

SCALABLE LIVE VIDEO IN MAX/MSP/JITTER

by

Xiaonan Ma
Bachelor of Electrical Engineering, University of Ottawa

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

In the
School of Engineering Science

© Xiaonan Ma 2010

SIMON FRASER UNIVERSITY
Fall 2010

All rights reserved. However, in accordance with the Copyright Act of Canada,
this work may be reproduced, without authorization, under the conditions for Fair
Dealing. Therefore, limited reproduction of this work for the purposes of private

study, research, criticism, review and news reporting is likely to be in accordance
with the law, particularly if cited appropriately.

 ii

APPROVAL

Name: Xiaonan Ma
Degree: Master of Applied Science
Title of Thesis: Scalable live video in Max/MSP/Jitter

Examining Committee:
 Chair: Dr. Andrew Rawicz

Professor, School of Engineering Science

 Dr. Ivan V. Bajić
Senior Supervisor
Assistant Professor, School of Engineering Science

 Dr. Jie Liang
Supervisor
Associate Professor, School of Engineering Science

 Dr. Henry Daniel
Examiner
Associate Professor, School for the Contemporary Arts

Date Defended/Approved: 2010/10/28 _____________________________

 iii

ABSTRACT

This thesis describes the mcl.jit software library we developed to support

scalable live video coding and transmission in Max/MSP/Jitter. Video codecs

from this library have been successfully used in several telematic dance

performances created by dancers and media artists from the School for the

Contemporary Arts at Simon Fraser University during the last two years. The

mcl.jit library also includes Region-Of-Interest (ROI) coding and motion detection

objects, which can be used in a variety of interactive multimedia applications

besides distributed dance performance.

We also developed a combined bit rate and frame rate control method for

live video for the mcl.jit library. This method differs from previously developed

frame rate control approaches in that it does not assume that video is pre-

recorded before frame rate adjustment. The proposed method was compared to

another state-of-the-art method through an extensive subjective evaluation study,

the results of which indicate the superiority of the proposed approach.

Keywords: Scalable video coding; Live video streaming; Max/MSP/Jitter; Region
of Interest; SPIHT; Motion tracking; Rate control.

 iv

ACKNOWLEDGEMENTS

First, I would like to thank my Senior Supervisor, Dr. Ivan V. Bajić, for his

help and support during my research studies. I would also like to thank my Co-

Supervisor Dr. Jie Liang, and the Examiner Dr. Henry Daniel from the School for

the Contemporary Arts, who have helped me a lot during this project. I have

gained considerable experience while working with them in the last two years.

I would also like to thank Dr. Andrew Rawicz for being the Chair of my

M.A.Sc thesis defence. Many thanks to my examining committee for taking time

to read my thesis and provide helpful comments.

 v

TABLE OF CONTENTS

Approval... ii 
Abstract... iii 
Acknowledgements... iv 
Table of Contents...v 
List of Figures .. vii 
List of Tables... ix 

1: Introduction... 1 
1.1  Motivation ... 1 
1.2  Challenges and Approaches... 2 
1.3  Max/MSP/Jitter ... 5 

1.3.1  Max/MSP/Jitter Overview.. 5 
1.3.2  Jitter Networking ... 7 
1.3.3  Compiling Jitter External Objects.. 8 

1.4  Summary of Contributions .. 9 
1.4.1  Performances.. 9 
1.4.2  Publications... 13 

1.5  Thesis Preview ... 14 

2: Scalable video coding using spiht.. 15 
2.1  Versions of SPIHT .. 15 
2.2  Speed and Compression Efficiency of SPIHT .. 17 
2.3  SPIHT External Objects for Max/MSP/Jitter ... 19 

2.3.1  SPIHT with Region Of Interest (ROI) Coding.. 19 
2.4  Performance evaluation within Max/MSP/Jitter .. 21 

2.4.1  Encoding speed .. 22 
2.4.2  Visual delay... 25 

2.5  Scalable live video transmission... 27 
2.5.1  Point-to-point and point-to-multipoint live video streaming 28 
2.5.2  Peer-based live video multicast .. 28 

2.6  ROI coding demonstration .. 32 

3: Combined frame rate and bit rate control .. 36 
3.1  TCP-Friendly Rate Control (TFRC) .. 37 

3.1.1  Network setup in Jitter .. 37 
3.1.2  TCP-Friendly Rate Control.. 39 
3.1.3  Encoding bit rate control by TFRC.. 42 

3.2  Motion detection ... 44 
3.2.1  Using motion detection in Max/MSP/Jitter .. 45 

 vi

3.2.2  Application in dance performances... 48 
3.3  Frame rate control based on motion trend.. 49 

3.3.1  Frame rate control in the USC method ... 50 
3.4  Frame rate control based on instantaneous motion ... 54 

3.4.1  Implementation in Max/MSP/Jitter .. 55 
3.5  Combined frame rate and bit rate control ... 56 
3.6  Comparison of frame rate control methods .. 57 
3.7  Results of Subjective Evaluations... 61 

3.7.1  Frame rate control comparison by α values ... 62 
3.7.2  Frame rate control comparison by viewers' prior experience 66 

4: Conclusions and future Goals... 74 
4.1  Future goals.. 75 

4.1.1  Video coding ... 75 
4.1.2  Audio coding ... 75 
4.1.3  Multiple ROI coding... 76 

Reference List ... 78 
Appendix 1: Compiling Jitter Externals Under Mac OS X ... 82 
Appendix 2: Compiling Jitter Externals Under Windows... 89 
Appendix 3: Interfacing One’s Code with Jitter Environment.. 97 

Max Wrappers .. 97 
Defining a Jitter Class... 101 

Appendix 4: Electronic files... 110 

 vii

LIST OF FIGURES

Figure 1.1: An example of a Jitter patch ... 6 
Figure 1.2: Jitter networking patches .. 7 
Figure 1.3: T2 dance performance: interactive dance performance (left); live

street view from a moving car projected on the main stage behind the
dancer (right). ... 10 

Figure 1.4: Snapshots from T2: Echo ... 11 
Figure 1.5: Imprint dance performance... 12 
Figure 1.6: Imprint II dance performance.. 13 
Figure 2.1: Decoding the embedded bit stream produced by SPIHT: the more bits

are decoded, the better the resulting image quality 17 
Figure 2.2: Original (a) and decoded Lena image using (b) arithmetic and (c)

binary SPIHT coding at 0.5 bpp. .. 18 
Figure 2.3: Subband/wavelet coefficients corresponding to a rectangular ROI 21 
Figure 2.4: Measured frame rate vs. bit rate for live 320×240 and 640×480 RGB

video. .. 23 
Figure 2.5: Visual quality comparison at 1.0 bpp for: (a) 320×240 frame using

arithmetic encoding; (b) 320×240 frame using binary encoding; (c)
640×480 frame using arithmetic encoding; (d) 640×480 frame using
binary encoding. ... 24 

Figure 2.6: Part of the captured screen showing the local clock at the receiver
(top), and the received image of the transmitter's clock (bottom), with
millisecond precision .. 26 

Figure 2.7: Using the mcl.jit.spihtarit codec together with jit.net.send/recv to form a
video communication link ... 27 

Figure 2.8: Peer-based live video multicast .. 30 
Figure 2.9: Truncator patch in a peer-based multicast setup.. 31 
Figure 2.10: Quality comparison of received videos in a peer-based multicast.............. 32 
Figure 2.11: Face detection using cv.jit.faces and ROI coding at 0.5bpp with U=5 33 
Figure 2.12: Sample ROI frame encoded at 0.3 bpp with U=5 34 
Figure 2.13: Sample ROI frame encoded at 0.3 bpp with U=3 34 
Figure 2.14: Sample ROI frame encoded at 0.3 bpp with U=1 35 
Figure 3.1: Data flow with TCP ... 38 

 viii

Figure 3.2: Latency estimate is output through the dump outlet 38 
Figure 3.3: Implementation of the TFRC equation.. 40 
Figure 3.4: TFRC patch calculates the available bandwidth in Kbps, while the

network emulator was set to provide 700 Kbps.. 41 
Figure 3.5: Loss event rate p in subpatch “p TFRC” at 700 Kbps................................... 42 
Figure 3.6: A patch to convert TFRC bit rate from bits per second into bits per

pixel .. 43 
Figure 3.7: Motion detection object with TH0 = 0.125 ... 45 
Figure 3.8: Motion detection patch for greyscale video frames 46 
Figure 3.9: Motion detection patch for RGB video frames .. 48 
Figure 3.10: Augmented reality scene used in the Imprint dance performance at

MOA ... 49 
Figure 3.11: The frame rate control patch for the USC method...................................... 52 
Figure 3.12: Calculate the histogram of difference images by mcl.jit.motion 52 
Figure 3.13: Sub-patch “p HOD” which specifies 6 discrete levels for qmetro................ 52 
Figure 3.14: Compute new qmetro (value between 34 and 408) for jit.qt.grab................ 56 
Figure 3.15: Sub-patch “p FrameRate” with our method... 56 
Figure 3.16: Combined frame rate and bit rate control ... 57 
Figure 3.17: Experimental test bed ... 58 
Figure 3.18: Four motion types in our experiments .. 60 
Figure 3.19: Frame rate vs. time for Camera pan @ 400kbps with α =0.35................... 66 

 ix

LIST OF TABLES

Table 1.1: List of distributed performances supported by mcl.jit tools 9 
Table 2.1: SPIHT encode/ decode speed on a Mac Pro... 18 
Table 2.2: PSNR comparison ... 18 
Table 3.1: p values set to estimate bandwidth of 700 Kbps, 600 Kbps, and 550

Kbps ... 42 
Table 3.2: Predominantly even-indexed retained frames ... 51 
Table 3.3: Predominantly odd-indexed retained frames ... 51 
Table 3.4: Test conditions... 61 
Table 3.5: Votes for α = 0.25 .. 62 
Table 3.6: Votes for α = 0.35 .. 63 
Table 3.7: Votes for α = 0.5 .. 64 
Table 3.8: Votes for α = 0.25 among participants who do videoconferencing often 67 
Table 3.9: Votes for α = 0.25 among participants who do videoconferencing

occasionally .. 68 
Table 3.10: Votes for α = 0.35 among participants who do videoconferencing

often ... 69 
Table 3.11: Votes for α = 0.35 among participants who do videoconferencing

occasionally .. 70 
Table 3.12: Votes for α = 0.5 among participants who do videoconferencing often 71 
Table 3.13: Votes for α = 0.5 among participants who do videoconferencing

occasionally .. 72 

 1

1: INTRODUCTION

1.1 Motivation

With the development of broadband networking technology, distributed

performance has become very popular in the new media and performing arts

community. For example, a telematic dance/media performance series called

Urban Fabric [5] involved one group of dancers located in Beijing, China and the

other group in south California, United States. Dancers at both locations were

watching the live video of each other and dancing interactively to the audience at

both sites. However, this kind of telepresence performance (also known as

telematic performance) requires gigabit bandwidth, and most traditional

performance venues are not equipped with such high-speed access to the

Internet. Making telepresence performance available to more venues and wider

audience, video compression and related technologies are required to support

live video transmission using the available (limited) bandwidth. To exemplify,

consider uncompressed VGA (640×480) RGB video transmission at 30 frames

per second (fps). Such video consumes

640 × 480 × 3 (RGB) × 8 bits/pixel × 30 fps = 221,184,000 bits per second,

that is, over 200 Megabits per second (Mbps). In other words, a gigabit network

is required even for one-way transmission of uncompressed VGA colour video at

30 fps. Even the conventional 10/100 Mbps LAN would not have enough

bandwidth for such video transmission. Since gigabit bandwidth is not available

 2

in most traditional performance venues, video compression must be used in

these cases.

1.2 Challenges and Approaches

Worldwide network connectivity has sparked a revolution in the world of

performing arts. Through the use of new communication technologies, artists

want to explore new levels of thought and new types of human interaction that

are not limited only to public spaces and traditional performance venues. To

support creation of new media performances and installations, various software

applications have been developed. Among the most widely used ones are

Isadora [11] and Max/MSP/Jitter [12], as well as applications built on top of them,

such as Active Space [13] and Kenaxis [14].

Several experimental performance studies using these and other similar

software tools are described in [7-10]. In these studies, artists were

experimenting with different types of distributed performances over an Internet

connection. In most cases, large bandwidth was needed to facilitate live audio

and video transmission, and various problems related to end-to-end latency,

synchronization, and poor audio/video quality were encountered. For example, a

third-party software “CU-SeeMe” was used in the performance described in [7] to

transmit live video and audio, while running the Active Space [13] applications at

the same time. The quality of the video delivered by CU-SeeMe software was

relatively poor, as shown in the chat window in [7]. The network connection used

in the performance described in [8] is the next-generation Internet called

Interent2, which provides higher bandwidth to carry video and audio. Most

 3

traditional performance venues, however, do not have access to Internet2. The

musicians in [9] were experimenting with a distributed platform for musical

performance over the Internet, and they encountered problems with low audio

quality and difficulties with synchronizing audio streams from different locations.

The distributed musical rehearsal environment described in [10] supports both

audio and video transmission between the sites. The connection between the

sites, one in Germany, the other in Switzerland, was a dedicated ATM network

with bandwidth of 24 Mbps. Hardware-based audio (DAT) and video (MJPEG)

codecs were used. To fit the encoded PAL video into the available bandwidth of

24 Mbps and to reduce the end-to-end delay, which has a major influence on the

ability of musicians to synchronize, only even fields of an interlaced PAL video

were encoded. Motion-compensated video codecs were not used, since they

were judged to have large encoding delay, which would have negatively

impacted their application.

This last example illustrates an important trade-off related to video in

distributed performances: on the one hand, motion-compensated video

encoders, which are able to produce highly compressed bit streams, usually

introduce too much complexity and delay to be useful in interactive

performances. On the other hand, intra-frame encoders, which normally have a

lower complexity and encoding delay, are not able to compress the video enough

to fit into the bandwidth available in performance venues, which is usually no

more than 1 Mbps. Hence, in order to have both high quality and low-delay video

in a distributed performance, large bandwidth is required.

 4

Although there are many kinds of video compression systems used in the

multimedia and broadcasting industry, none of these have thus far been widely

adopted by media artists. For a video codec to be useful and handy for

performers and artists, it needs to seamlessly interface with (at least) one of the

popular software environments commonly used in the media arts community, for

example Isadora or Max/MSP/Jitter. Both Isadora and Max/MSP/Jitter provide

interactive control for real-time on-stage audio and video manipulation. For

example, in the performances listed in [1-4], Isadora was used to produce special

patterns of light for projection on the stage, and Max/MSP/Jitter was used for live

audio and video transmission.

During the course of this project, we developed a set of scalable video

codecs for Max/MSP/Jitter. Here, scalability means that videos of various

qualities can be decoded from a single compressed bit stream depending on the

bandwidth available to a particular decoder. This kind of scalability could enable

the audience with high access bandwidth to watch a less compressed (higher

quality) live video, while the audience with low bandwidth receives a more

compressed (lower quality) video. All the developed codecs are intra-frame,

meaning that each video frame is compressed as a single image separate from

other frames. Although this kind of compression has lower coding efficiency than

inter-frame coding, it also has lower complexity and enables real-time operation,

which is crucial for live performance. Further, intra-frame coding is more error

resilient, since an error in one frame will not spread to other frames.

 5

1.3 Max/MSP/Jitter

This section provides a brief overview of Max/MSP/Jitter [12], a graphical

programming environment for music, audio, video, and data processing.

Max/MSP/Jitter is a very popular software tool used for over twenty years by

performers, media artists, and researchers in the fields of multimedia and

computer vision. As the name suggests, the environment consists of three parts:

Max, MSP, and Jitter.

Max provides user interface, timing, communications, and MIDI support.

MSP is used for real-time audio synthesis and digital signal processing. Jitter, the

main environment used in this work, extends Max/MSP to support real-time

manipulation of video frame matrices. We provide a step-by-step tutorial on

developing external objects for Jitter in Appendices 1-3, on both Mac OS X and

Windows systems. The documentation and the Software Development Kit (SDK)

for Max/MSP/Jitter can be downloaded from [12].

1.3.1 Max/MSP/Jitter Overview

In Max/MSP/Jitter, programs are called “patches.” Each patch consists of

objects connected to each other (Figure 1.1), and each object has its specific

function(s). For details of its functions and usages, the user can unlock the patch

and then right click on the object to open its help file.

 6

Figure 1.1: An example of a Jitter patch

As shown in Figure 1.1, objects are simply connected by chords: black

chords for simple data types (numbers or text), green chords for video frames.

Sub-patches can be easily created by inserting a new object and typing “p 

patchname”. All data in Jitter are abstracted as multidimensional matrices. Data

interchange among various objects in a patch is synchronized by an internal

clock, which can be set by the qmetro object at millisecond precision.

Max/MSP/Jitter is very popular in the new media arts community, due to

its graphical interface and intuitive way of programming by connecting various

objects. Meanwhile, it is possible to write efficient code for Jitter external objects

 7

in C/C++. This is the approach we have taken in developing scalable codecs in

the mcl.jit library, and is described in detail in Appendices 1-3.

1.3.2 Jitter Networking

Our mcl.jit object library is developed to support live video streaming in

Max/MSP/Jitter. In the Jitter programming environment, network communication

mostly relies on two standard objects: jit.net.send and jit.net.recv. The jit.net.send

object enables sending uncompressed Jitter matrices over an IP network to a

jit.net.recv  object running on a different computer. These two objects

communicate using the TCP protocol. As shown in Figure 1.2, jit.net.send and

jit.net.recv form a communication link over an IP network. The jit.net.send object 

needs to know the IP address of the receiving computer, and both jit.net.send 

and jit.net.recv have to listen to the same port number.

(a) jit.net.send (b) jit.net.recv

Figure 1.2: Jitter networking patches

 8

In Figure 1.2(a), the qmetro object triggers video frames every 50

milliseconds from the “p stripes” object and then forwards them to the jit.net.send

object. The qmetro object also triggers a  getlatency message. This message

instructs the jit.net.send object to estimate one-way latency and output the

estimated value from the dump outlet, which in this case was estimated at 0.25

milliseconds. The received video frames are shown in Figure 1.2(b). Note that

the displayed frame here is different from Figure 1.2(a), because screenshots of

these two patches were taken at different times.

1.3.3 Compiling Jitter External Objects

All external objects for Max/MSP/Jitter with “.mxo” extension are compiled

for Mac OS. We will use an example of compiling a SPIHT encoder [16], whose

source code is in C++, with Xcode 2.4.1 (Mac OS X 10.4.11) to generate an

external object mcl.jit.spihtaritenc for Max 5. A detailed step-by-step instructions

for compiling “.mxo” objects are presented in Appendix 1.

All external Max/MSP/Jitter objects with extension “.mxe” are developed

for Windows. The steps to compile a Jitter external object for Windows are

somewhat different from those for the Mac OS X system. The “.mxe” external

objects in our mcl.jit library were all compiled in Visual C++ 2008 on a MacBook

computer running Windows XP using bootcamp. In Appendix 2, we describe how

to compile external Jitter objects under Windows using Microsoft Visual C++.

Compiling Jitter external objects is only a small part of the development

process. A very important aspect is interfacing your code with the Jitter

 9

environment, which enables passing data such as Jitter matrices and messages

between the main Max/MSP/Jitter environment and the external object.

Instructions on how to interface one's code with the Jitter environment are

presented in Appendix 3.

1.4 Summary of Contributions

1.4.1 Performances

The tools from our mcl.jit library were used in several new media dance

performances listed in the table below.

Performance  Premiere venue and date  mcl.jit tools used 

T2 
Scotiabank Dance Center, 
Vancouver, July 2009 

SPIHT 
Encoder/Decoder 

T2: Echo 
Emily Carr University of Arts and 

Design, October 2009 
Frame buffer with 
adjustable delay 

Imprint 
Museum of Anthropology at UBC, 

January 2010 
Motion detection 

Imprint II 
SFU Woodward's 

June 2010  
Video/Audio 
Streaming 

Table 1.1: List of distributed performances supported by mcl.jit tools

1.4.1.1 T2

A telematic dance performance called T2 [1], was premiered in Vancouver

in July 2009. Two snapshots from this performance are shown in Figure 1.1. This

performance involved two groups of dancers, one located at the Scotiabank

Dance Centre in Vancouver, and another located at a gallery in Vancouver

Downtown Eastside. In the middle of the performance, one dancer was

 10

transported from the Dance Centre to the gallery by a car, and a live video feed

from the car was streamed to the audience at the Dance Centre (see the screen

image in the right part of Figure 1.1). The audience watched that dancer leave

the Dance Centre, and then saw the street view she observed from the car while

travelling to the gallery. The live video streamed from the moving car was

transmitted via a 3G mobile Internet link. When she arrived at the gallery, the

dancer started an interactive dance (as shown in left part of Figure 1.3) with

dancers at the Dance Centre. Objects from our mcl.jit library carried out all video

compression and transmission during the performance. It is important to mention

that both the gallery and the Dance Centre only had a residential-type Internet

connection with a bandwidth of a few hundred kilobits per second (kbps), while

the video from the moving car was transmitted via a 3G mobile Internet

connection using a conventional USB 3G modem with even lower bandwidth. To

our knowledge, T2 was the first ever dance performance that involved the use of

live video from a moving car in telematic dance.

Figure 1.3: T2 dance performance: interactive dance performance (left); live street view
from a moving car projected on the main stage behind the dancer (right).

 11

1.4.1.2 T2: Echo

Figure 1.4: Snapshots from T2: Echo

T2: Echo [2] was performed at the Emily Carr University of Arts and

Design (ECUAD) in Vancouver in November 2009. In this performance, two

dancers were located at the Motion Caption (MoCap) studio at the upper floor of

the main ECUAD building, and another two dancers were in the gallery at the

entrance hallway of the same building. Audience were watching the dance

performance at both locations. We set up a two-way live video link with

adjustable delay at both ends. When a dancer was dancing in front of the

camera, the audience at the other location would see his/her image projected on

the background screen (Figure 1.4), mixed in with the delayed version of the

same video stream and the local video stream. This created a sense of dancers

interacting with their past, as well as the dancers at the other location.

1.4.1.3 Imprint

The Imprint dance performance [3] was premiered at the Museum of

Anthropology (MoA) in Vancouver as part of the Vancouver 2010 Cultural

Olympiad. In this performance, we have used our motion detection object

 12

mcl.jit.motion to develop an entertainment installation for the audience before

and after the show. Snapshots from Imprint are shown in Figure 1.5 below.

Figure 1.5: Imprint dance performance

1.4.1.4 Imprint II

Imprint II [4] was premiered at SFU Woodward's in June 2010 as part of

the venue's opening ceremonies. This performance involved interactive dance

between the Audain Gallery and the Fei and Milton Wong Experimental Theatre.

Dancers in the gallery were watching the projection of the live video from the

theatre, and used this visual feed to dance interactively with the dancers in the

theatre. Meanwhile, the scene from the gallery was transmitted back to the

theatre, and projected onto five boxes located on the stage. Since the bandwidth

of the local network (which we set up ourselves, as the venue's networking

infrastructure was not complete at that time) was close to 1 Gbps and therefore

enough to transmit both audio and two-way video without compression, we didn't

use any codecs in this performance. We only set up the two-way uncompressed

video link in Max/MSP/Jitter between the two sites, as well as an audio link

 13

based on Active Space [13]. Snapshots from this performance are shown in

Figure 1.6

Figure 1.6: Imprint II dance performance

1.4.2 Publications

In addition to the performances mentioned above, several technical

publications resulted from our work on the development of mcl.jit software tools:

• I. V. Bajić and X. Ma, "A testbed and methodology for comparing live video

frame rate control methods," accepted for publication in IEEE Signal

Processing Letters, Oct. 2010.

• I. V. Bajić and X. Ma, “MCL.JIT library for scalable live video in

Max/MSP/Jitter,” Proc. IEEE CCECE'10, Calgary, AB, May 2010.

• I. V. Bajić and X. Ma, "Scalable video coding for telepresence in the

performing arts," IEEE ComSoc MMTC E-Letter, vol. 4, no. 8, pp. 28-30,

Sep. 2009. (Invited paper)

 14

1.5 Thesis Preview

The software tools we developed to support live video in Max/MSP/Jitter

are made publically available as the mcl.jit  library [21] - a collection of external

objects for Max/MSP/Jitter. We have made the library available both for the

Windows and the Mac OS X systems at http://www.sfu.ca/~ibajic/mcl.jit.html. The

utility of the mcl.jit  library extends beyond new media arts, since these objects

can be used for research, education, and demonstration purposes in a variety of

application scenarios that involve live video transmission.

The thesis is organized as follows. The last section of this chapter

describes the contributions of this work, which include performances that used

our software tools, as well as several publications arising from our research. In

Chapter 2 we describe SPIHT (Set Partitioning In Hierarchical Trees), the

algorithm upon which our scalable codecs are based. We also describe several

scalable coding objects we developed for live video. A method for combined

frame rate and bit rate control of live video, as well as the results of subjective

testing of our combined control method, are presented in Chapter 3. Finally,

conclusions and ideas for future work are presented in Chapter 4.

 15

2: SCALABLE VIDEO CODING USING SPIHT

Scalable video codecs in our mcl.jit object library are based on the SPIHT

(Set Partitioning in Hierarchical Trees) algorithm described in [16] and [17]. To

the best of our knowledge, this is the first scalable video codec developed as an

external object for Max/MSP/Jitter. SPIHT supports quality scalability, which

means that the quality of the encoded video can be easily adjusted according to

user preferences or other system parameters, while various video qualities can

be extracted from the same bit stream.

2.1 Versions of SPIHT

SPIHT produces an embedded (also known as progressive, or quality

scalable) bit stream, which means that lower-quality versions of the image are

embedded within the higher-quality versions. Hence, the more bits are decoded

from the SPIHT bit stream, the better the quality of the decoded image, as

illustrated in the Figure 2.1 below. Two versions of SPIHT were described in the

original SPIHT paper [16], both of which produce quality-scalable bit streams:

1) SPIHT using binary coding

SPIHT binary codec outputs the binary code produced by set partitioning and

refinement within the core SPIHT encoding procedure [16]. While this is not a

perfect entropy code and its bits are still somewhat dependent, it is very fast,

and results in a reasonable compression performance. If better compression

 16

performance is desired, one could follow up the binary SPIHT code by a more

conventional entropy coder, such as arithmetic coder.

2) SPIHT using arithmetic coding

In arithmetic coding [18], the entire sequence of input symbols is

assigned a unique binary string, which can be computed incrementally from

the input data. Like Huffman coding, arithmetic coding is also asymptotically

optimal. But unlike Huffman coding, arithmetic coding can easily be made

adaptive to the input statistics. This is one of the reasons why it has become

popular in the recent image and video coding standards, such as JPEG2000

[23], H.264 [63] and JBIG.

When arithmetic coding is used to further compress the binary code

arising from the core SPIHT procedure, the overall compression performance

is improved. For example, the Peak Signal-to-Noise Ratio (PSNR) of decoded

images will typically increase by 0.3 to 0.6 dB for the same bit rate or file size.

This approach can provide good image quality at very low bit rates, but it is

more complex than the approach without arithmetic coding. As will be seen

shortly, on a typical CPU, SPIHT encoder using arithmetic coding takes about

twice as much time as the SPIHT encoder without arithmetic coding to

encode the same image.

1100101011100101100011………01011100010111011011101101…

 17

↓ ↓

Figure 2.1: Decoding the embedded bit stream produced by SPIHT: the more bits are
decoded, the better the resulting image quality

2.2 Speed and Compression Efficiency of SPIHT

The following SPIHT encoding and decoding speed (Table 2.1) and PSNR

comparison (Table 2.2) were obtained on the RGB Lena image (512×512) at 0.5

bit per pixel (bpp). Tests were performed on a Mac Pro (Mac OS X 10.5.8 with

2×2.8GHz processor and 4 GB RAM) with standalone encoder and decoder, i.e.,

outside of the Max/MSP/Jitter environment. In this case, encoding and decoding

time includes disk access (to read/write the raw image and/or bit stream), which

is not needed in live video coding. As seen in Table 2.1 (and also in [16]),

encoder is a little slower than the decoder because it requires additional

operations, such as finding the largest subband/wavelet coefficient in the image.

Bitrate=0.5bpp Arithmetic Binary

 18

Encoder 0.05 sec 0.05 sec

Decoder 0.03 sec 0.02 sec

Table 2.1: SPIHT encode/ decode speed on a Mac Pro

Bitrate=0.5bpp Arithmetic Binary

PSNR 32.42 dB 32.06 dB

Table 2.2: PSNR comparison

(a) The original Lena image

 (b) Arithmetic, PSNR=32.42 dB (c) Binary, PSNR=32.06 dB
Figure 2.2: Original (a) and decoded Lena image using (b) arithmetic and (c) binary SPIHT

coding at 0.5 bpp.

SPIHT with arithmetic coding has higher compression efficiency and

provides higher quality (up to 0.5 dB in PSNR at a fixed bit rate) than the codec

 19

without arithmetic coding, but with a 2-2.5 times higher computational cost in

terms of CPU time [16]. However, in practical live video applications for which our

codec library is developed, the total processing time is dominated by memory

access, not the CPU time. In the test above, it appears that the disk access was

an important factor for the overall speed (Table 2.1). In our experiments with live

video, which will be discussed in more detail later in this chapter, we found that

codecs using arithmetic coding were only about 10-20% slower than the

corresponding codecs without arithmetic coding.

2.3 SPIHT External Objects for Max/MSP/Jitter

The mcl.jit.spihtaritenc is the external object we created for encoding

video frames using SPIHT with arithmetic coding. It takes live video from

jit.qt.grab on Max OS (or jit.dx.grab on Windows), produces the compressed bit

stream, and casts it as a Jitter matrix data structure. In addition to the video

frames, the inputs to the encoder are the encoding bit rate in bits per pixel (bpp)

and the dimensions of the frame in pixels. The mcl.jit.spihtaritdec is the

corresponding decoder, which takes the compressed bit stream in the Jitter

matrix and decodes the video frame. In addition to the compressed bit stream,

the input to the decoder is the decoding bit rate. We have also created the

encoder/decoder pair based on SPIHT with binary coding, which are called

mcl.jit.spihtbinenc and mcl.jit.spihtbindec. 

2.3.1 SPIHT with Region Of Interest (ROI) Coding

Region-Of-Interest (ROI) coding is a simple feature we added to SPIHT

codecs in the mcl.jit library. The corresponding ROI-capable SPIHT codecs are

 20

mcl.jit.spihtaritROIenc/dec, and mcl.jit.spihtbinROIenc/dec.  In addition to the video

frame, these codecs expect as inputs the upper left and lower right coordinates

of a rectangular ROI, which will be encoded at a higher quality than the rest of

the frame. The higher coding quality is achieved by up-shifting the bit planes of

the subband/wavelet samples within ROI relative to the rest of the frame. This

method is essentially the same as ROI coding by scaling in JPEG2000 [23].

The idea behind ROI coding by bit plane shifting is shown in Figure 2.3.

The highlighted square Sk is the set of sample coordinates within a subband at

level k, which corresponds to the Region Of Interest (ROI). In our ROI coding, all

subband samples at level k whose coordinates are inside the highlighted square

Sk will be multiplied by 2U, where the integer U is the so-called “up-shift” factor

[23]. Multiplication by 2U will result in up-shifting of the bit planes of the samples

inside Sk. Because SPIHT coding proceeds from the most significant bit plane

towards less significant bit planes, the sample values from ROI will appear earlier

in the compressed bit stream relative to the samples of the same significance

(with respect to a given threshold) from the non-ROI part of the frame. This

means that at any bit rate, ROI samples will effectively be quantized with a finer

quantizer, and therefore have better quality. The decoder needs to know the

value of U and the location of the ROI in order to perform reverse operations. For

simplicity, our current implementation supports only one rectangular ROI, so we

only need to transmit the coordinates of upper left and lower right corner of the

ROI rectangle to the decoder and the value of the up-shift factor U. These values

are transmitted as header information in the bit stream. An example of using

 21

SPIHT with ROI is given later in this chapter, where we combined ROI coding

with face detection to encode the face region with higher quality.

Figure 2.3: Subband/wavelet coefficients corresponding to a rectangular ROI

All SPIHT external objects in the mcl.jit library (both ROI and non-ROI)

take 4-plane (RGB plus Alpha) video input, which is the common video format in

Max/MSP/Jitter, and produce a quality-scalable bit stream cast as a Jitter matrix

data structure, which can then be sent to other Jitter objects. Alpha plane is not

being encoded into the bit stream; it is discarded at the encoder, and the default

opaque Alpha plane is re-created at the decoder.

2.4 Performance evaluation within Max/MSP/Jitter

SPIHT with arithmetic coding has the compression performance which is

comparable with JPEG2000 [23]. The reasons for choosing SPIHT over

JPEG2000 are the fact that it has better (finer) quality scalability and simple bit

 22

rate control. Both characteristics are useful for Max/MSP/Jitter applications. In

this section, we will focus on performance evaluation of SPIHT compression of

live video within Max/MSP/Jitter. The last two sections of this chapter will

demonstrate the uses of SPIHT compression in live video transmission and ROI

coding.

2.4.1 Encoding speed

Speed tests for live video coding were carried out on a Mac Pro (Mac OS

X 10.5.8 with 2×2.8GHz processor speed and 4 GB RAM). This computer was

set up as a transmitter and was sending encoded live video (captured using a

Minoru webcam) to a MacBook Pro (Mac OS X 10.5.8 at 2.5 GHz with 2 GB

RAM) over a LAN. Both computers were running Max/MSP/Jitter version 5.0.8 for

Mac OS X. Video compression was carried by mcl.jit.spihtaritenc/dec and

mcl.jit.spihtbinenc/dec objects.

The speed test results for both 320×240 and 640×480 RGB video are

shown in Figure 2.4. In this test, the transmitter was set to capture frames at 30

millisecond (ms) intervals (which corresponds to the frame rate of 30.3 fps),

encode them, and send them to the receiver. When the processing time related

to one frame (capturing, encoding, etc.) starts approaching 30 ms, the frames will

start to get dropped, and the frame rate at the receiver will start to decrease. For

the 320×240 resolution, the achieved frame rate using SPIHT with arithmetic

coding remains at or above 30 fps when the encoding bit rate is less than 2.4

bpp, while the frame rate of using SPIHT with binary coding, which is

computationally more efficient, stays at or above 30 fps for the entire range of

 23

tested bit rates up to 5.6 bpp. Both the encoder and the decoder require more

processing as the bit rate increases, since there are more bits to compute.

Hence, frame rate reduction at higher bit rates is to be expected. At the

resolution of 320×240, frame quality is acceptable at bit rates 0.5 - 0.8 bpp, and

very good at bit rate at 1.0 bpp (a sample decoded frame is shown in Figure.

2.5(a)), which means that one can easily achieve very good live video quality

with frame rates above 30 fps at this resolution.

Figure 2.4: Measured frame rate vs. bit rate for live 320×240 and 640×480 RGB video.

At the resolution of 640×480 there are four times as many pixels as there

were at the resolution of 320×240. Hence, we observe from the figure that the

achieved frame rate for each of the two codecs (arithmetic and binary) is roughly

four times lower at higher bit rates than that achievable at the 320×240

resolution.

 24

 (a) (b)

 (c) (d)

Figure 2.5: Visual quality comparison at 1.0 bpp for: (a) 320×240 frame using arithmetic
encoding; (b) 320×240 frame using binary encoding; (c) 640×480 frame using arithmetic

encoding; (d) 640×480 frame using binary encoding.

A comparison of decoded frame qualities is shown in Figure 2.5. The

frames were taken by a Minoru webcam. For this example, the encoder and the

decoder were both running on a Mac Pro system mentioned above. We used the

encoding bit rate of 1.0 bpp for both arithmetic and binary SPIHT coding. The top

two images show the decoded frame qualities at the 320×240 resolution, while

the bottom two images show the decoded frame quality at the 640×480

resolution. As seen in the Figure 2.5, at the bit rate of 1.0 bpp, the frame quality

is very good at both resolutions. Hence, we can achieve very good frame quality

at 320×240 and 30 fps with either binary or arithmetic SPIHT codec, and very

good quality at 640×480 and 15 fps using binary SPIHT coding. At 640×480, with

 25

the bit rate of 1.0 bpp, SPIHT with arithmetic coding was only able to provide

around 12 fps on our Mac Pro system.

2.4.2 Visual delay

Delay plays an important role in visual communications. Measuring the

propagation delay between two computers on an IP network is relatively easy

using the “ping” command on a Unix/Linux/Windows prompt. However,

measuring the “visual delay,” which is the time it takes for one video frame to get

captured at one computer, then transmitted and displayed at the other computer,

is more involved. This delay includes frame acquisition, encoding, transmission,

decoding, and rendering. In order to measure visual delay we used the following

methodology. Two computers were connected to the same 100 Mbps Ethernet

switch, so that the “ping” round trip time between them was less than 1 ms. One

computer (Windows XP Pentium 4 at 3.4GHz with 1 GB RAM) was acting as a

transmitter. Both computers were running Max/MSP/Jitter version 5.0.8 for

Windows. The transmitter was set to grab 320×240 RGB frames at 33 ms

intervals, corresponding to the frame rate of about 30 fps.

Both computers’ clocks were synchronized to the same atomic clock NTP

server, and the local time of each computer was displayed on its screen with

millisecond precision. The webcam was then pointed to the clock on the screen

of the computer it was connected to, and the video signal was grabbed into

Max/MSP/Jitter and sent to the other computer, where it was displayed alongside

the local clock of that computer.

 26

A sample screenshot from these experiments is shown in Figure 2.6. In

this example, which was obtained by directly transmitting captured frames

without compression, there is a 292 ms difference between the two clocks,

indicating that the visual delay can be significant even when the propagation

delay is very small (less than 1 ms in this scenario, since the transmitter and the

receiver were both connected to the same switch). The main reason for this large

visual delay in these experiments is the slow sensor readout in the webcam.

Figure 2.6: Part of the captured screen showing the local clock at the receiver (top), and
the received image of the transmitter's clock (bottom), with millisecond precision

We performed 10 measurements of the visual delay without compression,

i.e. with 320×240 RGB frames sent directly to the receiver, and 10

measurements with encoding at 0.5 bpp using mcl.jit.spihtaritenc. The average

visual delay without compression was 311.9 ms (standard deviation 23.2 ms),

while the average visual delay with compression at 0.5 bpp was 327.5 ms

(standard deviation 22.4 ms). Hence, at this resolution and bit rate of 0.5 bpp, our

mcl.jit.spihtaritenc codec adds, on average, less than 20 ms (i.e., less than one

frame interval) to the visual delay, which is fairly low, especially considering that

the codec is purely software-based. Since the binary version of the codec is

 27

faster than the arithmetic version, that codec would also add no more than one

frame delay into the total visual delay.

2.5 Scalable live video transmission

Since SPIHT codecs produce quality-scalable bit streams, various

qualities of displayed frames can be obtained by truncating the bit stream at

various points. The output bit stream of our SPIHT encoder objects is cast as an

array of 8-bit numbers forming a Jitter matrix, which means that it can be directly

applied as an input to other Jitter objects.

Figure 2.7: Using the mcl.jit.spihtarit codec together with jit.net.send/recv to form a video
communication link

In order to set up a video transmission connection in Jitter over an IP

network, one can use the existing jit.net.send and jit.net.receive objects. The

SPIHT codecs can be used together with these two objects to form a video link,

as illustrated in Figure 2.7. The encoding bit rate and the IP addresses for the

two networking objects are omitted in this figure for simplicity. Our SPIHT

encoders allow users to adjust the bit rate manually in order to provide

appropriate video quality for a particular scene. The encoding bit rate can also be

 28

adjusted dynamically during transmission according to current network conditions

using the TFRC method, which will be described in the next chapter.

2.5.1 Point-to-point and point-to-multipoint live video streaming

In a simple setup for point-to-point live video streaming shown in Figure

2.7, one computer captures the video, compresses it using the SPIHT encoder

object mcl.jit.spihtaritenc, and sends it to another computer over an IP network.

The receiving computer running mcl.jit.spihtaritdec then decodes the compressed

bit stream and displays the video.

If there are multiple receivers that want to receive live video, each would

run an instance of jit.net.receive, and then decode the compressed bit stream as

shown in the right part of Figure 2.7. Meanwhile, the transmitter would encode its

live video using an encoder and then send it to the receivers using one instance

of jit.net.send  for  each receiver. Even if users require different bit rates, the

transmitter needs to encode the video only once (i.e., produce one scalable bit

stream at the highest requested bit rate), and then optionally truncate it to lower

bit rates for low-bandwidth receivers. Since the bit stream is cast as a Jitter

matrix, truncation can be easily accomplished using an existing object called

jit.submatrix, which will be illustrated in the next section.

2.5.2 Peer-based live video multicast

When the bit stream scaling is performed at an intermediate peer node

rather than the transmitter, we refer to that process as peer-based scaling. The

basic principle of peer-based scaling is illustrated in Figure 2.8. Since the SPIHT

 29

bit stream is quality scalable, creating a bit stream at a lower bit rate simply

amounts to bit stream truncation, which can be accomplished using the existing

jit.submatrix object. Hence, a peer node does not need to decode and re-encode

the video. Since the scaling operation is so simple, it can be easily and quickly

executed on a conventional computer. Using this simple set up, we can construct

a peer-based multicast tree, where the compressed bit stream for each end-user

is scaled appropriately to its requested bit rate by the intermediate peer nodes.

In the scenario shown in Figure 2.8, the peer node is sending video to two

downstream users, one with high available bandwidth (top right) and the other

with low available bandwidth (bottom right). For a given frame, a scalable bit

stream at rate r is received at the peer node, and the encoding bit rate of that bit

stream is stored in its header. The peer node then forwards the complete bit

stream to the high-bandwidth user, while a truncated version (in this example at

rate r/4, i.e., one quarter of the original encoding bit rate) is sent to the low-

bandwidth user. The new bit rate (r/4) is stored in the header of the bit stream

sent to the low-bandwidth user.

 30

Figure 2.8: Peer-based live video multicast

To demonstrate the utility of our codecs in peer-based multicast, we set up

four computers in our lab in the configuration shown in Figure 2.8. One computer

(Mac Pro) captures the video, compresses it using the mcl.jit.spihtaritenc object,

and sends it to the peer node (PC in this case) over an IP network. The peer

node then adjusts the compressed bit stream to suit two receivers downstream.

In this example, one of the receivers (MacBook with 2 GHz processor and 2 GB

RAM) has a low-bandwidth connection, so the peer adjusts the compressed bit

stream to one quarter of the encoding bit rate and sends the truncated bit stream

to this receiver. The bit stream header is updated to reflect the bit rate change.

The other receiver (MacBook Pro with 2.5 GHz processor and 2 GB RAM) has

higher available bandwidth. The peer simply forwards the complete compressed

bit stream to it, without any truncation. The complete Max/MSP/Jitter patch

running at the peer node is shown in Figure 2.9. In this patch, object jit.split

separates the encoding bit rate (which is stored in the header - the first two bytes

 31

of the bit stream) from the remainder of the bit stream, and then jit.submatrix

truncates the bit stream. New bit rate is appended to the truncated bit stream and

sent to the low-bandwidth user. Note that decoding and re-encoding is not

needed in this process. Hence, this truncation process represents a very efficient

form of transcoding, which is only possible with quality-scalable bit streams.

Figure 2.9: Truncator patch in a peer-based multicast setup

Sample frames of the original video and decoded videos at the two

receivers are shown in Figure 2.10. Note that the video at the low-bandwidth user

has a correspondingly lower quality than the video at the high-bandwidth user.

 32

(a) Original video sent from Mac Pro

(b) Low bandwidth receiver (1/4 bit stream)

(c) High bandwidth receiver (full bit stream)

Figure 2.10: Quality comparison of received videos in a peer-based multicast

2.6 ROI coding demonstration

To demonstrate ROI coding, we have combined our mcl.jit.spihtaritROI

codec with the face detector in the external Max/MSP/Jitter object cv.jit.faces [25],

 33

which is an implementation of the well-known Viola-Jones face detector [26]. The

face detector finds the enclosing rectangle for the face (see Figure 2.11 below) in

the frame and feeds the coordinates of its upper-left and lower-right corner to the

ROI encoder. These coordinates are used to perform bit plane up-shifting as

explained earlier. They are also stored in the header of the bit stream along with

the up-shift factor U, so that the decoder can perform the reverse operation.

Figure 2.11: Face detection using cv.jit.faces and ROI coding at 0.5bpp with U=5

With a higher value of the up-shift factor U, the quality contrast between

the face area and the rest of the frame will be larger. As shown in Figures 2.12 -

2.14, U=5 results in a very noticeable difference between the face and

background, compared to up-shifting by U=1 or U=3. A relatively low bit rate of

 34

0.3 bpp is chosen to emphasize the difference in quality between the ROI (face)

and the rest of the frame in these examples.

Figure 2.12: Sample ROI frame encoded at 0.3 bpp with U=5

Figure 2.13: Sample ROI frame encoded at 0.3 bpp with U=3

 35

Figure 2.14: Sample ROI frame encoded at 0.3 bpp with U=1

Even though the examples above are all related to face ROI, the codec

itself can be used encode any other rectangular ROI, for example a part of a

moving object. All that is needed is to identify the desired region in the frame and

feed the coordinates of its enclosing rectangle to the encoder. The resulting bit

stream is still quality scalable: as more bits are decoded, the quality of both the

ROI and the rest of the frame improves.

 36

3: COMBINED FRAME RATE AND BIT RATE CONTROL

When dealing with live video, the ability to vary video frame rate could be

very helpful. If the video scene is static, there is no need to represent it with high

frame rate. On the other hand, when there is motion in the scene (for example,

when the dancers enter the scene and start to move), the frame rate should be

increased correspondingly to ensure motion smoothness. Several methods for

frame rate control have been presented in the literature [37], [41] and [42]. The

frame rate control methods in these papers are performed on pre-recorded

videos. In other words, they assume that video has been already recorded and

stored at some frame rate (e.g. 30 fps), and the goal is to find out which frames

can be dropped from the video stream without affecting the visual quality too

much. However, in the scenario we are focusing on (distributed performance), we

are dealing with live (i.e., not pre-recorded) video most of the time. Therefore, the

approaches proposed in [37], [41] and [42] might not be the most appropriate.

Ideally, frames that will eventually be dropped should not be captured in the first

place, since those frames would simply use up memory and processing power

without being displayed.

There is another reason why an approach different from those in [37], [41]

and [42] might be better for frame rate control. Once the frames are captured at a

certain frame rate, the set of frame rates that can be obtained from such a

stream by dropping frames is limited. For example, if the video is captured at 30

fps, the only possible spacing between frames is a multiple of 33.3 ms.

 37

Therefore, the set of actual instantaneous frame rates is 30/n fps, where n is an

integer. On the other hand, if we were able to fully control the frame sampling

interval τ, we could achieve any instantaneous frame rate 1/τ fps.

In this chapter, we propose a simple method for combined frame rate and

bit rate control. This method allows easy control of the frame sampling intervals

and encoding bit rate for live video streaming. The encoding bit rate control is

based on TCP-Friendly Rate Control (TFRC), which is described in Section 3.1.

The proposed frame rate control method was compared to the one in [37]

through extensive subjective evaluation. The reason for choosing the method in

[37] for comparison is that this method is the easiest to cast into the context of

live video among the three methods in [37], [41] and [42]. This method, and its

implementation in Max/MSP/Jitter, is described in Section 3.2. Our frame rate

method is introduced in Section 3.3. Subjective evaluations of the videos

produced by these two methods are described and analyzed in Sections 3.6 and

3.7.

3.1 TCP-Friendly Rate Control (TFRC)

3.1.1 Network setup in Jitter

The jit.net.send and jit.net.recv objects in Max/MSP/Jitter communicate

using the TCP protocol. In TCP, reception of information at the receiver is

acknowledged by sending a confirmation message to the transmitter, as shown

in Fig. 3.1

 38

Figure 3.1: Data flow with TCP

The feedback mechanism present in the TCP connection enables the

system to estimate the end-to-end delay between the transmitter and the

receiver. The end-to-end delay (also known as latency) can be estimated by

using a getlatency message connected to the input of the jit.net.send object, as

shown in Figure 3.2. The latency is displayed in milliseconds.

Figure 3.2: Latency estimate is output through the dump outlet

There are two factors that could influence the latency: the amount of data

being sent, and the actual transmission time between two computers. For a given

bandwidth (in bits/second), the more data that is sent, the longer time it would

take to move all the data through the network. Transmission can become quite

slow if the server keeps sending video data with both a high frame rate and a

high encoding bit rate (or if the video is uncompressed). In such cases, Max

window will give the error message saying that the data is being input faster than

it could be sent, and the received video will look jerky and have a fairly low frame

 39

rate. In order to avoid having both high frame rate and high bit rate at the same

time, the TCP-Friendly Rate Control (TFRC) is added as a rate control module to

our SPIHT encoder.

3.1.2 TCP-Friendly Rate Control

TCP-Friendly Rate Control (TFRC) proposed in [28-29] is designed to

control the congestion of unicast (usually non-TCP) flows working in an Internet

environment and competing for bandwidth with other TCP flows. Several

applications of TFRC in video streaming have been described in the literature, for

example [31-35]. These works firmly establish applicability of TFRC to video

streaming.

TFRC is based on estimating the average sending rate of a TCP flow

under packet loss and round trip delay as specified in the following equation:

 (3)

where X is the transmission rate (in Bytes/second), s is the packet size (in

Bytes), R is the Round Trip Time (RTT) in seconds, t_RTO is the TCP

retransmission timeout value in seconds, b is the maximum number of packets

acknowledged by a single acknowledgement packet, and p is the packet loss

rate. Implementation of this equation in a Max/MSP/Jitter patch is shown in

Figure 3.3 below.

 40

 

Figure 3.3: Implementation of the TFRC equation

As recommended in [28], t_RTO should be set to either 4×R or

alternatively max(4×R, 1 second), where the Round Trip Time R is two times the

latency estimate given by jit.net.send. The packet size s is set to 1500 Bytes,

here, which is the Maximum Transmission Unit (MTU) size in an Ethernet LAN

[34], while b = 1 in [28], While parameters s and b are fixed, other three

parameters R, p, and t_RTO (which is derived from R) are dynamic and can

change during the streaming session. Jitter object jit.net.send provides an

estimate of one-way latency (i.e., half the value of R), and thereby also enables

the computation of t_RTO. However, jit.net.send does not provide an estimate of

the packet loss rate p. This parameter needs to be estimated by other means.

 41

In this work, we mainly used TFRC for combined control of bit rate and

frame rate in a controlled environment set up by the network emulator. In these

experiments, described later in this chapter, the network emulator was set up to

provide constrained bandwidth, but didn't introduce any loss. If we plug p = 0 into

the TFRC equation above, the resulting bandwidth estimate would be X = ∞,

which is not realistic. Hence, we decided to test various small values of p in the

TFRC equation while running the experiment across the network emulator, to see

how closely the TFRC estimate would be to the bandwidth constraint set by the

emulator. Figures 3.4. and 3.5 show example Jitter patches used in these tests.

Figure 3.4: TFRC patch calculates the available bandwidth in Kbps, while the network
emulator was set to provide 700 Kbps

 42

                                        

Figure 3.5: Loss event rate p in subpatch “p TFRC” at 700 Kbps

Network 
emulator 
setting 

qmetro 
Measured 
latency 
(ms) 

Manually 
set p 

TFRC estimate 
(Kbps) 

700 Kbps  65 54 0.01865 700.0 − 700.4

600 Kbps  75 63 0.01870 599.0 − 600.2

550 Kbps  80 70 0.02030 549.0 − 550.0

Table 3.1: p values set to estimate bandwidth of 700 Kbps, 600 Kbps, and 550 Kbps

Table 3.1 shows the values of p that worked out best in estimating the

bandwidth set by the network emulator, which is shown in the first column. Hence

for the remaining experiments, we set the value of p to 0.019, which is the

average of the values shown in the fourth column of the table. With this value of

p in the TFRC equation, the estimated bandwidth in the experiments across the

network emulator is very close to the true bandwidth constraint.

3.1.3 Encoding bit rate control by TFRC

Now that we are able to estimate the available bandwidth within

Max/MSP/Jitter, the next step is to use this bandwidth estimate to control the

video encoding bit rate. If X is the TFRC bandwidth estimate in bits per second

(bps), and F is the current frame rate in frames per second (fps), then the

number of bits that should be devoted to the next frame is X / F. If W and H are

 43

the width and height of the frame, then the bit rate in bits per pixel (bpp) is given

by X / (F×W×H). This is the value that is fed to the input of the SPIHT encoder. A

Jitter patch that accomplishes this conversion is shown in Figure 3.6, where the

dimensions of the frame are 320×240.

Figure 3.6: A patch to convert TFRC bit rate from bits per second into bits per pixel

As demonstrated in an earlier chapter, the frame quality with 320×240

resolution is already very good when the encoding bit rate is 1.0 bpp, and visually

lossless at 1.5 bpp. Hence, in the patch in Figure 3.6, we set the upper limit on

the encoding rate to 1.5 bpp, because higher encoding bit rates would not lead to

visible improvement in quality, and would simply waste bandwidth. Similarly, we

judged that the lowest acceptable visual quality is achieved around 0.2 bpp, so

we set this value as the lower limit of the encoding bit rates.

The above procedure provides a control policy for setting the encoding bit

rate of each video frame based on the current estimate of the available

bandwidth and the current frame rate. The next step is to determine the

 44

appropriate frame rate for a given scene. To accomplish this, we need to be able

to detect motion and estimate the amount of motion intensity in the scene.

3.2 Motion detection

To detect motion between two frames and estimate the corresponding

motion intensity, we use the approach from [37], which is based on histogram of

differences (hod). If and denote two frames, then the intensity of motion

between them is calculated as

, (4) 

where hod is the histogram of pixel-wise differences between the two frames, i is

the index of the hod bin, TH0 is the threshold value for the minimum difference

considered to be significant, and Npixel is the number of pixels in the frame. The

value of Dh represents the percentage of pixels whose values differ significantly

between the two frames. This approach is fairly simple, yet it provides a useful

measure of motion intensity between fn and fm.

We have developed a Jitter external object called mcl.jit.motion  which

implements the above approach. As shown in Figure 3.7, the mcl.jit.motion

object allows the user to set the threshold value TH0. In this example, the value

of TH0 is set to 0.125. Note that in the context of our mcl.jit.motion object, TH0

refers to a normalized range of pixel values [0, 1]. Hence, 0.125 corresponds to

the actual pixel value difference of 0.125×255 = 31.875.

 45

 

Figure 3.7: Motion detection object with TH0 = 0.125 

3.2.1 Using motion detection in Max/MSP/Jitter

Video frames are grabbed from the camera into the Max/MSP/Jitter

environment using the standard Jitter object jit.qt.grab. If the qmetro parameter,

which determines the frame grabbing interval, is too short for a particular camera,

the jit.qt.grab object will simply duplicate the last captured frame. This means that

it is possible to end up in a situation where neighbouring frames in

Max/MSP/Jitter are identical regardless of the motion in the scene. Hence, in

order to successfully use the mcl.jit.motion object within Max/MSP/Jitter, the

jit.qt.grab object needs to be followed by an attribute “@unique 1,” as shown in

Figure 3.8(a). This attribute will force the jit.qt.grab object to output only distinct

frames. With this attribute set, the resulting frame rate will not exceed the

maximum possible frame rate of the camera, even if the qmetro parameter is set

to a very low value.

The mcl.jit.motion object can detect motion in both monochrome and

colour video. For use with monochrome video, we insert a jit.rgb2luma object to

convert RGB video frame into a 1-plane char monochrome video frame. As

 46

illustrated in Figure 3.8(a), live video matrices from jit.qt.grab are fed into “t  l  l”

object, where “l” stands for “list”. This means that two neighbouring video frames

from jit.qt.grab are stored in the tab before get passed to the mcl.jit.motion

object. The sub-patch “p  opdiff” is used to do the frame subtractions, and its

subtracted images are displayed in the jitter window in Figure 3.8(a).

 (a) Motion detection patch (b) Sub-patch “p opdiff”

Figure 3.8: Motion detection patch for greyscale video frames

The mcl.jit.motion object is designed with two outlets. The first outlet

outputs the percentage of pixels with significant motion, that is, the value of Dh in

equation (4). The second outlet outputs the actual number of pixels with

significant motion, Dh × Npixel.

The sub-patch “p  opdiff” (Figure 3.8(b)) was used in this example to

display the difference between the last two frames, and also to double-check the

 47

results from the second outlet of mcl.jit.motion object. In this sub-patch, inlets 1

and 2 take the two frames from “t  l  l” and feed them into the “jit.op@op absdiff” 

object for pixel-by-pixel subtraction. The next object, “jit.op@op  >  @val  0.1,” 

compares the result of subtraction with a threshold of 0.1: if the value entering

the comparison is larger than the threshold, a value of 255 will be passed to the

output, otherwise a 0 value will be passed. Hence, outlet 1 in the sub-patch will

contain a matrix of the same resolution as the video frame, and will have a white

pixel value (255) in all pixels which seem to be moving, and a black pixel value

(0) in all pixels that seem to be static, as displayed in Figure 3.8 (a). The two

jit.op objects after the “jit.op@op  > @val  0.1” object are there to normalize the

values in the matrix to [0, 1], so that each value of 255 in the matrix will be

mapped to 1. Then, the cv.jit.sum object sums up all the values in the normalized

matrix, which is equivalent to counting the non-zero values. In Fig. 3.8(a), we can

see that the number of non-zero (i.e., moving) pixels counted by the sub-patch is

the same as the number obtained by the mcl.jit.motion object (5424), which

verifies the correctness of implementation of motion detection in the

mcl.jit.motion object.

The same operations can be performed on RGB frames. In this case, we

do not need the jit.rgb2luma object, and the mcl.jit.motion object will output the

percentages and counts of moving pixels in RGB planes separately, as shown in

Figure 3.9 below.

 48

Figure 3.9: Motion detection patch for RGB video frames

3.2.2 Application in dance performances

We have used the mcl.jit.motion object in a dance performance called

Imprint [3], premiered in the Museum Of Anthropology (MOA) in Vancouver in

January 2010. The live video was captured from the surveillance cameras

installed at the two sides of a large screen in the Press Centre at MOA. The

mcl.jit.motion object was used to detect motion in the live video, and obtain

outlines of the moving objects, similar to what is shown in Figs. 3.8 and 3.9.

These moving object outlines were then overlaid onto the darkened scene

captured by the camera, which created a visual effect of moving objects glowing

against the darkened background. Such augmented reality scene was displayed

on the large screen facing the audience, as shown in Figure 3.10.

 49

Figure 3.10: Augmented reality scene used in the Imprint dance performance at MOA

3.3 Frame rate control based on motion trend

In this section, we briefly describe the frame rate control method proposed

in [37]. Since this method was developed by researchers from the University of

Southern California, we will refer to it as the "USC method" for convenience. This

paper introduced a rate control algorithm with variable frame rate control and bit

allocation for H.263+ [40] video coding. They compared their coded videos with

the existing rate control algorithms, such as TMN5 [38] and TMN8 [39], and

concluded that their method could provide a better trade-off between spatial and

temporal quality, by avoiding the abrupt frame skipping in a pre-recorded video.

In this work, we utilize SPIHT-based video codecs described in the previous

chapter, rather than H.263+. Hence, the bit allocation portion of the method from

[37] is not relevant here. Instead, we focus on their frame rate control algorithm,

which will be described in more detail below. Another important difference

between our work and that in [37] is that we consider live video, while [37]

considers pre-recorded video.

 50

3.3.1 Frame rate control in the USC method

The USC method [37] was originally developed for combined frame rate

and bit rate control in H.263+ video coding, but its frame rate control strategy can

be easily adapted to other coding scenarios. In this method, video is divided into

sub-Groups Of Pictures (sub-GOPs), and each sub-GOP consists of 12 frames.

It is assumed that the video is captured at a certain frame rate, say 30 fps, and

the goal is to drop some of these frames (thereby changing the instantaneous

frame rate) without affecting visual quality. Since the factors of number 12 are 1,

2, 3, 4, and 6, it is possible to achieve five frame rates derived from the original

one by keeping 1, 2, 3, 4, or 6 out of the original 12 frames in a sub-GOP. In

Tables 3.2 and 3.3, we show these frame rates relative to the original one, along

with the indices of the retained frames: predominantly even-indexed frames in

Table 3.2 and predominantly odd-indexed frames in Table 3.3. The values of the

qmetro parameter needed to achieve these frame rates in Max/MSP/Jitter,

assuming the original frame rate is 30 fps, are also given in the tables.

 51

qmetro   Frame rate 
relative to 
original 

Retained frame indices 

34  1/1 1,2,3,4,5,6,7,8,9,10,11,12

68  1/2 2,4,6,8,10,12

102   1/3 3,6,9,12

136  1/4 4,8,12

204  1/6 6,12

408  1/12 6

Table 3.2: Predominantly even-indexed retained frames

qmetro   Frame rate 
relative to 
original 

Retained frame 
indices 

34  1/1 1,2,3,4,5,6,7,8,9,10,11,12

68  1/2 1,3,5,7,9,11

102  1/3 1,4,7,10

136  1/4 1,5,9

204  1/6 1,7

Table 3.3: Predominantly odd-indexed retained frames

If the original frame rate is 30 fps, this frame rate adjustment scheme can

support frame rates from 30/12 = 2.5 fps to 30 fps. Therefore, in our

implementation of this scheme in Max/MSP/Jitter, the qmetro  was allowed to

change among 6 discrete levels: 34 68 102 136 204 408, which correspond to a

range of frame rates from 2.5 fps to 30 fps. The patches implementing the USC

scheme are shown in Figures 3.11 - 3.13.

 52

Figure 3.11: The frame rate control patch for the USC method

Figure 3.12: Calculate the histogram of difference images by mcl.jit.motion

Figure 3.13: Sub-patch “p HOD” which specifies 6 discrete levels for qmetro

 53

The USC method operates as follows. The Dh values (eq. (4)) are

computed for all 12 frames in the current sub-GOP. Then the Dh value for the

next sub-GOP, denoted , is predicted as follows:

, (5) 

where in (5) is obtained from the last two encoded frames, is the slope of

the linear least squares fit to the previous 12 values of Dh, and wh is a weight

factor set to 3 in [37].

By comparing the predicted value of Dh from eq. (5) with the mean value

m(Dh) of the last 12 values of Dh, one can tell whether the motion has an

increasing or decreasing trend. Let . The frame rate for the next

sub-GOP is adjusted as follows:

1) If δ ≥ T, the frame rate is decreased.

2) If δ ≤ −T, the frame rate is increased.

3) Otherwise, the frame rate is unchanged.

Here, T is the threshold chosen as the average Dh over the first 12 video frames.

T is set to 0.03 at the beginning of the video (i.e., before the first 12 frames) are

processed, as indicated in [37]. In addition, to prevent sudden changes in frame

rate, the authors in [37] limited the change of frame rate to only one neighbouring

level. In other words, if the current frame rate is 1/3 of the original, the next frame

rate can only be chosen to be 1/2, 1/3, or 1/4 of the original frame rate.

 54

The main drawback of this method is that it may be too slow in changing

the frame rate when the motion suddenly appears in a previously static scene.

The estimated motion trend is computed over 12 previous frames. Hence, it

may take several frames with significant motion until the trend changes

significantly enough to trigger the frame rate increase, which in turn may cause

video to look jerky. Therefore, we developed a method that has faster response

to a sudden increase in motion, which will be described in Section 3.4.

3.4 Frame rate control based on instantaneous motion

To avoid slow reaction time associated with monitoring the motion trend,

we propose to adjust the frame rate based on instantaneous motion. We

borrowed the idea of Additive Increase Multiplicative Decrease (AIMD) from TCP

flow control [43] for controlling the frame sampling interval τ, which is the time

between two captured frames. In our proposed scheme, the new value τnew is

chosen based on the Dh value of the last two captured frames as follows:

1) If Dh > Td, then τnew = τprev × α.

2) If Dh ≤ Td, then τnew = τprev + β.

Here, 0 < α < 1, β > 0, and Td is the threshold which is set as the maximum value

of Dh between two neighbouring frames that is not perceived as jerky motion. To

enable a rapid increase in frame rate (i.e., rapid decrease in τ) when the motion

level increases, we need to set a small value to α. Hence, α is critical for the

performance of the method, and the appropriate value for it is determined

through extensive subjective testing described later in the chapter. On the other

 55

hand, the frame rate does not need to be decreased (i.e., τ does not need to be

increased) rapidly when the motion in the scene dies out, since having a frame

rate slightly higher than necessary will not produce jerky video. Hence, the value

of β is not as crucial. We tested several possible values for β and determined that

β = 100 milliseconds works well for this purpose.

To empirically determine the value for Td, we tested several typical

movements that could be expected in videoconferencing (e.g., talking head, hand

wave, etc.) and observed the values of Dh. When the scene was static, the Dh

value output from mcl.jit.motion was ranging from 0 to 0.002, because camera

sensor noise can lead to pixel value difference between neighbouring frames

even without motion in the scene. When there was a moving object in front of the

camera, the Dh value would typically increase above 0.008. Experimenting with

different values of Td in the procedure above, we determined that Td = 0.01 works

fairly well, and this is the value we used in the remaining experiments.

3.4.1 Implementation in Max/MSP/Jitter

The frame sampling interval τ is equal to the qmetro parameter value in

Max/MSP/Jitter. Hence, the above control procedure is applied to the qmetro

value in the patches shown in Figures 3.14 and 3.15. To make the range of

frame rates of our method be compatible with the USC method, we limited the

range of qmetro values to [34, 408]. However, in our method, qmetro is not

constrained to only 6 discrete values - any integer value in this range is allowed.

 56

Figure 3.14: Compute new qmetro (value between 34 and 408) for jit.qt.grab 

Figure 3.15: Sub-patch “p FrameRate” with our method

3.5 Combined frame rate and bit rate control

With the appropriate frame rate F determined by one of the two methods

(USC or ours), and the available bandwidth X estimated through TFRC, the

combined control of frame rate and bit rate is achieved by setting the current

frame rate to F and the number of bits assigned to the next frame as X / F.

Combined control patch is shown in Figure 3.16.

 57

Figure 3.16: Combined frame rate and bit rate control

3.6 Comparison of frame rate control methods

In order to compare the two frame rate control methods (USC and ours),

we designed the test bed shown in Figure 3.17. The goal of this comparison is to

determine which frame rate control method (USC or ours), when coupled with

TFRC for bit rate control, produces better trade off between frame quality and

frame rate for live video. Since there are currently no widely accepted

quantitative metrics for evaluating this trade off, we resort to the ultimate test -

subjective evaluation.

The setup for the subjective evaluation includes four computers connected

to the Simena NE3000 Network Emulator. Two computers (A and C) perform

frame rate control and encoding on the same input video and send the resulting

bit streams to the receivers (B and D) through the network emulator, which

limited both streams (A → B and C → D) to the same bandwidth in bits/second. A

fifth computer (not shown in the figure) is connected to the main port of the

emulator to control the bandwidth.

 58

Figure 3.17: Experimental test bed

Two rate control patches, one based on USC frame rate control, the other

based on our method, were running on two PC machines A and C. The live

analogue video from a Sony HDR-SR12 camera was split into two signals by a

RCA splitter cable, and fed into two Imaging Source DFG 1394 video converters.

Two MacBook Pro laptops were used as receivers B and D. They also recorded

the decoded video in real time into an uncompressed QuickTime format at 60

fps. This is because the DFG converters were limited to 30 fps, so a higher frame

rate of 60 fps for storing the received videos ensured that no received frame

would be skipped. Using this setup, we recorded four movements that may be

considered typical in mobile videoconferencing: Camera pan, Walking, Talking

head, and Handwave. Sample frames from the corresponding video clips (one

from the USC method, the other from ours) are shown side by side in Figure

3.18. Recordings were made for three values of α (0.25, 0.35, and 0.5), each

using four bandwidth settings (400, 850, 1000, and 1500 Kbps). Hence, there

were a total of 3×4×4 = 48 video recordings (three values of α, four bandwidths,

 59

and four movement types).

The recorded videos were compared using extensive subjective

evaluations with 22 non-expert participants (6 women and 16 men) in a

classroom at Simon Fraser University. All participants had normal or corrected-to

normal visions. The Two Alternative Forced Choice (2AFC) method [61] was

used for comparing the video quality produced by the two frame rate control

methods. In 2AFC, participants watch two videos of the same scene produced by

the two frame rate controlled methods under the same conditions, and select one

of the videos they like more. In other words, there are two alternatives, and the

participant is forced to make a choice. If the two clips look equally good, the

participants would make a random choice between the two clips, which is

expected to cancel out across the participants, so in that case both methods

would get approximately the same number of votes. The order of playing video

clips was randomized. In addition, each clip was played to each participant twice:

once on the left side, once on the right. This was done to eliminate any potential

bias that the participant may have for the left or right side.

(a) Camera pan

 60

(b) Walking

(c) Talking head

(d) Handwave

Figure 3.18: Four motion types in our experiments

These subjective tests were performed one participant at a time over the

period of two days in June 2010. We used a MacBook Pro (2.5 GHz Intel Core 2

Duo) computer playing the 96 clips on a Samsung SyncMaster 915N monitor.

Each participant was seated at a distance of 80 cm from the monitor, and was

shown pre-recorded instructions on how to complete the evaluation before the

test. Details of the test conditions are shown in Table 3.4.

 61

Ambient light  197 Lux

Monitor type  Samsung SyncMaster 915N

Size of video on the screen  332mm × 118mm (width × height)

Distance of viewer from the screen  80 cm

Participants  22 (16 men, 6 women)

Table 3.4: Test conditions

3.7 Results of Subjective Evaluations

Each pair of video clips was shown to each participant twice, the total

number of votes under each set of test conditions (movement, α, bit rate) is 2×22

= 44. The results for the three values of α are summarized in Tables 3.5-3.7. A

result is called statistically significant if it is unlikely to have occurred by chance.

We used chi-square (χ2) test [61] to examine the statistical significance of each

result:

 (8)

where Oj is the observed count of the j-th outcome, Ej is the expected count of the

j-th outcome asserted by the null hypothesis, and n  is the number of possible

outcomes. Since we are comparing two frame rate control methods (USC and

our own), n = 2 in our experiment. The χ2 value can be used to compute the

statistical significance value (also known as p-value), which are also shown in the

tables. As a rule of thumb in experimental sciences, results with p < 0.05 are

considered statistically significant.

 62

3.7.1 Frame rate control comparison by α values

Votes for α =0.25 are shown in Table 3.5.

Movement Bit rate (kbps) USC Ours p-value Significant

400 23 21 0.7630

850 17 27 0.1317

1000 8 36 <0.0001 Yes
Talking head

1500 14 30 0.0159 Yes

400 18 26 0.2278

850 6 38 <0.0001 Yes

1000 14 30 0.0159 Yes
Camera pan

1500 21 23 0.7630

400 22 22 1.0000

850 11 33 0.0009 Yes

1000 22 22 1.0000
Walking

1500 15 29 0.0348 Yes

400 16 28 0.0704

850 9 35 <0.0001 Yes

1000 7 37 <0.0001 Yes
Handwave

1500 3 41 <0.0001 Yes

Total votes 226 478 <0.0001 Yes

Table 3.5: Votes for α = 0.25

As seen in the table, all statistically significant results (9 out of 16) show

preference for our scheme. In addition, preference for our scheme seems to be

stronger at higher bit rates.

 63

Movement Bit rate (kbps) USC Ours p-value Significant

400 21 23 0.7630

850 12 32 0.0026 Yes

1000 8 36 <0.0001 Yes
Talking head

1500 12 32 0.0026 Yes

400 11 33 0.0009 Yes

850 15 29 0.0348 Yes

1000 9 35 <0.0001 Yes
Camera pan

1500 11 33 0.0009 Yes

400 21 23 0.7630

850 15 29 0.0348 Yes

1000 16 28 0.0704
Walking

1500 9 35 <0.0001 Yes

400 4 40 <0.0001 Yes

850 6 38 <0.0001 Yes

1000 27 17 0.1317
Handwave

1500 6 38 <0.0001 Yes

Total votes 203 501 <0.0001 Yes

Table 3.6: Votes for α = 0.35

Votes for α =0.35 are shown in Table 3.6. All statistically significant results

(12 out of 16) show preference for our scheme. In this case, preference seems to

hold across different bit rates. Finally, votes for α =0.5 are shown in Table 3.7.

Again, all statistically significant results (10 out of 16) show preference for our

scheme.

Looking across tables for all three α values, there is a clear preference for

our method over the USC frame rate control scheme. The number of statistically

significant trials is the highest at α = 0.35 (12 out of 16 as shown in Table 3.6),

which suggests that this α value is best suited for our method.

 64

Movement Bit rate (kbps) USC Ours p-value Significant

400 17 27 0.1317

850 8 36 <0.0001 Yes

1000 14 30 0.0159 Yes
Talking head

1500 8 36 <0.0001 Yes

400 6 38 <0.0001 Yes

850 10 34 0.0003 Yes

1000 18 26 0.2278
Camera pan

1500 18 26 0.2278

400 21 23 0.7630

850 18 26 0.2278

1000 13 31 0.0067 Yes
Walking

1500 11 33 0.0009 Yes

400 6 38 <0.0001 Yes

850 13 31 0.0067 Yes

1000 9 35 <0.0001 Yes
Handwave

1500 16 28 0.0704

Total votes 206 498 <0.0001 Yes

Table 3.7: Votes for α = 0.5

When α = 0.25, our method is very aggressive in increasing the frame rate

when motion is suddenly detected, and captures more frames than the USC

method. On the other hand, the quality of individual frames will be poorer

compared with the USC method, since the total bit rate is fixed, so frames in our

method have fewer bits assigned to them on average. Therefore, when α = 0.25,

the statistically significant preference for our method tends to be at higher bit

rates, where the penalty for having a high frame rate does not degrade the

individual frame quality too much.

As α value is increased towards 0.5, our method becomes less aggressive

in increasing the frame rate. Hence, there will be fewer frames produced and

 65

each frame will be assigned more bits, which results in a higher frame quality

even if the bit rate is low. As α increases, the statistically significant preference

for our method shifts to lower bit rates. This is especially evident for Handwave

and Camera pan types of motion, which had relatively higher motion intensity

compared Talking head and Walking.

A plot of instantaneous frame rate versus time for a segment from the

Camera pan type of motion encoded at 400 kbps with α =0.35 is shown in Figure

3.19. Both our method and USC method covered a range of frame rates from

about 3 fps up to almost 30 fps over this segment of time. The USC method was

slower to react to sudden increases in motion intensity, as it relies on motion

trend of 12 previous frames to adjust the frame rate. By contrast, our method

increases the frame rate right after the first high-motion frame.

As shown in Figure 3.19, by the time the USC method has increased the

frame rate to 30 fps, our method has already been operating at that frame rate

for a few hundred milliseconds, and has therefore captured more frames in the

initial portions of the high-motion segments. This made the motion in the

captured video less jerky compared to the USC method. Motion jerkiness is not

the same as frame rate fluctuation. In fact, the frame rate produced by our

method shows a lot more fluctuation than the frame rate produced by the USC

method, but the participants still showed statistically significant preference for our

method. This means that frame rate fluctuation is not detrimental to subjective

video quality as long as the frame rate is kept above the level that is needed to

represent the motion in the scene properly. This finding seems to be in line with

[60], but contradicts the claims made in [37] and [41] that human visual system is

 66

sensitive to large sudden changes in frame rate. The crucial factor seems to be

whether the frame rate is high enough, not whether it fluctuates too much.

Figure 3.19: Frame rate vs. time for Camera pan @ 400kbps with α =0.35

3.7.2 Frame rate control comparison by viewers' prior experience

In this section, we compare the survey results based on viewers' prior

experience with videoconferencing. Out of 22 participants, 10 of them said that

they used videoconferencing often (no less than once per month), while the other

12 used it occasionally (less than once per month). It is interesting to compare

the preference of those who do videoconferencing often (and hence have

significant prior experience with it), and those who do it only occasionally.

 67

Movement Bit rate (kbps) USC Ours p-value Significant

400 11 9 0.6547

850 9 11 0.6547

1000 4 16 0.0073 Yes
Talking head

1500 8 12 0.3711

400 8 12 0.3711

850 4 16 0.0073 Yes

1000 8 12 0.3711
Camera pan

1500 9 11 0.6547

400 10 10 1.0000

850 3 17 0.0017 Yes

1000 4 16 0.0073 Yes
Walking

1500 6 14 0.0736

400 5 15 0.0253 Yes

850 5 15 0.0253 Yes

1000 3 17 0.0017 Yes
Handwave

1500 3 17 0.0017 Yes

Total votes 100 220 <0.0001 Yes

Table 3.8: Votes for α = 0.25 among participants who do videoconferencing often

For α =0.25, votes of viewers who do videoconferencing often (10 people)

are shown in Table 3.8. All statistically significant results (8 out of 16) show

preference for our scheme. For the same α = 0.25, votes of viewers who do

videoconferencing occasionally (12 people) are shown in Table 3.9. Again, all

statistically significant results (8 out of 16) show preference for our scheme.

 68

Movement Bit rate (kbps) USC Ours p-value Significant

400 12 12 1.0000

850 8 16 0.1025

1000 4 20 0.0011 Yes
Talking head

1500 6 18 0.0143 Yes

400 10 14 0.4142

850 2 22 <0.0001 Yes

1000 6 18 0.0143 Yes
Camera pan

1500 12 12 1.0000

400 12 12 1.0000

850 8 16 0.1025

1000 2 22 <0.0001 Yes
Walking

1500 9 15 0.2207

400 11 13 0.6831

850 4 20 0.0011 Yes

1000 4 20 0.0011 Yes
Handwave

1500 0 24 <0.0001 Yes

Total votes 110 274 <0.0001 Yes

Table 3.9: Votes for α = 0.25 among participants who do videoconferencing occasionally

For α =0.35, votes of viewers who do videoconferencing often are shown

in Table 3.10, and again all statistically significant results (5 out of 16) show

preference for our scheme.

 69

Movement Bit rate (kbps) USC Ours p-value Significant

400 10 10 1.0000

850 6 14 0.0736

1000 3 17 0.0017 Yes
Talking head

1500 3 17 0.0017 Yes

400 7 13 0.1797

850 7 13 0.1797

1000 7 13 0.1797
Camera pan

1500 8 12 0.3711

400 8 12 0.3711

850 7 13 0.1797

1000 9 11 0.6547
Walking

1500 7 13 0.1797

400 3 17 0.0017 Yes

850 3 17 0.0017 Yes

1000 11 9 0.6547
Handwave

1500 4 16 0.0073 Yes

Total votes 103 217 <0.0001 Yes

Table 3.10: Votes for α = 0.35 among participants who do videoconferencing often

For α =0.35, votes of viewers who do videoconferencing occasionally (12

people) are shown in Table 3.11. Again, all statistically significant results (10 out

of 16) show preference for our scheme.

 70

Movement Bit rate (kbps) USC Ours p-value Significant

400 11 13 0.6831

850 6 18 0.0143 Yes

1000 5 19 0.0043 Yes
Talking head

1500 9 15 0.2207

400 4 20 0.0011 Yes

850 8 16 0.1025

1000 2 22 <0.0001 Yes
Camera pan

1500 7 17 0.0412 Yes

400 13 11 0. 6831

850 8 16 0.1025

1000 7 17 0.0412 Yes
Walking

1500 2 22 <0.0001 Yes

400 1 23 <0.0001 Yes

850 3 21 0.0002 Yes

1000 16 8 0.1025
Handwave

1500 2 22 <0.0001 Yes

Total votes 104 280 <0.0001 Yes

Table 3.11: Votes for α = 0.35 among participants who do videoconferencing occasionally

 71

Movement Bit rate (kbps) USC Ours p-value Significant

400 7 13 0.1797

850 3 17 0.0017 Yes

1000 8 12 0.3711
Talking head

1500 5 15 0.0253 Yes

400 5 15 0.0253 Yes

850 6 14 0.0736

1000 10 10 1.0000
Camera pan

1500 10 10 1.0000

400 11 9 0.6547

850 8 12 0.3711

1000 5 15 0.0067 Yes
Walking

1500 5 15 0.0253 Yes

400 2 18 0.0003 Yes

850 5 15 0.0253 Yes

1000 6 14 0.0736
Handwave

1500 8 12 0.3711

Total votes 104 216 <0.0001 Yes

Table 3.12: Votes for α = 0.5 among participants who do videoconferencing often

For α =0.5, votes of viewers who do video chat often (10 people) are

shown in Table 3.12. All statistically significant results (7 out of 16) show

preference for our scheme.

 72

Movement Bit rate (kbps) USC Ours p-value Significant

400 10 14 0.4142

850 5 19 0.0043 Yes

1000 6 18 0.0143 Yes
Talking head

1500 3 21 0.0002 Yes

400 1 23 <0.0001 Yes

850 4 20 0.0011 Yes

1000 8 16 0.1025
Camera pan

1500 8 16 0.1025

400 10 14 0.4142

850 10 14 0.4142

1000 8 16 0.1025
Walking

1500 6 18 0.0143 Yes

400 4 20 0.0011 Yes

850 8 16 0.1025

1000 3 21 0.0002 Yes
Handwave

1500 8 16 0.1025

Total votes 102 282 <0.0001 Yes

Table 3.13: Votes for α = 0.5 among participants who do videoconferencing occasionally

For α =0.5, votes of viewers who do video chat occasionally (12 people)

are shown in Table 3.13. All statistically significant results (8 out of 16) show

preference for our scheme.

As observed in the above tables, both groups of participants (those doing

videoconferencing often, as well as those who do it occasionally) showed

significant preference for videos produced by our method. With α =0.25 (Tables

3.8-3.9) and with α = 0.5 (Tables 3.12-3.13), both groups of viewers had

approximately the same number of significant results, which means that they felt

approximately the same about motion smoothness and video quality obtained

with these α values.

 73

However, with α = 0.35 (Tables 3.10-3.11), which seems to be the most

appropriate according to the results from the previous section, the two groups

showed different levels of preference. With this α value, viewers doing

videoconferencing occasionally showed significant preference for our method in

10 out of 16 trials, while those who do videoconferencing often preferred our

method in just 5 out of 16 trials. It is natural to ask why those who do not have

much experience with videoconferencing are more likely to choose our method

compared to those who have more experience with it? We believe the

explanation lies in conditioning. Common consumer-grade videoconferencing

systems are limited in bandwidth and processing power, and often suffer from

low video frame rates which lead to jerky motion. Those who use

videoconferencing often are likely to get used to this phenomenon and don't

seem to mind it too much. On the other hand, those with less experience with

videoconferencing are presumably more used to TV-quality video with higher

frame rates. Hence, they seem to be more sensitive to jerky motion, and tend to

prefer videos produced by our method more often than experienced

videoconferencing users.

 74

4: CONCLUSIONS AND FUTURE GOALS

In this thesis, we presented the mcl.jit library of Max/MSP/Jitter external

objects, which we developed for scalable video coding and transmission. We

have also tested and demonstrated the performance of these tools in several

distributed dance performances conducted by the dancers and media artists from

the SFU School for the Contemporary Arts. These tools have enabled telematic

dance performance to take place even in venues not equipped with high

bandwidth Internet access.

We have also introduced a combined control method to adjust frame rate

and encoding bit rate for live video streaming in Max/MSP/Jitter. The bit rate is

controlled based on TCP-Friendly Rate Control (TFRC) proposed in [28]. The

frame rate is controlled according to the motion intensity detected by our

mcl.jit.motion object. The Jitter patch for combined rate control could be used in

future dance performances to enable a more efficient use of the available

bandwidth.

A subjective video quality assessment with 22 participants was carried out

to compare the video quality produced by our frame rate control method versus

the USC method [37]. The survey results showed a statistically significant

preference for our method.

 75

4.1 Future goals

4.1.1 Video coding

In the current mcl.jit library, all video coding objects are based on the

SPIHT algorithm because of its simplicity, speed, and scalability. Further, all

codecs are intra-frame codecs, which means that they do not employ motion

compensation. Hence, they do not achieve as much compression as would be

possible with more complex motion-compensated codecs. As a future

improvement possibility, our next goal is to develop Jitter external objects based

on optimized motion-compensated codecs such as X.264 [63], which is a fast

implementation of H.264 [65]. This would enable much lower bit rates, albeit at

the cost of some added complexity.

4.1.2 Audio coding

We have been focused on live video streaming in the performances [1-4]

and have employed audio streaming in Active Space only in Imprint II [4]. In that

performance, audio transmission at both ends had to be synchronized precisely,

as dancers were using audio to guide their movements at various points in the

performance. In this case, all computers were interconnected through a local

gigabit network, so we had enough bandwidth to stream uncompressed audio

using the Active Space objects NetMatrix_Send and NetMatrix_Recv. However, if

we wish to stream both video and audio through a network with lower bandwidth,

we need an audio compression object with high quality and low latency.

Standard jit.net.send/recv objects can work with uncompressed audio. On

the other hand, jit.broadcast can send compressed video streams, but it doesn’t

 76

support live audio compression. Instead, jit.broadcast can stream compressed

audio from disk. There are a few third party objects could be used to transmit

compressed or uncompressed audio over the network described below.

As far as we know, the most frequently used external objects to stream

live audio with compression are “shoutcast~” [66] and “oggcast~” [67].

Unfortunately, their performance is somewhat unstable, and the latency could be

a big problem if we need to synchronize the background music accurately

between two distant locations. Another pair of commonly used external objects

for audio streaming is “netsend~” and “netrecv~” [68], which were developed for

transmitting uncompressed live audio with low latency. We plan to study the

source code of “netsend~” and “netrecv~” and try to develop our own mcl.jit

external objects for real-time compression and streaming of audio based on

these two existing objects.

4.1.3 Multiple ROI coding

At the moment, our mcl.jit.spihtROIaritenc/dec objects support only one

ROI. If we use cv.jit.faces to detect ROI, then only one face can be encoded as

ROI, and other faces in the scene will be treated as background (Figure 4.1). In

this case, only the first set of coordinates produced by cv.jit.faces is treated as

ROI, and others are ignored. Our next goal is to add multiple ROI capability to

the existing mcl.jit.spihtROIaritenc/dec objects. This means that the coordinates of

each ROI, as well as its up-shift factor, will have to be stored in the bit stream

header in order to allow the decoder to perform reverse operations.

 77

Figure 4.1: Multiple faces are detected by cv.jit.faces, however only the first detected face is
treated as ROI by our current ROI codec

 78

REFERENCE LIST

[1] T2. Choreography Henry Daniel, Music Adam Basanta & James
O'callaghan. Premiered July 11, 2009. Scotia Bank Dance Centre &
Interurban Gallery, Vancouver, BC. http://www.sfu.ca/~hdaniel/index.html

[2] T2: echo. Choreography Henry Daniel, Music Adam Basanta & James
O'callaghan. Premiered November 21, 2009. Concourse Gallery & IDS
MoCap Studio, Emily Carr University of Art + Design (ECUAD),
Vancouver, BC. http://www.sfu.ca/~hdaniel/index.html

[3] Imprint. Choreography Henry Daniel, Music Owen Underhill. Premiered
January 23, 2010. Great Hall, Presentation Circle, Bill Reid Rotunda, &
Multiversity Galleries, University of British Columbia's Museum of
Anthropology, Vancouver, BC. http://www.sfu.ca/~hdaniel/index.html

[4] Imprint II. Choreography Henry Daniel, Music Owen Underhill. Premiered
June 17, 2010. Fei & Milton Wong Experimental Theatre & the Audain
Gallery, SFU Woodward’s building, Vancouver, BC.
http://www.sfu.ca/~hdaniel/index.html

[5] J. Crawford, “Urban Fabric: Beijing, an interactive dance/media
performance” Beijing Dance Academy, 2006.

[6] D. Hall and S. J. Fifer, Illuminating Video: An Essential Guide to Video Art,
Aperture/BAVC, 1990.

[7] L. Naugle, “Digital dancing,” IEEE Multimedia, vol. 5, no. 6, pp. 8-12, Oct.-
Dec. 1998.

[8] L. Naugle, “Distributed choreography: A video-conferencing environment,”
Journal of Performance and Art, vol. 24, no. 2, pp. 56-62, May 2002.

[9] D. Giuli, F. Pirri, and P. Bussotti, “Orchestra!: A distributed platform for
virtual musical groups and music distance learning over the Internet in
JavaTM technology,” Proc. IEEE Conf. Multimedia Computing and
Systems, vol. 2, pp. 987-988, Florence, Italy, Jun. 1999.

[10] D. Konstantas, Y. Orlarey, O. Carbonnel, and S. Gibbs, “The distributed
musical rehearsal environment,” IEEE Multimedia, vol. 6, no. 3, pp. 54-64,
Jul.-Sep. 1999.

[11] Troika Tronix, Isadora, [Online] Available: http://www.troikatronix.com/
isadora.html

[12] Cycling’74, Max/MSP/Jitter, [Online] Available: www.cycling74.com/
products/max5

[13] J.Crawford. “Active Space: Embodied Media in Performance.” ACM
SIGGRAPH 2005 Sketches. Los Angeles, CA: ACM, 2005. 111. 18 Mar
2009

[14] S. Smulovitz, Kenaxis, http://www.kenaxis.com/
[15] J. Burg, The science of digital media, Prentice Hall, 2009.

 79

[16] A. Said and W. A. Pearlman, “A new fast and efficient image codec based
upon set partitioning in hierarchical trees,” IEEE Trans. Circuits Syst.
Video Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.

[17] Image Compression with Set Partitioning in Hierarchical Trees [Online]
http://www.cipr.rpi.edu/research/SPIHT/

[18] I. H. Witten. R. M. Neal. and J. G. Cleary. “Arithmetic coding for data
compression,” Commun. ACM, vol.30. pp.520-540, June 1987

[19] A. Said and W. A. Pearlman, “Reversible Image compression via
multiresolution representation and predictive coding,” Proc. SPIE Conf.
Visual Communications and Image Processing ’93, Proc. SPIE 2094, pp.
664-674, Cambridge, MA, Nov. 1993

[20] A. Said and W. A. Pearlman, "An Image Multiresolution Representation for
Lossless and Lossy Image Compression," IEEE Transactions on Image
Processing, vol. 5, pp. 1303-1310, Sept. 1996.

[21] I. V. Bajić and X. Ma, “MCL.JIT library for scalable live video in
Max/MSP/Jitter,” Proc. IEEE CCECE'10, Calgary, AB, May 2010.

[22] I. V. Bajić and X. Ma, "Scalable video coding for telepresence in the
performing arts," IEEE ComSoc MMTC E-Letter, vol. 4, no. 8, pp. 28-30,
Sep. 2009.

[23] D. S. Taubman and M. W. Marcellin, JPEG2000: Image Compression
Fundamentals, Standards and Practice, Kluwer, Norwell, MA, 2001.

[24] M. Rabbani. and P.W.Jones, Digital Image Compression Techniques,
SPIE Opt. Eng. Press, Bellingham, Washington, 1991.

[25] J. M. Pelletier, CV.JIT: Computer vision for Jitter. [Online] Available:
http://www.iamas.ac.jp/~jovan02/cv/

[26] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comp.
Vision, vol. 57, no. 2, pp. 137-154, May 2004.

[27] J. Goldberg, “T2: Technological beauty but no cohesion,” Plank Magazine,
July 2009.

[28] S. Floyd, M. Handley, J. Pahdye, and J. Widmer, TCP-Friendly Rate
Control (TFRC): Protocol Specification, RFC 5348, Sep. 2008

[29] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-Based
Congestion Control for Unicast Applications. In Proc.ACM SIGCOMM
2000, 2000.

[30] M. Miyabayashi, N. Wakamiya, M. Murata, and H. Miyahara. MPEG-
TFRCP: Video Transfer with TCP-friendly Rate Control Protocol. In Proc.
IEEE International Conference on Communications (ICC2001), pages
137–141, June 2001.

[31] F. Licandro and G. Schembra. A Rate/Quality Controlled MPEG Video
Transmission System in a TCP-Friendly Internet Scenario. In Proc. Packet
Video 2002, 2002.

[32] N. Wakamiya, M. Miyabayashi, Masayuki Murata, and Hideo Miyahara.
MPEG-4 Video Transfer with TCP-Friendly Rate Control. In Proc.
IFIP/IEEE MMNS2001, pages 29–42, 2001.

[33] H. Wu, M. Claypool, and R. Kinicki. A Model for MPEG with Forward Error
Correction and TCP-Friendly Bandwidth. In Proc. NOSSDAV2003, June
2003.

 80

[34] V. Paxson. "End-to-End Internet Packet Dynamics," IEEE/ACM
Trransactions on Networking, Fall 1999.

[35] S. Futemma, K. Yamane, E. Itakura, “TFRC-based Rate Control Scheme
for Real-time JPEG 2000 Video Transmission,” IEEE Consumer
Communications and Networking Conference, pages 539-543, January
2005.

[36] H. Song, J. Kim, and C.-C. Jay Kuo, “Improved H.263+ rate control via
variable frame rate adjustment and hybrid I-frame coding,” Proc. IEEE
ICIP'98, vol. 2, pp. 375-378, Oct. 1998.

[37] H. Song and C.-C Jay Kuo, “Rate control for Low-Bit-Rate Video via
Variable-Encoding Frame Rates”, IEEE Trans. Circuits Syst. Video
Technol., vol. 11, no. 4, pp. 512–521, April. 2001.

[38] T. Research, TMN(H.263) encoder/decoder, version 2.0, tmn (h.263)
codec, June 1996.

[39] “H.263+ Encoder/Decoder,” Image Processing Lab, Univ. British
Columbia, Canada, Feb. 1998. TMN(H.263) codec.

[40] Video Coding for Low Bitrate Communication, ITU-T Recommendation
H.263 Version 2, Jan.1998.

[41] C. W. Wong, O. C. Au, R. C.-W. Wong, and H.-K. Lam, “Real-time rate
control via variable frame rate and quantization parameters,” Proc. PCM
2004, LNCS 3333, pp. 314-322, Oct. 2004.

[42] V. Baroncini, R. Felice, and G. Iacovoni, “Variable frame rate control
jerkiness-driven,” J. Real-Time Image Proc., vol. 4, no. 2, pp. 167–179,
Jun. 2009.

[43] D. E. Comer, Internetworking with TCP/IP, vol. 1, 5th edition, Prentice Hall,
2005.

[44] J. Lee and B. W. Dickinson, “Temporally adaptive motion interpolation
exploiting temporal masking in visual perception,” IEEE Trans. Image
Processing, vol. 3, pp. 513–526, Sept. 1994.

[45] H. Song, J. Kim, and C. C. J. Kuo, “Real-time encoding frame rate control
for H.263+ video over the Internet,” Signal Processing: Image Commun.,
vol. 15, no. 1–2, pp. 127–148, 1999.

[46] L. Merritt and R. Vanam, “Improved rate control and motion estimation for
H.264 encoder,” Proc. IEEE ICIP'07, vol V, pp. 309-312, 2007.

[47] Max/MSP/Jitter third party external objects for broadcasting:
http://www.nullmedium.de/

[48] Computer version for Jitter external objects (cv.jit library):
http://www.iamas.ac.jp/~jovan02/cv/objects.html

[49] M. Antonini, M. Barlaud. P. Mathieu, and I.Daubechies, “Image coding
using wavelet transform,” IEEE Trans, Image Processing, vol.1, pp.205-
220, April 1992.

[50] Y. He, X. Zhao, S. Yang, Y. Zhong, “Variable frame-rate video coding
Based on global motion analysis”, H.-Y. Shum, M. Liao, and S.-F. Chang
(Eds.): Proc. PCM 2001, LNCS 2195, pp. 426–433, 2001.

[51] C. Guaragnella, E. D. Sciascio, “Variable frame rate for very low bit-rate
video coding”, 10th Mediterranean Electrotechnical Conference, MeleCon,
Vol.2, pp. 503-506, 2000.

 81

[52] J. Kim, Y.Kim, H. Song, T. Kuo, Y. Chung, C.-C. J. Kuo, “TCP-Friendly
Internet video streaming employing variable frame-rate encoding and
interpolation”, IEEE Trans. on Circuits and System for Video Technology,
Vol. 10, No.7, Octobler 2000, pp1164-1174.

[53] R. Qiao and M. H. Lee, “Adaptive rate control of Motion-JPEG2000 video
over IP networks”, ATNAC 2007, pp 328-331, 2007.

[54] J. R. Cooperstock, “Interacting in Shared Reality,” 11th Intl. Conf. on
Human- Computer Interaction, Las Vegas, NV, Jul. 2005.
www.cim.mcgill.ca/sre/publications/

[55] McGill Ultra-Videoconferencing System website: ultravideo.mcgill.edu
[56] Converts RGB to monochrome (luminance), jit.rgb2luma object reference

online at: http://www.cycling74.com/docs/max5/refpages/jit-
ref/jit.rgb2luma.html

[57] Jitter Matrix Operators (MOP) reference page available online at:
http://www.cycling74.com/docs/max5/refpages/jit-ref/jit.group-mop.html

[58] Common Box Attributes: a list of attributes shared by all max/msp/jitter
objects, online at: http://www.cycling74.com/docs/max5/refpages/max-
ref/jbox.html

[59] J. T. McClave and T. Sincich, Statistics, 9th edition, Prentice Hall, 2003.
[60] V. Baroncini, R. Felice, and G. Iacovoni, “Variable frame rate control

jerkiness-driven,” J. Real-Time Image Proc., vol. 4, no. 2, pp. 167–179,
Jun. 2009.

[61] M. M. Taylor and C. D. Creelman, “PEST: Efficient estimates on
probability functions,” J. Acoust. Society America, vol. 41, pp. 782–787,
1967.

[62] Methodology for the subjective assessment of the quality of television
pictures, Rec. ITU-R BT.500-11, 2002.

[63] http://www.videolan.org/developers/x264.html
[64] International Telegraph and Telephone Consultative Committee (CCITT),

Progressive Bi-level Image Compression, Recommendation T.82.
February 1992

[65] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, "Overview of
the H.264/AVC Video Coding Standard", IEEE Transactions. Circuits and
Systems for Video Technology, col.13. no.7, pp.560-576, July 2003

[66] O.Matthes, shoucast~ [Online] Available at www.maxobjects.com
[67] Ogg/Vorbis streaming externals for Max/MSP, [Online] Available at

http://www.nullmedium.de/dev/oggpro/
[68] netsend~ for Max/MSP and Pure Data, [Online] Available at

http://www.nullmedium.de/dev/netsend~/

 82

Appendix 1: Compiling Jitter Externals Under Mac OS X

To get started with Jitter object projects, one needs to download the Jitter

SDK from the Max/MSP/Jitter website [12], and move the JitterSDK file into the

Max folder, as shown below.

In the JitterSDK folder, there is a “Copy Contents To Library Frameworks

Folder,” the contents of which should be dragged to the Library/Frameworks

directory.

 83

Now the Jitter SDK has been installed and ready to use. To create one's

own project, one could simply copy an existing project into the JitterSDK folder

and rename the folder to the desired objectʼs name. In this example, we will

compile an external object called mcl.jit.spihtaritenc. 

The easiest way to start is to copy any existing project (here we copy the

project corresponding to the standard object “3m”) and rename the folder to the

desired name, in our case "spihtaritenc." Change the project name from

“max.jit.3m.xcodeproj” to “max.mcl.jit.spihtaritenc.xcodeproj.”

 84

Next, open the “info.plist” file, change both executable file and bundle

identifier to “mcl.jit.spihtaritenc”.

Now double click on the xcodeproj file to open the whole project, and

rename two source files as shown in the figure below.

Click on the Project → Edit Active Target “jit.3m”, change its name to

“mcl.jit.spihtaritenc” under “General” tab.

 85

Go to “Build” list, change “Product Name” to mcl.jit.spihtaritenc for both

development and deployment configuration.

The next step is to replace the old C/C++ source files by the new source

files, in our case the files that implement SPIHT encoder. As can be seen in any

example project, there is always a “max.jit.” file and a “jit.” file. The

“max.mcl.jit.spihtarit.cpp” is a Jitter wrapper file to import the code in

 86

"mcl.jit.spihtarit.cpp" and compile it as a Max external object. One needs to open

both source files and replace every word containing “jit_3m” by

“mcl_jit_spihtaritenc.” Now the executable object "mcl.jit.spihtaritenc" is ready to

be built. One could simply drag all our SPIHT C++ codes to the source folder as

shown in the figure below, and modify "mcl.jit.spihtarit" to call the main function of

the original C++ source files.

Normally, while developing the code, the building of the executable object

is done in the “Development” configuration to reduce compiling time. However,

when the code is ready, polished, and debugged, one should build the project in

the “Deployment” configuration. This way, the resulting external object will run

much faster.

 87

The next step is to move the generated external object into the

Cycling‘74/jitter-externals/ folder, where it can be seen by Max/MSP/Jitter, and

make sure that there are no other objects bearing the same name on the

computer's hard drive.

To test the external object, simply create a new patch in Max/MSP/Jitter

and add the new object. Connect the object to the appropriate input(s) and

output(s). In our example, we connect the input to jit.qt.grab for live video frame

grabbing, and the output to a similarly generated SPIHT decoder object

(mcl.jit.spihtaritdec), so that frames can be decoded and displayed, as shown in

the figure below.

 88

The compressed bit stream is exported from the encoder as a Jitter matrix

(note the green chord connecting the encoder to the decoder), which enables it

to be handled by other Jitter objects, for example jit.net.send and jit.net.recv.

 89

Appendix 2: Compiling Jitter Externals Under Windows

The Jitter SDK for Windows is different from the Mac version, and it is also

available for download from [12]. The SDK package needs to be uncompressed

and the projects content folders need to be put under the Max/MSP/Jitter

directory, usually "C:\Program Files\Cycling ’74 \Max 5.0\Cycling ’74." The

Frameworks folder needs to be copied as instructed in the previous section for

Mac OS X. Then, one needs to open the Projects folder, choose an existing

project, and rename it to the desired external object’s name. In the figure below,

for example, we copy the “3m” folder and rename it to “spihtaritenc”.

Open the newly renamed folder (in our case, "spihtaritenc"), and rename

the main project file ("max.jit.3m") to the desired name (in our case

"max.mcl.jit.spihtaritenc").

 90

Open the newly renamed project and rename the C/C++ files

"max.jit.3m.c" and "jit.3m.c" to the desired names, in our case

"max.mcl.jit.spihtaritenc.c" and "mcl.jit.spihtaritenc.c."

Also replace all occurrences of "jit.3m" by the desired name

("mcl.jit.spihtaritenc") in those two files.

In all Windows SDK projects, there is a definition (".def") file among the

resource files (see figure below). One can simply use the existing file (after

 91

renaming it appropriately) and replace all occurrences of "jit.3m" by the desired

project name (in our case, "mcl.jit.spihtaritenc") in the file content.

Next, the C/C++ files with the desired code should be included into the

project. In our case, we include SPIHT encoder’s C++ files, as shown below.

 92

Open Project → max.jit Properties and click on Configuration Properties

List. Find Precompiled Headers under C/C++ list, and change "jit.3m.pch" to the

appropriate name ("mcl.jit.spihtaritenc.pch").

Next, change object name for Program Database File Name under C/C++

→ Output Files.

 93

Also, "jit.3m" needs to be replaced by the appropriate name (in our case,

"mcl.jit.spihtaritenc") for Linker and Input in the list, as shown in figures below.

The same replacements need to be made for Import Library under

Advanced and “Generate Program Database File” under “Debugging.”

 94

Exactly the same changes need to be made to the project properties for

“Release” compiling configuration, which plays the role of "Deployment"

configuration in Xcode on Mac OS.

 95

Now the project is ready to compile. The compiled external objects will be

located in C:\Program Files\Cycling ’74\Max 5.0\Cycling ’74\sysbuild\

sin_realease\externals\jitter-externals. One should then cut and paste them into

C:\Program Files\Cycling ’74\ Max 5.0\Cycling ’74\jitter-externals, and make sure

this is the only copy of the external object on the hard drive.

To test the compiled external object, create a new patch in Jitter, include

the newly created external object (in our case, mcl.jit.spihtaritenc) and connect it

to the appropriate input(s) and output(s). In our example, we connect the input to

jit.dx.grab for live frame grabbing, and the output to the SPIHT decoder for

decoding and display, as shown below. The jit.dx.grab object grabs frames from

an external source using DirectX, and is for use on Windows machines only. It is

equivalent to jit.qt.grab on Mac OS.

 96

 97

Appendix 3: Interfacing One’s Code with Jitter Environment

By looking at the source code of objects supplied with the SDK, one can

find that interfacing of different objects with the Jitter environment is very similar.

Usually, similar modifications to one's own code will enable it to interface with the

Jitter environment. The steps for making these changes are the same for Mac

and Windows systems, and will be described in this section.

Max Wrappers

A Max wrapper class is defined to expose a Jitter object to the Max patch.

A basic Max wrapper will require the following:

1) typedef struct _max_mcl_jit_spihtaritenc

2) int main(void)

3) static void *max_mcl_jit_spihtaritenc_new

4) void max_mcl_jit_spihtaritenc_free

If the existing project is written in C, one needs to add the following before

the main function.

#ifdef __cplusplus
 extern "C"

 #endif

The first step is to define the object's class structure. In our example of the

SPIHT encoder, we used the following definition.

 98

typedef struct _max_mcl_jit_spihtaritenc

{

 t_object ob;

 void *obex;

} t_max_mcl_jit_spihtaritenc;

The t_object type is essential for all Max objects as the first entry in the

object's structure. The obex is a pointer to external information that will be

processed by the Jitter object. The attribute information and resources for inlets

(inputs) and outlets (outputs) of the object are all stored in the “obex” data.

The definition of our Max class is in the main function, as shown below.

int main(void)

{

 void *p,*q;

 mcl_jit_spihtaritenc_init(); // initialize the Jitter class

 // create the Max class as documented in Writing Max Externals

 setup((t_messlist **)&max_mcl_jit_spihtaritenc_class,

(method)max_mcl_jit_spihtaritenc_new,

(method)max_mcl_jit_spihtaritenc_free,

(short)sizeof(t_max_mcl_jit_spihtaritenc), 0L, A_GIMME, 0);

 // specify a byte offset to keep additional information

 p =

max_jit_classex_setup(calcoffset(t_max_mcl_jit_spihtaritenc,obex));

 // look up the Jitter class in the class registry

 99

 q = jit_class_findbyname(gensym("mcl_jit_spihtaritenc"));

 max_jit_classex_mop_wrap(p,q,0);

 // wrap the Jitter class with the standard methods for Jitter

objects

 max_jit_classex_standard_wrap(p,q,0);

 // add an inlet/outlet assistance method

 addmess((method)max_jit_mop_assist, "assist", A_CANT,0);

 return 0;

}

Now that the object's class is wrapped, one can start adding additional

methods such as inlet and outlet assistance functions, as needed.

The third essential function in Max wrapper class is the constructor

*max_mcl_jit_spihtaritenc_new function, as shown below:

static void *max_mcl_jit_spihtaritenc_new(t_symbol *s, long argc, t_atom

*argv)

{

 t_max_mcl_jit_spihtaritenc *x ;

 void *o,*m;//,*mop;

 t_jit_matrix_info info;

// create the wrapper object instance based on the max wrapper class,

and the jitter class

 if (x=(t_max_mcl_jit_spihtaritenc *)

max_jit_obex_new(max_mcl_jit_spihtaritenc_class,gensym

("mcl_jit_spihtaritenc"))) {

 100

 // instantiate Jitter object

 if (o=jit_object_new(gensym("mcl_jit_spihtaritenc"))) {

 // Define output matrix specially for SPIHT encoder

 max_jit_mop_setup_simple(x,o,argc,argv);

 m = max_jit_mop_getoutput(x,1);

 jit_object_method(m,_jit_sym_getinfo,&info);

 info.type = _jit_sym_char;

 info.planecount = 1;

 info.dimcount = 2;

 jit_object_method(m,_jit_sym_setinfo,&info);

 // process attribute argument

 max_jit_attr_args(x,argc,argv);

 } else {

 // couldn't instantiate, clean up and report an error

 error("jit.spihtaritenc: could not allocate object");

 freeobject((t_object*)x);

 }

 }

 return (x);

}

As most Jitter objects output four-plane ARGB matrices, we need to define

the format for SPIHT encoder separately. For a matrix operator object, we call

max_jit_mop_setup_simple to define the properties of matrices. The data type is

defined as char and the object output matrix is defined as single plane with 2

 101

dimensions. This means that our SPIHT encoder will output one 2-D matrix of

elements of type char, and the bits of these elements will be filled with the

compressed bit stream.

After this, we can proceed to the last essential function acting as a

destructor: max_mcl_jit_spihtaritenc_free.

void max_mcl_jit_spihtaritenc_free(t_max_mcl_jit_spihtaritenc *x)

{

 max_jit_mop_free(x);

 jit_object_free(max_jit_obex_jitob_get(x));

 max_jit_obex_free(x);

}

The matrix operators require to call the max_jit_mop_free(x) to free the

resources allocated for matrix inputs and outputs. The jit_object_free function

will look up the internal Jitter object instance and free its resources. The

max_jit_obex_free(x) function is to free resources related to the obex entry.

Defining a Jitter Class

The mcl.jit.spihtaritenc file will contain the definition of the object's Jitter

class. A minimal Jitter class definition needs four basic elements:

 102

1) typedef struct _mcl_jit_spihtaritenc

2) t_jit_err mcl_jit_spihtaritenc_init(void)

3) t_mcl_jit_spihtaritenc *mcl_jit_spihtaritenc_new (void)

4) mcl_jit_spihtaritenc_free(t_mcl_jit_spihtaritenc *x)

The first element struct _mcl_jit_spihtaritenc defines the class

structure. We have to put t_object as the first field in the class structure

definition. Since our SPIHT encoder will have one additional input (besides the

input frame) that allows the user to specify the encoding bit rate, it can be added

as an attribute to the Jitter object in mcl.jit.spihtaritenc file, as shown below:

typedef struct _mcl_jit_spihtaritenc

{

 t_object ob;

 double bitrate;

} t_mcl_jit_spihtaritenc;

The second element mcl_jit_spihtaritenc_init will initialize the object

class. In the initialization function, a jit_class_new function, will call the class

definition to start, followed by jit_class_addmethod and jit_class_addattr to

register methods and their names to the object class.

 103

t_jit_err mcl_jit_spihtaritenc_init(void)

{

 long attrflags=0;

 t_jit_object *attr, *mop,*o;

 _mcl_jit_spihtaritenc_class = jit_class_new

 ("mcl_jit_spihtaritenc", //create a class with its

name

 (method)mcl_jit_spihtaritenc_new, //constructor

 (method)mcl_jit_spihtaritenc_free, //destructor

 sizeof(t_mcl_jit_spihtaritenc),

 0L);

The input bit rate was registered as an attribute to the object class as

shown below.

attr =jit_object_new

 (_jit_sym_jit_attr_offset, //instantiate an obejct

 "bitrate", //with name “bitrate”

 _jit_sym_float64, //type float64

 attrflags, //default flags

 (method)0L, //default getter accessor

 (method)0L, //default setter accessor

calcoffset(t_mcl_jit_spihtaritenc,bitrate)); //byte offset to struct

member

 104

This was followed with jit_class_addattr and jit_class_register

functions to add and register the bit rate attribute to spihtaritenc class.

jit_class_addattr(_mcl_jit_spihtaritenc_class,attr);

 jit_class_register(_mcl_jit_spihtaritenc_class);

In the mcl_jit_spihtaritenc_init function, we also need to create the

matrix operator (mop) for the object class. Mop can process the matrix type and it

is needed for all Jitter objects dealing with video frames. The mop can be defined

as shown below:

 //add mop

 // create a new instance of jit_mop with 1 input, and 1 output

 mop = (t_object*)jit_object_new(_jit_sym_jit_mop,1,1);

 // enforce a single type for all inputs and outputs

 jit_mop_single_type(mop,_jit_sym_char);

 // add the jit_mop object as an adornment to the class

 jit_class_addadornment(_mcl_jit_spihtaritenc_class,mop);

The mop will be bound to the symbol matrix_calc in

jit_class_addmethod function as a private, untyped method with A_CANT type

signature. An example of jit_class_addmethod function in our mcl.jit.spihtaritenc

file is shown below.

 105

//add methods

jit_class_addmethod(

_mcl_jit_spihtaritenc_class, // class pointer

(method)mcl_jit_spihtaritenc_matrix_cal // call function

"matrix_calc", //mehotd name

A_CANT, 0L); //type signature for the method

The other two important methods that are required for all objects are the

constructor and destructor functions: *mcl_jit_spihtaritenc_new and

mcl_jit_spihtaritenc_free. In the constructor function, we need to allocate and

initialize the object's structure as shown below:

t_mcl_jit_spihtaritenc *mcl_jit_spihtaritenc_new(void)
{
 t_mcl_jit_spihtaritenc *x;

 if
(x=(t_mcl_jit_spihtaritenc*)jit_object_alloc(_mcl_jit_spihtaritenc_class
))
 {
 x->bitrate = 0.5;
 } else {
 x = NULL;
 }
 return x;
 }

 106

This means that if the allocation is successful, the

t_mcl_jit_spihtaritenc *x will be initialized to a default bit rate value of 0.5

bits per pixel (bpp). With all four basic elements taken care of, the Jitter object

can be compiled.

Now we can proceed to mcl_jit_spihtaritenc_matrix_calc function,

where the matrix processing method is defined. In the

mcl_jit_spihtaritenc_matrix_calc function, the object method will first read

matrix information by the following code.

// get the zeroth index input and output from the corresponding input

and output lists

in_matrix = jit_object_method(inputs,_jit_sym_getindex,0);

out_matrix = jit_object_method(outputs,_jit_sym_getindex,0);

We need to lock access to input and output matrices and get matrix data

pointers before the method can actually process the data. The matrix structures

will be filled out for input and output after locking.

 107

in_savelock = (long) jit_object_method(in_matrix,_jit_sym_lock,1);

out_savelock = (long) jit_object_method(out_matrix,_jit_sym_lock,1);

jit_object_method(in_matrix,_jit_sym_getinfo,&in_minfo);

jit_object_method(out_matrix,_jit_sym_getinfo,&out_minfo);

To define dimensions of SPIHT compressed data, we assigned

out_minfo.dim as shown below:

out_minfo.dim[1] = 1;

out_minfo.dim[0] =

bitrate*(in_minfo.dim[0]*in_minfo.dim[1])/8.0;

In this code, in_minfo.dim is the dimension of video inputs, and its value

has been automatically read by jit_object_method(m,_jit_sym_getinfo,&info)

function in the Max wrapper file max.mcl.jit.spihtaritenc.

In Jitter, matrices can have multiple planes. For example, a color video

frame would typically have four planes: one for Alpha (transparency), and three

for the color components (RGB). A pointer to the beginning of each row of the

matrix is obtained by adding the corresponding byte stride, which is the number

of bytes between the starting pixels of two consecutive rows. The byte strides are

defined in the t_jit_matrix_info structure. An example from our code is shown

 108

below for a three-plane matrix (Alpha plane is not encoded by our SPIHT

encoders).

 for (i=0;i<height;i++)

 {

 // increment our data pointers according to byte stride

 ip = in_bp + i*in_minfo->dimstride[1];

 for (j=0;j<width;j++) {

 *ip++;

 img[k++] = *ip++;

 img[k++] = *ip++;

 img[k++] = *ip++;

 }

 }

 encodermain(width, height, bitrate, &img[0], out_bp);

Structure in_minfo contains information about the input matrix of the Jitter

object, while its start is pointed to by in_bp. After the loop above has executed,

the pixels of the input matrix will be copied to a one-dimensional array img[k],

which is the way the SPIHT encoder is set up to accept input pixels.

Subsequently, the main encoder function is called with the start of the img[k]

array as one of its arguments.

The main SPIHT encoder function is located in the "encoder.cpp" file. Its

last argument is the pointer (*op) to the generated output bit stream, which will be

subsequently cast as a Jitter matrix. An excerpt from the "encoder.cpp" file is

 109

shown below. As shown, the first four bytes of the compressed bit stream

(cmp[k]) store the width and height of the frame.

 110

Appendix 4: Electronic files

Electronic data and files listed below and appended as supplemental files or

as a CD or DVD, form part of this work under the copyright of this author.

Projects files inside “mcl.jit_MacOSX” folder were deployed using Xcode, and

project files inside “mcl.jit_Windows” folder were deployed using Microsoft Visual

C++.

Data File:

• mcl.jit_MacOSX 18.6 MB
Externals Patches Projects

mcl.jit.spihtaritenc.mxo  MclSPIHTarit_send.maxpat  Mcl_spihtaritenc 

mcl.jit.spihtaritdec.mxo  MclSPIHTarit_recv.maxpat  Mcl_spihtaritdec 

mcl.jit.spihtbinenc.mxo  MclSPIHTbin_send.maxpat  Mcl_spihtbinenc 

mcl.jit.spihtbindec.mxo  MclSPIHTbin_recv.maxpat  Mcl_spihtbindec 

mcl.jit.spihtROIaritenc.mxo  spihtarit_enc_dectest.maxpat  Mcl_spihtROIaritenc 

mcl.jit.spihtROIaritdec.mxo  spihtbin_enc_dectest.maxpat  Mcl_spihtROIaritdec 

mcl.jit.spihtROIbinenc.mxo  ROI_arit.maxpat  Mcl_spihtROIbinenc 

mcl.jit.spihtROIbindec.mxo  ROI_bin.maxpat  Mcl_spihtROIbindec 

mcl.jit.motion.mxo  Rate Control.maxpat  Mcl_motion 

• mcl.jit_Windows 174.5 MB
Externals Patches Projects

mcl.jit.spihtaritenc.mxe  MclSPIHTarit_send.maxpat  Mcl_spihtaritenc 

mcl.jit.spihtaritdec.mxe  MclSPIHTarit_recv.maxpat  Mcl_spihtaritdec 

mcl.jit.spihtbinenc.mxe  MclSPIHTbin_send.maxpat  Mcl_spihtbinenc 

mcl.jit.spihtbindec.mxe  MclSPIHTbin_recv.maxpat  Mcl_spihtbindec 

mcl.jit.spihtROIaritenc.mxe  spihtarit_enc_dectest.maxpat  Mcl_spihtROIaritenc 

mcl.jit.spihtROIaritdec.mxe  spihtbin_enc_dectest.maxpat  Mcl_spihtROIaritdec 

mcl.jit.spihtROIbinenc.mxe  ROI_arit.maxpat  Mcl_spihtROIbinenc 

mcl.jit.spihtROIbindec.mxe  ROI_bin.maxpat  Mcl_spihtROIbindec 

mcl.jit.motion.mxe  Rate Control.maxpat  Mcl_motion 

