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Many computational pattern searching tools for the discovery of novel, common 

regulatory elements between co-expressed genes have been developed over the last ten 

years. However, few approaches attempt to incorporate valuable additional information, 

such as inter-species conservation, into the prediction process. Orthology biased Gibbs 

sampler (OrBS) is an expansion on the Gibbs sampler motif discovery approach. I 

introduce dynamic motif width prediction, a novel convergence detection approach, and a 

scoring function that incorporates cross-species sequence conservation. The algorithm 

was refined using the Caenorhabditis elegans X box element and is shown to 

successfully identify the element in sequence sets with only 33% of X box regulated 

genes. Using the reported X box consensus, I successfully identified additional genes, 

like the C. elegans orthologue to human BBS4. OrBS was less successful in the 

identification of the other C. elegans regulatory elements, such as the PHA-4 binding site 

and the UNC-86 binding site. 

cis-regulatory element, regulatory element detection, Gibbs sampling, computational 

biology, transcriptional control, Caenorhabditis elegans, 
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INTRODUCTION 

The quest for determining what constitutes and causes a given gene's particular 

expression pattern has long been a matter of research. Many expression differences 

between genes can be explained by the existence of cis-acting regulatory elements that 

modulate the transcription of a gene, through binding of a protein. In addition to a host 

of other mechanisms that can regulate expression, a transcription factor binding site 

(TFBS) can be located either upstream or downstream of a gene or within an intron of the 

gene, and can exist a great distance from the gene. In combination with the small size of 

the elements, typically 6 to 12 nucleotides, the discovery and identification of cis-acting 

regulatory elements is a difficult task. Traditional genetic and molecular biology 

techniques for the discovery of a novel TFBS are time and labour intensive. Once the 

affected gene of a transcription factor is identified through genetic experimentation, a 

handful of procedures are available to locate the regulatory element: footprinting uses a 

chemical or nuclease to degrade a DNA strand in areas the protein does not bind; linker 

scanning mutagenesis can localize elements through replacing segments of the promoter 

with a synthetic linker of equal length using restriction enzymes (McKnight and 

Kingsbury 1982); gel mobility shift assays can identify protein-DNA interacting through 

mobility retardation on an electrophoresis gel. While through these techniques, the TFBS 

discovery problem has been partially solved for many genes individually, undiscovered 

TFBSs, methodologies to identify novel TFBSs in a high throughput manner have only 

come about within the last decade. 



Most of these methods are computationally based and owe their emergence to the 

ongoing rise in computational power and decrease in sequencing costs. One of the 

common computational prediction methods, and the method applied in my Orthology 

Biased Gibbs Sampler (OrBS), is the Gibbs sampling approach, a Markov Chain Monte - 

Carlo (MCMC), method which gained much popularity in the 1980s in the field of image 

processing (German and German 1984). A Markov chain consists of a finite number of 

states. At each 'time' interval, a Markov chain process must occupy one, and only one, 

of these states. As time advances, the process either stays in its current state, or moves to 

another state. The movement of a Markov chain process is dependent on a defined set of 

transmission probabilities. In addition, a Markov chain must abide by the following two 

characteristics: the memorylessproperty which states that the probability of the next 

state depends only on the current state and no past states, and the time homogeneity 

property which states the probability of the next state is independent of time (Ewens and 

Grant 2001). The second half of the description, Monte Carlo, refers to the stochastic 

nature of the method. Monte Carlo methods are typically used to simulate an unknown 

target distribution by sampling randomly from this distribution. After many iterative 

steps, if the sample distribution reaches equilibrium, i.e. changes insignificantly after 

each new sample, it is assumed to simulate the target distribution. MCMC methods 

sample from an unknown target distribution by randomly 'stepping' through states at 

each time interval. The larger the number of steps taken, the better the sample 

distribution approximates the target distribution. 

The first successful attempt of the application of Gibbs sampling to the 

identification of novel biological motifs is the site sampler, or Gibbs sampler (Lawrence 

et al. 1993). In the field of alphabetic motif recognition, including protein and nucleotide 



motifs, the site sampler is a heuristic multiple local alignment program. Starting with a 

pattern created from randomly selected motifs from the user provided sequence set, the 

site sampler iteratively refines the pattern through the maximization of a scoring function. 

Typically the scoring function is based on the probability of a motif belonging to the 

pattern over the probability that same motif belongs to the sequence background. New 

motifs are sampled from each sequence based on the probability distribution created from 

the scoring function. The site sampler does have its drawbacks. All sequences in the 

sequence set are assumed to contain a user specified number of instances of the unknown 

motif, thus its predictive power was greatly dependant on the ability of the user to 

construct a biologically correct input sequence set. A later incarnation by the same 

research group, the motif sampler, addressed this problem by sampling each sequence 

position individually (Neuwald et al. 1995). Each position was then assigned to the motif 

model or the background model. Although an improvement, this biases the algorithm to 

discover more motifs in sequences of greater length. Another issue is the width of the 

motif pattern is static, requiring the user to guess the unknown motif width. Other 

drawbacks of this program exist and are addressed later in this paper. 

Despite the preceding, the site sampler not only laid the ground work for later, 

more elaborate algorithms, but validates the application of general pattern recognition 

algorithms to biology. It was shown to successfully identify protein motifs in helix-turn- 

helix proteins, lipocalins, and prenyltransferases, given prior knowledge of motif width 

and motif occurrence(Lawrence et al. 1993). This shows that with little modification of 

the basic algorithm, Gibbs sampling is quite capable of modelling and identifling 

biological motifs. 

Gibbs sampling is not the only statistical approach to the identification of TFBSs. 



Over the past ten years many algorithms have been developed and refined. Some of the 

most popular and innovative programs are: MotifSampler, a recent adaptation of the 

Gibbs sampling approach (Thijs et al. 2002); Consensus and MEME, energy 

maximization (EM) algorithms which maximize the motifs information content (IC) or a 

related measure (Bailey and Elkan 1995b; Hertz and Stormo 1999); and Weeder, an 

exhaustive word-counting algorithm with substitution allowance (Pavesi et al. 2004). 

The MotifSampler is a recent incarnation of the Gibbs sampling algorithm, the 

site sampler, previously discussed. It expands this algorithm in two major ways. The 

first major expansion is the use of a probability distribution to estimate the expected 

number of occurrences of a motif in a sequence. The occurrence estimation algorithm 

first estimates the probability of observing zero motifs in a sequence, or in other words, 

the probability the sequence was drawn from the background model. It then iteratively 

estimates the probability of observing an increasing number of motifs in the up to a 

maximum occurrence. In order to efficiently calculate these probabilities, MotifSampler 

employs a modified forward algorithm, commonly used to compute the likelihood a 

given sequence is drawn from a Hidden Markov Model (HMM). From this occurrence 

probability distribution, an expected occurrence can be calculated. A more detailed 

explanation of this algorithm is provided in the Methods and Materials section. 

The second major expansion of the basic Gibbs sampling algorithm is the use of a 

higher order background model. The site sampler creates the background model from the 

input sequence set. The authors adopt this methodology from other computational 

prediction tools, such as gene finding programs, and go on to show that this alone can 

increase the predictive ability of the Gibbs sampling technique (Thijs et al. 2001). The 

results show that 31d-order or 4th-order models are most effective. 



The MotifSampler exhibits varying success in the identification of known TFBSs. 

The program was highly successful in identifying the G-box, a ubiquitous regulatory 

element found in plant genomes that is bound by the GBF (G-box binding factors) family 

members (Menkens et al. 1995), and the FNR (fumarate, nitrate reduction) binding site 

of bacterial genes. However, only moderate success was observed in the identification of 

the promoter elements of methionine response gene in S. cerevisiae, where known motifs 

were observed in approximately 50% of the runs. 

The EM algorithms, such as Consensus and MEME, are greedy algorithms. 

Greedy algorithms attempt to find the global optimum to a problem by making the locally 

optimum choice at each stage. The basic algorithm of Consensus is as follows. First, all 

valid motif positions of a selected sequence are assessed and a motif model is created for 

each. At this point, all motif models are considered 'interesting'. The next sequence is 

then added to the analysis and all valid motif positions are compared to the interesting 

motif models. Only those comparisons that pass some criterion, for example a minimum 

IC score or the top X number of comparisons, are used to create a new set of interesting 

motif models. This is repeated until all sequences are added to the analysis resulting in a 

final set of interesting motif models that are reported back to the user. MEME uses a 

slightly different algorithm, where a single EM run is executed for all possible motif 

positions in the entire sequence set (Bailey and Elkan 1995a). The highest scoring motif 

is then chosen and run to completion, resulting in a single prediction. The most 

interesting aspects of MEME are the refinements and expansions to the program. The 

current version of MEME uses amino acid chemical property similarities in calculating a 

motif score and is able to specifically identify palindromic DNA motifs (Bailey and 

Elkan 1 995b). 



One major drawback of the EM algorithm of Consensus arises if the initial 

sequences added to the analysis lack or have a weak consensus to some true motif, that 

element will not be discovered. In order to avoid this, the authors suggest that the 

program is run multiple times, thus randomizing the sequence analysis order and 

minimizing the chances of missing an optimum. 

Recently, MEME was used to identify a putative Arc-A binding site in 

Escherichia coli K12 (Salmon et al. 2005). Arc-A is involved in the regulation of 

aerobiclanaerobic expression of genes. The gene set was created from the results of a 

DNA microarray analysis of the transition of E. coli from an aerobic state to an anaerobic 

one (Salmon et al. 2003). Unfortunately, like most results derived from motif discovery 

tools, while the putative motif was used to identify an additional set of coregulated genes, 

it was not experimentally validated as a regulatory element. 

The methodology applied in Weeder is the most unique and exhaustive of the 

tools discussed so far. In essence, the program examines all oligos of a given length in 

the sequence set and reports those oligos that are overrepresented. While being, perhaps, 

the most intuitive methodology, this exact approach is also the most difficult to 

implement efficiently. Examination of all possible oligos is extremely time consuming 

and only feasible for motifs of a small length. Additionally, a strict comparison approach 

does not allow for the natural degeneracy of most regulatory elements. To overcome this 

problem, Weeder starts with an exact approach, using suffix trees to generate an oligo 

database. Then Weeder attempt to identify groups oligos of a length, M, that differ 

within the group by a maximum of e mutations, and contain at least q members. This is 

accomplished by first examining groups of oligos of a shorter length, m, that conform to 

the same mutation and membership rules. The authors state that the algorithm can miss 



significant motifs based in the limited search space and show no results of real-data 

applications. However, in a recent comparison of 13 regulatory element discovery tools, 

Weeder outperformed all other tools in most measures of predictive power (Tompa et al. 

2005). Despite this, at the time of writing this, there has been no application of this 

algorithm to real problems. 

Out of the three main methodologies for computational motif discovery, the Gibbs 

sampling approach was selected. The first reason is based on the expansion of the 

algorithms to incorporate prior knowledge. The current approaches of computational 

motif discovery fall into two categories: the analysis of co-expressed genes (intraspecies) 

and the analysis of orthologous genes (interspecies). It is our goal to merge these two 

approaches into one biologically meaningful approach. Some researchers have simply 

merged such data into a single sequence set, however there are problems with such an 

approach. While coregulated genes in a single species are all regulated by the same 

transcription factors (TFs) by definition, orthologous genes are, at best, regulated by 

orthologous TFs, with possibly different DNA binding affinities. If this were the case, 

although the regulatory motifs that each respective TF binds might appear similar, the 

resulting diagnostic motif built from these motifs would be incorrect for both species. 

Instead, we use the information from interspecies comparisons to bias the program 

towards motifs with high interspecies conservation while maintaining the species 

specificity of the resulting motif model. Inclusion of such non-sequence information is 

not possible in the word-counting methodology of Weeder. 

The decision between Gibbs sampling and EM algorithms is a more subtle. Both 

approaches are capable of being expanded to include prior information. However, the 

application of a greedy algorithm to a problem that cannot be directly solved by it is 



offsetting. The Monte Carlo aspect of the Gibb sampling approach allows the program to 

jump between local maxima in search of the global maximum and not get stalled in them. 

In order to test and refine OrBS, a set of test data is required. The roundworm, 

Caenorhabditis elegans was chosen as the model organism for this project. Nematoda 

has always been a phylum of much research due to the many species parasitic to humans. 

Introduction of nematodes, namely C. elegans and Caenorhabditis briggsae, into genetic 

research can be accredited to Ellsworth C. Dougherty (Dougherty and Calhoun 1949), 

who was interested in the nutritional requirements and axenic cultivation of the 

nematode. Later he provided Nobel laureate Sydney Brenner with a culture of C. 

elegans. Brenner was interested in the genetics of behaviour and believed that C. elegans 

would make a better model organism than Drosophila because of the much smaller size 

of nervous system (Brenner 1974). 

There are multiple reasons that make C. elegans amenable to research in 

regulatory element discovery. Perhaps the most beneficial is the relative ease with which 

transgenic individuals can be made (Fire 1986). Also, the fate of all cell lineages is C. 

elegans has been mapped (Sulston 2003; Sulston and Horvitz 1977; Sulston et al. 1983). 

An adult hermaphrodite worm has 959 somatic cells, all of which have been identified by 

the location of their nuclei. The natural translucency of the organism allows in vivo 

analysis of gene expression via transgenic strains in which the promoter region of the 

gene of interest is fused with suitable marker gene. Such expression mapping has been 

the work of the Caenorhabditis elegans Gene Expression Project (CeGEP), of which the 

Baillie Laboratory at Simon Fraser University is a part (McKay et al. 2003). Site 

directed mutagenesis of such constructs can be used to experimentally validate any 

predicted regulatory elements. 



Some of the first regulatory elements to be resolved in C. elegans are the 

vitellogenins regulatory elements, VPEl and VPE2. Vitellogenins are developmentally 

regulated genes typically only expressed in the female of the species and are regulated by 

the hormone estrogen (MacMorris et al. 1992). In C. elegans, the six vitellogenin gene 

family members are expressed only in late L4 and adult hermaphrodite worms and only 

in the intestine (Blumenthal et al. 1984). The sex, stage, and tissue specific expression 

pattern and strong similarity to the vertebrate vitellogenin family made these genes 

interesting candidates for study of transcriptional regulatory mechanisms (MacMorris et 

al. 1992). The first step into the discovery of the mechanisms of vitellogenin regulatory 

controls was the creation of a transgenic worm carrying a vit-2::vit-6 fusion protein. The 

construct, which was detected immunologically and by nuclease protection, confirmed 

the expression pattern of the vitellogenins and resolved the possible location of cis-acting 

regulatory elements to 3.9Kb upstream of vit-2 and 600bp downstream of vit-6 (Riddle 

1997; Spieth et al. 1988). The same research group later discovered the two repeating 

elements, VPEl and VPE2, after sequencing and aligning the upstream region of five 

vitellogenins (Spieth et al. 1985). The borders of the vitellogenin promoter elements 

were further refined through comparison to the sequenced vitellogenin promoter 

containing regions of C. briggsae (Zucker-Aprison and Blumenthal 1989). Finally in 

1992, it was demonstrated that the VPEl and VPE2 elements activated the vit-2 promoter 

(MacMorris et al. 1992). First, a vit-2::vit-6 fusion was constructed to assess if 247 bp of 

the vit-2 promoter was sufficient to drive normal vitellogenin expression. This construct 

was then mutated via site-directed mutagenesis and restriction enzyme digestion. The 

expression patterns of the mutants showed greatly reduced expression. A site-directed 

mutant with changes in two base pairs of the 3' most VPEl site eliminated promoter 



function. From identification of possible regulatory elements to proof of the regulatory 

effects of these elements entailed seven years of laborious work. 

Over the last ten years, many advances should now allow us to greatly reduce the 

time of such analyses. One advance brought on by the development of automated high- 

throughput sequencers, is the availability of high quality genomic sequence, with an error 

rate of less than 1 o - ~  (Consortium 1998). Sequence fidelity is a necessity when dealing 

with the small sequence lengths that constitute regulatory elements where a single 

incorrect nucleotide can result in an ineffective diagnostic matrix. 

A critical component of the approach described in this paper is comparative 

genomics or phylogenetic footprinting. In this study, the genomic sequence of C. 

briggsae is used to complement the C. elegans sequence (Stein et al. 2003). C. briggsae 

is physiologically very similar to C. elegans, so much so that strains were often confused 

until Paul Friedman developed a diagnostic technique to differentiate the two species 

(Friedman et al. 1977). Interestingly, the two nematodes are estimated to have speciated 

80 to 120 million years ago, greater than human divergence from mouse (Gupta and 

Sternberg 2003). Of the predicted approximately 20,000 genes in C. briggsae, over 

12,000 have clear C. elegans orthologues and an additional 6,500 have convincing 

homologs. The high functional conservation, along with the large divergence time of the 

organisms, makes these two species strong candidates for such comparisons. 

Prior to any large scale analysis of the C. elegans genome, an algorithm had to be 

developed. I decided to first develop an algorithm to efficiently predict a single known 

regulatory motif and then systematically refine the algorithm to become a more general 

predictor. This approach is unique in the development of regulatory motif discovery; 

algorithms are generally designed to be general during the entire development. However, 



this approach provides the researchers with no upper bounds on predictive capacity, and 

gives no clues to what increases and decreases general prediction power. I chose an 

approach that would allow me to predict a known regulatory element with the greatest 

efficiency possible then sequentially refine the algorithm to detect additional elements 

with only a small reduction in prediction efficiency for those motifs already processed. 

The regulatory element chosen as the initial training set was the X box. The X 

box was first identified as a conserved sequence element in the 5 ' promoter containing 

region of the mouse and human histocompatibility 2 E alpha (H2Ea) genes (Mathis et al. 

1983). The H2Ea gene is a member of the MHC (major histocompatibility complex) 

class I1 family of genes, a group involved in the initiation of the antigen specific immune 

response. Further analysis of all eight mouse and human MHC class I1 genes revealed 

the presence of this 14bp sequence approximately 100bp upstream of all eight genes 

(Kelly and Trowsdale 1985). The first X box binding factor (RFXI) was isolated using 

gel retardation assays of X box containing promoter segments. Many additional W X  

family members have been since identified, defined by a highly conserved DNA binding 

domain. In mammals, there are five identified RFX family members. The RFX5 gene 

results in bare lymphocyte syndrome, the absence of MHC class I1 gene products in all 

cell types (Reith and Mach 2001). Mutations in the BBS gene family, which are 

regulated by the another RFX protein, results in Bardet-Biedl syndrome. Caused by 

defects in the basal body of ciliated cells, BBS is characterized by many symptoms, 

mainly retinal dystrophy, polydactyly, mental retardation, and mild obesity (Ansley et al. 

2003). 

The C. elegans genome encodes a single W X  family member, DAF- 19, which is 

expressed in the 60 ciliated sensory neurons of the nematode. A loss of function 



mutation results in the absence of all such cells from the organism. Many C. elegans 

genes have been shown to fall under DAF-I 9 transcriptional regulation through 

functional identification, presence of the X box approximately 100 bp upstream of the 

gene, and expression analysis (Efimenko et al. 2005). Also, many of the DAF-19 

regulated genes are orthologues of the human BBS genes. Due to the strong evidence 

and high conservation of the regulatory element, the decision was made to use these 

genes as the initial test set for OrBS. 

The goal of this research is to create a regulatory motif discovery tool to discover 

common regulatory motifs from sequence sets consisting of co-expressed genes while 

taking into account information from comparative genomics to bias the program towards 

biologically meaninghl motifs. Starting with the site sampler, we implement the higher- 

order background and occurrence estimates of Consensus. We further expand the Gibbs 

sampling approach to include a dynamic motif width algorithm, a scoring function 

modified to incorporate information derived from comparative genomics, and a unique 

method for determining when the sampler has converged on the global optimum. OrBS 

wass initially refined to discover a single well known regulatory element, the X box. The 

program will later be generalized by sequentially refining it to detect additional known 

cis-acting regulatory elements. 



METHODS AND MATERIALS 

Hardware and Software 

The OrBS program was programmed in C++ and compiled with GNU Compiler 

Collection (GCC) on SuSE linux 9.1. Gene sequences and location were stored in a local 

MySQL database to facilitate efficent access. Alignments were created using LAGAN 

(Brudno et al. 2003) with a Per1 wrapper. 

Data Sets 

All C. elegans genomic sequence data was acquired from the Wormbase web site, 

www.wormbase.org, release WS140, date March 26,2005 (Chen et al. 2005). The 

training set of 14 DAF-19K box regulated genes was previously used in the 

identification of BBS3 (Fan et al. 2004). The sequence set is consists of 1000 bp 

upstream of the translation start site of each gene or until the neighbouring gene. The test 

set of 1 1 genes was constructed from additional genes with strong DAF- 19K box 

regulation evidence. The evidence for DAF-19K box regulation for both gene sets is 

given in Table 1. C. elegans SAGE data and GFP::promoter expression data is available 

at the CeGEP website, http://elegans.bcgsc.ca (McKay et al. 2003). 



Table 1 DAF-19iX box Regulated Gene Sets 

DAF-19 X box Expression 
Gene Locus Dependent Dependent in Ciliated References 

Expression Expression Neurons 

F33H1.1 daf- 19 nla J (Swoboda et a/. 2000) 

Y 105E8A.5 bbs-1 J J (Ansley et a/. 2003; Efimenko eta/. 2005) 

F20D12.3 bbs-2 J J J (Ansley et a/. 2003; Efimenko et a/. 2005) 

Y75B8A.12 bbs-7 J J (Ansley et a/. 2003; Efimenko et al. 2005) 

T25F10.5 bbs-8 J J (Ansley et al. 2003; Efimenko et al. 2005) 

F38G1 .I che-2 J J J (Fujiwara et al. 1999; Swoboda et a/. 2000) 

F59C6.7 che-13 J J (Haycraft et a/. 2003) 

T27B1 .I osm- l J J J (Signor et al. 1999; Swoboda et a/. 2000) 

Y41 G9A.1 osm-5 J J J (Haycrafl eta/. 2001) 

R31.3 osm-6 J J J (Collet et al. 1998; Swoboda et a/. 2000) 

F02D8.3 xbx-l J J J (Efimenko et al. 2005; Schafer et a/. 2003) 

F40F9.l a xbx-6 J J (Efimenko et a/. 2005) 

K08D12.2 J (Fan et a/. 2004) 

Y 1 1 OA7A.20 J (Fan et a/. 2004) 

bbs-5 

che-l l 

nhr-44 

nud-l 

odr-4 

tub-l 

xbx-2 

X ~ X - 3  

X ~ X - 4  

X ~ X - 5  

X ~ X - 7  

(Li et a/. 2004) 

(Efimenko et a/. 2005; Qin etal. 2001) 

(Efimenko et a/. 2005) 

(Dawe et al. 2001; Efimenko et al. 2005) 

(Dwyer etal. 1998; Efimenko et a/. 2005) 

(Efimenko et a/. 2005) 

(Efimenko et a/. 2005) 

(Efimenko et a/. 2005) 

(Efimenko et a/. 2005) 

(Efimenko etal. 2005) 

(Efimenko et a/. 2005) 



Algorithm 

Basic Algorithm 

The algorithm of the Gibbs sampling procedure used by OrBS is an extension of 

the "basic algorithm put forth by Lawrence et al. (1 993), reiterated below. To aid in the 

understanding of the algorithm, some of the modifications in OrBS are introduced during 

the initial description of the algorithm but others modifications are described later. 

The Gibbs sampling algorithm is essentially a multiple sequence local alignment 

algorithm which identifies regions of similarity. It is computationally less expensive than 

traditional local alignment algorithms, such as the Smith-Waterman algorithm (Smith and 

Waterman 198 I), because it examines only a small subset of all possible alignments. It is 

also quicker than most multiple alignment algorithms, such as CLUSTAL (Thompson et 

al. 1994), because all sequences are aligned simultaneously, not sequentially. Given a set 

of N sequences, SI,S2, . .. ,SN, of length 11, lz,. . ., IN respectively, each of which contain a 

similar sequence motif of length W, the algorithm will construct a matrix model 19, a 

description of a candidate regulatory element. The motif model is maintained in two 

evolving data structures, the alignment description and pattern description. 

The pattern description consists of a W by J matrix, where J is the size of the 

residue alphabet, four in the case of DNA, and W is the motif width. This position 

frequency matrix (PFM), c,,, contains the observed frequency of the residue j from 1 to J 

in position i from 1 to Win the current motif alignment. Such PFM matrices are also 

used to describe the transcription factor binding site information in both the TRANSFAC 

(Wingender et al. 2001) and JASPAR (Sandelin et al. 2004) databases. This description 

is also stored in the analogous target probability matrix, q,,, defined by 



where ps, is the number of pseudocounts for residue j and PS is the sum of all psj. Both 

these descriptions are updated each iteration. In OrBS a pseudocount of the background 

probability for a given nucleotide was used. 

The second evolving data structure is the alignment description. In the Gibbs 

sampler, the alignment description was described as a vector of motif start positions a,, 

for z from 1 to N. In order to ease the expansion of the algorithm, the matrix a,,, was 

used where x is a valid motif position in sequence z, and a,,, = 1 if nucleotide x in 

sequence z is a start of an element in the alignment, otherwise a,,, = 0. 

In the initialization stage of the algorithm, one valid motif position is randomly 

selected from each sequence and added to the motif model (Figure 1 b). A sequence is 

selected randomly, and that sequence's motif is removed from the alignment. The pattern 

description is updated and all valid motif positions in that sequence are given a weight, 

creating a probability distribution for the motif (Figure 1 c). The higher the weight of a 

position the more likely that position belongs to the motif model than the background 

model. A weight of 1 denotes that either case is equally likely. A new motif selected 

from this distribution and the motif model is updated (Figure Id). This is iterated for all 

input sequences and the whole process is iterated many times. At each sampling step, 

those sequences that resemble the motif model are predominantly chosen, creating a 

motif model with a stronger consensus. In turn, this new motif model is used to score the 

valid motif positions in the predictive update step. After many iterations of this process, 

the algorithm converges on the regulatory element (Figure 1 e-f). Upon convergence, a 

pre-defined number of selection steps occur, refining the motif to the best position in 

each sequence. 



Input Sequence Set 4 Initialization 

Predictive Update Step !a Sampling Step 

El nth iteration Predictive Update 8 Sampling 
- 

-- 

~ i g u r e  1 Basic Gibbs ~lgorithm 
The genes S1 through SN (white boxes) contain regulatory elements (grey 
boxes) in the upstream promoter region. The estimated positions of these 
elements, the motif model selections, are denoted by slash-filled boxes. 

Background Model 

The background model can be provided by the user in two ways. First, it can be 

provided by the user in a file. This file must contain a 3rd order model and be in the 

format where (TIACG) = 0.45 is represented as ACGT<tab>0.45. Second, if no 

background probabilities are provided, OrBS will calculate these probabilities from the 

input sequence. In order to reduce running time, the background probability for each 

valid motif position is calculated and stored in an array. This prevents repeated 



calculations for each position during the sampling step. However, if a width change 

occurs, the probabilities must be recalculated. 

Dual Strand Analysis 

OrBS examines both strands of the input sequence for motif model inclusion. In 

order not to double the sequence search space, for any given candidate motif, OrBS will 

only include the higher scoring strand, thereby keeping the total number of valid 

positions the same. If an antisense sequence is included in the motif model, the pattern 

description is updated in the normal manner, however a -1 is stored in the alignment 

description, as opposed to a 1. 

The Scoring Function 

The most common scoring hnction used in Gibbs sampling algorithms for motif 

detection is the log-likelihood score or LLS (Lawrence et al. 1993): 

where b, is the frequency of observing residue j in the background model, Bm. This is a 

measure of the pattern's divergence from the background as well as the information 

content of the pattern. Replacing the frequency term, c,,, with the target probability, q,,, 

gives us the comparable Kullback-Leiber Information or KLI (Kullback and Leibler 

195 1). Calculating the probability of all candidate motif positions in a sequence would 

be very inefficient because the pattern description would require updating for each 

position examined. Instead a simpler equation that is proportional to the scoring function 

is used. In this case of the LLS and the KLI, this weight score is: 



where the weight assigned candidate subsequence starting at x from sequence z, Wz(x), is 

the probability the sequence exists in the motif model divided by the probability the 

sequence exists in the background model (Lawrence et al. 1993). From this weight 

distribution, a sequence is sampled and added to the alignment from which 6 is generated. 

One problem with using the KLI as described by Lawrence et al. (1993) is the 

effect of the motif width on the score. Given a motif model of a defined width, Ow, 

generated from the alignment matrix a, the resulting KLI of that model will always be 

less than a model defined by the same alignment matrix but with a greater width. In a 

more mathematical form, the statement KLI(0,) < KLI(Ow+I) for a given a, is always true. 

In the original Gibbs this does not pose a problem, but in the dynamic width algorithm 

implemented in OrBS, the algorithm would tend towards a motif of the smallest valid 

width. A simple, nayve, solution is to normalize the score by the width of the motif. 

However, this will indirectly cause the selection of shorter motifs due to the greater 

likelihood of high conservation among shorter sequences, stochastically. In order to 

circumvent this issue, a zero normalized information content score is instead used during 

the dynamic width and phase shift procedure. This normalization is made by subtracting 

an expected KLI score from the each column KLI of the motif. The expected score of 

0.25 was determined by the median IC score for the outermost column of all motif 

matrices in the TRANSFAC database. There is no reason that this scoring function must 

only be based on the distribution of residue frequency. In OrBS, the scoring function is 

modified to include sequence conservation between species as well. In order not to limit 

the methodology of determining of orthology contribution, the orthology bonus is kept 



simple: 

where hi is the cross-species conservation bonus of position i normalized to 1. It rewards 

cross-species sequence conservation of the sequence. It is commonly held that there is a 

correlation between regions of high conservation between species and sequence 

functionality. This bonus biases the motif alignment towards regions of conservation. 

The resulting weight function is: 

where Hz,, is the orthology bonus assigned 

Dynamic Width and Phase Shifts 

to residue x in sequence z normalized to 1. 

Lawrence et al. (1 993) describe a possible solution to the issue of phase shifts. A 

phase shifted result is a reported solution that is shifted a couple base pairs to the right or 

left of the optimal solution. A phase shifted solution results from the biased sampling of 

similar motifs. If a shifted optimal solution motif is selected early on in the algorithm, 

when sampling biases are small, it will likely perpetuate throughout the execution of the 

program. They suggest that after a given number of iterations, the algorithm should 

examine the score of the motif models resulting from a shift in all alignment starting 

positions left or right to a maximum shift distance. I expand this proposed modification 

to also examine those motif models that vary in width, W, a set number of nucleotides 

from the current model. Thus, this will not only correct any phase shift anomalies that 

occur during the operation of the algorithm but any incorrect assumptions of motif size. 



The procedure is basic and simply creates a temporary q matrix with the width 

determined by the maximum valid phase and width shift. Then all valid alternative motif 

models that fall within this temporary q are scored. A new motif model is then selected 

by sampling from the distribution of these scores. 

Motif Occurrence 

The motif occurrence problem is addressed in OrBS with the algorithm utilised in 

Motif Sampler (Thijs et al. 2002). This algorithm is computationally intensive and 

requires the inclusion of an additional step. During the expected occurrence step, the 

probability of observing o occurrences of the current motif in each sequence is calculated 

independently for o = 0, to a given maximum Om,, using the formula: 

where Q, is the actual number of occurrences of the motif 0 in sequence SZ. Thjis et al. 

(2002) show how equation 6 can be further expanded by applying Bayes' theorem: 

P(S, I Q, = 0,@, Bm)P(Q, = 0 18, Bm) r, (0) = 
P(Sk 1 8, Bm) 

I (7 )  

where the numerator is the probability that the sequence is generated from the 

background model and o occurrences of the motif 8 multiplied by the probability that the 

actual number of occurrences is o given the motif and the background model. The 

denominator is essentially the sum of all possible number of occurrences, resulting in the 

final equation: 

where P(S,l Q, = o, 8, Bm) can be solved in linear time using a modified form of the 

forward algorithm. This involves the adaptation of the motif and background model into 



a single HMM where P(Q, = o) is the aprior of finding the motif model o times (Thijs et 

al. 2001). This equation is calculated for each c up to a Om,. The resulting values allow 

for the calculation of the expected occurrence of the motif as follows: 

In order to reduce computational time, in the implementation of OrBS, Om, has been 

hard coded to a value of 4. However, this may be changed to a user definable parameter 

in a later version. Even with the time saved using the Forward Algorithm, this is the 

slowest step of the algorithm. For that reason, the period of the expected occurrence step 

is user definable (parameter Oi). A graphical implantation of the Forward Algorithm can 

be seen in Figure 2. While the structure and the emission probabilities of the Markov 

chain remains the same, the transition probabilities are dependent on the value of o. 



Occurrence HMM Probabilities: 
L = length of sequence 
W =width of motif 

1  
Option 1 (occ = 1): t ,  =- 

L - w + l  

Option 2 (occ = 0): 
positions: p = L - o(w- 1) 
configurations: Choose(p,o) 

Figure 2 Structure of Markov chain in expected motif occurrence algorithm 
The arrows of the represent possible paths into and out of each state. The 
transmission probabilities are along the arrows paths. The emission 
probabilities of each state are determined by the motif model ( 8 )  and 
background model (Bg) used to create the HMM. The state S is the starting 
state and the state E is the ending state. These represent imaginary 
nucleotides bordering the first and last nucleotides, respectively. 



Motif Detection 

A motif is reported by OrBS when a user defined number of parallel running 

Markov chains converge upon a similar motif pattern description matrix. The similarity 

between these two matrices is a Pearson correlation coefficient (PCC) (Schones et al. 

2005). Given two motif models, ex and Or, the PCC of the two respective columns, x and 

Y :  

where a score of -1 is perfect inverse correlation, 0 is no correlation, and 1 is perfect 

correlation. The PCC is a measure of linear correlation and therefore cannot identify 

shift variants of similar motifs. However, because the calculation of the PCC is simple 

and computationally inexpensive, the PCC is calculated for all alignments of the two 

matrices, reporting only the greatest score. 

If the two matrices have a PPC greater than the user defined threshold, the Gibbs 

sampling algorithm is determined to have converged. The motif model with the greater 

OrBS score is refined through several selection steps and returned as an observed motif. 

The values of the alignment description are then transferred to the masking matrix, m. If 

m,, holds a value other than 0, that position cannot be included in the motif model. The 

algorithm then attempts to identify additional motifs in the sequence set. The OrBS 

algorithm terminates when a user defined number of iterations occurs between 

convergence events. 

Parameter Refinement 

The initial training consists of the upstream region of 14 genes previously used to 



create an X box consensus pattern (Table 1) (Fan et al. 2004). The X box is a well 

conserved, 14 nucleotide motif, typically approximately 1 OObp upstream of the affect 

genes start site. In C. elegans, RFX is expressed specifically in ciliated neurons. The X 

box set, unless otherwise stated, comprises of the upstream region, up to 1 Kbp or the 

distance to the neighbouring upstream gene. The X box set can be regarded as an easy 

TFBS to identify due to the large size and tight consensus of the sequence. No other 

TFBSs are known to be shared among these sequences, and it is currently assumed there 

is none due the restricted common expression pattern. 

Test Statistics 

Three common statistics were used to measure the effectiveness of OrBS in 

identifying the regulatory elements. The first is sensitivity (Sn), a measure of how well 

the algorithm identifies actual occurrences of the motif and is defined as 

Sn = TP/(TP+FN), 

where TP is the number of true positive sites and FN is the number of false negative sites. 

The definition of a TP is a prediction that encompasses at least 80% of the known 

regulatory element. The second is the Positive Predictive Value (PPV) which gives the 

fraction of positive observations that are true: 

PP v = TP/(TP+ FPj , 

where FP is the number of false positive sites. The last statistic, Specificity (Sp) is a 

measure of how well the algorithm "ignores" incorrect sites: 

Sp = TN/(TN+FPj, 

where TN is the number of true negative sites. These statistics were used in combination 

with the OrBS score to determine the best parameter set. 



Convergence and Termination 

The canonical X box set was used to test and optimise the convergence 

parameters of OrBS with an alternate number of parallel Markov chains (-M) of 2, 5 or 

10, and an alternate number of similar motifs required for a convergence event (-CN) of 2 

or 3. Also, two different Pearson correlation coefficient thresholds were tested, 0.75 and 

0.90. The apriori of motif occurrence will be refined in a later test and since it was 

known that all sequences contain the X box motif, no occurrence estimation step is 

performed. In order to ensure all motif alignments that would converge within an 

acceptable timeframe did converge, the maximum number of iterations between 

convergence events (-Ci) was overestimated with a value of 10,000. 

Occurrence and Noise 

After the convergence parameters were selected, the X box set was also used to 

test the effect of noise, or the inclusion of non-coregulated genes, on the OrBS algorithm. 

Three additional test groups were created. Each set includes a defined number of 

upstream regions randomly selected from C. elegans genes in addition to the canonical X 

box set (Appendix B). These sets were also used to test three values of the occurrence a 

priori estimates, 0.25,0.50, and 0.75. More than one test set was constructed for each 

noise level in order to reduce any set specific effects on occurrence estimation. For this 

comparative analysis, each sequence was examined as a single site, where a positive was 

an observation in that sequence and a negative as no observation. Only those parameter 

combinations that were deemed acceptable in the previous tests were tested. 

Orthology 

In all previous tests, no orthology bonuses were assigned to any of the sequences. 



In order to test the effects of the new scoring function, the X box test sets used in 

Occurrence and Noise optimization tests were reanalysed with the assigned orthology 

bonuses. The orthology bonus used was based on a LAGAN (Brudno et al. 2003) 

alignment with the upstream region of the orthologous C. briggsae gene. The 

orthologues were previously assigned by Lincoln Stein using a best reciprocal BLASTP 

procedure and are available at 

ftp://ftp.wormbase.org/pub/briggsae/orthologuesandohans/ortholoes.txt.gz (Stein 

et al. 2003). The orthology bonus assigned to each residue was 1 if the nucleotide was 

conserved in the painvise alignment and 0 if it was not. 

Performance on Known Sets 

X box Regulated Genes 

The previously predicted X box motif with the highest width normalized OrBS 

score was used to scan the C. elegans genome for additional occurrences. This was 

implemented using the TFBS module available for Per1 (Lenhard and Wasserman 2002). 

The scores assigned to the original 14 X box gene promoters were used to determine an 

occurrence cut-off score of 17.18, the lowest score of the set. The upstream 1000 bps or 

distance to the neighbouring gene for all C. elegans genes in the WS140 release was 

examined. Genes whose promoters contained putative X box with scores greater than the 

threshold were assessed for additional evidence of cilia specific expression. Both 

promoter::GFP fusion expression profiles and tissue specific SAGE data available from 

the CeGEP website (McKay et al. 2003). The SAGE library for FACS sorted ciliated 

neurons was compared to SAGE library for both FACS sorted pan-neural cells and FACS 

sorted muscle cells. The tag counts for each transcript was compared using the Chi- 



square test (Kal et al. 1999). Expression profile categories from the promoter::GFP 

fusion data are quite broad. Out of the 40 expression categories, 6 include cilated 

neurons: amphids, phasmids, head neurons, tail neurons, and mechanosensory neurons. 

Standardized Test Set 

Each of the 156 data sets in standardized test set was downloaded from 

http://bio.cs.washington.edu/assessment/ and run with same settings as for the previous 

test sets. In the case that more than one motif is predicted for a given dataset, the motif 

with the greatest OrBS score was reported. The resulting output was then converted to 

agree with the format required by the Assessment of Computational Motif Discovery 

Tools submission form and uploaded to the system. The results were returned as an excel 

datasheet (Appendix D). 

Additional C. elegans Datasets 

In addition to the X box set used in the parameter optimization of OrBS, two 

alternative C. elegans test sets were used to test the efficiency of the algorithm to detect 

transcription factor binding sites, two of which were used in the analysis of a similar 

program CompareProspector (Liu et al. 2004). The upstream region for each gene was 

determined by taking the sequence from the starting codon of the gene to the closer of 

either the neighbouring upstream gene or 1 Kbp. 

In a recent paper describing another TFBS discovery program, two C. elegans 

data sets are described (Liu et al. 2004). The first is a set of genes identified by 

microarray analysis for increased embryonic expression in pav-1 mutants as compared to 

skn-1 mutants (Gaudet and Mango 2002). These two strains produce excess or no 

pharyngeal cells, respectively. This method identified 240 genes with an average 2-fold 



increase in expression in the par-I mutants. Previous studies have successfully identified 

the PHA-4 binding site using the upstream sequences of these genes (Liu et al. 2004). Of 

the 240 genes identified, 199 had at least 150bp separating the start codon with the 

neighbouring upstream gene, as described by Wormbase, and 148 of these have been 

assigned C. briggsae orthologues. The second set consists of three genes, mec-3, mec-4, 

and mec-7, all of which have been shown to contain the UNC-86::MEC-3 heteroligomer 

binding sites (Duggan et al. 1998; Xue et al. 1992; Xue et al. 1993). Both unc-86 and 

mec-3 are involved in the differentiation of touch receptors in C. elegans. The UNC- 

86::MEC-3 binding sites occur multiple times in each promoter region they affect. This 

was used to test the effectiveness of the occurrence algorithm implemented in OrBS to 

detect multiple occurrences (Duggan et al. 1998). 



RESULTS 

In recent years there have been a number of computational approaches to the 

discovery of transcription factor binding sites. The majority identify a motif or sequence 

common to the input sequences with some allowance for mismatches. The two most 

common methods are the heuristic alignment approach and the word counting approach. 

The latter is far more computational intensive, examining the frequency of all possible 

sequences of a given size. In this study, we decided to implement the former technique, 

specifically an expansion on the Gibbs sampling algorithm first described by Lawrence et 

al. (1993). 

A Gibbs sampler is in a multiple local alignment tool, identifying repeated motifs 

in the given input sequence. A more detailed explanation of the original Gibbs sampler 

can be found in the Methods and Materials section of the thesis. Once a working instance 

of the Gibbs Sampler was coded in C++, the algorithm was sequentially modified to 

include the additional features outlined below. 

Background Model 

The first major modification to the original algorithm was the use of a species 

specific higher order background model. Such models have previously been shown to 

increase the predictive power of the Gibbs sampling algorithm in prokaryotes and 



Arabidopsis (Marchal et al. 2003; Thijs et al. 2001). If no background probability file is 

provided, OrBS will compute a background model from the input sequences. The order 

of the background model is based on the size of the input sequence set with a maximum 

order of 3. 

Scoring Function 

All Monte Carlo Markov Chain methodologies require a function to score the 

goodness of the current state of the chain. The most common and basic scoring functions 

take into account both the conservation of the motif and the divergence of the motif 

model from the background model. However, such functions do not utilize all the useful 

biological information available, such as distribution of positive selective pressure on the 

input sequences. This information is available in the form of interspecies sequence 

conservation and can be estimated through sequence alignment. In OrBS, the algorithm 

maximizes the typical Kullback-Leiber Information (KLI), a log-likelihood variant. 

However, the score is then multiplied by the average conservation of the candidate 

subsequence. The conservation is based only on the nucleotides to be included in the 

motif alignment and not an average over a larger window as used in some algorithms 

(Liu et al. 2004). This biases the algorithm towards those subsequences which show 

evidence for positive selection while maintaining the sequence space. The nucleotide 

orthology bonus is provided by user in the sequence input file. If no orthology bonus is 

available for a given sequence, or the entire sequence set, the bonus is assumed to be 0 

and the algorithm proceeds using the original KLI score. 

Dynamic Widths and Phase Shifts 

Lawrence et al. (1 993) address a couple of concerns or 'defects' with the basic 



algorithm they originally put forth. Two issues are the phase shift and static width 

problems. The width problem is the easier to describe. In the site sampler, and most of 

the de novo motif prediction programs examined, the width of the unknown motif is fixed 

and defined by the program's user. This is a contradiction in the sense that such 

programs assume the user has knowledge of the unknown motif. While an educated 

guess can be made based on known motif sizes, the user cannot and should not be 

required to know the motif width. 

The second issue is what Lawrence refers to as the phase problem. The phase 

problem is defined as the shortcoming of the algorithm to become stuck in a solution that 

is a shifted form of the optimal solution (Lawrence et al. 1993). For example, assume 

there exist five sequences, S1, ..., Ss which share a common motif. Let the optimal 

solution for this motif be the alignment positions 20, 14,3,37 and 28 for the five 

sequences respectively. However, if the algorithm were to initially choose the positions 

19 and 36 for the sequences S1 and S4, it is unlikely the optimal solution will be reached. 

Instead a phase shift form of the optimal solution defined by the alignment positions 19, 

13,2,36 and 27 is the more probable outcome. 

Lawrence et al. (1 993) propose a possible solution to the phase shift problem by 

the insertion of an additional step. This step involves the comparison of the current motif 

alignment description to alternative alignment descriptions that are shifted right or left up 

to a defined number of residues. A new motif is sampled, in an algorithm analogous to 

the main sampling step, using weights defined by the scoring function. This solution can 

be further expanded to the static width problem. In OrBS, not only are the phase shift 

variants of the current motif considered but also larger and smaller width variants. This 

allows the width of the motif to be dynamically updated throughout the prediction 



process and reduces the negative effects of a poorly chosen width, an attribute missing 

from most of the current motif prediction algorithms. 

In OrBS, the width and phase shift problems are addressed with a single 

algorithm. Following the suggestions of Lawrence et al. (1993), after a specified number 

of sampling iterations (-Wi), a window is drawn around the current alignment of which 

the size is defined by the maximum allowed width change (-WS) and phase shift (-PS). 

However, if each of the resulting alignments was scored using the previously defined 

OrBS score, larger motifs would be selected preferentially. By assigning width 

independent scores to each candidate alignment, a normalized Kullback-Leiber 

Information (nKLI) score was developed: 

where es is the expected KLI score for a regulatory motif. The value of es, 0.25, is the 

median KLI score for the outermost column of all motif matrices in the TRANSFAC 

database. This is far below the overall median column KLI of 0.87, allowing for the 

extension of weak motifs but still higher from the median KLI column score or 0.08 for a 

random alignment of C. elegans upstream sequence. 

Motif Occurrence 

Co-expression is not co-regulation, and thus it is unlikely that all upstream regions 

of a set of co-expressed genes are controlled by a single transcription factor and contain 

the associated regulatory element. For this reason it is necessary for an effective motif 

prediction algorithm to allow for the absence of the current motif in any given sequence 

of the sequence set. Along the same lines, it can be helpful if the algorithm allows for 

multiple occurrences of the motif in a single sequence, leading to a truer and more robust 



diagnostic motif pattern. Although difficult to implement, the methodology described 

originally by Thijs et al. (2002) seems the most biologically correct. Using the current 

motif model and the background model, the OrBS algorithm predicts the expected 

occurrence of the motif model. 

Motif Detection 

One of the major challenges of Markov Chain Monte Carlo methods is 

determining when convergence has occurred or, more simply, the optimal solution has 

been observed. Convergence is said to have occurred when the Markov chain reaches 

equilibrium (Cowles and Carlin 1996). A defining feature of the equilibrium state is that 

it is independent of the starting state, thus every Markov chain for a given Gibbs 

sampling algorithm will, over some number of iterations, eventually reach this 

equilibrium state. However, determining the minimum number of iterations required to 

reach the equilibrium state is a topic of much discussion and typically involves complex 

mathematical inference (Cowles and Carlin 1996). In OrBS, we attempt a novel 

approach in which attempt to determine convergence by observing Markov chain state 

similarity above a given threshold. 

OrBS is also able to detect multiple motifs in the provided sequence set. This is 

accomplished sequentially, through the same methodology as used in many previous 

algorithms (Aerts et al. 2003b; Frith et al. 2004; Thijs et al. 2002). Once the algorithm 

has converged on a motif, the sub-sequences that make up the alignment for that motif 

are masked. The algorithm then continues sampling from the updated sequence set. 

The iterative Gibbs sampling procedure of OrBS is terminated when it is deemed 

no further patterns can be identified. This is defined by the passing of a given number of 

iterative steps in which convergence has not been observed. Convergence is observed 



when two parallel running Markov chains exist in states that show a similarity above a 

given threshold at the same time point. Similarity is determined though the PCC of the 

pattern description matrices of the two motif models. See the Methods and Materials 

section for a more detailed explanation of the convergence determination procedure. 

There exist five variables relating to convergence and sampling termination that 

are user definable: the number of parallel chains (-M), the degree of correlation required 

for convergence (-CS), the frequency of the convergence check (-Ci), the number of 

correlated chains required for convergence (-CN), and the number of iterations without a 

convergence event causing termination (-Mi). When two or more motifs models are 

identified to have a high correlation coefficient, the higher scoring motif model is then 

selected, refined through several selection steps and returned as an observed motif. The 

sites of the observed motifs are masked and the sampling iterations continue. 

Program Refinement 

OrBS is implemented in a single, stand-alone, executable file with a simple 

command line interface. Execution of the program without passing any parameters to it 

results in a listing and explanation of all available parameters: 

OrBS Options: 

-s sequence file in proper format (mandatory) 

-B file containing the a background model 

-W motif width the gibbs sampler rs initialized with (default 10) 

-WS maximum motif width shift (default 2) 

-PS maximum motif phase shift (default 2) 

-Wi iterations between motif shift algorithm (default 2) 

-Si number of selection steps after sampling iterations (default 3) 

-M number of motifs to identify(defau1t 10) 



-H homology bonus (default 1.00) 

-CN number of similar motifs required for convergence (default 2) 

-CS minimum similarity score for convergence (default 0.80) 

-Ci convergence update interval (default 2) 

-0i occurrence update interval (default 1) 

-v verbose mode 

Only the file containing the set of genes expected to share transcriptional regulation is 

required. The sequence file contains a list of sequences, one per line, with the line header 

'SEQUENCE:' followed by the optional orthology score list where the scores are comma 

separated and the line header of 'ORTHOLOGY:'. If a background nucleotide frequency 

model is provided, it must be a 3rd order model with a line format of: 

nucleotide(s)<tab>frequency<line return>, 

where nucleotides is in the format of the last residue given the preceding nucleotides. 

The algorithm will report an error if either of these two files are formatted incorrectly. 

Convergence and Termination 

The results of the convergence parameter optimisation are an average of three 

replicate runs of OrBS with the previously defined settings are shown in Table 2. For the 

X box training set, all sets of parameters we able to identify the X box except for one; 

(M, CN, CS) = (5, 3, 0.90). For this set of parameters the parallel motif chains never 

converged and no motifs were reported for two of the replicate runs. As expected, all 

parameter sets with a PCC threshold of 0.75 predicted many more motifs than their more 

stringent alternative. In the results from the parameter set with a 0.90 PCC threshold, no 

other motif patterns were common to all replicates from that set. 
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Two sets were deemed acceptable for further analysis. These were the parameter 

combination A (5,2, 0.90) and combination B (l0,2,  0.90). While both of the other sets 

(2,2, 0.90) and (10, 3, 0.90) scored well, the small number of observed motifs may have 

posed a problem during later stages of the algorithm's development. 

Occurrence and Noise 

When the motif occurrence estimation step was incorporated into OrBS, the X 

box motif was remained easily identified (Table 3). Only the results for the apriori 

occurrence estimate of 0.50 are presented. The results for the 0.25 and 0.75 estimated 

produced primarily empty motifs and motifs with observations in all sequences 

respectively, and are of little interest (data not shown). The X box motif was identified in 

all test sets containing up to a sequence noise value of 50 percent. Parameter 

combination A tends to perform slightly better than combination B at lower noise levels 

in average normalized motif score and in all test statistics for the identification of the X 

box motif. However, B did perform better at the 50% noise level as well as an 

identification of the X box motif in one of the Sour test sets with a noise percentage of 67. 

Neither parameter combination identified the X box in any of the test set with 75% noise. 
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Orthology 

The previous data set was reanalysed with the parameter combination B, however, 

this time an orthology bonus was given to each nucleotide as described above (see 

Methods and Materials). The inclusion of comparative sequence information resulted in 

prediction of the X box motif in higher noise percentage data sets (Table 4). The 

performance, based on the test statistics, between OrBS with and without the orthology 

bonus is comparable at low noise levels. Only by the inclusion of the orthology bonus to 

the scoring function was OrBS able to consistently identify the X box at a noise value of 

67 percent, but not any higher. The average number of iterations required to identify the 

X box was reduced for low noise levels but increased when more noise was present. The 

total number of identified motifs increased when using comparative sequence analysis, 

resulting in an increase of total run time. A graphical summery of the statistical 

diagnostic score for parameter set A, B and B with the orthology bias can be seen in. 

Figure 3 Graphical comparison of different parameter sets 

40 
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Performance on Known Sets 

X box Controlled Genes 

Two additional tests were performed in order to test the effectiveness of OrBS in 

the detection of the X box element. First, the program was run on a test set of 11 genes 

with strong evidence of X box regulation (Table I), to ensure the algorithm was over 

fitted to the training set. Using the run parameters determined from the previous 

refinement steps, OrBS was able to detect the X box motif in all four test runs with an 

average normalized OrBS score of 1.24, a sensitivity of 0.89. 

An effective motif detection algorithm not only needs to recognize patterns in the 

input sequence but also output that pattern in a format that can be used as a diagnostic for 

additional occurrences of that motif. As previously stated, it is unwise to assume that all 

co-expressed genes are co-regulated. It is equally unwise to assume all co-regulated 

genes will be detected by a given co-expression assay. For this reason, it is important to 

confirm the motif OrBS outputs is a good diagnostic. We took the predicted X box motif 

with the greatest per nucleotide OrBS score and used it to scan the genome for additional 

X box regulated genes. A sequence logo is a standard and useful way to graphically 

examine sequence motifs (Schneider and Stephens 1990). The sequence logo of the 

OrBS predicted X box consensus and the X box consensus used by Fan et al. (2004) for 

the same data set are expectedly very similar (Figure 4). The observable differences are 

the additional leading nucleotide of the OrBS prediction and slight variances in 

nucleotide frequency and information content of the shared residues. These variances are 

due to the palindromic nature of the X box regulatory element and that OrBS allows for 

motif occurrence on both strands, where all of the motif occurrences in the Fan et al. 



5' 

5' 

Figure 4 Sequence logo comparison of the X box consensus produced by OrBS 
and Fan et al. (2004) 
Both sequence logos were created using WebLogo (http://weblogo.berkeley.edu) 
(Crooks et a/. 2004) and the X box training set. (A) This sequence logo was 
created from the sequence alignment of the highest scoring OrBS prediction of the 
X box regulatory element. (B) The sequence logo of the hand-curated consensus 
used to scan the genome for additional X box sites by Fan et a/. 2004. 

(2004) alignment are on the sense strand. 

Using the Per1 module TFBS and the positional frequency matrix created from the 

OrBS predicted motif we identified 42 additional possible DAF-19 regulated genes 

containing an X box sites within 1 Kb of the translation start site (Table 5). In order to 

validate these predictions, expression data from CeGEP and functional annotation from 

Wormbase was examined. Of the 30 genes with SAGE tags, 14 show ciliated neuron 

expression and 4 show over-expression in ciliated cells (Figure 5). All 5 genes identified 

with available promoter::GFP expression data are expressed in tissues known to contain 

ciliated cells. The upstream region of the orthologous C. briggsae genes were scanned 

for the occurrence of X box elements. Using an arbitrarily lower cut-off score of 13, to 

allow for species differentiation from the consensus, X box elements were discovered in 

the upstream regions of 2 1 of the 32 orthologous genes with 1 Kb of the translation start 



site. 

The highest scoring X box site is found 50bp upstream of the recently annotated 

gene FSSA4.14. The gene product of FSSA4.14 is the orthologue of the human protein 

BBS4 (BLAST e-value = 2~-56). However, it is puzzling that this gene has not been 

previously identified since BLASTing the human BBS4 protein against a translated C. 

elegans genome (tBLASTn) identifies the region of FSSA4.14 fairly tightly with 9 of the 

10 HSPs occurring within the current gene models boundaries (Figure 6). 

The genes Y37F4.2 and Y37F4.4 appear to share a high scoring X box motif 5 lbp and 

70bp upstream of the translation start site, respectively. Unfortunately, both are 

hypothetical genes with no functional annotation. Y37F4.4 consists of a single intron 

encoding a 96 amino acid gene product. A BLAST of both gene products against the 

non-redundant database at GenBank (Benson et al. 2005) results in no strong orthologues 

or protein domains. 

Two of the genes identified with GFP::promoter expression data are expressed 

solely in ciliated neurons. The higher scoring of the pair is the orthologue of the recently 

identified human BBS5 gene, R01H10.6 (Li et al. 2004). BBSS was identified through 

creation of a flagellar apparatus basal body (FABB) proteome. The FABB proteome 

consists of proteins that are common to all organisms with flagella and absent in 

organisms without. Only two genes from the FABB proteome mapped to the BBSS 

region, one being the human orthologue of ROlH10.6. The promoter::GFP fusion protein 

is expressed specifically in the ciliated neurons as expected (Figure 3A). 



Table 5 High scoring X box hits. 

C. briggase Discovery In 
Gene X box Hit CeGEP Previous Orthologue Studies 

Transcript Locus Score Dist. Orien. Score Dist. SAGE Fusions GFP A B C D 

J J J  

ZC132.9 14.85 -801 
The upstream region of their C. briggse orthologues were scanned: An 'nf means although an orthologue was 
found, no X box site was discovered; a blank space indicates that no orthologue was discovered. For SAGE data: 
blank = no SAGE data, an N = no SAGE expression, NC = no ciliated neuron SAGE expression, C = ciliated 
neuron SAGE expression, and OC = overexpression in cilated neurons. For promoter::GFP fusion data: blank = no 
expression data; N = not expressed, NC = no ciliated tissue expression, C = ciliated tissue expression, CS = 
ciliated tissue specific expression (based on reported expression, not photographs). Previous Studies: A 
((Sandetin and Wasserman 2004)), B (Avidor-Reiss et al. 2004), C (Efimenko et al. 2005), D (Blacque etal. 2005) 



DIC Merge GFP 
m 

Figure 5 The promoter::GFP expression pattern of candidate X box regulated 
genes 
(A) All genes identified in Table 5 with and promoter::GFP expression pattern. 
(B) A typical expression pattern for a DAF-1 SIX box regulated gene, in this case 
bbs-1 (Y105E8A.5). 
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Figure 6 BBS4 tBLASTn Against the C. elegans Genome Results 
from Wombase Server (Chen et a/. 2005) 

The second gene, Y37E3.5, a member of the ARL family of proteins, was a 

candidate BBS3 orthologue in a recent study (Fan et al. 2004). ARL proteins are 

involved in biomembrane trafficking. Human othologues of Y37E3.5, arl-6, and che-13 

fell into the critical interval of BBS3. Sequencing of these genes in four independent 

BBS3 affected families resulted in the identification of ARL6 as BBS3. The exact 

function of Y37E3.5 still remains unknown. However, despite this there is strong 

expression evidence that this gene is regulated by Daf- 19. First, it has a high scoring X 

box motif (17.64) at close to 100 bp upstream of the translation start site. Second, the 

promoter::GFP fusion is reported to localize to tissues that are composed of or contain 

ciliated neurons (McKay et al. 2003). Closer examination of the image show that there is 

indeed amphid and phasmid expression (Collet et al. 1998). However, due to the strong 

expression in the image, confident exclusion of all non ciliated neurons in the nerve ring 

area is impossible. 

Another interesting gene, M04C9.5, has an expression pattern is indistinguishable 

from Y37E3.5, yet has a strong X box hit over 9000 bp from the translational start site, 

much further than any proven X box site. The expression pattern for this gene is reported 

to include ciliated neuron containing tissue as well as the renal gland and the intestine. It 

would seem as though this visual similarity in the expression pattern of MO4C9.5 and 

Y37E3.5 has no basis in coregulation. 

Two additional genes are expressed in tissues containing ciliated neurons along 



with other tissues. However, the images show them unlikely to be regulated by Daf-19. 

C43C3.3, shows strong expression in the excretory cell and Y43F8C.12 appears to be 

strongly expressed in the intestine (Figure 3A). The raw data from this procedure is 

available in Appendix D. 

Standardized Test Set 

Recently, Tompa et a1 (2005) (Tompa et al. 2005) created a standard test set based 

on the TRANSFAC database and conducted an in-depth analysis of the publicly available 

computational tools for transcription binding site prediction. The intent of this analysis 

was to measure the current state of TFBS prediction as well as create a benchmark set of 

test sequences for future developed tools. In total, 13 motif discovery tools, of various 

methodologies, were analysed for their predictive power and accuracy. The dataset was 

carefully constructed based on the current understanding of TFBSs, which the authors 

admit, is limited. The described test procedure differs from the previous analysis in two 

major ways: 1) the analysis only takes into account the 'best' motif prediction, and 2) the 

test statistics are based on the nucleotide level of prediction, not the motif level. The tests 

do not allow any secondary information, such as comparative sequence analysis. OrBS 

was applied to all 52 available datasets (http://bio.cs.washington.edu/assessment/). 

Although allowed, no species specific background models were provided, allowing only 

higher-order background models where nucleotide count permitted (as previously 

described). This test set gives and unbiased analysis of the predictive power of OrBS. 

Of the 156 datasets provided by the Assessment of Computational Motif 

Discovery Tools (ACMDT) website, OrBS predicted motifs in 114. The Assessment 

Score report provided by ACMDT is provided in Appendix C. Six of the datasets were 

rejected by OrBS for containing only one sequence. The two main statistics used in this 



assessment are the nucleotide level correlation coefficient (nCC) and the site level 

average site performance (sASP) (Tompa et al. 2005) of which OrBS scored a 0.177~ and 

a 0.059 respectively. The data set is composed of sequences from four species: fly, 

human, mouse and yeast. Unlike the other tools which all performed best on the yeast 

datasets, OrBS preformed best on the mouse datasets with a nCC of 0.046, out 

performing eight of the fourteen tools tested in this category. No correct motifs were 

predicted for the fly datasets. 

C. elegans Datasets 

OrBS was not successful in prediction the PHA-4 binding site, TRTTKRY, in the 

set of genes upregulated in the pharynx. Examination of the motif chain states over the 

period of the programs execution show that while some chains did take on a state with a 

consensus sequence similar to the binding site it was typically for only a few sampling 

iterations. The first motif identified in all four replicate runs was a pyrimidine rich motif 

9-1 2 bps in length, an average normalized OrBS score of 1.1 1. OrBS was also not 

successful in the identification of the UNC-86 binding site. 

* The overall nCC score reported appears to be incorrectly calculated. 



DISCUSSION 

Algorithm 

Background Model 

In the original Gibbs sampler, both the background probability model and the 

motif model were evolving data structures. Lawrence et al. (1 993) describe the 

background model as all the residues of the given sequences not contained in the current 

motif alignment. Therefore, whenever the alignment model changed, the background 

model also changed to reflect the changing motif. It is important to exclude the motif 

residues from the background when dealing with a small total number of total residues, 

because of the large effect on background probability model that the incorporation of 

these residues into the background model may have. Although this approach is 

statistically correct, it is not necessary when using large data sets. Where the total 

number of residues defining the motif model is minute compared to the number of 

residues defining the background model, as is the case with most gene promoter data, the 

effects on the probabilistic model of the removal of the motif from the background tends 

to be insignificant. In addition, the using only the sequence data provided to construct 

the background model is incorrect in both a statistical and biological sense. The sample 

size is usually much too small to construct a correct and robust model of background 

sequence. There is no evidence to lead one to assume that the background upstream 



promoter sequence of a set of coregulated genes is any different than the background 

upstream promoter sequence of the average gene. In fact, using only the promoters of 

interest may lead to an overrepresentation of certain sequences in the background model, 

leading to some motifs not being discovered. 

For these reasons, the background probabilistic model used in OrBS can be 

generated fiom the provided sequence data or, preferably, generated from an independent 

data set of all upstream promoter regions for a particular species genome. In the case of 

the latter, the background model is provided to OrBS in a specified file format. 

Scoring Function 

Recently, much interest has been placed on how to incorporate additional 

information into in silico methods of regulatory elements prediction (Liu et al. 2004). 

Arguably, the most underused information is that of cross-species comparison. 

Currently, there are 15 completed eukaryotic genomes available at Ensembl(Hubbard et 

al. 2005), and there exist even more genomes partially sequenced. Like the genes they 

control, regulatory elements are under selective pressure to maintain a strong binding 

affinity with their associated transcription factor. 

CompareProspector utilizes a WPID (window percent identity values) in an 

attempt to incorporate this information (Liu et al. 2004). Initially, CompareProspector 

only samples from those sites which have a WPID above a given threshold. As the 

algorithm runs, this threshold is gradually decreased to a lower value. I see a few 

problems with this methodology. First, the WPID threshold never reaches zero and 

therefore incorrect cross-species alignments or loss of a TFBS from the comparison 

species could result in the missing of sites with high resemblance to the current motif 

model. Second, the size of the WPID is irrespective of the current motif size and may 



reflect sequence conservation not included in the sampled site. 

In OrBS I decided incorporate the bias towards conserved sequence into the core 

of the Gibbs sampling algorithm, the scoring function. This allows for the entire 

sequence space to be examined as well as only incorporating the conservation 

information of those sites in the motif model. 

Another benefit of the scoring function modification approach is the ease of 

adding additional information. The activity of many TFBSs is positionally dependent. 

For example, the position of the known X box sites used in this research all exist between 

60 and 160 bps upstream from the translation start site. I intend to include the option to 

positionally bias motif prediction in a later version of OrBS. 

Motif Occurrence 

There are a handful of existing methodologies to solve the motif occurrence 

problem. This includes both deciding when a sequence does not contain a motif as well 

as when a sequence contains multiple instances of a motif. The simplest is to ignore the 

problem and assume that all the input sequences contain a common motif. This is how 

the original Gibbs Sampler was implemented, but the authors were quick to suggest 

solutions to this problem (Lawrence et al. 1993). The solution this group came up with 

was outlined in the following instance of the algorithm, the site sampler (Neuwald et al. 

1995). The column sampling algorithm treats the set of provided sequences as a single 

sequence and instead of sampling a specified number of sites from each sequence. The 

algorithm samples every site individually against the "null" model, the absence of a 

motif. While this method has been shown to be effective with protein domains, this 

methodology unnaturally biases greater motif occurrence in longer sequences. Initial 

tests with this method frequently predicted motifs with more than half the observed 



occurrences occurring in a single sequence. It is a natural assumption that there exists 

some uniformity in motif occurrence between co-regulated genes. 

A second solution is to set two thresholds (Liu et al. 2001). A lower threshold 

(TL), which is increased incrementally, sets a minimum score required for a site to be 

included in the sampling distribution. The second, higher threshold (TH) sets a 

guaranteed motif alignment inclusion minimum. If a sequence has no sites with a score 

greater than TL, the sequence is considered not to contain that motif. If the sequence has 

more than one site that scores greater than TH, all those positions are added to the motif 

model. While Liu et al. (2001) claim using TL decreases the convergence time of the 

algorithm, it actually increases the chances of converging, not on the optimal solution, 

but on a local maximum. Eliminating regions of the sequence set from analysis 

diminishes a Gibbs sampling algorithm to explore the entire dataset for the optimal 

solution by creating 'gaps' between maxima. For this reason, and the somewhat arbitrary 

nature of selecting a TH, this methodology was not used in OrBS. 

The final methodology assessed, and the algorithm implemented in OrBS, was the 

expected occurrence calculations outlined by Thijs et a1 (2001). This methodology 

combines the sequence length independence of the threshold methods with the sound 

statistics of the column sampler. Unfortunately, while the statistical basis of the 

algorithm is well explained, the implementation of these formulas into efficient code is 

almost unmentioned. The authors state that they used a modified Forward Algorithm, an 

algorithm typically reserved for calculating the probability a sequence was derived from a 

particular Markov Chain. It is unknown how the original authors implemented this 

methodology and the algorithm may vary dramatically from that described in the 

Methods and Materials section. However, as the authors claimed, the algorithm was 



implemented in linear time with respect to sequence length. 

Motif Detection 

Most previously described Gibbs sampler based motif prediction programs state 

that the algorithm will iterate over a motif until a maximum number of iterations or 

convergence has occurred (Aerts et al. 2003a; Liu et al. 2004; Neuwald et al. 1995; 

Wang and Stormo 2003). However, rarely do they define convergence or how the 

occurrence is observed. A major drawback of MCMC methods is the often difficult task 

of deciding when convergence has occurred and thus chain termination is possible. At 

convergence, a Gibbs sampler returns a sample from a distribution. The difficulties arise 

from the nature of the Markov algorithm that the sample will be generally correlated 

(Cowles and Carlin 1996). The two most popular convergence diagnostics in the 

statistical community are that of Gelman and Rubin (Gelman and Rubin 1992) and of 

Raftery and Lewis (Raftery and Lewis 1992). However, both these, and many other 

convergence diagnostics are mathematically complex and often require user input to 

decide when convergence has occurred. Most rely on the analysis of plots along with 

diagnostics reporter values in order to determine the time of convergence. In addition, 

there is much debate regarding the validity of each of these tests to the extent that it is 

most statisticians option that "a weak diagnostic is better than no diagnostic" (Cowles 

and Carlin 1996). 

On the other extreme is the identification of a score maximum over a determined 

number of iterations. This seems to be the method of choice for most motif prediction 

algorithms. There is no confidence that the motif identified is the optimal solution and 

not a local maximum dependent on the starting alignment. This, however, is not as dire a 

situation as it seems. In the case of TFBS prediction, the algorithms are not designed to 



identify only the optimal solution but the set of maximal solutions that can be assigned as 

a common pattern with some level of confidence. The major problem with this approach 

is the decision of a minimum number of required iteration steps to reach convergence. 

Instead, a new, perhaps more intuitive approach was implemented in OrBS. In essence, 

the algorithm decides that "convergence" has occurred when a predetermined number of 

parallel running motif models converge to similar patterns. 

The algorithm initializes multiple, parallel Markov chains with random starting 

states and, after an initial "burn in" phase, attempts to access convergence between the 

chains through a target matrix similarity test. Such tests are common in the literature for 

intra-database comparison of TFBS repositories (Hughes et al. 2000; Sandelin and 

Wasserman 2004; Schones et al. 2005; Wang and Stormo 2003). Three tests were 

analysed as candidate diagnostics: the Pearson correlation coefficient (Eisen et al. 1998; 

Schones et al. 2005), the Kullback-Leiber informatioddistance (Aerts et al. 2003b; 

Kullback and Leibler 195 l), and the Pearson 2 test (Schones et al. 2005). Of these, the 

Pearson correlation coefficient was the measurement ultimately chosen. The Kullback- 

Leiber distance appears to be a natural choice because it is the same energy function used 

to create and refine the motif model. However, the lack of a constant normalization 

function to intuitively relate a given distance to a degree of similarity ruled out this 

approach. The range of both Pearson functions of negative one to one allows for the user 

to intuitively set a similarity threshold for convergence. Even though Schones et al. 

(2005) have shown the Pearson 2 test is a more robust similarity measure than the 

Pearson correlation coefficient, the benefits are overshadowed by the added complexity. 

In OrBS, the similarity measure is not concerned with distant family members or motifs 

with low information content and therefore the simpler, quicker Pearson correlation 



coefficient is sufficient. The simplicity of the calculation also allows OrBS to examine 

all alignments of the two matrices, overcoming any phase shift problems, with little effect 

to the programs running time. 

The question of the minimum number of iterations required to identify the optimal 

solution as well as all members of the maximal set is another issue. Instead of 

implementing a minimum number of total iterations approach, OrBS uses a minimum 

number of iterations between convergence events approach. The reasoning is that while 

the program is still discovering motif patterns, there is no reason to stop the sampling 

procedure but continue until it is deemed that no further patterns exist. After a 

sufficiently large number of iterations pass without a convergence event, it can be 

assumed that no other convergence events will occur. 

Dynamic Width and Phase Shift 

The dynamic width and phase shift algorithm implemented in OrBS is an 

extension of the phase shift correction algorithm suggested in the original Gibbs sampler 

paper (Lawrence et al. 1993). It is somewhat puzzling that no other motif prediction 

algorithms based on this paper implemented this suggestion. In order to reduce any motif 

size bias a uniquely normalized information content was developed for this procedure. 

By examining the average KLI of the outermost nucleotide columns of all TFBSs stored 

in TRANSFAC, we attempt to distinguish between biologically informative nucleotide 

variance and random nucleotide variance. 

Program Refinement 

The current user interface for OrBS is designed to ease parameter refinement and 

thus simple and crude. The interface will eventually have to be updated to simplify use, 



either through reprogramming or the creation of a Per1 wrapper and website. The latter is 

the favoured choice due to the ability to create multiple interfaces such as an inclusion of 

an alignment algorithm and orthologue database. 

Convergence and Termination 

In the first stage of refinement the default parameters for the number of parallel 

chains (-M), the alternate number of similar motifs required for a convergence event (- 

CN), and the Pearson correlation coefficient threshold (-CS) were chosen. The most 

obvious decision was the of the similarity threshold. A higher similarity is a better 

representation of actual chain convergence. The value of 0.75 was only tested in the case 

that a value 0190 was too restrictive for the variation introduced into the motif by the 

random sampling procedure (Table 2). The results prove that this was not the case and in 

theory a threshold of 0.75 requires only 4 positions of 6bp motif to be designated as 

similar enough for convergence. When I examined the subset of 0.90 threshold 

parameters combinations that identify the X box, two candidate sets emerged. The 

combination of 5 parallel chains with a convergence minimum of 2 chains from this point 

on defined as parameter combination A and the combination of 10 parallel chains with a 

convergence minimum of 2 defined as parameter combination B. The combination of 10 

parallel chains with a convergence minimum of 3 is perfectly selective for the X box 

motif. However, the X box is a highly conserved motif, and the incorporation of a few 

incorrect alignments has minimal effect on the motif model. In the case of a far less 

conserved motif, these parameters would most likely be too stringent. The added 

"incorrect" motif predictions in the chosen combinations of parameters are easily filtered 

out with a minimum score cut off. However, a minimum cut-off has will not be 

implemented until later in the development process in order not to miss any predictions. 



Table 6 Maximum iteration between convergence events 

Maximum Iteration 
Between Convergence 100 500 1000 2500 5000 7500 10000 
Events (X i )  

Motifs Predicted 0.67 1.00 1.00 1.33 1.67 2.67 3.33 

Average Raw Score of 19.12 18.88 18.88 16.21 15.15 13.19 12.71 A Motifs 
Average Number of 
Iterations Between 36 93 93 36 1 956 1804 2798 
Convergence 
Motifs Predicted 1.00 2.33 2.33 4.67 7.00 9.00 14.33 

Average Raw "Ore Of 15.50 13.65 13.65 11.61 10.97 10.67 9.89 B Motifs 
Average Number of 
Iterations Between 37 207 207 754 988 1126 1337 
Convergence 

The run time of the algorithm is directly proportional to the number of parallel chains. In 

order to reducerunning time, it may seem as though parameter set A would be a superior 

choice to parameter set B in an exhaustive search. However, examination of incremental 

maximum iterations between convergence events shows, in the case of the X box set, that 

set B surpasses, with a Ci value of 2,500 iterations, the number of motifs identified by set 

A with a Ci value of 10,000 (Table 6). In other words, although set B has twice as many 

parallel chains, it converges on motifs more frequently. For these reasons both sets A 

and B were chosen for the following noise/occurrence tests. 

Occurrence and Noise 

As seen in the results, Table 4, the occurrence algorithm was quite efficient at 

removing random, non-coregulated sequence from the sequence set. For both parameter 

sets A and B, the X box motif was detected consistently by OrBS for a datasets in which 

at least 50% of the genes contained a regulatory element. Although there is no literary 

reference to the noise removal efficiency for alternative motif prediction algorithms for 

comparison, this efficiency of OrBS in these tests seems adequate. It would be 



interesting to know what the typical co-regulation percentage of genes identified as co- 

expressed by various methods would is. Due to the natural distribution of the X box 

regulatory element, the performance of the occurrence algorithm was not observed in 

cases of multiple motif occurrences per input sequence. 

Orthology 

The orthology biased scoring function appears to successfully increase the 

prediction power of OrBS in the case of X box regulatory motif prediction. The X box 

motif was predicted consistently when only 33% of the input sequences contained the 

motif (Table 4). The resulting predictions were either comparable or better, based on the 

statistical tests used, than when no comparative information was provided. This further 

validates the use of comparative genomics in the discovery of novel transcription factors, 

even when the expression pattern of the putative orthologues is unknown. The 

phenotypic similarity of C. elegans and C. briggsae, despite the distant evolutionary 

separation, is a great aid to this inference. The sequencing of an additional three 

nematode species, Caenorhabditis rernanei, Caenorhabditis n. sp. PB28O 1 and 

Caenorhabditis japonica is under way and will greatly benefit further study in the field of 

TFBS discovery. The inclusion of additional species will act to buffer any artefacts of 

the methodology used to generate the nucleotide orthology bonus of a given sequence as 

well as any natural divergence present between any two given species. 

Two other recent attempts to incorporate comparative genomics information into a 

Gibbs sampling based regulatory element detection tool are CompareProspector (Liu et 

al. 2004), an expansion of BioProspector (Liu et al. 2001), and PhyloGibbs (Siddharthan 

et al. 2005). CompareProspector uses a naTve approach to incorporate this additional 

information. As previously discussed, only those motif positions which have a 



conservation score greater than a user defined threshold are considered valid motif 

positions. It would have been helphl if the authors compared the results of 

CompareProspector and BioProspector from a set of data in order to determine the 

benefit of the additional comparative genomics information. 

PhyloGibbs, is not a conventional motif detecting Gibbs sampler. To create the 

phylogenetic information, the algorithm starts by aligning all ortholog groups using 

Dialign (Morgenstern 1999), to identify conserved blocks. Regions which are not 

conserved are treated as in a traditional Gibbs sampler. However, those regions that 

show conservation are treated quite uniquely. The algorithm makes the likely assumption 

that any putative motif that exists in a region of conservation must have evolved from an 

ancestral motif. The motif weighting function of the sampling step is expanded to 

incorporation this assumption. The authors state that this methodology accounts for non- 

hct ional  conservation between closely related species, and the results show a marked 

increase in the efficiency of motif detection with the additional of phylogenetic 

information. Similar sophisticated comparative genomics information handling may 

increase the effectiveness of OrBS motif detection as well. 

Performance on Known Sets 

A training set of 14 genes known to contain the X box was used to aid in the 

development and calibration of OrBS. In almost all cases, OrBS performed exceptionally 

well on this set, typically predicting the width of the motif within two nucleotides of the 

actual size and up to a random sequence noise of 67%. The program was also successful 

in detecting the X box in all four runs of the 11 gene test set, indicating the program was 

not over-fitted to the training set in the refinement stages. These results validate the 



approach used to create this motif discovery tool. In addition to the program's predictive 

success on the test sets, the motif model derived from these test was efficient in the 

detection of additional X box motifs (Table 5). Most notably, the orthologue of the 

human BBS4 gene, F58A4.14, was identified as the top scoring gene. The fact that 

F58A4.14 was only recently annotated is quite perplexing. Only one of the papers 

describing the cloning of the first five BBS genes (BBSI, 2,4, 6, and 7) attempt to 

identie orthologous genes in other species (Badano et al. 2003; Katsanis et al. 2000; 

Mykytyn et al. 2001; Mykytyn et al. 2002; Nishimura et al. 2001; Slavotinek et al. 2000). 

A literature search reveals that the first reference to the bbs C. elegans gene class, 

including bbs-I, bbs-2, bbs-7, and bbs-8, is the paper describing the cloning of BBS8 

(Ansley et al. 2003). However, there is no mention made to what process or evidence 

these orthologous relationships were determined. I can only assume that these 

assignments were made by automated annotation. This would explain why F5 8A4.14 

remained undiscovered. To ensure that identification of this gene was possible at the 

time these papers were published, BBS4 was BLASTed against the Wormbase C. elegans 

genome, release WS100, the earliest release available. The results were identical to the 

previous attempt with WS140 (Figure 6). The only other cloned BBS gene not assigned a 

C. elegans orthologue is BBS6IMKKS, which is assumed to have evolved in the 

mammalian lineage (Li et al. 2004). Despite this, the C. elegans genome was scanned for 

orthologues of BBS6 in the same manner as with BBS4. As expected, no strong HSPs 

were observed (data not shown). 

The only other gene with strong evidence that the gene is Daf-19lX box regulated 

is Y37E3.5. This gene had both a strong candidate X box site as well as an expression 

pattern characteristic of Daf-19 (Figure 5,Table 5). The gene contains no SAGE probe 



sights and thus no further expression data could be gathered. Y37E3.5 has no strong 

homology to any functionally annotated genes and therefore would be an interesting gene 

to study its role in ciliated cells. 

The gene M04C9.5 is interesting because it shares an almost identical visual 

expression pattern to that of Y37E3.5 (Figure 5). However, the only resemblance of an X 

box in the upstream promoter region of MO4C9.5 is over 900 bp from the translational 

start site, a distance far beyond any confirmed Daf-19 regulated genes. Also, it appears 

to be expressed in the renal gland cells of C. elegans (McKay et al. 2003). These two 

genes exemplify the idea that coexpression does not require coregulation. 

The performance of OrBS on the known test sets was far from impressive. Most 

disappointing was the absence the PHA-4 binding site in the motifs predicted in the 

pharyngeal expressed genes, where other Gibbs samplers have been successful (Liu et al. 

2004). Analysis of the sequences shows that 169 of the 199 pharyngeal expressed genes 

contained at least one match to the PHA-4 binding site consensus in the upstream region, 

well within the sequence noise levels in which OrBS is capable of detecting the X box 

motif. The sampling chains were observed to enter into the state with a similar consensus 

to the PHA-4 site, however, it was maintained only for a few iterations. This resulted in 

an absence of multiple chain convergence at such a state. The motifs that were identified 

tended towards repetitive, low complexity patterns, such as the poly-pyrimidine motifs 

reported in the results. A scan for this motif in the 5' upstream regions of the entire 

genome shows no overrepresentation in genes expressed in the pharynx over other 

tissues. It is likely the case that the abundant presence of these low complexity regions in 

the 5' sequence result in high overall similarity of the sequences. Many TFBS discovery 

algorithms mask repeats and low-complexity regions prior to analysis. Such an approach 



was not implemented in OrBS in order not to disregard any overlapping binding sites and 

the added orthology bonus was created to guard against such possibilities. 

Another cause of poor performance is the dynamic width and phase shift 

algorithm. The relative difference in the information content score is small among the 

possible outcomes of the algorithm at any given step. The resulting change in the width 

and phase of the motif over several iterations therefore becomes almost random. In a 

method similar to genetic drift, this can cause the algorithm to "drift" away from a 

"good" pattern over time, especially with small or weak motifs. I propose that a possible 

solution would be not to compare the overall KLI score of the candidate outcome motifs, 

but rate the contribution of the surrounding sequence columns individually. An 

independent decision would be made for both the left and right side of the motif model to 

maintain the current alignment borders, or to expand or contract this border by a single 

nucleotide. Like the currently implemented algorithm, this would account for both 

dynamic width and phase shifts. 

Tompa et al. (2005) provide a standardized and needed set of sequences and 

statistical tests for comparison of the presently available tools for TFBS discovery. The 

performance of OrBS in the standardised test sets was comparable to some of the 

currently available TFBS discovery tools. Most notably, the nucleotide performance 

coefficient (nPC) of OrBS was on par with Consensus (Hertz and Stormo 1999) and 

GLAM (Frith et al. 2004), which are both MCMC sampling based tools. The best 

performing algorithm was Weeder (Pavesi et al. 2004). This algorithm implements an 

oligonucleotide counting approach using a suffix tree to increase the speed of the 

exhaustive search. 

Analysis of the Markov chains in both the pharynx and UNC-86 datasets reveals 



that although the correct motifs were not identified, all chains did at some iterations hold 

a consensus sequence related to the known TFBS. However, because no two chains were 

in this stage at the same iteration, no convergence event occurred and the motif was not 

reported. An alternative approach to the convergence methodology implemented in 

OrBS would be to let a single chain run for a given number of iterations, then select the 

"best" stage that the chain encountered as the top motif. To identify multiple motifs, the 

best motif is then masked and the procedure is re-executed. This 'halve" implementation 

was considered during the initial stages of the development of OrBS but the choice to go 

with the currently implemented approach was due to its better relation to MCMC 

statistics. In retrospect, this may have been the incorrect choice. If I examine only the 

UNC-86 data, the motif CAATGMAT was the highest scoring 8bp motif identified by 

OrBS. This is a close to the literary consensus binding sequence for UNC-86, 

AAATKCAT (Duggan et al. 1998), and almost identical to the motif identified by 

CompareProspector, CAATGCAT (Liu et  al. 2004). The less than impressive 

performance of OrBS on these two data sets was expected. OrBS has so far has been 

designed to predict the occurrence of the X box motif with high fidelity. The inclusion of 

these additional TFBS test sets were only to determine the current state of OrBS as a 

general TFBS predictor. 



CONCLUSION 

The Orthology Biased Gibbs Sampling (OrBS) program is currently in a beta state. The 

program shows promise but also requires improvement. I effectively identified the X box 

in both the training and test sets as well as created a diagnostic motif capable of 

identifying additional X box regulated genes. Some of the modifications to the original 

algorithm, such as the inclusion of the orthology biased score, were successful at 

increasing the predictive power of the naNe Gibbs Sampler. However, others, such as 

the dynamic width algorithm and convergence methodology, were not. Despite these 

setbacks OrBS was able to identify the X box motif efficiently in high noise 

circumstances. After the suggested corrections are made, OrBS will be refined to 

identify additional known binding motifs. As previously s 

tated, the methodology used in the creation of OrBS was to create a program that would 

perform extremely well on a single known TFBS. This is true for the X box regulatory 

motif. Now that this has been accomplished, I will sequentially refine the algorithm, 

using additional known TFBSs, to a more general predictor. Ultimately we wish to apply 

OrBS to co-expressed genes sets produced by the CeGEP for the identification of novel 

C. elegans TFBSs. 



APPENDICIES 

Appendix A: OrBS Source Code 

The source code for the OrBS program can be found on the accompanying CD in the 
"AppendixA" directory. Although designed to be platform independent, OrBS has only 
been compiled and tested on Linux systems using the GNU Compiler Collection 
(http://gcc.gnu.org/). The following is a table of the contents of the "AppendixA" 
directory. 

Filename Size Short Description 
(in 

bytes) 

dnaseq.cpp 4 4 0 4  DNA sequence class implementation file 
dnaseq. h 2529 DNA sequence class header file 
gff-conv.cpp 1 0  5 1 9  OrBS main program file 
gibbs-conv.cpp 12901 OrBS parallel chain implementation file 
gibbs-conv. h 5 0 7 9  OrBS parallel chain header file 
gmotif-conv.cpp 3 0 8 5 1 OrBS motif implementation file 
gmotif-conv. h 7306 OrBS motif header file 
Irfloat.cpp 4757  Long range float implementation file 
Irfloat. h 2091 Long range float header file 
makeconvsh 1 0  4 Bash script to compile OrBS executable 
nfstream.cpp 3608 Fasta stream implementation file 
nfstream. h 738 Fasta stream header file 

All files are in text and can be viewed in any text editor / word processor program. Line 
returns have be converted to DOS/Windows format for ease of viewing. 



Appendix B: Raw Data from X box Scan 
The raw data used to construct Table 5 is available on the accompanying CD in the 
directory "AppendixB" under the filename "Xbox Scan Analysis.xls"(35,840 bytes). 
Unlike Table 5, the resulting hits in the promoter regions of the X box training set are 
included (blue text). The columns of the spreadsheet are as follows: 

Column 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
u 
v 

W 
X 

Description 
Gene Name. 
Locus Name. 
Sequence of X box hit. 
Score of X box hit. 
Distance from ATG of the X box hit. 
Orientation of the X box hit. 
Sequence of the C. briggsae X box hit. 
Score of the C. briggsae X box hit. 
Distance from ATG of the C. briggsae X box hit. 
Sequence of the SAGE tag. 
The SAGE tags position in the gene. 
SAGE count in the FACS sorted ciliated neurons set. 
SAGE count in the FACS sorted pan-neuronal cells set. 
SAGE count in the FACS sorted muscle cells (replicate 2) set. 
The number of other genes that share the same tag at the same position. 
Identified in the Li et al. (2004) paper. 
Identified in the Avidor-Reiss et al. (2004) paper. 
Identified in the Elfimenko et al. (2005) paper. 
Identified in the Blacque et al. (2005) paper. 
Strain number for the promoter::GFP fusion transgenic. 
number of tissues with GFP expression that contain ciliated neurons. 
number of neuronal tissues with GFP expression that do not contain 
ciliated neurons. 
number of tissues with GFP expression in non-neuronal tissues. 
Raw promoter::GFP Expression Data. 



Appendix C: Gene Promoter Sets 

Canonical X box Set: Y105E8A.5, F40F9.1ay F20D12.3, R3 1.3, F38Gl . l ,  Y41G9A. 1, 
F02D8.3, F59C6.7, T27Bl .I, F33Hl . I  a, Y75B8A.12, T25F10.5, Y 110A7A.20 
and K08D 12.2. 

Noise (25%) Set A: B0207.5, C09G4.2b, EO4F6.1, F08Fl. 1 a, F23G4.tl, F4l C6.1, and 
Y 17G9B.7 

Noise (25%) Set B: C17E7.5, C49C3.12, F53H2.1, T07D3.4, Yl05C5B.9, Y53F4B.38, 
and ZK892.l b 

Noise (25%) Set C: D1069.2, FOlG10.3, H28016.2, T04B8.5a, Y38ElOA.5, Y46D2A.2, 
and Y73E7A.3 

Noise (25%) Set D: B05 1 1.9b, F09E5.11, K12C11.2, K12F2.2b, R74.4, T04B2.2, and 
T20F10.5 

Noise (50%) Set A: B0564.3, C39DlO.1, C40All . l ,  C49A9.6, F13B12.3, F22H10.3, 
F54F11.1, K07A1.8, R09B5.4, W10C8.3, Y60A3A.8, Y71F9AM.6, Y73F8A.12, 
and ZK829.7 

Noise (50%) Set B: CO7C7.1, C l6C2.1, C36C9.t3, D l  054.7, F27Cl.7b, K03A11.1, 
K05B2.5, K07C11.4, K08H10.2a, M04B2.7, T12E12.1, Y113G7A.4, 
Y76B 12C. I ,  and ZK849.5 

Noise (50%) Set C: C09B8.7c, F36Hl.4b, H21P03.1, Rl3H4.6, R53.7a7 TO5AlO.6, 
T06G6.3b, T20F5.6, T24Fl.4, T27C4.4c, WO5B5. I, W07A8.3, Y52B1 lA. l l ,  and 
ZK1290.1 

Noise (50%) Set D: C01 GlO.5, C07A12.4a, F07B10.3, F07C3.5, F09B12.6, F58B4.3, 
KOlA11.3, KllG12.5, T04A8.14, T06C12.8, T07G12.5, TI IB7.4d, 
Y69A2AR. 1 1, and ZK550.2 

Noise (67%) Set A: COIF1 .I, COlF4.2a, C03A7.2, C03F11.2, C07A12.5a, C24D10.4, 
C31C9.1a7 D2045.1, FOlD4.5a, F21F8.1, F23A7.2, F26F12.4, F47B3.3, 
F57B10.8, T02C12.2, T04A8.14, T10H4.2, T20D4.13, T28F3.9, W05H7.3, 
W06G6.8, W08E12.8, Y40H4A.lb, Y50D7A.11, Y5 1A2D.10, Y54G2A.2a, 
Y62F5A.lb, and Y66HlA.3 

Noise (67%) Set B: C15H11.7, C17G1.1, C17G1.4b, C23G10.2b7 C33C12.1, C44F1.5, 
C53B4.1, DHI 1 . 5 ~ ~  FOlFl.la, F09E10.6, F36A2.6, F41E6.4a, F41G3.6, 
F56A3.4, K05D4.8, R05D8.1, R06F6.8b, R09E10.3, R12E2.12, T12A7.4, 
T24E12.8, W04A4.5, W09D10.5, Y39A3A.5, Y50D7A.1, Y87G2A.12,ZC64.4, 
and ZK546.17 

Noise (67%) Set C: BO353.1, C08F1.9, C17A2.1, FOlG12.2a, F07A11.2b, F25B4.2, 
F25E5.9, F26F4.10a, F41B5.4, F53E2.1, H04M03.4, H06104.t1, K08H10.9, 
M04D8.2, R13D7.9, T06E4.5, T08B2.4, T12B5.3, T20H4.3b, T26C11.4, 
T28H11.4, W02D3.8, Y4l G9A.6, Y48Gl BM.9, Y53F4B.26, Y67D8C. 1 Ob, 
Y71H2AM.9,ZC47.14 

Noise (67%) Set D: BO4lO. 1, C35B 1.2c, C41D11.2, C48B6.6b, F1 SF1 1.1, F37Bl.7, 
F57B10.8, HlOE21.3a, H12119.8, KOSC9.6, Ml10.4a, M162.10, T06E8.1, 
T11B7.2, T19C4.9, T28D6.5a, W03A5.6, W07A12.8, Y49E10.5, Y49F6B.7, 
Y60A9A.1, Y62ElOA. 16, Y69A2AR.3, Y77E1 lA.tl, ZC455.5,ZK180.2, 
ZK4 18.2b, and ZK994.1 



Appendix D: Results from Assessment of Computational Motif 
Discovery Tools 

All data provided by the ACMDT as a result of the submission of the OrBS motif 
predictions are provided on the accompanying CD in the "AppendixD" directory. 

Filename Size Short Description 
(in bytes) 

ACMDT results.xls 203589 The results of the ACMDT analysis 
ACMDT submission.txt 19662 Motif predictions submitted to the ACMDT 

The column heading for the ACMDT results, as stated in Tompa et al. (2005), are as 
follows: 

the number of nucleotide positions in known and predicted sites. 
the number of nucleotide positions in known sites but not in predicted sites. 
the number of nucleotide positions not in known sites but in predicted sites. 
the number of nucleotide positions in neither known nor predicted sites. 
the number of known sites overlapped by predicted sites. 
the number of known sites not overlapped by predicted sites. 
the number of predicted sites not overlapped by known sites. 
nucleotide level sensitivity. 
nucleotide level positive predictive value. 
nucleotide level specificity. 
nucleotide level performance coefficient. 
nucleotide level correlation coefficient. 
site level sensitivity. 
site level positive predictive power. 
site level average site performance. 



BIBLIOGRAPHY 

Aerts, S., G. Thijs, B. Coessens, M. Staes, Y. Moreau, and B. De Moor. 2003a. Toucan: 
deciphering the cis-regulatory logic of coregulated genes. Nucleic Acids Res 
3 1 : 1753-64. 

Aerts, S., P. Van Loo, G. Thijs, Y. Moreau, and B. De Moor. 2003b. Computational 
detection of cis -regulatory modules. Bioinformatics 19 Suppl2:II5-IIl4. 

Ansley, S. J., J. I,. Badano, 0. E. Blacque, J. Hill, B. E. Hoskins, C. C. Leitch, J. C. Kim, 
A. J. Ross, E. R. Eichers, T. M. Teslovich, A. K. Mah, R. C. Johnsen, J. C. 
Cavender, R. A. Lewis, M. R. Leroux, P. L. Beales, and N. Katsanis. 2003. 
Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. 
Nature 425:628-33. 

Avidor-Reiss, T., A. M. Maer, E. Koundakjian, A. Polyanovsky, T. Keil, S. 
Subramaniam, and C. S. Zuker. 2004. Decoding cilia function: defining 
specialized genes required for compartmentalized cilia biogenesis. Cell 1 17:527- 
39. 

Badano, J. L., S. J. Ansley, C. C. Leitch, R. A. Lewis, J. R. Lupski, and N. Katsanis. 
2003. Identification of a novel Bardet-Biedl syndrome protein, BBS7, that shares 
structural features with BBSl and BBS2. Am J Hum Genet 72:650-8. 

Bailey, T. L., and C. Elkan. 1995a. Unsupervised Learning of Multiple Motifs in 
Biopolymers Uning Expectation Maximization. Machine Learning Journal 2 1 :5 1 - 
83. 

Bailey, T. L., and C. Elkan. 1995b. The value of prior knowledge in discovering motifs 
with MEME. Proc Int Conf Intel1 Syst Mol Biol3:21-9. 

Benson, D. A., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler. 2005. 
GenBank. Nucleic Acids Res 33:D34-8. 

Blacque, 0. E., E. A. Perens, K. A. Boroevich, P. N. Inglis, C. Li, A. Warner, J. Khattra, 
R. A. Holt, G. Ou, A. K. Mah, S. J. McKay, P. Huang, P. Swoboda, S. J. Jones, 
M. A. Marra, D. L. Baillie, D. G. Moerman, S. Shaharn, and M. R. Leroux. 2005. 
Functional genomics of the cilium, a sensory organelle. Curr Biol 15.93 5-4 1. 

Blurnenthal, T., M. Squire, S. Kirtland, J. Cane, M. Donegan, J. Spieth, and W. Sharrock. 
1984. Cloning of a yolk protein gene family from Caenorhabditis elegans. J Mol 
Biol 174:l-18. 



Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:7 1-94. 

Brudno, M., C. B. Do, G. M. Cooper, M. F. Kim, E. Davydov, E. D. Green, A. Sidow, 
and S. Batzoglou. 2003. LAGAN and Multi-LAGAN: efficient tools for large- 
scale multiple alignment of genomic DNA. Genome Res l3:72 1-3 1. 

Chen, N., T. W. Harris, I. Antoshechkin, C. Bastiani, T. Bieri, D. Blasiar, K. Bradnam, P. 
Canaran, J. Chan, C. K. Chen, W. J. Chen, F. Cunningham, P. Davis, E. Kenny, 
R. Kishore, D. Lawson, R. Lee, H. M. Muller, C. Nakamura, S. Pai, P. Ozersky, 
A. Petcherski, A. Rogers, A. Sabo, E. M. Schwarz, K. Van Auken, Q. Wang, R. 
Durbin, J. Spieth, P. W. Sternberg, and L. D. Stein. 2005. WormBase: a 
comprehensive data resource for Caenorhabditis biology and genomics. Nucleic 
Acids Res 33:D383-9. 

Collet, J., C. A. Spike, E. A. Lundquist, J. E. Shaw, and R. K. Herman. 1998. Analysis 
of osm-6, a gene that affects sensory cilium structure and sensory neuron function 
in Caenorhabditis elegans. Genetics 148: 1 87-200. 

consortium, C. e. S. 1998. Genome sequence of the nematode C. elegans: a platform for 
investigating biology. Science 282:2012-8. 

Cowles, M. K., and B. P. Carlin. 1996. Markov Chain Monte Carlo Convergence 
Diagnostics: A Comparative Review. Journal of the American Statistical 
Association 9 1 :883-904. 

Crooks, G. E., G. Hon, J. M. Chandonia, and S. E. Brenner. 2004. WebLogo: a sequence 
logo generator. Genome Res 14: 1 188-90. 

Dawe, A. L., K. A. Caldwell, P. M. Harris, N. R. Morris, and G. A. Caldwell. 2001. 
Evolutionarily conserved nuclear migration genes required for early embryonic 
development in Caenorhabditis elegans. Dev Genes Evol2 1 1 :434-4 1. 

Dougherty, E. C., and H. G. Calhoun. 1949. Possible significance of free-living 
nematodes in genetic research. Nature 16 1 :29. 

Duggan, A., C. Ma, and M. Chalfie. 1998. Regulation of touch receptor differentiation 
by the Caenorhabditis elegans mec-3 and unc-86 genes. Development 125:4107- 
19. 

Dwyer, N. D., E. R. Troemel, P. Sengupta, and C. I. Bargmann. 1998. Odorant receptor 
localization to olfactory cilia is mediated by ODR-4, a novel membrane- 
associated protein. Cell 93 :455-66. 

Efimenko, E., K. Bubb, H. Y. Mak, T. Holzman, M. R. Leroux, G. Ruvkun, J. H. 
Thomas, and P. Swoboda. 2005. Analysis of xbx genes in C. elegans. 
Development 132: 1923-34. 



Eisen, M. B., P. T. Spellman, P. 0. Brown, and D. Botstein. 1998. Cluster analysis and 
display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14863- 
8. 

Ewens, W. J., and G. Grant. 2001. Statistical methods in bioinformatics: an introduction. 
Springer, New York. 

Fan, Y., M. A. Esmail, S. J. Ansley, 0. E. Blacque, K. Boroevich, A. J. Ross, S. J. 
Moore, J. L. Badano, H. May-Simera, D. S. Compton, J. S. Green, R. A. Lewis, 
M. M. van Haelst, P. S. Parfrey, D. L. Baillie, P. L. Beales, N. Katsanis, W. S. 
Davidson, and M. R. Leroux. 2004. Mutations in a member of the Ras 
superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome. Nat 
Genet 36:989-93. 

Fire, A. 1986. Integrative transformation of Caenorhabditis elegans. Embo J 5:2673- 
2680. 

Friedman, P., E. Platzer, and J. Eby. 1977. Species differentiation in C. briggsae and C. 
elegans. J. Nematol. 9: 197-203. 

Frith, M. C., U. Hansen, J. L. Spouge, and Z. Weng. 2004. Finding functional sequence 
elements by multiple local alignment. Nucleic Acids Res 32:189-200. 

Fujiwara, M., T. Ishihara, and I. Katsura. 1999. A novel WD40 protein, CHE-2, acts 
cell-autonomously in the formation of C. elegans sensory cilia. Development 
126:4839-48. 

Gaudet, J., and S. E. Mango. 2002. Regulation of organogenesis by the Caenorhabditis 
elegans FoxA protein PHA-4. Science 295:82 1-5. 

Gelman, A., and D. B. Rubin. 1992. Inference from Iterative Simulation Using Multiple 
Sequences. Statistical Science 7:457-472. 

German, S., and D. German. 1984. Stochastic relaxation, Gibbs distributions and the 
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and 
Machine Intelligence 6:72 1-741. 

Gupta, B. P., and P. W. Sternberg. 2003. The draft genome sequence of the nematode 
Caenorhabditis briggsae, a companion to C. elegans. Genome Biol4:238. 

Haycraft, C. J., J. C. Schafer, Q. Zhang, P. D. Taulman, and B. K. Yoder. 2003. 
Identification of CHE- 13, a novel intraflagellar transport protein required for cilia 
formation. Exp Cell Res 284:25 1-63. 

Haycraft, C. J., P. Swoboda, P. D. Taulman, J. H. Thomas, and B. K. Yoder. 2001. The 
C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a 
ciliogenic pathway and is disrupted in osm-5 mutant worms. Development 
128: 1493-505. 



Hertz, G. Z., and G. D. Stormo. 1999. Identifying DNA and protein patterns with 
statistically significant alignments of multiple sequences. Bioinformatics 15:563- 
77. 

Hubbard, T., D. Andrews, M. Caccamo, G. Cameron, Y. Chen, M. Clamp, L. Clarke, G. 
Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts, T. Down, R. Durbin, X. M. 
Fernandez-Suarez, J. Gilbert, M. Hammond, J. Herrero, H. Hotz, K. Howe, V. 
Iyer, K. Jekosch, A. Kahari, A. Kasprzyk, D. Keefe, S. Keenan, F. Kokocinsci, D. 
London, I. Longden, G. McVicker, C. Melsopp, P. Meidl, S. Potter, G. Proctor, 
M. Rae, D. Rios, M. Schuster, S. Searle, J. Severin, G. Slater, D. Smedley, J. 
Smith, W. Spooner, A. Stabenau, J. Stalker, R. Storey, S. Trevanion, A. Ureta- 
Vidal, J. Vogel, S. White, C. Woodwark, and E. Birney. 2005. Ensembl2005. 
Nucleic Acids Res 33:D447-53. 

Hughes, J. D., P. W. Estep, S. Tavazoie, and G. M. Church. 2000. Computational 
identification of cis-regulatory elements associated with groups of functionally 
related genes in Saccharomyces cerevisiae. J Mol Biol296: 1205- 14. 

Kal, A. J., A. J. van Zonneveld, V. Benes, M. van den Berg, M. G. Koerkamp, K. 
Albermann, N. Strack, J. M. Ruijter, A. Richter, B. Dujon, W. Ansorge, and H. F. 
Tabak. 1999. Dynamics of gene expression revealed by comparison of serial 
analysis of gene expression transcript profiles from yeast grown on two different 
carbon sources. Mol Biol Cell 10: 1859-72. 

Katsanis, N., P. L. Beales, M. 0. Woods, R. A. Lewis, J. S. Green, P. S. Parfrey, S. J. 
Ansley, W. S. Davidson, and J. R. Lupski. 2000. Mutations in MKKS cause 
obesity, retinal dystrophy and renal malformations associated with Bardet-Biedl 
syndrome. Nat Genet 26:67-70. 

Kelly, A., and J. Trowsdale. 1985. Complete nucleotide sequence of a functional HLA- 
DP beta gene and the region between the DP beta 1 and DP alpha 1 genes: 
comparison of the 5' ends of HLA class I1 genes. Nucleic Acids Res 13 : 1607-2 1. 

Kullback, S., and R. A. Leibler. 195 1. On Information and Sufficiency. The Annals of 
Mathematical Statistics 22:79-86. 

Lawrence, C. E., S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C. 
Wootton. 1993. Detecting subtle sequence signals: a Gibbs sampling strategy for 
multiple alignment. Science 262:208-14. 

Lenhard, B., and W. W. Wasserman. 2002. TFBS: Computational framework for 
transcription factor binding site analysis. Bioinformatics 18: 1 135-6. 

Li, J. B., J. M. Gerdes, C. J. Haycraft, Y. Fan, T. M. Teslovich, H. May-Simera, H. Li, 0. 
E. Blacque, L. Li, C. C. Leitch, R. A. Lewis, J. S. Green, P. S. Parfiey, M. R. 
Leroux, W. S. Davidson, P. L. Beales, L. M. Guay-Woodford, B. K. Yoder, G. D. 
Stormo, N. Katsanis, and S. K. Dutcher. 2004. Comparative genomics identifies 
a flagellar and basal body proteome that includes the BBS5 human disease gene. 
Cell 1 l7:541-52. 



Liu, X., D. L. Brutlag, and J. S. Liu. 2001. BioProspector: discovering conserved DNA 
motifs in upstream regulatory regions of co-expressed genes. Pac Symp 
Biocomput: 127-38. 

Liu, Y., X. S. Liu, L. Wei, R. B. Altman, and S. Batzoglou. 2004. Eukaryotic regulatory 
element conservation analysis and identification using comparative genomics. 
Genome Res 14:45 1-8. 

MacMorris, M., S. Broverman, S. Greenspoon, K. Lea, C. Madej, T. Blumenthal, and J. 
Spieth. 1992. Regulation of vitellogenin gene expression in transgenic 
Caenorhabditis elegans: short sequences required for activation of the vit-2 
promoter. Mol Cell Biol 12: 1652-62. 

Marchal, K., G. Thijs, S. De Keersmaecker, P. Monsieurs, B. De Moor, and J. 
Vanderleyden. 2003. Genome-specific higher-order background models to 
improve motif detection. Trends Microbiol 1 1 :6 1-6. 

Mathis, D. J., C. 0. Benoist, V. E. Williams, 2nd, M. R. Kanter, and H. 0. McDevitt. 
1983. The murine E alpha immune response gene. Cell 32:745-54. 

McKay, S. J., R. Johnsen, J. Khattra, J. Asano, D. L. Baillie, S. Chan, N. Dube, L. Fang, 
B. Goszczynski, E. Ha, E. Halfnight, R. Hollebakken, P. Huang, K. Hung, V. 
Jensen, S. J. Jones, H. Kai, D. Li, A. Mah, M. Marra, J. McGhee, R. Newbury, A. 
Pouzyrev, D. L. Riddle, E. Sonnharnmer, H. Tian, D. Tu, J. R. Tyson, G. Vatcher, 
A. Warner, K. Wong, Z. Zhao, and D. G. Moerman. 2003. Gene expression 
profiling of cells, tissues, and developmental stages of the nematode C. elegans. 
Cold Spring Harb Symp Quant Biol68: 159-69. 

McKnight, S. L., and R. Kingsbury. 1982. Transcriptional control signals of a 
eukaryotic protein-coding gene. Science 2 17:3 16-24. 

Menkens, A. E., U. Schindler, and A. R. Cashmore. 1995. The G-box: a ubiquitous 
regulatory DNA element in plants bound by the GBF family of bZIP proteins. 
Trends Biochem Sci 20:506-10. 

Morgenstem, B. 1999. DIALIGN 2: improvement of the segment-to-segment approach 
to multiple sequence alignment. Bioinformatics 15 :2 1 1-8. 

Mykytyn, K., T. Braun, R. Carmi, N. B. Haider, C. C. Searby, M. Shastri, G. Beck, A. F. 
Wright, A. Iannaccone, K. Elbedour, R. Riise, A. Baldi, A. Raas-Rothschild, S. 
W. Gorman, D. M. Duhl, S. G. Jacobson, T. Casavant, E. M. Stone, and V. C. 
Sheffield. 2001. Identification of the gene that, when mutated, causes the human 
obesity syndrome BBS4. Nat Genet 28: 188-9 1. 



Mykytyn, K., D. Y. Nishimura, C. C. Searby, M. Shastri, H. J. Yen, J. S. Beck, T. Braun, 
L. M. Streb, A. S. Cornier, G. F. Cox, A. B. Fulton, R. Carmi, G. Luleci, S. C. 
Chandrasekharappa, F. S. Collins, S. G. Jacobson, J. R. Heckenlively, R. G. 
Weleber, E. M. Stone, and V. C. Sheffield. 2002. Identification of the gene 
(BBS 1) most commonly involved in Bardet-Biedl syndrome, a complex human 
obesity syndrome. Nat Genet 31 :435-8. 

Neuwald, A. F., J. S. Liu, and C. E. Lawrence. 1995. Gibbs motif sampling: detection of 
bacterial outer membrane protein repeats. Protein Sci 4: 161 8-32. 

Nishimura, D. Y., C. C. Searby, R. Carmi, K. Elbedour, L. Van Maldergem, A. B. Fulton, 
B. L. Lam, B. R. Powell, R. E. Swiderski, K. E. Bugge, N. B. Haider, A. E. 
Kwitek-Black, L. Ying, D. M. Duhl, S. W. Gorman, E. Heon, A. Iannaccone, D. 
Bonneau, L. G. Biesecker, S. G. Jacobson, E. M. Stone, and V. C. Sheffield. 
2001. Positional cloning of a novel gene on chromosome 16q causing Bardet- 
Biedl syndrome (BBS2). Hum Mol Genet 10:865-74. 

Pavesi, G., P. Mereghetti, G. Mauri, and G. Pesole. 2004. Weeder Web: discovery of 
transcription factor binding sites in a set of sequences from co-regulated genes. 
Nucleic Acids Res 32: W 199-203. 

Qin, H., J. L. Rosenbaum, and M. M. Barr. 2001. An autosomal recessive polycystic 
kidney disease gene homolog is involved in intraflagellar transport in C. elegans 
ciliated sensory neurons. Curr Biol 1 1 :457-61. 

Raftery, A. E., and S. M. Lewis. 1992. Practical Marko-v Chain Monte Carlo: Comment: 
One Long Run with Diagnostics: Implementation Strategies for Markov Chain 
Monte Carlo. Statistical Science 7:493-,497. 

Reith, W., and B. Mach. 2001. The bare lymphocyte syndrome and the regulation of 
MHC expression. Annu Rev Irnmunol 19:33 1-73. 

Riddle, D. L. 1997. C. elegans 11. Cold Spring Harbor Laboratory Press, Plainview, 
N.Y. 

Salmon, K., S. P. Hung, K. Mekjian, P. Baldi, G. W. Hatfield, and R. P. Gunsalus. 2003. 
Global gene expression profiling in Escherichia coli K12. The effects of oxygen 
availability and FNR. J Biol Chem 278:29837-55. 

Salmon, K. A., S. P. Hung, N. R. Steffen, R. Krupp, P. Baldi, G. W. Hatfield, and R. P. 
Gunsalus. 2005. Global gene expression profiling in Escherichia coli K12: 
effects of oxygen availability and ArcA. J Biol Chem 280: 15084-96. 

Sandelin, A., W. Alkema, P. Engstrom, W. W. Wasserman, and B. Lenhard. 2004. 
JASPAR: an open-access database for eukaryotic transcription factor binding 
profiles. Nucleic Acids Res 32 Database issue:D91-4. 



Sandelin, A., and W. W. Wasserman. 2004. Constrained binding site diversity within 
families of transcription factors enhances pattern discovery bioinformatics. J Mol 
Biol 338:207-15. 

Schafer, J. C., C. J. Haycraft, J. H. Thomas, B. K. Yoder, and P. Swoboda. 2003. XBX- 
1 encodes a dynein light intermediate chain required for retrograde intraflagellar 
transport and cilia assembly in Caenorhabditis elegans. Mol Biol Cell 14:2057-70. 

Schneider, T. D., and R. M. Stephens. 1990. Sequence logos: a new way to display 
consensus sequences. Nucleic Acids Res 18:6097-lOO. 

Schones, D. E., P. Sumazin, and M. Q. Zhang. 2005. Similarity of position frequency 
matrices for transcription factor binding sites. Bioinformatics 21 :307-13. 

Siddharthan, R., E. D. Siggia, and E. J. van Nimwegen. 2005. PhyloGibbs: A Gibbs 
Sampling Motif Finder that Incorporates Phylogeny. PLoS Computational 
Biology preprint 

Signor, D., K. P. Wedaman, J. T. Orozco, N. D. Dwyer, C. I. Bargmann, L. S. Rose, and 
J. M. Scholey. 1999. Role of a class DHClb dynein in retrograde transport of 
IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory 
neurons of living Caenorhabditis elegans. J Cell Biol l47:5 19-30. 

Slavotinek, A. M., E. M. Stone, K. Mykytyn, J. R. Heckenlively, J. S. Green, E. Heon, M. 
A. Musarella, P. S. Parfrey, V. C. Sheffield, and L. G. Biesecker. 2000. 
Mutations in MKKS cause Bardet-Biedl syndrome. Nat Genet 26:15-6. 

Smith, T. F., and M. S. Waterman. 198 1. Identification of common molecular 
subsequences. J Mol Biol 147: 195-7. 

Spieth, J., K. Denison, S. Kirtland, J. Cane, and T. Blumenthal. 1985. The C. elegans 
vitellogenin genes: short sequence repeats in the promoter regions and homology 
to the vertebrate genes. Nucleic Acids Res 135283-95. 

Spieth, J., M. MacMorris, S. Broverman, S. Greenspoon, and T. Blumenthal. 1988. 
Regulated expression of a vitellogenin fusion gene in transgenic nematodes. Dev 
Biol 130:285-93. 

Stein, L. D., Z. Bao, D. Blasiar, T. Blumenthal, M. R. Brent, N. Chen, A. Chinwalla, L. 
Clarke, C. Clee, A. Coghlan, A. Coulson, P. D'Eustachio, D. H. Fitch, L. A. 
Fulton, R. E. Fulton, S. Griffiths-Jones, T. W. Harris, L. W. Hillier, R. Kamath, P. 
E. Kuwabara, E. R. Mardis, M. A. Marra, T. L. Miner, P. Minx, J. C. Mullikin, R. 
W. Plumb, J. Rogers, J. E. Schein, M. Sohrmann, J. Spieth, J. E. Stajich, C. Wei, 
D. Willey, R. K. Wilson, R. Durbin, and R. H. Waterston. 2003. The genome 
sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS 
Biol 1 :E45. 

Sulston, J. E. 2003. Caenorhabditis elegans: the cell lineage and beyond (Nobel lecture). 
Chembiochem 4:688-96. 



Sulston, J. E., and H. R. Horvitz. 1977. Post-embryonic cell lineages of the nematode, 
Caenorhabditis elegans. Dev Biol56: 1 10-56. 

Sulston, J. E., E. Schierenberg, J. G. White, and J. N. Thomson. 1983. The embryonic 
cell lineage of the nematode Caenorhabditis elegans. Dev Biol lOO:64-ll9. 

Swoboda, P., H. T. Adler, and J. H. Thomas. 2000. The RFX-type transcription factor 
DAF- 19 regulates sensory neuron cilium formation in C. elegans. Mol Cell 5:4 1 1 - 
21. 

Thijs, G., M. Lescot, K. Marchal, S. Rombauts, B. De Moor, P. Rouze, and Y. Moreau. 
2001. A higher-order background model improves the detection of promoter 
regulatory elements by Gibbs sampling. Bioinformatics 17: 1 1 13-22. 

Thijs, G., K. Marchal, M. Lescot, S. Rombauts, B. De Moor, P. Rouze, and Y. Moreau. 
2002. A Gibbs sampling method to detect overrepresented motifs in the upstream 
regions of coexpressed genes. J Comput Biol9:447-64. 

Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the 
sensitivity of progressive multiple sequence alignment through sequence 
weighting, position-specific gap penalties and weight matrix choice. Nucleic 
Acids Res 22:4673-80. 

Tompa, M., N. Li, T. L. Bailey, G. M. Church, B. De Moor, E. Eskin, A. V. Favorov, M. 
C. Frith, Y. Fu, W. J. Kent, V. J. Makeev, A. A. Mironov, W. S. Noble, G. Pavesi, 
G. Pesole, M. Regnier, N. Simonis, S. Sinha, G. Thijs, J. van Helden, M. 
Vandenbogaert, Z. Weng, C. Workman, C. Ye, and Z. Zhu. 2005. Assessing 
computational tools for the discovery of transcription factor binding sites. Nat 
Biotechnol 23: 137-44. 

Wang, T., and G. D. Stormo. 2003. Combining phylogenetic data with co-regulated 
genes to identify regulatory motifs. Bioinformatics 19:2369-80. 

Wingender, E., X. Chen, E. Fricke, R. Geffers, R. Hehl, I. Liebich, M. Krull, V. Matys, 
H. Michael, R. Ohnhauser, M. Pmss, F. Schacherer, S. Thiele, and S. Urbach. 
2001. The TRANSFAC system on gene expression regulation. Nucleic Acids Res 
29:28 1-3. 

Xue, D., M. Finney, G. Ruvkun, and M. Chalfie. 1992. Regulation of the mec-3 gene by 
the C.elegans homeoproteins UNC-86 and MEC-3. Embo J 11 :4969-79. 

Xue, D., Y. Tu, and M. Chalfie. 1993. Cooperative interactions between the 
Caenorhabditis elegans homeoproteins UNC-86 and MEC-3. Science 261 : 1324-8. 

Zucker-Aprison, E., and T. Blumenthal. 1989. Potential regulatory elements of 
nematode vitellogenin genes revealed by interspecies sequence comparison. J Mol 
Evol 28:487-96. 


