
A THEORETICAL COMPARISON OF

RESOLUTION PROOF SYSTEMS FOR CSP

ALGORITHMS

Cho Yee Joey Hwang

B.Sc., Simon Fraser University, 2001

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F T H E REQUIREMENTS FOR T H E DEGREE O F

MASTER OF SCIENCE
in the School

of

Computing Science

@ Cho Yee Joey Hwang 2004

SIMON FRASER UNIVERSITY

Fall 2004

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Cho Yee Joey Hwang

Degree: Master of Science

Title of thesis: A Theoretical Comparison of Resolution Proof Systems

for CSP Algorithms

Examining Committee: Dr. Ramesh Krishnamurti

Chair

Dr. David G. Mitchell

Senior Supervisor

-- -

Dr. Arthur L. Liestman

Supervisor

Dr. Andrei A. Bulatov

SFU Examiner

Date Approved: December 2, 2004

11

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work,
has granted to Simon Fraser University the right to lend this thesis,
project or extended essay to users of the Simon Fraser University Library,
and to make partial or single copies only for such users or in response to
a request from the library of any other university, or other educational
institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to
keep or make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of
this work for scholarly purposes may be granted by either the author or
the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain
shall not be allowed without the author's written permission. \

Permission for public performance, or limited permission for private
scholarly use, of any multimedia materials forming part of this work,
may have been granted by the author. This information may be found on
the separately catalogued multimedia material and in the signed Partial
Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and
signed by this author, may be found in the original bound copy of this
work, retained in the Simon Fraser University Archive.

W. A. C. Bennett Library
Simon Fraser University

Burnaby, BC, Canada

Abstract

Many problems from a variety of applications such as graph coloring and circuit

design can be modelled as constraint satisfaction problems (CSPs). This provides

strong motivation to develop effective algorithms for CSPs. In this thesis, we study

two resolution-based proof systems, NG-RES and C-RES, for finite-domain CSPs

which have a close connection to common CSP algorithms. We give an almost com-

plete characterization of the relative power among the systems and their restricted

tree-like variants. We demonstrate an exponential separation between NG-RES and

C-RES, improving on the previous super-polynomial separation, and present other

new separations and simulations. We also show that most of the separations are nearly

optimal. One immediate consequence of our results is that simple backtracking with

2-way branching is exponentially more powerful than simple backtracking with d-way

branching.

TO my parents

Acknowledgments

I would like to take this opportunity to extend my gratitude to my senior supervisor,

Dr. David Mitchell, for introducing me to the field of constraint satisfaction and

providing tremendous guidance, support, and feedback at every stage of this thesis

work. I would also like to thank my supervisor, Dr. Art Liestman, and my examiner,

Dr. Andrei Bulatov, for their valuable comments which greatly improved the quality

of this thesis. I am grateful to Dr. Michael Monagan, Dr. Bob Russell, and Dr. Wo-

shun Luk for encouraging me to pursue graduate studies. Last but not least, I want

to thank my family and friends for their continuous support and encouragement.

Contents

Approval ii

Abstract

Dedication iv

Acknowledgments v

Contents vi

List of Figures viii

1 Introduction 1

1.1 Constraint Satisfaction and CSP Algorithms 2

1.2 Resolution . 5

1.3 Resolution-based CSP Proof Systems 7

1.4 Proof Systems and CSP Algorithms 10

1.5 Summary of Results . 12

1.6 Related Work . 13

1.7 Thesis Organization . 13

2 Constraint Satisfaction Problems 14

3 Resolution-based Proof Systems for CSP 17

3.1 Preliminaries . 17

3.2 Nogood Resolution (NG-RES) . 20

3.2.1 Separation of tree-NG-RES from NG-RES 26

3.2.2 Separation Upper Bound . 33

3.3 Constraint Resolution (C-R ES) . 41

3.3.1 Direct Translation of SAT to CSP 43

3.3.2 Separation of tree-C-RES from C-RES 45

3.3.3 Separation Upper Bound . 46

4 Relative Efficiency of Resolution Systems 47

4.1 tree- C-R ES vs NG- RES . 47

4.1.1 Simulations . 48

4.2 tree-NG- RES vs tree- C- RES . 50

4.2.1 Simulation . 50

4.2.2 Separation of tree-NG- RES from tree- C-RES 51

4.2.3 Separation Upper Bound . 52

4.3 NG-RES vs C-RES . 53

4.3.1 Simulation . 53

4.3.2 Separation of NG-RES from C-RES 53

4.3.3 Separation Upper Bound . 61

5 Conclusion and Future Work 62

5.1 Summary . 62

5.2 Future Work . 64

A Proof of the Inequality (%k) 5 (4 l ~) ~ * 66

B Width Lower Bound for MGT, 68

Bibliography 7 1

vii

List of Figures

. 1.1 A d-way branching search tree 3

. 1.2 A Zway branching search tree 3

. 1.3 Simulation of d-way branching by 2-way branching 4

1.4 Relative Efficiency of NG-RES, C-RES and their tree-like variants . . 9

. 3.1 An NG-RES refutation 22

. 3.2 Pyramid graph with 10 vertices 30

4.1 C-RES derivation of P, (j) . 57

. 4.2 C-RES refutation from P2(1). P2(2). and B(2. 1) 58

5.1 Relative power of NG.RES. C-RES and their tree-like variants 63

viii

Chapter 1

Introduction

Constraint satisfaction problems (CSPs) involve finding values for a finite set of vari-

ables satisfying all of a given set of constraints between the variables. They are

widely used to encode problems such as planning, scheduling, graph coloring, and cir-

cuit design. The satisfiability problem (SAT) for propositional formulas in conjunctive

normal form (CNF) can also be viewed as a CSP in which variables can take values

from the domain {O,l). The importance of these applications provides strong moti-

vation to develop efficient algorithms to solve CSPs. A natural approach to search for

a solution in practice is backtracking. Indeed, most studies on CSP algorithms and

most commonly used CSP solvers are based on backtracking. A considerable amount

of work has been done on the study of enhanced versions of backtracking and their

empirical effectiveness. Our work was motivated by improving our understanding of

the relative efficiency and limitations of standard backtracking-based CSP algorithms.

We compare the relative power of such algorithms in terms of how efficiently

they can refute an unsatisfiable CSP instance in the optimal case. When running

a backtracking algorithm on an unsatisfiable instance, a trace of an execution is a

"proof" which may convince observers of the unsatisfiability of the instance. This

establishes a close connection between backtracking algorithms and proof systems

(a.k.a. refutation systems). We will consider two resolution-based proof systems for

CSPs and state how they are related to standard algorithms. We then examine the

relative power of the systems.

CHAPTER 1 . INTRODUCTION 2

Since we are going to study proof systems and refutations, we will restrict our

attention to unsatisfiable CSP instances. Note that every complete backtracking

algorithm has to handle unsatisfiable instances and, as we will state, lower bounds on

refutation size for unsatisfiable instances give lower bounds on the execution time of

those algorithms on the instances.

1.1 Constraint Satisfaction and CSP Algorithms

A CSP instance consists of a set of variables and a set of constraints. Each variable has

a finite domain and each constraint limits the values that can be taken simultaneously

by some specified subsets of the variables. The problem is to find an assignment of

values to all the variables such that all the constraints are satisfied, or to determine

that there is no such assignment.

A straightforward approach to solve CSPs is backtracking. There are two main

schemes for backtracking algorithms: backtracking with d-way branching and back-

tracking with 2-way branching. A backtracking algorithm with d-way branching works

as follows. For a CSP instance Z, the algorithm picks a variable x and for each domain

value a of x, a recursive call is made to solve Z with x set to a. If the domain size of

x is d and all d recursive calls fail, then Z is unsatisfiable. Backtracking algorithms

with 2-way branching, on the other hand, follow a different procedure. For Z a CSP

instance, a 2-way branching algorithm selects a variable x and a value a from x's

current domain. Then, two recursive calls are made: one with x set to a and the

other with a removed from the domain of x. Z is unsatisfiable if both of these two

recursive calls fail. Figures 1.1 and 1.2 illustrate the ideas graphically.

It is not hard to see that any d-way branching strategy can be simulated by a 2-

way branching strategy. If, a t some point of the search, a d-way branching algorithm

chooses to branch on variable x, then the corresponding 2-way branching algorithm

will just keep branching on x until the domain of x becomes empty. For example, if

a d-way branching backtracking algorithm constructs a search tree as shown on the

left of Figure 1.3, then the corresponding search tree generated by a 2-way branching

algorithm simulating the d-way branching algorithm will look like the one on the right

CHAPTER 1. INTRODUCTION

Figure 1.1: A d-way branching search tree

Figure 1.2: A 2-way branching search tree

CHAPTER 1. INTRODUCTION

dead- / end

Figure 1.3: Simulation of d-way branching by 2-way branching

of the figure, where T,' is the search tree simulating T,. Therefore, if a CSP instance

Z can be solved by a d-way branching algorithm in t steps, then there is a 2-way

branching algorithm that can solve Z in O (t) steps. However, the converse does not

hold. We will show that there are unsatisfiable CSP instances for which every search

tree formed by a d-way branching algorithm is exponentially larger than the smallest

search tree constructed by a 2-way branching algorithm.

Although we do not expect to find a general backtracking algorithm that can

solve all CSP instances in polynomial time, as CSPs are in the class of NP-complete

problems, refining backtracking algorithms can improve their performance greatly.

One technique to improve backtracking is learning. When an algorithm backtracks

from some dead-end during search, it can record some explicit information and re-use

it to prune duplicate searches later. For example, somewhere during the search, it may

become explicit that x and y cannot both take value 1, although this is not explicitly

restricted by the constraint set. If the algorithm chooses to cache this information,

then next time x and y are set to 1, it can immediately conclude that this is a dead-end

and backtrack. Studies on learning strategies usually focus on what to learn and how

much information to store. Our work here was partially motivated by the question of

how much power an algorithm can gain when enhanced with learning.

We are also interested in the relative power of 2-way branching with learning and

CHAPTER 1. INTRODUCTION 5

d-way branching with learning. The structure of 2-way branching search trees al-

lows 2-way branching algorithms to learn more specific information than that d-way

branching algorithms can learn. This makes 2-way branching more powerful than

d-way branching when learning is involved. Mitchell [27] has shown that there is an

infinite family of unsatisfiable CSP instances MPH, such that any d-way branching

algorithm, even with optimal variable ordering and optimal use of learning strategies,

cannot solve MPH, in less than n"('"gn) time. But, there is a 2-way branching algo-

rithm, with specific variable ordering and learning strategies, that can solve MPH, in

0(n3) time. Therefore, 2-way branching with learning is strictly more powerful than

d-way branching with learning and there is a super-polynomial separation between

them. However, is super-polynomial an upper bound for the separation? Or, does

there exist an exponential separation between them? Although we do not answer this

question in this thesis, we make a contribution toward finding the answer by charac-

terizing the power of proof systems which are closely connected to the reasoning of

the branching schemes.

Resolution

Since we are studying resolution-based proof systems here, we recall the resolution

proof system first. The SAT problem involves finding (the existence of) a truth

assignment a for the variables in a CNF formula q5 such that a satisfies all clauses

in q5. Propositional resolution, or simply resolution, is a proof system for SAT. The

resolution rule allows us to derive the new clause A V B if we already have the clauses

x V A and ZV B. The derivation step is sound because if a truth assignment a satisfies

both x V A and Z V B, then at least one of A and B must be satisfied by a since x is

either true or false. Thus, AV B must be satisfied by a as well. A resolution derivation

from a CNF formula q5 is a sequence of clauses in which each clause is either in q5 or

derived from previous clauses in the sequence. If we can derive the empty clause from

a set of clauses q5, then the derivation is a proof that q5 is unsatisfiable because any

assignment that satisfies q5 must satisfy all clauses derived from q5, but the empty

clause is tautologically false. We call such a resolution derivation a refutation. In

CHAPTER 1. INTRODUCTION 6

fact, the resolution proof system is sound and complete. That is, a CNF formula 4 is
unsatisfiable if and only if there exists a resolution refutation of 4.

We say that a resolution derivation IT is tree-like if every derived clause in it is used

at most once to derive another clause. That is, to use a derived clause C a second

time, C must be derived again from the initial clauses. The size of IT is the number of

clauses in IT. It is well-known that running a backtracking algorithm for SAT (a.k.a.

a DLL algorithm) on an unsatisfiable CNF formula implicitly constructs a tree-like

resolution refutation of 4. Given a backtracking search tree of an unsatisfiable CNF

formula 4, if we label each leaf with a clause in $ which is falsified by the assignment

defined on the path leading to that leaf and label each internal node with the clause

derived by resolving the clauses labelling its children, then the root of the search

tree will be labelled with the empty clause. Moreover, given a tree-like resolution

refutation of a formula, if a backtracking algorithm follows a variable branching or-

dering corresponding to the refutation (e.g., if x and are resolved together to derive

the empty clause in the refutation, then the first variable picked by the algorithm to

branch on will be x), then the search tree will have the same size as the refutation.

Hence, the smallest tree-like resolution refutation of a formula 4 is of the same size

as the smallest search tree constructed by a DLL algorithm on 4. Thus, as systems

to refute unsatisfiable CNF formulas, DLL algorithms and tree-like resolution have

the same power. This provides us an approach to analyze the efficiency of DLL algo-

rithms. For example, there are formulas for which every tree-like resolution refutation

is of exponential size. So, no DLL algorithm can refute them in less than exponential

time even with an optimal branching strategy.

Unrestricted resolution, unlike tree-like resolution, allows derived clauses to be

used arbitrarily many times to derive other clauses. It is known that unrestricted

resolution is exponentially stronger than tree-like resolution [9, 71. The most effective

current complete SAT solvers enhance DLL algorithms with clause learning which

helps avoid redundant search with the use of learned clauses. This makes DLL algo-

rithms more powerful than tree-like resolution. Several researchers, e.g., Moskewicz

et al. 1291 and Zhang et al. 1381, showed that clause learning, with efficient implemen-

tation, can handle problems that are hard for other standard techniques. The idea

CHAPTER 1. INTRODUCTION 7

of learning can be viewed as the re-use of derived clauses in unrestricted resolution

refutations. Beame et al. [6] have already shown that DLL algorithms with clause

learning and unlimited restarts, which allow the algorithms to restart their searching

process anytime, is equivalent to unrestricted resolution. However, it is still unclear if

clause learning with no or limited restarts is also as powerful as unrestricted resolution

or not.

Our main interest here is to study resolution-based proof systems for CSPs and

their relative complexity, with the belief that the results will provide useful insight

into CSP algorithms.

1.3 Resolution-based CSP Proof Systems

Baker [4] extended resolution to a more general resolution-based proof system for

CSPs. The expressions used in this system are nogoods, instead of clauses. Here,

we call this system nogood resolution (NG-RES). Given a CSP instance Z, for each

forbidden value combination of a set of variables xl , x2, . . . , xt, we have a nogood

which intuitively disallows any corresponding partial assignment. (Later, we will

simplify the notation by writing nogoods in the form q(xl = al , . . , xt = at) .) If the

domain of a variable x is (1, . , d) and we already have the nogoods

T(X = d A Xd)

then the nogood resolution rule allows us to resolve them together and soundly derive

l (X 1 AX2 AXd).

An assignment that satisfies all the d antecedent nogoods (i.e., is not an extension

of a partial assignment forbidden by one of those nogoods), also satisfies the derived

nogood.

CHAPTER 1. INTRODUCTION 8

An NG-RES refutation of a CSP instance Z is an NG-RES derivation of the empty

nogood from the set of nogoods corresponding t o the partial assignments forbidden

by the constraints of Z. There is an NG-RES refutation of Z if and only if Z is

unsatisfiable. The size of an NG-RES refutation is the number of nogoods in it. Ap-

plying arguments similar to those in the previous section, we can show that for an

unsatisfiable CSP instance Z, the size of the smallest tree-like NG-RES refutation

of Z is exactly the same as the minimum number of steps that a d-way branching

backtracking algorithm requires to refute Z. Baker showed some correspondences

between NG-RES and d-way branching backtracking algorithms enhanced with back-

jumping [31] and dynamic backtracking [20], and used NG-RES as a tool to analyze

those algorithms.

Later, Mitchell [25] extended Baker's work and introduced another CSP proof sys-

tem, constraint resolution (or C-RES for short), corresponding to 2-way branching

algorithms. A C-RES refutation for a CSP instance Z is essentially a resolution refu-

tation of the CNF encoding of Z. The CNF encoding used is a natural transformation

of CSPs to CNF formulas suggested by de Kleer in [14]. With this encoding, C-RES

can model the reasoning of 2-way branching. Furthermore, tree-like C-RES and sim-

ple 2-way branching algorithms have equivalent power, in the sense that the smallest

tree-like C-RES refutation of any unsatisfiable instance Z is of the same size as the

smallest search tree constructed by a 2-way branching backtracking algorithm on 2.

We say that a proof system A eficiently simulates a proof system B if any B

refutation of a CSP instance Z can be transformed into an A refutation of Z with

only a polynomial blowup in size. There is an exponential separation of system B from

system A if there is an infinite set of instances {TI,&, a) such that the smallest B

refutation of Zn is of size exponential in n, but the smallest A refutation of 2, is

of size polynomial in n. If A efficiently simulates B and there is an exponential

separation of B from A , then A is exponentially more powerful than B. Obviously,

NG-RES efficiently simulates tree-like NG- RES and C-RES efficiently simulates tree-

like C-RES.

Mitchell has already proven that C-RES is strictly more powerful than NG-RES.

In particular, he showed that there are C-RES refutations of size 0 (n 3) of the CSP

C H A P T E R 1. INTRODUCTION

exponentially more powerful
NG-RES C-RES

exponentially
more powerful

exponentially
more powerful

tree-like NG- RES -
exponentially more powerful

tree-like C-RES

Figure 1.4: Relative Efficiency of NG-RES, C-RES and their tree-like variants

instance MPH, but every NG-RES refutation of MPH, must be of size n"('"gn). The

instance is based on the one that Goerdt [21] used to obtain an n"('"gn) separation

between resolution and negative resolution. To the best of our knowledge, no better

separation has been shown in the literature.

Our work here mainly focuses on examining the relative power of NG-RES, C-RES

and their tree-like versions. We present simulations and new separations between the

systems. Moreover, we show upper bounds of the separations as well. All these

together constitute an almost complete picture of the relationships between the sys-

tems. Figure 1.4 illustrates the relative power of the proof systems and summarizes

the separation and simulation results we present.

CHAPTER 1. INTRODUCTION

1.4 Proof Systems and CSP Algorithms

We already claimed that tree-like NG-RES and d-way branching have equivalent

power, and similarly, tree-like C-RES and 2-way branching have the same power.

Now we introduce a term, bounded, for comparing the relative power of an algorithm

and a proof system. Given an algorithm A and a proof system P, if an execution

trace of A on any unsatisfiable instance is at least as large as the size of the smallest

P refutation of the instance, then A is P bounded. For example, a DLL algorithm

for SAT is tree-like resolution bounded.

In addition to learning strategies [35, 181 we mentioned earlier, other standard

techniques used in common CSP algorithms include: variable ordering heuristics [3,

191, backjumping 115, 16, 311, forward checking [34, 171, arc-consistency filtering [32, 81,

k-consistency enforcement [23], and their variants.

In [27], Mitchell showed that

1. d-way branching backtracking algorithms with the use of any combination of

variable ordering heuristics, backjumping and forward checking are tree-like

NG-RES bounded.

2. d-way branching backtracking algorithms with the use of any combination of

variable ordering heuristics, backjumping, forward checking, arc-consistency fil-

tering, k-consistency enforcement and learning are NG-RES bounded.

(Tree-like NG-RES bounded algorithms are also NG-RES bounded.)

3. 2-way branching backtracking algorithms with the use of any combination of

variable ordering heuristics, backjumping and forward checking are tree-like

C-RES bounded.

4. 2-way branching backtracking algorithms with the use of any combination of

variable ordering heuristics, backjumping, forward checking, arc-consistency fil-

tering, k-consistency enforcement and learning are C-RES bounded.

(Tree-like C-RES bounded algorithms are also C-RES bounded.)

CHAPTER 1. INTRODUCTION 11

Hence, the power of a proof system provides significant insight into the efficiency

of the algorithms bounded by the system. The size of the smallest P refutation of a

CSP instance Z gives a lower bound on the running time of any implementation of

the algorithms bounded by P on Z.

Our results show that there are CSP instances for which every NG-RES refutation

is of exponential size. By the second point above, no NG-RES bounded algorithm, in-

cluding d-way branching algorithms enhanced with standard techniques, can solve the

instances in less than exponential time. Since tree-like NG-RES bounded algorithms

are also NG-RES bounded and NG-RES can efficiently simulate tree-like C-RES, the

instances are also exponentially hard for tree-like NG-RES bounded algorithms and

tree-like C- RES bounded algorithms.

From the exponential separation we obtained between tree-like NG-RES and tree-

like C-RES and the fact that tree-like C-RES and 2-way branching have the same

power, we know that 2-way branching is exponentially more powerful than d-way

branching. The instances that separate tree-like NG-RES from tree-like C-RES can-

not be solved by any tree-like NG-RES bounded algorithm, including d-way branching

with backjumping and forward checking, in less than exponential time, but a 2-way

branching algorithm can solve the instances in polynomial time with optimal branch-

ing choices. We do not provide here a poly-time computable branching strategy under

which 2-way branching solves the instances we use in polynomial time, but we believe

that such a strategy exists.

We do not have enough information to make any claim yet about the relative power

of enhanced versions of backtracking algorithms from the other exponential separa-

tions we obtain. For example, although we know that the instances exponentially

separating NG-RES from C-RES must be exponentially hard for NG-RES bounded

algorithms, we are still not sure if there exists a 2-way branching algorithm, possi-

bly enhanced with learning and other standard techniques, that can solve the hard

instances in polynomial time. The problem here is that there may exist a short refu-

tation but no polynomial time strategy which finds such a refutation. Our results,

however, suggest possible instances that may be useful in future studies in separating

the algorithms.

C H A P T E R 1. INTRODUCTION

1.5 Summary of Results

Below is a summary of the results we present in this thesis.

Exponential separation of tree-like NG-RES from NG-RES.

We modify the CNF formulas used by Ben-Sasson in [7] to separate tree-like

resolution from resolution and adapt his proof method to obtain the separation

between tree-like NG-RES and NG-RES.

Exponential separation of tree-like C-RES from C-RES.

This separation follows from the separation between tree-like resolution and

resolution [7], and some properties of C-RES.

Exponential separation of tree-like NG-RES from tree-like C-RES.

We use the same family of CSP instances that we used to separate tree-like

NG-RES from NG-RES to separate tree-like NG-RES from tree-like C-RES by

explicitly constructing poly-size tree-like C-RES refutations of the instances.

Exponential separation of NG- RES from C-RES.

We construct an infinite family of CSP instances and show that the instances

have poly-size C-RES refutations but any NG-RES refutation of them is of

exponential size. This improves the previous bound of n " (l O g n) from [25]. The

proof technique was inspired by [Ill .

NG-RES simulation of tree-like C-RES.

We prove this by showing how we can transform a tree-like C-RES refutation

into an NG-RES refutation with only a polynomial blowup in size.

Separation upper bounds.

Applying the same technique used to obtain an upper bound of the separation

between tree-like resolution and resolution in [7], we can show an upper limit of

the separation between tree-like NG-RES and NG-RES. Then, with these two

bounds, plus simulations among the systems, we can prove the other separation

upper bounds.

CHAPTER 1. INTRODUCTION

Related Work

Our work here concentrates on finding CSP instances that are hard for NG-RES but

have poly-size C-RES refutations. There exist, however, many hard instances for

C-RES (which are also hard for CSP algorithms). A number of hard instances are

studied in [24]. Moreover, resolution complexity on random CSPs has been studied

in [26, 28, 2, 51.

We compare the relative power of CSP backtracking algorithms by examining the

relative efficiency of the resolution-based proof systems modelling the reasoning of

the algorithms. In propositional logic, resolution is useful in studying the efficiency

of backtracking-based SAT solvers. Beame et al. [6] analyzed the power of clause

learning by characterizing the technique as the resolution proof system. They com-

pared the relative power of DLL algorithms and their variants enhanced with clause

learning by analyzing the power of their corresponding restricted resolution systems.

There have been only a few empirical studies on 2-way and d-way branching strate-

gies. Park [30] showed that in most cases, with the variable and value ordering heuris-

tics used in his work, 2-way branching ends up simulating d-way branching.

Barbara and Sturdy [36] investigated the effect of changing the value ordering in

2-way branching. They also compared 2-way branching with d-way branching and

the experimental results indicated that 2-way branching, even with the worst value

ordering, is not worse than d-way branching.

1.7 Thesis Organization

The remainder of this thesis is organized as follows. We formally define constraint

satisfaction problems in Chapter 2. In Chapter 3, we introduce two resolution-based

proof systems for CSPs and also explore the relative power between them and their

restricted versions. We prove exponential separations between the two proof systems

in Chapter 4. Chapter 5 contains conclusions and some potential future work.

Chapter 2

Constraint Satisfaction Problems

An instance of constraint satisfaction problem (CSP) consists of a set of variables and

a set of constraints. Each variable has a finite domain and each constraint restricts

the values that can be assigned simultaneously to some specific subset of the variables.

An assignment for a CSP instance Z is a function that assigns domain values to some

variables in Z. A total assignment is an assignment that assigns values to all the

variables. Given a CSP instance Z, a solution is a total assignment for Z such that all

the constraints in Z are satisfied. A CSP instance is unsatisfiable if there is no such

solution.

Example 2.1. Let Z be a CSP instance containing three variables {x, y , z), each

with domain {1,2,3), and constraints expressing that x, y and z must be assigned

distinct values and they cannot take value 3 . Obviously, Z is unsatisfiable.

Conventionally, constraints are represented as relations, each indicating the al-

lowed value combinations of certain variables. But for technical convenience, we

represent constraints as the set of combinations of values that are disallowed. Each

forbidden combination is essentially a partial assignment that cannot be extended to

a solution. We can write such partial assignments as nogoods, which by their name

denotes the meaning "not a good assignment". Here we define nogoods formally.

Definition 2.2 (literal, nogood, subnogood). A literal is an expression of the

form x = a, where x is a variable and a is a domain value of x, asserting that x takes

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS 15

value a. A nogood is a set of literals in which no variable can appear in more than

one literal. We write a nogood as q(xl = a l , 2 2 = a2, - - , xt = at). A nogood N, is a

subnogood of a nogood N if every literal in N, also appears in N. The empty nogood

is denoted by 0, which is tautologically false.

In the CSP literature, nogoods are sometimes written as l (x l = a1 A x2 =

a2 A . . . A xt = at) which expresses the semantics directly.

Now we can represent the constraints of a CSP instance as a set of nogoods.

Definition 2.3 (CSP instance). A CSP instance Z is a triple (X, V, r) where X

is a finite set of variables, V(x) is the domain of a variable x E X , and r is a set of

nogoods indicating which value combinations of variables are disallowed.

Example 2.4. The CSP instance in Example 2.1 can be defined as Z = (X, V, r)
where X = {x, y, z), V(v) = {1,2,3) for all v E X , and I? = {q(x = 1, y = I) , q(x =

2,y = 2),q(x = 3,y = 3),77(y = 1 , z = l) ,q (y = 2 ,z = 2),q(y = 3," = 3),77(x =

1, z = I) , q(x = 2, z = 2), q(x = 3, z = 3), q(x = 3), q (~ = 3), q(2 = 3)).

Next, we describe in what conditions a nogood is satisfied by an assignment.

Definition 2.5 (satisfies). Let Z = (X, V, r) be a CSP instance and a be an

assignment for 1. a satisfies a nogood N if and only if there is some literal (x =

a) E N such that a assigns b to x, for some b # a. That is, to satisfy a nogood

q(xl = a l , . . . , xt = at) , a cannot simultaneously assign ai to xi for all i E (1, . . , t).

a satisfies r if and only if it satisfies all nogoods in I?. Z is satisfiable if and only if

there is a total assignment for Z which satisfies I?. If Z is not satisfiable, then it is

unsatisfia ble.

Definition 2.6 (width). The width of a nogood N , w(N), is the number of literals

in it. The width of a CSP instance Z = (X, V, r) is the width of the widest nogood

in r.

Definition 2.7 (vars). Let Z be a CSP instance, r be a set of nogoods and N be a

nogood. We define vars(Z), vars(l7) and vars(N) be the sets of variables occurring in

Z, I? and N, respectively.

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS 16

From now on, we will write Z = (X, 23, r) as Z = (23, r). We will use vars(Z)

when we want to refer to the variables in 1. When all the variables in Z have the

same domain D, we will simply write Z = (D , I?). Moreover, most of the time, we

will use [dl (1, . - , d) to denote domains with size d.

Chapter 3

Resolution-based Proof Systems

for CSP

In this chapter, we define propositional resolution, and two resolution-based proof

systems, NG-RES and C-RES, for constraint satisfaction. We also introduce the

concept of resolution complexity and for each of the systems NG-RES and C-RES,

we examine the relative power of the system and its restricted tree-like version.

3.1 Preliminaries

Before defining proof systems for CSPs, we first consider a simple well-known proof

system, propositional resolution, for propositional logic. We will state some basic

facts about propositional resolution without giving proofs for them. When we move

on to NG-RES for CSPs, we will prove theorems analogous to these facts.

A propositional variable is a boolean variable and a literal is either a propositional

variable (denoted as x or x l) or its negation (denoted as Z or xO). A clause is a set of

literals and is viewed as a disjunction of its literals. We write a clause as (11 l2 . . - It)

where 11, 12, - - , It are the literals in it. A CNF formula is a conjunction of clauses.

We say that a CNF formula 4 is satisfiable if there exists a truth assignment to

the variables in 4 that sets 4 to 1. If there is no such truth assignment, then 4 is
unsatisfiable.

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 18

Definition 3.1 (propositional resolution). Propositional resolution, or simply res-

olution, is a proof system for CNF formulas in which one can derive new clauses by

applying the resolution rule
(C 2) (D T)

(C D)
where C and D are arbitrary clauses and x is a variable. The rule allows us to derive

(C D) by resolving (C x) and (D :) on x. (C D) is called the resolvent of (C x)

and (D T) , the premises, on x.

A resolution derivation of a clause C from a CNF formula q5 is a sequence of

clauses C1, C2, . , Cm in which each Ci is either a clause in q5 or is derived from

previous clauses in the sequence by the resolution rule and Cm = C . A resolution

refutation of 4 is a resolution derivation of the empty clause, denoted 0, from 4. We

denote this system by RES.

The resolution rule is sound because a variable x must take either 0 or 1. So, if a

truth assignment a satisfies both (C x) and (D T) , then a must satisfy C if it sets

x to 0 and satisfy D if it sets x to 1. Thus, a must also satisfy (C D) . In fact, the

refutation system RES is sound and complete. That is, for any CNF formula 4, there

is a RES refutation of 4 if and only if q5 is unsatisfiable.

Definition 3.2 (tree-like resolution derivation, t ree-RES) . A tree-like resolu-

tion (denoted tree-RES) derivation is a RES derivation in which every derived clause

is used at most once as a premise to derive other clauses.

Definition 3.3 (size, wid th) . The size of a RES derivation T, I T [, is the number

of clauses in T. The width of a clause C , w (C) , is the number of literals appearing in

C and the width of a RES derivation T, w (T), is the width of the widest clause in T.

Definition 3.4 (resolution complexity, R E S (4) and tree-RES (4)) . For any

unsatisfiable CNF formula 4,
RES(4) g min{lTl : T is a RES refutation of 4)

and

tree-RES(q5) g min{lTl : T is a tree-RES refutation of 4) .

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 19

To help make it simpler in proving refutation related theorems, we allow ourselves

to use the weakening rule

in addition to the resolution rule in a resolution derivation. The weakening rule does

not strengthen the system and we can always eliminate the use of the weakening rule

in a resolution refutation without increasing the size or width of the refutation.

Proposition 3.5. For any CNF formula 4, if IT is a RES (tree-RES resp.) refutation

of $ using the resolution rule and the weakening rule, then IT can be transformed into

a RES (tree-RES resp.) refutation IT' of 4 such that I I T ' ~ 5 [I T] , w (d) 5 IT), and IT'

makes use of the resolution rule only.

Definition 3.6 (unit assignment). A unit assignment for a CNF formula 4 sets a

variable x in 4 to a truth value a E { O , l) . Let p be a unit assignment setting x to a.

For C a clause, the result of applying p to C is denoted Cr, and is defined to be

1 if the literal xu appears in C

C \ {xl-") otherwise

Proposition 3.7. For any CNF formula 4, if IT is a RES (tree-RES resp.) derivation

of C from 4 and p is a unit assignment for 4, then IT[, is a RES (tree-RES resp.)

derivation of Cr, from 4[, using the resolution rule and possibly also the weakening

rule.

Proposition 3.8. For 4 a CNF formula, x a variable, and a E (0, I) , if IT is a RES

(tree-RES resp.) refutation of q5rX=,, then there is a RES (tree-RES resp.) derivation

T' of either (XI-") or 0 from 4 with Id1 = 1x1.

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 20

Sketch of proof. Suppose T = (C1, Cz, . . a , Cs) is a RES (tree-RES resp.) refutation

of 4[,=,. Inductively transform T to T' = (C; C; . . . C&) as follows:

Ci if Ci E 4
(Ci ~ l - ~) if Ci E +[,=a but Ci $ 4

(Note that (Ci XI-") E 4 in this case)

the resolvent of Ci and CL if Ci is the resolvent of Cj and Ck

Then T' is a RES (tree-RES resp.) derivation of either (x ' -~) or from 4 and T' is

of the same size as 7r. 0

A clause is positive if it contains only positive literals. A clause is negative if it

contains only negative literals.

Definition 3.9 (negative resolution, N-RES). A negative resolution (N-RES)

derivation is a resolution derivation in which the resolution rule is restricted to be

negative: one of the two premises must be negative.

3.2 Nogood Resolution (NG-RES)

We have seen that the resolution rule is based on the fact that a propositional variable

can take values only from { O , l) . The same idea of "exhausting the domain" can be

extended to handle domains with size larger than two. For example, if the domain of

a variable x is {1,2,3), then we can resolve the nogoods

together to soundly infer

q(w = 2, y = 1, z = 1).

This generalization yields a resolution-based refutation system for CSPs.

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 21

Definition 3.10 (nogood resolution, NG-RES) . Given that the domain of a

variable x is {1,2, . a , d), the nogood resolution rule allows one to infer a nogood,

called the resolvent, from a set of nogoods, the premises, by resolving on x:

Let Z = (D, I?) be a CSP instance. A nogood resolution derivation of a nogood N from

r is a sequence of nogoods Nl, N2, - . . , Nm in which each nogood Ni is either in r or is

derived from a set of previous nogoods in the sequence by the nogood resolution rule,

and Nm = N. A nogood resolution refutation of Z is a nogood resolution derivation

of the empty nogood q() = 0 from r. We use NG-RES to denote this system.

Note that if we resolve the nogoods q(x = 1, y = I) , q(x = 2, z = 1) and

q(x = 3, y = 2) on x, where the domain of x is {1,2,3), we will get the nogood

q(y = 1, y = 2, z = 1) which is a tautology.

The refutation system NG-RES is sound and complete.

Proposition 3.11 (Soundness and Completeness of NG-RES). For any CSP

instance Z, there is an NG-RES refutation of Z if and only if Z is unsatisfiable.

We will prove the soundness and completeness of NG-RES after we state all nec-

essary definitions.

Example 3.12. The instance in Example 2.4 is unsatisfiable. Figure 3.1 shows an

NG-RES derivation of the empty nogood from the nogoods in the instance.

Definition 3.13 (tree-like nogood resolution derivation, tree-NG- RES) . A

tree-like nogood resolution (denoted tree-NG-RES) derivation is an NG-RES deriva-

tion in which every derived nogood is used at most once to derive other nogoods.

The NG-RES refutation in Example 3.12 is tree-like. It is sometimes useful to

represent an NG-RES derivation as a directed acyclic graph (DAG).

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 22

Figure 3.1: An NG-RES refutation

Definition 3.14 (G,, g r aph of a derivation). For any NG-RES derivation s,

we define G,, the graph of s, to be the directed acyclic graph in which vertices are

nogoods in s and there is an edge from vertex v to vertex u if and only if v is used as

a premise in an NG-RES derivation step to derive u in s .

So, if s is a tree-NG-RES derivation, then every vertex in G, must have out-degree

0 or 1.

Given a CSP instance 2 and a CSP refutation system, our main interest is the

size of the smallest refutation of 2 in the system. This is what we focus on when

comparing the relative power of different CSP refutation systems. Formally, we define

the NG-RES complexity (tree-NG-RES complexity resp.) of an instance 2 to be the

size of the minimal NG-RES (tree-NG-RES resp.) refutation of 2.

Definition 3.15 (size, width). Let s be an NG-RES derivation. The size of s,

Isl, is the number of nogoods in s. The width of s, w(s) , is the width of the widest

nogood in s.

Definition 3.16 (N G - RES complexity, N G - R E S (2) a n d tree- N G - R E S (2)).

For any unsatisfiable CSP instance 2,

NG-RES(2) min{Isl : s is an NG-RES refutation of 2)

and

tree-NG-RES(Z) min{ls/ : s is a tree-NG-RES refutation of 1) .

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 23

To simplify proofs, it is sometimes convenient to allow an NG-RES derivation

to contain nogoods that are derived by the nogood weakening rule, in addition to the

nogood resolution rule. What we need to confirm is that adding the nogood weakening

rule does not increase the power of the refutation system in terms of the minimal size

and width of refutations.

Definition 3.17 (nogood resolution with weakening, N G - R E S + ~ ~ ~ ~ and

tree-NG-REtPWeak). The nogood weakening rule allows a nogood N2 to be inferred

from N1 if Nl is a subnogood of N2. Nogood resolution with weakening (NG-RES+w"k)

is a variant of the NG-RES refutation system in which nogoods can be derived by

the nogood resolution rule and the nogood weakening rule. A tree-NG-RE,!PWak

derivation is an NG-RES+weak derivation in which every nogood is used a t most once

to derive other nogoods.

Proposition 3.18. For1 a CSP instance, if 7r is an NG-RES+"""~ (t ree-NG-~~s+""~

resp.) refutation of Z , then 7r can be transformed into an NG-RES (tree-NG-RES

resp.) refutation of Z of at most the same size and width.

Proof. Let Z = (27, r) be a CSP instance. Let 7r = (Nl, N2, . . . , Ns) be an NG-

RES+W"k (tree-NG-RES+weak resp.) refutation of Z.

We inductively transform 7r into T' = (Ni, Ni, . - . , N&) as follows:

Ni if Ni E I?

Nj if Ni is derived from Nj by weakening

the resolvent of Nil, . . - , Nid if Ni is the resolvent of Nil, . . . , Nid on x in 7r

and x appears in all N,', , . . , Nid

N!
9

if Ni is the resolvent of Nil, . . , Nid on x in 7r

but x does not appear in some Nh ,i 5 j 5 d

It is not hard to see that 7r' is an NG-RES+w"k (t r e e - ~ G - ~ ~ s + " " " ~ resp.) deriva-

tion in which all weakening steps are of the form 5 (i.e., deriving the same nogood)

and for all i E {1,2, . . , S), Ni is a subnogood of Ni. Since Ns = 0, we have N& =

and thus 7r' is an NG- RES+w"k (tree-NG- resp.) refutation.

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 24

Now we eliminate the use of weakening rule in d. We look at the nogoods in T'

one by one. If a nogood Ni is derived from Nj by weakening, we remove Ni and for

all derivation steps that use Ni as a premise, make them use Nj instead. In a tree-

NG-RES+weak refutation, every nogood is used at most once to derive other nogoods.

Hence, the elimination step maintains the tree-like property of T' if T' is tree-like.

The resulting refutation is an NG-RES (tree-NG-RES resp.) refutation. Moreover,

the size and width can only decrease during the transformation.

0

We have already mentioned assignments for CSP instances in Chapter 2. Now we

define them formally.

Definition 3.19 (assignment). An assignment for a CSP instance Z = (D , I?)

assigns domain values to some variables in I. An assignment p can be written as

a set of literals. For example, the assignment p = { x l = al,x2 = a2, . . . , xt = at}

assigns ai to xi, i E (1 , . . , t } . Let p be an assignment. We write N r, as the result

of applying p to nogood N , and

1 if there is some x and some a, b E D (x) s.t.

a # b, (x = a) E p and (x = b) E N

N \ { (x = a) : (x = a) E p} otherwise

Define I I , d.' (D r p , I? r p) , where

I ? [, = {Nr,: N E I? and Nr,# 1)

vars(Zr,) = vars(Z) \ {x : (x = a) E p for some a}

D (x) = D (x) for a11 x E vars(Zr,).

If T = (N 1 , N2 , . - . , Ns) is an NG-RES derivation, define ~ r , to be (N 1 r,, . , Nsr,),
but with any Nirp that is identical to 1 removed.

Proposition 3.20. For Z = (27, I?) a CSP instance, N a nogood and p an assignment,

if T is an NG-RESWak (tree-NG-RESSWak resp.) derivation of N from I?, then rrP

is an NG-RES+~"~ (t r e e - N G - R ~ s + ~ ~ ~ resp.) derivatzon of N r, from r[,.

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 25

Lemma 3.21. For Z = (27, I?) a CSP instance, x E vars(Z) and a E V (x), if there

is an NG-RES (tree-NG-RES resp.) rehtation T of2[,=, of size S, then there is an

NG-RES (tree-NG-RES resp.) derivation n' of either q(x = a) or 0 of Z of size S .

Proof. Let n = (Nl, N2, . . . , Ns) be an NG-RES refutation of I[,=, of size S. Con-

struct n' = (Ni, N;, . . . , Ni) as follows:

Ni if Ni E

mi, x = a) if Ni E r[,=, but Ni $
(q(Ni, x = a) E r in this case)

the resolvent of Nil, . . , Nid if Ni is the resolvent of Nil , . . . , Nid in n

Then n' is an NG-RES derivation of Z since every N,! is either in r or is a resolvent

of some previous nogoods in n'. Moreover, for every nogood Ni in n, Ni is either Ni

or q(Ni, x = a). Hence, the last nogood in n' must be either 0 or q(x = a). The size

of n' is the same as n.

The case when n is tree-like is the same, as our construction of n' preserves the

tree-like property. 0

Now we can prove the soundness and completeness of NG-RES.

Proof. [Proposition 3.111

(Soundness) Suppose n = (Nl, N2, . a , Ns) is an NG-RES refutation of a CSP in-

stance Z = (27, r). Towards a contradiction, suppose Z is satisfiable. Then,

there exists a total assignment a such that a satisfies every nogood in r . It

is obvious that the nogood resolution rule is sound. That is, if an assignment

satisfies all premises, then it must also satisfy the resolvent. Therefore, by in-

duction, a must satisfy every nogood in n. However, since n is a refutation,

Ns = 0 and no assignment would satisfy Ns. Hence, there is a contradiction.

(Completeness) Suppose Z = (V, r) is an unsatisfiable CSP instance. We will show,

by induction on the number of variables in Z, that there is an NG-RES refutation

of Z. If Ivars(Z)I = 0, then r contains the empty nogood which is an NG-RES

refutation. Assume the claim is true for all instances with less than n variables.

Consider the case where Z has n variables. Let x be a variable in 1. For each

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 26

a E V(x), I[,=, is an instance with n - 1 variables and is unsatisfiable. By I.H.,

there is an NG-RES refutation of I[,=,. Then, by Lemma 3.21, there exists an

NG-RES derivation of either q(x = a) or (done in this case) of Z. Resolving

the nogoods q(x = a) , a E V(x), together gives the empty nogood.
0

Exponential separations between tree-like and general resolution have been known

for some time [9]. Recently, a nearly optimal separation between the two resolution

systems was obtained by Ben-Sasson [7]. Ben-Sasson showed that there exists an

infinite family of CNF formulas with O(n)-size resolution refutations for which every

tree-like resolution refutation is of size 2"("/'"gn). He also proved that for every unsat-

isfiable CNF formula 4, if S is the size of the smallest resolution refutation of 4, then

the smallest tree-like resolution refutation of 4 must be of size at most 2•‹(S10g10gS/'0gS)

(upper bound). Therefore, the gap is almost tight.

In the next two subsections, we adapt the techniques used in [7] to show corre-

sponding separations and upper bounds for tree-NG-RES and NG-RES.

3.2.1 Separation of tree-NG-RES from NG-RES

In this section, we explore the relative power of the tree-NG-RES and NG-RES proof

systems. Specifically, we will show, for any integer d 2 3, that there is an infinite

family of CSP instances with domain size d which have poly-size NG-RES refutations,

but for which any tree-NG-RES refutation has exponential size. The instances are

based on directed acyclic graphs. They were first introduced as CNF formulas, called

implication graph formulas, by Raz and Mckenzie [33]. Since then, a generalized form

of the formulas has been used in separating several restricted versions of resolution

from resolution [I, 11, 91. In [7], Ben-Sasson exposed a direct connection between the

tree-like resolution complexity of the generalized formulas and the pebbling numbers

(to be defined later) of the formulas7 underlying graphs. He used this relationship to

accomplish a nearly optimal separation between tree-like resolution and resolution.

Here, we will formulate a CSP version of the implication graph formulas and refer

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 2 7

closely to Ben-Sasson7s approach to achieve a separation between tree-NG-RES and

NG-RES. We start with some basic graph definitions.

Definition 3.22. Let G = (V, E) be a directed acyclic graph. If (vi, vj) E E, then we

say that vi is a predecessor of vj and vj is a successor of vi. The in-degree (out-degree

resp.) value of a vertex is the number of predecessors (successors resp.) of it. A vertex

with in-degree 0 is a source and a vertex with out-degree 0 is a target. An internal

vertex is a non-source vertex.

Definition 3.23 (topological ordering of a DAG). A topological ordering of a

directed acyclic graph G = (V, E) is a linear ordering of all the vertices in V such

that if there is an edge (vil vj) E El then vi precedes vj in the ordering.

Definition 3.24. A circuit is a DAG in which every vertex has in-degree 2 or 0.

Our CSP instances, implication graph contradictions, are based on circuits.

Definition 3.25 (Implication Graph Contradictions). Let G = (V, E) be a

circuit with n vertices. Let d 2 3 be an integer. Let S and T be the sets of sources

and targets in G respectively. For each vertex vi E V, there is a variable xi associated

with it. The implication graph contradiction of G, IMPG,~,T,d, is a CSP instance with

n variables, X I , . . . , x,, domain A = [dl, and the following nogoods:

Source axioms: q(xi = 1) for every vi E S

Target axioms: q(xi = a) for every vi E T, and for all a E [d]\{l)

Pebbling axioms: q(xi = a, x j = b, xk = 1) for every vk with predecessors vi and

vj, and for all a , b E [d]\{l)

Intuitively, IMPG,s,T,d expresses the following contradiction: Every vertex of G

can be labelled with a number from 1 to d. The sources are not labelled with 1, and

the targets are labelled with 1. If both of the predecessors of a vertex are not labelled

with 1, neither is the vertex itself.

We first show that IMPG,S,T,d has short NG-RES refutations.

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 28

Lemma 3.26. For any integer d 2 3, if G is a circuit with n vertices and S and T

are the sets of sources and targets in G, then NG-RES(IMPG,s,T,d) = 0 (d 2 n) .

Proof. Let d > 3 be an integer and G be a circuit with n vertices. Let S and T

be the sets of sources and targets in G respectively. Pick a topological ordering

0 on the vertices of G. We can derive q(xk = 1) for each vertex vk one by one

according to the ordering 0. If vk E S , then we already have q(xk = 1) since it is

a Source axiom. Otherwise, suppose vi and vj are the predecessors of vk. We must

have derived q(xi = 1) and q(x j = 1) as vi and vj precede vk in 0. Resolve the

(d - 1)2 Pebbling axioms of vk with q(xi = 1) to get q(x j = b, xk = I) , for all

b E [dl \ {1) , and then resolve these with q(x j = 1) to derive q(xk = 1). This requires

d derivation steps. Once q(xt = 1) is derived for a vertex t E T, we can resolve it

with the Target axioms of vt to obtain q () Hence, there is an NG-RES refutation

with at most O(dn) derivation steps where each derivation step requires d premises.

So, NG-R ES (IMPG,s,~,d) = 0(d2n) . 0

While I M P G , ~ , ~ , ~ has poly-size NG- R ES refutation, the tree- NG- R ES complexity

of IMPG,s,T,d depends on the pebbling number of G. Roughly speaking, tree-NG-RES

refutations of IMPG,S,T,d will be long if G has large pebbling number. We will examine

this precisely after defining the pebbling number of a directed acyclic graph.

Definition 3.27 (Pebbling number). Let G = (V, E) be a directed acyclic graph.

Let S , T V . To pebble a vertex v E V from S , one has to follow the rules below

until a pebble is placed on v.

1. A pebble can be placed on a vertex in S .

2. A pebble can be removed from any vertex.

3. If a vertex is not in S , then it can only be pebbled if all its immediate prede-

cessors have a pebble on them.

The pebbling number of T on G from S , denoted PG(S, T) , is the minimal number of

pebbles needed to pebble some vertex in T from S .

The following lemma from [7] states a straightforward property of PG(S, T).

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 29

Lemma 3.28 (Ben-Sasson [7]). Let G = (V, E) be a DAG. For any v E V and any

sets S, T C V, PG(S, T) 5 max{PG(S, T U {v)), PG(S U {v), T) + 1).

Proof. To pebble T from S, we can first pebble T U {v) from S with PG(S, T U {v))

pebbles. If some vertex in T is pebbled, then we are done. Otherwise, only v is

pebbled. Leave the pebble on v and try to pebble T from S U {v). This requires

PG(S U {v), T) + 1 pebbles. 0

Note that for a DAG G with n vertices, PG(S, T) = O(n) since we can always

use n pebbles and thus do not need to remove pebbles from vertices. What we are

interested is a lower bound on the number of pebbles needed. Cook [13] showed

that the pebbling number of the target from the sources on a pyramid graph with n

vertices is R (f i) . In a pyramid graph with n = m + (m - 1) + . . . + 1 vertices, there

are m layers of vertices. The i-th layer has i vertices labelled vi,l, v i , ~ , . , vi,i. The

vertex a t layer 1 is a target and the vertices at layer m are sources. Each non-source

vertex vi,j has predecessors vi+l,j and vi+lj+l. Figure 3.2 shows what the pyramid

graph looks like when n = 10. One can try to pebble v l , ~ from the sources and get an

intuition of the minimum number of pebbles required in order to pebble the vertex.

Celoni et al. [12] presented an infinite family of graphs G, with n vertices, each has

in-degree 2 or 0, for which PGn (S , T) = R(n/ log n) where S and T are the sets of

sources and targets in G, respectively. We will leave out the description of G, as it is

too complicated to illustrate here but a reader can refer to their paper if interested.

The significant thing for us is that the implication graph contradiction based on G,

is hard for tree-NG-RES. In particular, every tree-NG-RES refutation of I M P G , , ~ , ~ , ~

must be of size (d - l)"(nl'Ogn). We will prove this by showing the general lower bound

on the size of tree-NG-RES refutations of IMPG,S,T,d using a modification of the game

approach from [7].

Our modified game is as follows. Let Z = ([dl, I') be an unsatisfiable CSP instance.

The game involves two players: Prover and Delayer. In each round, Prover picks a

variable from vars(I'). Then, Delayer can choose 1 or *. If 1 is chosen, the variable

is set to 1. Otherwise, Prover can pick a value from (2, . . . , d} and assign it to the

variable. Delayer scores one point if he chooses *. The game ends when the current

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP

Figure 3.2: Pyramid graph with 10 vertices

assignment falsifies at least one of the nogoods in r. Remark: When the game ends,

there must be some nogood in F that is made false since Z is unsatisfiable.

Here is the rough idea of the proof. We first show that a tree-NG-RES refutation

of IMPG,s,T,d gives a strategy for Prover to limit the number of points Delayer can

win. This in turn will imply that any tree-NG-RES refutation of IMPG,s,~,d is of size

exponential in the number of points Delayer can score. Then, we prove that there is a

good strategy for Delayer to win at least C2(PG(S, T)) points. So, every tree-NG-RES

refutation of I M P G , ~ , ~ , ~ must be of size exponential to C2(PG(S, T)) . We call the above

Delayer's strategy superstrategy.

Lemma 3.29. ForZ an unsatisfiable CSP instance, if Z has a tree-NG-RES refutation

of size S, then Prover has a strategy where Delayer can win at most [10g~-~ S1 points.

Proof. Suppose Z has a tree-NG-RES refutation .rr of size S. We will give a strategy

which allows Prover to bound the number of points Delayer can win and show that

as long as Prover follows the strategy, the following invariant will be maintained after

each round: If p is the current points Delayer has scored, then there is a nogood N in

.rr such that N is falsified by the current partial assignment and the sub-tree rooted

at N in G, is of size a t most S/(d - 1)p.

At the beginning, Delayer has no points and the only nogood that is falsified is

the emply nogood. So, the invariant holds. Consider the i-th round. Let pi-1 be the

number of points Delayer has scored after the previous round and Ni-1 be the nogood

satisfying the invariant at the previous round. If Ni-l is a leaf in G,, then Ni-l is

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 31

a nogood in I? that is falsified by the current partial assignment and hence the game

ends. Otherwise, Prover picks the variable x which is resolved on to derive Ni-1 from

nogoods Nl, N2, - . - , Nd in T. W.L.O.G., suppose (x = 1) E Nl, (x = 2) E N2, and

so on. If Delayer assigns 1 to x, then Nl is falsified and it becomes the new nogood

for the invariant. In this case, Delayer does not score any points and the sub-tree

rooted at Nl is obviously smaller than the one rooted at Ni-l. Thus, the invariant

holds. If the Delayer chooses *, then Prover assigns x the value j E (2, - . , d) which

will falsify the nogood Nj, among N2, . - . , Nd, with the smallest sub-tree. The size

of this sub-tree is a t most l / (d - 1) of S/(d - 1)pi-1 which is the size of the sub-tree

rooted a t NiPl. So, the sub-tree rooted at Nj is of size at most l / (d - l)pi-l+'. Since

Delayer chooses *, he can score a point and the number of points he has scored after

this round is pi-1 + 1. Therefore, the invariant is maintained.

When the game halts, the size of the sub-tree is 1. If Delayer scores p points at the

end of the game, then 1 5 S/(d - 1)p. This implies p 5 1 0 g ~ - ~ S 5 [logd-, S1. Hence,

Delayer can win a t most [10g~-~ S1 points if Prover follows the above strategy.

Corollary 3.30. For 2 an unsatisfiable CSP instance, if the Delayer has a strategy

which always scores r points on 2 , then tree-NG-RES(2) > (d - l)'-l.

Proof. Suppose the Delayer has a strategy which always scores r points on 2 . Towards

a contradiction, suppose tree-NG-RES(2) < (d - Then, by Lemma 3.29, the

Prover has a strategy where the Delayer can win at most [logd-, (d - l)'-'l = r - 1 < r
points. This contradicts that the Delayer can always scores r points. 0

The superstrategy for Delayer is simple. Before each game, Delayer sets S1 = S

and TI = T. Then, in each round, if Prover asks about variable xi, i E [n], Delayer

responds as follows:

1. If vi E TI, assign 1 to the variable.

2. If vi E St, respond *.
3. If vi 6 S1 U TI and PC (St, T' U {i)) = PC (St, TI), assign the variable 1 and add

vi to TI.

4. If vi $ S1 U T' and PC (St, TI U {i)) < PC (S', TI), respond * and add vi to St.

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 3 2

We will prove that PG(S1, TI) can only decrease by at most the number of points

Delayer scores and it is at most 3 at the end of the game. This implies the super-

strategy guarantees Delayer to earn at least PG(S, T) - 3 points.

Lemma 3.31. After each round, zf Delayer has scored p points, then PG(S1, TI) 2

PG(S, T) - p.

Proof. Let S,! and T,(be the sets S' and T' respectively in Delayers superstrategy after

round i. Let pi be the number of points Delayer has scored after round i. We show that

the invariant PG(S,!, Ti) > PG(S, T) - pi will be maintained after each round. At the

beginning, po = 0, Sh = S and Ti = T. So, PG(Sh, Ti) = PG(S, T) -0 and the invariant

holds. Now consider round i. For case 1, 2, and 3, PG(Si-l, Ti-l) = PG(S,!, Ti) and

pi 2 pi-1. SO, PG(S,!,T,!) = PG(S,!-l,Ti(_l) 2 PG(S,T) - pi-1 2 PG(S,T) - pi. For

case 4, PG(S;-,, Ti-l U {v)) < PG(S;-l, T,(-l), pi = pi-1 + I , S,! = S,!-, U {v), and

T,' = T! 2 - 1 ' By Lemma 3.28, we have PG(S,!-l u {v), Tipl) 2 PG(Si-l, Ti-l) - 1. Hence,

Therefore, the invariant is maintained after each round. 0

Lemma 3.32. At the end of the game, PG(S1,T') 5 3.

Proof. When the game ends, some nogood N must be falsified since I M P G , ~ , ~ , ~ is

unsatisfiable. N cannot be a Source axiom for some source vi because vi E S S and

thus it can only be assigned values from (2, . . . , d) through case 2. This assignment

does not violate the Source axiom. Similarly, N cannot be a Target axiom either.

Hence, N must be a Pebbling axiom for some vertex vk with predecessors vi and vj.

To falsify N , xk must be set to 1 and both xi and xj must be set to some values from

(2, . . , d). So, vk E T' (via case 1 or case 3) and vi, vj E S' (via case 2 or case 4).

Therefore, to pebble T' from S', we can first pebble vi and vj, then vk. This only

requires three pebbles. 0

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 33

Corollary 3.33. Following the superstrategy described, Delayer can score at least

PG(S, T) - 3 points at the end of the game.

Proof. This is an immediate consequence from Lemma 3.31 and Lemma 3.32. 0

Proof. Corollary 3.33 shows that Delayer has a superstrategy to score PG(S, T) - 3

points on IMPG,S,T,d. Therefore, by Corollary 3.30, we have tree-NG-RES(IMPG,S,T,d)

2 (d - l)PG(S1T)-4. Hence, ~ ~ ~ ~ - N G - R E S (I M P G , S , T , ~) = (d - 1) WG(S,T)). 0

Combining everything discussed in this section, we obtain an exponential separa-

tion of tree-NG-RES from NG-RES:

Theorem 3.35 (Separation). For every integer d >_ 3, there exists an infinite family

of CSP instances {I,), with domain size d, such that

Proof. Let d 2 3 be an integer. [12] provides an infinite family of circuits {G,), with

IV(G,) I = n, for which PGn (S, T) = R(n/ log n) where S and T are the sets of sources

and targets in G. From Lemma 3.26, we have NG-RES(IMPGn,s,T,d) = 0(d2n). And,

by Theorem 3.34, tree-NG-RES(IMPG,,S,T,d) = (d - 1) ~(PG(S,T)) = (d - 1) W logn).

3.2.2 Separation Upper Bound

In the previous section, we showed that there are families of CSP instances such

that they have linear-size NG-RES refutations but no tree-NG-RES refutation of size

smaller than exp(R(n/ log n)) . The next question one may ask is: How big can this

separation be? Or, more specifically, if we know that the smallest NG-RES refutation

of a CSP instance I is of size S, then what is the upper limit for the size of the smallest

tree-NG-RES refutation of Z in terms of S? Ben-Sasson presented an upper bound for

the separation between tree-RES and RES in 171. We will take his proof and modify

it for tree-NG-RES.

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 34

Before proceeding to show the upper bound, we first define decision trees for CSP

search problems which are closely related to tree-NG-RES. We will also describe a

different parameter to measure the size of the underlying graph of a minimal refuta-

tion.

Let Z = ([dl, r) be a CSP instance. Given an assignment cu to all the variables in

r, a search problem for Z is to find a nogood N in r such that cu falsifies N. If such

a nogood does not exist, then output 1.

Definition 3.36 (Decision Trees for CSP Search Problems) . A d-ary Decision

Tree is a d-ary tree, in which internal vertices, edges, and leaves are labelled with

variables, elements in [dl, and possible outputs, respectively. Given a d-ary decision

tree D l each assignment cu to the variables corresponds to a unique path in D in the

natural way, and the label at the end of the path is the output of D on a. D is a d-ary

decision tree for the search problem for Z if for every input assignment cu, D outputs a

nogood in r which is falsified by cu or outputs 1 if cu satisfies all nogoods in r . Define

SD(Z) to be the minimal size of a d-ary decision tree for the search problem for Z.

Decision trees for CSP search problems are closely connected to tree-NG-RES in

such a way that the size of the smallest tree-NG-RES refutation of an unsatisfiable

CSP instance Z is equal to the size of the minimal decision tree for Z.

Lemma 3.37. If Z is an unsatisfiable CSP instance, then tree-NG-RES(Z) = SD(Z).

Proof. Let Z be an unsatisfiable CSP instance. Let .rr be a tree-NG-RES refutation

of Z. For each internal vertex in G,, if we label it with the variable resolved on

to obtain the nogood on the vertex and label each edge pointing to the vertex with

the corresponding domain value of the variable, then the resulting graph is a d-ary

decision tree for the search problem for Z. So, tree-NG-RES(Z) 2 SD(Z).

To show tree-NG-RES(Z) 5 SD (I), suppose we are given a d-ary decision tree D

for 1 . We can construct a tree-NG-RES refutation of Z with at most the same size of

D. Since Z is unsatisfiable, all leaves must be labelled with nogoods. Working from

leaves towards the root, for each internal vertex v with label x, we do the following.

If x does not appear in some nogood N labelled at some child of v, then we label

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 35

v with N and remove its children. Otherwise, for each i E [dl, x must appear as

(s = i) in the nogood labelled at the child along the edge labelled with i . Label v

with the resolvent of the labels on v's children. Eventually, every internal vertex v

will be labelled with a nogood falsified by the partial assignment defined on the path

leading to v. Hence, the root must be labelled with the empty nogood and we get a

tree-NG- RES refutation. 0

The next lemma will be needed in the proof of the upper bound.

Lemma 3.38. If Z = ([dl, r) is an n-variable CSP instance where Irl = m, then there

is a d-ary decision tree for the search problem for 1 with at most Czo ((I(d - 1)'

leaves.

Proof. Let 1 = ([dl, r) be an n-variable CSP instance with Irl = m. We can build a

d-ary decision tree recursively as follows. We start with an empty truth assignment

and a tree with one vertex. In each step, we have a partial assignment a and we

are at some vertex v. If a falsifies some nogood N in r, we label v with N . If a

satisfies all nogoods in r, we label v with 1. Otherwise, we pick the first nogood N

such that a (N) is undefined and pick the first variable x appearing in N for which

a (x) is undefined. Then, we label v with x and create d children for v, where the d

edges leading to the children are labelled with 1,2, . . . , d respectively. After that, for

each i E [dl, we recursively set the child along edge i to be the new current vertex

and set a U (x = i) to be the new partial assignment for the next step.

Consider the last case we just described. Among the d values that we can assign

to x , d - 1 of them will satisfy N . We call the d - 1 values "satisfying values". Any

path of the d-ary decision tree constructed as above can contain at most m satisfying

values since there are only m nogoods in r. Hence, a path can be described by a

sequence of n numbers with a t most m of those being satisfying values. Therefore,

the number of ~ a t h s is at most

For some technical reasons, we have to limit ourselves to refutations .rr for which

G, has maximal out-degree 2. The next lemma shows that any NG-RES refutation

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 36

K can be transformed into an NG-RE,VWeak refutation K', with only a small blowup

in size, such that G,t has maximal out-degree 2.

Lemma 3.39. Let Z = ([dl, I') be a CSP instance. If there is an NG-RES refutation K

of Z, then there exists an NG-RESWeak refutation K' of Z such that G,t has maximal

out-degree 2 and K' is of size at most d . 1x1.

Proof. Given an NG-RES refutation K of Z, we can transform it into an NG-RES+"""~

refutation K' of Z as follows. If a nogood N in K is used to derive k other nogoods,

N1, N2, , Nk, we create k - 1 copies of N and call them Ncl , Nc, , . . . , NC,-, . For each

i E {1,2, . . , k - 21, make Nci be the premise to derive Ni and Nc,+, (by weakening).

Make Nc,-, be used to derive Nk-l and Nk. Then, G,I has maximal out-degree 2 and

[dl 5 d. 1x1 since the transformation only increases the number of nogoods by at most

CVEV(G.) I~~ t -deg (v) - 11 = CVEv(~,) out-deg(v) - 1x1 = CVEv(GI) in-deg(v) - I K ~ _<
d I K ~ - IT[. (Note that every vertex in G, has in-degree d or 0 as K is an NG-RES

refutation.) 0

To prove the upper bound, we need to define a different parameter to measure the

NG-RES complexity. The parameter counts the number of edges in the graph of a

minimal NG-RES refutation.

Definition 3.40 (magnitude). For a DAG G = (V, E) , define e(G) I E (G) 1 . For

an unsatisfiable CSP instance Z, define the magnitude of refuting Z, e(Z), to be:

e(Z) min{e(G,) : K is an NG-RES+"""~ refutation of Z and G, has max out-deg 2)

We define fd(k) to be the maximal ~ T ~ ~ - N G - R E S + " ~ ~ complexity of refuting CSP in-

stances with domain size d and magnitude at most k. That is, for any dl k E N, d > 2,

fd(k) rna~{tree-NG-RES+"~"~(Z) : Z has domain size d and e(Z) < k).

So, if the magnitude of refuting Z = ([dl, I') is at most k, then t~ee-NG-REs+"~"~(1) 5
fd(k). Z is k-maximal if e(Z) = k, t~ee-NG-REs+"~"~(1) = fd(k) and removing any

nogood from Z enlarges e(Z) or makes Z satisfiable.

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 3 7

Note that f is monotonically increasing and for all k E N, a kmaximal CSP

instance always exists.

Lemma 3.41. For all d , k E N,d > 2, f d (k + d) 5 d . fd(k).

Proof. Let Z = ([dl, r) be a (k + d)-maximal unsatisfiable CSP instance. Then,

e(Z) = k + d and tree-NG-RES+weak(Z) = fd(k + d). Let ;rr be an NG-REPwak

refutation of Z such that G, has k + d edges. Let N be a nogood in ;rr which is a

resolvent of d nogoods Nl, N2, . . , Nd E r. (There exists at least one such N since

otherwise, r contains the empty nogood and e(Z) = 0.)

Let 2' = ([dl, r U {N)) . Then e(Z1) 5 k since deleting the derivation of N from ;rr

gives an NG-RES+weak refutation ;rr' of 2' with at most k edges in G,,. Therefore,

tree-NG-RES+weak(Z') I fd (k) . (3.1)

Let T' be a tree-NG-RES+weak refutation of 2' of size tree-NG-RES+weak((Z'). Let T be

constructed from T' as follows. Whenever N appears as an axiom in TI, substitute it

with the NG-RES derivation N1 N & N d . Then, T is a t r e e - ~ G - ~ ~ s + ~ " ~ refutation

of Z and the size of T is at most d times of the size of TI. Hence,

Since is (k + d)-maximal, we have fd(k + d) = t r e e - N G - ~ E s + ~ " ~ ((~) . With (3.1)

and (3.2), we get fd(k + d) < d . fd(k). 0

We now show that for any directed acyclic graph G with in-degree d and out-

degree 2, G can be partitioned into two subgraphs such that the number of edges in

them are roughly the same.

Definition 3.42 (topological partition). Let G = (V, E) be a DAG. Let vl, . . . , v,

be a topological ordering of the vertices in V. For 0 5 i I S , let Vo(i) = {vl,. . . , vi)

and Vl (i) = {vi+1, . . . , us). Let Go(i) (Gl(i) resp.) be the subgraph of G induced

by Vo(i) (Vl(i) resp.). Let eo(i) (el(i) resp.) be the number of edges in Go(i) (Gl (i)

resp.). Let Mi be the set of vertices in Vl (i) which are connected to vertices in Vo(i)

and define mi = I Mil. A topological partition of G is an ordered pair (Vo(i), Vl (i)),

for some i, 0 5 i 5 S.

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 38

Note that vertices in Mi are internal vertices in G. Also notice that for Z = ([dl, I?)

an unsatisfiable CSP instance and .rr = (N l , . . . , Ns) an N G - R E S + ~ ~ ~ refutation of

Z, IT is a topological ordering of G,. And if (Vo(i), Vl(i)) is a topological partition of

G,, then Vo(i) is an NG-RESf derivation from I? and Vl (i) is an NG-RE,PWak

refutation from nogoods in J? U Mi.

Lemma 3.43 (equal partition). Let vl, . . . , u s be a topological ordering of the

vertices of a single-target DAG G = (V, E) with maximal in-degree d and maxi-

mal out-degree 2. There exists a topological partition (Vo(i), Vl(i)) of G such that

e) - e l . Such a partition is called equal, and for an equal partition,
e(G)-mi ej(i) < -7 + d, j E (0, 1).

Proof. Consider any partition (Vo(i), Vl(i)) of G, 0 < i < S. Since every vertex in

G has maximal in-degree d, eo(i + 1) 5 eo(i) + d. And, since G has maximal out-

degree 2, el(i + 1) > el(i) - 2. It is obvious that eo(0) = 0 = el(S),eo(S) = e(G) =

el(0). Moreover, eo is monotonically increasing and el is monotonically decreasing.

Therefore, there exists an i such that leo(i) - el (i) 1 5 y.
For an equal partition (Vo (i) , Vl (2)) , 1 eo (i) - el (i) 1 5 y. This implies eo (i) -

el (i) < y. Moreover, e(G) 2 eo(i) + el(i) +mi because vertices in Mi have non-zero
d+2 e(G)-mi+ 2 e(G)-mi in-degree. Hence, for j E { O , l) , ej(i) < 2 5 7 + d. 0

Next, we prove that if the magnitude of refuting a CSP instance Z with domain

size d is at most then we can construct a tree-NG-RESfWeuk refutation of Z of

size at most dc2k logk for some constant c. Therefore, fd(k2k) < d c2k logk.

Theorem 3.44. For any integer d 2 2, there exists a constant c > 0, such that for

all integers k > 4, fd(k2k) < d ~2~ log k

Proof. (By induction on k)

Let d > 2 be some fixed integer.

Basis: Let c > 4d be large enough so that fd(k2k) 5 dC2*l0gk is true for k = 4.

I.H.: Assume it is true for all values smaller than k, for some fixed Ic 2 4.

Induction step: Suppose Z = ([d l , I?) is an unsatisfiable CSP instance with e(Z) 5
k2" We will show how to construct a t r e e - ~ G - R E s + ~ ~ ~ refutation of Z with size at

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 39

most dc2k log k and this would imply fd(k2") dC2k10gk, by the definition o f f . Let rr =

(Nl, N2,. . . , Ns) be an N G - R E S + ~ ~ ' ~ refutation of 2 such that G, has e e(2) 5 k2k

edges and maximal out-degree 2. Let n be the number of variables appearing in rr.

Then, we must have n 5 e due to the minimality of e. Let (rro, rrl) be an equal

partition of G, a t some i and set eo = eo(i), el = el (i) and m = I Mo(i) 1 .

Case 1: m > 2" Consider a nogood N in no. N is derived by an NG-RES+"~"~

derivation rr' with a t most eo) + d) *2*-21 + d = (k - 1)2~- l + d

edges in G,! (by Lemma 3.43). Let cr be a partial assignment on the variables

in N such that (x = a) E a if and only if (x = a) E N. Then TI[, is an

NG-RES+w"k refutation of r[, (Proposition 3.20). By the definition of f and

Lemma 3.41, there exists a tree-NG-REPweak refutation from r[, of size at

most fd((k - 1)2k-1 + d)) d - fd((k - 1)2k-1). Without increasing the size, this

can be converted to a tree-NG-RES+weak derivation of some subnogood Nl of N

from r (Lemma 3.21). So, N has a tree-NG-RES+w"k derivation of size at most

d . fd((k - 1)2~-') + 1 (we may need one weakening step to get N if Nl # N).

Similarly, since rr1 is an NG-RESWeak refutation with el) (k - 1)2"' + d edges

in G,,, it can be replaced by a t r ee -NG-R~s+"~"~ refutation T from r U Mi of

size at most d fd ((k - 1)2~-'). For every axiom nogood N in T, if N 4 r, then

N E Mi and the derivation step to derive N in rr involves at most d nogoods

in TO. For each of those nogoods in TO, plug a tree-NG- REPweak derivation as

described above. This yields a tree-NG-RES+w"k refutation of 2. By inductive

hypothesis, the size of this tree-NG-RES+weak refutation is at most:

whenever c > 4d and k > 4.

Case 2: m < 2k. By Lemma 3.38, there is a d-ary decision tree D with at most

Czo (l) (d - 1)' leaves which can solve the CSP search problem for inn =

([dl, Mi). Each leaf v of D must be labelled with 1 or a nogood in Mi. If v is

labelled with N E Mi, then N has a ~ ~ ~ ~ - N G - R E s + " " ~ derivation from r of size

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 40

at most d. [d. fd((k- 1)2~-') + 11 (see case 1). If v is labelled 1, then we know that

the partial assignment p defined by the path leading to v in D satisfies every

nogood in Mi. Since .rrl is an NG-RESWeak refutation from r U Mi, .rrl [, is an

NG-RESf weak refutation of T with at most + d edges in G,, r, (Proposition

3.20). By Lemma 3.41, there is a tree-NG-RES+w"k refutation of r [, of size at

most d - fd(y). This can be converted to a tree-NG-RES+weak derivation of N,

from from r of size at most d . fd(y) + 1, where (x = a) E N, iff (x = a) E p.

(Note that N, is falsified by p.) Substitute the t r e e - ~ ~ - ~ E s + ~ ~ ~ ~ derivation of

N, into v. We now have a tree in which every leaf is labelled by a nogood in r
that is falsified by the assignment defined on the path leading to it. This tree

can then be transformed into a tree-NG-RESweak refutation of r (details can

be found in the proof of Lemma 3.37.) The size of this tree is bounded by:

e - r n

.: n 5 e and e 5 k2*

.: rn < 2*

< ,+,k+, (kik) zk-.. k2k - 2k
- . d ~ f d (2

) .: Lemma 3.41

< 2*+l (4k)2k dc2*-' log (k-1)
- . () (4 (see Appendix A)

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 4 1

The last inequality is true since for d 2 2, k 2 4, and c 2 4d, we have

d+2k+2 +2klogk 5 i ~ 2 ~ 1 o ~ k .

We are now ready to prove the upper bound for the separation of tree-NG-RES

and NG-RES.

Theorem 3.45 (Separation Upper Bound). For any unsatisfiable CSP instance
d 2 5 log log S

Z with domain size d 2 2, tree-NG-RES(Z) = do(logs) where S = NG-RES(Z).

Proof. Let Z be an unsatisfiable CSP instance, and n be a minimal NG-RES refutation

of Z. Let S = In1 - NG-RES(Z). Then, by Lemma 3.39, there exists an NG-

RE,Vweak refutation n' such that In'l 5 dS and G,t has maximal out-degree 2. Hence,

e e(G,I) 5 d2S, since there are a t most d edges entering a vertex in G,t. Set
def k = [log &] . Then, e j k2k. Therefore,

tree-NG-RES(Z) tree-NG-REPWeak(Z) -: Proposition 3.18

5 f (e) .: definition of f

5 f (k2" ... f is monotonically increasing

- - d 0 (2 k l o g lc) .: Lemma 3.44

- - do(& '"P'OP &)

3.3 Constraint Resolution (C-RES)

Next, we define another refutation system, constraint resolution, for CSPs which is

based on one of the common CNF encodings [I41 of CSP instances.

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 42

Let Z = (23, I?) be a CSP instance. We encode Z as a CNF formula, CNF(Z), as

follows. For each variable x E vars(Z) and each possible value a E D(x) that x can

take, we introduce a propositional variable x : a asserting that x takes value a when

x : a is true.

First we need a set of clauses ensuring that every variable in Z must be given some

value. We call them domain clauses. Then, there are unique value clauses stating

that no variable can take more than one value. Finally, for each nogood in r, we

have a constraint clause which rules out the forbidden assignment corresponding to

the nogood. Hence, the CNF encoding of Z is:

CNF(Z) = domainCls U uniqueValueCls U constraintCls

where domainCls = {(x : al . x : ad) : x E vars(Z), V(x) = {al, . , ad))

uniqueValueCls = {(z: a) : x E vars(Z),a,c E V(x) ,a # c)

constraintCls = {(m . . . xk : ak) : q(xl = al , ,xk = ak) E I?).

CNF(Z) encodes all the requirements an assignment needs to meet in order to satisfy

Z. Thus, every solution of Z corresponds to a truth assignment which satisfies all

clauses in CNF(Z), and vice versa. Therefore, CNF(Z) is satisfiable if and only if Z

is satisfiable.

Example 3.46. The CNF encoding of the CSP instance in Example 2.4 consists of

the following clauses.

Domain clauses: (x : 1 x : 2 x : 3)

(y : l y:2 y:3)

(z : 1 2:2 2:3)
-- -- --

Unique value clauses: (x : 1 x : 2) (x : I x : 3) (x : 2 x : 3)
-- --
1 2 (y : l y:3) (D fi)
-- -- --

(z :1 2:2) (z :1 2:3) (2:2 2:3)
-- -- --

Constraint clauses: (x : 1 y : 1 (x : 2 y : 2) (x : 3 y : 3)

(Z) (fl) (Z)

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 43

Definition 3.47 (constraint resolution, C-RES and tree- C-RES) . A con-

straint resolution (C-RES) refutation of a CSP instance Z is a RES refutation of

CNF(Z). A tree-C-RES refutation of Z is a tree-RES refutation of CNF(Z).

Theorem 3.48 (Soundness and Completeness of C-RES). For any CSP in-

stance Z, there is a C-RES refutation of Z if and only if Z is unsatisfiable.

Proof. This follows from the soundness and completeness of RES and the fact that

CNF(Z) is satisfiable if and only if Z is satisfiable. 0

Definition 3.49 (C-RES complexity, C-RES(Z) and tree- C-RES (I)) . For

any unsatisfiable CSP instance 1,

C-RES(Z) min{l.rrl : .rr is a C-RES refutation of Z)

and

tree-C-RES(Z) min{I.rrl : .rr is a tree- C-RES refutation of 1).

3.3.1 Direct Translation of SAT to CSP

As CSPs with domain size 2 can be viewed as a generalization of SAT problems, if

an unsatisfiable CNF formula 4 is transformed directly into a CSP instance Z, one

might expect that the C-RES complexity of CNF(Z) should not be worse, at least

within a constant factor, than the RES complexity of 4. We are going to show that

this presumption is correct.

Definition 3.50 (direct translation of SAT to CSP). A CNF formula 4 can be

transformed into a CSP instance Z = ((0, I) , I') as follows. The variables in Z would

be the variables in 4. For each clause C in 4, there is a nogood q(a) in I' if and only

if a is a minimal size truth assignment that makes C false.

Example 3.51. The CNF formula 4 = (x J Z) A (y F) A (z) A (z) can be transformed

into a CSP instance Z = ((0, I) , I'), where I' = {q(x = 0, y = 1, z = I) , q(y = 0, z =

11, d x = 1 1 1 rl(z = 0)).

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 44

Proposition 3.52. Let 4 be a CNF formula. Let Z be the CSP instance which is the

direct transformation of 4 to CSP. Then,

Proof. Let 4 be a CNF formula. Let Z be the CSP instance that is the direct trans-

formation of 4 to CSP. For RES(4) < C-RES(Z), suppose .rr is a C-RES refutation of

Z , i.e., a RES refutation of CNF(Z). We will construct a RES refutation of 4 of size

a t most When $ is transformed to Z , each clause C in $ is mapped to a nogood

Nc such that

x E C H (x = 0) E Nc and T E C t, (x = 1) E Nc.

Then, when Z is transformed to CNF(Z), each Nc is encoded as a constraint clause

C^ where
A

(x = O) t N c t, ~ E C and (x = l) ~ N c t, S E E
-

Now, construct ii by replacing all occurrences of a and x : 1 in .rr with x , and all x : 1

and x : 0 with T. The constraint clauses in .rr will be converted back to clauses in 4.
Domain and unique value clauses will become (x T) which is a tautology. So, ii is a

RES refutation of the formula 4 A (x T) . To eliminate (x T) in ii, we modify each

derivation step involving (x T) according to one of the following:

What we obtain is a RES refutation of 4 of size at most

For C-RES(Z) < 3 . RES(+), suppose .rr is a RES refutation of 4. Let A be a

mapping from clauses in 4 to clauses in CNF(Z) such that for C a clause in 4,

X E C t, S E E and T E C H

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 45

Then, for each derivation step

in T, we change it to

The resulting derivation is a RES refutation of CNF(Z) and is of size at most three

times of T .

The tree-like case is similar. 0

3.3.2 Separation of tree-C-RES from C-RES

Employing the result from the previous subsection, together with Ben-Sasson's [7]

exponential separation of tree-RES from RES, we get an exponential separation of

tree-C-RES from C-RES.

Theorem 3.53 (Separation). There exists an infinite family of CSP instances {Z,)

such that

Proof. [7] presents an infinite family of unsatisfiable CNF formulas (4,) such that

I 4, 1 = O (n) , RES(4,) = O (n) and tree-RES(4,) = 2"("/'"gn). Let Z, be the direct

transformation of 4, to CSP. By Proposition 3.52, we have

C- RES (Z,) 5 3 . RES (4,) = O(n) and

tree- C-RES(Z,) 2 tree- RES(4,) = 2"(n110gn).

CHAPTER 3. RESOLUTION-BASED PROOF SYSTEMS FOR CSP 46

3.3.3 Separation Upper Bound

Another immediate result from Ben-Sasson's paper is an upper bound for the separa-

tion between tree- C-RES and C- R ES.

Theorem 3.54. For any unsatisfiable CSP instance 1, if S = C-RES(Z), then
tree- C-RES(Z) = 20(SI'Jg 1% S/ 1% S) .

Proof. [7] proves that for any unsatisfiable CNF formula 4, if S = RES(q5), then

tree- RES (4) = 2•‹(S'0g'0g S/'Og '1. Therefore, for every unsatisfiable CSP instance Z,

if S = C-RES(Z) = RES(CNF(Z)), then tree-C-RES(Z) = tree-RES(CNF(1)) =
2 0 (S log log s/ log S) 0

Chapter 4

Relative Efficiency of Resolution

Systems

In this chapter, we compare the relative power of the CSP refutation systems NG-RES,

C-RES, and their restricted tree-like versions. We first show that NG-RES can

simulate tree-C-RES efficiently. Then we prove exponential separations between

tree-NG-RES and tree-C-RES, and also between NG-RES and C-RES.

4.1 tree-C-RES vs NG-RES

We show that NG-RES can efficiently simulate tree-C-RES in this section. Through-

out the proof, one can observe a close relationship between NG-RES and negative

resolution (N-RES). An NG-RES refutation of a CSP instance Z is essentially an

N-RES refutation of CNF(Z). For our convenience, we use N-C-RES to denote neg-

ative resolution for CNF(Z).

Definition 4.1 (N-C-RES). An N-C-RES refutation of a CSP instance Z is a

negative resolution refutation of CNF(Z).

CHAPTER 4. RELATIVE EFFICIENCY OF RESOLUTION SYSTEMS 48

4.1.1 Simulations

To prove the simulation, we start by showing that NG-RES and N-C-RES can simu-

late each other. Then, together with the fact that N-RES can simulate tree-RES, we

can prove that NG- R ES simulates tree- C- R ES.

Proposition 4.2 (NG-RES and N- C- RES efficiently simulate each other).

For any n-variable CSP instance Z, with domain size d,

1. if there is an N-C-RES refutation of Z of size S, then there is an NG-RES

refutation of Z of size at most S, and

2. if there is an NG-RES refutation of Z of size S, then there is an N-C-RES

refutation of Z of size at most dS + n.

Proof. Let Z be an n-variable CSP instance with domain size d.

Suppose there is an N-C-RES refutation 7r of Z of size S. Note that 7r is a

negative resolution refutation of CNF(Z). The only clauses in CNF(Z) containing

positive literals are the domain clauses. Since every resolution step in a negative

refutation must involve a negative clause and the domain clauses are all positive,

once we resolve a negative clause with a domain clause on some variable x :a i , we

have to keep resolving on the rest of the variables in the domain clause until we get

a negative clause. Therefore, every negative clause in 7r must be either an element of

CNF(Z) or derived as follows:

where each Xi contains negative literals only. We can construct an NG-RES refutation

CHAPTER 4. RELATIVE EFFICIENCY OF RESOLUTION SYSTEMS 49

of Z by replacing each of the derivation steps which looks like the above with

where v:a E Xi if and only if (v = a) E Ni, 1 5 i 5 d. So, there is an NG-RES

refutation of Z of size at most S.

For the second part, suppose .rr is an NG-RES refutation of Z of size S. We

construct an N-C-RES refutation .rrl of Z by replacing every NG-RES derivation step

in .rr with a corresponding resolution derivation that makes use of a domain clause

(as shown in the RES derivation above). It is clear that .rrl is a negative resolution

refutation. Since (x: al x : a2 . . . x: ad) is a domain clause in CNF(Z) and each leaf in

.rrl is a constraint clause in CNF(Z), .rrl is indeed an N-C-RES refutation of Z. There

are at most n domain clauses and each nogood derived in .rr corresponds to d derived

clauses in .rrl. Therefore, d is of size at most d S + n. 0

Proposition 4.3 (N - R E S efficiently simulates tree-RES) . For any CNF for-

mula $ with n variables, if there is a tree-RES refutation T of $ of size S, then there

is an N-RES refutation .rr of $ of size at most nS.

Proof. (By induction on n) The base step is trivial. Assume the claim is true for

CNF formulas with less than n variables. Let $ be a CNF formula with n variables.

Suppose there is a tree-RES refutation T of $ of size S. Let x be the variable which

is resolved on to derive the empty clause in T . Let Tz be the tree-RES derivation of

Z and Tx be the tree-RES derivation of x. Then, Tz[,=1 is a tree-RES refutation of

using the resolution rule and possibly also the weakening rule (Proposition 3.7).

By inductive hypothesis and Proposition 3.5, has an N-RES refutation TF of

size at most (n - 1) 1 Tzl. "Plugging" 3: back into .rrz yields either an N-RES refutation

of $ (we are done in this case) or an N-RES derivation of : from $ of size at most

(n - 1)I Tzl (see Proposition 3.8 for details).

CHAPTER 4. RELATIVE EFFICIENCY OF RESOLUTION SYSTEMS 50

Similarly, Tx[,=o is a tree-RES refutation of $[x=o. By inductive hypothesis,

$ rx=o has an N-RES refutation nx of size at most (n - 1) (Tx I . For each leaf C of

n,, if C 4 4, then (C x) must be in $ and C can be derived from (C x) and :
(where : can be derived in at most (n - 1)I TFI steps). The number of such C's is

at most I T.1. Hence, we can construct an N-RES refutation of $ of size at most

(n - 1)IT'I + (n - l)(TxI + ITXI < n(lT'I + ITXI + 1) = n S . 0

Proposi t ion 4.4 (N-C-RES efficiently simulates tree-C-RES). For every n-

variable CSP instance Z, with domain size d , if there is a tree-C-RES refutation T of

Z of size S, then there is an N-C-RES refutation T of Z of size at most ndS.

Proof. Let Z be an n-variable CSP instance with domain size d. Suppose there is a

tree-C-RES refutation T of Z of size S . Then T is a tree-like resolution refutation of

CNF(Z) which has nd variables. By Proposition 4.3, there exists an N-RES refutation

T of CNF(Z) of size at most ndS. By definition, T is an N-C-RES refutation of Z.

Therefore, there is an N-C-RES refutation of Z of size at most ndS. 0

Corollary 4.5 (NG-RES efficiently simulates tree-C-RES). For every n-

variable CSP instance Z, with domain size d, if there is a tree-C-RES refutation

T of Z of size S, then there is an NG-RES refutation T of Z of size at most ndS.

In this section, we compare the relative power of tree-NG-RES and tree-C-RES. We

show that tree- C- RES efficiently simulates tree-NG-R ES, but the converse does not

hold. There is an exponential separation of tree-NG-RES from tree- C-RES.

4.2.1 Simulation

Any tree- NG- RES refutation can be efficiently transformed into a tree- C- R ES refu-

tation with only a small blowup in size.

CHAPTER 4. RELATIVE EFFICIENCY OF RESOLUTION SYSTEMS 5 1

Proposition 4.6 (tree-C-RES efficiently simulates t ree-NG-RES) . For any

CSP instance Z, if there is a tree-NG-RES refutation of Z of size S, then there is a

tree-C-RES refutation of 2 of size at most 2 s .

Proof. Let Z be a CSP instance and d be the domain size of 2. Let T be a tree-NG-RES

refutation of 2. We can transform T into a tree-C-RES refutation by replacing every

NG-RES derivation step with a tree-C-RES derivation (as in the proof for Proposition

4.2). Note that in a tree-like derivation, every nogood (or clause) is used at most once

to derive other nogoods (or clauses). For each NG-RES derivation step with d input

nogoods, the corresponding tree- C-RES derivation has 2d input and intermediate

clauses. Hence, the resulting tree-C-RES refutation is of size at most 2 s . 0

4.2.2 Separation of tree-NG-RES from tree- C-RES

The implication graph contradictions defined in Chapter 3 have poly-size tree-C-RES

refutations. Hence, they also separate tree-NG-RES from tree-C-RES.

Lemma 4.7. For any circuit G with n vertices, tree-C-RES(IMPG,s,T,d) = 0(d2n)

Proof. Let G = (V, E) be a circuit with n vertices. Let S and T be the sets of sources

and targets in G. CNF(IMPG,s,T,d) consists of the following clauses:

Source axioms: (3) for every vi E S

Target axioms: (m) for every vi E T, and for all a E [d]\{l)

--
Pebbling axioms: (z,: xj : b xk : 1) for every vk with predecessors vi and vj, and for

all a , b E [d]\{l)

Domain clauses: (xi : 1 xi : 2 - . xi : d) for every vi E V

Resolving the domain clauses with the Target axioms, one can derive (xt : 1) for

each target vt. Then, one can derive (xi : 1 x j : 1 a) for each internal vertex vk with

predecessors vi and vj by resolving the Pebbling axioms with domain clauses. This

derivation is of size 0(d2n) .

CHAPTER 4. RELATIVE EFFICIENCY OF RESOLUTION SYSTEMS 5 2

Pick a target vt in G and infer (xi : 1 x j : 1) by resolving (xt : 1) and (xi : 1 xj : 1 3)
together, where vi and vj are predecessors of vt. Let L = {vi, vj) and C = (xi : 1 x j : 1).

We then recursively do the following until L becomes empty. Take a vertex vi from L.

If vi has predecessors vl and v2 (i.e., vi is not a source), then let C be the resolvent

of C and (xl : 1 x2 : 1 a), and add vl and v2 to L. Remove vi from L.

Eventually, we will have a clause (xil : 1 xiz : 1 . xi, : 1) such that vill vizl - * -,
and vim are all sources. Together with the Source axioms (xi, : l), 1 5 j 5 m, we

can derive the empty clause. This requires at most n derivation steps (one for each

vertex). Since each derived clause is used at most once to derive other clauses, it is a

tree-like derivation. Therefore, tree- C-RES (IMPG,S,T,d) = 0(d2n) . 0

Theorem 4.8 (Separation). For every integer d > 3, there exists an infinite family

of CSP instances {I,), with domain size d, such that

Proof. Let d 2 3 be some fixed integer. [12] gives an infinite family of circuits {G,),

with IV(G,)I = n, for which PGn (S, T) = a (n / logn) where S and T are the sets of

sources and targets in G. Lemma 4.7 implies that tree-C-RES(IMPGn,S,T,d) = 0(d2n) .

Moreover, from Theorem 3.34, we know that tree-NG-RES(IMPGn,S,T,d) = a ((d -
~) P G ~ (S , T)) = (d - l)"(n/l"gn).

4.2.3 Separation Upper Bound

The separation upper bound presented below follows immediately from our earlier

results. Most likely, there exists a slightly better bound which may be obtained by a

direct proof. We will leave this as a possible future work.

Theorem 4.9. For any n-variable unsatisfiable CSP instance 1 with domain size d,

if S = tree- C- RES(1) , then tree- NG- RES(1) = d0(nd3S10~10g S/ logS > a

Proof. Let S = tree-C-RES(1). By Corollary 4.5, NG-RES(1) < ndS. So, by the

upper bound on the separation between NG-RES and tree-NG-RES(Theorem 3.45),

we have tree-NG-RES (1) = log log S/ log
>. 0

CHAPTER 4. RELATIVE EFFICIENCY OF RESOLUTION SYSTEMS 53

4.3 NG-RES vs C-RES

We now turn to the major result we obtained. We present a new exponential separa-

tion between NG-RES and C-RES by constructing an infinite family of CSP instances

such that there exist poly-size C-RES refutations for the instances but any NG-RES

refutation of them is of exponential size.

4.3.1 Simulation

Before proceeding to show the separation, we give a corollary stating that C-RES

simulates NG-RES efficiently.

Proposition 4.10 (C - R E S efficiently simulates N G - R E S) . For every n-variable

CSP instance Z, with domain size d, if there is an NG-RES refutation of Z of size S,

then there is a C-RES refutation of Z of size at most d S + n.

Proof. Since an N-C-RES refutation is a C-RES refutation and an NG-RES refuta-

tion of size S can be transformed into an N-C-RES refutation of size at most d S + n

(Proposition 4.2), the claim is true. 0

4.3.2 Separation of NG-RES from C-RES

The best obviously known separation between C-RES and NG-RES is a super-

polynomial one.

Theorem 4.11 (Mitchell [27]). There is an infinite family of CSP instances MPH,

such that

We improve the separation from super-polynomial to exponential by showing that

there is an infinite family of CSP instances MGTL such that C-RES(MGTL) = 0(n3)

but NG-RES(MGTL) = 2"(").

CHAPTER 4. RELATIVE EFFICIENCY OF RESOLUTION SYSTEMS 54

Our family of CSP instances, MGT;, is based on the unsatisfiable CNF formula

GT, introduced by Krishnamurthy [22]. For each n E N, GT, encodes the negation

of the fact that every loopless transitive directed graph with n vertices and with no

2-cycles must have a source. The contradictory statement can be stated as a CNF

formula containing the following clauses:

where xi,j takes value 1 if and only if there is an edge from i to j .

The first three sets of clauses ensure that the graph is loopless, transitive, and free

of 2-cycles, respectively. The clauses in (4) assure that for each vertex j, there exists

some vertex i such that there is an edge from i to j, i.e., there is no source. It has been

proven by StAlmarck [37] that there is an 0(n3)-size resolution refutation of GT,.

Bonet and Galesi gave a modified version of GTn, MGT,, in [lo]. For each j E [n],

they introduced n + 1 new variables Yo, j l . . . , yn,j and replaced the clauses in (4) by:

(4*) Yo,j A A (~ i - l , j V Xi , j V yij) A Yn,j J' E [n]
i~ [n]

The total number of variables is still 0 (n2) but MGT, has constant width clauses.

It is easy to see that we can derive the clauses in (4) from those in (4") by resolving on

the y variables and this takes 0 (n2) steps. Then, by applying Stiilmarck's 0(n3)-size

refutation of GT,, we can obtain an 0(n3)-size resolution refutation for MGT,. (From

this refutation, we will later construct an analogous 0(n3)-size C-RES refutation for

MGTL.) To show that our instance MGT; is hard for NG-RES, we will need the

following important property of MGT, (proof in Appendix B):

Theorem 4.12 (Bonet and Galesi [lo]) . Any resolution refutation of MGT, has

width R(n).

We are now ready to define our CSP instances that achieve the lower bound.

MGT; has the same set of variables as MGT, and the domain for each variable is

CHAPTER 4. RELATIVE EFFICIENCY OF RESOLUTION SYSTEMS 55

D = {1,2 ,3 ,4) . If cu is an assignment for MGTL, then

1 or 2 means there exists an edge from i to j
a(xi , j) =

3 or 4 means there is no edge from i to j.

So, every total assignment for the variables in MGTL corresponds to a directed

graph with n vertices. To encode the contradictory statement, MGTL consists of the

following nogoods:

(4') for each i E [n] ,

V (Y O , ~ = I) , YO,^ = 2)

q (~ i - l , j = C , X i , j = a 1 y. v . = b) j E [n] , a, b E {112) , c E (3 4)

'V(Yn,j = 3)1 q (~ n , ~ = 4)

We first show that there exists an 0(n3)-size C-RES refutation of MGTL.

Theorem 4.13. C-RES(MGT;) = 0 (n 3) .

Proof. The CNF encoding of MGTL contains the following clauses:
- -

(1") (xj,j : 1) , (xj , j : 2) j E [nl

(4 for each i E [n] ,
- -

(YOJ 1) , (Y0,j : 2)

CHAPTER 4. RELATIVE EFFICIENCY O F RESOLUTION SYSTEMS 56

With the clauses in (2") and the domain clauses of the x variables, we can derive

the clauses (zi,j xj,k:b xi,k:l xi,k:2), i, j, k E [n], i # j # k , a, b E {1,2), in

0 (n3) steps since there are 0 (n3) of them. Define

Then, by resolving the clauses in (4") together with the domain clauses of the y and x

variables, we obtain the clauses (X(1, j) X(2, j) . . . X(n , j)) for each j E [n], where
def

X(i , j) = (xij : 1 xi : 2). After that, by using the unit clauses in (I1'), we get the

clauses P,(j) for each j E [n], where Pm(j) is defined as

All these take 0 (n 2) steps. We also define B(m, j) as

which are just the clauses in (3").

Now, for each m < n and j 5 m, we can derive Pm(j) from Pm+l (j) ,A(i ,m+ l , j) ,

and B (m + 1, j) as shown in Figure 4.1. Once we get P2 (1) and P2 (2), the empty

clause can be derived in six steps (Figure 4.2). The C-RES derivation of Pm(j) is of

size O(n). Therefore, we need 0 (n3) steps in total to derive the empty clause.

0

We complete the separation by proving an exponential lower bound for NG-RES

on MGTL. The proof approach is inspired by [ll]. We show that if there is a short

NG-RES refutation of MGTL, then we can construct a narrow resolution refutation

of MGT,. Then, as we already knew that every refutation of MGT, is wide, we can

conclude that every NG-RES refutation must be exponentially long.

CHAPTER 4. RELATIVE EFFICIENCY OF RESOLUTION SYSTEMS

Figure 4.1: C-RES derivation of Pm(j)

CHAPTER 4. RELATIVE EFFICIENCY OF RESOLUTION SYSTEMS 58

Figure 4.2: C-RES refutation from P2(1), Pz(2), and B (2 , l)

Definition 4.14 (restriction). A restriction for a CSP instance Z = (27, I') forbids

some variables to take some domain values. A restriction p is written as a set of

variables with the forbidden values. For example, the restriction p = {x # 2, x #
3, y # 1) disallows x to take 2 and 3, and y to take 1.

Let p = {zl # a l , x2 # a2, . . . , xk # ak) be a restriction. Define N [, as the result

of applying p to a nogood N where

and for x a variable, a E D(x) ,

1 if (x = a) E N

N otherwise.

We define Z [, (2) [,, l? [,) , where

I?[, = { N : N ~ l ? a n d N [, # l)

vars(Z[,) = vars(Z)

27 [,(x) = D(x) \ {a : (x # a) E p) for all x E vars(Z[,).

If .rr = (Nl, N2, . . . , Ns) is an NG-RES derivation, define .rr [, to be (Nl [,, . . , Ns [,),
but with any Ni [, that is identical to 1 removed. Note that .rr[, is actually a subse-

quence of T .

CHAPTER 4. RELATIVE EFFICIENCY O F RESOLUTION SYSTEMS 59

Lemma 4.15. If n is an NG-RES refutation of a CSP instance Z and p is a restric-

tion, then there is a n NG-RES refutation of 2rp of width at most w(n[,).

Proof. It is enough to show the claim for just the unit case p = {x # a) and the

general case will follow from it.

Let Z = (V, I?) be a CSP instance and p = {x # a) be a restriction. Let n be an

NG-RES refutation of 2. Transform nrp inductively to an N G - R E S ~ ~ ~ ~ ~ refutation

n' as follows. Consider a nogood Ni in nr,. (x = a) must not appear in Ni since

N # 1 If Ni E I?, then Ni E I? r,. (Note that n r, is a subsequence of n.)

Otherwise, Ni must be derived, in n , by resolving some previous nogoods Nil, . , Nid

on some variable v. If v # x, then (x = a) does not appear in any of Nil , . - . , Nid

because (x = a) 4 Ni. So, Nil, . , Ni, must be in n Tp and they can be resolved to

derive Ni in nr,. If v = x, then there is a nogood Nia E {Nil , . . . , Nid) such that

Nia = q(x = a , Na) and thus Nia r, is not in n r, since Nia r,= 1. But, all the nogoods

in {Nil, - . - , Nid) \ {Nia) are in n r,. So, we can resolve them on x, over the new

domain of x, to get a subnogood of Ni. Then, we can derive Ni using the nogood

weakening rule.

Therefore, n' is an NG-REPwmk refutation of 11, of width w(n r,). By Proposi-

tion 3.18, there is an NG-RES refutation of 21, of width a t most w(n r,). 0

Lemma 4.16. If there is an NG-RES refutation of MGTL of size at most S , then

there is a resolution refutation of MGT, of width at most w, for any w > log S.

Proof. Let n be an NG-RES refutation of MGTL of size at most S. Let w > log S.

Define that a nogood is wide if its width is greater than w.

Define a random restriction p as follows. For each variable vi,j, v E {x, y), p

randomly picks a value a from {1,2) and a value c from {3,4), and restricts that

vi,j # a and vij # c. So, for every variable, a domain value is prohibited by p with

probability 112.

We say that a restriction is bad if not all wide nogoods in n are set to 1 by p. A

wide nogood would be set to 1 by p if there is some literal, (x = a) , in it such that

(x # a) E p. The probability that this is not the case is at most 112". Since there is

at most S nogoods in n , the probability that p is bad is at most S/2" which is less

CHAPTER 4. RELATIVE EFFICIENCY OF RESOLUTION SYSTEMS 60

than 1 as we have w > log S. Therefore, there must exist at least one good restriction

which would set all wide nogoods in T to 1.

Apply a good restriction p to IT. By Lemma 4.15, there is an NG-RES refutation

IT' of MGTLI, of width a t most w. After we apply p to MGT',, some initial nogoods

disappears. For example, for each j, two of the nogoods in (1') are set to 1 by p and

thus not included in MGTL 1,. Moreover, the domain size of each variable becomes 2.

where each of aij 's and bi,j's is equal to either 1 or 2 and each of cilj's and dij's is

equal to either 3 or 4.

Rename the variables xi, j : a i j , xi,j : ci,j, Yi , j : bi,j, and yi,j : di, j as zi,j, Xi , j , yi,j, and

yij, respectively. Now the constraint clauses of CNF(MGTL 1,) are exactly the clauses

in MGTn and the NG-RES derivation steps

rl(xij = Ci , j , N2) and rl(Yi, j = di,j7 N2)
rl(N1, N2)

X i , j E {ai,j, ~ i , ~ }
rl(N1, N2)

Yi , j E {bi,j, di,j}

in IT' can be transformed into the following resolution derivation steps

(1) (xivj XZ) and (Yi,j XI) (Yi , j X2)
(XI X2) (XI X2)

The resulting resolution refutation has the same width as IT'. Hence, there is a

resolution refutation of MGTn of width at most w.

CHAPTER 4. RELATIVE EFFICIENCY OF RESOLUTION SYSTEMS 61

Theorem 4.17. Any NG-RES refutation of MGTL must have size 2'(").

Proof. Let 7r be an NG-RES refutation of MGT;. Let S be the size of 7r. Pick

w = l o g s + 6, 6 > 0. It follows from Lemma 4.16 that MGT, has a resolution

refutation 7r' of width at most log S + 6. We know that any resolution refutation of

MGTn must have width R(n) (Theorem 4.12). Therefore, log S + E 2 R(n) , and thus

S 2 2"(,). Hence, any NG-RES refutation of MGTk must have size 2"("). 0

Combining Theorem 4.13 and 4.17, we get an exponential separation between

NG-RES and C-RES.

Theorem 4.18 (Separation). There is an infinite family of CSP instances MGT;

such that

Proof. It follows immediately from Theorem 4.13 and 4.17

4.3.3 Separation Upper Bound

We conclude our discussion with an upper bound for the separation between NG-RES

and C-RES.

Theorem 4.19. For any n-variable unsatisfiable CSP instance Z with domain size d ,

if S = C-RES(Z), then NG-RES(1) = 2• ‹ (S10g '0gS / ' 0gS 1-

Proof. Let S = C-RES(1). By Theorem 3.54, tree-C-RES(1) = 2•‹(S'0g'0gS/'0gS).

Then, by Corollary 4.5, NG-RES(Z) 5 nd2•‹(S'0g10g S / ' O g S) = 2 • ‹ (S ' o ~ 1 0 ~ S / ' 0 ~ S) . 0

Chapter 5

Conclusion and Future Work

5.1 Summary

In this thesis, we studied the proof systems NG-RES and C-RES which correspond

to d-way branching and 2-way branching respectively. We showed exponential separa-

tions among the systems and their restricted tree-like variants. The relative efficiency

of the proof systems are summarized in Figure 5.1. A "+" arrow from A to B means

that a B refutation can be transformed into an A refutation with only a small blowup

in size (blowup factor labelled on the arrow). A "*" arrow from A to B means that

B is strictly more powerful than A. For each separation presented, we also proved an

upper limit on the separation. These upper bounds show that most of the separations

are nearly optimal.

The exponential separation obtained between tree-NG-RES and tree- C-RES pro-

vides valuable information on the power of d-way and 2-way branching backtrack-

ing algorithms. We presented an infinite family of CSP instances IMPGn,~,T,d and

proved that there is an 0(d2n)-size tree-C-RES refutation of I M P G n , ~ , ~ , d , but any

tree-NG-RES refutation of I M P G , , ~ , ~ , ~ must be of size (d - l)"("/"gn). Hence, there

exists a 2-way branching algorithm which can solve IMPGnPS,T,d in polynomail time

(assuming optimal branching choices can be made in polynomial time), but any

tree-NG-RES bounded algorithm, including d-way branching enhanced with back-

jumping and forward checking, requires (d - l)"(n'lOgn) time to refute IMPcn,s,r,d.

CHAPTER 5. CONCLUSION AND FUTURE WORK

exponential separation ,
NG-RES . , C-RES

tree- NG- R ES . /' tree-C-
exponential separation

A

I exponential
separation '

exponential
separation

A simulates (x d)

,
I

simulates (x 2)

RES

Figure 5.1: Relative power of NG-RES, C-RES and their tree-like variants

CHAPTER 5. CONCLUSION AND FUTURE WORK 64

Our results also show that there are instances which are exponentially hard for

NG- RES, tree-NG- RES and tree- C-RES, and thus they are also exponentially hard

for NG- RES bounded, tree- NG-RES bounded and tree- C-R ES bounded algorithms

respectively in the sense that the algorithms cannot solve the corresponding instances

in less than exponential time.

Current commercial CSP solvers, such as ILOG Solver and E C L ~ P S ~ , use 2-way

branching by default. However, the option of branching on another variable rather

than trying other values of the same variable after backtracking is not implemented in

these solvers. According to the poly-size tree-like C-RES refutations of the instances

that separate d-way branching from 2-way branching, the advantage of trying any

variable after backtracking in 2-way branching is one of the main factors that makes

2-way branching much stronger than d-way branching. Further studies on variable

and value ordering heuristics for 2-way branching should be done to find out how to

obtain benefits from 2-way branching. We also expect that learning will become an

essential technique in effective CSP algorithms in the future.

Future Work

Several suggested directions for future research are listed:

1. Perform an experimental comparison of d-way branching and 2-way branching

on our hard CSP instances. The instances used to compare d-way branching

algorithms and 2-way branching algorithms in previous work did not yield sig-

nificant difference between the power of the algorithms. It is worth to run the

same algorithms on our instances to see how they perform.

2. Study variable and value ordering heuristics for 2-way branching. One possible

approach is to investigate our CSP instances that separate (tree-like) NG-RES

from (tree-like) C-RES and find out how to gain advantages from 2-way branch-

ing.

3. Further exploration of other restricted versions of NG-RES. This may lead to a

better understanding of the power of different techniques used in common CSP

CHAPTER 5. CONCLUSION AND FUTURE W O R K 65

algorithms. For example, in an ordered NG-RES refutation, every sequence of

variables labelled on a path from the empty nogood to a nogood in the refutation

must respect to the same variable ordering. The relative efficiency of this system

and general NG-RES will thus be useful in analyzing static variable ordering

heuristics in CSP algorithms.

4. Find a 2-way branching strategy to solve MGTL in 0(n3) time. That is, es-

tablish a variable branching ordering and a learning strategy to build into a

2-way branching algorithm so that it will always solve MGTL in 0(n3) time.

If such a strategy exists, then the current super-polynomial separation between

d-way branching algorithms with learning and 2-way branching algorithms with

learning can be improved to exponential.

5. Investigate the relative power between NG-RES and d-way branching with

learning, and also between C-RES and 2-way branching with learning, and

try to achieve analogous relationships as between resolution and clause learning

algorithms.

6. Improve the gap between the lower bound and upper bound of the separation

of NG-RES from C-RES to make it tight.

Appendix A

k2k Proof of the Inequality (2k) < - (4k)2k

This appendix contains a proof of the inequality used in Theorem 3.44.

Lemma A.I. () 5 (4 ~) ' ~ for uii integers Ic 2 4.

Proof. (By induction on Ic)

Basis: For Ic = 4, (4;4) = 4.88 x 1014 < 1.84 x lo1' = (4 4)24.

I.H.: Assume the claim holds for all values smaller than some fixed Ic.
Induction step:

k2k !
(k z k k) = 2k!(k2* - 2*)!

- - (k 2 k) . (k2k - 1) . .. (k2k-1 + 1) . (k 2 k - 1) . . . ((k - + 1) . ((k - 1) 2 ~ - ') !
2k . (2k - 1) . . . (2k-1 + 1) .2k-1! . (k2k - 2 k) . . . (k2k-1 - 2k + 1) . (k2k-1 - 2k)!

(k - 1)2k-1 (k 2 k) . (k2k - 1) . . . (k2k-1 + 1) k2k-1 . . . ((k - + 1)
= (2k-1) (k 2 k - 2 k) . . . (k 2 k - l - 2 k + 1) 2 k a (2 k - 1) . . . (2 k - 1 + 1)

5 (4 (k - l))2k-1 . (k 2 k) . (k2k - 1) . . . (k2k-1 + 1) k2k-1 . . . ((k - 1) 2 ~ - ' + 1) .: I .H.
(k2k - 2 k) . . . (k2k-' - 2k + 1) 2k . (2k - 1) - . - (2k-1 + 1)

. . . i - 5 - i - 1 for i 2 j
j j - 1

5 (4 (k - l))2k-1 . (k 2 k) . (k2' - 1) . . . (k2k-1 + 1) . (k - l) 2 r - 1 . . i i - 1 . - 5 - for i >_ j
(k2k - 2 k) . . . (k2k-1 - 2k + 1) j j - 1

(4k)2k > (k ~ ~) . (k2k - 1) . . . (k2*-' + 1) . (k - 1) 2 k - 1
It is enough to show that

(4 (k - l))2k-1 - (k2k - 2 k) . . . (k2k-1 - 2k + 1)

APPENDIX A. PROOF OF THE INEQUALITY (%K) j (4 ~) ~ '

. . . ((2 , - k) . + 1) 2 k - 1] . (k - 1) 2 k - 1 . - < - for i > j i i - 1
(2 k - k - 2) . 2k-1 + 1 . j - j - 1

2 k L l

2 k - 1 2 k - 2 i 2 - 1 -.-...- I . (k - 1) 2 k - 1 . . - <- for i > j
2 k - 3 2 k - 4 k - 2 . j - j - 1

We want to show L.H.S. > R.H.S., i.e.,

This is true since the inequality

holds whenever k > 4.

Appendix B

Width Lower Bound for MGT,

Theorem 4.12 (Bonet and Galesi [lo]). Any resolution refutation of MGT, has

width R (n) .

Recall that the CNF formula GTn consists of the following clauses:

And, MGTn is the conjunction of the clauses in (I) , (2) , (3) , and (4*) where

(4*) yo,j A A (~ i - ~ , j V x i , j V y i j) A Ynj j E [n]
i E [n]

Definition B.1. A critical truth assignment of the variables in GT, is a total as-

signment generated by the following algorithm:

Input: An undefined truth assignment a.
Output: A critical truth assignment a.
s + [nl; P +- 0;
while S is not empty do

Choose i in S ;
Set f f (~ ~ , ~) to O;
Set a(xi,j) to 1 for all j E S\{i);
Set a(xjri) to 0 for all j E P;

APPENDIX B. WIDTH LOWER BOUND FOR MGTN

S + S\{i}; P + P U {i};
end (while)
Output a;

A critial truth assignment corresponds to a linear directed acyclic graph over n

vertices and closed under transitivity. In such a graph, only the first vertex j in the

line does not have a predecessor. Therefore, the critical assignment satisfies all clauses

in GT, except the one for vertex j in (4). We call such an assignment a j-critical

assignment.

Now, let Bj be the formula for j in (4*). A j-critical assignment for MGT, is

obtained as follows. We first find a j-critical assignment for the x variables. Then,

we assign values to the y variables so that all the Bkls for k # j are made true and

Bj is made false.

Let Aj be the conjunction of the clauses (zij zj,i) for all i E [n], i # j . Let Cj

be Aj A Bj and let VARS(j) be the set of variables appearing in Cj. Notice that

VA RS (j) contains all variables that mention j .

Proof. [Theorem 4.121 Let 7r be a resolution refutation of MGT,. For each set I G [n] ,
define CI as Ai,, Ci. For any clause C, define p(C) to be the size of the minimal

nonempty set I G [n] such that every critical assignment satisfying CI also satisfies
A B C. Obviously, p is subadditive with respect to the resolution rule. That is, if 7,

then p(A) + p(B) 2 p(C) . Moreover, p({}) = n and p(C) = 1 for a11 C E Ci, i E [n] .

Therefore, there must exist a clause C in 7r for which ? < p(C) < %. We will show

that C contains a t least literals and this implies w(MGT,) = R(n).

Let I [n] be the minimal set such that all critical assignments satisfying CI also

satisfy C . Then, ? < 111 < F, Towards a contradiction, suppose ICI < :. We claim

that if S [n] and IS\ _> :, then there exists some i E S such that no variable from

VARS(i) appears in C. Hence, there is an 1 E I such that no variable in VARS(1)

appears in C. By the minimality of I, there exists an 1-critical assignment a such that

a(Cl) = O,a(C) = 0 and for all i E I\{l}, a(Ci) = 1. Let J = [n] \ I . Then, I JI >
since I Il < %. By the above claim again, there exists a j E J such that no variable

from VARS(j) appears in C. We will construct a j-critical assignment /3 from a such

APPENDIX B. WIDTH LOWER BOUND FOR MGTN 70

that ,B(Ci) = 1 for all i E I but ,B(C) = 0. This will contradict the definition of p. ,B

is built as follows. We first set ,B(xif) = a(xit j) for all i, j E [n]. Then, for all i # j,
if ,B(xif) = 1, we change it to 0. And, if , B (x ~ , ~) = 0, we change it to 1. Intuitively,

we take the linear ordering of the vertices corresponding to a and move the vertex j

to the beginning of the ordering. The change does not affect the value of C since no

variable in VARS(j) appears in C. After the change, , B (x ~ , ~) = 1 because a (~ i , ~) = 0

for all i E [n] (note that cu is an 1-critical assignment). What remains is to change the

values of yi,l, i E (0, . . . , n) in order to make ,B satisfy Cl. This change does not affect

the value of C either since no variable in VARS(1) appears in C. Furthermore, all

these changes do not alter the values of the Ci's, i E I\ (1). So, there exists a critical

assignment ,B such that ,B(Ci) = 1 for all i E I but ,B(C) = 0.

It remains to prove the claim. The indices of each variable x i f , i, j E [n], mention

at most 2 elements in [n]. Since we assumed IC1 < :, the variables in C mention less

than 9 different VARS() sets. That is, the variables in C mention less than $ =

elements in [n]. Therefore, if S [n] and IS1 2 :, there must exist some i in S such

that no variable in VARS(i) appears in C.
0

Bibliography

[I] M. Alekhnovich, J . Johannsen, T. Pitassi, and Alasdair Urquhart. An exponential
separation between regular and general resolution. Electronic Colloquium on
Computational Complexity (ECCC), 8(056), 2001.

[2] A. Atserias. On sufficient conditions for unsatisfiability of random formulas. J.
ACM, 51(2):281-311, 2004.

[3] F. Bacchus and P. van Run. Dynamic Variable Ordering in CSPs. In Ugo Mon-
tanari and Francesca Rossi, editors, Proceedings First International Conference
on Constraint Programming, pages 258-275. Springer-Verlag, 1995.

[4] Andrew B. Baker. Intelligent Backtracking on Constraint Satisfaction Problems:
Experimental and Theoretical Results. PhD thesis, University of Oregon, 1995.

[5] P. Beame, J. Culberson, and D. Mitchell. The resolution complexity of random
graph k-colourability. In preparation.

[6] P. Beame, H. Kautz, and A. Sabharwal. Understanding the power of clause
learning, 2003.

[7] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near-optimal separa-
tion of treelike and general resolution. Technical Report TR01-005, Electronic
Colloquium on Computational Complexity (ECCC), 2000.

[8] C. Bessikre and J.C. Rkgin. Arc-consistency for general constraint networks:
Preliminary results. In Proc. of IJCAI, pages 398-404, 1997.

[9] M. L. Bonet, J . L. Esteban, N. Galesi, and J . Johansen. Exponential separations
between restricted resolution and cutting planes proof systems. In Proc. of the
39th Annual IEEE Symposium on Foundations of Computer Science (FOCS'98),
pages 638-647. IEEE Press, 1998.

BIBLIOGRAPHY 72

[lo] M. L. Bonet and N. Galesi. A study of proof search algorithms for resolution
and polynomial calculus. In Proc. 40th Symposium on Foundations of Computer
Science, pages 422-432, 1999.

[ll] J . Buresh-Oppenheim, D. Mitchell, and T. Pitassi. Linear and negative resolution
are weaker than resolution. Technical Report TR01-074, Electronic Colloquium
on Computational Complexity (ECCC) , 2001.

[12] J.R. Celoni, W. J . Paul, and R.E. Tarjan. Space bounds for a game on graphs.
Mathematical Systems Theory, 10:239-251, 1977.

[13] Stephen A. Cook. An observation on time-storage trade off. In Proceedings of the
fifth annual ACM symposium on Theory of computing, pages 29-33. ACM Press,
1973.

[14] J. De Kleer. A comparison of ATMS and CSP techniques. In Proc. of the 11 th
Int'l. Joint Conf. on A. I. (IJCAI-89), pages 290-296, 1989.

[15] R. Dechter. Enhancement schemes for constraint processing: Backjumping, learn-
ing, and cutset decomposition. Artificial Intelligence, 41:273-312, 1990.

[16] R. Dechter and D. Frost. Backjump-based backtracking for constraint satisfaction
problems. Artificial Intelligence, 136(2):147-188, 2002.

1171 M. Dent and R. Mercer. Minimal forward checking. In Proceedings of the 6th
Int'l. Conf. on Tools with Artificial Intelligence., pages 432-438, 1994.

1181 D. Frost and R. Dechter. Dead-end driven learning. In Proc., Twelfth Nut. Conf.
on Artificial Intelligence (AAAI-94), pages 294-300, 1994.

[19] D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfaction
problems. In Proceedings of the International Joint Conference on Artificial In-
telligence, IJCAI'95, pages 572-578, Montreal, Canada, 1995.

[20] Matthew L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence
Research, 1:25-46, 1993.

[21] A. Goerdt. Unrestricted resolution versus N-resolution. Theoretical Computer
Science, 93:159-167, 1992.

1221 B. Krishnamurthy. Short proofs for tricky formulas. Acta Infomnatica, 22:253-
274, 1985.

BIBLIOGRAPHY 73

[23] A. K. Mackworth and E. C. Fkeuder. The complexity of some polynomial net-
work consistency algorithms for constraint satisfaction problems. Artificial In-
telligence, 25:65-73, 1985.

[24] D. G. Mitchell. Hard problems for CSP algorithms. In Proc., 15th Nut. Conf. on
Artificial Intelligence (AAAI-98), pages 398-405, 1998.

[25] David G. Mitchell. The Resolution Complexity of Constraint Satisfaction. PhD
thesis, University of Toronto, 2002.

[26] David G. Mitchell. Resolution complexity of random constraints. In Lecture
Notes in Computer Science, LNCS 2470, pages 295-309. Springer, 2002.

[27] David G. Mitchell. Resolution and constraint satisfaction. In Lecture Notes in
Computer Science, LNCS 2833, pages 555-569. Springer, 2003.

[28] M. Molloy and M. Salavatipour. The resolution complexity of random constraint
satisfaction problems. In Proc. of the 44th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS'03), pages 330-339. IEEE Press, 2003.

[29] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of
the 38th Design Automation Conference (DAC'Ol), 2001.

[30] V. Park. An empirical study of different branching strategies for constraint sat-
isfaction problems. Master's thesis, University of Waterloo, 2004.

[31] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computa-
tional Intelligence, 9(3) :268-299, August 1993.

[32] P. Prosser. MAC-CBJ: maintaining arc consistency with conflict-directed back-
jumping. Technical Report Research Report/95/177, Dept. of Comp. Sci., U. of
Strathclyde, Dept . of Computer Science, University of Strathclyde, 1995.

[33] R. Raz and P. McKenzie. Separation of the monotone NC hierarchy. In IEEE
Symposium on Foundations of Computer Science, pages 234-243, 1997.

[34] D. Sabin and E. C. Fkeuder. Contradicting conventional wisdom in constraint
satisfaction. In Proc. of the 2nd Int '1. Conference on the Principles and Practice
of Constraint Programming (CP'94)., pages 10-19, 1994. (Published as Springer
LNCS-874).

[35] T. Schiex and G. Verfaillie. Nogood recording for static and dynamic con-
straint satisfaction problem. International Journal on Artificial Intelligence Tools
(IJAIT), 3(2):187-207, 1994.

BIBLIOGRAPHY 74

[36] B. M. Smith and P. Sturdy. An empirical investigation of value ordering for
finding all solutions. Presented at the ECAI 2004 workshop on Modelling and
Solving Problems with Constraints.

[37] G. Stglmarck. Short resolution proofs for a sequence of tricky formulas. Acta
Informatica, 33:277-280, 1996.

[38] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik.
Efficient conflict driven learning in boolean satisfiability solver. In ICCAD, pages
279-285, 2001.

