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Abstract. The mechanical properties of vertebrate bone are largely determined by a process
which involves the complex interplay of three different cell types. This process is called bone re-
modeling and occurs asynchronously at multiple sites in the mature skeleton. The cells involved
are bone resorbing osteoclasts, bone matrix producing osteoblasts, and mechanosensing osteocytes.
These cells communicate with each other by means of autocrine and paracrine signaling factors and
operate in complex entities, the so-called bone multicellular units (BMUs). To investigate the BMU
dynamics in silico, we develop a novel mathematical model resulting in a system of nonlinear partial
differential equations (PDEs) with time delays. The model describes the osteoblast and osteoclast
populations together with the dynamics of the key messenger molecule RANKL and its decoy re-
ceptor OPG. Scaling theory is used to address parameter sensitivity and predict the emergence of
pathological remodeling regimes. The model is studied numerically in one and two space dimensions
using finite difference schemes in space and explicit delay equation solvers in time. The computa-
tional results are in agreement with in vivo observations and provide new insights into the role of
the RANKL/OPG pathway in the spatial regulation of bone remodeling.
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1. Introduction. The vertebrate skeleton plays a crucial role in providing me-
chanical support as well as a ready source of calcium and other important minerals.
Physical loading of the skeleton causes stresses which can lead to local microdamage
in the bone tissue. Similarly, if the calcium level in the blood drops below a certain
threshold, systemic regulators such as hormones transmit the order to release calcium
through removal (resorption) of bone tissue. In both cases, the resorbed spaces have
to be filled with sound tissue in order to restore the structural integrity. This joint
process of bone destruction and regrowth is referred to as bone remodeling and is real-
ized by complex multicellular entities, the so-called bone multicellular units (BMUs).
Each BMU consists of several interacting cell types and a whole variety of biochemical
signaling factors. The importance of remodeling becomes apparent when considering
the implications of its malfunctioning. Deficient or even absent remodeling of micro-
damage can lead to macroscopic bone fractures, and pathologies in BMU functioning
are largely responsible for diseases such as osteoporosis and rheumatoid arthritis [25].

The various physiological and pathological aspects of BMUs have been studied
by both experimentalists and clinicians for well over 40 years [29]. However, due to a
general lack of conclusive in vivo experiments—so far mainly consisting of histological
sections of dead bone tissue—several phenomena remain poorly understood. The
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difficulty and costs for in vivo experiments suggest that there is great potential for
mathematical modeling in this field. So far, several research groups have modeled
the local strain fields in bones [33, 36] as well as the temporal sequence of local bone
destruction and regrowth at the cellular level [23, 24, 27]. In essence, the latter models
successfully capture the local bone cell dynamics in physiological settings and are even
able to describe certain pathologies. However, the functioning of a remodeling unit
strongly depends on its spatial organization, and therefore, a purely temporal model
cannot provide a complete description of the BMU. To address this, we develop here
a novel spatio-temporal model of a single remodeling unit, describing the dynamics
of both the involved bone cell populations as well as the relevant signaling pathways.
The model consists of five nonlinear partial differential equations (PDEs) and is based
on a continuum assumption for the cell populations.

In section 2, we first give an outline of the relevant biology, thereby focusing on
the three types of bone cells (osteoclasts, osteoblasts, and osteocytes) and the most
important biochemical factors (the RANK/RANKL/OPG pathway). Once these con-
cepts are established, we begin the model development in section 3 by introducing a
previous temporal model by Komarova et al. [23, 24]. Given the complexity of the
underlying biological system—involving endocrine signaling, cell motion, fluid diffu-
sion, etc.—some simplifying assumptions are necessary in order to develop a compact
and closed spatio-temporal model. The model is developed in an abstract setting
independent of the spatial dimension but can be applied to one, two, or three di-
mensions. In section 4 we present the one-dimensional (1D) case, use scaling theory
to gain insight into parameter sensitivity, and present experiments focusing on the
different pathological regimes. The biologically more relevant two-dimensional (2D)
case is then discussed in section 5, and a selection of two physiological remodeling
experiments is presented. The results of the 2D experiments provide a model valida-
tion as well as new insights into the role of the RANK/RANKL/OPG pathway in the
spatial regulation of bone remodeling.

2. The biology of bone remodeling. Bone remodeling refers to the combi-
nation of bone destruction and subsequent regrowth. It is a coordinated process of
three different cell types that interact by means of several biochemical factors. Fur-
thermore, mechanical strains play an important role in the stimulation and steering of
remodeling units. The following outline is focused on the model-relevant mechanisms,
and we refer the reader to [29, 31] for detailed reviews.

2.1. The bone cells. Three different cell types are involved in remodeling.

e Osteoclasts [30, 4] are cells which resorb mineralized bone tissue while moving along
the bone surface. They are formed by cell differentiation from stem cells in the bone
marrow and have a life span of roughly 10 days. A key stimulator for osteoclast
differentiation and activation is a molecule called RANKL (the receptor activator
of nuclear factor kB).

e Osteoblasts [15] are cells which fill the previously resorbed trench with osteoid, the
organic part of the bone tissue. Later, osteoid mineralizes, and the remodeling
process is complete. Osteoblasts differentiate from stem cells in the bone marrow,
they do not move along the bone surface, and they express the messenger molecule
RANKL and its decoy receptor OPG (osteoprotegerin). After approximately two
weeks, osteoblasts either die or differentiate into osteocytes and get buried alive in
the new bone tissue.

e Osteocytes [13, 3] differentiate from active osteoblasts and are connected with each
other to form a large network of active cells within the bone tissue. This network
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is believed to propagate information, localize damage sites and microstrains, and
play an important role in the process of mechanotransduction.

The three cell types communicate by means of autocrine signaling (communication
among cells of the same type) and paracrine signaling (communication among cells
of different types). Generally, the bone cells and their messengers operate locally in
well-confined remodeling units, the BMUs. These units operate for up to 12 months
in a row, thereby far exceeding the individual cell’s life spans. The progression of a
BMU across the bone can be summarized as follows:

Step 1. Initially, 10-20 osteoclasts are recruited to the initiation site and resorb the
old bone tissue. Once the tissue is removed, the osteoclasts move on and keep
resorbing while traveling at a speed of 20-40um per day [19, 29]. During
the whole remodeling process, they stay together in a spatially well-confined
aggregation (cutting cone). Dead cells are continually replaced by new ones
so that the population size remains approximately constant.

Step 2. Once the osteoclasts have resorbed the bone tissue, they recruit 1000-2000
osteoblasts that fill the previously resorbed trench with a new bone matrix
(closing cone). Osteoblasts are much less efficient than osteoclasts, and the
bone formation takes roughly 10 times longer than the resorption.

Step 3. Finally, the new bone matrix mineralizes and osteoblasts either die or differ-
entiate into osteocytes.

There are two kinds of bone tissues. Cortical tissue is dense and compact and forms

the outer surface of bones. Trabecular tissue fills the inner cavity with a honeycomb-

like structure, consisting of irregularly shaped spicules (trabeculae) endowed in bone
marrow. Remodeling takes place in both cortical and trabecular bone, and the dif-
ference in the respective BMU progressions is geometrical rather than biological in
nature: whereas the BMU has to dig a complete tunnel to penetrate the compact
cortical tissue, it can move along the surface of the trabeculae, thereby only digging
a half-trench. Figure 1 illustrates the temporal sequence of the remodeling steps on
a trabecula.
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Fia. 1. A schematic, not-to-scale representation of a BMU mowving along a microfracture on a
piece of trabecular bone. Osteoclasts resorb the bone in the form of a cutting cone, and osteoblasts
subsequently fill the resorbed space with new bone matriz. Bone cells interact by means of cytokines
and growth factors, and osteoblasts differentiate into osteocytes.

2.2. The biochemical factors involved in remodeling. The coordination
of osteoclasts, osteoblasts, and osteocytes within a BMU is realized through a so-
phisticated communication system which consists of various autocrine and paracrine
signaling pathways involving numerous coupled effectors. However, the multiple ac-
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tions attributed to some of these effectors make it hard to identify the actual key
players and to predict the cumulative dynamics of the coupling. Figure 2 summarizes
the major control pathways in the remodeling process and identifies the respective
messenger molecules. Among the multiple messengers involved, RANKL and OPG
have been shown to play critical roles in both physiological bone remodeling and in
the development of diseases [25, 5, 21]. RANKL is a cytokine produced in either
membrane-bound or soluble form by cells of the osteoblast lineage, prominently by
osteocytes and osteoblasts. Several studies have shown that RANKL is up-regulated
in situations associated with increased bone remodeling, such as parathyroid hormone
(PTH) treatment [17], mechanical stimulation [20], and fractures [18]. RANKL binds
to RANK receptors on the surface of osteoclastic cells and has a stimulatory impact
on the differentiation of osteoclast precursors and the subsequent activation of mature
osteoclasts into active, resorbing cells. On the other hand, the molecule OPG, pro-
duced by mature osteoblasts [14], acts as a decoy receptor of RANKL; i.e., it inhibits
RANKL by forming RANKL-OPG complexes. Since the presence of OPG means less
RANKL-RANK binding and hence less osteoclast stimulation, a high RANKL/OPG
ratio favors bone resorption, whereas a low ratio down-regulates osteoclastic activ-
ity. The RANK/RANKL/OPG pathway is also known to be employed by systemic
regulators such as PTH and vitamin D to regulate the resorption activity. Note fi-
nally that the spatial separation of the different RANKL and OPG sources indicates
that, in addition to the local ratio of the chemicals, their spatial distribution plays an
important role, too.

OB- OocC-
Precursor Precursor

Fic. 2. Cells and biochemical factors known to play a role in the remodeling process of bone. The
cells are osteoclasts (OC), osteoblasts (OB), osteocytes (OCY), and their respective precursor cells.
Solid lines stand for positively balanced processes (cell differentiation and production of chemicals/
tissue) and dotted lines for positively balanced regulations (autocrine/paracrine stimulation). The
(-) next to an arrow indicates a megatively balanced process or regulation.

2.3. The mechanical effects: Microscopic strains and fractures. There
are two different remodeling modes, targeted and random remodeling. Whereas the
former mode aims at damage removal by means of local microfracture reparation, the
latter serves the purpose of damage prevention: old—but not necessarily damaged—
tissue is continually renewed across the skeleton to prevent fatigue damage. Both re-
modeling types rely on steering mechanisms that ensure that BMUs are guided toward
damage sites and move in a way that minimizes structural instability due to ongoing
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bone erosion. The concept of targeted steering is based on established evidence that
the presence of microfractures leads to creation of new BMUs and attraction of already
existing BMUs [8, 7]. On the other hand, it has been suggested that strain-derived
canalicular fluid flow is responsible for osteoclast activity and motility in the cutting
cone of the BMU [6], leading to strain-derived steering. In particular, this steering
mechanism ensures that BMUs move along the principal strain axis of the bone and
hence optimize its robustness at any time in the remodeling process. Both steering
mechanisms rely on mechanical features that need to be translated into cell signals
to attract BMUs. Recent investigations show that there is a unifying mechanism of
mechanotransduction for both damage and strain, mediated by osteocytes. In fact,
both mechanically damaged osteocytes and osteocytes exposed to fluid shear stress
have been shown to express RANKL [1, 26, 37]. Since RANKL is a potent osteoclast
stimulator, this allows mechanically stimulated osteocytes to attract BMUs and hence
guide them toward damage sites and along the principal stress directions.

3. The mathematical model. In this section, we develop a mathematical
model describing the spatio-temporal evolution of a single BMU at the cellular level.
The overall goals of this model are the following:

e To describe the distinctive spatial and temporal features of the cutting cone
and the BMU movement.

e To link the key biochemical factors RANKL and OPG with the known pop-
ulation dynamics of bone cells.

e To test the model on experimental findings and suggest new experimental
studies.

Since we develop a model that can be considered in one, two, and three space
dimensions, we do not specify its dimension explicitly and denote it simply by n,
where n = 1,2,3. The 1D and 2D versions of the model presented in this article are
particularly suited for the description of trabecular remodeling, and the restrictions of
their applicability to cortical bone will be discussed in section 6. The major modeling
assumptions can be summarized as follows:

e We focus on trabecular remodeling, more precisely on the dynamics of a BMU
moving across a single trabecula.

e The trabecula is locally flat enough so that we can neglect curvature.

e We make a continuum assumption for the cell population densities; i.e., we
shall be modeling cell densities rather than individual cells.

e The BMU evolves along the surface of the trabecula, and the depth of the
resorbed trench (~ 10um) is small in comparison to its width (~ 500um).

e Of the several cell types involved in remodeling—osteoblasts, osteoclasts, os-
teocytes, and their respective precursors—we consider only osteoblasts and
osteoclasts as state variables.

e The trabecula is endowed in bone marrow which can be considered as a
reservoir of precursor cells.

e Among the multitude of biochemical factors, only RANKL and OPG are
modeled explicitly; the rest of the factors, such as TGF-3, IGF, M-CSF, and
nitric oxide, are captured in nonlinear interactions.

e The canopy of bone lining cells separating the BMU from the bone marrow
[16] ensures that the loss of chemicals by vertical diffusion is negligible.

e We model the elimination of OPG and RANKL through their mutual inter-
action only and do not include their natural decay rates.

e The mechanical factors responsible for the BMU steering—microscopic strains
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and damages—are modeled implicitly in the form of an appropriate RANKL
distribution in the initial field. For the sake of simplicity, we will from now
on refer to these distributions as microfractures, even though they might be
caused by local microstrains; see section 2.3.
Due to the complexity of the model, we proceed in three steps, starting off with
a brief review of the temporal model introduced by [23, 24]. In a second step, we
introduce the spatial extension of the model as well as the RANKL and OPG fields.
In a third step, we complete the model by adding appropriate initial and boundary
conditions.

3.1. Prior work: Temporal model. The model suggested by Komarova et al.
[23, 24] is a temporal model describing the population dynamics of bone cells at a
single point within the BMU. Denoting the number of osteoclasts and osteoblasts by
w1 and ug, respectively, the cell dynamics are modeled as

(3.1) Our = apududt — Brug,
' dus = aui?ud® — Baug,

where a; and j; are activities of cell production and death and all have units [day~'].
The four dimensionless parameters g;; represent the effectiveness of the autocrine
and paracrine interactions between the constituent cells. Let us now briefly discuss
the various signaling factors g;;, thereby making some restrictions appropriate to the
spatio-temporal model we are finally aiming for. The factor g7 represents the ef-
fectiveness of the autocrine interactions between osteoclasts and has been shown to
control the overall remodeling dynamics [24]. Osteoclast-derived paracrine regula-
tion of osteoblasts (g12) is the crucial link in the BMU coupling, and its inhibition
leads to negatively balanced remodeling [23]. Regarding the autocrine stimulation
of osteoblasts (g22), it is known that the latter express autostimulatory factors such
as insulin-like growth factors IGF [9]. However, these factors do not influence the
dynamical behavior of the BMU [24], and we assume here that they are negligible
in comparison to the impact of gi9; i.e., we set goo = 0. Finally, osteoblast-derived
paracrine regulation of osteoclasts is dominated by the RANK/RANKL/OPG path-
way [35, 22|, and therefore the factor g1 plays an important role in the temporal
model. However, since we will eventually develop a model that includes the RANKL
and OPG fields explicitly as state variables, we can set go; = 0. After these simplifi-
cations, system (3.1) reduces to

(3.2) {3tu1 = auf" — fru,

Opug = azu"{” - ﬁzuz-

For g1 < 1, the unique nontrivial fixed point (u1ss,u2,ss) > (0,0) of (3.2) is a
stable node. It is assumed that cells below the steady-state values u; ss are precursor
cells which are less differentiated. In other words, they are not actively involved
in the resorption and production of bone matrix but participate in autocrine and
paracrine signaling. Increases in w; above u;ss are regarded as proliferation and
differentiation of precursors into mature osteoclasts and osteoblasts that participate
actively in the remodeling process. In this sense, the initiation of remodeling can be
induced manually by increasing the number of osteoclasts above the equilibrium value,
i.e., by choosing initial conditions u (tg) > u1,ss. Note that ua(to) = us s is sufficient
because it is ensured that osteoblasts are recruited by active osteoclasts. For all the
subsequent numerical experiments we will choose the parameter g11 < 1 such that
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(u1,ss,U2,s5) corresponds to a stable steady-state solution of (3.2). Together with the
initiation procedure explained above, this implies that (ui,u2) > (u1,ss,U2,ss) for all
t > to, and hence we can ensure that the populations of active cells, denoted hereafter
by yi = u; — u;ss, remain nonnegative. Using the decomposition u; = ui ss + ¥i,
we can see that the system (3.2) actually describes the evolution of the active cell
populations coupled to the constant precursor populations

(3.3) Oy = on(urss +y1)9 — P1(u,ss + 1),
' Oy = (Ul ss +y1)92 — Paluz,ss +12)-

Even though our main interest is the evolution of the active cells in (3.3), we will
henceforth use the equivalent version (3.2) for its more compact notation. The active
cell populations are then easily recovered by subtracting the corresponding precursor
populations u; 45 from the solutions u; of (3.2).

3.2. The spatial extension. We use now the temporal model (3.1) as the basis
for the spatial extension. The model developments in this section are independent
of the spatial dimension, and we avoid a specific choice by denoting all differential
operators by their multidimensional symbols such as V and A. Later we will discuss
the 1D case in section 4 and the 2D case in section 5. The units of the parameters
introduced below can all be found in Appendices B and C.

First, we switch to space-dependent state variables w;(t) — u;(x,t), where x €
Q C R™ and the domain 2 is chosen large enough to avoid interactions with the
boundaries (n = 1,2, 3 is the spatial dimension). Note in particular that the u; now
have the units of a density [mm™"]. At the same time we introduce the RANKL
and OPG fields as new state variables. They are denoted by ¢r(z,t) and ¢o(x,t)
and have the units of a concentration [mol mm™="]. To build up the final model we
proceed in two steps. First, we assume that the RANKL and OPG fields are known
and analyze their impact on osteoclasts and osteoblasts. In a second step we introduce
the equations governing the spatio-temporal evolution of the RANKL and OPG fields
themselves. Finally, we would like to emphasize that throughout the spatial extension
the quantities u; ss refer to the steady-state densities of the temporal equation (3.2)
and not to the steady-state solutions of the spatial equations.

3.2.1. The impact of RANKL and OPG on osteoclasts and osteoblasts.
RANKL is known to have an important impact on osteoclasts: it promotes their dif-
ferentiation and activation and contributes together with other signaling molecules to
the navigation (chemotazis) of active cells [4, 19]. On the other hand, the only impact
of OPG on osteoclasts is indirect, by means of RANKL inhibition. Accordingly, the
osteoclast equation in (3.1) has to be augmented by two contributions only:

(3.4) drur = aqut — Prur — CV - (11Vor) + ki O(y1) ur
— —

C1

OR
A+ or
C2

The term C1 describes the motion of active osteoclasts along the gradient of the
RANKL field, and ¢ indicates the effectiveness of migration. The second term C2
represents the stimulating action of RANKL on osteoclasts via RANK-RANKL bind-
ing (k; is the corresponding reaction rate). This comprises both the differentiation of
precursor cells into active osteoclasts as well as the steadily occurring renewal of nuclei
in already resorbing cells [29]. We assume that the RANK receptors have a saturation
threshold, hence the sigmoid function with A as the concentration of half-saturation.
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The Heaviside function 6(y1), defined as {6(z) =0 if z <0, 6(x) = 1 if x > 0}, en-
sures that stimulation takes place only in the presence of active osteoclasts (y1); i.e.,
only osteoclasts (u1) in the cutting cone area are stimulated by RANKL. It is easy
to verify that if wi(to) > w1,ss, then ug > uy 4 for all ¢ > to; i.e., the population of
active osteoclasts stays nonnegative. Therefore, the same comments as in section 3.1
apply, and (3.4) can, similarly to (3.2) and (3.3), be rewritten as an evolution equation
for y;.

Regarding osteoblasts, we assume that they are recruited by osteoclasts and do
not move by themselves. Since RANKL and OPG have no significant impact on their
dynamics, the us equation in (3.1) remains unaltered.

3.2.2. Dynamics of RANKL and OPG fields. The evolution of the RANKL
concentration ¢p is governed by production, diffusion, and reaction. More precisely,
RANKL is expressed by active osteoblasts, it spreads across the trabecula through
diffusion, and it binds to OPG as well as to RANK receptors on osteoclasts. In
mathematical terms, the rate of change in time reads

(3.5) OtdR = AR Y2,tp + KRA(PF') — k2 3 or 0(y1) u1 — ksdproo -
—_—— Y +¢r T
c3 ca

C5

The RANKL source by active osteoblasts C3 is justified as follows: after the differen-
tiation of precursors into mature osteoblasts, it takes a certain time tr until the cells
start to produce RANKL [14, 34, 2]. The number of active osteoblasts at time ¢ that
are of age tr > t or older is e “P2!Ry,(x,t —tR), and after absorbing the constant pref-
actor into the proportionality constant ap we obtain C3, where ya 1, = yo(x,t — tg).
The second contribution C'4 takes care of the porous diffusion which can vary be-
tween very low for membrane-bound RANKL and high for soluble RANKL. kg is
the diffusion constant, and the dimensionless exponent er > 1 reflects the porosity of
the medium surrounding the BMU. Note that if eg > 1, then an initially compactly
supported RANKL field will stay compactly supported over time; this is not the case
for the regular diffusion equation, which is known to have infinite propagation speed.
Since the BMU environment is very irregular and since the spreading cytokines are in
steady interaction with the various constituents of the bone matrix as well as adjacent
bone cells, the porous version with ez > 1 seems to provide a more plausible model for
the RANKL field than the regular version with ez = 1. For a more detailed discussion
of porous medium equations we refer the reader to [12, 11]. The contribution C5 is
due to the receptor-ligand binding of RANK and RANKL and is almost identical to
C2 in (3.4), except for the different rate constant ko. Note that ko contains informa-
tion about several factors such as receptor density on osteoclasts and reversibility of
the RANK-RANKL binding. Finally, the reaction term C'6 models the RANKL-OPG
binding with rate constant ks.

Similarly to ¢g, the rate of change in the OPG field ¢¢ is also governed by the
contributions of source, diffusion, and reaction:

(3.6) 0rpo = a0 Y2,t0 + KOA(PS ) — ksdrdo -
N N —— T
cr cs

Similarly to C3 in (3.5), OPG is produced by mature osteoblasts with a time delay to
such that to > tr [14, 34, 2]. The contribution C8 for porous diffusion (e¢p > 1) is
analogous to C4, and the OPG-RANKL binding C9 is identical to C6. Note that
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the diffusion parameters of RANKL (kg, eg) and OPG (ko, €0) are not necessarily
equal. In a physiological setting, RANKL is mainly membrane-bound, whereas OPG
is soluble.

3.3. The complete model. Together with the evolution of the bone density
z(x, t)—diminished by active osteoclasts and augmented by active osteoblasts—(3.1),
(3.4), (3.5), and (3.6) yield the following nonlinear, time-delayed PDE:

By = aquf" = Brur — (V- (11 VoR) + k1 322 0(y1) ua,
drug = ogui? — PBaug,

(3.7) Odr = ary2tp + ERA(PF) — k2 ,\fﬁ 0(y1) v — ksgrdo,
Oipo = aoY2to +KOA(PS) — k3sdroo,
Oz = —fiyr+ fayo.

Recall that y; = u;—u; ss are the active cells and y2 ¢, = ya2(, t—t,,). The mechanisms
behind BMU initiation are still not fully understood, and we do not attempt to model
them explicitly. Instead, we initiate the BMU manually by perturbing the following
fixed point of (3.7):

Ul(w, t) = Ui,ss,
UQ(-'B, t) = U2ss,
(38) orlat) = 0,
1026 (iIZ, t) = 0,
z(x,t) = 100.

To initiate the BMU we proceed now as follows. We leave the osteoclast field at
steady-state u; s everywhere except for a confined region U where we add a few
active cells w1 pert(x) > 0 for & € U. We assume that there are initially no active
osteoblasts and that their density equals us s everywhere. This is consistent with
the assumption of the bone marrow being a precursor reservoir. The initial RANKL
field is of great importance for the model because it is responsible for both targeted
and strain-derived steering of the BMU. In fact, since neither the strain fields nor the
osteocytes (which are responsible for the mechanotransduction by means of RANKL
expression) are modeled explicitly as state variables, possible damage sites and the
principal stress directions have to be included in the form of local perturbations of
®r,pert(x). Finally, we assume that there is no OPG present in the initial system and
that the bone density is at 100%. In summary, the initial conditions are given by

Ul(ﬁc, t= 0) = Ul,ss + ul,pert(x)v
Ug(w,t = 0) =  U2,ss,
(39) ¢R(w7t = 0) = ¢R,pert (w)a T c Q,
do(z,t=0) = 0,
Az t=0) = 100.

Since bone remodeling is a local process, we choose the domain large enough to
avoid interactions of the BMU with the boundary. Note that for the BMU life spans
considered hereafter, large enough means at least one order of magnitude longer than
the cutting cone. The corresponding Dirichlet boundary conditions for (3.7) are given
in (3.8) with x € 5.

Three comments regarding (3.7)—(3.9) are in order. First, we draw attention to
the fact that the osteoblast and the bone density equations are ordinary differential
equations and can be integrated explicitly. In particular, for the us equation we get
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¢
(3.10) Uz (2, 1) = ug sse 2 + ag/ P29 (2, 5)ds.
0

Second, the Heaviside function introduces a discontinuity into the equations, rais-
ing questions about the well-posedness of the PDE. It can be seen that the point
(u1,ss, U2,s5,0,0,100) is not a stable fixed point of the system. In the situations of in-
terest, however, y; cannot be zero unless ¢p is as well, since the active osteoclasts are
present only in the cutting cone. Hence, we do not encounter issues of nonuniqueness.
The questions of uniqueness and stability of the PDE system for the general situation
are of interest and are the subject of current work.

Third, we expect the osteoclast field u; and the RANKL field ¢ to inherit the
singular behavior of the Heaviside function in (3.7). In addition, the RANKL field also
suffers from porous diffusion effects, which themselves are known to exhibit singular
behavior. If the initial RANKL field is compactly supported in a region with a smooth
boundary, this free surface may develop local corners and cusps in the course of the
simulation [11]. Indeed, if we allow ¢r to become negative (dropping below some
threshold), very little can be said about the regularity of the ensuing PDE. This
is an interesting question in its own right and will affect how computations may be
performed. However, at this present juncture, we restrict ourselves to nonnegative
RANKL fields.

4. The 1D model. Due to the complexity of the model and the multitude of
unknown parameters, we look at the 1D version of (3.7)—(3.9) before proceeding to
the computationally more expensive 2D case. Note that in one dimension (n = 1),
the differential operators simplify as V — 9, and A — 9,,. Before solving the system
numerically, we first use some ideas of scaling theory to get a better understanding
of physiological and pathological remodeling regimes as well as the corresponding
parameter sets.

4.1. Parameter estimation and sensitivity analysis. The primary goal af-
ter having established the model (3.7)—(3.9) is to identify a—not necessarily unique—
set of parameters that corresponds to a physiological remodeling regime. Once this
is achieved, various combinations of parameters can then be modified to study the
emergence of pathologies. Ideally, the physiological parameter set could be estimated
on the basis of experimental data. However, since almost none of our 23 parame-
ters can be matched with experimental findings, we are forced to adopt a different
strategy. First, we consider the purely temporal model (3.2) and follow the reasoning
in [24] to obtain meaningful values. In particular, the values for §; can be estimated
from experimental findings about the corresponding life spans of bone cells. Also, it
is shown that the value of g12 leads to unstable results outside of the interval [0.1, 4]
and that g1 determines the overall dynamics of the cell populations. These facts,
together with an estimation of the time delays (tgr, to) [2, 34, 14] and the aim of
having a ratio of ug ss/u1,ss = 100 [29], lead to the choice of v, 5;, gij, tr, and to
found in (B.1). The remaining parameters cannot be matched with experimental
data, and we determine their physiological values a posteriori. More precisely, we fix
the parameters in (B.1), run simulations (as described in section 4.2), and vary the
remaining unknown parameters until the following two criteria are matched: first, the
numerical solution has to coincide spatially and temporally with the global dynamics
of in vivo observations, and second, the cutting cone has to stay compact and move at
a fairly constant speed. The outcome of this approach leads to the values summarized
in (B.2).
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Now that the physiological set is determined, we can investigate the sensitivity
of the model to parameter changes. To alleviate this task, we decide to focus on
pathologies in the RANK/RANKL/OPG pathway only. In other words, we consider
the (B.1) parameters from now on as fized parameters and merely consider variations
in the remaining free parameters of (B.2). However, a systematic sensitivity analysis
of the 13 free parameters is still a rather unrealistic undertaking. Instead, we employ
a scaling approach to analyze which parameters are able to destabilize the physiolog-
ical regime and lead to the emergence of pathologies. The essence of scaling theory
is to nondimensionalize the equations by finding well-chosen scales for all the state
variables as well as the time and space variables. This leads to scaled equations where
each term decomposes into the product of a dimensional coefficient representing the
term’s magnitude and a dimensionless factor of order of unity. Once this is achieved,
it is possible to rewrite the equation in a dimensionless form where all the nondi-
mensional factors are now preceded by so-called dimensionless groups that contain all
the information about the terms’ magnitudes. The dimensionless 1D version of (3.7)
reads

(4.1)
Oy = Gual" — Goitn — G (§10::0R) — Gap(0z110:0r) + Gy ;\ng O(g1)a1,
Oris = Gzui?® — Geug, )
00r = Grijyi, + Gs0ss(95) — Gox 28— 6(h) it — Grodrdo,
Oipo = Guiai, +G120::(95 ) — Gizgroo,
0z = —Guipn + Gis e

The dimensionless groups G; and the corresponding scales can be found in Appen-
dix A. Note that all the state variables ;, qzw, % as well as # and ¢ are now dimen-
sionless, and we can directly compare the various terms to determine their relative
importance. In other words, we are now able to look for the dimensionless groups and
parameters whose perturbations have a big impact on the model’s regime.

From a biological point of view, the most significant quantity is the bone mass
density Z(,%). It contains the key information about the outcome of the remodeling
process; i.e., it determines whether we have excessive, normal, or insufficient remodel-
ing of the bone tissue. Since the outcome of the bone mass balance is determined by
the activities of osteoclasts and osteoblasts, respectively, we have to focus primarily
on the dynamics of 4; and @s. However, bearing in mind that @y depends only on
and that the fized parameters are kept at physiological values, we are assured that
the osteoclasts will recruit enough osteoblasts to replace the resorbed tissue. In other
words, the key players in the remodeling process are the osteoclasts, and at this point,
we do not have to worry about the osteoblasts. The only restriction to bear in mind
is that the number of cells admissible per area is limited due to the cells’ finite sizes;
we ensure this by considering only parameter ranges that respect the spatial limita-
tion. Osteoclasts are governed by the competition of G3 (magnitude of migration)
and G4+2£— (magnitude of stimulation by RANKL), and we define their ratio as

PR
(refer to Appendix A for the scales)
GB A CYlAq)R A
4.2 Inh=—|l4+—|r>2—"—(1+—
(42) ! G4( +<I>R> k1 Uy L2 ( +<1>R)

Cyl . koUy ( A )
= min] &g, Ly, | ——— 1+— 1.
kUL L3 B e+ ) PR
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Physiological remodeling occurs only if the two terms are well balanced, T'y =~ 1. A
first pathological scenario corresponds to I'y > 1; i.e., the BMU moves much faster
than it can nourish its population and dies out. On the other hand, if I';y <« 1, we have
too many osteoclasts produced in the cutting cone and hence too many osteoblasts
recruited in the back of the BMU. Depending on the RANKL and OPG production
rates, this can lead to an excessive production of RANKL, which in turn creates more
osteoclasts, etc. This positive feedback loop in the closing zone can be investigated by
means of the ¢ equation. A poor balance of RANKL production and its inhibition by
OPG can lead to the described dysfunction in the closing cone zone of the BMU. More
precisely, we are interested in the ratio of the production of RANKL by osteoblasts
(G7) and its inhibition by OPG binding (G1p):

o Gy N arYe - arB2

N G—lo - /€3(i)R@o aok3§>3.

(4.3) Ty

A high ratio I'; > 1 leads eventually to a singular behavior of the model (blow-up of
the cell populations). Yet another pathological mechanism involves the OPG field in
the closing zone and can lead to an early termination of the BMU. More precisely, if
we have high production of OPG (G11) in combination with low RANKL inhibition
(G13), i.e.7 if

G11~ aoYs _ B2

F _ = ~ = - =
° G'13 kg‘boq)R kgq)R

is very big, I's > 1, then the OPG field can possibly outrun the cutting cone and
inhibit the RANKL field ahead of the BMU. The resulting lack of stimulation for the
osteoclasts of the cutting cone can then lead to the extinction of the BMU. Obviously,
this phenomenon occurs only if the diffusion is high relative to the BMU speed.

4.2. Numerical experiments in one dimension. Following the outline in
section 4.1, a physiological parameter set (B.1) and (B.2) is determined. Equation
(3.7) is then solved numerically on an interval of 10 mm length over a time span of
250 days. We use a second order finite difference scheme in space and the MATLAB
built-in delay equation solver dde23 to integrate in time. The initial fields as well as
snapshots after 100 and 200 days are presented in Figure 3. Note that the cutting
cone of resorbing osteoclasts stays well confined during the whole remodeling process,
and the BMU remodels a length of approximately 5 mm in 6.5 months. There-
fore, the simulation satisfies our criteria for a physiological regime and validates the
choice of parameters. Calculating the ratios defined in section 4.1, we get I'; = 0.83,
'y =1.1-1073, and I's = 2.7 - 10~3. This is consistent with the previous discussion
of parameter sensitivity. Indeed, I'; & 1 corresponds to a well-regulated resorption
activity, I'os < 1 indicates a well-balanced RANKL distribution in the closing zone
which is necessary for a confined cutting cone, and I's < 1 confirms that there is
no risk of early termination due to excessive OPG production and diffusion. Finally,
we point out that the scale estimations in Appendix A are in agreement with the
simulation in Figure 3.

Using the same set of physiological parameters, we now investigate the situation
where a BMU starts off in the middle of two zones of high RANKL concentration (this
corresponds, e.g., to the situation of two adjacent microfractures). Figure 4 illustrates
how the cutting cone splits into two parts and remodels each zone separately. In
particular, the BMU remodeling the higher peak is more active, as can be seen in the
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Fic. 3. Physiological remodeling 1. Snapshots of the fields after 0, 100, and 200 days. OC=
osteoclasts, OB=osteoblasts, Z=bone mass. The length of the domain is 10 mm, and the OB scale is
to be multiplied by 10%. The cutting cone (OC density exceeding the steady-state level Uul,ss = 225)
stays compact and enough OB are recruited for bone regeneration in Z. The ratios are I'y = 0.83,
Iy =1.1-1073, and T's = 2.7-1073. The parameter set is given in (B.1) and (B.2). Note that
the kinks in the OB and Z fields after 100 days are due to the manual BMU initiation: until a
transient regime is attained there is a slight excess in RANKL and osteoclasts, leading to intensified
resorption in Z and more osteoblasts in OB.
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F1c. 4. Physiological remodeling II. OC=osteoclasts, OB=osteoblasts, Z=bone mass. The
length of the domain is 15 mm, and the OB scale is to be multiplied by 10*. Note that the remodeling
mechanism is adaptive: The higher RANKL peak att = 0 leads to more remodeling; see Z at t = 200.
Parameter set and corresponding I'; are as in Figure 3.

OPG

bone density evolution. In other words, the remodeling is adaptive: the bigger the
damage and hence the RANKL expression, the higher the turnover in bone tissue.
The remainder of this section is dedicated to pathologies. A first type of BMU
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F1G. 5. Excessive remodeling. OC=osteoclasts; length of the domain is 10 mm. (A) Increased
osteoclast recruitment and lower RANK-RANKL binding saturation lead to a larger but compact
cutting cone in a stable regime. The ratios are I'1 =2.6-1072, I's = 1.3-1073, and I's = 3.2-103.
The parameter set is given in (B.1) and (B.2) except for A = 2 and k1 = 9-1072. (B) Very low OPG
production by osteoblasts in the closing zone leads to a slow and unconfined cutting cone. Positive
feedback leads to instability in the closing zone. The ratios are I'y = 52.2, 'y = 1.3 - 1073, and
I's = 1.7-1073. The parameter set is given in (B.1) and (B.2) except for ap = 2-10~8 after t = 60
days (ao is kept high in the beginning to avoid numerical instabilities in the initiation zone).

malfunctioning is excessive bone remodeling and can be induced by two different im-
balances. If we decrease the ratio of osteoclast migration versus stimulation, i.e., if
we choose the free parameters such that I'y < 1, then more osteoclasts and hence
osteoblasts are recruited, and therefore the amount of old bone tissue that gets re-
modeled is expected to be much larger. If we simultaneously ensure that the feedback
loop parameter is small, I'y < 1, we can avoid instabilities in the closing zone and
expect an overall stable regime. These predictions are confirmed in the experiment
illustrated in Figure 5(A). Note in particular that the cutting cone, even though
much longer, stays confined and no instabilities occur. However, instabilities can no
longer be avoided if excessive remodeling is caused by unbalanced RANKL/OPG pro-
duction in the closing zone. In order to illustrate this, we pick a parameter set such
that I'1 = 1 but I'y > 1. As shown in Figure 5(B), the cutting cone is normal, but
the excessive RANKL production in the closing zone leads to recruitment of a new
generation of osteoclasts behind the cutting cone. These osteoclasts attract in turn
more osteoblasts which produce more RANKL, and the resulting positive feedback
loop leads to well-visible instabilities.

Yet another pathological scenario is the early termination of the remodeling pro-
cess, i.e., the extinction of the BMU before its mission is accomplished. Here, too,
we distinguish two different causes. If we choose I'y > 1, then according to our
discussion in section 4.1 the osteoclast population will die out due to deficient stimu-
lation. Consequently, the whole BMU slowly disappears; see Figure 6(A). But early
termination is also possible if osteoclasts respond well to RANKL stimulation: if the
OPG production by osteoblasts largely exceeds the RANKL expression (I's > 1) and
if the OPG diffusion is very high, then the excess of quickly spreading OPG reaches
the RANKL ahead of the cutting cone and annihilates the osteoclast stimulation.
Figure 6(B) illustrates how the resulting lack of BMU stimulation can lead to early
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F1G. 6. Insufficient remodeling. OC=osteoclasts; length of the domain is 5 mm. (A) Decreased
osteoclast recruitmen