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Abstract

The problem of a smooth rigid cylindrical indentor rolling across a viscoelastic half

space in one direction with variable speed is considered. The boundary of the half

space IS assumed to be free of Coulomb friction and the standard linear model is

adopted to describe viscoelastic material response. The indentor is assumed to be

in contact with the half-space over a time-dependent interval C( t), which is to be

determined. The normal pressure on the surface of the half-space must be continuous

and vanish outside the contact interval C(t).

A governing integral equation for a "pressure-like" function v(x, t), x E C(t) Vt > 0

is derived and an adaptive numerical algorithm is constructed for its solution subject

to appropriate subsidiary conditions. The results obtained with the help of this al

gorithm are compared and found consistent with those for the available steady-state

analytic solution. It is observed that more pronounced viscoelastic properties of the

material of the half-space lead to longer contact intervals, higher hysteretic friction

and more asymmetric pressure distribution. The shapes of the graphs of transient

and steady-state hysteretic friction for variable speed are substantially different. Af

ter a period of acceleration, the transient value of the hysteretic friction exceeds the

corresponding steady-state val ue.

The stress tensor components 0"11> 0"12 and O"n are computed and analyzed. Results

for the case of a time-dependent load are also obtained.

Keywords: viscoelasticity, hysteretic friction, transient
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Chapter 1

Introduction

The rolling contact problem has been of substantial interest to engineers and scientists

since time immemorial. The physical models of the phenomena taking place as a

rigid indentor moves across a viscoelastic half-space have numerous applications in

engineering and mechanics. The frictional losses occurring during the motion of an

automobile tire on an asphalt pavement, of a locomotive wheel on a rail, of a calender

on pulp mix or of a bushing in a roller bearing can be described by the same model

of linear viscoelasticity.

The surface ( Coulomb) friction, however, does not constitute the major part of

frictional losses in the material engaged in rolling contact. Experiments show that

most of the energy dissipation in the rolling contact problem is due to the internal

losses in the material termed hysteretic friction. To investigate this specific type

of problem, it is convenient to neglect the Coulomb friction altogether in order to

simplify the mathematics. Then the formidable general problem reduces to an ideal

ization amenable to analytical and numerical treatment. The frictionless assumption

allows one to focus on the essence of the viscoelastic material response and provides

an adequate theoretical framework for describing the behaviour of many materials,

including steels, rubbers and elastomers.

The object of this thesis is to investigate the behaviour of the hysteretic fric

tion in the transient non-inertial frictionless rolling contact problem of a single rigid

cylindrical indentor moving across a viscoelastic half-space modelled by the standard

1



CHAPTER 1. INTRODUCTION 2

linea,- solid.

After a case study in Chapter 2, the mathematical formulation of the problem is

given and the simplifying assumptions are stated. Thc nature of the hysteretic friction

is discussed following the model in Bowdcn and Tabor [11).

In Chapter 3 a mathematical formalism describing the original physical problem

is presented. The complex potential theory is used to derive the viscoelastic Kolosov

Muskhelishvili equations. An internal energy loss argument is employed to evaluate

the hysteretic friction.

In Chapter 4 the main integral equation is derived uSlllg the decomposition of

hereditary integrals and the solution of an elastic problem. The subsidiary conditions

for determining the boundaries a(t) and b(l) of C(t) at each moment of time tare

formulated. Thc general integral equation is reduced to the Case of a cylindrical

indentor and standard lincar model in the frictionless approximation. An approach

to handling the singularities in the main integral equation is also proposed and a

steady-state solution for a constantly moving indentor is computed.

In Chapter 5 modern numerical methods for solving the main integral equation

are surveyed. A general computational algorithm is proposed and its implementation

is discussed, including a numerical treatment of integral singularities.

In Chapter 6 the numerical results are presented for several patterns of indentor

speed and loading variation. The discussion is focussed on the Cases of constant

acceleration, acceleration followed by deceleration, periodic acceleration and periodic

loading. The characteristic parameters of motion chosen for the comparison of the

results are the contact interval width, indentor tip shift ( a measure of asymmetry

of the contact interval) and the coefficient of hysteretic friction. It is observed that

the shape of the graph of the hysteretic friction mimics the shape of the graph of the

indentor tip shift. It is deduced empirically that the hysteretic friction has a peak

following a period of acceleration. In most cases, the transient hysteretic friction

follows the steady-state hysteretic friction with a time delay. This effect is especially

evident for the case of a variable load. Stress distributions are presented for all stress

tensor components for all types of speed and loading variation patterns.

In the conclusion the results are summarized and possible directions of further
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research are proposed. The latter include the contact problem for more than one

indentor and for a single indentor moving to and fro.
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Chapter 2

Viscoelastic Contact Problem

2.1 Historical Remarks

The viscoelastic rolling contact problem has been of substantial interest to engineers

and scientists since the time of Leonardo da Vinci. However, it was not until the late

XVIII century that the first acceptable formalization of the friction phenomenon was

proposed by Coulomb [21]. The investigations of this outstanding French scientist

lead to what we now know as Coulomb's Law of Friction. As part of his research,

he experimented with the rolling of wooden cylinders and observed the relationship

between the coefficient of friction, the radius of the cylinder and the load acting upon

it. Nevertheless, it was a young French engineer Dupuit [27], who first related the

frictional resistance of rolling bodies to their inelasticity, but his work was largely

forgotten.

Further developments lead to several simple models being proposed to describe

the behaviour of materials with memory. The first to appear was the Maxwell model

[89] which treats such materials as a combination of a spring and dashpot as shown in

Figure 2.1: In this model the elastic properties of the spring are offset by the damping

properties of the dashpot. Among later models we should mention the Voigt model,

the standard linear solid and the power law model ( see, e.g., [19, 121] ).

A substantial theoretical breakthrough in the formal side of the viscoelasticity

theory can be attributed to Boltzmann [9], who introduced the concept of hereditary

4



CHAPTER 2. VrSCOELASTrC CONTACT PROBLE!',]

(2.1.1)

(2.1.3)

(2.1.2)

E"E'
cr

= !WR(1-v2
)

ao y 1fE

2W (2 2)P = -2 aO- x ,
lrao

where W is the normal load per unit length of tbe cylinder, R is tbe cylinder radius,
E and v are the Young's modulus and tbe Poisson's ratio respectively.

integrals and derived a constitutive equation for such material:

a(x, t) = ;3[(x, t) +1'00 m(t - T)([(X, t) - [(x, T))dT,

Figure 2.1: The Maxwell model: a -. stress, f' - spring element, f" - dashpot element

where a(x, t) and f(X, t) are stress and strain tensors respectively,;3 > 0 is a constant,
m(t) is a positive, monotonously decreasing function.

An experimental substantiation of this mathematical formalism was provided by
Reynolds [107], who proposed the first theory of viscoelastic rolling friction which
established parallels between sliding and rolling friction. His classic experiments in
volving the rolling of metal cylinders over a flat rubber surface illustrated graphically
the concept of hysteretic losses in the material and exposed the variable nature of the
contact patch between the indented material and the moving indentor.

A major contribution to the theory of contact problems was made hy Hertz [62],
who considered the steady-state static contact between a rigid cylinder and an elastic
half-space as shown in Figure 2.2. Hertzian analysis applies only to small displace
ments, i.e. for do ~ R. It can also be used as an approximate solution for larger
displacements. A physical reason for restricting do is that we can neglect the defor
mations inside the roller due to the reaction forces induced by the deformation of
the rubber-like material under it [92]. The Hertzian analysis provides a means of
calculating the extent of the contact interval and the pressure p at the point x inside
it:
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Figure 2.2: Hertzian contact: [-ao, ao] - contact interval, 0 - centre of the cylin
der, R - radius of the cylinder, Xo - point of deepest indentation of tbe half-space,
X - current point coordinate, d( x) - vertical displacement at x, do - maximum verti
cal displacement, W - normal load

In the beginning of this century significant progress has been made in the applica

tion of the complex potential theory to the elastic contact problem by Kolosov [77].

Subsequent expansion of the theory by N1uskhelishvili summarized later in his classi

cal monograph [98] resulted in the derivation of the Kolosov-Muskhelishvili equations

relating stresses to complex potentials for the indentation problem. At approximately

the same time as Kolosov, Volterra [124] formulated what has later become known

as the Classical Correspondence Principle [83, 84, 105]. A common modern interpre

tation of this principle ( see, e.g., [19,45,121) postulates that a viscoelastic solution

can be obtained from the known elastic solution to the corresponding boundary value

problem, provided the boundary regions do not change with time. To construct a

viscoelastic solution, one must take an integral transform ( Laplace or Fourier, as ap

propriate ) of the viscoelastic field equations and boundary conditions. The resulting

transformed relationships will have the form of an elastic boundary value problem, to

which the solution is known. An inverse transform of this solution ( in transformed

quantities) will then deliver the viscoelastic solution of the original problem.
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As one can see from the definition, the requirement that the boundaries be station

ary renders the Classical Correspondence Principle inapplicable to moving load prob

lems [106]. However, a generalization of this principle including some classes of mixed

boundary value problems with time-dependent regions is possible ( see [.52, 53, 55) ).

The appearance of modern computational tools sparked rapid development of the

viscoelastic theory of rolling friction in the 1950s and 60s. The widely cited work

of Tabor [115] and Greenwood and Tabor [.58] provided an explanation for the phe

nomenon of hysteretic, or internal, friction; Lee and Radok [8.5], Morland [93], [94],

[9.5] and Hunter [64], [6.5) subsequently contributed to the solution of the viscoelastic

contact problem. Of particular interest to us is Hunter's paper [65], where a solution

is provided for the rolling contact of a rigid cylinder with a viscoelastic half-space. It

represents the first solution of this type of problem, albeit in the steady-state case,

and traditionally serves as a yardstick for validating the new results [45]. The non

inertial approximation and the standard linear model used by Hunter are also the

basic assumptions employed throughout this thesis. Ylorland investigated the same

problem in his paper [9:3], while his later work was largely devoted to the rolling of

viscoelastic cylinders. The results of [93J are similar to those of [65}; the latter were

obtained using a different method. Oden and Lin [102J discussed the contact problem

in application to a viscoelastic cylinder, while Panek and Kalker [103] considered a

three-dimensional contact of a rigid indentor with a viscoelastic half-space. The slid

ing of a rigid indentor across a viscoelastic material drew the attention of Nachman

and Walton [99). Walton et uf. [126] and Walton [125J incorporated frictional effects

into the aforementioned model.

Subsequent ramifications of the original viscoelastic contact problem lead Alblas

and Kuipers [3J to consider steady-state motion of a rigid cylinder over a thin vis

coelastic layer in the absence of friction. They proposed an analytic solution obtained

through an approximation procedure and provided a numerical illustration. Aboudi

[1] developed an iterative algorithm for obtaining a numerical solution for the dynamic

rolling contact problem of a rigid sphere on a viscoelastic half-space described by a

power-law model. Akopyan [2J solved the periodic contact of two viscoelastic strips

pressed against a system of rotating viscoelastic disks by reducing the problem to a
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system of Volterra equations amenable to analytic treatment. In late 1980s Dobor

dzhginidze [24] incorporated the effects of slipping and traction into the contact of

two viscoelastic bodies. His analytical solution utilized }lellin integral transforms and

gave an approximate cstimate of the length of slipping and traction intervals. Also

worth mentioning here is an investigation into the contact of an ageing growing body

with a rigid base by Arutyunyan and Manzhirov [4J. This paper provides numerical

examples that describe stress distribution as a function of growth speed. Physically

the process is quite similar to the motion of an indentor of very large radius over

a viscoelastic body of finite dimensions. A discussion of a one-dimensional dynamic

contact problem can be found in [76].

The question of existence and uniqueness of solution for different types of con

tact problems has been addressed, among others, by Fichera [32], Duvait and Lions

[28], Kresin and ?vlazya [79], Ciobanu [20], Badalov and Csmanov [6], Khludnev [73],

Jarusek [67, 69] and Jarusek and Eck [68]. Results for generalized types of the vis

coelastic contact problem have been obtained, for example, by Carini and de Donato

[14] and Telcga [116], while Singh [l11J investigated some aspects of the contact prob

lem within the framework of microelastisity theory. . Solution methods based on

modifications of the Bubnov-Galerkin technique have been presented by Badalov and

Anzhiev [7], Badalov and Khuzhayarov [8J and Figueiredo and Trabucho [33, 34J. An

interesting technique involving the separation of the original contact problem into a

pure boundary value problem and a dynamic problem has been developed by Mark

and Meister [88J.

A comprehensive discussion of the contact problem can be found, for example, in

monographs by Galin [38], Hills et al. [63], Johnson [70] and Shames and Cozzarelli

[109J. Among the most recent treatises on the subject, we can mention those by

Drozdov and Kolmanovskii [25] and Drozdov [26]. We should also mention an seminal

paper by Gurtin and Sternberg [59] in this connection.

Of most interest to us is the decomposition of hereditary integrals, a technique

developed by Golden and Graham, which can naturally be applied to a wide class of

moving load problems. The first mentions of this technique can be found in [50, 51]

and [119, 120J. Golden [40] discussed an arbitrary shaped indentor sliding with a
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constant speed on a viscoelastic half-space without friction. He used the frictionless

and non-inertial ( quasi-static) assumptions to investigate the response of a material

with general relaxation and creep functions and showed that the problem reduces to

solving an integral equation with a non-singular kernel. The author then eliminated

the time dependency from this equation by carrying out. a variable t.ransformation

and derived an integral equation equivalent to the original problem. This equation

was treated analytically for both discret.e and cont.inuous spectra and an approximate

solution was provided for the case of equal decay constants. A later paper by the

same aut.hor [41J dealt with the frictional moving contact problem. He provided a

viscoelastic analog of the Boussinesq-Cerrut.i formula [87J and const.ructed a solution

in t.he small viscoelasticity approximation. Graham [54] considered a general contact

problem with adhesion and friction and provided some insight.s on how this problem

can be solved, while Golden [42]lat.er t.reat.ed t.he frictional contact problem. A t.hree

dimensional generalizat.ion of t.he steady-state indentation problem can be found in

Golden and Graham [45].

In cont.inuation of their previous research, Golden and Graham [43J outlined an

approach for solving t.he general transient moving load problem under the quasistatic

and frictionless assumptions. A det.ailed analytic solution in the small viscoelasticity

approximation has been developed in the above mentioned papers, whose main con

clusions were later summarized in [45J and [47J. Further developments in the same

area included [44, 46J concerning the three-dimensional steady-state normal inden

tation problem for a general viscoelastic material, [31], which dealt with the steady

state indentation of a half-space by several moving indentors and [48], where inertial

effects were incorporated into the model developed in [41 J.

From our standpoint, the approach described in [43], [45J and [47J suits the needs

of our research best. The mathematical model used throughout the works cited above

for describing the physical processes occurring in the transient moving load problem

of a rigid indentor traversing a viscoelastic half-space is sufficiently adequate for quali

tative analysis, mathematically transparent and amenable to numerical treatment. In

the rest of this chapter we shall discuss the basic assumptions underlying the model



in question and the restrictions placed upon its use by these assumptions. The phys

ical idealizations adopted with the Golden-Graham approach do not compromise the

qualitative validity of the result.s, at the same t.ime reducing substant.ially the amount.

of analytical and numerical work needed t.o be done and making the solution of the

original problem possible.

The result.s of this thesis were presented at the 1997 Annual Meeting of the Cana

dian Applied Ylat.hematics Society ( CAMS) in Toronto [16] and the :"iinth Y1eeting

of the Working Group of the Scientific Council on the World Ocean Problems of the

Russian Academy of Science in Moscow [17]. A summary of this work can also be

found in [18].
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2.2 Formulation of the Problem

We shall consider the problem of a single rigid indentor moving across a viscoelastic

isotropic half-space y > O. We shall assume that the indentor is moving in the

negative direction of the x-axis wit.h a known speed - V(t) ( V(t) > 0) as illustrated

in Figure 2.1. In view of the above, t.he coordinate of the point of deepest indentation

for any time t is given by:

xo(t) = - fa' V(r)dr (2.2.1 )

I

L

For the plane strain conditions to be satisfied, we must consider an indentor of infinite

length in the z direction. We shall restrict ourselves to the case of a uniform load

along the length of the indentor.

We shall assume that the motion has started at time to = 0, before which instance

the indentor had been resting for an infinitely long period of time, i.e., since "time

immemorial" t = -00. The origin of the coordinate frame associated with the problem

is placed at the point of the deepest indentation under the resting indentor.

The latter is being acted upon by a load W(t), whose value is prescribed for any

time. Being pressed into the viscoelastic half-space, the indentor forces the surface

underneath it to conform to the indentor's profile. The interval where such compliance

is perfect, i.e., where the indentor is in full contact with the half-space, we shall
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Figure 2.1: Schematic representation of the problem: C(t) = [a(t), b(t)] - contact in
terval, xo( t) - point of deepest indentation of the half-plane, x - current point
coordinate, u(x, t) - vertical displacement at x, d(t) - maximum displacement,
V(t) - indentor speed, W(t) - distributed load

hereinafter term the contact intaval denoting it as C(t) = [a(t),b(t)]. Here a(t) and

b(t) are the abscissae of the endpoints. The extent of C(t) is known a priori only at

times t s: 0, when it can be found using the technique described in later chapters. The

radius of the indentor R is chosen to be much larger than the length of the contact

interval. This assumption is necessary to remain within the framework of Hertzian

analysis and, essentially, the linear theory.

For the derivation of an expression for the displacement in the contact interval let

us turn our attention to Figure 2.2.

(2.2.2)

where IACI = x - xo(t). Also,

IABI = R-IOAI = R - JR2 -IACI2 (2.2.3)
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Figure 2.2: Approximate calculation of the derivative of the indentor profile for a
cylindrical indentor of large radius: xo(t) - point of deepest indentation, dmax 

maximum displacement ( occurring at the tip of the indentor with coordinate xo(t) ),
d( x) - displacement at x.

Hence,

d( x) = d(xo( t)) - IABI = d(xo( t)) - R + J R2 - (x - xo( t))2 (2.2.4)

Of particular interest to us will be the derivative of the displacement d(x). From

2.2.4,

d'(x) = _ x - xo(t) =

JR2 - (x - XO(t))2

x - xo(t)
(2.2.5)

Recalling that by assumption, x-~(t) ~ 1, we can approximate (2.2.5) as

d'(x) "'" _ x - xo(t)
R

(2.2.6)

l

to the first order of accuracy. We shall use (2.2.6) later in this thesis without stressing

its approximate nature. Also, because Xo = xo(t) for the moving indentor is a function

of the current instance of time t, we shall further use a widely accepted notation u(x, t)

instead of d(x) for the vertical displacement at point x inside and outside the contact

patch to emphasize the time dependency. The derivative of d(x) in (2.2.5) and (2.2.6)

will become a partial derivative with respect to x for u(x, t).



As the indentor starts moving. the shape and extent of the contact interval change.

To simplify the mathematics, we shall henceforth adopt a non-inertial approximation.

In our view, this idealization does not seem overly restrictive, since for gradually

varying speeds the resistance of the material of the half-space to the motion of the

indentor is far more substantial then the effect of inertial forces upon the latter. To

avoid the temperature dependence in the constitutive equations, we shall adhere to

the isothermality hypothesis.

By and large, in the rest of the analysis we assume that the shape of the in

dentor is circular. We also use the standard linear model as described in [45]. The

model in question is qualitatively adequate for theoretical purposes, being at the same

time quite simple in the mathematical sense. It allows one to evaluate the integrals

involving convolutions of the complex viscoelastic moduli in the closed form.

We shall also use frictionless approximation. It allows one to investigate the phe

nomenon of internal energy losses in the material within the theoretical framework

of linear viscoelasticity. Since the value of ordinary Coulomb friction in the case of

the rolling contact problem is relatively small ( see, e.g., [11] and [36] ), we can,

for theoretical purposes, neglect it in favour of focussing on purely hysteretic effects.

The impact of this assumption on the boundary conditions for the problem under

consideration will be spelled out in Chapter 3.

It is worth mentioning here, that the frictionless assumption may be replaced with

the so-called proportionality assumption when constructing a solution of the initial

boundary value problem. The proportionality assumption states that the shear and

bulk ( viscoelastic) moduli are proportional, from which fact it naturally follows that

the ( viscoelastic) Lame constants >.(t) and I'(t) are proportional. This leads to a

constant Poisson's ratio for the material and essentially allows one to describe the

creep behaviour of the viscoelastic material in terms of relaxation or vice versa. The

proportionality assumption is valid for all incompressible viscoelastic materials and

for small deformations of rubbers and elastomers.

Changes in the shape and extent of the contact interval lead to the redistribution

of pressure inside it. Having found the pressure distribution at every moment in time,

we shall be able to calculate the resisting force exerted inside the material by the

l
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moving indentor and relate it to the applied load. The resulting ratio, a dimensionless

quantity, is termed the coefficient of hysteretic friction. The determination of this

quantity, along with the length of the contact interval C(t) and the measure of its

asymmetry h(t) ( see Figure 2.1 ) presents the object of this thesis. A relationship

between the abovementioned parameters will be established and an explanation for

their behaviour will be provided for the case of transient motion.

2.3 The Nature of Hysteretic Friction

We shall now provide a brief explanation of the phenomenon of hysteretic friction

based largely upon [11], [36] and [92].

In any dynamic contact of two bodies there exists a frictional force opposing the

direction of motion. This force is due to molecular adhesion between the surfaces of

the two bodies and deformation of the bodies themselves ( see [92] ). First, consider

the adhesion component of friction. The experiments of Reynolds [107] with the

rolling of a metal cylinder on red bung rubber showed that the surface of the indented

material was stretched inside the contact interval by a visually detectable amount.

Reynolds's explanation of this phenomenon attributed the stretching to an interfacial

slip between the cylinder and the surface of rubber. However, as pointed out in [92],

the contribution of this microslip effect, and hence of the whole adhesion term, to

the total value of rolling friction is fairly small. It has been confirmed experimentally

( see [11] ) that lubrication of the contact surfaces does not substantially reduce the

total value of rolling friction. We must therefore conclude that a major part of the

latter has to be attributed to the deformation of the viscoelastic half~space.

For a perfectly elastic material, the application of an instantaneous stress leads

to an instantaneous development of strain. As soon as the pressure is removed, the

material immediately recovers and the strain vanishes. Therefore, as the rolling cylin

der advances along the surface of an underlying elastic material, the contact interval

remains symmetric, as shown in Figure 2.3

In fact, as the indentor inches forward, the pressure is being applied to the segment

[a( t); a( t - L'!.t)] of the new contact interval C (t) for the first time in the history of
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Figure 2.3: Rolling of a cylindrical indentor over elastic half-space. The contact inter
val is symmetric at all times: C( t - 6.t) = [-a( t - 6.t); a( t - 6.t)]; C( t) = [-a( t); a( t)].

motion. At the same time, the pressure is lifted from the segment [-aCt); -art - 6.t)]

and the material instantaneously regains its pre-stressed shape. The increase in pres

sure in the front of Crt) is fully compensated by its decrease in the rear and no

redistribution of pressure occurs. In other words, since the energy stored in the ma

terial in the process of deformation is fully released during the process of recovery, no

energy losses take place.

The picture is qualitatively different for a viscoelastic material. In this case in

stantly applied stress does not result in an instantaneous response any more. To

illustrate this behaviour, we refer to the so-called standard linem' solid, This rela

tively simple and quite transparent idealization allows us to describe qualitatively

the observed experimental data pertaining to such model. However, this model does

not seem to be adequate for quantitative analysis. The standard linear model is

represented in Figure 2.4-

Suppose that a fixed stress (7 is suddenly applied at time to to the model described

by the system depicted in Figure 2.4. The spring E1 is instantaneously deformed and

transmits the stress to a combination of spring E2 and dashpot '7 in parallel. Here
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E
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1)

Figure 2.4: Standard linear model. EI, E 2 - spring elements, 1J - dashpot element

the deformation is gradual and depends on the relationship between the values of the

Hooke's modulus of the spring material and the viscosity of the fluid in the dashpot.

Since we are only interested in viscoelastic solids, we assume that the dashpot is

characterized by a non-vanishing viscosity ( the fact that we are considering a solid

requires that E2 of. 0 ). This implies a finite value of strain E resulting from a finite

applied stress rJ. We can write:

E(t) = J(t - to)rJ,

where J(t) is the creep function. In the case of a standard linear solid

(2.3.1)

(2.3.2)

l

where t is the time, Jo and J1 are positive constants, r' is a positive decay constant.

A sketch of the behaviour of J(t) is represented in Figure 2.5. Note that for other

types of viscoelastic solids J(t) may diverge as ta
, a < 1. Observe also that a standard

linear solid eventually recovers after the applied stress has been removed. However,

this happens after a time delay that is caused by internal losses in the material.



or

I.

(2.3.3)

(2.3.4)

(2.3.5)

t

oo(t) = G(t - tole,

J(t) A

1(0)

-------------------~
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Figure 2.5: Creep function of a standard linear solid. J. = J(oo) = limt_oo J(t) _
elastic limit.

Suppose now that we suddenly apply fixed strain E to the model described by

Figure 2.4. The value of stress induced in the system will then gradually relax ,

absorbed by the viscous element represented by the dashpot. We can write:

where G(t) is the relaxation function. In the case of a standard linear solid

where t is the time, Go and G1 are positive constants, T is the positive decay constant

related to T' through

I Go +G1
T = T Go (2.3.6)

The quaJitative behaviour of G(t) is depicted in Figure 2.6. While internal molecular

forces in the body resist the deformation caused by the imposition of initial strain,

they eventually relax to their limiting value. This is reflected in the fact that G(t)

asymptotically tends to G. as time progresses.



The creep and relaxation phenomena help us explain the physical processes taking

place during the contact interaction of a rigid indentor with a viscoelastic half-space.

First, let us use a simplified model of a viscoelastic medium introduced in the analysis

of Bueche and Flam [35J and shown in Figure 2.7. Here the medium is treated as a

set of independent viscoelastic columns. As the indentor rolls over the surface, the

columns in the front of it are being depressed, while those in the rear are being freed

from normal pressure. A typical strain history of a column being subjected to a

suddenly imposed stress and then after a while released from pressure is shown in

Figure 2.8 As stress is applied to the column, i.e. the indentor rolls over it for the first

time ( point A on the graph ), the material responds elastically which results in an

instantaneous development of strain E( A). Throughout the period ( AB ) when the

stress is maintained, i.e. the column remains under the indentor, the material creeps

to a new value of strain E(B). At this point stress is removed, i.e. the column is left

behind the indentor ( point C on the graph ), and the material recovers elastically

with the value of strain changing from fiB) to E(C). Subsequent recovery is in the

form of creep which accompanies the decrease in the strain value from E(C) to E(D).

The last part of strain history ( CD) ends when the solid regains its pre-stressed

state. This simplified model has been used in an analysis by May at al. [90], who

l
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Figure 2.6: Relaxation function of a standard linear solid.
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Figure 2.7: Bueche and Flom model: An indentor moving across a viscoelastic half
space represented as a set of independent viscoelastic columns.

were the first to point out the existence of a global maximum of hysteretic friction as

a function of speed for a certain finite ( intermediate) value of the indentor speed.

If the speed of the indentor is low, the segments of strain history pertinent to

viscoelastic behaviour ( AB and CD) are shorter than the time required for the

indentor to move from one elementary column to another. Therefore we can assume

that only elastic recovery takes place and the picture is the same as in the case of

an elastic material. However, if the speed of the indentor is higher ( intermediate

speed ), an elementary column behind the indentor does not have enough time to

recover completely at the same time as the new column enters the contact interval

and is being depressed. Obviously, this situation can arise not only when the indentor

itself is moving at intermediate speeds, but also when the characteristic creep time for

the medi urn is large. It is well confirmed by experiment that the part of the contact

interval between the front point of contact and the point of deepest indentation is

larger than its rear part. In other words, the centre of the contact interval is shifted

in the direction of motion ( see Norman [100] ).

As the contact interval becomes deformed, the pressure inside it is redistributed.



Figure 2.8: Typical history of strain. A- stress is suddenly applied, B- stress is
instantaneously removed, C- mat.erial recovered elastically, D- material cont.inues to
recover viscoelastically ( complete recovery asympt.otically achieved at large times

In order for the indentor to remain in a state of equilibrium as required by the non

inertial hypothesis adopted earlier, an equal moment acting in the opposite direction

must exist. It is natural to assume that this moment is due to a force acting upon

where p(x, t) is the normal pressure at the point x inside the contact. int.erval.Not.ice

here, that the line of application of the resulting force W(t) passes through the centre

of the indentor. However, the resultant of the normal reaction N(t) of the viscoelastic

half-space under the indentor does not pass through the line of deepest indentation

any more, but rather is shifted in the direction of motion as shown in Figure 2.10.

This shift begets a moment about the centre of the cylinder. The value of the above

mentioned moment can be found as

20

(2.3.7)

(2.3.8)

t

D

1
1(0)

kI(t) = (x - xo(t))p(x,t)dx.
art)

A

c

B
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The total normal load W(t) acting upon the indentor remains unchanged:

l
b(t)

W(t) = p(x,t)dx,
a( t)
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(2.3.9)

Figure 2.9: Asymmetric contact interval.
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the indentor inside the contact interval and opposing the direction of motion. Since

we have adopted the frictionless hypothesis earlier, we must conclude that the nature

of this force lies outside the phenomenon of regular Coulomb friction. Such a force

can be computed by equating its moment to the resulting moment of pressure forces

and dividing it by the indentor radius R:

1 1 l b
(')

Fh(t) = RM(t) = R (x - xo(t))p(x,t)dx.
all)

For speeds much higher than intermediate, ( high speeds ), the impact of the in

dentor on a given viscoelastic column becomes almost instantaneous, and the material

response is elastic ( AB ). The contact interval again becomes symmetric, although

its length differs from the low speed case.

The Bueche and Flom analysis allows us to make important qualitative conclusions

about the existence of Fh . The model considered up to this point, however, does not

account for the shear stress between the elementary columns, which is responsible for

a substantial part of the force resisting the rolling of the cylinder. To remedy the

situation, the model can be improved to include interaction between the columns, as

is done, for example, in the Winkler medium [19J. We shall nevertheless return to the

general standard linear continuum model from now on.
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Figure 2.10: Dynamic equilibrium of the indentor on the half-space. Fh- hysteretic
friction, IV(t)- resultant of the normal reaction of the viscoelastic solid under the
indentor.

To comment on the physical nature of Fh , let us recall a well-known relationship

between stress and strain in materials with memory. A graphic representation of

this relationship is presented in Figure 2.11 and is called a hysteresis loop. The

shaded area inside the hysteresis loop represents the energy dissipated during the

loading-unloading cycle reflected hy the loop. Internal losses in the material are due

to energy irreversibly consumed during the rearrangement of molecules inside the

material and dissipated into heat. These losses do not occur in an elastic material

where all the energy required to deform the body is released in the process of its

recovery. In a viscoelastic material, however, such energy losses may be quite high.

The parallels between the way Fh and the ordinary Coulomb friction affect the rolling

of the indentor prompt one to term Fh hysteretic friction. As pointed out by Bowden

and Tabor in [11], even in metals hysteretic losses, or hysteretic friction, can reach

quite sizeable proportions. Hysteretic friction plays an important role in the analysis

of processes occurring in roller bearings, during the motion of a locomotive wheel on

the rail whenever it can be treated in the viscoelastic range ( i.e., when no plastic

deformation is accounted for ), in analyzing geological flows etc. When ordinary

l



Coulomb friction is left out of consideration, the theory of hysteretic friction offers

a theoretical framework that allows one to investigate this specifically viscoelastic

phenomenon in great detail.

A mathematical expression for hysteretic friction is derived in Section 3.3 on the

basis of energy considerations.

CHAPTER 2. VISCOELASTIC CONTACT PROBLElvI
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Figure 2.11: Hysteresis loop for materials with memory.
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Chapter 3

Mathematical Formalism

3.1 Constitutive Equations and Boundary Condi

tions

To derive a set of integral equations governing the behaviour of a viscoelastic material

under the previously stated conditions, we recall the elastic stress-strain relationship

( [113) )

a;j(r, t) = 2/1(;j(r, t) +O;)\€kk(r, t) (3.1.1)

. . < {O, i'; j .where a;j and €;j are the stress and stram tensors respectIvely, O;j = . IS

1, l = J
the Kroneker delta symbol, A and p are Lame constants. Here the stress at time t is

determined by the strain at time t and vice versa.

For an isotropic viscoelastic material, we must account for the previous history

of stress and strain in order to be able to determine their current values. This can

be achieved by incorporating the time dependency into all members of (3.1.1) and

replacing products with convolutions:

(3.1.2)

where r is the position vector of the given point (x, y).

In (3.1.2) A and p are viscoelastic response functions ( see, e.g., [45] ), o(t) =

24



Figure 3.1: Contact interval boundary: C(I) = [a(I), b(I)] - contact interval, xo(l) _
point of deepest indentation of the half-space, d(l) - maximum displacement, R _
indentor radius, x( I) - current point coordinate.

the point with coordinate x can be found from geometric considerations. Outside the

contact interval Cit) the displacement is unprescribed because the material relaxes

to its steady state only gradually. Hence the boundary conditions yield, in view of
(2.2.6):
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{
O. I # 0 {O. I < 0. ,J~oc 5(I)dl = 1 is the Dirac delta function, H(t) = . - is the
00, I = 0 I, I 2 0

Heaviside step function.

The above approach relating the elastic and viscoelastic constitutive equations al

lows for the application of the Classical Correspondence Principle [37], which provides

for the derivation of a viscoelastic solution from its elastic counterpart. This principle

can also be extended to include a wider class of problems as shown in [45].

The boundary conditions for the problem under consideration are as follows. Inside

the contact interval Cit) the surface of the viscoelastic half-space conforms to the

shape of the indentor as shown on Fig. 3.1 Therefore, the vertical displacement at

{
d(l) - (x-xo('))', x E C(t)

uy(x, t) = 2R

unknown, x if. Cit)

Since we shall henceforth be mostly interested in the vertical displacement, we shall

hitherto drop the y-subindex of u.

The pressure, contrary to vertical displacement, is zero outside Cit). Inside C(I)



3.2 Complex Variable Solution

the distribution of pressure, unlike in the elastic case, becomes asymmetric as the

indentor moves along and thus cannot be determined without the knowledge of all

previous history:

Coulomb friction is neglected and hence does not contribute to the boundary condi

tions.

As follows from the discussion in Chapter 2, the extent of the contact interval

depends on the whole history of strain and stress up to the present moment t. This

constant change of the contact interval boundaries with time renders the aforemen

tioned correspondence principles generally inapplicable. In view of this, we must di

rectly compute the solution from the governing field equations. The technique aimed

at attacking this problem is described further.
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(3.1.4)

(3.2.1)

:r E Crt)

:r rt Crt)

( nonnegative )unknown,

0,

O"l1(i, t) +0"22(i, t) = 2[4>(z, t) +¢(z, t)J = 4~[4>(z, t)]

p(:r,t) = {

CHAPTER 3. M/\THEMATICAI. FORMALISM

In this section we shall alternately use the proportionality assumption and frictionless

approximation mentioned in Section 2.2. The proportionality assumption allows one

to extend the results of subsequent derivation beyond the frictionless case, however,

it restricts the problem under consideration to almost incompressible materials. The

frictionless approximation, which is perfectly relevant in our case, lifts the latter

restriction, but on the other hand leaves out the possibility of extending the derivation

procedure to the frictional case. 0 matter how the resulting equations are derived,

their validity is determined by the physical parameters of the problem and one is,

therefore, at liberty to take any of the too routes in the derivation process, as long as

the underlying physical assumptions hold.

An analytic solution of the transient rolling contact problem for an isotropic vis

coelastic half-space is given by the ( viscoelastic) Kolosov-Muskhelishvili equations

[45]:



where ko is a constant. Observe here, that under the proportionality assumption

Now let us extend the region of analyticity of ¢(z, i) into the lower half-plane as

follows [98J:

The proportionality assumption immediately leads to D(w) Vo being a constant,

which, in turn, results in the following simple relationship between v(i) and Vo: vet) =

voo(t). Consequently, in view of (3.2.4) we can easily conclude that
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(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

(3.2.9)

k(t) = koo(t),

[co dt'k(t - t') = ko

k(w) = 3 - 4D(w)

D(w) = • ~(w)
2(,\(w) + {L(w))

. j+co
few) = -co dtf(t)e- iwt

¢(z, t) = -¢(z, t) - z;;"(z, t) - {J(z, i), 'Sz < 0 .

E(r, t) = a22(r, t) - iadr, t) = ¢(z, t) + ¢(z, t) + z¢'(z, t) + {J(z, t)

21.X> dt'Jl(t - t')D'(r,t') = Lx> dt'k(t - t')¢(z,t') - J(.Z,t)

-zq,'(z,t) - {J(=,t),

CHAPTER .1. MATHEMATICAL FORl'vlALISiVI

Recall here that the Fourier transform of a function f( t) is given by:

where ¢ and '1/-' are harmonic complex potentials defined for y > 0, i.e. inside the

viscoelastic half-space, E(f, t) is the complex stress on the boundary C(t), aij are

stress tensor components, D'(r. t) = :xU(f, t) is the derivative of the ( complex)

displacement.

The function k(t) is a so-called causal function whose Fourier transform for the

case of plane strain relates to that of the Poisson's ratio as

A relationship between ~(w), f1(w) and D(w) follows immediately from (3.2.4):
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Since 'Sz < 0, taking the complex conjugate of (3.2.9) yields:

1/;(z, t) = -,p(Z, t) - 6(z, t) - Z;;"(Z, t), 'Sz < 0 .

This Can be substituted into (3.2.1) - (3.2.3) to obtain:

28

(3.2.10)

I:(r,t) = 0"22W,t) - iO"dr,t) = ¢(z,t) + ,p(z,t) + (z - z);;"(Z,i) (3.2.11)

2/
00

di'p(t - tl)D'(r, t') = Lx> di'k(t - t'),p(z, t') + q,(z, t) + (Z - z)J,'(z, t) (3.2.12)

Equation (3.2.12) with the aid of (3.2.8) can immediately be reduced to:

2L", dt'p(t - tl)D'(i, t') = koq,(z, t) +¢(Z, t) + (z - Z)¢'(Z, t) (3.2.13)

For the purpose of simplifying (3.2.13) further, let us for a moment consider a

frictional generalization of the contact problem. Let us introduce the coefficient of

Coulomb friction f. Then:

Thus

L(X,t) = O"22(x,i) - iO"I2(X,t) = (I + if)0"22(X,t) = -(1 + if)p(x,t)

Denoting:

lim ¢>(z, t) = ¢>+(x, t)
~z-o+

lim ¢>(z, t) = q,-(x, i),
~z_o+

(3.2.14)

(3.2.15)

(3.2.16)

(3.2.17)

and taking the limit of (3.2.34) as z approaches the x axis from above yields with the

help of (3.2.15):

,p+(x, t) - q,-(x, i) = -(1 + iJ)p(x, i)

Also, for the complex conjugates:

¢+(x, t) - ¢-(x, t) = -(1 - iJ)p(x, t)

Defining K as:
1 - if

K=
1 +if'

(3.2.18)

(3.2.19)

(3.2.20)
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we obtain:
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(3.2.21 )

That is, the function ¢ - Kq, has a zero jump across the real axis. Assuming

that the boundary s resses along the x axis fall off as .;.r as x --> ±oo, which is a

physically reasonable assumption, we conclude, following Green and Zerna [57], that

q,(z, i) behaves as 1;1 for 1z1 --> 00. This clearly implies that both q,(z, i) and J,(z, i)

approach zero as Izi --> 00. Therefore. we must conclude from Liouville's theorem [821
that ¢(z,i) - Kq,(z,i) = 0 everywhere in the complex plane, or:

¢(z, i) = Kq,(Z, i).

Taking the complex conjugate of (3.2.13) and utilizing (3.2.22), we arrive at:

2 Lx> dt'J1(i - I')D'(Z, i) = koK</>(Z, i) + Krf>(Z, i) + (z - Z)rf>'(Z, i)

(3.2.22)

(3.2.23)

'vVe note in passing that the indented material lies in the upper half-space y > 0, which

is consistent with the chosen direction of the coordinate axes. By virtue of this, we

can justify subtracting (3.2.23) from (3.2.13) and taking the limit of the resulting

equation as z approaches the real axis from above to obtain the following relationship

on the boundary of the half-plane:

(3.2.24)

In the frictionless limit K = -1 and the above relationship holds. However, in view

of (3.2.22), we can take the imaginary part of (3.2.3) and rewrite it as:

jt 1 jt
2 -00 di'J1(t - il)U'(X,i) = 2i -00 di / [t5(t - I') + k(t - t')1 [rf>+(x,t ' ) + rf>-(x,t' )]

(3.2.25)

Equation (3.2.25) may be recast into a simpler form:

i /00 dt'/(t - tl)U/(X,t' ) = rf>+(x,t) + rf>-(x,t),

where
i(w) = 4jl~w) = jl(w)

1 + k(w) 1- v(w) ,

(3.2.26)

(3.2.27)
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which did not require the proportionality assumption in its derivation. This means

that in the frictionless case there is no need to assume proportionality between the

shear and bulk moduli.

We can now proceed to establish the boundary conditions on ¢>(z, f) both inside

and outside C(t). Outside the contact interval there are no stresses on the boundary

of the viscoelastic half-space and (3.2.18) yields:

qi+(x,l) - ¢-(x,l) = O,X tI- C(I)

Furthermore, under the proportionality assumption

(3.228)

l( t)
41'(t)

(3.2.29)
ko - r;;

1 - r;;ko f +ih
(3.2.30)1) =ko - r;; f - ih

h
ko + 1 2( l - v)

(3.2.31)-- ,
ko - 1 1- 2v

where both 1) and h are complex quantities. This allows us to rewrite (3.2.24) as

where v(x, t) is defined as

¢>+(x, t) - '7'P-(x, I) = iv(x, t),

v(x, I) = /00 dt'l(t - I')U'(X, t').

(3.2.32)

(3.2.33)

Observing that 1)ii = 1 and so 1111 = 1, we can set 11 = e'2'0,0 E [0, !J. Therefore,

CS1) 2fh _ 2 7
tan(27r0) = 10" = f2 _ h2 - 2'

"'- 1- 7
which is equivalent to tan(7r0) = 7or

1 h
() = ;arclany'

(3.2.34)

(3.2.35)

(3.2.36)

Assuming for a moment that v(x, t) is known, which is ordinarily not the case, we

can treat (3.2.28) and (3.2.32) as a Hilbert problem in ¢>(z, I). The solution to this

problem is known [82) and has the form:

(
X(z,t)J I v(x',t)

q,z,t)= dX()X ( )+P(z,t)X(z,t),27r Cit) x ' - z + x',f



We now recall [821 that if at any regular point ( on a smooth arc C f( () obeys the

Holder condition with 0 < j1. ::; 1, i.e.

In view of analyticity, ¢+(x, t) = </J-(x, t) = ¢(x, t). Recalling the definition of 0, we

can rewrite (3.2.39) as

where P(z, t) is a polynomial chosen so that 16(z, t)II=I_=O. In the case of a smooth

indentor, P(z, t) == O. For the solution of (3.2.36) to exist, a sof.vability condition in

the form of
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(3.2.37)

(3.2.39)

(3.2.40)

(3.2.41 )

(3.2.42)

(3.2.43)If(z) - f(OI ::; Alz - (I~,

¢(x, t)(1 - 'I) = iu(x, t), x rt Crt)

-(1 + iJ)p(x, t) = ¢J+(x, t)(1 - ~) + iv(x, t)
'I 'I

u(x,t) = -2sin(1rO)eirrB¢(x,t), x rt Crt).

"(x, t) = sin rrBe'" X(.,I) f dx' v(.',I) d CIt)
" • JC(I) (.' .)X+(r',I) ' X'F ..

X(z, t) = (z - a(t))l-9(z - b(t))B,

CHAPTER .3. MATHE,HATICAL FOR,HALIS;'v[

where for a single contact interval

1 dx _V,..:.(..,.:X,,--t)c.... - 0 ( )
co- - , 3.2.38

C(I) X+(x,t)

where X+(x', t) = lim'lz_o+ X(x', t) must also hold [82].

Now we would like to derive a relationship between u(x, t) inside and outside

the contact interval. For that purpose, we can continue u(x, t) analytically onto the

outside of C(t). Equation (3.2.32) combined with (3.2.28) yields

Substituting (3.2.40) into (3.2.36), we obtain:

We shall now derive the equation for pressure inside the contact interval. Because

the extent of Crt) is not known in advance, even though the total normal load can be

safely assumed to be known, the pressure distribution has to be determined at each

time t separately. With the help of (3.2.18) and (3.2.32) we can write:
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where A is some constant, then the Cauchy-type integral

F(z) = ~ r f(u)du
2n Jc 11 - Z

(3.2.44 )

has limiting values F+(O and F-(O on both sides of the arc C such that for any

(E C

(:1.2.45){
P(() = F(O +~J(O

F-(O = F(O - tI(O

Since i\:','/) and A(;~L can be substituted into (3.2.44) - (3.2.45) for F and f respec

tively, one can therefore obtain:

1 [( l)x+(x,i)l ' v(x',t) i( 1) ( ]
pix, t) = -1 +'f 1 - - 2 dx (' ) v+( , t) + -2 1 + - v x, t), 'I r. C(t) x - x -'" x, '7

(3.2.'16)

Recalling that 'I = ei2 .e, we can replace ~(l + ~) by cos( 7rO)e- i ,e and h1 - ~) by

-i sin(7rO)e- i.e. Thereby

( ) ie-i,e [sin(r.O)x+(X,t) 1 d' v(x',t) ( 0) ( )]p x, t = x - cos 7r V x, t
1 + if r. C(t) (x'- x)X+(x',t)

(3.2.47)

For the frictionless limit ( 0 = ~,f = 0 ) we have for a single load:

where "-" corresponds to x < a(t) and "+" to x> bit),

(3.2.48)

(3.2.49)

(3.2.50)

(3.2.51 )

x < a(t)

x> bill

Ix - a(I)I~lx - b(t)I~, x t/: C(l),

)(b(t) - xlix - a(t)), x E Crt)

x+(x, t) = { -)(a(t) - x)(b(l) - x),
)(x - a(t))(x - bit)),

( ) n(x,t) 1 d' v(x',t)v x t = =F X .,..-_'-c--'--'-----,.
, 7r C(t) (x' - x)m(x', t)'

{
nix, t) =

m(x,t) =

Hence (3.2.41) reduces to

or, since X+(x, t) is a real number for any x t/: C(t)
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and (3.2.47) becomes
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p(x,t) =
m(x, t) r d' v(x', t)

1r lC(t) x (x'-x)m(x',tr
(3.2.52)

Integrating (3.2.52) along Crt) with respect to x and changing the order of integration,

we obtain an expression for the normal load W(t):

SInce

W(t) = _ r dx xv(x, t)
lC(t) m(x, t)

(3.2.53)

2.. r dx m(x, t)
on- le(t) x' - x

W(t)

b+ a
-- -x x E C(t)2 ' )

= r dxp(x,t),
le(t)

(3.2.54)

(3.2.55)

(3.2.56)

bearing in mind that, with the help of (3.2.49), (3.2.38) becomes:

r dx v(x,t) = o.
le(t) m(x, t)

The loading condition (3.2.53) coupled with the solvability condition (3.2.38) completes

the system for determining the solution of the main equation (3.2.56) in terms of

the three unknown functions: v(x, t), a(t) and b(t). An equivalent of (3.2.53) in the

frictional case has a more complicated structure, but can also be derived if necessary

[45] .

3.3 Calculation of Hysteretic Friction

Inside the contact interval C( t) the pressure on the boundary of the viscoelastic half

space balances off the y - y component of the stress tensor:

p(i, t) = -O'22(i, t)

In the presence of Coulomb friction the shear stress on the boundary is

s(i, t) = - V(t)fp(i, t)

(3.3.1)

(3.3.2)



where d(t) is the point of deepest indentation, x is the current coordinate of the point,

xo(t) is the coordinate of the tip of the indentor, h(O is the shape of the indentor

profile. On an undeformed boundary, ds = dx, 5x (i, t) = 0, 5y(i, t) = p(x, t). Thus

from (3.3.3) we can deduce:

Hence, employing (3.3.4),

B(t) = d(t)j dxp(x,t) + j dxp(x,t)h'(x - xo(t»io(t), (3.3.6)
C(t) Crt)

where the prime indicates the deri vative of h with respect to its argument. Recalling

where bi are the components of body forces acting upon the half-space, Ui are the

displacements, Si surface tractions, V is the volume of the medium, B the surface

of the boundary of C(t) and" ." denotes the time derivative. The zero body force

assumption implies that bi = O. Inside the contact interval we have for the ( vertical)

displacements:
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(3.3.3)

(3.3.4)

(3.3.5)

(3.3.7)

(3.3.8)

U = d(t) - h(x - xo(t»,

£ = j dxp(x, t)u(x, t)
Crt)

£(t) = ( dvbi(i, t)ui(i, t) + ( dssi(i, t)ui(i, t),Jv JB

£(t) = d(t)W(t) + j dxp(x, t)h'(x - xo(t))V(t)
Crt)

CHAPTER 3. ,'vIATHEMATICAL FORMALIS,"'I

where V(t) is the speed of the moving indentor, f is the coefficient of friction. This

is the ordinary rolling friction that can be observed in both elastic and viscoelastic

materials. However, as has been pointed out earlier ( Section 2.3 ), the very molecular

structure of a viscoelastic material provides for energy losses that cannot be attributed

to the surface interaction between two surfaces. Therefore, we must analyze the total

energy balance during the process of motion of the indentor across the impacted

half-space to arrive at the appropriate mathematical model of hysteretic friction.

The rate of work E done by external and body forces on a viscoelastic medium is

given in the most general case by:

W(t) = j dxp(x,t),
Crt)

where io(t) = V(t) is the indentor velocity, we arrive at
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for an indentor moving in the negative direction of the x-axis. Observe here that the

first term in (3.3.8) is the power of the normal load on the maximum displacement

while the second comprises of two factors. One of them is the speed \/(t), the other

has the same dimension as the normal load. It is therefore natural to normalize the

said second term by W(t):

fH = Wl(t) lett) dxp(x, t)h'(x - xo(t)).

Then the second term in (3.3.8) will take the "frictional" form cf. (3.3.2):

itt) = d(t)W(t) + \/(t)fHW(t).

(3.3.9)

(3.3.10)

As follows from the boundary conditions (3.1.3), (2.2.6), (3.3.9) can be rewritten

as:
I r ( x - xo(t))

fH = W(t) )e(t) dxp(x, t) R (3.3.11)

;

L

This expression for the coefficient of hysteretic friction is valid in the transient case.

Mathematically f H is a ratio between the force required to keep the indentor in motion

and the normal load acting upon the indentor. The analogy between the Coulomb

friction coefficient f in (3.3.2) and fH in (3.3.11) is quite transparent.



Chapter 4

The Main Integral Equation

4.1 Decomposition of Hereditary Integrals

Equation (3.2.33) provides a simple means of calculating vex, t) once the displacement

derivative u'(x, t) is known. However, boundary conditions (3.1.3) do not allow for

the determination of u'(x, t) unless x E Crt). Therefore, we shall decompose the time

interval (-co, t] onto segments so that the given point x is either inside or outside

Crt) for each given subinterval.

For a single indentor, this means that for each point x we can introduce a transition

time tl(x). This instance marks the moment when the indentor first comes into contact

with the boundary of the viscoelastic half-space with coordinate x. For all t < tl(x)

we can observe that X rt C(t), so the displacement derivative ~; on the boundary is

unprescribed, while stresses on the boundary are zero, as follows from the boundary.

For all t ~ tl(x) such that x E Crt) the displacement derivative ~; is known (because

for all such x the surface of the half-space complies with the surface of the indentor ),

while stresses ( at each x such that x E C( t) ) are yet unprescribed as follows from

the boundary conditions (3.1.3) and (3.1.4).

In view of the above, (3.2.33) takes the form:

],

t j"(X)
vex, t) = dt'l(t - tl)U/(X, t') + dt'l(t - tl)U/(X, t')

.,(x) -00

(4.1.1)

The first integral in (4.1.1) involves only known quantities. The second integral can be
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(4.1.2)
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rewritten in terms of v(x, t) since the relationship (3.2.33) can be inverted as follows

from (3.2.27) ( recall also that E(t) = k(t) = O\lt < 0 ):

u'(x, t) = loo dt'k(t - t')v(x, t'),

where kit) is a convolution inverse of I(t), i.e.:

l' dt'l(t - t')k(t') = 6(t) (4.1.3)

Recalling the definition of t,(x), we can write with the help of (4.1.2):

j "(x) j" l'v(x, t) = dt'l(t - t') dl"k(t' - t")v(x, t") + dt'l(t - t')u'(:r, t'), x E C(t)
-00 -00 tl(X)

(4.1.4)

Interchanging the order of integration in the first term of (4.1.4)' we obtain:

j"(X) l'v(x, t) = dt'TI(t, t')v(x, t') + dt'l(t - tl)U'(X, t'), X E C(t),
-00 ,,(x)

(4.1.5)

where:

1', (xl
TI(t, t') = dt"l(t - t")k(t" - t')

"
(4.1.6)

In the case of an indentor moving to and fro, the point x may have left the contact

interval C(t) and subsequently re-entered it several times throughout the preceding

history. Should we decide to investigate this case, we would have to account for more

than one contact interval. Therefore, further decomposition may be required. To this

end, another transition time, t2(X) should be brought into consideration and T2(t, t')

derived through TI(t, t').

This iteration process can be extended to any finite number n of contact intervals if

a sequence of transition times -00 < tn < tn-I < ... < t2 < t1 < t is considered and

a set of Ti(t, t') is derived recursively for use in an appropriate analog of (4.1.5).

Such a generalization, however, leads to considerable mathematical and algorithmic

complications. Since our attention is focussed on the case of an indentor moving in

the same direction, we shall only employ (4.1.5) - (4.1.6) for the derivation of the

main integral equation for v(x, t).
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4.2 The Main Integral Equation for v(x,t)

In the case of a single contact interval we can rewrite (4.1.5) as

v(x, i) = C~x) di' fCl") dx' I\(x, x'; i, i')v(x', t') + I(x, i), x E CU),

where I(x,t) is given by.

I(x, i) = l' dt'l(t - i')u'(x, t')
" (x)

and
. () ••eX( I')

'( , ') SIn 7[ e x, T ( , )h x,x;t,t = X ()( ) I t,t;x
IT + x, if X' - x

Recall the expression for X(z, t) as given by (3.2.37). Define

38

(4.2.1)

(42.2)

(4.2.3)

and observe that

n(x, i)

m(x, i)

[x - a(t)]t-O[x - b(tW

= [b(t) - x]B[x - a(i)p-e

(4.2.4)

(4.2.5 )

and

Then:

X(x, i) = { n(x, i), x > b(i)
-n(x,t), x < ali)

(4.2.6)

(4.2.7)

(4.2.8)") sin 7[()n(x, t') T ( , )
J((x,x ;t,i = 'f ( )( ) 1 i,i;x ,

7rm x', tf X' - x

where "-" relates to x > b(t), "+" to x < all).

Since the expression for 1',(t, i'; x) is known as long as the viscoelastic material is

known, (4.2.3) involves only known quantities. Therefore, (4.2.1) combined with the

subsidiary conditions, which for a single load take the form [45]:

rb(t) dxv(x, i) = 0
Ja(t) m(x, t)

f b(t) dxxv(x, i) __
-W(i),

a(t) m(x,i)

(4.2.9)

(4.2.10)
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(4.2,11 )

(4.2.12)

where, as before, [a( I), b( I)] = C (I), yields a system of equations for determining 'V (x, I)

at any point x on the boundary, both inside and outside the contact interval.

In the frictionless case () = ~ and so sin 7f() = 1. Since the indentor is moving in

the negative direction of the .T- axis and for any 1< II(x) we have x < a(l), we must

choose the positive sign in U.2.7). Thereupon (4.2.1) becomes

. _ ~ j'd X), , l b(I') dX'v.'(x', 1')T1(t, t'; x)
u(x,t)- dtn(x,t) ( ) ( )'

7r -00 aW) x f
- x m x', t'

where Crt') = [art'), bet')] while (3.2.50) becomes

( ) m(x,l)l d' u(x',t)P x, I = - x .,..-_-'--,-C-'-_-,-
71' C(I) (,10' - x )m(x', t)

We shall further specialize to the case of a standard linear solid, for which the ex

pression for 1', (t, t'; x) has a simple form and the main integral equation for u( x, t) is

amenable to further simplification.

4.3 The Main Integral Equation for v(x,t) for Stan

dard Linear Solid

The standard linear model assumes [45]:

I(t) = 10 ott) + Ile- al

k(t) = koott) + k1e- fJI

k _,l. k - !t. (3 - a tLo - 1
0

' 1 - - 1
0

1 - - ko '

(4.3.1 )

(4.3.2)

(4.3.3)

where ko, kl , 10, II are known real constants; a > 0, (3 > 0 are relaxation and creep

decay constants respectively related by (2.3.5). In terms of T and T'

_I (3_1a -:;:-, -:;:J' (4.3.4)

Observe also that a > (3. Upon substituting the above expressions into ( 4.1.6 ), we

obtain:

j 'd X
) ( If) fJ(" ')TI(x, t, t') = dt ff [Ioo(t - t ff

) + lIe-a '-I ] [koO(l ff
_ t') + kle- ,-t ]

I'
(4.3.5)
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(4.3.6)

Recall that -00:::: t' :::: t , (.• ) < t. Clearly, 6(t-t") = OV til E [t',tt(x)J. Furthermore,

1', (x) (U) ( ')dt"lte-a ,-, k06(t" - t') = kol,e-a ,-, .

"
Next.,

(4.3.i)

in view of (4.3.3). By virt.ue of (4.3.6) and (4.3.7),

I(x, t)

From ( 4.2.2 ) and ( 4.3.1 ) it follows t.hat:

= l' dt' [106(t - t') + I,e-a('-")]u'(x, t')
" (x)

= lou'(x, t) +Ill' dt' e-aU-")u'(x, t')
" (x)

(4.3.8)

(4.3.9)

In the case of a cylindrical indentor whose profile is given by (2.2.1) moving with the

speed V(t) as described by (2.2.6)' we have, upon recalling (4.2.2) and interchanging

the order of integration in (4.2.1):

I(x,t) =
(

rt,(x) )
x-J

o
drV(T)

+

v( x, t)

- ~{ (10 + ±II) (x -fa' dT V(r)) - ±I,e-a('-',(X))

~',lt dTeC>TV(T)}
Q ,,(x)

k I l' l b(") e{J" v(x' t')= ~e-a'+(a-{J)'I(X) dt'n(x , t') dx' ,
7r _= oft') m(x',t')(x'_x)

+ I(x, t)

(4.3.10)

(4.3.11)

It can be seen from both the general case (4.2.1) and the above equation that for

any x such that t,(x) :::: t all quantities required to calculate v(x, t) are already known.

Here we are using the assumption that all previous history motion of the boundaries

art) and b(t) can be retrieved. Thus the most curious part will pertain to the times t

lying in the interval [tl(x), t] for which a(t),b(t) are not yet determined.

Going back to (4.2.1), we can observe that this is a Fredholm-type equation with

variable limits of integration. Due to the complicated nature of the kernel and the laws
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according to which the contact region boundaries aCt) and bet) change with t.ime, the

only feasible way of solving (4.2.1) in t.he absence of special simplifying assumpt.ions is

numerical integration. The kernel l\'(x, x'; t, t') possesses a non-integrable singularity

at x' = x as long as x belongs to the contact region. However, upon taking a closer

look at the double integral in (-1.2.1). we can conclude that unless x = a(t,(x», where

t l is the transit.ion time when the point x enters Crt), the singularity in the integral

kernel is of order ~ at both art) and bet). For convenience, we rewrite (4.2.1) as:

v(x, t) l tl(X) jb(I')
dt' dx' K(x,x';t,t')v(x',t') + I(x,t)

-'XI aft')

J,(x, t) + i(x, t) ('I.3.12)

I(x,t) can easily be found using (4.3.10), provided t,(x) is known. Consider

J,(x, t). Since we have assumed t.hat up to t.he t.ime t,(x) all previous history can

be retrieved, J,(x, t) is completely determined by t.his history. In fact, for every

t' E (-,xd,(x)] [a(t'),b(t')] is available and we can therefore explicitly carry out the

integration. Bearing in mind that a( -00) = a(O) =-ao, b( -00) = b(O) =ao, we can

further decompose J,(x, t) onto two parts as follows:

J,(x,t) = 1: dt'1:: dx' K(x,x';t,t')v(x',t')

fo
'd' ) lb(I')

+ dt' dx' K(x,x';t,t')v(x',t')
a a(I')

(4.3.13)

From (3.2.33) we have for t E (-00,0 J:

v(x',t) = f' dt'l(t-t')u'(x',t')=_x' f' dt' [105(t-t')+I,e-O(l-l'J]
J-OC) R i-co

- ~ [10 + ~I,] (4.3.14)

Therefore, for x < -ao

fa dt' faD dx' K(x,x';t,t')v(x',t') = VX2_a~kol'e-ot+(O-fl)t,(,)
1-00 J-ao 7r

10 'flt' lao [ x' ( 1)] dx'X dt e -- 10 + -11
-00 -aD R a v(a~ - x2)(x' _ x)



4.3.1 On the Singularities in the Main Integral Equation for

v(x,t)
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(4.3.17)

(4.3.18)

(4.3.19)

ao =

2 bit') +a(t')
Y = bit') - a(t') x - bit') - a(t')

10 + 1.11 jao x" 10 + 1.11 a0
2

W(O) = ---;~a_ d ' = 1f a
R -ao X Jag-x'2 R 2

v(x, t) =

At time to = 0 (4.2.10) yields:
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Combining (4.3.10), (4.3.11) and (4.3.15), we have the following equation for the

determination of v(x, t) at t > t l :

k I fo"(X) 1b(t') (3" v(x' t')~e-ai+(a-(3)tdx) dt'n(x, t') dx' e ,
1f a a(i') m(x',t')(x'-x)

~~e-a,+(a-a)il(X)(x+Jx 2-ag) +I(x,t) (4.3.16)

Hence,

2RW(0)

7r (10 +±II)'
and is completely determined by R, G, 10 and 1,. Note here, that W(O) presents the

initial normal load that was acting upon the indentor at to.

At first sight, (4.3.16) can cast a reasonable doubt on its integrability. In fact, m( x', t')

vanishes at both ends of the interval and x' - x can turn out to be zero for x E

[a(t'); bit')]. However, a scrupulous observer can conclude that the latter can only

happen for a single point in time t' = t1(x), since x = a(t , (x)). In this case x = a(t').

Fortunately, n(a( t'), t') = 0, which smears out the behaviour of the space integral in

(4.3.16) at t' = tl(x). As for the other troublesome term, m(x',t'), a proper sequence

of transformation of variables can remedy the problem. Clearly, putting
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maps the original interval [aCt'); bel')] onto [-1; 1). Setting then y = sinz eliminates

the singularity.

In view of the above, we are left with a Fredholm-type equation (4.3.16)' for which

general Fredholm theory is applicable.

4.4 Steady-state Solution of the Main Integral

Equation for v(x,t)

An important result which can serve as a model problem for the general problem is

that for an indentor moving with a constant speed V. As before, we assume that the

motion takes place in the negative direction of the x-axis. We shall only consider the

frictionless case here.

We shall choose a new coordinate frame with the origin at the tip of the indentor.

Let us assume that sufficient time has elapsed since the beginning of motion for

transient effects to have vanished. This naturally leads to a conclusion that the

contact interval has stabilized to he [a.; b.l. Then the current positions of the contact

interval boundaries can be determined by;

aCt) = a. - Vt, bet) = b. - Vt

Since for any point with coordinate x = a. - Vtt(x), solving for tt(x) yields

()
a. + x

t t X = - ---'V,..,...--

(4.4.1)

(4.4.2)

In view of the above considerations, we can view all our quantities depending on x

and t as functions of a new variable x + Vt as a whole.

Making a change of variables as follows;

x' ---> y' = x' + Vt', x ---+ y = x + Vt, I' ---> z = x + Vt', t" ---+ ~ = x + Vt"

(4.4.3)

we arrive at;

v(y) - 1:" dy'K(y,y')v(y') + I(y), (4.4.4 )
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where:

K(y, y') =
~[. dz T(y,z)n(z)

(4.4.5)r. -= V (y' - z )m(yl)

T(y. z) r'~I(Y~()k((~Z) (4.4.6)

J(y) = [~ I (Y ~ Z) u'(z) (4.4.7)

We shall now introduce a new scaled spatial variable

x = b, ~a, [2x - (b, +a.)], (4.4.8)

Clearly i E [-1; 1] as long as x E [a"b,]. In view of this, we can rewrite (4.4.4) _
(4.4.7) as

v(x) -

j\'(x, i')

=

t(x, i)

1(x) =

b. - a'j' dx'i((x,x')i!(x') +1(i),
2V -1

b. - a'j-l di ~(i, ~)n(i)
1r2V _= (Xl - z)m(x')

b. - a'j-l d/'(x, i)lll - i 2
1

1r2v -<X> (X' - i)Jl - X'2

b, - a, r 1
d(l [b' - a,(' _ ()] k [b. - a,(( __ )]

2V Ji 2V X 2V z

b. - a'jx dil [b•. - a. (i _ i)] u'(i)
1r2V -1 2V

(4.4.9)

(4.4.10)

(4.4.11 )

(4.4.12)

In the case of a cylindrical indentor:

u'(i) = ei + f = d(i), x E [a.; b.], (4.4.13)

where e and fare ( known ) constants.

We can now require that time units be rescaled so that \v·· = 1. This amounts

to coopting new scaled time I into the previous considerations as follows:

• 2Vt
t = -b--'

.. - a.. (4.4.14)

since multiplying the time units by a constant factor results in dividing the value of

the speed by the same factor. Then, removing the tildes for the sake of brevity, we
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can rewrite (4.4.9) - (4.4.12) as

4.5

v(x)

X(.f, x')

T( x, z)

I(x)

= 1'1 dx'1«x,x')v(x') + I(x)

= ~;-I dz T(x,z)JI1- z
2

1

To -00 (x'-z)J1-x"

= 1~' dul(x - u)k(u - z)

= 1~ dzl(x - z)u'(z)

(4.4.15)

(4.4.16)

(4.4.17)

(4.4.18)

From the considerations analogous to those having lead to (4.3.8), we get for T(x,z):

(4.4.19)

(4.4.20)

Thus for X(x, x')

j '(') kIll -o(x+l)+iJ ;-1 d e
13'Jz2 - 1

\. X,I = e z---,---
(0: - (3)J1 - X,2 -00 x' - z

Consider the integral part of (4.4.20). Following the procedure discussed in [45J, we

arrive at:

where:

E((3,y) = yJ(o((3) - 1<,((3),

1<0, XI are the modified Bessel functions. By virtue of (3.2.33),

v(x) = 1~ dx'l(x - x')u'(x)

For a cylindrical indentor we have for the profile derivative:

u'(x) = - ~,

(4.4.22)

(4.4.23)

(4.4.24)
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or, in the dimensionless coordinates described by (4.4.8),

ii'(i) = do + dli,

where:
d - _b,+a, d _ _ b,-a,

D - 2R 1 1 - 2R

46

(4.4.25)

(4.4.26)

In line with the previous discussion, we remove shall henceforth remove tildes from

(4.4.26).

Bearing in mind the binomial representation of the derivative of the indentor profile

given by (4.4.25), let us decompose v(x) onto two parts as follows:

v(x) = q(x) + t!.(x),

where:

q(x) = qo + q,(x) = l I

oo dx'l(x - x')(do +d,x'),

and, since for x E [a.; b.] u'(x) == do + d,x,

t!.(x) = 1: dx'l(x - x') [u'(x') - (do + d,x')]

(4.4.27)

(4.4.28)

(4Jl.29)

(4.4.30)

We shall further denote d(x) == do + d,x for convenience. From (4.3.1) we observe:

t!.(x) = l,e-"X1: dx'e"X'[u'(x') - d(x')]

Therefore, by (4.4.21) and (4.4.30):

1
1
,dx'J{(x,x')t!.(x') = k,Zi j' dX'{[-IJefJx' f'dye- f3yE ((3,y) + E((3,x)]

71"( a - (3) -, Jx' VI - y2 VI - X,2

x e-"x'l: dze"'[u'(z) - d(z)]}

= k,li e-,,(x+')+iJj-' dze"Z[u'(z) _ d(z)]
7I"(a - (3) -00

X
(

aX((3, a)e"-iJ) ,
a-(3 (4.4.31)

where:

L

(4.4.32)
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10 ,1" f{o, f{1 are the modified Bessel functions. Subsidiary conditions (4.2.9) and

(4.2.10) in our new dimensionless variables reduce to:

where:

1 ;1 q(x)
-; _Idxm(x)

_~;I dxxq(x) =
7r -I . m(x)

111: dx'eax'[u'(x' ) - d(x')]Io(n)

WI ;-1 d ' ax' [ '( ') d( ')] ( )--;; - II -00 X e u X - X 11 Q ,

2W
WI = .,...--

b. - a.

(4.433 )

(4.4.34 )

(4.4.35)

is the non-dimensionalized counterpart of IV.

Vie now proceed to evaluate the integral on the right hand side of (4.4.28):

toc- dx' I( X - x' )(do + d, x') too [10 8(x - x') + Ile-o(x-x lJ ] [do +dl(X' )]

do (10+ ~ - dl ~~ ) +dl (10 + ~) x (4.4.36)

Equating the like power terms in the expression resulting from combining the latter

equation with (4.4.28), we obtain:

q(x)

ql =

(4.4.37)

(4.4.38)

(4.4.39)

(44.40)

As shown in [45], for a standard linear solid

;

-1 KI((3)ql (1 - e:)
/1 -00 dx'eax'[u'(x' ) - d(x')] = (3X((3, Q) a

Therefore for a cylindrical indentor when q(x) = qo + ql(x) (4.4.33) and (4.4.34) re

duce respectively to:

KI ({3)ql (1- e:)
(3 a x(,B,a)Io(Q)

WI ](1 (B)ql (1 - ~)
- --;; - ,Bx(,B,a) II (a)

(44.41)

(4.4.42)
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Recall now that the positive decay constants a and fi are defined in dimensionless

coordinates as a = ~ and fi = :!< respectively, where T is the relaxation decay time,

T' is the creep decay time. As prescribed by (4.4.1-1), in dimensionless coordinates

( omitting tildes for simplicity):

Q = b;~.~., (4.4.43)

With the help of (4.4.26), we can express a and ;3 in terms of d, as

a = - <!.Ill fi = - <!.IllVr' VT 1 1
(4.4.44)

and, employing the above relationship, transform (4.4.42) into an implicit equation

for d]:

(4.4.45)

where:

C(dd =

B(dd

1 ( /,)
= -2 /0 + a

W
7rR
k](fi)I,(a)

fix(fi, a)

(4.4.46)

(4.4.47)

(4.4.48)

a and ,8 being function of d, as prescribed by (4.4.43).

Equation (4.4.45) provides a means for finding d], whereupon q, can be found

from (4.4.39), qo from (4.4.41) and do from (4.4.38). Once both do and d, have been

determined, the calculation of a. and b. from (4.4.26) proves to be a trivial exercise.

However, there exist certain computational difficulties associated with solving (4.4.45).

Firstly, C(d,) is dependent on Bessel functions and therefore in its computation the

computational behaviour of the latter must be taken into consideration. Secondly, d]

is normally a small number compared with unity and therefore may amplify the error

if put in the denominator. Therefore we suggest an alternative form of (4.4.45):

(4.4.49)
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We can also rewrite (4.4.48) as

49

C(dl ) = - ~ 1~ (10 + ~) (1 ~~) (4.4.50)
Ida) + KdfJ)

In the latter form it is clear that limdl~OC(dd = o.
We can now give an expression for the hysteretic friction. Recalling (3.3.9), we

can write in the dimensionless coordinates:

1 ]1
fH = WI -I dxp(x)u'(x),

where WI is given by (4.4.35) and, in view of (4.4.26), WI = ~ d~R"

yields:
1 ]1fH = - dxp(x)(do+ dlx)

WI -I

Now recall that J~I dxp(x) = WI and so

dl ]1fH = do + - dxxp(x)
WI -I

(4.4.51 )

Equation (4.4.25)

(4.4.52)

(4.4.53)

Interchanging the order of integration in (4.2.12) and dropping the time dependency,

we proceed to obtain from (4.4.53):

fH = do + dl ]1 dxv(x) 1 ]1 m(x')x'
WI -I m(x) 11" -1 x'-x

After evaluating the inner integral in the above equation, we conclude:

fH = do __1_]1 dxv(x)x
2

,
WI -I m(x)

(4.4.54)

(4.4.55)

bearing in mind the solvability condition (4.2.9) in its steady-state form. Decom

position (4.4.27) and the expression for Lx (4.4.30) allow us to conclude that q( x)

vanishes for x E [-1; 1]. After evaluating the integral in (4.4.55) and recalling the

properties of the Hilbert transform and Bessel functions as in [45], we arrive at:

(4.4.56)

where 12 ( ex) is the modified Bessel function of the second kind.



Chapter 5

Numerical Algorithm

5.1 Numerical Methods for Solving Integral Equa

tions of Linear Viscoelasticity

Equation (4.3.16) together with the subsidiary conditions (4.2.9) and (4.2.10),

presents a challenging computational problem. To gain some insights on how to deal

with technical difficulties arising in the process of its solution, let us briefly review the

spectrum of numerical methods available for solving the integral equations of linear

viscoelasticity in general. We shall start with a general overview and then restrict our

discussion to the solution of Volterra-Fredholm equations, to which (4.3.16) belongs.

Numerical methods for solving some of the contact problems of linear viscoelastic

ity can be classified with respect to the adopted formulation of the problem as shown

in Figure 5.1. If the governing equations are cast into the variational form, a variety of

methods can be applied. Kalker [71] developed a method for solving the viscoelastic

rolling contact problem using the so called influence function methods, which bear

resemblance to the finite element method. The results obtained with the help of his

CONTACT code are reasonably accurate, however, the method applies only to the

steady-state rolling contact. An interesting generalization of the variational method

using mathematical programming has been proposed by Goldshtein et al. [49] for the

elastic contact. The generalization of this method to the viscoelastic contact problem,

50



CHAPTI:;n. 5. NU,I;fERICAL Al,GORITHM 51

however, may prove comput"tionally challenging. An iteration method proposed by

Pavlov and Svetashkov [1041 deals with a general class of viscoelastic boundary value

problems in the quasi-static approximation. The authors prove a theorem assuring

the convergence of the introduced iteration process and formulate an approximate

correspondence principle enabling them to construct a viscoelastic solution from its

known elastic prototype. The application of this analysis is restricted to problems

with fixed boundaries.

The adoption of the differential form of the constitutive equations opens the door

to a plethora of numerical methods aimed at solving partial differential equations.

Volkov [123] proposed a finite difference algorithm based on Newton's method to in

vestigate the propagation of a plane wave in a viscoelastic medium. Though the

author's considerations differ from the rolling contact problem. the computational as

pect of his treatment of moving boundaries is quite relevant. A numerical solution of

the penetrating contact problem was constructed by Khludneva [74] with the help of

penalty functions. The author investigated the deformation of a circular viscoelastic

plate by a rigid axisymmetric indentor. The introduction of a penalty function allowed

the author to account for non-linearity in the boundary conditions. Merzhievskyand

Reznyansky [91J applied the moving mesh method devised by S.K. Godunov [39J to

the free boundary value problem of the loading of a metal specimen. Though the

approach in question was used to investigate crack propagation, it seems technically

possible to extend Godunov's algorithm to the rolling contact problem. It is unclear,

however, whether the unknown contact interval boundaries can be handled by the

above mentioned technique.

Although the finite element method ( FEM) has proved to be an indispensable

tool in solving elastic contact problems ( see, e.g., [71J, [75], [101) ), its application

to viscoelasticity is hindered by substantial complications arising from the hereditary

effects incorporated into the constitutive equations. Nevertheless, Harrison et al. [61J

managed to apply FEM to the modelling of the viscoelastic response of polymers for

some simple geometric shapes. The use of FEN! was facilitated by the fact that all

considered bodies could easily be triangulated ( see, e.g., [86J ).

A detailed comparison of the numerical results obtained through the application
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of fE:VI to the viscoelastic large strain problem with the analytic solutions available

in certain special cases can be found in [1101. A simplified treatment of the contact

problem using the adaptive FE:VI was presented in [80]. The authors employed the

Winkler model to investigate the bending of viscoelastic beams and plates. The prob

lem was treated in its variational formulation by predominantly analytical means, i.e.,

no computational results were supplied. Korobeinikov and Alyokhin [78] presented

a concise overview of the Lagrange multiplier and penalty function methods for the

quasi-static contact problem. The formulation adopted by the authors allowed for it

erations in time until the difference between two consecutively obtained solutions had

become sufficiently small. It has also been observed that a solution to the dynamic

problem exhibited oscillations attributed to the inaccurate representation of higher

modes of the solution. A comparison between the analytic and numerical solutions of

the contact problem revealed satisfactory agreement between the two.

Another group of techniques relates to the integral formulation of the viscoelastic

contact problem. Among the most widely used are the Nystrom method and the

collocation method [117]. The application of the first to the solution of the Volterra

Fredholm equation of the second kind is discussed in [60J. The authors presented,

along with theoretical results concerning the existence and uniqueness of the solution

of a difference analog of the original problem, some numerical examples for continuous

kernels and fixed spatial domains. The utilization of the Nystrom method, however,

does not seem plausible for moving boundary problems, especially those involving

singular integral kernels.

A treatise of non-linear Volterra integral equations was presented by Brunner (13]

and Brunner and Yatsenko [12]. Both of these articles dealt with the one-dimensional

case, nevertheless, it seems possible to extend the approach developed by the authors

to more complicated problems. In [13J the iterated collocation technique was devised

for a Volterra equation with a constant time delay. Global convergence and local

superconvergence of the proposed algorithm were investigated and the estimates for

the speed of convergence were provided. In [12] the results of the previously cited

paper were extended to an equation with a variable time delay. The existence and

uniqueness of the solution were proved for a specific type of Volterra equations and the
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results were shown to be smooth. !I numerical example of the discrete time collocation

technique shows excellent agreement between the exact and numerical solutions for

the chosen trial function.

The viscoelastic contact problems can also be formulated as integra-differential

equations. Among the techniques used for solving the latter, we can briefly mention

the ray method [108] and the deciphering me/hod [72]. The use of the above in ap

plication to the rolling contact problem is limited due to the specific nature of the

underlying algorithms. Of some interest to us is also the freezing method developed

by \;Iovlyankulov [97J and Movlyankulov and Filatov [96J. It deals with the dynamic

nonlinear viscoelastic problems in the small viscosity approximation and bears some

resemblance to the estimates provided in [43], [45] and [47J. The method employs the

Taylor expansion of the unknown function and involves only linear terms. The results

presented in [97] and [96] are analytical in nature.

To conclude the review of numerical methods, we mention a general treatment of

a viscoelastic integro-differential equation by Fabiano and Ito [30], an algorithm by

Ladopoulos [81] for evaluating multi-dimensional integrals of linear viscoelasticity with

singularities and a concise but comprehensive review of presently available numerical

techniques for solving viscoelastic contact problems by Janovsky et at. [66J.

Throughout this thesis, however, we have adopted the integral form of the vis

coelastic integral equations as the one that reflects the physical nature of the problem

the best. Even though some of the above mentioned numerical methods account for

moving and free boundaries, none of them is fully suitable for a comprehensive treat

ment of the main integral equation (4.3.16) subjected to the subsidiary conditions

(4.2.9) and (4.2.10). We shall therefore develop an algorithm specifically tailored to

our needs in line with the general approach mentioned in [45J. The description and

justification of this algorithm will comprise the rest of this chapter.

5.2 General Algorithm

The general equation (4.3.16) and the subsidiary conditions (4.2.9), (4.3.18) present

a system of three equations in three unknowns: a(t), b(t) and v(x, t). Traditional
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methods of solving such systems ( sec, e.g., [5], [1l4l ) cannot handle the unknown

contact interval boundaries at an arbitrary time t. Moreover, the dependency of the

upper limit of time integration on the space variable x provides yet another obstacle.

A general algorithm described below employs a fully explicit scheme outlined in [45].

We begin with the initial solution given by (4.3.18), which yields:

ao =-
2RW(0)

IT (10 +~)'
(5.2.1)

where the negative sign is taken because the indentor is moving in the negative direc

tion of the x-axis. Adding (4.3.14) and noticing the symmetry of the initial contact

interval, we obtain the starting point for the iterative procedure: vIol = v(x, 0).

To construct an algorithm allowing us to evaluate V(k)(X, i), we must discretize both

the spatial and the temporal domain. At t = to = 0, when the motion has started,

we can use a uniform spatial grid. For further time steps we shall use an unequally

spaced mesh for the reasons explained below. The temporal grid is naturally chosen

to be adaptive to accommodate the change in the indentor velocity.

To explain the essence of the algorithm in greater detail, we first turn our attention

to time to = o. From (4.3.14), for any x inside the initial contact interval C(i) = lao, bol

( bo = -ao > 0 )the value of v(x, t) can be found analytically. Hence, we can discretize

lao, bo] uniformly as ao = Xl (0) < X2(0) < ... < Xn(O) = bo, where Xi(O) - Xi-I (0) =

hoVi = 1,2, ... , n, and compute v( xo(O), to).

As the indentor starts moving, the contact interval changes from lao, bol to [art), b(i)].

To account for the transient nature of the problem, we must discretize the temporal

domain appropriately. Because the speed of the indentor is dependent on time, it is

natural to suggest an adaptive time mesh. Let us suppose that the first time step,

L.to, has been chosen to satisfy:

(5.2.2)

where h is the size of the spatial mesh at at to = 0, V(L.to) is the speed of the indentor

at i = L.to ( recall that V(i) is known for all i ) and Do is a constant determined by

trial and error. A rationale for such a restriction on L.to will be given shortly.
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At time t(1) = to +6to = 6to ( we put pMentheses around the subindex to avoid

confusing t(1) with t1(x) ) the new contact interval boundaries a(t(l))) and b(t(1))) are

yet undetermined. In view of this, we first make an initial guess about their values as

follows:

{
a(l)(t(1)) = aD + tV(t(1))6to

(5.2.3)
b(1)(t(l)) = bo+ tV(t(1)6to

( recall here, that V(t) < OVt ). The choice of 6to governed by (5.2.2) ensures that

a(1)(6to) < ao and bo > b(1)(6/0 ) > Xn-l (0), as shown in Figure 5.1, while an example

of 6t 1 not obeying (5.2.2) is presented in Figure 5.2. The latter choice of the first time

step leads to a substantially more complicated computational algorithm and therefore

should be avoided.

Observe that Xi(O) E [a(I)(/(I»), &(1I(t(I)),; = 1,2, ... , n - 1. For consistency, we

denote: x6
1
)(t(1») = a(1)(t(1)), X(I)(t(1) = Xt(O), ... , X~1)1 (t(1») = Xn_l (0), X~l)(t(l») =

b(1)(t(1») and thus obtain a spatial ( non-uniform) mesh for [a(1)(t(I»)' b(I)(t(1»)]' From

(4.3.16) it follows that

(5.2.4)

Remember, that the exact a(t(1) is not yet known and hence t1(a(t(1))) is still un

determined, while tl(X~1)(t(1»)) = -00 for i = 1,2, ... , n since xjl)(t(l) E [aD, bo]Vi =
1,2, ... , n. Now, equipped with the values of V(X~I)(t(1), t{1}) for all i = 1,2, ... , n,

we can proceed to extrapolate v(a(1)(t(1»),t(1))' If we assume that a(1}(t(l) is in

fact the real front boundary of the contact interval at time t(1), then v(x, t) E

C OO [a(1)(t(l)), b(1)(t{1»]. Using a cubic spline with X~I)(t(1») as knots, we are then

justified to compute v(a{1)(t(I»)' /(1»), bearing in mind that the distance travelled by

the indentor during the time step 6to is small compared to the length of the contact

interval b(1)(t(1) - a(1l(t(I))'

To satisfy the subsidiary conditions (4.2.9) and (4.2.10), we construct the cost

function:

[l
b('CI) ,V(X"/(1})]2 [lb('CI) ,x'v(x',t(l}) ]2

j(a(t(1», b(t(1») = dx (' t ) + dx (' t ) +W(t(l»)
a(l(l) m x, (1) a('C1) m x, (1)

(5.2.5)
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Our object now is to minimize the value of f by choosing the appropriate a(i(l) and

b(i(I)). This can be accomplished with the help of the quasi-Newton finite gradient

method. Por the k-th choice of a(i(l)) and b(i(l) we can compute v(a(k)(t(l), t(l)

and v(b1k )(i(1))' f(1) using the cubic spline technique described above. Notice here,

that the spline coefficients need only be determined once, at the start of this iterative

procedure. The spatial integrals involved in (5.2 ..5) can be evaluated numerically using

a combination of modified Clenshaw-Curtis and Gauss-Kronrod formulas used in an

1MSL routine DQDA'vVS [1221. This routine ensures sufficient accuracy and efficiency

of the numeric quadrature.

Keeping in mind that n(a(t(l), i(l) = 0, as follows from (4.2.4), we can observe

that the suggested discretization of (4.3.16) results in v(a(k}(t(I), f(1» depending only

on V(Xi(t(I)), t(1), i = 1,2, ... , n, but not on itself. This makes the difference scheme

under consideration fully explicit. An attempt to introduce an implicit scheme would

necessitate the introduction of at least two unknown contact intervals at any given

time step, which would complicate the algorithm immensely. In our explicit scheme

v(a(t(I),t(l» and v(b(i(1),t(1» can be computed can be computed from (4.2.8) as

soon as estimates for a(t(l) and b(t(l) that minimize f(a(i(I), b(i(I)) are found from

(5.2.5).

, -ow let us suppose that we have computed V(Xi( ij), ij), where i = 0,1,2, ... , n-1, n

and ij = ij_1 +6ij_1 so that a(ij) = IO(tj) < Il(ij) < ... < In_l(tj) < In(i j ) = b(tj)

We can safely assume that the mesh is uniform, i.e., Ii(ij) - Ii_l(tj) = hjVi =

1,2, ... , n, where h j is the size of the mesh ( at time t,). If this is not so, we can

rediscretize [a(ij), b(i,)] to make the mesh uniform and then compute v(xi(ij), ij) at

all the regular mesh points. We now restrict the j-th time step, 6i" to obey:

(5.2.6)

where D, is a constant determined by trial and error. The above relationship ensures

the same "non-overlapping" condition as the one described for the first discrete time,

t(1). Denote: ij+1 = ij + 6ij. Upon this, we can make an initial guess about the

boundaries of the new contact interval, a(1)(ti+d and b(1}(ij+Jl. Denoting I~'}(ij+Jl =
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(1)(1' ). (1)(1' ) - . (I·) j+I(I') - (I) . (1)(1' ) - b(l)(I· )a J+l, Xl 1+1 - Xl 1 ~ "0' X n _ 1 1+1 - Xn-l l' In 1+1 - 1+1 , we com-

pute u(x~'), Ij+,) \Ii = 0,1, ... ,n-l, n. The computation of u(x~l), 1,+1) \Ii = 1, ... , 11-1

is possible through the direct use of (4.3.16), because for each xP), ·i = 1, ... , n - 1 the

corresponding 11(X~I)) i = 1, ... , 11 - 1 is known from the previous history of motion

(see Figure 5.3) and hence a(1)(l t (.d 1»)) and b(1)(I , (x;'»)) are also known. To obtain

v(bll)(tj+tl.lj+l) we can use cubic spline interpolation as described previously, while

the computation of v(a(ll(lj+l)' Ij+l) rcquires extrapolation. Subsequcntly, the same

optimization procedure as described for 1(1) can be applied to determine the values

of a(lj+,) and b(ij+l) delivering the minimum to j(a(t)+l),b(ij+,) in (.5.2.5), i.e., en

suring that the subsidiary conditions (4.2.9) and (4.2.10) are satisfied. The transition

from ij to tj+1 is illustrated in Figure .5.3.

It appears desirable to obtain a heuristic uniform upper bound for D j for all ij.

A universal estimate D = max;=1.2....Dj that guarantees both stability and efficiency

of the algorithm was found to be 0.3. An initial trial time step 6i 1 was chosen to be

0.01 before the condition (5.2.2) was applied.

Since for u(x, t) is infinitely smooth inside C(i), the error arising from approxi

mating u(x, ti+l) by a cubic spline is O(h4
) for all interior points [10}. Thus, for a

sufficiently large number of spatial mesh points inside the contact interval, we can

expect the error in estimating u(a(i+I), ti+tl and V(b(i+l), ii+l) to be negligible. As a

rule of thumb, we chose 51 mesh points ( 50 intervals) to provide a good compromise

between the speed and accuracy of the algorithm.

5.3 Treatment of Integral Singularities

The integrand in (4.3.16) possesses integrable singularities at x = a(t'),x = b(t') that

can be handled, e.g., by employing Gaussian type quadrature formulas [23, 29, 112].

Another singularity occurs when t' in the time integral becomes equal to tl(x). In

this case a( t/) = a( i , (x)) = x and the inner integrand becomes undefined at a( i' ).

However,
b(I') ( / i')

I· (') 1. d I V X , E1m n x, t x = ,
!'-!I(X) a(!') m(x/,t/)(x' - x)

(.5.3.1 )
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where E is finite and so no non-integrable singularity arises. However, in choosing

an appropriate quadrature formula to evaluate the temporal integral in (4.3.16), it is

desirable to avoid handling the values of u(x, t) at t = tl(x). To this end, we apply the

trapezoid formula for I E [0, t;] and the rectangle formula for I E [Ii, i<+tl as follows:

where
b(") ( , t')

f(t') = n(x, t')ell" 1 dx' u x,
a(t') m(x', t')(x' - x)

(5.3.2)

(.5.3.3)

A consequence of this is that the iterative expression for u(ai+l, ti+l) does not contain

ai+l, ti+l, but only earlier values. This is true in any case for a point in the interior of

the contact interval. Thus the iteration scheme is entirely explicit, in contrast with

that which would emerge from a standard Fredholm-type equation [5], [22].

To evaluate p(xy), til using (4.2.12) and the known values of u(X)i), Ii) we have to

eliminate a first-order singularity in the integrand. Utilizing the Kantorovich method

[22] and bearing in mind the differentiability of u(x, t), we obtain:

p(x,l) =
m(x, I) {l b(t) dx'[u(x', t) - u(x, I)] +u(x, I) l b

(t) dx' }
7f a(t) m(x',t)(x'-x) a(t) m(x',I)(x'-x)

(5.3.4)

However, the second term in (5.3.4) is equal to zero, whereas

1
. u(x', t) - u(x, t) '( )
1m = v x,t

x'-x x' - x
(5.3.5 )

and p(xyJ, Ij) can thus be numerically evaluated for any (x)i), Ii) without difficulty.

Thereupon the hysteretic friction can be computed from (3.3.11).
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v •

Figure 5.1: Schematic representation of the discretization procedure for the spatial
domain: t , = 6to: an appropriate choice of 6to
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Figure .5.2: Schematic representation of the discretization procedure for the spatial
domain: t1 = 6to: an inappropriate choice of 6to



Figure 5.3: Transition from ij to tHI: [a(tj), b(i»J - contact interval at time ij,
[a(tj+d, b(ij+dJ - contact interval at time ijH, xi(ij) - mesh points at time ij, xi(tj+d
- mesh points at time Ij+1, V - velocity of the indentor. Filled region represents the
history of motion.
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Chapter 6

Results and Discussion

6.1 Introductory Remarks

The computational realization of the algorithm described in Section 5 was carried out

on a networked SeN SPARC 20 workstation with available 163 Mb RAM and two

150 MHz CPU. The program required 18 - 20 Mb of operating memory and a single

computational run at the given level of discretization extended from 50 to 250 hours

of CPU time, depending on the chosen pattern of speed / loading variation. Such a

substantial difference in CPU time can be explained bearing in mind that for high

speed / loading amplitude, smaller time steps are required, which leads to substantial

increase in the computation time. The choice of IMSI as a computational library is

justified by its accessibility, reliability and efficiency for large scale computations ( as

in [15J ).

For the discretization of the spatial domain we chose N X = 51 mesh points,

whereas the time domain had up to NT = 3000 mesh points. The radius R of the

indentor was taken to be 10 units of length, while Q ( given by (4.3.4) ) equalled 0.1

inverted units of time. The speed V of the indentor was measured in units of length

divided by units of time, so that ~ presented a dimensionless parameter. We also

take care of the sign of V(t) so that V(t) is positive (recall that the indentor is moving

in the negative direction of the x axis).

62
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Recalling (2.3.4), we can factor out Co to obtain:

63

(6.1.1)

Clearly, for theoretical purposes the value of Co can be scaled to unity and therefore

it is the dimensionless ratio ~ that determines the degree of viscoelasticity of the

material. If §; = 0, the material is purely elastic. As §:- grows, the viscoelastic

properties of the material become more and more pronounced. [n view of this, we

are justified in modelling the problem numerically for certain benchmark values of §;
and drawing conclusions based on the results of these numerical experiments. Observe

also that (2.3.6) implies

(6.1.2)

thus prescribing fl as soon as a ( or T ) and §; have been chosen.

Detailed graphs are provided for the histories of contact interval width, indentor

tip shift ( the calculation of the latter quantity is explained below) and hysteretic

friction for a viscoelastic material with §; = ~. The normalized speed is added to each

graph to facilitate the comparison between the changes in the computed quantities

and the motion pattern of the indentor.

To facilitate the comparison between the transient and the steady-state cases, we

combine the graphs of the solution of the transient problem produced by the numerical

algorithm described in Chapter 5 with the graphs of the solution of the steady-state

problem with the same parameters obtained through the analytical considerations of

Section 4.4. However, one should bear in mind that this combination is somewhat

artificial. The steady-state quantities represent the steady-state solution ( i.e., t -> (0)

and therefore depend on speed only. The transient quantities are functions of time.

On each of the graphs in this chapter representing the histories of contact interval

width, indentor tip shift and hysteretic friction the subindex T corresponds to the

transient solution and S corresponds to the steady-state solution. The quantities CT

and Cs are the normalized lengths of the transient and steady-state contact intervals

respectively computed as Cs(V(t)) = (bs(V(t)) - as(V(t)))/(2R), CT(I) = (bT(t) 

aT(t))/(2R), hT; hs and hT are the indentor tip shifts: hT(t) = -(aT(t) + bT(t) -
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2J'o(t))!(br(t) - aT(t)), hs(V(t)) = -(as(V(t)) + bs(V(t)))!(bs(V(t)) - as(V(t))),

where xo(t) is the current position of the indentor tip, V(t) is the current magnitude

of the speed of the indentor. Transient and steady-state coefficients of hysteretic

friction JHT and JHs are computed with the help of (:3.3.11). The normalized speed

is v:",(t) = V(t)!(I\'aR). where I{ = 10 for the graphs containing Cs and CT. hs

and hT, while I{ = 100 for the graphs containing JHs and JHT. The magnitude of

the velocity V has been scaled to conveniently fit its plot on the graphs. In our

subsequent discussion we shall assume that all quantities have been normalized as

descri bed above.

The graphs of the steady-state contact interval Cs, indentor tip shift hs and hys

teretic friction Js are plotted as Junctions oj V in figures 6.1, 6.2 and 6.3 respectively

for §t; = ~. In view of the considerations presented above, we assign the following

meaning to the graphs further in this chapter containing transient quantities together

with the steady-state quantities. For any given time t the graph of a transient quan

tity plotted against time represents the actual value of this quantity at this time. The

value of the corresponding "benchmark" steady-state quantity plotted on the same

graph is in fact the value of this quantity for the current value of speed V( t). For

example, the graphs of hr , hs and V;v in Figure 6..5 can for time t. = 2 be interpreted

as follows. For this moment in time the transient solution fHT is approximately equal

to 7 x 10-3
. This is the value of fHT for the viscoelastic material impacted upon

by a rolling indentor which started its motion from rest at to = a and accelerated

to the speed VN(t.) as described by (6.2.1). The normalized speed of the inden

tor, V(2)!(f( aR) equals approximately 0.8. For this value of speed the steady-state

( t -t 00 ) value of the hysteretic friction fHs is just under 6 x 10-3
.

Cumulative graphs of the histories of contact interval width, indentor tip shift

and hysteretic friction for viscoelastic materials with §; = ~, §; = ~ and §; = 1 are

presented further in the chapter. The corresponding steady-state values are not shown

on these graphs for the sake of clarity. In each case snapshots of pressure distribution

are displayed at several instances in time allowing one to observe the development

of asymmetry in this distribution and the establishment of the steady-state regime

where applicable. On these graphs the contact interval has been rescaled to [-1, 1J to
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facilitate the comparison of pressure distributions for unequal contact intervals ( recall

that the length of the contact interval changes with time as the indentor moves). The

discussion of each case concludes with the graphs of the three components of the stress

tensor: <7", <712 and <722 at one ( fixed, but different in each case) moment of time.

Only the viscoelastic material with ~ = ~ has been chosen to illustrate these stress

distributions. Other values of viscoelasticity do not generate qualitatively different

pictures. Each stress distribution is presented at a fixed instance of time.

6.2 Trial Case: Acceleration to a Constant Speed

As our first example we choose

sin t,
V(t) = {

1,

0< t < .'C
- 2

t> .'C
- 2

(6.2.1)

The length of the contact interval and the shift of the indentor tip are each plotted

against time in Fig. 6.4. The hysteretic friction and the speed of the indentor are

shown in Figure 6.5. As the indentor starts moving, the length of the contact interval

starts to decrease. This length exceeds the length of the contact interval for the same

value of V in the steady-state case up to t "" 3, after which point the two lengths

become indistinguishable. The indentor tip shift also starts growing at the beginning,

then reaches its maximum at t "" 1.8 and then declines to its steady-state value.

Observe that initially ( up to t "" 1.3 ) hT < hs , though later hT > hs ( the two

coalesce at t "" 5 ). The hysteretic friction JHT exhibits behaviour similar to that of

hT . Its value stays less than JR s ( for the same speeds) until t "" 1, after which time

JHT becomes greater than JHs up to t "" 4. After this latter moment, however, JHT

becomes smaller than JHs' as predicted by Golden and Graham [43]. The difference,

nevertheless, is very small.

We should also point out that a "hump" in the graph of JHs occurs in full com

pliance with the behaviour of IHs as a function of speed as shown in Figure 6.3. An

increase in the speed of the indentor leads to an increase in the hysteretic friction

until the latter reaches its maximum and thereafter begins to decline.
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Cumulative graphs of the histories of the contact interval length and hysteretic

friction for viscoelastic materials with ~ = ~, ~ = ~ and ~ = 1 are given in

Figure 6.6 and Figure 6.7 respectively. One can observe that a higher dimensionless

ratio f.L
G

(i.e., more pronounced viscoelasticity of the material) leads to a larger
'0

contact interval length and higher hysteretic friction. Also, the minima of CT and

ffi T are reached later in the history of motion for higher values of ~.

The histories of pressure distribution for the same materials are given tn Fig

ures 6.8, 6.9 and 6.10. The graphs of pressure distribution for the times when tran

sient effects are most evident contain a hump which moves toward the end of the

contact interval as time elapses. This hump is also more c1earcut for higher values of

~. We suggest the following explanation of this phenomenon. When the indentor

starts moving. the first two terms in ('1.3.16) used to calculate v(x, t) become different

from zero for the front part of the contact interval ( x < aD ). In the rear part of the

contact interval ( b(t) > x > aD ) v(x, t) is still equal to I(x, 0). Once the indentor has

completely moved out of the initial contact interval [aD, bo], v(x, t) is fully governed

by (4.3.16) with non-zero first terms and the hump disappears. Since the value of

the pressure is closely related to that of v(x, t), the change from a linear to nonlin

ear dependence in v(x, t) results in a sharp ( though still smooth) change in p(x, t).

Physically the observed phenomenon may be explained from the fact that the inden

tor starts moving instantly and at to = 0 the pressure is instantly redistributed. As t

grows, the pressure distribution approaches its steady-state value in full compliance

with the results of Fan, Golden and Graham [3IJ.

The distributions of stress components for the material with ~ = ~ are presented

JJl Figures 6.11 - 6.13 for a large time ( t > 8). Observe that the influence of

the indentor rapidly diminishes as we move deeper inside the half-space for all three

components of (J. The first component, (Jll, has a hump for small y under the contact

interval, which is surrounded by two troughs along the x axis. The second component,

(J12, is anti symmetric about the indentor tip and has pronounced peaks underneath

the contact interval boundaries for small y, which is the consequence of the adopted

assumption about zero tangential forces on the boundary. The lines of equal value for

the third component, (J22, are similar to the pictures for an elastic material presented
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by Timoshenko and Goodier [118]. Overall, the graphs of pressure distribution are in

good agreement with elastic data [87, 70. 71].

6.3 Constant Acceleration

We now choose \i = 1 for 1 2: 0 and V = 0 for t < O. The length of the contact

interval and the shift of the indentor tip are each plotted against time in Fig. 6.14.

The hysteretic friction and the speed of the indentor are shown in Figure 6.15.

The contact interval length eventually tends to a stable value which corresponds

to the "high speed" elastic limit as described in [31). The hysteretic friction, however,

increases to its maximum value and then decreases steadily tending to zero. Observ

ing the curve in Figure 6.15, we can see a time delay between the steady-state peak

of the hysteretic friction and its transient counterpart. Initially, the transient hys

teretic friction is less than the steady-state value, but becomes larger soon after the

time corresponding to the peak in the steady·state value. Following the peak in the

transient value of the hysteretic friction, the difference between it and its steady-state

counterpart steadily declines to zero, as do both quantities at large speeds. Observe

that the history of the indentor tip shift mimics the history of the hysteretic friction

here and in all cases descri bed below. This is an expression of the fact that hysteretic

friction is related to the uneven pressure distribution inside C(I) and the indentor tip

shift is a measure of such asymmetry.

It is also interesting to observe that while the transient contact interval length CT

coalesces with its steady-state counterpart Cs after 1 "" 3, the indentor tip shifts hs

and hT are different throughout the observed history. In other words, even though

CT = Cs for t > 3, the indentor tip in the transient case is positioned differently inside

the contact interval with respect to the front and rear boundaries then in the steady

state case. The difference in shapes of pressure distribution between the transient and

the steady-state cases accounts for the difference in hysteretic friction.

Cumulative graphs of the histories of the contact interval length and hysteretic

friction for viscoelastic materials with §; = ~, §; = t and §; = 1 are given in

Figure 6.16 and Figure 6.17 respectively.
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6.4 Acceleration Followed by Deceleration

We now consider t.he case of an indentor accelerating smoot.hly from rest to a

prescribed speed 1'1 and then, after a period of constant velocity motion, decelerat.ing

to the speed V2 ( which is substantially less than V\ ). As an example, we consider

The histories of pressure dist.ribution for the same materials are given III Fig

ures 6.18. 6.19 and 6.20.

The distribut.ions of stress component.s for t.he mat.erial with ~ = ~ are present.ed

in Figures 6.21 - 6.23.
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(6.4.1)

Os t < ~

~ S t < 5

5st<5+~

t>5+~

1,

1 + 0.9 si n (t + 7f - 5) ,

0.1,

sin t,

V(t) =

r
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The results are presented in Figures 6.24, 6.25. We can observe the characteristic

trough in the length of the contact interval after the initial period of acceleration.

Thereupon, for the constant speed motion the lengths of the contact interval for the

t.ransient and the st.eady-state case merge and for the deceleration phase t.he transient

contact interval length lags behind the steady-st.ate case catching up to the latter

shortly after the speed has become constant. The behaviour of the hysteretic friction

is a mirror image of that of the contact interval length in that for those periods of time

when the transient contact interval length exceeds its steady-state counterpart, t.he

transient hysteretic frict.ion is smaller than the st.eady-state one. It is also interesting

to notice that., even though at t.he beginning of t.he decelerat.ion period the transient.

hysteretic friction is slightly smaller than the st.eady-state one, by the end of this

period it is larger.

Cumulative graphs of the histories of the contact interval length and hysteretic

frict.ion for viscoelastic materials with ~ = ~, ~ = ~ and ~ = 1 are given in

Figure 6.26 and Figure 6.27 respectively. For comparison, we also provide the steady

state solutions corresponding to t.he same values of the viscoelastic ratios. As one
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can observe, for materials with more pronounced viscoelastic properties the transient

solutions approaches the steady-state solutions later than for slightly viscoelastic ma

terials.

The histories of pressure distribution for the same materials are given in Fig

ures 6.28, 6.29 and 6.30.

The distributions of stress components for the material with &- = ~ are presented

in Figures 6.31 - 6.33.

6.5 Periodically Varying Speed: V = 1 + 0.9 sin t

For the first example in the case of a periodically varying speed, we consider:

V(t) = A + Bsint, (6.5.1)

where A > B > O. Three combinations of A and B were tried: A = 1.0, B = 0.9,

A = 1.0, B = 0.25 and A = 0.5, B = 0.25. The graphs for the first set of values are

presented. These are the most interesting results that were obtained.

Consider the case of a relatively high average speed with periodic variations of

large amplitude about this value: A = 1, B = 0.9 ( see Figures 6.34, 6.35 ).

The length of the transient contact interval follows its steady-state counterpart,

but with a delay. The steady-state hysteretic friction is almost sinusoidal. However,

the neighbourhood of the peak is "inverted", i.e., the friction decreases as the normal

ized speed lC:aR increases to values above 0.01. This is in line with the fact that for

the steady-state problem the hysteretic friction reaches its peak at medium velocities

and decreases as speed deviates to either side of these values ( see [65], [45], [31],

[47]').

The transient hysteretic friction, however, presents a totally different picture. Af

ter a sharp increase corresponding to the accelerating indentor, it starts to decrease

after the normalized speed ,C:aR becomes greater than 0.01. The rate of decrease

slows down shortly after the speed reaches its maximum. The hysteretic friction at

tempts to stabilize at a certain level. As the speed further continues to decline, the

hysteretic friction drops rapidly and then starts to increase with the beginning of a
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Figure 6.30: Alternately accelerating and decelerating indentor with V(t) varying as
described by (6.4.1). History of pressure distribution. §:- = 1
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Figure 6.31: Alternately accelerating and decelerating indentor with V(t) varying as
described by (6.4.1). Stress distribution: 0"11' &- = ~
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Figure 6.32: Alternately accelerating and decelerating indentor with V(t) varying as
described by (6.4.1). Stress distribution: <712. ~ = ~
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Figure 6.33: Alternately accelerating and decelerating indentor with V( t) varying as
described by (6.4.1). Stress distribution: an- §; = ~
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Figure 6.34: Periodically accelerating indentor: V(t) = 1 + 0.9sin(t). History of
contact interval length, indentor tip shift and speed. The solid lines indicate the
transient solution and the broken lines indicate the steady-state solution. The dotted
line indicates the speed. g; = ~.
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Figure 6.35: Periodically accelerating indentor: V(t) = 1 + O.9sin(t). History of
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Figure 6.38: Periodically accelerating indentor: V(t) = 1 + O.9sin(t). History of
pressure distribution. §; = ~



CHAPTER 6. RESULTS AND DISCUSSION 108

I
I
I
I

I
I 0.7
I

0.6

0.5

~0.4
;:l

'"'"~
0..0.3

0.2

0.1

-?5 -1 -0.5

0-·- E)

+ --+... --.
)f.- - - x
A- - -t::.

x

t=O
t= 0.48978
t=0.7478
t= 1.8179
t= 13.3163

a 0.5 1

Figure 6.39: Periodically accelerating indentor: V( t) = 1 + 0.9 sin(t). History of
pressure distribution. ~ = ~



r
L
I
I
I
I
I
I
I
I
I

CHAPTER 6. RESULTS AND DISCUSSfON

0.5

0.4

ll.) OJ...
;:l
</J
</J

~
0.. 0.2

109

-I -0.5 o
x

0.5 I

Figure 6.40: Periodically accelerating indentor: V(t)
pressure distribution. §; = I

1 + 0.9 sin(t). History of



new acceleration period. Maximum and minimum values of hysteretic friction and the

indentor tip shift are larger in the transient analysis than in the steady-state analysis.

The shape of the resulting graph somewhat resembles that of the one in Figure 6.24,

which, in turn, agrees with the results of Hunter [6.j].

Cumulative graphs of the histories of the contact interval length and hysteretic

friction for viscoelastic materials with §; = ~, §; = t and §; = 1 are given in

Figure 6.36 and Figure 6.37 respectively. The histories of pressure distribution for the

same materials are given in Figures 6.38, 6.39 and 6.40.

The distributions of stress components for the material with §; = ~ are presented

in Figures 6.41 - 6.43.
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6.6 Periodically Varying Speed: V = 1 + 0.25 sin t

The picture for the steady-state hysteretic friction in another case, A = 1, B = 0.25

is qualitatively the same as before ( see Figures 6.44, 6.45 ).

As for the transient hysteretic friction, it almost loses its characteristic hump 

plateau - trough shape. The hump at the beginning of each period after the transient

effects have died away, though still visible, smears out to a gradual decrease with a

virtually indistinguishable point of inflection. Tbis can be explained by observing that

the relative change in the indentor speed is small compared to its absolute value, so

transient effects can take place as the indentor accelerates or decelerates. Therefore,

no sharp drop in the hysteretic friction occurs and the increase at the beginning of

the next period appears almost right after the plateau of the previous period.

Cumulati ve graphs of the histories of the contact interval length and hysteretic

friction for viscoelastic materials with §; = 1, §; = t and §; = 1 are given in

Figure 6.46 and Figure 6.47 respectively.

The histories of pressure distribution for the same materials are given in Fig

ures 6.48, 6.49 and 6.50. The distributions of stress components for the material with

§; = ~ are presented in Figures 6.51 - 6.53.
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Stress distribution ( 0' 11 ), t= 7.128
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Stress distribution «}12)' 1= 7.128
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Figure 6.42: Periodically accelerating indentor: V(t) = 1 +O.9sin(t). Stress distribu-
f· Q.c_1IOn. a12· Go - '4



CHAPTER 6. RESULTS AND DISCUSSION

Stress distribution ( (
22

), t= 7.128

113

o

-0.1

-0.2

-0.3

-0.4

1:l-o 5o .

-0.6

-0.7

-0.8
-4

x

-6

-8

-10

..;..,-

-12 0

. ...

".

:." .

2

.',

" ' .... '

",," .

y

'.

7
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Figure 6.49: Periodically accelerating indentor: V(t) = 1 + 0.25 sin(t). History of
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Stress distribution (0"12)' t= 12.127
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Stress distribution ( °22 ), 1= 12.127
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6.7 Periodically Varying Speed: V = 0.5 + 0.25 sin t
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Figure 6.54: Periodically accelerating indentor: V(t) = 0.5 + 0.25 sin(t). History of
contact interval width, indentor tip shift and speed.

The situation changes again as we reduce the value of A to 0.5 keeping B intact

at 0.25 ( see Figures 6.54, 6.55). Now the transient hysteretic friction virtually

mimics its steady-state counterpart which, in turn, is almost sinusoidal. The trough

corresponding to the maximum speed has disappeared because the watershed value

of V;v = 1 is now never reached. The plateau part of the graph of the transient

hysteretic friction has disappeared, because the transient effects are taking place at a

speed lower than the speed of the indentor. This leads us to believe that the plateau

part corresponds to the transition between "high" and "101'1" speeds and is eliminated

when the speed does not reach the "barrier" values.
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Figure 6.55: Periodically accelerating indentor: V(t) = 0.5 + 0.25sin(t). History of
hysteretic friction and speed.
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Figure 6.56: Periodically accelerating indentor: V(t) = 0.5 + O.25sin(t). History of
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Cumulative graphs of the histories of the contact interval length and hysteretic

friction for viscoelastic materials with ~ = ~,~ ~ and ~ = 1 are given in

Figure 6..56 and Figure 6.57 respectively.

The histories of pressure distribution for the same materials are glVen In Fig

ures 6.58, 6.59 and 6.60.

The distributions of stress components for the material with ~ = ~ are presented

in Figures 6.61 - 6.63.

6.8 Periodically Varying Load

For a periodically varying load moving with constant speed ( Figures 6.64, 6.65 ),

we can notice that the transient and the steady-state contact interval lengths become

equal after the period of initial stabilization.

The transient indentor tip shift and hysteretic friction follow the variations in the

contact interval length with a time delay. The transient hysteretic friction mimics

its steady-state counterpart with a time delay as well. However, the steady-state

indentor tip shift varies very slightly, in contrast with the transient indentor tip shift.
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Stress distribution (0"11 ), 1= 21.602
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Stress distribution ( 0"22)' t= 21.602
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Figure 6.65: Periodically varying load: W(t) = 1 + 0.5 sin(t). History of hysteretic
friction and speed.



r

CHAPTER 6. RESULTS AND DISCUSSION 137

Cumulative graphs of the histories of the contact interval length and hysteretic

friction for viscoelastic materials with §:- = ~,§:- i and §:- = 1 are given in

Figure 6.66 and Figure 6.67 respectively.

The histories of pressure distribution for the same materials are gIven In Fig

ures 6.68, 6.69 and 6.70.

The distributions of stress components for the material with §:- = ~ are presented

in Figures 6.71 - 6.73.
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Chapter 7

Conclusion

In this thesis integral equation (4.3.16) subjected to subsidiary conditions (4.2.9) and

(4.2.10) has been solved for the transient case for the first time. Several patterns

of speed variation / loading conditions have been analyzed and histories of transient

contact interval length, hysteretic friction and indentor tip shift compared with their

steady-state counterparts.

It has been shown that:

1. the results obtained with the help of the transient algorithm described in Chap

ter 5 are consistent with the steady-state results obtained through the analytic

solution;

2. in aperiodic motion the transient quantities eventually approach their steady

state counterparts as t -> 00;

3. the positions of the indentor tip inside the contact intervals relative to the front

and rear boundaries are substantially different in the transient and steady-state

cases, even though the contact interval lengths may be the same;

4. for variable speed the graph shapes of transient and steady-state hysteretic fric

tion are substantially different; the indentor tip shift mimics the behaviour of

hysteretic friction;
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5. after a period of acceleration, the transient value of the hysteretic friction over

shoots the steady-state value;

6. higher values of the dimensionless viscoelastic ratio §;- lead to longer contact

intervals, higher hysteretic friction values and sharper peaks in the pressure

distribution in the front part of the contact interval in the initial time period;

7. the pressure in the front of the contact interval is higher than in the rear. During

the initial time period, there is a tangible difference between the two;

8. the distribution of stress components "11, "12 and "22 can be computed once

v(x, t) is known. The results for large times are in good agreement with known

elastic stress distributions;

9. both the indentor tip shifts and the coefficients of hysteretic friction differ qual

itatively for the transient and steady-state cases for a constant speed motion of

the indentor under a variable load;

10. the shift of the graph of the transient compared to steady-state hysteretic friction

in the case of constant speed and variable load exceeds the corresponding shift

in the case of a constant load and variable speed.

Further research may include the multi-indentor case and the to-and-fro motion of

a single indentor in opposite directions. However, those two cases require substantial

modification of the current algorithm and its software implementation.
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