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Abstract 

MultiNet is a Windows-based computer program designed for exploratory data 

analysis of social and other networks. MultiNet is highly interactive and always provides 

both textual and visual representations of results. The visualizations are innovative in the use 

of colour and interaction, and some are unique to MultiNet. 

MultiNet was designed from the beginning to handle large amounts of data, and uses 

compact data formats, special storage schemes, and calculation methods that are highly 

efficient in terms of both space and time. MultiNet was also designed to handle large 

numbers of variables, both attribute (node) and network (link); it allows easy construction 

of new variables of either type by means of various operations on existing ones. Hybrid 

variables are easily constructed: node variables derived fiom networks; link variables 

derived fiom attributes. These capabilities provide crucial links among other parts of the 

program. 

The application of spectral methods to large, sparse networks is both the theoretical 

and practical centre of the research and development that has gone into MultiNet. Spectral 

methods provide analytic visualizations of network data: pictures that not only provide 

understanding, but that provide numerical values that can be used in further analysis. The 

results of the spectral methods, as well as other attribute and network data, are used together 

with simple, standard statistical methods such as cross-tabulations, analysis of variance and 

correlations for testing hypotheses about relationships among the data. MultiNet provides 

unique methods that allow attributes and networks to be freely mixed in such analyses, and 

presents results in both textual and interactive visualizations that include two or three 

discrete or continuous variables. 

The largest part of this thesis consists of descriptions of the seven main MultiNet 

program modules. Supplementary sections describe the theoretical background for spectral 

analysis and provide specific examples of spectral analysis, including a peer-reviewed, 

published paper that uses most of the parts of MultiNet together. In addition, a separate CD- 

ROM provides a working version ofthe program, electronic documentation, sample datasets, 

software aids and videos showing how the program is used. 
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Preface: Spectral methods for analyzing and 

visualizing networks 
I. Motivation 

Network analysis begins with data that describes the set of relationships among the members of 

a system. The goal of analysis is to obtain fiom the low-level relational data a higher-level 

description of the structure of the system which identifies various kinds of patterns in the set of 

relationships. These patterns will be based on the way individuals are related to other individuals in 

the network. Some approaches to network analysis look for clusters of individuals who are tightly 

connected to one another; some look for sets of individuals who have similar patterns of relations to 

the rest of the network. Other methods don't "look for" anything in particular - instead, they 

construct a continuous multidimensional representation of the network in which the coordinates of 

the individuals can be further analyzed to obtain a variety of kinds of information about them and 

their relation to the rest of the network. 

One approach to this is to choose a set of axes in the multidimensional space occupied by the 

network and rotate them so that the first axis points in the direction of the greatest variability in the 

data; the second axis, orthogonal to the fust, points in the direction of greatest remaining variability, 

and so on. This set of axes is a coordinate system that can be used to describe the relative positions 

of the set ofpoints in the data. Most of the variability in the locations of points will be accounted for 

by the first few dimensions of this coordinate system. The coordinates of the points along each axis 

will be an eigenvector, and the length of the projection will be an eigenvalue. The set of all 

eigenvalues is the spectrum of the network. 

Spectral methods (eigendecomposition) have been a part of graph theory for over a century. 

Network researchers have used spectral methods either implicitly or explicitly since the late 1960's, 

when computers became generally accessible in most universities. The eigenvalues of a network are 

intimately connected to important topological features such as maximum distance across the network 

(diameter), presence of cohesive clusters, long paths and bottlenecks, and how random the network 

is. The associated eigenvectors can be used as a natural coordinate system for graph visualization; 

they also provide methods for discovering clusters and other local features. When combined with 

other, easily obtained network statistics (e.g., node degree), they can be used to describe a variety 

of network properties, such as degree of robustness (i.e., tolerance to removal of selected nodes or 

links), and other structural properties, and the relationship of these properties to node or link 

attributes in large, complex, multivariate networks. 



Researchers who use methods like Correspondence Analysis (Greenacre, 1984) or Principle 

Components Analysis (Jolliffe, 1986) are generally aware that they are using eigendecomposition 

(or spectral) methods. However, those who use computer programs such as CONCOR (Breiger, 

Boorman and Arabie, 1975) or NEGOPY (Richards and Rice, 1981) may not be aware of this 

because the eigenvalues or eigenvectors are hidden more or less deeply within the analytic package. 

Nevertheless, spectral methods lie at the heart of these analytic tools. 

11. History of spectral analysis of networks 

There has been a recent renewal of interest in spectral methods for partitioning large sparse 

arrays, based on results that first appeared in the literature over thirty years ago. Hagen (1992) 

speculates that this is because growth in problem complexity (more than 10,000 nodes) has exposed 

scaling weaknesses in iterative "local" methods such as Kernighan and Lin (1970), Kirkpatrick, et 

al., (1983). The methods currently being developed exploit "global" properties of the underlying 

graph representation of networks and so should be of interest to social network researchers. The 

author has examined the literature in Algebraic Graph Theory (Biggs, 1993; Cvetkovic, Doob, and 

Sachs, 1995; Cvetkovic, Doob, Guttrnan, and Torgasev, 1988), focussing on structural aspects of 

networks and attempting to discern the significance of the eigenvectors generated by standard 

eigendecomposition methods (Friedman, 1993; Powers, 1988; Dodziuk, 1984). 

Early attempts to understand network structure from eigenvectors include Gould (1967) in 

geography and Bonacich (1972) in social networks. Both argue that components of the dominant 

(Frobenius) eigenvector of the adjacency matrix are a measure of "accessibility" or "centrality". 

However, at the end of their survey article, Cvetkovic & Rowlinson (1990) state that the Frobenius 

eigenvector of an adjacency matrix does nothing more than satisfy the Perron-Frobenius theorem 

(Senata, 1981), i.e. it cannot be used as a measure of "centrality" since it is a mixture of background 

and leakage from other dimensions. 

More recent work has attempted to deal with leakage by combining eigenvectors or by devising 

better "filters" by loading the diagonal. The use of eigenvectors of the adjacency matrix ("Standard' 

eigenvectors) to provide clusters/partitions is examined in papers by Donath and Hoffman (1 973) and 

Barnes (1982). Barnes uses a technique that finds partitions with the minimum number of 

connections between the parts. The technique is interesting since it uses both first and second positive 

eigenvectors to find a 2-way partition, the first three to find a 3-way partition, and the method can 

evidently be extended. Donath and Hoffman take a different approach: they add negative numbers 

to the diagonal of the adjacency matrix before performing the eigendecomposition. This is an 

example of the application of a transformation to the matrix that causes the results of 



eigendecomposition to be more useful in some way. 

While methods that find partitions which minimize distance between connected nodes result in 

cohesive clusters of connected nodes, there are also methods that find partitions which maximize the 

distances between connected nodes. These partitions can be used to identify structurally equivalent 

(Lorrain & White, 1971) sets of nodes (roles which are "colourings"). Aspvall and Gilbert (1984) 

present a procedure for colouring graphs based on combinations of the most negative eigenvectors. 

It is evident that eigendecomposition of the adjacency matrix, though it has many useful 

applications in Algebraic Graph Theory, requires that we either form combinations of its eigenvectors 

to apply it to problems such as clustering and colouring (and thus overcome "leakage" of useful 

information into the family of eigenvectors), or devise better "filters" by transforming the adjacency 

matrix before eigendecomposition. 

The Laplacian matrix of a graph (Biggs, 1993; Merris, 1994) is formed by subtracting the 

original matrix from one in which the elements in the diagonal are the sums in the rows of the 

original matrix. Although this additive variation of the adjacency matrix may seem like a very simple 

one, a large literature has developed on the Laplacian in the last 20 years, mainly because this 

discrete analogue shares so many important properties with its continuous version, which is 

undoubtedly the most important and best understood operator in mathematical physics. Some useful 

discussions of its properties are found in Grone and Merris (1994); Friedman (1993); Grone, Merris, 

and Sunder (1990); Bien (1989); Alon (1986); Alon and Millman (1985); Anderson and Morley 

(1985); and Dodziuk (1984). Discussions of practical use in partitioning large sparse matrices are 

found in Barnard and Simon (1994); Hagen (1992); Pothen, Simon, and Liou (1990). Although 

Mohar (1 99 1) presents a convincing case for considering the Laplacian as being a more fundamental 

matrix than the adjacency matrix for algebraic graph theory, the Laplacian has not been used in social 

network analysis, with the exception of Wilson (1982). 

Because of the discussion in Fiedler (1975), the eigenvector belonging to the second-smallest 

eigenvalue of the Laplacian matrix has been called the Fiedler eigenvector (the smallest eigenvalue 

is a trivial 0, with constant eigenvector). The Fiedler eigenvector has been used to recursively 

partition a graph into subgraphs until the sub-graphs all satisfy some maximum size criterion. This 

approach is called Recursive Spectral Bisection (RSB) in Simon (1 991); Barnard and Simon (1 994); 

Walshaw and Berzins (1995); Hendrickson and Leland (1995). RSB is very similar in approach to 

CONCOR (McQuitty and Clark, 1968; Breiger, Boorman, and Arabie, 1975), a procedure commonly 

used to find structurally equivalent blocks in a network (Breiger, et al., 1975). The analysis by 

Schwartz (1977) shows the partitions of a graph produced by CONCOR to be closely related to 

"Standard" eigenvectors with positive or negative eigenvalues. 



Correspondence analysis (CA) has become popular in social network research in the last 20 years 

(Greenacre, 1984; Noma and Smith, 1985; Hoffman and Franke, 1986; Barnett, 1993). It has been 

used mostly for clique detection, and it can be shown (Richards and Seary, 1997) that it produces the 

same cliques as NEGOPY (Richards and Rice, 1981). CA has not been used for general block- 

modelling. I have shown that CA is very closely related to a graph theoretic spectrum I call the 

"Normal" spectrum (its eigenvalues range from -1.0 to 1.0), which in turn shares some important 

properties with the Laplacian (Seary and Richards, 1995, 1996). This has allowed a generalisation 

of CA to produce blockmodels which contain both on- and off-diagonal blocks. The resulting 

partitions are generally similar to those of CONCOR, but with a firm graph-theoretic basis. The 

"Normal" spectrum uses a multiplicative transformation of the adjacency matrix and is the main 

subject of my research; it is described in Sections 5 and 8-10. CA has an interesting history, in that 

it has been re-invented so many times with so many names in so many different fields ("reciprocal 

averaging": Horst (1935) in ecology; "canonical analysis": Fisher (1940) in biometries; "dual 

scaling": Gutman (1 94 1) in psychometrics; "analyse des correspondences": Benzecri (1 963) in 

linguistics; "Q-spectrum": Runge (Cvetkovic, et.al., 1976) in graph theory; "combinatorial Laplacian": 

Dohiuk and Kendall (1985) in physics; "multiplicative reversiblization": Fill (1991) in 

probabilistics; "Normal graph spectrum": Seary and Richards (1995) in social networks). 

Another branch of research, complementary to the partitioning efforts, is based on the early work 

of Cheeger (1970), who proved a lower bound on Laplacian eigenvalues on a Riemannian manifold 

in terms of an isoperimetric constant of that manifold. Buser (1982) proved an upper bound, based 

on the same constant. This constant was generalised by Dodziuk (1984) and Alon (1 986) for discrete 

graphs, and these results led to the first explicit construction of expander graphs. These graphs are 

of great importance in Computing Science, since they have the short distances ofrandom graphs and 

have long been known to exist only by existence proofs. What makes them complementary to the 

partitioning research is that they have large gaps in the Laplacian spectrum, whereas the partitions 

are feasible because of small gaps in that spectrum. This result was soon generalised further to 

Markov chains by Lawler and Sokal(1988) and Diaconis and Stroock (1991) who noted that the 

probability transition matrix equation could be expressed as a Laplacian (indeed, this matrix differs 

from that of the Normal matrix of a graph by an identity matrix). Markov chains with large spectral 

gaps produce rapid mixing in which almost uniform distributions are reached very quickly, and this 

property is very important in the theory of Randomized Algorithms (Motwani and Prabhakar, 1995). 

Fill (1 991) extended this result to Markov chains for which the underlying graph is directed, and in 

so doing re-invented Correspondence Analysis once again. Research in this area has been 

concentrated on large spectral gaps, and avoids the use of negative eigenvalues. My work has 



concentrated on results for small gaps (and local structure), and allows the negative part of the 

spectrum. 

111. History of MultiNet 
MultiNet began as an attempt to combine two methods of examining social network data devised 

by Dr. W.D. Richards: FATCAT (Richards, 1986) and NEGOPY (Richards & Rice, 1981). The 

former used simple counting methods (such as cross-tabulations) to look for significant associations 

among node attribute data and network link variables, but there was no way to extract node attributes 

based on network structure. The latter found network structure such as cohesive groups of nodes, but 

did not allow the use of node attributes. The author began programming and extending graphical 

presentations of FATCAT analyses (panigrams) based on ideas fiom (Richards, 1988). The author 

also examined the algorithms used in NEGOPY and determined that an important early part of the 

computer program was calculating a mixture of eigenvectors of a Markov chain transition matrix 

(Senata, 1981) derived fiom the network. At about the same time, (Barnett & Richards, 1991) 

observed that this part ofthe program was producing vectors which had very high correlations (>0.99) 

with the eigenvectors of Correspondence Analysis (Barnett, 1993) applied to the network. 

Recognition of the close relationship between these two apparently different types of analysis did not 

appear in the literature of graph spectra, and the author began research on developing a coherent 

theory of the graph spectrum which united these two ideas, and which he called the Normal spectrum 

(because of the many normalizations that occur in both the matrix that is analysed and the resulting 

spectrum). 

One of the first results of this research was the recognition of the importance and usefulness of 

negative eigenvalues (and associated eigenvectors) (Seary & Richards, 1995). Negative eigenvalues 

are ordinarily suppressed in Markov analyses (Richards & Seary, 1997) and eigenvalue signs are 

"lost" in Correspondence Analysis (so that results can sometimes be misleading if CA is not done 

correctly). The importance of negative eigenpairs in capturing "off-diagonal" sets of nodes with 

similar sets of connections had already been exploited by CONCOR (Breiger, et.al., 1975) as a basis 

for block-modelling, but CONCOR remained poorly understood, despite the analysis by (Schwartz, 

1972). It appeared that Normal analysis could yield similar results while based on a simpler theory. 

Adding block-models derived from Normal analysis to the statistical analyses available in 

FATCAT was accepted as a useful strategy, and this was accomplished in the first DOS-based 

version of MultiNet (Seary, 1995), so-called because it allowed multiple networks (as in NEGOPY) 

along with multiple attributes (as in FATCAT). This version, as was common to other social network 

programs at the time, was limited in the size of networks it could handle. 



IV. Research goals 

When the research program for this thesis was proposed, the author outlined three main 

goals: 

1. To continue development of a coherent, unified theoretical formulation of spectral approaches for 

social network analysis 

2. To continue development of applications of the theoretical material for social networkresearchers, 

and to extend existing approaches so they provide more kinds of information about network 

structure and make it easier to relate this information to data that describes the people and the 

social context in which the networks function; 

3. To implement the theoretical material in a computerized analyix package that enables social 

network researchers to apply the ideas and concepts in their efforts to describe and understand 

social networks. This package will be interactive and graphical, and will use sparse matrix 

methods throughout, allowing very large networks to be analysed quickly. 

These goals have been realized as follows: 

1. The theory of the Normal graph spectrum is described in sections 5.7,9, 10 and 11. 

2. Extensions of simple statistical methods to network analysis are described in sections 2 and 4. 

These include support for 3-mode analysis and discrete-continuous and continuous-continuous 

methods such as Analysis of Variance and Correlations. In addition, support for confirmatory 

models has been added in the Pstar module. 

3. The current Windows-based version of MultiNet allows rapid analysis of large social networks by 

use of sparse matrix methods. Some limits on the modules are currently 5,000 nodes for 

Eigenspace and Pstar, although the code has been tested successfully for up to 25,000 nodes. The 

other modules are limited only by available memory. The Windows-based graphics are fast and 

interactive, with built-in support for both bitmap and Postscript outputs. In addition, other 

Windows-based programs may be used to capture interactive analyses. 

Finally, the following documentation contains many examples that show how the goals can be 

achieved by social (and other) network researchers. Indeed, as the final sections show, the methods 

available in MultiNet have application outside of what is usually considered social network research. 
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Overview of MultiNet 
Introduction 

MultiNet is a Windows-based computer program designed for interactive exploratory data 

analysis of social and other networks. It is divided into modules that allow for analysis and 

visualization of complex networks, and of details of the values of the link and node variables that 

make up the networks. The modules currently available are 

1. File: Load or Save MultiNet data files, Import, Export or View ASCII data files 

2. Analyse: Perform statistical analyses on two, three or four link andlor node variables. 

3. Variables: Univariate statistics and transform, combine, create and delete link or node variables. 

4. Groupings: Create or delete sets of link variables that are treated as a unit. 

5. Eigenspaces: Visualize networks and create node variables and partitions from graph spectra 

6. Models: Fit networks to exponential random graph model p* and create link variables from fit 

7. Preferences: Select defaults for displays and reports and save or load them. 

Each module except the first and last always produces a visual display as well as a textual report. 

Sections 1-7 describe each of these modules in detail. The purpose of this section is to 

introduce some concepts and definitions that are used throughout the rest of this document. These 

include: 

introductory concepts such as graph and social network terminology 

data concepts such as sparse methods and missing data 

interaction concept such as window types and common buttons 

file concepts such as file types and automation 

graphics concepts such as colour and window size 

error-handling concepts such as error trapping and warnings 

Throughout this document, the following conventions are used: 

words which are italicized the first time they are used are described in the Glossary 

MultiNet menu items, choices and labels are presented in bold Arial 

MultiNet textual reports are presented in Courier 

Words are emphasized with underline 



0.2 Introductory definitions 

Social network analysis (SNA) is largely concerned with two types of objects: 1) people 

(usually referred to as actors) and 2) the relationships between people (usually referred to as ties). 

Graph theory abstracts the two types of objects into 1) nodes, vertices, orpoints and 2) links, edges, 

or lines. The terms node and link appear to be the most commonly used. SNA often refers to ties sent 

fiom actors and ties received by actors. Some types of relationships are inherently symmetric or 

undirected since a link is always two-way (e.g., "mamed to"). The term undirected describes the type 

of relationship, while the term symmetric describes how the relationship can be stored and 

manipulated. Some types of relationships are inherently directed (e.g. "child of  '). Some relationships 

can be directed and yet result in symmetric data (e.g., "get advice") if a directed link fiom A to B is 

reciprocated by a directed link from B to A. Links may have values other than the binary presence 

or absence of a relationship (e.g., "duration" of a contact). A reciprocated directed link need not be 

symmetric if the values are different in each direction. A link that is sent and received by the same 

node is called a self-link (necessarily symmetric). These are not common in SNA, but are sometimes 

meaningful (e.g., "voted for "). 

Networks based on undirected relationships are called undirected networks and may be stored 

and manipulated in an efficient way since they are symmetric (so they are also called symmetric 

networks). If a network results fiom directed links, then it is a directed network, even though many (or 

even all) of the relationships are reciprocated. A network of completely reciprocated links (of equal 

value) may be treated as symmetric. However, in general directed networks are not symmetric. 

A set of links connecting two nodes is called apath, and the shortest path between nodes is 

called a geodesic (and there may be more than one). In an undirected network, if there is a path fiom 

every node to every other node, the network is said to be connected. The length of the longest geodesic 

is called the diameter. If there are nodes with no paths between them, then the network is disconnected 

and consists of a number of smaller connected networks called components, and the diameter is not 

defined (or is considered infinite). Therefore a connected graph has exactly one component. In directed 

graphs, we can have two types of path: weak (which ignores direction) and strong (which does not). A 

network is said to be weakly (strongly) connected if there is a weak (strong) path between every pair 

of nodes. A weakly (strongly) disconnected directed network consists of more than one weak (strong) 

component. A network in which there is a link between every pair ofnodes is called complete. A subset 

of a network which is complete (every node linked to every other node) is called a clique. If the 

relationship on which the network is based is undirected, the resulting network should be undirected and 

all links should be reciprocated. If some are not, there is measurement error. There is no such simple 

check for error in directed networks. 



A central concern in SNA is relating network structure (such as cliques) to attributes of the 

actors (such as age, sex, education level, etc.). In MultiNet terminology, actor attributes are referred 

to as Node attributes and are represented by Node variables. Attributes of relationships between 

nodes are called Link attributes and are represented by Link variables. Some node attributes can be 

derived from link attributes. For example, in a symmetric network, the number of links that a node 

has is called the degree. For a directed network, the number of links sent from a node is called the 

out-degree, while the number of links received by the node is called the in-degree. An example that 

is used often in this document is KIDS2. This is data collected from a day care center (Richards, 

1988). The .node variables describe the sex of the children (SEX) and their ages (AGE), We call the 

set of all node variables the node attributes, so there are 2 node attributes The link variables describe 

who children say they play with (SAY), and who they are observed to play with (PLAY), so there 

are 2 link variables. Link variable PLAY is inherently symmetric: a link is reported when two 

children are seen to play togther so all links are reciprocated. Link variable SAY is not inherently 

symmetric: a child may nominate a number of others (large out-degree), but be nominated by few 

or none of them (small in-degree). The complete set of all node and link variables (along with 

optional subsidiary data such as labels and comments) is called a dataset. There is no limit (apart 

from available memory) on the number of node and link variables that MultiNet can handle 

simultaneously in a dataset. 

A type of network that is common in SNA but not discussed much in Graph Theory is ego- 

centric data. This is network data collected by asking a sample of people to nominate, for example, 

who their fiends are (so the link variable is "friendship"), who they play a sport with ("play tennis 

with"), and so on. In general, there is no reason to expect that the nominees in these networks will 

be the same for any two people doing the nominating (so the resulting network will not be 

connected), that any of those nominated are also nominators (so there are no reciprocated links), or 

even that there will be overlap among the nominees of a given nominator for different relationships 

(so the number of people nominated may be much larger than the number of nominators). This leads 

to a very fragmented set of small directed "stargraphs" (one central node with many spokes to other 

nodes) which is not very interesting from a Graph Theory point of view. Many standard SNA 

measures are also useless. Nevertheless, this type of data is handled by MultiNet since it was 

originally designed for this purpose. The example dataset used in this document is 301 (Richards, 

l988), which is self-reported data collected by students in a course (CMNS 30 1). It describes every 

interaction the students had over a one week period. This dataset also contains examples of non- 

binary link variables. For example, "Duration7' contains real values which describe the length of time 

taken by some form of communication; "When" contains integer values describing the hour of the 



day in which the communication took place. The non-binary values of a link variable are generally 

referred to as the strength, since these are often a measure of the amount or intensity of an 

interaction, and can be used to weight sums of interactions. This weighting would be valid for 

"Duration", but not for "When", which does not measure amount or intensity. 

Another type of network that is common in SNA is the 2-mode network. This is data that 

links two different type of nodes, for example people and the events they attend. A link is defined 

when a person attends an event. There cannot be links among people or among events so that the 

network divides into two parts: it is a bipartite graph (in Graph Theory they are also called 

hypergraphs in which there are hyper-links between the two types of nodes) . The example dataset 

used in this document is SYM-EXP, which describes people, their medical symptoms, and the 

exposures that caused the symptoms (so this is actually a 3-mode dataset). 

The last example is a network that, by definition, cannot have links between every possible 

pair of nodes. For ego-centric data, this is not impossible but very unlikely. In fact, for social 

networks in general it is unlikely that every pair of nodes is linked in some way, and this becomes 

even more unlikely as the number of nodes increases. 

0.3 Data concepts 

0.3.1 Sparse methods 

A social network consisting of N nodes can have a maximum of N2 links. If we remove self- 

links (usually these are not meaningful), this reduces to N(N-1). If we further stipulate that the 

relationship is symmetric, this drops to N(N- 1)/2. We can measure the density of a network by taking 

the ratio of actual links to the maximum possible (N2, N(N-1) or N(N-1)/2, depending on the type of 

relationship). A complete graph has density of 1 and a set of nodes with no links has density of 0. 

Social networks generally have densities much less than 0.1, so that the amount of storage required for 

a link variable is significantly less than N ~ .  Though there is no standard for this definition, we will say 

that any network with density less than 0.1 is sparse. The essence of sparse methods is to store only 

actual data, and assume that everything not stored is 0. (Other default values are possible, but this is by 

far the commonest and most tractable case). Further, no action can be taken on this data that would 

require more storage. For example, it is possible to calculate paths between nodes by matrix 

multiplication, but this eventually requires more and more storage for the matrix powers. In fact, all of 

the N2 storage will eventually be required to calculate the diameter of the network by this method. For 

undirected networks with no self-links the storage is smaller, but still contains a term in N2. This is not 

the only problem: the storage will be N*, but the number of calculations required will be N ~ ,  SO that a 

network which is twice as large will take 8 times longer for this calculation. However, it is quite possible 



to find paths between nodes and even the diameter by methods that require much less space and time, 

using sparse methods such as link list representation and breadth-first search (Aho, et al., 1983) 

MultiNet was designed from the beginning to handle large, sparse networks. There is 

currently no limit (apart from memory) on the number of nodes and links that can be handled by the 

Analyse and Variables modules. There is similarly no limit on the number of node and link variables 

that may belong to a MultiNet dataset, and it is very easy to create new node and link variables when 

desired. The Eigenspaces and Models modules currently restrict network size to no more than 5,000 

nodes for the practical reason that few social network datasets are this large. 

MultiNet for Windows is designed to handle large datasets with multiple attributes and multiple 

connections (hence the name). The best way to describe the internal sparse representation used by 

MultiNet is to define the external format used to initially bring data into the program. This is 

described in some detail in Section 1 : The Files Module. Here follows a brief overview of data types 

and internal storage requirements. 

0.3.2 Data representations and storage 

A) Node variables 

Typically, a node variable consists of a single value for each node. The nodes themselves are 

identified by numeric codes, called ID numbers, stored as 4 byte integers (allowing up to 23' = 

2,147,483,648 distinct ID numbers). Node attribute variables may be binary, integer or real (floating 

point). Binary values are stored as single bits. Integers may be stored as single bytes, double bytes, 

or as 4-byte values depending on the actual values. There is also one special node variable called 

IDLABEL which, if defined, consists of character data, and is used to label nodes where applicable 

(e.g., in Variable, Eigenspace and Pstar displays and reports). 

B) Link variables 

MultiNet does not use adjacency matrices, either as data files or internally. All calculations 

use sparse methods. Link variables are stored in a manner very similar to node variables, except each 

link is identified by a & of ID numbers. There is no need to store all possible pairs of ID numbers, 

only those for which there is data for at least one link variable. As for Node variables, binary 

(presencelabsence of a relationship) data is stored as single bits. This is very common for SNA link 

data. Combined with the sparse method of storing only ID pairs which have link values, this results 

in very efficient storage of network data. MultiNet does not use special storage methods for 

symmetric networks. A pair of ID numbers and a data value is required for each direction. However, 

the Eigenspace module can perform automatic symmetrization. In addition, the Variables module can 



generate all missing ID pairs to make a fully symmetric network from one which has links for only 

one direction. For non-binary data, the link values are also stored in 1 ,2  or 4-byte integer formats, 

or 8-byte IEEE floating format as required. 

C) Derived data 

MultiNet allows new node variables to be derived from existing node variables (Variables 

module), or from existing link variables (Variables and Eigenspaces modules); new link variables 

can also be defined from combinations of node and link variables (Variables and Pstar modules). In 

each case the program automatically determines the most efficient storage format for the data based 

on its values. 

D) Missing data 

MultiNet keeps track of missing data for both node and link variables. Derived node or link 

variables can have non-missing values only for the intersection of the non-missing values of the 

variables used to construct them. Node variables derived from link variables must have missing 

values for any link ID numbers that do not appear as node ID numbers. Similarly, some node ID 

numbers may not appear in any link ID pairs. Whenever MultiNet reads in a dataset, either by 

IMPORTing from ASCII files, or LOADing system files, a report on such ID numbers is available 

from the "View Summary" menu item. This report lists all Node ID numbers that do not occur in any 

Link ID pairs, and all Link ID numbers that do not occur as a Node ID. Such problems should be 

considered as possible data entry errors. 

0.3 Interaction concepts 

MultNet was designed for interactive exploratory data analysis. The program is mostly menu- 

driven using the mouse much more than the keyboard. Most of the interaction takes place using 

standard Windows methods, and should be very familiar to Windows users. In particular, the program 

consists of a Main Menu (figures 0.1 and 0.4), with a descriptive title bar, and a menu bar consisting 

of eight choices. Any item in a menu bar may be selected by left mouse button single-click (left-click, 

usually referred to as simply "click) with the mouse pointer over the item. Menu items may also be 

activated (less conveniently) by accelerator keys on the keyboard: pressing the Alt- key, then the 

underlined key (e.g. F in File). The right mouse button has special uses in the Variables and 

Eigenspaces modules, but otherwise has no effect on menu items. 

Selecting any ofthe Main Menu choices (except File and Help) starts a MultiNet module which 

replaces the main menu with a sub-menu with new choices. Menu items are available only if they are 















displays as dark blue and dark red node labels. The same order and colours are used for the first two 

colours in any panigram display, for colouring the discrete variables in an ANOVA display, or for 

colouring the planes in a correlation display. The same order and colouring is used to show the 

diagonal or labels in a Pstar fit display using a node variable for blocking. To ensure that this 

mapping of colourto categories holds throughout all modules, empty categories shouldnot be deleted 

fiom displays created in the Analyse module (this is the default and may be changed in the 

Preferences module). The alternative means the Analyse module will choose colours fiom this list 

for only non-empty categories when displaying the results of analyses. This is discussed further in 

Section 2: The Analyse Module. 

Six other colours are used in graphics displays for other graphic purposes. These are shown in 

Table 0.2 in the technical appendix. These 18 colours are all of those used in graphics displays. Only 

the Aria1 (Helvetica) font is used for the text in graphic displays. Windows allows for smoothing the 

edges of screen fonts (anti-aliasing), which can produce many more colours. For this reason MultiNet 

saves bitrnaps in the 256 colour format, using the 256 most common colours in any display. This 

allows run-length encoding compression with little loss of detail. 

The MultiNet window is optimized for 1024horizontal by 768 vertical pixels, but automatically 

rescales to take up the upper left 314 of the screen at any resolution. In addition, the window may be 

resized by the standard Windows methods: 

Click on the square (full screen window) icon in the upper right corner of the title bar, or 

double-click on the MultiNet title bar results in the MultiNet window taking over the entire 

screen. This "full screen" window has the greatest resolution possible on the physical display. 

The square icon becomes overlapping double squares which will return MultiNet to windowed 

size with mouse-click. 

Click on the lower right corner of the MultiNet window and drag with left mouse button held 

down allows the window to be resized to any rectangular shape desired. As the window is 

resized, both the graphic image and any graphic text are resized to fit the new window. In the 

case of graphic text, this results in changes in font size. The aspect ratio (width to height) is not 

restricted, so the image may become quite distorted with text no longer lined up properly. It is 

generally easy to keep the image with the proper ratio, and this makes it easy to produce much 

smaller (but lower resolution) bitmap files for inclusion in documents. The Postscript images 

are not affected, and always fit in 8.5" by 6.5" (the bottom half of a page). 

To return to the initial 314 screen windowed size, choose one of the methods to exit MultiNet, but 

click on "No" in the "Are you sure?" YesNo window. This also returns MultiNet to the main menu 



display with the default 3/4 screen resolution. 

View and Edit windows may also be resized (to full screen or different size and shape) by 

standard Windows methods. All other MultiNet windows lack the square windowing icon on the 

right of the title bar, and cannot be resized. 

All MultiNet modules that produce graphic displays have a Graphics item on the menu bar, 

and all behave similarly. clicking produces a selection window with the following choices: 

Graphics+PostScript reproduces the current display as a series of PostScript commands. 

The result ofthis selection is an ASCII text file and this output is treated exactly like the Report, 

with the default output having extension .PS (e.g., KIDS2.PS). The same method as for Reports 

is used to deal with .PS files that already exist, including automatic appending. This ASCII text 

file should produce graphics on any PostScript printer, or in any program that can interpret the 

PostScript language (The shareware program Ghostscript is used to test all the Postscript 

output fiom MultiNet, and so is recommended). Technical appendix 0 contains more 

information on the Postscript translation 

Graphics-Bitmap captures the current screen display as a 256-colour bitmap, which is then 

run-length encoded. The result is saved as a Windows .BMP file, with the first part of the name 

coming fiom the data file(s) (e.g., KIDS2.BMP). These files can be imported into any Windows 

program that can read .BMP files. Since .BMP files can only contain one image Append cannot 

be used. If the file already exists, the choices become Replace, Increment or Rename. Run-length 

encoding can dramatically reduce the size of a bitmap, even at high screen resolution. Even so, 

note that complex images made at high resolution may produce very large files. 

0.7 Error handling concepts 

MultiNet traps all errors and reacts to three types of error by opening an error window (figures 

0.9 and 0.10). The three types are: 

(Anticipated) Warning: An informational message. The current procedure can be continued. 

(Anticipated) Error: An error of a type the program checks for has occurred. The current 

procedure cannot be continued until the error condition is removed. 

Internal (Unexpected) Error: An error of a type that the program does not check for has 

occurred (figure 0.10). 









so an informative message lists these nodes by ID numbers. If there are ID numbers in the link pairs 

that are not in the set of node ID numbers this is more serious, since it means that any node variable 

defined fi-om networks which include these nodes must ignore these nodes. This may also indicate 

a coding error, so a warning message lists these node pair ID numbers. 

Link ID number pairs (in the .LIN file) identify each link. In a network of n nodes, there are 

potentially n(n- 1) ordered pairs of different nodes. However, most large networks are very sparse: 

not all node pairs have any values (other than 0). We need only store the ID pairs which have non- 

zero values. If there are multiple networks on the same nodes, we need only store those pairs which 

have a non-zero value for any link variable. In the KIDS2 data, for example, the 4~ pair (1, 17) has 

a SAY value of 0, and a PLAY value of 1. At least one network (PLAY) has a non-zero value for this 

pair, so the pair must be stored. See KIDS2.LIN or Figures 1.1 - 1.3 in Section 1 : The File Module. 

Node and link pair ID numbers are generally stored as 4-byte integers, meaning that there is an upper 

limit of about 2 billion nodes. If necessary, ID values up to 248 can be stored. 

Every variable is associated with a group of supplementary descriptive variables, which are used to 

label displays and reports. These include: 

variable name: These are character stings of maximum length 24. They are defined in the 

Import file, and may be generated automatically when variables are created. The automatically 

generated names may be edited by the user. 

value labels: These may be defined in the Import file. They are character stings of maximum 

length 12. For categorical data with up to 20 discrete values, each discrete value may be given 

a textual descriptive label. These are also generated automatically in, for example, 

Define-Partition. For continuous data, value labels are undefined. If no value labels are 

available (e.g., for continuous data), then the actual values are used. For example, 

Dots-Values will use actual values to label nodes for a continuous attribute in 

Eigenspaces. Automatically generated value labels may be edited by the user. 

comments: These are textual descriptions of the variables which are up to 80 characters. 

Comments may be defined in the Import file. They are also generated automatically when 

variables are created. The automatically generated comments may be edited by the user. 



The variable itself consists of two parts: 

data values: stored in the most parsimonious form. 

missing data bits: If there is no missing data, this is a single bit. If there is missing data, the 

number of 1 -bits must equal the number of data values. The 0-bits indicate missing data for this 

node or link (ID pair). The total number of bits must equal the number of node ID numbers (for 

node variables) or link ID pairs (for link variables). 

When a variable is chosen for any analysis, it is expanded from the parsimonious passive storage 

format, (data values), but still handled as a pair of items (data values, missing bit string) to minimize 

memory requirements. This is particularly important for link variables, which may be very large. 

B) Storage rules 

I. passive storage: Data is stored in one of two forms. The passive form is most compact, and is 

used both in files and in memory where data is not in use. When data is being used in a calculation, 

it is stored in active form, which is not as compact, but only exists in this form while in use. After 

use, the memory is released. 

Table 0.1. Passive data storage 

Data range 

[0711 

[0,2551 

[0,65535] 

[-2317231] 

1- 1 0308, 1030~1 

any decimal values 

missing data 

ID numbers 

Labels 

Link ID pairs 

(Files only) 

storage tvue 

8 bits per byte 

single byte 

double byte 

4 byte 

8 byte IEEE floating point format 

8 byte IEEE floating point format 

8 bits per byte. 0 if missing. 1's match data items 

If no missing data, a single bit. 

Either 4-byte integer if 0<ID#<23' = 2,147,483,648, or 

8-byte IEEE floating point if 0<ID#<248 = 28 1,474,976,7 10,656 

1 byte per character 

As above (4-byte integers, or &byte IEEE floating point) 

Or as unique items along with compressed indices into unique 

items, whichever takes less space 



As an example of the last case, consider that in a network the same ID numbers may appear many 

times. For file storage purposes, it may be possible to store this information more efficiently by 

storing only the unique ID numbers along with indices into these unique numbers (in compressed 

form if possible). For example, the KIDS2 dataset has 227 ID pairs. The FROM ID numbers can be 

stored in 998 bytes. However, storing the 32 unique 4-byte ID numbers and 227 1 -byte indices takes 

only 335 bytes. Similarly, the TO ID numbers can also be stored in 335 bytes. MultiNet calculates 

the storage required for both methods and selects the smallest. The savings can be substantial for 

large networks. 

ii. active storage: When a variable is required in a calculation, MultiNet makes a copy of the data, 

converting from the passive storage form to a more convenient form for the calculation. After the 

calculation is complete, the memory required for the active storage is released for later calculations. 

The active storage of data can take advantage of the type of calculation to remain efficient in terms 

of storage or calculation or both. For example, the same method used to store ID pairs in files is used 

by the Analyse module for Network cross-tabs, ANOVA and correlation. This works well because 

the number of nodes is generally much smaller than the number of links, which are actually node 

pairs. Thus the same node attributes will occur multiple times, so that storing unique values and 

indices into the unique values is actually a very efficient way of handling the active storage of data. 

Also, in the Eigenspaces and Pstar modules, only the indices into link IDS are used, so that IDS may 

have a much larger range ( up to Z4" for 8-byte values) than the values actually used in the 

calculations (up to 231 for 4-byte values). So far these limits have been vastly larger than needed for 

any actual dataset. 

Table 0.2. Active data storage 

Data range 

[O, 1 I 
[0,2551 

~-231 , 231 1 
[- 1 0308, 1 0308] 

any decimal number 

missing data 

Labels 

Node attributes of Links 

Storape t w e  

8 bits per byte 

1 byte 

4-byte integer 

8-byte IEEE floating point 

8-byte IEEE floating point 

8 bits per byte. 1's match data items. Single bit if no missing data. 

1 byte per character 

As above for unique items, and 4-byte indices into unique values 



0.9.2 Graphics specifications 

A) Colour details 

The following tables provide details about the colour used in MultiNet graphics displays. Table 

0.1 specifies the mapping between colours and categories. 

Table 0.3. Colours used to display categories in MultiNet graphic displays 

Colour name 

dark blue 

dark red 

dark green 

dark magenta 

dark cyan 

dark yellow 

light blue 

light red 

light green 

light magenta 

light cyan 

light yellow 

Colour number 

1 

category number 

1" category 

2nd category 

3 1 ~  category 

4th category 

5th category 

6th category 

7th category 

8th category 

9th category 

10th category 

1 1 th category 

12th category 

RGB values 

80, 80, 

200, 80, 

80, 200, 

175, 75, 

80, 180, 

175, 175, 

130, 130, 

250, 110, 

100, 220, 

220, 100, 

100, 220, 

190, 200, 

Table 0.4. Other colours used in graphic displays. The two anaglyphic colours replace 8 and 7 only in 
anaglyphic 3-D displays, which do not use light or dark grey. 

Colour name Colour number Graphic purpose RGB values 

black 0 default foreground colour 0, 0, 0 

dark grey 8 cumulative curve, 3-D 140, 140, 140 

light grey 7 axes, 3-D, de-emphasis 200, 200, 200 

pure red 8 anaglyphic 3-D 255, 0, 0 

pure cyan 7 anaglyphic 3-D 0, 255, 255 

pure white 15 default background colour 255, 255, 255 



B) PostScript details 

PostScript is generated directly fiom the graphics primitives that are used to create the graphics 

displays. These primitives were chosen with this translation in mind, so the translation is fairly 

straightforward. The graphics screen is defined to have the same coordinates as a PostScript page, so 

that no translation of coordinates is required. Colours were chosen to appear similar in both additive 

computer displays and subtractive print displays. All the graphics primitives are translated by the set 

of definitions (Table 0.3) which is prepended to all PostScript output files. 

Table 0.5. PostScript definitions prepended to every PostScript file. Comments added. 
{ .1 I {N 0 360 arc  C G F R 0 P S) repeat 1 I )  def % circle 

{M 3 {L) repeat C G F R 0 P S) def % box w i t h  colour f i l l  

{closepath) def 

{3 1 r o l l  M {L) repeat S) def % draw poly-lines 

{ 1 add 2 idiv {M L S) repeat) def % draw disconnected edges 

{RGB aload pop setrgbcolor f i l l )  def % f i l l  area w i t h  colour 

{gsave) def 

{RGB astore aload pop) def % set RGB f i l l  

{setlinewidth) def /K {setrgbcolor) def 

{l ineto)  def /M {moveto) def 

{newpath) def /P  {setgray) def 

{grestore) def /S {stroke) def 

{ {M 1 0 r l ine to  S) repeat) def % draw disconnected dots 

{/Helvetica findfont exch scalefont setfont) def % s e t  font 

{0  eq {-90)(90) i f e l s e  rotate U )  def % set rotation s t a t e  

{show) def 

{ 0.5 mu1 /x exch def x I % disconnected multi-coloured dots 

{M 0 x r l ine to  1 eq { K ) i f  S ) repeat 1 I)  def 

/RGB [O 0 01 def % t o  hold current f i l l  s t a t e  

1 I 1 6  U 0 0 0 H 0 0 0 K % i n i t i a l i z e  



1. The File 

1.1 Introduction 

Module 

File is the first of the eight items on the Main Menu bar, and is also one of the two items 

enabled when MultiNet first starts (the other is Help). While Help can be useful as an introduction 

to the MultiNet modules, no work can be done until a dataset has been read into MultiNet, and this 

requires the File module. 

The File module is deceptively simple: it does not have its own menu bar, does not produce 

any graphics or reports, and does not seem particularly interactive - as long as no problem arise. 

Experience has shown that one of the most error-prone areas of data analysis is in the preparation of 

data for use by analysis programs. However, the same experience with potential data problems has 

been built into this module: There are many ways in which errors may creep into data, and as they 

have been encountered, more checks have been added. It is impossible to anticipate all possible 

sources of error, and some errors are subtle. An appendix to this section contains a list of all the 

checks against import error that are currently part of MultiNet, both those automatically performed 

by the File routines and those available in other parts of MultiNet. 

1.2 Multiplex and sparse data representations 

MultiNet was designed fiom the beginning to handle multiplex data and large, sparse 

networks. Multiplex data may have many attributes: there may be multiple attributes defined for the 

same node IDS or link ID pairs There is currently no limit (apart fiom memory) on the number of 

nodes and links that may belong to a MultiNet dataset, and it is very easy to create new node and link 

variables when desired. This flexibility requires a careful attention to the handling of large numbers 

of possible variables of both types. In addition, large network data is best handled by using one of 

the methods for representing such data in a sparse format, which includes only the ID pairs for which 

data actually exists. MultiNet uses a pair of files with similar names for the Node and Link variables. 

These file pairs can also come in two different but closely related file types: MultiNet text files and 

CSV (comma-separated variable) files. MultiNet text files will be described first, since there is a 

close relationship between the way variables are defined in the files, and the way they are stored 

internally. 



ID (1-4) Node identifier columns 1-4 

SEX (6) Attribute SEX column 6 
/ Mark start of value labels 

1 boy 
2 girl ) value labels 

/ Mark end of value labels 

AGE (8-9)  Note: no value labels 

END Mark end of header 
1 2 6  1 
2 2 7  1 

P ata for each node 

ID (1-4) Link is FROM this node 
ID (5-8) Link is TO this node 

SAY (10) does i say slhe plays with j? 

/ start value labels 
0 No 
1 YES } value labels 

/ end value labels 
PLAY (12) does i actually play with j? 

/ start value labels 
0 No 
1 YES 

) value labels 

/ end value labels 
END Mark end of header 

1 1 3 1 1 1  
1 3 1 1  1 

22 )data for each link 
1 17 0 1 (each node pair) I 

J 

Figure 1.1. MultiNet Node and Link text files 

To illustrate how sparse matrix methods are implemented in MultiNet, we now describe 

MultiNet data formats, and how to get network data into MultiNet. The data formats for both attribute 

(node) and network (link) data are intended to: 

allow for multiple attributes (node variables) and networks (link variables) 

use a minimum amount of space (both on disk and in memory) 

be easy to edit and maintain (the files are self-documenting) 

The data format is an outgrowth of formats used by both NEGOPY and FATCAT (Richards, 

1989,1995). MultiNet uses a pair of files with the same name and different extensions. The 

extensions are always .NOD for node (actor attributes) and .LIN for link (network attributes). 

1.2.1 MultiNet text files 

The example given here is KIDS2.NOD and KIDS2.LIN, which is data collected from a 

day care center (Richards, 1988). Each file begins with a header which defines what the data are, and 

where they occur in the file (by character position). Figures 1. l a  and 1.1 b show these two files, with 



the first few rows of data. The .NOD file describes the sex of the children (SEX) and their ages 

(AGE), so there are 2 node attribute variables. Individual children are identified by ID numbers, 

which is a common practice used to provide anonymity. Each .NOD file begin with the 

declaration of the variable "ID", and the first character(s) of data be the ID numbers. The first 

node variable is declared in the second line of the header. The variable name is taken as all characters 

(including blanks) up to the "(" character and may be up to 24 characters long. The position 

description is contained between "(" and ")" and may consist of a single number, or a pair of numbers 

separated by "-" for multi-position values. 

The node variable SEX is in position 6, and can consist of two values: male or female. These 

are categorical values: descriptive labels with no natural ordering. It is common, and sometimes 

necessary (as it is for MultiNet and many statistical programs), to externally code such values as 

integers, and to represent them internally as integers. Because this is an integer encoding of a 

categorical variable, it is also very useful to provide value labels or category names that indicate the 

meanings of the numbers in the data. The MultiNet text files use a special format immediately 

following a variable declaration consisting of 

the character "/" to mark the beginning of the integer-to-value label descriptions 

a list of integers and value labels, one pair to each line (e.g. "1 male"), and with one pair 

for each integer that appears in the data for this variable 

a final "/" character to mark the end of the description 

MultiNet makes a distinction between two types of variable: categorical (where the numerical 

representation is merely an encoding) and any other (where the numerical representation is an actual 

measurement). The type is decided automatically based on the number of unique values that a 

variable has (the number of bins). By default, a variable with no more than 12 bins is considered 

categorical. This number may be set as high as 20 in the Preferences module. Certain types of 

analyses (e.g. XTABS) are only allowed for categorical variables. In addition, categorical variables 

are expected to have value labels defined. If no value labels have been defined, the program will 

generate them automatically, based on the actual integer coding. Value labels may also be 

automatically created in the Variables and Eigenspaces module when a newly created variable 

has no more than the limited number of bins. On the other hand, MultiNet is forgiving when using 

categorical variables in types of analyses that expect non-categorical data (such as the calculation of 

simple descriptive statistics like mean and standard deviation). 

The second node variable defined in KIDS2.NOD is AGE. This is not categorical and so no 



value labels are defined. However, there are only 5 bins and because the number of bins is not greater 

than the limit, MultiNet will allow this variable to be used wherever a categorical variable is 

expected, and will generate automatic value labels when required. 

Even though both SEX and AGE can be treated as categorical data, they are distinctly 

different types of variables. AGE is a continuous phenomenon, though most people round it to the 

nearest number of years. It makes sense to talk of the mean and standard deviation of AGE, but not 

of SEX. Apart from the discrete/continuous distinction based on number of bins, MultiNet does not 

distinguish among nominal, ordinal and continuous data (Richards, 2004). For example, the program 

presents means and standard deviations of dvariables. It is up to the user to determine when these 

results are meaningful. 

The actual node variable data follows the set of declarations in the "header" (Figure 1. la). 

Each variable takes up the column(s) described in the header. The internal storage of a node variable 

then consists of: 

the variable name (.e.g., SEX) 

the variable values (as defined by the contents of the position(s) declared in the header) 

optional value labels for categorical data 

an optional comment. 

The comment can be up to 80 characters long, and is taken to be any text on a header line after the 

name and column declarations. For SEX in Figure 1.1 a, the comment would be "Attribute sex column 

6". Comments are very useful for describing data and MultiNet makes frequent use of them: 

whenever a new variable is created, the user is prompted for a descriptive comment. 

The .LIN file header declares ID numbers, since each link describes a relationship 

between a pair of nodes. ID1 is the ID numbers of the nodes that send links, and ID2 is ID the 

numbers of the nodes that receive links. The .LIN file must begin with the declaration of ID 1 and 

ID2, and the first two variables be pairs of node ID numbers. For every such pair, there may be 

any number of link variables, each of which describes a type of interaction or relation which defines 

a network. In this example, there are two link variables: SAY and PLAY. Both link variables may 

be considered categorical, with binary value yes or no. For SAY, a value of 1 means "ID 1 says he 

or she plays with ID2". For PLAY, a value of 1 means "ID1 was seen playing with ID2". The coding 

1 for yes and 0 for no allows the data to be stored internally as a single bit for each link value. Since 

binary link variables are very common, this is a very efficient way of storing such data. Thus a 

network of 65,536 binary links can be stored in only 8,192 bytes. For non-binary data, MultiNet will 



store the data in the most compact way, but integer and real link variables will obviously take up 

much more space. 

MultiNet stores and manipulates networks using sparse methods based on the .LIN data 

format. That is, only the pairs of node ID numbers actually described in the .LIN file are stored. 

When multiple link variables are defined in a dataset, we need only describe those node pairs which 

have a non-zero value for link variable. In the KIDS2 data, for example, in Figure 1. l b  the 4& 

pair (1,17) has a SAY value of 0, and a PLAY value of 1. At least one network (PLAY) has a non- 

zero value for this pair, so this node pair must be included, but since 1 did not nominate 17, the SAY 

value must be 0. 

1.2.2 Missing data 

Obviously, it is not necessary or desirable to describe pairs of nodes with a link value of 0, 

unless the pair takes or is given a non-zero value for another link variable. The value 0 (representing 

absence of interaction) is special for link variables, which must generally be non-negative. For node 

variables, 0 does not have any special meaning: a category may be encoded with value 0 without 

creating problems, and node values of 0 are never ignored. However, often a network dataset has 

missing data due to non-response during data collection. It is desirable to have a special data value 

other than 0 to represent missing data and MultiNet allows for the external dataset to have a missing 

data character. The default is a blank character, but the user may replace this with something else 

(preferably not a numeric character). Any variable with missing data is represented internally as a 

pair of lists: data values (in the most efficient storage) and a bit string marking which values are 

available (1) and missing (0). Any combination of variables can only use the intersection of non- 

missing values. For some types of variable, it may make sense to treat 0 data as missing (e.g., out- 

degree for one part of a two mode network, in-degree for the other part), or to treat missing data as 

0 (e.g. for any link variable), so MultiNet allows these transformations in the Variables module. 

Working with missing data is discussed further, where relevant, in other sections in this document. 

1.2.3 MultiNet CSV files 

While MultiNet text files have certain advantages since they are in a f ~ e d  format, with the 

values of any variable always occupying the same character positions, making them easy to read and 

maintain. (Also, the MultiNet distribution package includes the programs FREE2FLX and ADJ2NEG, 

both written by W.D. Richards, that simplify translation of other common SNA formats to a fixed 

format). However, more recently SNA data has been appearing in spreadsheets such as Lotus, 

QuattroPro and Excel. Most of the advantages of the fixed format are supplied by the spreadsheet 





files. It is not strictly necessary to put each variable name on a separate line, nor in different columns, 

though this makes the data easier to read and maintain and is the format used by MultiNet when 

creating CSV files. Because data is delimited by commas, there is no need for a special "missing 

data" character: any empty spreadsheet cell produces a pair of commas with no data between them 

and this is treated by MultiNet a s  missing data. However, some people use a special code for missing 

data (e.g., '*') , so this is also supported for CSV files. Comments are currently not supported in CSV 

files. The names of the CSV files must with 'NOD' and 'LW,  since the '.CSV' extension is 

required by the spreadsheet programs. 

Node files in either MultiNet or CSV format also support a special type of variable which 

can be used to label nodes with text data (e.g., names of individuals). The variable must be named 

IDLABEL (upper, lower or mixed case), with the usual definition of up to 20 characters for fixed 

format. These positions may contain non-numeric data which is then used in addition to LD numbers 

to label nodes. An example is NAMKIDS2.NOD in the distribution kit. Similarly, for CSV files the 

spreadsheet column for IDLABEL may contain non-numeric data. If IDLABEL is defined, these 

labels will be added to ID numbers in reports, and will replace ID numbers in Eigenspace displays. 

Note that node or link files of either type may contain non-numeric data, as long as no 

declarations are made in the header that attempt to read these character positions or spreadsheet 

columns as numeric. Examples of this for IDLABEL are shown in Figure 1.4. In fact, any positions 

or columns that are not declared in the header are ignored when data is read in. 

ID [ l - 3 )  ID (1-3) 
IDLABEL ( 5 - 1 2 )  SEX [ 13 -14 )  
SEX (13-14) 
/ 

/ 
1 m a l e  

1 o-rale 2 f e m a l e  
2 f e m a l e  ! 
/ 
AGE 
END 

1 
2 
3 
4 
5 

L inda  2 6 
J e m i m a  2 7 
Bertha 2 7 
Ji mml7 1 7  
Fred 1 7  

AGE 
END 

1 
2 
3 
4 
5 

Linda 2 6 
J e m i r n a  2 7 
Bertha 2 7 
J i m m y  1 7  
Frc  d 1 7  

6 R o s e  2 7 6 Rose 2 7 

a) IDLABEL declared b) not declared 

Figure 1.4. IDLABEL as an example of non-numeric and 
non-declared data. In a) the declared IDLABEL columns 
result in the ID labels becoming part of the dataset. In b) 
the undeclared columns are completely ignored. 





Load does not prompt before reading in the file. All current variable definitions are lost 

unless proceeded by a Save  operation. The name of the file to be read in is chosen by the usual 

Windows methods (see Figure 1.6). The MultiNet title bar is updated to show the name of the system 

file that has just been read in. 

1.3.2 S a v e  

S a v e  performs the action complementary to Load, saving the currently defined MultiNet 

node and link variables into a highly compressed MultiNet system file with extension MNW. The 

name of the file to be saved is chosen by the usual Windows methods (see Figure 1.6). If a file by that 

name already exists, a YesNo window asks whether it should be over-written. If No is chosen, the 

S a v e  operation is terminated. If Yes is chosen the data is saved and the MultiNet title bar is updated 

to show the name under which the dataskt has been Saved If the name (apart fiom the .MNW 

extension) under which the data is Saved is different fiom the previous name as shown in the 

MultiNet title bar, the program opens another YesNo window. This window asks whether the default 

names of certain automatically generated files should also be changed. These files have extensions 

.NOD, .LIN, .OUT, .PS and .BMP. For example, if the original file was named 0LD.MNW and was 

Saved as NEW.MNW, then the program asks whether, for example, reports (Postscript files, Bitmap 

files) should now also be renamed as NEW.OUT (NEW.PS, NEW.BMP). 

1.3.3 Import 

Although Load and S a v e  are the most convenient and efficient methods for handling 

MultiNet datasets, lmport is essential for first getting the a dataset into MultiNet. The most common 

format for moving data between different programs or even different operating systems is ASCII text 

files, and that is the type of file that lmport deals with. These files are in one of the two formats 

described above: either MultiNet text files or spreadsheet-created CSV files. After selecting Import, 

a selection window opens for choice of one of the two file types. Once this choice has been made, 

a standard Windows file selection window opens. IfMultiNet network is selected, all files are shown 

that: 

a end with .NOD and - 
a match another file name that &with .LIN (e.g., KIDS2.NOD and KIDS2.LIN) 

If CSV is selected, all files are shown that: 

a =with NOD and have extension .CSV and 

a start with LIN, otherwise match the NOD file name and have extension .CSV (e.g. 

NODKIDS2.CSV and LMKIDS2.CSV) 







The first case may lead to a flurry of Edit windows, so is not used. Rather one of the last two 

actions is taken, based on a setting made in the Preferences module (Categories+Create New). 

In either case, a Warning window describes the action taken. Creating a new value label allows the 

data to be read in unchanged (Figure 1.8a), but the existence of an undeclared value shows that there 

may be an error either in the data or the value label declarations. Rejecting undeclared values as 

missing data (the default) gets rid of possible errors (Figure 1.8b), but at the cost of introducing 

missing data where none is expected. In either case, the original data should be checked for the 

source of the possible error. The example in Figure 1.8 suggests that the error is in the data but this 

is not always clear, and there is no general method to resolve the problem automatically. 

There is one other setting in the Preferences module that can affect the Import-ing of 

ASCII data. Defaults+Categories is set to a default value of 12, and may be set as large as 20. 

If a categorical variable has a set of unique values which is larger than this setting, then lmport will 

treat the variable as continuous rather than categorical, and any declared value labels will be ignored. 

If categorical data seems to be missing declared value labels, this Preferences choice may have 

been set too small. 

1.3.4 Export 

MultiNet makes it easy to create new Node and Link variables, and Export makes it easy 

to write these variables out into ASCII text files for use by other programs. Just as for Import, both 

MultiNet fixed format and CSV files are supported, and as for Import this is the first choice made 

fiom a selection window (Figure 1.9a). This is followed by a selection window to choose Node or 

Link variables (Figure 1.9b) and then a multiple selection window to select which of the Node (or 

Link) variables to Export (default is all as in Figure 1.9~). Once these selections have been made, 

a standard Windows file menu is used to select the file name, with defaults: 

*.NOD (or .LIN) for MultiNet fixed format (e.g. KIDS2.NOD or KIDS2.LIN) 

NOD*.CSV (or LIN*.CSV) for CSV format (e.g., NODKIDS2.CSV or LINKIDS2.CSV) 

where * is based on the file name of the current dataset. If the file does not exist, the chosen variables 

are Exported to an ASCII text file in the chosen format. Export then checks to see 

if the corresponding Link (or Node) file also exists, and displays a warning window if it does not 

(Figure 1.9d). Here the default name was replaced with KIDSe.NOD, so KIDSe.LIN would also be 

needed for Import.(if you wanted to Import the new file at another time). 









1.5 Technical appendix 

1.5.1 List of errors anticipated by Import. 

Generic values for File name, column numbers and variable name are represented by <File>, 

<n1 -n2> and <Name>, respectively. 

Error Text is followed by 

Explanation. 

A) "Expected" errors 

<File> DOES NOT EXIST 

. Attempt to import .NOD file for which there is no .corresponding .LIN file 

<File> DOES NOT START WITH "ID" 

Both .NOD and .LIN files must have "ID" (in either upper or lower case) as the first two 

characters of the file. These are part of the ID or ID1 data declarations. 

EXPECTED VARIABLE DEFINITION 

WITH COLUMN NUMBERS AS (nl-n2) . 
MISSING '/" OR 'END"? 

While reading header information, expected to find a variable definition of the form 

<Name> (1-2) which defines a variable name and the columns the data values are in. 

,Most likely this error was caused by an unfinished value label declaration, or by forgetting 

to mark the end of the header with "END", or "BEGIN DATA". 

EXPECTED TWO COLUMN NUMBERS 

(nl-n2) AFTER VARIABLE NAME 

Ill-formed expression after variable name. Possibly missing parentheses, or un-matched 

parentheses, or parentheses as part of variable name or missing "-" character between column 

numbers. 

DECREASING COLUMN NUMBERS 

The column numbers in the (nl-n2) expressions must increase in value within the 

parentheses and for succeeding variable declarations. 
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MORE THAN 2 0  COLUMNS 

(nl-n2) must span no more than 20 columns. This error probably caused by typing a error. 

DUPLICATE COLUMN NUMBERS 

The same columns (or overlapping columns) used for more than one variable. Probably a 

typing error. 

EXPECTED VALUE LABELS 

MISSING "/"? 

Probably missing ending "/" character in value label declaration. 

NO DATA I N  COLUMNS <nl-n2> 

FOR VARIABLE "<Name>" 

The column described by (nl -n2) for variable <Name> is completely blank. 

Probably a typing error for column declaration. 

EXPECTED NUMBERS I N  COLUMNS <nl-n2> 

FOR VARIABLE "<Name>" 

At least on non-numeric character in the columns declared for the variable. 

In Edit window, cursor will be placed at first such character. 

DUPLICATE NODE I D  

Only for .NOD files. At least one ID number appears more than once. 

NUMBER OF LINKS DO NOT MATCH 

FROM: <nl> TO: <n2> 

Only for .LIN files. The number of ID numbers in the fiom column do not match the number 

of ID numbers in the TO column. Probably at least one blank ID number. 

NO DATA I N  ANY SPECIFIED COLUMNS 

. None of the declared data columns contained valid data. This can happen with a NEGOPY 

link file, which does not require actual data besides the ID pairs. 



NO FROM I D  NUMBERS 

or 

NO TO I D  NUMBERS 

Only for .LIN files. Probably forgot to declare either ID1 or ID2 in header. 

I D  NUMBER = 0 I N  F I L E  <Name> 

ID numbers must be positive and less than 248 

B) "Unexpected" errors 

The following error message follows an unexpected error that cannot be recovered from. The data 

could not be read in, and cannot be edited, but the current dataset (if any) is unchanged. 

UNEXPECTED ERROR I N  F I L E  < F i l e >  

New type of error. Cannot be edited, since location is unknown. 

C) Warning messages 

The following messages appear after both files have been read in. They are warnings rather than 

errors. These warnings are repeated for any dataset (ASCII or system). 

SOME NODE I D S  ARE NOT LINK IDS 

Some nodes do not appear in any link variable. Since they are not part of any network, this 

may indicate transcription errors. 

SOME LINK IDS ARE NOT NODE Ids 

Node that appear in networks are not declared, and so can have no node attributes. Any data 

derived from networks (e.g., degree, partition) must be declared as missing since there are 

no node IDS to attribute them to. This may also indicate transcription errors. 

1.5.2 Other data checks 

The following are not error messages, but are conditions that can be checked in the Variables 

module, under Recode. Some items in the Recode menu are enabled only when the data satisfies 



certain conditions. If an item is enabled unexpectedly, recheck both the original data and ASCII files. 

For nodes and links, Select variables, click Recode, and check the following: 

For either Node or Link variables: 

Zero->Missing is enabled only when at least one 0 is present as a variable value. 

Missing->Zero is enabled only when at least one data item is marked as missing. 

For Link variables: 

Reduce MultiLinks is enabled only when the same From ID and To ID pairs appear more than 

once. For some network data this is meaningful, but for others it is not, and so indicates an 

error in the data. 

No Diagonal is enabled only if at least one ID number appears as sender and receiver, with 

a non-zero link value. For some network data this is meaningful, but for others it is not, and 

so indicates an error in the data. 



2. The Analyse Module 

2.1 Introduction 
Analyse is the most complex MultiNet module given the number of different tasks it performs, 

and the number of menus, displays and reports it uses, but is also the simplest in the actual 

calculations it does, most of which are simple counting. While the counting calculations may be 

simple, organizing the things that need to be counted, displaying the results, calculating the relevant 

statistics and switching between types of counting makes up most of the complexity of this module. 

All of the tasks performed by Analyse follow the same pattern: 

Selection of type of counting to be done 

Selection of (at least two) variables 

Sorting the variables by increasing values 

partitioning the variables by unique values 

counting the number (and possibly the amount) within each partition 

performing appropriate statistical calculations and tests 

displaying the results with an appropriate graphic 

responding to user requests for more detail (Report and Help) 

There are two main approaches to analysis: Standard and Network: 

Standard analysis is performed by most statistics packages that work with a single unit of 

analysis and a single rectangular cases by variables file of data. Here, the counting involves the 

values of Node or Link variables, and the total N is either the number of Nodes (actors or 

people); or the number of Links (ties or interactions) for which non-missing data exists. All 

variables must be either Node or Link. 

Network analysis allows mixing Node and Link variables in a way that is unique to MultiNet. 

In Network analysis, the total N is the number of Links (or amount of interaction if Link 

variables have non-binary values) between the Nodes in the network which have non-missing 

data. Network analysis always involves directed links. Links come 'FROM Senders' and go 'TO 

Receivers'. For analytic purposes, the 'sender' is the Node describing the Link, and the 

'receiver' is the Node the sender says the Link is to. (Usually Nodes are people, and Links are 

interactions.) The same pair of Nodes may have multiple Links between them (for example, at 



different times). The networks may be completely directed and have many components (as is 

often the case with ego-cennic network data). 

For each of these two approaches, there are three kinds of analysis which depend on whether the 

variables are categoricaVdiscrete or numericicontinuous (this choice is partly left up to the user, though 

warnings are given if a choice is inappropriate): 

Crosstab (XTAB) analysis for pairs of categorical or numeric variable 

Analysis of Variance (ANOVA) for one numeric/continuous and one categorical or numeric 

variable 

Correlation (CORREL) analysis for pairs of continuous numeric variables. 

MultiNet generally considers the number ofunique values (Bins) for each variable to determine whether 

a variable could be considered categoricaVdiscrete or numeric/continuous. The user has some control 

over this, and may choose (in Preferences) a maximum of 20 for 'Categories', so that a variable with 

20 or fewer bins is considered allowable as a discreteicategorical variable. Care must be taken here since 

this could lead to 20-by-20 crosstab tables or an ANOVA with an independent variable that has 20 

different values (resulting in 20 groups). Either is a challenge to absorb and interpret and may be 

problematic because the number of cases in each cell or group may be too small unless the data 

describes a reasonably large network. Any warning about an inappropriate datatype generated by the 

program may be ignored by the user (also with care!) if a variable with a small number of bins is a 

legitimate numericicontinuous datatype (e.g., childremy ages). 

A minimum of two variables is necessary to begin one of the analyses available in this module. 

However, MultiNet allows the user to Stack an analysis on a third variable (which must be 

categoricaVdiscrete and then to Rotate the variables (which swaps the current independent variable 

and the Stack variable) and does the appropriate analysis; a second Rotate swaps the current 

dependent variable with the original independent variable and does the appropriate analysis; a third 

Rotate swaps the current dependent variable (the Stack variable) with the original dependent 

variable, going back to the original analysis. MultiNet is unique in providing the choice of a third 

variable, and then allowing the selection of anv   air of the three variables, with automatic choice of 

the type of display and report to accompany the selected pair. Further, if the currently unselected 

variable is categorical/discrete, the user may "step" through the values of this variable in either 

direction for both visual display and textual report. For Network analyses, the user may also select 

a fourth variable which may be a Link (thus defining a network) or the result of an equation based 

on one or more link variables. The use of multiple link variables is further extended by support for 

the concept of a Grou~ing, which is a user-defined set of Link variables (see Section 4: The 



Groupings Module). A grouping is considered categorical, so it can include no more than 20 link 

variables. It must also be chosen as the first or second variable where a categoricaYdiscrete variable 

is expected (XTABS or ANOVA, but not CORREL). 

Table 2.1 shows the type of analysis automatically selected for each possible pair of variables 

in a trio of variables. More information on the displays and reports available for each type of analysis 

is provided later in this section. 

Table 2.1. MultiNet automatic selection of displaylreport based on data type. 

Type of  lDt v a r i a b l e  

Continuous I ANOVA CORREL 

Type o f  2nd v a r i a b l e  

Discrete 

The dataset used to illustrate most of the capabilities of the Analyse module is 301 MNW. This 

data was collected by 12 students in Communications 301 at Simon Fraser University, a course given 

by Prof. W.D. Richards. The students recorded every interaction they had over a one-week period', 

including personal details about the other person such as gender (categorical), age (categorical) and 

years of residence (numeric) as well as communication channel (categorical), duration (continuous), 

time of day (numeric), and how much of each of several purposes and about each of several contents 

(allowing categorical groupings). The dataset thus allows for all possible combinations of both Node 

and Link variable datatypes. The network(s) are ego-centric and have multiple interactions between 

pairs ofnodes. These networks are also completely directed and disconnected, with 12 components 

(one for each student). The dataset is thus too fragmented for detailed network visualization using 

the Eigenspaces module. However, the methods of the Analyse module allow visualization of the 

results of analysis that showed some patterns about which the students would complain (without 

irony) that it made them look stereotypical. 

Discrete Continuous 

XTAB ANOVA 

2.2 Standard Analysis 

Most of the concepts used in doing any of the Standard analyses should be very familiar, so this 

section will be used to introduce the new and unique techniques available in MultiNet for visualiza- 

tion and interaction with both displays and reports. Figure 2.1 shows the MultiNet display, after 

' By the end of this period, students would cross the street to avoid people they knew, so they wouldn't 
have to record the interactions with them 









Table 2.2a. Counts, Row percents and Column percents of Gender by Age crosstabulation. 

M u l t i N e t  3-D STANDARD XTABS REPORT ON "30l.mnw" 19/05/2004 16:21:16 
ROWS : "Gender" COLUMNS : "Age" PLANES : " R e 1  Age"  ........................................................... 

100.00% of PLANES: R e 1  A g e  ( # 1-3) 
C r o s s t a b u l a t i o n  of Gender w i t h  Age 

COUNT 
ROW % ROWS = Gender 
COL % COLS = Age  

teen mid a d u l  
child yng a d u l  oldr a d u  

TOTAL ................................................... 
I 0 3 133 6 3 13 212 

f e m a l e  I 0.0 % 1.42% 62.74% 29.72% 6.13% 52.61% 
I 0.0 % 75.0 % 53.63% 52.94% 44.83% 
I 
I 3 1 115 56 16 191 

male 1 1.57% 0.52% 60.21% 29.32% 8.38% 47.39% 
1 100.0 % 25.0 % 46.37% 47.06% 55.17% 
I 
I 3 4 248 119 2 9 403 

TOTAL I 
I 0.74% 0.99% 61.54% 29.53% 7.2 % 

Table 2.2b. % Difference from expected values, Chi-squared, and Cramer S Phi. 
For 396 out of 403 (98%) of the counts, there is little variation fiom the expected values 
100.00% of PLANES: R e 1  A g e  ( # 1-3) 

C r o s s t a b u l a t i o n  of G e n d e r  w i t h  Age 
% D i f f e r e n c e  f r o m  E x p e c t e d  V a l u e s  

( A s s u m i n g  r o w  independent f r o m  c o l u m n )  

% D i f f  ROWS = Gender 
COLS = Age 

teen mid a d u l  
child yng a d u l  oldr a d u  ............................................ 

female ( -loo.% 43.% 2.% l.% -15.% 
I 

male 1 Ill.% -47.% -2. % -I.% 16.% 

CHI-SQUARE = 4.948 D.F. = 4 P > 0.10 C r a m e r ' s  P h i =  0.11 

Table 2.2a is an ordinary crosstab table. It has three sets of numbers: Counts, Row percents and 

Column percents. The display in Figure 2.5 shows the Column percents, which assumes that Gender 

is the independent variable, and. is enough to produce a visualization that displays no relationship. 

The numbers in the left-most vertical column are 'female = 52.6%' and 'male = 47.4%', which are 

the row marginal percents. The numbers in each cell of the other vertical columns are the column 

percents for each of the values of the variable Age. They show, for example, what proportion of the 















Table 2.4. Crosstab, Chi-squared and Cramer's Phi of "Age" vs "Re1 Age" after Rotate 

100.00% of PLANES: Gender ( # 1-2) 
Crosstabulation of Age with Re1 Age 
COUNT 
ROW % ROWS = Age 
COL % COLS = Re1 Age 

same 
younger older TOTAL ................................... 

I 3 0 0 3 
child 1 100.0 % 0.0 % 0.0 % 0.74% 

I 5.0 % 0.0 % 0.0 % 
I 
I 4 0 0 4 

teen 1 100.0 % 0.0 % 0.0 % 0.99% 
I 6.67% 0.0 % 0.0 % 
I 
I 44 185 19 248 

yng adull 17.74% 74.6 % 7.66% 61.54% 
1 73.33% 92.04% 13.38% 
I 
I 9 16 94 119 

mid adull 7.56% 13.45% 78.99% 29.53% 
( 15.0 % 7.96% 66.2 % 
I 
I 0 0 2 9 29 

oldr adul 0.0 % 0.0 % 100.0 % 7.2 % 
I 0.0 % 0.0 % 20.42% 
I 
I 6 0 201 142 403 

TOTAL 1 14.89% 49.88% 35.24% 

100% of PLANES: Gender 
CHI-SQUARE = 279.2 D.F. = 8 

Cramer's Phi= 0.59 

..................... 
female = 52.61% of Gender 
Cramer's Phi= 0.58 

...................... 
male = 47.39% 
Cramer's Phi= 0.62 

even whether cross-tabs are appropriate for these variables. To do this, we need to know more about 

what these variables are measuring. 

The 301 .MNW dataset was collected by 12 students in a project they did for a course taught 

by Richards (CMNS 301), for which they recorded details about interaction they had with 

another person over a one-week period. Node variables include information about the students and 

about the people they reported interactions with. In the case of 'Gender', this was easy to do (and 

there is missing data in only 17 out of a total of 435 people). In the case of 'Age', it was also easy 

to estimate to which of the five categories they or their respondents belonged to (data missing for 10 

people). However, 'Re1 Age' (relative age - younger, about the same, older) is different, since it 

records information comparing the ages of the students to those of the people they interacted with, 

so it has no values for the students themselves. This variable has data missing for 21 cases. 

Because this analysis is stacked on a third variable (the gender of the students), only the people 

for which there are values for all three of these variables appear in the analysis, so the total number 

of people is 403 for all of the tables presented here. Because there is no value for 'Re1 Age' for the 

twelve students in the course, the students are not included in the tables. The data in Figure 2.9 and 



Table 2.4 tell us that 74.6% of the people who the students described as 'yng adults' were also 

described as 'Re1 Age' = 'same' (as the students). 78.99% of those described as 'mid adult' and 

100% of those described as 'older adult' were also described as 'older' (than the students). This 

makes sense, as does the classification of 'child' and 'teen' as 'younger' (than the students). The 

inserts in Table 2.4 also show that there is little difference in Cramer's Phi for the age descriptions 

made by male and female students. 

The problem associated with variables that may have a small overlap of non-missing data is not 

important in this example, but it could be significant if, for example, there was extensive data on 

personal attributes such as 'Age', but only estimates for the data of nominees, as for 'Re1 Age'. In 

this case, the overlap of data for nominators and nominees might be empty for Standard analysis (but 

not for Network analysis, as we shall see). While analysis with three variables would seem to be 

generally more informative and flexible (as in this example), it is possible that only one or two of the 

possible three pairings will be useful, since there may be very small (or no) overlap between one of 

the pairs. Knowledge of what the variables are actually measuring and how they could interact should 

always be part of any analysis. 

2.2.2 Analysis of Variance (ANOVA) 

Where crosstabs are appropriate when both variables are categorical, if one is categorical and 

the other is continuous, ANOVA is the method of choice (unless the continuous variable has been 

made discrete by one of the methods available in the Variables module, although this results in a loss 

of detail). &alysis oJ&riance or ANOVA is used to test the statistical significance of the difference 

between means. To do this it compares the variance between categories to the differences within 

categories to determine whether the differences between categories is larger than the differences 

within the categories. If the between-categories differences are larger than the within-categories 

differences, there must be a relationship between the categorical variable (which sorts individuals 

into categories) and the continuous variable that is used to calculate the means. To illustrate this type 

of analysis, consider three variables, all of which describe nominees: 'Length Years', 'Type of 

Relation' and 'Re1 Age'. The variable 'Length Years' is continuous and numerically describes the 

length of time the nominator (student) has known the nominee; we have data for 41 1 nominees. 

'Type of Relation' categorically describes the relationship the students have with their nominees (so 

there are no values for the students, we have data for 408 nominees. To demonstrate the effects of 

Rotate with an ANOVA analysis, the example also includes 'Re1 Age' with data for 403 nominees. 

The overlap of the three variables results in 403 nominees being included in the analysis. 





Table 2.5a. Report on ANOVA analysis of 'Length years' and 'Type of Relation' 

MultiNet 3-D STANDARD ANOVA REPORT ON "30l.mnw" 21/05/2004 13:17:56 
ROWS: "Type of Relation" COLUMNS: "Length years" PLANES: "Re1 Age" 

100.00% of PLANES: Re1 Age ( # 1-3) 
Independent: Type of Relation" Dependent: "Length years" 
SUMMARY OF "Type of Relation" 

LABEL ---------- ---------- ---------- ---------- I SIZE 
stranger I 37 

I -  
I 

ICONF. ILIT. 
0.35 1 

I 
1.17 1 

acquaintan 1 14 1 I 1.18 I 0.6 1 
friend 1 178 I 3.16 1 0.53 1 
"date" I 5 I 1.0 I 3.17 1 
spouse/parl 6 I 9.17 1 2.89 1 
relative I 36 I 18.19 1 1.18 1 

Table 2.5b. Report on Statistics and distribution for dependent variable 'Length year' 
STATISTICS OF "Length years" DISTRIBUTION OF "Length years" 

VALUES COUNTS %age 
MEAN 3.62 0 143 35.5% 
VAR 40.96 1 6 7 16.6% 
SDEV 6.4 2 7 8 19.4% 
MIN 0 3 3 0 7.4% 
MAX 38 4 2 0 5.0% 
MED 1 5 3 0.7% 
.SIZE 403 6 6 1.5% 
BINS 26 7 3 0.7% 

8 1 0.2% 

25 3 0.7% 
3 0 1 0.2% 
3 8 1 0.2% 

Figure 2.12 uses a set of 'ribbon' plots to show the number of people who have 'Length years' 

values from 0 to 38 in each of the six categories of 'Type of Relation', and each category is labelled 

and coloured in the standard way. In this case, the counts are exact, since the number of values for 

'Length years' is less than the MultiNet default of 30 for 'Number of Bins'. For a variable with 

a large number of unique values ('bins'), the program will automatically put the variable into a 

number of bins close to the default (or the number chosen in the Preference module) and the display 

will then show counts for the number in each bin. Although the binned display can look quite 

different for different 'Number of Bins', this does not affect the ANOVA calculations. It is clear 







Table 2.6. ANOVA analysis for Dependent: 'Length years' and Independent: 'Re1 Age' 
100.00% of PLANES: T y p e  of R e l a t i o n  ( # 1-6) 

I n d e p e n d e n t :  "Re1  A g e "  D e p e n d e n t :  " L e n g t h  y e a r s "  
SUMMARY OF "Re1 A g e "  

LABEL 1 S I Z E  I  MEAN JCONF. INT. ) 
----------I----------I----------I---------- I 
y o u n g e r  I 60 I 3 . 8 8  I 1 . 34  1 
same 1 2 01  I  2 . 4 7  1 0 . 73  1 
older 1 142 I  5 . 1 3  1 0 . 87  1 

ANOVA TABLE 

SOURCE OF 1 Sum of I D e g .  of I V a r i a n c e  I O b t a i n e d  I P 
VARIATION ( S q u a r e s  S S  ( F r e e d o m  I E s t i m a t e  1 ratio I  ............................................................ 
BETWEEN 1 593.44 1 2  1 2 9 6 . 7 2 1  7 . 4 6  (< 0 . 0 1  
GROUPS 1 I I I  I ............................................................ 
WITHIN ( 15911.94 1 400 1 39.78 1 
GROUPS I  I  I I 

TOTAL 1 16505.38 ) 402 ( 

Table 2.7. Rotate produces crosstab of 'Re1 Age' and 'Type of Relation' for all values of 'Length years' 

100.00% of PLANES: L e n g t h  years 
C r o s s t a b u l a t i o n  of R e 1  A g e  w i t h  T y p e  of R e l a t i o n  
COUNT 
ROW % ROWS = R e 1  A g e  
COL % COLS = T y p e  of R e l a t i o n  

acquaint " date " relative 
stranger friend spouse/p TOTAL ........................................................... 

I 3  2 2 2 5 0 1 9 60 
younger 1 5 . 0  % 36.67% 41.67% 0 . 0  % 1.67% 1 5 . 0  % 14.89% 

1 8 .11% 1 5 . 6  % 14.04% 0 . 0  % 16.67% 25 .0  % 
I  
I 18 63 110 4 4 2 201  

same 1 8 .96% 31.34% 54.73% 1 .99% 1 .99% 1 . 0  % 49.88% 
( 48.65% 44.68% 61.8 % 80 .0  % 66.67% 5 .56% 
I  
I 16  56  4 3 1 1 2 5 142 

older 1 11 .27% 39.44% 30 .28% 0 . 7  % 0 . 7  % 17.61% 35.24% 
1 43.24% 39 .72% 24.16% 20 .0  % 16.67% 69 .44% 
I 
I  3  7  1 4 1  178 5 6 36  403 

TOTAL 1 9 .18% 34 .99% 44.17% 1 .24% 1 .49% 8.93% 

For this ANOVA analysis Shift, Next and Last act exactly the same as for the previous ANOVA 

analysis. However, now Rotate must do something quite different, since it will exchange the 

continuous variable 'Length year' for the discretelcategorical variable 'Type of Relation', resulting 

in a comparison of two categorical variables. Logically, the result should be a cross-tabulation, as 

shown in Figure 2.16 and Table 2.7. Since this is a crosstab, Shift is disabled and Transpose is 

enabled. Next and Last must also be disabled, since there is no obvious way to 'step through' a 

continuous variable such as 'Length year'. 







Table 2.8. Report for Standard CORREL analysis of 'When? Hour' and 'Duration,' Stacked on 'Channel'. 
VarX and Vary are treated the same way: neither is assumed to be dependent or independent. Each is 

regressed against the other to give linear fits, with regression coefficient r and coefficient of determination ?. 
MultiNet 3-D STANDARD CORRELATION REPORT ON "301 .mnwW 22/05/2004 16: 23: 21 
ROWS : When? hour" COLUMNS : "Duration" PLANES : "Channel" 

100.00% of PLANES: Channel ( # 1-6) 
CORRELATION OF "When? hour" WITH "Duration" : 0.038 
REGRESSION ANALYSIS: 
"Duration" - - 17.351 + 
STD. ERR. - - 3.799 
ERRORVARIANCE = 1280.088 
"When? hour" - - 14.266 + 
STD. ERR. - - 0.200 
ERROR VARIANCE = 24.585 

STATISTICS OF "When? hour" 

MEAN 14.38 
VAR 24.56 
SDEV 4.956 
MIN 0 
MAX 24 
MED 14 
SIZE 835 
BINS 25 

DISTRIBUTION OF "When? 
VALUES COUNTS 

0 2 
1 6 
2 7 
3 7 
4 7 
5 5 
6 1 
7 21 
8 3 2 
9 44 
10 6 3 
11 6 3 
12 69 
13 4 6 
14 5 3 
15 4 2 
16 4 8 
17 62 
18 5 6 
19 5 4 
20 4 6 
21 4 4 
2 2 32 
23 2 0 
24 5 

hour " 
%age 
0.2% 
0.7% 
0.8% 
0.8% 
0.8% 
0.6% 
0.1% 
2.5% 
3.8% 
5.3% 
7.5% 
7.5% 
8.3% 
5.5% 
6.3% 
5.0% 
5.7% 
7.4% 
6.7% 
6.5% 
5.5% 
5.3% 
3.8% 
2.4% 
0.6% 

0.271 * "When? hour" 
0.250 

COEFF. OF DETERMINATION = 0.001 
0.005 * "Duration" 
0.005 

COEFF. OF DETERMINATION = 0.001 

STATISTICS OF "Duration" 

MEAN 21.24 
VAR 1279 
SDEV 35.76 
MIN 0 
MAX 240 
MED 7 
SIZE 835 
BINS 49 

DISTRIBUTION OF "Duration" 
VALUES 

0 
10 
2 0 
30 
4 0 
50 
6 0 
7 0 
8 0 
90 
100 
110 
12 0 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 

COUNTS 
431 
17 1 
5 1 
4 9 
3 2 
1 
3 9 
7 
3 
15 
6 
0 
8 
1 
2 
3 
1 
0 
7 
0 
2 
1 
1 
1 
3 





Table 2.9. CORREL statistics for 'Duration' with a) 'Channel'='face-face', b) 'Channel' = 'phone' 
c) ANOVA summary of means after Rotate with dependent: 'Duration' and independent: 'Channel 

.a) 'face-face' b) 'phone' c) ANOVA report for 'Duration' and 'Channel' 

STATISTICS OF 
"Duration" 
MEAN 2 5 . 0 6  
VAR 1626 
SDEV 4 0 . 3 2  
MIN 0 
MAX 240 
MED 10  
SIZE 603 
BINS 45 

STATISTICS OF 
"Duration" 
MEZW 1 2 . 0 4  
VAR 2 6 2 . 4  
SDEV 16 .2  
MIN 1 
MAX 120 
MED 7 
SIZE 207 
BINS 24 

SUMMARY OF "Channel" 
LABEL (SIZE I MEAEI (CON.INT 

----------I-------I--------I------- 
face-face 1 603 1 25 .06  1 2 . 3 6  
phone ( 207 1 12 .04  1 4 . 0 3  
e-mail ( 17 1 5 . 2 4  1 1 4 . 0 6  
w r i t t e n  I 8 1 5.38 1 2 0 . 5  
f a x  I I I 
other I I I 

Figure 2.1 8 does not visually show a strong relationship between the length of an interaction and 

the time it took place, and the correlation of 0.038 (CORR=0.038) confirms this. The display does 

show, both by the density of points and the larger circles at the low values, that 'Duration' is skewed 

towards smaller values, The areas of the circles are proportional to the number of data points that the 

circles represent. There are 24 distinct values for 'When? Hour' and 49 values for 'Duration'. This 

means that the values of 'Duration' must be collected into about 30 'bins', adding to the nuber of data 

points and making the circles larger for shorter durations. The a c h l  bins and counts are shown in 

the report, which includes the statistics and distribution for !&I continuous variables. 

The correlation does not change much as we step through the 'Channels' of interaction (Figure 

2.19) using Next (or Last). For example, 'Channel' = 'face-face' shows that interaction takes place 

at all hours, mostly for short durations (Figure 2.19a)' and also for longer times than for 'phone' 

(Figure 2.23). However the same result is easier to see after Rotate produces the ANOVA display of 

Figure 2.19b and report of Table 2 .9~ .  The CORREL and ANOVA displays suggest a higher mean 

for 'face-face' and this is confirmed in the reports (Table 2.9) 

2.3 Analyse display menu choices 

Although the menus used to get to a finished display in the Analyse module may differ slightly, 

the final Analyse display menu bar always contains the same items. Some (e.g., Shift, Transpose, 

Amount) may be greyed out if not applicable to the current analysis and display. Others 

(Rotate, Next, Last) are only used with three variables. This section gives a briefdescription ofeach 

menu item (Figures 2.5,2.13,2.17,2.20). 



Quit 

Exit from the Analyse Module back to the Main MultiNet menu. 

Shift 

Enabled for ANOVA displays. Allows interactively changing display aspect. 

Rotate 

Enabled for three variables. Rotate replaces the second variable with the Stacked one, the 

Stacked variable with the first one, and the first variable with the second one. If the analysis type is 

ANOVA, exchange first and second to make continuous first (dependent). If the Stacked variable is 

discrete, the program enables Next and Last for displays and reports. 

Transpose 

Enabled for XTABS and CORREL. Transpose exchanges first and second variables in display, 

but has no effect on reports. 

AmountlNumber 

Enabled for pure Network XTABS (i.e., not for stacked ANOVA) . If the link variable has non- 

binary values, Amount shows cumulative values of links, and changes this menu item to Number. 

Number (the default) shows count of links and changes this menu item to Amount. 

Report 

This menu item is common to most MultiNet modules, and acts similarly in each one. Left-click 

on Report produce the following choices: 

.Report+View opens a View (or Multi-View) window containing the textual report for the latest 

analysis. The contents of this report depend on the analysis just performed. If there is a discrete 

Stacked variable, the window will be Multi-View, with Next and Last available for stepping 

through the report for each value of the Stacked variable. 

Report-rFile saves the Report as an ASCII text file, with default extension .OUT without 

displaying it. 

Graphics 

Like Report, this menu item is common to most MultiNet modules, and acts similarly in each one. 

Left-click on Graphics produces the following choices: 









2.4 Network analysis 

The previous sections introduced the methods, displays and reports available in the Analyse 

module with examples for standard crosstabs, ANOVA, and correlations. The same methods can be 

applied to networks by letting the variables represent (among other things) the attributes at each end 

of a link. This application of standard methods to networks is unique to MultiNet. A simple and 

obvious example comes from the KIDS2 dataset, using the 1-D displays discussed in the 

Eigenspaces module. Figure 2.24 shows the adjacency matrix of the SAY link (who each kid says 

he or she plays with). In Figure 2.24a, the rows and columns are ordered according to the ID numbers 

of the nodes, and it is difficult to see any pattern. In Figure 2.24b, the rows and columns have been 

permuted by the values of the node variable 'SEX' and the values (l='male' and 2='female') have 

been shown along the diagonal by clicking Dots-Walues. The relationship between this node 

variable and link variable is obvious and made even more clear by also selecting ShowdGrid. Even 

though the relation is obvious, it would be helpful to have a measure of the statistical significance 

of this relationship between the two types of variables. The easiest way to do this would be to simply 

count the number of links in each of the grid boxes of Figure 2.24b, and consider the result as a 

crosstabulation of two variables based on SEX: 

the value of SEX for whom the link is FROM (the y-axis in Figure 2.24b) and 

the value of SEX for whom the link is TO (the x-axis in Figure 2.24b) 

This cross-tabulation would then allow a chi-squared significance test and other measures as we have 

seen. It would also allow a calculation of the mean and variance of link values within each grid box 

a) Adjacency matrix for link variable SAY 

Figure 2.24. Eigenspaces 1 -D displays of SAY 

b) SAY permuted by Node variable SEX (See 
Section 5.6 for details) 













The display of panigrams including Link strengths are controlled by the Amount menu item. In 

this case the strength of all links is ' l', so this display is not different. The Report includes crosstabs 

for link strength as well as a table of means and variances. These details are discussed below for 

examples with non-binary link variables. 

The example above is simple because it uses the same Node variable for both FROM and TO, but 

there is nothing to prevent them being different. Although the Eigenspaces 1-D display does not 

allow separate permutation of rows and columns by different variables, there is no such restriction 

in any of the Network analysis types. Tables 2.1 1 shows the result for 'FROM SEX' and 'TO AGE' 

first as a crosstab, then as an ANOVA. AGE can be treated as a nurneric/continuous variable, but it 

has only 5 values, so ANOVA is not really appropriate. In fact, Tables 2.1 1 and Figures 2.29 are the 

results for Stacked Network ANOVA with dependent:TO AGE, independent: FROM SEX, Stacked 

on TO AGE (again). This shows that MultiNet can be flexible about using variables as either discrete 

or continuous (although it does issue warnings). This also demonstrates that there is nothing to 

prevent two or even three variables from being all FROM or all TO (this would make the 

inteqiretations similar to standard methods). The ANOVA analysis proceeds in a manner very similar 

to standard ANOVA, except for the extra choice of Link or Equation after pressing 'GO'. For ANOVA 

and CORREL, the actual values of the variable chosen as 'Link' are not currently used, only whether 

they are non-zero (i.e., they are treated as binary). 

The application of these standard methods to networks provides an extremely powerful and 

flexible set of tools for exploratory analysis of complex network data: that is, network data which 

consists of many Node attribute variables, and many Link attribute variables each of which can 

describe a different aspect of a set of related networks. Further, these variables may be either 

discrete/categorical or numeric/continuous, andNode and Link variables may be considered together. 

This flexibility allows many combinations, not all ofwhich may make sense for a particular dataset. 

It is up to the user to consider what each combination actually means, and whether the combinations 

are useful for understanding the data.. 

The following is a list of variable types currently allowed for each of the first, second and third 

variables. The strength equation allows many Link variables to be combined together. In addition, 

the Variables, Eigenspaces and Pstar modules allow new variables to be created, derived from 

combinations of node attributes and network structure. 

First variable: FROM Node, TO Node, Link, Grouping; discrete or continuous 

Second variable: FROM Node, TO Node, Link, Grouping; discrete or continuous 



Third variable: FROM Node, TO Node, Link: discrete only 

Equation: any combination of Link variables and constants using + - * I A < > = 

May be discrete (including binary) or continuous. 

To provide some examples of these combinations, including non-binary link values for the Link 

variable or Strength equation, we return to the 301 .MN?V dataset. To firther illustrate the difference 

between standard and networks analysis, we look at the very first example: Gender vs Age. In the 

network context, we need to consider both ends of any relationship, as well as the type of relationship 

we are interested in. This dataset is egocentric, with only a few nodes (12) at the sender end. Much of the 

node variables have values only for the receivers (e.g., 'Re1 Age'), while a few have values for both 

senders or receivers (e.g., 'Age'). Given the kind of link data available, we might ask: 'Do the younger 

senders ('FROM Age') spend more time ('Link: Duration') with those of the same age ('TO Re1 Age')? 

Of either sex ('TO Gender')? This leads to a stacked cross-tabulation with Link variable 'Duration'. 

One result is shown in Figure 2.30a and Table 2.12a (compare with Figure 2.5 and Table 2.2a, 

where the numbers are half as large). The first impression from the panigram is that there is no 

difference in the number of links to males and females from the different ages. Table 2.12a confirms 

that any differences are not statistically significant..However, these results are only for the number 

of relationships and we are interested in the total amount of time spent. This is where the Amount 

menu item is used. Clicking Amount presents a different display (Figure 2.30b) with much larger 

numbers (Table 2.12b) since each contact is weighted by the Duration in minutes. This time the 

relationship significant, and the % differences in Table 2.12b shows why: more time is spent by 

mid-adults talking to females and less time to males than would be expected if there were no 

relationship between these node attributes. The effect is small, but suggests a question that could be 

resolved by more data or given more confirmation by other statistical methods: it is an example of 

hwothesis generation. Note that the tables have rows based on TO Gender by selecting this as the 

Rows variable, FROM Age as the Cols variable and TO Re1 Age as the Stacked variable. These 

selections can usually be made in an order that produces the most convenient tabulations. 





Table 2.12. Crosstabs for FROM age TO Gender for 100% of Re1 Age 

a) Crosstab table for the number of links FROM Age TO Gender. Chi-squared is not significant 
COUNT 
ROW % ROWS = TO Gender 
COL % COLS = FROM Age 

teen mid adul 
child yng adul oldr adu 

TOTAL ................................................... 
I 0 14 334 108 0 456 

female I 0.0 % 3.07% 73.25% 23.68% 0.0 % 57.21% 
) 100.0 % 53.85% 57.19% 57.75% 100.0 % 

I 
I 0 12 250 7 9 0 34 1 

male I 0.0 % 3.52% 73.31% 23.17% 0.0 % 42.79% 
1 100.0 % 46.15% 42.81% 42.25% 100.0 % 

I 
I 0 26 584 187 0 797 

TOTAL I 0.0 % 3.26% 73.27% 23.46% 0.0 % 

CHI-SQUARE = 0.143 D.F. = 2 
P > 0.50 Cramer's Phi= 0.01 

b) Crosstab table for the amount of contact FROM Age TO Gender. % Difference table shows contact 
FROM "Age" = "mid-adult" is higher than expected TO females and lower than expected TO males. 

LINK=Duration 
COUNT 
ROW % ROWS = TO Gender 
COL % COLS = FROM Age 

teen mid adul 
child yng adul oldr adu TOTAL ................................................... 

I 0 85 63 64 1829 0 8278 
female I 0.0 % 1.03% 76.88% 22.09% 0.0 % 50.34% 

1 100.0 % 50.9 % 49.63% 52.94% 100.0 % 
I 
I 0 8 2 6458 1626 0 8166 

male I 0.0 % 1.0 % 79.08% 19.91% 0.0 % 49.66% 
1 100.0 % 49.1 % 50.37% 47.06% 100.0 % 
I 
I 0 167 12822 3455 0 16444 

TOTAL I 0.0 % 1.02% 77.97% 21.01% 0.0 % 

% Difference from Expected Values 
LINK=Duration ROWS = TO Gender 

COLS = FROM Age 
teen mid adul 

child yng adul old. adu .................................... 
female I O.% l.% -I.% 5.% 0. % 

I 
male I O.% -I.% l.% -5.% O.% 

CHI-SQUARE = 11.908 D.F. = 2 
P < 0.01 Cramer's Phi= 0.03 



Since this is a three-variable analysis, we can also step through the values of "Re1 Age" to see if 

the pattern holds for contacts with "younger", "same" and "older" receivers. Table 2.13a shows that 

most of the signal comes from the links FROM "Age7'="mid adult" TO "Re1 Age" = "same" (which 

accounts for 7 1.58% of total amount of time interacting), and that this signal is partially offset by 

"Re1 Age"="older" in Table 2.13b (which accounts for 16.95%). So: mid adults spend more time in 

contact with females of the same age than with males. Does this have anything to do with the sex of 

the sender? We haven't included this, but it suggests another cross-tabulation: FROM Gender TO 

Gender. To further illustrate the flexibility of network crosstabs, this time we will Stack on Link 

variable Channel and ask "Does one sex have more contact with the other? Does this depend on the 

form of contact?" 

Table 2.13. Significant differences from expected for two TO Re1 Age planes. 

a) % Difference from expected FROM Age TO Gender and TO Re1 Age=same 

same = 71.58% of PLANES: TO Re1 Age ( # 2) 
% Difference from Expected Values 
LINK=Duration ROWS = TO Gender 

COLS = FROM Age 
teen mid adul 

child yng adul oldr adu ..................................... 
female I O.% 80.% - 6 . %  33.% O.% 

I 
male I O.% -77.% 6.% -32.% O.% 

CHI-SQUARE = 240.576 D.F. = 2 
P < 0.01 Cramer' s Phi= 0.14 

b) %Difference from expected FROM Age TO Gender and TO Re1 Age=older 

older = 16.95% of 
% Difference from 
LINK=Duration 

child 

PLANES : TO Re1 Age ( # 3) 
Expected Values 

ROWS = TO Gender 
COLS = FROM Age 

teen mid adul 
yng adul oldr adu 

female I O.% -19.% lo.% -28.% 0. % 
I 

male I O.% 17.% -8.% 24.% 0. % 

CHI-SQUARE = 63.146 D.F. = 2 
P < 0.01 Cramer's Phi= 0.15 



Although FROM Gender TO Gender seems similar to the example with ,KIDS2, this time the 1 
Eigenspaces I-D display is not helpful: the data is egocentric with few senders and uses non-binary 

link weights for Link Duration. Table 2.14a shows the %difference for number of links and Table 

2.14b shows the % difference for the amount of linkage. An obvious difference between these two ( 
tables is that within (same sex) and between (different sex) gender difference from expected are 

switched: the amount of contact is significantly higher between sexes, although the number of 

contacts is actually higher than expected within sexes. Obviously, some contacts take longer than 1 
others, as summarized in Table 2 . 1 4 ~ ~  which shows the mean and standard deviation of the Duration 

of contacts. It is 50% higher FROM female TO male than for the other pairs. I 
Table 2.14. Differences from expected FROM Gender TO Gender for 100% of Channels 

a) % difference fiom expected for number of links is not significant 
% D i f f e r e n c e  f r o m  E x p e c t e d  V a l u e s  
L I N K = D u r a t i o n  ROWS = FROM G e n d e r  

COLS = TO Gender 
male 

female --------------- 
female I 3.% -4.% 

I 
male 1 -7.% 9 . %  

CHI-SQUARE= 2.063 D F = 1  P >  0.10 
C r a m e r ' s  Phi= 0.05 

b) % difference fiom expected for amount of linkage is significant. 
% D i f f e r e n c e  f r o m  E x p e c t e d  V a l u e s  
L I N K = D u r a t i o n  ROWS = FROM G e n d e r  

COLS = TO Gender 
male 

female --------------- 
female1 -3.% 3.% 

I 
m a l e  I 8.% -8.% 

CHI-SQUARE = 40.241 D F  = 1 P < 0.01 
C r a m e r ' s  P h i =  0.05 

C) Mean and Standard Deviation of Duration. Mean Duration is 50% higher for female to male. 
Mean strength of l i n k s  f r o m  r o w  I to col j 
L I N K = D u r a t i o n  
Mean ROWS = FROM Gender 
S t d .  D e v .  COLS = TO Gender 

male 
female ------------------- 

female I 18.60 27.03 
I 28.21 45.67 
I 

male I 19.13 17.83 
I 34.21 31.25 







The example for CORREL will also be used to demonstrate how the different modules ofMultiNet 

can work together. The questions are:% the length of time someone has been known related to the 

average duration of contact? Are either of these related to the communication channel?'. This 

suggests ANOVA of Dependent:'TO Length years' with Independent: Channel and link variable 

Duration. But ANOVA (and CORREL) does not use the values of a link variable, only the binary 

presencelabsence. How do we get the average Duration (a link variable) into this analyses? 

The Variables module allows hybrid derived variables: node variables derived fiom link variables 

(as does Eigenspaces), and link variables derived from node variables (as does Pstar). We will do the 

former, in two steps. First, Variables-+Link is used to calculate the average Duration of contacts 

between distinct pairs of individuals. For this egocentric dataset, there may be a number of links 

between any pair of nodes, and each may have a different value for Duration. To get the average 

value, Recode+Reduce Multilinks is used to count the number of links between each distinct pair 

and to accumulate the total Duration for these pairs..The Link variables #Duration and $Duration 

are automatically created containing this information, which is exactly what we need to get the 

average. Since they have just been created, RecodedEquation with equation bla ( = 

$Durationl#Duration) will calculate this average. We will use Create on this new link variable and 

name it 'Avg Duration'. Second, Variables+Node is used with Recode-+ Degree and choice 

Weighted in-degree to automatically create 'i*Avg Duration', a single value associated with each 

receiver which measures the average amount of time spent in all contact with the sender. Now we 

are ready for the analysis. 

We select NetworkdCORREL with VarX=TO Node:'Length Years', TO KAvg Duration' and 

Stack=Link:'Channel'. For Link variable, we select 'Equation=l", since Vary already selects all 

the receivers. The stacked scatterplot is shown in Figure 2.33, and the correlation of -0.155 is small: 

there is little relationship between these two variables. Using Next to step through the values of 

Channel shows that all the correlations are small, except for 'written' = -0.625, but this has only 1% 

of the data (8 out of 81 1 points). Rotate shows that 'Length years' related to Channel @<0.01), 

mostly since a large number of 'face-face' contacts are to people with small 'Length years' values 

(Figure 2.34 and Table 2.16). Rotate again shows that the relation between Channel and 'TO KAvg 

Duration' is not significant (p0.10): the different means for 'face-face' and 'phone' are not large 

enough to overcome the large spread in values shown by the confidence intervals (Table 2.15). 



100.00% 
of PLANES: 
Channel (# 14) 

200 CORR.= 0.155 

5 0  I 
5 0 5 10 15 20 25 30 35 

TO Length years 

Figure 2.33. CORREL analysis of 'TO Length years' vs 'TO I<Avg Duration' on Channel. 
Correlations for Channel (Nbr of points) are: 'f ace-f a c e = - 0 . 1 3 9  (583 )  , 'phone' =-0 .176  (203 )  , 
' e -mai l '  = -0 .16  ( 1 7 )  , ' w r i t t e n 1 = - 0 .  625  (8)  

Table 2.15. ANOVA tables for Dependent: 'TO KAvg Duration' and Independent: 'Channel' 
STRENGTH=l 
I n d e p e n d e n t :  " C h a n n e l "  D e p e n d e n t :  "TO I<Avg d u r a t i o n "  

SUMMARY OF " C h a n n e l "  

LABEL I SIZE 

face-face 1 583 
phone 1 203 
e-mail I 17 
w r i t t e n  1 8  
fax I 
other I 

ANOVA TABLE ............................................................ 
SOURCE OF I Sum of I D e g .  of I V a r i a n c e  I  O b t a i n e d  I P 
VARIATION I S q u a r e s  SSI  F r e e d o m  I E s t i m a t e  I ratio I 

BETWEEN 1 2730.2 1 3  1 9 1 0 . 0 7 )  1 .54  I> 0.10 
GROUPS I I I I I ............................................................ 
WITHIN 1477800.44 ( 807 1 592.07 1 
GROUPS I I I I ............................................ 
TOTAL )480530.64 1 810 1 





Obviously, the examples shown in this section are only a small sample of what can be done in 

MultiNet. There are also examples in the Groupings section which explore a somewhat different type 

of network analysis. To use MultiNet effectively requires a knowledge of what the variables in a 

dataset measure individually; with some practice the program can help in understanding the 

relationships among variables and eventually the dataset as a whole. Sections 9 and 10 contain some 

more detailed examples showing how the various parts of MultiNet can be used together to explore 

large complex datasets. 

2.5 Technical appendix 

2.5.1. List of errors anticipated by Analyse module. 

Generic values for Any variable, or for Node, and Link variable names represented by <hame>,  

<Nname>, <Lname> respectively. <Anme> can refer to FROMITO Nodes or Links. Numbers are 

represented by <n#>. 

Error  T e x t  is followed by 

Explanation 

Solution 

TOO MANY VALUES ( < n l > )  

A categorical variable is expected. The chosen variable has more distinct values than the current 

setting for Number of Categories. 

Solution: If the variable has less than 20 distinct values, Use Preferences+Number of 

Categories to increase the setting. Otherwise, choose a different variable. 

ONLY <nl> VALUES 

This is a warning message, not an error, and analysis can proceed. A numeric/continuous variable 

is expected, and the chosen variable has distinct values which are no more than the current 

maximum for categorical variables. 

Solution: Proceed only if the analysis makes sense given the small number of distinct values. 

NO LINKS E'ROM/TO an-> 

Network analysis error. A Node attribute which is defined only for receivers (NO LINKS FROM) 



or only for senders (NO LINKS TO) is being used in the wrong direction. 

Solution: Change the direction of use for this Node attribute. 

NO <Anamel> is <Aname2> 

Analysis cannot proceed since the intersection of these two variables is empty. 

Solution: These two variables cannot be analysed together. 

NO <Lname> AMONG <Anamel> <Aname2> [<Aname3>] 

Network analysis error. Directions are correct, and intersection of variables is non-empty, but the 

chosen link (strength or multiplier) has only 0 values for these variables. This means that there is 

no network connecting these Nodes. 

Solution: Choose a different node or link variables. 

NO DATA ON THIS PLANE 

Warning message. Three variable analysis with Empty Categories can result in planes with no 

data. This message appears in both the graphic display and the text report. 

Solution: No action needed. This message can be avoided by choosing 

Preferences-+Categories-+Delete Empty Categories 

MORE THAN 52 VARIABLES 

Network analysis warning message. Pressing GO followed by selecting Equation opens amultiple 

selection window if more than 52 link variables are available. Selecting a subset of 152 or less of 

these allows the 52 symbols a-zA-Z to be associated with these link variables. Otherwise, this error 

appears. 

Solution: Choose 52 or less link variables from multiple selection window. 

NO EQUATION 

Network analysis error message. Pressing GO followed by selecting Equation opens a text 

window along with a window showing association of symbols a-zA-Z with link variables. 

Returning a blank text window causes this error. 

Solution: Do not return blank text window. 

MISPLACED PARENTHESES 

Network analysis error message. Pressing GO followed by selecting Equation opens a text - 



window along with a window showing association of symbols a-zA-2 with link variables. This 

error occur if parsing the equation fails due to misplaced or non-matching parentheses. 

Solution: Enter syntactically correct equation. 

MISSING OR INVALID SYMBOL/OPERATOR 

Network analysis error message. Pressing GO followed by selecting Equation opens a text 

window along with a window showing association of symbols a-zA-2 with link variables. These 

errors occur if parsing the equation fails due to two symbols (a-zA-2 ) or operators ("*I+-=-=) 

beside each other. 

Solution: Enter syntactically correct equation. 

ALL VALUES = 0 

Network analysis error message. Pressing GO followed by selecting Equation opens a text 

window along with a window showing association of symbols a-zA-2 with link variables. This 

error occurs if all Equation values evaluate to 0. 

Solution: Use link values that evaluate to at least some non-zero values. 

SOME VALUES < 0 

Network analysis error message. Pressing GO followed by selecting Link or Equation is followed 

by selecting link variable(s). These must evaluate to non-negative values. 

Solution: Use link values that evaluate to non-negative values. 

2.5.2 History of Panigrams 

Panigrams were devised by Dr. William D. Richards as a way of visualizing network cross- 

tabulation results for a research client who found the percentages in a crosstabulation table just too 

confusing to understand, even with pages of text explaining the tables. Originally, panigrams were 

available only for FROMITO node attributes in the computer program FATCAT, but were then 

extended to standard crosstabs and groupings (see Groupings section). This author further extended 

the methods to include continuous variables (ANOVA and CORREL) in MultiNet and added 

stacking and the various interpretations available with Rotate (Seary, 1997). This author also gave 

panigrams their name, in analogy to histograms which were named from the Greek istos ('mast'). 

Early histograms resembled a forest of one-dimensional ship's masts. Panigrams are named from the 

Greek panis ('sail'), which are the two-dimensional objects attached to masts. 
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The name of the variable labels the upper centre of the graphic display On the right of the 

graphic, a text area lists some important summary statistics. Note that some of these statistics must 

be interpreted with care for categorical variables coded as integers. For example, all are meaningful 

for the variable AGE shown above. However, MEAN, VAR[iance] and S[tandard] DEV[iation] are 

hard to interpret for SEX coded as l=Male and 2=Female. The statistics are: 

MEAN: the average value of the data items 

VAR: the variance of the data items 

SDEV: the standard deviation of the data items (square root of variance) 

MM: the minimum value 

MAX: the maximum value 

MED: the median value, for which the cumulative proportion is exactly 0.5 

SIZE: the number of data items 

BINS: the number of unique data values 

NODES: for link variables only the number of unique nodes in the network defined by the link 

variable 

The presence of the last statistic is one of the differences between the displays of node and link 

variables. If value labels have been defined for this variable, they are also displayed below the 

statistics. Figure 3.4 shows the display for a link variable with value labels. 

In figure 3.3, we see by looking at the values below the cursor that there are 14 nodes (out .of 

a possible SIZE=32) with AGE value of 7. We also see by looking at the labels to the left of the 

cursor that this corresponds to a cumulative total of 0.81 and that these 14 values constitute 43.75% 

of all the nodes that do not have missing values for AGE. In figure 3.4, we see that there are 82 data 

values of 0 (no link) out of a possible SIZE=224, and that this constitutes 37.7% of the data values. 

Care must be taken here, since this is the percent of the sparse representation of the link variable. 

The histogram is an exact representation of data frequency when the number of unique values 

(bins) is not greater than a user selected limit (set by Preferences) with default 30 and maximum 

100. If the number of bins is greater than this value, there may be more than one data value in each 

of the histogram bars. The cursor actually follows the dark grey cumulative distribution c w e ,  not 

the bins of the histogram, so that the cursor steps through every data value. 





If right button is used instead of left, all movements occur in steps of 10. In every case cursor 

movement stops at the minimum or maximum value. 

3.2 Variables Menu Bar 

The menu bar contains 12 items (Figure 2.3). The content and availability of some of these items 

depends on whether node or link variables have been selected. This will be noted in the descriptions 

below. 

Quit 

Exit from the Variables Module back to the Main MultiNet menu. 

Manage 

Create, delete, arrange, edit and modify the display of node and link variables. 

Manage+Create is enabled once a variable has been selected. When a variable is changed 

with Recode, the changes are said to be "pending" until you instruct MultiNet to accept the 

changes by pressing Manage+Create, upon which a new variable is created with name and 

comments you select in edit windows. Selecting "Cancel" for either of these windows cancels 

the variable creation. For convenience both the variable Name and Comment default to the list 

of changes you have made. You cannot create a variable with the same name as another. 

Creating a variable results in automatic selection and display of the new variable. NOTE: Some 

variables are created automatically. See Recode+Degree and Recode+Components. 

Manage+Delete is always enabled. Select this to remove variables fiom the current dataset in 

memory. This does not affect any files (until you File+Save the current dataset after making 

changes). Choosing ths fimction opens a multiple selection window in which selections are made 

fiom the list of variables with SpacetClick or Ctrl+Click, and selection is finished with Enter or 

the Okay button. You will be prompted to confirm each deletion, then you are put back in the 

Variables menu, and must repeat all the operations for more deletions. Deleting variables restores 

the Variables module to its initial state, waiting for a variable to be selected. NOTE: deleting 

variables is not reversible. The deletion process may be ended at any point by pressing the Cancel 

button, but those already deleted cannot be recovered. 

Manage+Replace is enabled once a variable has been selected, and allows replacement of 

any variable with the values, value labels, and comments of the (possibly pending) variable 

currently being displayed. Manage4Replace is a convenience provided to allow renaming of 



variables created automatically (e.g. from Recode+Degree), changing the value labels 

automatically generated by some Recode functions, and editing comments. Choosing 

Manage-+Replace opens a selection window with a list of variable names. Choosing one of 

these then opens an edit window with the name of the chosen variable. You may then change or 

accept the variable name. Another edit window then opens for comments. The default comment 

is the list of Recode actions performed on the pending variable unless no changes have been 

made, in which case the original comment is used. If any value labels have been changed by 

Manage-+Labels, they are also replaced. Selecting "Cancel" for either ofthese windows cancels 

the replacement. 

Manage+Labels is enabled whenever the current variable has value labels, and is a 

convenience that allows changing the value labels automatically generated by some Recode 

functions (e.g., Quantiles). Choosing Manage-+Labels opens an edit window with two columns 

headed 1) "Values" followed by a column of all unique data values and 2) "Labels" followed by 

a column of the value labels currently assigned to the values. You may edit the contents of 

column 2. Any changes to column 1 produces an error message and all changes are ignored. 

Pressing Save then replaces the current value labels with the contents of column 2, while 

pressing Quit ignores any changes made. Changes affect only the pending variable, and do not 

become permanent until Create or Replace is chosen. 

Manage+Arrange is always enabled and is a convenience which allows you to arrange the 

order ofvariables. Selecting ths function opens amultiple selection window in which you toggle 

selections fiom the list of variables with Shift+Click or Ctrl+Click, and finish selecting with 

Enter or Okay button. The variables you have selected move to the beginning in any display or 

selection window of either node or link variables. Press Cancel to avoid any change. Any 

change in the order of variables restores the Variables module to its initial state, waiting for a 

variable to be selected. 

Manage+Comments is enabled when the variables list shows the brief descriptive statistics. 

This function allows you to have the descriptive comments associated with variables displayed 

in the variable list, rather than the brief descriptive statistics. A descriptive comment may be 

associated with any variable when it is first created. Descriptive comments may also be included 

in the original text data file after the column definitions. Choosing this function restores the 

Variables module to its initial state, waiting for a variable to be selected. 

Manage+Statistics is enabled when the variables list shows the descriptive comments. This 

function restores the briefdescriptive statistics in the variables list. Choosing this function restores 



the Variables module to its initial state, waiting for a variable to be selected. 

Manage+View Summary is always enabled and produces a textual report o f d  current Node 

and Link variables, and displays it in an edit window. Included are variable names, statistics and 

comments. Also included are lists of any Node IDS that do not appear as Links IDS, and Link 

IDS that do not appear as Node IDS. This duplicates a function available from the main menu 

under Variables. 

Manage+File Summary is always enabled and produces a textual report of 4 current Node 

and Link variables, and files it in the current .OUT file. Included are variable names, statistics 

and comments. Also included are lists of any Node IDS that do not appear as Links IDS, and 

Link IDS that do not appear as Node IDS. This duplicates a function available from the main 

menu under Variables. 

Network 

This menu item may be enabled only for node variables. Once you have selected a node variable, 

you may be interested in looking at the distributions of links sent FROM each node value, and TO 

each node value. If you press Network you may look at these for a particular link variable, which is 

chosen from a selection window by standard methods. MultiNet will give a warning if there are no 

FROM or TO links to display. Initially, the Report includes node statistics and distribution only. 

Using Network to select a link variable will result in adding FROM and TO statistics and 

distributions for the selected link variable to the Report. The graphic display becomes a histogram 

counting the number of links sent FROM (or TO ) each unique value of the node variable. You may 

restore the node distribution display by selecting Network-Standard, but this does not remove the 

additional information from the Report. To restore the initial report (without link information), re- 

Select the node variable. NOTE: Recode is disabled while FROM or TO distributions are displayed. 

Also Network is not enabled forpending variables that have been recoded but not yet saved into a 

permanent variable. The statistics and distribution tables provided by Network is a convenience, 

since they are also produced by the network analyses available in the MultiNet Analyse module. 

Select (Node or Link) 

The text of this menu item depends on whether you have chosen to examine node or link 

variables. This menu item is always enabled, and is generally the first item chosen from the menu bar. 

Press Select to examine the distribution of values for an individual variable. The variable is chosen 

from a selection window using standard methods. Once the variable has been selected, a graphic 





The following descriptions of choices apply to both node and link variables. 

3.3.1 Discrete 

This choice allows transformations that result in a discrete, categorical variable, with a small 

number of unique integer or binary values. Selecting this choice with a click opens a selection 

window with the following choices: 

Quantiles will recode the variable currently selected into a specified number of quantiles. Type 

the number of quantiles into the edit window and press enter. This number must not be more 

than a user selected limit (set by Preferences) with default 12 and maximum 20. Initially the 

new quantiles are shown superimposed on the variable distribution as green dashed lines and 

labels (Figure 3.6). These lines intersect along the cumulative distribution, and are as equally 

spaced as possible along the Y-axis. The left ends of the horizontal parts are labeled with the 

cumulative values (and these values should be approximately equidistant), while the bottoms of 

the vertical parts are labeled with the corresponding data values. This display persists until a 

YesNo window is clicked. A No response requests a new number of quantiles. A Yes response 

displays the new pending variable, which corresponds to the quantiling of the original selected 

variable, with value 1 corresponding to the first quantile, 2 to the second and so on. Value labels 

are automatically created to correspond to the original data value to the rightmost in each 

quantile. For example, quantile 1 contains data up to -0.1347, so it is labeled as -0.134 (rounded 

to 2 decimal figures) quantile. The display of the recoded (and pending) variable is labeled as 

3 Qu{lNSAY) to show how it was created. This label will automatically become the descriptive 

comment if a new variable is now created. In this example the number of nodes in each quantile 

cannot be the same (since there are 32, which is not divisible by 3). It will generally be the case 

that not all quantiles contain exactly the same number of items. 

* Bins will recode the variable currently selected into a specified number of bins. The results are 

very similar to Quantiles, except the data is divided as evenly as possible into bins based on data 

values, rather than cumulative distribution. Type the number of bins into the edit window and 

press enter. This number must not be more than a user selected limit (set by Preferences) with 

default 12 and maximum 20. Initially the new bins are shown superimposed on the variable 

distribution as blue dashed lines and labels. These lines intersect along the cumulative 

distribution, and are as equally spaced as possible along the X-axis. The left ends of the 

horizontal parts are labeled with the cumulative values, while the bottoms of the vertical parts 

are labeled with the corresponding data values (and these values should be approximately 
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Figure 3.6. a) shows the tentative 3-quantiling of a continuous variable, with cumulative values on the left and 

actual data values below. The green dashed lines intersect on the cumulative distribution. 

b) shows the results after the tentative 3-quantiling is accepted. The value labels on the right are based on 

the upper data value in each quantile. The pending variable is labeled to show how it was created. This label 

will automatically become the descriptive comment if a new variable is now created. 



equidistant). This display persists until a yesho window is clicked. A No response requests a new 

number of bins. A Yes response displays the new pending variable, which corresponds to the 

binning of the original selected variable, with value 1 corresponding to the first bin, 2 to the second 

and so on. Value labels are automatically created to correspond to the original data value to the 

rightmost in each bin. For example, assume a 3-binning of the data shown in figure 3.6. Then bin 

1 contains data up to -0.023 1, so it is labeled as 4.02B (rounded to 2 decimal figures). The display 

of the recoded (and pending) variable is labeled as 3 Bi{l NSAY) to show how it was created. This 

label will automatically become the descriptive comment if a new variable is now created. It will 

generally be the case that not all bins contain exactly the same number of items. 

User allows interactive discretization ofdata with ranges chosen by the user. When this function 

is selected, two items become enabled in the Explore Data window: Select and Okay. The 

cursor is moved as usual, with the labels on both axes helpfully showing data value and 

cumulative value. When the cursor is as a desired value, pressing Select draws a red dashed line 

and labels, defining the end-point of a tentative category of data. This tentative category may be 

removed by moving the cursor to an existing red tentative end-point and pressing Select again. 

This allows considerable interaction in setting up categories. When the tentative discretization 

is complete, pressing Okay produces aresult like figure 3.6b. For example, assume 3 categories 

have been selected. Then if category 1 ends at -0.1524, it is given label 4.15U,. The display 

label (and descriptive comment) is 3 Us{l N-SAY), showing how the variable was discretized. 

Rank is available as a choice if the variable consists of not more than a user selected limit (set 

by Preferences) with default 12 and maximum 20. The data values are categorized by their 

rank (least =1, greatest = number of unique values). Value labels are 1R, 2R, ..., up to number 

of unique values. The display label (and descriptive comment) is Ra{ ...). Rank is a convenient 

way to convert categories with non-contiguous coding values (e.g., 0,3,4, 9, ...) into contiguous 

integer values (1,2, 3,4, ...). 

3.3.2 Continuous 

This choice allows transformations that result in a continuous (real-valued) variable, and is 

most appropriate when applied to such data. However, no warning is made if these functions are 

applied to integer (or even binary) data, and it is up to the user to make sure the transformation is 

reasonable. These transformations affect only the data values, not the fiequencies, though the 

resulting histograms and distribution tables may be somewhat different. Selecting this choice with 

a click opens a selection window with the following choices: 



LglO takes the base-10 log of the data values. The new label (and c o e e n t )  is Lg{ ...). 

An error message results if any data value is less than or equal to 0. 

Pwr allows powers and roots to be taken. An edit window opens in which the power is entered. 

A positive integer such as n means take the n' power of the data values (e.g, 2 means take the 

square). A fraction such as l/n means take the nth root of the data values (e.g., 0.5 means take 

the square root). For power n, the new label (and comment) is n Pw{ ...). An error message 

results if extracting a root would result in imaginary values. 

Std subtracts the mean and divides by the standard deviation of the data values. This rescales 

the data values to have mean = 0 and Std. Dev. = 1. The new label (and comment) is St{...). 

Rank replaces each data value with its rank in a rank-ordering (increasing values). Strictly 

speaking, this produces an integer result. This function would be useful, for example, in 

replacing dates (YYMMDD) with day numbers. The new label (and comment) is Ra{ ...). 

3.3.3 Equation 

This very powerful function allows arithmetic and logical combinations of a number of variables. 

When this is chosen, two windows open. One is a display window, showing alphabetic symbols (a- 

z,A-2) beside each of the actual variable names. (If there are more than 52 variables, a multiple 

selection window opens first, allowing choice of up to 52 variables). Above the display window is 

an edit window in which an equation may be typed. The symbols beside the variable names are used 

to construct an equation describing how to define the a new variable. Standard precedence rules are 

used for arithmetic. e.g., a*(b+c) means construct a new variable from a times the sum of b and c ,  

where a ,  b and c are symbols representing variables. 

You may also use = and < and > to construct new variables. These evaluate to the logical values 

1 or 0. For example: 1 O=a evaluates to 1 only for values of a exactly equal to 10.10ea (or a>lO) 

evaluates to 1 for all values of a greater than 10. a 4  0 (or 10>a) evaluates to 1 for all values of a less 

than 10. These expressions may be used in an equation to select ranges of a variable. For example: 

a*(lO<a) (or a*(a*lO)) makes a variable which is the value of a if a is greater than 10 or is 0 if a 

is 10 or less. Such logical expressions may also be used to select subsets of a variable which depend 

on another variable. In conjunction with = or < or >, * acts like logical AND, while + acts like logical 

OR. A logical equation uses only these operations to produce the logical results 0 or 1, as in 

Recode+Node Constraints For example, in figure 3.7 the equation a=l *b is used to select the ages 

(variable b) for which the sex (variable a)  is 1 (male). Figure 3.7a shows the windows and equation, 

while figure 3.7b shows the result. Notice that all the females have value 0 and could be removed. 





Since the result is a combination of variables with a small number of unique values, it also has 

a small number of unique values, not more than a user selected limit (set by Preferences) with 

default 12 and maximum 20. This allows the value labels OE to 1OE to be created. The display label 

(and descriptive comment) is E=SEX=I*AGE showing how this variable was created fiom an 

equation. In this case it is straightforward to interpret all the 0 values as belonging to the females. 

However, these zero values affect the statistics. It would be useful to consider these values as "not 

there" in some way, which is the topic of the next section. 

In the case where one or more of the variables used in the equation have missing data, the result 

of any equation must also have missing data. It is possible that the result of an equation consists 

entirely of missing data, which results in an error message and no change in the current variable. This 

can happen, for example, when there are two types of nodes (e.g., people and events) which may 

have variables describing people (with missing data for events) and variables describing events (with 

missing data for people). How this may be handled in an equation is also described in the next 

section. 

3.3.4 Zero->Missing 

Zero->Missing is enabled if there are any datavalues of 0 in the current variable. This function 

marks all data values of 0 as missing data and removes the zeros. A number of Recode functions 

produce data values of 0 to show that data may be removed (declared as missing data). Examples are: 

Equation, Missing->Zero, Prune, NoDiag, Components. The example in the previous section 

resulted in a variable with statistics skewed by the logical 0's. Applying Zero-Missing would 

produce the correct statistics, as shown in figure 3.8. The label (and descriptive comment) is now 

Zm{E=SEX=lfAGE) showing how the variable was created. 

3.3.5 Missing->Zero 

Missing->Zero in the inverse of Zero-*Missing, with label Mz{ ...). It is enabled if there is any 

missing data in the current variable and it replaces all missing data values with zeros. This can be 

useful when it is necessary to combine two variables whose non-missing intersection is empty ( e g ,  

the people and event variables described above). This would involve creating a pair of temporary 

variables with Missing->Zero, putting them together in an equation, then deleting the temporary 

variables. This function should be used with care, especially for data where 0 can be a meaningfbl 

value, or for large non-binary link variables with many missing values. Note that sparse 

representation means that link data exists (possibly with value 0) or is declared missing for node ID 

pairs with a value for at least one link variable: any other ID pairs are not part of the dataset. 
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Figure 3.8. Using Zero->Missing on the result of the equation in figure 3.7. 

The followinv descri~tions of choices apdv to node variables onlv. 

3.3.6 Degree 

Degree produces a node variable that depends on which network (link variable) is being 

measured. Choosing Degree opens a selection window for choosing a link variable. After choosing 

a link, a multiple selection window is opened which may have two or four choices. If the link 

variableis strictly binary, there will be choices for out-degree and in-degree only. If the link variable 

is not strictly binary (though it must be non-negative), two more choices appear: weighted out- and 

in-degrees. Once the choices have been made, the new variables are created automatically. This 

requires a naming convention as well as a convention for comments. The names are derived from the 

link variable, with additional characters prepended as shown in the table below. 

o> binary out-degree counts the number of links sent from each node (integer valued). 

I< binary in-degree counts the number of links received by each node (integer valued). 

O> weighted out-degree counts the sum of all link values sent from each node. 

I< weighted in-degree counts the sum of all link values received by each node. 

For example, the binary out-degree for each node of link variable SAY is automatically given the 

variable name o>SAY, and the comment "Bin OUT-DEG of SAY". Each potential node variable is 



presented before creation with variable name and then with comment, either ofwhich can be changed 

by the user in an edit window. The creation process can be cancelled at any time, though variables 

already created remain. If any variables are created, the first becomes the selected variable, which 

is then displayed. 

If it is known that the link variable is also non-directed (symmetric), these both [weighted] out- 

and in- calculations produce the same result. Otherwise, for directed networks [weighted] out- and 

in-degree will have different distributions. It is quite possible, especially for directed or bipartite 

networks, that some nodes have zero values for either out- or in-degree, in which case Zero-Missing 

could also be applied. Degree produces values only for those nodes that take part in the network 

defined by the selected link variable. All other nodes are marked as having missing data for the new 

variable. 

3.3.7 Centrality 

A large number of methods have been devised that assign descriptive measures of networks to 

nodes. One of the aims is to identify "important" nodes. A simple example is out-and in-degree, and 

indeed nodes with very high degree are generally "well-connected". The most popular measures 

include: 

Degree: number of connections fiom (out) or to (in) each node (Freeman, 1979) 

Betweenness: number of geodesics that each node is on (Freeman, 1979; Brandes, 2000) 

Closeness: reciprocal of sum of distances to or from all other nodes (Freeman, 1979) 

Influence: derived from the walk-generating matrix (Biggs, 1993) with attenuation (Katz, 1953; 

Foster, et.al., 200 1) 

Integration: sum of diameter minus distances from all nodes (Valente & Foreman, 1998) 

Radiality: sum of diameter minus distances to all nodes (ibid) 

Eigenvector: Frobenius eigenvector of symmetrized adjacency matrix (Bonacich, 1972) 

This list is by no means exhaustive. For details, see cited works. In each case the measure is 

"normalized" to run between 0 and 1 so that networks of different sizes may be compared. MultiNet 

calculates binary Degree (out- and in-) in Recode+Degree, and these may be normalized using 

Recode-Equation simply by dividing by the number of nodes-1. Similarly, Eigenvector centrality 

may be calculated in the Eigenspaces module by choosing Standard, saving the largest eigenvector, 

and dividing by number of nodes-1. The Recode-Centrality choice provides some centrality 

measures directly and others may be added by user request if they can be calculated using sparse 

methods. 



Betweenness has become very important in recent studies of large scale-fiee networks, and a 

recent algorithm (Brandes, 2000) allows efficient calculation for large networks using sparse methods. 

Betweenness is very useful since it is always defined even for disconnected networks, and is the same 

measure for both a directed graph and its transpose (out- and in- measures are the same). Closeness 

is not included since it is not defined unless the network is at least strongly connected. Instead the 

related measures of Integration (in) and Radiality (out) are included, since these are always defined 

for disconnected networks and can be efficiently calculated with a variant of the (Brandes , 2000) 

algorithm. Influence (both out- and in-) is also defined for disconnected networks and can be 

efficiently calculated for large networks with a recent sparse algorithm (Foster et. al., 2001). 

Once Recode+Centrality has been chosen, a selection window opens for choice of link 

variable. Then another selection window opens for choice of centrality measure. Choosing one of 

these results in the calculation and display of a new pending node variable. (The variable is g& 

automatically created). The new label (and eventual comment) for each choice is: 

Betweenness Bt{ ...I 
Influence (Out) lo{ ...} 

Influence (In) li{-..} 

Integration In{ ...} 

Radiality Rd{ ...I 

3.3.8 ldentify 

ldentify defines a new node variable by producing a set of ID numbers that correspond to the 

unique values of the node attribute, and then gives each new node its own value. For this reason, 

ldentify can only be used with integer-valued variables. Since new node IDS are created, all other 

node variables must be given missing data values for these new nodes. ldentify is useful in 

connection with Make Hypergraph for link variables, which also creates new ID numbers based on 

attribute values, but does not create a new node variable and so does not give the new IDS any values 

as ldentify does. 

3.3.9 Count 

Count is similar to Identify, since it can produce a set of new ID numbers that correspond to 

the unique values of a node variable (which must be positive integers). Whereas ldentify gives each 

new node ID a value equal to its ID number Count gives each ID a value equal to the number of 

times the value appears. Thus the result of Count is the frequency distribution of values for a 

discrete-valued node variable. 



Table 3.1. Partial report on strong components of link SAY as a node variable 

MultiNet VARIABLE REPORT ON "KIDSP.NOD+KIDSP.LIN" 13/06/2003 10:33:31 
NODE VARIABLE NAME: ST{SAY) <pending> 
STATISTICS OF ST{SAY) <pending> DISTRIBUTION OF ST{SAY) <pending> 

MEAN 0.97 LABELS VALUES COUNTS %age 
VAR 0.0302 0s 0 1 3.1% 
SDEV 0.174 1s 1 31 96.9% 
MIN 0 
MAX 1 
LdED 1 
SIZE 32 
BINS 2 

3.3.10 Components 

If there is a path between every pair of nodes in a graph, the graph is said to be connected. If a graph 

is connected, it consists of a single component. A disconnected graph does not have a path between all 

pairs of nodes, and may consist of several components. Recode-Components produces a node 

variable with values that depend on which component each node belongs to in the network defined by 

the selected linkvariable. Choosing Components opens a selection window for choosing a link variable. 

After choosing a link variable, a selection window is opened which has two choices: Weak 

(UNDIRECTED) and STRONG (DIRECTED). Weak components ignore direction (and therefore are the 

same components found in the Eigenspaces module, which symmetrizes networks as part of the 

eigendecomposition). Strong components do not ignore direction. Once a selection is made, the hc t ion  

calculates the components for the chosen link variable, and orders them according to decreasing order 

(number of nodes). Nodes are then assigned an integer value depending on which component they are 

part of, •’tom 1 (largest) to n (smallest). Nodes belonging to a component of order 1 (trivial components 

or isolates) are assigned a value of 0, which makes it easy to re-assign them all as missing data values 

(not belonging to any non-trivial component). If all nodes belong to trivial components, the result is an 

error message. This can occur, for example, with strong components of ego-centric data. 

Once components are calculated, the result is a pending variable with default label (and 

comment) based on the chosen link variable. For example, the weak components of link SAY are 

labelled We{SAY), while the strong components are labelled ST{SAY) (see Table 3.1). If the number 

of components is less than a user selected limit (set by Preferences), then value labels are also 

created, with component number as prefix, and suffix 'W' for weak and 'S' for strong. Components 

produces values only for those nodes that take part in the network defined by the selected link 

variable, All other nodes are marked as missing data. 

When a variable derived from Components has been created, it may be used with Equation, 

combined with other node variables, to isolate sets of nodes that belong to individual components 

(or all isolates), and examine differences in distributions. It may also beused in the MultiNet Analyse 



module in combination with other node variables to examine differences in components. The next 

section describes a method that creates a new link variable for each component. 

The follow in^ descri~tions of choices a ~ d v  to link variables onlv. 

3.3.11 Reduce MultiLinks 

Reduce MultiLinks is enabled if there are any multiple links in the selected link variable. 

Multiple links are From->To pairs of nodes that appear more than once. This may occur if the link 

variable is time-dependent; e.g., I speaks to j at time t, and again at time t+l. (It may also occur as 

a data error, so it is worth checking to see if Reduce MultiLinks is enabled when you do not expect 

it to be.). Choosing this function opens a multiple selection window with choices: 

Numberoflinks COUNT the number of multiple From->To pairs 

Amount of Linkage SUM the link strengths of multiple From->To pairs 

The second choice appears if the link variable is non-binary, but may not make sense if the link 

variable is categorical (e.g., form of communication: l=phone, 2=email, ...). Once choice(s) are made, 

the function counts the number of multilinks andlor sums the total value of multilinks and assigns 

the value(s) to the last node pair of each multilink. All the other values of each unique node pair is 

marked as missing data. This can dramatically reduce the size of the network. 

The resulting link variables are automatically created, with default prefix # for number of links 

and $ for amount of linkage. Figures 3.9 and 3.1 1 show results for link variable Duration, which is 

length oftime of each contact so calculating Amount does make sense. The automatic variable names 

are #Duration and $Duration with comments "Count Duration MultiLinks" and "Sum Duration 

MultiLin ks" respectively. Each potential link variable is presented before creation with variable name 

and then with comment, either of which can be changed by the user in an edit window. The creation 

process can be cancelled at any time, though variables already created remain. If any variables are 

created, the last created becomes the selected variable, which is then displayed. 

3.3.12 Node Constraints 

Node Constraints allows the selection of subsets of a link variable based on node attributes. 

You may select allowed values for one or more node variables by using a logical equation to define 

the allowed values You initially choose whether these allowed values apply only to senders (From), 



0 
12 

a) link variable with mulitlinks 

b) counts of number of multilinks 

MEAN 21.22 
VAR 1278 
SDEV 35.74 

L32 MIN 0 

MAX 240 
MED 7 

3% SIZE836 
BlNS 49 
NODES 425 

MEAN 2 
VAR 5.55 
SDEV 2.356 

i s9  MIN 1 

MAX 20 
MED 1 

331 SIZE 413 
BlNS 15 
NODES 425 

Figure 3.9. a) link variable Duration has 836 multiple links which measure the length of each interaction. 

b) link variable #Duration counts the number of interactions for each of 413 unique node pairs. 

See also figure 3.1 1 .  



receivers (To), Both senders and receivers (logical And), or Either senders or receivers (logical Or). 

As an example, consider the KIDS2 network of boys and girls of ages 6- 10. To select a sub-network 

of only boys of age less than 8 select Both and use the logical equation 

(a=l )'(b<8) (where a represents sex, and b represents age). 

Only links for which Both nodes satisfy these node constraints will remain non-zero. The resulting 

link variable is automatically named (and commented) with the constraints in [...I brackets. In this 

example, the name is "SAY[B:(SEX=l)*(AGE*8)]". Note that the new network may not be connected. 

More complex sub-networks may be constructed by combining Node Constraints results using 

Recode+Equation. For example, to get a network consisting only of links From boys To girls, 

select From and a= l ,  then To and a=2. Then combine the two new link variables using 

Recode+Equation and the "*" (logical And) operation. 

3.3.13 Transpose 

Transpose  is provided for convenience, and is not suitable for data which is highly directed 

such as ego-centric and 2-mode networks. Transpose simply reverses the direction of all links, 

keeping the values. This can produce many new node pairs, and will cause a permanent increase in 

the size of the dataset in memory until the new link variable(s) and all other variables derived from 

them are Deleted. The extra node pairs are marked as missing data for all other link variables. Thus 

Missing-*Zero may produce much larger link variables, with many extra zeros 

3.3.14 Symmetrize 

Symmetrize is provided as a convenience, and is not suitable for data which is highly directed 

such as ego-centric and 2-mode networks. This function uses Transpose which can add many new 

node ID pairs to the dataset and will cause a permanent increase in the size of the dataset in memory 

until the new link variable(s) and all other variables derived fiom them are Deleted. The extra node 

pairs are marked as missing data for all other link variables. Thus Missing->Zero may produce much 

larger link variables, with many extra zeros. The convenience comes fiom not having to enter every 

node pair in both directions in a .LIN file when the network is known to be symmetric, and using 

Symmetrize to produce all the reciprocated node pairs. 

The network is combined with its transpose in on of four ways: 

MAX (OR) For binary data, this reciprocates every link. 

MIN (AND) For binary data, this drops all non-reciprocated links. 



S U M  which may be converted to mean by Recode4Equation. 

ABS DlFF which subtracts the network from its transpose and takes the absolute value. 

The result is given label Mx{ ...), Mn{ ...), Su{ ...) or Ad{...). Ifthe number of unique values produced 

is not greater than the current maximum number of categories (default 12 or maximum 20), then 

value labels are produced with "S'appended to the actual values. 

3.3.15 Make Hypergraph 

Make Hypergraph combines node attributes to produce a binary network of co-occurrences, 

with existing nodes as rows, and the values of the node attributes as columns. New ID numbers are 

created to account for the attribute values. For this reason, the node attribute values should be integer, 

and there should be no overlap with existing ID numbers and the two sets of attribute values. Thus 

this function not only creates new node pairs, it also creates new "nodews and IDS for the attribute 

values. Eigenspaces will treat this network as a bipartite graph, with nodes as rows and attribute 

values as columns. The new node ID numbers can receive values either as variables or partitions. See 

also the Identify function for Node variables. 

Make Hypergraph uses Selection windows to ask for apair of multi-valued node variables. Use 

Recode4Equation to ensure that the range of values for these two variables do not overlap with 

each other or existing IDS. These variables are attributes of nodes and for each node that has a pair 

of such attributes, Make Hypergraph produces new node pairs consisting of the node ID and the 

actual attributes. This results in a binary contingency table of co-occurrences which may then be 

further analysed in the Eigenspaces module to examine whether the attributes co-cluster. Sections 

9.4,9.5 and 10 contain detailed examples of this type of network analysis. The new link variable is 

automatically named "NVARI ;NVAR2", where "NVARl "and "NVAR2"are the names of the chosen 

node variables in the order chosen. 

The functions Identify, Count, Transpose, Symmetrize and Make Hypergraph can produce 

new nodes and node pairs. When the Manage4Delete command removes node or link variables, it 

checks whether remaining nodes or node pairs have only missing values, and if so deletes such nodes 

or node pairs and the corresponding missing data markers from all remaining variables. Thus the 

number of unique IDS may fluctuate as new variables are created by these functions and then later 

deleted. 





indicate a data error. The purpose of this function is to eliminate all self-loops by setting the link 

variable to 0 for links where both sender and receiver are the same. These links may then be declared 

missing with ZeroaMissing. The pending variable has label (and comment) Nd{ ...). 

3.3.18 Components 

This function is very similar to the version for node variables. The difference is that instead of 

assigning values to nodes depending on which component they belong to, new link variables are 

created, one for each component of size at least 2. The link version of Components proceeds as 

the node version, until the components (weak or strong) have been identified, and sorted into 

decreasing order (number of nodes). At this point, a multiple choice window is opened with link 

variable names constructed fi-om the type of component, sort position, colon and selected link 

variable name. The comment is bbNodes:" and the order of the component. For example, link variable 

SAY has one strong component of order 3 1, and one trivial component with one node. The multiple 

selection list consists of all non-trivial components, in this case the single component labeled 

S1 :SAY with comment "Nodes:31t'. Each potential link variable is presented before creation with 

variable name and then with comment, either ofwhich can be changed by the user in an edit window. 

The creation process can be cancelled at any time, though variables already created remain. 

Whether or not any variables are created, a new pending link variable is created showing the 

distribution of component orders, with label (and comment) We{ ...) or ST{...). This link variable 

replaces the value of each link with the number of the component that the nodes at each end belong 

to. Links that do not belong to a non-trivial component are set to 0. These links may then be declared 

missing with ZeroaMissing. 

3.3.19 Hybrid variables 

Node variable which are derived form link variables, and link variables which are derived from 

node variables are called Hybrid variables. There are many examples of hybrid node variables, such 

as variables and partitions (fi-om Eigenspaces), components and the various degree and centrality 

measures. Hybrid link variables include those defined fi-om p* fits (which may result from a blocking 

based on a node variable), Node Constraints and Make Hypergraph. 

3.3.20 Composition of Recode functions 

The Recode functions have been designed to allow for easy composition. That is, the result of 

one function can immediately become the input to another function. Any compositions are 

accumulated in the automatic display label (and eventual comment), so it is easy to keep track of how 



-126- 

a variable was created. As an example ofthis, suppose we wish to construct a Likert-style categorical 

variable based on the Duration of interactions (figure 3.9) for use in cross-tabs or colouring links in 

module Eigenspaces. Duration is strongly skewed to the left and has a long tail (Figure 3.9a), 

suggesting that a Lg1O transformation is reasonable for this type of interaction (Crow and Shimizu, 

1988). The steps to produce the categorical variable are: 

Select Link Duration 

Recode+Reduce MuttiLinks with choice Amount of Linkage to get the total duration of all 

interactions between node pairs. This automatically creates and displays the variable named 

$Duration with comment "Sum Duration MultiLinks" 

Recode+Continuous+Lg10, which takes the logarithm and produces label (and comment) 

Lg{$Duration); and 

Recode+Discrete+Bins , and selecting 5 bins, produces the variable with automatic label "5 

Bi{Lg{$Duration))" shown in figure 3.11. Then Manage+Labels is used to produce the 

descriptive Likert-style labels describing the amount of interaction. 

MEAN 2.33 
VAR 1.077 
SDEV 1.038 

171 MIN 1 
MAX 5 
MED 2 

13, SIZE 413 
2 BINS 5 

NODES425 .- * p l=V. Small 
1 0 3 z  2=Small 

C 3=Average 
m =I+ 4=Large 

5=V. Large 
68 m 

Figure 3.11. Composition of Recode functions on a link variable with automatic variable creation. 



As another example, consider a non-binary link variable called "links". We may want to find the 

weak components when link strength is restricted to values above a certain threshold. The steps are: 

Select Link "links" 

Recode+Equation with equation a>16*a, where a is the symbol for links, creates a pending 

variable with values 0 when variable "links" has values less than 17; otherwise, the values are 

the same as in the variable "links". The program produces label "E=links>16*links" for the 

display of the pending variable 

Recode+Components, selecting Weak, and then selecting the largest component of size 153, 

which is automatically created and labeled WI:E=links>16*llnks. 

Select this new link variable (which will later be replaced). 

Recode+Zero->Missing results in the pending variable with label Zm(W1 :E=links>16*links). 

Manage+Replace then replaces W1 :E=links>l6*links with the non-zero links only as shown 

in figure 3.12, using the default label automatically generated. 

MEAN 33.61 

VAR 683.2 

SDEV 26.14 
78 MIN 17 

MAX 220 

MED 25 
rn 

62 SIZE269 - BINS 60 

NODES 153 
A 
M 
X 

47 .E - 
I1 

LY 

Figure 3.12. Composition of Recode functions on a link variable 
using Replace on temporary intermediate result. 



3.3.21 Automatic creation of variables by Recode functions 

Certain Recode functions automatically create variables either because they use multiple 

selection menus as a convenience, or because these variables may be created as a side-effect. These 

are: 

Recode+Degree for node variables presents a multiple selection window as a convenience 

since both out- and in- degrees (and their weighted forms for non-binary link variables) are 

generally of interest. The selected node variables are created in reverse order, subject to user 

choice, and the last variable created is then automatically selected and displayed. 

Recode+MultiLinks for link variables presents a multiple selection window with one choice 

for binary (Number) or two choices for non-binary link variables (Number and Amount). The 

selected link variables are then created in reverse order, subject to user choice, and the last 

variable created is then automatically selected and displayed. 

Recode+Components for link variables will construct a new link variable with a unique 

integer link value for each component. As a side-effect, new link variables with the original link 

values can also be created, one for each component. A multiple selection window of all non- 

trivial components is presented. The selected link variables are then created in reverse order, 

subject to user choice. The distribution of component sizes (either We or ST) is the new and 

pending link variable displayed. 

In each case the automatic creation can be ended by pressing the Cancel button for either variable 

name or comment, although variables already created are not affected and will remain as variables. 

Creation in reverse order ensures that the first variable chosen in the multiple selection list is the last 

created, and therefore is the one automatically selected and displayed. All other Recode functions 

produce a pending variable, that is, a temporary variable which can be made permanent by 

Manage+Create or Manage+Replace. 

This ends the section describing the functions available with Recode. 

Report 

The report for any variable includes a table of simple statistics and a table of the distribution 

using the same bins used in the graphic histogram. The number of bins has default value of 30, and 

may be set by the user in module Preferences to a maximum of 100. If the number of unique values 

of the variable is not more than this setting, all values are used in the histogram and distribution table. 



For-node variables, additional detail is also available. Node variables are generally much smaller 

than link variables, so it is practical to include a list of all the nodes and their values. In fact, there 

are two lists side-by-side, the first ordered by ID number (to make it easy to find a values associated 

with any node), the second sorted by value (to make it easy to find nodes associated with any value). 

If variable IDLABEL is available, it is also included in these lists. If the Network function has been 

applied, then the Report also contains statistics and distributions for the links sent From each node 

and for the links sent To each node. Table 3.2 is an example with node variable SEX, IDLABEL, and 

link variable SAY selected by Network. 

Table 3.2. Full report for node variable SEX and link variable SAY 

MultiNet VARIABLE REPORT ON "NODkids.CSV+LINkids.CSV" 13/06/2003 16:23:36 
NODE VARIABLE NAME: SEX 

STATISTICS OF SEX 

MEAN 1.5 
VAR 0.25 
SDEV 0.5 
MIN 1 
MAX 2 
MED 1.5 
SIZE 32 
BINS 2 

DISTRIBUTION OF SEX 

LABELS VALUES COUNTS %age 
male 1 16 50.0% 
female 2 16 50.0% 

STATISTICS OF SAY LINKS FROM SEX 

MEAN 1.44 
VAR 0.2468 
SDEV 0.4968 
MIN 1 
MAX 2 
MED 1 
SIZE 142 
BINS 2 

DISTRIBUTION OF SAY LINKS FROM SEX 
LABELS VALUES COUNTS %age 
male 1 7 9 55.6% 
female 2 63 44.4% 



STATISTICS OF SAY LINKS TO SEX 

MEAN 1.44 
VAR 0.2468 
SDEV 0.4968 
MIN 1 
MAX 2 
MED 1 
SIZE 142 
BINS 2 

DISTRIBUTION OF SAY LINKS TO SEX 

LABELS VALUES COyl'S %age 
male 1 7 9 55.6% 
female 2 6 3 44.4% 

................................................ 
DETAILS OF NODE VARIABLE SEX 
SORTED BY ID# I SORTED BY 

ID# ID VALUE I ID# ID 
1 Linda 2 I 4 Jinnny 
2 Jemima 2 I 5 Fred 
3 Bertha 2 I 7 Bill 
4 Jimmy 1 I 8 Andrew 
5 Fred 1 I 9 Tom 
6 Rose 2 I 12 Dweevi 
7 Bill 1 I 15 Russel 
8 Andrew 1 I 16 Emil 
9 Tom 1 I 18 Harry 

10 Susan 2 I 19 Ivan 
11 Amber 2 I 20 Victor 
12 Dweevi 1 I 21 Pave1 

' 13 Moon U 2 I 23 Mark 
14 Katie 2 I 24 Trevor 
15 Russel 1 I 28 Matthe 
16 Emil 1 I 31 Luke 
17 Mary 2 I 1 Linda 
18 Harry 1 I 2 Jemima 
19 Ivan 1 I 3 Bertha 
20 Victor 1 I 6 Rose 
21 Pave1 1 I 10 Susan 
22 Nancy 2 1 11 Amber 
23 Mark 1 I 13 Moon U 
24 Trevor 1 I 14 Katie 
25 Julie 2 I 17 Mary 
26 Joan 2 I 22 Nancy 
2 7 Janet 2 I 25 Julie 
28 Matthe 1 1 26 Joan 
29 Lucie 2 I 27 Janet 
30 Irma 2 I 29 Lucie 
31 Luke 1 I 30 Irma 
32 Prisci 2 I 32 Prisci 

VALUE 
VALUE 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
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As is the case throughout MultiNet where the Report menu item is available, the user may 

choose to View the textual report in an edit window, or File the report to the current output file. Filing 

produces the usual choices: Append, Replace, Increment or Rename. The user may also set 

Automatic Append in the module Preferences. 

Graphics 

Like Report, this menu item is common to most MultiNet modules, and acts similarly in each 

one. Clicking on Graphics produces the following choices: 

Graphics+PostScript reproduces the current display as a Postscript program. This is a text 

file which produces graphics with a Postscript interpreter (e.g., printer). 

Graphics+Bitmap captures the screen display as a 256-colour bitmap, which is then run-length 

encoded. The result is a compressed Windows .BMP file. 

For more details, see Section 0: Overview and Technical appendix 0. 

Explore 

This menu item is included as a convenience, and is initially disabled (greyed-out). The Explore 

Data window may be closed by clicking on the 'X' in the upper right on this item. This may be 

helpful when using other screen-capture software. Closing the Explore Data window enables this 

menu item, so that clicking on Explore re-opens the Explore Data window. 

Next 

This is another menu item that appears in a number of MultiNet modules. In the Variables 

module it is enabled once a variable is selected. Clicking on Next replaces the current variable with 

the next one in the list of variables. This is useful for stepping through the a set of variables to look 

for interesting patterns. 

Last 

This is another menu item that appears in a number of MultiNet modules. In the Variables 

module it is enabled once a variable has been selected. Clicking on Last replaces the current variable 

with the previous one in the list of variables. This is useful for stepping through the variable looking 

for interesting patterns. 



Preferences 

As a convenience, two useful choices fiom the Preferences module are made available fiom the 

main menu of the Variables module. They are: 

Number of Categories (default 12, maximum 20). A variable is considered categorical if the 

number of unique values is no more than this number. Most Recode functions will produce 

automatic value labels for categorical variables. 

Number of Bins (default 30, maximum 100). Histograms and Report distribution tables attempt 

to collect the data into this many bins. This number affects the number of "bars" in the histogram 

display and in the Report. 

These choices behave exactly the same way as in the Preferences module. The action takes affect 

the next time the display changes (by Network, Select, Recode, Next or Last). 

Help 

This is a menu item that appears in all the MultiNet modules. Clicking on Help opens a selection 

window which lists all items on the current menu bar. Selecting any of these opens a view window 

containing details about the menu item. Help is also a common button on many other temporary 

windows, and always provides a context-sensitive description of what the program is doing and what 

kinds of inputs it expects at the point the Help button is pressed. 
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3.5 Technical appendix 

3.5.1 List of errors anticipated by Variables module. 

Generic values for Any variable, or for Node, Link and Groupings variable names represented by 

<Amme>, <Nname>, <Lname> and <Gname>, respectively. 

E r r o r  T e x t  is followed by 

Explanation 

Solution 

<Lname> I S  I N  GROUPING <Gname> 

Attempt to Manage+Delete link variable <Lname>, which has been defrned as part of Grouping 

<hame>  in the Groupings module. 

Solution: Use Groupings+Disband to delete <hame>.  

Attempt to Manage+Replace link variable <Namel>, which has been defined as part of 

Grouping <Name2> in the Groupings module. 

Solution: Use Groupings+Disband to delete <Name2> or replace a different variable. 

BLANK NAME 

Attempt to Manage+Create or Manage+Replace variable using a name consisting of all 

blanks. 

Solution: Use helphl, descriptive names for variables (and comments!) 

CANNOT DELETE ALL NODES! (or LINKS) 

Sensible precaution to prevent mistakes in Manage+Delete, which starts with a multiple 

selection window that includes all variables. 

Solution: don't attempt to delete all variables. 

<Name>: NAME I N  USE 

Attempt to Manage+Create or Manage+Replace with a name already in use. Node variable 

names must all be distinct, as must Link and Grouping names. However, the same name can be 

used for a Node, Link and Grouping variable. 



Solution: Choose a different name. 

Recode is attempting to automatically create a name which is in use. 

Solution: Choose a different name. 

DO NOT ADD OR DELETE ROWS 

In Manage-rLabels editor, the number of categories changed by deleting a row. 

Solution: Do not change number of rows. 

DO NOT CHANGE VALUES, ONLY LABELS 

In Manage+Labels editor, attempt to change items in the values columns. 

Solution: Change only items in the labels columns. 

NO <Lname> LINKS FROM ( o r  TO) <Nname> 

Select Node <Nname> followed by Network-rFrom, and link variable <Lname> chosen. In the 

<Lname> network, there are no links From node variable <Nname>. This may occur in a 

directed (e.g.,ego-centric) network where <Nname> describes an attribute only of the nominees. 

Similarly, selecting Network+To causes this error when the node variable describes attributes 

only of the nominators. 

Solution: Check the node variables and Link variables for implied direction. 

This error may also occur when a symmetric link variable is defined only for the forward half 

of the ID pairs for convenience. 

Solution: Use Symmetrize to generate the missing half of the symmetric network. 

<Number> I S  NOT A POSITIVE INTEGER 

In Recode+Discrete+Quantiles or Bins, the number entered into edit window asking for 

number of Quantiles or bins is not an integer. 

Solution: Only integer values allowed. 

<Number> I S  TOO MANY! 

MAXIMUM I S  <Max> 

In Recode-rDiscrete-rQuantiles or Bins, the number entered into edit window asking for 

number of Quantiles or bins is larger than the number specified in Preferences+Ranges + 

Number of Categories 



In Recode+Discrete+User, the number of categories created is larger than the number 

specified in .Preferences+Ranges + Number of Categories. 

Solution: Reset maximum in Preferences+Ranges + Number of Categories 

or choose number of categories no larger than the current maximum. 

WARNING: LESS THAN 5% RECIPROCATION! 

< h a m e >  MAY BE EGO-CENTRIC OR 2-MODE 

Warning before applying Recode+Transpose or Recode+Symmetrize to a link variable with 

very few reciprocated links. 

Solution: Ensure link data should be considered as symmetric before proceeding. 

<Lname> ALREADY SYMMETRIC 

Attempt to apply Recode+Symmetrize to a link variable which already has all links 

reciprocated. 

Solution: No need to apply Recode+Symmetrize to this link variable. 

<Lname>: ALL LINKS ZERO 

Attempt to apply Recode+Symmetrize +Absolute Difference to a link variable removes all 

links. 

Solution: Do not use Absolute difference with this link variable. 

FIRST variable MUST be different from SECOND variable 

Attempt to apply Recode+Make Hypergraph to a pair of identical node variables 

Solution: Choose two different node variables. 

<Nnamel>;RJna1ne2>: NO NODES IN COMMON 

Attempt to apply Recode+Make Hypergraph to a pair of node variables that have no nodes in 

common: none of the nodes with attribute <Nnamel> also have attribute <Nname2>, so the 

matrix of co-occurrences is empty. 

Solution: Recode+Make Hypergraph cannot be used with this pair of node variables. 

<Elname> IS NOT POSITIVE INTEGERS 

Attempt to apply Recode+ldentify, Recode+Count or Recode+Make Hypergraph to a node 



variable which has values that are not positive integers. 

Solution: Use only node variables with positive integer values with these functions. 

3.5.2 Time and space efficiency of Recode functions 

Because of the size of network data, two restrictions determine the functions available under 

Recode : 

The space required must satisfy the rules of sparse methods. That is, the size of the data must 

remain as a small fraction of N2, where N is the number of nodes in the network 

The time required must be at most N(1ogN). 

a) Space 

There are no Recode . functions that violate sparsity restrictions. Some functions can produce 

results that require much larger amounts of storage. For example, any function that replaces binary 

data with floating point data would require 64 times as much memory to hold the result, but this is 

still only a constant multiplier. If this is part of a larger calculation that evaluates to a more compact 

(e.g, .binary) result, the final data would be stored in the more compact form. In general, 

intermediate results may take larger amounts of memory but the memory will eventually be released, 

and the final results stored in the most efficient form. For example, the following equation combines 

two binary link variables with a logical expression to select only those sums above a certain 

threshold: 

(a+b)>2 

The (a+b) expression produces an intermediate result which must be stored as 4-byte integer, but the 

logical >2 expression results in data that can be stored as bits. Note that this expression is equivalent 

to a*b, which does not require 4-byte intermediate storage. Thinking in terms of logical equations 

can often simplify such equations as well as avoiding large intermediate results. 

For link variables Symmetrize, Reduce MultiLinks and Components can produce results that 

require more storage than the original link variable. Components replaces binary links with integer 

values, one for each non-trivial component Reduce MultiLinks summarizes all links between the 

same ID pairs into a link value for one pair and sets the others to 0. Some space can be saved for this 

result by using Zero-Missing, since 0 link values are essentially "missing" links., and these are 

stored as bit values of 0. This method can also be used with Node Constraints, Prune and No Diag, 

which set selected link values to 0, but this is only worthwhile if the original link was non-binary. 

The Transpose and Symmetrize functions can double the number of node ID pairs, but this does 



not violate the sparsity restriction. Since the functions Transpose, Symmetrize and Make 

Hypergraph add new ID pairs, all link variables must have missing data added for the new pairs. 

This can mean that Missing->Zero can add many non-zero links to non-binary data, increasing the 

storage requirements. 

b) Time 

Many of the Recode functions are dominated by sort procedures, which are N(1ogN) in time, 

but no functions require more time than this. For example, Out-Degree uses a sort to put From IDS 

in increasing order, then counts the numbers (or weights) for each ID. In-Degree does the same for 

To ID. Betweenness, Radiality and Integration Centrality use the Brandes algorithm, which is 

N(1ogN). Influence uses the iterative algohthm described in Foster, et a1 (2002) which has an upper 

bound on number of iterations based on network diameter; in practice convergence is much faster 

than this and appears to be nearly linear in network size. 



The Groupings Module 
Introduction 

The Analyse module described network crosstabs and ANOVA, where one or more of the 

discrete/categorical variables could be FROM Node, TO Node or Link. This section describes another 

type of network analysis where one categorical variable is a set ofproportional link variables (called 

a grouping). The link variables must have discrete/categorical values, and in a grouping each link 

variable becomes a category. This section will demonstrate the usefulness of this type of network 

analysis, as well as how to manage (create, delete, invert and recode) the groupings Examples of 

crosstabs and ANOVA analysis using groupings will be presented using the 301 dataset. 

Groupings are used & with network analysis. Although the interpretations are different, the 

displays and reports are very similar to those described in the Analyse section, which should be 

referred to for descriptions of these. 

4.2. Purpose, content and proportional Link variables 

When people interact, they generally do so in a varietv of ways. They may use a variety of 

channels of communication: telephone, email, fax, or face-to-face. Alternatively, people may have 

different reasons for the interaction which are generally directional since the people involved may 

each have their own understanding of the purpose of interaction. Examples include: 

to get information 

to get advice 

to get something done 

to give information 

to give emotional support 

In addition to purpose of interaction, each contact may include discussion of a variety of subject 

areas which constitute the content of the communication. Examples are: 

school 

sports 

family 

business/work 

Purpose and content have no obvious implied direction since the content may be mutually agreed 

upon, but it's likely that different people will have different perceptions of the purpose and content 

of the interaction, so it makes sense to say that links come FROM the person who describes them to 



the researcher. Except in very formal situations, the purpose and content of contacts between people 

are generally multiplex: there are a number of purposes and a number of content areas. If we wish 

to study relationships between what people talk about and & they talk, we need to collect this 

information from the people involved. Ideally, we could ask each person to produce a list of 

percentages describing the proportion of each of a set of purposes (or contents) in a contact; e.g., 

47% to get something done, 22% to get advice and 31% to get information. A glance at these 

numbers shows that it is unlikely that they could be collected with such precision. This is not just 

because the contact was described through later recollection rather than while it was happening but 

also since it is unlikely that people will try to make sure everything adds up to 100%. Also people 

tend to "round" any estimates (to 25%, 50%, etc.). This suggests that such data could be collected 

in a more approximate way, less likely to produce false precision. 

The Likert scale is a standard method that is often used to collect subjective information. It is 

categorical, and generally runs from 1 =strongly disagree through 3=neutral to 5=strongly agree. 

Much social data has been collected in a similar way, with people describing in a rough, subjective 

way the proportions of each of a set of purposes or contents involved in a contact. A typical scale 

for such a description (with approximate percentages) is: 

0 None (0%) 

1 Little (1-20%) 

2 Some (21-40%) 

3 Half (4 1 -60%) 

4 Most (6 1-80%) 

5 All (81-100%) 

Obviously, "None" is a special case: for the sparse networks associated with social contacts the most 

common "interaction" is no contact at all. These categorical "proportions" may be assigned to a set 

of Link variables which describe different purposes such as "Get information", "Get Advice" and 

"Get Something Done" or to a set ofLink variables which describe content such as "School", "Work" 

and "Family" or a set of Link variables describing the communication channel as "face-to-face", 

"phone", "email", etc. In collecting such descriptions, we accept that the categories are subjective 

and approximate and we do not insist that the numbers "add up" (e.g., all three content areas above 

could receive 3="Half' or even O="None"). Such data can be used to describe each of many contacts 

between the same pair of people as well as multiple contacts between many other pairs of people. 

Once such data has been collected, it is natural to look for relationships between purpose and content 

over the node pairs. We may also be interested in relations between these proportional variables 





















Table 4.4. Amount of Interaction with multiplier Duration TO Occupation for purposes GET. 
MULTIPLIER=Duration 
ROW % ROWS = GET 
COL % COLS = TO Occupation 

professi manageri other 
trade service student TOTAL ........................................................... 

I 
Get Advi 1 

I 
I 
I 

Get Info1 
I 
I 
I 

Get Some1 
I 
I 
I 

Get Eumt 1 
I 
I 
I 

TOTAL I 

CHI-SQUARE = 2580.471 DF = 15 P < 0.01 Cramer's Phi= 0.17 

corresponding Table 4.2 is fiuther down in the report. This time the results are different: there is a 

simificant relationship between amount of contact for various purposes and the occupation of the 

receiver. The mean and standard deviation of the proportions for each link variable in the grouping 

TO each occupation is also part of the report and is shown in Table 4.3. Notice that the helpful 

description (below the line) in Figure 4.8 refers to "number of links", while that in Figure 4.9 refers 

to "amount of interaction". 

There is yet one more aspect of each interaction that can be taken into account: the total amount 

of time of each contact, which is measured by the Link variable Duration. Using Duration as a 

multiplier (Figure 4.7) will not change the display shown in Figure 4.8 or the counts in Table 4.1, but 

it will affect the display, crosstab table and strength table when Amount is clicked. The first two are 

shown in Figure 4.10 and Table 4.4. The relationship between purpose and Occupation is stronger 

when Duration is used as a multiplier, as measured by both Chi-squared and Cramer's phi. 

The effect of Duration raises the question: are different amounts of time taken for the different 

purposes? This type of question can be answered by network ANOVA, and to make sure we count 

exactly the same links (since there may be zero Durations and missing data), we perform a 3 variable 

ANOVA, with dependent (Link) variable: Duration, and Independent variable GET, stacked on TO 

Occupation. Network ANOVA with groupings is currently somewhat limited, since a grouping cannot 

be the third variable (so there is no CORREL with groupings), and only the number of links, not the 

amount of interaction, is calculated and displayed. This is enough to answer the question, since we 







Very similar results are obtained when the "purpose" grouping variable is GIVE, which consists 

of the Link variables "Give Advice", "Give Information" and "Give Emotional support" as shown 

in Table 4.7. TO female is significantly higher and TO male is lower for both "Give Advice" and 

"Give Emotional support", and the opposite for "Give Information". This relation holds as well when 

the interactions come FROM females, but disappears (no significance) for interactions FROM males. 

Table 4.7. Differences from expected for Amount of interaction TO Gender for purposes GIVE over both 
FROM Gender values. Results are also significant FROM female but not FROM male. 

% Difference from Expected Values 
100.00% of PLANES: FROM Gender ( # 1-2) 

MULTIPLIER=NONE 
% Diff ROWS = TO Gender 

COLS = GIVE 
Give Inf 

Give Adv Give Emo ...................... 
female I 7.% -9 .% 18.% 

I 
male 1 -13.% 16.% -32.% 

CHI-SQUARE = 25.715 DF = 2 
P < 0.01 Cramer's Phi= 0.15 

4.4.3 Inverted groupings 

The results of the previous example suggest a different type of question: do the responses of men 

differ from women for the purposes collected in the grouping GET? That is, for the four different 

purposes, does one sex answer "None", "Some" or "All" more often than the other? To answer this 

question, we first use Groupings+lnvert to invert the grouping GET to produce a set of categories 

"None", "Little","Some", Half ', "Most" and "All". This inverted grouping is given the name "Inv 

GET". Each category can take on the values 1= "Get Advice" to 4= "Get Emotional Support" but 

these values will not be used in the analysis. We will use Network XTABS to count the number of 

"None" responses over all four types of "GET" purposes, the number of "Little" responses, and so 

on. Since we are only interested in number, the multiplier "NONE" is used. We are mainly interested 

in the counts FROM Gender, since these people are the ones who chose the values assigned to each 

of the contacts. 

To create convenient tables, we select the three variables in the order: "FROM Gender", "Lnv 

GET" and "TO Gender". The results for all values of "TO Gender7' are shown in Figure 4.14 and 

Table 4.8. The figure shows that the responses FROM men are higher than expected for the two 

categories "Some" and "Most", and that this deviation from expected is significant. The same 

significant pattern is also seen for responses TO females and TO males. It appears that the men tend 







4.5 Technical Appendix 

4.5.1 List of errors anticipated by Groupings module. 

Generic values for Grouping names represented by <Gname> Numbers are represented by <nl>. 

E r ro r  T e x t  is followed by an Explanation and suggested Solution. 

"<Gname>": SAME VARIABLES 

Define has just been used to create a grouping. The link variables in this grouping are exactly 

the same as those in <Gname>. 

Solution: Cancel definition to avoid duplication. Define grouping with different variables. 

"<Gname>" : NAME IN USE 

Attempt to give a duplicate name to grouping during Define. 

Solution: Choose a different name for the grouping. 

NO LABEL 

Attempt to give blank name to grouping during Define 

Solution: Blank names are not allowed. 

VALUE LABELS NOT ALL THE SAME! 

Attempt to lnvert a grouping for which Link variables do not all have the same value labels. 

lnvert exchanges Link names and Link value labels which must therefore all be the same. 

Solution: Disband the grouping. Make sure value labels are all the same for all Link variables. 

Re-Define the grouping and lnvert it. 

NO VALUE LABELS! NUMERIC VALUES WILL BE USED 

Warning given when lnvert is used on a grouping for which no Link variable has value labels. 

The actual values are used as labels and exchanged with Link names. 

Solution: Warning only. No action needed. 

<nl> NOT NUMERIC 

Error report from Recode whenever either an additive or multiplicative entry is not numeric. 

Solution: These Edit windows accept numbers only. 



4.5.2 Storing and retrieving groupings 

Groupings are stored and retrieved as part of MultiNet system files. The only way to review the 

contents of a grouping is by using GroupingsdDisplay command. Files+Export does not currently 

allow saving groupings. Files+lmport allows groupings to be defined as part ofthe ASCII .LIN files 

in a rather ad hoc manner. 301 .LIN contains the following lines just before the data begins: 

END (Signals end of header) 

USER GET : 16 17 18 19 ; 0 1 

USER GIVE : 20 21 22 ; 0 1 

These two lines define the groupings GET and GIVE by listing: 

USER GET : (USER signals that the definition of a grouping follows, with name "GET") 

16 17 18 19 (these are the indices of the 16& - 19& Link variables defined in header) 

;O 1 (Additive constant and multiplicative constant) 

Inverted groupings are signalled by having at least one of the Link indices negative. E.g., Inverted 

Get would be coded as: 

USER Inv GET: -16 17 18 19 ; 0 1 

4.5.3 History of analysis with groupings 

Network analysis of groupings of Link variables that describe purpose and importance was 

devised by Dr. William Richards for use with to proportional link analysis in the program FATCAT, 

along with the use of panigrams to visualize the results of this type of analysis. The present author 

extended this type of analysis to 3 dimensions and to the ANOVA analysis in MultiNet (Seary, 1997). 

4.6 References 

Richards, W.D. (1986). FATCAT: a dzflerent kind of network analysisprogram, 

http:llwww.sfu.cal-richardslPdf-ZipFileslfatman2.pdf 

Seary, A.J. (1995) MultiNet for DOS, Presented at International Conference on Social Networks 

(Sunbelt XV), London, UK 







5.2.1 The default display 

The result of an eigendecomposition is an eigenspace: a set of eigenpairs of eigenvalues and 

corresponding eigenvectors. For all 4 graph spectra the eigenvectors are immediately useful for 

visualization purposes. The Normal and closely-related CorrAnal eigenvalues are also immediately 

useful. For the Standard spectrum the eigenvalues are generally less easy to interpret except in special 

cases. For the Laplacian, the eigenvalues have some useful interpretations since this eigenspace 

shares many properties with the continuous Laplacian operator of mathematical physics. Of the four, 

the Normal is most generally useful, and has been the main subject of the author's Ph.D. research 

program. 

Once the eigendecomposition is completed the network can be displayed by using the 

coordinates of selected eigenvectors to place the nodes in a 3-, 2-, or 1-dimensional display. The 

default is 3-dimensions. The default eigenvectors depend on the eigenspace chosen. For the Normal 

and CorrAnal eigenspaces, there is always a largest eigenvalue of 1 with corresponding constant 

("trivial") eigenvector, so the eigenpairs are first ordered by descending, absolute values of 

eigenvalues, then rotated so that the trivial constant eigenpair is placed last (and the second largest 

becomes first and so on). Then the first three are chosen for the default initial display. For the 

Standard, a similar method is used since the largest eigenvalue corresponds to an eigenvector of 

constant a. For the Laplacian, there is always an eigenvalue of 0 with corresponding trivial 

eigenvector, and the (non-negative) eigenvalues are ordered by ascending values, then the trivial 

rotated to the end. Figures 5.4a-d show the results for the KIDS2 variable SAY. Tables 5.2a-d show 

how the eigenvalues are ordered in each case. 

In these displays, each node is given x and y coordinates based on the coordinates of the 1" and 

2nd eigenvectors. Lines are drawn between nodes that are connected as defined by non-negative 

values of the link variable. Since the link variable was binarized and symmetrized for the 

eigendecomposition, this is an accurate representation of the result. The default 3-D display also 

includes a simple "grey-scale" effect that indicates the signs of the 3d eigenvector. There are a 

number of other defaults at work in this display which will be discussed in the section on the 

"Explore" window. 

Notice that for the SAY network, both Normal and Standard spectra have negative 2"* 

eigenvalue, which is associated with oscillations in the 2nd eigenvector (Y-direction). This never 

happens with the Laplacian and CorrAnal, which have only non-negative eigenvalues. Eigenpairs 

with negative eigenvalues can be very useful, which is one of the great strengths of the Normal 

spectrum (Section 9). 
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The Show menu item of the Explore window controls a number of display defaults. In Figure 

5.6a, some of these are "greyed out" and so not accessible. This occurs when a selection is not 

applicable to the network being displayed. These menu items are all "toggles" which turn something 

off or on. If it is already on, the word "No " is prepended to the menu item to show that choosing this 

item will turn something off. In order, these defaults are: 

Show +No Lines turns off the display of lines. This is useful when the network is very large 

or very dense. Only the nodes are shown (as dots unless Labels or Values has been selected). 

This selection is "sticky" and persists over an entire MultiNet session. 

Show +Labels turns on the display of ID numbers for each node. Displaying labels can be 

slow for large networks, so this choice initially defaults to No Labels whenever the network or 

number of dimensions is changed. 

Show+Direction is available (not greyed out) if the network is directed. Solid lines are 

replaced by a combination of lines dashed at the sender end and dotted at the receiver end. 

Reciprocated links remain as solid lines. A description of this convention appears in the upper 

right of the display. Displaying direction can be slow for large or dense networks. An example 

of Show+Direction is seen in Figure 5.20. 

Show +Strength is available (not greyed out) if the link variable has non-binary values (non- 

negative integer or real), gnJ if the number of dimensions being displayed is 1 or 2. In 3-D, this 

selection is not available since a grey scale is used. Displaying strength can be slow for large or 

dense networks. Non-binary link variables usually measure the amount or strength of a 

relationship, hence the name. See Figure 5.18, where "strength" is actually a fit probability. 

Show +Repel is used to displace nodes that have the same coordinates (because they have the 

same connections) around the common coordinate. This affects o& the display, not the 

eigenvectors. This is greyed out if all nodes have unique coordinates. 

Show +No Axes toggles the axis display at the lower left off or on. 

The next 3 Show choices (below the separator) are available only for the 1-D display and will be 

discussed later. 

With a little practice, it becomes simple to move around the display with a combination of right 

and left mouse translations and rotations. Even more control is available by using the Select menu 

item from the Explore window (figure 5.6~).  Clicking on Select produces a drop-down menu 

which allows changing the rotation/zoom origin (Center, Find) or scale (Frame), as well as 

detailed information about a node and its immediate neighbours (Info). 
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Select +Center changes the cursor to a cross-hair. Move the cursor around the display. 

Clicking then selects the node nearest the cross-hair cursor as the new rotation origin for the 

display so that any further rotations (around X, Y, or Z) will not move this node. The center of 

rotation is restored to the eigenspace origin by pressing left-click on Home. 

Select +Frame changes the cursor to a cross-hair. Move the cursor to one comer of a new 

frame, left-click and hold down the button while moving to another corner of the new frame, 

then release the button. This changes the scale so that the part of the network within the fiame 

fills the display screen, and the axes display at the lower left shows the new scale (which will 

not generally be the same for each axis). The default scale and display is restored by pressing 

left-click on Home. 

Select +Find produces a selection window containing the ID numbers of all the nodes in the 

network. Selecting one of these makes this node the new rotation origin. Combining this with 

Zoom makes it simple to find any node (and its neighbourhood). 

Select +Info allows detailed information on any node. Upon left-click the node nearest the 

cross-hair cursor is chosen and a window opens with information about: node ID number and 

node attribute and value (if any chosen); ID numbers that receive links from this node, along 

with their values and link strengths; ID numbers that send links to the chosen node, along with 

their values and link strengths. An example is shown in Figure 5.9. 

The Dots menu item ofthe Explore window is used to over-ride the automatic selection of dot size 

(for No Lines or the I -D display) or to show node attribute values if a node variable has been selected. 

The program always attempts to select an appropriate dot size (smaller dots for larger number of nodes). 

The current setting is marked with '*' and can be changed by selecting one of. 

Sizes I to 3 are drawn as pixels, and are most useful for large networks and with NO Lines. 

Sizes 4 to 7 are drawn as circles, and are most useful with smaller networks or with Lines. 

Dot size is always recalculated with any change of link or dimension. For either style of Dot size, 

colour is used to represent values if aNode variable has been chosen. Dots +Values replaces dots 

with node value labels (eg. Node below). Examples are shown in Figures 5.7,5.11 and 5.1 8. 

Finally, the 3-D checkbox is enabled for the 3-D display. Checking this switches the display to 

anaglyphic redlcyan 3-D, which gives the illusion of depth when used with red-green 3-D glasses 

(which works best with the red lens on the left eye). Figure 5.8 shows a rotated anaglyphic 3-D 

display of SAY CorrAnal eigenvectors, with Direction and Labels Selected. 







is selected, a list of values and value labels appears to the left using the available colours, and the 

nodes show as dots which are coloured accordingly. When Show-Labels or Dots +Values are 

selected fiom the Explore window, node positions are labelled with ID numbers or value labels 

which are coloured according to node values. If both are chosen, only ID numbers are shown. If the 

node variable has too many values (more than the default 12 or a user-selected number in Module 

Preferences, maximum 20), the list tells you how many, and each value gets one of the available 

colours. Figure 5.9 shows CorrAnal SAY with node variable SEX, the Select +Info display and 

ShowLabels. The relationship between SEX and the clusters at each end of the X-axis are 

immediately obvious: boys say they play with boys, and girls say they play with girls. 

5.4.3 Link 

As described above, Link is used to select a link variable (which defines a network). One of four 

types ofeigendecomposition is then calculated and displayed. Once this is done, the other menu items 

and the Explore window become available for manipulating the network display. 

5.4.4 Dimensions 

Dimensions is used to select the number of active eigenvectors in the display. 3- and 2-D 

displays are superficially very similar (1 -D is described in a separate section below), and both allow 

for full 3-D rotations and translations. The main differences are the number of eigenvectors involved 

in any partition and the lack of grey scale (and anaglyphic 3-D) for the 2-D display. Lack of grey 

scale means the 2-D display can be used to visualize link values (weights or strengths) for non-binary 

link variables. The number of active dimensions is indicated by the informative display in the upper 

left. The eigenvectors that do not contribute to any partition are greyed out. For Normal and 

CorrAnal, and if the network is at least weakly connected, a further choice is available: 

Dimensions+Subsets will show a display of number of subsets (abscissa) vs upper bound on 

distance between subsets (ordinate). This may be used as a guide to the number of "clusters7' or 

"groups" present in the network. Also, an estimated upper bound on the diameter of the network is 

displayed as a grey horizontal line. These estimates are based on Normal eigenvalues (Chung, 1995) 

and also appear in the Report. 

5.4.5 Z-axis 

Z-axis allows mixing eigenvector coordinates with node variables in the display. 

Z-axis+Node produces a selection window containing names ofnode variables. Selecting one 

of these causes the third eigenvector to be replaced by this node attribute, suitably scaled to fit 
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Any number of these may be selected by standard Windows methods (e.g., using Shift-click 

andlor Ctrl-click). Once this has been done the program presents an edit window containing a 

default name consisting of t h e m  selection, a "-" character, and the name of the link variable. 

E.g., the 1" eigenvector of Normal spectrum of link variable SAY is called 1NSAY. The user 

may accept the default name, rename the variable or cancel the definition (which cancels all 

subsequent definitions as well). Once the name has been accepted, another Edit window appears 

with a default descriptive comment describing the variable. The default comment consists of the 

selection name for the eigenvector and the corresponding eigenvalue. Again, this may be 

accepted, replaced, or the definition (and all subsequent definitions) cancelled. The process is 

repeated for next-to-last until all choices have been dealt with (or cancelled). 

Define+Partition calculates a discrete-valued polynomial based on the signs of the 

coordinates using the current active dimensions (Seary & Richards, 1995). For 3-D this will be 

all 3 current eigenvectors being displayed, for 2-D the first 2, for 1-D only the first. The 

maximum number of distinct values in d dimensions is 3d rather than 2d since some coordinates 

may be exactly 0. This happens when there are more than one weak component (i.e., the network 

is not weakly connected). The value labels are derived from the actual sign patterns - using 'n' 

for negative coordinate, '0' for 0 coordinate, 'p' for positive coordinate - and are usehl for 

interpretation and are used in displays and reports. For example, Table 5.3 (taken fiom the 

Report) shows the Normal SAY coordinates of nodes 1 to 5 from eigenvectors 1 , 2  and 3 and 

the value label fiom the sign pattern. Figure 5.11 shows the corresponding display. Values are 

stored internally as indices into the value labels ordered by 'n', 'O', 'p', which produces 

contiguous small integers. These values are not otherwise useful. Once the partition has been 

calculated, an Edit selection window appears with a default variable name for the partition. This 

name is derived from d, the number of dimensions, the type of spectrum and the link variable 

name as follows: 

Start with 2*, followed by 'P', 

followed by the first letter of spectrum type 

(Normal, Standard, Laplacian, SorrAnal), 

followed by '.' and the link variable name. 

Example: 3-D partition fiom CorrAnal of SAY produces 8PC.SAY 

The user may accept the default name, rename the variable or cancel the definition. Once the 

name has been accepted, another Edit window appears with a default descriptive comment 

describing the variable. The default comment consists of the equation used to calculate the 





5.4.7 Report 

A textual report is generated whenever there is any major change in the display such as: 

Change in link variable and eigendecomposition 

Change in number of dimensions 

Change in node variable 

The Report includes a large amount of detail about the current eigenspace, and includes 

information about the node variable if one has been chosen. Table 5.4 shows the complete report for 

the Normal eigendecomposition of SAY. Normal and CorrAnal allow extra information to be 

calculated, and these are shown in Courier Italic. (The bold numbers on the right are not part 

of the report; they are there to help with the description.) 

Table 5.3. Complete report for CorrAnal eigendecomposition of link variable SAY 

MultiNet CorrAnal GRAPH SPECTRUM REPORT ON "KIDS2 .NOD1' 12/04/2003 15 : 14 : 25 1 
LINK: "SAY" LINKS = 142 NODES = 32 DENSITY = 0.1387 2 
CorrAnal EIGENVALUES OF "SAY" 3 

1 2 
0.91174 0.79943 4 

PERCENT OF CHI-SQUARED = 806.16 
11 .945% 6.317% 

NUMBER OF NON-ZERO COORDINATES 
32 32 

CorrAnal EIGENVECTORS OF 
1.15232 -0.6225 
1.46749 -0.29169 
1.07366 0.19494 

-0.89289 0.20114 
-0.83521 1.14788 

1.14428 -0.7595 
-0.75637 0.5248 
-0.5114 0.54558 

0.07922 0.27134 
0.4659 1.03829 
1.20403 -0.27651 

-0.82341 -0.43877 
1.34767 -0.44246 
1.3576 -0.26163 

-0.73431 0.08297 
-0.8836 -0.47064 

1.51795 -0.88917 
-0.86171 -1.0359 
-0.7251 1.57134 
-0.45139 -0.57595 
-0.82721 -0.00731 

0.80622 0.13916 
-0.90003 -0.47095 
-0.96759 0.22055 

SEX 
female 
female 
female 
male 
male 
female 
male 
male 
male 
female 
female 
male 
female 
female 
male 
male 
female 
male 
male 
male 
male 
female 
male 
male 



female 
female 
female 
male 
female 
female 
male 
female 

PARTITION OF "SAY" BY SIGNS OF CorrAnal EIGENVECTORS 1 2 

ID# SIGNS PERMUTED ADJACENCY MATRIX 
111222233 1122 11112 12223 
26801381245785947126134793902560 
..*..*.*....................... 

. * ...**.*...................... 

.* ..*.*........................ 
*.* ..*..*.......*...*.......... 
**.* ***.... .................... 
*.*** ..*.....*................ 
*..*** ......................... 
****..* .* ...................... 
****.*.* ..........**........... 
.*....**. ....*................. 
......*.. ..*.**............... 

ALL EIGENVECTORS HAVE 32 NON-ZERO COORDINATES 
LIST OF ACCEPTED CorrAnal EIGENVALUES M R  "SAY" 
1 = 0.91174 9 = 0.60125 17 = 
2 = 0.79943 10 = 0.56886 18 = 
3 = 0.71044 1 = 0.53721 19 = 
4 = 0.70473 1 2 =  0.52197 20 = 
5 = 0.69353 13 = 0.51669 21 = 
6 =  0.67049 14 = 0.50651 22 = 
7 = 0.64088 15 = 0.49398 23 = 
8 = 0.61331 16 = 0.45891 24 = 

SEX 
male 
male 
male 
male 
male 
male 
male 
male 
female 
male 
male 
male 
male 
male 
male 
male 
female 
female 
female 
female 
female 
female 
female 
female 
female 
female 
male 
female 
female 
female 
female 
female 



EIGENVALVE BOLWDS ON DISTANCE BETWEEN SUBSETS 
BOUND ON DIAMETER = 7 

# SUBSETS 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 
1 2  
1 3  
14  
15  

BOUND 
1 9  

9 
6 
6 
6 
5 
5 
4 
4 
4 
4 
4 
3 
3 

Comments 

1. Describes the type of analysis, the name of the dataset, and gives a time stamp. This header 

is common to all MultiNet reports. 

2. Describes the link variable. Number of links and density do not include any symmetrization 

(required for the eigendecomposition). 

3. Describes the active eigenvectors being displayed and shows the corresponding eigenvalues. 

4. For Normal and CorrAnal only, uses the close relationship between these spectra and 

Correspondence Analysis to calculate the percent of total chi-squared accounted for by each of the 

active eigenvectors. 

5. This information is useful when the network is not weakly connected, since it shows whether 

the chosen eigenvectors are describing the same component. If the number of non-zero coordinates 

in the eigenvectors are not equal, then they contain information on different components. See Table 

5.5 for a sample report on a disconnected network (one with more than one component). 

6. This is a detailed list showing the eigenvector coordinates for each node (in order of ID 

number) and for each active eigenvector being displayed. If a node variable has been selected, the 

report appends the value and value label of this attribute for each node. 

7. Any network may be represented by an adjacency matrix, where the value v in row I, column 

j shows there is a link from node I to node j of strength v. The eigendecomposition algorithm 

currently ignores strength, and dichotomizes the network into binary form. The resulting binary 

adjacency matrix representing the network is permuted on both rows and columns according to the 

sign patterns of the active eigenvectors. The permuted matrix shows clusters of nodes with similar 

patterns of connections, with non-zero links represented by '*', and 0 represented by '.'. The clusters 



are either on (positive eigenvalue) or off (negative eigenvalue) the diagonal, which is left blank since 

self-loops are ignored. If a node variable has been selected, it is permuted as well, and the result is 

appended to the right of the matrix. In Table 5.4, it is clear that there are on-diagonal clusters along 

the diagonal, and that they are related to the node variable SEX. This matrix is omitted (with a brief 

explanation) if the number of nodes exceeds 500. 

8. This line indicates that the network is weakly connected, since glJ eigenvectors have the same 

number of non-zero coordinates. If this were not the case, the message would describe the number 

of weak components, and the size of the 20 largest. See Table 5.5 for an example. The next table 

following contains additional information about the number of non-zero coordinates in each 

eigenvector. This information may be used to determine which eigenvectors contain information on 

the same components. 

9. This table lists all accepted eigenvalues in the order defined for each type of spectrum: 

Normal, Standard and CorrAnal in descending order of absolute values, with largest (always 

trivial 1 for Normal and CorrAnal) rotated to end 

Laplacian in ascending order with trivial 0 rotated to end. 

If the network is not weakly connected, the number of non-zero components for the associated 

eigenvector is also listed. This helps identify which eigenvectors correspond to the same components. 

E.g., Table 5.5 (8) shows that there are components of size 26, 5,4,4, 3 and 2. 

Eigenvectors 2 to 15 and 21 to 29 contain information about the largest component with 26 nodes. 

Not all eigenpairs are calculated, unless there are 500 or less nodes. Rather, a number of 

eigenpairs is requested from the eigendecomposition algorithm, which returns information about how 

many were successfully found. For example, for more than 1000 nodes, only 200 eigenpairs are 

requested, and of these it may happen that only 100 are accepted. The remainder have not converged. 

This behaviour is very dependent on the network, and in general more than enough eigenpairs are 

requested and returned. 

10. The theory of the Normal and CorrAnal spectra allows calculation of upper bounds on 

distances between subsets. That is, if we select N subsets of nodes= from the network, what is the 

minimum geodesic distance among all pairs? For N=2, this amounts to an upper bound on the 

diameter. This appears only for Normal and CorrAnal and only for weakly connected networks. 

11. For N>2 a large upper bound implies there may be as many as N clusters, while a small upper 

bound implies that N is too many subsets since it forces short distances. Thus we can use the 

eigenvalues to estimate how many subsets we should look for in a network without forcing distances 

that are too short (and hence too many subsets). As a rule of thumb, when the bound for N+l is more 



than half the bound for N, we should look for at most N subsets. In Table 5.4, this suggests that we 

should look for at most 3 clusters. This appears only for Normal and CorrAnal and only for weakly 

connected networks. 

Table 5.4. Partial report for a network which is not weakly connected. 

MultiNet Normal GRAPH SPECTRUM REPORT ON "Stork2.mnw" 12/04/2003 20:41:11 
LINK: "goodfriend" LINKS = 52 NODES = 44 DENSITY = 0 .0269 

Normal EIGENVALUES OF "goodfriend" 
1 2 3 

-1.0 -0.97105 0.95063 

PERCENT OF CHI-SQUARED = 1845.25 
2.818% 2.657% 2.547% 

NUMBER OF NON-ZERO COORDINATES 
18 26 2 6 

... (Omitting list of coordinates and permuted adjacency matrix) 

NETWORK HX3 6 WEAK COMPONENTS. 
THE 6 LARGEST HAVE # NODES: 26 5 4 4 3 2 

LIST OF ACCEPTED Normal EIGENVALUES FOR "goodfriend" AND NUMBER OF NON-ZERO 
COORDINATES 9 

1 = -1.0 18 16 = -0.5 19 3 1 =  0.0 8 
2 =  -0.97105 26 1 7 =  -0.5 19 32 = 0.0 8 
3 = 0.95063 26 18 = 0.5 8 33 = 0.0 8 
4 = 0.92717 26 19 = 0.5 8 34 = 0.0 8 

1 

NETWORK IS NOT WEAKLY CONNECTED. NO EIGENVALUE BOUNDS AVAILABLE. 

Report comments if not weakly connected 

If the network is not weakly connected, the report is different for section 8 and 9 and section 

10 and 11 are missing, since distance is not defined with more than one component. Table 5.5 show 

parts 1-5 and 8-9 for a network which is not weakly connected. 

5. Reports that eigenvector 1 and eigenvectors 2-3 contain information on different components 

8. Reports the size of up to 20 weak components, in descending order of size. 





Graphics-Bitmap captures the screen display as a 256-colour bitmap, which is then run- 

length encoded. The result is a compressed Windows .BMP file. 

For more details, see Section 0: Overview and 0.9 Technical appendix. 

5.4.9 Explore 

This menu item is included as a convenience, and is initially disabled (greyed-out). The Explore 

window may be closed by clicking on the 'X' in the upper right on this item. This may be helpful 

when using other screen-capture software. Closing the Explore window enables this menu item, so 

that clicking on Explore re-opens the Explore window. 

5.4.10 Next 

This is another menu item that appears in a number of MultiNet modules. In the Eigenspaces 

module it is enabled when any node variable is selected. Clicking on Next replaces the current node 

variable with the next one in the list of node variables. This is useful for stepping through the node 

attributes to look for patterns related to network structure, especially with the 1-D display. 

5.4.11 Last 

This is another menu item that appears in a number of MultiNet modules. In the Eigenspaces 

module it is enabled when any node variable is selected. Clicking on Last replaces the current node 

variable with the previous one in the list of node variables. This is useful for stepping through the 

node attributes to look for patterns related to network structure, especially with the 1-D display. 

5.4.12 Help 

This is a menu item that appears in all the MultiNet modules. Clicking on Help opens a selection 

window which lists all items on the current menu bar. Selecting any of these opens a text window 

containing details about the menu item. Help is also a common button on many other temporary 

windows, and always provides a context-sensitive description of what the program is doing and what 

kinds of inputs it expects at the point the Help button is pressed. 









At this point, with Show-No Coords ,  Show+Node Perm, and Show+Grid all selected, 

the Next and Last  items on the Eigenspaces menu bar become particularly useful for exploring 

possible relations between a network link variable and the available node variables. 

a) No permutation. Ordered by ID numbers 

SEX 
1 male 
2 feniale 

b) Permuted by SEX 

d) Permuted by ETHNICITY 

Figure 5.17. Four permutations of link variable INJW, showing that this link variable is strongly associated 

with the node variable ETHNICITY. This network has 1 14 nodes. 



Clicking repeatedly on Next (or Last) allows for a systematic search through all node variables, 

while displaying possible relations to the current link variable. Figure 5.17a-d shows the results of 

such a search for a large network with the link variable INJW. It is clear that there is a strong 

relationship between MJW and node variable ETHNICITY, but not for the others shown. 

5.5.1 Restrictions in 1-D 

With the 1-D display some new capabilities are available to the Show menu item of the 

Explore window, but some other actions are not available or have no affect on the display. Rotation 

around X, Y, or Z is allowed (although rotation around X only affects the 2nd and 31d eigenvectors, 

so does not change the display which only shows the 1"). These rotations produce a display which 

uses the projection on the X-axis instead of the pure first eigenvector for node placement or 

permutations. Rotations with Show+Coords around Y and Z involves continuous re-calculation 

of the display scale. With Show+Node Perm rotation will not change the display (although it is 

carried out, and shown in the axis display). All of the Show and Dots selections are available and 

meaningful, but the Select menu item is (currently) greyed out. The right-click zoom and pan buttons 

(currently) produce no effects. With Axes checked, only +X , -X , +3 and -3 have a visible affect 

(although the selected eigenvectors do change). 

5.6 Data manipulation I1 

MultiNet is designed for exploratory data analysis of networks, and the Eigenspaces module 

produces analytical results in the form of eigenpairs for various spectral methods and also provides 

tools that allow for a certain amount of exploratory visualizations. The data analysis is done by the 

other modules of MultiNet and Eigenspaces communicates its results to these other modules by the 

creation of variables. These may be real-valued eigenvectors created by Define+Variable which 

may be used in the Analyse module for either ANOVA or Correlation analysis. Define+Partition 

produces integer-valued discrete (categorical) variables which are more suitable for the cross-tab 

analyses available in the Analysis module. Either type of variable may also be recoded 

(transformed) in a number of ways in the Variables module. 

5.6.1 Missing data 

MultiNet allows for missing data. For example, Importing data allows for a missing data 

character. The Variables module can actually mark parts of a variable (node or link) as "missing". 





The Analysis module (which can work with up to four variables simultaneously) finds the 

intersection of all data for which variables are not missing before performing further analysis 

(sometimes there is no data in the intersection and a warning is given). 

When the Eigenspaces Define menu item is used to create a new variable, the result has a 

value for every node which is in the current network (link variable). Since this may not include all 

the known nodes, the variable is given "missing" values for those nodes which are part ofthe dataset, 

but not in the network for which the variable is being defined. The Variables module allows missing 

values to be replaced by 0 so that every node has a value. Note that there may be a number of link 

variables which together include all nodes, while separately including only subsets of the nodes. 

Since it is quite possible for a node variable to have missing values, the Eigenspaces module 

uses a simple method for representing them in any display: 

Nodes which have missing values for the current node variable are coloured black. This applies 

to both the dot and ID number representation. 

For the case Dots+Values which displays value labels, the text is left blank. 

Missing data is treated as 0 in Show+Node Perm. Partitions derived from eigenspaces are 

positive integers, so the missing values are collected in the upper right of the 1 -D display. 

Examples of these rules is shown in figures 18. Link variable PLAY describes which pairs of children 

were actually observed to play together (and is substantially different from SAY). PLAY does not 

include all the children in link variable SAY, so the derived variable 2PC.PLAY has missing data for 

nodes 6,25 and 30. 

5.6.2 Link values 

The eigendecomposition algorithm currently ignores any non-zero values of the link variable by 

dichotomizing the network into binary form. However other MultiNet modules do not ignore link 

value, and can create and use real or integer-valued link variables; in fact the dichotomization from 

non-binary to binary values (or to a discrete range) can be performed explicitly in the Variables 

module. The 2-D and I -D displays can display link values using a "rainbow" colour scheme, which 

runs from "cool" to "hot" colours, and uses all available colours (up to 15). 

Figure 5.19 shows 1-D and 2-D displays of the p* fit to SAY (from the Models+Pstar 

module) based on 2PC.SAY, where Link value is related to probability level at which a link is 

predicted. Both Show+Direction and Show+Labels are selected, where IDLABELS holds 



LINK: "SAY p" fit" CorrAnal 
Evec I Eval 0.912 
!(I , " .,,. " ' ~  -' ',,,?t ,.,,. *<, &,<?${ ;?,?,;:z 
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# Nodes = 32 
PERMUTATION: Evec 1 
2PN.SAY 
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5 <0.3125 
6 4.375 
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Figure 5.19. Link values of p* fit to SAY using partition 2PN.SAY 

Values from p* fit represent probability 
&faam - - -  - - -  1 0  

!ma level at which link is predicted, Showing 
LINK: "SAY p* fit" CorrAnal 
Evec 1 Eval 0.912 Direction and Labels with childrens' 

Evec 2 Eval 0.799 Jarlet 
names. 

# Nodes = 32 
Upper: 1-D visualization permuted by 

SAY P" fit 

Fie8 joan n Susan ' 

, ' 
,' j 

2PC.SAY, which was used in the fit. 

Lower: 2-D visualization. 

Long dashes show sender nodes. 

Reciprocated links are solid. The link 

between Janet and Irma (at top) shows 

two colours, since the probability level 

for a link fiom Irma to Janet is different 

fiom the probability level for a link fiom 

Janet to Irma. 



the (fictitious) names of the children. SAY is not symmetric, so link values may be different in each 

direction. In the 2-D display, reciprocated links with different values in each direction change colour 

half-way. The 1-D display also shows the two different link values, but the 2-D display makes the 

unequal reciprocation more clear. For one-way links there can be only one value, and in the 2-D 

display the direction is shown with long dashes at the sender end and short dots at the receiver end. 

This is not a conventional representation of directed links, but avoids the clutter of arrowheads at the 

nodes. Also, it is immediately obvious whether a link in one-way, and which way it goes, without 

looking at the ends. 

In this example, the Link value is categorical: it is descriptive of how well the p* model predicts 

each link, and it would not make sense to perform arithmetic on such values (though it would make 

sense to collect them into fewer or more categories). Another example of a categorical Link variable 

is "When" (from the 301. dataset) where the 24 categories are the times ate which the interaction took 

place. In other cases, the Link values may represent continuous measurements such as "Duration" 

(from the 301 dataset) which measures the length of an interaction. Link values for this type of 

variable are also referred to as "Weights" or "Strengths" (e.g., in the Analyse module, where means 

and variances of "link strengths" are calculated). For link variables with a large number of distinct 

values, it can be useful either to form sub-networks for a number of ranges of link values and 

visualize each separately, or to use Bins or Quantiles in the Variables module to produce a small 

number of categories for network visualization in Eigenspaces. While the Explore window and 

the Analyse module use the term "Strength to refer to Link values, it is up to the user to determine 

whether the link values are to be interpreted as categorical descriptions or numerical strengths. 



5.7 Technical appendix 

5.7.1 Mathematical definitions 

Assume G is an undirected connected loopless graph without multiple edges which is not complete. 

(The definitions below can be extended to weighted graphs, but for simplicity we will not consider 

multigraphs here. Assuming G is connected and not complete avoids certain trivial results). G has 

nodes V and edges E, with ( V I = n. 

The Adjacency (Standard) Matrix A(G) of graph G is a binary matrix with 

A(ij) = 1 if i is connected to j 

= 0 otherwise 

The eigenpairs of A are (ai ,  aJ such that Aa, = aia, 

If G is k-regular, then a, = UJn, with a, = max(ai) = k. 

If G is bipartite, then eigenvalues appear as pairs with opposite signs (Biggs, 1993). 

The Laplacian Matrix L(G) is a matrix with 

L(i j) = -1 if i is connected to j 

L(i,i) = deg(i) where deg(i) is the degree of node i 

L(i j) = 0 otherwise 

The eigenpairs of L are (Ai ,1,) with A, = 0 and 1, = 1/Jn 

The li are mutually orthogonal and O=h,< A,< ,..., < A,-, I n 

The multiplicity of 0 as an eigenvalue is equal to the number of components in G. 

There are a number of other equivalent definitions of L the simplest being: 

L = D - A  

where D is the diagonal matrix of node degrees (Kirchoff, 1847; Grone et. al., 1990). 

The Normal matrix N(G) is DmlA so that 

N(i j )  = l/(deg(i) if i is connected to j 

N(i,j) = 0 otherwise 

N is similar to M = D-'~AD'"~, which is symmetric. 

Let (pi, m,) be the eigenpairs of M. 



Then the eigenpairs N are 

(yi , D%IJ = (vi , ni) 

The orthonormalization condition is: 

n,Dni = 6ij 

That is, the vectors are orthonormal in the D (or x2) metric (Richards & Seary, 1995). 

The Normal spectrum is referred to as the Q-spectrum in (Cvetkovic, et. al., 1995). 

We have l=v, 2v1 2 ,..., 2 vnS1 2 -1 

The multiplicity of 1 as an eigenvalue is equal to the number of components in G. 

If G is bipartite, then eigenvalues appear as pairs with opposite signs. Thus -1 is an eigenvalue if and 

only if G is bipartite. 

Adding a constant c to the diagonal of A, L or N does not change the eigenvectors, but adds c to all 

the eigenvalues. Similarly, multiplying A, L or N by a constant d does not change the eigenvectors, 

but multiplies all eigenvalues by d. 

We may combine these facts to form C = (I + N)/2, which has eigenvalues 

yi =(l+v, ) / 2  

This makes all eigenvalues positive: positive vi become closer to 1, while negative vi become close 

to zero. In particular, any eigenvalues of exactly 1 are unchanged. Any eigenvalues of exactly -1 

become 0 (Richards &Seary, 1997). 

The CorrAnal matrix C(G) is a matrix with 

C = (N + I)/2 

Let (y,, ci) be the eigenpairs of C. 

Wehave l=y,2 y, 2 ,..., 2 y,-, 2 0  

Then CorrAnal calculates the pairs 

(Y i , D-'"Y i ci) 

The multiplicity of 1 as an eigenvalue is equal to the number of components in G. 

Most implementations of Correspondence Analysis (CA) generally remove the (normalized) x2 
expecteds, which removes the eigenpair belonging to eigenvalue 1 and produces a "trivial" vector 

of length 0. Also most implementations of CA assume that G is not symmetric and ignore the signs 

of y, , though these are important. 



MultiNet actually derives the CA results from the Normal eigenspace, by applying the equation 

y, = (l+vi ) / 2 to the Normal eigenvalues, then ordering the Normal eigenvectors according to 

descending yi (with yo = 1 rotated to the end). The eigenvectors are also multiplied by yi rather than 

being normalized, to conform with standard CA procedures (Greenacre, 1984, Benzecri, 1992). 

5.7.2 The eigendecomposition algorithm 

In general, a real symmetric matrix has as many eigenpairs as there are rows (columns). 

Let n = number of rows. There are three major problems when the matrix is large: 

1. Standard eigendecomposition routines (Press, et. al., 1986) produce all eigenpairs which must be 

stored as 8-byte real. This requires 8*n*(n+l) bytes of storage. 

2. Storage as a symmetric matrix requires n*(n-1) memory locations. For A these locations may be 

binary, for L they are at least 2-byte integer, and for N they are 8-byte real. 

3. Standard eigendecomposition routines are n3 in time, meaning that a matrix of size 2n takes 8 

times longer than for size n. 

Thus the standard methods, which work with the entire matrix and produce all eigenpairs, must be 

avoided for large problems. We can avoid problem 2 by using the link list representation of the 

network, storing only the node pairs which are linked (along with the link value, if not binary). We 

can avoid problems 1 and 3 if there is a method for extracting a small number of eigenpairs, 

preferably the most important ones. 

The Power method is such a method (Hotelling, 1933) for finding a small number of eigenpairs. We 

can find the eigenpair with largest eigenvalue by: 

Start with some random vector p normalized to length 1 

Repeat p' - Ap , q - p , p - p' until p is no longer changing in direction. 

Then the largest eigenpair of A is (p/q, p). There are some bookkeeping details: Ap uses the link 

list representation and sparse matrix multiplication, and the entries of p' must be adjusted in size 

afier each multiplication (for details see Richards & Seary, 2000), but the method will always work 

for any matrix without reveated eigenvalues, which is generally the case for social networks. 

If we want more eigenpairs, we can iterate with 

p' - Mp -a, a, a: 



to get the second, and with 

p' - Mp -a, a, a: -a1 a, alT 

to get the third, and so on, without destroying sparsity. However, we must store the (ai, a i) 

eigenpairs somewhere; the procedure is subject to loss ofprecision on a computer; and the iterations 

may converge slowly if ai /a,, is close to 1. There are better methods, such as Lanczos iteration 

(Lanczos, 196 1 ; Parlett et al., 1982) which converge very rapidly and do not have problems with loss 

of precision. 

MultiNet uses Lanczos iteration, a generalization of the Power method which allows calculation of 

a specified number of eigenpairs using sparse methods without loss of precision or orthogonality. 

Essentially Lanczos iteration works with a samvle of the original matrix of size dn which can be 

orders of magnitude smaller (Golub & Van Loan, 1989). This smaller eigenproblem is solved exactly 

using standard methods. The resulting eigenvectors are very good starting values for the Power 

method, so that convergence is rapid for a selected number or range of eigenvalues, with eigenpairs 

generally returned in order of absolute value of eigenvalue (largest first). Lanczos iteration is 

currently one of the best methods for eigendecomposition of large systems and has been extensively 

optimized in various ways. MultiNet uses a variation first developed by Simon (1984) and modified 

by Berry (1992) which has been further modified by the author to handle the data storage 

conventions of MultiNet and to produce all four types of eigendecomposition available in MultiNet. 

With the version of Lanczos iteration used in MultiNet, the number of eigenpairs requested can be 

specified, as well as the range in which to search for eigenvalues. This is ideal if we know in advance 

the range in which important eigenpairs appear, such as for the Normal spectrum, which has 

important eigenvalues that are near 1 in absolute value. The default number of eigenpairs requested 

depends on the size of the network. For 500 nodes or less, all are requested. For 5,000 nodes (the 

current maximum), only 30 are requested. The amount of storage required depends on the number 

of links, the number of nodes, and the number of eigenpairs requested, and the maximum number of 

iterations allowed for any eigenpair. For 5,000 nodes this is about 2.5 Megabytes. Not all requested 

eigenpairs are actually returned. If an eigenvalue is not accurate to within 10-l3 after the maximum 

number of steps, it is marked as not converged, and this eigenpair is not "accepted". It is possible 

that a large eigenvalue could be rejected but a smaller one accepted, so MultiNet checks for this, but 

it has never happened. 



Currently, MultiNet constructs two vectors consisting of the unique pairs of node ID numbers which 

have non-zero value for the selected link variable. These are equivalent to the upper right triangle of 

the adjacency matrix, not including the diagonal. The eigendecomposition routine completes the 

symmetrization on-the-fly. The routine also does the calculations specified by the definitions to 

produce one of the four desired eigenspaces. In the case of L, we are most interested in the smallest 

(non-zero) eigenvalues, but the eigendecomposition algorithm returns the largest. To get around this, 

the matrix actually used is A-D', where D' is a diagonal matrix of node degrees + A, where A = 

maximum node degree. This negates all the eigenvalues and shifts them so that 0 becomes A (the 

maximum possible), and the rest are in descending order. Converting back to the desired 3ti requires 

subtraction fiom A, giving the desired smallest eigenvalues. 
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6. The Models Module 

6.1 Introduction 
The Models module is the part of MultiNet which implements theoretical models for networks. 

These models are intended both to allow "curve-fitting" to network measures, and as a confirmatory 

tool for evaluating and comparing the blockings (partitions) produced by the Eigenspace methods. 

While there is no shortage of models for common network statistics such as degree distribution 

(Albert & Barabasi, 2002; Newman et. al. 2001), only a few of them allow comparison by defining 

a measure for quality offit which is independent of network size. Historically, the first such model 

for Social Networks was the p, model of (Holland and Leinhardt, 1981), but this model has two 

major drawbacks: 

It does not account for any structures more complex than dyads, although it can be extended to 

include blockings (Wang And Wong, 1987) 

It does not scale well to large networks, since the fit parameters grow as N ~ .  

More recently, models based on exponential random graphs were developed by (Frank & 

Strauss:FS, 1986; Strauss & Ikeda:SI, 1992; Wasserman & Pattison: WP, 1996). WP described the 

new family of models asp*, acknowledging the historical connection to the earlier p, model (which 

is included as a subset of p*). The p* family is based on fitting to a network given a set of local 

statistics, which can include not only in- and out-degree, but also various other triad counts. These 

models have recently been extended (Robins & Pattison, 2001) to include counts of 4-paths and 4- 

cycles, although it is clear that larger local structures (5- and higher paths and cycles) will take a 

prohibitively large amount of calculation. There is already a fair amount of literature on p* models, 

both applied and theoretical, and only a very basic review of p* methods is given in this section. A 

very readable introduction to p* fitting is (Crouch and Wasserman:CW, 1998); the current MultiNet 

text Report is largely based on the tables described in this article. 

Most papers on p* use matrix terminology to define the various local statistics used in a p* fit 

and to describe the actual (approximate) fitting procedure using Logistic Regression. It was not clear 

that either of these calculations scale well for large networks until an analysis by this author showed 

that both could be done efficiently using sparse methods. The analysis led to a computer program 

called PSPAR, which was made freely available to the social network community in (Seary, 1999). 

This code was then included into MultiNet in (Seary, 2000), which also introduced new GUI and 

graphic displays for p* fits. The MultiNet implementation (and PSPAR code) is based on a subset 



of p* defined in FS as Markov Graphs. Models +Pstar is included as the first (and so far only) 

MultiNet Models choice since 

it is a local method that complements the global method of the Eigenspaces module. 

it is a network model that allows comparison of networks 

it can be implemented by sparse methods that are efficient in both space and time. 

This section assumes some familiarity with the aims and methods of p* fitting, and is mostly 

concerned with the mechanics of p* fits in MultiNet. A more detailed description of p* fitting is 

found in (Pattison, Robins and Wasserman:PRW, 1999), which provides the matrix equations 

necessary to calculate the change statistics for various triad, k-star and comparative network counts 

for both directed and undirected networks. 

6.2 Implementation 

The methods outlined in WP, FS, SI, CW, and PRW all follow a similar pattern: 

A computer program (e.g., PREPSTAR in WP, CW; Matlab routines in PRW) is used to provide 

change statistics as intermediate files 

These files are submitted to a statistical package such as BMDP, SAS, or SPSS, 

The statistical package calculates the logistic regression of the network to the change statistics, 

giving a set of logistic parameters and useful (though approximate) measures of goodness-of-fit, 

standard errors, etc. Exact measures such as actual counts and parameter correlations are also 

very useful in interpreting the results of a p* fit. 

These methods have some obvious drawbacks: 

A number of data transformations are required, including some programming in the language of 

the statistical package. This is awkward, and it is possible that errors can be introduced during 

the various intermediate steps. The number of steps also makes curve-fitting far fiom interactive: 

trying various combinations of parameters can be cumbersome. 

The calculation of the change statistics, which produces the intermediate files, involves a number 

of matrix calculations, where the initial matrices may be quite large, and (generally for social 

networks), quite sparse. These calculations are usually inefficient (slow) and generally destroy 

sparsity (large). 

The intermediate files can get very large (a storage problem), since they generally require 0(N2) 

terms for each parameter to be fitted. For example, with N=1000 and 15 parameters, an 

intermediate file can take up 30 Mbyte (or more, depending on formatting). A simple block 



model can double this. 

A similar amount of space is required to do the logistic regression (a runtime problem). Although 

the actual matrices used in a logistic regression are much smaller -typically O(PZ) -- where P is 

the number of parameters), the intermediate data must either fit into memory, or be read in 

repeatedly for calculation of the parameter matrices. 

Implicit in the above is the assumption that we are dealing with network data in the form of 

adjacency matrices. The care and handling of such matrices for large sparse networks is quite a chore, 

and it is easy to miss errors in the original data itself. An earlier text-based DOS program called 

SPAR (Scary, 1999) was designed to avoid these problems. Adjacency matrices are not used. There 

are no intermediate files. No programming in a statistical package is required. All network 

calculations use sparse methods (fast and small). The user proceeds directly from reading a data file 

to selecting triad statistics, to examining fit parameters and other useful results. A network may be 

repeatedly analysed with different parameters (and block-models) in an interactive way. Typical 

social networks (N < 200) may be analysed in a couple of seconds. Larger networks may take a few 

minutes. It was always intended that the code used in SPAR would become part of MultiNet, but two 

problems needed to be addressed: how to represent the results of p* fits textually and graphically. 

The text report was based on the format used in CW. The graphic display was an adaption of the 

Eigenspaces I -D display to show how well each link is predicted. 

The sparse matrix implementation of p* is based on the simple observation that &l of the triad 

change statistics can be calculated for node indmendentlv. (In fact, they may be calculated 

parallel, but most desk-top computers don't allow for that). One other observation is that re~eating; 

the triad calculations - rather than storing them - saves a lot of space. Whether this is a good 

strategy depends on how much work these calculations take, and how often they have to be repeated. 

Fortunately, the triad change statistics are fast and easy to calculate for the classic Markov Graph 

model (FS). This model is also one for which the conditional dependencies are well-understood, and 

so the current MultiNet implementation allows p* fit & to these (see below for more details on 

these 15 statistics). Also fortunately, the logistic regression loop which finds p* fit parameters uses 

a Newton-Raphson algorithm which converges quadratically fast, meaning that only a few (3-8) 

iterations are generally needed. 

6.3 Parameters 

MultiNet currently allows fitting to the 15 (non-null) triads described by Frank and Straws 

(1 986) and Pattison, Robins, and Wasserman (1 999), and adds the block-model parameters described 



in Wasserman and Pattison (1996). There is some variation in notation among these papers, and 

MultiNet adds one other. The notation is intended to be descriptive and helpful: the symbol I is the 

important one in each case. The correspondences among the notations are all one-to-one, as described 

in Table 6.1 (see also Figure 6.1: screen shot of triad selection). Triads with some reflexivity have 

(purely descriptive) names that start with an R. The order of parameters has no analytic implication; 

in MultiNet they are roughly ordered by number of edges. 

Table 6.1: Notations for p* parameters (R* = reflexive) 

Description MultiNet FS (U I MAN) PRW 

......................................................................... 
Choice Edges : 1 i->j 012 TI5 - 1 
Mutuality Redges : 2 i<>j 102 TI1 - 11 
out-star 2Stars : 3 j<-i->k 021D TI2 - 11 
in-star 4 j->i<-k 021U T14 - 11 
mixed- s tar 5 j->i->k 021C TI3 - 11 
transitivity Triads : 6 i->j->k<-i 030T T9 - 111 
cyclicity 7 i->j->k->i 030C TI0 - 111 
R* 2-stars R2Stars : 8 i<-j<>k lllU T8 - 111 

9 i->j<>k lllD T7 - 111 
10 i<>j<>k 201 T6 1111 - 

R* triads Rtriads : 11 i<- j<>k->i 120U T5 - 1111 
12 i->j<>k<-i 120D T4 - 1111 
13 i<-j<>k<-i 120C T3 - 1111 
14 i<-j<>k<>i 210 T2 - 11111 
15 i<>j<>k<>i 300 T1 - 111111 

The MultiNet notation is a compromise between compactness and convenience. As will be seen 

later, the triad numbers (1 -1 5) are used to indicate the parameter fits and correlations in the p* fit 

report. Figure 6.1 shows how these choices are presented to the user in a multiple selection window. 

In this example, MultiNet will fit to 'Edges: 1 I->j' and 'REdges: 2 i o j ' .  (These are also shown as 

Choice and Mutuality in Table 6.1). Selections are made using standard Windows methods. Initially, 

all triads are selected. By clicking on Edges all others are de-selected. Clicking on an item while 

holding down the Ctrl key toggles a selection. Clicking on an item while holding down the Shift key 

selects all items between the current item and any previously selected one. In this case, to select 

Edges and REdges, either key could be used since there are no other items between these two. 











The Counts and Errors columns can be valuable in determining why a fit has failed (about which 

more later). Following the parameter values is a table of correlations among all the parameters. This 

table should always be examined for possible high correlations between (among) two (or more) 

parameters, and can be very useful in determining why a fit fails. Finally, the report includes a table 

of tables of &l fit results at glJ probability levels from P=1/16 to P=15/16. (See Appendix). 

6.5 The Report 

The Report (Table 6.2) is very similar to that shown in CW. Other statistics will be added if users 

request them. This section describes the reported results, with some comments on their usefulness. 

The bold numbers have been added to the Report in Table 6.2. 

1) -2 * Log Pseudolikelihood (-2*Log PL) is the same as that defined in CW. This measure 

appears in the p* literature as the most important result for evaluating the fit. One goal 

of p* fitting is to get the lowest such value with the fewest parameters (so -2*LogPL is 

a "badness of fit" measure). 

2) Goodness of Fit and Model Chi-squared are as defined in CW. These do not appear much 

in the p* literature. 

3) The table of Observed vs Predicted is also as defined in CW. The cut-off is P=0.5: a 

calculated frequency of 0.5 or more is considered a "hit". The percentages of Correct, 

False Negative and False Positive are exactly as described above. 

4) Absolute residuals are as defined in WP. Squared residuals are also included. These can 

be useful in comparing fits with very close -2*Log PL. 

5) The table of parameters, blocks, parameter values (b), PL-"Standard error" and Wald 

statistic, and exp(b) appear as defined in CW. The "p" column shows the significance of 

the PLWald statistic for each parameter. The columns headed "Count" and "Error" aid in 

tracking convergence problems (see Error Traps). Counts are not triad counts (except 

Choice and Mutuality), but rather the diagonal of the inner products matrix that the logistic 

regression actually fits to. Errors are the deviation of the fit from these values. 

6) The correlation matrix. It is recommended that this table be examined closely. 

7) A table of 5 rows by 3 columns, each item of which is a table of Observed vs Predicted 

links, for all probabilities from P=0.0625 to P=0.9372 (see Appendix). 

Both the table ofparameters and correlation matrix identify parameters by number and block number 

(if any). Any global parameter has a blank block number. 



Table 6.2. Report for a simple Pstar fit. Sections 1-6 described in text. (see Figure 6.13 for 7) 

MultiNet PSTAR REPORT ON "VICKCHAN.NODI1 4/05/2004 18:14:57 
RUN # 1  ITERATIONS = 4 

LINK: "Get on withf1 LINKS = 359 NODES = 29 (DIAGONAL NOT INCLUDED) 

-2 Log PseudoLikelihood = 977.812 
Goodness of Fit = 812.000 

Model Chi-squared = 147.859 df = 2 

FIT AT P = 0 . 5  RESIDUALS 
PRED 359 

<P I >P Absolute = 
------------------ Squared = 

0 I  334 1 119 33.1% 
OBS [--------I-------- ----- 

1 I 119 1 240 66.9% 
I I 

359 1 33.1%1 66.9% 

PARM BLOCK b "Std.ErrV PLWald p (df=l) exp (b) Counts 
1 -1.0320 0.1068 93.4479 < 0 . 0 1  0 .36  359 
2 1 .7335 0.1548 125.3843 < 0 . 0 1  5 .66  240 

CORRELATION MATRIX: 
PARM 1 2 

BLOCK 
1 1.00000 -0.68959 
2 -0.68959 1.00000 

Section 
1 
2 
2 

3 
4 
4 
3 
3 
3 
3 

Errors 5 
0.00000 
0.00000 

6 

Since this part of MultiNet is primarily concerned with curve-fitting to the p* model, Report 

behaves somewhat differently from the other modules. When a Link variable is initially fitted, the 

Report consists of the results of the single fit, with a simple Quit selection. The results of the initial 

fit (e.g., PLWald statistics, Errors, Correlation table) may suggest adding or removing parameters. 

The modeller may also want to compare fits with and without blockings based on Node attributes, 

or simple versus complex blockings. To allow easy comparisons of various fitting attempts, the 

program retains all reports including the initial fit. Reports of succeeding fits produce a Multi-View 

window, with additional 'Last' and 'Next' selections. Each fit attempt is numbered with a RUN # 

to simplify navigation through the reports. When a Report involves many fits, the two menu items 

'Last' and 'Next' allow for paging through the results of the present and earlier fit attempts. If 

Report +File is chosen, gJ the fit results are saved, separated by Page Break characters. The results 

are stored in an ASCII disk file in the current directory with the same name as the Node and Link 

files (or system file), and with the extension '.OUT'. 



6.6 Block-modelling 

MultiNet allows for block-modelling by using the actor attribute information in the Node vari- 

ables. You may choose any categorical Node variable to define a block structure, which then allows 

MultiNet to fit to both the whole network and subsets of actors which share certain Node attributes. 

The method employed is quite flexible and will be shown in a number of ways. 

6.6.1 Simple blocks 

MultiNet assumes (by default) that a Node attribute will be used to define a simple cohesive 

block structure, since this type of modelling is very common. Thus, if an attribute has four categories, 

MultiNet will present the following default block structure: 

This block structure assumes that pair of actors sharing the same Node category are 

considered as belonging to the same block. Since there is only one type of block (with value l), g 

pair of actors with the same attribute are counted together. This is the type ofblock structure assumed 

for the example given in CW where fitting is done to the block parameters "Choice within Blocks" 

and "Mutuality within Blocks". This example has two possible values for the Block attribute (boy 

and girl), and so the block structure is: 

MultiNet makes it easy to do this kind of fitting by allowing a click anywhere in the blocking 

display to change the value by keyboard entry (Figure 6.5a). Tab and Shift-Tab may also be used to 

get to any block. To demonstrate this with the Vickers and Chan data, the Node variable "Sex" has 

been selected as the blocking variable. This was followed by clicking on Pstar and selecting Choice 

and Mutuality, as well as 'Triads: 6 1 +j + k 4 '  (Transitivity). This time, since a blocking variable 

(Sex) has been selected, there is a little more work to do. Before the fit begins, MultiNet presents a 

blocking matrix as shown in Figure 6.6a. The rows correspond to Links FROM and the columns to 

Links TO actors with each category in the Node variable (in this case "girls" and "boys"). For this 

example, the diagonal blocking is accepted by clicking 'Okay'. 





Compare Figures 6.3 and 6.6. Notice that -2*Log Pseudolikelihood is shown as smaller in Figure 

6.6. However, there are now more parameters (4 instead of 2). Are the extra parameters worth it? 

To answer this, we need to know how the difference between the two -2*Log Pseudolikelihood is 

distributed, and this is currently unknown. However, if we can assume a Chi-squared distribution 

with degrees of freedom equal to the difference in the number of parameters, then the 4-parameter 

blocking model is simificantlv better. 

There is more to Figure 6.6 than this. The diagonal labels ('Labels'), permutation ('Node Perm') 

and 'Grid' items were selected from the 'Show' menu of the 'Examine p' fit' window. Notice that 

Permutation is shown as ON. The rows and columns of the adjacency display have been permuted 

by the values of the Node variable Sex (l=boys and 2=girls7 so boys are in the upper left). This is 

also shown by the value label display on the right (below the P=0.5 table) and by the labels along the 

diagonal coloured by these Node categories. It is clear just by looking at this display that there is an 

important connection between the Node attribute "Sex" and the Link attribute "Get on with". The 

ability to permute the adjacency display by the value of Node variables is very useful (a similar 

display is also available under Eigenspaces). One can very quickly get a feeling for which (if any) 

actor attributes are related to network structure just by turning permutation on, and selecting each 

Node variable in turn. The ones that show obvious block structure are candidates for p* fits with 

blocking (among other things!) 

Table 6.3 shows the result of this fit (excluding the 15 tables at various probability levels). This 

Report shows the RUN# as 2, since a new Link variable has not been chosen Since this is a block 

model, the report contains additional information: the Node variable name and block model are 

shown in section 0. The global parameters (choice, mutuality and transitivity or 1,2 and 6) are listed 

with Block set to blank, while the "Choice within Block" parameter is listed with parameter 1 and 

Block set to 1. This is also done for the correlation matrix. No correlations are near 1 or - 1, and all 

the PLWald statistics are significant, so it is worth checking the improvement in -2*LogPL. This 

value has decreased by more than 186 with only two additional variables. If we assume that - 

2*LogPL is distributed as Chi-squared with the degrees of freedom equal to the number of extra 

variables, then this is clearly a significantly better fit. A large part of the improvement comes from 

the block structure, which counts "Choice within Blocks" where most of the counts actually are, 

because the choices are indeed largely boy-boy and girl-girl. It is this ability to compare counting 

within different permutations that makes the p* model a useful confirmatory tool for the partitions 

that are produced by the Eigenspaces module. 



Table 6.3. Report for simple block model. Sections are labelled as in Table 6.2. 
MultiNet PSTAR REPORT ON "VICKCHAN.NODvv 5/05/2004 13:48:53 
RUN #2 ITERATIONS = 6 

LINK: "Get on with" LINKS = 359 NODES = 29 (DIAGONAL NOT INCLUDED) 

NODE = "Sex" 
BLOCKING 

1 0  
0 1 

-2 Log PseudoLikelihood = 
Goodness of Fit = 

Model Chi-squared = 

FIT AT P = 0.5 
PRED 342 
<P I >P 

PARM BLOCK b "Std.Errn PLWald 
1 -3.3243 0.2422 188.4052 
2 1.0655 0.1784 35.6699 
6 0.1236 0.0111 124.7508 
1 1 0.7603 0.1778 18.2808 

CORRELATION MATRIX: 
PARM 1 2 

BLOCK 

RESIDUALS 

Absolute = 
Squared = 

Counts 
359 
240 
8289 
239 

Errors 5 
0.00000 
0.00000 
0.00001 
0.00000 

6.6.2 Global and Local counts 

To construct the p* parameter estimates in Table 6.3, Choice counts were made both globally (for 

the entire network) and locally (when both ends of the link are in block 1, that is sender and receiver 

are of the same sex). This results in double counting, so that the first number (359) in the Counts 

column of section 5 is the sum of all links (including those in block I), while the last number in the 

Counts column (259) is the number of links in block 1 &. From this we can deduce that there are 

100 links fiom one sex to the other (outside of block 1). The double counting has effects on the p* 

fit: The p* parameter listed for Choice in block 1 has the global value subtracted from it. That is, for 

block 1 the Choice estimate is -3.3243+0.7603 = -2.5641. This effect holds in general for any 

parameter that is estimated globally and locally (but not if strictly global or local). It is simple 



to make the correction for any number of different blocks. However, this effect can also result in 

lower "Standard Error", PLWald and significance measures. Also, if a parameter is counted and 

estimated globally, the resulting p* fit parameter will be correlated with &l the other p* parameters 

(table 6.3 part 6). None of these effects have been described or commented on in the p* literature. 

To remove all these side-effects, MultiNet makes it simple to remove any global counts and fits 

by using the 'Modify +Add I ' menu choice of the 'Examine p* fit' window. This adds 1 to &l block 

numbers, transforming all 0-blocks to 1-blocks and so automatically deselecting all the global 

parameters. The resulting fit (Table 6.4) has exactly the same -2*LogPL (and related measures), 

while the fit parameters need no further corrections. In addition, the correlations are non-zero only 

within blocks, and the PLWald and significance measures are more useful. 

Table 6.4. Simple block model with only local counts (within and between sexes) and fits for Choice. 
Compare with Table 6.3. Global parameters (2 and 6) are unchanged. 

LINK: "Get on with" LINKS = 359 NODES = 29 (DIAGONAL NOT INCLUDED) 
NODE = "Sex" 
BLOCKING 

2 1 
1 2  

-2 Log PseudoLikelihood = 
Goodness of Fit = 

Model Chi-squared = 

FIT AT P = 0.5 
PRED 342 

<P I >P ------------------ 
0 I 356 1 97 28.4% 

OBS I--------I-------- 
1 I 114 1 245 71.6% 

I I 
359 ( 31.8%1 68.2% 

RESIDUALS 

Absolute = 262.574 
Squared = 132.991 

PARM BLOCK b "Std.ErrW PLWald p (df=l) exp (b) Counts Errors 
2 1.0655 0.1784 35.6699 < 0.01 2.90 240 0.00000 
6 0.1236 0.0111 124.7508 < 0.01 1.13 8289 0.00001 
1 1 -3.3243 0.2422 188.4052 < 0.01 0.04 120 0.00000 
1 2 -2.5641 0.2451 109.4336 < 0.01 0.08 239 0.00000 

6.6.3 Complex Blocks 

While the simple block method may be sufficient for fitting to global and "within block" effects, 

some models may also require "between blocks" effects as well. An example is given in (WP p. 4 19, 

model 30) where a fit is made to Mutuality, Transitivity, and all four possible within and between 

blocks Choice parameters (in this case involving the two sexes). MultiNet allows this type of 





Table 6.5. Report for complex block model. -2*LogPL drops by 32.58 with 2 more parameters. 

MultiNet PSTAR REPORT ON "VICKCHAN.NOD1' 5/05/2004 15:53:32 
RUN 13 ITERATIONS = 6 

LINK: "Get on with" LINKS = 359 NODES = 29 
NODE = "Sex" 
BLOCKING 

1 3  
4 2 

(DIAGONAL NOT INCLUDED) 

-2 Log PseudoLikelihood = 
Goodness of Fit = 

Model Chi-squared = 

RESIDUALS 

Absolute = 246.987 
Squared = 124.022 

1 I 9 8 
I 

359 1 27.3% 
PARM BLOCK b 
2 1.3265 
6 0.1319 
1 1 -2.2206 
1 2 -3.1949 
1 3 -2.9501 
1 4 -4.3489 

I 261 73.5% 
I 
1 72.7% 
"Std.ErrV PLWald p (df=l) 
0.1960 45.7888 < 0.01 
0.0125 111.7546 < 0.01 
0.2737 65.8364 <0.01 
0.3139 103.6289 < 0.01 
0.2834 108.3339 < 0.01 
0.3314 172.2432 < 0.01 

CORRELATION MATRIX: 
PARM 2 6 1 

BLOCK 1 

exp (b) Counts Errors 
3.77 240 0.00000 
1.14 8289 0.00000 
0.11 77 0.00000 
0.04 162 0.00000 
0.05 82 0.00000 
0.01 38 0.00000 

To make the selections and choices simpler for large numbers of blocks and parameters, each of 

the block structure control windows has additional menu items as shown in Figure 6.8. For the 

'Block Structure' window, the Modify choices are: 

Identity: restore default simple cohesive block structure (1's down the diagonal) 

Progression: diagonal contains progression form 1 to number of categories C (1,2, ..., C) 

Add 1 : Add 1 to every cell. This forces no Global parameters. 

Zero All: Start clean for special block structures. 



For the 'Choose Block Statistics' window the menu items allow the deselection ofall parameters 

globally or in a block ('Col Off') or the deselection of any parameter in blocks ('Row Off' 

shown in Figure 6.8b). These menu choices simplify the procedures described above, and are 

especially useful with many blocks or parameters. 

The block-modelling scheme is very flexible, though it requires more inputs fiom the user. The 

number of possible blocks grows as the square of number of Node variable categories, and there are 

possibilities for the fit to fail (see below). Here are some examples of possible block structures with 

commentary below, using the two-category attribute gender: 

a) Fit to within- and between-categories (see WP Models 14-16) 

b) Fit within-categories separately and ignore between-category effects 

c) Fit within-categories separately and lump between-category effects together 

d) Ignore within-category; lump between-categories together 

e) Ignore sender; fit to receiver 

With this flexibility, the number of parameters can grow quickly, so some restrictions are imposed: 

1) No more than 16 different blocks (4 or fewer categories can be fit to a "saturated" model, 

where each block has a different number) 

2) Maximum of 76 parameters. This allows fitting all 15 triads globally and in 4 blocks (or 4 

tiads in 16 blocks). MultiNet will warn if too many parameters are chosen. 

6.7 Evaluating p* fits in MultiNet 

The 1-D visualisations available in this module can help in guiding the p* curve-fitting 

procedure. For example, Figure 6.3 shows that with only Choice and Mutuality as parameters, a 

number of nodes with high out-degree and low in-degree are not fitted well since Mutuality tends to 

symmetrize links. The problem is still evident in Figure 6.6, which includes both Transitivity and a 

block model for Choice based on node variable "Sex". These results suggest that using one of or 

more of the parameters sensitive to in-, out- or mixed degree might lead to better fits. Using only 

parameters 1-5 without a block model results in -2*LogPL = 786.6, which is better than the result 

for RUN #2. Adding the sex-based block-model results in -2*LogPL = 749.5, which is better than 

RUN #3, and which visually does a better job at fitting the node degrees. Adding Transitivity 





Table 6.6. Fit results for 4 parameter fit shown in figure 6.9 

PARM BLOCK b "Std.Errf' PLWald p (df=l) exp (b) Counts Errors 
2 1.7563 0.2123 68.4456 < 0.01 5.79 240 0.00000 
4 -0.1138 0.0260 19.1125 < 0.01 0.89 4620 0.00000 
5 -0.1565 0.0136 132.9890 < 0.01 0.86 8822 0.00000 
6 0.2275 0.0185 151.9222 < 0.01 1.26 8289 0.00000 

Close examination of Figure 6.9 shows that some reciprocal links are predicted with different 

probabilities in each direction (e.g., for nodes 9 and 18), but not what the probabilities are. These can 

be found by stepping through the probability levels using the 'Examine p* fit' window, or they can 

all be summarized by creating a new Link variable using Define. The resulting Link variable has 

categorical values (and value labels) that show the probability level below which each link is 

predicted. This variable may then be compared with other fits in the Variables module or displayed 

in the Eigenspaces module to get a complete view of how well the p* fit worked, and what 

network features were best captured by the fit. An example of this display is Figure 6.19 in the 

Eigenspaces section. Define can only produce a Link variable with values for correct (green) and 

false negative (blue) links. Producing links for the false positives (red) could destroy sparsity. 

6.8 Error Traps 

Again, we assume that the reader is familiar with p* fitting and concentrate on matters specific 

to the implementation in MultiNet. This section describes what to look for when the program fails 

- or almost fails -to converge. Generally, the program appears quite robust, but certain situations 

can cause problems. MultiNet traps errors and puts everything it "knows" up to that point into the 

Report, along with some helpful advice. Three types of error are detected. Each will produce an Error 

window describing the error condition, which also appears in the Report. 

6.8.1 STATISTICS LINEARLY DEPENDENT! 

At some point within the logistic regression procedure the code must invert a matrix. Initially this 

matrix is the inner product of the matrix of change statistics with its transpose. The 'Statistics 

Linearly Dependent' message results when the matrix inversion fails the first time. The most 

common cause of this failure is the attempt to fit to a parameter with triad statistics of 0. This may 

occur either globally (in which case there is no point trying to fit to that statistic) or only within a 

Block (in which case don't use that parameter in that Block). Another common source of this error 

is the use of a parameter both globally and with a full set of blocks. For example, in WP Model 30 

(see above), this error would appear if we tried to fit Choice (1) as a global parameter to all four 

blocks. The matrix would then have a row corresponding to global Choice which is a linear 



combination of the four rows corresponding to Choice within each of the four blocks. To avoid this 

error, do not fit to the same parameter both globally and to all of a saturated (no zero blocks) block- 

model. 

Less often, the error can occur for more subtle reasons, having to do with the structure of the 

network. If this happens, there is very little information available from the program because, at this 

point, it has just begun the analysis. The best advice is to try again with fewer parameters. One thing 

to look for in the triad counts is repeated values for related triads. For example, Choice and Mutuality 

will be equal (and dependent) in a network (or block!) which is symmetric. It doesn't hurt, and doesn't 

take much time (unless you have a very big network) to take a quick look at what possible problems 

will occur by initially attempting a fit to &l the triads without any blocking. 

6.8.2 LOGISTIC REGRESSION FAILED! 

As the logistic regression iterations proceed, the initial matrix is updated by weights derived from 

the latest fit. SPAR monitors the change in parameters with each iteration, and if aparameter changes 

too rapidly this will be reported as 'Logistic Regression failure', since it is very likely that at the 

next iteration, the matrix inversion will fail. The most common source of this error is a high 

correlation between (among) a pair of (or more) parameters. There is a lot more information available 

in the report since the latest estimates of parameter values, errors and correlations are all available, 

but this condition does not appear very common. If this occurs, the best advice is to look for 

parameters with both high estimated values and high correlations, and eliminate one or more of them. 

6.8.3 TOO MANY ITERATIONS! 

The SPAR code appears to be quite robust. Usually no more than 6 iterations are required. There 

is an upper limit of 10 iterations, after which the program will stop iterating and report the current 

fit parameters. There are two situations commonly responsible for this problem: 

If one of the parameters chosen has counts (as reported in the Counts column in both screen 

and file output), try again without this parameter. It is also useful to look for parameters with 

very few counts, and low pseudo-Wald statistic, especially within blocks. These may be removed 

from the model to give comparable fits with fewer parameters. 

If two (or more) parameters are highly correlated, the iterations will drive both (or more) to 

extreme values (generally greater than 10 in absolute value). Looking for a pair of extreme values 

(in the b column) can be helpful. If such a pair exists, try again without one of them. It may be 

necessary to examine the correlation matrix to understand why a fit does not converge. Look for 



pairs (or more) of parameters with correlations very close to 1 in absolute value. The "Error" 

column in the Report is also a useful indicator of which parameter(s) are causing difficulties. 

It is always a good idea to examine the correlation matrix in any case. Parameters with high 

correlations (> .9) indicate that the model can be fit with fewer parameters. This often occurs when 

a triad count is fit both globally and within blocks where most of the counts occur. To avoid this, use 

a "saturated" model, such as a) or c) above, with no global counts. 

6.9 Technical appendix 

6.9.1 Sparse matrix estimation of p* parameters 

The use of logistic regression as a means of estimating p* parameters was first suggested by (Frank 

& Strauss, 1986). This suggestion was examined in detail in (Strauss & Ikeda, 1990). They showed 

that the maximum likelihood parameter values could be estimated by maximum pseudo-likelihood as 

originally defined by Besag (1974), using standard logistic regression procedures. They demonstrated 

that, for graphs that are small and simple enough, the approximation is fairly good. This was a very 

useful result, since calculating the actual maximum likelihood values is a very hard computational 

problem that has still not been solved (Handcock, 2003). In the paper that introduced the family of p* 

models (Wasserman & Pattison, 1996), it was assumed that using logistic regression to find maximum 

pseudo-likelihood estimates ofp* parameters would be a sufficiently useful approximation until better 

methods were developed, and almost all of the applied p* literature to date uses this method of 

estimation (usually with a short statement that this is - temporarily - an approximation). 

Theuse of "packaged" logistic regression routines (in SAS SPSS, BMDP, etc.) requires that the 

p* change statistics be pre-calculated for each statistic. Unfortunately, this destroys sparsity, since 

the change statistics occur not only for each exiting link, but also for each potential link. This means 

that for N nodes, each statistic consists of N2 values (subtract N if there are no self-links, divide by 

2 ifthe network is symmetric). For a network of 1000 nodes, this means & change statistic requires 

one million values. Passing these values to a "packaged" routine generally requires some ASCII 

formatting which requires one byte for each order of magnitude present in the statistic. Whereas 

Choice and Mutuality values are always single bytes (Choice is constant 1, Mutuality is the transpose 

of the binary-valued network), the various 2-stars and triangles are integer-valued counts that can be 

two or three bytes (or more) for each value. This leads to an estimate of 30 Megabytes for a 15- 

parameter fit when N=1000. The results of this fit are then usually boiled down into a set of tables 

that take up much less than 1 megabyte. It is the "data explosion" of the change statistics, which are 

after all only temporary values, that makes the application of a packaged logistic regression routines 



problematic for large networks. Not only are these intermediate results large, they are also slow to 

calculate, and large and slow for the packaged routines to use. All this makes any "experimental" p* 

curve-fitting slow and cumbersome: the opposite of what is required for an "exploratory" analysis. 

The SPAR code was intended to avoid these problems by skipping over the intermediate stage 

entirely. Instead, the change statistics would be calculated "on-the-fly" inside the routine that 

calculated the logistic regression. The pseudo-code in Figure 6.10 describes one step in the iterative 

calculation of a logistic regression. The notation is as follows: 

input y is the network, represented as a binary vector of length N2. 

input X is the matrix of change statistics with g columns, each column of length N2. 

output b is the logistic regression fit of length g, one for each of g parameters. 

Lower case letters are vectors. Upper case letters are matrices. 

INV (W) represents Matrix inverse of W. 

DIAG (v) is a diagonal matrix with vector v along the diagonal and 0's off-diagonal. 

SQ (X) is square matrix X'X, i.e., matrix product of transpose of X and X. 

Exp (x) is element-by-element exponential of vector x. 

Sqrt (x) is element-by-element square root of vector x. 

This looks complicated, but it is just a weighted linear least-squares fit. Other complications 

include finding good starting guesses for the b values and accumulating useful statistics such as the 

correlations, but these are not difficult. Also, the difference vector d is checked for large changes, 

which is a sign of potential regression failure due to highly correlated parameters. The key point is 

that the calculations involve matrix-matrix and matrix-vector products, which are all linear. This 

means that the results can be accumulated from the statistics of each node, one at a time. These results 

enter the logistic regression loop at the code points marked with (*), that is, any time the "input" 

vector of the network y or the matrix of statistics X is required. As a result, the space which would 

be required to store X is not needed. The network is stored sparsely as ID pairs, and only the part of 

vector y directly connected to the current node is needed. All other matrices require storage of only 

2, where g is the number ofparameters. This solves the problem of allocating huge amounts of space 

for the intermediate change statistics, but it means that the statistics must be re-calculated at each 

iteration. For "reasonably well-behaved" statistics (correlations are less than 0.95) the least-squares 

code is equivalent to a Newton-Raphson least-squares minimizer, which converges quadratically fast 

(the number of significant digits doubles with each iteration). This means that usually only a few (3- 

6) iterations are needed. In fact, no more than 10 iterations are allowed since this many iterations is 

a sign that there is a problem with convergence due to highly correlated p* parameters. 



bc in i t i a l  guess 

oldb+b 

l o o p  : 

s+Xb 

p + l i  (l+Exp (-s) ) 

w+px1-p 

s+s+  (y -p)  i w  

T+DIAG ( S q r t  (w) ) 

V+INV (SQ (XT) ) 

W+DIAG (w) 

u+XW 

z+su  

b+Vz 

dco ldb-b  

oldbcb 

I F  d s u f f i c i e n t l y  s m a l l ,  

g random numbers between 0.01 and 0.99 

Keep a copy for next iteration 

Beginning of logistic regression loop 

Vector s from matrix product of X and b (*) 

Logistic vector p from s 

Weight vector w from logistic p 

Update vector s by weighted difference of data and logistic 

Matrix T is diagonal of square roots of weights 

Matrix V is inverse of square of weighted input X (*) 

Matrix W is diagonal of weights 

Matrix U is product of input and weights (*) 

Temporary vector to form b=VsU 

Logistic regression estimate b 

Change from last estimate 

Keep a copy for next time 

then convergence, ELSE GOT0 l o o p  

Figure 6.10. Pseudo-code for logistic regression iteration. 

c 2 o u t s t a r s .  What is  out-degree of i f r ?  
c s u b t r a c t  1 i f  i f r - > i t o .  

do 32 i = l , n n  
i s t a t s  (i ,3) = idegf r ( i f  r) - idat (I) 

32 continue 
C 

c 2 i n s t a r s .  What i s  in-degree of i t o ?  
c sub t rac t  1 i f  i f r - > i t o .  

do 42 i=l ,nn 
i s t a t s  (i ,4) = idegto (i) - idat (i) 

4 2 continue 
C 

c 2 mixed s t a r s .  How many depend on i f r - > i t o ?  
c s u b t r a c t  2 i f  i t o - > i f r  ( t ranspose - al ready calcula ted  i f  needed) 

do 52 i-1 ,nn 
i s t a t s  (i, 5) = idegf r  (i) + idegto  ( i f r )  - 2 i s t a t s  (i ,2) 

5 2 continue 

Figure 6.11. Code for calculating 2-stars. Idegfi and idegto are vectors of length nn=N which hold out- and 
in-degrees. They are calculated once when data is read in. I d a t 0  and istats(N,2) are the network and its 
transpose as seen ffom node iff, which are also used in a number of other calculations. 



c f o r  cyc l ic  t r i a d s ,  count the  number of ways each node can 
c reach i f r  i n  2 s teps  by i f r<- j<- i  

12 = idegto ( i f r )  
i f  (12 .eq.O) goto 80 

11 = lp2 ( i f  r) 
12 = 11 + 12 - 1 

c look a t  who points  t o  i f r  and count who e l s e  points t o  them 

do 72 jj=11,12 
j = l i d l ( j j )  
14 = idegto ( j ) 
i f  (14 .eq. 0) goto 72 
13 = lp2 ( j )  
14 = 13 + 14 - 1 

do 74 ii=13,14 
i = l i d l  (ii) 

c don ' t  count i f  it points  t o  i f r  
i f  ( i f r  .eq. i) goto 74 
i s t a t s  (i ,7) = i s t a t s  ( i , 7 )  + 1 

74 continue 
7 2 continue 
80 continue 

Figure 6.12. Calculating cyclic triads. The same code is shared in the calculation of some of the reflexive triads 
(parameters 8,9 , 10 and 13), though these extra steps have been removed for clarity. Most of this code uses 
pre-calculated vectors such as idegto and sparse matrix pointer variables lidl and lp2. 

Since the number of iterations can be kept small, it remains only to show that re-calculating the 

change statistics for each node inside the regression loop is reasonably efficient in time. In fact, some 

change statistics require no or very little calculation. Choice is constant. Mutuality requires the 

transpose of the network, which is also useful for many other statistics. Some other statistics are very 

easy to calculate, for example all 2-stars (Figure 6.1 1). The block-related local statistics use already- 

calculated global counts. The most complicated counts involve the triangles (transitive and cyclic). 

The cyclic counts code is shown in Figure 6.12. It requires following all links up to two steps away, 

and so the efficiency depends on the network having low density; this is generally the case for social 

networks. This example also shows how the change statistics calculations can make ready use of the 

pointer variables that are an essential part of sparse matrix representation. 

6.9.2 Details of fit 

Appended to every report is a 5 by 3 table of tables of observed and predicted links, referred to 

as section 7 in the main text. This information is also available with the 1-D display by using the 

'Explore p* Window' buttons 'P+' and 'P-' to step through 15 probability levels from 0.0625 to 
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?@re 6.13. An example of the 'Details of Fit' section of every Pstar report, in this case for RUN #3. 



0.9375, or by using Define to create a new link variable with these probabilities as the value of each 

link. Figure 6.7 shows the summary information for RUN #3 which is a more complex model, and 

so shows more complex behaviour at the different probability levels. 
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the number of distinct colours used in MultiNet displays. The maximum allowable number of 

categories is 20 (which can therefore create rather unwieldy 20 by 20 crosstab tables containing 128 1 

numbers). If more than 12 categories are selected, the 12 colours repeat. If less than 12 categories are 

allowed, only that number of colours is used. If a discrete variable is being Imported, it will be 

considered categorical only if the number of distinct values is not more than the current number of 

categories setting. In the Analyse module XTABS, ANOVA and stacked CORREL will not accept 

a variable with more distinct values than the current setting. In the Variables module, 

Recode+Discrete will not allow creation of more categories than the current setting. For these 

reasons, a Preferences menu item is available for the Analyse and Variables modules which allows 

changing this setting. The setting for Number of Categories is also checked whenever a 

numeric/continuous variable is expected in ANOVA or CORREL. If the variable does not have more 

distinct values than this setting, a warning message is given, but the analysis is allowed to proceed. 

Number of Bins opens an Edit window showing the current setting for the maximum number 

of bins used in displaying and reporting numeric/continuous variables. Unlike Number of 

Categories, Number of Bins does not prevent analyses or variable recoding. The number is a goal 

for the display and reporting routines, and is only approximately attained. For numeric variables with 

the number of distinct items no more than this setting, both displays and reports are exact: every 

values is displayed and reported. If the number of distinct values is greater than this setting, the 

program attempts to find a set of bins that will give close to the requested result. Some results are 

shown in Figures 7.8 and 7.10 and Tables 7.1 and 7.2. The Number of Bins setting affects only the 

displays and reports, not the statistical calculations, which always use the exact values of variables. 

Duration 

I - 
I 5 0  0 5(1 lm 150 200 250 

a) Set to 15 produces 13 actual bins 

Duration 

b) Set to default 30 produces 25 actual bins 
~ i g u r e  7.8. Displays for Link Duration set at 15 and 30 bins. 





Table 7.2. ANOVA report for Dependent:Duration and 1ndependent:Channel with No Empty Categories, 

Bins#2 and OBurationK?O. Compare with Table 2 . 9 ~  in Section 2 

STRENGTH=30<=Duration<=120 
30<=Duration<=12 0 , No Empty Categories ; ~ins=i2 
Independent: "Channel" Dependent: "Duration" 

ANOVA TABLE ............................................................ 
SOURCE OF I Sum of ( Deg. of I Variance I Obtained I P 
VARIATION ISquares SSI Freedom ( Estimate 1 ratio I ............................................................ 
BETWEEN I 137.6 1 1 1 137.6 1 0.2 I> 0.50 
GROUPS I I I I I ............................................................ 
WITHIN 1106308.4 1 158 1 672.84 1 
GROUPS I I I I ............................................ 
TOTAL 1106446.0 1 159 1 

STATISTICS OF "Duration" 

MEAN 56 
VAR 665.3 
SDEV 25.79 
MIN 30 
MAX 120 
MED 46.5 
SIZE 160 
BINS 19 

DISTRIBUTION 
VALUES 
3 0 
40 
50 
6 0 
70 
80 
9 0 
100 
110 
120 

OF "Duration" 
COUNTS %age 

4 9 30.6% 
32 20.0% 
1 0.6% 
39 24.4% 
7 4.4% 
3 1.9% 
15 9.4% 
6 3.8% 
0 0.0% 
8 5.0% 

contacts that take between 30 minutes and 2 hours rather than including all contacts. Selecting "Yes" 

for this choice results in two extra questions being asked for any network analysis (Figure 7.9). These 

questions show the current low and high values acceptable for link strength. Any links that fall 

outside this range are ignored in the analysis. The results of applying a link value range of 

60BurationKIO are shown in Figure 7.10 and Ta ble 7.2, which also show the effects of No 

Empty Categories and user-selected Number of Bins. 





7.2.6 Defaults 

Clicking this item produces a menu with one choice: Restore ALL Defaults. Selecting this 

immediately restores all preferences to the MultiNet default values. These values in MNW.IN1 in the 

MultiNet directory are initially the same as the internally stored defaults. If the user is not satisfied 

with personal preference changes made to MNW.IN1, the defaults may be restored by using this 

selection. These defaults are not stored in any file; they reside with the MultiNet program code. 

Selecting this choice has no effect on any preferences stored in MNW.IN1 files, only on the settings 

currently active in MultiNet. 

7.2.7 Load Preferences 

Clicking this item produces a menu with two choices: 

From MultiNet Directory is enabled if MNW.IN1 exists in the MultiNet startup directory. When 

this is selected, all preferences are set to the values in this file. 

From Current Directory is enabled if MNW.INI exists in the current working directory. If the 

file is found, all preferences are set with to values in this file. 

This combination allows preferences which are customized for different types of datasets to reside 

with those datasets. The file MNW.INI in the MultiNet directory is always loaded when MultiNet 

starts up, allowing general customized settings to be used. Ifthis file does not exist (has been deleted, 

renamed or moved) the internal defaults for all preferences are set, and the registration code must also 

be re-entered to avoid the final "nag" screen. 

7.2.8 Save Preferences 

Clicking this item produces a menu with two choices: 

To MultiNet Directory: When this is selected, the program saves the current preferences in the 

file MNW.INI in the MultiNet startup directory. The preferences in this file are always loaded 

when MultiNet starts up, allowing general customized settings to be used. 

To Current Directory: When this is selected, the program saves the current preferences in the 

current working directory. This allows preferences which are customized for different types of 

datasets to reside with those datasets 

MNW.INI may be restored to its initial state by first selecting Defaults+Restore ALL Defaults, 

followed by Save Preferences+To MultiNet Directory. Once the registration code has been entered, 

it is also saved with Save Preferences-To MultiNet Directory. 



7.2.9 Help 

This is a menu item that appears in all the MultiNet modules. Left-click on Help opens a 

selection window which lists all items on the current menu bar. Selecting any of these opens a view 

window containing details about the menu item. Help is also a common button on many other 

temporary windows, and always provides a context-sensitive description ofwhat the program is doing 

and what kinds of inputs it expects at the point the Help button is pressed. 

7.3 Preferences in other modules 

As a convenience the following Preferences settings are made available in three other MultiNet 

modules. 

Missing data character Edit window appears for Flle+lmport with MultiNet files. It is not 

needed for CSV files. 

Preferences appears as a menu item in the Analyse and Variables modules. Clicking it 

produces a menu containing Delete Empty Categories, Number of Categories, Number of 

Bins and Link Range. For Variables only Number of Categories and Number of Bins are 

enabled. Link Range is enabled only for network Analyse. Number of Bins is enabled only for 

Analyse ANOVA and CORREL. 

7.4 Technical appendix 

7.4.1 Error messages 

Generic values for a numeric variable is represented by F# 

Error  T e x t  is followed by 

Explanation 

Solution 

<nl> IS TOO LARGE! MAXIMUM IS 20 

Attempt to set more than 20 categories. 

Solution: No more than 20 categories currently allowed. 

<nl> IS TOO LARGE! MAXIMUM IS 100 

Attempt to set more than 100 bins. 

Solution: No more than 100 bins currently allowed. 



<nl> IS TOO SMALL! MAXIMUM IS <n2> 

Attempt to set number of bins less than number of categories. 

Solution: Number of bins must be at least as big as number of categories. 

EXPECTING ONE POSITIVE INTEGER 

Entry for either Number of Categories or Number of Bins is not a positive integer. 

Solution: Enter a single positive integer in these edit windows. 

7.4.2 Bins and Categories. 

The setting for number of categories is used to determine whether a variable should be 

considered as discrete/categorical or numeric/continuous. This is why the number of bins should be 

no less than the number of categories. In the Variables module, any new variable which can be 

considered discrete/categorical automatically has a list of value labels generated for each distinct 

category. These names may be changed by selecting Manage+Labels. If a new variable has too 

many categories, it is considered continuous and no value labels are available for editing. If value 

labels are required and the number of categories is not more than 20, Preferences-, Number of 

Categories can be set to the maximum and the variable re-created. For example, Recode+Equation 

using the single new variable will generate automatic value labels if possible. 

The setting for number of bins is approximate. If a variable has no more distinct values than this 

setting, all are used. Otherwise, the bin size is calculated by dividing the range of the variable by the 

requested setting and rounding the result to the nearest "nice number" (a multiple of 2,5 or 10) to get 

the bin size. The new bin size then determines the actual number of bins. 



8. Mathematical background 

This section is substantially the invited paper (Seary & hchards, 2003) presented at the workshop on Dynamic 

Social Network Modeling and Analysis organized by the Office for Naval Research and the National Research 

Council held in November 2002, Washington DC. 

8.0 Abstract 

We introduce three types of spectral analysis for graphs and describe some of their 

mathematical properties. We discuss the strengths and weaknesses of each type and show how they 

can be used to understand network structure. These discussions are accompanied by graphical 

displays of small (n=100) and moderately large (n=20,000) networks. Throughout, we give special 

attention to sparse matrix methods which allow rapid, efficient storage and analysis of large 

networks. We briefly describe algorithms and analytic strategies that allow spectral analysis and 

identification of clusters in very large networks (n>1,000,000). 

8.1 Introduction 

A standard method in statistics for handling multivariate data is to find the directions of 

maximum variability, usually of variance-covariance or correlation matrices. These directions are 

called Principal Coordinates or eigenvectors, while the relative importance of each direction is 

represented by numbers called eigenvalues. (Jolliffe, 1986) Finding this coordinate system may be 

accomplished by a series of rotations (although this is not the most efficient method) that end up 

pointing along the direction of maximum variability, with the second largest maximum variability 

at right angles, and so on. As a result, the data matrix is reduced to a diagonal matrix, with diagonal 

entries corresponding to the importance (eigenvalue) of each direction (eigenvector). The collection 

of all eigenvalues is called the spectrum. One goal is to reduce the problem so that only the most 

important dimensions (those with the largest eigenvalues) contain most of the variability. Implicit 

in these methods (variance-covariance or correlation) is that some kind of "expected" or 

"background" signal has been subtracted: in the case of variances, these would be the means of each 

variable in the original data matrix. To find these eigenvectors and eigenvalues we need to solve the 

eigenvalue equation: 

E e = ~ e  

(we will derive this equation below) which states that along the direction represented by vector e, 

multiplication by data matrix E does not change the direction, but only the length (where E may be 



any number, including O).' The related pair (~ ,e )  is called an eigenpair of matrix E .  

A network or graph G(V,E) is a set of nodes V (points, vertices) connected by a set of links 

E (lines, edges). We will consider networks that are binary (edges have logical value 1 if an edge 

exists, 0 if not), symmetric (an edge fiom node i to j implies an edge from node j to i), connected 

(there is a set of edges connecting any two nodes, consequently only one component), and without 

self-loops (no edges between i and i). We may represent such a network as the adjacency matrix A 

= A(G) with: 1 in row i, column j if i is connected to j, 

0 otherwise. 

We will not directly discuss weighted networks, where the entries for an edge may be a number other 

than 1, although most of the results that follow generalize to such networks. For many "real world" 

networks, A consists mostly of 0's: it is sparse. We will discuss efficient ways of storing and 

manipulating A using sparse method. 

Associated with A is the degree distribution D, a diagonal matrix with row-sums of A along 

the diagonal, and 0's elsewhere. D describes how many connections each node has. We call the 

number of nodes, m, the order of G and it is equal to the number of rows or columns of A. We 

represent the number of edges by (El. We will also introduce two other matrices related to A: 

the Laplacian: L = D - A 

the Normal: N = D-' A 

and will discuss the properties of the spectrum and associated eigenvectors of A, L, and N. 

8.2 Distances and diameter 

One important property of a network is the set of distances between any pair of nodes i and 

j;  that is, the least number of links between any pairs i and j. One way of calculating this is to take 

powers of the matrix A as follows (assuming A is not bipartite; see footnote 5): 

1" power A = A by definition gives a matrix of all pairs of nodes linked to each other. 

2nd power = AA has a non-zero in row i column j i f j  is at most two steps away fiom i ("at 

most" since i may be directly connected to j). Since i is 2 steps away fiom 

itself, the diagonal i,i entry counts the number of these 2-steps. 

We have introduced some notation which will be followed throughout: 
matrices are represented by bold capitals: D 
(column-)vectors are represented by bold lower case: e 
inner products of vectors are represented as eTe = n (a scalar) where eT is the transpose of e. 
outer products of vectors are represented as eeT = M (a matrix) 
eigenvalues are represented by Greek letters, usually with some relationship to the latin letters representing 
a matrix and an eigenvector. E.g.,( ai , q ) is an eigenpair of adjacency matrix A. 



3rd power = AAA has a non-zero entry in row i column j if; is at most 3 steps away from i. 

Eventually, some power of A, say A ~ ,  will consist of entirely non-zero entries, meaning every node 

has been reached fiom every other node. We call N the diameter of the graph: the longest possible 

path between any pair of nodes. 

This is a very inefficient way of calculating the diameter of a graph for two reasons: 

1) calculating each power of A requires m3 calculations 

2) as more nodes are reached, the powers of A become less sparse until eventually no 0's 

remain: the amount of storage required approaches m2 . 

If we continue taking powers of A, an interesting thing happens: all the columns become 

multiples of each other. Taking higher powers of A corresponds to taking longer "walks" along the 

edges and we can interpret this as a "loss of memory" about where we started from (Lovasz, 1995). 

We will see why this happens soon, as well as other examples of this phenomenon. 

We can approach this problem another way by the properties of the spectral decomposiiton of 

A (Parlett, 1980). Let ai be the eigenvalues of A and a the corresponding eigenvectors, with 

a,>a, >a2 ... >a,, and JJai 1 1  = 1 (the eigenvectors are normalized to length 1). Then the spectral 

decomposition of A is: 

(1) A = xi ( a i h  qT where is an mxm matrix defining a 1 -dimension subspace and 

T N -  (a, a, ) - a, if i=j; a, a: = O if i f j  

therefore = 2, a,' for any power N, and this allows an easy way of calculating powers of 

A, assuming we have already calculated all the eigenpairs (a , ,  a i ) .  

Another important property of the spectral decomposition is the approximation property. If we 
k 

take the first k of the eigenpairs ( a i ,  a,), then A, =z . ai a, a: is the best least-squares approx- 
1=0 

imation to A, meaning that we have captured most of the variability of A in the important eigenpairs. 

For example, we can estimate an upper bound for the diameter using the second-largest eigenvalue 

a, (Chung, 1989): 

Unfortunately, this bound applies only to k-regular networks (all degrees = k = a,,). We will get 

better bounds for general networks using different spectra. Nevertheless, this bound does show one 

relationship between the spectrum and an important property like diameter. In particular, when Wa, 

is large (there is a large gap between the first two eigenvalues), the upper bound on diameter is 

small, so all distances are short. 



8.3 The Power Method and Sparse methods 

Using (1) and eigenpair (a, ,  a ,) we can see why taking large enough powers of A results in 

columns that are multiples of one another - in fact, multiples of eigenvector a ,. This is the basis of 

the Power method (Hotelling, 1933) for finding eigenpairs. We have mentioned that taking powers 

of matrix A is not efficient, so we introduce a representation and methods that are far more efficient. 

A very simple way of storing and manipulating a sparse matrix A is to use a link list 

representation, which stores only the non-zero entries of A as a list of pairs i j for each link in A. We 

could then calculate the diameter of A by starting at i=l and following each link until we have 

reached every node, repeat for i=2, and save the maximum number of steps. This requires about m(El 

operations (Aho, et al., 1987) and a very moderate amount storage equal to 21EI. We can now use 

(1) to devise a very efficient version of the Power Method for finding the largest eigenpair: 

Starting with some random vector p normalized to length 1 : 

Repeat p' - Ap , q - p , p - p' until p is no longer changing in direction. 

Then the largest eigenpair of A is (plq, p). There are some bookkeeping details: Ap uses the link 

list representation, and the entries of p' must be adjusted in size after each multiplication (for details 

see Richards & Seary, 2000), but the method will always work for any matrix without repeated 

eigenvalues, which is generally the case for social networks. 

If we want more eigenpairs, we can iterate with 

p' - Mp -a, a, a: 

to get the second, and with 

p' + Mp -a, a, a: -a, a, a, T 

to get the third, and so on, without destroying sparsity. However, we must store the (ai, a i) eigen- 

pairs somewhere; the procedure is subject to loss of precision on a computer; and the iterations may 

converge slowly if ai la,, is close to 1. There are better methods, such as Lanczos iteration (Parlett 

et al., 1982) which converge very rapidly and do not have problems with loss of precision. 

8.4 Some network invariants 

Some properties of A remain unchanged (invariant) under the series of orthogonal rotations that 

diagonalize A (eigendecomposition). We will relate these to some network invariants of A. 

The eigenvalues of any symmetric matrix M are the roots of the characteristic polynomial: 

xm + C, xm-I + C2 xm-2 +C3 x"'-~ ... + C m-l 

Therefore, c, = a, + a, + ... + am-, (sum over all eigenvalues) of A; 



C, = a, a, +a, a, ... + a, a,., ... +a,, G-, + a,, q., (sum over all pairs); 

C, = a, a,  a, + a, a, a, + ... + a,, a,, %-, (sum over all triples) 

The trace of a matrix is the sum of the entries on the diagonal, and this is invariant under 

orthogonal rotations. Since A has trace of 0 (no self-loops), c, = 0. The sum of product pairs is equal 

to minus the number of edges so that c, = -(El. Most important is c, which is twice the number of 

triangles in G. Higher coefficients are related to cycles of length 4, 5, ... although they also contain 

contributions for shorter cycles (Biggs, 1993). It appears that the eigenvalues of A encode 

information about the cycles of a network as well as its diameter. We will see related results for the 

other two spectra. 

A bipartite network is one that can be partitioned so that the nodes in one part have connections 

only to nodes in the other part, and vice-versa. Such a network cannot have odd cycles (of any 

length) and hence no triangles. This means all the odd coefficients c,,, must be 0. It can also be 

shown (Biggs, 1993) that, in bipartite networks, the eigenvalues occur in pairs with opposite signs, 

so that a, = -a,-, and so on. Bipartite networks can be used to represent two-mode networks 

(Wasserman & Faust, 1994), for example the network relating people and the events they attend. 

These results scratch the surface of the information contained in the spectrum of A for k-regular 

graphs. For general graphs, we need to turn to other spectra., 

8.5 The Laplacian spectrum 

The Laplacian of a network was originally discovered by Kirchoff (1 847). There are a number 

of definitions and derivations, perhaps the most revealing due to Hall (1970), who was interested in 

situating the nodes of any network so that total edge lengths are minimized. 

He considers the problem of finding the minimum of the weighted sum 

(2) z = l/2Xij(xi - x,)' aij 

where a,, are the elements of the adjacency matrix A. The sum is over all pairs of squared distances 

between nodes which are connected, and so the solution should result in nodes with large numbers 

of inter-connections being clustered together. 

Equation (2) can be re-written as: 

= 1/2Cij (xi-2xi 4 + x, a,, = l /2Ci xi $ -1/2Xij 2xi xj ai + ~ R X ,  4 ai, 

Similar results may be obtained from the moments of the eigenvalue distribution (Farkas. et al., 2001; Gho, 
et al., 2001) 



where L = D - A is the Laplacian. In addition to this, Hall supplies the condition that XTx = 1, i.e., 

the distances are normalized. Using Lagrange multipliers (a standard method for solving problems 

with constraints), we have: 

z = XTLX - hXTX 

and to minimize this expression, we take derivatives with respect to X to give: 

(3) LX -AX = 0 or LX = AX 

which is the eigenvalue equation. It is not hard to show that Ao=O with 1, = 1, the constant (or trivial) 

eigenvector, and that O=h, I A,<... Am-,. For L, the most "important" eigenvectors belong to the 

smallest eigenvalues (Pothen, et al., 1990). 

It turns out that the discrete network Laplacian shares many important properties with the well- 

known continuous Laplacian operator v2 of mathematical physics. This has led to an explosion of 

research and results, mostly concerned with A, (Bein, 1991). 

The definition of L shows that there is no loss of sparsity (except for the diagonal) and that the 

sparse methods mentioned earlier can be applied to find all or some of the eigenpairs. The 

requirement that we must find the smallest eigenpairs is easily overcome by subtracting a suitably 

large constant fiom the diagonal of -L (which subtracts that constant from the eigenvalues without 

changing the eigenvectors).This guarantees that the first eigenpairs returned by the Power Method 

or Lanczos iteration are associated with the smallest eigenvalues of L. 

Some of the coefficients of the characteristic polynomial of L have an easy interpretation: 

c, = Trace(L) = 21EI (i.e., twice the number of edges) 

cm-, = 0 (since 0 is an eigenvalue) 

I m cm-, ( = ho h, ... Am-, + lo h2 ..Am-, + ... + h, hZ = A, h2...hm-, = the number of spanning 

trees of G (this is the Matrix-tree theorem of Kirchoff, 1847). 

In general, the eigenvalues of L encode information about the tree-structure of G (Cvetkovic, 

et al., 1995). The spectrum of L contains a 0 for every connected component. There is no such direct 

way to find the number of components of a network fiom the spectrum of A. There is also a bound 

on diameter related to k-, and A, for general graphs from Chung, et al., (1994): 

Diam(G) I r cosh-'(m-l)/ cosh-' ((I,-, + h,)/(&,, - h,))l 

Intuitively, if A, is close to 0, the graph is almost disconnected, while if A, >> A, (an eigenvalue gap) 

the diameter is small. 



8.6 The Normal spectrum 

We can repeat the same argument as Hall to derive the Normal spectrum, with the normalization 

constraint that X ~ D X  = 1 (Seary & Richards, 1995) to give: 

LX = p DX, or assuming that D can be inverted, 

where I is an identity matrix of proper size. In fact, we usually take the defining equation to be 

(4) D-' AX = NX = v X with D" A = N and v = I-p 

since adding an identity matrix shifts the eigenvalues by 1 without changing the eigenvectors. Note 

that for connected networks D not only has an inverse, it also has an inverse square root D-''~. 

The Normal matrix N has a number of interesting properties: 

1) It is a generalized Laplacian (with a different definition of orthonormality) 

2) It therefore has a trivial eigenvector no with eigenvalue vo = 1 

3) The spectrum of N is bounded by 1 = vo 2v, ... 2v,-, 2 -1 

4) The rows of N sum to 1 (it is a stochastic matrix) 

5) The spectrum of N contains a 1 for every connected component 

6) The eigenvalue -1 only occurs if G is bipartite, in which case all eigenvalues occur in pairs. 

7) N has been rediscovered a number of times: generalized or combinatorial Laplacian (Dodziuk 

& Kendall, 1985; Chung,1995); Q-spectrum (Cvetkovic, et a1.,1995). 

The descriptive name Normal is suggested by points 2) - 5), although it is not standard terminology. 

It is easy to see that there is no loss of sparsity in the definition of N. Each 1 in row i is simply 

replaced by I D i i  and the 0's are unchanged, but N is no longer symmetric. However, the matrix 

D-'"A D-II2 is similar to N (has the same eigenvalues) and we can apply the sparse methods described 

above to solve for the eigenpairs (v,, e,) and then calculate Dln ei = ni to get the corresponding 

eigenvectors without losing precision or sparsity. 

For N, the coefficients of the characteristic equation are harder to interpret except in special 

cases, but the eigenvalues encode information about both the cycle and tree structure of G 

(Cvetkovic, et al., 1995). Some examples: 

c, = Trace(N) = 0 



c, = c,,, = 0 (no triangles or other odd cycles) if G is bipartite 

ni deg(i)/xi deg(i) X,,(l-vi) = number of spanning trees of G 

In the last example we see how details of the degree distribution are also encoded in the spectrum. 

Fan Chung uses this to derive two remarkable bounds (see Chung, 1995 for details): 

- 
where vol X is the total number of edges in a subset of nodes XcV and X is V-X. Chung's first 

bound applies to any graph (regular or not) and is much tighter than the previous bound (for the 

Laplacian). Intuitively, if v, is close to 1, the network has a long path or is almost disconnected, and 

if v, << 1, the diameter is small. 

Chung's second bound describes the distance between subsets for any number k of subsets, based 

on the kh eigenvalue. The result suggests that we can use the eigenvalues to estimate how many 

subsets we should look for in a network without forcing distances that are too short (and hence too 

many subsets). 

8.7 Interpreting the Spectra 

Many important properties of the spectrum of A(G) where G is k-regular are true for L(G) and 

N(G), even when G is not regular. Another way of looking at this is that these properties of A are true 

because the spectrum of A is simply related to those of L and N for regular graphs: (ai = k-Ai = v,/k for 

k-regular graphs, with the corresponding eigenvectors being identical). In other words, both L and 

N are more natural function of graphs. This point of view is shared by the authors of recent papers on 

the Laplacian (Grone, et al., 1990, 1994). Mohar (1991) presents a collection of important results 

relating to the spectrum and eigenvectors of L. Chung (1995) has written several papers and a book 

about N. 

We return to the goal expressed in the opening paragraph. We would like to find the most 

important global features of a network, after accounting for what could be considered "expected" for 

a random network with the same number of nodes and edges. The biggest problem with interpreting 

the spectrum of A is the lack of an "expected" eigenvector (again, except for k-regular graphs). There 

is a lot of literature on the so-called "main eigenvectors" of A: those which have aprojection on the 



"all-ones" vector (e.g., Harary & Schwenk, 1979) , but the results remain hard to interpret (Cvetkovic 

and Rowlinson,l990). Both L and N have an "expected" all-ones eigenvector for which the 

interpretation is clear (though different in each case). 

To interpret L, we turn to physical analogy and the relation to v2 as discussed by Friedman 

(1 993). He considers a graph G as a discrete mani$old(surface) subject to "free" boundary  condition^.^ 

For illustration, consider v2 as the spatial part of the wave equation (Fisher, 1966, Chavel, 1984). 

Think of a fishing net subject to no forces. It just lies there at 0 energy with nothing happening. As 

we subject it to regular oscillations, the net vibrates with the most highly-connected regions moving 

together. Regions with many triangles tend to have the same signs, while those with few triangles are 

separated into parts with diferent signs. Friedman shows how the Hilbert Nodal theorem (Courant & 

Hilbert, 1965) can be applied to a discrete network, which generalizes Fiedler's result (described 

below): the signs of the k' eigenvector partition the network into no more than k+l disconnected 

components .4 

To interpret N, we have a number of choices: 

1) N is the Laplacian for a network of nodes, each weighted by its degree 

2) N is the transition matrix of a Markov Chain for a simple random walk on the nodes 

3) N' is similar to the x2 matrix, thus treating A as a contingency table 

The first leads to a physical analogy similar to that for L, so we consider 2) and 3): 

8.8 The Normal spectrum and Random walks 

Specifically, we consider nearest-neighbour random walks on a network (Lawler & Sokal, 1988). 

Define the probability-transition matrix for such a walk as 

Then the probability of moving from vertex i to any vertex adjacent to i is uniform. N is a row- 

stochastic matrix, and the random walk is a Markov chain. In this case 1 (the trivial all-ones 

eigenvector) is related to the stationav state of the Markov Chain: the probability is 1 = v, that such 

a probability distribution is eventually reached.' The vector p, = lT N =N 1 is the stationary state, 

no external constraints need to be satisfied 
2 This interpretation of the eigenvectors may be even more useful when considering V as the spatial part of the 

Dzflusion equation (for example, when considering diffusion of innovation or disease). 
'A problem can arise with bipartite graphs: p, does not exist since the chain oscillates between the two sets of 
vertices (period = 2). Probabilists deal with this by a simple trick: divide N by 2 and add a self-loop of 
probability 112 to every vertex: N' = I12 + Nl2 The eigenvalues of N' are then: 1 = v', <v',< ... 2 v',-, 5 0 
so that v' = (1+ v)/2 and again the eigenvectors are not affected. In effect, this suppresses all negative 



and it isproportional to the degree distribution. The second eigenpair (v,, n, ) has become important 

in the analysis of rapidly mixing Markov chains - those that reach the stationary state quickly 

(Sinclair, 1995). From the previous discussion it should not be surprising that these are associated with 

v, << 1 (a large eigenvalue gap), which means that the walk quickly "forgets" where it ~ ta r ted .~  

Moreover, when v, is close to 1, there must be parts of the network that are hard to reach in a random 

walk, implying long paths or a nearly disconnected network. 

8.9 Normal spectrum and x2 
The x2 matrix is defined in terms of the row and column marginals (sums). A typical element is 

(Observedi, - Expected,)' / ~ x ~ e c t e d ~ ,  which is not sparse. For a sparse network A, consider which 

has a typical element (Observed ij - Expected ij) /d  Expected ij where 

Expected = 
deg (9 deg (8 

deg(i) 

0 
We can write x as: - - f i  so that non-zero elements of A become A,, /JE,, while the 0 terms JE 

are unaffected, maintaining sparsity. The second term corresponds to the trivial eigenvector which can 

be dealt with separately. In matrix notation x = D-"'A D - " ~  which has eigenpairs (v,, D'~~II,) Thus we 

have 

(5) X2 = Ejj=, vi2 1 xi a,j (omitting the v,=l expected term for ni = 1) 

This equation shows how much each dimension contributes to x2 which is a measure of dependence 

between rows and columns. In this interpretation, if v, is small (v, << v, = I), then x2 is also small: 

there is no relation between rows and columns of A, and so there is no "signal" above the expected 

"background". If v, is close to 1, then X2 will be large and there is a relation between rows and 

columns of A, with the first eigenvector pointing in the direction of the maximum variability in x2. 
If V , V ,  ,... v, are also large, we need k+l eigenvectors to describe the patterns in the x2 matrix. With 

(5) we can tell how many eigenvectors we need to explain most of the x2 of the ne tw~rk .~  

eigenvalues. However, negative eigenvalues are useful for directed and bipartite networks. 

AS we saw, AK shows a similar phenomenon, but there is no simple relation to D, due to "leakage" from all 
the "main eigenvectors" (Cvetkovic, et al., 1988) 
' While PCA results tell how much of the variance each dimension accounts for, the Normal eigenvalues tell 
how much of the network's chi-squared each eigenvector (dimension) accounts for. 



8.10 Compositions 

The Kroneckerproduct of two binary matrices A, and A, makes a copy of A, for each 1 in A,. It 

is well-know that for two matrices A, and A, of order m, and m, the eigenpairs of the Kronecker 

product A,eA, behave well (West, 1996): 

If A, has eigenpairs (ai ,  a i )  and A, has eigenpairs (Pj ,bj ), then 

A,eA, has eigenpairs ({ai x Pj} ,{ ai e bj }) 

It is also well-known that A, and A, behave well under Cartesian sum: 

AleA2 = A, @I2 + A,eI, (where I, and I, are identity matrices of appropriate size) 

has eigenpairs ({ai + Pj} ,{ a, e bj 1). 

The Laplacian L also behaves well under Cartesian sum. For LleL2 the eigenpairs are 

({&+TI , { l i @ \ I )  

This fact is used by Pothen, et al., (1 990) to study the Laplacian of grids, which are Cartesian 

sums of paths. Further, the eigenvalues of L, and L, always contain a A, = 0 with corresponding 

constant eigenvector, so that the corresponding eigenpairs of L,eL, are (Ai+O, li el) .  The term I, el 

means that the components of li are replicated m, times. Since the Cartesian sum of two paths is a grid, 

this produces a perfectly rectangular representation (Fig. 8.1 b). The Laplacian is therefore a useful tool 

in problems involving regular grids (or hypergrids). However, N does not behave well under Cartesian 

sum (Figure 8.1 c). 

The Laplacian does not behave well under Kronecker product. However, the Normal spectrum 

does (Chow, 1997), so that N,eN, has eigenpairs 

Further, the eigenvalues of N, and N, always contain a v, = 1 with corresponding constant 

eigenvector, so that the corresponding eigenpairs of N,sN, are (vi x 1, ni el) .  The term n, @1 means 

that the components of ni are replicated m, times. Because all the coordinates are the same within each 

copy, this produces clustering of the components of N,eN, for these eigenvectors. 

It appears that the behavior under Kronecker product explains why both the Adjacency and 

Normal eigenvectors are good at detecting both on- and off-diagonal blocks (clusters of edges). 



8.1 1 Visualization 

The Laplacian L can provide good visual representations of graphs which are Cartesian sums 

(such as grids and hypercubes); while N can provide good visual representations of graphs which are 

Kronecker products (such as graphs consisting of blocks). The reasons for this are suggested above 

and have mostly to do with the behavior of eigenpairs which are sums and products with 0 and 1, 

respectively. For graphs that are not k-regular, eigenpairs of A do not provide such good 

representations since, in general, there is no constant (expected, trivial) eigenvector to combine with. 

Another way of describing these results is to consider the relationship between the eigenvector 

components for a node and those it is connected to (Seary & Richards, 1999). It is evident from the 

definition of eigendecomposition that (where "u-v" means "u is connected to v") 

Note that A has no control for node degree. Consider the effect for "important" eigenpairs: ( 1 a ( = 

k , 1, A,= 0 and I v 1 - 1) when deg(u) is small, a(u) will be folded toward the origin, while l(u) and 

n(u) will sit further away from the origin than its neighbours. This effect makes it difficult to interpret 

visual representations based on A, except for k-regular graphs where all three spectra are essentially 

the same (Figure 8.1) 

The equation for ni shows that for vi near 1, each node is approximately at  the centroid of those 

it is connected to. The exact difference from the centroid for node u of eigenvector ni is: 

For important eigenvalues vi near 1, this produces very good visualization properties. In addition, the 

eigenvector representation may be combined with derived properties such as betweenness (Freeman, 

1979) to produce very helpful displays of large networks (Brandes et al., 2001) 

8.12 Interpreting the eigenvectors 

8.12.1 Partitions 

Powers (1988) and others have shown how eigenvectors of A can be used to find partitions of 

highly connected subsets (clusters) of nodes, but these methods are not as general or as clear as those 

derived from L or N. 



The first non-trivial eigenvector 1, of L is the subject of extensive literature (Lubotzky, 1994; 

Alon & Millman,1985). Fiedler (1975) first suggested that the eigenvector 1, associated with the 

second-smallest eigenvalue 1, could be used to solve the min-cut problem: separate the network into 

two approximately equal sets of nodes with the fewest number of connections between them, based 

on the signs of the components of I,.' In fact, more recent derivations of L use the min-cut property 

as a starting point (Walshaw, et al., 1995) and the results are used to partition compute-intensive 

problems into sub-processes with minimal inter-process communication (Pothen, et al., 1990). This 

technique is called Recursive Spectral Bisection (Simon, 199 1). Other researchers have used 1, ,I, and 

higher eigenvectors to produce multi-way partitions of networks (Hendrickson & Leland, 1995). 

The graph bisection problem (Mohar & Poljak.,1991) is to find two nearly equal-sized subsets 

V,,V, c V such that cut(V,,V,) = Cij aij is minimized, where iEV,, j EV,. (i.e. nodes in V, and V, 

have few connections to each other). 

This problem is known to be NP-hard (Garey & Johnson, 1979), but a good approximation is 

given by the signs of 1, (Walshaw & Berzins,1995). This gives two sets of nodes of roughly the same 

size, but has no control for the number of edges in each part, and so any clustering of nodes is aside- 

eflect of the partition. 

However, we can add an additional constraint that the number of edges in each part also be 

roughly equal by weighting the node sets by their total degrees. This is exactly what a partition based 

on n, fiom N gives us, since n, points in the direction of maximum variability in x2 (Greenacre, 

1984).' Similarly, further partitions based on n,, n,, ... will also produce sets of nodes with a large 

number of edges in common (as long as v,, v,, ... make significant contributions to x2). Partitions based 

on positive eigenvalues will produce blocks on the diagonal of A of edges associated with each set 

of nodes, while those based on negative eigenvalues produce nearly bipartite ofldiagonal blocks 

(which occur in pairs if the network is symmetric) (Seary & Richards, 1995). 

8.12.2 Clustering 

Ideally, the important eigenvectors should be at least bimodal to induce clustering based on sign- 

partitions, and often they are multi-modal (Hagen , l992), suggesting that standard clustering methods 

can be used on the coordinates of these vectors. Equations (7) and (8) show that L and N place nodes 

approximately at the centroids of their neighbours. For N, the distances are actually measured in X 2  

space, meaning that nodes with very similarpatterns of connections will be close together (Benzecri, 

* Hagen also uses deviations from median 
see Dhillon (2001) for a formal derivation and proof 



1992). This clustering happens with either positive or negative eigenvalues (on- or off-diagonal). The 

latter are important in nearly bipartite networks with few triangles (Figure 8.3). 

8.12.3 Problems 

Farkas, et al., (2001) and Goh, et al., (2001) report that the important eigenvectors of A are very 

localized on nodes ofhigh degree, and suggest that this effect may be used to distinguish certain types 

of networks. This effect does not occur for L or N (Figure 8.2), since each include some control for 

degree, and so far no similar results for distinguishing network types have been reported for these 

spectra. The biggest problem for L and N is their sensitivity to "long paths", especially to pendant 

trees attached to the main body of the network (Seary & Richards, 2000). For N, these may be 

interpreted as nodes that are hard to reach (distant) in a random walk. For long paths internal to a 

network, this effect is actually an advantage, since these cycles are detected as "locally bipartite" and 

emphasized in important eigenvectors. Nodes on such paths can have a large effect on global 

properties such as diameter (Figure 8.3-8.4). 

8.13 Two-mode networks 

Two-mode networks mix two different kinds of nodes and connections. A simple example is an 

affiliation network such as people and the events they attend. We could be interested in finding sets of 

people with events in common (or, equivalently, sets of events attended by the same people): this is an 

example of co-clustering. Affiliation networks can be represented by bipartite graphs for which A and 

N are most suited, since they have symmetric spectra for these (the eigenvalues occur in pairs with 

opposite sign). Because ofthis we don't need the entire bipartite matrix: we can work with the rectang- 

ular representation, and infer the missing parts of the eigendecomposition. If we assume m, people and 

m, events, the resulting eigenvectors consist of m, components for people followed by m, components 

for events. The resulting blocks will be strictly off-diagonal and once again the eigenvectors of N 

provide a superior solution by maximizing x2. In fact, this solution is identical to that provided by 

Correspondence Analysis, a statistical technique for finding patterns in 2-mode data (Benzecri, 1992). 

8.14 Partial Iteration 

For large networks, it is not necessary or desirable to calculate the entire eigendecomposition. For 

very large networks, it may not be possible in terms of time and space to calculate even a few 

eigenpairs. Nevertheless, it is possible to get at a large amount of the global and local network 

structure by partially iterating using the Power Method. A few iterations of N = D-' 'A , with each 

iteration placing nodes at the means of their neighbours, will produce a mixture of the most important 



eigenvectors. Consider the spectral representation 

We know that (n,Dn:) =niDn: for all K, so the contributions of eigenvectors with small vi quickly 

drop out as these ( v ~ ) ~  approach 0. This means that N is dominated by the dimensions with vi near 

1. We start with a random vector, and quickly (6- 10 iterations) produce such a mixture. Moody (2001) 

describes a procedure in which this process is repeated a number of times, each producing a slightly 

different mixture of the important eigenvectors (Figure 8.5). The results are then passed to a standard 

cluster analysis routine (such as k-means, Ward's method) to find any clusters of nodes. 

8.15 Further analysis 

The method of partial iteration of N has been used for years in the program NEGOPY (Richards 

and Rice, 1981; Richards, 1995), as the first step in a more complex analysis. A key concept in 

NEGOPY is that of liaisons. These are nodes which do not have most of their connections with mern- 

bers of a cohesive cluster ofnodes, but rather act as connections between clusters (Figure 8.3-4). Often 

it is the liaisons that provide the connections that hold the whole network together. Finding the liaisons 

requires detailed knowledge about the members of (potential) clusters and their connections, and is not 

an immediate result of a partition based on eigenvectors or clustering methods. Nevertheless, eigen- 

decomposition methods - full or partial - are an excellent strategy to begin such analysis. 

8.16 Future prospects 

More work needs to be done on the categorization of networks based on important eigenpairs of 

L and N. Recent reports (Koren, et al., 2002; Walshaw, 2000) suggest we might not need to resort to 

partial methods after all; we can find important eigenpairs exactly for enormous networks (m>lOs) 

using "small" amounts of time and memory by first reducing the network in some way by sampling, 

solving the reduced eigenproblem, then interpolating back up with a very good "first guess" for the 

Power Method. Preliminary tests show that this should work equally well for Lanczos iteration. 
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9. Normal eigenspace and negative eigenvalues 

9.0 Introduction 
This section contains a comparison between Normal eigenspace and the spaces and eigenvalues 

of Correspondence Analysis (Greenacre, 1984) . The special properties of Normal analysis are 

exploited in four examples, with increasing emphasis on the use (and usefulness) of negative 

eigenvalues. These examples display results available in the Eigenspaces module. Other MultiNet 

modules (such as Variables, Pstar and Analyse) were also used for recoding variables, modelling 

and testing hypotheses. 

9.1 Comparison of Normal and Correspondence Analysis 

In a series of papers (Seary & Richards, 1995; 1998; 1999; 2000), the author developed a 

coherent theory relating the graph-theoretic Normal spectrum to the statistical technique known as 

Correspondence Analysis. MultiNet always computes the eigenspaces of the symmetrized, binarized 

network and treats the two spectra differently (see Technical appendix 5.7). 

The Normal matrix has a trace of 0 (the diagonal consists of 0s: self-loops are ignored), so that 

the spectrum consists of both positive and negative eigenvalues. In the extremes, eigenvalues 

of 1 are associated with disconnected components, while eigenvalues of -1 are associated with 

bipartite graphs. The positive Normal eigenvalues are shown to measure on-diagonal 

clustering: a fact exploited by NEGOPY (Richards & Seary, 2000). The negative eigenvalues 

measure off-diagonal clustering associated with local bipartiteness (Richards & Seary, 1997) 

Correspondence Analysis uses Singular Value Decomposition (SVD) (Press et. al., 1986 ) to 

find the related eigenspaces of the symmetric matrices of rows and columns formed by pre- 

and post-multiplying the data matrix by its transpose. Because of this squaring, the SVD 

"hides" signs of the singular values in the component signs of the singular vectors. This can 

lead to misleading results, where an important (near 1) CA singular positive singular value 

actually belongs to an eigenvector measuring bipartiteness. To avoid this, MultiNet makes the 

diagonal equal to (symmetrized) node degrees, so that the trace is positive and "negative" 

singular values are suppressed. 



For two-mode data there is also an important difference in the way symmetrization is handled 

for the two spectra. 

Normal analysis forms a symmetric matrix by constructing a (virtual) bipartite graph which 

retains all details about the rows and columns; the rows and columns are in a single eigenspace 

and are given their own sets of coordinates as the two parts of the bipartite graph. This results 

in a compete set of positive and matching (virtual) negative eigenvalues: virtual since with 

sparse matrix methods the full matrix is not required. 

Correspondence Analysis uses SVD resulting in separate row and column spaces. There are 

some controversies about how (or even whether) the two spaces can be represented together 

or compared (Carroll, et.al. 1986, 1987). 

The following four examples demonstrate the usefulness of negative eigenvalues and the 

corresponding eigenvector. 

9.2 Drug Injection behaviour 
This data was collected from a northeastern US city by Scott Clair (Clair, 2000).There are a 

number of node and link variables, and in this example we look at the variables: 

ETHNICITY: which ethnic groups the actors belong to (node variable) 

INJW: who the actors report they have injected drugs with (link variable) 

We have seen this network in the permuted I-D displays of Section 5 (Figure 5.17) which 

showed a relationship between ETHNICITY and INJW. The 3-D displays of Figure 9.1 show that 

the first three eigenvalues are important, since all are close to 1 in absolute value. As shown in Figure 

9.la, the first eigenvector (X-axis) separates the two main ethnic groups (Blacks have many more 

links with Blacks, Hispanics have many more links with Hispanics). The second eigenvector (Y-axis) 

appears to detect two clusters within the Blacks, while the Hispanics appear tightly clustered. 

However, the third eigenvalue is negative, meaning that the third eigenvector has the "high- 

frequency" oscillations associated with bipartite graphs (Seary & Richards, 2000). Bipartite graphs 

have no triangles, so an important structural feature of this network is a lack of triangles. Fig 9.1 b 

rotates the third eigenvector into the Y-axis and shows that this oscillation mostly happens at the right 

part of the display, which is mostly Hispanic. (This would be obvious without rotation in the 

anaglyphic 3-D display). What appeared to be a cluster is actually a "co-cluster": a bipartite-like pair 

of off-diagonal blocks. 





There are a number of reasons why this could be the case. Since this network results from 

people reporting that other people engaged in an illegal activity with them, this may just be the result 

of "missing" links since the people may be reluctant to report such activity. The existence ofjust two 

links between the two ethnic groups (Figure 1) suggests that people may indeed censor such links. 

However, this explanation does not work with missing triangles, since it requires too much collusion. 

In social activities, we expect transitivity: "if a knows b, and a knows c, then b knows c", and this 

forms triangles. With the Blacks we see these triangles, but not with Hispanics. 

Scott Clair's explanation is based on ethnography. Blacks have a longer history in this city, 

have more money, inject drugs together as a social activity in each others' apartments. Hispanics are 

newer to the city, cannot afford apartments, and tend to inject together in alleys: this is not a social 

activity, it is one of convenience and contingency. ModebPstar triad counts show 70 transitive and 

24 cyclic triads for Blacks, and only 24 and 3 corresponding triads for Hispanics. 

This example shows how the Normal eigenvector display not only makes clear the relation 

between network structure and actor attributes, it also raises questions about the quality and 

reliability of the data and suggests how these questions could be answered. 

9.3 Physician advice networks 

In this example we look at two physician advice networks, along with two node attributes: 

SPECIALTY (physician's specialty) and ZIPCODE (denotes geographical location of physician's 

office). The datasets were collected for a pharmaceutical company in order to find out who comes 

to doctors for advice, and who doctors go to for advice about medication for a particular medical 

problem. A non-disclosure agreement allows use of the data, but not the company name. The link 

variable COMESTO was collected by asking a sample of specialists to list up to 6 doctors who came 

to them for advice. The link variable GOESTO was collected by asking a different sample of doctors 

to list up to 6 doctors who they have gone to for advice. The relation of these two networks to the two 

node attributes is strikingly different. 

In figure 9.2a we see COMESTO with node variable SPECIALTY. Show+Direction has been 

selected to show that the network is very directed.. Only 8 of the 412 physicians both give and 

receive advice. The directed nature of this network is captured by the first eigenvector (with negative 

eigenvalue). Those that give advice (and that answered the survey) are on the right, and the advice- 



seekers (those named in the survey) are on the right. Clustering is visible along the Y-axis, and is 

made clearer by rotation around the Y-axis to show eigenvectors 2 and 3 (both with positive 

eigenvalues). In figure 9.2b, we see that the clusters are related to groups of specialties, which leads 

to the hypothesis that specialists mostly report giving advice to other physicians within the same 

specialties. There is no obvious relationship with ZJPCODE here. 

In figure 9.3a, we see GOESTO with node variable ZIPCODE. Show+Direction has been 

selected to show that the network is very directed.. Only 18 of the 375 physicians both give and 

receive advice. The directed nature of this network is captured by the first eigenvector (with negative 

eigenvalue). Those that give advice (those named in the survey) are on the right, and the advice- 

seekers (those who answered the survey) are on the left. Clustering is visible along the Y-axis, and 

is made clear by rotation around the Y-axis to show eigenvectors 2 and 3 (both with positive 

eigenvalues). In figure 9.3b, we see that the clusters are related to ZIPCODES, and there is no 

obvious relationship with SPECLALTY. This leads to the hypothesis that physicians report going to 

the geographically closest specialist, rather than to a physician with the same specialty. Another 

hypothesis is that these zip codes are related to concentrations of specialists, such as in a medical 

building or medical research facility, and suggests further data collection. 

Both figures 9.2 and 9.3 show directed links as dashed at the sender end, dotted at 

the receiver end, and solid if reciprocated. This avoids the clutter of arrow-heads at nodes, and 

immediately identifies reciprocated links, and the direction of directed links from either end. 

In Figures 9.4a and 9.4b we see the partitions that result from the first three Normal 

eigenvectors of each network. In both cases the off-diagonal nature of the directed links is captured 

very well by the first (negative) eigenvector. 













9.5 Multi-mode networks I1 

Section 8.12.2 describes how important Normal eigenvectors point in a direction that 

maximizes chi-squared, by approximately dia~onalizing the links of the adjacency matrix. This 

means that patterns of connections are similar for nearby nodes, and very different for nodes with the 

most different eigenvector coordinates. In fact, nodes with exactlv the same connections will have 

exactlv the same coordinates (this is the CA property of distributional equivalence discussed in 

Greenacre, 1984). Ordinarily, this property is considered anuisance for visualizations since a number 

of nodes may be overlayed in exactly the same location. MultiNet provides Show+Repel which 

displays these nodes in a circle around the common centre (Figure 9.10). However, this property can 

also be very useful. 

The Canadian subset of data from the Familial Colon Cancer Registry (FCCR) consists of 

1 12,000 individuals in 4 100 families and over 1,000 variables including 500+ epidemiological and 

lifestyle variables and 500+ diet and nutrient variables (Cotterchio, et.al., 2000). MultiNet is being 

used to examine which genes, andlor which environmental factors, account for familial clustering 

as well as the relative importance to familial clustering of genetic or environmental factors. Multi- 

mode analysis and visualisation techniques allow identification of patterns of connections among 

people, cancer sites and families. Questions that are being addressed: 

Which sites of cancer co-occur within families? 

Do the same sites co-occur with colonic and rectal cancers within families? 

Are there combinations of sites linked repeatedly within different families? 

PFDR kmiiy sire 
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These results show two things: 

The Amsterdam criterion (Cotterchio, et.al., 2000) is a known risk factor for families with 

Colorectal cancer. Risk is high with co-occurrence of any of: Brain, Endometrium, Ovary, 

Liver, Lymph, Pancreas, Stomach. The first three co-occur more with Rectum, while the last 

three co-occur more with Colon. This is a new result. 

There is co-occurrence of Rectum with Skin, Bladder, Renal, Lung, which are not part of the 

Amsterdam criteria. This is also a new result. 

These results, when confirmed by analysis of data kom other centres, may be used in the 

search for new genes. Other questions that may be addressed are: 

What lifestyles co-occur within families? 

What lifestyles co-occur within individuals? 

Does lifestyle co-occur with health behaviour in individuals? 

Papers discussing this new type of analysis and describing these new results are in preparation. 
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10. Networks of Symptoms and ~xposures' 
Andrew J. Seary(l), William D. Richards(l), Gail McKeown-Eyssen (2) and Cornelia Baines(3)' 

Abstract 

We present some novel methods for analysing and visualizing data fiom medical studies using 

methods originally developed for the study of social networks. The methods are based on spectral 

(eigendecomposition) properties of networks, in particular the so-called Normal spectrum. Among 

the many desirable properties of this spectrum is the natural handling of bipartite (2-mode) networks 

through negative eigenvalues, the clustering properties related to positive eigenvalues, and the 

relationship to the chi-squared measure of dependence in contingency tables. 

Introduction 

Social network analysis (SNA) begins with data that describes the set of relationships among the 

members of a system. One goal of analysis is to obtain fiom the low-level relational data a higher- 

level description of the structure of the system which identifies various kinds of patterns in the set 

of relationships. For example, it may be of interest to find cohesive clusters of network members: 

those which have most of their connections with each other. It may also be of interest to find 

members with similar roles: those with few mutual connections but many connections to other 

similar sets of members. These two goals may be combined in the search for general patterns, which 

is the aim of block-modelling (Wasserman and Faust, 1994). 

As an illustration of block-modelling, consider a network or graph G(V,E) as a set of nodes V 

(points, vertices) connected by a set of links E (lines, edges). For simplicity here, we will consider 

networks that are binary (edges have logical value 1 if a relationship/connection between the nodes 

exists, 0 if not), symmetric (an edge fiom node I to j implies an edge from node j to I), and without 

self-loops (no edges between I and I). We may represent such a network as the (square) adjacency 

matrix A = A(G) with: 

A(i,j) = 1 if I is connected to j 

A(i,j) = 0 otherwise 

For example: 

' This section has been accepted for publication in Structure and Dynamics as (Seary, et.al, 2005). 

(1) School of Communication, Simon Fraser University, B.C.; (2) Department of Public Health Sciences and 
Department of Nutritional Sciences, University of Toronto; (3) Department of Public Health Sciences, 
University of Toronto. 



Adjacency matrix 
a b c d  e f  g h  

block-model 

where the partitions of the network on the left map onto the blocks on the right. It is easy to see 

where the partitions (and hence blocks) should go in this example, since the rows and columns are 

ordered to make this obvious. In general, network data is not so conveniently ordered, nor is it so 

obvious where the blocks are. In this example, we see: 

the network is not connected. There are no links from the block in the upper left (a-d) to 

those in the lower right (e-h). 

The upper left block is on the diagonal. It is a clique (complete graph), with a link between 

every pair of nodes. 

The lower right blocks are off-diagonal and form a (complete) bipartite graph, with links 

from e and f to g and h, but no links between e and f or g and h. 

There are a number of methods for finding an ordering and a blocking of network data. One 

approach is to choose a set of axes in the multidimensional space occupied by the network and rotate 

them so that the first axis points in the direction of the greatest variability in the data; the second 

axis, orthogonal to the first, points in the direction of greatest remaining variability, and so on. This 

set of axes is a coordinate system that can be used to describe the relative positions of the set of 

points in the data. Most of the variability in the locations of points will be accounted for by the first 

few dimensions of this coordinate system. The coordinates of the points along each axis will be an 

eigenvector, and the length of the projection will be an eigenvalue. The set of all eigenvalues is the 

spectrum of the network. Spectral methods (eigendecomposition) have been a part of graph theory 

for over a century. SNA researchers have used spectral methods either implicitly or explicitly since 

the late 1 9601s, when computers became generally accessible in most universities. Two ofthe earliest 

important programs were related to eigendecomposition: Negopy (Richards, 197 1 ; Richards & Rice, 

1981) was designed for finding cohesive clusters, and CONCOR (Breiger et al., 1975) aimed to 

solve the more general block-modeling problem. The eigenvalues of a network are intimately con- 

nected to important topological features such as maximum distance across the network (diameter), 



presence of cohesive clusters, long paths and bottlenecks, bipartite-ness, and how random the 

network is (Chung, 1995). The associated eigenvectors can be used as a natural coordinate system for 

graph visualization; they also provide methods for discovering clusters and other local features. For 

a more complete discussion of these matters, see (Seary & Richards, 2003). 

As well as networks ofpeople and relationships, SNA has long considered relationships between 

people and events (Davis et al., 1941), co-authorship networks (Crane, 1972) and other examples of 

so-called 2-mode networks (Wasserman & Faust, 1994) which involve relationships between two 

types of nodes. These networks are usually shown as rectangular R (with n, rows and n, columns), 

since in general there are not the same numbers of the two types of nodes. As Breiger (1974) shows, 

2-mode matrices can be made square by matrix multiplication of R and its transpose R ~ .  Another 

approach is to make a square A (with n, + & rows and columns) fiom R by appending RT below and 

to the left of R along with necessary 0 matrices: 

This shows that 2-mode networks can be represented by the square adjacency matrices of symmetric 

bipartite. graphs. (We will use this method for the data we describe later in this paper.) This 

representation is not generally used in SNA, probably because of the extra space taken up by the 

transpose and the 0 matrices. However, sparse matrix methods, which only store and manipulate 

actual links (Seary, 2005), can allow rectangular R to be treated as square A very efficiently. 

The Normal Spectrum 

The Normal Spectrum may be derived by considering the generalized quadratic placement 

problem (Hall, 1970; Seary & Richards, 1995) leading to the generalized eigenvalue equation: 

We have introduced some notation which will be followed throughout: 
matrices are represented by bold capitals: D 
(column-)vectors are represented by bold lower case: e 
eigenvalues are represented by greek letters, usually with some relationship to the latin letters representing 
a matrix and an eigenvector. E.g.(v, , ni) are the eigenpairs of Normal matrix N 



D is a diagonal matrix of node degrees of G 

L = D - A is the Laplacian matrix of G (Cvetkovic et al., 1995, Seary & Richards, 

2003) 

3L is an eigenvalue 

x is a corresponding (column-)eigenvector 

Assuming that D can be inverted (which it can be if every node has at least one link; i.e. no 

nodes are isolated) 

where A is the adjacency matrix of G and I is an identity matrix of proper size. In fact, we usually 

take the defining equation to be 

D" An = Nn = vn with D-' A = N and v = 1-1, where 

v (the Greek letter nu) is an eigenvalue of the Normal matrix N and 

n is the corresponding eigenvector. 

Adding an identity matrix shifts the eigenvalues by 1 without changing the eigenvectors. Note that 

for networks without isolated nodes D has an inverse and therefore an inverse square root D-'I2. In 

networks with isolated nodes, the network size is effectively reduced by the number of isolates 

because the analysis uses only the nodes with links. The number of eigenpairs (vi , ni) is equal to the 

number of nodes n. We generally label these with i=0, ...,- 1 since i=O corresponds to the trivial 

eigenpair (v, = 1, no = 1). 

The Normal matrix N(G) is: 

N(i,j) = lldeg(1) if I is connected to j 

N(i,j) = 0 otherwise 

so that N is not symmetric. However, we can construct M = D - ~ ~ ~ A D ' ~ ~ ~ ,  which is symmetric, and 

which is similar to N (it has the same eigenvalues). 

Let (vi , mi) be the eigenpairs of M. Then the eigenpairs N are: 

(vi , ni) = (vi , ~ - ~ ~ ~ m ~ )  

The orthonormalization condition is: 

n , Dn = 6 ij = 1 if i=j, 0 otherwise 

- -- - - - 

a boldface 1 refers to the vector (1,1, ... ,1) 



That is, the vectors are orthononnal in the D (or x2)  metric (Richards & Seary, 1997). The Normal 

spectrum is referred to as the Q-spectrum in (Cvetkovic, et. al., 1995). The multiplicity of 1 as an 

eigenvalue is equal to the number of connected components in G. If G is bipartite, then eigenvalues 

appear as pairs with opposite signs. Thus -1 is an eigenvalue if and only if G is bipartite. 

The Normal matrix N has a number of interesting properties: 

It has a tivial constant eigenvector no = 1 with eigenvalue vo = 1 

The spectrum of N is bounded by 1 = vo 2v, ... 2v,-, 2 - 1 

The rows of N sum to 1 (it is a stochastic matrix) 

The spectrum of N contains a 1 for every connected component 

The eigenvalue - 1 occurs if and only if G is bipartite, in which case all eigenvalues occur in 

pairs with opposite signs. 

N has been rediscovered anumber of times: generalized or combinatorial Laplacian (Dodziuk 

& Kendall, 1985; Chung,1995); Q-spectrum (Cvetkovic, et a[., 19%). 

Notice also that the similar matrix M satisfies the definition of Chi-squared. In practice, it is much 

simpler to solve the eigenproblem for M, since it is symmetric. 

Four important properties of Normal eigenpairs 

The following important properties of Normal eigenpairs will be useful in understanding the 

results obtained later. 

1. Bipartite Representation of 2-mode networks 

We can represent a 2-mode network by a square symmetric matrix with all the links in off- 

diagonal corners, so that the matrix is mostly 0's. The result is always a bipartite graph, so that all 

eigenvalues occur as positive and negative pairs (eg. 1, -1,0.93, -0.93, ...). We don't generally need 

most of the negative eigenpairs, but the eigenvector belonging to eigenvalue - 1 can be very useful. 

We don't need to explicitly construct the full matrix, nor calculate all eigenpairs. Using sparse 

methods and automatic symmetrization, we only need store the links in one direction, and can calcu- 

late only a few eigenpairs with largest eigenvalues (Seary, 2005). 

Assume that there are n, items in one mode (the rows of the original matrix) and n, items in the 

other mode (the columns). Then the bipartite matrix will be square with (n,+n,) rows and columns. 

Thus each eigenvector also has (n,+n,) coordinates. By the bipartite construction, the first n, 

coordinates correspond to the n, items in the first mode (the rows), and the remaining n, coordinates 

correspond to the n, items in the second mode (the columns). 

For a pair of positive and negative eigenvalues of a normal spectrum, the only difference 



between the corresponding eigenvectors is that the first n, coordinates of one have opposite signs of 

the first n, coordinates of the other. In particular, the eigenvector belonging to eigenvalue -1 is the 

trivial constant eigenvector (I), except that the first n, coordinates are negative. The difference in 

signs can be used to identify the two modes. 

2. Visualization 

The eigenvectors of N can provide good visual representations of graphs which consist of blocks 

of nodes with similar connections. This follows from the relationship between the eigenvector 

coordinates for a node and those it is connected to (Seary & Richards, 1998). It is evident from the 

definition of eigendecomposition that 

(1) 
s-t 

n, (s )  = for the i"' eigenpair (vi , n,) of N 
(vj deg(s)) 

(where ni(s) is the s"' component of the i~ eigenvector; "s-t" means "s is connected to t") 

This equation shows that for eigenvalues vi near 1, each node is approximately at the centroid 

of those it is connected to. The exact difference from the centroid for node u for eigenvector n, is: 

ni (s)  - n, ( t )  = (1- v, )ni 
s-t 

For "important" eigenvalues vi near 1, this produces very good visualization properties. Members 

of a block tend to be close to one another and not close to members of other blocks. 

3. Relation to x2 
The x2 matrix is defined in terms of the row and column marginals (sums). A typical element is 

(Observed, - Expected ij)2 /~x~ec ted , ,  where 

We can write x as: o/* - 6, where the second term corresponds to the trivial eigenvector 

which can be dealt with separately. In matrix notation x = D-'''A D - " ~  which has eigenpairs 

(v, D1"ni). Thus we have4 

(omitting the expected term corresponding to trivial vo = 1, no = 1) 
-- - -- - - - - 

For the bipartite representation, only the positive eigenvalues contribute to x2 of the 2-mode network. 



This equation shows how much each dimension contributes to x2 which is a measure of depend- 

ence between rows and columns (or of deviation fiom what would be expected if the node degrees by 

themselves would give a complete description of the network's structure). In this interpretation, if (v,( 

is small ((v,(<< v, = l), then X2 is also small: there is no structure or pattern to explain in the network 

beyond the node degrees, and so there is no ''signal" above the expected "background." On the other 

hand, if lvll is close to 1, then x2 will be large and there is a relation between rows and columns of A, 

with the first eigenvector pointing in the direction of the maximum variability in x2. If (v2, V, ,... vkl are 

also large, we need k+l eigenvectors to describe the patterns in the x2 matrix. Thus we can tell fiom 

the eigenvalues how many eigenvectors we need to explain most of the x2 of the network, and which 

are the most "important" ones, since they contribute most to x2 (Greenacre, 1984). 

4. Partitions 

There is a large literature on the use of eigenvector coordinates to provide partitions of graphs. 

Most of these methods use eigenpairs of the adjacency matrix (Powers, 1988) or the Laplacian 

(Pothen et al., 1990). Fiedler (1975) was the first to show that Laplacian eigenpairs could provide 

good approximate solutions to the min-cut problem: partition a graph into parts of approximately 

equal number of nodes with few links between them. We can add an additional constraint that the 

number of l inh in each part also be roughly equal by weighting the node sets by their total degrees 

(Dhillon, 2001). This is exactly what a partition based on n, from N gives us, since n, points in the 

direction of maximum variability in X2. Similarly, further partitions based on n,, n,, ... will also 

produce sets of nodes with a large number of edges in common (as long as v,, v,, ... make significant 

contributions to x2). Partitions based on positive eigenvalues will produce blocks of edges on the 

diagonal of A, while those based on negative eigenvalues produce nearly bipartite off-diagonal blocks 

(which occur in pairs if the network is symmetric) (Seary & Richards, 1995). In both cases, the 

concentration of links to specific parts of the network leads to a large value of x2 for the partition. 

As an example of these properties, figure 1 shows visualizations of children at a day-care centre5. 

The network is defined by observing which children "Play" with each other (all links are therefore 

symmetric). Figure 1 a is a two-dimensional visualization, labelled by the sex of the children. It is clear 

that the x-dimension (eigenvector 1) is important (eigenvalue = 0.801) and that the clusters on the left 

and right are related to sex. Fig. lb  is a one-dimensional visualization, showing the adjacency matrix 

as permuted by the coordinates on eigenvector 1. It is clear that this permutation based on the 

This data was collected by students in a course Richards taught in 1988. The students watched the children 
in a daycare centre (ages: 6 to 10) and, over the course of a day, noted the children they saw playing together 
and, later in the day, asked each who they had played with. 



maximum variability in x2 has moved most of the links close to the diagonal. Fig. lc shows the same 

adjacency matrix as permuted by the sex of the children (boys in upper left, girls in lower right). Some 

clustering is evident. Fig. Id shows the adjacency matrix permuted by the signs of eigenvector 1 ("n" 

for negative, "p" for positive). The partition, which is now based on the network itself, is better than 

that for sex in a sense that will be described in the next section. 

LINK: "PLAYms I 
Evec 1 Eval 0.801 
Evec 4 Eval 0.623 
Evec 7 Eval 0.556 

# Nodes = 29 i 
SEX 
1 boy 

a) Two-dimensional visualization of Play network b) Play adjacency matrix permuted by Normal 
based on positive Normal eigenvectors. Nodes eigenvector 1 coordinates. Nodes labelled by Sex. 
labelled by attribute Sex. 
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c) Play adjacency matrix permuted by Sex. d) Play adjacency matrix permuted by signs of 
Nodes labelled by Sex. Normal eigenvector 1. Nodes labelled by signs. 

Figure 1. Four views of the PLAY network. 





numbers in the cells are the column percents that would be seen in the corresponding cells of the 

contingency table. The heights of the segments in the "Totals" column are proportional to the row 

marginal percentages. The width of the other columns are proportional to the column marginal 

percentages. The areas of the segments are proportional to the counts in the corresponding cells in 

the contingency table. If the row variable is independent of the column variable, the segment heights 

in all columns are the same as the ones in the "Totals" column. This is not the case if the row 

variable is not independent of the column variable. 

In table la and figure 2a (compare to figure Ic) we see the counts within and between a block- 

model based on sex. In table lb  and figure 2b (compare to figure Id) we see the counts within and 

between a block-model based on the component signs of the first normal eigenvector. Clearly the 

latter is superior based both on a larger x2 and more within-block and fewer between-block counts. 

The MultiNet Network analysis program 

MultiNet is a Windows-based computer program designed for interactive exploratory data 

analysis of social and other large, sparse, multivariate networks7. It was designed for exploratory 

analysis and visualization of large, complex networks, and to provide details of the values of the link 

and node variables that make up the networks. Three aspects of the program are relevant to this 

discussion: 

Eigenspaces: Visualize networks and create variables and partitions fiom graph spectra. 

Variables: Univariate statistics and transform, combine, create and delete link or node variables. 

We will make use of the Recode function which allows a variable to be created by combining 

existing variables, then transformed into a categorical variable by quantiling, for use in a con- 

tingency table. 

Analyse: Perform statistical analyses on two or three link and/or node variables. We will create 

contingency tables visualized as Panigrams. 

MultiNet always produces both graphical displays and textual reports; all the figures and tables in 

this paper were prepared using the program. 

Figures Id and 2b and table lb  use categorical partition variable np(P1ay) with two unique values 

("n" and "p") based on the signs of Normal eigenvector 1 for the Play network. MultiNet makes it 

easy to define a real-valued variable based on actual eigenvector coordinates; this variable can then 

There is currently no limit (apart fiom memory) on the number of nodes and links that can be handled by the 
Analyse and Variables modules. There is similarly no limit on the number of node and link variables that may 
belong to a MultiNet data file, and new node and link variables can easily be created when desired. 
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be used to perform further operations on the eigenvector coordinates, such as selection of subsets of 

nodes and binning or quantiling into categories. Relationships between categorical variables can be 

easily examined with the resulting contingency tables visualized as panigrams. These definitions, 

transformations and analyses are all that will be used in this paper. Further and more detailed 

information on the program's capabilities can be found at (Sear-, 2005). 

A 3-mode medical network of people, symptoms and exposures 

Bipartite representation can also be used for three-mode networks, which have three types of 

objects and one relationship which is meaningful only between but not within object types. An 

example is a) people, b) reported symptoms and c) exposures that were believed to produce the 

symptoms8. Using the method described above in the discussion of bipartite representation of 2- 

mode networks, we can represent the data as shown in Table 2. 

Questionnaires were filled out by 

patients in general practices. They 

listed symptoms they had experienced 

in the last year and any substances (ex- 

posures) that they thought might have 

caused symptoms. Respondents were 

not asked to link specific symptoms to 

specific exposures. The medical re- 

searchers initially categorized 68 se- 

lected symptoms into 14 types (Table 

3a) and the 85 exposures into 8 types 

(Table 3b). The analysis described 

Table 2. Bioartite reoresentation of 2-mode networks 

here did not link individual symptoms to individual exposures because of the large numbers of each 

reported by some patients (on average, 24.12 symptoms andlor exposures per person; in one case 63 

symptoms and 6 1 exposures); however, it did find a relationship between types of symptoms and types 

of exposures reported by respondents which was unexpected to the medical researchers. Also, it 

suggested a further grouping of types of symptoms based on obvious monotonic trends in the Food 

(Group A) and Standard Allergens (Group C) exposures. 

To define the network we begin with three types of nodes: 1340 people, 68  symptoms and 85 

exposures (the network thus has a total of 1493 nodes). A link is defined between a person and a 

symptom if the person reported that symptom; a link is defined between a person and an exposure if 

This dataset came from a University of Toronto study conducted by co-authors and medical researchers 
Cornelia Baines and Gail McKeown-Eyssen (McKeown-Eyssen,G, Baines, C., et al. 2001). 



Table 3a. Categories of Symptoms (n = number in category, N=total number reported) 

Category n N Group Examples 

a Neurocognitive 
rn AffectIMood 
B Vegetative 
r Energy 
118 Musculoskeletal 
ap Endocrine 

- - 

forgetfulness, trouble finding words 
feeling tense, depressed 
sleeping more, compulsive 
sleepiness 
tiredness, general weakness 

muscle pain, muscle weakness 
fast heartbeat 

Infection 
= Allergy 
ap Miscellaneous 

TOTAL 

other headache, migraine 
excess gas, bloating 

burning eye 
irregular heartbeat 
light sensitive, bad taste 

sore throat, hoarse voice 
itchy eye, watery eye 
sinus fullness, sinus headache 

Table 3b. Categories of Exposures (n=number in category, N=total number reported) 

Category n N Group Examples 

a Food 29 2002 A coffee, dairy products 

- Environmental 11 947 B tobacco smoke, auto exhaust 
HomeMlork 15 1005 B household cleaners, disinfectants 

Furnishings 10 620 B TV screen, carpet 
Grooming 4 587 B perfume, cosmetics 

Renovation 3 232 B paint, sawdust 
Pharmaceuticals 5 240 B prescription, non-prescription 

medicine 

118 Standard 
Allergens 

6 1480 C pollen, house dust 

TOTAL 85 7113 

the person reported that exposure. The resulting link variable is called "sym-exp" in figures 3 and 4. 

For each person, this variable has a value for each symptom and each exposure. The value is "I " if a 

person reports a particular symptom or a particular exposure; otherwise it is "0." 

Figure 3 shows nodes placed according to the coordinates of eigenvectors 1,3 and 5. In figure 

3a and 3b the green dots correspond to people, the magenta dots to symptoms and the cyan dots to 





exposures. Since the first eigenvector with eigenvalue -1 perfectly captures bipartite-ness9, the two 

parts of the bipartite network (people and symptoms or exposures) each lie along straight lines in the 

direction of the Y-axis. People report so many symptoms and exposures (high degrees) that the lines 

representing links obscure the display, so they are turned off in figure 3b, which is also rotated 

slightly around the Y-axis for clarity. Eigenvector 3 captures the difference in frequency of 

symptoms and exposures, separating the higher frequency symptoms from lower frequency 

exposures. As the totals in tables 3a and 3b show, the frequencies of symptoms and exposures are 

quite different with 25,217 symptoms reported (18.82 symptoms per person) and only 7,113 

exposures reported (5.3 1 exposures per person). Eigenvector 5 captures the simultaneous clustering 

of symptoms and exposures. Figure 3c shows more detail of the symptoms and exposures nodes 

labelled by the types assigned by the medical researchers. Both symptoms and exposures cluster by 

type, with extremes belonging to Neurocognitive symptoms & Food exposures at the upper left and 

right, and Allergic Symptoms & Standard Allergen Exposures at the lower left and right. 

The analytic strategy 

In order to quantify the clustering that appears visually in figure 3, we start with a Normal eigen- 

decomposition of the network using for "links" the variable that describes reported symptoms and 

exposures. The first and fifth eigenvectors were used to create new variables. The values of the fifth 

eigenvector for symptoms and exposures were converted to missing, resulting in a variable that 

contained only values for people. This variable was recoded into deciles so the lowest ten percent of 

people were "1"; the next ten percent were "2", etc. 

We then performed a crosstabulation of symptom reports, using the symptom's type for rows and 

the person's Decile for columns. We did the same with exposure reports, using the exposure's type 

for rows and the person's Decile for columns. The set of steps used to do this analysis in MultiNet 

are explained in an appendix. 

The results are shown graphically in panigrarns in Figures 4a and 4b. In both cases, each column 

of the table is represented as a bar whose width is proportional to the column's marginal percentage. 

In a column, there is a segment corresponding to each row of the table. The heights of these seg- 

ments are proportional to the column percentages in the corresponding cells of the table. 

In bipartite graphs, eigenvalues come in pairs with opposite signs. The eigenvectors associated with each pair 
contain the same values, but the component values for one part have signs reversed, repeating the bipartite-ness 
captured by eigenvalue -1. For this reason, we did not use eigenvectors 2 and 4 because the eigenvalues they 
are associated with are the negative copies of 3 and 5. 





Discussion of results 

Figure 3c suggests, and the tabled0 visualized in figure 4, confirm that there is a relationship 

between types of symptoms and types of exposures people report. People who report symptoms in 

certain categories tend to report exposures in certain categories. For example, more than 50% of the 

exposures reported by the people in decile 1 are Standard Allergens; almost 75% of the symptoms 

they report were in Group C (and more than 35% in "Allergy"). That people who report sensitivity 

to allergens tend to also report allergies is not a surprise, but at the other extreme (of both figure 3 

and 4) is the result that more than 50% of the exposures reported by people in decile 10 were "Food" 

and more than 60% of the symptoms they report were in Group A, with most of these either 

Neurocognitive (23%) or Affect/Mood (20%). To our knowledge, the relationship between Food 

exposures and Neurocognitive and Affect/Mood symptoms has not been reported before. 

It is clear that eigenvector 5 captures a difference between people who report symptoms related 

to allergens and those who report symptoms related to food. On the basis of the trends in eigenvector 

5, we collected the categories of both symptoms and exposures into the following groups (table 2): 

Group A has column percents which increase steadily (almost monotonically) fiom decile 1 to decile 

10. For Exposures, this group consists of Food. For symptoms, this group includes Neurocognitive, 

Affect/Mood, Vegetative, Energy, Musculoskeletal, Energy and Endocrine, with the first two 

contributing more than 50% to the counts. In figures 3c and 4, group A is coloured red. 

Group B does not change monotonically fiom decile 1 to decile 10. This group is coloured 

yellow. 

Group C has column percents which decrease steadily (monotonically except for one data point) 

fiom decile 1 to decile 10. For exposures, the group consists of Standard Allergens. For 

symptoms this includes categories Infection, Allergy and Miscellaneous, with the last two 

contributing about 80% of the counts. In Figures 3c and 4 group C is coloured blue. 

These groupings and colourings are used in figures 3c and 4 to show the smooth relationship 

between categories (the deciles) of people and the symptoms and exposures they report. 

The clusters shown in these figures arise fiom the relationship between the coordinates of any 

node in an eigenvector and the coordinates of the nodes it is connected to. This relationship is 

expressed by equation (1): 

'O The cross-tab tables visualized by these panigrams are large - the first one has 14 rows and 10 columns (plus 
marginals) resulting in 500 numbers (including row, column percentages and counts). Please email the authors 
if you wish to see these tables. 



showing that coordinate ni(s), the st" component of the i~ eigenvector, is approximately at the 

centroid of the coordinates of the nodes s is connected to. The approximation is exact for the 

constant trivial eigenvector with eigenvalue 1 (where every node has exactly the same coordinate). 

For eigenvalues far from 1 (which is the case for eigenvector 5 with eigenvalue 0.345), the 

coordinates can be quite far from the centroid, so that any clusters can be quite smeared out, as we 

see in figure 3c. Nevertheless, the analytic strategy outlined here can detect small signals and 

suggest directions for further analysis. 

One reviewer suggested that comparable results could be found by using methods such as factor 

analysis. However, factor analysis would necessarily require reduction over the "cases" of the data 

(the people), while fitting to the "variables" (the symptoms and exposures). For example, the default 

SPSS "Factor" routine would apply principal Components Analysis (Joliffe, 1986) to the symmetric 

(and therefore square) matrix produced by correlating the columns of variables, which loses all 

details about the people. Our method is similar to Correspondence Analysis (Greenacre, 1984) which 

uses Singular Value Decomposition (Press et. al., 1986 ) to find the related eigenspaces of the 

symmetric matrices of cases and variables formed by pre- and post-multiplying the data matrix by 

its transpose. Our method forms a symmetric matrix by constructing a bipartite graph which retains 

all details about the cases and variables; the cases and variables are in a single eigenspace and are 

given their own sets of coordinates as the two parts of the bipartite graph. This allows easy 

calculations and visualizations such as those shown in the panigrams of figure 4. 

Another reviewer suggested relating Panigrams to Mosaic displays (proposed by Hartigan & 

Kleine, 1981) to represent contingency tables. Though there are superficial similarities, the two 

methods were developed independently and have evolved in different directions. Richards 

developed panigrams as a way to make the information in large crosstabulation tables easily 

\ comprehensible (Richards, 1987). Subsequent developments (Richards, 1988,1993; Seary, 2005) 

include transposes, three-way contingency tables, three-mode ANOVA, and interactive exploration 

and interpretation (e.g., Fig 2 and 4). Panigrams have always included row and column marginals, 

which have never been part of Mosaic displays. In the early 19907s, Michael Friendly extended 

mosaic displays so they would incorporate residuals into the tiles, allowing the analyst to know 

whether the observed data deviates from an expected model. While panigrams are used to illustrate 

the column (or row) percentages and marginals in a two-dimensional crosstab table, with colours 

representing the categories of row or column variables, Friendly's method uses colour and shading 

to represent the sign and magnitude of standardized residuals from a specified loglinear model 

(Friendly, 199 1, 1992). 



Conclusions. 

The results presented here show that the combination of spectral methods for visualizing and 

partitioning, and contingency tables with panigrams can lead to the extraction of unsuspected 

relationships, even with high degrees and low signal. In this case the categories given by the 

medical researchers were a good match to the patterns in the data. Without such pre-existing 

categorizations these methods can also suggest alternative ways of categorizing the data by block 

models which maximize x2 derived from spectral results. 
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Appendix 

Perform a Normal eigendecomposition of the network using for "links" the variable that describes 

reported symptoms and exposures: 

Use Eigenspaces +Normal with "sym-exp" - the link variable that describes reported 

symptoms and exposures 

Use Define +Variables to create two new variables ("IN-sym-exp" and "5N-sym-exp") from 

eigenvectors 1 and 5 

Use Recode +Equation to select coordinates on the 51b eigenvector for people (and to exclude 

symptoms and exposures). This is a two-step process. First, take advantage of the fact that 

people have negative coordinates on eigenvector 1 (Figure 3): multiply the variable that 

contains eigenvector 5 by "IN-sym-exp<OW which evaluates to "1" if true and "0" if false. The 

equation (1 N-sym-exp<O)*5N-sym will make the coordinates for Symptoms and Exposures 

equal to 0. This uses properties 1 (bipartiteness) and 2 (visualization) to isolate the people. 

Use Recode +Zero -*Missing to turn these 0 coordinates into missing data, excluding them 

from the next steps of the analysis. The distribution now includes only coordinates for people. 

Use Recode +Discrete option Quantiles to categorize the people into deciles. Create a new 

variable to specify which decile each of the 1340 people is in ("Deciles of people from 

Eigenvector 5" in figure 4). This uses properties 3 and 4 to produce a partition that should result 

in large x2. 

Next, perform a network crosstabulation of symptom reports where symptom type is used for rows 

and Deciles for columns, then another with exposure types for rows and Deciles for columns: 

Use Network +Xtabs to form contingency tables counting the types of symptoms reported by 

people in each of the 10 deciles (Figure 4a). 

Use Network +Xtabs to form contingency tables counting the types of exposures reported by 

people in each of the same 10 deciles (Figure 4b). 



11. Glossary 

actor: In SNA, the nodes of a network are usually people, so this term commonly used to refer to a 

node (vertex, point) in a network. 

adjacency matrix: A network (graph) may be represented by a matrix of zeros and ones, with a one 

indicating that two nodes are connected (adjacent), and a zero otherwise. In a weighted graph, the 

ones may be replaced by other positive numbers (e.g., a distance or cost). 

A sample adjacency matrix is shown below. See link list 

a b c d e f  g h  
a  0 1 1 1 0 0 0 0  a has connections to b,c,d 
b 1 0 1 1 0 0 0 0  b has connections to a,c,d 
c  1 1 0 1 0 0 0 0  ... etc ... 
d 1 1 1 0 0 0 0 0  
e  0 0 0 0 0 0 1 1  
f 0 0 0 0 0 0 1 1  
g  0 0 0 0 1 1 0 0  
h  0 0 0 0 1 1 0 0  

Adjacency spectrum: The adjacency matrix of a graph, like any matrix, may be subject to an 

eigendecomposition. In graph theory, the resulting set of eigenvalues is referred to as the graph 

spectrum, in analogy to the continuous spectrum fiom continuous spectral analysis methods such 

as Fourier analysis. In Fourier analysis, the spectrum is understood to refer to the weighting of sines 

and cosines, whereas the discrete graph spectrum (eigenvalues) are weights of eigenvectors with 

unknown functional form. We sometimes use the term eigenpair refer to both eigenvalues and 

eigenvectors. Since there are other spectra associated with graphs, we refer to this one as the 

Adjacency or Standard spectrum. 

anaglyphic 3-D: The same image is presented twice, once in red, and again in cyan after a slight 

rotation around the z-axis. When such an image is viewed through special glasses with a red filter 

over one eye (left is recommended) and cyan over the other eye, the brain combines the two images 

into one with a strong perception of depth. 

Analysis of Variance: Statistical technique used to determine whether a continuous variable depends 

on individual values of a categorical variable by comparing the overall variation to the variation 

within each category. 



attribute: one node (link) variable. The node (link) attributes are the complete set of node (link) 

variables. Sometimes used interchangeably with variable. 

bipartite: network consisting of two parts, with links between the parts, but not within the parts. 

Bipartite graphs may be used to represent hypergraphs such as two-mode networks. 

bin: The number of distinct values a variable attains is referred to as the number of bins. 

binned display: Histograms of continuous variables must accumulate close values into "bins" which 

may be defined by range (e.g., 0-9, lO-l9,20-29, ...). However a more general approach is to select 

a pre-defined number of bins (default 30 for MultiNet), but this also has problems. A small number 

of bins loses detail, whereas a large number may result in one value in each bin and an unhelpful 

binned display. 

block: A block is a generalization of a clique in the sense that blocks are defined as sets of nodes that 

have similar patterns of links to nodes in the same or other sets, while cliques is a set of nodes that 

have most of their links to other nodes in their own set. All cliques are blocks, but some blocks are 

not cliques. One of the aims of block-modelling is to identify roles by clustering the nodes so that 

those with similar patterns of connections are next to one another in the matrix. The members of each 

block perform similar roles in the network. 

block model: a higher-level description of a network, where roles (or blocks) are represented by a 

simplified graph. For the example adjacency matrix above, a block model would be: 

Cartesian sum: A form of graph composition, which forms more complex graphs from simpler ones. 

Cartesian sum may be expressed in terms of Kronecker product as: 

A,@A2 = A,@12 + A,@I, (where I, and I, are identity matrices of appropriate size) 

As an example, the Cartesian sum of two paths is a rectangular grid. 

change statistics: As implemented in MultiNet, estimation of pstar parameters depends not on local 

statistics, but on the difference between these statistics as a link is inserted and removed. Usually 

these are simple functions ofthe actual local statistics. E.g., the change statistic for Choice is constant 



1 ; the change statistic for Mutuality is the existence of a reciprocal link in the transpose. 

clique: In graph theory, a clique is a sub-graph in which all nodes are connected to each other. In 

social networks, a clique is a set of nodes with most of their connections with other members of the 

clique. This would generally correspond to an informal role (e.g, •’iiendship). In the above matrix {a, 

b, c, d) form a clique. 

cluster: A collection of points that are "close" to each other in some sense. Many definitions (and 

related techniques) are available. For networks, we should also insist that the points share 

connections, either within the cluster (clique) or with another cluster (see block model). 

clique: a complete sub-graph. I.e., a subset of nodes with a link between each pair. 

complete: a graph in which every pair of nodes is linked is said to be complete. 

component: If a graph is connected, it consists of a single component. A disconnected graph does 

not have a path between any pair of nodes, and may consist of several components. 

connected: If there is a path between every pair of nodes in a graph, the graph is said to be 

connected. A disconnected graph does not have a path between any pair of nodes, and so distances 

(and diameters) cannot be defined, except within each component. See weakly and strongly 

connected. 

Correspondence Analysis: Eigendecomposition of the chi matrix derived from a data matrix by 

dividing entries by the square root of the chi-squared expected values. The resulting spectrum of 

eigenvalues squared is a partition of chi-squaredl(sum of data entries). The eigenvectors are scaled 

by the corresponding eigenvalues (so they are not normalized), and the orthogonality metric is chi- 

squared Calculation of CA generally uses Singular Value Decomposition which hides the signs of 

the eigenvalues. In MultiNet, positive eigenvalues are always ensured by placing node degrees along 

the diagonal of the adjacency matrix. See also Normal spectrum. 

database: the complete set of all node and link variables, along with all descriptive items such as 

comments and statistics, which are either stored together as a single file or as a pair of files ( related 

by name) of the node and link variables. 

degree: the number of links a node has to all other nodes is its degree. For directed networks, this 



may be further defined as 

* OUT-degree: the number of links TO other all other nodes, and 

* IN-degree: the number of links FROM all other nodes. 

density: the number of links in a network compared to the maximum number possible. This 

maximum depends on whether the network is undirected (N/(N+1)/2) or directed (NN) and with or 

without diagonal (N/(N-1)/2 or N(N-1) respectively). Social networks of any ofthese types typically 

have low density (0.1 or less). Such networks are said to be sparse. 

directed: Some relationships are inherently one-way only (e.g., "child of'). Some directed 

relationships may be reciprocated (e.g., "get advice") 

disabled: Menu items that are not currently available are shown as greyed-out. Clicking on such 

items has no effect. E.g., In Eigenspaces, most items are disabled until a network (lin 

distance: For graphs, the distance between nodes is defined as the smallest number of links 

connecting them. Also called geodesic distance. 

diameter: the largest geodesic distance between any pair of nodes in a graph 

disconnected: a network containing nodes with no paths connecting them is disconnected, and 

consists of a number of smaller connected networks called components. 

display window: Two display windows are used by MultiNet: one displays the current list of Node 

variables and the other the current list of link variables. Both are scrollable, and items may be high- 

lighted. Both are closed by closing either one. Both are displayed whenever MultiNet returns to the 

main window. 

dyad: any pair of nodes, connected or not. In SNA, any dyad has a potential set of links (one-way 

and reciprocated). 

edit window: A multi-line, scrollable window containing text which may be changed. An edit 

window has Edit in the title bar and menu choices Quit and Save. Selecting Save replaces old text 

with new. Pressing Quit results in no change. 



ego-centric: network data collected by asking a (generally small) number ofpeople to nominate other 

people and describe their relationships with these others. Such data is generally not connected or 

reciprocated. 

eigendecomposition: Any symmetric matrix may be decomposed into a set of spaces defined by 

(usually orthogonal and normalized) eigenvectors, with the importance of each space determined by 

scalar eigenvalues. In general, the eigenvalues need not be unique and the dimensionality spanned 

by the eigenvectors need not be the size of the original matrix, although these matters are not usually 

important for social networks. What is important for SNA is that the most important (largest 

eigenvalues) dimensions give the best least-squares fit to the original matrix and hence describe the 

most important global properties ofthe network (e.g., connectedness, diameter, number of clusters). 

See also spectral analysis. 

eigenpair: the pair (eigenvalue, eigenvector). 

eigenspace: the complete set of eigenpairs. For distinct eigenvalues, each eigenvector defines a 

dimension, and the corresponding eigenvalue defines the importance of the dimension (contribution 

to the original network). Other properties ofthe eigenspace (e.g., orthonormality conditions) depend 

on how the original data matrix was treated (see Adjacency, Laplacian, Normal). 

error window: MultiNet traps three types of errors: Warning (information is displayed, but the user 

may proceed after pressing Okay), Error (a condition was checked for and failed, the user may not 

proceed after pressing Okay), and Internal Error (an unexpected error has occurred). The last case 

may result in other Internal Error messages as Okay is pressed until the main menu is reached. Errors 

of the last type should be reported to the author. 

exponential random graph: Model for directed graphs in which the probabilities of links is 

calculated based on an exponential function of fit weights times actual count statistics (see triad 

counts). Many graphs may produce the same counts, so some quality of fit measure is required to 

determine how well the fit describes a particular graph, in pstar this is -2LogPseudolikelihood. 

gap: The term gap or spectral gap refers to large distances in the spectrum of eigenvalues, 

particularly between 0 and the second-smallest (Laplacian) or between 1 and the second-largest in 

absolute value (Normal). A small gap means that a graph can be disconnected with few edge-cuts; 



a large gap means there are many paths between sets of nodes. 

geodesic: the shortest path (i.e., the smallest number of links) connecting two nodes. There may be 

more than one geodesic between pairs of nodes. 

global vs local methods: In graph theory, a local method is one that examines only a few neighbours 

of a node. A global method is one which examines the entire graph, such as an eigendecomposition. 

grouping: a set ofproportional link variable describing content or purpose that are collected together 

for analysis (cross-tabulation or ANOVA). 

header: Before data files can be Imported, the data within them must be described. This is done in 

the header section, which describes mandatory variable names and locations, and optional value 

labels and comments. The header section ends in "end" or "begin data". 

hypergraph: A simple graph consists of links between pairs of nodes. A hypergraph generalizes this 

to hyperlinks between sets of more than 2 nodes. An example is a (two-mode) network of people and 

the events they attend: an event may be attended by any number of people, and each person may 

attend many events. A hypergraph may always be represented by a bipartite graph. 

ID number: Identity number. Used externally in collecting data to ensure privacy. Use internally to 

most analysis programs as an efficient method for handling data related to individuals. 

isolate: a node with no connections. 

k-star: The (outfin-) degree of a node. This is one of the local statistics that may be used in pstar 

fitting, though it is currently not implemented in MultiNet. 

Kronecker product: A form of graph composition, which forms more complex graphs from simpler 

ones. An example of the Kronecker product is: 

0 1 0 0  
where every 1 in the first matrix has been replaced by a complete copy of the second matrix. In this 

example the first matrix is a block model, not a graph. 



Lanczos iteration: a generalization of the power method which allows calculation of a specified 

number of eigenpairs without loss of precision or orthogonality. Currently one of the best methods 

for eigendecomposition of large systems. 

Laplacian spectrum: The eigenvalues (and eigenvectors) of a matrix formed by subtracting the 

adjacency matrix from a diagonal matrix of node degrees. The eigenvalues are non-negative, with 

a "trivial" (constant) eigenvector of eigenvalue 0. This discrete analogue of the continuous Laplacian 

shares a great many of its important properties. For this reason, it has become the focus of much 

research in the last decade. 

liaisons: according to NEGOPY, these come in two types. Direct liaisons are individuals who have 

most of their interaction with members of groups, but not with members of any one group. They 

provide direct connections between the groups they are connected to. Indirect liaisons are individuals 

who do not have most of their interaction with members of groups. They provide indirect or 'multi- 

step' connections between groups by connecting Direct Liaisons, who have direct co~ec t ions  with 

members of groups (Richards, 1995). 

Likert scale: a standard method for categorizing subjective information, generally running from 

l=strongly disagree through 3=neutral to 5=strongly agree. 

link: A pair of nodes with some connection between them. In graph theory, links are also called 

edges or lines. In social networks, links are often called ties. 

link list: A sparse format for storing information in a network. Only the pairs of nodes that are 

connected are in the link list. For symmetric graphs, only one pair is needed for each link. For 

weighted graphs, a third column may be used to hold the weights. For the symmetric adjacency 

matrix shown above, the link list is: 

1 2 

1 3 

1 4 

2 3 

... and so on ... 



local statistics: Counts made in the immediate neighbourhood of nodes. These include e.g., degree, 

dyad and triad counts but not e.g. betwemess, diameter or other distance measures beyond nearest 

neighbours. 

localized: As applied to an eigenvector means that most of the coordinates are near zero, and only 

a few have large values. Coordinates may be either positive or negative, and the eigenvectors are 

normalized to make the sum of squares of components 1, so the sum of 4h powers is generally used 

as a measure of localization. If this sum is near 1 only a small number of coordinates are important. 

If it is near l/m, then all nodes contribute to the eigenvector. 

logical equation: An equation which evaluates only to values of 0 or 1. These are generally 

constructed fiom assertions such as a>O (=0 if a is 0 or negative; =1 if a is positive) which are 

combined with other variables to make selections. E.g. in the Variables module 

which selects all values of b for which a is positive. The remaining zeros can then be removed by 

Zero->missing. The example shows that logical equations may be combined with + (logical or) and 

* (logical and). 

main menu: horizontal list of MultiNet modules which may be selected by single left-click 

missing data: MultiNet handles missing data by marking every variable with a bit string which has 

binary value 1 for valid data, and binary value 0 for missing data. There are a large number of reasons 

for missing data, the most common being non-response. Data with questionable values (outside a 

prescribed range) may also be converted to missing values. MultiNet ensures that combinations of 

variables are defined for non-missing values only. This may be over-ridden by converting missing 

values to O's, although this causes fewer problems for link variables (where 0 means no relationship) 

than node variables (where 0 may be a valid data value). 

multiple selection window: drop-down, scrollable list of items for making multiple selections. All 

items in the list are initially selected (and high-lighted), and the list is scrolled to the bottom. Shift 

-clicking selects a range of items, which are high-lighted. Control-clicking toggles selections on 



(high-lighted) or off. When selections are done, clicking on Okay completes the multiple selection 

of all high-lighted items. Help may provide context-sensitive help or general advice about selecting 

multiple items. Clicking on Cancel cancels all selection, which is detected by the program. 

multiplex:Except in very formal situations, the purpose and content of contacts between people are 

generally multiplex: there are a number of purposes and a number of content areas. See proportional 

link variables and groupings. 

neigbourhood: all the nodes which are connected to a given node. May be extended to all nodes 

connected to a set of nodes, but not including the original set. 

NEGOPY: (NEGative entropy) (Richards and Rice, 198 1, Richards, 1995) is a computer program 

designed to find clique structures. It uses a random starting vector, and multiplies it by the 

row-normalised adjacency matrix, subtracting off row means. Usually 6-8 such iterations are 

performed, resulting in a vector which is a mixture of the important Normal eigenvectors (Richards 

and Seary, 1997). This vector is then scanned for potential clique structures, which are tested against 

the original network and for some statistical properties (e.g., variance in the node degrees). Sparse 

matrix methods are used throughout, allowing large networks to be analysed rapidly. 

Network analysis: In MultiNet, mixing node, link and group variables together into cross- 

tabulations, ANOVA and correlations that involve counting the number (or amount) of interactions 

that connect nodes of the same or different types in a network. E.g., The length of time spent talking 

about work (a link variable) between the sexes (the same node variable ate each end of the link). 

node: An object that may have some kind of connection (link) to another object. In some cases, nodes 

are people, organizations, companies, countries, etc. In graph theory nodes are also called vertices 

and points. In social networks, nodes are often called actors. 

Normal spectrum: The eigenvalues (and eigenvectors) of a row-normalised adjacency matrix. This 

matrix is row-stochastic, and similar to a symmetric matrix, so its eigenvalues are real and less than 

or equal to 1 in absolute value. It is closely related to the Laplacian (indeed, it may be defined to be 

the Laplacian in the x2 metric defined by the node degrees). In MultiNet, the diagonal of the 

adjacency matrix left at 0, so that the trace (sum of eigenvalues) is also 0, ensuring both positive and 

negative eigenvalues. See also Correspondence Analysis. 



panigram: a two-dimensional display showing marginal and column percents in a cross-tabulation. 

Colours are used to represent the row categories. 

partition: A partition of a graph is a division of the nodes into a collection of non-empty mutually 

exclusive sets. A partition of the adjacency matrix shown above could be: {a, b, c, d}, {e, f, g, h}, 

so that there are no links between the nodes in each part of the partition. 

proportional link variable: a valued (non-binary) link variable with values that describe the 

importance of an interaction on some simple scale (e.g.,O = none,..S=all). Proportional link variables 

may be used to describe both purpose and content of interactions (e.g., the meeting was mostly 

informal and we talked a bit about school), and are generally used in groupings that describe 

multiplex interactions over a certain time period. 

quality of fit: measure used to describe how well a theoretical model predicts actual measurements. 

Usually based on the maximization or minimization of some well-defined function. In eigenspace, 

this is the mean-square difference between a low dimensional approximation and the actual network. 

In pstar, this is usually taken to be -2LogPseudolikelihood. 

reciprocated: a directed relationship such as "get advice" may connect two actors in both directions. 

The link is then said to be reciprocated. 

resizing: Any of the windows that show the resize controls in the upper left may be resized to either 

full-screen or larger or smaller under user control by clicking and holding the mouse at the lower 

right corner. In particular, the Report and Graphic display windows may be resized. The latter may 

be made smaller so that bitmap images take up less space (for, e.g., use in published results). For this 

reason, changing graphics sizes also changes displayed text font size, and some practice may be 

necessary to ensure that the results are satisfactory at smaller sizes. 

selection window: drop-down, scrollable list of items for making a single selection. The first item 

in the list is initially selected (and high-lighted). Double-clicking on any item, or single-clicking to 

select an item (which high-lights it), followedby clicking on Okay selects the item. Clicking on Help 

may provide context-sensitive help or general advice about selecting an item. Clicking on Cancel 

cancels any selection, which is detected by the program. 



self-link: A link that connects a node to itself. Some relationships allow such links (e.g. "Vote for"), 

while others forbid it (e.g., "married to"). In an adjacency matrix, a self-link appears on the diagonal. 

sparse methods, sparse matrix techniques: In analysis of networks with more than 50 or 60 

members, it is usually the case that each node is connected to only a fraction of the others. The 

adjacency matrix for such networks contain mostly zeroes, which indicates the absence of links. In 

these situations, it far is easier to work with a list of the links (link list) that are present, rather than 

the whole matrix which contains many times more numbers. Any array (such as an adjacency matrix) 

which consists mostly of some default number (usually zero) may be treated as a sparse matrix. Since 

this value is known, it does not need to be stored as part of the array. This allows the array to be 

stored in a much more efficient manner, e.g., for an adjacency matrix, we only need to store the links 

(pairs of nodes) when they exist. For a weighted adjacency matrix, we also need to store the values 

ofthe weights, one for each link. Many matrix operations (e.g., multiplying a matrix by avector) can 

utilize this more efficient storage to run much faster as well. Sparse matrix techniques are those 

which avoid any manipulation of the matrix that would affect the sparseness property (e.g., taking 

the inverse will generally do this, as will correlating each row or column with all the others). It is 

quite possible to find eigenvalues and eigenvectors using sparse techniques. 

spectral analysis or methods: Loosely speaking, another term for eigendecomposition. 

Mathematically speaking, a general term referring to any re-statement of some function in terms of 

a set of basis functions (e.g. sines and cosines for Fourier analysis). The spectrum is the weights of 

these basis functions. The Fourier transform is especially useful in mathematical physics since the 

sines and cosines (or ez for complex z) are eigenfunctions of the ubiquitous derivative and integral 

operators. The terms function, operator and eigenfunction have the discrete analogues of vector, 

matrix and eigenvector. 

Standard spectrum: see Adjacency spectrum 

Standard Analysis: Ordinary Cross-tabs, ANOVA or correlations as applied to either node or link 

variables. Node variables may be combined only with other node variables, and similarly for link 

variables. 

strongly connected: A network with directed links is said to be strongly connected if there is a path 

of directed links connecting every pair of nodes. A directed network may be weakly connected but 



not strongly connected. An undirected network which is connected is both weakly and strongly 

connected. 

structural equivalence: Two nodes are structurally equivalent ifthey have identical links to all other 

nodes in the network. This strict definition is usually relaxed for block-modelling by replacing "all" 

with "most". 

symmetric: A symmetric network is one in which every link is known to be reciprocated (see 

undirected) and so may be stored and manipulated in efficient ways. E.g., a symmetric network 

requires at most N(N+1)/2 storage (or N/(N-1)/2 if the diagonal is not included). 

text window: a single-line edit window, generally with some default value high-lighted. Generally 

used to select variable names and comments. 

tie: In SNA, the links of a network are usually between people, so this term is commonly used to 

refer to a link (edge, line) in a network. 

title bar: In Windows, this is the coloured bar at the top of every window which generally contains 

the name of the program controlling the window. In MultiNet, this area may also contain additional 

information about what the current module is doing ( e g ,  Module name, File name(s), Analyse 

variable(s)). 

triad counts: A dyad has potentially four types of linkage: 1) none, directed 2) I->j and 3) I<-j, and 

reciprocated 4) i o j .  A triad has potentially 16 types of linkage, based on the various possible dyad 

combinations. These are the counts that MultiNet uses in pstar fitting. 

two-mode: network data which consists of two different types of nodes. A typical example is people 

and the events they attend together. May be represented by bipartite graphs. 

undirected: an undirected link is one which is inherently reciprocated (e.g. "married to") 

undirected network: An undirected network is one in which all the links are inherently reciprocated 

(e.g., "is married to"). See symmetric. 



value labels: Categorical variables, or discrete variables with few enough distinct values, may use 

value labels to represent the actual values, as described in the header or when defined in the 

Variables module. This is convenient since data must be coded numerically but is much easier to 

understand with descriptive labels. For example, 1= female, 2 = male is easier to understand in tables 

and graphics by using "female" and "male" rather than the arbitrary "1" and "2". 

view window: A multi-line, scrollable window containing text which may be viewed but not 

changed. A view window has View in the title bar and single menu choice Quit. Pressing Quit exits 

the View window with no change. View windows are used throughout MultiNet to present Report 

text results. Value labels are also useful as a check against error. 

weakly connected: A network with directed links is said to be weakly connected if there is a path 

of links, ignoring direction, connecting every pair of nodes. A directed network may be weakly 

connected but not strongly connected. An undirected network which is connected is both weakly and 

strongly connected. 

YesNo window: Before any action that may have important results (deleting a variable, starting a 

large calculation, ending MultiNet) a YesNo window asks a relevant question and waits for a Yes 

or No answer before proceeding. The context-dependent default answer is initially selected, and is 

the value returned by pressing Enter or clicking on x. 
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