Collection of BCNET BGP Traffic Tanjila Farah, Sukhchandan Lally, Rajvir Gill, Nabil Al-Rousan, Ravinder Paul, Don Xu, and Ljiljana Trajković Communication Networks Laboratory, Simon Fraser University, Vancouver, British Columbia, Canada

Physical overview of BCNET packet capture

- Primary BCNET backbone is a 10 Gbps Ethernet network with backup 1 Gbps links planned for rapid failover
- Data are sent to Traffic Filtering Device (Net Optics Director 7400) and to Data Capture Device (NinjaBox 5000)
- Optical Test Access Point (TAP) splits the signal into two distinct paths • 30% of the split is sent to the Traffic Filtering Device that filters
- packets and sends filtered data to the Data Capture Device
- The transit providers are connected to BCNET via 1 Gbps and 10 Gbps network links

Routing among BGP systems

- De facto Inter-Autonomous System (AS) routing protocol
- Operates over a reliable transport protocol (TCP)
- Exchanges network reachability information among BGP systems based on policy decision, shortest AS_path, and Next_hop router
- Employs the Best Path Selection algorithm to select the routing path Applies policies to the information contained in routing updates and accepts/rejects update information based on attributes

NET OPTICS DIRECTOR 7400

Net Optics Director 7400 application diagram

 The filtering device selects traffic of interest based on communication protocols, IP addresses, port numbers, and the virtual local area network (VLAN)

BCNET	TRAFFIC COL	LECT
-------	-------------	------

AS	Number of packets	Statistics (packets per minute)	Number of connections
6327	30,653	min: 4 max: 96 mean: 11	683
13768	512,672	min: 23 max: 336 mean: 63	588
852	511,820	min: 79 max: 645 mean: 177	155

Traffic generated by the BGP update messages for the three BCNET transit providers

Walrus AS topology graph of the collected BCNET traffic

- Total of 230,424 BGP update messages were identified
- The AS topology graph consists of 982 nodes, 981 tree-links, and 441 non tree-links
- It is created using the value of the BGP AS_path attribute in BGP update messages
- The local AS number is added to the head of the list by a BGP peer when it advertises its prefixes to the next external BGP (eBGP) peer
- The graph links reflect a policy relationship between BCNET transit providers
- The centers of the three clusters correspond to BCNET transit providers with AS numbers 852 (Telus Advanced Communications), 6327 (Shaw Communications), and 13768 (Peer 1 Network Inc.)
- Clusters consist of 155, 683, and 588 AS nodes, respectively

ITC 2011 23rd International Teletraffic Congress September 2011, San Francisco, USA

ION

XFP interface with pluggable transceivers

RJ45 socket for time synchronization

- Data Acquisition and Generation (DAG) is the main component of the Data Capture Device (NinjaBox 5000)
- DAG monitors and inspects traffic on 10 Gbps Ethernet LAN networks
- The card enables 100% packet capture at full line rates even on high-
- speed links operating at full line utilization • Transfers up to 7 Gbps of traffic to software applications for further
- analysis DAG enables network managers to develop solutions that inspect security threats and measure network performance

BCNET TRAFFIC MAP

Net Optics Director 7400 application diagram

- British Columbia's network extends to 1,400 kilometers and connects cities of Kamloops, Kelowna, Prince George, Vancouver, and Victoria
- The map shows the traffic bound for CANARIE (Canada's Advanced) Research and Innovation Network), the commercial Internet (Transits), and peering traffic at the Seattle Internet Exchange (Seattle IX)

REFERENCES

- BCNET [Online]. Available: http://www.bc.net.
- Y. Rekhter, T. Li, and S. Hares, "A Border Gateway Protocol 4 (BGP-4)," IETF RFC 1771. • BGP Best Path Selection Algorithm [Online]. Available: http://www.cisco.com/en/US/tech/tk365.
- Data Monitoring Switch [Online]. Available: http://www.netoptics.com/pdf/datasheet/PUBDIRD.pdf.
- Welcome to DAG [Online]. Available: http://www.endace.com. • Wireshark [Online]. Available: http://www.wireshark.org.
- Walrus Graph Visualization Tool [Online]. Available: http://www.caida.org/tools/visualization/walrus.
- Lj. Trajković, "Analysis of Internet topologies," IEEE Circuits and Systems Magazine, vol. 10, no. 3, pp. 48–54, Third Quarter 2010.

FPGA with fan fitted

