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Abstract

In this thesis, we perform object recognition using (i) maximum similarity based feature

matching, and (ii) adaptive multiple kernel learning. Images are likely more similar if they

contain objects within the same categories, so how to measure image similarities correctly

and efficiently is one of the critical issues for object recognition. We first propose to match

features between two images so that their similarity is maximized, and employ support

vector machines (SVMs) for recognition based on the maximum similarity matrix. Sec-

ondly, given several similarity matrices (kernels) created by different visual information in

images, we propose a novel adaptive multiple kernel learning technique to generate an opti-

mal kernel from all the kernels based on biconvex optimization. These two new approaches

are tested on the most recent image benchmark datasets and their results are impressive,

equalling or bettering the state-of-the-art results.

Key words: Object recognition; Maximum similarity; Feature matching; Adaptive mul-

tiple kernel learning
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Chapter 1

Introduction

Object recognition in computer vision aims to emulate one of the most essential functional-

ities of human vision to help machines recognize objects in the environments automatically.

According to the data which contain objects, object recognition can be performed in 2D im-

ages, 3D videos, 4D medical data, etc. This thesis focuses on recognizing objects in images,

specifically, recognizing the categories of objects rather than recognizing (or detecting) spe-

cific objects or identifying objects. For example, as long as there exists an instance of bike

with a reasonable scale in an image, no matter where or at what scale the bike instance is,

we can still recognize this image as a bike image.

According to the number of nouns in the human languages, there are at least 10,000 to

30,000 object categories in the world [9]. However, at present machines can only recognize

a few of them. For instance, to our best knowledge, in the computer vision community,

the biggest public dataset for object recognition is Caltech-256 [30], which consists of 256

object categories plus a background category. Fig. 1.11 shows 40 samples from the first

40 categories in Caltech-256, one sample per category. So far the best recognition rate on

this dataset is only about 50% [24], whereas for humans these objects can be categorized

very easily. Therefore, much more effort is still needed for object recognition, and its

breakthroughs will bring great benefit to other relative research such as video surveillance,

navigation, etc.

1These images are extracted from http://www.vision.caltech.edu/Image_Datasets/
Caltech256/images/, where the samples of all the categories are shown.
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: 40 samples from the first 40 categories in the Caltech-256, one sample per category.

Image similarity in this thesis is defined as an object based measure to show how likely

two images contain the instances within the same object category, and a higher image sim-

ilarity indicates a higher probability. Based on this measure, a perfect recognition can be

made if the similarities of images which contain the same-category objects are higher than

those of images which contain objects in different categories.

Considering that each object can be decomposed into smaller pieces, and each smaller

piece gives an evidence that this object probably appears, we propose to match the same-

type features in images so that the image similarities are maximized. Here, “same-type”

means that the visual information in the features should be the same. For instance, all fea-

tures come from Scale Invariant Feature Transform (SIFT) [45] descriptors. We believe that

the maximization criterion is suitable to reflect the image similarities properly, because two
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more-similar images are inclined to have a higher maximization value. Specifically, with

or without consideration for the spatial configurations of features, we further propose con-

strained global feature correspondence [70] and probabilistic feature matching approaches,

respectively, for matching purpose.

With the increase of the number of visual sources from images, we face another prob-

lem, that is, how to combine these different visual information for object recognition. Given

a set of pre-calculated kernels, each of which is generated by the same-type features, we

propose another approach, called Adaptive Multiple Kernel Learning, to learn an optimal

kernel using the max-margin criterion. Unlike other multiple kernel learning (MKL) ap-

proaches, our approach is based on a biconvex optimization technique involved with an

arbitrary norm of kernel coefficients to search for local optima as the solutions, and its pa-

rameters can be learned for all the object categories either separately or jointly. Therefore,

the efficiency of our approach is much higher than the traditional convex optimization based

MKL approaches, especially with many object categories.

The rest of the thesis is organized as follows. Chapter 2 gives some background for

object recognition in computer vision. Chapter 3 presents our maximum similarity based

feature matching approaches. Chapter 4 explains our adaptive multiple kernel learning

approach for information combination. Finally, we conclude the thesis in Chapter 5.



Chapter 2

Background

Again, the purpose of this thesis is only recognizing the object categories in images with-

out localization or detection. In general, the object categorization process can be simply

summarized as follows:

I Representing objects. An object representation is a type of organization of low level

features in images, which are extracted from the image information of texture, color,

shape, etc., to represent objects. Usually, different algorithms have their own object

representations.

II Learning object category models. Based on the object representations in the training

images, the model learning algorithms can generate a visual model for each object

category. A visual model (model for short) of an object category can reflect some

characteristics of the category defined by the model learning algorithms.

III Recognizing object categories. After learning the visual models, corresponding recog-

nition algorithms are employed to calculate the similarities between the objects and the

categories. A higher value means more likely the image contains the objects within the

categories.

In the rest of this chapter, we will review some background information in each step.

Specifically, Section 2.1 reviews some widely used low level features, Section 2.2 presents

4



CHAPTER 2. BACKGROUND 5

some image patch sampling techniques, Section 2.3 introduces some object representations,

and Section 2.4 explains support vector machines (SVMs) for learning and recognition.

2.1 Low Level Features

Low level features (descriptors for short) are usually vectors describing the visual infor-

mation (e.g. texture, color, edge, etc.) in images or smaller image parts (patches for

short). A simple example of low level features is a vector of RGB pixel values, which

describes the color information of the pixel. So far, many sophisticated local descriptors

have been proposed, for instance, Scale Invariant Feature Transform (SIFT) [45], PCA-

SIFT [34], Gradient Location-Orientation Histogram (GLOH) [48], Speeded Up Robust

Features (SURF) [2], Shape Context (SC) [3] and Geometric Blur (GB) [6]. Since in our

experiments, only SIFT, SC and GB are employed, we just introduce these three descriptors.

SIFT descriptors are highly distinctive, and its basic idea is to describe the patches

in a high dimensional vector using gradient orientation histogram. Empirically in [45], to

generate a SIFT descriptor for a patch, first this patch is resized to 16*16 pixels, then divided

into 4*4 cells where in each cell there are 4*4 pixels. After this, a gradient orientation

histogram with 8 bins is generated for each cell. Finally, an 8*4*4=128 dimensional feature

vector is created for each SIFT descriptor.

Shape Context descriptors aim to locate the distribution of other shape points over

relative positions in a region around a pre-defined reference point (center for short) by

spatial quantization. When generating an SC descriptor for each point, a polar coordinate

system is employed where one dimension is log-distance, and the other is relative angle.

Geometric Blur descriptors are highly dependent on the extracted edges in images,

and the basic idea is to capture the relationship of oriented edges in a region around a pre-

defined reference point (center for short) using a polar coordinate system, similar to SC

descriptors. The difference is that a weighting distribution (usually a Gaussian distribution)

is applied to the sample points so that each sample point has its own weight for counting

purpose. The closer the sample point to the center is, the higher its weight is.

Additional properties (e.g. scale-invariance and rotation-invariance) of a descriptor are

decided by how the patch is detected and how the descriptor is calculated. For example,
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SIFT descriptors are born to be scale-invariant and rotation-invariant, because (i) the interest

point for each SIFT descriptor is located as a local optimum on multiple scales of an image

using Difference-of-Gaussian (DoG) by comparing each sample point to its eight neighbors

in the current DoG image (spatial space) and nine neighbors in the scale above and below

(scale space), and then the whole patch is re-scaled to 16×16 pixels, which results in scale-

invariance; (ii) to guarantee its rotation-invariance, the orientations of a SIFT descriptor are

assigned relative to the interest point orientations. Interest point orientations are calculated

based on the image gradient magnitudes and orientations at all the pixels, and assigned

as the highest peak and the local peaks that are within 80% of the highest peak in a 36-

bin weighted orientation histogram. For SC and GB descriptors, after locating the interest

points and their orientations in images, the polar coordinate systems in both SC and GB

descriptors can be centered at the interest points and aligned relative to the interest point

orientations like SIFT descriptors so that both SC and GB descriptors can be scale-invariant

and rotation-invariant.

2.2 Image Patch Sampling

An image patch sampling technique is an image patch extraction strategy before generat-

ing descriptors. In general, there exist several sampling techniques for object recognition,

for example, dense sampling (e.g. [41]), random sampling (e.g. [43]), segment sampling

(e.g. [31]), interest point sampling (e.g. [45]), etc.

Dense Sampling usually divides images into many same-size cells with specific struc-

tures. Its advantages are that it can control the total number, centers and scales of the

patches, and it can utilize the information of each image sufficiently by covering it using

the patches. The major drawback of this strategy is that the extracted patches may not be

distinctive enough for object recognition.

Random Sampling decides the centers and scales of the patches randomly. Like dense

sampling, it can control the total number of the patches. However, it cannot control the

centers and scales of the patches, and it may not extract distinctive patches for objects.

Segment Sampling utilizes some segmentation techniques (e.g. normalized cut [57])

to extract patches. Its advantages are that it can control the total number of the patches to
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a certain degree, probably locate some distinctive patches for objects, and probably utilize

the image information sufficiently. However, it cannot control the positions and scales of

the patches.

Interest Point Sampling employs some interest point (or region) detectors to locate

the centers and scales of the patches. An interest point is a pixel location around which

a patch with a specific scale is extracted. Its advantage is that it can locate the distinctive

object patches in the images as many as possible. However, it cannot extract an arbitrary

number of patches like dense sampling or random sampling (e.g. no interest points at all in

images), cannot control the centers and scales of the patches, and cannot utilize the image

information sufficiently.

In [50], the authors did some research on the effect of different sampling strategies for

image classification. It is found that the single most important factor governing perfor-

mance is the number of patches sampled from the test image and ultimately interesting

point detectors cannot provide enough patches to compete, so random sampling gives equal

or better classifiers than interest point sampling. And in [43], the authors compared the

dense, random, and interest point sampling strategies in their experiments, and addressed

that dense sampling, which yields the most number of patches, is the best. So in our exper-

iments, we only adopt dense sampling for patch extraction regardless of scale-invariance.

2.3 Object Representations

Using different algorithms, objects can be represented in different ways, for instance, Set-

of-Features models (SoF for short, e.g. [10]), Bag-of-Words models (BoW for short, e.g. [15]),

part based models (e.g. [20]), hierarchical models (e.g. [19]), etc.

Set-of-Features models represent each image as a set of same-type feature vectors, and

assume that these features are independent and at least one feature comes from the target

objects. Notice that features here could be either low level descriptors (e.g. SIFT) or high

level vector representations (e.g. BoW). SoF is quite flexible, no limits on the number or

dimensionality of features, and thus it is quite suitable for the feature matching purpose.

Bag-of-Words models represent each image as a histogram of occurrences of the code-

words in a pre-defined codebook to capture their distribution. A codebook is generated
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from a collection of clusters of training descriptors, and a codeword is the center of a clus-

ter. BoW maps each descriptor to an index in the codebook by searching for its nearest

codeword, considers this codeword to appear once, and finally creates a histogram. Still,

BoW assumes that the descriptors in each image are independent and at least one comes

from the target objects. Impressively, the performances of this simple representation on

many datasets for object recognition are very good (e.g. [60, 41, 44]).

Part based models take the spatial relationship of the patches in images into account,

and represent objects in a structured way. Usually, descriptors are still quantized using

a codebook like BoW, and based on this representation the learning algorithms can learn

distinctive object part structures, which makes this representation quite successful in object

recognition and detection. However, the number of learned object parts is restricted to a

very small number, otherwise the computational time is very high.

Hierarchical models represent objects by organizing their information into tree-like

trackable structures. Notice that the information here is not limited to the descriptors ex-

tracted directly from images, but it could be any high level information among the objects

(e.g. semantics). Theoretically, more similar the images are, more likely they share more

information in the hierarchy.

Due to the characteristics of our algorithms, in our experiments we employ SoF for

maximum similarity based feature matching and BoW for adaptive multiple kernel learning.

2.4 Support Vector Machines

Support vector machines (SVMs) are a set of supervised learning algorithms for classifi-

cation and regression based on the max-margin criterion. Supervised learning is used for

generating mapping functions between inputs and their labels. Originally, an SVM is de-

signed for binary-class cases, and its basic idea is to find a separating hyperplane which

maximizes the scaled distance between its two parallel hyperplanes, that is, the margin.

Notice that in an SVM, there is an assumption that the larger the margin is, the smaller the

generalization error of the classifier will be.

Specifically, in binary-class cases where only two classes exist, one positive one nega-

tive, suppose the training data is {(x1, y1), (x2, y2), · · · , (xn, yn)}where xi (i = 1, 2, · · · , n)
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denotes an input vector and its corresponding yi (i = 1, 2, · · · , n) denotes the class label

(“1” if positive, otherwise “-1”). Then in an SVM the separating hyperplane is defined as

〈w, φ(x)〉 + b = 0 and the two corresponding parallel hyperplanes are 〈w, φ(x)〉 + b = 1

for the positive class and 〈w, φ(x)〉 + b = −1 for the negative class, where w is the vec-

tor perpendicular to the separating hyperplane, b is a scalar, φ(x) denotes the pre-defined

input vector mapping function of the SVM, and 〈·, ·〉 denotes the inner product operator.

For classification, if a test vector xt satisfies 〈w, φ(xt)〉 + b > 0, it will be classified as

a positive instance; otherwise, if it satisfies 〈w, φ(xt)〉 + b < 0, it will be classified as a

negative instance. An SVM tries to find the optimal w and b to maximize the margin.

Since the margin in an SVM is always equal to 2
||w||2 no matter what input vectors are,

maximizing the margin is equivalent to minimizing ||w||2, further, equivalent to minimiz-

ing ||w||22. Therefore, an SVM primal formulation in the hard margin cases is defined in

Eqn. 2.1. Here, hard margin means that the training data can be classified perfectly without

any classification error.

min
w,b

1

2
‖ w ‖22 (2.1)

s.t. ∀i, yi
[
〈w, φ(xi)〉+ b

]
≥ 1

In practice, training data is hardly ever classified properly without any error. To allow

the classification errors by relaxing the margin condition from hard margin to soft margin,

slack variables ξ are introduced into the SVM formulation above and a soft margin SVM is

defined in Eqn. 2.2, where C is a pre-defined non-negative constant to control the trade-off

between the margin and the classification errors.

min
w,b,ξ

1

2
‖ w ‖22 +C

∑
i

ξi (2.2)

s.t. ∀i, yi
[
〈w, φ(xi)〉+ b

]
≥ 1− ξi

ξi ≥ 0, C ≥ 0

Based on the Lagrange multipliers α, Eqn. 2.2 can be rewritten as a dual formulation

as shown in Eqn. 2.3, and w and b can be calculated using Eqn. 2.4 and 2.5, where NS is

the total number of support vectors S. A support vector is an input vector xi with αi 6= 0.
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Notice that k(xi,xj) = 〈φ(xi), φ(xj)〉 is an element of a kernel, which is a definite semi-

positive matrix. Eqn. 2.3 can be solved using quadratic programming (QP).

max
α

∑
i

αi −
1

2

∑
i,j

αiαjyiyj〈φ(xi), φ(xj)〉 (2.3)

s.t. ∀i, 0 ≤ αi ≤ C,
∑
i

αiyi = 0

w =
∑
i

αiyiφ(xi) (2.4)

b =
1

NS

∑
i∈S

[
yi − 〈w, φ(xi)〉

]
=

1

NS

∑
i∈S

[
yi −

∑
j∈S

αjyj〈φ(xi), φ(xj)〉

]
(2.5)

In the multi-class cases, where more than two classes exist, in general there are two

strategies to train an SVM based on the binary cases, that is, one-vs-one and one-vs-rest.

GivenN classes, the one-vs-one strategy trains N(N−1)
2

binary SVMs to distinguish any pair

of classes, whereas the one-vs-rest strategy trains N binary SVMs, one for each class. For

classification, different criteria can be used, e.g. max-voting [33], max-margin [15], etc.

Also, multi-class SVMs can be trained for all the class models simultaneously (all-in-one

for short). For instance, Weston and Watkins [67] proposed a multi-class SVM as defined

in Eqn. 2.6, where yi = 1, 2, · · · , N denotes the true class label for xi. Its basic idea is that

the decision margin between an input and its true class should be bigger than that between

it and any false class.

min
w,b,ξ

1

2

N∑
c=1

‖ wc ‖22 +C
∑
i,c 6=yi

ξi,c (2.6)

s.t. ∀i, c 6= yi,

[
〈wyi

, φ(xi)〉+ byi

]
−
[
〈wc, φ(xi)〉+ bc

]
≥ 1− ξi,c

ξi,c ≥ 0, C ≥ 0

Hsu and Lin [33] compared the one-vs-one and one-vs-rest strategies, and addressed

that their performances are highly dependent on the classification problem at hand, and in

their experiments, one-vs-one is slightly better in most cases. Further, Demirkesen and

Cherifi [17] compared the three strategies above for scene image classification, and drew a

conclusion that the all-in-one strategy outperforms the other binary class based strategies

based on their experiments.



Chapter 3

Maximum Similarity Based Feature
Matching

In this chapter, we propose two feature matching approaches to maximize the similarities

between images. We believe that the maximum image similarity is a good measure for ob-

ject recognition because two images with similar objects in the same categories are incline

to have a higher maximum similarity than two images with objects in different categories.

Fig. 3.1 gives an example to explain the basic idea of our maximum similarity based fea-

ture matching approaches. By matching the patches in images, intuitively the maximum

similarity between the two bike images should be higher than that between the upper bike

image and the car image, because the two bike images contain similar bike instances, while

the upper bike image and the car image do not. In this way, it can be inferred which images

more likely contain the same-category objects by calculating pair-wise maximum image

similarity, and object recognition can be carried out using some classifiers like K-nearest

neighbors (KNN), support vector machines (SVMs), etc.

Accordingly we propose the following two feature matching criteria for maximizing im-

age similarities: Section 3.1 explains a constrained global feature correspondence approach,

Section 3.2 addresses a probabilistic feature matching approach. Finally Section 3.3 sum-

marizes the chapter.

11
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Figure 3.1: Illustration of the intuition of the maximum similarity measure.

3.1 Constrained Global Feature Correspondence

In this section, we consider the feature correspondence task as a graph matching problem.

Our approach tries to maximize a similarity objective function, consisting of not only the

feature vectors but also the constrained global spatial structures of two sets of feature points,

by a new polynomial-time approximate optimization algorithm. This algorithm allows ev-

ery node in a smaller graph to potentially be linked with any node in a larger graph, and

thus it can handle one-to-one, many-to-one, and no match cases. We test this approach on

the “hotel” and “house” video sequences for feature matching, and our results are quite

impressive.

3.1.1 Introduction

Feature correspondence aims to find a sequence of feature matching pairs between two

feature sets to satisfy certain conditions. Finding a correct feature correspondence is dif-

ficult, because in two sets of feature points (i) the descriptor for each point may be quite

different, even for pairs of ground truth matching points; (ii) the locations of the points

may be changed by translation, rotation, scaling, etc.; (iii) some points may appear in a

set but disappear in the other set. In general, the computational complexity of the feature

correspondence problem is NP-hard [26].

To deal with these difficulties, many approaches have been proposed. Koeser et al. [38]
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employed affine features to estimate the parameters for conjugate rotation. Dellaert et al.

[16] applied a Markov Chain Monte Carlo approach to estimate the posterior distribution

over all possible feature correspondences instead of best-one matching scheme. Torresani

et al. [59] formulated the feature correspondence task as a graph matching problem by min-

imizing an energy objective function based on the feature vectors and local spatial struc-

tures. Similarly, Caetano et al. [13] utilized graph learning algorithms to improve feature

correspondence accuracy based on local structures of the graphs.

We also consider the feature correspondence task as a graph matching problem. Specifi-

cally, in order to maximize the number of the feature matching pairs, in this paper we define

the feature correspondence task as follows:

Definition 1 (Maximum Similarity Based Feature Correspondence). Given two sets of

features A={a1, a2, · · · , a|A|} with |A| features, and B={b1, b2, · · · , b|B|} with |B| features

(|A| ≤ |B|), a maximum similarity based feature correspondence is defined as an asym-

metric matching process from the smaller set A to the bigger set B so that (i) each feature

in A appears at most once in the matching pairs to allow one-to-one, many-to-one, and no

match cases, and (ii) the similarity between A and B is maximized.

Naturally, minimizing an energy function is equivalent to maximizing a similarity func-

tion, and here we adopt similarity maximization, which involves not only the feature vectors

but also their constrained global spatial structures (CGSS), to find the feature correspon-

dence. For many feature correspondence cases, the object instances in images have their

specific global spatial configurations, e.g. the configurations of their parts or the relative

locations between them. In these cases, CGSS will be quite helpful because it is designed

based on this type of global spatial structure information. Because of computational com-

plexity, we propose a polynomial-time approximate algorithm using a greedy strategy to

search for the maximum iteratively as well as handling the different matching situations.

3.1.2 Similarity Objective Function

Many research works suggest that for feature correspondence problems the best approach is

to combine the feature vectors with structure information. However, most of them focus on
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the local structures of feature points (e.g. [59, 13]). Here, we introduce a new feature struc-

ture called constrained global spatial structure (CGSS). For each feature point, a CGSS is

constructed by the normalized distances and the normalized angles between all the matched

features in the matching sequence, and thus the CGSS is less sensitive to geometric trans-

formations, i.e. translation, rotation and scaling. Further, we take the similarities between

CGSS as a part of our similarity measure defined in Eqn. 3.1 for matching feature points

between set A and set B, and the optimal feature correspondence is the one that maximizes

the similarity between A and B, as defined in Eqn. 3.2.

S(A,B) =

|A|∑
i=1

Si =

|A|∑
i=1

k(vi|f)wk(si|f)1−wp(f) (3.1)

F(A,B) = arg max
f

S(A,B) (3.2)

Here, S(A,B) ∈ [0, 1] and F(A,B) respectively denote the similarity and the optimal

feature correspondence between set A and set B (|A| ≤ |B|), f denotes any possible fea-

ture correspondence, v denotes a feature vector, s denotes a CGSS determined by f , p(f)

denotes the prior knowledge of occurrence of f modeled as a uniform distribution, k(vi|f)

and k(si|f) denote the feature similarity and structure similarity of the ith matching pair in

f , whose multiplication is proportional to the similarity score of the matching pair, Si, and

w (0 ≤ w ≤ 1) is a parameter controlling the trade-off between the two similarities for Si.

In general, structure s can be designed based on different purposes, and in our algorithm we

design it as the normalized distances and the normalized angles between the feature points,

as illustrated in Fig. 3.3 for a1 and b2.

The intuition of multiplication of the feature similarity, the CGSS similarity, and the fea-

ture correspondence occurrence prior is inspired by the graphical model shown in Fig. 3.2,

where the feature matching pair v and their corresponding CGSS s can be considered as two

attributes of f , and the probability of co-occurrence of f , s and v is the multiplication of

p(f), k(v|f) and k(s|f). Since in our formulation the values of the feature similarities and

the structure similarities are between 0 and 1, we simply take similarity as the equivalence

of probability.

In [5], Berg et al. proposed a similar formulation to ours for finding feature correspon-

dence. However, the major difference between these two formulations is that in [5] the
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Figure 3.2: Intuition of multiplication of the feature similarity, the global feature structure similarity, and
the feature correspondence occurrence prior.

feature structure cost is pair-wise, two features per set, and the mapping between these fea-

tures from one set to the other defines the structure cost; whereas in our approach, the CGSS

is defined based on all the previous matched features in a set, not limited to pair-wise. In

other words, the definitions of feature structures in these two formulations are quite differ-

ent, and to our best knowledge, introducing the constrained global spatial structure (CGSS)

similarity into the matching process is novel.

3.1.3 Approximate Algorithm for Maximization

Notice that our similarity function is convex, and therefore its maximization is unique given

set A and set B. However, this function is difficult to maximize because the CGSS s is

related to all the matched feature points in the feature set. One way forward is to apply an

exhaustive search to all possible feature correspondences, but its computational complexity

is too high, given by O( |B|!
(|B|−|A|+1)!

).

Inspired by the Markov Chain Monte Carlo (MCMC) technique, we propose a polynomial-

time approximate algorithm to increase the similarity score monotonically and iteratively.

Basically, there are two steps in our algorithm: initialization and re-matching.

Initialization

The goal of the initialization is to select a good candidate for f from all possible candidates

available for searching for the maximum so that the computational time is reduced. In this
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Figure 3.3: An example of feature correspondence between set A with 4 points and set B with 6 points.
Here, green dots represent the unmatched points in each set, red dots represent the matched point pairs con-
nected by blue dotted lines, and the yellow dot b0 is for no match cases which does not belong to B. The
constrained global spatial structure for point a1 (reps. b2) consists of the normalized distances and the nor-
malized angles between a1 (reps. b2) and each matched point in the set.

step, we tentatively match the feature points in A and B such that each point in A has a

match in B, since |A| ≤ |B|. Here, we utilize the Iterated Conditional Modes (ICM) [7]

criterion for initialization.

Specifically, ICM allows a point pair, which has the maximum similarity score S based

on the matched pairs before, to be added into the current matching sequence in each itera-

tion. We describe each selection process as follows:

fi = arg max
f̂i

k(vi|f̂)wk(si|f̂)1−wp(f̂) (3.3)

where fi (i = 2, 3, · · · , |A|) denotes the ith point pair which is added into the current

matching sequence f̂ consisting of i − 1 point pairs, and f̂i denotes any possible point

pair candidate. Other variables have the same meanings as those in Eqn. 3.1. For the first

matching pair in f̂ , we simply add the one with the maximum feature similarity into f̂ .

Example 1 (Initialization). In Fig. 3.3, suppose we have matched 3 point pairs (red dots) be-

tween A and B, and would like to find a match for a1 amongst b2, b3, and b5 (green dots). Now

we calculate the similarity score between a1 and b2. Their feature similarity p(vi|f̂) is calculated

directly based on their feature vectors. The constrained global spatial structure (CGSS) of a1 is (1)

the normalized distances, which are the normalization of the distances between a1 and a2, a3, a4;

and (2) the normalized angles, which are the normalization of the angles between a1 and any pair of

the matched point pairs. For b2, its CGSS is defined in the same way. Then their structure similarity
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k(si|f̂) can also be calculated directly. Notice that for each point, the CGSS has its own order, and

these orders must be consistent with each other. For instance, if the order of the normalized distances

for a1 is 〈a1, a2〉, 〈a1, a3〉 and 〈a1, a4〉, then for b2 the calculation order must be 〈b2, b6〉, 〈b2, b1〉
and 〈b2, b4〉. It is similar for calculating the normalized angles. Thus, using Eqn. 3.3 the similarity

score for the pair a1 and b2 can be calculated easily. After finishing the calculation of the similarity

score for each candidate pair, we select the pair with the maximum as fi. In sum, our approximate

matching optimization allows including a measure of global spatial information without the penalty

of an exhaustive or another slow search.

Re-matching

After initialization, we re-match each point in A with the points in B iteratively, using the

exhaustive search while keeping the other pairs in the current feature correspondence f

unchanged, so that the similarity defined by Eqn. 3.1 will increase. We maintain the current

global structure by re-mapping a single node in turn whilst keeping the graph unchanged,

and thus impose severe consistency constraints. The purpose of this step is to correct any

“wrong” matching pair. In this process, we add a new point b0 (yellow dot) into B for

handling the no match cases, as illustrated in Fig. 3.3. When a point in A matches b0, the

similarity score of this pair is equal to 0, and if in this case the similarity of the matching

sequence increases, then that point should have no matching point in B currently. In other

cases, we calculate the similarity score for each pair of the point candidates, and when we

find a new point correspondence which increases the similarity of the matching sequence,

we update the matching sequence and its similarity score. In this way, our re-matching

process can handle the one-to-one, many-to-one and no match cases.

Example 2 (Re-matching). In Fig. 3.3, suppose after initialization the feature correspondence

is 〈a1, b5〉, 〈a2, b6〉, 〈a3, b1〉 and 〈a4, b4〉, and the corresponding similarity of this feature correspon-

dence is s0. Now we would like to re-match a1 with any point in B plus b0 so that s0 can increase.

Suppose we try to match a1 with b2; then to calculate the similarity between a1 and b2, we keep

the other matched pairs 〈a2, b6〉, 〈a3, b1〉 and 〈a4, b4〉 unchanged, and calculate the normalized dis-

tances and the normalized angles between a1 and a2, a3, a4 for a1, and between b2 and b1, b4, b6

for b2. This calculation is repeated for 〈a2, b6〉, 〈a3, b1〉 and 〈a4, b4〉 respectively, and using Eqn. 3.1

we can calculate the similarity of the current feature correspondence 〈a1, b2〉, 〈a2, b6〉, 〈a3, b1〉 and
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〈a4, b4〉, denoted as s1. If s1 > s0, then we update the feature correspondence to be the current one

along with its similarity, and otherwise keep searching. Overall, this is a highly constrained and fast

method.

As an approximation algorithm, we also enforce each increase amount to be no less than

ε (ε > 0), with our algorithm terminating if there is no such increase amount in |A|(|B|+1)

searches. Since our global feature structure similarities are highly dependent on the previ-

ous matched feature pairs, our approximation algorithm may be stuck in local solutions due

to the greedy strategy. Therefore, a good feature correspondence candidate in the initializa-

tion stage will be quite useful, not only for avoiding local solutions but also for reducing

computational time. Below is a proposition which proves that our approximate algorithm

is polynomial-time.

Proposition 1. The computational complexity of our approximate optimization algorithm

is O(|A|2|B|) (|A| ≤ |B|).

Proof. Let Smax and Sinit denote the maximum of S(A,B) and its value after initialization,

and suppose that in T searches the maximum increase amount ∆S is found. Then because

Smax ≤ |A|, Sinit ≥ 0, T ≤ |A|(|B|+ 1), and ∆S ≥ ε, we can estimate the computational

complexity of our approximate algorithm as follows.

O

(
(Smax − Sinit)T

∆S

)
≤ O

(
|A| · |A|(|B|+ 1)

ε

)
= O(|A|2|B|)

Thus, our approximate algorithm is polynomial-time.

To summarize our algorithm, we show the pseudo code of our algorithm in Alg. 3.1.

3.1.4 Experiments

We tested our approach on the “hotel” video sequence1 used in [59, 13] consisting of 101

frames of a toy hotel, and the “house” video sequence2 used in [13] consisting of 111 frames

1This sequence is downloaded from http://vasc.ri.cmu.edu/idb/html/motion/hotel/
index.html.

2This sequence is downloaded from http://vasc.ri.cmu.edu/idb/html/motion/house/
index.html.
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Algorithm 3.1: Polynomial-time Approximate Algorithm for Maximization
Input: set A, set B
Output: feature correspondence F
Initialize F based on Iterated Conditional Modes (ICM) using Eqn. 3.3 so that each feature
in A appears once in the matching pairs;
repeat

Calculate the similarity S for a possible matching pair using Eqn. 3.1;
if S(A,B) increased then Update F;
else Continue to search exhaustively;

until No increase of S(A,B) exists;
return F

of a toy house. We employed the Shape Context3 [4] descriptor to generate a feature vector

for each point. To measure the similarity of two feature vectors or their corresponding

CGSS, we used the RBF-kernel with the χ2 distance. For instance, given two feature vectors

v1 and v2 with d dimensions, their feature similarity k(v1, v2) is defined in Eqn. 3.4.

k(v1, v2) = exp

{
−

d∑
i=1

(v1,i − v2,i)
2

v1,i + v2,i

}
(3.4)

In our experiments, for each sequence we take as ground truth4 the same 30 point-pairs

as in [59, 13]. Our goal is to find the feature correspondence between two frames with

frame interval k, where k ∈ {25, 15, 10, 5, 3, 2}. That is, the frame-order distance between

two frames in the sequence is equal to k. For example, if k = 2, we will find the feature

correspondence for the frame pairs with order (1, 3), (2, 4), · · · , (N−3, N−1), (N−2, N),

where N is the total number of the frames in the sequence.

We fixed the parameter ε to 0.02 during all the experiments, and tested our approach

using different values of w from 0 to 1 step by 0.1 on the two sequences, as shown in

Fig. 3.4 for “hotel” (left) and “house” (right). Clearly (and unsurprisingly) our approach

works better with smaller k: when k = 2 our best results are 0.07% for “hotel” and 0.09%

for “house”, truly excellent results. When k = 25 our best results are 5.53% and 3.57%,

3Since in [59, 13] Shape Context is employed, we also use it. Other descriptors can be also utilized here.
4We appreciate help from Drs. Lorenzo Torresani and Vladimir Kolmogorov in providing us with point-

pair ground truth for the “hotel” and “house” sequences.
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(a) Hotel (b) House

Figure 3.4: Mismatching percentages (%) vs. parameter w using different k intervals for (a) “Hotel” and
(b) “House” sequences.

Table 3.1: Performance comparison between w = 0.5 and the best w for different k intervals (%).
Sequence hotel house

k = 2 3 5 10 15 25 2 3 5 10 15 25
Perf. with best w 0.07 0.10 0.17 0.26 1.28 5.53 0.09 0.09 0.16 0.56 1.28 3.57
Perf. with w=0.5 0.07 0.14 0.31 0.33 1.59 5.66 0.09 0.12 0.16 0.76 1.74 5.00

respectively, as listed in Table 3.1. This is quite reasonable, because when k is small, the

relative positions of the points are little changed, leading to a better description of Shape

Context and more similarity of the CGSS of points, compared to larger k. Even for k = 25,

a very wide gap in time, the results are quite respectable.

Also we make another two observations: (i) The errors first decrease from w = 0 and

then increase when w is close to 1, with the best results for w around 0.5. This indicates

that both feature vectors and their corresponding CGSS contribute to finding the optimal

feature correspondence; (ii) Around w = 0.5, all the lines are relatively flat, which means

in that range the performance of our approach is less sensitive to the changes in w. There-

fore, inferred from these two sequences, our approach needs no training data in order to

select optimal value for w, and we can simply fix w = 0.5 when we do not have any prior

knowledge about the data, since fixing w is the only learning aspect to the algorithm. For

these two sequences, we compare performance with w = 0.5 to the best performance, in

Table 3.1. From the table, we see that the differences are quite small between a fixed w
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Figure 3.5: Our result for matching the first and last frames (k = 100) of the “hotel” sequence, where
green lines indicate the correct feature correspondences, and the red lines indicate the wrong ones. Left:
Ground truth of the feature correspondences predefined in the two images. Right: Our result (accuracy:
14/30 = 46.7%) with w = 0.5.

Figure 3.6: Our result for matching the first and last frames (k = 110) of the “house” sequence, where
green and red lines have the same meanings as Fig. 3.5. Left: Ground truth of the feature correspondences
predefined in the two images. Right: Our result (accuracy: 12/30 = 40.0%) with w = 0.5.

and the best w. Also, these results are comparable to those in [59, 13], although we cannot

directly compare since the values of k for frame pairs are not stated there. Comparing the

computational time, on average for matching a frame pair based on our Matlab implemen-

tation without any optimization, it takes 1.24 and 1.22 seconds on “hotel” and “house”,

respectively, on a 2.33GHz Core 2 Duo CPU, while in [59] their “DD” approach needs

nearly 30 seconds.

We also tested our approach to find the feature correspondence between the first and

last frames in each sequence — a very challenging test. Here we used a constant w = 0.5.

The results are shown in Fig. 3.5 for “hotel” (k = 100) and Fig. 3.6 for “house” (k = 110),

where the correspondence accuracies are 14/30 = 46.7% and 12/30 = 40.0% for “ho-

tel” and “house”, respectively. This is because the changes of the relative positions of the

points make it difficult for the Shape Context descriptor to identify the same points. How-

ever, compared with the result of the linear assignment without learning in [13] for “house”

(7/30), we have achieved significant improvement. Although the matching accuracy of the
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constrained global feature correspondence approach is respectable, some issues make it dif-

ficult to apply this approach to object recognition on large-size datasets, e.g. its asymmetric

matching and scalability, and we do not perform any experiment on object recognition using

this approach.

3.2 Probabilistic Feature Matching

In this section we propose another novel feature matching approach called Probabilistic

Feature Matching (PFM). We consider the matching process as the bipartite graph match-

ing problem, and define the image similarity as the inner product of the feature similari-

ties and their corresponding matching probabilities, which are calculated by optimizing a

quadratic formulation. Further, we prove that the image similarity and the sparsity of the

feature matching probability distribution will decrease monotonically with the increase of

parameter C in the quadratic formulation where C ≥ 0 is a pre-defined data-dependent

constant. Essentially, our approach is the generalization of a family of similarity measure-

ment approaches. We test our approach on Graz datasets for object recognition, and achieve

89.4% on Graz-01 and 87.4% on Graz-02, respectively on average.

3.2.1 Introduction

We consider each image as an undirected graph and take the feature matching process as

the bipartite graph matching problem as illustrated in Fig. 3.7, where any pair of features

from two images could be possibly matched.

Different strategies can be utilized in the feature matching process. Lyu [46] introduced

the Summation Kernel (SK) to measure the image similarities as follows:

Ksum(V1, V2) =
∑
vi∈V1

∑
vj∈V2

k(vi, vj) (3.5)

where V1 (resp. V2) denotes a feature set, vi ∈ V1 (resp. vj ∈ V2) denotes a feature vector

in V1 (resp. V2), and k(vi, vj) denotes an arbitrary feature similarity kernel. In the next
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Figure 3.7: Illustration of matching two images. Each image is represented as a collection of features of
the patches. Weights (red) on the edges (green) denote the matching probabilities between the feature pairs
so that the similarity between the two images is obtained.

sections, we denote k(vi, vj) as kij for short. Wallraven et al. [65] proposed the Max-

selection Kernel (MK) as shown below:

Kmax(V1, V2) =
1

2

∑
vi∈V1

max
vj∈V2

kij +
∑
vj∈V2

max
vi∈V1

kji

 (3.6)

Fröhlich et al. [22] proposed the Optimal Assignment Kernel (OAK) to maximize the simi-

larity score between two structured objects by finding exactly one-to-one matches between

the parts of these objects, defined as follows:

KOA(x, y) =

{
maxπ

∑|x|
i=1 k(xi, yπ(i)) if |y| > |x|

maxπ
∑|y|

j=1 k(xπ(j), yj) otherwise
(3.7)

where x (resp. y) denotes an object, xi (resp. yj) denotes a part of x (resp. y), |x| (resp. |y|)
denotes the total number of the parts of x (resp. y), and π denotes a permutation of parts.

In contrast, the novel contribution of this approach is that we introduce a probabilistic

matching strategy into the matching process as illustrated in Fig. 3.7, and we show that

our approach can be considered as the generalization of a family of similarity measurement



CHAPTER 3. MAXIMUM SIMILARITY BASED FEATURE MATCHING 24

approaches, including SK, MK, and OAK, so that the similarity can be decided adaptive to

the data. In our approach, the similarity between two images is defined as the inner product

of their feature similarities and the corresponding feature matching probabilities, which are

calculated by optimizing a quadratic formulation.

3.2.2 Image Similarity Function

Given two images X = {x1, · · · , x|X|} and Y = {y1, · · · , y|Y |}, where xi ∈ X (resp.

yj ∈ Y ) denotes a feature in X (resp. Y ) and |X| (resp. |Y |) denotes the total number of

features in X (resp. Y ), according to the bipartite graph matching problem, their similarity

can be defined as follows:

S(X, Y ;α,k) =

|X|∑
i=1

|Y |∑
j=1

αijkij (3.8)

where αij denotes the feature matching probability (FMP) between features xi and yj , kij
denotes their similarity, and S(X, Y ;α,k) denotes the similarity between X and Y given

the feature matching probability function α (see Section 3.2.3 for details) and their feature

similarity matrix k.

3.2.3 Feature Matching Probability Function

Intuitively, an FMP αij can be utilized to describe how likely feature xi and yj are matched.

As illustrated in Fig. 3.7, the axle with black circle on the left has 0.8 FMP with the axle

with black circle on the right, while it has 0.2 FMP with the background feature, which is

quite reasonable. Therefore, by considering the matching process as a function, we propose

a very useful concept, called feature matching probability function, and give its definition

as follows:

Definition 2 (Feature Matching Probability Function). Given two imagesX={x1, · · · , x|X|}
and Y ={y1, · · · , y|Y |}, a feature matching probability function (FMPF) α is defined as

α : X × Y →
{
{0}

⋃
R+
}
|X|×|Y |

, where R+ denotes the field of positive real numbers.

Letting−→x and−→y denote the two dimensions of α, and selecting an arbitrary dimension set
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H ⊆ {−→x ,−→y } from α, each FMPF will correspond to a point in the vector space covered

by the following convex set:{
α |

∑
∀h∈H

α � 1,
∑
i,j

αij = min (|X|, |Y |) , 0 � α � 1

}

where “�” denotes the element-wise operator of “≤”.

Notice that if H = ∅, the first constraint in the convex set above does not apply. In

the constraint set of α, the first constraint guarantees that the total matching probability of

each corresponding feature is no more than 1, the second constraint guarantees that the total

matching probability of all the features is equal to the total number of features in the smaller

set, and the last constraint guarantees that each element in α represents a probability.

Actually, we can use this concept to describe the matching processes in SK, MK, and

OAK. Specifically, (i) in SK any pair of features could be matched and their matching

weight is fixed as 1, so α can be modeled as a uniform distribution; (ii) in MK a unique

feature is selected as a match for every feature in both feature sets and their matching weight

is fixed as 1, others 0, totally |X|+ |Y | matched feature pairs; (iii) in OAK each feature in

both sets can occur in the matched feature pairs at most once with the matching weight equal

to 1, others 0, totally min{|A|, |B|}matched feature pairs. In these approaches, the weights

are pre-defined and kept the same during the matching process, no matter what the data is.

In our approach, α is calculated automatically by optimizing a quadratic formulation so

that α can be adaptive to the different data, which could reflect the matching relationship

between features better. As a result, our approach can be considered as the generalization

of SK, MK, and OAK as explained in next section.

3.2.4 Probabilistic Feature Matching Optimization

We would like to perform the probabilistic feature matching between two images auto-

matically. Therefore, we propose a quadratic optimization formulation [49] as defined in

Eqn. 3.9 to calculate α, where f(α;C) denotes our objective function, α is the only variable,
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C is a pre-defined non-negative constant, and k is the feature similarity matrix.

max
α

f(α;C) =
∑
i,j

αijkij − C
∑
i,j

α2
ij (3.9)

s.t.
∑
∀h∈H

α � 1,
∑
i,j

αij = min (|X|, |Y |) ,0 � α � 1, C ≥ 0

In our objective function, the first part is to measure the image similarity, the second

part is to measure the sparseness of the distribution of α, and C ≥ 0 is a pre-defined data-

dependent constant to control the trade-off between the two parts. Usually, sparseness is a

measure from Rn to R for a vector to quantify how much energy is actually packed into only

a few components [32]. In our case, since the total energy is fixed, we define the sparseness

of a distribution as the variance of the distribution. Therefore, to minimize the sparseness

of α, we have

min
{
SP (α)

}
= min

{
V ar(α)

}
= min

{
E[α2]− E[α]2

}
⇔ min

{
E[α2]

}
(3.10)

where SP (·) denotes the sparseness of a distribution, and E[·] and V ar(·) denote the mean

and variance operators.

In order to see the relationship between our approach and some other similarity mea-

surement approaches, we need the following important theorems on convexity [49]:

Theorem 1. Consider max f(x) over x ∈ X , where f(x) is convex, and X is a closed

convex set. If the optimum exists, a boundary point of X is the optimum.

Theorem 2. If a convex function f(x) attains its maximum on a convex polyhedron X with

some extreme points, then this maximum is attained at an extreme point of X .

Based on the theorems above, we can show that in certain cases our approach can be

considered as equivalences to SK, MK and OAK by choosing differentC andH in Eqn. 3.9.

• C = +∞ and H = {−→x ,−→y }: According to Thm. 1, the optimized α in Eqn. 3.9

will be a uniform distribution, that is, αij = 1
max(|X|,|Y |) , and by re-scaling α to 1, our

approach can be considered as an equivalence to SK [46].

• C = 0 andH = {−→x ,−→y }: According to Thm. 2, the optimized α in Eqn. 3.9 will sim-

ulate a one-to-one matching process without feature re-occurrence, and our approach

is equivalent to OAK [22].
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• C = 0 andH = {−→x }: According to Thm. 2, the optimized αwill simulate the match-

ing process that selects the biggest similarity along the−→x -dimension for each feature

in the−→y -dimension, and the corresponding similarity is equivalent to
∑

j maxi kij in

Eqn. 3.6. Thus, by optimizing Eqn. 3.9 along the −→x and −→y -dimension of α, respec-

tively, our approach is equivalent to MK [65].

Moreover, our approach has the following property:

Proposition 2. For two images X and Y , both the sparseness of α and their similarity

S(X, Y ;α,k) will decrease monotonically with increasing C in Eqn. 3.9.

Proof. Considering C1 > C2 ≥ 0 and their corresponding α1 and α2 calculated using

Eqn. 3.9, we have f(α1;C1) ≥ f(α2;C1) and f(α2;C2) ≥ f(α1;C2). Putting them to-

gether, we have

C1α
′
2α2 − C1α

′
1α1 ≥ α′2k− α′1k ≥ C2α

′
2α2 − C2α

′
1α1 (3.11)

where α1, α2 and k are vectorized, and ′ denotes the transpose operator. Then we get

(C1 − C2)(α
′
2α2 − α′1α1) ≥ 0 (3.12)

Since C1 > C2 ≥ 0, then α′1α1 ≤ α′2α2, which indicates that a smaller C will lead to an α

with larger sparseness. Besides, we have

S(X, Y ;α2,k)− S(X, Y ;α1,k) = α′2k− α′1k ≥ C2(α
′
2α2 − α′1α1) ≥ 0 (3.13)

Therefore, S(X, Y ;α,k) will decrease monotonically with the increase of C.

This property simplifies the adjustment of C in the cross-validation for different data

so that our approach can be adaptive to the data. For instance, based on this proposition

and the optimization of Eqn. 3.9 in both −→x and −→y -dimension of α, we know that when

C = +∞ the similarities between images are the smallest (equivalent to the normalization

of SK) and whenC = 0 their similarities are the biggest (equivalent to OAK). By increasing

(or decreasing) the value of C monotonically using the cross-validation techniques, we can

find a good parameter value for the recognition purpose.
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3.2.5 Classification with Support Vector Machines

In general, there is no guarantee that the similarity matrix generated by our approach is a

valid kernel, whereas theoretically support vector machines (SVMs) are utilized with ker-

nels for classification. However, in practice, an arbitrary similarity matrix can be involved

in an SVM by adding a small positive number to the entries along the diagonal when it

is not valid (e.g. [69]), as did in Eqn. 3.14, where |λmin| denotes the absolute value of the

minimum eigenvalue of the similarity matrix K, and I denotes the identity matrix.

K ′ = K + |λmin|I, if λmin < 0 (3.14)

3.2.6 Experiments

We tested our approach on the Graz-01 [51] and Graz-02 [52] datasets to perform the “ob-

ject & non-object” binary classification, with performance measured by Equal Error Rate

(EER). Graz-01 is a challenging dataset with two object categories (bike: 373 images, per-

son: 460 images) and a background category (270 images), because they vary greatly in

object scale, pose and illumination. Compared to Graz-01, Graz-02 can be considered as an

improved version with much more challenge, and comprises 3 object categories (bike: 365

images, person: 311 images, car: 420 images) and a background category (380 images).

The size of each image in both datasets is either 640×480 or 480×640 pixels.

In our experiments, all the images were converted into gray scale, and we utilized the

dense sampling technique [60] to sample the images so that each patch consists of 10×10

pixels. For each patch, we employed the SIFT [45] descriptor to represent it, and then

used K-means to generate a codebook with 200 codewords so that each descriptor can be

represented by the closest codeword in the feature space. Finally, by counting the occur-

rence of each codeword in the cells of the 3×3 grid, we created 9 histograms to represent

each image. The RBF-kernel with χ2 distance was used to compare the similarity of two

histograms, that is,

kij = exp

{
−

d∑
n=1

(vi,n − vj,n)2

vi,n + vj,n

}
(3.15)

where d is the number of dimensions of histograms vi and vj . The regularization parameter

in an SVM was fixed to 104. All the results here were averaged after 50 runs. To simplify
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(a) PFM1 (b) PFM2 (c) PFM3

Figure 3.8: Performance comparison on Graz-01 between different PFM with different C.

the notations, we use PFM1, PFM2 and PFM3 to denote our approach with H = {−→x ,−→y },
H = {−→x } orH = {−→y }, andH = ∅, respectively.

Graz-01

Table 3.2: Comparison results between different approaches on Graz-01 (%)
Bike Person Ave.

SPK [41] 86.3±2.5 82.3±3.1 84.3
PDK [44] 90.2±2.6 87.2±3.8 88.7

PFM1 (C=0) 90.6±5.3 88.2±4.6 89.4
PFM2 (C=5) 89.6±4.9 88.5±4.6 89.0

PFM3 (C=+∞) 89.6±4.8 87.9±5.1 88.8

For the training-test data selection, we followed the setup in [41]. Specifically, we

randomly selected 100 images in the positive class and 50 in each negative class (including

the background) as our training set, and performed the test on similarly distributed data sets

consisting of half the number of the training images per category.

Fig. 3.8 shows our performance on Graz-01. In general, PFM1 performs best, while

PFM3 performs worst, and PFM1 is much more stable with the increase of C than the

others. We also list the best performance of each PFM in Table 3.2 and compare them with

some other published results. Clearly, all of our results outperform them.

Graz-02

We followed the experimental setup in [52] for the training-test data selection. Specifically,

for each object category, we randomly selected 150 positive and 150 negative (50 for each
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(a) PFM1 (b) PFM2 (c) PFM3

Figure 3.9: Performance comparison on Graz-02 between different PFM with different C.

Table 3.3: Comparison results between different approaches on Graz-02 (%)
Bike Person Car Ave.

Boost.+SIFT [52] 76.0 70.0 68.9 71.6
Boost.+Comb. [52] 77.8 81.2 70.5 76.5

PDK+SIFT [44] 86.7 86.7 74.7 82.7
PDK+hybrid [44] 86.0 87.3 74.7 82.7

PFM1+SIFT (C=5) 88.9 88.1 85.2 87.4
PFM2+SIFT (C=10) 88.0 87.9 83.6 86.5

PFM3+SIFT (C=+∞) 87.7 87.8 82.6 86.0

non-object class, including the background) images as the training data, and selected 75

positive and 75 negative (25 for each non-object class, including the background) with

similar distribution of the training data as the test data, respectively.

Fig. 3.9 shows our performance on Graz-02. Compared to Fig. 3.8, similar observations

can be made. Therefore, H = {−→x ,−→y } seems the best choice among the three for our

PFM. Also, Table 3.3 lists the best results using different PFM in comparison with some

other published results, and all of ours outperform them significantly.

3.3 Summary

In this chapter, we propose two different criteria for matching the same-type features in

images to maximize their similarities.

First, we formulate the feature correspondence task as a graph matching problem, and

propose a similarity function involving both feature vector similarities as well as corre-

sponding constrained global spatial structure similarities. That we can include this global
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structure information in optimal feature correspondence is due to the introduction of a

new polynomial-time approximation maximization algorithm, which updates the similarity

score iteratively. While allowing many potential matches, the update is strictly constrained

by the global structures of features, making for a fast algorithm compared to some state-

of-the-art graph matching algorithms with comparable accuracies as demonstrated by our

experiments.

However, this approach defines an asymmetric matching process which limits its ap-

plication in object recognition, particularly on large-size datasets. Therefore, we propose

another novel feature matching approach called probabilistic feature matching (PFM). In

this approach, the similarity between two images is defined as the inner product between

the feature similarities and their corresponding matching probabilities, which are calcu-

lated data-dependently by solving a quadratic optimization problem. We also prove that the

image similarity and the sparseness of the feature matching probability distribution will de-

crease monotonically with the increase of parameter C in the quadratic formulation. Essen-

tially, our approach is the generalization of a family of similarity measurement approaches,

including the Summation Kernel, the Max-selection Kernel, and the Optimal Assignment

Kernel. In our experiments, we tested our approach on Graz datasets for object recognition.

On average, we achieved 89.4% on Graz-01 and 87.4% on Graz-02, respectively.



Chapter 4

Adaptive Multiple Kernel Learning

Usually humans recognize objects based on their different sources of information rather

than one [18]. Recently, impressive accuracies for object recognition in images have been

achieved on several benchmark datasets by combining multiple sources of object informa-

tion. In this chapter, we propose a novel multiple kernel learning (MKL) approach, called

Adaptive Multiple Kernel Learning (AdaMKL)1, for information combination based on the

max-margin criterion. Unlike other traditional MKL approaches, our objective function

is defined as a family of biconvex functions with an arbitrary `p-norm (p ≥ 1) of kernel

coefficients to learn the weights for support vectors and the kernel coefficients at a local op-

timum. In our learning algorithm, AdaMKL minimizes our objective function alternatively

by updating some variables while fixing the others at a time, where only one convex for-

mulation needs to be solved. Besides, AdaMKL is suitable for either binary-class learning

or multi-class learning. These characteristics make the learning of AdaMKL much more

efficient.

We test our approach on the Caltech datasets for object recognition. Our experiments

demonstrate that training AdaMKL is much (at least 10 times) faster than training some

convex optimization based MKL algorithms with better accuracies. On Caltech-101, our

mean category accuracies are (67.2 ± 1.4)% and (74.4 ± 0.5)% using 15 and 30 training

images per category, respectively, and on Caltech-256, ours are (31.4± 1.0)% and (36.4±

1Part of this work has been accepted by ICPR’10 [71].

32
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1.7)%, all of which are comparable to the best published results.

The rest of the chapter is organized as follows. Section 4.1 introduces our approach and

reviews some related work. Section 4.2 explains the details of AdaMKL. Section 4.3 gives

our experimental results on the Caltech datasets and compares AdaMKL with some other

approaches. We finally summarize the chapter in Section 4.4.

4.1 Introduction

We propose a novel multiple kernel learning (MKL) approach to combine different informa-

tion for object recognition in images, called Adaptive Multiple Kernel Learning (AdaMKL).

To minimize our objective function, AdaMKL takes an alternative optimization strategy to

learn the weights for support vectors and the kernel coefficients by updating some variables

while fixing the others at a time, where only one convex formulation needs to be solved.

At each iteration, the global optimum of the convex formulation is a local optimum of our

biconvex objective formulation, which makes our approach “adaptive” to the maximum

margin little by little.

Different from many other MKL approaches, our AdaMKL has the following charac-

teristics, which make the learning process of AdaMKL much more efficient.

• Its objective function is defined as a family of biconvex, rather than convex, functions,

and thus its optima are local instead of global. A function f : X × Y → R is called

biconvex if f is convex both in x ∈ X for fixed y ∈ Y and in y ∈ Y for fixed x ∈ X .

• An arbitrary `p-norm (p ≥ 1) of kernel coefficients can be involved in the objective

function, rather than the constraint set, for optimization. In this way, the traditional

sparse (or non-sparse) learning due to the norm constraint is separated.

• Its kernel coefficients can be learned for either binary-class or multi-class cases. In

binary-class learning, each object category has its own kernel coefficients, while in

multi-class learning all the categories share the same coefficients.
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4.1.1 Related Work

Many approaches have been proposed to combine different information of objects for recog-

nition or detection. For example, Gu et al. [31] proposed an approach to learn the weights

of regions in images for object recognition using their texture, color, and shape information.

Another useful approach is multiple kernel learning (MKL), which has been demonstrated

by many papers (e.g. [62, 39, 25, 63]). Varma and Ray [62]2 proposed an MKL approach

to learn the optimal trade-off between different descriptors for a given classification task.

Lampert and Blaschko [39] utilized a subsequent decision process that works jointly for

all given object classes to combine the efficiency of single class localization using MKL.

Gehler and Nowozin [25] extended MKL from finite kernels to the infinite kernels to learn

kernel parameters for the pre-processing steps in classification. Vedaldi et al. [63] applied

MKL to generate a three-stage classifier as an object detector.

Multiple Kernel Learning (MKL) [1] aims to generate an optimal kernel automatically

by combining a set of basic kernels linearly as well as learning the weights for support

vectors simultaneously. Given N labeled data D = {(xi, yi)}i=1,··· ,N where ∀i,xi ∈ X is

an input feature and yi ∈ {+1,−1} is its class label for binary classification, and M feature

mapping functions Φ = {φj}j=1,··· ,M , each of which maps an input feature into a Hilbert

space Hj , a reproducing kernel Kj is defined as an inner product of φj(xm) and φj(xn),

that is, Kj(xm,xn) = 〈φj(xm), φj(xn)〉Hj
, and the optimal kernel Kopt learned by MKL

can be represented as Eqn. 4.1, where γ are kernel coefficients.

Kopt =
M∑
j=1

γjKj, ∀j, γj ≥ 0 (4.1)

By putting MKL into the context of max-margin classifiers, e.g. support vector ma-

chines (SVMs), several MKL approaches have been proposed [1, 40, 55, 58, 36, 37, 54].

A common existing framework in the MKL approaches is to minimize a convex optimiza-

tion based objective function [47], and below Eqn. 4.2 shows a general case of MKL by

2We notice that the results on Caltech-101 in this paper are incorrect. For more information
please refer to http://research.microsoft.com/en-us/um/people/manik/projects/
trade-off/trade-off.html.
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introducing an arbitrary norm of kernel coefficients into the constraint set [37].

min
γ,w,b,ξ

1

2

∑
m

‖ wm ‖22
γm

+ C
∑
i

ξi (4.2)

s.t. ∀i,m, yi

[∑
m

〈wm, φm(xi)〉+ b

]
≥ 1− ξi,

γm ≥ 0, ‖ γ ‖pp≤ 1, p ≥ 1, ξi ≥ 0, C ≥ 0

Note that if p = 1, it results in sparse learning of γ like [1, 40, 55, 58, 54]; or if p = 2, it

results in non-sparse learning like [36]. Also, different optimization approaches have been

used in MKL, e.g. second-order cone programming [1], semi-definite programming [40],

semi-infinite programming [58, 36], gradient-based approaches [55, 37, 54]. Many recent

MKL solvers (e.g. [58, 37, 54, 62, 55]) adopt a two-step strategy to learn the parameters

alternatively. For learning w, the regular SVM formulation with a kernel is taken advantage

of, whereas for learning γ their algorithms may be quite different to handle the norm con-

straint of kernel coefficients in the constraint set, especially for the arbitrary-norm cases.

The convergence of the strategy above is not guaranteed in general [55], and how to learn

the kernel coefficients γ is more crucial than how to learn the weights for support vectors.

One of the biggest issues of applying MKL to object recognition is how to learn the

parameters in MKL efficiently due to the huge information in images. In [39], Lampert

and Blaschko proposed to minimize the upper bound of the original formulation of MKL

in order to gain the learning efficiency as well as keep good performance. This method ac-

tually can be considered as searching for a local optimum of the original MKL formulation

instead of the global one as the solution.

Based on this consideration, by relaxing the convexity of the objective function, we

propose our biconvex MKL approach based on the max-margin criterion, named Adaptive

Multiple Kernel Learning (AdaMKL). The intuition of this approach is to make the learn-

ing of kernel coefficients much more easier by involving an arbitrary `p-norm (p ≥ 1) of

kernel coefficients with our objective function, which helps hide the norm constraint of ker-

nel coefficients in the dual formulation when learning w without consideration explicitly.

Besides, the learning of AdaMKL is suitable for either binary-class or multi-class cases.

Accordingly, a two-step optimization algorithm is proposed to solve our problem locally.
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4.2 Adaptive Multiple Kernel Learning

Adaptive Multiple Kernel Learning (AdaMKL) aims to learn an optimal kernel efficiently

by combining multiple kernels as well as achieving good performance on recognition tasks.

AdaMKL searches for the local optimal solutions rather than the global ones, which makes

learning faster and easier.

4.2.1 Motivation

Eqn. 4.3 shows one type of the decision functions in MKL (e.g. [27]), where θ are the

coefficients w.r.t. kernels, w are the normal vectors for an SVM, and b is the bias term.

f(x) =
M∑
m=1

θm〈wm, φm(x)〉+ b (4.3)

Suppose θm ≥ 0 and ‖ θ ‖pp≤ 1, then we make some modifications to Eqn. 4.3, that

is, letting w′m =
√
θmwm and φ′m(xi) =

√
θmφm(xi). Further, we fit w′ and φ′m(x) with

Eqn. 4.3 into the binary-class SVM formulation (see Section 2.4 for details). It turns out

that the corresponding formulation is exactly the same as Eqn. 4.2 [37]. However, by fitting

Eqn. 4.3 directly into the original binary-class SVM formulation to minimize the max-

margins between positive and negative instances, we can obtain Eqn. 4.4, where C is a

constant and ξ are errors.

min
θ,w,b,ξ

1

2

∑
m

θ2
m ‖ wm ‖22 +C

∑
i

ξi (4.4)

s.t. ∀i, yi

[∑
m

θm〈wm, φm(xi)〉+ b

]
≥ 1− ξi

ξi ≥ 0, C ≥ 0

Essentially Eqn. 4.4 defines a biconvex optimization problem (OP), and inspired by [39]

its objective function can be easily relaxed to one of its upper bounds as shown in Eqn. 4.5,

which also defines a biconvex OP. Next, we will show that these upper bound formulations

allow us to introduce an arbitrary `p-norm (p ≥ 1) of kernel coefficients into AdaMKL.∑
m

θ2
m ‖ wm ‖22≤ max

m
θ2
m

∑
m

‖ wm ‖22≤‖ θ2 ‖p‖ w ‖22 ≤ ‖ θ2 ‖1‖ w ‖22 (4.5)
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4.2.2 Binary-class AdaMKL

A binary-class AdaMKL (B-AdaMKL) aims to learn parameters w, θ and b for each in-

dividual class without sharing any information between them. Using the upper bounds of

Eqn. 4.4, we define the primal of B-AdaMKL as Eqn. 4.6 where p ≥ 1 and c denotes a spe-

cific class. Apparently, our objective formulation contains a family of biconvex objective

functions due to different p, where parameters are learned alternatively.

min
θc,wc,bc,ξ

1

2
‖ θ2

c ‖p‖ wc ‖22 +C
∑
i

ξi (4.6)

s.t. ∀i, yi

[∑
m

θc,m〈wc,m, φm(xi)〉+ bc

]
≥ 1− ξi

ξi ≥ 0, C ≥ 0

When learning parameters wc, bc, and ξi, parameter θc is fixed. Based on the Lagrange

multipliers, we rewrite our primal in Eqn. 4.6 and obtain its dual in Eqn. 4.7, where αc is

the set of the Lagrange multipliers. Accordingly, we can calculate each wc,m and bc using

Eqn. 4.8 and 4.9, respectively, where NS is the total number of support vectors S.

max
αc

∑
i

αc,i −
1

2

∑
i,j

αc,iαc,jyiyj

[∑
m

θ2
c,m

‖ θ2
c ‖p

Km(xi,xj)

]
(4.7)

s.t. ∀i, 0 ≤ αc,i ≤ C,
∑
i

αc,iyi = 0

wc,m =
∑
i

αc,iyi
θc,m
‖ θ2

c ‖p
φm(xi) (4.8)

bc =
1

NS

∑
i∈S

{
yi −

∑
j∈S

αc,jyj

[∑
m

θ2
c,m

‖ θ2
c ‖p

Km(xi,xj)

]}
(4.9)

Notice that if we denote γc,m =
θ2c,m

‖θ2c‖p
, then we actually obtain ‖ γc ‖p= 1 (p ≥ 1). In

this way, an arbitrary `p-norm of kernel coefficients is hidden perfectly in the dual formu-

lation of our B-AdaMKL when learning w, and it needs no consideration in the constraint

set as usual.

Next, we learn parameters θc, bc, and ξi while keeping parameter wc unchanged, and the

corresponding primal formulations are shown in Eqn. 4.10, where φwc
m (xi) = 〈wc,m, φm(xi)〉.
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Figure 4.1: Comparison between a typical general MKL approach proposed in [37] and B-AdaMKL.

Notice that here we minimize the upper bound of Eqn. 4.6. Using similar equations to

Eqn. 4.7, 4.8, and 4.9, we can calculate θc and bc easily.

min
θc,bc,ξ

1

2
‖ θ2

c ‖1‖ wc ‖22 +C
∑
i

ξi (4.10)

s.t. ∀i, yi

[∑
m

θc,mφ
wc
m (xi) + bc

]
≥ 1− ξi

ξi ≥ 0, C ≥ 0

We summarize our learning algorithm for B-AdaMKL in Alg. 4.1, and show the com-

parison in Fig. 4.1 with a typical general approach proposed in [37]. Clearly, due to the

introduction of the biconvex optimization, we do not need to handle the arbitrary norm

constraint of the kernel coefficients directly. Actually, we hide this constraint into the dual

formulation when learning parameter w. As a result, our biconvex optimization problem

can be easily solved only using quadratic programming.



CHAPTER 4. ADAPTIVE MULTIPLE KERNEL LEARNING 39

Algorithm 4.1: Alternative Parameter Updating Algorithm for B-AdaMKL
Input: K,y
Output: αc,θc,bc
Initialize θc;
Calculate αc and bc using Eqn. 4.7 and Eqn. 4.9;
repeat

Update θc using Eqn. 4.10;
Update αc and bc using Eqn. 4.7 and Eqn. 4.9;

until Satisfied some conditions;
return αc,θc,bc

4.2.3 Multi-class AdaMKL

Different from B-AdaMKL, a multi-class AdaMKL (M-AdaMKL) learns θ jointly with

all the classes. In this way, each class information can be shared by the others, and it is

helpful for improving performance as well as accelerating the learning speed. As shown in

Eqn. 4.11, the primal formulation of M-AdaMKL is quite similar to that of B-AdaMKL in

Eqn. 4.6, but contains wc of all the classes and only one shared θ. Here, yi denotes the true

class label of xi rather than a binary label, I(yi = c) is an indicator, and I(yi = c) = 1 if

yi = c, otherwise I(yi = c) = −1.

min
θ,wc,bc,ξ

1

2
‖ θ2 ‖p

∑
c

‖ wc ‖22 +C
∑
c,i

ξc,i (4.11)

s.t. ∀c, i, I(yi = c)

[∑
m

θm〈wc,m, φm(xi)〉+ bc

]
≥ 1− ξc,i

ξc,i ≥ 0, C ≥ 0

We use the same learning strategy in B-AdaMKL to learn parameters wc, θ and bc

alternatively for M-AdaMKL. However, there will be |x| × |c| variables in the dual of

Eqn. 4.11, where |x| and |c| denote the numbers of training data and classes, respectively.

So solving this dual problem will be quite memory- and time-consuming for large image

datasets.

Again, we prefer to minimize an upper bound of the objective function in Eqn. 4.11

as shown in Eqn. 4.12, and thus learn wc, bc, and ξc,i for each class separately using
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Eqn. 4.7, 4.8 and 4.9 while fixing θ.

min

{
1

2
‖ θ2 ‖p

∑
c

‖ wc ‖22 +C
∑
c,i

ξc,i

}
≤
∑
c

min

{
1

2
‖ θ2 ‖p‖ wc ‖22 +C

∑
i

ξc,i

}
(4.12)

In order to learn parameter θ, we choose to minimize Eqn. 4.11 with p = 1 as did in

Eqn. 4.10 while keeping all wc unchanged.

4.2.4 Discussion

It is easy to see that AdaMKL shares the same computational complexity of quadratic pro-

gramming. Since we use biconvex optimization, the solutions for our optimization prob-

lems will be the local optima rather than the global ones. For the convergence of AdaMKL,

which could be an important termination criterion, we cannot guarantee that every formu-

lation of AdaMKL will converge to its local minimum finally in general [55]. However,

letting g1(θ,w, ξ1) and g2(θ,w, ξ2) (g1 and g2 for short) be the primal objective functions

for learning w and θ in AdaMKL, respectively, we have the following propositions for its

convergence.

Proposition 3. If g1 = g2, then it is guaranteed that AdaMKL will converge to a local

minimum monotonically.

Proof. At the tth and sth updates for θ and w, respectively, we have g1(θ
(t),w(s), ξ

(s)
1 ) ≥

g1(θ
(t), w(s+1), ξ

(s+1)
1 ) = g2(θ

(t),w(s+1), ξ
(s+1)
1 ) ≥ g2(θ

(t+1),w(s+1), ξ
(t+1)
2 ) = g1(θ

(t+1),

w(s+1), ξ
(t+1)
2 ). Similar analysis can be made for g2. Besides, ∀θ,w, ξ1, ξ2, g1 ≥ 0, g2 ≥ 0,

AdaMKL is guaranteed to converge to a local minimum monotonically if g1 = g2.

Proposition 4. For hard-margin cases (C = +∞), if g1 and g2 can be both optimized

(which means ξ1 = ξ2 = 0) at the initialization stage, then AdaMKL will converge to a

local minimum monotonically.

Proof. Notice that both θ and w parts in g1 and g2 are non-negative and have the same

monotonicity. So at the tth and sth updates for θ and w, respectively, we have g1(θ
(t),w(s),
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ξ
(s)
1 ) ≥ g1(θ

(t),w(s+1), ξ
(s+1)
1 ) ≥ g1(θ

(t+1),w(s+1), ξ
(s+1)
1 ) and g2(θ

(t),w(s), ξ
(t)
2 ) ≥ g2(θ

(t),

w(s+1), ξ
(t)
2 )≥ g2(θ

(t+1),w(s+1), ξ
(t+1)
2 ). Besides, ∀θ,w, ξ1, ξ2, g1 ≥ 0, g2 ≥ 0, so AdaMKL

will converge to a local minimum monotonically.

Proposition 5. If g1 or g2 converged, then AdaMKL reached a local minimum.

Proof. Without losing generality, suppose at the tth and sth updates for θ and w, respec-

tively, g2 converged, then θ(t) = θ(t+1) and ξ(s)
1 = ξ

(t)
2 = ξ

(t+1)
2 = ξ

(s+1)
1 . Due to the local

convergence, we have g1(θ
(t),w(s), ξ

(s)
1 ) = g1(θ

(t+1),w(s), ξ
(t+1)
2 ) = g1(θ

(t+1),w(s+1), ξ
(s+1)
1 ),

which indicates AdaMKL has reached a local minimum. Similar analysis can be made if g1

converged.

4.2.5 Implementation

In our unoptimized Matlab implementation, we set the initial value of θ as 1, like some other

convex optimization based MKL approaches did (e.g. [54]). Certainly random initialization

can also be used for θ in our algorithm, but we prefer the same start point, which always

gives us consistent results. All the SVM formulations are solved using LIBSVM [14].

To improve the learning efficiency further for M-AdaMKL, we simplify the θ learn-

ing process by setting all bc to a same value b, as shown in Eqn. 4.13. Still, φwc
m (xi) =

〈wc,m, φm(xi)〉. In this way, θ can still be learned jointly and shared by all the classes, but

only one common SVM solver (LIBSVM) is needed.

min
θ,b,ξ

1

2
‖ θ2 ‖1

∑
c

‖ wc ‖22 +C
∑
c,i

ξc,i (4.13)

s.t. ∀c, i, I(yi = c)

[∑
m

θmφ
wc
m (xi) + b

]
≥ 1− ξc,i

ξc,i ≥ 0, C ≥ 0

4.3 Experiments

We test our approach on the Caltech-101 [42] and Caltech-256 [30] datasets for object

recognition. In our experiments, every image is resized so that its larger dimension contains
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300 pixels but its aspect ratio is maintained. Then we employ GB3, color GB (C-GB), SIFT,

and OpponentSIFT (O-SIFT for short, a type of color SIFT) as our descriptors. We pre-

define 5 scales — 10, 20, 30, 40, 50 pixels — for all the descriptors. For GB and C-GB,

the simple Canny edge detector (an inherent function in the Matlab toolbox) is applied to

detect the edges in images, and at each scale at most 500 descriptors are extracted, each of

which has 204 dimensions. C-GB is a modified version of GB where GB is applied in R,

G, B channels, respectively, to extract a collection of 204-dim descriptors. For SIFT and

O-SIFT, we employ the software [60]4 to extract descriptors densely spaced by 10 pixels.

After this, we utilize K-means to generate 300 codewords for each type of descriptors, and

construct spatial pyramid BoW histograms as did in [41] using L = 0, 1, 2 for each scale.

To create kernels, we apply the histogram intersection kernel [28] at each layer and scale

for each type of descriptors, totally 3 × 5 × 4 = 60 kernels. Notice that all the histograms

are normalized using l1-norm before creating kernels. We set parameters C = 103 in all the

learning algorithms used in the experiments without tuning. Each query image is labeled

based on the maximum margin using a one-vs-rests strategy, and our classification results

shown here are the average mean recognition accuracies across different categories after 3

runs.

4.3.1 Caltech-101

Caltech-101 consists of over 9000 images in 101 object categories plus a background cat-

egory. In our experiments, we used all 102 categories. The numbers of randomly selected

training images per category are 1, 5, 10, 15, 20, 25, 30, respectively, and the rest are taken

as query images.

3We downloaded the Matlab code from http://www.cs.berkeley.edu/˜aberg/demos/gb_
demo.tar.gz, and used it to extract GB descriptors directly.

4This software can be downloaded from http://staff.science.uva.nl/˜ksande/
research/colordescriptors/.
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(a) GB (b) SIFT (c) GB+SIFT

Figure 4.2: MKL comparison on Caltech-101 using descriptors of (a) GB, (b) SIFT, and (c) GB+SIFT.
`1 and `2 in the figures denote `1-norm and `2-norm of kernel coefficients. Clearly, our biconvex optimiza-
tion based AdaMKL approaches are consistently comparable to SMKL and GMKL, which are both convex
optimization based MKL approaches.

Figure 4.3: An example of comparison of the learned kernel coefficients between (a) SMKL, (b) GMKL,
(c) `1-norm B-AdaMKL, (d) `2-norm B-AdaMKL, (e) `1-norm M-AdaMKL, and (f) `2-norm M-AdaMKL
after `1 normalization using GB+SIFT and 15 training images per category. In (a), (b), (c), and (d), the x-axis
denotes the index of each object category in Caltech-101, and the y-axis denotes 10-scale, 20-scale, and 30-
scale GB descriptors plus 10-scale, 20-scale, and 30-scale SIFT descriptors in order from top to bottom. In
(e) and (f), the figures show the shared kernel coefficients for all the categories.

Comparison with convex optimization based MKL approaches

First of all, let us compare AdaMKL with some other MKL approaches on this dataset.

Considering the computational time, here we only use GB and SIFT descriptors at the first

scale, and the numbers of training images per category are 1, 5, 10 and 15. In this way,

there are only 2 × 3 = 6 kernels used for recognition, 3 for GB and SIFT, respectively.

We set p = 1, 2 in Eqn. 4.6 and 4.11 for B-AdaMKL and M-AdaMKL, called `1-norm

B-AdaMKL, `2-norm B-AdaMKL, `1-norm M-AdaMKL, and `2-norm M-AdaMKL, respec-

tively, and employ two recent convex optimization based MKL approaches for comparison



CHAPTER 4. ADAPTIVE MULTIPLE KERNEL LEARNING 44

(a) GB (b) SIFT (c) GB+SIFT

Figure 4.4: MKL comparison on Average Learning Time (ALT) in seconds on kernel coefficients on
Caltech-101 using descriptors of (a) GB, (b) SIFT, and (c) GB+SIFT. On the curves, the lower parts of
standard deviation of GMKL using 15 training images per category in (b) and using 10 training images in (c)
are missing, because the values are negative.

purpose: SimpleMKL5 (SMKL) [54], and General MKL6 (GMKL) [62, 55].

The comparison results are shown in Fig. 4.2. With the increase of the number of

training images, in all three cases our AdaMKL is consistently comparable to SMKL and

GMKL. In terms of numbers, our `1-norm M-AdaMKL performs the best. We also show an

example of comparison of the learned kernel coefficients between different approaches in

Fig. 4.3. As we see, the learned kernel coefficients using SMKL and GMKL are quite sparse

since they used the `1-norm constraint on kernel coefficients which leads to sparse learning,

and most energy concentrates on the 30-scale GB descriptors and 30-scale SIFT descriptors.

Compared with these two approaches, our approaches learned the kernel coefficients more

smoothly, and the energy is also mainly located on the 30-scale GB descriptors and 30-

scale SIFT descriptors. The similar distributions of the learned kernel coefficients between

our approaches and SMKL and GMKL indicate that our AdaMKL can learn the kernel

coefficients reasonably.

For the computational time, we list the comparison in Table 4.1. All the results are run

5Its Matlab code can be downloaded from http://asi.insa-rouen.fr/enseignants/

˜arakotom/code/mklindex.html.
6Its Matlab code can be downloaded from http://research.microsoft.com/en-us/um/

people/manik/code/GMKL/download.html.
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Table 4.1: Comparison between the computational time (/s) on training different MKL approaches using
Caltech-101 in the form of (mean ± standard deviation).

Method GB
#1 #5 #10 #15

B-AdaMKL-`1 0.71±0.01 9.37±0.63 25.64±1.72 42.59±1.15
B-AdaMKL-`2 0.57±0.01 8.97±0.38 25.98±1.87 43.19±0.12
M-AdaMKL-`1 0.24±0.01 3.26±1.14 10.97±0.03 28.30±5.04
M-AdaMKL-`2 0.18±0.03 3.26±1.15 10.97±0.01 25.30±0.05

SMKL 6.18±1.60 82.88±1.77 (3.29±1.20)*102 (1.30±0.46)*103

GMKL (3.34±0.02)*102 (1.67±0.01)*103 (5.70±0.73)*103 (1.21±0.02)*104

SIFT
#1 #5 #10 #15

B-AdaMKL-`1 0.75±0.03 12.18±0.31 40.59±5.35 72.16±2.39
B-AdaMKL-`2 0.57±0.03 10.90±0.43 38.87±5.52 73.16±1.79
M-AdaMKL-`1 0.24±0.03 4.49±0.01 15.22±0.03 32.05±5.18
M-AdaMKL-`2 0.23±0.01 4.49±0.02 15.22±0.02 32.06±5.18

SMKL 5.29±1.43 78.00±24.00 (3.34±1.12)*102 (6.15±2.01)*102

GMKL (3.25±0.12)*102 (1.62±0.11)*103 (5.13±0.24)*103 (1.07±0.03)*104

GB+SIFT
#1 #5 #10 #15

B-AdaMKL-`1 0.82±0.05 14.45±0.39 50.00±3.30 84.34±11.07
B-AdaMKL-`2 0.79±0.05 16.22±0.20 59.81±3.19 (1.07±0.08)*102

M-AdaMKL-`1 0.27±0.00 5.04±0.04 14.92±2.44 37.14±0.07
M-AdaMKL-`2 0.26±0.00 5.03±0.04 14.93±2.47 37.17±0.08

SMKL 9.43±0.48 (2.24±0.15)*102 ((8.38±0.18)*102 (2.96±0.57)*103

GMKL (4.67±0.05)*102 (3.30±0.06)*103 (1.36±0.04)*104 (3.17±0.07)*104

on a 2.33GHz Core 2 Duo CPU. Clearly, in each case our AdaMKL is much faster than

both SMKL and GMKL over an order of magnitude speedup. As we expect, M-AdaMKL

is a little faster than B-AdaMKL because it learns a set of shared kernel coefficients for

all the categories simultaneously while the others learn a set for each category one by one.

Further, we compare the Average Learning Time (ALT) in seconds on kernel coefficients

θ using different descriptors in Fig. 4.4. Average learning time is the mean of the learning

time per iteration. Some observations can be made from this figure: (i) The learning time on

θ in B-AdaMKL is the least; (ii) From the standard deviation at each point, our AdaMKL

is much more stable than both SMKL and GMKL; (iii) The curves for B-AdaMKL and
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(a) (b)

Figure 4.5: Our results on Caltech-101 using `1-norm M-AdaMKL. (a) Result comparison based on dif-
ferent descriptors. (b) Result comparison between ours and some other published approaches. From top
to bottom, the corresponding references are [11, 69, 41, 53, 28, 30, 24, 25, 68, 31, 23]. Notice that the
approaches with the mark “*” used different training and test methods from ours. Precisely, using all the de-
scriptors, `1-norm M-AdaMKL achieves the mean accuracies of (27.3±4.1)%, (53.6±0.4)%, (63.4±0.2)%,
(67.2± 1.4)%, (70.1± 1.3)%, (72.1± 1.7)%, and (74.4± 0.5)%, respectively in order.

M-AdaMKL seem parallel to each other because the only difference between them is the

number of instances for learning θ; (iv) With the increase of the numbers of training images

and kernels, the learning time is raised as well, but the rising speed of AdaMKL is much

slower than the others’. We believe that the main reason for reducing the training time of

MKL is that our AdaMKL simplifies the learning process reasonably so that the learning

efficiency is improved greatly as well as keeping the comparable recognition accuracy.

Considering both accuracies and computational time, `1-norm M-AdaMKL seems our good

choice for the following experiments.

Comparison with some published results

For this purpose, we feed all 60 kernels into our AdaMKL. Since it is difficult to store all

the kernels in the limited memory, we organize these kernels in a hierarchy to reduce the

memory requirement. Specifically, we first combine the 3 kernels at each scale for each

type of descriptors into a new kernel, totally 4× 5 = 20 new kernels, and further combine
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(a) (b)

Figure 4.6: Our results on Caltech-256 using `1-norm M-AdaMKL. (a) Result comparison based on dif-
ferent descriptors. (b) Result comparison between ours and some other published approaches. From top to
bottom, the corresponding references are [30, 11, 68, 24, 10, 61, 53]. Precisely, using all the descriptors, `1-
norm M-AdaMKL achieves the mean accuracies of (8.8±0.8)%, (21.2±0.3)%, (27.9±0.6)%, (31.4±1.0)%,
(33.2± 0.8)%, (34.7± 1.2)%, (36.4± 1.7)%, and (41.5± 1.2)% respectively in order.

every 5 new kernels with the same type of descriptors to generate 4 kernels, and finally

combine these 4 kernels into one kernel which is utilized for recognition. To reduce the

computational time, we only apply `1-norm M-AdaMKL.

Fig. 4.5 (a) shows our results on Caltech-101 using different descriptors, and Fig. 4.5 (b)

compares our method with some other published approaches. From Fig. 4.5 (a), we can

see that the performances of the four types of descriptors are quite similar. However, by

combining them together, the performance is boosted significantly, especially for the case of

30 training images per category. From Fig. 4.5 (b), it is clear that our results are comparable

to the best. Interestingly, using fewer training images (≤ 10), our results are quite close to

the best two [11, 24], even though their training and test strategies are different from ours,

but with the increase of the number of training images the performance is not improved so

much. The reason we believe is that the accuracy per category is nearly saturated using 10

training images per category.
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4.3.2 Caltech-256

Caltech-256 consists of 30607 images in 256 object categories plus a background cate-

gory. In our experiments, we use all the categories, and randomly select 1, 5, 10, 15,

20, 25, 30, 40 training images and 25 query images per category as training data and test

data, respectively. Still we only utilize `1-norm M-AdaMKL and feed all 60 kernels to it.

Like on Caltech-101, first we show the result comparison based on different descriptors in

Fig. 4.6 (a), and compare our best results, which are generated by combining all four types

of descriptors, with some other published results in Fig. 4.6 (b). Clearly, our performance

is also comparable to the best.

4.4 Summary

In this chapter, Adaptive Multiple Kernel Learning (AdaMKL) is proposed for information

combination based on the max-margin criterion with a family of biconvex objective func-

tions which are optimized by updating the parameters alternatively. Instead of searching

for global optima, AdaMKL is designed to search for local optima for learning efficiency

due to the introduction of an arbitrary `p-norm (p ≥ 1) of kernel coefficients into our

formulation rather than the constraint set where a traditional MKL puts the norm. Also,

AdaMKL is suitable for both binary-class learning (B-AdaMKL) and multi-class learning

(M-AdaMKL) cases.

We mainly discuss the convergence issue of AdaMKL, and further compare four specific

AdaMKL with two recent convex optimization based MKL approaches in our experiments,

which demonstrate that our approach outperforms the two convex optimization based MKL

slightly in terms of recognition accuracy with huge gain on training time over an order

of magnitude speedup. Finally, the results of `1-norm M-AdaMKL on Caltech-101 and

Caltech-256 for object recognition show that our approach is comparable to some recent

published approaches. On Caltech-101, our results are (67.2 ± 1.4)% and (74.4 ± 0.5)%

using 15 and 30 training images per category, respectively, and on Caltech-256, our results

are (31.4± 1.0)% and (36.4± 1.7)%.



Chapter 5

Conclusion

In this thesis, we perform object recognition using maximum similarity based feature match-

ing and adaptive multiple kernel learning. First, in Chapter 1 we introduced the problem

of object recognition in images, and proposed two different approaches based on the im-

age similarities for recognizing objects. Then in Chapter 2 we reviewed some background

knowledge about object recognition, including low level features, image patch sampling

techniques, object representations, and support vector machines for recognition. We ex-

plained the details of our maximum similarity based feature matching approaches in Chap-

ter 3, and the adaptive multiple kernel learning approach in Chapter 4.

The contributions of this thesis are:

• We introduced the constrained global spatial structures between low level features

into the feature matching process, and accordingly proposed a polynomial-time ap-

proximate maximization algorithm to exhaustively search for the optimal feature cor-

respondences which maximize the image similarities.

• We proposed a novel probabilistic feature matching algorithm to maximize the image

similarities, where a matching probability is calculated by optimizing a quadratic

formulation and then assigned to each pair of matching features. It is guaranteed

that with the increase of parameter C in the formulation, the maximum similarity

between two images and the sparseness of the matching probability distribution will

decrease monotonically. In addition, several proposed feature matching approaches

49
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can be considered as special cases of our approach.

• We proposed an efficient multiple kernel learning algorithm, called Adaptive Multi-

ple Kernel Learning (AdaMKL), to combine different visual information for object

recognition by optimizing our biconvex objective function locally using an alterna-

tive parameter updating strategy. Moreover, an arbitrary norm of kernel coefficients

can be easily involved with our objective function. In addition, AdaMKL is suitable

for both binary-class and multi-class learning.

Since our approaches are based on the Set-of-Features and Bag-of-Words models, they

inherit the drawbacks of these object representations. We achieved good accuracies in the

probabilistic feature matching approach for object recognition at the cost of discarding the

spatial structures between features. However, sometimes distinctive feature structures are

important as recognition clues, and thus they should not be ignored. It will be a part of our

future work to introduce structure learning into the probabilistic matching process as well

as keeping good accuracy.

For AdaMKL, its termination criterion is a crucial issue because in general there is no

guarantee that it will converge to a local optimum monotonically, and different termination

criteria may lead to quite different recognition performances. Analyzing what types of local

optima are good for recognition performance will be another part of our future work.

Object recognition in images is a fundamental and challenging task in computer vision

because there is a huge gap between the low level features of objects and the high level

object categories. Our object-based image similarity provides a good intermedium to fill

in this gap because it is obtained based on the low level features of objects and also it is

the basis for learning and recognizing object categories. In this thesis, we only explore two

different approaches based on image similarity, and we believe that they can be improved

if more visual information of objects can be utilized. In the future, we will research more

along this direction, and hope that one day our techniques could change the world.
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