brought to you by

E

OPNET Technologies, Inc. OPNETNORK2011

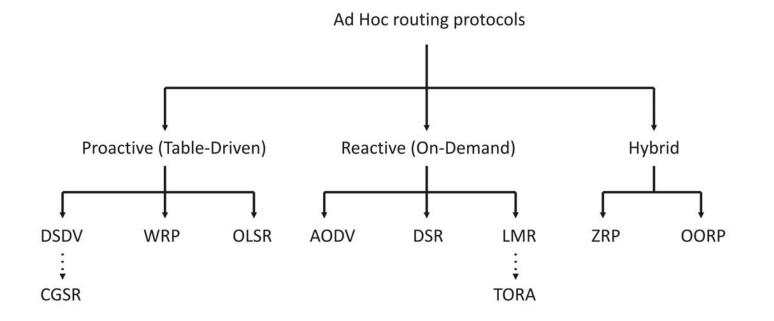
Performance Analysis of Routing Protocols for Wireless Ad-Hoc Networks

Sukhchandan Lally Ljiljana Trajković

Communication Networks Laboratory http://www.ensc.sfu.ca/~ljilja/cnl School of Engineering Science

Simon Fraser University, Vancouver, British Columbia Canada

CONFIDENTIAL - RESTRICTED ACCESS: This information may not be disclosed, copied, or transmitted in any format without the prior written consent of OPNET Technologies, Inc. Used with permission of the Author.



Roadmap

- Ad-Hoc Routing Protocols
- Ad-Hoc On-Demand Distance Vector (AODV) Algorithm
- Dynamic Source Routing (DSR) Algorithm
- Optimized Link State Routing (OLSR) Algorithm
- OPNET Simulated Network Topologies
- Simulation Scenarios
- Simulation Results
- Conclusion
- References

Ad-Hoc Routing Protocols

- Ad-hoc routing protocols control routing packets between computing devices in a mobile ad-hoc network
- Mobile Ad-hoc Network (MANET) routing protocols can be classified as unicast, multicast, and broadcast
- The unicast routing protocols can be classified as reactive (on-demand) and proactive (table-driven) based on the method of acquiring information

Ad-Hoc On Demand Distance Vector Algorithm

- AODV is a reactive routing protocol that is suitable for dynamic selfstarting and ad-hoc networks
- AODV defines Route Request (RREQ), Route Reply (RREP), and Route Error (RERR) message types

Attribute	Value		
Route Discovery Parameters	Default		
Active Route Timeout (seconds)	3		
Hello Interval (seconds)	uniform (2, 2.1) uniform (10, 10.1)		
Allowed Hello Loss	2		
Net Diameter	16		

AODV Parameters

Dynamic Source Routing Algorithm

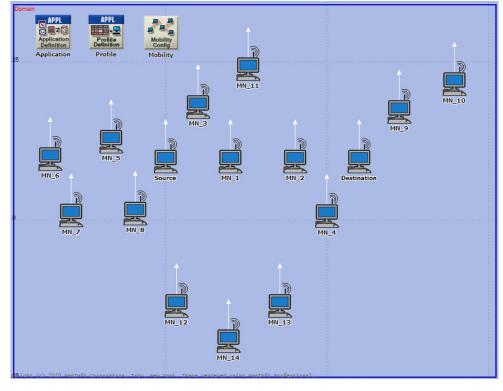
- DSR is an on-demand routing protocol based on the concept of source routing
- Each routed packet carries in its header a complete and ordered list of nodes
- The protocol consists of two major phases: route discovery and route maintenance
- The route maintenance mechanism uses RERR packets and acknowledgments

DSR Parameters

Attribute	Value		
Route Cache Parameters	()		
Max Cached Routes	Infinity		
Route Expiry Timer (seconds)	60 300		
Route Cache Export	Do Not Export		
Send Buffer Parameters	Default		
Route Discovery Parameters	()		
Request Table Size (nodes)	16		
Maximum Request Table Identifi	16		
Maximum Request Retransmissio	16		

Optimized Link State Routing Algorithm

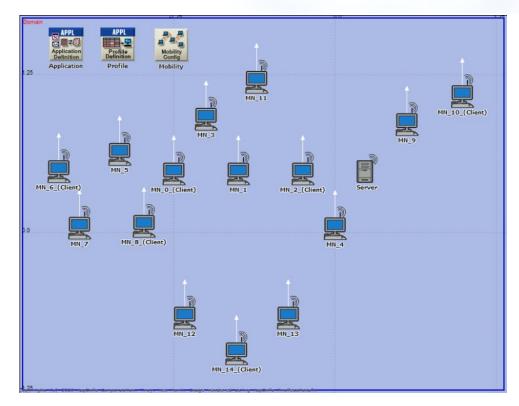
- OLSR is a proactive routing protocol
- OLSR does not require reliable control message delivery and can sustain reasonable loss of control messages
- OLSR uses Topology Control (TC) messages to provide sufficient link state information


OLSR Parameters

Attribute	Value				
Willingness	Willingness Default				
Hello Interval (seconds)	2	10	2	10	
TC Interval (seconds)	5	5	25	25	
Neighbor Hold Time (seconds)	6.0				
Topology Hold Time (seconds)	15.0				
Duplicate Message Hold Time (seconds)	30.0				

OPNET Simulated Network Topologies

- OPNET models for an ad-hoc network in a highly dynamic environment with UDP and TCP connection scenarios were created
- The routing protocol and mobility differ in each scenario
- Each scenario consists of 16 wireless local area network (WLAN) nodes



UDP connection scenario

OPNET Simulated Network Topologies

- Each node covers an area of approximately 675 m
- Each node can only see its neighboring nodes because the distance between neighboring nodes is approximately 500 m

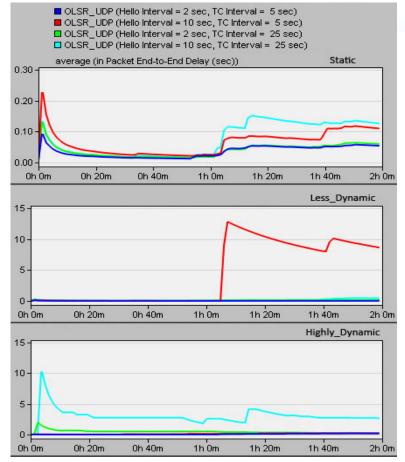
TCP connection scenario

Simulation Scenarios

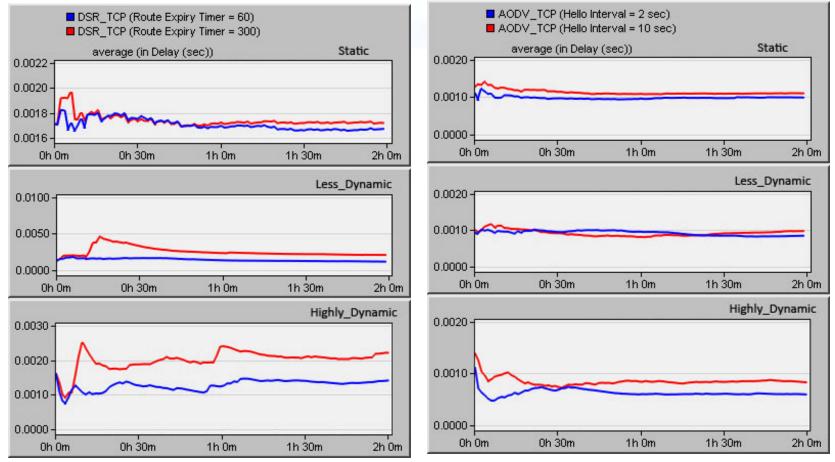
- Simulation tool: OPNET Modeler 16.0.A
- The first scenario: a static scenario used to compare its performance with other scenarios
- The second scenario: some nodes move with very low speed comparable to human walk (1 m/s)
- The third scenario: included are high-speed nodes that move with maximum speed equal to the speed of cars in a city (50 km/h)
- For each scenario, we consider two types of connections (UDP and TCP) and three ad-hoc routing protocols

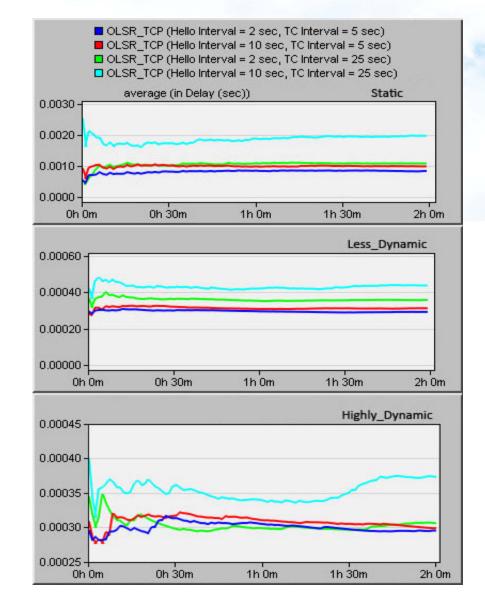
OPNET Model of UDP Connection

- UDP connection scenarios: a two-hour interval of the Matrix III movie trace was streamed
- We created 24 simulation scenarios for UDP connection
- The faster the nodes find a route, the faster they may send the video, which causes smaller end-to-end delay
- AODV routing protocol with hello message interval of 2 s has better route discovery time as compared to other scenarios
- DSR routing protocol with route expiry timer of 300 s has better route discovery time
- OLSR is a proactive routing protocol and has a route to the destination before it begins sending data


Average route discovery time in the UDP connection scenarios: AODV and DSR

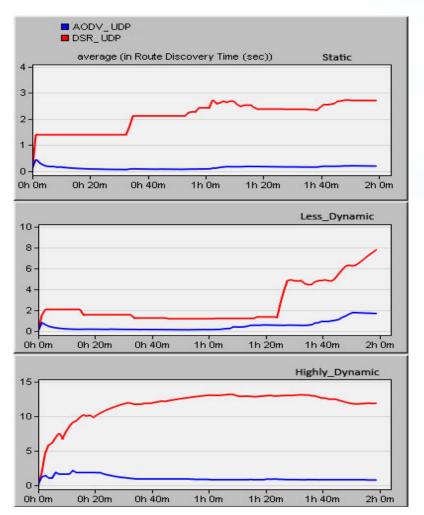
OPNETWOR


Average route discovery time in the UDP connection scenarios: OLSR

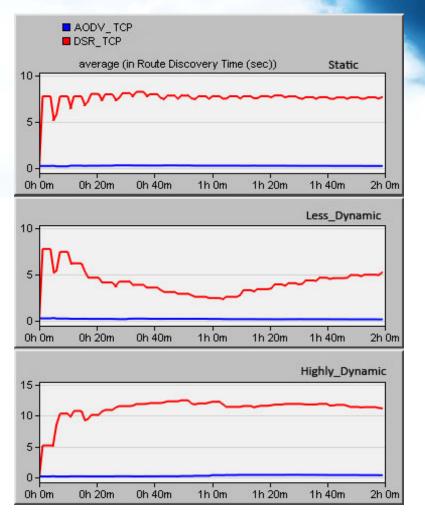

 The OLSR routing protocol with hello message interval of 2 s and topology control message interval of 5 s performs better in finding a route to the destination and in dealing with the node movement

OPNET Model of TCP Connection

- TCP connection scenarios consist of six client nodes that download 50 kbytes of data
- In the scenarios with the DSR routing protocol, we used two route expiry timers: 60 s and 300 s

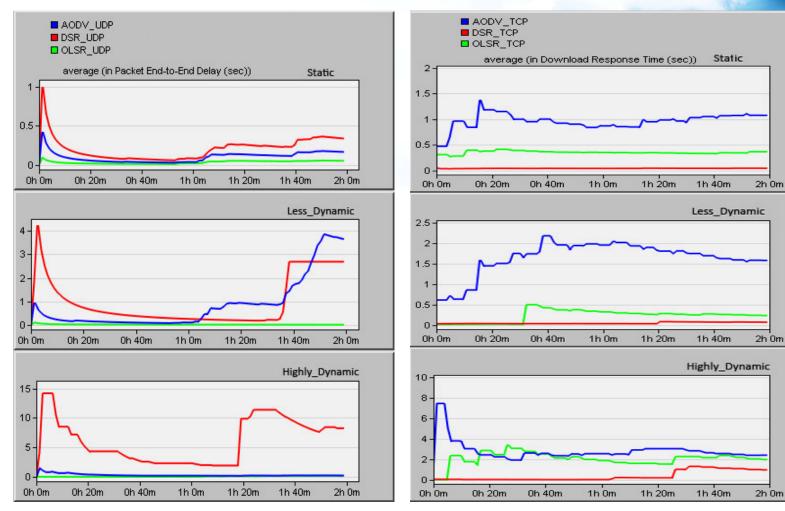


Average wireless delay in the TCP connection ad-hoc network for OLSR



Simulation Results: Route Discovery Time

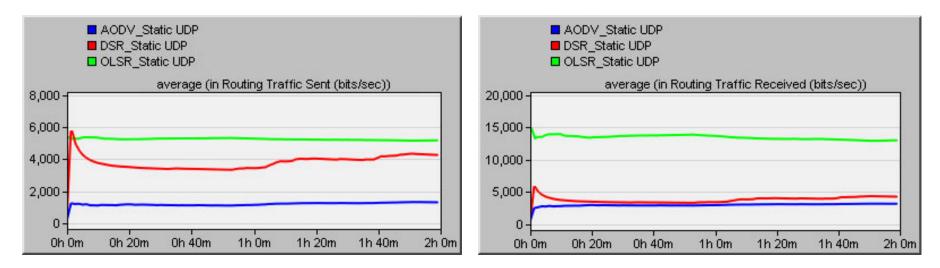
- Large delays occur if the route discovery operation fails to find a route to the destination
- In the static UDP scenario, the route discovery phase in AODV is approximately 10 times faster than the route discovery phase of DSR
- The route discovery phase in AODV routing protocol is independent of the network topology
- The DSR route discovery time is higher in scenarios that include movements
- Unlike AODV, route discovery phase in DSR depends on network topology


Average route discovery time (s) in UDP connection ad-hoc network scenarios: AODV and DSR cases.

Average route discovery time (s) in TCP connection ad-hoc network scenarios: AODV and DSR cases

Simulation Results: End-to-End Delay/Download Response Time

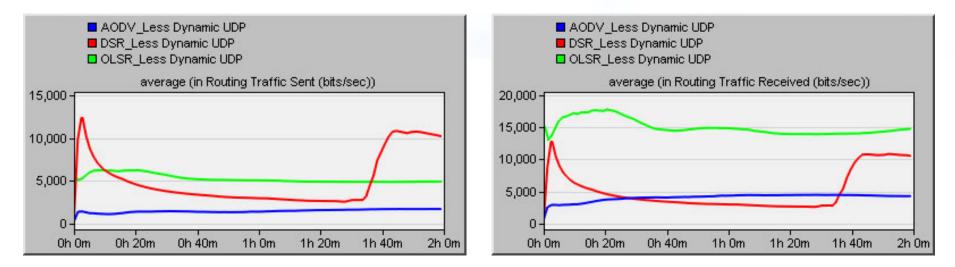
- The end-to-end delay in the static network for all three routing protocols is less than approximately 0.5 s for most simulation scenarios
- AODV end-to-end delay is almost constant for all mobilities
- The OLSR has the smallest delay in all mobility scenarios as it discovers routes before attempting to send any data
- DSR has the smallest download response time



Average packet end-to-end delay (s) in all UDP connection ad-hoc network

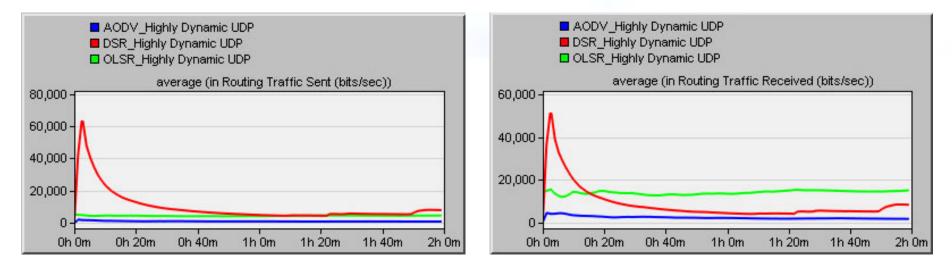
Average download response time (s) in TCP connection adhoc network scenarios

Simulation Results: Routing Traffic Overhead


- OLSR has much larger routing traffic overhead in comparison to AODV and DSR
- The protocol sends approximately 5,500 bps and receives approximately 14,000 bps of routing traffic

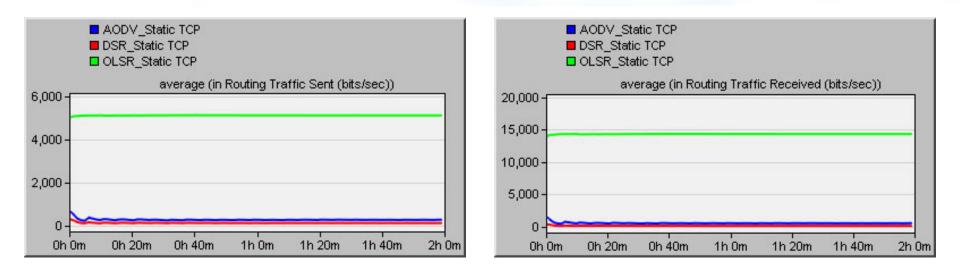
Average routing traffic sent and received in the static ad-hoc network in UDP connection

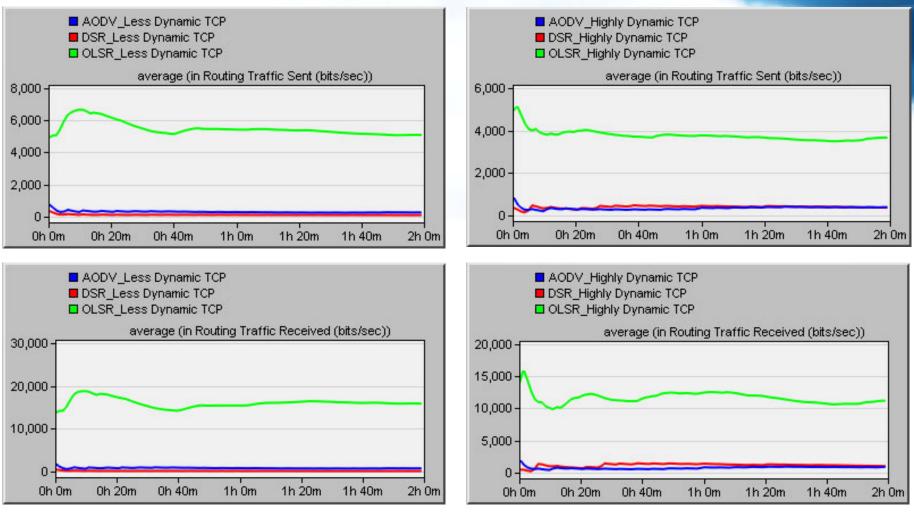
Simulation Results: Routing Traffic Overhead


 There is a slight increase in routing traffic sent and received in case of static UDP connection network

Average routing traffic sent (top) and received (bottom) in the less dynamic ad-hoc network in UDP connection scenarios

Simulation Results: Routing Traffic Overhead


 The DSR sends more routing traffic in presence of highly dynamic nodes and in video streaming scenario


Average routing traffic sent and received in the highly dynamic ad-hoc network in UDP connection scenarios

- DSR routing traffic in video streaming scenario increases as nodes movement increases.
- DSR has consistent results in file downloading and it generates the least amount of routing traffic compared to AODV and OLSR.
- OLSR generates a very large amount of traffic sent and received.

Average routing traffic sent and received in a static ad-hoc network in TCP connection scenarios

Average routing traffic sent and received in a less dynamic ad-hoc network in TCP connection scenarios Average routing traffic sent and received in a highly dynamic ad-hoc network in TCP connection scenarios

23

Conclusions

- AODV is the most flexible routing protocol in the presence of movement
- DSR does not perform well in presence of movement
- DSR suffers from less flexibility in presence of movement
- In case of TCP connection scenarios, DSR shows good performance in download response time and has low routing traffic overhead
- OLSR routing protocol maintains the demand for end-to-end delay value less than 20 ms
- In case of TCP connection scenarios, OLSR does not perform well
- In the presence of movement, DSR and OLSR impose large routing traffic overhead

References

- List of ad-hoc routing protocols [Online]. Available: http://en.wikipedia.org/wiki/ List_of_ad-hoc_routing_protocols.
- S. K. Sarkar, T. G. Basavaraju, and C. Puttamadappa, Ad Hoc Mobile Wireless Networks: Principles, Protocols, and Applications. New York: Auerbach Publications, 2007.
- E. Royer and C. Toh, "A review of current routing protocols for ad-hoc mobile wireless networks," *IEEE Personal Communication Magazine*, vol. 6, pp. 46–55, Apr. 1999.
- W. Hrudey and Lj. Trajkovic, "Streaming video content over IEEE 802.16/WiMAX broadband access," OPNETWORK 2008, Washington, DC, Aug. 2008.
- G. Jayakumar and G. Ganapathy, "Performance comparison of mobile ad-hoc network routing protocol," *International Journal of Computer Science and Network Security*, vol. 7, no. 11, pp. 77–84, Nov. 2007.
- J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, and J. Jetcheva, "A performance comparison of multi-hop wireless ad hoc network routing protocols," in *Proc. 4th Annual ACM/IEEE International Conference on Mobile Computing and Networking*, Dallas, Texas, USA, Oct. 1998, pp. 85–97.

References

- Ad hoc on-demand distance vector (AODV) Routing [online]. Available: http://www.ietf.org/rfc/rfc3561.txt.
- The dynamic source routing protocol (DSR) for mobile ad hoc networks for IPv4 [Online]. Available: http://www.ietf.org/rfc/rfc4728.txt.
- I. W. H. Ho, K. K. Leung, J. W. Polak, and R. Mangharam, "Node connectivity in vehicular ad hoc networks with structured mobility," in *Proc. 32nd IEEE Conference on Local Computer Networks*, Clontarf Castle, Dublin, Ireland, Oct. 2007, pp. 635–642.
- Optimized link state routing protocol (OLSR) [Online]. Available: http://www.ietf.org/rfc/rfc3626.txt.
- Cisco network planning solution standard models user guide [Online]. Available: http://www.cisco.com/en/US/docs/net_mgmt/network_planning_ solution/1.0/user/guide/standard/model/stdmodgu.pdf.
- C. Mbarushimana and A. Shahrabi, "Comparative study of reactive and proactive routing protocols performance in mobile ad hoc networks," in *Proc. 21st International Conference on Advanced Information Networking and Applications Workshops*, Niagara Falls, Ontario, Canada, May 2007, pp. 679–684.