
A THEORETICAL COMPARISON OF 

RESOLUTION PROOF SYSTEMS FOR CSP 

ALGORITHMS 

Cho Yee Joey Hwang 

B.Sc., Simon Fraser University, 2001 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

O F  T H E  REQUIREMENTS FOR T H E  DEGREE O F  

MASTER OF SCIENCE 
in the School 

of 

Computing Science 

@ Cho Yee Joey Hwang 2004 

SIMON FRASER UNIVERSITY 

Fall 2004 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



APPROVAL 

Name: Cho Yee Joey Hwang 

Degree: Master of Science 

Title of thesis: A Theoretical Comparison of Resolution Proof Systems 

for CSP Algorithms 

Examining Committee: Dr. Ramesh Krishnamurti 

Chair 

Dr. David G. Mitchell 

Senior Supervisor 

-- - 

Dr. Arthur L. Liestman 

Supervisor 

Dr. Andrei A. Bulatov 

SFU Examiner 

Date Approved: December 2, 2004 

11 



SIMON FRASER UNIVERSITY 

PARTIAL COPYRIGHT LICENCE 

The author, whose copyright is declared on the title page of this work, 
has granted to Simon Fraser University the right to lend this thesis, 
project or extended essay to users of the Simon Fraser University Library, 
and to make partial or single copies only for such users or in response to 
a request from the library of any other university, or other educational 
institution, on its own behalf or for one of its users. 

The author has further granted permission to Simon Fraser University to 
keep or make a digital copy for use in its circulating collection. 

The author has further agreed that permission for multiple copying of 
this work for scholarly purposes may be granted by either the author or 
the Dean of Graduate Studies. 

It is understood that copying or publication of this work for financial gain 
shall not be allowed without the author's written permission. \ 

Permission for public performance, or limited permission for private 
scholarly use, of any multimedia materials forming part of this work, 
may have been granted by the author. This information may be found on 
the separately catalogued multimedia material and in the signed Partial 
Copyright Licence. 

The original Partial Copyright Licence attesting to these terms, and 
signed by this author, may be found in the original bound copy of this 
work, retained in the Simon Fraser University Archive. 

W. A. C. Bennett Library 
Simon Fraser University 

Burnaby, BC, Canada 



Abstract 

Many problems from a variety of applications such as graph coloring and circuit 

design can be modelled as constraint satisfaction problems (CSPs). This provides 

strong motivation to  develop effective algorithms for CSPs. In this thesis, we study 

two resolution-based proof systems, NG-RES and C-RES, for finite-domain CSPs 

which have a close connection to  common CSP algorithms. We give an almost com- 

plete characterization of the relative power among the systems and their restricted 

tree-like variants. We demonstrate an exponential separation between NG-RES and 

C-RES, improving on the previous super-polynomial separation, and present other 

new separations and simulations. We also show that most of the separations are nearly 

optimal. One immediate consequence of our results is that simple backtracking with 

2-way branching is exponentially more powerful than simple backtracking with d-way 

branching. 
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Chapter 1 

Introduction 

Constraint satisfaction problems (CSPs) involve finding values for a finite set of vari- 

ables satisfying all of a given set of constraints between the variables. They are 

widely used to encode problems such as planning, scheduling, graph coloring, and cir- 

cuit design. The satisfiability problem (SAT) for propositional formulas in conjunctive 

normal form (CNF) can also be viewed as a CSP in which variables can take values 

from the domain {O,l). The importance of these applications provides strong moti- 

vation to develop efficient algorithms to  solve CSPs. A natural approach to search for 

a solution in practice is backtracking. Indeed, most studies on CSP algorithms and 

most commonly used CSP solvers are based on backtracking. A considerable amount 

of work has been done on the study of enhanced versions of backtracking and their 

empirical effectiveness. Our work was motivated by improving our understanding of 

the relative efficiency and limitations of standard backtracking-based CSP algorithms. 

We compare the relative power of such algorithms in terms of how efficiently 

they can refute an unsatisfiable CSP instance in the optimal case. When running 

a backtracking algorithm on an unsatisfiable instance, a trace of an execution is a 

"proof" which may convince observers of the unsatisfiability of the instance. This 

establishes a close connection between backtracking algorithms and proof systems 

(a.k.a. refutation systems). We will consider two resolution-based proof systems for 

CSPs and state how they are related to  standard algorithms. We then examine the 

relative power of the systems. 
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Since we are going to  study proof systems and refutations, we will restrict our 

attention to unsatisfiable CSP instances. Note that every complete backtracking 

algorithm has to handle unsatisfiable instances and, as we will state, lower bounds on 

refutation size for unsatisfiable instances give lower bounds on the execution time of 

those algorithms on the instances. 

1.1 Constraint Satisfaction and CSP Algorithms 

A CSP instance consists of a set of variables and a set of constraints. Each variable has 

a finite domain and each constraint limits the values that can be taken simultaneously 

by some specified subsets of the variables. The problem is to  find an assignment of 

values to  all the variables such that all the constraints are satisfied, or to determine 

that there is no such assignment. 

A straightforward approach to solve CSPs is backtracking. There are two main 

schemes for backtracking algorithms: backtracking with d-way branching and back- 

tracking with 2-way branching. A backtracking algorithm with d-way branching works 

as follows. For a CSP instance Z, the algorithm picks a variable x and for each domain 

value a of x, a recursive call is made to  solve Z with x set to  a. If the domain size of 

x is d and all d recursive calls fail, then Z is unsatisfiable. Backtracking algorithms 

with 2-way branching, on the other hand, follow a different procedure. For Z a CSP 

instance, a 2-way branching algorithm selects a variable x and a value a from x's 

current domain. Then, two recursive calls are made: one with x set to a and the 

other with a removed from the domain of x. Z is unsatisfiable if both of these two 

recursive calls fail. Figures 1.1 and 1.2 illustrate the ideas graphically. 

It is not hard to  see that any d-way branching strategy can be simulated by a 2- 

way branching strategy. If, a t  some point of the search, a d-way branching algorithm 

chooses to  branch on variable x, then the corresponding 2-way branching algorithm 

will just keep branching on x until the domain of x becomes empty. For example, if 

a d-way branching backtracking algorithm constructs a search tree as shown on the 

left of Figure 1.3, then the corresponding search tree generated by a 2-way branching 

algorithm simulating the d-way branching algorithm will look like the one on the right 
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Figure 1.1: A d-way branching search tree 

Figure 1.2: A 2-way branching search tree 
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dead- / end 

Figure 1.3: Simulation of d-way branching by 2-way branching 

of the figure, where T,' is the search tree simulating T,. Therefore, if a CSP instance 

Z can be solved by a d-way branching algorithm in t steps, then there is a 2-way 

branching algorithm that can solve Z in O ( t )  steps. However, the converse does not 

hold. We will show that there are unsatisfiable CSP instances for which every search 

tree formed by a d-way branching algorithm is exponentially larger than the smallest 

search tree constructed by a 2-way branching algorithm. 

Although we do not expect to  find a general backtracking algorithm that can 

solve all CSP instances in polynomial time, as CSPs are in the class of NP-complete 

problems, refining backtracking algorithms can improve their performance greatly. 

One technique to  improve backtracking is learning. When an algorithm backtracks 

from some dead-end during search, it can record some explicit information and re-use 

it to  prune duplicate searches later. For example, somewhere during the search, it may 

become explicit that x and y cannot both take value 1, although this is not explicitly 

restricted by the constraint set. If the algorithm chooses to  cache this information, 

then next time x and y are set to 1, it can immediately conclude that this is a dead-end 

and backtrack. Studies on learning strategies usually focus on what to  learn and how 

much information to store. Our work here was partially motivated by the question of 

how much power an algorithm can gain when enhanced with learning. 

We are also interested in the relative power of 2-way branching with learning and 
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d-way branching with learning. The structure of 2-way branching search trees al- 

lows 2-way branching algorithms to learn more specific information than that d-way 

branching algorithms can learn. This makes 2-way branching more powerful than 

d-way branching when learning is involved. Mitchell [27] has shown that there is an 

infinite family of unsatisfiable CSP instances MPH, such that any d-way branching 

algorithm, even with optimal variable ordering and optimal use of learning strategies, 

cannot solve MPH, in less than n"('"gn) time. But, there is a 2-way branching algo- 

rithm, with specific variable ordering and learning strategies, that can solve MPH, in 

0(n3) time. Therefore, 2-way branching with learning is strictly more powerful than 

d-way branching with learning and there is a super-polynomial separation between 

them. However, is super-polynomial an upper bound for the separation? Or, does 

there exist an exponential separation between them? Although we do not answer this 

question in this thesis, we make a contribution toward finding the answer by charac- 

terizing the power of proof systems which are closely connected to  the reasoning of 

the branching schemes. 

Resolution 

Since we are studying resolution-based proof systems here, we recall the resolution 

proof system first. The SAT problem involves finding (the existence of) a truth 

assignment a for the variables in a CNF formula q5 such that a satisfies all clauses 

in q5. Propositional resolution, or simply resolution, is a proof system for SAT. The 

resolution rule allows us to derive the new clause A V B if we already have the clauses 

x V A and ZV B. The derivation step is sound because if a truth assignment a satisfies 

both x V A and Z V B, then at  least one of A and B must be satisfied by a since x is 

either true or false. Thus, AV B must be satisfied by a as well. A resolution derivation 

from a CNF formula q5 is a sequence of clauses in which each clause is either in q5 or 

derived from previous clauses in the sequence. If we can derive the empty clause from 

a set of clauses q5, then the derivation is a proof that q5 is unsatisfiable because any 

assignment that satisfies q5 must satisfy all clauses derived from q5, but the empty 

clause is tautologically false. We call such a resolution derivation a refutation. In 
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fact, the resolution proof system is sound and complete. That is, a CNF formula 4 is 
unsatisfiable if and only if there exists a resolution refutation of 4. 

We say that a resolution derivation IT is tree-like if every derived clause in it is used 

at  most once to  derive another clause. That is, to  use a derived clause C a second 

time, C must be derived again from the initial clauses. The size of IT is the number of 

clauses in IT. It is well-known that running a backtracking algorithm for SAT (a.k.a. 

a DLL algorithm) on an unsatisfiable CNF formula implicitly constructs a tree-like 

resolution refutation of 4. Given a backtracking search tree of an unsatisfiable CNF 

formula 4, if we label each leaf with a clause in $ which is falsified by the assignment 

defined on the path leading to  that leaf and label each internal node with the clause 

derived by resolving the clauses labelling its children, then the root of the search 

tree will be labelled with the empty clause. Moreover, given a tree-like resolution 

refutation of a formula, if a backtracking algorithm follows a variable branching or- 

dering corresponding to the refutation (e.g., if x and are resolved together to  derive 

the empty clause in the refutation, then the first variable picked by the algorithm to 

branch on will be x), then the search tree will have the same size as the refutation. 

Hence, the smallest tree-like resolution refutation of a formula 4 is of the same size 

as the smallest search tree constructed by a DLL algorithm on 4. Thus, as systems 

to  refute unsatisfiable CNF formulas, DLL algorithms and tree-like resolution have 

the same power. This provides us an approach to analyze the efficiency of DLL algo- 

rithms. For example, there are formulas for which every tree-like resolution refutation 

is of exponential size. So, no DLL algorithm can refute them in less than exponential 

time even with an optimal branching strategy. 

Unrestricted resolution, unlike tree-like resolution, allows derived clauses to be 

used arbitrarily many times to derive other clauses. It is known that unrestricted 

resolution is exponentially stronger than tree-like resolution [9, 71. The most effective 

current complete SAT solvers enhance DLL algorithms with clause learning which 

helps avoid redundant search with the use of learned clauses. This makes DLL algo- 

rithms more powerful than tree-like resolution. Several researchers, e.g., Moskewicz 

et al. 1291 and Zhang et al. 1381, showed that clause learning, with efficient implemen- 

tation, can handle problems that are hard for other standard techniques. The idea 
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of learning can be viewed as the re-use of derived clauses in unrestricted resolution 

refutations. Beame et al. [6] have already shown that DLL algorithms with clause 

learning and unlimited restarts, which allow the algorithms to restart their searching 

process anytime, is equivalent to  unrestricted resolution. However, it is still unclear if 

clause learning with no or limited restarts is also as powerful as unrestricted resolution 

or not. 

Our main interest here is to study resolution-based proof systems for CSPs and 

their relative complexity, with the belief that the results will provide useful insight 

into CSP algorithms. 

1.3 Resolution-based CSP Proof Systems 

Baker [4] extended resolution to a more general resolution-based proof system for 

CSPs. The expressions used in this system are nogoods, instead of clauses. Here, 

we call this system nogood resolution (NG-RES). Given a CSP instance Z, for each 

forbidden value combination of a set of variables xl ,  x2, . . . , xt, we have a nogood 

which intuitively disallows any corresponding partial assignment. (Later, we will 

simplify the notation by writing nogoods in the form q(xl = al  , . . , xt = at) .) If the 

domain of a variable x is (1, . , d) and we already have the nogoods 

T(X = d A Xd) 

then the nogood resolution rule allows us to resolve them together and soundly derive 

l ( X 1  AX2 AXd). 

An assignment that satisfies all the d antecedent nogoods (i.e., is not an extension 

of a partial assignment forbidden by one of those nogoods), also satisfies the derived 

nogood. 
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An NG-RES refutation of a CSP instance Z is an NG-RES derivation of the empty 

nogood from the set of nogoods corresponding t o  the partial assignments forbidden 

by the constraints of Z. There is an NG-RES refutation of Z if and only if Z is 

unsatisfiable. The size of an NG-RES refutation is the number of nogoods in it. Ap- 

plying arguments similar to  those in the previous section, we can show that for an 

unsatisfiable CSP instance Z, the size of the smallest tree-like NG-RES refutation 

of Z is exactly the same as the minimum number of steps that a d-way branching 

backtracking algorithm requires to  refute Z. Baker showed some correspondences 

between NG-RES and d-way branching backtracking algorithms enhanced with back- 

jumping [31] and dynamic backtracking [20], and used NG-RES as a tool to  analyze 

those algorithms. 

Later, Mitchell [25] extended Baker's work and introduced another CSP proof sys- 

tem, constraint resolution (or C-RES for short), corresponding to  2-way branching 

algorithms. A C-RES refutation for a CSP instance Z is essentially a resolution refu- 

tation of the CNF encoding of Z. The CNF encoding used is a natural transformation 

of CSPs to CNF formulas suggested by de Kleer in [14]. With this encoding, C-RES 

can model the reasoning of 2-way branching. Furthermore, tree-like C-RES and sim- 

ple 2-way branching algorithms have equivalent power, in the sense that the smallest 

tree-like C-RES refutation of any unsatisfiable instance Z is of the same size as the 

smallest search tree constructed by a 2-way branching backtracking algorithm on 2. 

We say that a proof system A eficiently simulates a proof system B if any B 

refutation of a CSP instance Z can be transformed into an A refutation of Z with 

only a polynomial blowup in size. There is an exponential separation of system B from 

system A if there is an infinite set of instances {TI,&, a )  such that the smallest B 

refutation of Zn is of size exponential in n,  but the smallest A refutation of 2, is 

of size polynomial in n. If A efficiently simulates B and there is an exponential 

separation of B from A ,  then A is exponentially more powerful than B. Obviously, 

NG-RES efficiently simulates tree-like NG- RES and C-RES efficiently simulates tree- 

like C-RES. 

Mitchell has already proven that C-RES is strictly more powerful than NG-RES. 

In particular, he showed that there are C-RES refutations of size 0 ( n 3 )  of the CSP 
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exponentially more powerful 
NG-RES C-RES 

exponentially 
more powerful 

exponentially 
more powerful 

tree-like NG- RES - 
exponentially more powerful 

tree-like C-RES 

Figure 1.4: Relative Efficiency of NG-RES, C-RES and their tree-like variants 

instance MPH, but every NG-RES refutation of MPH, must be of size n"('"gn). The 

instance is based on the one that Goerdt [21] used to  obtain an n"('"gn) separation 

between resolution and negative resolution. To the best of our knowledge, no better 

separation has been shown in the literature. 

Our work here mainly focuses on examining the relative power of NG-RES, C-RES 

and their tree-like versions. We present simulations and new separations between the 

systems. Moreover, we show upper bounds of the separations as well. All these 

together constitute an almost complete picture of the relationships between the sys- 

tems. Figure 1.4 illustrates the relative power of the proof systems and summarizes 

the separation and simulation results we present. 
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1.4 Proof Systems and CSP Algorithms 

We already claimed that tree-like NG-RES and d-way branching have equivalent 

power, and similarly, tree-like C-RES and 2-way branching have the same power. 

Now we introduce a term, bounded, for comparing the relative power of an algorithm 

and a proof system. Given an algorithm A and a proof system P, if an execution 

trace of A on any unsatisfiable instance is at  least as large as the size of the smallest 

P refutation of the instance, then A is P bounded. For example, a DLL algorithm 

for SAT is tree-like resolution bounded. 

In addition to  learning strategies [35, 181 we mentioned earlier, other standard 

techniques used in common CSP algorithms include: variable ordering heuristics [3, 

191, backjumping 115, 16, 311, forward checking [34, 171, arc-consistency filtering [32, 81, 

k-consistency enforcement [23], and their variants. 

In [27], Mitchell showed that 

1. d-way branching backtracking algorithms with the use of any combination of 

variable ordering heuristics, backjumping and forward checking are tree-like 

NG-RES bounded. 

2. d-way branching backtracking algorithms with the use of any combination of 

variable ordering heuristics, backjumping, forward checking, arc-consistency fil- 

tering, k-consistency enforcement and learning are NG-RES bounded. 

(Tree-like NG-RES bounded algorithms are also NG-RES bounded.) 

3. 2-way branching backtracking algorithms with the use of any combination of 

variable ordering heuristics, backjumping and forward checking are tree-like 

C-RES bounded. 

4. 2-way branching backtracking algorithms with the use of any combination of 

variable ordering heuristics, backjumping, forward checking, arc-consistency fil- 

tering, k-consistency enforcement and learning are C-RES bounded. 

(Tree-like C-RES bounded algorithms are also C-RES bounded.) 
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Hence, the power of a proof system provides significant insight into the efficiency 

of the algorithms bounded by the system. The size of the smallest P refutation of a 

CSP instance Z gives a lower bound on the running time of any implementation of 

the algorithms bounded by P on Z. 

Our results show that there are CSP instances for which every NG-RES refutation 

is of exponential size. By the second point above, no NG-RES bounded algorithm, in- 

cluding d-way branching algorithms enhanced with standard techniques, can solve the 

instances in less than exponential time. Since tree-like NG-RES bounded algorithms 

are also NG-RES bounded and NG-RES can efficiently simulate tree-like C-RES, the 

instances are also exponentially hard for tree-like NG-RES bounded algorithms and 

tree-like C- RES bounded algorithms. 

From the exponential separation we obtained between tree-like NG-RES and tree- 

like C-RES and the fact that tree-like C-RES and 2-way branching have the same 

power, we know that 2-way branching is exponentially more powerful than d-way 

branching. The instances that separate tree-like NG-RES from tree-like C-RES can- 

not be solved by any tree-like NG-RES bounded algorithm, including d-way branching 

with backjumping and forward checking, in less than exponential time, but a 2-way 

branching algorithm can solve the instances in polynomial time with optimal branch- 

ing choices. We do not provide here a poly-time computable branching strategy under 

which 2-way branching solves the instances we use in polynomial time, but we believe 

that such a strategy exists. 

We do not have enough information to make any claim yet about the relative power 

of enhanced versions of backtracking algorithms from the other exponential separa- 

tions we obtain. For example, although we know that the instances exponentially 

separating NG-RES from C-RES must be exponentially hard for NG-RES bounded 

algorithms, we are still not sure if there exists a 2-way branching algorithm, possi- 

bly enhanced with learning and other standard techniques, that can solve the hard 

instances in polynomial time. The problem here is that there may exist a short refu- 

tation but no polynomial time strategy which finds such a refutation. Our results, 

however, suggest possible instances that may be useful in future studies in separating 

the algorithms. 
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1.5 Summary of Results 

Below is a summary of the results we present in this thesis. 

Exponential separation of tree-like NG-RES from NG-RES. 

We modify the CNF formulas used by Ben-Sasson in [7] to separate tree-like 

resolution from resolution and adapt his proof method to obtain the separation 

between tree-like NG-RES and NG-RES. 

Exponential separation of tree-like C-RES from C-RES. 

This separation follows from the separation between tree-like resolution and 

resolution [7], and some properties of C-RES. 

Exponential separation of tree-like NG-RES from tree-like C-RES. 

We use the same family of CSP instances that we used to separate tree-like 

NG-RES from NG-RES to separate tree-like NG-RES from tree-like C-RES by 

explicitly constructing poly-size tree-like C-RES refutations of the instances. 

Exponential separation of NG- RES from C-RES. 

We construct an infinite family of CSP instances and show that the instances 

have poly-size C-RES refutations but any NG-RES refutation of them is of 

exponential size. This improves the previous bound of n " ( l O g n )  from [25]. The 

proof technique was inspired by [Ill .  

NG-RES simulation of tree-like C-RES. 

We prove this by showing how we can transform a tree-like C-RES refutation 

into an NG-RES refutation with only a polynomial blowup in size. 

Separation upper bounds. 

Applying the same technique used to obtain an upper bound of the separation 

between tree-like resolution and resolution in [7], we can show an upper limit of 

the separation between tree-like NG-RES and NG-RES. Then, with these two 

bounds, plus simulations among the systems, we can prove the other separation 

upper bounds. 
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Related Work 

Our work here concentrates on finding CSP instances that are hard for NG-RES but 

have poly-size C-RES refutations. There exist, however, many hard instances for 

C-RES (which are also hard for CSP algorithms). A number of hard instances are 

studied in [24]. Moreover, resolution complexity on random CSPs has been studied 

in [26, 28, 2, 51. 

We compare the relative power of CSP backtracking algorithms by examining the 

relative efficiency of the resolution-based proof systems modelling the reasoning of 

the algorithms. In propositional logic, resolution is useful in studying the efficiency 

of backtracking-based SAT solvers. Beame et al. [6] analyzed the power of clause 

learning by characterizing the technique as the resolution proof system. They com- 

pared the relative power of DLL algorithms and their variants enhanced with clause 

learning by analyzing the power of their corresponding restricted resolution systems. 

There have been only a few empirical studies on 2-way and d-way branching strate- 

gies. Park [30] showed that in most cases, with the variable and value ordering heuris- 

tics used in his work, 2-way branching ends up simulating d-way branching. 

Barbara and Sturdy [36] investigated the effect of changing the value ordering in 

2-way branching. They also compared 2-way branching with d-way branching and 

the experimental results indicated that 2-way branching, even with the worst value 

ordering, is not worse than d-way branching. 

1.7 Thesis Organization 

The remainder of this thesis is organized as follows. We formally define constraint 

satisfaction problems in Chapter 2. In Chapter 3, we introduce two resolution-based 

proof systems for CSPs and also explore the relative power between them and their 

restricted versions. We prove exponential separations between the two proof systems 

in Chapter 4. Chapter 5 contains conclusions and some potential future work. 



Chapter 2 

Constraint Satisfaction Problems 

An instance of constraint satisfaction problem (CSP) consists of a set of variables and 

a set of constraints. Each variable has a finite domain and each constraint restricts 

the values that can be assigned simultaneously to  some specific subset of the variables. 

An assignment for a CSP instance Z is a function that assigns domain values to some 

variables in Z. A total assignment is an assignment that assigns values to  all the 

variables. Given a CSP instance Z, a solution is a total assignment for Z such that all 

the constraints in Z are satisfied. A CSP instance is unsatisfiable if there is no such 

solution. 

Example 2.1. Let Z be a CSP instance containing three variables {x, y ,  z), each 

with domain {1,2,3), and constraints expressing that x, y and z must be assigned 

distinct values and they cannot take value 3 .  Obviously, Z is unsatisfiable. 

Conventionally, constraints are represented as relations, each indicating the al- 

lowed value combinations of certain variables. But for technical convenience, we 

represent constraints as the set of combinations of values that are disallowed. Each 

forbidden combination is essentially a partial assignment that cannot be extended to  

a solution. We can write such partial assignments as nogoods, which by their name 

denotes the meaning "not a good assignment". Here we define nogoods formally. 

Definition 2.2 (literal, nogood, subnogood). A literal is an expression of the 

form x = a, where x is a variable and a is a domain value of x, asserting that x takes 
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value a. A nogood is a set of literals in which no variable can appear in more than 

one literal. We write a nogood as q(xl = a l ,  2 2  = a2, - - ,  xt = at).  A nogood N, is a 

subnogood of a nogood N if every literal in N, also appears in N. The empty nogood 

is denoted by 0, which is tautologically false. 

In the CSP literature, nogoods are sometimes written as l ( x l  = a1 A x2 = 

a2 A . . . A xt = at)  which expresses the semantics directly. 

Now we can represent the constraints of a CSP instance as a set of nogoods. 

Definition 2.3 (CSP instance). A CSP instance Z is a triple (X, V,  r) where X 

is a finite set of variables, V(x) is the domain of a variable x E X ,  and r is a set of 

nogoods indicating which value combinations of variables are disallowed. 

Example 2.4. The CSP instance in Example 2.1 can be defined as Z = (X, V, r) 
where X = {x, y, z), V(v) = {1,2,3) for all v E X ,  and I? = {q(x = 1, y = I ) ,  q(x = 

2,y = 2),q(x = 3,y  = 3),77(y = 1 , z  = l ) ,q (y  = 2 ,z  = 2),q(y = 3," = 3),77(x = 

1, z = I ) ,  q(x = 2, z = 2), q(x = 3, z = 3), q(x = 3), q ( ~  = 3), q(2 = 3)). 

Next, we describe in what conditions a nogood is satisfied by an assignment. 

Definition 2.5 (satisfies). Let Z = (X, V, r) be a CSP instance and a be an 

assignment for 1. a satisfies a nogood N if and only if there is some literal (x = 

a)  E N such that a assigns b to x, for some b # a. That is, to satisfy a nogood 

q(xl = a l ,  . . . , xt = at ) ,  a cannot simultaneously assign ai to  xi for all i E (1, . . , t). 

a satisfies r if and only if it satisfies all nogoods in I?. Z is satisfiable if and only if 

there is a total assignment for Z which satisfies I?. If Z is not satisfiable, then it is 

unsatisfia ble. 

Definition 2.6 (width). The width of a nogood N ,  w(N),  is the number of literals 

in it. The width of a CSP instance Z = (X, V,  r) is the width of the widest nogood 

in r. 

Definition 2.7 (vars). Let Z be a CSP instance, r be a set of nogoods and N be a 

nogood. We define vars(Z), vars(l7) and vars(N) be the sets of variables occurring in 

Z, I? and N, respectively. 
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From now on, we will write Z = (X, 23, r) as Z = (23, r). We will use vars(Z) 

when we want to refer to the variables in 1. When all the variables in Z have the 

same domain D, we will simply write Z = (D ,  I?). Moreover, most of the time, we 

will use [dl (1, . - , d) to denote domains with size d. 



Chapter 3 

Resolution-based Proof Systems 

for CSP 

In this chapter, we define propositional resolution, and two resolution-based proof 

systems, NG-RES and C-RES, for constraint satisfaction. We also introduce the 

concept of resolution complexity and for each of the systems NG-RES and C-RES, 

we examine the relative power of the system and its restricted tree-like version. 

3.1 Preliminaries 

Before defining proof systems for CSPs, we first consider a simple well-known proof 

system, propositional resolution, for propositional logic. We will state some basic 

facts about propositional resolution without giving proofs for them. When we move 

on to  NG-RES for CSPs, we will prove theorems analogous to these facts. 

A propositional variable is a boolean variable and a literal is either a propositional 

variable (denoted as x or x l )  or its negation (denoted as Z or xO). A clause is a set of 

literals and is viewed as a disjunction of its literals. We write a clause as (11 l2 . . - It) 

where 11, 12, - - , It are the literals in it. A CNF formula is a conjunction of clauses. 

We say that a CNF formula 4 is satisfiable if there exists a truth assignment to 

the variables in 4 that sets 4 to  1. If there is no such truth assignment, then 4 is 
unsatisfiable. 
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Definition 3.1 (propositional resolution). Propositional resolution, or simply res- 

olution, is a proof system for CNF formulas in which one can derive new clauses by 

applying the resolution rule 
(C  2 )  ( D  T )  

(C  D)  
where C and D are arbitrary clauses and x is a variable. The rule allows us to derive 

(C  D)  by resolving ( C  x )  and ( D  :) on x. ( C  D) is called the resolvent of (C  x )  

and ( D  T ) ,  the premises, on x. 

A resolution derivation of a clause C from a CNF formula q5 is a sequence of 

clauses C1,  C2,  . , Cm in which each Ci is either a clause in q5 or is derived from 

previous clauses in the sequence by the resolution rule and Cm = C .  A resolution 

refutation of 4 is a resolution derivation of the empty clause, denoted 0, from 4. We 

denote this system by RES. 

The resolution rule is sound because a variable x must take either 0 or 1. So, if a 

truth assignment a satisfies both (C  x )  and ( D  T ) ,  then a must satisfy C if it sets 

x to 0 and satisfy D if it sets x to  1. Thus, a must also satisfy (C D) .  In fact, the 

refutation system RES is sound and complete. That is, for any CNF formula 4, there 

is a RES refutation of 4 if and only if q5 is unsatisfiable. 

Definition 3.2 (tree-like resolution derivation, t ree-RES) .  A tree-like resolu- 

tion (denoted tree-RES) derivation is a RES derivation in which every derived clause 

is used at  most once as a premise to derive other clauses. 

Definition 3.3 (size, wid th) .  The size of a RES derivation T, I T [ ,  is the number 

of clauses in T. The width of a clause C ,  w ( C ) ,  is the number of literals appearing in 

C and the width of a RES derivation T, w (T), is the width of the widest clause in T. 

Definition 3.4 (resolution complexity, R E S  ( 4 )  and tree-RES (4 ) ) .  For any 

unsatisfiable CNF formula 4, 
RES(4)  g min{lTl : T is a RES refutation of 4 )  

and 

tree-RES(q5) g min{lTl : T is a tree-RES refutation of 4 ) .  



CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 19 

To help make it simpler in proving refutation related theorems, we allow ourselves 

to use the weakening rule 

in addition to the resolution rule in a resolution derivation. The weakening rule does 

not strengthen the system and we can always eliminate the use of the weakening rule 

in a resolution refutation without increasing the size or width of the refutation. 

Proposition 3.5. For any CNF formula 4,  if IT is a RES (tree-RES resp.) refutation 

of $ using the resolution rule and the weakening rule, then IT can be transformed into 

a RES (tree-RES resp.) refutation IT' of 4 such that I I T ' ~  5 [ I T ] ,  w ( d )  5  IT), and IT' 

makes use of the resolution rule only. 

Definition 3.6 (unit assignment). A unit assignment for a CNF formula 4 sets a 

variable x in 4 to a truth value a E { O , l ) .  Let p be a unit assignment setting x to  a. 

For C a clause, the result of applying p to  C is denoted Cr, and is defined to  be 

1 if the literal xu appears in C 

C \ {xl-") otherwise 

Proposition 3.7. For any CNF formula 4,  if IT is a RES (tree-RES resp.) derivation 

of C from 4 and p is a unit assignment for 4,  then IT[, is a RES (tree-RES resp.) 

derivation of Cr, from 4[, using the resolution rule and possibly also the weakening 

rule. 

Proposition 3.8. For 4 a CNF formula, x a variable, and a E (0, I ) ,  if IT is a RES 

(tree-RES resp.) refutation of q5rX=,, then there is a RES (tree-RES resp.) derivation 

T' of either (XI-") or 0 from 4 with Id1 = 1x1. 
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Sketch of proof. Suppose T = (C1, Cz, . . a ,  Cs) is a RES (tree-RES resp.) refutation 

of 4[,=,. Inductively transform T to  T' = (C; C; . . . C&) as follows: 

Ci if Ci E 4 
(Ci ~ l - ~ )  if Ci E +[,=a but Ci $ 4 

(Note that (Ci XI-") E 4 in this case) 

the resolvent of Ci and CL if Ci is the resolvent of Cj and Ck 

Then T' is a RES (tree-RES resp.) derivation of either ( x ' -~ )  or from 4 and T' is 

of the same size as 7r. 0 

A clause is positive if it contains only positive literals. A clause is negative if it 

contains only negative literals. 

Definition 3.9 (negative resolution, N-RES). A negative resolution (N-RES) 

derivation is a resolution derivation in which the resolution rule is restricted to be 

negative: one of the two premises must be negative. 

3.2 Nogood Resolution (NG-RES)  

We have seen that the resolution rule is based on the fact that a propositional variable 

can take values only from { O , l ) .  The same idea of "exhausting the domain" can be 

extended to handle domains with size larger than two. For example, if the domain of 

a variable x is {1,2,3), then we can resolve the nogoods 

together to  soundly infer 

q(w = 2, y = 1, z = 1). 

This generalization yields a resolution-based refutation system for CSPs. 



CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 21 

Definition 3.10 (nogood resolution, NG-RES) . Given that the domain of a 

variable x is {1,2, . a ,  d), the nogood resolution rule allows one to  infer a nogood, 

called the resolvent, from a set of nogoods, the premises, by resolving on x: 

Let Z = (D, I?) be a CSP instance. A nogood resolution derivation of a nogood N from 

r is a sequence of nogoods Nl, N2, - . . , Nm in which each nogood Ni is either in r or is 

derived from a set of previous nogoods in the sequence by the nogood resolution rule, 

and Nm = N.  A nogood resolution refutation of Z is a nogood resolution derivation 

of the empty nogood q() = 0 from r. We use NG-RES to  denote this system. 

Note that if we resolve the nogoods q(x = 1, y = I ) ,  q(x = 2, z = 1) and 

q(x = 3, y = 2) on x, where the domain of x is {1,2,3), we will get the nogood 

q(y = 1, y = 2, z = 1) which is a tautology. 

The refutation system NG-RES is sound and complete. 

Proposition 3.11 (Soundness and Completeness of NG-RES). For any CSP 

instance Z, there is an NG-RES refutation of Z if and only if Z is unsatisfiable. 

We will prove the soundness and completeness of NG-RES after we state all nec- 

essary definitions. 

Example 3.12. The instance in Example 2.4 is unsatisfiable. Figure 3.1 shows an 

NG-RES derivation of the empty nogood from the nogoods in the instance. 

Definition 3.13 (tree-like nogood resolution derivation, tree-NG- RES) . A 

tree-like nogood resolution (denoted tree-NG-RES) derivation is an NG-RES deriva- 

tion in which every derived nogood is used at  most once to derive other nogoods. 

The NG-RES refutation in Example 3.12 is tree-like. It is sometimes useful to  

represent an NG-RES derivation as a directed acyclic graph (DAG). 
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Figure 3.1: An NG-RES refutation 

Definition 3.14 (G,, g r aph  of a derivation). For any NG-RES derivation s, 

we define G,, the graph of s, to be the directed acyclic graph in which vertices are 

nogoods in s and there is an edge from vertex v to  vertex u if and only if v is used as 

a premise in an NG-RES derivation step to  derive u in s .  

So, if s is a tree-NG-RES derivation, then every vertex in G, must have out-degree 

0 or 1. 

Given a CSP instance 2 and a CSP refutation system, our main interest is the 

size of the smallest refutation of 2 in the system. This is what we focus on when 

comparing the relative power of different CSP refutation systems. Formally, we define 

the NG-RES complexity (tree-NG-RES complexity resp.) of an instance 2 to be the 

size of the minimal NG-RES (tree-NG-RES resp.) refutation of 2. 

Definition 3.15 (size, width).  Let s be an NG-RES derivation. The size of s, 

Isl, is the number of nogoods in s. The width of s, w(s) ,  is the width of the widest 

nogood in s. 

Definition 3.16 ( N G -  RES complexity, N G -  R E S  (2) a n d  tree- N G - R E S  (2)). 

For any unsatisfiable CSP instance 2, 

NG-RES(2) min{Isl : s is an NG-RES refutation of 2) 

and 

tree-NG-RES(Z) min{ls/ : s is a tree-NG-RES refutation of 1 ) .  
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To simplify proofs, it is sometimes convenient to allow an NG-RES derivation 

to contain nogoods that are derived by the nogood weakening rule, in addition to the 

nogood resolution rule. What we need to confirm is that adding the nogood weakening 

rule does not increase the power of the refutation system in terms of the minimal size 

and width of refutations. 

Definition 3.17 (nogood resolution with weakening, N G - R E S + ~ ~ ~ ~  and 

tree-NG-REtPWeak).  The nogood weakening rule allows a nogood N2 to be inferred 

from N1 if Nl is a subnogood of N2. Nogood resolution with weakening (NG-RES+w"k) 

is a variant of the NG-RES refutation system in which nogoods can be derived by 

the nogood resolution rule and the nogood weakening rule. A tree-NG-RE,!PWak 

derivation is an NG-RES+weak derivation in which every nogood is used a t  most once 

to  derive other nogoods. 

Proposition 3.18. For1 a CSP instance, if 7r is an NG-RES+"""~ ( t ree-NG-~~s+""~ 

resp.) refutation of Z ,  then 7r can be transformed into an NG-RES (tree-NG-RES 

resp.) refutation of Z of at most the same size and width. 

Proof. Let Z = (27, r) be a CSP instance. Let 7r = (Nl, N2, .  . . , Ns) be an NG- 

RES+W"k (tree-NG-RES+weak resp.) refutation of Z. 

We inductively transform 7r into T' = (Ni, Ni, . - . , N&) as follows: 

Ni if Ni E I? 

Nj if Ni is derived from Nj by weakening 

the resolvent of Nil, . . - , Nid if Ni is the resolvent of Nil, . . . , Nid on x in 7r 

and x appears in all N,', , . . , Nid 

N! 
9 

if Ni is the resolvent of Nil, . . , Nid on x in 7r 

but x does not appear in some Nh ,i 5 j 5 d 

It is not hard to  see that 7r' is an NG-RES+w"k ( t r e e - ~ G - ~ ~ s + " " " ~  resp.) deriva- 

tion in which all weakening steps are of the form 5 (i.e., deriving the same nogood) 

and for all i E {1,2,  . . , S), Ni is a subnogood of Ni. Since Ns = 0, we have N& = 

and thus 7r' is an NG- RES+w"k (tree-NG- resp.) refutation. 
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Now we eliminate the use of weakening rule in d. We look at  the nogoods in T' 

one by one. If a nogood Ni is derived from Nj by weakening, we remove Ni and for 

all derivation steps that use Ni as a premise, make them use Nj  instead. In a tree- 

NG-RES+weak refutation, every nogood is used at  most once to derive other nogoods. 

Hence, the elimination step maintains the tree-like property of T' if T' is tree-like. 

The resulting refutation is an NG-RES ( tree-NG-RES resp.) refutation. Moreover, 

the size and width can only decrease during the transformation. 

0 

We have already mentioned assignments for CSP instances in Chapter 2. Now we 

define them formally. 

Definition 3.19 (assignment). An assignment for a CSP instance Z = ( D ,  I?) 

assigns domain values to  some variables in I. An assignment p can be written as 

a set of literals. For example, the assignment p = { x l  = al,x2 = a2, . . . , xt = at} 

assigns ai to  xi, i E (1 ,  . . , t } .  Let p be an assignment. We write N r,  as the result 

of applying p to  nogood N ,  and 

1 if there is some x and some a, b E D ( x )  s.t. 

a # b, ( x  = a) E p and ( x  = b)  E N 

N \ { ( x  = a)  : ( x  = a)  E p} otherwise 

Define I I ,  d.' ( D  r p ,  I? r p )  , where 

I ? [ ,  = {Nr,: N E I? and Nr,# 1) 

vars(Zr,) = vars(Z) \ {x : ( x  = a)  E p for some a}  

D ( x )  = D ( x )  for a11 x E vars(Zr,). 

If T = ( N 1 ,  N2 , .  - .  , Ns)  is an NG-RES derivation, define ~ r ,  to  be ( N 1  r,, . , Nsr,), 
but with any Nirp that is identical to 1 removed. 

Proposition 3.20. For Z = (27, I?) a CSP instance, N a nogood and p an assignment, 

if T is an NG-RESWak (tree-NG-RESSWak resp.) derivation of N from I?, then rrP 

is an NG-RES+~"~ ( t r e e - N G - R ~ s + ~ ~ ~  resp.) derivatzon of N r, from r[,. 
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Lemma 3.21. For Z = (27, I?) a CSP instance, x E vars(Z) and a E V (x), if there 

is an NG-RES (tree-NG-RES resp.) rehtation T of2[,=, of size S, then there is an 

NG-RES (tree-NG-RES resp.) derivation n' of either q(x = a) or 0 of Z of size S .  

Proof. Let n = (Nl, N2, . . . , Ns) be an NG-RES refutation of I[,=, of size S. Con- 

struct n' = (Ni, N;, . . . , Ni )  as follows: 

Ni if Ni E 

mi, x = a) if Ni E r[,=, but Ni $ 
(q(Ni, x = a) E r in this case) 

the resolvent of Nil, . . , Nid if Ni is the resolvent of Nil , . . . , Nid in n 

Then n' is an NG-RES derivation of Z since every N,! is either in r or is a resolvent 

of some previous nogoods in n'. Moreover, for every nogood Ni in n, Ni is either Ni 

or q(Ni, x = a). Hence, the last nogood in n' must be either 0 or q(x = a). The size 

of n' is the same as n. 

The case when n is tree-like is the same, as our construction of n' preserves the 

tree-like property. 0 

Now we can prove the soundness and completeness of NG-RES. 

Proof. [Proposition 3.111 

(Soundness) Suppose n = (Nl,  N2, . a ,  Ns) is an NG-RES refutation of a CSP in- 

stance Z = (27, r). Towards a contradiction, suppose Z is satisfiable. Then, 

there exists a total assignment a such that a satisfies every nogood in r .  It 

is obvious that the nogood resolution rule is sound. That is, if an assignment 

satisfies all premises, then it must also satisfy the resolvent. Therefore, by in- 

duction, a must satisfy every nogood in n. However, since n is a refutation, 

Ns = 0 and no assignment would satisfy Ns. Hence, there is a contradiction. 

(Completeness) Suppose Z = (V, r) is an unsatisfiable CSP instance. We will show, 

by induction on the number of variables in Z, that there is an NG-RES refutation 

of Z. If Ivars(Z)I = 0, then r contains the empty nogood which is an NG-RES 

refutation. Assume the claim is true for all instances with less than n variables. 

Consider the case where Z has n variables. Let x be a variable in 1. For each 



CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 26 

a E V(x),  I[,=, is an instance with n -  1 variables and is unsatisfiable. By I.H., 

there is an NG-RES refutation of I[,=,. Then, by Lemma 3.21, there exists an 

NG-RES derivation of either q(x = a)  or (done in this case) of Z. Resolving 

the nogoods q(x = a) ,  a E V(x),  together gives the empty nogood. 
0 

Exponential separations between tree-like and general resolution have been known 

for some time [9]. Recently, a nearly optimal separation between the two resolution 

systems was obtained by Ben-Sasson [7]. Ben-Sasson showed that there exists an 

infinite family of CNF formulas with O(n)-size resolution refutations for which every 

tree-like resolution refutation is of size 2"("/'"gn). He also proved that for every unsat- 

isfiable CNF formula 4, if S is the size of the smallest resolution refutation of 4, then 

the smallest tree-like resolution refutation of 4 must be of size at  most 2•‹(S10g10gS/'0gS) 

(upper bound). Therefore, the gap is almost tight. 

In the next two subsections, we adapt the techniques used in [7] to  show corre- 

sponding separations and upper bounds for tree-NG-RES and NG-RES. 

3.2.1 Separation of tree-NG-RES from NG-RES 

In this section, we explore the relative power of the tree-NG-RES and NG-RES proof 

systems. Specifically, we will show, for any integer d 2 3, that there is an infinite 

family of CSP instances with domain size d which have poly-size NG-RES refutations, 

but for which any tree-NG-RES refutation has exponential size. The instances are 

based on directed acyclic graphs. They were first introduced as CNF formulas, called 

implication graph formulas, by Raz and Mckenzie [33]. Since then, a generalized form 

of the formulas has been used in separating several restricted versions of resolution 

from resolution [I,  11, 91. In [7], Ben-Sasson exposed a direct connection between the 

tree-like resolution complexity of the generalized formulas and the pebbling numbers 

(to be defined later) of the formulas7 underlying graphs. He used this relationship to 

accomplish a nearly optimal separation between tree-like resolution and resolution. 

Here, we will formulate a CSP version of the implication graph formulas and refer 
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closely to Ben-Sasson7s approach to  achieve a separation between tree-NG-RES and 

NG-RES. We start with some basic graph definitions. 

Definition 3.22. Let G = (V, E) be a directed acyclic graph. If (vi, vj) E E, then we 

say that vi is a predecessor of vj and vj is a successor of vi. The in-degree (out-degree 

resp.) value of a vertex is the number of predecessors (successors resp.) of it. A vertex 

with in-degree 0 is a source and a vertex with out-degree 0 is a target. An internal 

vertex is a non-source vertex. 

Definition 3.23 (topological ordering of a DAG). A topological ordering of a 

directed acyclic graph G = (V, E) is a linear ordering of all the vertices in V such 

that if there is an edge (vil vj) E El then vi precedes vj in the ordering. 

Definition 3.24. A circuit is a DAG in which every vertex has in-degree 2 or 0. 

Our CSP instances, implication graph contradictions, are based on circuits. 

Definition 3.25 (Implication Graph Contradictions). Let G = (V, E) be a 

circuit with n vertices. Let d 2 3 be an integer. Let S and T be the sets of sources 

and targets in G respectively. For each vertex vi E V, there is a variable xi associated 

with it. The implication graph contradiction of G, IMPG,~,T,d, is a CSP instance with 

n variables, X I ,  . . . , x,, domain A = [dl, and the following nogoods: 

Source axioms: q(xi = 1) for every vi E S 

Target axioms: q(xi = a)  for every vi E T, and for all a E [d]\{l) 

Pebbling axioms: q(xi = a,  x j  = b, xk = 1) for every vk with predecessors vi and 

vj, and for all a ,  b E [d]\{l) 

Intuitively, IMPG,s,T,d expresses the following contradiction: Every vertex of G 

can be labelled with a number from 1 to  d. The sources are not labelled with 1, and 

the targets are labelled with 1. If both of the predecessors of a vertex are not labelled 

with 1, neither is the vertex itself. 

We first show that IMPG,S,T,d has short NG-RES refutations. 
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Lemma 3.26. For any integer d 2 3, if G is a circuit with n vertices and S and T 

are the sets of sources and targets in G, then NG-RES(IMPG,s,T,d) = 0 ( d 2 n ) .  

Proof. Let d > 3 be an integer and G be a circuit with n vertices. Let S and T 

be the sets of sources and targets in G respectively. Pick a topological ordering 

0 on the vertices of G. We can derive q(xk = 1) for each vertex vk one by one 

according to  the ordering 0. If vk E S ,  then we already have q(xk = 1) since it is 

a Source axiom. Otherwise, suppose vi and vj are the predecessors of vk. We must 

have derived q(xi = 1) and q(x j  = 1) as vi and vj precede vk in 0. Resolve the 

( d  - 1)2 Pebbling axioms of vk with q(xi = 1) to get q(x j  = b, xk = I ) ,  for all 

b E [dl \ {1) ,  and then resolve these with q(x j  = 1) to derive q(xk = 1). This requires 

d derivation steps. Once q(xt = 1) is derived for a vertex t E T, we can resolve it 

with the Target axioms of vt to obtain q ( )  Hence, there is an NG-RES refutation 

with at  most O(dn) derivation steps where each derivation step requires d premises. 

So, NG-R ES (IMPG,s,~,d) = 0(d2n) .  0 

While I M P G , ~ , ~ , ~  has poly-size NG- R ES refutation, the tree- NG- R ES complexity 

of IMPG,s,T,d depends on the pebbling number of G. Roughly speaking, tree-NG-RES 

refutations of IMPG,S,T,d will be long if G has large pebbling number. We will examine 

this precisely after defining the pebbling number of a directed acyclic graph. 

Definition 3.27 (Pebbling number). Let G = (V, E) be a directed acyclic graph. 

Let S ,  T V .  To pebble a vertex v E V from S ,  one has to follow the rules below 

until a pebble is placed on v.  

1. A pebble can be placed on a vertex in S .  

2. A pebble can be removed from any vertex. 

3. If a vertex is not in S ,  then it can only be pebbled if all its immediate prede- 

cessors have a pebble on them. 

The pebbling number of T on G from S ,  denoted PG(S, T ) ,  is the minimal number of 

pebbles needed to pebble some vertex in T from S .  

The following lemma from [7] states a straightforward property of PG(S, T). 



CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 29 

Lemma 3.28 (Ben-Sasson [7]). Let G = (V, E) be a DAG. For any v E V and any 

sets S, T C V, PG(S, T) 5 max{PG(S, T U {v)), PG(S U {v), T) + 1). 

Proof. To pebble T from S, we can first pebble T U {v) from S with PG(S, T U {v)) 

pebbles. If some vertex in T is pebbled, then we are done. Otherwise, only v is 

pebbled. Leave the pebble on v and try to pebble T from S U {v). This requires 

PG(S U {v), T) + 1 pebbles. 0 

Note that for a DAG G with n vertices, PG(S, T) = O(n) since we can always 

use n pebbles and thus do not need to remove pebbles from vertices. What we are 

interested is a lower bound on the number of pebbles needed. Cook [13] showed 

that the pebbling number of the target from the sources on a pyramid graph with n 

vertices is R ( f i ) .  In a pyramid graph with n = m + (m - 1) + . . . + 1 vertices, there 

are m layers of vertices. The i-th layer has i vertices labelled vi,l, v i , ~ ,  . , vi,i. The 

vertex a t  layer 1 is a target and the vertices at  layer m are sources. Each non-source 

vertex vi,j has predecessors vi+l,j and vi+lj+l. Figure 3.2 shows what the pyramid 

graph looks like when n = 10. One can try to pebble v l , ~  from the sources and get an 

intuition of the minimum number of pebbles required in order to  pebble the vertex. 

Celoni et al. [12] presented an infinite family of graphs G, with n vertices, each has 

in-degree 2 or 0, for which PGn (S ,  T) = R(n/ log n )  where S and T are the sets of 

sources and targets in G, respectively. We will leave out the description of G, as it is 

too complicated to  illustrate here but a reader can refer to  their paper if interested. 

The significant thing for us is that the implication graph contradiction based on G, 

is hard for tree-NG-RES. In particular, every tree-NG-RES refutation of I M P G , , ~ , ~ , ~  

must be of size (d - l)"(nl'Ogn). We will prove this by showing the general lower bound 

on the size of tree-NG-RES refutations of IMPG,S,T,d using a modification of the game 

approach from [7]. 

Our modified game is as follows. Let Z = ([dl, I') be an unsatisfiable CSP instance. 

The game involves two players: Prover and Delayer. In each round, Prover picks a 

variable from vars(I'). Then, Delayer can choose 1 or *. If 1 is chosen, the variable 

is set to  1. Otherwise, Prover can pick a value from (2, . . . , d} and assign it to  the 

variable. Delayer scores one point if he chooses *. The game ends when the current 



CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 

Figure 3.2: Pyramid graph with 10 vertices 

assignment falsifies at least one of the nogoods in r. Remark: When the game ends, 

there must be some nogood in F that is made false since Z is unsatisfiable. 

Here is the rough idea of the proof. We first show that a tree-NG-RES refutation 

of IMPG,s,T,d gives a strategy for Prover to limit the number of points Delayer can 

win. This in turn will imply that any tree-NG-RES refutation of IMPG,s,~,d is of size 

exponential in the number of points Delayer can score. Then, we prove that there is a 

good strategy for Delayer to win at  least C2(PG(S, T ) )  points. So, every tree-NG-RES 

refutation of I M P G , ~ , ~ , ~  must be of size exponential to C2(PG(S, T ) ) .  We call the above 

Delayer's strategy superstrategy. 

Lemma 3.29. ForZ an unsatisfiable CSP instance, if Z has a tree-NG-RES refutation 

of size S, then Prover has a strategy where Delayer can win at most [10g~-~ S1 points. 

Proof. Suppose Z has a tree-NG-RES refutation .rr of size S. We will give a strategy 

which allows Prover to  bound the number of points Delayer can win and show that 

as long as Prover follows the strategy, the following invariant will be maintained after 

each round: If p is the current points Delayer has scored, then there is a nogood N in 

.rr such that N is falsified by the current partial assignment and the sub-tree rooted 

at  N in G, is of size a t  most S/(d - 1)p. 

At the beginning, Delayer has no points and the only nogood that is falsified is 

the emply nogood. So, the invariant holds. Consider the i-th round. Let pi-1 be the 

number of points Delayer has scored after the previous round and Ni-1 be the nogood 

satisfying the invariant at  the previous round. If Ni-l is a leaf in G,, then Ni-l is 
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a nogood in I? that is falsified by the current partial assignment and hence the game 

ends. Otherwise, Prover picks the variable x which is resolved on to derive Ni-1 from 

nogoods Nl, N2, - . - , Nd in T. W.L.O.G., suppose (x = 1) E Nl, (x = 2) E N2, and 

so on. If Delayer assigns 1 to x, then Nl is falsified and it becomes the new nogood 

for the invariant. In this case, Delayer does not score any points and the sub-tree 

rooted at  Nl is obviously smaller than the one rooted at  Ni-l. Thus, the invariant 

holds. If the Delayer chooses *, then Prover assigns x the value j E (2, - .  , d) which 

will falsify the nogood Nj, among N2, . - . , Nd, with the smallest sub-tree. The size 

of this sub-tree is a t  most l / (d  - 1) of S/(d - 1)pi-1 which is the size of the sub-tree 

rooted a t  NiPl. So, the sub-tree rooted at  Nj is of size at  most l / (d  - l)pi-l+'. Since 

Delayer chooses *, he can score a point and the number of points he has scored after 

this round is pi-1 + 1. Therefore, the invariant is maintained. 

When the game halts, the size of the sub-tree is 1. If Delayer scores p points at  the 

end of the game, then 1 5 S/(d - 1)p. This implies p 5 1 0 g ~ - ~  S 5 [logd-, S1. Hence, 

Delayer can win a t  most [10g~-~ S1 points if Prover follows the above strategy. 

Corollary 3.30. For 2 an unsatisfiable CSP instance, if the Delayer has a strategy 

which always scores r points on 2 ,  then tree-NG-RES(2) > (d - l)'-l. 

Proof. Suppose the Delayer has a strategy which always scores r points on 2 .  Towards 

a contradiction, suppose tree-NG-RES(2) < (d - Then, by Lemma 3.29, the 

Prover has a strategy where the Delayer can win at  most [logd-, (d - l)'-'l = r - 1 < r 
points. This contradicts that the Delayer can always scores r points. 0 

The superstrategy for Delayer is simple. Before each game, Delayer sets S1 = S 

and TI = T.  Then, in each round, if Prover asks about variable xi, i E [n], Delayer 

responds as follows: 

1. If vi E TI, assign 1 to the variable. 

2. If vi E St, respond *. 
3. If vi 6 S1 U TI and PC (St, T' U {i)) = PC (St, TI), assign the variable 1 and add 

vi to  TI. 

4. If vi $ S1 U T' and PC (St, TI U {i)) < PC (S', TI), respond * and add vi to St. 
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We will prove that PG(S1, TI) can only decrease by at most the number of points 

Delayer scores and it is at  most 3 at the end of the game. This implies the super- 

strategy guarantees Delayer to earn at  least PG(S, T) - 3 points. 

Lemma 3.31. After each round, zf Delayer has scored p points, then PG(S1, TI) 2 

PG(S, T) - p. 

Proof. Let S,! and T,( be the sets S' and T' respectively in Delayers superstrategy after 

round i. Let pi be the number of points Delayer has scored after round i. We show that 

the invariant PG(S,!, Ti) > PG(S, T) - pi will be maintained after each round. At the 

beginning, po = 0, Sh = S and Ti = T. So, PG(Sh, Ti) = PG(S, T) -0 and the invariant 

holds. Now consider round i. For case 1, 2, and 3, PG(Si-l, Ti-l) = PG(S,!, Ti) and 

pi 2 pi-1. SO, PG(S,!,T,!) = PG(S,!-l,Ti(_l) 2 PG(S,T) - pi-1 2 PG(S,T) - pi. For 

case 4, PG(S;-,, Ti-l U {v)) < PG(S;-l, T,(-l), pi = pi-1 + I ,  S,! = S,!-, U {v), and 

T,' = T! 2 - 1 '  By Lemma 3.28, we have PG(S,!-l u {v), Tipl) 2 PG(Si-l, Ti-l) - 1. Hence, 

Therefore, the invariant is maintained after each round. 0 

Lemma 3.32. At the end of the game, PG(S1,T') 5 3. 

Proof. When the game ends, some nogood N must be falsified since I M P G , ~ , ~ , ~  is 

unsatisfiable. N cannot be a Source axiom for some source vi because vi E S S and 

thus it can only be assigned values from (2, . . . , d) through case 2. This assignment 

does not violate the Source axiom. Similarly, N cannot be a Target axiom either. 

Hence, N must be a Pebbling axiom for some vertex vk with predecessors vi and vj. 

To falsify N ,  xk must be set to 1 and both xi and xj  must be set to  some values from 

(2, . . , d). So, vk E T' (via case 1 or case 3) and vi, vj E S' (via case 2 or case 4). 

Therefore, to pebble T' from S', we can first pebble vi and vj, then vk. This only 

requires three pebbles. 0 
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Corollary 3.33. Following the superstrategy described, Delayer can score at least 

PG(S, T) - 3 points at the end of the game. 

Proof. This is an immediate consequence from Lemma 3.31 and Lemma 3.32. 0 

Proof. Corollary 3.33 shows that Delayer has a superstrategy to score PG(S, T) - 3 

points on IMPG,S,T,d. Therefore, by Corollary 3.30, we have tree-NG-RES(IMPG,S,T,d) 

2 (d - l)PG(S1T)-4. Hence, ~ ~ ~ ~ - N G - R E S ( I M P G , S , T , ~ )  = (d - 1) WG(S,T)). 0 

Combining everything discussed in this section, we obtain an exponential separa- 

tion of tree-NG-RES from NG-RES: 

Theorem 3.35 (Separation). For every integer d >_ 3, there exists an infinite family 

of CSP instances {I,), with domain size d, such that 

Proof. Let d 2 3 be an integer. [12] provides an infinite family of circuits {G,), with 

IV(G,) I = n,  for which PGn (S, T) = R(n/ log n) where S and T are the sets of sources 

and targets in G. From Lemma 3.26, we have NG-RES(IMPGn,s,T,d) = 0(d2n).  And, 

by Theorem 3.34, tree-NG-RES(IMPG,,S,T,d) = (d - 1) ~(PG(S,T)) = (d - 1 ) W  logn). 

3.2.2 Separation Upper Bound 

In the previous section, we showed that there are families of CSP instances such 

that they have linear-size NG-RES refutations but no tree-NG-RES refutation of size 

smaller than exp(R(n/ log n)) .  The next question one may ask is: How big can this 

separation be? Or, more specifically, if we know that the smallest NG-RES refutation 

of a CSP instance I is of size S, then what is the upper limit for the size of the smallest 

tree-NG-RES refutation of Z in terms of S?  Ben-Sasson presented an upper bound for 

the separation between tree-RES and RES in 171. We will take his proof and modify 

it for tree-NG-RES. 
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Before proceeding to  show the upper bound, we first define decision trees for CSP 

search problems which are closely related to  tree-NG-RES. We will also describe a 

different parameter to measure the size of the underlying graph of a minimal refuta- 

tion. 

Let Z = ([dl, r) be a CSP instance. Given an assignment cu to  all the variables in 

r, a search problem for Z is to find a nogood N in r such that cu falsifies N. If such 

a nogood does not exist, then output 1. 

Definition 3.36 (Decision Trees for CSP Search Problems) .  A d-ary Decision 

Tree is a d-ary tree, in which internal vertices, edges, and leaves are labelled with 

variables, elements in [dl, and possible outputs, respectively. Given a d-ary decision 

tree D l  each assignment cu to the variables corresponds to  a unique path in D in the 

natural way, and the label at  the end of the path is the output of D on a. D is a d-ary 

decision tree for the search problem for Z if for every input assignment cu, D outputs a 

nogood in r which is falsified by cu or outputs 1 if cu satisfies all nogoods in r .  Define 

SD(Z) to  be the minimal size of a d-ary decision tree for the search problem for Z. 

Decision trees for CSP search problems are closely connected to  tree-NG-RES in 

such a way that the size of the smallest tree-NG-RES refutation of an unsatisfiable 

CSP instance Z is equal to  the size of the minimal decision tree for Z. 

Lemma  3.37. If Z is an unsatisfiable CSP instance, then tree-NG-RES(Z) = SD(Z). 

Proof. Let Z be an unsatisfiable CSP instance. Let .rr be a tree-NG-RES refutation 

of Z. For each internal vertex in G,, if we label it with the variable resolved on 

to  obtain the nogood on the vertex and label each edge pointing to  the vertex with 

the corresponding domain value of the variable, then the resulting graph is a d-ary 

decision tree for the search problem for Z. So, tree-NG-RES(Z) 2 SD(Z). 

To show tree-NG-RES(Z) 5 SD (I), suppose we are given a d-ary decision tree D 

for 1 .  We can construct a tree-NG-RES refutation of Z with at  most the same size of 

D. Since Z is unsatisfiable, all leaves must be labelled with nogoods. Working from 

leaves towards the root, for each internal vertex v with label x, we do the following. 

If x does not appear in some nogood N labelled at  some child of v,  then we label 
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v with N  and remove its children. Otherwise, for each i E [dl, x  must appear as 

(s  = i) in the nogood labelled at  the child along the edge labelled with i .  Label v 

with the resolvent of the labels on v's children. Eventually, every internal vertex v 

will be labelled with a nogood falsified by the partial assignment defined on the path 

leading to v. Hence, the root must be labelled with the empty nogood and we get a 

tree-NG- RES refutation. 0 

The next lemma will be needed in the proof of the upper bound. 

Lemma 3.38. If Z = ([dl, r) is an n-variable CSP instance where Irl = m, then there 

is a d-ary decision tree for the search problem for 1 with at most Czo ((I(d - 1)' 

leaves. 

Proof. Let 1 = ([dl, r) be an n-variable CSP instance with Irl = m. We can build a 

d-ary decision tree recursively as follows. We start with an empty truth assignment 

and a tree with one vertex. In each step, we have a partial assignment a  and we 

are at  some vertex v. If a  falsifies some nogood N  in r, we label v with N .  If a 

satisfies all nogoods in r, we label v with 1. Otherwise, we pick the first nogood N  

such that a ( N )  is undefined and pick the first variable x  appearing in N  for which 

a ( x )  is undefined. Then, we label v with x  and create d children for v, where the d 

edges leading to the children are labelled with 1,2,  . . . , d respectively. After that, for 

each i E [dl, we recursively set the child along edge i to be the new current vertex 

and set a U ( x  = i) to be the new partial assignment for the next step. 

Consider the last case we just described. Among the d values that we can assign 

to x ,  d - 1  of them will satisfy N .  We call the d - 1  values "satisfying values". Any 

path of the d-ary decision tree constructed as above can contain at  most m satisfying 

values since there are only m nogoods in r. Hence, a path can be described by a 

sequence of n numbers with a t  most m of those being satisfying values. Therefore, 

the number of ~ a t h s  is at  most 

For some technical reasons, we have to  limit ourselves to refutations .rr for which 

G, has maximal out-degree 2. The next lemma shows that any NG-RES refutation 
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K can be transformed into an NG-RE,VWeak refutation K', with only a small blowup 

in size, such that G,t has maximal out-degree 2. 

Lemma 3.39. Let Z = ([dl, I') be a CSP instance. If there is an NG-RES refutation K 

of Z, then there exists an NG-RESWeak refutation K' of Z such that G,t has maximal 

out-degree 2 and K' is of size at most d . 1x1. 

Proof. Given an NG-RES refutation K of Z, we can transform it into an NG-RES+"""~ 

refutation K' of Z as follows. If a nogood N in K is used to derive k other nogoods, 

N1, N2, , Nk, we create k - 1 copies of N and call them Ncl , Nc, , . . . , NC,-, . For each 

i E {1,2, . . , k - 21, make Nci be the premise to derive Ni and Nc,+, (by weakening). 

Make Nc,-, be used to derive Nk-l and Nk. Then, G,I has maximal out-degree 2 and 

[dl 5 d.  1x1 since the transformation only increases the number of nogoods by at  most 

CVEV(G.) I~~ t -deg (v )  - 11 = CVEv(~,) out-deg(v) - 1x1 = CVEv(GI) in-deg(v) - I K ~  _< 
d I K ~  - IT[.  (Note that every vertex in G, has in-degree d or 0 as K is an NG-RES 

refutation.) 0 

To prove the upper bound, we need to define a different parameter to  measure the 

NG-RES complexity. The parameter counts the number of edges in the graph of a 

minimal NG-RES refutation. 

Definition 3.40 (magnitude). For a DAG G = (V, E) , define e(G) I E (G) 1 .  For 

an unsatisfiable CSP instance Z, define the magnitude of refuting Z, e(Z), to  be: 

e(Z) min{e(G,) : K is an NG-RES+"""~ refutation of Z and G, has max out-deg 2) 

We define fd(k) to  be the maximal ~ T ~ ~ - N G - R E S + " ~ ~  complexity of refuting CSP in- 

stances with domain size d and magnitude at most k. That is, for any dl k E N, d > 2, 

fd(k) rna~{tree-NG-RES+"~"~(Z) : Z has domain size d and e(Z) < k). 

So, if the magnitude of refuting Z = ([dl, I') is at most k, then t~ee-NG-REs+"~"~(1) 5 
fd(k). Z is k-maximal if e(Z) = k, t~ee-NG-REs+"~"~(1) = fd(k) and removing any 

nogood from Z enlarges e(Z) or makes Z satisfiable. 
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Note that f is monotonically increasing and for all k E N, a kmaximal CSP 

instance always exists. 

Lemma 3.41. For all d , k  E N,d > 2, f d ( k + d )  5 d .  fd(k). 

Proof. Let Z = ([dl, r) be a (k + d)-maximal unsatisfiable CSP instance. Then, 

e(Z) = k + d and tree-NG-RES+weak(Z) = fd(k + d). Let ;rr be an NG-REPwak 

refutation of Z such that G, has k + d edges. Let N be a nogood in ;rr which is a 

resolvent of d nogoods Nl, N2, . . , Nd E r. (There exists at  least one such N since 

otherwise, r contains the empty nogood and e(Z) = 0.) 

Let 2' = ([dl, r U {N)) . Then e(Z1) 5 k since deleting the derivation of N from ;rr 

gives an NG-RES+weak refutation ;rr' of 2' with at  most k edges in G,,. Therefore, 

tree-NG-RES+weak(Z') I fd (k) . (3.1) 

Let T' be a tree-NG-RES+weak refutation of 2' of size tree-NG-RES+weak((Z'). Let T be 

constructed from T' as follows. Whenever N appears as an axiom in TI, substitute it 

with the NG-RES derivation N1 N &  N d .  Then, T is a t r e e - ~ G - ~ ~ s + ~ " ~  refutation 

of Z and the size of T is at  most d times of the size of TI. Hence, 

Since is (k + d)-maximal, we have fd(k + d) = t r e e - N G - ~ E s + ~ " ~ ( ( ~ ) .  With (3.1) 

and (3.2), we get fd(k + d) < d .  fd(k). 0 

We now show that for any directed acyclic graph G with in-degree d and out- 

degree 2, G can be partitioned into two subgraphs such that the number of edges in 

them are roughly the same. 

Definition 3.42 (topological partition). Let G = (V, E) be a DAG. Let vl, . . . , v, 

be a topological ordering of the vertices in V. For 0 5 i I S ,  let Vo(i) = {vl,.  . . , vi) 

and Vl (i) = {vi+1, . . . , us). Let Go(i) (Gl(i) resp.) be the subgraph of G induced 

by Vo(i) (Vl(i) resp.). Let eo(i) (el(i) resp.) be the number of edges in Go(i) (Gl (i) 

resp.). Let Mi be the set of vertices in Vl (i) which are connected to  vertices in Vo(i) 

and define mi = I Mil. A topological partition of G is an ordered pair (Vo(i), Vl (i)), 

for some i, 0 5 i 5 S.  
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Note that vertices in Mi are internal vertices in G. Also notice that for Z = ([dl, I?) 

an unsatisfiable CSP instance and .rr = (N l , .  . . , Ns) an N G - R E S + ~ ~ ~  refutation of 

Z, IT is a topological ordering of G,. And if (Vo(i), Vl(i)) is a topological partition of 

G,, then Vo(i) is an NG-RESf derivation from I? and Vl (i) is an NG-RE,PWak 

refutation from nogoods in J? U Mi. 

Lemma 3.43 (equal partition). Let vl, . . . , u s  be a topological ordering of the 

vertices of a single-target DAG G = (V, E) with maximal in-degree d and maxi- 

mal out-degree 2. There exists a topological partition (Vo(i), Vl(i)) of G such that 

e )  - e l  . Such a partition is called equal, and for an equal partition, 
e(G)-mi ej(i) < -7 + d, j E (0, 1). 

Proof. Consider any partition (Vo(i), Vl(i)) of G, 0 < i < S.  Since every vertex in 

G has maximal in-degree d, eo(i + 1) 5 eo(i) + d. And, since G has maximal out- 

degree 2, el( i  + 1) > el(i) - 2. It is obvious that eo(0) = 0 = el(S),eo(S) = e(G) = 

el(0). Moreover, eo is monotonically increasing and el is monotonically decreasing. 

Therefore, there exists an i such that leo(i) - el (i) 1 5 y. 
For an equal partition (Vo (i) , Vl (2) )  , 1 eo (i) - el (i) 1 5 y. This implies eo (i) - 

el (i) < y. Moreover, e(G) 2 eo(i) + el(i) +mi because vertices in Mi have non-zero 
d+2 e(G)-mi+ 2 e(G)-mi in-degree. Hence, for j E { O , l ) ,  ej(i) < 2 5 7  + d. 0 

Next, we prove that if the magnitude of refuting a CSP instance Z with domain 

size d is at  most then we can construct a tree-NG-RESfWeuk refutation of Z of 

size at  most dc2k logk for some constant c. Therefore, fd(k2k) < d c2k logk. 

Theorem 3.44. For any integer d 2 2, there exists a constant c > 0, such that for 

all integers k > 4, fd(k2k) < d ~2~ log k 

Proof. (By induction on k) 

Let d > 2 be some fixed integer. 

Basis: Let c > 4d be large enough so that fd(k2k) 5 dC2*l0gk is true for k = 4. 

I.H.: Assume it is true for all values smaller than k, for some fixed Ic 2 4. 

Induction step: Suppose Z = ( [d l ,  I?) is an unsatisfiable CSP instance with e(Z) 5 
k2" We will show how to  construct a t r e e - ~ G - R E s + ~ ~ ~  refutation of Z with size at  
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most dc2k log k and this would imply fd(k2" ) dC2k10gk, by the definition o f f .  Let rr = 

(Nl,  N2,.  . . , Ns) be an N G - R E S + ~ ~ ' ~  refutation of 2 such that G, has e e(2) 5 k2k 

edges and maximal out-degree 2. Let n be the number of variables appearing in rr. 

Then, we must have n 5 e due to  the minimality of e. Let (rro, rrl) be an equal 

partition of G, a t  some i and set eo = eo(i), el = el (i) and m = I Mo(i) 1 .  

Case 1: m > 2" Consider a nogood N in no. N is derived by an NG-RES+"~"~ 

derivation rr' with a t  most eo ) + d ) *2*-21 + d = (k - 1)2~- l  + d 

edges in G,! (by Lemma 3.43). Let cr be a partial assignment on the variables 

in N such that (x = a) E a if and only if (x = a)  E N.  Then TI[, is an 

NG-RES+w"k refutation of r[, (Proposition 3.20). By the definition of f and 

Lemma 3.41, there exists a tree-NG-REPweak refutation from r[, of size at  

most fd((k - 1)2k-1 + d) ) d - fd((k - 1)2k-1). Without increasing the size, this 

can be converted to  a tree-NG-RES+weak derivation of some subnogood Nl of N 

from r (Lemma 3.21). So, N has a tree-NG-RES+w"k derivation of size at  most 

d . fd((k - 1)2~-') + 1 (we may need one weakening step to  get N if Nl # N). 

Similarly, since rr1 is an NG-RESWeak refutation with el ) (k - 1)2"' + d edges 

in G,,, it can be replaced by a t r ee -NG-R~s+"~"~  refutation T from r U Mi of 

size at  most d fd ((k - 1)2~-'). For every axiom nogood N in T,  if N 4 r, then 

N E Mi and the derivation step to  derive N in rr involves at  most d nogoods 

in TO. For each of those nogoods in TO, plug a tree-NG- REPweak derivation as 

described above. This yields a tree-NG-RES+w"k refutation of 2. By inductive 

hypothesis, the size of this tree-NG-RES+weak refutation is at  most: 

whenever c > 4d and k > 4. 

Case 2: m < 2k. By Lemma 3.38, there is a d-ary decision tree D with at  most 

Czo (l) (d - 1)' leaves which can solve the CSP search problem for inn = 

([dl, Mi). Each leaf v of D must be labelled with 1 or a nogood in Mi. If v is 

labelled with N E Mi, then N has a ~ ~ ~ ~ - N G - R E s + " " ~  derivation from r of size 
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at most d. [d. fd((k- 1)2~-') + 11 (see case 1). If v is labelled 1, then we know that 

the partial assignment p defined by the path leading to v in D satisfies every 

nogood in Mi. Since .rrl is an NG-RESWeak refutation from r U Mi, .rrl [, is an 

NG-RESf weak refutation of T with at most + d edges in G,, r, (Proposition 

3.20). By Lemma 3.41, there is a tree-NG-RES+w"k refutation of r [ ,  of size at 

most d -  fd(y). This can be converted to a tree-NG-RES+weak derivation of N, 

from from r of size at most d . fd(y) + 1, where (x = a) E N, iff (x = a )  E p. 

(Note that N, is falsified by p.)  Substitute the t r e e - ~ ~ - ~ E s + ~ ~ ~ ~  derivation of 

N, into v. We now have a tree in which every leaf is labelled by a nogood in r 
that is falsified by the assignment defined on the path leading to it. This tree 

can then be transformed into a tree-NG-RESweak refutation of r (details can 

be found in the proof of Lemma 3.37.) The size of this tree is bounded by: 

e - r n  

.: n 5 e  and e 5 k2* 

.: rn < 2* 

< ,+,k+, (kik) zk-.. k2k - 2k 
- . d ~ f d (  2 

) .: Lemma 3.41 

< 2*+l (4k)2k dc2*-' log (k-1) 
- . ( )  ( 4  (see Appendix A) 
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The last inequality is true since for d 2 2, k 2 4, and c 2 4d, we have 

d+2k+2 +2klogk  5 i ~ 2 ~ 1 o ~ k .  

We are now ready to prove the upper bound for the separation of tree-NG-RES 

and NG-RES. 

Theorem 3.45 (Separation Upper Bound). For any unsatisfiable CSP instance 
d 2 5  log log S 

Z with domain size d 2 2, tree-NG-RES(Z) = do( logs ) where S = NG-RES(Z). 

Proof. Let Z be an unsatisfiable CSP instance, and n be a minimal NG-RES refutation 

of Z. Let S = In1 - NG-RES(Z). Then, by Lemma 3.39, there exists an NG- 

RE,Vweak refutation n' such that In'l 5 dS and G,t has maximal out-degree 2. Hence, 

e e(G,I) 5 d2S, since there are a t  most d edges entering a vertex in G,t. Set 
def k = [log &] . Then, e j k2k. Therefore, 

tree-NG-RES(Z) tree-NG-REPWeak(Z) -: Proposition 3.18 

5 f ( e )  .: definition of f 

5 f (k2" ... f is monotonically increasing 

- - d 0 ( 2 k  l o g  lc) .: Lemma 3.44 

- - do(& '"P'OP &) 

3.3 Constraint Resolution ( C-RES) 

Next, we define another refutation system, constraint resolution, for CSPs which is 

based on one of the common CNF encodings [I41 of CSP instances. 
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Let Z = (23, I?) be a CSP instance. We encode Z as a CNF formula, CNF(Z), as 

follows. For each variable x E vars(Z) and each possible value a E D(x) that x can 

take, we introduce a propositional variable x : a  asserting that x takes value a when 

x : a is true. 

First we need a set of clauses ensuring that every variable in Z must be given some 

value. We call them domain clauses. Then, there are unique value clauses stating 

that no variable can take more than one value. Finally, for each nogood in r, we 

have a constraint clause which rules out the forbidden assignment corresponding to  

the nogood. Hence, the CNF encoding of Z is: 

CNF(Z) = domainCls U uniqueValueCls U constraintCls 

where domainCls = {(x : al  . x : ad) : x E vars(Z), V(x) = {al, . , ad)) 

uniqueValueCls = {(z: a) : x E vars(Z),a,c E V(x) ,a  # c) 

constraintCls = {(m . . .  xk : ak )  : q(xl = al ,  ,xk = ak)  E I?). 

CNF(Z) encodes all the requirements an assignment needs to meet in order to  satisfy 

Z. Thus, every solution of Z corresponds to  a truth assignment which satisfies all 

clauses in CNF(Z), and vice versa. Therefore, CNF(Z) is satisfiable if and only if Z 

is satisfiable. 

Example 3.46. The CNF encoding of the CSP instance in Example 2.4 consists of 

the following clauses. 

Domain clauses: (x : 1 x : 2 x : 3) 

( y : l  y:2 y:3) 

( z : 1  2:2 2:3) 
-- -- -- 

Unique value clauses: (x : 1 x : 2) (x : I x : 3) (x : 2 x : 3) 
-- -- 
1 2 ( y : l  y:3) (D fi) 
-- -- -- 

(z :1  2:2) (z :1  2:3) (2:2 2:3) 
-- -- -- 

Constraint clauses: (x : 1 y : 1 (x : 2 y : 2) (x : 3 y : 3) 

(Z) (fl) (Z) 
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Definition 3.47 (constraint resolution, C-RES and tree- C-RES) . A con- 

straint resolution (C-RES) refutation of a CSP instance Z is a RES refutation of 

CNF(Z). A tree-C-RES refutation of Z is a tree-RES refutation of CNF(Z). 

Theorem 3.48 (Soundness and Completeness of C-RES). For any CSP in- 

stance Z, there is a C-RES refutation of Z if and only if Z is unsatisfiable. 

Proof. This follows from the soundness and completeness of RES and the fact that 

CNF(Z) is satisfiable if and only if Z is satisfiable. 0 

Definition 3.49 ( C-RES complexity, C-RES(Z) and tree- C-RES ( I ) ) .  For 

any unsatisfiable CSP instance 1, 

C-RES(Z) min{l.rrl : .rr is a C-RES refutation of Z) 

and 

tree-C-RES(Z) min{I.rrl : .rr is a tree- C-RES refutation of 1). 

3.3.1 Direct Translation of SAT to CSP 

As CSPs with domain size 2 can be viewed as a generalization of SAT problems, if 

an unsatisfiable CNF formula 4 is transformed directly into a CSP instance Z, one 

might expect that the C-RES complexity of CNF(Z) should not be worse, at  least 

within a constant factor, than the RES complexity of 4. We are going to show that 

this presumption is correct. 

Definition 3.50 (direct translation of SAT to CSP). A CNF formula 4 can be 

transformed into a CSP instance Z = ((0, I) ,  I') as follows. The variables in Z would 

be the variables in 4. For each clause C in 4, there is a nogood q(a )  in I' if and only 

if a is a minimal size truth assignment that makes C false. 

Example 3.51. The CNF formula 4 = (x J Z )  A (y F )  A (z) A (z) can be transformed 

into a CSP instance Z = ((0, I) ,  I'), where I' = {q(x = 0, y = 1, z = I ) ,  q(y = 0, z = 

11, d x  = 1 1 1  rl(z = 0)). 
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Proposition 3.52. Let 4 be a CNF formula. Let Z be the CSP instance which is the 

direct transformation of 4 to CSP. Then, 

Proof. Let 4 be a CNF formula. Let Z be the CSP instance that is the direct trans- 

formation of 4 to  CSP. For RES(4)  < C-RES(Z),  suppose .rr is a C-RES refutation of 

Z ,  i.e., a RES refutation of CNF(Z). We will construct a RES refutation of 4 of size 

a t  most When $ is transformed to  Z ,  each clause C in $ is mapped to a nogood 

Nc such that 

x E C H ( x  = 0 )  E Nc and T E  C t, ( x  = 1) E Nc. 

Then, when Z is transformed to CNF(Z),  each Nc is encoded as a constraint clause 

C^ where 
A 

( x = O ) t N c  t, ~ E C  and ( x = l ) ~ N c  t, S E E  
- 

Now, construct ii by replacing all occurrences of a and x : 1 in .rr with x ,  and all x :  1 

and x : 0  with T.  The constraint clauses in .rr will be converted back to  clauses in 4. 
Domain and unique value clauses will become ( x  T )  which is a tautology. So, ii is a 

RES refutation of the formula 4 A ( x  T ) .  To eliminate ( x  T )  in ii, we modify each 

derivation step involving ( x  T )  according to one of the following: 

What we obtain is a RES refutation of 4 of size at  most 

For C-RES(Z) < 3 . RES(+), suppose .rr is a RES refutation of 4. Let A be a 

mapping from clauses in 4 to clauses in CNF(Z) such that for C a clause in 4, 

X E C  t, S E E  and T E C  H 
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Then, for each derivation step 

in T, we change it to 

The resulting derivation is a RES refutation of CNF(Z) and is of size at  most three 

times of T .  

The tree-like case is similar. 0 

3.3.2 Separation of tree-C-RES from C-RES 

Employing the result from the previous subsection, together with Ben-Sasson's [7] 

exponential separation of tree-RES from RES, we get an exponential separation of 

tree-C-RES from C-RES. 

Theorem 3.53 (Separation). There exists an infinite family of CSP instances {Z,) 

such that 

Proof. [7] presents an infinite family of unsatisfiable CNF formulas (4,) such that 

I 4, 1 = O ( n ) ,  RES(4,) = O ( n )  and tree-RES(4,) = 2"("/'"gn). Let Z, be the direct 

transformation of 4, to CSP. By Proposition 3.52, we have 

C- RES (Z,) 5 3 . RES (4,) = O(n)  and 

tree- C-RES(Z,) 2 tree- RES(4,) = 2"(n110gn). 
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3.3.3 Separation Upper Bound 

Another immediate result from Ben-Sasson's paper is an upper bound for the separa- 

tion between tree- C-RES and C- R ES. 

Theorem 3.54. For any unsatisfiable CSP instance 1, if S = C-RES(Z), then 
tree- C-RES(Z) = 20(SI'Jg 1% S/ 1% S ) .  

Proof. [7] proves that for any unsatisfiable CNF formula 4, if S = RES(q5), then 

tree- RES (4) = 2•‹(S'0g'0g S/'Og '1. Therefore, for every unsatisfiable CSP instance Z, 

if S = C-RES(Z) = RES(CNF(Z)), then tree-C-RES(Z) = tree-RES(CNF(1)) = 
2 0 ( S  log log s/ log S )  0 



Chapter 4 

Relative Efficiency of Resolution 

Systems 

In this chapter, we compare the relative power of the CSP refutation systems NG-RES, 

C-RES, and their restricted tree-like versions. We first show that NG-RES can 

simulate tree-C-RES efficiently. Then we prove exponential separations between 

tree-NG-RES and tree-C-RES, and also between NG-RES and C-RES. 

4.1 tree-C-RES vs NG-RES 

We show that NG-RES can efficiently simulate tree-C-RES in this section. Through- 

out the proof, one can observe a close relationship between NG-RES and negative 

resolution (N-RES). An NG-RES refutation of a CSP instance Z is essentially an 

N-RES refutation of CNF(Z). For our convenience, we use N-C-RES to  denote neg- 

ative resolution for CNF(Z). 

Definition 4.1 (N-C-RES). An N-C-RES refutation of a CSP instance Z is a 

negative resolution refutation of CNF(Z). 
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4.1.1 Simulations 

To prove the simulation, we start by showing that NG-RES and N-C-RES can simu- 

late each other. Then, together with the fact that N-RES can simulate tree-RES, we 

can prove that NG- R ES simulates tree- C- R ES. 

Proposition 4.2 (NG-RES and N- C- RES efficiently simulate each other). 

For any n-variable CSP instance Z, with domain size d,  

1. if there is an N-C-RES refutation of Z of size S, then there is an NG-RES 

refutation of Z of size at most S, and 

2. if there is an NG-RES refutation of Z of size S, then there is an N-C-RES 

refutation of Z of size at most dS + n. 

Proof. Let Z be an n-variable CSP instance with domain size d. 

Suppose there is an N-C-RES refutation 7r of Z of size S.  Note that 7r is a 

negative resolution refutation of CNF(Z). The only clauses in CNF(Z) containing 

positive literals are the domain clauses. Since every resolution step in a negative 

refutation must involve a negative clause and the domain clauses are all positive, 

once we resolve a negative clause with a domain clause on some variable x :a i ,  we 

have to keep resolving on the rest of the variables in the domain clause until we get 

a negative clause. Therefore, every negative clause in 7r must be either an element of 

CNF(Z) or derived as follows: 

where each Xi contains negative literals only. We can construct an NG-RES refutation 
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of Z by replacing each of the derivation steps which looks like the above with 

where v:a E Xi if and only if (v = a) E Ni, 1 5 i 5 d. So, there is an NG-RES 

refutation of Z of size at  most S.  

For the second part, suppose .rr is an NG-RES refutation of Z of size S.  We 

construct an N-C-RES refutation .rrl of Z by replacing every NG-RES derivation step 

in .rr with a corresponding resolution derivation that makes use of a domain clause 

(as shown in the RES derivation above). It is clear that .rrl is a negative resolution 

refutation. Since (x: al x :  a2 . . . x:  ad) is a domain clause in CNF(Z) and each leaf in 

.rrl is a constraint clause in CNF(Z), .rrl is indeed an N-C-RES refutation of Z. There 

are at  most n domain clauses and each nogood derived in .rr corresponds to  d derived 

clauses in .rrl. Therefore, d is of size at  most d S  + n. 0 

Proposition 4.3 ( N - R E S  efficiently simulates tree-RES) . For any CNF for- 

mula $ with n variables, if there is a tree-RES refutation T of $ of size S, then there 

is an N-RES refutation .rr of $ of size at most nS. 

Proof. (By induction on n) The base step is trivial. Assume the claim is true for 

CNF formulas with less than n variables. Let $ be a CNF formula with n variables. 

Suppose there is a tree-RES refutation T of $ of size S.  Let x be the variable which 

is resolved on to derive the empty clause in T .  Let Tz be the tree-RES derivation of 

Z and Tx be the tree-RES derivation of x. Then, Tz[,=1 is a tree-RES refutation of 

using the resolution rule and possibly also the weakening rule (Proposition 3.7). 

By inductive hypothesis and Proposition 3.5, has an N-RES refutation TF of 

size at  most (n - 1) 1 Tzl. "Plugging" 3: back into .rrz yields either an N-RES refutation 

of $ (we are done in this case) or an N-RES derivation of : from $ of size at  most 

(n  - 1)I Tzl (see Proposition 3.8 for details). 
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Similarly, Tx[,=o is a tree-RES refutation of $[x=o. By inductive hypothesis, 

$ rx=o has an N-RES refutation nx of size at  most (n - 1) ( Tx I .  For each leaf C of 

n,, if C 4 4, then ( C  x) must be in $ and C can be derived from ( C  x) and : 
(where : can be derived in at  most (n - 1)I TFI steps). The number of such C's is 

at most I T.1. Hence, we can construct an N-RES refutation of $ of size at  most 

( n -  1)IT'I + ( n -  l)(TxI + ITXI < n(lT'I + ITXI + 1) = n S .  0 

Proposi t ion 4.4 (N-C-RES efficiently simulates tree-C-RES). For every n- 

variable CSP instance Z, with domain size d ,  if there is a tree-C-RES refutation T of 

Z of size S, then there is an N-C-RES refutation T of Z of size at most ndS. 

Proof. Let Z be an n-variable CSP instance with domain size d. Suppose there is a 

tree-C-RES refutation T of Z of size S .  Then T is a tree-like resolution refutation of 

CNF(Z) which has nd variables. By Proposition 4.3, there exists an N-RES refutation 

T of CNF(Z) of size at  most ndS. By definition, T is an N-C-RES refutation of Z. 

Therefore, there is an N-C-RES refutation of Z of size at  most ndS. 0 

Corollary 4.5 (NG-RES efficiently simulates tree-C-RES). For every n- 

variable CSP instance Z, with domain size d, if there is a tree-C-RES refutation 

T of Z of size S,  then there is an NG-RES refutation T of Z of size at most ndS. 

In this section, we compare the relative power of tree-NG-RES and tree-C-RES. We 

show that tree- C- RES efficiently simulates tree-NG-R ES,  but the converse does not 

hold. There is an exponential separation of tree-NG-RES from tree- C-RES. 

4.2.1 Simulation 

Any tree- NG- RES refutation can be efficiently transformed into a tree- C- R ES refu- 

tation with only a small blowup in size. 
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Proposition 4.6 (tree-C-RES efficiently simulates t ree-NG-RES) .  For any 

CSP instance Z, if there is a tree-NG-RES refutation of Z of size S, then there is a 

tree-C-RES refutation of 2 of size at most 2 s .  

Proof. Let Z be a CSP instance and d be the domain size of 2. Let T be a tree-NG-RES 

refutation of 2. We can transform T into a tree-C-RES refutation by replacing every 

NG-RES derivation step with a tree-C-RES derivation (as in the proof for Proposition 

4.2). Note that in a tree-like derivation, every nogood (or clause) is used at  most once 

to derive other nogoods (or clauses). For each NG-RES derivation step with d input 

nogoods, the corresponding tree- C-RES derivation has 2d input and intermediate 

clauses. Hence, the resulting tree-C-RES refutation is of size at  most 2 s .  0 

4.2.2 Separation of tree-NG-RES from tree- C-RES 

The implication graph contradictions defined in Chapter 3 have poly-size tree-C-RES 

refutations. Hence, they also separate tree-NG-RES from tree-C-RES. 

Lemma 4.7. For any circuit G with n vertices, tree-C-RES(IMPG,s,T,d) = 0(d2n)  

Proof. Let G = (V, E) be a circuit with n vertices. Let S and T be the sets of sources 

and targets in G. CNF(IMPG,s,T,d) consists of the following clauses: 

Source axioms: (3) for every vi E S 

Target axioms: (m) for every vi E T, and for all a E [d]\{l) 

-- 
Pebbling axioms: (z,: xj  : b xk : 1) for every vk with predecessors vi and vj, and for 

all a ,  b E [d]\{l) 

Domain clauses: (xi : 1 xi : 2 - . xi : d) for every vi E V 

Resolving the domain clauses with the Target axioms, one can derive (xt : 1) for 

each target vt. Then, one can derive (xi : 1 x j  : 1 a) for each internal vertex vk with 

predecessors vi and vj by resolving the Pebbling axioms with domain clauses. This 

derivation is of size 0(d2n) .  
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Pick a target vt in G and infer (xi : 1 x j  : 1) by resolving (xt : 1) and (xi : 1 xj : 1 3) 
together, where vi and vj are predecessors of vt. Let L = {vi, vj) and C = (xi : 1 x j  : 1). 

We then recursively do the following until L becomes empty. Take a vertex vi from L. 

If vi has predecessors vl and v2 (i.e., vi is not a source), then let C be the resolvent 

of C and (xl : 1 x2 : 1 a), and add vl and v2 to L. Remove vi from L. 

Eventually, we will have a clause (xil : 1 xiz : 1 . xi, : 1) such that vill vizl - * -, 
and vim are all sources. Together with the Source axioms (xi, : l), 1 5 j 5 m, we 

can derive the empty clause. This requires at  most n derivation steps (one for each 

vertex). Since each derived clause is used at  most once to  derive other clauses, it is a 

tree-like derivation. Therefore, tree- C-RES (IMPG,S,T,d) = 0(d2n) .  0 

Theorem 4.8 (Separation). For every integer d > 3, there exists an infinite family 

of CSP instances {I,), with domain size d, such that 

Proof. Let d 2 3 be some fixed integer. [12] gives an infinite family of circuits {G,), 

with IV(G,)I = n, for which PGn (S, T) = a ( n /  logn) where S and T are the sets of 

sources and targets in G. Lemma 4.7 implies that tree-C-RES(IMPGn,S,T,d) = 0(d2n) .  

Moreover, from Theorem 3.34, we know that tree-NG-RES(IMPGn,S,T,d) = a ( ( d  - 
~ ) P G ~ ( S , T ) )  = (d - l)"(n/l"gn). 

4.2.3 Separation Upper Bound 

The separation upper bound presented below follows immediately from our earlier 

results. Most likely, there exists a slightly better bound which may be obtained by a 

direct proof. We will leave this as a possible future work. 

Theorem 4.9. For any n-variable unsatisfiable CSP instance 1 with domain size d, 

if S = tree- C- RES(1) , then tree- NG- RES(1) = d0(nd3S10~10g S/ logS > a  

Proof. Let S = tree-C-RES(1). By Corollary 4.5, NG-RES(1) < ndS. So, by the 

upper bound on the separation between NG-RES and tree-NG-RES(Theorem 3.45), 

we have tree-NG-RES (1) = log log S/ log 
>. 0 
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4.3 NG-RES vs C-RES 

We now turn to the major result we obtained. We present a new exponential separa- 

tion between NG-RES and C-RES by constructing an infinite family of CSP instances 

such that there exist poly-size C-RES refutations for the instances but any NG-RES 

refutation of them is of exponential size. 

4.3.1 Simulation 

Before proceeding to  show the separation, we give a corollary stating that C-RES 

simulates NG-RES efficiently. 

Proposition 4.10 ( C - R E S  efficiently simulates N G - R E S ) .  For every n-variable 

CSP instance Z, with domain size d, if there is  an  NG-RES refutation of Z of size S, 

then there is  a C-RES refutation of Z of size at most  d S  + n.  

Proof. Since an N-C-RES refutation is a C-RES refutation and an NG-RES refuta- 

tion of size S can be transformed into an N-C-RES refutation of size at most d S  + n 

(Proposition 4.2), the claim is true. 0 

4.3.2 Separation of NG-RES from C-RES 

The best obviously known separation between C-RES and NG-RES is a super- 

polynomial one. 

Theorem 4.11 (Mitchell [27]). There is  an  infinite family of CSP instances MPH, 

such that 

We improve the separation from super-polynomial to  exponential by showing that 

there is an infinite family of CSP instances MGTL such that C-RES(MGTL) = 0(n3)  

but NG-RES(MGTL) = 2"("). 
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Our family of CSP instances, MGT;, is based on the unsatisfiable CNF formula 

GT, introduced by Krishnamurthy [22]. For each n E N, GT, encodes the negation 

of the fact that every loopless transitive directed graph with n vertices and with no 

2-cycles must have a source. The contradictory statement can be stated as a CNF 

formula containing the following clauses: 

where xi,j takes value 1 if and only if there is an edge from i to j .  

The first three sets of clauses ensure that the graph is loopless, transitive, and free 

of 2-cycles, respectively. The clauses in (4) assure that for each vertex j, there exists 

some vertex i such that there is an edge from i to j, i.e., there is no source. It has been 

proven by StAlmarck [37] that there is an 0(n3)-size resolution refutation of GT,. 

Bonet and Galesi gave a modified version of GTn, MGT,, in [lo]. For each j E [n], 

they introduced n + 1 new variables Yo, j l  . . . , yn,j and replaced the clauses in (4) by: 

(4*) Yo,j A A ( ~ i - l , j  V Xi , j  V yij) A Yn,j J' E [n] 
i~ [n] 

The total number of variables is still 0 (n2 )  but MGT, has constant width clauses. 

It is easy to see that we can derive the clauses in (4) from those in (4") by resolving on 

the y variables and this takes 0 (n2 )  steps. Then, by applying Stiilmarck's 0(n3)-size 

refutation of GT,, we can obtain an 0(n3)-size resolution refutation for MGT,. (From 

this refutation, we will later construct an analogous 0(n3)-size C-RES refutation for 

MGTL.) To show that our instance MGT; is hard for NG-RES, we will need the 

following important property of MGT, (proof in Appendix B): 

Theorem 4.12 (Bonet and Galesi [ lo]) .  Any resolution refutation of MGT, has 

width R(n). 

We are now ready to define our CSP instances that achieve the lower bound. 

MGT; has the same set of variables as MGT, and the domain for each variable is 
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D = {1,2 ,3 ,4) .  If cu is an assignment for MGTL, then 

1 or 2 means there exists an edge from i to j 
a(xi , j)  = 

3 or 4 means there is no edge from i to j. 

So, every total assignment for the variables in MGTL corresponds to a directed 

graph with n vertices. To encode the contradictory statement, MGTL consists of the 

following nogoods: 

(4') for each i E [n] ,  

V ( Y O , ~  = I ) ,   YO,^ = 2) 

q (~ i - l , j  = C ,  X i , j  = a  1 y. v . = b)  j E [n] ,  a, b E {112 ) ,  c E ( 3 4 )  

'V(Yn,j = 3)1 q ( ~ n , ~  = 4) 

We first show that there exists an 0(n3)-size C-RES refutation of MGTL. 

Theorem 4.13. C-RES(MGT;) = 0 ( n 3 ) .  

Proof. The CNF encoding of MGTL contains the following clauses: 
- - 

(1") (xj,j  : 1) , (xj ,  j : 2) j E [nl 

( 4  for each i E [n] ,  
- - 

(YOJ 1) , (Y0,j : 2) 
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With the clauses in (2") and the domain clauses of the x variables, we can derive 

the clauses (zi,j xj,k:b xi,k:l xi,k:2), i, j, k E [n], i # j # k ,  a, b E {1,2), in 

0 (n3 )  steps since there are 0 (n3)  of them. Define 

Then, by resolving the clauses in (4") together with the domain clauses of the y and x 

variables, we obtain the clauses (X(1, j )  X(2,  j )  . . . X(n ,  j)) for each j E [n], where 
def 

X(i ,  j )  = (xij : 1 xi : 2). After that,  by using the unit clauses in (I1'), we get the 

clauses P,(j) for each j E [n], where Pm(j) is defined as 

All these take 0 ( n 2 )  steps. We also define B(m,  j) as 

which are just the clauses in (3"). 

Now, for each m < n and j 5 m, we can derive Pm(j)  from Pm+l ( j ) ,A( i ,m+ l , j ) ,  

and B ( m  + 1, j )  as shown in Figure 4.1. Once we get P2 (1) and P2 (2), the empty 

clause can be derived in six steps (Figure 4.2). The C-RES derivation of Pm(j) is of 

size O(n). Therefore, we need 0 (n3)  steps in total to derive the empty clause. 

0 

We complete the separation by proving an exponential lower bound for NG-RES 

on MGTL. The proof approach is inspired by [ll]. We show that if there is a short 

NG-RES refutation of MGTL, then we can construct a narrow resolution refutation 

of MGT,. Then, as we already knew that every refutation of MGT, is wide, we can 

conclude that every NG-RES refutation must be exponentially long. 
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Figure 4.1: C-RES derivation of Pm(j) 
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Figure 4.2: C-RES refutation from P2(1), Pz(2), and B ( 2 , l )  

Definition 4.14 (restriction). A restriction for a CSP instance Z = (27, I') forbids 

some variables to  take some domain values. A restriction p is written as a set of 

variables with the forbidden values. For example, the restriction p = {x # 2, x # 
3, y # 1) disallows x to take 2 and 3, and y to take 1. 

Let p = {zl # a l ,  x2 # a2, . . . , xk # ak)  be a restriction. Define N [, as the result 

of applying p to a nogood N where 

and for x a variable, a E D(x) , 

1 if (x = a)  E N 

N otherwise. 

We define Z [, (2) [,, l? [,) , where 

I?[, = { N : N ~ l ? a n d N [ , # l )  

vars(Z[,) = vars(Z) 

27 [,(x) = D(x) \ {a : (x # a)  E p) for all x E vars(Z[,). 

If .rr = (Nl, N2, . . . , Ns) is an NG-RES derivation, define .rr [, to  be (Nl [,, . . , Ns [,), 
but with any Ni [, that is identical to  1 removed. Note that .rr[, is actually a subse- 

quence of T .  
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Lemma 4.15. If n is an NG-RES refutation of a CSP instance Z and p is a restric- 

tion, then there is  a n  NG-RES refutation of 2rp of width at most  w(n[,). 

Proof. It is enough to show the claim for just the unit case p = {x # a)  and the 

general case will follow from it. 

Let Z = (V, I?) be a CSP instance and p = {x # a)  be a restriction. Let n be an 

NG-RES refutation of 2. Transform nrp inductively to an N G - R E S ~ ~ ~ ~ ~  refutation 

n' as follows. Consider a nogood Ni in nr,. (x = a) must not appear in Ni since 

N # 1 If Ni E I?, then Ni E I? r,. (Note that n r, is a subsequence of n.) 

Otherwise, Ni must be derived, in n ,  by resolving some previous nogoods Nil, . , Nid 

on some variable v. If v # x, then (x = a) does not appear in any of Nil , .  - .  , Nid 

because (x = a) 4 Ni. So, Nil, . , Ni, must be in n Tp and they can be resolved to  

derive Ni in nr,. If v = x, then there is a nogood Nia E {Nil , .  . . , Nid) such that 

Nia = q(x = a ,  Na) and thus Nia r, is not in n r, since Nia r,= 1. But, all the nogoods 

in {Nil, - . - , Nid ) \ {Nia) are in n r,. So, we can resolve them on x, over the new 

domain of x, to  get a subnogood of Ni. Then, we can derive Ni using the nogood 

weakening rule. 

Therefore, n' is an NG-REPwmk refutation of 11, of width w(n r,). By Proposi- 

tion 3.18, there is an NG-RES refutation of 21, of width a t  most w(n r,). 0 

Lemma 4.16. If there is an NG-RES refutation of MGTL of size at most S ,  then 

there is a resolution refutation of MGT, of width at most w, for any w > log S. 

Proof. Let n be an NG-RES refutation of MGTL of size at  most S. Let w > log S. 

Define that a nogood is wide if its width is greater than w. 

Define a random restriction p as follows. For each variable vi,j, v E {x, y), p 

randomly picks a value a from {1,2) and a value c from {3,4), and restricts that 

vi,j # a and vij  # c. So, for every variable, a domain value is prohibited by p with 

probability 112. 

We say that a restriction is bad if not all wide nogoods in n are set to 1 by p. A 

wide nogood would be set to  1 by p if there is some literal, (x = a ) ,  in it such that 

(x # a) E p. The probability that this is not the case is at most 112". Since there is 

at  most S nogoods in n ,  the probability that p is bad is at  most S/2" which is less 
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than 1 as we have w > log S. Therefore, there must exist at least one good restriction 

which would set all wide nogoods in T to 1. 

Apply a good restriction p to  IT. By Lemma 4.15, there is an NG-RES refutation 

IT' of MGTLI, of width a t  most w. After we apply p to  MGT',, some initial nogoods 

disappears. For example, for each j, two of the nogoods in (1') are set to  1 by p and 

thus not included in MGTL 1,. Moreover, the domain size of each variable becomes 2. 

where each of aij 's and bi,j's is equal to  either 1 or 2 and each of cilj's and dij's is 

equal to  either 3 or 4. 

Rename the variables xi, j : a i j  , xi,j : ci,j, Yi , j  : bi,j, and yi,j : di, j as zi,j, Xi , j ,  yi,j, and 

yij, respectively. Now the constraint clauses of CNF(MGTL 1,) are exactly the clauses 

in MGTn and the NG-RES derivation steps 

rl(xij = Ci , j ,  N2) and rl(Yi, j  = di,j7 N2) 
rl(N1, N2) 

X i , j  E {ai,j, ~ i , ~ }  
rl(N1, N2) 

Yi , j  E {bi,j, di,j} 

in IT' can be transformed into the following resolution derivation steps 

( 1 )  (xivj XZ) and (Yi,j XI)  (Yi , j  X2) 
(XI X2) (XI X2) 

The resulting resolution refutation has the same width as IT'. Hence, there is a 

resolution refutation of MGTn of width at most w. 



CHAPTER 4. RELATIVE EFFICIENCY OF RESOLUTION SYSTEMS 61 

Theorem 4.17. Any NG-RES refutation of MGTL must have size 2'("). 

Proof. Let 7r be an NG-RES refutation of MGT;. Let S be the size of 7r. Pick 

w = l o g s  + 6, 6 > 0. It follows from Lemma 4.16 that MGT, has a resolution 

refutation 7r' of width at most log S + 6. We know that any resolution refutation of 

MGTn must have width R(n)  (Theorem 4.12). Therefore, log S + E 2 R(n) ,  and thus 

S 2 2"(,). Hence, any NG-RES refutation of MGTk must have size 2"("). 0 

Combining Theorem 4.13 and 4.17, we get an exponential separation between 

NG-RES and C-RES. 

Theorem 4.18 (Separation). There is an infinite family of CSP instances MGT; 

such that 

Proof. It follows immediately from Theorem 4.13 and 4.17 

4.3.3 Separation Upper Bound 

We conclude our discussion with an upper bound for the separation between NG-RES 

and C-RES. 

Theorem 4.19. For any n-variable unsatisfiable CSP instance Z with domain size d ,  

if S = C-RES(Z), then NG-RES(1) = 2• ‹ (S10g '0gS / ' 0gS  1- 

Proof. Let S = C-RES(1). By Theorem 3.54, tree-C-RES(1) = 2•‹(S'0g'0gS/'0gS). 

Then, by Corollary 4.5, NG-RES(Z) 5 nd2•‹(S'0g10g S / ' O g S )  = 2 • ‹ ( S ' o ~ 1 0 ~ S / ' 0 ~ S ) .  0 



Chapter 5 

Conclusion and Future Work 

5.1 Summary 

In this thesis, we studied the proof systems NG-RES and C-RES which correspond 

to d-way branching and 2-way branching respectively. We showed exponential separa- 

tions among the systems and their restricted tree-like variants. The relative efficiency 

of the proof systems are summarized in Figure 5.1. A "+" arrow from A to B means 

that a B refutation can be transformed into an A refutation with only a small blowup 

in size (blowup factor labelled on the arrow). A "*" arrow from A to B means that 

B is strictly more powerful than A. For each separation presented, we also proved an 

upper limit on the separation. These upper bounds show that most of the separations 

are nearly optimal. 

The exponential separation obtained between tree-NG-RES and tree- C-RES pro- 

vides valuable information on the power of d-way and 2-way branching backtrack- 

ing algorithms. We presented an infinite family of CSP instances IMPGn,~,T,d and 

proved that there is an 0(d2n)-size tree-C-RES refutation of I M P G n , ~ , ~ , d ,  but any 

tree-NG-RES refutation of I M P G , , ~ , ~ , ~  must be of size (d - l)"("/"gn). Hence, there 

exists a 2-way branching algorithm which can solve IMPGnPS,T,d in polynomail time 

(assuming optimal branching choices can be made in polynomial time), but any 

tree-NG-RES bounded algorithm, including d-way branching enhanced with back- 

jumping and forward checking, requires (d - l)"(n'lOgn) time to  refute IMPcn,s,r,d. 
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exponential separation , 
NG-RES . , C-RES 

tree- NG- R ES . /' tree-C- 
exponential separation 

A 

I exponential 
separation ' 

exponential 
separation 

A simulates ( x d) 

, 
I 

simulates ( x 2) 

RES 

Figure 5.1: Relative power of NG-RES, C-RES and their tree-like variants 
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Our results also show that there are instances which are exponentially hard for 

NG- RES, tree-NG- RES and tree- C-RES, and thus they are also exponentially hard 

for NG- RES bounded, tree- NG-RES bounded and tree- C-R ES bounded algorithms 

respectively in the sense that the algorithms cannot solve the corresponding instances 

in less than exponential time. 

Current commercial CSP solvers, such as ILOG Solver and E C L ~ P S ~ ,  use 2-way 

branching by default. However, the option of branching on another variable rather 

than trying other values of the same variable after backtracking is not implemented in 

these solvers. According to  the poly-size tree-like C-RES refutations of the instances 

that separate d-way branching from 2-way branching, the advantage of trying any 

variable after backtracking in 2-way branching is one of the main factors that makes 

2-way branching much stronger than d-way branching. Further studies on variable 

and value ordering heuristics for 2-way branching should be done to find out how to  

obtain benefits from 2-way branching. We also expect that learning will become an 

essential technique in effective CSP algorithms in the future. 

Future Work 

Several suggested directions for future research are listed: 

1. Perform an experimental comparison of d-way branching and 2-way branching 

on our hard CSP instances. The instances used to  compare d-way branching 

algorithms and 2-way branching algorithms in previous work did not yield sig- 

nificant difference between the power of the algorithms. It is worth to run the 

same algorithms on our instances to  see how they perform. 

2. Study variable and value ordering heuristics for 2-way branching. One possible 

approach is to  investigate our CSP instances that separate (tree-like) NG-RES 

from (tree-like) C-RES and find out how to  gain advantages from 2-way branch- 

ing. 

3. Further exploration of other restricted versions of NG-RES. This may lead to  a 

better understanding of the power of different techniques used in common CSP 
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algorithms. For example, in an ordered NG-RES refutation, every sequence of 

variables labelled on a path from the empty nogood to a nogood in the refutation 

must respect to the same variable ordering. The relative efficiency of this system 

and general NG-RES will thus be useful in analyzing static variable ordering 

heuristics in CSP algorithms. 

4. Find a 2-way branching strategy to solve MGTL in 0(n3) time. That is, es- 

tablish a variable branching ordering and a learning strategy to build into a 

2-way branching algorithm so that it will always solve MGTL in 0(n3) time. 

If such a strategy exists, then the current super-polynomial separation between 

d-way branching algorithms with learning and 2-way branching algorithms with 

learning can be improved to exponential. 

5. Investigate the relative power between NG-RES and d-way branching with 

learning, and also between C-RES and 2-way branching with learning, and 

try to achieve analogous relationships as between resolution and clause learning 

algorithms. 

6. Improve the gap between the lower bound and upper bound of the separation 

of NG-RES from C-RES to make it tight. 



Appendix A 

k2k Proof of the Inequality ( 2k ) < - (4k)2k 

This appendix contains a proof of the inequality used in Theorem 3.44. 

Lemma A.I. ( )  5 ( 4 ~ ) ' ~  for uii integers Ic 2 4.  

Proof. (By induction on Ic) 

Basis: For Ic = 4, (4;4) = 4.88 x 1014 < 1.84 x lo1' = (4 4)24. 

I.H.: Assume the claim holds for all values smaller than some fixed Ic. 
Induction step: 

k2k !  
( k z k k )  = 2k!(k2* - 2*)! 

- - ( k 2 k )  . ( k2k  - 1 ) .  .. (k2k-1 + 1 )  . ( k 2 k - 1 ) .  . . ( ( k  - + 1 )  . ( ( k  - 1 ) 2 ~ - ' ) !  
2k . (2k - 1 ) .  . . (2k-1 + 1)  .2k-1! . (k2k - 2 k ) .  . . (k2k-1 - 2k + 1 )  . (k2k-1 - 2k)!  

( k  - 1)2k-1 ( k 2 k )  . ( k2k  - 1 ) .  . . (k2k-1 + 1 )  k2k-1 . . . ( ( k  - + 1 )  
= ( 2k-1 ) ( k 2 k - 2 k ) . . . ( k 2 k - l - 2 k + 1 )  2 k a ( 2 k - 1 ) . . . ( 2 k - 1 + 1 )  

5 (4 (k  - l ) )2k-1  . ( k 2 k )  . ( k2k  - 1 )  . . . (k2k-1 + 1 )  k2k-1  . . . ( ( k  - 1 ) 2 ~ - '  + 1 )  .: I .H. 
( k2k  - 2 k )  . . . (k2k-' - 2k + 1 )  2k . (2k  - 1)  - .  - (2k-1 + 1 )  

. . . i - 5 -  i - 1  for i 2 j  
j  j - 1  

5 ( 4 ( k  - l ) )2k-1  . ( k 2 k )  . (k2' - 1 ) .  . . (k2k-1  + 1 )  . ( k  - l ) 2 r - 1  . . i i - 1  . - 5 -  for i >_ j  
( k2k  - 2 k )  . . . (k2k-1  - 2k + 1)  j  j - 1  

(4k)2k  > ( k ~ ~ )  . ( k2k  - 1 ) .  . . (k2*-' + 1 )  . ( k  - 1 ) 2 k - 1  
It is enough to show that 

( 4 ( k  - l ) )2k-1  - (k2k  - 2 k ) .  . . (k2k-1  - 2k + 1 )  
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. . .  ( ( 2 ,  - k )  . + 1  ) 2 k - 1 ]  . ( k  - 1 ) 2 k - 1  . - < -  for i  > j i i - 1  
( 2 k  - k  - 2 )  . 2k-1  + 1  . j - j - 1  

2 k L l  

2 k - 1  2 k - 2  i 2 - 1  -.-...- I . ( k  - 1 ) 2 k - 1  . . -  <-  for i  > j 
2 k - 3  2 k - 4  k - 2  . j - j - 1  

We want to show L.H.S. > R.H.S., i.e., 

This is true since the inequality 

holds whenever k > 4. 



Appendix B 

Width Lower Bound for MGT, 

Theorem 4.12 (Bonet and Galesi [lo]). Any resolution refutation of MGT, has 

width R (n )  . 

Recall that the CNF formula GTn consists of the following clauses: 

And, MGTn is the conjunction of the clauses in ( I ) ,  ( 2 ) ,  (3) ,  and (4*) where 

(4*) yo,j A A ( ~ i - ~ , j V x i , j V y i j )  A Ynj j E [n] 
i E [n] 

Definition B.1. A critical truth assignment of the variables in GT, is a total as- 

signment generated by the following algorithm: 

Input: An undefined truth assignment a.  
Output: A critical truth assignment a. 
s + [nl; P +- 0; 
while S is not empty do 

Choose i in S ;  
Set f f ( ~ ~ , ~ )  to O; 
Set a(xi,j) to 1 for all j E S\{i); 
Set a(xjri)  to 0 for all j E P; 
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S + S\{i}; P + P U {i}; 
end (while) 
Output a; 

A critial truth assignment corresponds to a linear directed acyclic graph over n 

vertices and closed under transitivity. In such a graph, only the first vertex j in the 

line does not have a predecessor. Therefore, the critical assignment satisfies all clauses 

in GT, except the one for vertex j in (4). We call such an assignment a j-critical 

assignment. 

Now, let Bj be the formula for j in (4*). A j-critical assignment for MGT, is 

obtained as follows. We first find a j-critical assignment for the x variables. Then, 

we assign values to  the y variables so that all the Bkls for k # j are made true and 

Bj is made false. 

Let Aj be the conjunction of the clauses (zij zj,i) for all i E [n], i # j .  Let Cj 

be Aj A Bj and let VARS(j) be the set of variables appearing in Cj. Notice that 

VA RS ( j )  contains all variables that mention j .  

Proof. [Theorem 4.121 Let 7r be a resolution refutation of MGT,. For each set I G [n] , 
define CI as Ai,, Ci. For any clause C, define p(C) to  be the size of the minimal 

nonempty set I G [n] such that every critical assignment satisfying CI also satisfies 
A B C.  Obviously, p is subadditive with respect to  the resolution rule. That is, if 7, 

then p(A) + p(B)  2 p(C) . Moreover, p({}) = n and p(C) = 1 for a11 C E Ci, i E [n] . 

Therefore, there must exist a clause C in 7r for which ? < p(C) < %. We will show 

that C contains a t  least literals and this implies w(MGT,) = R(n). 

Let I [n] be the minimal set such that all critical assignments satisfying CI also 

satisfy C .  Then, ? < 111 < F, Towards a contradiction, suppose ICI < :. We claim 

that if S [n] and IS\ _> :, then there exists some i E S such that no variable from 

VARS(i) appears in C.  Hence, there is an 1 E I such that no variable in VARS(1) 

appears in C. By the minimality of I, there exists an 1-critical assignment a such that 

a(Cl)  = O,a(C) = 0 and for all i E I\{l}, a(Ci)  = 1. Let J = [n] \ I .  Then, I JI > 
since I Il < %. By the above claim again, there exists a j E J such that no variable 

from VARS(j) appears in C. We will construct a j-critical assignment /3 from a such 



APPENDIX B. WIDTH LOWER BOUND FOR MGTN 70 

that ,B(Ci) = 1 for all i E I but ,B(C) = 0. This will contradict the definition of p. ,B 

is built as follows. We first set ,B(xif) = a(xit j)  for all i, j E [n]. Then, for all i # j, 
if ,B(xif) = 1, we change it to  0. And, if , B ( x ~ , ~ )  = 0, we change it to 1. Intuitively, 

we take the linear ordering of the vertices corresponding to  a and move the vertex j 

to  the beginning of the ordering. The change does not affect the value of C since no 

variable in VARS(j) appears in C. After the change, , B ( x ~ , ~ )  = 1 because a ( ~ i , ~ )  = 0 

for all i E [n] (note that cu is an 1-critical assignment). What remains is to change the 

values of yi,l, i E (0, . . . , n)  in order to  make ,B satisfy Cl. This change does not affect 

the value of C either since no variable in VARS(1) appears in C. Furthermore, all 

these changes do not alter the values of the Ci's, i E I\ (1). So, there exists a critical 

assignment ,B such that ,B(Ci) = 1 for all i E I but ,B(C) = 0. 

It remains to  prove the claim. The indices of each variable x i f ,  i, j E [n], mention 

at  most 2 elements in [n]. Since we assumed IC1 < :, the variables in C mention less 

than 9 different VARS() sets. That is, the variables in C mention less than $ = 

elements in [n]. Therefore, if S [n] and IS1 2 :, there must exist some i in S such 

that no variable in VARS(i) appears in C. 
0 
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