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Abstract

In this paper, we are concerned with the error analysis for the finite element

solution of the two-dimensional exterior Neumann boundary value problem in

acoustics. In particular, we establish an explicit priori error estimates in H1

and L2- norms including both the effect of the truncation of the DtN mapping

and that of the numerical discretization. To apply the finite element method

(FEM) to the exterior problem, the original boundary value problem is reduced

to an equivalent nonlocal boundary value problem via a Dirichlet-to-Neumann

(DtN) mapping represented in terms of the Fourier expansion series. We discuss

essential features of the corresponding variational equation and its modification

due to the truncation of the DtN mapping in appropriate function spaces. Nu-

merical tests are presented to validate our theoretical results.
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1. Introduction

Numerical solutions of the scattering of time-harmonic acoustic waves by an

impenetrable bounded obstacle have been a subject of scientific investigation for

many years. It entails considerable mathematical and computational challenges

such as the oscillating character of solutions, and the unbounded domain to be

considered. Among the most conventional numerical methods addressing the

latter difficulty are the boundary integral equation methods and the coupled

finite element methods (FEM). In the application of the coupled FEM, a pop-

ular way is to decompose the unbounded domain by introducing an artificial

boundary enclosing the obstacle inside. Then, appropriate methods are used

to solve the exterior problem outside the artificial boundary while finite ele-

ment methods are employed for the solution of the Helmholtz equation on the

bounded domain between the scatterer and the artificial boundary. There are

several techniques ([1, 2, 3, 4, 5]) to realize such coupling procedure based on the

above domain decomposition scheme, and one of them is to enforce a nonlocal

boundary condition on the artificial boundary curve via deriving a Dirichlet-

to-Neumann (DtN) mapping. Therefore, the exterior problem is reduced to

a nonlocal boundary value problem, and accordingly such coupled FEM ([6])

is called the DtN finite element method (DtN-FEM). There are several meth-

ods used for the derivation of such DtN mapping. Defining the DtN mapping

through basic boundary integral operators ([2]) gives the coupling of FEM and

boundary element method (BEM), and representing the DtN mapping in terms

of Fourier expansion series leads to the coupling of FEM and the method of

separation of variables ([3, 4, 7, 8]). The present article is designed to make

contributions to the error analysis in the latter application. As an extension of

the standard DtN-FEM, authors of [9] developed a new method for the realiza-

tion of exact non-reflecting boundary conditions without the restriction on the

shape of artificial boundary, and carried out a sequence of works ([10, 11, 12]) on

the numerical analysis and computation. Corresponding to the nonlocal bound-

ary conditions, there are several type of local boundary conditions ([13, 14, 15]).
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In essential, local boundary conditions are kinds of approximate boundary con-

ditions, and the simplest local boundary condition can be obtained simply by

employing the Sommerfeld condition on the artificial boundary.

In [16], the authors derived error estimates including effects of finite element

discretization and series truncation for the exterior Laplace problem. Koyama

([17]) applied the analysis introduced in [18, 19] to consider both errors for the

Helmholtz equation. In this work, we apply the strategy in [16], the analy-

sis techniques ([20, 19]) originally developed for BEM, and the standard finite

element analysis ([21]) to derive a more evident and concise priori error esti-

mates. In addition, we perform a sequence of numerical tests to validate our

theoretical results. To be more precise, we first write out explicitly a modified

variational equation which is the result of replacing the exact DtN mapping

with the truncated DtN mapping in the exact variational equation, and then

show that such modified variational equation satisfies a G̊arding’s inequality

and admits a unique weak solution. These two features allow us to establish the

inf-sup condition ([20]) provided the finite element space satisfies the approxima-

tion property. Some analysis techniques in our presentation are closely related

with the Schatz argument originally introduced in [19] and the later work [22]

for the analysis of Ritz-Galerkin methods for indefinite bilinear forms. Starting

from the inf-sup condition, we finally succeed in deriving a priori error estimates

in H1 and L2-norms including the effects of both the discretization error and

the truncation error. Finally, as a result of theoretical analysis and numerical

tests, we report a chart reflecting the interaction of numerical parameters for

the solution of exterior acoustic scattering problems.

The remainder of the paper is organized as follows. We first describe the

classical Helmholtz exterior problem, and then reduce the exterior problem to a

nonlocal boundary value problm in Section 3. In Section 4, we discuss essential

mathematical features for the corresponding variational equation of the nonlocal

boundary value problem, and its modification due to the truncation of the DtN

mapping. In Section 5, we establish a priori error estimates for the Galerkin

solution. Finally, Section 6 presents several numerical tests to confirm our
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theoretical results.

2. Statement of the problem

Let Ω denote a bounded domain with smooth boundary Γ, and let Ωc =

R2\Ω be the unbounded exterior domain in R2 (see Figure 1 (left)). We consider

the following problem in acoustics: Given ∂ui/∂n, find u(x) ∈ C2(Ωc)∩C1(Ωc)

satisfying

∆u+ k2u = 0 in Ωc, (1)
∂u

∂n
= −∂u

i

∂n
on Γ. (2)

In the above formulation, k 6= 0 is the wave number with Im(k) ≥ 0, u = us

denotes the scattering field, and ui the given incident field; ∂/∂n means the

normal derivative on Γ (here and in the sequel, n is always the outer unit

normal to the boundary). For the uniqueness, in addition, the scattering field

u is required to satisfy the standard Sommerfeld radiation condition

lim
r→∞

r
1
2 (
∂u

∂r
− iku) = 0, (3)

where i =
√
−1, r = |x| and x = (x1, x2) ∈ R2. We term the boundary-value

problem (1)–(3) as the exterior Neumann problem in acoustics.

We state without proofs of the following uniqueness theorem, and a proof

can be found in [23].

Theorem 2.1. The exterior boundary value problem (1)–(3) has at most one

solution.

Prior to our discussion, we introduce the relevant Sobolev spaces ([20, 24]).

Suppose Ω to be an open subset of R2 with smooth boundary Γ. Let L2(Ω) be

the function space consisting of all square integrable functions over Ω equipped

with the norm

‖v‖L2(Ω) = (
∫

Ω

|v(x)|2dx)1/2.
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Figure 1: Boundary value problem (1)–(3) (left); nonlocal boundary value problem (5)–

(7)(right).

We denote by H1(Ω) the Sobolev space

H1(Ω) = {v ∈ L2(Ω)|∇v ∈ L2(Ω)}

equipped with the norm

‖v‖H1(Ω) = (
∫

Ω

|v(x)|2 + |∇v(x)|2dx)1/2.

In particular, we have H0(Ω) = L2(Ω). We denote by (H1(Ω))
′

the dual space

of H1(Ω) equipped with the norm

‖f‖(H1(Ω))′ = sup
06=v∈H1(Ω)

〈f, v〉Ω
‖v‖H1(Ω)

,

where 〈·, ·〉Ω stands for the standard L2 duality pairing between (H1(Ω))
′

and

H1(Ω). Let L2(Γ) be the space of all square integrable functions v on Γ equipped

with the norm

‖v‖L2(Γ) = (
∫

Γ

|v(x)|2dx)1/2.

We define by Hs(Γ), ∀ s ∈ R, the Sobolev space

Hs(Γ) = {v ∈ L2(Γ)|‖v‖Hs(Γ) <∞}

equipped with the norm

‖v‖2Hs(Γ) =
|a0|2

2
+
∞∑
n=1

(1 + n2)s(|an|2 + |bn|2), (4)
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where an and bn are Fourier coefficients of v.

3. Nonlocal boundary value problem

We introduce an artificial circular boundary ΓR of radius R (see Figure 1

(right)) which is large enough to enclose the entire region Ω. The artificial

boundary decomposes the exterior domain Ωc into two subdomains denoted by

ΩR and ΩRc respectively, where ΩR is the annular region between Γ and ΓR,

and ΩRc = R2 \ Ω ∪ ΩR the unbounded exterior region. The boundary value

problem (1)–(3) can be equivalently replaced by the following nonlocal boundary

value problem: Given ∂ui/∂n, find u(x) ∈ C2(ΩR) ∩ C1(ΩR) such that

∆u+ k2u = 0 in ΩR, (5)
∂u

∂n
= −∂u

i

∂n
on Γ, (6)

∂u

∂n
= Tu on ΓR. (7)

Here, the DtN mapping T : Hs(ΓR) 7→ Hs−1(ΓR), for ∀ϕ ∈ Hs(ΓR), 1/2 ≤ s ∈
R, is defined as

Tϕ :=
∞∑
n=0

′ kH
(1)
n

′

(kR)

πH
(1)
n (kR)

∫ 2π

0

ϕ(R,φ) cos(n(θ − φ))dφ . (8)

Here and throughout the presentation, the prime ′ behind the summation means

that the first term in the summation is multiplied by 1/2. Condition (7) on ΓR

in terms of the DtN mapping T also defines a nonlocal boundary condition for

u on ΓR since the Dirichlet data u over the entire boundary ΓR are required

to compute the Neumann data ∂u/∂n at a single point x ∈ ΓR. Prior to

the discussion of mapping properties for T , we point out some properties for

the Hankel function H
(1)
n (·) in the next two Lemmas ([25]). To simplify the

presentation throughout the dissertation, we shall denote by c > 0 a generic

constant whose precise value is not required and may change line by line.

Lemma 3.1. There exists a positive constant c such that∣∣∣∣∣H
(1)
n−1(z)

H
(1)
n (z)

∣∣∣∣∣ ≤ c, ∀n ∈ Z, (9)
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where the constant c is dependent on the argument z but independent of n.

Lemma 3.2. There exists a positive constant c such that

1
1 + |n|

∣∣∣∣∣∣H
(1)
n

′

(z)

H
(1)
n (z)

∣∣∣∣∣∣ ≤ 1
(1 + n2)

1
2

∣∣∣∣∣∣H
(1)
n

′

(z)

H
(1)
n (z)

∣∣∣∣∣∣ ≤ c, ∀n ∈ Z, (10)

where the constant c is dependent on the argument z but independent of n.

Theorem 3.1. The DtN mapping T in (8) is a bounded linear operator from

Hs(ΓR) to Hs−1(ΓR) for any constants s ≥ 1
2 .

Proof: For the convenience of proof, we expand the function ϕ into the Fourier

series

ϕ(R, θ) =
∑
n∈Z

anH
(1)
n (kR)einθ =

∑
n∈Z

ϕne
inθ

for ∀ϕ ∈ Hs(ΓR), s ≥ 1/2. Here, ϕn is defined as

ϕn = anH
(1)
n (kR) =

1
2π

∫ 2π

0

ϕ(R,φ)e−inφdφ .

As a consequence, we have an equivalent form of (8)

Tϕ :=
∑
n∈Z

kanH
(1)
n

′

(kR)einθ =
∑
n∈Z

kϕn
H

(1)
n

′

(kR)

H
(1)
n (kR)

einθ .

Now, we use an alternative of (4)

‖v‖2Hs(ΓR) =
∑
n∈Z

(1 + n2)s|vn|2 , ∀ s ∈ R

for ∀ v(R, θ) ∈ Hs(ΓR). Therefore, we have, by Lemma 3.2,

‖Tϕ‖2Hs−1(ΓR) =
∑
n∈Z

(1 + n2)s|ϕn|2
|k|2

1 + n2

∣∣∣∣∣∣H
(1)
n

′

(kR)

H
(1)
n (kR)

∣∣∣∣∣∣
2

≤ c
∑
n∈Z

(1 + n2)s|ϕn|2 = c‖ϕ‖2Hs(ΓR)

for ∀ s ≥ 1/2, and this leads to

‖Tϕ‖Hs−1(ΓR) ≤ c‖ϕ‖Hs(ΓR).
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Here c > 0 is a constant dependent on kR but independent of ϕ. This completes

the proof.

The following uniqueness for the nonlocal boundary value problem (5)–(7)

can be easily established.

Theorem 3.2. The nonlocal boundary value problem (5)–(7) has at most one

solution.

Proof: It is sufficient to prove that the corresponding homogeneous boundary

value problem of (5)–(7) has only the trivial solution. Suppose u0 is a solution

of the corresponding homogeneous boundary value problem of (5)–(7). Now let

u1 be the solution of the exterior Dirichlet problem for the Helmholtz equation:

∆u1 + k2u1 = 0, in ΩRc, (11)

u1 = u0, on ΓR, (12)

lim
r→∞

r
1
2 (
∂u1

∂r
− iku1) = 0. (13)

Then u1 has the representation in the form

u1(r, θ) =
∑
n∈Z

anH
(1)
n (kr)einθ, ∀r ≥ R. (14)

Computing the normal derivative for (14) and taking the limit as r → R, we

obtain, on ΓR,

∂u1

∂n
=

∑
n∈Z

kH
(1)
n

′

(kR)

2πH(1)
n (kR)

∫ 2π

0

u1(R,φ)ein(θ−φ)dφ

= Tu1

= Tu0 (15)

because of the boundary condition (12). In the mean time, the nonlocal bound-

ary condition (7) gives
∂u0

∂n
= Tu0 on ΓR. (16)

Therefore, we have

∂u1

∂n
− ∂u0

∂n
= Tu0 − Tu0 = 0, on ΓR. (17)
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If we define the function u ∈ C2(ΩR ∪ ΩRc) ∩ C1(ΩR) as

u =

u0, x ∈ ΩR,

u1, x ∈ ΩRc,

then by (12) and (17), we can see that both u and ∂u/∂n are continuous across

the interface ΓR. Therefore, u is the solution of the homogeneous transmission

problem which is equivalent to the corresponding homogeneous boundary value

problem of (1)–(3). The latter has been proved to be uniquely solvable. That

leads to

u ≡ 0 in Ωc, ⇒ u0 ≡ 0 in ΩR.

This completes the proof.

3.1. Modified nonlocal boundary value problem

One needs to truncate the infinite series of the exact DtN mapping at a finite

order in practical computations to obtain an approximate DtN mapping written

as

TNϕ =
N∑
n=0

′ kH
(1)
n
′
(kR)

πH
(1)
n (kR)

∫ 2π

0

ϕ(R,φ) cos(n(θ − φ))dφ (18)

for ∀ϕ ∈ Hs(ΓR), s ≥ 1/2. Here, the non-negative integer N is called the

truncation order of the DtN mapping. Consequently, we arrive at a modified

nonlocal boundary value problem consisting of (5), (6) and

∂u

∂n
= TNu on ΓR . (19)

To end this section, we include the point estimate for the difference of T and

TN in the next theorem. This estimate will be needed later.

Theorem 3.3. Suppose DtN mappings T and TN are defined as in (8) and

(18) respectively. Then, for given ϕ ∈ Hs(ΓR) , s ∈ R, there holds, for ∀ t ≥ 0,

‖(T − TN )ϕ‖Hs−1(ΓR) ≤ c
ε(N,ϕ)
N t

‖ϕ‖Hs+t(ΓR) , (20)

where c > 0 is a constant dependent on kR but independent of ϕ and N , and

ε(N,ϕ) ≤ 1 is a function of the truncation order N and the function ϕ satisfying

ε(N,ϕ)→ 0 as N →∞.
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Proof: Suppose ϕ(R, θ) assumes the form

ϕ(R, θ) =
∞∑
n=0

′
(an cos(nθ) + bn sin(nθ)) ,

and hence

‖ϕ‖Hs(ΓR) = { |a0|2
2

+
∞∑
n=1

(1 + n2)s(|an|2 + |bn|2)}1/2 < +∞ . (21)

Then Tϕ and TNϕ on ΓR read

Tϕ =
∞∑
n=0

′ kH
(1)
n

′

(kR)

H
(1)
n (kR)

(an cos(nθ) + bn sin(nθ)) (22)

and

TNϕ =
N∑
n=0

′ kH
(1)
n

′

(kR)

H
(1)
n (kR)

(an cos(nθ) + bn sin(nθ)) , (23)

respectively. Subtracting (23) from (22), we arrive at

(T − TN )ϕ =
∞∑

n=N+1

kH
(1)
n

′

(kR)

H
(1)
n (kR)

(an cos(nθ) + bn sin(nθ)) . (24)

By the definition of the norm on the Sobolev space Hs(ΓR) and Lemma 3.2, we

have

‖(T − TN )ϕ‖Hs−1(ΓR) = {
∞∑

n=N+1

(1 + n2)s−1|k|2
∣∣∣∣∣∣H

(1)
n

′

(kR)

H
(1)
n (kR)

∣∣∣∣∣∣
2

(|an|2 + |bn|2)}1/2

= {
∞∑

n=N+1

(1 + n2)s|k|2 1
1 + n2

∣∣∣∣∣∣H
(1)
n

′

(kR)

H
(1)
n (kR)

∣∣∣∣∣∣
2

(|an|2 + |bn|2)}1/2

≤ c{
∞∑

n=N+1

(1 + n2)s(|an|2 + |bn|2)}1/2

≤ c

N t
{
∞∑

n=N+1

(1 + n2)s+t(|an|2 + |bn|2)}1/2

= c
ε(N,ϕ)
N t

{ |a0|2
2

+
∞∑
n=1

(1 + n2)s+t(|an|2 + |bn|2)}1/2

= c
ε(N,ϕ)
N t

‖ϕ‖Hs+t(ΓR) . (25)
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Here, c > 0 is a constant dependent on kR but independent of ϕ and n, and

ε(N,ϕ) is defined as

ε(N,ϕ) =

{
∞∑

n=N+1

(1 + n2)s+t(|an|2 + |bn|2)} 1
2

{ |a0|2
2

+
∞∑
n=1

(1 + n2)s+t(|an|2 + |bn|2)} 1
2

≤ 1 , (26)

and a function of the truncation order N and ϕ for given values of s and t, gen-

erated by the addition of leading terms to the summation with positive terms

for the construction of the norm on the space Hs+t(ΓR). Clearly, ε(N,ϕ) → 0

for ∀ϕ ∈ Hs(ΓR) as N →∞ because of (21). This completes the proof.

4. Weak formulation

We study in this section the weak formulation of (5)–(7), and its correspond-

ing modified weak formulation of (5), (6) and (19). Essential mathematical

features for both formulations will be presented.

The standard weak formulation of the nonlocal boundary value problem

(5)–(7) reads: Given ∂ui/∂n, find u(x) ∈ H1(ΩR) such that

a(u, v) + b(u, v) = `(v) , ∀ v ∈ H1(ΩR) , (27)

where a(u, v) =
∫

ΩR
∇u · ∇v̄dx − k2

∫
ΩR

uv̄dx and b(u, v) = −
∫

ΓR
(Tu)v̄ds

are sesquilinear forms defined on H1(ΩR) × H1(ΩR), and ` defined by `(v) =∫
Γ
∂ui

∂n v̄ds ∈ H−1/2(Γ) is a linear functional on H1(ΩR) dependent on ∂ui

∂n ∈
H−1/2(Γ). In addition, we point out that the operator T is self-adjoint, and

hence the sesquilinear form a(·, ·) + b(·, ·) defined in (27) is Hermitian.

Theorem 4.1. The sesquilinear form a(u, v) + b(u, v) in (27) satisfies

|a(u, v) + b(u, v)| ≤ c‖u‖H1(ΩR)‖v‖H1(ΩR), ∀u, v ∈ H1(ΩR), (28)

where c > 0 is the continuity constant independent of u and v.
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In order to obtain the existence for a weak solution of the variational equation

(27), we need the next theorem.

Theorem 4.2. The sesquilinear form a(u, v)+b(u, v) in (27) satisfies a G̊arding’s

inequality in the form

Re{a(v, v) + b(v, v)} ≥ α‖v‖2H1(ΩR) − β‖v‖2H1−ε(ΩR), ∀ v ∈ H1(ΩR), (29)

where α > 0, β ≥ 0, and 1/2 > ε > 0 are constants independent of v.

Proof: We begin with the sesquilinear form a(v, v) which reads

a(v, v) =
∫

ΩR

|∇v|2dx− k2

∫
ΩR

|v|2dx

= ‖v‖2H1(ΩR) − (k2 + 1)‖v‖2H0(ΩR). (30)

Therefore, the Sobolev embedding theorem gives

Re{a(v, v)} ≥ ‖v‖2H1(ΩR) − c‖v‖2H1−ε(ΩR), (31)

where c > 0 and 1/2 > ε > 0 are constants. Next, we consider the sesquilinear

form b(v, v) which takes the form

b(v, v) = −
∫

ΓR

Tvvds

= −kR
π

∞∑
n=0

′H
(1)
n

′

(kR)

H
(1)
n (kR)

∫ 2π

0

∫ 2π

0

v(R,φ)v(R, θ) cos(n(θ − φ))dθdφ .

(32)

Applying the recurrence relations of the Hankel function

H
(1)
n

′

(kR)

H
(1)
n (kR)

=
H

(1)
n−1(kR)

H
(1)
n (kR)

− n

kR

to the right-hand side of (32) , we arrive at

b(v, v) =
1
π

∞∑
n=1

n

∫ 2π

0

∫ 2π

0

v(R,φ)v(R, θ) cos(n(θ − φ))dθdφ

− kR

π

∞∑
n=0

′H
(1)
n−1(kR)

H
(1)
n (kR)

∫ 2π

0

∫ 2π

0

v(R,φ)v(R, θ) cos(n(θ − φ))dθdφ

= b1(v, v)− b2(v, v),
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where

b1(v, v) =
1
π

∞∑
n=1

n

∫ 2π

0

∫ 2π

0

v(R,φ)v(R, θ) cos(n(θ − φ))dθdφ,

and

b2(v, v) =
kR

π

∞∑
n=0

′H
(1)
n−1(kR)

H
(1)
n (kR)

∫ 2π

0

∫ 2π

0

v(R,φ)v(R, θ) cos(n(θ − φ))dθdφ.

Therefore, we have

b1(v, v) ≥ π
∞∑
n=1

n(|an|2 + |bn|2) ≥ 0 , (33)

where an and bn are coefficients of the Fourier series of v ∈ H1/2(ΓR). In

addition, from Lemma 3.1, there holds

b2(v, v) ≤ |b2(v, v)|

=

∣∣∣∣∣kRπ
∞∑
n=0

′H
(1)
n−1(kR)

H
(1)
n (kR)

∫ 2π

0

∫ 2π

0

v(R,φ)v(R, θ) cos(n(θ − φ))dθdφ

∣∣∣∣∣
≤ c‖v‖2H0(ΓR), (34)

where c > 0 is a constant. By (33) and (34), we arrive at

Re{b(v, v)} = Re{b1(v, v)− b2(v, v)} ≥ −c‖v‖2H0(ΓR). (35)

Furthermore, the Sobolev embedding theorem and the trace theorem yield

‖v‖2H0(ΓR) ≤ c‖v‖2H 1
2−ε(ΓR)

≤ c‖v‖2H1−ε(ΩR), (36)

where c > 0 and 1/2 > ε > 0 are constants. Consequently, (35) and (36) lead

us to

Re{b(v, v)} ≥ −c‖v‖2H1−ε(ΩR), (37)

where c > 0 is a constant. Finally, the combination of (31) and (37) yields (29).

This completes the proof.

Now, the existence result follows immediately from the Fredholm Alternative

theorem: Uniqueness implies the existence. As a consequence of Theorems 3.2

and 4.2, we have the following theorem.
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Theorem 4.3. The variational equation (27) admits a unique solution u ∈
H1(ΩR).

4.1. Modified weak formulation

We now consider the modified variational equation of (27) for uN ∈ H1(ΩR),

a(uN , v) + bN (uN , v) = `(v), ∀ v ∈ H1(ΩR) , (38)

where bN (uN , v) = −
∫

ΓR
(TNuN )v̄ds.

Theorem 4.4. The sesquilinear form a(u, v) + bN (u, v) satisfies:

1. |a(u, v) + bN (u, v)| ≤ c‖u‖H1(ΩR)‖v‖H1(ΩR) ∀u, v ∈ H1(ΩR);

2. Re{a(v, v) + bN (v, v)} ≥ α‖v‖2H1(ΩR) − β‖v‖H1−ε(ΩR), ∀ v ∈ H1(ΩR),

where c > 0, α > 0, β ≥ 0 and 1/2 > ε > 0 are all constants independent of u

and v.

Proof: We only show the proof of the second part. Following the same

argument in Theorem 4.2, we obtain

Re{a(v, v)} ≥ ‖v‖2H1(ΩR) − c‖v‖2H1−ε(ΩR), ∀ v ∈ H1(ΩR), (39)

where c > 0 and 1/2 > ε > 0 are constants. In addition, bN (v, v) can be written

in the form

bN (v, v) =
1
π

N∑
n=1

n

∫ 2π

0

∫ 2π

0

v(R,φ)v(R, θ) cos(n(θ − φ))dθdφ

− kR

π

N∑
n=0

′H
(1)
n−1(kR)

H
(1)
n (kR)

∫ 2π

0

∫ 2π

0

v(R,φ)v(R, θ) cos(n(θ − φ))dθdφ

= bN1 (v, v)− bN2 (v, v), (40)

where

bN1 (v, v) =
1
π

N∑
n=1

n

∫ 2π

0

∫ 2π

0

v(R,φ)v(R, θ) cos(n(θ − φ))dθdφ (41)

and

bN2 (v, v) =
kR

π

N∑
n=0

′H
(1)
n−1(kR)

H
(1)
n (kR)

∫ 2π

0

∫ 2π

0

v(R,φ)v(R, θ) cos(n(θ−φ))dθdφ. (42)
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We are able to show that

bN1 (v, v) =
1
π

N∑
n=1

n

∫ 2π

0

∫ 2π

0

v(R,φ)v(R, θ) cos(n(θ − φ))dθdφ

= π

N∑
n=1

n(|an|2 + |bn|2)

≥ 0, (43)

and

bN2 (v, v) ≤ |bN2 (v, v)|

=

∣∣∣∣∣kRπ
N∑
n=0

′H
(1)
n−1(kR)

H
(1)
n (kR)

∫ 2π

0

∫ 2π

0

v(R,φ)v(R, θ) cos(n(θ − φ))dθdφ

∣∣∣∣∣
≤ c‖v‖2H0(ΓR) . (44)

Here, an and bn are coefficients of the Fourier series of v ∈ H1/2(ΓR), and c > 0

is a constant. Inequalities (43) and (44) yield

Re{bN (v, v)} ≥ −c‖v‖2H0(ΓR), (45)

and this implies further

Re{bN (v, v)} ≥ −c‖v‖2H1−ε(ΩR), (46)

due to the Sobolev embedding theorem and the trace theorem. Here, c > 0 and

1/2 > ε > 0 are constants. Consequently, by the combination of (39) and (46),

we complete the proof of the second part immediately.

Theorem 4.5. There exists a constant N0 ≥ 0 such that the modified varia-

tional equation (38) has at most one solution uN ∈ H1(Ω) for N ≥ N0.

Proof: We argue by contradiction. If the theorem does not hold, then for

each N0, there is an N = N(N0) ≥ N0 and uN = uN(N0) ∈ H1(ΩR) such that

a(uN , ϕ) + bN (uN , ϕ) = 0 , ∀ϕ ∈ H1(ΩR) , (47)

and ‖uN‖H1(ΩR) = 1. There is a subsequence denoted by {uN(i)} which con-

verges weakly to some u ∈ H1(ΩR). We may assume that this subsequence also
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converges strongly to u in H1−s(ΩR) for 0 < s < 1 since H1(ΩR) is compactly

embedded in H1−s(ΩR).

Now for N = N(i), we write

0 = a(uN , ϕ) + bN (uN , ϕ)

= a(uN − u, ϕ) + bN (uN − u, ϕ) + bN (u, ϕ)− b(u, ϕ)

+a(u, ϕ) + b(u, ϕ) . (48)

For smooth test function ϕ ∈ C∞(Ω̄R), we see that for s < 1/2, by the general-

ized Cauchy-Schwartz inequality (see p.50 of [26] or p.166 of [24]),

|a(uN − u, ϕ)| ≤ c‖uN − u‖H1−s(ΩR)‖ϕ‖H1+s(ΩR) → 0 as i→∞ ,

and similarly,

|bN (uN − u, ϕ)| ≤ c‖uN − u‖H1−s(ΩR)‖ϕ‖H1+s(ΩR) → 0 as i→∞ ,

in view of the trace theorem. Also,

|bN (u, ϕ)− b(u, ϕ)| = |〈(T − TN )u, ϕ〉ΓR |

≤ ‖(T − TN )u‖H−1/2−s(ΓR)‖ϕ‖H1/2+s(ΓR) → 0 as i→∞

as a consequence of Theorem 3.3. Finally, taking the limit of (48) as i → ∞
gives

a(u, ϕ) + b(u, ϕ) = 0 . (49)

By density of smooth functions in H1(ΩR), (49) holds for all ϕ ∈ H1(ΩR) which

further implies that u = 0 because of Theorem 4.3. Therefore, uN(i) → 0 in

L2(ΩR), so

‖uN(i)‖H0(ΩR) → 0 as i→∞ . (50)

For N = N(i), on the other hand, we have

‖uN‖2H1(ΩR) = (k2 + 1)‖uN‖2H0(ΩR) + a(uN , uN )

≤ (k2 + 1)‖uN‖2H0(ΩR) + a(uN , uN ) + bN1 (uN , uN )

= (k2 + 1)‖uN‖2H0(ΩR) + a(uN , uN ) + bN (uN , uN ) + bN2 (uN , uN )

= (k2 + 1)‖uN‖2H0(ΩR) + bN2 (uN , uN ) (51)
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because of (30), (43), (40) and (47) , respectively. Moreover, we see from (34)

b2(uN , uN ) ≤ c‖uN‖2H1/2+ε(ΩR) ≤ c‖uN‖1+2ε
H1(ΩR)‖uN‖1−2ε

H0(ΩR) (52)

due to the interpolation inequality for 0 < θ = 1/2 + ε < 1 ([27]). Finally, (51)

and (52), together with the fact that ‖uN‖H1(ΩR) = 1, give

1 ≤ (k2 + 1)‖uN‖2H0(ΩR) + c‖uN‖1−2ε
H0(ΩR) (53)

which contradicts (50). This completes the proof.

Theorem 4.4 means that that one can apply the Fredholm Alternative: Unique-

ness implies existence. By Theorem 4.5, we have the following theorem.

Theorem 4.6. There exists a constant N0 ≥ 0 such that the modified varia-

tional equation (38) admits a unique solution uN ∈ H1(ΩR) for N ≥ N0.

5. Finite element analysis

Our main goal in this section is to establish a priori error estimates for the

finite element solution of (38) in terms of the finite element meshsize h and the

truncation order N in the appropriate Sobolev spaces.

5.1. Galerkin formulation

Let Sh be the standard finite element space. Now we consider the Galerkin

formulation of (38): Given ∂ui/∂n, find uh ∈ Sh ⊂ H1(ΩR) satisfying

a(uh, vh) + bN (uh, vh) = `(vh), ∀ vh ∈ Sh. (54)

We can show ([20]) that the discrete sesquilinear form a(uh, vh) + bN (uh, vh)

satisfies the BBL-condition as implication of the following:

G̊arding’s inequality + Uniqueness + Approximation property of Sh ⇒ BBL-

condition.

Theorem 5.1. If the sesquilinear form a(v, w) + bN (v, w) in (38) satisfies the

following conditions:
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1. Re{a(v, v) + bN (v, v) + (Cv, v)H1(ΩR)} ≥ α‖v‖2H1(ΩR), ∀ v ∈ H1(ΩR);

2. {v ∈ H1(ΩR)|a(v, w) + bN (v, w) = 0, ∀w ∈ H1(ΩR)} = {0};
3. Finite element space Sh ⊂ H1(ΩR) satisfies the standard approximation

property.

Then, there exists a constnat h0 > 0 such that a(v, w)+bN (v, w) for 0 < h ≤ h0

satisfies the BBL condition in the form

sup
06=wh∈Sh

|a(vh, wh) + bN (vh, wh)|
‖wh‖H1(ΩR)

≥ γ‖vh‖H1(ΩR), ∀ vh ∈ Sh . (55)

Here, C is a compact operator from H1(ΩR) to H1(ΩR), (·, ·)H1(ΩR) stands for

the inner product on H1(ΩR), α > 0 is a constant, and γ > 0 is the inf-sup

constant independent of h.

Remark: In [28], it has been shown that the inf-sup constant γ in (55) has

the order of 1/k for the one-dimensional Helmholtz equation ; more precisely,

there exist positive constants c1, c2 independent of the wave number k such that
c1
k ≤ γ ≤ c2

k . In brief, the larger for the magnitude of wave number k, the more

oscillate for the solution of the Helmholtz equation, i.e. the finer mesh required

in finite element discretization. In this paper, we have no desire to deal with

high frequency acoustic waves. Interested readers are refered to [28], [29], [30],

and to name a few.

Once the BBL condition (55) is established, we are in the position to derive

a priori error estimates for the finite element solution uh ∈ Sh.

5.2. Asymptotic error estimates

A priori error estimates including error effects of both the numerical dis-

cretization and the truncation of infinite series seem to be more reasonable. To

this end, we first derive an upper bound of numerical errors analogous to the

well-known Céa’s lemma in the positive definite case.
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Theorem 5.2. There exist constants h0 > 0 and N0 ≥ 0 such that for any

0 < h ≤ h0 and N0 ≤ N

‖u− uh‖H1(ΩR) ≤ c{ inf
wh∈Sh

‖u− wh‖H1(ΩR) + sup
06=wh∈Sh

|b(u,wh)− bN (u,wh)|
‖wh‖H1(ΩR)

},
(56)

where c > 0 is a constant independent of h and N .

Proof: We begin with the BBL condition (55)

γ‖vh‖H1(ΩR) ≤ sup
0 6=wh∈Sh

|a(vh, wh) + bN (vh, wh)|
‖wh‖H1(ΩR)

, ∀ vh ∈ Sh,

where γ > 0 is a constant. Replacing vh with uh − vh ∈ Sh in the above

inequality, we arrive at

γ‖uh − vh‖H1(ΩR) ≤ sup
06=wh∈Sh

|a(uh − vh, wh) + bN (uh − vh, wh)|
‖wh‖H1(ΩR)

, ∀ vh ∈ Sh.
(57)

According to (27) and (54), we have, for ∀wh ∈ Sh,

a(u,wh) + bN (u,wh) = `(wh) + bN (u,wh)− b(u,wh) (58)

and

a(uh, wh) + bN (uh, wh) = `(wh), (59)

respectively. Therefore, subtracting (58) from (59) leads to

a(uh − u,wh) + bN (uh − u,wh) = b(u,wh)− bN (u,wh), ∀wh ∈ Sh. (60)

In the mean time, a simple manipulation gives

a(uh − vh, wh) + bN (uh − vh, wh) = a(uh − u+ u− vh, wh) + bN (uh − u+ u− vh, wh)

= a(uh − u,wh) + bN (uh − u,wh) +

a(u− vh, wh) + bN (u− vh, wh). (61)
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Therefore, by (60) and (61), the inequality (57) implies that

γ‖uh − vh‖H1(ΩR) ≤ sup
0 6=wh∈Sh

|a(uh − vh, wh) + bN (uh − vh, wh)|
‖wh‖H1(ΩR)

= sup
0 6=wh∈Sh

|a(u− vh, wh) + bN (u− vh, wh) + a(uh − u,wh) + bN (uh − u,wh)|
‖wh‖H1(ΩR)

= sup
0 6=wh∈Sh

|a(u− vh, wh) + bN (u− vh, wh) + b(u,wh)− bN (u,wh)|
‖wh‖H1(ΩR)

≤ sup
0 6=wh∈Sh

|a(u− vh, wh) + bN (u− vh, wh)|
‖wh‖H1(ΩR)

+ sup
06=wh∈Sh

|b(u,wh)− bN (u,wh)|
‖wh‖H1(ΩR)

≤ c‖u− vh‖H1(ΩR) + sup
0 6=wh∈Sh

|b(u,wh)− bN (u,wh)|
‖wh‖H1(ΩR)

, (62)

where c is a positive constant. Consequently, the triangular inequality and the

formulation (62) yield, ∀ vh ∈ Sh,

‖u− uh‖H1(ΩR) ≤ ‖u− vh‖H1(ΩR) + ‖uh − vh‖H1(ΩR)

≤ (1 +
c

γ
)‖u− vh‖H1(ΩR) +

1
γ

sup
06=wh∈Sh

|b(u,wh)− bN (u,wh)|
‖wh‖H1(ΩR)

,

and this further leads to

‖u− uh‖H1(ΩR) ≤ c{ inf
vh∈Sh

‖u− vh‖H1(ΩR) + sup
06=wh∈Sh

|b(u,wh)− bN (u,wh)|
‖wh‖H1(ΩR)

},

where c > 0 is a constant independent of h and N . This completes the proof.

According to the estimate (56), we are able to observe that the numerical

errors are dominated by two single terms. We study the first term correlated

with the meshsize h by using the approximation theory, and the second term

dependent on the truncation order N by employing the Fourier analysis. In the

following, starting with the estimate (56), we first derive a priori error estimates

in the energy space H1(ΩR), and then a priori error estimates measured in L2-

norm to conclude this section.

Theorem 5.3. Suppose that u ∈ Ht(ΩR), for ∀ 2 ≤ t ∈ R. Then, there exist

constants h0 > 0 and N0 ≥ 0 such that for any 0 < h ≤ h0 and N0 ≤ N

‖u− uh‖H1(ΩR) ≤ c(ht−1 +
ε(N, u)
N t−1

)‖u‖Ht(ΩR), (63)
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where c > 0 is a constant independent of h and N , and ε(N, u) ≤ 1 is a function

of the truncation order N and the function u satisfying ε(N, u)→ 0 as N →∞.

Proof: We have known from Theorem 5.2 that

‖u− uh‖H1(ΩR) ≤ c{ inf
vh∈Sh

‖u− vh‖H1(ΩR) + sup
06=wh∈Sh

|b(u,wh)− bN (u,wh)|
‖wh‖H1(ΩR)

},
(64)

where c is a positive constant. Regarding the first term in (64), the approxima-

tion property of the finite element space Sh gives

inf
vh∈Sh

‖u− vh‖H1(ΩR) ≤ cht−1‖u‖Ht(ΩR), (65)

where c is a positive constant independent of h. We now consider the second

term in (64). According to the trace theorem, there exists a bounded linear

operator γ : H1(ΩR)→ H1/2(ΓR) such that

|b(u,wh)− bN (u,wh)|
‖wh‖H1(ΩR)

=
|〈(T − TN )γu, γwh〉ΓR |

‖wh‖H1(ΩR)
=
|〈γ∗(T − TN )γu,wh〉ΩR |

‖wh‖H1(ΩR)
,

(66)

where 〈·, ·〉ΓR is the standard L2 duality pairing betweenH−1/2(ΓR) andH1/2(ΓR),

and γ∗ : H−1/2(ΓR) → (H1(ΩR))
′

is the adjoint operator of γ. As a conse-

quence, we have

sup
0 6=wh∈Sh

|b(u,wh)− bN (u,wh)|
‖wh‖H1(ΩR)

= sup
0 6=wh∈Sh

|〈γ∗(T − TN )γu,wh〉ΩR |
‖wh‖H1(ΩR)

= ‖γ∗(T − TN )γu‖(H1(ΩR))′

≤ c‖(T − TN )γu‖H−1/2(ΓR)

≤ c
ε(N, u)
N t−1

‖γu‖Ht−1/2(ΓR)

≤ c
ε(N, u)
N t−1

‖u‖Ht(ΩR) (67)

because of Theroem 3.3 and the boundedness of operators γ and γ∗. The proof

is hence established by following a combination of (65) and (67).

Remark: The estimate (63) can be easily simplified by replacing ε(N, u) by

1, since ε(N, u) ≤ 1. However, we decide to keep the form (63). We note that

21



ε(N, u) depends on both N and u although its precise dependence can not be

determined explicitly. Numerical tests in Section 6 show that the convergence

of the function ε(N, u) is extremely fast, and its rate decays as the number kR

increases.

We now extend the error estimate in the energy space to the one measured

in the L2(ΩR) space.

Theorem 5.4. Suppose that u ∈ Ht(ΩR), for ∀ 2 ≤ t ∈ R. Then there exist

constants h0 > 0 and N0 ≥ 0 such that for any 0 < h ≤ h0 and N0 ≤ N

‖u− uh‖L2(ΩR) ≤ c(ht +
ε(N, u)
N t

)‖u‖Ht(ΩR), (68)

where c > 0 is a constant independent of h and N , and ε(N, u) is a function of

the truncation order N and the function u satisfying ε(N, u)→ 0 as N →∞.

Proof: Suppose that u is the solution of the variational equation (27), and uh is

the finite element solution of the variational equation (54). By (60) in Theorem

5.2, we have

a(e, vh) + bN (e, vh) + b(u, vh)− bN (u, vh) = 0, ∀ vh ∈ Sh, (69)

where e = u − uh is the finite element error. Now, we consider the following

boundary value problem: Find w ∈ C2(ΩR) ∩ C1(ΩR) satisfying

∆w + k2w = e in ΩR, (70)
∂w

∂n
= 0 on Γ, (71)

∂w

∂n
= Tw on ΓR. (72)

Let w be a weak solution of nonlocal boundary value problem (70)–(72), and

hence w satisfies

a(v, w) + bN (v, w) + b(v, w)− bN (v, w) = (v, e)L2(ΩR), ∀ v ∈ H1(ΩR), (73)

where (·, ·)L2(ΩR) stands for the inner product on L2(ΩR). In particular, we

choose v to be e in (73), and then obtain

a(e, w) + bN (e, w) + b(e, w)− bN (e, w) = (e, e)L2(ΩR) = ‖e‖2L2(ΩR). (74)
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Subtracting (69) from (74) leads to, ∀ vh ∈ Sh,

‖e‖2L2(ΩR) = a(e, w−vh)+bN (e, w−vh)+b(e, w)−bN (e, w)+bN (u, vh)−b(u, vh).

(75)

Theorem 4.4, the approximation property of Sh and the regularity theory imply

that

|a(e, w − vh) + bN (e, w − vh)| ≤ c‖e‖H1(ΩR)‖w − vh‖H1(ΩR)

≤ ch‖e‖H1(ΩR)‖w‖H2(ΩR)

≤ ch‖e‖H1(ΩR)‖e‖L2(ΩR), (76)

where c is a positive constant. Following the same argument in Theorem 5.3

and choosing t = 2, we arrive at, by the regularity theory,

|b(e, w)− bN (e, w)| ≤ c1
ε1(N, u)
N

‖e‖H1(ΩR)‖e‖L2(ΩR). (77)

Similarly, we also have

|b(u, vh)− bN (u, vh)| ≤ |b(u,w − vh)− bN (u,w − vh)|+ |b(u,w)− bN (u,w)|

≤ c2
ε2(N, u)h
N t−1

‖u‖Ht(ΩR)‖e‖L2(ΩR) + c3
ε3(N, u)
N t

‖u‖Ht(ΩR)‖e‖L2(ΩR).

(78)

In above formulations, {εj(N, u)}|j=3
j=1 ≤ 1 are similar to the function ε(N, u) in

Theorem 5.3, and {cj}|j=3
j=1 are positive constants. Therefore, by the combination

of the inequalities (76)–(78) and (63), the equation (75) yields

‖u− uh‖L2(ΩR) ≤ c(ht +
ε(N, u)
N t

)‖u‖Ht(ΩR), ∀ 2 ≤ t ∈ R, (79)

where c > 0 is a constant independent of h and N . This completes the proof.

The error estimates (63) and (68) demonstrate that the finite element ap-

proximation uh converges to u, the weak solution of variational equation (27),

as h→ 0 and N →∞.
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6. Numerical experiments

In this section, we present the results of several numerical tests to validate

our theoretical results.

6.1. A model problem

We first introduce a model problem whose analytical solutions can be ob-

tained easily so that we are able to evaluate the accuracy of the numerical

solutions. We compute the scattering, by an infinite circular cylinder of radius

R0, of a plane wave ui = eikx·d propagating along the positive x1 axis with the

sound-hard boundary condition on the surface of scatterer. x = (x1, x2) ∈ R2

and d = (1, 0) which is the unit vector describing the direction of traveling of

the incident wave. The mathematical model can be formulated as the exterior

boundary value problem (1)–(3) with the boundary Γ to be a circle of radius

R0. In this case the exact solution u assumes the form

u(r, θ) = −
∑
n∈Z

in
Jn
′
(kR0)

H
(1)
n

′

(kR0)
H(1)
n (kr)einθ, ∀ r ≥ R0 . (80)

In the following simulations, the infinite Fourier series (80), representing the

exact solution, are truncated when the relative change due to an additional

mode in the fields is below 10−6.

We choose the artificial boundary ΓR to be a circle of radius R (R > R0)

with the same center as Γ. Therefore, the computational region ΩR is the

annulus between Γ and ΓR (see Figure 3). We map the computational annulus

region {x|R0 ≤ |x| ≤ R} into a rectangle {(r, θ)|r ∈ [R0, R], θ ∈ [0, 2π)} ([2])

discretized by uniform rectangle elements, and employ the piecewise linear basis

functions {ϕi}|i=NPi=1 in terms of r and θ to construct the finite element space Sh.

Here NP = (Nr + 1)×Nθ is total number of elements, and Nr and Nθ denote

the number of elements in the radial and angular direction respectively. During

the following numerical tests, if there is no specification, we use the correlation

rule Nθ ∼ 4kR0Nr to guide our discretization of the computational domain ΩR.

A direct solver is employed for the solutions of the resulting linear system.
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Γ

ΓR

ΩR

R0

R

1

Figure 2: The computational domain of the model problem

To find the finite element solution of (54), we must be able to numerically

impose the nonlocal boundary condition ∂u
∂n = TNu into the evaluation of the

sesquilinear form bN (u, v) = −
∫

ΓR
TNuvds. In the discrete formulation, this

amounts to computing the integrals∫
ΓR

TNϕjϕids. (81)

As for our computation, the finite element space Sh consists of piecewise linear

functions ϕj , j = 1, 2, . . . , NP , and most of them will vanish on the boundary

ΓR correspondingly eliminating the complexity of the above procedure. More

precisely, the computation of integrals (81) amounts to evaluating the following

series ([25])

∫
ΓR

TNϕjϕids =
N∑
n=0

′ kRH
(1)
n

′

(kR)

πH
(1)
n (kR)

∫ 2π

0

∫ 2π

0

ϕj(R,φ)ϕi(R, θ) cos(n(θ − φ))dθdφ

=
4kR
π∆θ2

N∑
n=0

′H
(1)
n

′

(kR)

H
(1)
n (kR)

(1− cos(n∆θ))2

n4
cos(n(θj − θi)). (82)

Here the prime ′ behind the summation implies that the first term in the sum-

mation is multiplied by 1/2. The term in the summation as n = 0 can be

obtained by taking the limit n→ 0.
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6.2. Numerical tests

In the first test, we compute the model problem to report the effects of nu-

merical discretization errors. According to Theorem 5.3 and Theorem 5.4, as

the truncation order N of the DtN mapping is appropriate, we should be able

to observe that ‖u− uh‖H1(ΩR) = O(h) and ‖u− uh‖L2(ΩR) = O(h2) for the

finite element space Sh. We choose R0 = 1 and R = 2. Three different cases

for the wave numbers k = 1, 2 and 4 are considered. Figure 3 shows the log-log

plot of errors measured in L2 and H1-norms with respect to 1/h = Nr/(R−R0)

(here and in the sequel, we refer to this equation for the size of h). Slopes of

-2 on the left and -1 on the right verify the convergence order of O(h2) and O(h).

10
0

10
1

10
−3

10
−2

10
−1

10
0

 

 
k=1
k=2
k=4

1/h

‖u
−

u
h
‖ L

2
(Ω

R
)

1

10
0

10
1

10
−2

10
−1

10
0

10
1

 

 
k=1
k=2
k=4

1/h

‖u
−

u
h
‖ H

1
(Ω

R
)

1

Figure 3: Log-log plot vs 1/h = Nr/(R − R0) for errors in L2-norm (left), and H1-norm

(right).

Remark: The quality of discrete numerical solutions to the Helmholtz equa-

tion depends significantly on the physical wave number k. It is known that the

meshsize h in the finite element computations should be proportional to the

wave number k ([31]). Therefore, Figure 3 also indicates that the accuracy de-
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cays correspondingly as the wave number k increases under the same resolution.

The second numerical test is concerned with the effects of truncation order

N on the total numerical errors, and its correlation with that of finite element

discretization. Here, we only consider the errors measured in L2-norm, and

should observe the convergence order O(ε(N, u)( 1
N )2) according to (68), pro-

vided sufficiently small meshsize h. We set R0 = 0.5, R = 1, and kR = 4, and

compute for four different values of h = 1/4, 1/12, 1/20, 1/30, respectively. The

log-log plots of errors are presented in Figure 4 (left) showing that the errors

due to the truncation of the DtN mapping decay extremely fast. For instance,

we can see the super-exponential convergence order for all different values of

h. It is actually expected since we are aware that ε(N, u) → 0 exponentially

for sufficiently smooth functions u as N → ∞. Meanwhile, the term O(( 1
N )2)

contributes more to the convergence rate. Secondly, the accuracy arrives at the

optimal as N = No = 3 for h = 1/4 and No = 4 for all other values of h.

Here, No, the optimal truncation order of the DtN mapping, is defined as the

minimum number of N required to attain the optimal order of accuracy with

respect to a given set of meshsize h and the number kR (we will show No is

also dependent on kR in the next test). It implies that the rate at which 1/No

decreases is much lower than the rate h decays for optimal order of accuracy.

More precisely, 1/No = 1/3 is required as h = 1/4, while 1/No = 1/4 is needed

as h = 1/30. In addition, we observe that there are no numerical improvements

as the truncation order N > No is employed for each value of h, and this point

can be easily understood because of the inherent restriction of accuracy related

with the value of h. We experience the similar restriction of accuracy related

with the value of truncation order N as well, i.e. there are no improvments of

accuracy for the employment of h less than some value corresponding to a given

value of N . For instance, looking at the vertical line for N = 3 in the Figure 4

(left), we can see that the error decays from 10−1 to 10−2 as the mesh size h

decreases from 1/4 down to 1/12, and remains stable for h = 1/20 and 1/30.

Finally, we revisit the numerical rule N ≥ kR proposed by Harari et al.
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1Figure 4: Log-log plot of errors in L2-norm vs the truncation order N for R0 = 0.5, R = 1

and kR = 4 (left); The correlation between the truncation order N and the parameter kR as

h = 1/15 (right).

([32, 33]) in the third numerical test. We choose the inner radius R0 = 1 and

the outer radius R = 2, and the invariant meshsize h = 1/15. The log-log

plots of numerical errors measured in L2-norm are presented in Figure 4 (right)

showing that the optimal truncation order No increases linearly with kR in

order to arrive at the optimal order of accuracy. The optimal truncation order

No equals to 4 as kR = 4, while No goes up to 13 as kR = 20. In addition, with

respect to each value of kR, as long as the optimal order of accuracy is attained,

no improvement of accuracy can be observed as N > No. Our numerical results

are in good agreement with the numerical rule N ≥ kR. Since the meshsize h is

invariant, we also can see that the optimal accuracy decays as the wave number

k increases. Finally, we want to indicate that, although the value of R stays

invariant in the presented results, the optimal truncation order No increases

with kR as well if the wave number k remains unchanged.
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As a summary of above numerical tests, we give the following Chart (see

Figure 5) guiding numerical computations as applying the coupling of the finite

element method and the analytical method for the solution of exterior acous-

tic scattering problems. Here, we use ε(N) = ε(N, u), and the L2 error, and

the interaction Chart with error estimates in the energy space can be attained

accordingly.

N

‖u− uh‖L2

h

kR

N ≥ kR ‖u− uh‖L2 ∼ ǫ(N)
N2

‖u− uh‖L2 ∼ O(h2)kh = constant

ht ∼ ǫ(N)
Nt

(t ≥ 1)

< 1

1

Figure 5: The correlation among numerical errors and parameters.
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