not to different instruments (or columns of Z). The two are not

equivalent in the overidentified case since Π is not a square matrix. Therefore, maintaining

the diagonality of MT , albeit commonly done, would be overly restrictive2.

Assumption 1 in Newey and Windmeijer (2009) highlights the importance of the near-

weak identification condition (see their condition µjn/
√
n → 0; see also Hansen, Hausman

2See further assumption 4 for a convenient generalization of diagonality.
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and Newey (2008) for the linear case). As already explained, this assumption allows, at

least in the linear case, to get consistent asymptotically normal estimators whose rates of

convergence are described by the sequence of matrices
√
TM−1

T (see (2.8)). The non-linear

case for near-weak identification, as studied by Antoine and Renault (2009, 2010) and

Caner (2010) works similarly. It can be shown under very general conditions (see Antoine

and Renault (2009, 2010)) that any GMM estimator of θ will display a rate of convergence

at least equal to
√
T/ ‖MT‖. It is worth stressing that while we allow moments to display

some singularities, the GMM estimators we consider are all defined in a standard way from

a positive definite weigthing matrix.

Definition 2.2. (GMM estimator)

For any sequence of possibly random symmetric matrices ΩT of size K that converges in

probability towards a positive definite matrix Ω, a GMM estimator θ̂T is defined as any

solution of

min
θ∈Θ

[

φT (θ)
′ΩTφT (θ)

]

.

Regarding asymptotic normality of such GMM estimators, the proof requires a Taylor ex-

pansion of the first-order conditions to get a linear representation of the GMM estimator

that generalizes the linear case (2.9). Non-linearity may then entail an additional technical

difficulty due to the fact that the concept of identification strength may not be robust to

plugging in the Jacobian matrix a consistent estimator of the true unknown value. This is

why we consider the following high-level condition that strengthens definition 2.1.

Definition 2.3. (Near-weak identification)

In the context of definition 2.1, θ is said near-weakly identified if there exists a sequence MT

of deterministic nonsingular matrices of size p such that

lim
T

(

MT√
T

)

= 0 ,

and, for any GMM estimator θ̂T as in definition 2.2 and any sequence θT between θ0 and

θ̂T component by component3, we have

Γ(θ0) = Plim

[

∂φT (θT )

∂θ′
MT

]

,

3Hereafter, we use the notation θT ∈ [θ0, θ̂T ].
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where Γ(θ0) is the full-column rank matrix introduced in (2.2).

When definition 2.1 is fulfilled with MT/
√
T going to zero, near-weak identification of θ will

be warranted in many cases. It is worth realizing that going from the former to the latter

only amounts to assume that

θT ∈ [θ0, θ̂T ] ⇒ Plim

[(

∂φT (θT )

∂θ′
− ∂φT (θ

0)

∂θ′

)

MT

]

= 0 . (2.10)

The required zero-limit in (2.10) is obviously ensured for the components of the moment

vector φT (.) that are linear with respect to the parameters θ. For those which are not linear

with respect to some subset θ1 of components of θ, the issue at stake is to know whether their

rate of convergence along the sequence θT is sufficient to supersede the possible convergence

to infinity of the sequence MT . As explained above, we expect for the GMM estimator θ̂T

(and thus also for θT ∈ [θ0, θ̂T ]) a rate of convergence at least equal to
√
T/ ‖MT ‖. More

precisely, we expect, as in the linear case, that
√
TM−1

T (θ̂T − θ0) = OP (1). Hence, the

validity of (2.10) would mean that in relevant directions, the convergence to zero ofMT/
√
T

dominates the convergence to infinity of the sequence MT . Roughly speaking, ‖MT‖ should

not blow-up as fast as T 1/4. This threshold is the key concept of near-strong identification

promoted by Antoine and Renault (2009, 2010) as a sufficient condition for near-weak

identification. A less restrictive, albeit related, point of view will be warranted in section

3 when testing for the identification strength of subvectors θ in non-linear settings. We

first present the asymptotic theory for GMM estimators under the high-level assumption of

near-weak identification. While a careful study of rates of convergence of GMM estimators

is provided in Antoine and Renault (2009, 2010), we simplify the exposition by directly

maintaining the required high-level assumptions.

Assumption 1. θ is near-weakly identified as in definition 2.3.

Assumption 2. In the context of assumption 1, any GMM estimator θ̂T as in definition

2.2 is such that
√
TM−1

T (θ̂T − θ0) = OP (1).
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2.2 Asymptotic Theory

As usual, asymptotic normality of a GMM estimator results from a central limit theorem

applied to the moment conditions evaluated at the true unknown value of the parameters.

Assumption 3.
√
TφT (θ

0) converges in distribution towards a normal distribution with

mean zero and variance S(θ0).

The following theorem extends the asymptotic normality result given in the linear case, as

well as results previously given in Antoine and Renault (2009, 2010).

Theorem 2.1. (Asymptotic normality)

Let θ̂T denote any GMM estimator as in definition 2.2. Under assumptions 1 to 3,
√
TM−1

T (θ̂T − θ0)

is asymptotically normal with mean zero and variance

Σ(θ0) =
[

Γ′(θ0)ΩΓ(θ0)
]−1

Γ′(θ0)ΩS(θ0)ΩΓ(θ0)
[

Γ′(θ0)ΩΓ(θ0)
]−1

.

As already acknowledged, assumptions 1 and 2 are high-level assumptions, and we refer

the interested reader to Antoine and Renault (2010) for more primitive conditions. In

any case, Theorem 2.1 paves the way for a concept of efficient estimation. By a common

argument, the unique limit weighting matrix Ω minimizing the above covariance matrix is

clearly Ω = [S(θ0)]−1.

Theorem 2.2. (Efficient GMM estimator)

Under the assumptions of Theorem 2.1, any GMM estimator θ̂T as in definition 2.2 with a

weighting matrix ΩT = S−1
T , where ST denotes a consistent estimator of S(θ0), is such that

√
TM−1

T (θ̂T − θ0)

is asymptotically normal with mean zero and variance [Γ′(θ0)S−1(θ0)Γ(θ0)]
−1
.

In our framework, the terminology efficient GMM must be carefully qualified. For all prac-

tical purposes, Theorem 2.2 states that, for T large enough,
√
TM−1

T (θ̂T − θ0) can be seen

as a Gaussian vector with mean zero and variance consistently estimated by

M−1
T

[

∂φ
′
T (θ̂T )

∂θ
S−1
T

∂φT (θ̂T )

∂θ′

]−1

M−1′
T , (2.11)
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since Γ(θ0) = Plim

[

∂φ
T
(θ0)

∂θ′
MT

]

. However, it is incorrect to deduce from formula (2.11) that
√
T
(

θ̂T − θ0
)

can be seen (for T large enough) as a Gaussian vector with mean zero and

variance consistently estimated by

[

∂φ
′
T (θ̂T )

∂θ
S−1
T

∂φT (θ̂T )

∂θ′

]−1

. (2.12)

The above matrix (2.12) is actually the inverse of an asymptotically singular matrix. In

this sense, a truly standard GMM theory does not apply and some components of
√
T (θ̂T −

θ0) actually blow-up. Quite fortunately, standard inference procedures work, albeit for

non-standard reasons. For all practical purposes related to inference about the structural

parameter θ, the knowledge of the matrix MT is not required; see also the discussion in

Antoine and Renault (2010). Of course, the asymptotic singularity of (2.12) means that the

actual rate of convergence may vary depending on the linear combinations of the structural

parameter vector θ. The following high-level assumption4 helps to characterize the relevant

directions in the parameter space.

Assumption 4. The sequence of matrices MT such that assumptions 1 and 2 are fulfilled

can be chosen as

MT = RΛT ,

for some fixed non-singular matrix R and a sequence ΛT of diagonal matrices.

As shown in the appendix, the main intuition is that, from an initial sequence of matricesMT

that does not fulfill assumption 4, we can build the diagonal coefficients of ΛT as the singular

values of the matrixMT (as the square-roots of eigenvalues of (MTM
′
T )), while the matrix R

is the limit of a sequence of orthogonal matrices of eigenvectors of (MTM
′
T ). Then, Theorems

2.1 and 2.2 characterize the asymptotic normal distribution of
√
TΛ−1

T R−1(θ̂T − θ0). In

other words, when considering the reparametrization η ≡ R−1θ, the j-th component of

η̂T ≡ R−1θ̂T is a consistent asymptotically normal estimator of η0j (with η0 ≡ R−1θ0) with

a rate of convergence
√
T/λjT (with λjT the j-th diagonal coefficient of ΛT ). Moreover,

Antoine and Renault (2010) have shown that this rate of convergence is not impacted by

4More primitive justifications are provided in the appendix
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a preliminary consistent estimation of the matrix R, making this asymptotically normal

estimation feasible. The characterization of the different rates of convergence through the

sequence of diagonal coefficients of the matrix ΛT may matter for interpretation, even though

their knowledge is not necessary to run Wald inference from (2.11). A similar discussion

may be relevant to interpret the outcome of a J-test for overidentification while taking into

account the heterogeneous strengths of instruments. We can already note that the J-test

for overidentification can be performed as usual thanks to the following result.

Theorem 2.3. (J-test)

Under the assumptions of Theorem 2.2, for any GMM estimator as in definition 2.2 with a

weighting matrix ΩT = S−1
T , where ST denotes a consistent estimator of S(θ0), we have

Tφ
′
T (θ̂T )S

−1
T φT (θ̂T )

d→ χ2(K − p) .

2.3 Identification of subvectors

When testing for identification strength, we will check whether our data set allows us to

reject the null hypothesis that some components of the vector θ of structural parameters are

(very) poorly identified. Throughout, θ1 denotes a vector of p1 components of θ, while θ\1

collects the p2 (= p−p1) remaining components of θ that are not included in θ1. For simplic-

ity, θ1 corresponds hereafter to the first p1 components of θ, that is θ = (θ′1 θ
′
\1)

′. Typically,

we consider cases where the econometrician’s is concerned about the poor identification of

the components of θ\1 while prior knowledge warrants ”sufficiently strong” identification of

θ1.
5

Note that it is only when a sequence of matricesMT characterizing the identification strength

of θ is block-diagonal,

MT =

[

M1T 0

0 M\1T

]

, (2.13)

that we can deduce the identification strengths of θ1 and θ\1 from the identification strength

of θ. A well-known example is the setting put forward by Stock and Wright (2000) where

5Note that our test does not exclude the case where θ\1 = θ.
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the two subsets of components of θ are disentangled as follows6,

φT (θ) = φ1T (θ1) +
1

T λ
φ2T (θ), with 0 < λ ≤ 1/2 ,

Rank

(

∂φ1T (θ
0
1)

∂θ′1

)

= p1 and Rank

(

∂φ2T (θ
0)

∂θ′\1

)

= p2 .

MT can then be defined as in (2.13) with M1T = Ip1 and M\1T = T λIp2 .

It is worth pointing out that, up to a convenient reparameterization, the above block-

diagonal structure of (2.13) is not really restrictive. From assumption 4, we define the new

vector of parameters, η ≡ R−1θ whose identification strength (in the sense of definition 2.1) is

described through the sequence of diagonal matrices ΛT . Hence, the maintained assumption

(2.13) simply means that such a reparameterization is possible with a block-diagonal matrix

R. It makes sense to question the identification strength of θ\1 while maintaining a (near-

weak) identification assumption on θ1, precisely because the two subvectors are disentangled

in the classification of directions as regards identification strength.

Our tests for identification strength will provide some (partial) answers to the following

question: taking for granted that θ1 is near-weakly identified, do our data confirm the

identification of a larger vector of unknown parameters? Our null hypothesis will be devised

such that, failing to reject it means that we cannot rely upon standard inference based on the

Gaussian asymptotic theory of section 2.2 when any of the parameters in θ\1 are considered

as unknown. In front of such a negative evidence, only two strategies are available:

- either one resorts to inference procedures that are robust to weak identification.

Of course, robustness has a cost in terms of efficiency of estimators, power of tests, and

maintained assumptions regarding nuisance parameters;

- or, following the common practice of calibration, one may fix the value of parameters

in θ\1 at pre-specified levels provided by other studies hoping that these calibrated values are

not too far from the unknown ones and will not contaminate inference on θ1. The validity of

this practice has been extensively studied by Dridi, Guay and Renault (2007) who propose

some encompassing tests for backtesting it.

In any case, both strategies will always maintain the assumption that, when θ\1 is fixed at

its true unknown value θ0\1, the remaining moment problem is well-behaved.

6Strictly speaking, Stock and Wright (2000) only consider the limit case with λ = 1/2.
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Definition 2.4. (Near-weak identification of a subvector)

In the context of definition 2.1, with the block-diagonal structure (2.13) for the sequence of

matrices MT , θ1 is near-weakly identified if the two following conditions are fulfilled.

(i) Definition 2.3 is fulfilled for the sequence of matricesM1T in the context of the (infeasible)

moment model

E
[

φt(θ1, θ
0
\1)
]

= 0 with θ1 ∈ Θ(θ0\1) =
{

θ1 ∈ R
p1; (θ1, θ

0
\1) ∈ Θ

}

.

(ii) For any GMM estimator θ̂T as in definition 2.2 and any sequence θ∗T such that θ∗1T = θ̂1T

and θ∗\1T − θ̂\1T = oP (T
−1/4), we have

∂φT (θ
∗
T )

∂θ′\1
M\1T = Op(1) .

When wondering whether a parameter vector that strictly nests θ1 is near-weakly identified,

let us recall that the key issue is to check that the convergence condition (2.10) holds for

any sequence θT between the true value θ0 and some GMM estimator θ̂T , that is

Plim

[(

∂φT (θT )

∂θ′
− ∂φT (θ

0)

∂θ′

)

MT

]

= 0 . (2.14)

The reason why the maintained assumption lim
T
(MT/

√
T ) = 0 may not be sufficient to get

(2.14) is that a rate of convergence for θT strictly slower than
√
T may be unable to protect

against the asymptotic blow-up of the sequence MT . This issue will obviously be easier to

control for, when the weakest parameters θ\1 will not be multiplied by the most explosive

part of the sequence MT , namely M\1T . This explains why we consider first the most favor-

able circumstances of linearity with respect to θ\1.

• Case i): Moment conditions affine w.r.t. θ\1, φt(θ) = at(θ1) +Bt(θ1)θ\1.

Regarding condition (i), note that we have

∂φT (θT )

∂θ′
MT =

[

∂φT (θT )
∂θ′

1

M1T B̄T (θ1T )M\1T

]

. (2.15)

To get the second block of (2.15) consistent with (2.14) when the only assumption is that

lim
T
(M\1T /

√
T ) = 0 θ1T has to be

√
T -consistent, that is M1T = Ip1. In this case, it is clear

that a continuity assumption on ∂aT (.)
∂θ′

1

and ∂BT (.)
∂θ′

1

will be sufficient to deduce (2.14) from

(2.15). Overall, up to some regularity conditions, we can conclude the following.
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Golden rule for the test of identification strength in the linear case:

If the moment conditions are affine w.r.t. a subvector θ\1, strong identification

of the other components θ1 (M1T = Ip1) jointly with (lim
T
(M\1T /

√
T ) = 0) is

sufficient to warrant near-weak identification of the whole vector θ. Note that

when the moment conditions are affine w.r.t. the whole vector θ, no strong

identification condition is required.

• Case ii): General (non-linear) moment conditions.

Losing linearity w.r.t. θ\1 implies that the second block of (2.15) is now
(

∂φ
T
(θT )

∂θ′
\1

)

M\1T , with
(

∂φT (θT )
∂θ′

\1

)

that usually depends on the estimator of the weakest parameters θ\1T . Since these

parameters are only consistent at a rate
∥

∥M\1T
∥

∥ /
√
T , a Taylor expansion of

(

∂φT (θT )
∂θ′

\1

)

(as-

suming φ twice continuously differentiable) will allow us to prove (2.14) only if
∥

∥M\1T
∥

∥

2
/
√
T

goes to zero when T goes to infinity. In other words, the condition to ensure that the poor

identification of θ\1 does not impair near-weak identification of the whole vector θ is that
∥

∥M\1T
∥

∥ = o(T 1/4), or equivalently that the rate of convergence of all parameters in θ\1 (rate

defined by the sequence of matricesM\1T /
√
T ) is more than T 1/4. As already emphasized by

Antoine and Renault (2012), this condition is quite similar in spirit to Andrews’ (1994) study

of MINPIN estimators, or estimators defined as MINimizing a criterion function that might

depend on a Preliminary Infinite dimensional Nuisance parameter estimator. Even without

an infinite dimensional issue, we intuitively want to make sure that second-order terms in

Taylor expansions (see the discussion above regarding a Taylor expansion of
(

∂φT (θT )
∂θ′

\1

)

) re-

main negligible in front of first-order terms. The fact that this condition is a byproduct of

second-order Taylor expansions explains why no threshold like T 1/4 pops up in the linear

case. In the non-linear case, the rule will then be as follows.

Golden rule for the test of identification strength in the non-linear

case:

When the subvector θ1 is near-weakly identified, but the moment conditions

are not affine w.r.t. the complementary subvector θ\1, considering any linear

combination of θ\1 as unknown (in addition to θ1) may impair global near-weak

identification except if we assume that this linear combination is consistently

estimated at a rate faster than T 1/4.
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Following Antoine and Renault (2009), this latter property will be dubbed near-strong

identification of the associated linear combination.

3 Testing identification strength

In this section, we are interested in assessing the identification strength of the structural

parameter in order to detect weaker patterns of identification. Staiger and Stock (1997)

propose a rule of thumb to detect weak instruments, whereas Stock and Yogo (2005) propose

a formal characterization of the weakness of instruments based on the 2SLS bias as well as

on the size of associated tests. Both Staiger and Stock (1997) and Stock and Yogo (2005)

consider the null hypothesis that the instruments are weak, even though the parameters

might be identified. Following these pioneer papers, we design two specifications tests which

correspond respectively to the two golden rules stated in section 2. The null hypotheses will

be designed in a way such that, failing to reject the null means that we have no sufficiently

compelling evidence to trust an assumption of global near-weak identification. Accordingly,

no standard asymptotic theory based on asymptotic normality is available and the researcher

may resort to identification-robust procedures. Note also that both tests set the focus on

the identification of subvector which is in contrast with existing procedures.

Even though they apply to two different settings (one with linearity w.r.t. the parameters

under test, one without any linearity assumption at the cost of contemplating faster rates

of convergence), the two testing strategies share a common structure: both amount to a

conservative J-test questioning the rate of convergence of a given GMM estimator. This is

the reason why we first build a general theoretical framework before discussing the feasibility

of our tests in two more practically oriented sections.

3.1 Theoretical framework

Throughout section 3, null hypotheses under test are about the rate of convergence of a

subset θ̂\1T of components of a given GMM estimator θ̂T defined according to definition 2.2.

We maintain assumptions 2, 3, and 4, and in particular we know that

√
TM−1

T

(

θ̂T − θ0
)

= OP (1) .

17



Note however that we do not maintain assumption 1 of near-weak identification since it

is precisely the focus of our interest. As done in section 2.3, we assume that only the

subset θ1 is near-weakly identified while the question is about the other parameters gathered

in θ\1. In particular, the matrix MT is block-diagonal and we do not know yet whether

lim
T

[

M\1T /
√
T
]

= 0. We do not even know whether θ̂\1T is consistent.

To formulate a well-suited null hypothesis about the rate of convergence of θ̂\1T , several

remarks are in order.

(i) Following the practice that has been dominant since Staiger and Stock (1997), the null

hypothesis sets the focus on the worse case scenario regarding the identification of θ\1, that

is the rate of convergence of θ̂\1T . Note however that our first extension w.r.t. the common

practice is to set the focus on subvectors of θ. It should be clear that nothing prevents us

from testing the identification of the whole parameter θ.

(ii) As stressed by the two golden rules of section 2, our worst case scenario regarding the

rate of convergence aT of θ̂\1T will be that, in the linear case, it is not even infinite whereas

in the non-linear case it is slower than T 1/4.

(iii) As made explicit in the second golden rule, the worst case scenario of interest is actually

that no linear combination of the parameters can be estimated at a satisfactory rate.

(iv) For a given GMM estimator θ̂T (and any given linear combination of θ̂\1T ), what really

matters is not merely its rate of convergence but the rate of convergence of a well-suited sub-

sequence. After all, a well-suited subsequence is able to properly identify the true unknown

value of the linear combination of interest.

Therefore, for any real number ν ∈ [0, 1/2[, we will generally consider null hypotheses of the

following type:

H0(ν) (No identification within θ\1 at rate faster than ν):

For any subsequence of the estimator θ̂T , for any deterministic sequence aT such

that aT/T
ν → ∞, no non-zero linear combination of the subsequence (θ̂\1T −θ0\1)

is OP (1/aT ).

Note that, for sake of notational simplicity, we do not use an explicit notation like θ̂mT

for subsequences of θ̂T . This abuse of notation will be maintained throughout. The key
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intuition for our proposed test of H0(ν) comes from the following lemma, proved in the

appendix.

Lemma 3.1. (i) Under the null hypothesis H0(ν), for any deterministic sequence aT such

that aT/T
ν → ∞, we have

lim
T

[√
T

aT
M−1

\1T

]

= 0 .

(ii) Under the alternative hypothesis to H0(ν), under convenient regularity conditions, there

exists a deterministic sequence aT such that aT /T
ν → ∞ and at least for a convenient

subsequence

lim
T

∥

∥

∥

∥

∥

√
T

aT
M−1

\1T

∥

∥

∥

∥

∥

= ∞ .

As explained in the appendix, the required regularity condition amounts to the following

application of Prohorov’s theorem. By definition, under the alternative, we can find a

deterministic sequence aT with aT/T
ν → ∞ such that, for some non-zero vector δ ∈ R

p2,

we have (for a well-suited subsequence)

aT δ
′
(

θ̂\1T − θ0\1

)

= OP (1) ,

that is,

aTγ
′(η̂\1T − η0\1) = OP (1) ,

for the non-zero vector γ = R′δ. Then, since by our maintained assumption 2,

√
TΛ−1

\1T
(

η̂\1T − η0\1
)

= OP (1) ,

Prohorov’s theorem tells us that (η̂\1T − η0\1) (at least for a convenient subsequence) is

endowed with an asymptotic distribution such that each component
(

η̂j,\1T − η0j,\1

)

has

a rate of convergence λj,\1T/
√
T (with obvious notation for diagonal coefficients of Λ\1T ).

Our regularity condition will amount to a non-degeneracy assumption about the joint limit

distribution to ensure that γ′(η̂\1T − η0\1) does not go to zero at a rate faster than the

minimal rate, min
j

[

λj,\1T/
√
T
]

. Otherwise, the proposed test would have no power against

the alternative defined by the linear combination δ = R′−1γ.
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Lemma 3.1 allows us to characterize the behavior of moment conditions computed at a

conveniently distorted value of the GMM estimator θ̂T . This distortion will depend on a

deterministic sequence aT and on a direction δ ∈ R
p2. More precisely, we define the distorted

estimator θ̂a,δT as

θ̂a,δ1T = θ̂1T and θ̂a,δ\1T = θ̂\1T +
δ

aT
.

Then, the proposed test will be based on the comparison of norms of moment conditions

computed as

JT (Ω) = Tφ
′
T (θ̂T )ΩTφT (θ̂T ) and Ja,δ

T (Ω) = Tφ
′
T (θ̂

a,δ
T )ΩTφT (θ̂

a,δ
T ) .

where ΩT is a sequence of symmetric matrices converging in probability towards a positive

definite matrix Ω. Then, Lemma 3.1 allows us to show the following. As already explained

through our two golden rules, the test ofH0(ν) will be especially relevant in the two following

cases:

• Case i): Moment conditions affine w.r.t. θ and ν = 0;

• Case ii): General (non-linear) moment conditions and ν = 1/4.

Corollary 3.2. (i) Under the null hypothesis H0(ν), in case i) or ii) above, for any deter-

ministic sequence aT such that aT/T
ν → ∞, we have for any δ ∈ R

p2,

Plim

[

Ja,δ
T (Ω)− JT (Ω)

]

= 0 .

(ii) Under the alternative hypothesis to H0(ν), with convenient regularity conditions, there

exists a deterministic sequence aT such that aT/T
ν → ∞ and a vector δ ∈ R

p2 such that, at

least for a convenient subsequence,

Plim

[

Ja,δ
T (Ω)

]

= ∞ . (3.1)

The convenient regularity conditions, made explicit in the appendix, are not really restric-

tive. They are implied in particular by the assumption that the moment conditions are

affine w.r.t. θ\1. The key intuition is that when lim
T

∥

∥

∥

√
T

aT
M−1

\1T

∥

∥

∥
= ∞ as in Lemma 3.1, we

can be sure that lim
T

∥

∥

∥

√
T

aT
M−1

\1T δ
∥

∥

∥
= ∞ for generically all directions δ. Then, the result (3.1)

follows by standard Taylor expansions (up to unlikely singularities of the Jacobian matrix

introduced by non-linearities w.r.t. θ\1), knowing that
√
TM−1

T

(

θ̂T − θ0
)

= Op(1).
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3.2 Detecting near-weak identification in the non-linear case

As explained by our second golden rule, the general case of moment conditions that may not

be affine with respect to the parameters under test θ\1 forces us to wonder whether some

linear combinations of these parameters can be consistently estimated at a rate faster than

T 1/4. In other words, we want to test the following null hypothesis (more precisely defined

as H0(1/4) in section 3.1 above):

H0 : No identification within θ\1 at rate faster than T 1/4.

As explained in the former subsection, we consider a well-suited distortion of a GMM es-

timator θ̂T . For sake of expositional simplicity, we will assume throughout this subsection

that θ̂T has been computed with an ”efficient” weighting matrix, that is:

θ̂T = argmin
θ

[

Tφ
′
T (θ)S

−1
T φT (θ)

]

,

where ST stands for a consistent estimator of S(θ0). In particular, such an estimator should

be obtained from a first-step consistent estimator of θ0. In other words, we implicitly

maintain in this section that lim
T

(

MT/
√
T
)

= 0. As shown in the next subsection, this

assumption can be relaxed in the linear case, at the price of a more involved approach.

Extending this approach to the non-linear case should be straightforward and is not explicitly

discussed.

For testing H0, let us consider some deterministic sequence aT such that aT/T
1/4 → ∞. It

will shortly become obvious that the slower the sequence (aT/T
1/4) converges to infinity, the

more powerful the resulting test will be; for instance, one may consider aT/T
1/4 = log(log T ),

or an even slower sequence. As in the former subsection, this sequence aT is used to build

a distorted version θ̂a,δT of the GMM estimator θ̂T :

θ̂a,δ1T = θ̂1T and θ̂a,δ\1T = θ̂\1T +
δ

aT
, (3.2)

where δ is a given deterministic vector of size p2. Our asymptotic conservative test for H0

will be based on the corresponding distorted J-test statistic for overidentification

Ja,δ
T = Tφ

′
T (θ̂

a,δ
T )S−1

T φT (θ̂
a,δ
T ) . (3.3)

We can show the following result.
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Theorem 3.3. (Test of near-weak identification of θ\1 in the non-linear case)

For an arbitrary choice of a deterministic sequence aT such that aT /T
1/4 → ∞ and of a

vector δ ∈ R
p2, we define the asymptotic test with critical region W a,δ

T ,

W a,δ
T =

{

Ja,δ
T > χ2

1−α(K − p1)
}

,

where χ2
1−α(K−p1) is the (1−α)-quantile of the chi-square distribution with (K−p1) degrees

of freedom.

(i) Under assumptions 2 to 4, and assuming that θ1 is near-weakly identified, the test W
a,δ
T is

asymptotically conservative at level α for the null hypothesis H0 of ”no identification within

θ\1 at rate faster than T 1/4”.

(ii) The test W a,δ
T is consistent against any alternative that makes the choice (aT , δ) con-

formable to (3.1).

Of course, the consistency claim above is somewhat tautological. The important point is

to remember that Lemma 3.1 and Corollary 3.2 have shown that, under the alternative

hypothesis, we are likely to be successful in our choice of the pair (aT , δ). The key intuition

is that under the alternative
∥

∥

∥

√
TM−1

\1T

∥

∥

∥
goes to infinity at a rate faster than T 1/4. Our

main task is to pin down a rate aT strictly between this rate and T 1/4. In finite samples,

this bandwidth choice takes a data-based selection rule that will be described shortly. Let

us first explain why the test cannot be oversized asymptotically. We have shown in the

former subsection that, under the null,

Ja,δ
T − JT = oP (1)

where

JT = Tφ
′
T (θ̂T )S

−1
T φT (θ̂T )

is the standard J-test statistic for overidentification. By definition, we have

JT ≤ Tφ
′
T (θT )S

−1
T φT (θT ) ,

where θT is the (infeasible) GMM estimator computed when the components of θ\1 are fixed

at their true (unknown) value θ0\1. Under the maintained assumption that θ1 is near-weakly

identified, we know by Theorem 2.3 that
[

Tφ
′
T (θT )S

−1
T φT (θT )

]

converges in distribution
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towards a chi-square distribution with (K − p1) degrees of freedom. Therefore, under the

null,

lim
T
P (W a,δ

T ) = lim
T
P
({

JT > χ2
1−α(K − p1)

})

≤ α ,

and the test is asymptotically conservative at level α as announced.

As far as finite samples performance of the test W a,δ
T is concerned, the key is for a given

choice of the sequence aT (such that aT /T
1/4 converges slowly to infinity) to elicit a vector

δ ∈ R
p2 with a well-tuned length. We propose to select δ by subsampling. We consider all

the subsamples of ⌊T ν⌋ consecutive observations7 (with ν given and 0 < ν < 1). For each

such subsample s, we consider a grid of dimension p2 that contains candidates for δ, say δm.

For each such candidate, we consider the associated local-to-zero version of the estimator

θ̂a,δmT,s and the associated test statistic Ja,δm
T,s defined respectively in (3.2) and (3.3),

θ̂a,δm⌊T ν⌋,s = θ̂⌊T ν⌋,s +

(

0p1

δm/a⌊T ν⌋

)

,

Ja,δm
⌊T ν⌋,s = ⌊T ν⌋φ′

⌊T ν⌋,s(θ̂
a,δm
⌊T ν⌋,s)S

−1
T φ⌊T ν⌋,s(θ̂

a,δm
⌊T ν⌋,s) .

As a result, for each grid point δm, we obtain a cross-sectional distribution of the test statistic

(3.3), say (Ja,δm
⌊T ν⌋,s)s=1,··· ,S. We can then extract the (1−α∗)-quantile of the test statistic, for

some user-chosen α∗. We select the perturbation vector δm∗ associated with the (1 − α∗)-

quantile the closest to the (1 − α∗)-quantile of the chi-square distribution with (K − p1)

degrees of freedom. Note that (1−α∗) may, or may not correspond to the actual asymptotic

size of the designed test. Regardless of the chosen (1−α∗) and associated perturbation vector

δm∗ , the asymptotic size of the test (1 − α) is always controlled as shown above. In our

Monte-Carlo experiments, we chose α = α∗ and our results were not too sensitive to this

choice. See additional discussions for practical implementation in Appendix B where we

also propose a data-based procedure to design a grid of candidate points δm.

7⌊T ν⌋ refers to the largest integer below T ν . We consider consecutive observations to accommodate

possible serial dependencies.
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3.3 Testing weak identification in the linear case

As explained by our first golden rule, the case where moment conditions are affine with

respect to the parameter θ allows us to wonder whether some linear combinations of the

parameters under test θ\1 can be consistently estimated. In other words, we want to test

the null θ\1 is only weakly identified (more precisely defined as H0(0) in section 3.1 above):

H0: θ\1 is only weakly identified.

Our testing procedure in the linear case is somewhat similar to the procedure described in

the previous section. More specifically, we consider a sequence aT such that aT → ∞ and a

deterministic vector δ to build a distorted version θ̂a,δT of the GMM estimator θ̂T as in (3.2).

Our asymptotic conservative test for H0 is then based on the corresponding distorted J-test

statistic Ja,δ
T as in (3.3). We refer the interested reader to section 3.2 and Appendix B. We

can show the following result.

Theorem 3.4. (Test of weak identification of θ\1)

For an arbitrary choice of a deterministic sequence aT such that aT → ∞ and of a vector

δ ∈ R
p2, we define the asymptotic test with critical region W a,δ

T

W a,δ
T =

{

Ja,δ
T > χ2

1−α(K − p1)
}

where χ2
1−α(K−p1) is the (1−α)-quantile of the chi-square distribution with (K−p1) degrees

of freedom.

(i) Under assumptions 2 to 4, and assuming that θ1 is near-weakly identified, the test W a,δ
T

is asymptotically conservative at level α for the null hypothesis H0 of ”weak identification

within θ\1”.

(ii) The test W a,δ
T is consistent against any alternative that makes the choice (aT , δ) con-

formable to (3.1).

It is interesting to point out that in order to obtain a procedure that is less conservative,

parameters known not to be weakly identified (e.g. the intercept) should not be included

in θ\1 but rather in θ1.

As highlighted in section 3.2, the above procedure crucially depends on a consistent estima-

tor ST of S(θ0) to define the efficient GMM estimator θ̂T ; the existence of ST is guaranteed
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whenever lim
T

(

MT/
√
T
)

= 0. In this section, we relax this assumption. Hence, under H0,

there is no obvious (consistent) estimator of S(θ0) since there is no first-step consistent

estimator of θ0. We propose the following testing procedure which is robust to inconsistent

estimators of S(θ0):

(i) build a confidence region for θ0; we call it CT and it is based on the test statistic of Stock

and Wright ψT ; If CT is empty, the null is rejected;

(ii) if CT is not empty, then we minimize the following test statistic

Tφ
′
T (θ̂

a,δ
T )S−1

T (θ)φT (θ̂
a,δ
T )

wrt to θ ∈ CT and compare with the appropriate quantile.

We first introduce a few notations:

(i) GMM criterion function for some given positive definite matrix S−1
T : QT (θ) = Tφ

′
T (θ)S

−1
T φT (θ).

- θ̂T is the feasible GMM estim. that minimizes the (usual) GMM criterion over the whole

parameter vector θ.

- θT is the infeasible GMM estim. that minimizes the (usual) GMM criterion but only wrt

to subvector θ1 when θ\1 is fixed at its true (unknown) value θ0\1.

By definition:

QT (θ̂T ) ≤ QT (θT )

and also

QT (θT )
T→ χ2(K − p1)

whenever θ1 is near-weakly identified and ST is a consistent estimator of S(θ0).

(ii) Similarly I define 1 more estimator related to the AR-type statistic of Stock and Wright

(now optimization also involves the weighting matrix):

- ψ criterion of Stock and Wright: ψT (θ) = Tφ
′
T (θ)S

−1
T (θ)φT (θ).

-
ˆ̂
θT is the feasible estim. that minimizes the (usual) ψ criterion over the whole parameter

vector θ.
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By definition:

ψT (
ˆ̂
θT ) ≤ ψT (θ

0)

and also

ψT (θ
0)

T→ χ2(K)

I can use this result to build a confidence region for θ as follows:

CT (1− ζ) = {θ ∈ Θ / ψT (θ) ≤ χ2
K(1− ζ)}, .

The asymptotic coverage of CT (1− ζ) is (1− ζ), that is

P
(

θ0 ∈ CT (1− ζ)
) T→ 1− ζ .

Since θ0 has (asymptotic) probability (1− ζ) to be in CT , we have

inf
θ∈CT (1−ζ)

[

Tφ
′
T (θ̂

a,δ
T )S−1

T (θ)φT (θ̂
a,δ
T )
]

≤ Tφ
′
T (θ̂

a,δ
T )S−1

T (θ0)φT (θ̂
a,δ
T ) ,

with probability approaching (1− ζ∗) ≥ (1− ζ) since the above inequality may be true even

if θ0 does not belong to CT .

From Corollary 3.2(i), the right-hand side of the previous inequality is such that, under H0,

Tφ
′
T (θ̂

a,δ
T )S−1

T (θ0)φT (θ̂
a,δ
T ) = Tφ

′
T (θ̂T )S

−1
T (θ0)φT (θ̂T ) + op(1) .

Since ST (θ
0) is a consistent estimator of S(θ0), we can use the result (i) above, that is:

Tφ
′
T (θ̂T )S

−1
T (θ0)φT (θ̂T ) ≤ Tφ

′
T (θT )S

−1
T (θ0)φT (θT )

d→ χ2(K − p1) .

Hence, we have under H0,

inf
θ∈CT (1−ζ)

[

Tφ
′
T (θ̂

a,δ
T )S−1

T (θ)φT (θ̂
a,δ
T )
]

≤ Tφ
′
T (θT )S

−1
T (θ0)φT (θT ) ,

with probability approaching (1− ζ∗∗) ≥ (1− ζ∗). This inequality can then be used to build

a conservative testing procedure. More specifically, our test of H0 is based on the following

decision rule for some chosen α ∈ (0, 1):
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Reject H0 if:

(i) CT (1− ζ) is empty;

This happens with some non-zero probability ǫ.

or (ii) inf
θ∈CT (1−ζ)

[

Tφ
′
T (θ̂

a,δ
T )S−1

T (θ)φT (θ̂
a,δ
T )
]

> χ2
K−p1

(1− α).

This happens with probability (1−ǫ) [ζ∗∗ + (1− ζ∗)(α∗)] where (1−α∗) ≥ (1−α)
because it is a conservative asymptotic test.

The probability of rejecting the null is then equal to:

ǫ+ (1− ǫ) [ζ∗∗ + (1− ζ∗∗)α∗]

= ǫ+ (1− ǫ) [ζ∗∗ + α∗ − ζ∗∗α∗]

When ǫ is small enough, the above probability is not too far from

ζ∗∗ + α∗ − ζ∗∗α∗

= α∗ + ζ∗∗(1− α∗)

≤ α + ζ∗∗(1− α∗)

≤ α + ζ(1− α∗)

Note that the smaller ζ is, the larger the confidence set CT (1 − ζ) is, and the smaller the

probability of CT (1− ζ) to be empty (ie ǫ) is. As a result, by choosing ζ small enough, we

are able to show that unconditional asymptotic size of the above test cannot exceed (α+ δ),

where δ = ζ(1− α∗) is small.

This procedure is related to the projection method discussed in Chaudhuri and Zivot (2011).

Note also that it does not rely at all on the linearity of moment conditions. Hence, ex-

tending this approach to the non-linear case of section 3.2 after relaxing the assumption

lim
T
(MT /

√
T ) = 0 should be straightforward and is not explicitly discussed.

4 Monte-Carlo evidence

In this section, we use Monte-Carlo methods to illustrate the finite samples properties of

the tests introduced in section 3. We consider a standard linear IV regression model with
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one intercept and one endogenous regressor, as well as a (non-linear) diffusion process with

continuous record and increasing time span asymptotic.

4.1 Linear IV regression model

Consider the following standard linear IV regression model with one intercept and one

endogenous regressor,

yt = α0 + Y1tβ0 + h(Xt)εt , (4.1)

Y1t = X ′
tΠx + Ui ,

where Y1t is a univariate endogenous regressor, while Xt is a vector of Lx (exogenous)

instrumental variables that follows a standard normal distribution. (εt, Ut) is normally

distributed and independent of Xt. We set θ0 = (α0 β0)
′ = (0 0)′. We consider two versions

of the model: a homoskedastic model with h(x) = 1 and a heteroskedastic model h(x) =
√

(1 + (e′x)2)/(Lx + 1) where e is the vector of ones of size Lx. In both, (h(Xt)εt, Ut) has

mean 0, unit unconditional variances, and unconditional correlation ρ. Πx is proportional

to the vector e and is related to the first stage R2 by,

R2
x =

Π′
xΠx

Π′
xΠx + 1

.

It is worth pointing out that the intercept parameter is always strongly-identified, while the

slope parameter is more or less weakly identified depending on the value of R2
x.

In this experiment, we are interested in testing the strength of identification. We compare

the performance of the following tests of weak identification: (i) the rule-thumb based on

the first-stage F-statistic proposed by Staiger and Stock (1997); (ii) the test based on the

10%-bias of 2SLS proposed by Stock and Yogo8 (2005); and two versions of the test proposed

in section 3.3: (iii) the joint test on the whole parameter θ; (iv) the test on the subvector β.

We consider the two specifications described above for sample size T = 250, (high) degree

of endogeneity ρ = 0.8, and two values for Πx such that R2
x = 0.14 and 0.01 respectively.

We consider three instrumental variables, the constant and a bivariate X . Our results are

8This is the version of the test which is commonly used. We also report results for alternate versions of

the test proposed by Stock and Yogo (2005) based on 5% bias, as well as 10% and 15% size distortion.
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reported in Tables 1 to 4. In each case, we report the first four moments of the Monte-

Carlo distribution of the standardized GMM estimator. The reader can then assess how far

the Monte-Carlo distribution of the standardized GMM estimator is from its asymptotic

approximation for which we expect mean 0, variance 1, skewness 0, and kurtosis 3. We also

report the nominal 5% rejection frequencies of the tests described above. All simulations

results are based on 5,000 replications.

Tables 1 and 2 report the performance of the above tests when R2
x is large (0.14) for a

heteroskedastic and a homoskedastic model respectively. As expected, in both cases, the

distribution of the GMM estimator of the intercept is well-approximated by the asymptotic

one. However, the distribution of the estimator of the slope is slightly biased and skewed.

This suggests that this estimator is not as strongly identified as the estimated intercept. Our

joint test rejects the null hypothesis of weak identification with probability 0.14, whereas

our test based only on the slope rejects with probability 0.05. Our joint test has some

(limited) power to reject weak identification that comes from the strongly identified intercept

parameter, whereas our test based only on the slope clearly indicates that the empirical

evidence is not sufficient to reject weak identification. These results confirm the features

highlighted in the Monte-Carlo distributions of the GMM estimators of the intercept and

slope as described above. Competitive testing procedures lead to mixed results. The rule-

of-thumb of Staiger and Stock rejects (global) weak identification with probability 0.50,

whereas the different tests of Stock and Yogo reject with probabilities ranging between 0 to

0.60.

Tables 3 and 4 report the performance of the above tests when R2
x is small (0.01) for a

heteroskedastic and a homoskedastic model respectively. As expected, the distribution of the

GMM estimator of the intercept is still well-approximated by the asymptotic one, whereas

the distribution of the estimator of the slope is quite biased and skewed, departing a lot from

the asymptotic one. Our joint test rejects the null hypothesis of weak identification with

probability around 0.20, whereas our test based only on the slope rejects with probability

0.08. Here again, our joint test has some power to reject weak identification that comes

from the strongly identified intercept parameter. The rule-of-thumb of Staiger and Stock

and the different tests of Stock and Yogo reject (global) weak identification with probability

almost 0.
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To conclude, our testing procedure is able to detect weak identification reliably by focusing

on the specific component at stake, namely the slope parameter. Competing procedures

can only hope to detect (global) weak identification which can be misleading as highlighted

above.

4.2 Diffusion process with continuous record and increasing time

span asymptotic

Consider the following continuous time Ornstein-Uhlenbeck process

dyt = (θ0 − θ1yt)dt+ θ2dWt with dWt
iid∼ N (0, dt) ,

where θ0/θ1 > 0 represents the long run (unconditional) mean, θ1 > 0 captures the speed of

the mean reversion, and θ2 > 0 gives the constant volatility of the process. It is well-known

that its exact solution is the following discrete time AR(1) process

yt = a+ byt−∆ +
√
cǫt , ǫt

iid∼ N (0, 1) , (4.2)

with a =
θ0
θ1
(1− e−θ1∆) , b = e−θ1∆ , c = θ22

(

1− e−2θ1∆

2θ1

)

.

For simplicity, the parameters θ0 and θ2 are assumed to be known throughout, and are fixed

at their true values in the structural model, while only the parameter θ1 is estimated.

Suppose that n observations of (4.2) are available for t = ∆, · · · , n∆ with T ≡ n∆. Define

the associated OLS estimators of the three parameters, a, b, and c, respectively ân,ols, b̂n,ols,

and ĉn,ols. For fixed ∆, the usual asymptotic result for OLS estimators holds, and we have

√
n









ân,ols − a(θ1)

b̂n,ols − b(θ1)
√

ĉn,ols −
√

c(θ1)









d→ N (0,Σ(∆)) with Σ(∆) =

(

cE [(XiX
′
i)]

−1 0

0 c/2

)

,

where X ′
i represents the i-th row of the matrix X . Our estimation procedure for θ1 relies
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on the (overidentified) GMM estimation with three moment conditions,

θ̂1,n = argmin
θ1

[φ(θ1)
′Ωnφ(θ1)]

with φ(θ1) =
1

∆









ân,ols − a(θ1)

b̂n,ols − b(θ1)
√

ĉn,ols −
√

c(θ1)









=
1

∆











ân,ols − θ0
θ1
(1− e−θ1∆)

b̂n,ols − e−θ1∆

√

ĉn,ols −
√

θ22

(

1−e−2θ1∆

2θ1

)











,

where Ωn is a sequence of symmetric positive definite random matrices of size 3 converging

towards a positive definite matrix Ω. In Appendix B.2, we show that each moment condition

has a different identification strength controlled by ∆. More precisely, if we consider the

three (just-identified) estimators obtained from the GMM estimation based on each moment

condition separately, we get that, when ∆ → 0 and T → ∞:

- the estimator based on condition 2 converges at rate
√
T ;

- the estimator based on condition 3 converges at rate
√
∆
√
T , with

√
∆
√
T = o(

√
T );

- the estimator based on condition 1 converges at rate ∆
√
T , with ∆

√
T = o(

√
∆
√
T ).

Throughout, the following notations are used to distinguish the different estimators of θ1

we consider:

- θ̂all refers to the (overidentified) GMM estimator based on the three moment conditions;

- θ̂\j refers to the (overidentified) GMM estimator based on two moment conditions only,

after condition j has been removed.

In this experiment, we are interested in testing the strength of identification. In our simple

framework, we know that, asymptotically, the strongest moment condition dictates the rate

of convergence of the associated estimator of θ1.
9 In our experiment, we fix the time span T

and vary the strength of identification by decreasing ∆ (accordingly, n increases). Smaller

values of ∆ correspond to cases where the identification strength is weaker. The nominal

size of the tests is 5%. Our results are displayed in Table 5. For each test, we provide

the estimator of θ1 being considered, as well as the associated Monte-Carlo rejection prob-

ability. Recall that rejection of the null hypothesis means that the estimator is sufficiently

9In general, this is not the case as discussed in Section 2. However, in our simple framework, there is

only one parameter to identify, so it necessarily inherits the identification strength of the strongest moment

condition available.
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strongly identified for standard asymptotic results to hold. Further details regarding the

implementation of this experiment are provided in Appendix B.2.

First, we consider the estimator θ̂all based on all moment conditions. As discussed above,

this estimator is always strongly identified due to the moment condition 2. As a result,

we expect our test to often be rejected regardless of the value of the parameter ∆. This is

exactly what happens: the associated rejection probabilities are equal to 1 irrespective of

the identification strength.

Second, we consider the estimator θ̂\3. The presence of the moment condition 2 guarantees

that this estimator is always strongly identified. And we also expect our test to often be

rejected regardless of the value of the parameter ∆. The associated rejection probabilities

are actually equal to 1 in all cases.

Finally, we consider the estimator based on moment conditions 1 and 3 only, θ̂\2. As

discussed above, this estimator is identified at rate
√
∆
√
T due to the moment condition

3. As a result, we expect our test not to be rejected for sufficiently small values of ∆. The

associated rejection probabilities are quite small in all cases, even for larger values of ∆.

This suggests that the identifying power of (missing) condition 2 is stronger than the one

of the two other (included) conditions.

To conclude, our test performs relatively well.

5 Conclusion

We have considered models defined by a set of moment restrictions that may be subject

to weak identification. Recently, the strength of identification of the structural parameters

has been reflected by the Jacobian of the moment conditions, and our first contribution

was to unify several characterizations of identification previously given in the literature.

Accordingly, we have defined near-weak identification, and we have also shown that it is key

to deliver standard asymptotic normality of GMM estimators, albeit at rates of convergence

slower than usual for different linear combinations of such estimator.

In this setup, we have proposed two tests to assess the identification strength of the param-

eters. First, we have proposed a test to detect weak identification in linear settings. Second,

we have proposed a test to detect parameters for which no standard asymptotic theory is
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available. Both testing procedures relied on a conservative overidentification test computed

at a properly distorted GMM estimator. We have also highlighted how subsampling can

easily be used in practice to get such appropriate distortions. Both tests are straightfor-

ward to apply and we have discussed why we expect such simple tests to have good power

properties.

Finally, we have illustrated the finite samples performance of our tests through Monte-Carlo

simulations. The linear IV regression model and a (persistent) AR(1) model calibrated to

interest rate data were considered. In both cases, we have shown that our tests are well-

behaved compared to contenders, both in terms of size and power.

To conclude, given the simplicity of the above tests and their good power properties, we

believe that practitioners may benefit from using them.
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A Proofs of the main results

Notations:

- For any vector v with element (vi)1≤i≤H , we define: ‖v‖2 =∑H
i=1 v

2
i .

- [M ]k. denotes the k-th row of matrix M .

Proof of Theorems 2.1 and 2.2 (Asymptotic normality of GMM estimator):

A mean-value expansion of the moment conditions around θ0 for θ̃T between θ̂T and θ0 gives

φT (θ̂T ) = φT (θ
0) +

∂φT (θ̃T )

∂θ′
(θ̂T − θ0) . (A.1)

Combined with the first-order conditions,

∂φ
′
T (θ̂T )

∂θ
ΩTφT (θ̂T ) = 0 ,

this yields to

∂φ
′
T (θ̂T )

∂θ
ΩTφT (θ

0) +
∂φ

′
T (θ̂T )

∂θ
ΩT

∂φT (θ̃T )

∂θ′
(θ̂T − θ0) = 0

⇔ M ′
T

∂φ
′
T (θ̂T )

∂θ
ΩT

√
TφT (θ

0) +M ′
T

∂φ
′
T (θ̂T )

∂θ
ΩT

∂φT (θ̃T )

∂θ′
MTM

−1
T (θ̂T − θ0) = 0 . (A.2)

Under the near-weak identification assumption 1, we have

∂φT (θ̂T )

∂θ′
MT

P→ Γ(θ0) and
∂φT (θ̃T )

∂θ′
MT

P→ Γ(θ0)

⇒ M ′
T

∂φ
′
T (θ̂T )

∂θ
ΩT

∂φT (θ̃T )

∂θ′
MT

P→ Γ′(θ0)ΩΓ(θ0)

⇒ M ′
T

∂φ
′
T (θ̂T )

∂θ
ΩT

∂φT (θ̂T )

∂θ′
MT is invertible for T large enough.

Combined with (A.2), we get

M−1
T

√
T (θ̂T − θ0) = −

[

M ′
T

∂φ
′
T (θ̂T )

∂θ
ΩT

∂φT (θ̃T )

∂θ′
MT

]−1

M ′
T

∂φ
′
T (θ̂T )

∂θ
ΩT

√
TφT (θ

0) .

The CLT assumption 3 and a standard argument for optimality allow to conclude. �
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Justification of assumption 4 (Structure of matrix MT ):

A singular value decomposition of the matrix MT allows us to write:

MT = WTΛTV
′
T ,

where ΛT is a diagonal matrix with diagonal coefficients equal to the square-roots of the

eigenvalues of the matrices MTMT
′ and MT

′MT according to the diagonalization formulas:

MTMT
′ =WTΛ

2
TWT

′ and MT
′MT = VTΛ

2
TVT

′ ,

where WT (respectively VT ) is an orthogonal matrix of eigenvectors of MTMT
′ (respectively

MT
′MT ).

We then justify assumption 4 by making clear that, insofar as one is ready to maintain the

assumption of near-weak identification, that is the properties of the sequence of matrices

MT as listed in definition 2.3, it does not restrict much the generality to assume, in addition,

the existence of a fixed nonsingular matrix R such that MT = RΛT , with ΛT as defined

above.

The acronym ”w.l.o.g.” used below stands for ”without loss of generality”.

1st step: Up to considering only a subsequence, we can assume w.l.o.g. that MT =WTΛT .

Definition 2.3 stipulates that the sequence MT must fulfill two sets of conditions: (i)

MT/
√
T

T→ 0; (ii) for a set of random matrices JT (for simplicity, the dependence on a

choice of an estimator of θ is not made explicit here), JTMT should converge towards a

full-column rank matrix Γ.

Thus, we want to show that, up to considering only a subsequence, the sequence of ma-

trices MT = WTΛTVT
′ can be replaced by M∗

T = WTΛT = MTVT without modifying the

aforementioned conditions.

It is well known that the group of real orthogonal matrices is compact (see Horn and Johnson

(1985, p 71)). Thus, this set is bounded and in particular:

lim
T

MT√
T

= 0 ⇒ lim
T

MTVT√
T

= 0 ,
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and:

lim
T
[JTMT − Γ] = 0 ⇒ lim

T
[JTMT − Γ]VT = 0 .

In other words, we have the two conditions:

lim
T

M∗
T√
T

= 0 and lim
T
[JTM

∗
T − ΓVT ] = 0 .

Moreover, since the sequence (VT ) takes its values in the compact set of real orthogonal

matrices, it exists a subsequence converging towards some orthogonal matrix V . In other

words, up to considering some subsequence (for simplicity, such subsequence is not accounted

for in our notations), we have the required properties for the sequence M∗
T :

lim
T

M∗
T√
T

= 0 and lim
T
JTM

∗
T = Γ∗ , (A.3)

with Γ∗ = ΓV full-column rank as Γ.

2nd step: Up to considering only a subsequence, we can assume w.l.o.g. up to a minor

regularity condition that MT =WΛT .

From the sequence M∗
T =WTΛT defined in the first step, we use (again) the argument that

the sequence (WT ) takes its values in the compact set of real orthogonal matrices to note

that it exists a subsequence converging towards some orthogonal matrix W .

Then, considering the corresponding subsequence (to simplify notations, the subsequence is

explicitly taken into account) M∗∗
T =WΛT , we want to show that it also fulfills (A.3), that

is akin to say that:

lim
T

(Id−WW ′
T )M

∗
T√

T
= 0 , (A.4)

and

lim
T
JT (Id−WW ′

T )M
∗
T = 0 . (A.5)
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Since the sequence (Id−WW ′
T ) is bounded (as the sequence of orthogonal matrices (WW ′

T ))

we deduce immediately (A.4) from the first condition of (A.3).

For the same reason, we deduce easily from the second condition of (A.3) as well as the fact

that limT WT
′ =W−1 that:

lim
T
JTM

∗
T (Id−WWT

′) = 0 . (A.6)

Therefore, we only need to maintain a minor regularity condition to make sure that (A.6)

implies (A.5). In order to underpin such a regularity condition, it would take a thorough

analysis of the asymptotic behavior of eigenspaces involving random matrices like JT (see

Dufour and Valery (2011)). This is beyond the scope of this paper. �

Proof of Theorem 2.3 (J-test):

Using (A.1) and (A.2), we get:

√
TφT (θ̂T ) =

√
TφT (θ

0)− ∂φT (θ̃T )

∂θ′
MT

[

M ′
T

∂φ
′
T (θ̂T )

∂θ
S−1
T

∂φT (θ̃T )

∂θ′
MT

]−1

×M ′
T

∂φ
′
T (θ̂T )

∂θ
S−1
T

√
TφT (θ

0)

⇒ TQT (θ̂T ) =
[√

TφT (θ
0)
]′
S
′−1/2
T [IK − PX ]S

−1/2
T

[√
TφT (θ

0)
]

+ oP (1)

with S−1
T = S

′−1/2
T S−1

T and PX = X(X ′X)−1X ′ for X = S
−1/2
T

∂φT (θ̂T )
∂θ′

MT . And we get the

expected result. �

Proof of Lemma 3.1:

(i) Assume that we can find a deterministic sequence aT with aT/T
ν → ∞ such that the

sequence of matrices
√
T

aT
M−1

\1T does not converge to zero.

Then, there exists a vector δ ∈ R
p2 such that

√
TM−1

\1T
δ
aT

does not converge to zero. Assume,

for expositional simplicity, that the first coefficient bT of this vectorial sequence does not

converge to zero. Then, up to eliciting a well-chosen subsequence, we can claim that for

some ε > 0, we have for all T ,

|bT | > ε .
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However, we know that: √
TM−1

T

(

θ̂T − θ0
)

= OP (1) ,

and, in particular, with obvious notations

√
TM−1

\1T

(

θ̂\1T − θ0\1

)

=
√
TΛ−1

\1TR
−1
\1

(

θ̂\1T − θ0\1

)

= OP (1) .

Note that R−1
\1 θ = η\1 where η = R−1θ is the new vector of parameters (after rotation of

the parameter space) defined just after assumption 4. Thus we have

√
TΛ−1

\1T
(

η̂\1T − η0\1
)

= OP (1) ,

and, in particular, focusing on first (diagonal) coefficient λ1,\1T of Λ\1T and first coefficient

η̂1,\1T of η̂\1T , we have: √
T

λ1,\1T
(η̂1,\1T − η01,\1) = OP (1) .

However, since bT has been defined as the first coefficient of

√
TM−1

\1T
δ

aT
=

√
TΛ−1

\1TR
−1
\1

δ

aT
,

it can be written

bT =

√
T

λ1,\1T

δ1
aT

,

where δ1 stands for the first coefficient of R−1
\1 δ. Note that δ1 6= 0 (since |bT | > ε) and we

deduce from a comparison of the two above formulas that

bT
δ1
aT (η̂1,\1T − η01,\1) = OP (1) .

Since |bT | > ε for all T (or at least a subsequence), this implies that, at least along a

subsequence,

aT (η̂1,\1T − η01,\1) = OP (1) .

Therefore, the null hypothesis H0(ν) must be violated since aT/T
ν → ∞ and (η̂1,\1T − η01,\1)

has been built as a linear combination of
(

θ̂\1T − θ0\1

)

.
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(ii) Under the alternative, we can find a deterministic sequence bT with bT/T
ν → ∞ such

that for some non-zero vector δ ∈ R
p2 we have (for a well-suited subsequence):

bT δ
′
(

θ̂\1T − θ0\1

)

= OP (1) .

Then:

δ′
(

θ̂\1T − θ0\1

)

= γ′(η̂\1T − η0\1) = OP (1/bT ) ,

for some non zero vector γ = R′δ. Let us consider another deterministic sequence aT with

aT/T
ν → ∞ but aT/bT → 0. Then:

γ′aT (η̂\1T − η0\1) = oP (1) .

Since we maintain the assumption that, at least for a convenient subsequence, γ′(η̂\1T −η0\1)
does not go to zero at a rate faster than minj

[

λj\1T )/
√
T
]

, we are able to conclude that at

least one diagonal coefficient of aT
Λ\1T√

T
goes to zero.

Therefore, since √
T

aT
M−1

\1T =

√
T

aT
Λ−1

\1TR
−1
\1 ,

at least one line of this matrix is such that the sum of the absolute coefficients goes to

infinity. In other words, the norm ‖.‖∞ of this matrix (maximum row sum norm, see Horn

and Johnson (1985) p295) goes to infinity. Since, for the spectral matrix norm ‖.‖ we are

using in this paper, we have
∥

∥

∥
M−1

\1T

∥

∥

∥
≥ √

p2

∥

∥

∥
M−1

\1T

∥

∥

∥

∞
(see Horn and Johnson (1985) p314),

we can conclude that, at least for a convenient subsequence,

lim
T

∥

∥

∥

∥

∥

√
T

aT
M−1

\1T

∥

∥

∥

∥

∥

= ∞

�

Proof of Corollary 3.2:

(i) From Lemma 3.1(i), we get:

lim
T

[√
T

aT
M−1

\1T δ

]

= 0 . (A.7)
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Moreover, a mean-value expansion of the moment conditions gives:

√
TφT (θ̂

a,δ
T ) =

√
TφT (θ̂T ) +

√
T
∂φT

∂θ′
(θ̃T )(θ̂

a,δ
T − θ̂T ) ,

where, with the standard abuse of notation, we have defined component by component some

θ̃T between θ̂a,δT and θ̂T . Then, by definition of θ̂a,δT ,

√
TφT (θ̂

a,δ
T ) =

√
TφT (θ̂T ) +

√
T
∂φ̄T

∂θ′\1
(θ̃T )

δ

aT
(A.8)

=
√
TφT (θ̂T ) +

∂φT

∂θ′\1
(θ̃T )M\1T

√
T

aT
M−1

\1T δ .

It is worth realizing that in both cases i) and ii), we know that

∂φT

∂θ′\1
(θ̃T )M\1T = OP (1) (A.9)

In case i), it is implied by definition 2.1 since ∂φ̄T

∂θ′
\1
(θ̃T ) =

∂φ̄T

∂θ′
\1
(θ0).

In case ii), it is implied by definition 2.4 since

θ̃1T = θ̂1T and θ̃\1T − θ̂\1T = O(δ/aT ) = o(T−1/4) .

Then, from (A.7), (A.8) and (A.9), we deduce

√
TφT (θ̂

a,δ
T ) =

√
TφT (θ̂T ) + oP (1) ,

and the required result as an immediate consequence.

(ii) Since from Lemma 3.1, we have, under convenient regularity conditions,

lim
T

∥

∥

∥

∥

∥

√
T

aT
M−1

\1T

∥

∥

∥

∥

∥

= ∞ ,

we have for most vectors δ ∈ R
p2

lim
T

∥

∥

∥

∥

∥

√
T

aT
M−1

\1T δ

∥

∥

∥

∥

∥

= ∞ . (A.10)
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Only vectors δ in the orthogonal space of the relevant eigenspace would not fulfill this

condition. Then, using the expansion (A.8), we expect the vector
√
TφT (θ̂

a,δ
T ) to ”blow-up”

like the vector

zT ≡ ∂φT (θ̃T )

∂θ′\1
M\1T

√
T

aT
M−1

\1T δ .

zT must blow-up since, by definition 2.1,
[

∂φT (θ0)
∂θ′

\1
M\1T

]

is asymptotically full-column rank.

If
[

∂φT (θ̃T )
∂θ′

\1
M\1T

]

is different from
[

∂φT (θ0)
∂θ′

\1
M\1T

]

(due to some non-linearity w.r.t. θ\1), it

would take some perverse asymptotic singularity to erase the blow-up in (A.10). Note that

insofar as the vector
√
TφT (θ̂

a,δ
T ) blows up, we can be sure that Plim

[

Ja,δ
T (Ω)

]

= ∞ since,

for T sufficiently large,

Ja,δ
T (Ω) ≥ Mineg(ΩT )

∥

∥

∥

√
TφT (θ̂

a,δ
T )
∥

∥

∥

2

≥ Mineg(Ω)
1

2

∥

∥

∥

√
TφT (θ̂

a,δ
T )
∥

∥

∥

2

,

with probability one asymptotically, where Mineg(A) is the smallest eigenvalue of a matrix

A and Mineg(Ω) > 0 by positive definiteness. �

B Monte-Carlo study

B.1 Choice of the perturbation for the tests of identification strength

We now describe the automatic data-driven procedure that selects the perturbation vector

δ highlighted in section 3. Our procedure has two steps: first, we design a grid that collects

candidate points for the perturbation vector; second, we select a specific point in the grid.

- Step 1: design of the grid of candidate points for the perturbation vector.

For some user-chosen ν1, we consider all subsamples of ⌊T ν1⌋ consecutive observations. For

each such subsample, we calculate the associated GMM estimator. As a result, we obtain a

cross-sectional distribution of the parameter vector θ. We can then extract the minimum and

maximum for each component and create a grid of candidate points for the perturbation.

The fineness of the grid is user-chosen: in our experiments, we used 10 points for each

component of θ. Our results were not too sensitive to this choice.

Note: there are other ways to obtain a meaningful grid of candidate points for the pertur-

bation vector that may be less computer-intensive.
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- Step 2: selection of the perturbation vector.

For each perturbation vector, say δm, we consider all the subsamples of ⌊T ν⌋ consecutive

observations for some user-chosen ν. For each such subsample, say s, we calculate the

associated local-to-zero version of the estimator

θ̂a,δm⌊T ν⌋,s = θ̂⌊T ν⌋,s +

(

0p1

δm/[log(log(⌊T ν⌋)× ⌊T ν⌋1/4]

)

,

and the associated test statistic

Ja,δm
⌊T ν⌋,s = ⌊T ν⌋φ′

⌊T ν⌋,s(θ̂
a,δm
⌊T ν⌋,s)S

−1
T φ⌊T ν⌋,s(θ̂

a,δm
⌊T ν⌋,s) .

As a result, for each perturbation vector δm, we obtain a cross-sectional distribution of the

test statistic Ja,δm
T . We can then extract the (1−α∗)-quantile of ξ, for some user-chosen α∗.

We select the perturbation vector associated with the (1 − α∗)-quantile the closest to the

(1−α∗)-quantile of the chi-square distribution with (K−p1) degrees of freedom. Note that

(1 − α∗) may, or may not correspond to the actual size of the designed test. Regardless of

the chosen (1−α∗), the size of the test (1−α) is always controlled as we have shown above.

In our experiments we used α∗ = α. Our results were not too sensitive to this choice.

B.2 Diffusion process with continuous record and increasing time

span asymptotic

• Asymptotic distribution of OLS estimators for fixed ∆:

Define X the (n, 2)-matrix of regressors, Y and U the (n, 1)-vector of regressand and errors

respectively as follows:

X =









1 y0
...

...

1 y(n−1)∆









, Y =









y∆
...

yn∆









and U =









u∆
...

un∆









=
√
c









ǫ∆
...

ǫn∆









.

The OLS estimators are:
(

ân,ols

b̂n,ols

)

= (X ′X)−1X ′Y

ĉn,ols =
û′û

n− 2
with û = Y −X [ân,ols b̂n,ols] .
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For fixed ∆, the usual asymptotic result for OLS estimators holds:

√
n









ân,ols − a(θ1)

b̂n,ols − b(θ1)
√

ĉn,ols −
√

c(θ1)









d→ N (0,Σ(∆)) with Σ(∆) =

(

cE[(XiX
′−1
i 0

0 c
2

)

.

We use Σ̂ to estimate Σ(∆) where

Σ̂ =

(

ĉn,ols × n(X ′X)−1 0

0 ĉn,ols/2

)

.

• Identification strength of the three moment conditions:

We now study the asymptotic properties of the three estimators of θ1 and show that each

estimator converges at a different rate.

(1) θ̂1,b denotes the estimator of θ1 based on the moment condition 2. There is a one-to-one

relationship between θ1 and b. Its mean-value expansion gives:

θ̂1,b − θ01 = − 1

∆b
(b̂n,ols − b) ⇒ √

n(θ̂1,b − θ01) = − 1

∆b

√
n(b̂n,ols − b)

⇒ Var(
√
T (θ̂1,b − θ01)) =

1

∆2b2
Var(

√
n(b̂n,ols − b)) .

Recall that

Var(
√
n(b̂n,ols − b)) ≡ Σb(∆) =

σ2

Var(yt)
= 1− b2 = 1− e−2θ1∆ .

In addition, when ∆ is small enough, we have:

1− e−2θ1∆ ∼ 2θ1∆ ⇒ Var(
√
T (θ̂1,b − θ01)) ∼

2θ1
∆b2

.

As a result, Var(
√
T (θ̂1,b − θ01)) is finite when ∆ is small enough, and we conclude that the

rate of convergence of θ̂1,b is
√
T .

(2) θ̂1,a denotes the estimator of θ1 based on moment condition 1. Similarly to the previous

estimator, a mean-value expansion leads to

ân,ols − a = θ0

[

− 1

θ21
(1− e−θ1∆) +

1

θ1
∆e−θ1∆

]

(θ̂1,a − θ01) ,
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where
[

− 1

θ21
(1− e−θ1∆) +

1

θ1
∆e−θ1∆

]

∼ −∆2

2
when ∆ is small enough.

Note also that

Var(
√
n(ân,ols − a)) = Σa(∆) = σ2

2 = θ22

(

1− e−2θ1∆

2θ1

)

∼ θ22∆ when ∆ is small enough.

As a result, Var(∆
√
T (θ̂1,a − θ01)) is finite when ∆ is small enough, and we conclude that

the rate of convergence of θ̂1,a is ∆
√
T which is slower than

√
T .

(3) θ̂1,c denotes the estimator of θ1 based on moment condition 3. Similarly to the previous

estimators, a mean-value expansion leads to:

ĉn,ols − c =
θ22
2

[

− 1

θ21
(1− e−2θ1∆) +

2

θ1
∆e−2θ1∆

]

(θ̂1,c − θ01) ,

where
[

− 1

θ21
(1− e−2θ1∆) +

2

θ1
∆e−2θ1∆

]

∼ −2∆2 when ∆ is small enough.

Note also that:

Var(
√
n(ĉn,ols − c))Σc(∆) = 2σ4

2 = 2θ42

(

1− e−2θ1∆

2θ1

)2

∼ 2θ42∆
2 when ∆ is small enough.

As a result, Var(
√
∆
√
T (θ̂1,c − θ01)) is finite when ∆ is small enough, and we conclude that

the rate of convergence of θ̂1,c is
√
∆
√
T which is slower than

√
T but faster than ∆

√
T .

(4) Identification strengths as a function of ∆:

Strong ∆ = 1

Near-strong
1

T 1/2
<< ∆ << 1

Near-weak
1

T
<< ∆ <<

1

T 1/2

Weak ∆ =
1

T

B.3 Tables of results
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Distribution of the standardized GMM estimator

Mean Variance Skewness Kurtosis

Intercept 0.0078 0.9874 0.0054 2.7716

Slope 0.2994 1.1657 0.7161 3.3948

Staiger and Stock Stock and Yogo Antoine and Renault

(joint) (joint - bias 10%) (joint) (slope only)

Rej. frequencies 0.4974 0.5884 0.1446 0.0516

Other versions of Stock and Yogo

(bias 5%) (bias 10%) (size 10%) (size 15%)

Rej. frequencies 0.1680 0.5884 0.0044 0.2346

Table 1: Testing weak identification in the linear model with heteroskedasticity. We provide

the first four moments of the Monte-Carlo distribution of the standardized GMM estimator

to assess the accuracy of the asymptotic approximation. We also provide rejection probabil-

ities associated with Staiger and Stock rule-of-thumb, Stock and Yogo test based on 2SLS

10%-bias, and two versions of our test, joint and on the subvector of the slope. We also

include other versions of Stock and Yogo test based on the bias and size. The parameters

are T = 250, M = 5, 000, ρ = 0.8, R2
x = 0.14, θ0 = (0 0)′ and we use 3 IV.
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Distribution of the standardized GMM estimator

Mean Variance Skewness Kurtosis

Intercept 0.0046 0.9979 0.0073 2.8108

Slope 0.2987 1.1260 0.7342 3.4558

Staiger and Stock Stock and Yogo Antoine and Renault

(joint) (joint - bias 10%) (joint) (slope only)

Rej. frequencies 0.4974 0.5884 0.1366 0.0526

Other versions of Stock and Yogo

(bias 5%) (bias 10%) (size 10%) (size 15%)

Rej. frequencies 0.1680 0.5884 0.0044 0.2346

Table 2: Testing weak identification in the linear model with heteroskedasticity. We provide

the first four moments of the Monte-Carlo distribution of the standardized GMM estimator

to assess the accuracy of the asymptotic approximation. We also provide rejection probabil-

ities associated with Staiger and Stock rule-of-thumb, Stock and Yogo test based on 2SLS

10%-bias, and two versions of our test, joint and on the subvector of the slope. We also

include other versions of Stock and Yogo test based on the bias and size. The parameters

are T = 250, M = 5, 000, ρ = 0.8, R2
x = 0.14, θ0 = (0 0)′ and we use 3 IV.
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Distribution of the standardized GMM estimator

Mean Variance Skewness Kurtosis

Intercept 0.0067 0.6548 0.0232 3.2929

Slope 1.0370 1.4095 0.7681 3.1806

Staiger and Stock Stock and Yogo Antoine and Renault

(joint) (joint - bias 10%) (joint) (slope only)

Rej. frequencies 0.0002 0.0004 0.1998 0.0838

Other versions of Stock and Yogo

(bias 5%) (bias 10%) (size 10%) (size 15%)

Rej. frequencies 0 0.0004 0 0

Table 3: Testing weak identification in the linear model with heteroskedasticity. We provide

the first four moments of the Monte-Carlo distribution of the standardized GMM estimator

to assess the accuracy of the asymptotic approximation. We also provide rejection probabil-

ities associated with Staiger and Stock rule-of-thumb, Stock and Yogo test based on 2SLS

10%-bias, and two versions of our test, joint and on the subvector of the slope. We also

include other versions of Stock and Yogo test based on the bias and size. The parameters

are T = 250, M = 5, 000, ρ = 0.8, R2
x = 0.01, θ0 = (0 0)′ and we use 3 IV.
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Distribution of the standardized GMM estimator

Mean Variance Skewness Kurtosis

Intercept 0.0037 0.6957 0.0207 3.1171

Slope 1.0893 1.4867 0.8017 3.2778

Staiger and Stock Stock and Yogo Antoine and Renault

(joint) (joint - bias 10%) (joint) (slope only)

Rej. frequencies 0.0002 0.0004 0.2198 0.0956

Other versions of Stock and Yogo

(bias 5%) (bias 10%) (size 10%) (size 15%)

Rej. frequencies 0 0.0004 0 0

Table 4: Testing weak identification in the linear model with homoskedasticity. We provide

the first four moments of the Monte-Carlo distribution of the standardized GMM estimator

to assess the accuracy of the asymptotic approximation. We also provide rejection probabil-

ities associated with Staiger and Stock rule-of-thumb, Stock and Yogo test based on 2SLS

10%-bias, and two versions of our test, joint and on the subvector of the slope. We also

include other versions of Stock and Yogo test based on the bias and size. The parameters

are T = 250, M = 5, 000, ρ = 0.8, R2
x = 0.01, θ0 = (0 0)′ and we use 3 IV.

Identification GMM estimator

strength ∆ θ̂all θ̂\3 θ̂\2

Strong (with ∆ = 1) 1 1 0.025

Mildly weak (with ∆ = 0.342) 1 1 0.022

Medium weak (with ∆ = 0.108) 1 1 0.019

Very weak (with ∆ = 0.054) 1 1 0.018

Table 5: Testing identification strengths in the non-linear model. We provide the rejection

probabilities for different identification strengths. Smaller values of ∆ correspond to cases

where the identification strength is weaker. Each test is characterized by the GMM estimator

being considered either θ̂all based on the 3 moment conditions, θ̂\3 based on conditions 1

and 2, or θ̂\2 based on conditions 1 and 3. T = 100, M = 1000, θ0 = (0.125 0.75 0.006)′.
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