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ABSTRACT

This paper delves into performance measures which have recently emerged in an attempt
to circumvent the well recognised flaws of conventional measures derived solely from mean and
standard deviation. I use several of these measures to rank both equity indices as well as hedge
fund strategies based on their likelihood of achieving a particular return level, relative to the
downside risk associated with that target return. This method makes intuitive sense since one of
the key characteristics of hedge funds is to seek to capture most upside while protecting the

downside.

While the conclusions clearly point to the superiority of hedge funds at all return
thresholds, with the equity indices improving their rankings from worst to middle of the pack at
the higher threshold levels, the use of the downside measures is not clear-cut and can be fraught

with some ambiguity in the interpretation of rankings which they yield.
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GLOSSARY

Downside-
Risk

MAR

LPM

The risk that an investment will suffer a decline in value, and the magnitude
of such loss.

The Minimum Acceptable Return required by an investor. Downside-risk is
implicitly measured relative to a specific MAR.

Lower Partial Moment is a general type of risk measure which calculates
only the moments below a target return.

viii



1 INTRODUCTION

Many of the difficulties we encounter in performance measurement and attribution are
rooted in two over-simplifications. The first is that mean and variance fully describe the
distribution of returns. The second is that the risk-reward characteristics of a portfolio may be
described without reference to any return level aside from the mean return. It is a generally
accepted fact of empirical finance that returns from investments are not distributed normally.
Thus in addition to mean and variance, higher moments are required for a complete description. It
is likewise clear that a return at the level of the mean may be regarded as a gain by one investor
and as a loss by another and that the “risk” of a return far above the mean has a different impact
than that of one far below the mean. In a 1973 paper in the Psychological Bulletin, psychologist
John Payne noted that standard deviation accounts for very little of people’s perception of risk.

The most relevant factors were downside frequency and the magnitude of the possible loss.

There are situations in which an investor’s primary concern is earning a return in excess
of a particular loss threshold or minimum acceptable return (referred to as MAR' throughout). An
MAR set at the rate of inflation would protect investors from any erosion in their purchasing
power. For some, guaranteeing the principal is all that matters, translating into an MAR of zero.
Pension plan sponsors and managers need to earn at least the actuarial rate of return required so
they could meet future liabilities. Such examples reveal the asymmetry of the nature of
conventionally defined risk, since returns below the MAR are indeed risky but those above are
highly desirable. Hence, describing risk in terms of portfolio mean and variance may lead to sub-

optimal decisions.

" The MAR is the investment return floor which separates the good outcomes from the bad.



The issues cited above are especially exacerbated when we are faced with return
distributions that have been known to display significant higher moments, namely those of hedge
funds. The third and fourth moments (skewness and kurtosis) of this alternative asset class have
been well documented and are not the subject of this paper. However, the fact that they make the
M-V toolkit somewhat inadequate is. This is where the downside perspective of risk and risk
measures steps in. However, as many proponents of this approach to risk claim, downside
measures are not needed simply to overcome the skewness of non-normal distributions of security
returns. They are needed because they most closely mirror how investors actually behave in

investment situations, namely as explained by utility theory.

What this paper does not do or attempt to do is to explore portfolio optimisation problems
within a downside risk framework as opposed to using the conventional M-V toolbox. Although
this is of primary importance and should be the goal of all serious practitioners who believe in the
superiority of downside risk over mere standard deviation or variance, I leave this task to others
after me. One possibility would be to set up a limited number of portfolios with allocations to the
different asset classes in addition to hedge funds. Each portfolio would have a fixed allocation to
hedge funds ranging from say 0% to 30% in increments of 5%, with allocations to the other asset
classes obviously decreasing proportionately. The idea is to have portfolios that target investors
with differing risk aversions. For each portfolio, the same downside measures used in this paper
to compare assets on a peer-to-peer basis, could then be applied at different threshold returns to
evaluate which is the optimal portfolio. The optimal allocation could then be judged against the

traditional M-V allocation.



2 LITERATURE REVIEW

Since the subject of this paper is the application of downside risk measures to hedge fund
returns, the literature review focuses on the measures themselves. Their usage in hedge fund
academia is sparse except for demonstration in the papers of the authors of the measures outlined

below.

2.1 The Early Years®: Reward-to-Variability and Semi-Variance

In reviewing the historical academic literature on downside risk measures, my focus will
be skewed, no pun intended, towards the last fifteen years or so since the search for more
effective ways of capturing risk really took off over that time frame. Even then we still need to go
over the seminal work that provided the basis for these more recent measures. And ‘seminal’ in
the investment world, more often than not, traces back to Harry Markowitz’s paper in 1952.
Downside risk measures are no exception in the sense that it was Markowitz who in the first place
developed the notion of risk as a crucial investment criterion besides return. Governed by a
quadratic utility function, investors make a trade-off between risk and return, where risk in
Markowitz’s framework, was captured by the variance of returns. We shall come back to
Markowitz again, but only after mentioning another paper published in the same year to which we

owe more in terms of the foundation of a downside approach to risk.

Indeed, motivated by his disbelief in the possibility of deriving a mathematical utility
function for an investor and, in any case, the impracticality of the notion of maximizing expected

utility, Roy (1952) was the first to come up with the idea that investors prefer safety of principal

? My review of the early literature on risk measures and more specifically downside risk measures is based
on the work of David Nawrocki from Villanova University.



first and thereafter set some minimum acceptable return that will conserve that principal. He
called the minimum acceptable return the disaster level and the resulting technique is the Roy
safety first technique. Roy stated that the investor would prefer the investment with the smallest
probability of going below the disaster level or target return.

Markowitz(1959) recognized the importance of this idea. He realized that investors are
interested in minimizing downside risk because, firstly, only downside risk or safety first is
relevant to an investor and, secondly, security distributions may not be normally distributed.
Markowitz shows that when distributions are normally distributed, both the downside risk
measure and the variance provide the correct answer whereas only the downside risk measure
provides the correct answer in case of non normality. Markowitz then provided two suggestions
for measuring downside risk: a semivariance computed from the mean return or below-mean
semivariance (SVm) and a semivariance computed from a target return or below-target
semivariance (SVt).

SV, = (1/K)® I, Max[0,(E - Ry)]"2

SV. = (1/K)* X, Max[0, (t - Ryp)l1™*2
where Ry is the asset return during time period T, K is the number of observations, t is the target
rate of return and E is the expected mean return of the asset’s return.

Coining these measures partial or semi-variances for obvious reasons, Markowitz
actually states in his treatise that “the semideviation produces efficient portfolios somewhat
preferable to those of the standard deviation”. The reason he stayed with the variance measure
was simply because it was computationally simpler to calculate mean-variance portfolios rather
than mean-semivariance ones. The semivariance optimization models using a cosemivariance
matrix require more manipulation than the variance model because of the added step of having to

search for and convert excess returns to zero. As Nawrocki puts it, “With the lack of cost-

effective computer power and the fact that the variance model was already mathematically very



complex, this was a significant consideration until the 1980s with the advent of the
microcomputer.”

Because Markowitz’s variance and semivariance performance measures depend on a
normal distribution, researchers started to question them in the 1970s. Studies by
Klemkosky(1973) and by Ang and Chua(1979) showed that these measures could provide
incorrect rankings and suggested the reward to semivariability (R/SV) ratio as an alternative. For
greater details of these and subsequent studies in semi-variance, I would refer the reader to David

Nawrocki(1999).

2.2 Lower Partial Moment

The development of the Lower Partial Moment (LPM) risk measure by Bawa (1975) and
Fishburn (1977) marked a turning point in the search for better downside risk measures.
Nawrocki qualifies moving from the semivariance to the LPM as equivalent to progressing from a
silent black and white film to a wide screen Technicolor film with digital surround sound! The
justification for such a daring parallel is grounded in the fact that LPM liberates the investor from
a constraint of having only one utility function, which is fine if investor utility is best represented
by a quadratic equation (variance or semivariance). Lower Partial Moment represents a
significant number of the known Von Neumann-Morgenstern utility functions. Furthermore, LPM
covers the whole spectrum of human behavior from risk seeking to risk neutral to risk aversion.

The seminal work on LPM is attributable to Vijay Bawa (1975). He defined the
relationship between lower partial moment and stochastic dominance. Bawa (1975) was the first
to define lower partial moment (LPM) as a general family of below-target risk measures, one of
which is the below-target semivariance. The LPM describes below-target risk in terms of risk
tolerance. Given an investor risk tolerance value a, the general measure, the lower partial

moment, is defined as:



LPM (a,t) = (1/K)® I, Max[0,(t - Ry)]”a
where K is the number of observations, t is the target return, Ry is the return for the asset during
time period T, and a is the degree of the lower partial moment. It is the a value that differentiates
the LPM from the SV,. Instead of squaring deviations and taking square roots as we do with the
semivariance calculations, the deviations can be raised to the a power and the a root can be
computed. Another point is that a can take on any value including non-integers. It is appropriate
to draw the parallel here with the r-th moment, p,, with respect to the mean of a random variable

X taken from a Taylor-series expansion for X. y, is the expected value of (X-p)", i.e.

Hp = E[(.\' — “)f‘] = Z“ _ /—‘:’r A f(l\

Another pioneer in this area, Fishbum (1977) extends the general LPM model to the (a, t)
model, where a is the level of investor risk tolerance and t is the target return. Fishburn provides
the unlimited view of LPM with fractional degrees as well. Given a value of the target return, t,
Fishburn demonstrates the equivalence of the LPM measure to stochastic dominance for all
values of a > 0. Fishburn also shows that the a value includes all types of investor behavior. The
LPM value a<l captures risk seeking behavior. Risk neutral behavior is a = 1, while risk averse
behavior is a > 1. The higher the a value is above a value of one, the higher the risk aversion of
the investor.

Thus, while the variance and semivariaﬁce only provide us with one utility function,
LPM provides us with a whole rainbow of utility functions that represent the whole range of
human (investor) behaviour. The a-degree LPM can explain complex and seemingly
contradictory behaviour in the way individuals compartmentalize their utilities according to
different financial situations and stages in their lifecycle. This is the source of the superiority of
the LPM risk measure over the variance and semivariance measures. It can better explain how

investors behave in reality as opposed to how they are supposed to behave. Matthias Unser (2000)



effectively confirmed that in an experimental study published in the Journal of Economic
Psychology.

Finally, it is to be noted that the LPM concept captures several other measures, some of
which will be discussed shortly. If n=0, LPM gives the probability of shortfall. If n=1, We obtain

expected shortfall and n=2 yields the semi-variance.

2.3 Shortfall Measures

Another measure of risk proposed by Leslie Balzer is the probability of shortfall. Balzer,
a mechanical engineer by training, made his name in finance with a 1994 Journal of Investing
article that attacked William Sharpe’s standard deviation theory. "If standard deviation is used as
a risk measure, overperformance relative to the mean is penalized just as much as
underperformance,” he wrote. Standard deviation measures uncertainty, he argued, not

necessarily risk.
Among others, Balzer proposed the probability of shortfall measure.
Shortfall probability = Probability (R < B)

This measures the chance that returns (R) from the investment may fall below some reference
point(B). The reference point is often set at zero, but it could be set at any other level to reflect
the minimum acceptable return. The major shortcoming of this measure is that it gives the
probability that an undesirable event might occur but gives no clue as to how severe it might be.
This is overcome by the expected shortfall measure which incorporates both the probability and

magnitude of the potential shortfall if it does occur.

Expected shortfall = E (R-B), over the range where R-B < 0



The expected shortfall is given by the product of the magnitude of the shortfall and the
probability of it occurring. This measure is influenced by the entire downside portion of the
probability distribution and is a more complete measure of downside risk than just the probability
of shortfall itself. However, its major flaw is that it treats a large probability of a small shortfall as
equivalent to a small probability of a large shortfall. This is problematic when we know that

investors view the consequences of large losses per unit differently from small losses.

2.4 Upside-Potential and Sortino Ratios

The Upside-Potential Ratio was developed jointly by Sortino, Van der Meer, Plantinga
and Forsey and first published in the Fall 1999 issue of the Journal of Portfolio Management. It
measures the extent to which a manager has been able to achieve upside potential relative to
downside risk, with the MAR as the reference point. The expression for the U-P Ratio is given

below:

+ o

| (R-MAR) f(R) dr

mar

mar

[ | (R-MAR)fR)dr 1"

The U-P ratio thus incorporated a measure of risk relative to the MAR that will achieve
that goal and provided then a new perspective on risk-return tradeoffs that seemed well suited to
investors seeking the highest consistent performance above their MAR, subject to the risk of
falling below. The measurement allows to choose strategies with growth that is as stable as
possible for a given minimum return

The Sortino Ratio is different from the U-P ratio and is defined as:

u-

J[(I—R}IG‘F(R)

-z

S=



where p is the vector for the periodic returns and t the threshold return (or MAR) or else a vector
of the benchmark returns over the corresponding periods. The numerator is thus the average of
the active return and the denominator is the square root of LPM; (t) commonly referred to as the
downside risk since it is equal to the volatility of negative active returns.

As such the Sortino ratio measures whether the portfolio's return in excess of a specified
benchmark was sufficient to cover the downside risk inherent in the investment. The calculation
is similar to calculating tracking error, except that the positive active returns are set equal to zero
and still included in the standard deviation calculation. Setting the benchmark return or MAR to
zero will indicate whether the portfolio’s positive returns were sufficient to cover the risk of
negative returns. It is therefore an indicator of capital preservation in nominal terms. The
benchmark return can also be equated to the inflation benchmark so that the ratio then indicates
whether real returns were sufficient to cover the risk of under-performing inflation. This is an

important indicator of a fund’s ability to match inflation-adjusted liabilities.

2.5 Omega

The first of the fairly recent measures that we will cover is the Omega measure, coined by
Keating and Shadwick (2002). The Omega measure attempts to overcome the two flawed
assumptions that riddle conventional performance measures, namely the applicability of the M-V
framework to distribution analysis and, secondly, the irrelevance of a reference return, which

would depend on investors’ risk tolerance, from which risk would then be measured.

Omega for a given threshold return of r is defined as:



Y
V =F@x)] dx
() =L —
{ F(x)dx

a

where x is the random one-period rate of return on an investment, F(y) =Pr{ x <y} is the
cumulative distribution return of the one-peﬁod return, ris a thi'eshold selected by the investor
depending on her risk tolerance, and (a,b) represent the lower and upper bounds of the
distribution respectively.

For instance, the probability weighted ratio of gains to losses relative to a return of 70
basis points above the benchmark mean return is (70). This is illustrated in the diagram below
taken from the authors’ séminal paper. Omega can be obtained by taking the ratio of the area

delineated in black to that outlined in red.

Figure 1: Graphical representation of Omega
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As we see from its expression, Q is a function of the return level, like the cumulative distribution
return curve. It is a smooth monotone decreasing function from (a,b) to (0,:0); independent of the
returns distribution, Q takes the value 1 at the distribution’s mean p. Keating and Shadwick stress

and demonstrate that Q is, in a mathematically precise sense, equivalent to the returns

distribution. The authors call it “a natural feature of the underlying probability distribution”.

10



Some of the characteristics of this measure that make it intuitively appealing are listed

below:

o First, Q does not assume that returns are normal. It incorporates fully in one number all
the higher individual moments affecting the distribution, without any need to estimate
them.

° Q takes into account an investor’s risk tolerance by measuring the ratio of gains to losses
relative to a threshold return level. It can thus be measured relative to any risk threshold
in the distribution range.

. Managers can be ranked on the basis of the magnitude of their omegas, without the need

to bring into the picture utility functions. The only requirement is that the integrals that
constitute the numerator and denominator of omega exist, which poses no problem in
reality since discrete return observations are what are observed.

Finally, it is to be noted that when omega is less than one, higher volatility increases the

value of the Omega measure since it increases the likelihood of earning a return above the mean.
4

2.6 From Omega to Sharpe-Omega

Three researchers from the Centre for International Securities and Derivatives Markets
take Shadwick and Keating’s simple concept further. Kazemi, Schneeweis and Gupta first prove
that Omega is essentially the ratio of a call price to a put price, and is as such not an entirely new
concept!

Q (r)=C(r) / P(r),

where C(r) and P(r) are the prices of one period call and put options with strike r written on the
investment. From there on, the authors come up with a variation on the Omega measure which
they call the Sharpe-Omega ratio. This risk measure is more intuitive because of its resemblance

to the ubiquitous Sharpe ratio.

11



Sharpe — Omega = (E(R) —r) / P(r)

where r is a chosen threshold return level, E(R) is the expected return on the investment and P(r)
is the put price at the strike r. The put price is computed using a generalisation of the Black-
Scholes formula in order to account for non-normalities in the asset return. Also, another caveat is
that Blacke-Scholes works in a risk neutral world, with the mean return of the underlying asset
substituted for the riskless rate in the option pricing formula. However, the put price that appears
in both Omega and Sharpe-Omega has to be calculated in a risk-averse world and therefore the
true mean return of the investment must be used. The authors point out that this will result in a
difference between the put price observed in the market and that which should be used to

calculate the performance measures.

Some of the main properties of the Sharpe-Omega ratio are:

e Sharpe-Omega ranks assets according to the best return divided by the cost to protect this
return. Assuming a threshold r higher than the asset expected return E(R), the Sharpe-Omega
ratio is negative. In that case, a higher put price, due to higher volatility for instance,
translates into a better investment (although the absolute value of the Sharpe-Omega ratio
decreases). This is similar to the case of omega being less than one. When the expected return
is greater than the threshold return, the ratio is positive and the opposite reasoning holds.

e Sharpe-Omega is shown to be proportional to £2 -1 and as such will always give the same
rankings as its ‘cousin’ Omega. However, as opposed to €2, the authors lay claim to the
superiority of Sharpe-Omega in terms of its intuitiveness as a return/risk measure. The
rationale is that, not only does it factor in the shape of the distribution below the threshold

return similarly to 2, but additionally it captures the riskiness of an investment via the cost -

the put price - of protecting the investment from returns below the threshold.

12



2.7 Kappa: The Mother of All Downside Performance Measures!

This part is entitled thus because Kaplan, of Morningstar fame, and Knowles (2004) effectively
show that each of the aforementioned measures, namely the Sortino Ratio, Omega and Sharpe-
Omega measures, are simply special cases of Kappa, a generalized risk-adjusted performance
measure. A single parameter of Kappa determines whether the Sortino Ratio, Omega, or another
risk-adjusted return measure is generated.

The expression for Kappa is:

K, (1)= ———t

U ifteM, ()

where L is the expected periodic return, 7 is the investor’s minimum acceptable or threshold
periodic return and the denominator is the n® root of the n™ lower partial moment function.:
T
B ; b8
LPM, ()= [(1-R)" dF(R)
Zx
Substituting different values for n in the expression for Kappa yields the various measures

aforementioned. Thus:

® K,(t) = Sharpe-Omega ratio
® K,(t) = Sortino ratio
e Kaplan and Knowles show that Q (t ) = K;(t ) + 1, which is in line with the findings of
Kazemi, Schneeweis and Gupta referred to previously.
The lower partial moment required to calculate Kappa can be estimated in two ways:
The discrete LPM calculation method is done from a sample of actual returns by treating the

sample observations as points in a discrete return distribution, as follows:

. T
LPM: ( r) = % Z max[r -R,. O]n

tel

13



with T being the sample size and R, the t" return observation.
The alternative method is to assume that returns follow a particular continuous distribution and
calculate the integral in the LPM equation accordingly. For example, we have seen how Sortino
[2001] and Forsey [2001] assume that returns follow the three-parameter lognormal distribution
when estimating LPM2(t). The three parameters of the distribution can be set so that the first
three moments, mean (p), standard deviation (o), and coefficient of skewness (s) of the
distribution match a given set of values.
Kaplan and Knowles then find that return rankings for hedge fund indexes are, in general, little
affected by the choice of Kappa estimation methodology. They conclude tentatively that, for the
purpose of evaluating competing investment alternatives, the parameter-based method of
estimating Kappa is robust and, where efficiency and simplicity are important, preferable to the

more complex calculation based on discrete return data.

14



3 DATA AND METHODOLOGY

The data used for the empirical work is the monthly returns on the HFRI hedge fund

indices obtained from the HFR database at www.hedgefundresearch.com. The different strategy

indices are considered to be a good proxy for the actual underlying funds. The period covered is
the entire sixteen-year horizon from the inception date of the indices (January 1990) to January
2006. The performance of hedge funds was compared to the performance of the S & P 500 Total
Return index and the NASDAQ. S & P data was downloaded from the Standard and Poors

website while NASDAQ data was obtained from Yahoo! Finance.

I have ranked the different HFRI strategy and fund of fund indices using the measures of
Probability of Shortfall and Expected Shortfall, Omega (which is equal to one plus Kappa at n=1)
and Kappas from n=2 to n=4. The Sharpe-Omega measure is not shown since, as Kaplan and
Knowles show, it is simply equal to Kappa at n=1 and will therefore always yield the same
ranking as Omega. Kappa is calculated using the discrete method discussed previously. This
should give a sufficiently accurate picture since we will not be using Kappa as an optimization
metric, for stress testing in a quantitative portfolio construction or in an asset allocation process in
which instances Kaplan and Knowles had cautioned that differences from the integral method
might be material. Evidently implicit in this ranking procedure is the ability to borrow or lend at
the risk-less rate, such that an investor would simply be choosing between the risk-free asset or

the asset with the highest risk-adjusted return as given by the downside measures employed here.

On the other hand, when calculating the Upside Potential (U-P) and U-P ratio, the curve-
fitting method of Forsey and Sortino is employed. This involves fitting a curve to the monthly

histogram of data to create a continuous distribution and then using integral calculus to calculate

15



the downside downside risk. However, Forsey and Sortino make two major improvements that

enhance the accuracy of downside risk calculations.

First they point out that simply selecting monthly returns randomly and calculating the
deviations below some monthly MAR is not optimal. The data must first be annualized using a
boot strapping procedure whereby thousands of annual returns are generated from the sixteen
years of monthly data. The bootstrap procedure used is that proposed by Efron and Tibshirani
(1993) at Stanford University and involves compounding a random sample of 12 of the monthly
returns taken from the available HFRI dataset. Each random draw once taken is replaced into the
set so that it could be randomly selected again within that year’s returns. The rationale is that such
bootstrapping allows us to see what could possibly happen, and not constrain ourselves to simply

what has happened so far in order to predict what could happen.

Forsey and Sortino’s second improvement is to assume that returns follow the three-
parameter lognormal distribution defined by Aitchinson and Brown [1957]. It is well-known that
the standard lognormal can be defined by the two parameters which are the mean and the standard
deviation or variance. The three-parameter distribution on the other hand is less utilized in the
financial arena (though very commonly employed in the biological and sociological areas) and
needs some clarification. We are here concerned with a variate X such that a simple displacement
of X, say X'=X-1, and not the variate itself follows a lognormal model defined by the usual
mean and variance. The range of X is thus T <x < o0, and the two-parameter distribution is then
the special case for which T = 0. Aitchinson and Brown call the third parameter 7 the threshold of
the distribution since it defines a lower bound to the range of values of the variate X. As evident
here, T allows us to shift the distribution but the latter is still positively skewed like the
conventional lognormal. A slight modification provides the possibility of treating negatively
skewed distributions as well. In that case T — X is lognormally distributed, restricting X to the

range - o < x < 7. In other words the third parameter is effectively imposing an upper bound on

16



the distribution and allowing us to flip it. This third parameter can be set so that the first three
moments, mean (jt), standard deviation (), and coefficient of skewness (s) of the distribution
match a given set of values, with the fourth moment, the coefficient of kurtosis (x), then being a
function of s. In their case, Forsey and Sortino choose an extreme value for the third parameter.
This is estimated by first calculating the minimum and the maximum of the sample and then
taking the one closest to the mean. The extreme value is obtained from this value by moving it
four standard deviations further from the mean. This extreme value together with the mean and
variance will determine the skewness and kurtosis (third and fourth moments) of each member of
the family. If the estimates of the parameters are good, fitting a three parameter lognormal
distribution to the bootstrapped data will be more accurate for calculating downside risk than
using the normal or the standard lognormal. Although not a perfect fit, it is far better than the
normal since it allows for skewness. Also, it has very few blank spaces in the left tail, which
would cause underestimation, and it allows for more pointiness (kurtosis) than the normal. I have
used the free software that comes with Sortino and Satchell’s book, Managing downside Risk in
Financial Markets, to apply the Forsey-Sortino method. The important mathematical formulas for

the procedure detailed above and used by Forsey and Sortino are provided in the appendix.

Regarding the MARs chosen for this paper, I need to point out that | have deliberately not
used any benchmark or the risk free rate as the threshold return. This is in line with the absolute
return philosophy of hedge funds which strive to achieve alpha irrespective of market conditions.
I have set the MARs in increments of 5%, starting at 0% (capital preservation in nominal terms)
up to £10%. I also chose an MAR of +20% in order to gauge how the indices fare at such

relatively extreme threshold return levels.

It would be a crucial oversight not to point out that hedge fund databases suffer from

well-documented biases such as the backfill bias (whereby managers only start reporting their
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returns once they have achieved a respectable initial track record, and then these past positive
results are ‘backfilled’ into the database together with current results) and survivorship bias
(whereby hedge funds that have collapsed or have stopped reporting their results due to poor
performance are not included in the database). Various researchers have come up with varying
degrees of the impact of this bias. The latest in that line were Malkiel and Saha (2005) who
constructed a bias free database and showed that these biases significantly overstated returns by
between 375 and 500 basis points. One way of accommodating this flaw in this present paper
would be by ‘penalizing’ the mean return of the HFRI indices by a certain amount in order to
counter the aforementioned upward bias. However, I have opted not to do this for lack of a
sufficiently solid decision rule in the choice of the penalty to be applied. Also, Hedge Fund
Research does try to limit the effect of survivorship bias. For instance, when a fund liquidates or
closes, its performance remains in the indices as of its last performance report date. Also, only the
current month and the prior three months are left as estimates and are subject to change. All

performance prior to that is locked. As such, biases that have crept in will be less important.
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4 DISCUSSION

4.1 Forsey-Sortino Method

The results of this method outlined in section 3 are to be found in Table 1. The actual
distributions are shown in appendix A. Our focus is the Upside Potential ratio which is the ratio
of the Upside Potential and Downside Risk. The empty spaces in the top part of the table mean
that the probability of beating the MAR is simply 100% and the U-P ratios are too large to be

meaningfully ranked.

U-P consistently ranks the equity indices in the bottom spots, except for the highest MAR
where the S&P climbs up to 6™ spot and Nasdaq to the 3™. At that threshold return level, ENH
and EM share the top prize. RV A outperforms at the 0% and 5% thresholds. Among the hedge
fund indices, the non-directional strategies like EMN, CA and FI perform worst at the higher

MARs of 10% and 20% . More about a possible explanation will be given in the next section.

4.2 Discrete Rankings using Omega, Kappa and LPM

Table 2 gives the results at the six MARs for rankings effected using the discrete
calculation methodology. It must be noted that Omega and Kappa, will always yield the same
outcomes, since Omega is mathematically equal to one plus Kappa,. Also Omega has been
calculated by the continuous integrand method as well but these results are only identified at the
-20% threshold level since the rankings provided by this method are very close to those
calculated by direct summation. Also, the Sortino ratio and Kappa, are one and the same figure as
noted by Kaplan and Knowles. Finally, I use the Shape ratio with a risk-free rate set at zero

(referred to as Pseudo-Sharpe) as the conventional comparison performance measure. The top
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part of Table 2 also contains rankings by skewness and kurtosis as well as the third and fourth
moments, backed out from the former similar to what Brulhart and Klein (2005) did. As they had
noted, the actual moments show a very different picture, drastically demoting the S&P and

Nasdagq to last positions.

Although I have used the shortfall measures, these will not be dealt with extensively
since they are quite simplistic and do not embody as much the distribution characteristics as do
the Omega, Sortino and other Kappa measures. Suffice it to say that the Probability of Shortfall,
equivalent to LPMI, can and does often contradict markedly rankings given by LPM2 or the
Expected Shortfall. Where they do seem to agree overwhelmingly is in ranking the Short Selling
and equity indices at the 14" and 15™ spots most of the time. From here onwards, I shall refer

only to the four downside measures given by Kappa for n=1 to 4.

Conversely to the LPMs, the higher the Kappas, the better the investment and the higher
its rank. A general observation is that the rankings for these downside measures agree more at
higher MARs. Also, the non-directional strategies such as Convertible Arbitrage, Relative Value
Arbitrage, Fixed Income Arbitrage and Equity Market Neutral perform much better than the
opportunistic ones for MARs at or below 0%. This means that risk averse investors who are for
example simply seeking capital preservation in nominal terms, and most probably seeking the
diversification benefits of hedge funds, are better off staying with those funds. Investors with very
high required returns at 20% or more will do better with ENH, EM or the Nasdaq for that matter.
This finding does make intuitive sense since the arbitrage and market neutral funds are by their
very mandate and investment philosophy engineered to capture small returns consistently as
opposed to making bets that yield very high returns. RV A is the best strategy for an MAR up to
5%. These results are in line with the results yielded by the boot-strapping technique of Forsey

and Sortino.
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Appendix C contains the plots of Omega (log-values) for each strategy against the S&P
TR Omega. . An observation that reinforces the point raised in the above paragraph concerning
the non-directional strategies can also be seen from their Omega curves which span a narrow
return range, are steeper over that range and dip more rapidly towards the S&P curve. It can be
seen that the Omega functions of the hedge fund indices dominate the equity index for monthly
returns of less than around 2% in most instances, but then the situation reverses. EM is a notable
exception as well as ENH whose curve dominates but is very close to the S&P one. At the highest
MAR of 20%, the ENH strategy outperforms, in line with the finding using Forsey-Sortino’s
statistics
The Sortino ratio also agrees with Omega for the most part. What is interesting is that the
rankings provided by the third and fourth Kappa variants - which depend on LPM; or “semi-
skewness™ and LPM, or “semi-kurtosis” if such terms could indeed be used —seem to agree with
Brulhart and Klein’s (2005) findings by sanctioning the equity indices for their higher moments.
However, at the highest MAR of 20% , this picture changes with the equity rankings improving
sensibly. More research has to be done there in order to understand fully what is occurring at the
higher returns. Actually, Kaplan and Knowles themselves had remarked that it is hard to ascribe a
specific direct relationship between the higher semi-moments and the higher Kappas since all
Kappa variants are sensitive, to some degree, to the first four as well as other moments of the

return distribution.
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5 Conclusion

“Risk, like beauty, is in the eye of the beholder.” Leslie A. Balzer

What the plots and Omega rankings in Table 2 as well as the Forsey-Sortino U-P results
demonstrate is that the hedge fund indices consistently dominate the equity indices up to about
25% annualized returns! The latter are definitely penalized when their higher moments and

downside risk are taken into consideration.

We can also conclude that the technique developed by Forsey and Sortino of successively
boot-strapping and fitting a 3-parameter lognormal curve yields results that are not very
dissimilar to those obtained discretely using the Kappa statistics. It would probably be of much

added value though when we have to rank funds which have been in existence only a few years.

With the increasing use of financial instruments with asymmetric pay-offfs incorporated
into trading or portfolio management strategies, investment return distributions are increasingly
predisposed to be asymmetric. Hedge funds have traditionally fallen in this category and will
continue to by their very mandates. Hence, investors and advisors need to understand and use
performance measures that help to “select and reward not only managers who produce higher
returns, but also those who produce asymmetric distributions of value-added above benchmark

with enhanced upside and curtailed downside”, to use Leslie Balzer’s words.

The new measures outlined and used here such as Omega, Kappa are welcome additions
to the arsenal of both risk professionals and sophisticated investors alike, provided they are not
viewed in isolation. Otherwise, erroneous and costly decisions could result from relying on one

preferred measure. No single risk measure should be consistently and blindly applied. Whether
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these newer measures gain popularity in the industry will depend on how practitioners perceive
the added value they provide versus traditional measures. I believe that the main hurdle te
adopting Omega, Kappa or other downside risk statistics springs from their very forte. The fact
that they can be customised so as to give a picture of performance relative to a specific investor’s
required threshold return or MAR also renders them incomparable when calculated using
different MARs. Greater comparability can nevertheless be achieved by levering or delevering
following the astute method of Brulhart and Klein(2005) who sought to compare hedge fund and
equity indices by matching the second and fourth moments. We shall then be in presence of the
measures evaluated at similar threshold returns. However, it could also be advanced that such a
method could pose a problem since not all investors have the mandate to add leverage to magnify

the expected returns on their portfolios. Pension fund sponsors are one such example.

An additional area of research would be to conduct a similar performance measurement
exercise using the measures used in this paper on a universe of actual hedge funds benchmarked
against their respective strategy indices, and then rank the different funds accordingly. For
instance, the historical monthly realized returns of a macro fund would be benchmarked against
the monthy returns on the HFRI Macro index and downside risk statistics calculated from the
annualised data obtained by bootstrapping these excess returns. Such results would be of
tremendous practical value for investors who will be able to gauge hedge fund performance
relative to the performance of a universe of managers pursuing similar strategies, similarly to
what goes on in the traditional equities world, but all the while taking into account the unique
distribution characteristics of hedge funds through the use of the different downside measures

used throughout this paper.
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Table 1: Forsey-Sortino Calculation of U-P ratio
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Appendix A
Basic Mathematical Formulas for the Three-Parameter Lognormal

The three basic parameters estimated from the sample are Mean, the sample mean, SD, the
sample standard deviation and 7 , the extreme value computed as described in the Data and

Methodology section.

Some auxiliary parameters
Dif = | Mean -1 |
o =In((SD/Dif *2 + 1)
= In (Dif) - o’
a=1/(2m"/2.0)
B=-1/(2 6%)

Formula for the lognormal curve f(x)

If the extreme value is a minimum and x is greater than the extreme value then
f(x)=(a/(x—=1) ). exp (B. (In(x-1) - )

If the extreme value is a maximum and x is less than the extreme value then
f(x) =(a/(r-x)).exp (. (In(t - x) - n)

Formula for the lognormal cumulative distribution function F(x)

If the extreme value is a minimum and X is greater than the extreme value then
F(x)=1- (erfc(In(x-1)~-p)/(2"1.5).0)

If the extreme value is a maximum and x is less than the extreme value then
F(x)=1- (erfc(In(t-x)—p)/(2*1.5). )

Where erfc is the complementary error function.
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Appendix B

Forsey-Sortino 3-Parameter Lognormal Bootstrapped Curves
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Appendix C
Omega Monotonic Functions

Graphs appear on following pages.

Note: S&P Omega curves are labelled B

34



Omega [log-values]

Omega [log-values]

Threshold Returns




o
]
=
©
e
[=2]
o
©
=2}
o
£
o
A0 L . - . S R - S
X D @ A0 NPT e ©NA D
RESOIRS I PNN AR R R R S N P L IS
DISTRESSED
1 — . e e ——
o
]
3 . -
= | e
o
[
£
(@]
A0 - y - = P 5 . S .
X D D @ DA N>R L0 o A 3
RSO P PP SR C SR RO AP IR

Threshold Returns

36




Omega [log-values]

Omega [log-values]

10 L I
S B XN ®
3 N2 o &

PN AT 2

10

EMERGING

OMEGA

\
AP

Threshold Returns

© N P O ok
SF oN o WY o P AT P 1P S

Threshold Returns




EQUITY MARKET NEUTRAL

OMEGA

[sanjea-boj] ebawip

EQUITY NON HEDGE

OMEGA

1=

I
i CE
o N <

[sanjea-6oj] ebawp

38



Omega [log-values]

Omega [log-values]

) o T e

PP 5 B

A D O N K DO B O
& P O o P B

Threshold Returns

FIXED INCOME

OMEGA
[ SR e e

K O S -

O N > N L 0 o0 N A A

Threshold Returns

X D ® D A A D




I
(]
=
®©
=
o
°
©
o
(1)
£
o
> ) D D A A Qv O N X Q ,\(f) Q © N Q9
’ ‘ ’ Threshold Returns ;
MERGER ARBITRAGE
OMEGA
;O S - —
|
w
@
=
©
2
o
k)
=
o
[
(]
(@)

Threshold Returns

40



RELATIVE VALUE ARBITRAGE

OMEGA

o
o
3
©
7
o
o°
©
-
o
\ E
[e]
&%‘b‘b‘b(\‘b%’\b&b,@Qb\"\%
‘ . ’ Threshold Returns
SHORT SELLING
i
|
o
o
|2
=
=
-
2
 ®
-}
)
| E
| O

B D > ® A0 N DDA DO AR O DA S P

D407 (9 A% AT AN WX LD DL N AN\

s 73T @7 AT XA 0T 2T 07 @7 AT LT L0707 N
Threshold Returns

41




REFERENCE LIST

Aitchison, J. and J.A.C. Brown, The Lognormal Distribution, Cambridge University Press, 1957.

Balzer, Leslie A. 1994. "Measuring Investment Risk: A Review," Journal of Investing, v3 (3),
pp47-58.

Bawa, Vijay S. 1975. "Optimal Rules For Ordering Uncertain Prospects,” Journal of Financial
Economics, v2 (1), pp95-121.

Brulhart, Todd and Peter Klein. 2005. “Are Extreme Hedge Fund Returns Problematic?” Working
Paper. Simon Fraser University.

Efron, Bradley and Tibshirani, Robert J. 1993. An Introduction to the Bootstrap, Chapman and
Hall: London.

Fishburn, Peter C. 1977. "Mean-Risk Analysis With Risk Associated With Below-Target
Returns,” American Economic Review, v67 (2), ppl116-126.

Forsey Hal. 2001. “The Mathematician’s View: Modelling Uncertainty with the Three Parameter
Lognormal,” in Managing Downside Risk in Financial Markets, Frank A. Sortino and
Stephen E. Satchell, eds., Reed Educational and Professional Publishing Ltd.

Kaplan, Paul D., and James A. Knowles. 2004. “Kappa: A Generalized Downside Risk- Adjusted
Performance Measure.” Journal of Performance Measurement 8(3):[no pages].

Kazemi, Hossein., Thomas. Schneeweis., and Raj. Gupta. 2003. “Omega as a Performance
Measure.” Centre for International Securities and Derivatives Markets, University of
Massachusetts, Amherst.

Nawrocki, David N. 1999. “A Brief History of Downside Risk Measures.” Journal of Investing,
v8 (3, Fall), pp9-25.

Nawrocki, David N. 2002. “The Case for the Relevancy of Downside Risk Measures”, in The
Handbook of Risk, IMCA, John Wiley & Sons, Inc.

Payne, J.W. 1973. “Alternative Approaches to Decision-Making Under Risk: Moments vs. Risk
Dimensions.” Psychological Bulletin, 80, pp439-453.

Shadwick, W. and C. Keating. 2002a. “A Universal Performance Measure.” Working Paper, The
Finance Development Centre, London.

Shadwick, W., and C. Keating. 2002b. “A Universal Performance Measure.” Journal of
Performance Measurement, Spring 2002, pp59-84.

Sortino, Frank A. 2001. “From Alpha to Omega”, in Managing Downside Risk in Financial
Markets, Frank A. Sortino and Stephen E. Satchell, eds., Reed Educational and
Professional Publishing Ltd.

Sortino, Frank A. and Hal J. Forsey. 1996. "On The Use And Misuse Of Downside Risk,"
Journal of Portfolio Management, v22 (2,Winter), pp35-42.

Sortino, Frank A. and Robert Van Der Meer. 1991. "Downside Risk,” Journal of Portfolio
Management, v17 (4), pp27-32.

42



