
COREASM: AN EXTENSIBLE MODELING

FRAMEWORK & TOOL ENVIRONMENT FOR

HIGH-LEVEL DESIGN AND ANALYSIS OF

DISTRIBUTED SYSTEMS

by

Roozbeh Farahbod

B.Sc., Sharif University of Technology, 2001

M.Sc., Simon Fraser University, 2004

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the School

of

Computing Science

c© Roozbeh Farahbod 2009

SIMON FRASER UNIVERSITY

Summer 2009

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Name:

Degree:

APPROVAL

Roozbch Farahbocl

Doctor of Phiiosoltliy

Title of Thesis: CoTcASNI: Arr Extcnsible Nlodclirig Frtrrncrvork .t ?rol En-

virotttnctrt for Fligh-lcvcl Dcsign arrcl Analr-sis of Distr.ilnrtcrl

Sr-stctrrts

Examining Committee: Dr. Dirk Bcyer' , Assistant Plofbssor

(lhair

Dr. l]lvc Gliisscr. Profr-.ssor

Scrrir i l Supr:r 'visclr

Dr. R,oltcrt D. Clarrrurorr, Professcir

Str lrcrvisor

Dr' . I -orr Haf ' t ' r ' . Plofcssor '

Str t l Extrrrr i r rcr '

Dr. Egou I3in 'gcr ' . Extrr l r ra l Exarnirrcr .

Pt 'of i 'ssol of ' (lorrrprr t t r l Sc' icrrct : .

Ur t i vc rs i tv o1 ' l ' i s t r . I t i r l y

Date Approved:

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

Model-based systems engineering naturally requires abstract executable specifications to

facilitate simulation and testing in early stages of the system design process. Abstraction and

formalization provide effective instruments for establishing critical system requirements by

precisely modeling the system prior to construction so that one can analyze and reason about

specification and design choices and better understand their implications. There are many

approaches to formal modeling of software and hardware systems. Abstract State Machines,

or ASMs, are well known for their versatility in computational and mathematical modeling

of complex distributed systems with an orientation toward practical applications. They offer

a good compromise between declarative, functional and operational views towards modeling

of systems. The emphasis on freedom of abstraction in ASMs leads to intuitive yet accurate

descriptions of the dynamic properties of systems. Since ASMs are in principle executable,

the resulting models are validatable and possibly falsifiable by experiment. Finally, the well-

defined notion of step-wise refinement in ASMs bridges the gap between abstract models

and their final implementations.

There is a variety of tools and executable languages available for ASMs, each coming

with their own strengths and limitations. Building on these experiences, this work puts for-

ward the design and development of an extensible and executable ASM language and tool

architecture, called CoreASM, emphasizing freedom of experimentation and design explo-

ration in the early phases of the software development process. CoreASM aims at preserving

the very idea of ASM modeling—the design of accurate abstract models at the level of

abstraction determined by the application domain, while encouraging rapid prototyping of

such abstract models for testing and design space exploration. In addition, the extensible

language and tool architecture of CoreASM facilitates integration of domain specific concepts

and special-purpose tools into its language and modeling environment.

iii

CoreASM has been applied in a broad scope of R&D projects, spanning maritime surveil-

lance, situation analysis, and computational criminology. In light of these applications, we

argue that the design and implementation of CoreASM accomplishes its goals; it not only

preserves the desirable characteristics of abstract mathematical models, such as conciseness,

simplicity and intelligibility, but it also adheres to the methodological guidelines and best

practices for ASM modeling.

Keywords: CoreASM; Abstract State Machines; Specification Languages; Executable

Specification; Distributed Systems; High-level Design

iv

To Maryam and Marjan,

my darling sisters.

v

“He who would learn to fly one day, must first learn to stand and walk

and run and climb and dance; one cannot fly into flying.”

— Friedrich W. Nietzsche

vi

Acknowledgments

I am mostly grateful to my senior supervisor Dr. Uwe Glässer for his enthusiasm, friendship,

and generous support and supervision throughout this work. He offered the original idea of

CoreASM and provided the motivation for this project to take shape.

I would like to express my sincere gratitude to my dear friend and mentor, Dr. Vincenzo

Gervasi. The success of this work would not have been possible without his kind support,

encouragement, and inspiring ideas.

I would like to thank Dr. Robert Cameron, Dr. Lou Hafer, and Dr. Tom Shermer for

their valuable feedback and inspiring discussions that led to the improvement of this thesis.

I would also like to specially thank Dr. Egon Börger for his thorough examination of this

thesis and his suggestions, corrections, and remarks on the theoretical and practical aspects

of this work.

Many ideas in this work are the outcome of lengthy discussions (and at times heated

arguments) with my dear friends and colleagues Mashaal Memon and George Ma. I am

grateful for having the opportunity of meeting them in the course of this project.

I would like to express my gratitude to Michael Altenhofen at SAP Research in Germany.

During the final phases of this work, Michael offered many suggestions for improvements

and invaluable feedback on the practical issues and usability of CoreASM.

My heartfelt thanks goes to my many friends, colleagues, and my family (past and

present) who made these years a pleasant and memorable period in my life.

I would also like to acknowledge the people in the School of Computing Science, the

administrative and the technical support staff, and the Network Support Group for making

this school a productive environment for research and studies. Finally, I also wish to thank

the Natural Sciences and Engineering Research Council of Canada (NSERC) and Precarn’s

Intelligent Systems program for their financial support in the course of this project.

vii

Contents

Approval ii

Abstract iii

Dedication v

Quotation vi

Acknowledgments vii

Contents viii

List of Tables xiv

List of Figures xv

List of Programs xvii

I Introduction 1

1 Background and Motivation 2

1.1 Modeling Languages . 3

1.2 Formal Language Semantics . 5

1.2.1 Operational Semantics . 7

1.2.2 Denotational Semantics . 8

1.2.3 Axiomatic Semantics . 9

1.3 Towards a Comprehensive Framework . 10

viii

1.4 The CoreASM Modeling Environment . 13

1.5 Thesis Organization . 16

2 Abstract State Machines 17

2.1 Basic ASMs . 18

2.1.1 Basic Definition . 18

2.1.2 State Transitions . 19

2.1.3 Transition Rules . 19

2.1.4 Interaction with Environment . 21

2.2 Multi-Agent ASMs . 21

2.3 Control State ASMs . 23

2.4 Similar Approaches in Computational Logic 24

2.4.1 Runs and Systems . 25

2.4.2 Actions, Protocols, and Programs . 25

2.5 The Railroad Crossing Example . 26

2.5.1 The Abstract Model . 26

2.5.2 The Executable Model . 29

3 Related Work 33

3.1 The Dynamic Algebra Specification Language 34

3.2 ASM Gofer . 35

3.3 XASM . 36

3.4 The ASM Workbench . 37

3.5 AsmL and Spec Explorer . 38

3.6 Asmeta . 38

3.7 Alternative Tools . 40

II Design and Specification of CoreASM 43

4 CoreASM: Architectural Overview 44

4.1 CoreASM Components . 45

4.2 Engine Lifecycle . 48

4.2.1 Engine Initialization . 49

4.2.2 Loading Specification . 51

ix

4.2.3 Execution of Specification . 54

4.2.4 Concurrently Running Agents . 60

4.3 CoreASM Plugins . 61

5 CoreASM: The Kernel 64

5.1 The Abstract Storage . 64

5.2 The Interpreter . 71

5.2.1 Notation . 71

5.2.2 Kernel Expression Interpreter . 76

5.2.3 Kernel Rule Interpreter . 78

5.2.4 Operators . 81

5.3 Rules and Updates . 81

5.3.1 Update Instruction Notation . 82

5.3.2 Aggregation of Updates . 83

5.3.3 Composition of Updates . 85

5.4 The Parser . 88

5.5 The Plugin Framework . 89

5.5.1 Parser Extensions . 89

5.5.2 Interpreter Extensions . 91

5.5.3 Abstract Storage Extensions . 92

5.5.4 Scheduler Extensions . 93

5.5.5 Extension Point Plugins . 93

5.5.6 Plugin Service Interface . 96

5.5.7 Plugin Background . 97

6 CoreASM: The Plugins 99

6.1 Standard Rule Constructs . 100

6.1.1 Block Rule Plugin . 100

6.1.2 Conditional Rule Plugin . 101

6.1.3 The let-rule Plugin . 101

6.1.4 The extend-rule Plugin . 102

6.1.5 The choose-rule Plugin . 102

6.1.6 The forall-rule Plugin . 103

6.1.7 The case-rule Plugin . 104

x

6.1.8 The TurboASM Plugin . 105

6.2 Primitive Data Types . 111

6.2.1 The Predicate Logic Plugin . 111

6.2.2 The Number Plugin . 114

6.2.3 The String Plugin . 119

6.3 Collections . 120

6.3.1 The Collection Plugin . 121

6.3.2 The Set Plugin . 123

6.3.3 The Bag Plugin . 132

6.3.4 The List Plugin . 135

6.3.5 The Queue Plugin . 142

6.3.6 The Stack Plugin . 142

6.3.7 The Map Plugin . 143

6.4 Auxiliary Plugins . 145

6.4.1 The Signature Plugin . 146

6.4.2 The Scheduling Policies Plugin . 150

6.4.3 IO Plugin . 152

6.4.4 The Observer Plugin . 154

6.4.5 Math Plugin . 155

6.4.6 The Time Plugin . 156

6.5 The JASMine Plugin . 158

6.5.1 Requirements and Limitations . 159

6.5.2 Language Extensions . 160

6.5.3 Implementing JASMine . 169

6.5.4 A Simple Example . 172

6.5.5 Final Remarks . 172

III Applications and Conclusions 175

7 Implementing CoreASM 176

7.1 The Architecture . 177

7.2 The CoreASM Engine . 179

7.2.1 The Kernel . 179

xi

7.2.2 CoreASM Plugins . 183

7.3 User Interfaces and Tools . 184

7.3.1 CSDe . 185

7.3.2 Model Checking CoreASM Specifications 187

8 Case Studies 189

8.1 The DRCMA Project . 189

8.1.1 Objectives and Challenges . 190

8.1.2 Conceptual Model . 190

8.1.3 Formal DRCMA Model . 193

8.1.4 New Task Assignments . 198

8.1.5 The Executable Model . 203

8.2 Decision Support for Situation Analysis . 205

8.2.1 The Abstract Model . 206

8.2.2 Situation Awareness . 208

8.2.3 Situation Analysis . 209

8.2.4 Executable Model . 210

8.3 The Mastermind Project . 212

9 Conclusions and Perspectives 216

9.1 Significance of the Contribution . 217

9.2 Future Work . 219

IV Appendices 222

A Supplementary Definitions 223

A.1 Abstract Storage . 223

A.2 Interpreter . 224

A.3 Scheduler . 227

A.4 Control API . 228

A.5 Plugins . 230

A.5.1 Choose Rule Plugin . 230

A.5.2 Forall Rule Plugin . 232

A.5.3 Predicate Logic Plugin . 232

xii

A.5.4 Set Plugin . 235

A.5.5 Math Plugin . 238

B CoreASM Examples 241

B.1 The Railroad Crossing Example . 241

B.2 The Surveillance Scenario . 244

xiii

List of Tables

3.1 Comparing ASM Tools and Languages . 39

5.1 Abbreviations in Syntactic Pattern-matching Rules 74

5.2 Examples of Pattern Matching Notation Translated into ASM Rules 75

5.3 CoreASM Plugin Interfaces . 90

6.1 Type Conversions Between CoreASM and Java. 167

xiv

List of Figures

1.1 An Example of a Control State ASM . 14

1.2 CoreASM Extensible Architecture . 15

2.1 Control State ASMs . 24

2.2 Output of the Railroad Crossing Example in CoreASM 32

4.1 Layers and Modules of the CoreASM Engine 45

4.2 Overall Architecture of CoreASM . 46

4.3 Sample Annotated Parse Tree . 47

4.4 Control State ASM of Initializing CoreASM Engine 50

4.5 Control State ASM of Loading a CoreASM Specification 51

4.6 Control State ASM of a step command: Control API Module 54

4.7 Control State ASM of a step command : Scheduler 55

4.8 Control State ASM of a step command : Abstract Storage 56

4.9 Control State ASM of a step command : Interpreter 57

4.10 Revised Control State ASM of a step command: Concurrent Scheduler 60

5.1 CoreASM Elements in the Kernel . 69

5.2 (a) An extensible control state ASM and (b) one of its possible extensions . . 96

7.1 CoreASM Kernel, Plugins, and Applications 178

7.2 Components of the CoreASM Engine . 179

7.3 Core Elements Defined in the Abstract Storage 181

7.4 CoreASM Plugin Interfaces . 183

7.5 CoreASM Tools in Eclipse . 186

8.1 Architectural View of DRCMA . 191

xv

8.2 Basic Transformation Patterns . 197

8.3 Control State ASM of Monitoring New Tasks by Logical Nodes 199

8.4 Search and Rescue Scenario . 204

8.5 Surveillance Scenario from [95] 1 . 206

8.6 The Mastermind Plugin for CoreASM . 214

xvi

List of Programs

6.1 A CoreASM Example Using Math Plugin . 157

6.2 An Example to Illustrate Application of JASMine in CoreASM 173

xvii

Part I

Introduction

1

Chapter 1

Background and Motivation

Computer-based systems are increasingly integrated into our day-to-day life. They either

control or provide platforms for our communication networks, transportation facilities, eco-

nomic markets, health-care systems, and safety and security facilities. With the increasing

complexity of these systems, efficient design and development of high quality computa-

tional systems that faithfully conform to their requirements are extremely challenging and

the costs of design flaws and system failures are high. Proper understanding of the require-

ments, precisely documenting design decisions, and effectively communicating such decisions

with the domain experts as early as possible play important roles in the design of complex

systems. These challenges call for adoption of proper engineering methods and tools and

have motivated the use of formal methods in software engineering.

Abstraction and formalization provide effective instruments for establishing critical sys-

tem requirements by precisely modeling systems prior to construction so that one can an-

alyze and reason about specification and design choices and better understand their im-

plications [9]. There are many approaches to formal modelling of software and hardware

systems. Abstract State Machines (ASMs) [25] are well known for their versatility in com-

putational and mathematical modelling of complex distributed systems with an orientation

toward practical applications. The ASM framework offers a universal model of computation

and serves as an effective instrument for analyzing and reasoning about complex semantic

properties of discrete dynamic systems. For almost two decades, abstract state machines

have been studied, practiced, and applied in modeling and specification of systems to bridge

the gap between formal and pragmatic approaches. Combining common abstraction princi-

ples from computational logic, discrete mathematics, and the concept of transition systems,

2

CHAPTER 1. BACKGROUND AND MOTIVATION 3

ASMs have become a well-known method and assumed a major role in providing a solid

and flexible mathematical framework for specification and modeling of virtually all kinds of

discrete dynamic systems.

In addition, machine assistance plays an increasingly important role in making design

and development of complex systems feasible. Abstract executable specifications serve as

a basis for design exploration and experimental validation through simulation and testing.

Model checking tools based on formal verification techniques help with proving critical

properties of systems and assuring “correctness” before deployment.

There is a variety of tools and executable languages available for ASMs, each coming

with their own strengths and limitations. In this work, we critically look into their interest-

ing features and potential shortcomings with the goal of understanding the requirements of

a modeling language and tool environment that would support high-level design and experi-

mental validation of abstract machine models at the early stages of design and development.

Building on these experiences, this work puts forward the design and development of an ex-

tensible and executable ASM language and tool architecture, called CoreASM, emphasizing

freedom of experimentation and design exploration in the early phases of the software devel-

opment process. CoreASM aims at preserving the very idea of ASM modeling—the design of

accurate abstract models (ground models [17]) at the level of abstraction determined by the

application domain, while encouraging rapid prototyping of such models for conformance

testing, design space exploration, and experimental validation.

The rest of this introductory chapter is organized as follows. Section 1.1 briefly looks into

the concept of a model and explores various formal languages and techniques for modeling

software intensive computer-based systems. Section 1.2 outlines different approaches toward

establishing formal semantics of languages—i.e., what makes modeling languages “formal”—

and argues why such formal semantics are necessary. The objectives of this thesis and a

brief discussion of the proposed solution are sketched in sections 1.3 and 1.4. Finally, this

chapter ends with an outline of the thesis in Section 1.5.

1.1 Modeling Languages

A model of a system is an abstract representation of that system so that one can view,

manipulate, and reason about it [98]. Such a representation also helps in understanding

the complexity that is inherent in the system under study. We build models to increase

CHAPTER 1. BACKGROUND AND MOTIVATION 4

productivity, since it is often cheaper to explore and to manipulate the model than the real

system. A “good” model omits unnecessary information but accurately reflects the essential

aspects of the subject matter in order to help the viewer to clearly see the subject and focus

on those essential aspects. A model that is easily understandable can also serve as a means

of communication by clearly illustrating the subject and its main concepts and ideas.

There are many modeling languages available to express computational models, each

one focusing on certain aspects or targetting certain types of systems. A popular example

of a widely used modeling language is the Unified Modeling Language, or UML1 for short.

UML is a visual (graphical) language and is one of the most common industrial modeling

languages in the area of software engineering. However, UML is an informal language2 as

its semantics is not formally defined.3

Our work, however, is focused on the practical application of formal methods. According

to Daniel M. Berry [9], a formal method is any attempt to use mathematics in the devel-

opment of a software intensive computer-based system in order to improve the quality of

the resulting system. We define a formal modeling language as a modeling language that

has a formally defined (read “mathematically defined”) syntax and a formally defined se-

mantics for that syntax. There are many formal languages and notations for modeling and

specification4 of systems, such as: the Vienna Development Method (VDM) [11], one of the

longest-established formal methods for the functional modeling of computer-based systems;

the family of Algebraic Specification languages, currently subsumed under the Common Al-

gebraic Specification Language, or CASL [10], which are all based on first-order logic with

induction, viewing states of systems as first-order many-sorted structures; the family of

process calculi or process algebras languages and approaches to formal modeling of concur-

rent systems (such as π-calculus [105] or Communicating Sequential Processes (CSP) [79]),

supporting high-level description of interactions between a collection of independent pro-

cesses; Specification and Description Language (SDL) [42], a standard formal language [83]

1http://www.uml.org
2Some people claim that UML is a semi-formal modeling language since its (abstract) syntax is precisely

defined [65].
3There have been attempts to formally define the semantics of UML (see [65] for example).
4There is a slight difference between a ‘model’ and a ‘specification’ of a system. Strictly speaking, a

specification of a system tends to view the system as a black box, focusing on the behavior of the system as
a whole and its interface to its environment [42, 82]; i.e., focusing on what the system does. A model of a
system, on the other hand, can include both a specification and a description of the system; i.e., describing
what the system does and how it does it.

http://www.uml.org

CHAPTER 1. BACKGROUND AND MOTIVATION 5

for specification and description of reactive and distributed systems, which provides both

graphical and textual representations; the Petri nets5 [111] graphical language for descrip-

tion of distributed systems in form of bipartite graphs6; the B method [2], an abstract

machine modeling approach mostly used in the development of software with a rich set

of commercially available tools for specification, design, proof and code generation; the Z

notation [116], a formal specification language for modeling computing systems and for-

mulation of proofs about the intended program behavior based on axiomatic set theory,

lambda calculus, and first-order predicate logic; the Alloy specification language [84], a

light-weight formal specification language (inspired by the Z notation) together with a tool

designed for providing fully automatic analysis of software specifications; and last but not

least, the ASM method [25], a versatile semantic framework for computational modeling of

virtually all kinds of discrete dynamic systems, combining common abstraction principles

from computational logic and discrete mathematics.

Each formal modeling approach focuses on a certain view towards systems, being declar-

ative, functional, or operational. Some languages are particularly good in modeling data

structures and the state of systems but are less supportive on the operational aspects. Some

are low level, staying closer to code and the final implementation of systems and some are

more formal and stay on the mathematical level. Among these formal methods, abstract

state machines, while being primarily operational in nature, provide a good compromise be-

tween declarative, functional and operational views towards modeling distributed discrete

dynamic systems. The emphasis on freedom of abstraction [25] in ASMs leads to intuitive

yet accurate descriptions of systems which, thanks to the pseudo-code style of its language,

are easily understandable by both domain experts and system designers. Since ASMs are

in principle executable, the resulting models are validatable and possibly falsifiable by ex-

periment. Finally, the well-defined notion of step-wise refinement in ASMs [18] bridges the

gap between the abstract model and its final implementation.

1.2 Formal Language Semantics

Modeling languages are used to create a formulation of a system, based on one’s under-

standing of that system or its requirements, so that it can be documented, communicated

5http://www.petrinets.info
6A bipartite graph is a graph that does not contain any odd-length cycle.

http://www.petrinets.info

CHAPTER 1. BACKGROUND AND MOTIVATION 6

with peers and domain experts, and better yet, empirically validated if possible. Such a

formulation needs to be clear, precise and comprehensive at a given level of abstraction. In

order to achieve this, one needs to have a good understanding of the underlying modeling

language used, which in turn requires a “good” description of the language.

A complete description of a modeling language covers three aspects of the language:

syntax, semantics, and pragmatics [110]. The syntax is about the superficial form of the

language constructs. It answers questions like, “is X a proper statement in this language?”

The semantics is about the interpretation and the meaning of statements of the language.

It answers questions like, “what does ‘x := y + 1’ mean and what are its effects?” Finally,

the pragmatics is about the use of such statements.

In this section, we focus on formal approaches towards semantic description of languages.

Language descriptions used to be more informal (i.e., expressed in a narrative form using

a natural language), since formal descriptions using rigorous notations are not easily un-

derstandable without special training. However, it is often difficult to precisely and clearly

describe the semantics of languages using an informal language. Informal descriptions rely

on a common understanding of the underlying informal language and are amenable to dif-

ferent interpretations which in case of modelling languages defies the purpose of having a

clear, precise and comprehensive formulation. If we want completeness, consistency, preci-

sion, absence of ambiguity, and understandability, we have to look into formal descriptions.

Formal semantic specification of a language can serve many purposes [119, 110]:

1. Reference for users: A formal specification can serve as a reference for users of the

language, providing a detailed and accurate description of the language, its meaning

and its effects.

2. Reference for implementations. Those who implement tools for a language such as

compilers, interpreters or debuggers, need to precisely know the details of the language

and its semantics. Also, such specifications are needed if one wants to prove the

correctness of language compilers or interpreters.

3. Improved language design. Formal specifications can expose irregularities and incon-

sistencies in language design and can guide language designers towards the design of

better and cleaner languages.

CHAPTER 1. BACKGROUND AND MOTIVATION 7

4. Standardization. It is now generally accepted that formal specifications are necessary

to have a successful language standardization process.

5. Program/model verification. To mathematically prove the correctness of models and

programs, the properties of the underlying language constructs must be formally de-

fined.

There are three main approaches to the semantic formalization of programming lan-

guages: operational, functional (denotational), and declarative (axiomatic). In the following

sections, we briefly look into these approaches.

1.2.1 Operational Semantics

The essence of the operational approach is to explain the semantics of the language by

defining an abstract machine with discrete “states” that takes the terms of the language as

input [119, 110]. The machine interprets the programs of the language and performs the

sequences of actions specified by the program by passing through a sequence of discrete

states.

The abstract machine used in this approach itself usually comes with a formal definition,

but the idea is that the code written for this machine is often clear, precise and simple, and

much easier to understand than the language it is used to specify.

One of the oldest metalanguages used in such descriptions is the Vienna Definition

Language, VDL for short, which was used for the definition of the PL/I language in

1969 [110, 119, 92]. A more recent example of the application of the operational method

for formal semantics is the formal specification of the Java language and the Java Virtual

Machine [118], using the abstract state machine framework, that aims to enable mathemat-

ical or computer-assisted verification as well as experimental validation of certain proper-

ties of Java. In the past two decades, abstract state machines have been used for seman-

tic foundations of various industrial system design languages like the ITU-T standard for

SDL [69, 45, 44, 83], the IEEE language VHDL [21, 20] and its successor SystemC [108],

programming languages like C# [19] and Prolog [14, 15], and Web service description lan-

guages [55, 54].

CHAPTER 1. BACKGROUND AND MOTIVATION 8

1.2.2 Denotational Semantics

Denotational semantics, developed by Dana Scott and Christopher Strachey [115], is a formal

method of describing the semantics of programming languages in form of abstract math-

ematical objects. As originally introduced by Scott and Strachey, denotational semantics

provided the meaning, or denotation, of a program as a mathematical function that maps a

program’s input into output.

The denotational semantics approach is more abstract than the operational semantics,

and it is mostly oriented toward language designers [115, 110]. The notion of “state” still

exists in an abstract form but there is no explicit modeling of computational processes such

as interpretation of programs. Abstract syntax of the subject language is modeled as a set of

syntactic domains (such as variables, expressions and statements). The meaning of program

statements are provided by semantic functions that map the statements into elements of

semantic domains, elements of which are usually mathematical functions representing the

meanings that can be assigned to the statements of the language.

The final piece in this puzzle is a semantic function that maps syntactic domains to

semantic domains; i.e., assigns meanings to syntactic elements of a language. After defining

the type (or the signature) of the semantic function, its detailed definition (i.e., the semantic

specification of the language) is defined by a set of semantic equations, one for each summand

of the syntactic domain.

Action Semantics

Peter D. Mosses introduced the action semantics method [106], developed based on the

denotational semantics, to overcome some of the pragmatic problems he observed with

application of denotational semantics to “realistic” programming languages; problems such

as complexity of the semantic specifications, poor modifiability and extensibility [106, 107].

Hence, action semantics is developed with the goal of enriching denotational features with

practically useful operational ones [16].

Like denotational semantics, action semantics involves defining semantic functions that

map abstract syntax, in a compositional pattern, to semantic entities [106]. The main dif-

ferences between these two approaches are the nature of semantic entities and the notation

used to express them. As opposed to functions (or denotations) used in denotational se-

mantics, there are three kinds of semantic entities used in action semantics: actions, data,

CHAPTER 1. BACKGROUND AND MOTIVATION 9

and yielders. Actions are dynamic computational entities, performance of which represents

a computational behavior. Data items are static mathematical entities, representing pieces

of information, and yielders represent unevaluated pieces of data.

1.2.3 Axiomatic Semantics

Axiomatic semantics, originally introduced by C. A. R. Hoare [78], is a method of specifying

semantics of languages by formal statements about the effect of executing the language

constructs. It is considered to be the most high-level approach to semantics specification.

The idea behind axiomatic semantics is that a semantic specification of a language is

sufficiently defined if based on that specification one can prove any provable true statement

(and no false statement) about the language [110]. Axiomatic semantics is more concerned

with the general problem of program verification and synthesis (making it suitable for prov-

ing certain properties of programs written in that language) and is oriented toward language

users. There is no explicit notion of a “state” or a machine; instead the focus is on defining

an ideally minimal set of semantics constraints that must be satisfied by any “correct” im-

plementation of the language. There is no indication of how such an implementation should

be achieved.

There is no single standard metalanguage for defining axiomatic semantics of languages.

The semantics is specified mostly in form of assertions (formulas in predicate logic) on the

values of program variables or the relationship between those values. The class of assertions

is extended with the Hoare Triple of the form:7

{P} S {Q}

where P and Q are precondition and postcondition assertions and S is a statement or

construct in the subject language. The semantics of this assertion is: if P holds before the

execution of S, and if the execution of S successfully terminates, then Q holds after the

execution of S [78, 110]. It is important to note that if S does not terminate, then there

is no “after” and Q can be any statement. Hence, the Hoare logic can only prove partial

correctness, i.e. correctness subject to assumption of termination. Termination of S would

have to be proved separately.

7This assertion is sometimes written as “P {S} Q”, as it is originally introduced by Hoare [78].

CHAPTER 1. BACKGROUND AND MOTIVATION 10

An axiomatic specification of a programming language includes a number of deduction

rules (or rules of inference) which allows deduction of the truth of assertions based on the

truth value of other assertions. The general form of a deduction rule is

H1, H2, . . . ,Hn

H

in which H1, . . . ,Hn and H are assertions and the interpretation is: if H1, . . . ,Hn are true,

it may be deducted that H is true. For example, Hoare’s rule of composition

{P}S1{Q}, {Q}S2{R}
{P}S1;S2{R}

applies to sequential execution of two statements S1 and S2.

1.3 Towards a Comprehensive Framework

In light of such observations, a question naturally comes to mind: what does it take to

develop a comprehensive framework and tool environment for design and modeling of complex

distributed systems and what features should such a framework provide? Building on our

experience with a broad scope of applications spanning web services architectures [56],

computational criminology [51], maritime surveillance [58] and situation analysis [50], we

believe that the following set of requirements should be satisfied by any such framework:

1. Simple and concise specifications

Specifications written in such a framework should be simple and concise to be readable

and understandable by both domain experts and system designers and to facilitate

reasoning about the design and the communication of design concepts between those

groups.

2. Precise semantic foundation

The modeling language of such a framework should come with a precise semantic

foundation as a prerequisite for analysis, validation and verification of the models.

3. Freedom of abstraction

Such a framework should support writing of abstract and minimal specifications that

express the original idea behind the designs of systems at the same levels of complexity

and enable system designers to stress on the essential aspects of their design rather

than encoding the insignificant details.

CHAPTER 1. BACKGROUND AND MOTIVATION 11

4. Design exploration through fast prototyping

Exploring the problem space for the purpose of writing an initial specification requires

a language that emphasizes freedom of experimentation by minimizing the need for

encoding in mapping the problem space to a formal model. This can be achieved by

• reducing the cost of encoding domain concepts to language concepts by provid-

ing a rich set of abstract data structures, various domain-specific concepts, and

extensibility mechanisms for the tool environment and its language,

• avoiding early commitments and encouraging rapid prototyping by supporting

creation of abstract and untyped models that can later be refined into more

concrete models.

5. Refinement of models

Support for abstraction should be paired with a well-defined refinement technique

that allows the system designer to cross levels of abstraction and link the models at

different levels through incremental steps down to the final implementation (or the

concrete model).

6. Executability of specifications

Executability of even fairly abstract and incomplete models is important to allow ex-

perimental validation of the specifications at the early stages of design and to improve

communication with the stake-holders during the requirements elicitation and analysis

process.

7. Support for distributed models (multi-agent systems)

It is only natural to expect a framework for design and modeling of distributed systems

to explicitly support distributed and multi-agent design. This includes support for the

definition of agent programs (or processes), inter-agent interaction mechanisms, and

various scheduling policies.

8. Non-determinism

Non-determinism is useful as a means of abstracting away from details of complicated

and potentially deterministic algorithms. For example, non-deterministic descriptions

can be used in high-level modeling of the behavior of the environment.

Considering these requirements, we argue that the ASM formalism properly matches our

needs as the underlying formal framework for such a tool environment:

CHAPTER 1. BACKGROUND AND MOTIVATION 12

• Abstract state machine specifications are in fact rigorously-defined pseudo-code pro-

grams on abstract data structures [25]. As a result, they support writing of simple

and concise specifications with a precise semantic foundation.

• ASM programs and the data structures can be fairly abstract8 and yet ASM specifi-

cations are in principle executable.

• The ASM framework comes with a sound and powerful notion of step-wise refinement

that helps the designer to structure the design of a system into appropriate abstraction

levels and link those levels down to the concrete model (or code).

• The ASM formalism supports the design of distributed systems by providing two

classes of synchronous and asynchronous multi-agent abstract state machines.

• ASM supports non-determinism in two forms: a choose construct that conveniently ab-

stracts from the details of scheduling, and the notion of read-only monitored functions

that are only updated by the environment of the system.

Looking at past experiences with ASM languages and modeling environments and con-

sidering the requirements listed above, we reason that a comprehensive ASM framework for

design and analysis of distributed systems should:

1. come with a rich ASM language that supports both basic and distributed ASMs with

non-determinism (see Chapter 2);

2. offer a formal (preferably operational) specification of its language and simulation

engine that ensures

• precise semantics,

• preservation of pure ASM semantics, and

• executability of the language;

3. ensure freedom of experimentation through extensibility of the language and its envi-

ronment;

4. support interaction with the environment (e.g., external functions);

8In ASMs arbitrary structures can be used to reflect the underlying notion of state [25, P. 22].

CHAPTER 1. BACKGROUND AND MOTIVATION 13

5. be implemented as an open framework under an open source license9 and using a

platform-independent language and architecture so that it can be later modified or

improved as needed by its users.

It would also be an advantage if such a framework provides a GUI (Graphical User In-

terface) for simulation and debugging. The graphical interface can organize the information

relevant to state transitions into different views, visually highlight inconsistencies of the

model, and give the user the ability to compare and contrast states and updates produced

by different steps.

1.4 The CoreASM Modeling Environment

We take into account the requirements discussed above in the design and development of

CoreASM to offer one instantiation of such a comprehensive framework for high-level design

and analysis of distributed systems. In this section, we look into different aspects of design

and implementation of CoreASM and address some of the challenges one may face during

its development.

Formal Specification

There is no need to argue that the development of a reliable modeling framework for design

and analysis of distributed systems has to start with a formal (read precise) specification of

its language and tool architecture. Abstract state machines have been extensively used for

semantic foundations of various programming and system design languages (see Chapter 2).

While ASM specifications are primarily operational in nature, they provide a good compro-

mise between declarative, functional and operational views toward modeling of languages

and systems. Hence, it is only reasonable to use ASMs in formal modeling of the CoreASM

language and its simulation environment (see Chapter 4).

We specify the CoreASM language (both its syntax and the corresponding semantics)

through the specification of an interpreter (in form of an abstract state machine), therefore

ensuring the executability of the language while providing its formal semantics. The design

of the simulation engine and its architecture are specified using Control State ASMs [25], a

9http://www.opensource.org

http://www.opensource.org

CHAPTER 1. BACKGROUND AND MOTIVATION 14

Idle InitKernelnewCommand = init

Loading
Catalog

LoadCatalog
Loading

Core Plugins
LoadCorePlugins

CONTROL API

Initializing
Kernel

Figure 1.1: An Example of a Control State ASM

practical class of abstract state machines that have an easy-to-understand graphical repre-

sentation (see Figure 1.1 for an example).

Extensible Architecture

In order to provide a rich ASM language that preserves pure ASM semantics and supports

sequential and distributed ASMs with non-determinism, we closely follow the formal seman-

tics and the definition of ASMs as provided by the ASM book [25]. However, this may not

be enough. ASMs have been used in various domains, some of which required the intro-

duction of special rule forms and data structures into ASMs. To follow the same spirit and

to preserve this freedom of experimentation that comes with ASMs, the CoreASM language

has to be easily extensible by third parties so that it can naturally fit into different appli-

cation domains. In addition, to ensure freedom of experimentation, we would like to allow

various modeling tools and environments to closely interact with the engine and also to let

researchers experiment with variations to the engine’s functionality. As a result, we propose

a plugin-based architecture with a minimal kernel for the CoreASM language and modeling

environment to offer the extensibility of both the language and its simulation engine. We

start with a micro-kernel (the core of the language and its engine) that contains the bare

essentials, that is, all that is needed to execute only the most basic ASM. We then imple-

ment most of the constructs of the language and the functionalities of the engine through

plugins extending the kernel.

Language extensibility is not a new concept [117]. There are a number of programming

CHAPTER 1. BACKGROUND AND MOTIVATION 15

Plotter
+

Set
+

Number
+

List
+

CSDe

Custom
Application

Editor

Engine Plugins Applications

Mastermind
+

JASMine
+

CoreASM
Engine

...

...

S
ta

nd
ar

d
P

lu
gi

ns
C

us
to

m
 P

lu
gi

ns

Figure 1.2: CoreASM Extensible Architecture

languages that support some form of extensibility from defining new macros to the definition

of new syntactical structures. However, what we are suggesting here is the possibility

of extending and modifying the syntax and semantics of the language, keeping only the

bare essential parts of the ASM language as static. In order to achieve the this goal,

CoreASM plugins should be able to extend the grammar of the core language by providing

new grammar rules together with their semantics (see chapters 5 and 6). As a result,

every time a CoreASM specification is being loaded, based on the set of plugins that the

specification uses, the engine builds a language and a parser for that language to parse

the specification. Since the set of all the possible plugins and their grammar rules is not

known at the design time (which would otherwise defy the purpose of having a plugin-

based architecture) one of the challenges would be to to equip the engine with a fast parser

generator capable of generating parsers with look-ahead of more than one to allow the

co-existence of more than one grammar rule starting with the same pattern.

Implementation

To facilitate the integration of CoreASM with other complementary tools such as symbolic

model checking and automated test generation, the CoreASM engine should have a sophis-

ticated and well defined interface to its environment which provides an API for various

operations such as loading a CoreASM specification, starting an ASM run, or performing a

CHAPTER 1. BACKGROUND AND MOTIVATION 16

single execution step.

In order to have an open and platform-independent implementation of CoreASM, the

whole framework is implemented in Java under an open source license (see Chapter 7). After

considering various open source license models and looking at similar open source projects,

we decided to make CoreASM source code available under the Academic Free License (AFL)

version 3.010. AFL 3.0 is an open source license with no reciprocal obligation to disclose

source code; i.e., derivative works can be licensed under other licenses, and the source code

of those derivative works need not be disclosed. Such a license provides a good compromise

between the availability of the original source code in a free form and the existence of

potentially proprietary editions and extensions in the industry.

1.5 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides an introduction to abstract

state machines and uses an example to illustrate the application of ASMs in modeling

industrial systems. An overview of the related work, mainly focusing on other ASM tools

and modeling environments, closes our introductory material in Chapter 3.

Chapter 4 opens the second part of the thesis with an overview of the architecture of

CoreASM and its main components. An in-depth description of the kernel of CoreASM is

then provided in Chapter 5, followed by the specification of currently available CoreASM

plugins, presented in Chapter 6, that extend the functionalities of the CoreASM kernel and

gradually form the comprehensive CoreASM framework.

The concluding part of this thesis begins with Chapter 7 explaining how the specifica-

tion and design of the CoreASM kernel and its plugins are implemented in form of a Java

application and plenty of complementary modules. Chapter 8 examines the application of

CoreASM in high-level design and analysis of distributed systems, and Chapter 9 concludes

the thesis by addressing the significance of the work and laying out the subjects of future

improvements.

10http://www.opensource.org/licenses/afl-3.0.php

http://www.opensource.org/licenses/afl-3.0.php

Chapter 2

Abstract State Machines

Abstract State Machines (ASMs), originally known as Evolving Algebras, were first intro-

duced by Yuri Gurevich [73, 74] as a versatile mathematical method of modeling discrete

dynamic systems with the goal of bridging the gap between computation models and spec-

ification methods. ASMs combine two well-known and fundamental concepts of transi-

tion systems, to model the dynamic aspects of a system, and abstract states, to model the

static aspects at any desired level of abstraction. Egon Börger [25] further developed ASMs

into a systems engineering method that guides the development of software and embedded

hardware-software systems from requirements capture to their implementation.

Today, ASMs are well known for their versatility in computational and mathemati-

cal modeling of architectures, languages, protocols and virtually all kinds of sequential,

parallel and distributed systems with an orientation towards practical applications. The

particular strength of this approach is the flexibility and universality it provides as a

mathematical framework for semantic modeling of functional requirements in terms of ab-

stract machine models and their runs. Widely recognized applications of ASMs include

semantic foundations of industrial system design languages like the ITU-T standard for

SDL [69, 45, 44, 83], the IEEE language VHDL [21, 20] and its successor SystemC [108],

programming languages like JAVA [118, 24], C# [19] and Prolog [14, 15], Web service

description languages [55, 54, 53], communication architectures[70, 71], embedded control

systems [23, 8, 22], et cetera.1

In this chapter we briefly recall the basic notions of ASMs as defined in [25] and we

1See also the ASM website at www.asmcenter.org and the overview in [25].

17

www.asmcenter.org

CHAPTER 2. ABSTRACT STATE MACHINES 18

use an example to illustrate the application of ASMs with CoreASM in modeling industrial

systems.

2.1 Basic ASMs

The original notion of ASMs, or basic ASMs, was defined to formalize simultaneous parallel

actions of a single computing agent. This notion was later generalized to capture the

formalization of multiple agents acting and interacting in an asynchronous manner [25]. In

this section, we focus on basic ASMs. Multi-agent ASMs or Distributed ASMs are explored

in the next section.

2.1.1 Basic Definition

A basic ASM M is a tuple of the form (Σ, I, R, PM) where:

• Σ is a signature; i.e., a finite set of function names f where each function has an arity,

which is the number of arguments that function takes. Nullary functions, those with

arity of zero, are called constants. The constants true, false, and undef (representing

the “undefined” value) are always defined.

• I is a set of initial states for signature Σ. A state A for Σ is a non-empty set X (the

superuniverse of A) together with an interpretation fA for each function name f in Σ

such that:

– if f is an n-ary function name, then fA : Xn 7→ X, and

– if c is a constant in Σ, then cA ∈ X.

Functions can be static or dynamic. Values of dynamic functions can change from

state to state.

• R is a set of rule declarations. In a given state, evaluation of a rule r ∈ R produces

an update set of updates of the form (l, v) where:

– l is a location. A location l in state A is a pair (f, 〈a1, . . . , an〉) where f is an

n-ary function name in Σ and a1, . . . , an are values from superuniverse X (i.e.,

∀i∈{1,...,n}ai ∈ X). The contents of a location l in A is fA(a1, . . . , an).

– v is a value of superuniverse X.

CHAPTER 2. ABSTRACT STATE MACHINES 19

The meaning of an update (l, v) is that the content of location l has to be changed to

the value v.

• PM ∈ R is a distinguished rule of arity zero (no free variables), called the main rule

or the Program of machine M .

The superuniverse X is usually divided into smaller universes modeled by their charac-

teristic functions (unary relations). If D is a universe, then the set of all elements of D is

defined as {d | D(d) = true}.

2.1.2 State Transitions

ASM specifications describe how the state of the specified system evolves in time. A compu-

tation of M , starting with a given initial state S0 ∈ I, results in a finite or infinite sequence

of consecutive state transitions of the form

S0

∆S0−→ S1

∆S1−→ S2

∆S2−→ · · · ,

such that Si+1 is obtained from Si, for i ≥ 0, by firing ∆Si on Si, where ∆Si denotes a

consistent finite set of updates computed by evaluating PM over Si.

An update set is called consistent if it does not have clashing updates that attempt to

assign different values to the same location. The result of firing a consistent update set ∆Si

on Si is a new state Si+1 with the same superuniverse as Si, such that for every location l

of Si we have:

Si+1(l) =

{
v, if (l, v) ∈ ∆Si

Si(l), otherwise.

2.1.3 Transition Rules

The program PM of an ASM M is defined by an ASM transition rule.2 Basic transition

rules are as follows:

1. Skip rule: skip

Does nothing and evaluates into an empty update set.

2This is a pragmatically generalized definition based on the original definition of an ASM program by [25]
which defines an ASM [program] as a set of guarded transition rules.

CHAPTER 2. ABSTRACT STATE MACHINES 20

2. Update rule: f(a1, . . . , an) := t

Updates the value of f(a1, . . . , an) to t. It evaluates into an update set of the form

{(f(a1, . . . , an), tA)} where A is the current state of the machine and tA is the value

of t in A.

3. Block rule: P par Q

Evaluates rules P and Q in parallel and the result is the union of the update sets

computed by P and Q.

4. Conditional rule: if φ then P else Q

If φ is true, this rule executes P , otherwise executes Q.

5. Let rule: let x = t in P

Assigns the value of t to x and executes P . The resulting update set is the update set

produced by P .

6. Forall rule: forall x with φ do P

Executes P in parallel for every x that satisfies φ. The resulting update set is the

union of all the update set produced by parallel execution of P over different values

of x.

7. Choose rule: choose x with φ do P ifnone Q

Non-deterministically (unless otherwise specified) chooses x satisfying φ and executes

P . If no such x exists, it executes Q.

8. Sequence rule: P seq Q

Execute P , if the update set produced by P is consistent, then execute Q in a state

which the updates of P are applied. The resulting update set U (based on UP and

UQ update sets of P and Q) is

U =

{
{(l, v) ∈ UP | l 6∈ locations(UQ)} ∪ UQ, if UP is consistent;

UP , otherwise.

9. Call rule: R(a1, . . . , an)

Execute the previously defined transition rule R with the given parameters. Param-

eters are passed in a call-by-name fashion; i.e., they are passed unevaluated. ASM

CHAPTER 2. ABSTRACT STATE MACHINES 21

transition rules can be defined using the expression

R(x1, . . . , xn) = P

where R is the name of the new rule, P is a transition rule and the free variables of P

are included in x1, . . . , xn.

2.1.4 Interaction with Environment

M interacts with a given operational environment—the part of the external world visible to

M—through actions and events as observable at external interfaces, formally represented by

externally controlled functions. Intuitively, such functions are manipulated by the external

world rather than M itself. Of particular interest are monitored functions. Such functions

change their values dynamically over runs of M , although they cannot be updated internally

by agents of M . A typical example is the abstract representation of global system time. In

a given state S of M , the global time (e.g., as measured by some external clock) is given by

a monitored nullary function now, taking values in a linearly ordered domain Time ⊆ Real.

Values of now increase monotonicly over runs of M .

2.2 Multi-Agent ASMs

Basic ASMs are extended to capture the formalization of multiple agents acting and inter-

acting in an asynchronous manner [25].3

An asynchronous multi-agent ASM (or DASM for Distributed ASM) MD is defined by

a dynamic set Agent of computational agents each executing its ASM. This set may change

dynamically over runs of MD, as required to model a varying number of computational

resources. Agents of MD normally interact with one another, and typically also with the

operational environment of MD, by reading and writing shared locations of a global machine

state.4

A DASM MD performs a computation step whenever one of its agents performs a com-

putation step. In general, one or more agents may participate in the same computation step

3A synchronous version of multi-agent ASMs also exists [25, Sec. 5], in which a set of agents execute their
own programs in parallel, synchronized by an implicit global system clock. Since asynchronous ASMs are
more general, we will not further explore synchronous ASMs in this survey.

4In principle, one may also compose a DASM of a number of agents, each operating on a part of the state
that is disjoint from the view of all the other agents, so that each agent has its own private state.

CHAPTER 2. ABSTRACT STATE MACHINES 22

of MD. A single computation step of an individual agent is called a move. In this model,

moves are atomic. Naturally, conflicting moves must be ordered so that they do not occur

in the same step of MD.

A partially ordered run ρ of MD is given by a triple (Λ, A, σ) satisfying the following

four conditions (adopted from [74, Sec. 6.5]):5

1. Λ is a partially ordered set of moves, where each move has only finitely many prede-

cessors.

2. A is a function on Λ associating agents to moves such that the moves of any single

agent of M are linearly ordered.

3. σ assigns a state of M to each initial segment X of Λ, where σ(X) is the result of

performing all moves in X.

4. Coherence condition: If x is a maximal element in a finite initial segment X of Λ and

Y = X−{x}, then A(x) is an agent in σ(Y) and σ(X) is obtained from σ(Y) by firing

A(x) at σ(Y).

A partially ordered run defines a class of admissible runs of MD rather than a particular

run. In general, it may require more than one (even infinitely many) partially ordered run

to capture all admissible runs of MD. From the coherence condition it follows that all

linearizations of the same finite initial segment of a run of MD have the same final state.6

The implication of the partially-ordered-run semantics is illustrated by means of a simple

but meaningful example.

Example: Door and Window Manager Assume two propositional variables, door

and window, where door = true means that ‘the door is open’ and window = true means

that ‘the window is open’. There are two distinct agents: a door-manager d and a window-

manager w.

5Here we recall our notes from [49].
6Intuitively, a finite initial segment of a partially ordered run ρ is a finite subset of Λ corresponding to a

(finite) prefix of ρ.

CHAPTER 2. ABSTRACT STATE MACHINES 23

Door/Window Managers

DoorManager ≡
if ¬window then door := true // move x

WindowManager ≡
if ¬door then window := true // move y

Initially (in state S0) both the door and the window are closed. Then there are only two

possible runs, and in each run only one of the agents makes a move.

We cannot have x < y because w is disabled in the state Sx obtained from S0 by

performing x. Also, we cannot have y < x because d is disabled in the state Sy obtained

from S0 by performing y. Finally, we cannot have a run where x and y are incomparable,

that is neither x < y nor y < x. By the coherence condition, the final state Sx,y of such a

run would be obtained from either Sx by performing y or from Sy by performing x; either

case is impossible.

2.3 Control State ASMs

In this section we briefly look into control state ASMs, a frequently used class of ASMs that

represents a normal form of synchronous UML activity diagrams. This particular class of

ASMs is expressive enough to model many classical automata such as various extensions

of finite state machines, timed automata, push-down automata, etc. It extends finite state

machines by synchronous parallelism and by the possibility to also manipulate data [25].

A control state ASM is an ASM whose rules are all of the form presented in Figure 2.1.7

Such a control state ASM can be formulated in textual form by a parallel composition of

Finite State Machine (FSM) rules, where each FSM rule is defined as:

FSM(i, if cond then rule, j) ≡
if ctl state = i and cond then

rule

ctl state := j

Thus, the control state ASM of Figure 2.1 can be formulated as a parallel composition

of the following FSM rules:

7See [25, Sec. 2.2.6]

CHAPTER 2. ABSTRACT STATE MACHINES 24

i

rule1

condn

cond1

rulen

j1

jn

.

Figure 2.1: Control State ASMs

FSM(i, if cond1 then rule1, j1)

FSM(i, if cond2 then rule2, j2)

. . .

FSM(i, if condn then rulen, jn)

Since control state ASMs can be presented in graphical form with a precise seman-

tics, they are a good candidate for documenting functional requirements and modeling of

functional aspects of systems at the early stages of design and development when proper

communication of the requirements and the abstract model plays a key role.

2.4 Similar Approaches in Computational Logic

There are similar approaches to formal modeling of systems, the B method (see Section 1.1)

being one of the most popular ones. The idea of modeling states of the system as alge-

braic structures have been practiced earlier in various forms of Algebraic Specifications (see

Section 1.1). However, in the area of computational logic where ASMs are coming from,

one of the closest formal modeling approaches to ASMs with respect to their view towards

systems, runs, and distributed computation seems to be the interpreted systems approach.

Fagin et al. introduced the notion of interpreted systems [46] as a formal semantic frame-

work for reasoning about knowledge and uncertainty in multiagent systems. It is interesting

to observe the similarities between abstract state machines and the multi-agent modeling

framework of interpreted systems, specially in capturing the notions of agents, concurrency,

runs, update actions, and programs. Here, we briefly recall [50] the basic notions and

definitions of the underlying systems modeling framework of interpreted systems.

CHAPTER 2. ABSTRACT STATE MACHINES 25

2.4.1 Runs and Systems

According to [46], a multiagent system can be conceptually divided into two components:

the agents A = {a1, . . . , an} and the environment e, which can be viewed as a special agent.

The global state of the system with n agents is defined to be an (n+1)-tuple (se, s1, . . . , sn),

where se is the state of the environment and si is the local state of agent i. The set of

all global states of the system is defined as G : Le × L1 × . . . × Ln, where Le is the set of

possible states for the environment and Li is the set of all possible local states of agent i.

To model the changes of the system’s global state in time, the notion of run is introduced as

a function from time to global states G, with the assumption that time ranges over natural

numbers. A system can have many possible runs. The initial global state of a system with

a possible run r is r(0). A pair (r,m) consisting of a run r and a time m is referred to as a

point in run r.

A system R over G is defined as a set of runs over G.

2.4.2 Actions, Protocols, and Programs

A round takes place between two points in a run, and a round m in run r is defined to take

place between points r(m− 1) and r(m). Agents and the environment change the global

state by performing actions in rounds. Let ACTi be the set of actions that can be performed

by agent i, and let ACTe be the set of actions that can be performed by the environment.

A joint action is a tuple (ae, a1, . . . , an) of actions performed by the environment and the

set of agents, where ae ∈ ACTe and ai ∈ ACTi for i in 1 . . . n.

Joint actions cause the system to change its global state and the change is modeled

by a global state transformer function T : G 7→ G that is associated to each joint action

(ae, a1, . . . , an). A transition function τ is a mapping that associates a global transformer

with each joint action. It is required that τ(ae, a1, . . . , an)(se, s1, . . . , sn) be defined for each

joint action (ae, a1, . . . , an) and each global state (se, s1, . . . , sn).

Agents perform actions according to some protocol, which is a rule for selecting actions.

A protocol Pi for the agent i is formally defined as Pi : Li 7→ P(ACTi)\{∅}. A protocol Pi is

deterministic if ∀si ∈ Li |Pi(si)| = 1. In a similar fashion, a protocol Pe for the environment

is defined as a function from Le to nonempty subsets of ACTe. A joint protocol P is a tuple

(P1, . . . , Pn) consisting of all the protocols Pi, for each of the agents i = 1, . . . , n. Note that

the environment’s protocol Pe is not included in the joint protocol. The protocol of the

CHAPTER 2. ABSTRACT STATE MACHINES 26

environment is usually supposed to be given and P and Pe can be viewed as the strategies

of opposing players.

A context γ is defined as a tuple (Pe,G0, τ,Ψ), where Pe is a protocol for the environment,

G0 is a nonempty subset of G describing the initial system state, τ is a transition function and

Ψ is an admissibility condition on runs specifying which runs are “acceptable”. Formally,

Ψ is a set of runs; r ∈ Ψ if r satisfies the condition Ψ. In practice, Ψ can be used to shrink

down the system or to model fairness conditions. The combination of a context γ and a

joint protocol P for the agents uniquely determines a set of runs.

Protocols are typically described by means of programs written in some programming

language. A standard program for agent i is a statement of the form

case of

if t1 do a1

if t2 do a2

. . .

end case

where the tj ’s are standard tests for agent i and the aj ’s are actions of agent i (i.e., aj ∈
ACTi).

2.5 The Railroad Crossing Example

This section borrows the Railroad Crossing example of [25, Sec. 5.2.2] and offers a CoreASM

model of the example to illustrate the application of CoreASM (and ASM in general) in

modeling industrial systems.

A system controls a gate at a railroad crossing. There are multiple tracks on which

trains can travel in both directions. There are sensors on the tracks that can detect if a

train is coming or if it is currently crossing. The gate is controlled by two signals open and

close. The purpose of the system is to keep the gate closed if a train is crossing (safety) and

to keep it open otherwise (liveness).

2.5.1 The Abstract Model

We start our model by defining the universe of Track, initially set to include two tracks

track1 and track2. We model the semantics of sensor values by defining a universe of

CHAPTER 2. ABSTRACT STATE MACHINES 27

TrackStatus; since the set of values are limited and known at the beginning, we model this

universe as an enumerated universe. We also define an enumerated universe GateState to

capture two possible states of the gate: opened and closed.

universe Track = {track1, track2}
enum TrackStatus = {empty, coming, crossing}
enum GateState = {opened, closed}

The following function, trackStatus, holds the status of each track. Since there is only one

gate in our system, a nullary function gateState is defined to keep the current state of the

gate:

function trackStatus : Track -> TrackStatus

function gateState : -> GateState

The sensors are arranged such that when a train is detected as coming, it takes at least

dmin seconds for it to arrive at the crossing. The gate takes dclose seconds to be closed and

dopen to get opened. Thus, to keep the gate open as much as possible, if we detect a train

coming we have WaitTime = dmin − dclose seconds to start closing the gate. Hence, there

is an implicit deadline associated to every track t, indicating the maximum time we have

(with regard to track t) in order to safely close the gate.

function deadline : Track -> TIME

derived waitTime = dmin - dclose

The following nullary function gateSignal, controlled by the track control program, signals

the opening or closing of the gate.

enum GateSignal = {open, close}
function gateSignal : -> GateSignal

The Rail Road Crossing ASM consists of two basic ASMs, TrackControl and GateControl,

respectively controlling the tracks (sending signals to the gate controller) and maintaining

the state of the gate (opening or closing the gate in response to gate signals). We assume

that the environment sets the value of the function trackStatus based on the track sensors

data.

The track control program TrackControl is a parallel combination of two main rules:

1) closing the gate if needed; i.e., for all tracks, calculating new deadlines, sending a close

CHAPTER 2. ABSTRACT STATE MACHINES 28

signal if needed, and clearing passed deadlines; 2) opening the gate if it is safe to do so. The

program is defined as follows:8

rule TrackControl = {
forall t in Track do {

SetDeadline(t)

SignalClose(t)

ClearDeadline(t)

}
SignalOpen

}

where we have

rule SetDeadline(x) =

if trackStatus(x) = coming and deadline(x) = infinity then

deadline(x) := now + waitTime

rule SignalClose(x) =

if now >= deadline(x) and now <= deadline(x) + 1000 then

gateSignal := close

rule ClearDeadline(x) =

if trackStatus(x) = empty and deadline(x) < infinity then

deadline(x) := infinity

rule SignalOpen =

if gateSignal = close and safeToOpen then

gateSignal := open

The predicate safeToOpen, used in the SignalOpen rule, can be defined as follows

safeToOpen ≡ ∀t ∈ Track trackStatus = empty ∨ deadline(t) > now + dopen

which is defined in CoreASM as

derived safeToOpen = forall t in Track holds

trackStatus(t) = empty or deadline(t) > (now + dopen)

The gate control program simply responds to gate signals by changing the state of the gate:

8In CoreASM, curly braces {} can be used to define parallel rule blocks.

CHAPTER 2. ABSTRACT STATE MACHINES 29

rule GateControl = {
if gateSignal = open and gateState = closed then gateState := opened

if gateSignal = close and gateState = opened then gateState := closed

}

2.5.2 The Executable Model

In order to have a meaningful execution of the model, we need to define the initial state

of the system and simulate the behavior of the environment. So far we have defined two

parallel ASM agents to model track and gate controllers. In this section we add two more

agents to our model: an Environment agent to model the behavior of the environment and

an Observer agent to observe the statuses of tracks and the gate and to provide a nicely

formatted output throughout the simulation.9 So, the universe of agents will be defined as:

universe Agents = {trackController, gateController, observer, environment}

The Environment

The environment agent simulates trains crossing over the tracks in a non-deterministic

fashion. If a train is detected as coming on a track, we have dmin time before it crosses

the intersection. Every train takes a certain time to pass the crossing; when that time is

reached, the environment sets the track status back to empty. The following rule offers one

possible definition of such an environment:

rule EnvironmentProgram =

choose t in Track do {
if trackStatus(t) = empty then

if random < 0.05 then {
trackStatus(t) := coming

passingTime(t) := now + dmin

}
if trackStatus(t) = coming then

if passingTime(t) < now then {
trackStatus(t) := crossing

passingTime(t) := now + 4000

}

9However, we do not necessarily need to define these two agents in CoreASM. The environment can be
modeled by monitored functions reading input from the user, and the printout can be generated using the
Observer plugin presented in Section 6.4.4.

CHAPTER 2. ABSTRACT STATE MACHINES 30

if trackStatus(t) = crossing then

if passingTime(t) < now then

trackStatus(t) := empty

}

The Observer

The observer agent simply prints out the current state of the system. The following observer

program prints out the current time, the statuses of all tracks, and finally the state of the

gate. To keep the output lines in order, we enclose the print rules in a sequence block.

rule ObserverProgram =

seqblock

print "Time: " + ((now - startTime) / 1000) + " seconds"

forall t in Track do

print "Track " + t + " is " + trackStatus(t)

print "Gate is " + gateState

print ""

endseqblock

The Initial State

In CoreASM, the initial state of the system can be defined in an operational form using an

init rule. The engine starts the execution of specifications by creating an init agent and

assigning the init rule as the program of that agent (see Section 4.2). When the initial state

is set up, the init agent can be de-activated by setting its program to undef or removing it

from the universe of agents.

In our example, we assume that initially the gate is open, all the tracks are empty and

track deadlines are set to positive infinity. The init rule, defined below, sets the initial values

of functions and assigns the programs of the agents.

init InitRule

rule InitRule = {
forall t in Track do {

trackStatus(t) := empty

deadline(t) := infinity

}
gateState:= opened

dmin:= 5000

CHAPTER 2. ABSTRACT STATE MACHINES 31

dmax:= 10000

dopen:= 2000

dclose:= 2000

startTime:= now

program(trackController) := @TrackControl

program(gateController) := @GateControl

program(observer) := @ObserverProgram

program(environment) := @EnvironmentProgram

program(self) := undef

}

The Simulation

Finally, we have everything in place to execute the model in CoreASM and validate the

behavior of the gate controller (see Appendix B.1 for the full specification). The execution

provides a printout of the states of the system. The output shows that the controller

keeps the gate open while there is no train on the tracks and keeps it closed as long as

there is at least one train crossing the intersection. Figure 2.2 shows parts of the output

of one particular run of the system. As a result of the non-deterministic behavior of the

environment, different runs of the model most likely provide different outputs.

It is worth to emphasize that although the ability to execute the model and to observe

its behavior enables us to validate the model by experiment, satisfying results of such ex-

periments by no means guarantee the “correctness” of the model. Section 7.3.2 offers a brief

discussion on this subject.

CHAPTER 2. ABSTRACT STATE MACHINES 32

Time: 0.131 seconds
Track track2 is empty
Track track1 is empty
Gate is opened

...

Time: 4.531 seconds
Track track2 is coming
Track track1 is empty
Gate is opened

...

Time: 7.6 seconds
Track track1 is coming
Track track2 is coming
Gate is opened

Time: 8.027 seconds
Track track1 is coming
Track track2 is coming
Gate is closed

...

Time: 9.601 seconds
Track track1 is coming
Track track2 is crossing
Gate is closed

...

Time: 12.969 seconds
Track track1 is crossing
Track track2 is crossing
Gate is closed

...

Time: 13.814 seconds
Track track1 is crossing
Track track2 is empty
Gate is closed

...

Time: 16.886 seconds
Track track1 is crossing
Track track2 is empty
Gate is closed

Time: 17.197 seconds
Track track2 is empty
Track track1 is empty
Gate is opened

A train is coming on
track 2.

The gate is still kept
open.

The gate is closed
before trains cross

the intersection.

The train on track 2
is crossing.

The gate is kept
closed while there is

a train crossing.

The gate is opened
when it is safe.

Figure 2.2: Output of the Railroad Crossing Example in CoreASM

Chapter 3

Related Work

Machine assistance plays an increasingly important role in making practical systems design

feasible. Specifically, model-based systems engineering demands for abstract executable

specifications as a basis for design exploration and experimental validation through simula-

tion and testing. Thus, it is not surprising that there is a considerable variety of executable

ASM languages that have been developed over the years.

The first generation of tools for running ASM models on real machines goes back to

Jim Huggins’ interpreter written in C [75, 81] and, even further back, to the Prolog-based

interpreter by Angelica Kappel [87]. Other interpreters and compilers followed: the lean EA

compiler [7] from Karlsruhe University, the scheme-interpreter [41] from Oslo University,

and an experimental EA-to-C++ compiler developed at Paderborn University. Besides prac-

tical work on ASM tools, conceptual frameworks for more systematic implementations were

developed. The work on the evolving algebra abstract machine (EAM) [39], an abstract for-

mal definition of a universal ASM for executing ASM models, contributed to a considerably

improved understanding of fundamental aspects of making ASMs executable.

Based on such experience, a second generation of more mature ASM tools and tool

environments was developed: AsmL (ASM Language) [101] and the Xasm (Extensible ASM)

language [4, 5] are both based on compilers, while the ASM Workbench [38], AsmGofer [113],

and Asmeta [60] provide ASM interpreters.

All the above languages build on predefined type concepts rather than the untyped lan-

guage underlying the theoretical model of ASMs. The most prominent of these languages are

Asmeta and AsmL. The Asmeta language, called AsmetaL, implements all the constructs of

33

CHAPTER 3. RELATED WORK 34

basic, structured, and multi-agent ASMs as defined in [25], but it is a fully typed ASM lan-

guage with limited extensibility features. AsmL is a strongly typed language based on the

concepts of ASMs but also incorporates numerous object-oriented features and constructs

for rapid prototyping of component-oriented software, thus departing in that respect from

the theoretical model of ASMs; rather it comes with the richness of a fully fledged pro-

gramming language. Most of these languages do not provide a run-time system supporting

the execution of distributed ASM models1; only Xasm (and Asmeta in a limited form) is

designed for systematic language extensions; however, the Xasm language itself diverts from

the original definition of ASMs and seems closer to a programming language.

The rest of this chapter reviews some of the more common and well-known ASM tools and

languages (sections 3.1 to 3.6) and compares their features and shortcomings (see Table 3.5).

Section 3.7 concludes the chapter with an overview of alternative tools in other state-based

modeling languages.

3.1 The Dynamic Algebra Specification Language

In 1993, inspired by the work of Egon Börger on a dynamic algebra specification of full

Prolog [14, 15], Angelica M. Kappel published a paper on the general concept of implement-

ing dynamic algebras [87]. She defined a concrete language for dynamic algebra specifica-

tions, called DASL, and presented the design of an abstract algebraic target machine, called

ALMA, specially tailored for dynamic algebra computations.

ALMA is a single-sorted abstract machine that provides three kinds of control state-

ments: a simple statement and two conditional statements (if-then and case statements).

An ALMA program is given by a decision tree in which the leaf nodes are either update

or error nodes. An ALMA computation is the execution of a simple statement followed

by a walk through the decision tree. The ALMA abstract machine and a compiler that

translates DASL specifications to ALMA programs are both implemented in Prolog. The

user interface is basically the Prolog environment.

In DASL, the user can explicitly create the initial state using the start rule. Regular

transition rules are defined in terms of conditional statements and they are evaluated in

every step of the simulation. To distinguish between error states and regular termination of

1Only Asmeta and AsmGofer provide some sort of support for the execution of distributed ASMs.

CHAPTER 3. RELATED WORK 35

the machine, the set of regular final states must be explicitly defined in the specification.

DASL is a nice and clean specification language but it implements only a small subset

of basic deterministic ASMs.

3.2 ASM Gofer

The AsmGofer system, designed and developed by Joachim Schmid [113], provides an ASM

interpreter embedded in the functional programming language Gofer, a subset of the Haskell

programming language. This interpreter has been used in a number of applications such as

Java and the Java Virtual Machine [118], the Light Control Case Study [23], and Simulating

UML Statecharts [37].

AsmGofer is in fact a conservative extension of Gofer adding the notions of state and

parallel updates into Gofer. An AsmGofer program, or “script”, is a collection of signatures,

rules, functions and data structures that can appear in any order. Although AsmGofer is

strongly typed, signatures are not mandatory.

Since ASM is a state-based modeling framework, every ASM update has an effect on the

global state. This state-based view makes it challenging to implement an ASM language

embedded in a pure functional programming language like Gofer that does not support side

effects. To support the notions of ‘state’ and ‘update’, AsmGofer modifies the evaluation

machine in Gofer run-time system and utilizes the IO actions in Gofer that are used for

input-output operations [112]. In order to not change the Gofer syntax, ASM features are

represented as expressions.

AsmGofer supports both classes of parallel and distributed ASMs. Support for dis-

tributed ASMs is provided by a special function, called multi, that gets a set of agents

and non-deterministically chooses a subset of those agents in every step and executes their

corresponding rules in parallel. It is important to note that this function never chooses

a subset of agents that produce an inconsistent update set, since that would result in an

invalid ASM run.

AsmGofer also support automatic GUI generation which is quite helpful in debugging

and validation of specifications. Since monitored functions are not implemented, the GUI

cannot be used for getting input from the environment or setting up initial values of func-

tions.

CHAPTER 3. RELATED WORK 36

3.3 XASM

One of the more advanced ASM simulators available is the Xasm (eXtensible ASM) compiler

and toolset developed by Matthias Anlauff [5]. The goal of the Xasm project is to provide

support for using ASMs as a programming language for producing efficient and reusable pro-

grams. As such, Xasm focuses on the generation of efficient executable programs simulating

the run of abstract state machines [4].

The Xasm language supports all the transition rules defined in [74]. In order to simulate

an ASM specification, Xasm source files are translated into C source code by the Xasm-

compiler, which is then linked to the runtime system and optionally the user defined C

functions. Xasm introduces the concept of component (as defined in [121]) to ASMs by

adding modularization constructs to its ASM language. Components in Xasm programs

can be reused either as a sub-machines contributing to the computation steps of the parent

machine, or as computational functions modeled as independent machines with internal

computation steps. Every Xasm component, defined as an ASM, can provide a list of

functions that it requires to access or can potentially update.

The Xasm language supports interaction with external C programs in two ways. Specif-

ically defined external C functions can be used in Xasm specifications; however, the ar-

guments and return values of C functions can only be of a specific C-type that represents

elements of the super-universe in Xasm. Alternatively, Xasm-programs can be embedded in

C-applications. An Xasm specification, if compiled properly, can be included in C program

and called as C function. Newer versions of Xasm [5] support interaction with Java classes

but the support is only limited to invoking Java object constructors.

Xasm also provides support for pattern matching by introducing a pattern matching

operator on strings that matches the left operand (as string data) with the right operand

(as a pattern). The language also supports grammar definitions, which is very useful when

ASM specifications are used to define programming language semantics.

The Xasm compiler comes with a runtime system and a graphical debugger and anima-

tion interface that facilitates debugging and experimental validation of ASM specifications.

The Xasm project is not maintained anymore.

CHAPTER 3. RELATED WORK 37

3.4 The ASM Workbench

The ASM Workbench [35, 38], designed and developed by Giuseppe Del Castillo, is one of

the most comprehensive modeling environments developed for ASMs. Realizing the short-

comings of available ASM tools of the time, such as incompatibility with other ASM tools

and lack of support for formal analysis, Del Castillo started the ASM Workbench project

to develop an open and extensible tool environment for ASMs. It was intended as a basis

for the development of further ASM tools and complementary to other modeling tools [35].

The ASM Workbench is designed to be extensible. The main characteristics of its

architecture are its kernel and a set of exchange formats that allow the kernel to be extended.

The kernel of ASM Workbench is a set of program modules implemented in the functional

language Standard ML [104]. It consists of a collection of data structures representing

syntactic and semantic objects of ASM specifications, and a collection of functions to process

ASM objects [36]. New functionalities can be implemented and added as extensions of

the ASM Workbench either by tight coupling (writing other ML programs that use the

functionalities of the kernel) or by loose coupling (writing other programs in any language

that communicate with the ASM Workbench kernel, as a separate process, according to the

exchange format conventions).

The ASM Workbench environment includes a type-checker, an interpreter, a graphical

user interface for visualization and debugging, and an interface to the symbolic model checker

SMV [88] (for a particular class of ASMs) based on transformation of ASMs into the SMV

language.

The ASM language as defined in [74] focuses on specification of transition rules but

but does not include any language constructs for specifying data structures, functions, and

constraints. ASM Workbench introduces an ASM-based Specification Language (ASM-SL)

that extends the basic language of ASM [74] by providing means to define the structure of

the state, a simple and flexible type system, mechanisms to define interfaces to the external

environment, and support for modularization.

The ASM-SL language is typed, adopting the type system of Standard ML. The ar-

gument for a typed language is clarity of specifications and improved error detection. It

includes a set of predefined types, generic mathematical structures, and a few powerful

constructions to define new types.

CHAPTER 3. RELATED WORK 38

3.5 AsmL and Spec Explorer

On of the most prominent ASM languages is AsmL [101], developed by the Foundations

of Software Engineering group at Microsoft Research. AsmL is a strongly typed language

based on the concepts of ASMs but also incorporates numerous object-oriented features and

constructs for rapid prototyping of component-oriented software, thus departing in that

respect from the theoretical model of ASMs; rather it comes with the richness of a fully

fledged programming language. At the same time, AsmL lacks any built-in support for

dealing with distributed systems.

Being deeply integrated with the software development, documentation, and runtime

environments of Microsoft, its design was shaped by practical needs of dealing with fairly

complex requirements and design specifications for the purpose of software testing; as such,

it is oriented towards the world of code. This has made it less suitable for initial modeling

at the early stages of design and also restricts the freedom of experimentation.

AsmL was first released as a stand-alone compiler that would compile AsmL specifica-

tions into Microsoft Windows executable files. The release also included plugin for Microsoft

Word to support literate programming; i.e., one could include AsmL specifications into a

Microsoft Word document using a special formatting style and then compile the Microsoft

Word document using the AsmL compiler.

AsmL is now maintained as a community project at [102]. The experience of the de-

sign and applications of AsmL later contributed to the design of the Spec# programming

language (an extension of the object oriented language C#) and the Spec Explorer soft-

ware development tool [33, 103] which are both based on the Microsoft .NET framework.

Spec Explorer is a tool for model-based specification and conformance testing of reactive,

object-oriented software systems. Since 2004, AsmL has been integrated into Spec Ex-

plorer as one of the two languages supported by this tool. However, the official language of

Spec Explorer is Spec# which has no resemblance to an ASM language.

3.6 Asmeta

The Asmeta project [60, 67], one of the most feature-rich ASM tool projects currently main-

tained, focuses on defining a metamodel for ASMs, called Abstract State Machine Metamodel

or AsmM for short, based on the Model-Driven Engineering (MDE) [114] guidelines. In fact,

CHAPTER 3. RELATED WORK 39

A
L
M

A
A

sm
G

o
fe

r
X

a
sm

A
S
M

W
o
rk

b
e
n
ch

A
sm

L
A

sm
e
ta

L
a
n
g
u
a
g
e

D
A

S
L

A
sm

G
o
fe

r
X

a
sm

A
S
M

-S
L

A
sm

L
A

sm
et

a
L

A
S
M

S
u
p
p
o
rt

*
su

b
se

t
o
f

b
a
si

c
b
a
si

c,
d
is

t.
,

N
D

b
a
si

c,
N

D
b
a
si

c,
N

D
b
a
si

c,
N

D
b
a
si

c,
d
is

t.
,

N
D

G
U

I
N

o
Y

es
Y

es
Y

es
Y

es
,

th
ro

u
g
h

.N
E

T
Y

es

Im
p
le

m
e
n
ta

ti
o
n

P
ro

lo
g

G
o
fe

r
C

so
u
rc

e
M

L
a
n
d

C
+

+
.N

E
T

fr
a
m

ew
o
rk

J
av

a

E
x
te

n
si

b
il
it
y

N
o

N
o

ex
te

rn
a
l

C
a
n
d

J
av

a
fu

n
ct

io
n
s

lo
o
se

co
u
p
li
n
g

th
ro

u
g
h

p
ro

ce
ss

co
m

-
m

u
n
ic

a
ti

o
n

in
te

ra
ct

io
n

w
it

h
th

e
.N

E
T

fr
a
m

ew
o
rk

ex
te

rn
a
l

J
av

a
fu

n
ct

io
n
s

M
a
in

ta
in

e
d

N
o

Y
es

N
o

N
o

Y
es

Y
es

A
v
a
il
a
b
le

N
o

Y
es

Y
es

N
o

Y
es

Y
es

S
p
e
c
ia

l
F
e
a
tu

re
s

-

a
u
to

m
a
ti

c
a
n
d

u
se

r-
d
efi

n
ed

G
U

I

re
g
u
la

r
ex

p
re

ss
io

n
s,

g
ra

m
m

a
r

d
efi

n
it

io
n
,

LA
T
E
X

su
p
p

o
rt

p
a
tt

er
n

m
a
tc

h
in

g
,

m
o
d
el

ch
ec

k
in

g
th

ro
u
g
h

S
M

V

in
te

g
ra

te
d

in
to

th
e

S
p

ec
E

x
p
lo

re
r

m
o
d
el

in
g

su
it

e

va
ri

o
u
s

to
o
ls

a
ro

u
n
d

a
n

O
M

G
m

et
a
m

o
d
el

o
f

A
S
M

*
ba

si
c:

b
a
si

c
A

S
M

s;
d
is

t.
:

d
is

tr
ib

u
te

d
A

S
M

s;
N

D
:

n
o
n
-d

et
er

m
in

is
m

Table 3.1: Comparing ASM Tools and Languages

CHAPTER 3. RELATED WORK 40

Asmeta is an instantiation of the OMG metamodeling framework [1] for ASMs. The main

goals of the Asmeta project are to develop a unified abstract notation of ASMs independent

of any specific implementation or concrete syntax and to develop a general framework for a

wide interoperability and integration of ASM tools [67].

The Asmeta tool set is a collection of various components and tools around the AsmM

metamodel that abstractly represents concepts and constructs of ASMs as described in [25].

The Asmeta language, called AsmetaL, is a textual notation for AsmM defined in terms of

an EBNF grammar and serves as a fully typed language implementing all the constructs

of basic, structured, and multi-agent ASMs as defined in [25]. AsmetaL is enriched by a

standard library which is a collection of predefined ASM domains (such as Boolean, Integer,

String, etc.) and functions and operations defined on those domains. A text-to-model

compiler is also provided to parse and translate specifications written in AsmetaL language

into AsmM instances (AsmM models) which can be executed by the AsmetaS simulator,

implemented in Java. A graphical front-end and IDE for AsmetaL, called Asmee, is also

provided in form of an Eclipse2 plugin. The ASM Tests Generation Tool of Asmeta helps

with creating test cases for AsmM models. Finally, a graphical notation is also provided as

an alternative concrete syntax for AsmM.3

Since Asmeta is a metamodel-based framework, various tools and applications can be

developed utilizing the already implemented features. AsmetaL is not an extensible language

but external Java functions can be used to model static ASM functions.

3.7 Alternative Tools

In the first chapter of this thesis, we addressed alternative approaches towards modeling of

computational systems. Abstract state machines, among many others, fall into the category

of state-based formal methods that view the states of a system in terms of mathematical

structures. In this category, one can point to methods such as Alloy, B, CASL, and the Z

notation as four of the most popular approaches that share many similar concepts such as

offering abstract notations, supporting declarative descriptions of system behavior in terms

of constraints, and relying on tool support for analysis of specifications.

2http://www.eclipse.org
3As of writing this thesis, the Asmeta graphical editor is still under development.

http://www.eclipse.org

CHAPTER 3. RELATED WORK 41

The Common Algebraic Specification Language, or CASL, is a general purpose specifica-

tion language based on first-order logic with induction. Different extensions of the language

have been designed for specification and development of various kinds of systems such as

reactive or concurrent [10]. The language is supported by a number of tools for checking

the correctness of specifications, proving certain properties of models, and managing the

formal software development process. Currently, The Heterogeneous Tool Set,4 or Hets for

short, seem to be the mainstream central toolset for CASL. It’s a free software, with a li-

cense similar to the GNU General Public License [61], offering parsing, analysis, and prover

integration for CASL and its extensions.

The Z notation [116] is a formal specification language designed with proofs in mind;

it is based on axiomatic set theory, lambda calculus, and first-order predicate logic. There

are quite a number of tools available for Z, most of them focused on theorem proving

such as ProofPower5, a suite of tools supporting specification and proof in the Z notation,

Z/Eves [34], a front-end for the Eves theorem prover, and HOL-Z,6 a proof environment for

Z specifications based on the generic theorem prover Isabelle/HOL7. A free and open source

animator for Z specifications, called Jaza,8 is also available for evaluation, testing and (for

some specifications) also execution of Z specifications.

Inspired by Z, the Alloy specification language [84] is designed as a light-weight formal

specification language with the goal of providing fully automatic analysis of software specifi-

cations. However, unlike Z, Alloy’s data structures are strictly first order. Alloy comes with

AlloyAnalyzer, a model-checker that checks certain properties of specifications by explor-

ing the states of the system and looking for execution instances that satisfy the properties

(simulation) or by finding counterexamples that violate them (checking).

Among these approaches, the B method [2] has a more operational flavor and is the most

similar approach to ASMs. It is essentially an abstract machine notation with a well-defined

notion of refinement that facilitates transformation of abstract models into implementation.

B comes with a rich set of both commercial and open source tools. Commercial tools such

4http://www.dfki.de/sks/hets
5Registered trademark of Lemma 1 Ltd., http://www.lemma-one.com/ProofPower
6http://www.brucker.ch/projects/hol-z
7http://www.cl.cam.ac.uk/research/hvg/Isabelle
8http://www.cs.waikato.ac.nz/~marku/jaza/

http://www.dfki.de/sks/hets
http://www.lemma-one.com/ProofPower
http://www.brucker.ch/projects/hol-z
http://www.cl.cam.ac.uk/research/hvg/Isabelle
http://www.cs.waikato.ac.nz/~marku/jaza/

CHAPTER 3. RELATED WORK 42

as Atelier-B9 and the B-Toolkit10 are available providing syntax analysis, theorem proving,

and automatic refinement of B specifications down to implementation. A single-user free

version of Atelier-B, called B4Free, is also available for the academic environment. There

are also model checkers available for B; for example, ProB11 offers fully automatic animation

of many B specifications and can be used to systematically check a specification for errors.

9http://www.atelierb.eu
10http://www.b-core.com/btoolkit.html
11http://users.ecs.soton.ac.uk/mal/systems/prob.html

http://www.atelierb.eu
http://www.b-core.com/btoolkit.html
http://users.ecs.soton.ac.uk/mal/systems/prob.html

Part II

Design and Specification of

CoreASM

43

Chapter 4

CoreASM: Architectural Overview

The CoreASM language and supporting tool architecture focus on early phases of the software

design process. In particular, the goal is to encourage rapid prototyping with ASMs, starting

with mathematically-oriented, abstract and untyped models and gradually refining them

down to more concrete versions—a powerful technique for specification with refinement that

has been exploited in [25] and [18]. In this process, we aim at maintaining executability

of even fairly abstract models. Another important characteristic that differentiates our

endeavor from previous experiences is the emphasis that we are placing on extensibility of

the language. Historical developments have shown how the original, basic definition of ASMs

from the Lipari Guide [74] has been extended many times by adding new rule forms (e.g.,

choose) or syntactic sugar (e.g., case). At the same time, many significant specifications

need to introduce special backgrounds1, often with non-standard operations. We want to

preserve in our language the freedom of experimentation that has proven so fruitful in the

development of ASM concepts, and, to this end, we have designed our architecture around

the concept of plugins that allows to customize the language to specific needs.

The architecture of the CoreASM engine is partitioned along two dimensions (see Fig-

ure 4.1).2 The first one identifies the main components of the CoreASM engine and their

relationships: a parser, an interpreter, a scheduler, and an abstract storage (Figure 4.2).

We will discuss these components in more detail in Section 4.1. The second dimension,

discussed in Section 4.3, distinguishes between what is in the kernel of the system—thus

1We call background a collection of related domains and relations packaged together as one logical unit.
2This chapter builds on and significantly extends what we have previously published in [48, Section 2].

44

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 45

Parser SchedulerAbstract StorageInterpreter

Kernel

Sets

. . .

For-all

Complex Numbers

. . .

Probabilistic Choose

All-first

Round-robin

Priority Based

...

...
St

an
da

rd
 li

br
ar

y
C

us
to

m
 e

xt
en

si
on

s

Rules

Backgrounds

Policies

Figure 4.1: Layers and Modules of the CoreASM Engine

implicitly defining the extreme bare bones of the model—and what is instead provided by

extension plugins.

These two dimensions correspond to what in the ASM literature have been called modu-

lar decomposition and conservative refinement respectively [18].3 In particular, our plugins

progressively extend (potentially in a conservative way) the capabilities of the language ac-

cepted by the CoreASM engine, in the same spirit in which successive layers of the Java [118]

and C# [19] languages have been used to structure the language definition into manageable

parts.

In this chapter we provide an overview of the architecture of the CoreASM engine and

present its components. We also explore the execution lifecycle of the engine and its control

state model, and discuss the micro-kernel approach to the design of the engine and its

extensibility mechanisms.

4.1 CoreASM Components

The CoreASM engine consists of four components: a parser, an interpreter, a scheduler, and

an abstract storage (Figure 4.2). The interpreter, the scheduler, and the abstract storage

3While CoreASM plugins are expected to extend the engine mostly through a conservative refinement, the
CoreASM architecture does not restrict the plugins to such a refinement.

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 46

 Applications / Drivers

Testing
Environment

Graphical UI
Verification

Environment

Control API

Abstract
Storage Interpreter

Scheduler

Parser

CoreASM Engine

Figure 4.2: Overall Architecture of CoreASM

work together to simulate an ASM run. The engine interacts with the environment through

a single interface, called the Control API, which provides various operations such as loading

a CoreASM specification, starting an ASM run, or performing a single step.

The parser reads a CoreASM specification and generates annotated abstract syntax trees

for rules (programs) and definitions of the specification. Each node in these trees may have a

reference to the plugin that provides the corresponding syntax. For example, in Figure 4.3,

there are nodes that belong to the backgrounds of sets and Booleans; this information will

be used by the interpreter and the abstract storage to perform operations on these nodes

with respect to the background each node comes from.

The interpreter, executes programs and rules, possibly calling upon background plugins

to perform expression evaluation, and upon rules plugins to interpret certain rule forms.

It obtains an annotated parse tree from the parser and generates a multiset of update

instructions, each of which represents either an update, or an arbitrary instruction which

will be processed at a later stage by corresponding plugins to generate actual updates (as

will be described in more detail on page 59)4. The interpreter interacts with the abstract

storage to retrieve data from the current state and by executing statements it gradually

4Where no confusion can arise, in the rest of this thesis we use the generic term “updates” to refer both
to actual updates and to update instructions.

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 47

Figure 4.3: Sample Annotated Parse Tree

creates the update set leading to the next state.

The abstract storage manages the data model for the abstract state; in particular, it

maintains a representation of the current state of the machine that is being simulated.

The state is modeled as a map from locations to opaque elements of a universe Element.

The abstract storage also provides interfaces to retrieve values from a given location in

the current state and to apply updates. To evaluate a program, the interpreter interacts

with the abstract storage in order to obtain values from the current state and generates

updates for the next state. In addition, abstract storage also provides auxiliary information

about the locations of the current state, such as the ranges and domains of functions or the

background to which a particular function or value belongs to.

Finally, the scheduler orchestrates every computation step of an ASM run. In a basic

ASM, the scheduler merely arranges the execution of a step: it receives a step command from

the Control API, invokes the interpreter, and instructs the abstract storage to aggregate

the update instructions and fire (apply to the state) the resulting update set (if consistent)

when the interpreter finishes the evaluation of the program. It then notifies the environment

through the Control API of the results of the step.

For distributed ASMs [25], the scheduler also organizes the execution of agents in each

computation step. At the beginning of each DASM computation step, the scheduler chooses

a subset of agents which will contribute to the next computation step of the machine.

The scheduler directly interacts with the abstract storage to retrieve the current set of

agents, to assign the current executing agent, and to collect the update set generated by

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 48

the interpretation of all the agents’ programs. Updates are then fired and the environment

is notified as for the previous case.

4.2 Engine Lifecycle

The process of executing a CoreASM specification in the CoreASM engine consists of the

following steps:

1. Initializing the engine (Figure 4.4)

(a) Initializing the kernel

(b) Loading the plugins library catalogue

(c) Loading and activating core plugins

2. Loading a CoreASM specification (Figure 4.5)

(a) Parsing the specification header

(b) Loading required plugins as declared in the specification

(c) Parsing the specification body

(d) Initializing the abstract storage

(e) Setting up the initial state5

3. Execution of the specification

(a) Execute a single step

(b) If termination condition is not met, repeat from 3a.

The execution process of a single step in the CoreASM engine is as follows (refer also to

Figures 4.6 to 4.9 in Section 4.2): The Control API sends a step command to the scheduler.

(i) The scheduler gets the whole set of agents from the abstract storage. (ii) It selects a

subset of these agents to participate in the next computation step. (iii) One by one, the

scheduler selects and removes agents from this set and assigns them to the special variable

self in the abstract storage.6 (iv) The scheduler then calls the interpreter to run the program

of the current agent (retrieved by accessing program(self) in the current state). (v) The

5This ensures that there is at least one agent in the state, the program of that agent being the rule marked
with init and that agent will contribute to the first step of the simulation.

6This is done implicitly by assigning the agent as the value of executingAgent. See Section 4.2.3.

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 49

interpreter evaluates the program.7 (vi) When the evaluation of the program is complete,

the interpreter notifies the scheduler. (vii) The scheduler gathers the computed update set

and repeats from step (iii) until there is no agent left in the set. When all the agents are

executed, the scheduler calls the abstract storage to apply the accumulated updates to the

state. (viii) If the update set is inconsistent, the abstract storage notifies the scheduler and

the notification may lead to selection of a different subset of agents to be executed.8 If the

update set is applied successfully, the Control API is notified of the successful step.

At the end of the execution of each step, the resulting state is optionally made available

by the abstract storage module for inspection through the Control API. The termination

condition can be set through the user interface of the CoreASM engine, choosing between a

number of possibilities (e.g., a given number of steps are executed; no updates are generated;

the state does not change after a step; an interrupt signal is sent through the user interface).

In the following sections, we present a high-level but precise specification of the execution

process which was presented informally at the beginning of this section. The structure of

the specification is that of a control state ASM [25, Sec. 2.2.6]9, as shown in Figures 4.4

to 4.9. The current state of such ASM is given by the variable engineMode that controls

the execution of rules at any step. The ASM rules corresponding to the control state ASM

are also presented.

4.2.1 Engine Initialization

The CoreASM engine starts its execution in the Idle state (Figure 4.4). In this state, the

engine simply waits for a control command, such as init or step, from the environment which

could be an interactive GUI or a debugger, to start the corresponding task.

Receiving an init command (Figure 4.4) will change the state of the engine to Initializing

Kernel in which the engine initializes its kernel, loads its plugin catalog (the set of all the

plugins available to the engine), and finally loads the core plugins. The following rules in

Control API abstractly define these tasks. We refer the reader to Section 5.5 for more details

on loading plugins.

7This may include a series of interactions between the interpreter and the abstract storage to get val-
ues from the current state, which in turn may require interpreting other code fragments, e.g., for derived
functions.

8The engine can also report (e.g. in a log file) the set of agents whose updates produced an inconsistent
update set.

9In fact we are using a variant of control state ASMs; see Section 5.5.5 for more details.

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 50

Idle InitKernelnewCommand = init

Loading
Catalog

LoadCatalog
Loading

Core Plugins
LoadCorePlugins

CONTROL API

Initializing
Kernel

Figure 4.4: Control State ASM of Initializing CoreASM Engine

Control API

InitKernel ≡
pluginCatalog := {}
loadedPlugins := {}
grammarRules := {}
specification := undef

isStateInitialized = false

LoadCatalog ≡
forall pName in availablePlugins do

let p = createPlugin(pName) in

add p to pluginCatalog

LoadCorePlugins ≡
forall p in corePlugins do

LoadPlugin(p)

In order to keep the model consistent, some of the functionalities of the CoreASM kernel

can be encapsulated in special core plugins. For example, in Section 5.3 we will see how

plugins can contribute to the aggregation of updates after every computation step. However,

there is also a default aggregation behavior that must be provided by the kernel itself. By

encapsulating that default behavior in a special core plugin (Kernel plugin), we are able to

reduce the complexity of the aggregation process and specify it in a simple and concise form.

So far, the set corePlugins consists of only one plugin; i.e. corePlugins = {kernelPlugin}.

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 51

Idle

Loading
Plugins

LoadSpecPlugins

CONTROL API

Parsing Header ParseHeader

PARSER

Parsing Spec ParseSpecification

Initializing
State

InitAbstractStorage

ABSTRACT STORAGE SCHEDULER

Preparing
Initial State

PrepareInitialState

newCommand ∈
{load, parse, parseHeader}

newCommand =
parseHeader

ClearLoadedData

yes

newCcommand = parse
yes

no

no

Figure 4.5: Control State ASM of Loading a CoreASM Specification

4.2.2 Loading Specification

Receiving a load command causes the engine to load a new specification (Figure 4.5). The

engine first clears previously loaded data, reads the specification file and then parses the

specification header to get the list of specific plugins required to be loaded.

Control API

ClearLoadedData ≡
if specHasBeenLoaded then

seq

loadedPlugins := {}
grammarRules := {}
specification := getSpecification(newCommand)

next

LoadCorePlugins

where

specHasBeenLoaded ≡ |loadedPlugins| > |corePlugins|

Parser

ParseHeader ≡
specPlugins := requestedPlugins(specification)

Loading the required plugins is done in two steps. First, all the package plugins (plugins

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 52

that are basically a set of other plugins) are expanded and their enclosed plugins are added

to the list of required plugins. In the next step, plugins are loaded one by one according to

their loading priority.

Control API

LoadSpecPlugins ≡
seq

// 1. expanding package plugins

forall p in specPlugins do

if isPackagePlugin(p) then

forall p′ in enclosedPlugins(p) do

add p′ to specPlugins

next

// 2. loading plugins with the maximum load priority first

while |specPlugins\loadedPlugins| > 0 do

let toLoad = specPlugins\loadedPlugins in

choose p in toLoad with maxPriority(p, toLoad) do

if requiredPlugins(p) ⊂ specPlugins then

LoadPlugin(p)

else

Error(‘Cannot load plugin.’)

After all the required plugins are loaded, the specification is parsed using the grammar

rules provided by the plugins. The root node of the resulting parse tree is kept for future

references.

Parser

ParseSpecification ≡
rootNode(specification)← Parse(specification, grammarRules)

To prepare the engine for the first simulation step, Abstract Storage is initialized taking

into account all plugins contributions, such as backgrounds, universes, functions, and macro

rules. A universe of Agents and a function program that assigns programs to agents are also

created in this step. See page 92 for the definition of LoadVocabularyPlugins.

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 53

Abstract Storage

InitAbstractStorage ≡
let newState = new(State) in

state := newState

InitializeState(newState)

LoadVocabularyPlugins(newState)

InitializeState(state) ≡
let u = new(UniverseElement) in

stateUniverse(state, “Agents”) := u

let f = new(FunctionElement) in

stateFunction(state, “program”) := f

executingAgent := undef // holds the value of ‘self’ in the simulated machine

stepCount := 0

Finally, an initial state is created with at least one agent that, in the first step of the

simulation, will run the init rule as its main program. In addition, based on the set of

plugins used by the specification, a scheduling policy will also be chosen by the scheduler.10

Scheduler

PrepareInitialState ≡
LoadSchedulingPolicy

let a = new(Element) in

initAgent := a

SetValue((“Agents”, 〈a〉), truee)

SetValue((“program”, 〈a〉), initRule)

Alternatively, an external application may ask the engine to only parse the specification

(and not loading it). This is useful when an application needs to use only the parsing

functionality of the engine, for example to work on a parse-tree view of a specification.

In this case, the last two steps of initializing state and preparing the initial state will be

skipped. Also, an application can query the list of plugins required by a given specification

by sending a parseHeader command. In this case, the engine does not parse the specification

and stops after loading the required plugins.

10We refer the reader to Appendix A.3 for more details.

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 54

Idle

NotifyFailure

newCommand = step

Step
Succeeded

NotifySuccess

CONTROL API

Step
Failed

Scheduler

Starting Step

Figure 4.6: Control State ASM of a step command: Control API Module

4.2.3 Execution of Specification

A step command triggers the start of a computation step; this is performed by changing the

control state to Starting Step which then transfers the control flow to the scheduler.

The StartStep rule in the scheduler initializes updateInstructions (the multiset of accu-

mulated update instructions for the current step) and selectedAgentsSet (the set of agents

selected to perform computation in the current step) and assigns the current set of agents in

the simulated machine to agentSet by querying the abstract storage module for the current

value of Agents and only picking those agents whose program is not undefined. We model

the query process through the abstract function getValue(l) which takes a location l and

retrieves the value of the location from the simulated state. We use the notation “term” to

denote the quoted variable or literal term term in the simulated machine. Based on the

retrieved set of agents, a new schedule is then created by CreateSchedule. The control state

is then changed to Selecting Agents.

Scheduler

StartStep ≡
updateInstructions := {||}
selectedAgentsSet := {}
if stepCount < 1 then

agentSet := {initAgent}
else

agentSet := {a|a ∈ getValue((“Agents”, 〈〉)) ∧ getValue((“program”, 〈a〉)) 6= undefe}

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 55

Abstract Storage

|agentSet| ≥ 1

Choosing
Agents

Control API

Step
Succeeded

SelectAgents

Abstract Storage

Initializing
SELF

AggregationChooseAgent

Choosing
Next Agent

AccumulateUpdates

chosenAgent = undef

Interpreter

Program
Execution

Initiating
Execution

InitiateExecution

Control API

Step
Failed

Update
Failed

HandleFailedUpdate morePossibleSets

StartStepStarting Step
Selecting
Agents

yes

no

yes

no

no

yes

SCHEDULER

CreateSchedule

isSingleAgent
Inconsistent

yesno

Figure 4.7: Control State ASM of a step command : Scheduler

CreateSchedule ≡
if schedulingPolicy 6= undef then

let R = newScheduleRule(schedulingPolicy) in

schedule← R(schedulingGroup, agentSet)

In the Selecting Agents state, if no agent is available to perform computation, the step

is considered complete; otherwise, the SelectAgents rule chooses a set of agents to execute

in the current step. If there is no scheduling policy provided by any of the plugins, a non-

deterministic subset of the agents is chosen; otherwise, the selected agents will be determined

by the current scheduling policy. The ChooseAgent rule chooses an agent from this set and

changes the state to Initializing SELF which leads to the execution of the SetChosenAgent

rule in the abstract storage module. After the execution of the agent, the computed updates

are accumulated by AccumulateUpdates rule in the Choosing Next Agent state, and control

state is changed back to Choosing Agent until all selected agents have been executed.

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 56

Control API

Scheduler

Scheduler

Initializing
SELF

Initiating
Execution

Aggregation

Step
Succeeded

consistent(updateSet)

Update
Failed

SetChosenAgent GetChosenProgram

AggregateUpdates

FireUpdateSet

True

False

ABSTRACT STORAGE

Figure 4.8: Control State ASM of a step command : Abstract Storage

Scheduler

SelectAgents ≡
if schedulingPolicy = undef then

choose s with s ⊆ agentSet ∧ |s| ≥ 1 do

selectedAgentsSet := s

else

selectedAgentsSet := head(schedule)

schedule := tail(schedule)

ChooseAgent ≡
choose a in selectedAgentsSet do

remove a from selectedAgentsSet

chosenAgent := a

ifnone

chosenAgent := undef

AccumulateUpdates ≡
add updates(root(chosenProgram)) to updateInstructions

Two rules in the abstract storage module take care of setting the chosen agent and of

retrieving the program associated with the chosen agent (by accessing program(self) in the

simulated state). Control then moves back to the scheduler at Initiating Execution.

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 57

Scheduler

parent(pos) = undef Program

Execution
Choosing

Next Agent ExecuteTree True

False

INTERPRETER

Figure 4.9: Control State ASM of a step command : Interpreter

Abstract Storage

SetChosenAgent ≡
executingAgent := chosenAgent

GetChosenProgram ≡
chosenProgram := getValue((“program”, 〈executingAgent〉))

The execution of the program of the chosen agent is initiated in the Initiating Exe-

cution state in the scheduler and then starts in the Program Execution state in the in-

terpreter. During the execution, computed update instructions are progressively added to

updateInstructions, and when all selected agents have performed their computation, control

moves to Aggregation state in the abstract storage, where the final update set is calculated

and then applied to the current state.

Extending the basic idea presented in [118], we interpret a program by associating values,

updates and locations to nodes in the parse tree of the program. Before actually starting the

interpreter, previously computed values are removed by the InitiateExecution rule, and the

current position in the tree (denoted by the nullary function pos) is initialized to the root

node of the tree that represents the current program (that is, the program of the current

agent, as established above).

Scheduler

InitiateExecution ≡
let p = root(chosenProgram) in

ClearTree(p)

pos := p

The specification of the interpreter is explored in detail in Section 5.2. We do not include

here the full specification for the interpreter; we show instead its most interesting feature,

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 58

that is the way it interacts with rule and background plugins to delegate interpretation of

the associated extensions. To do this, we slightly extend the ASM framework to include

ASM rules (programs) as elements of the state; i.e. we assume that ASM rules are elements

of the domain Rule and that they can be treated as terms and so can be assigned as values

of functions.

As already discussed earlier, nodes of the parse tree corresponding to grammar rules

provided by a plugin are annotated with the plugin’s identifier. The annotation process is

done during parsing, but here we abstract from the details of how it is implemented, and

use instead an oracle function plugin(node) for this purpose. While interpreting the parse

tree (see ExecuteTree below), if a node is found to refer to a plugin, rules provided by that

plugin are obtained through the pluginRule function and executed; otherwise, the kernel

interpreter rules (see Section 5.2) are used. Results of the interpretation of node pos are

stored alongside the node, and accessed by three functions: value(pos) returns the computed

value for an expression node, updates(pos) returns the set of updates generated by a rule

node, and loc(pos) returns the location denoted by the node (which is used as lhs-value for

assignments). Section 5.2.1 presents a more precise definition of these functions.

Interpreter

ExecuteTree ≡
if ¬evaluated(pos) then

if plugin(pos) 6= undef then

let R = pluginRule(plugin(pos)) in

R

else

KernelInterpreter

else

if parent(pos) 6= undef then

pos := parent(pos)

After executing the programs of all the selected agents, all the update instructions will

have been accumulated in updateInstructions. Control will move from Choosing Agent in

the scheduler to Aggregation in the abstract storage module. In the Aggregation state, the

abstract storage aggregates update instructions to compute updates on the locations of the

state (see Section 5.3.2 for details), checks the consistency of the computed updates (possibly

interacting with the relevant background plugins to evaluate equality), and either applies

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 59

the updates to the current state through FireUpdateSet (thus obtaining the next state), or

provides an indication of failure by changing the state to Update Failed.

Abstract Storage

AggregateUpdates ≡
updateSet ← Aggregate(updateInstructions)

FireUpdateSet ≡
forall (l, v) ∈ updateSet do

SetValue(l, v)

In the earlier versions of CoreASM [47], if an inconsistent set of updates would be gener-

ated in a step, the HandleFailedUpdate rule in the scheduler module would prepare a different

subset of agents for execution, and the step would be re-initiated. As a result, if a single

agent would produce inconsistent updates, instead of reporting the inconsistency as an er-

ror, that agent would be removed from the set of computing agents. We later improved

the control flow so that an update fails if the inconsistent set of updates are produced by

a single agent. Otherwise, if the inconsistency is between two updates from two different

agents, other combinations of agents are tried and the process is iterated until either a

consistent set of updates is generated, in which case the computation proceeds to the Step

Succeeded state of the Control API, or all possible combinations have been exhausted, in

which case controls moves to the Step Failed state. It should be noted that the selection

will also consider subsets containing a single agent, so the process fails only when no agent

can successfully perform a step.

Depending on the outcome of the previous stage, either of the rules NotifySuccess or

NotifyFailure of the Control API notify the environment of the success or failure of the step,

and return to the Idle state awaiting further commands from the environment (e.g., another

step command to continue the computation).

Control API

NotifySuccess ≡
stepCount := stepCount + 1

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 60

Abstract Storage

|agentSet| ≥ 1
Running
Agents

Control API

Step
Succeeded

SelectAgents

Aggregation

Control API

Step
Failed

Update
Failed HandleFailedUpdate morePossibleSets

Starting Step
Selecting
Agents

yes

no

noyes

SCHEDULER

CreateSchedule

isSingleAgent
Inconsistent

yes
no

Run Agent Programs

StartStep

Figure 4.10: Revised Control State ASM of a step command: Concurrent Scheduler

4.2.4 Concurrently Running Agents

We can abstract away from the details of interleaved execution of selected agents in every

step of the simulation and model the process in a parallel form. This abstraction is beneficial

as it removes the unnecessary sequential order of the execution of agents, hence avoiding

over-specification of the engine, and it allows for a more efficient implementation of the

engine by a) removing the explicit control flow loop around the interpretation of single

parse tree nodes (see Figure 4.9) and b) enabling concurrent execution of agents on multi-

processor machines.

In order to run agent programs in parallel, every function and rule related to the in-

terpretation of the programs should be parameterized by the agents accessing them. As a

result, the control state diagram of the scheduler will be reduced to that of Figure 4.10.

The RunAgentPrograms rule in the diagram will directly use a parameterized version of the

ExecuteTree rule, thereby eliminating the control state diagram of the interpreter.

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 61

Scheduler

RunAgentPrograms ≡
forall a ∈ selectedAgentsSet do

let p = getValue((“program”, 〈a〉)) in

seq

pos(a) := root(p)

ClearTree(p)

seq

while ¬isEvaluated(root(p)) do

ExecuteTree(a)

next

add updates(root(p)) to updateInstructions

4.3 CoreASM Plugins

In keeping with the micro-kernel spirit of CoreASM, most of the functionality of the engine is

implemented through plugins to a minimal kernel. In principle, there are three basic dimen-

sions being considered for extending and altering CoreASM by means of plugins, respectively

related to: (i) data structures, (ii) control structures, and (iii) the execution model.

i) The possibility of conveniently extending data structures as needed is extensively

discussed in the theoretical ASM literature, e.g. in [13, 12], where the concept of back-

ground refers to an implicitly given part of an abstract machine state, assuming that

it provides whatever standard means are normally supposed to be available in a given

application context [13]. Plugins extending the data structures of the engine provide

all that is needed to define and work with new backgrounds, namely (a) an extension

to the parser defining the concrete syntax (operators, literals, static functions, etc.)

needed for working with elements of the background; (b) an extension to the abstract

storage providing encoding and decoding functions for representing elements of the

background for storage purposes, and (c) an extension to the interpreter providing the

semantics for all the operations defined in the background. The Set plugin, presented

in Section 6.3.2, is an example of a background plugin (see Figure 4.1).

ii) Plugins can extend the control structures of CoreASM with respect to both new syntac-

tic constructs that are semantically meaningful and those that only provide syntactic

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 62

sugar (i.e., the semantics of which could also be expressed by means of in-language

transformations). These plugins provide specific rule forms, with the understanding

that the execution of a rule always results in a (possibly empty) set of updates. Thus,

they include (a) an extension to the parser defining the concrete syntax of the rule

form; (b) an extension to the interpreter defining the semantics of the rule form.

iii) Finally, the need for altering or extending the execution model is justified by pragmatic

considerations. The execution model refers to dynamic features of CoreASM, including

scheduling policies, exception handling, and instrumentation of program execution for

analytical purposes. Plugins can alter the execution model of the engine either by

providing new scheduling policies to the scheduler, used to determine at each step the

next set of agents to execute, or by extending the control sate ASM of the engine. See

Section 5.5.5 for more details.

In CoreASM, the kernel (see Figure 4.1) only contains the bare essentials, that is, all that

is needed to execute only the most basic ASM. As the state of an ASM machine is defined

by functions and universes, the two domains of functions and universes are included in the

kernel. Universes are represented through their characteristic functions, hence Booleans are

also included in the kernel. As an ASM program is defined by a finite number of rules, the

domain of rules is also included in the kernel. It should be noted that the kernel includes

the above mentioned domains, but not all of the expected corresponding backgrounds. For

example, while the domain of Booleans (that is, true and false) is in the kernel, the Boolean

algebra (∧, ∨, ¬, etc.) is not, and is instead provided through a background plugin. In the

same vein, while universes are represented in the kernel through set characteristic functions,

the background of finite sets is implemented in a plugin, which provides expression syntax

for defining them (see the example in Figure 4.3), as well as an implicit representation for

storing sets in the abstract state, and implementations of the various set theoretic operations

(e.g., ∈) that work on such implicit representation.

The kernel includes only two types of rules: assignment and import. This particular

choice is motivated by the fact that without updates established by assignments there would

be no way of specifying how the state should evolve, and that import has a special role

in introducing new elements to the state. All other rule forms (e.g., if, choose, forall), as

well as sub-machine calls and macros, are implemented as plugins in a standard library.

CHAPTER 4. COREASM: ARCHITECTURAL OVERVIEW 63

Finally, there is a single scheduling policy implemented in the kernel, namely the pseudo-

random selection of an arbitrary set of agents at a time, which is sufficient for multi-agent

ASMs where no assumptions are made on the scheduling policy.

As already mentioned, the CoreASM engine is accompanied by a standard library of

plugins including the most common backgrounds and rule forms (i.e., those defined in [25]),

an extension library including a small number of specialized backgrounds and rules, and by a

set of specifications for writing new plugins that can easily be integrated in the environment.

Extension plugins must be explicitly imported into an ASM specification by an explicit use

directive.

The plugin framework is further discussed in Section 5.5.

Chapter 5

CoreASM: The Kernel

In this chapter, we look into the details of the CoreASM kernel and its four components.

We formally define the interfaces of these components in form of functions and operations

(ASM rules). In case of the Abstract Storage, we present the initial structure of simulated

states in CoreASM and formally define the elements of which it consists of. We then provide

a detailed specification of the Interpreter, building on the ExecuteTree rule we presented in

Section 4.2. In Section 5.3, we look into the concepts of rules and updates in CoreASM and

finally conclude this chapter with an overview of the CoreASM plugin framework.

5.1 The Abstract Storage

Abstract Storage maintains a representation of the current state of the simulated machine

in CoreASM. In order to distinguish between the values in the simulated state and the values

in our ASM model of the engine, we denote the values of the simulated state as elements

modeled by the domain Element. There is a special element in the state that represents

the undefined value or undef. Henceforth, this element is denoted by undefe .

Elements can belong to different backgrounds, such as Set, Number, Map, and so on.

The background of every element is defined by the following function whose default value

is “Element” for all elements that do not belong to a particular background:

bkg : Element 7→ Name

The kernel also defines a notion of equality on elements which can be extended by plugins

providing special backgrounds. For any two elements e1 and e2, the notion of equality is

64

CHAPTER 5. COREASM: THE KERNEL 65

defined as:1

equal(e1, e2) ≡ equalbkg(e1)(e1, e2) ∨ equalbkg(e2)(e2, e1)

providing that2

∀e1, e2 ∈ Element equalElement(e1, e2) ≡ e1 = e2

We model the simulated abstract state as an element of the domain State where every

s ∈ State in principle models a mapping from locations to values (elements). We have:

content : State × Location 7→ Element

During a simulation, the current simulated state is represented by the nullary function

state: State. Locations are values of the domain Location and each represents a pair of

function name and a sequence of arguments:

namelc : Location 7→ Name

argslc : Location 7→ List(Element)

We often denote locations by a pair (f, 〈a1, . . . , an〉) where f is the name of the location

and 〈a1, . . . , an〉 are the arguments.

In addition to its content, a CoreASM state also consists of backgrounds, universes,

functions and rules. Before we look into functions and universes, we introduce Boolean

elements, the most basic type of elements in the state.

Boolean Elements

We model Boolean elements by values of the domain BooleanElement which has only

two elements truee and falsee, respectively representing Boolean values true and false. The

following functions map Boolean elements to Boolean values and vice versa.

booleanElement : Boolean 7→ BooleanElement

booleanValue : BooleanElement 7→ Boolean

1Here, the notation fx(a1, . . . , an) can be seen as a syntactic sugar for f(x, a1, . . . , an) and if x is missing,
it can be interpreted as f(undef, a1, . . . , an).

2In this equation, Element refers to the background name ”Element”.

CHAPTER 5. COREASM: THE KERNEL 66

For example, we have:
booleanElement(true) = truee

booleanValue(truee) = true

Equality of Boolean elements are simply defined based on the equality of the Boolean

values they represent:

equalBoolean(b1, b2) ≡ booleanValue(b1) = booleanValue(b2)

For all b ∈ BooleanElement we have bkg(b) = “Boolean”.

Function Elements

Functions defined in a CoreASM state are modeled by function elements, values of the domain

FunctionElement. Every CoreASM state holds a mapping of function names to function

elements:

stateFunction : State × Name 7→ FunctionElement

functions : State 7→ Set(FunctionElement)

functions(s) ≡ {f | f ∈ FunctionElement ∧ (∃n ∈ Name, stateFunction(s, n) = f)}

Function elements in principle represent a mapping from a sequence of elements (arguments

of the function) to an element (the value of the function for those arguments):

valuefe : FunctionElement × List(Element) 7→ Element

ASM functions are classified into six categories of monitored (or in), controlled, shared, out,

static, and derived. Monitored functions, or input functions, are those whose values are

only read but never updated by the machine and can only be updated by the environment.

Controlled functions, are the opposite; their values can be updated only by the machine and

not the environment. Shared functions can be updated and read by both the machine and

the environment. The values of out functions can only be updated but never read by the

machine; they are intended for output and their values can be read by the environment of

the machine. Static functions are constants and their values never change in course of an

ASM run. Derived functions can be read by both the machine and the environment, but

cannot be updated; their values are defined by a fixed scheme in terms of other functions.

In CoreASM, classes of function elements are defined by the following function whose default

CHAPTER 5. COREASM: THE KERNEL 67

value is controlled:3

classfe : FunctionElement 7→ {monitored, controlled, out, static, derived}

Hence, modifiability of a function element f is defined as follows:

isModifiable(f) ≡ classfe(f) ∈ {controlled, out}

If a function element is modifiable, its value for a particular sequence of arguments can be

assigned by the following rule:

Abstract Storage

SetValuefe(f, args, v) ≡
if isModifiable(f) then

valuefe(f, args) := v

Every function element f is also a member of Element and bkg(f) = “Function”. Finally,

two function elements are considered to be equal, if for all the possible arguments, they hold

the same values.4 For all f1, f2 ∈ FunctionElement, we have:5

equalFunction(f1, f2) ≡ ∀a ∈ List(Element) valuefe(f1, a) = valuefe(f2, a)

To retrieve the value of a function, the following derived function is defined as part of

the interface of Abstract Storage:

getValue : Location 7→ Element

getValue(l) =

{
valuefe(F , argslc(l)), if valuefe(F , argslc(l)) 6= undef;

undefe, otherwise.

where F = stateFunction(state,namelc(l)). The getValue function is later refined in Ap-

pendix A.1. In addition, Abstract Storage also provides the following macro rule to set the

3CoreASM does not support shared functions at this point.
4Since this definition is not necessarily computable, in practice we assume any two distinct functions to

be unequal, unless defined otherwise (e.g., see Section 6.3.7). Hence, we have:

∀f1, f2 ∈ FunctionElement equalFunction(f1, f2) ≡ f1 = f2

5In ASMs, all functions are total. Partial functions are turned into total functions by introducing a xed
special value undef and interpreting f(x) = undef as f(x) being undened. [25]

CHAPTER 5. COREASM: THE KERNEL 68

value of a location in the state:

Abstract Storage

SetValue(l, v) ≡
let F = stateFunction(state,namelc(l)) in

if F 6= undef then

SetValuefe(F , argslc(l), v)

Universe Element

Universe elements, values of domain UniverseElement, represents the universes defined in

a CoreASM state. Every CoreASM state holds a mapping of universe names to universe

elements defined in that state:

stateUniverse : State × Name 7→ UniverseElement

universes : State 7→ Set(UniverseElement)

universes(s) ≡ {u | u ∈ UniverseElement ∧ (∃n ∈ Name, stateUniverse(s, n) = u)}

Since universes are sets of elements (or values in ASM), we model them by their set char-

acteristic functions. Hence, every universe element is also a function element. We have:

∀u ∈ UniverseElement, u ∈ FunctionElement

To conveniently view universe elements as sets, we define a membership function on uni-

verses:

memberue : UniverseElement × Element 7→ Boolean

For example, if element e belongs to the universe u in the current state of the simulated

machine, we have memberue(u, e) = true. As a result, for every u ∈ UniverseElement and

every e ∈ Element, we have

valuefe(u, e) ≡ booleanElement(memberue(u, e))

SetValuefe(u, 〈e〉, b) ≡ memberue(u, e) := booleanValue(b)

Equality of universes is defined as the equality of their characteristic functions:

∀u1, u2 ∈ UniverseElement equalUniverse(u1, u2) ≡ equalFunction(u1, u2)

For all u ∈ UniverseElement we have bkg(u) = “Universe”.

CHAPTER 5. COREASM: THE KERNEL 69

Rules

Backgrounds

Functions

Universes
Data Elements

CoreASM
Elements

Figure 5.1: CoreASM Elements in the Kernel

Background Elements

In CoreASM, backgrounds are special universes with a static membership function. The

assumption is that backgrounds contain all the elements they represent; e.g., background

of sets represent all the possible sets. In principle, backgrounds represent “types” of ele-

ments mostly with internal structures. See, for example, how we define the backgrounds of

character strings and sets in sections 6.2.3 and 6.3.2.

We model backgrounds by elements of the domain BackgroundElement. For every

background element b, newValue(b) must be defined to return a default element of that

background; e.g., an empty set, an empty list, and such. We have:

newValue : BackgroundElement 7→ Element

∀ b ∈ BackgroundElement classfe(b) = static

equalBackground(b1, b2) ≡ equalUniverse(b1, b2)

∀b ∈ BackgroundElement bkg(b) = “Background”

Rule Elements

ASM rules defined in a CoreASM specification (more precisely, defined in the current state

of the simulated machine) are modeled by elements of the domain RuleElement. States of

CoreASM hold a mapping of rule names to rule elements defined in those states:

stateRule : State × Name 7→ Rule

rules : State 7→ Set(Rule)

rules(s) ≡ {r | r ∈ Rule ∧ (∃n ∈ Name, stateRule(s, n) = r)}

CHAPTER 5. COREASM: THE KERNEL 70

Every rule element has a name6, a body (which is a node of the parse tree) and a

sequence of parameter names, all defined by the following functions:

namere : Rule 7→ Name

body : Rule 7→ Node

param : Rule 7→ List(Name)

The equality of two rules is defined as the equality of their names, program bodies, and list

of parameters.

equalRule(r1, r2) ≡
namere(r1) = namere(r2) ∧ body(r1) = body(r2) ∧ param(r1) = param(r2)

For all r ∈ Rule, we have bkg(r) = “Rule”.

Enumerable Elements

In CoreASM, an element is called enumerable if it can be viewed as a collection (i.e., multiset)

of other elements. The idea of enumerable elements provides a unique and yet simple

interface to sets, multisets, lists, and other data structures. We define the following functions

as the interface of enumerable elements:

• enumerable : Element 7→ Boolean

holds true if the element is enumerable. By default, enumerable(e) = false for every

element e unless otherwise specified.

• enumerate : Element 7→ Multiset(Element)

provides a collection of elements representing the internal structure of the enumerable

element.

enumerate(e) ≡ enumeratebkg(e)(e)

• size : Element 7→ Number

returns the size of this enumerable. For every enumerable element e, we have size(e) =

|enumerate(e)|.

6The names of rule elements, universe elements, and function elements should all be unique in any given
CoreASM state.

CHAPTER 5. COREASM: THE KERNEL 71

• contains : Element × Element 7→ Boolean

contains(e1, e2) ≡

{
true, if enumerable(e1) ∧ e2 ∈ enumerate(e1)

false, otherwise.

Among the elements we have defined so far, universe elements are enumerable (and so are

the background elements). We have:

∀u ∈ UniverseElement enumerable(u) ∧ enumerate(u) = {x|memberue(u, x)}

5.2 The Interpreter

The Interpreter evaluates an annotated parse tree and depending on the type of the root

node, assigns a value, a location, or a multiset of update instructions to the root of the

tree. The Interpreter interacts with the Abstract Storage in order to obtain values from the

current state.

In this section we recall the ExecuteTree rule we presented in Section 4.2 and provide

further details on the process of evaluating parse tree nodes. More specifically, this section

refines the macro rule KernelInterpreter used by ExecuteTree.

5.2.1 Notation

We specify the Interpreter as a collection of rules (some embedded in the kernel, others

contributed by plugins) which traverse a parse tree while evaluating values, locations and

updates.7 In order to introduce these rules, we state the following assumptions:

1. Nodes of the parse tree belong to the Node universe and the following functions are

defined on nodes:

• first : Node 7→ Node, next : Node 7→ Node, parent : Node 7→ Node are static

functions that implement tree navigation; by using these functions, the Inter-

preter can access all the children nodes of a given node, or access its parent (see

Figure 4.3 for reference).

• class : Node 7→ Class returns the syntactical class of a node (i.e., the name of

the corresponding grammar non-terminal class); for example RuleDeclaration .

7This section is a revised and extended version of what we have previously published in [48, Section 3].

CHAPTER 5. COREASM: THE KERNEL 72

• grammarRule : Node 7→ GrammarRule returns the grammar rule that produced

that node.

• token : Node 7→ Token returns the syntactical token represented by the node

(i.e., either a keyword, an identifier, or a literal value).

• pattern : Node 7→ Pattern returns the symbolic name for the specific grammar

pattern corresponding to the node; for example, IfThen symbolically represents

the pattern if . . . then.

• [[·]] : Node 7→ Location × Multiset(Update) × Element holds the result of

the interpretation of a node, given by a triple formed by a location (that is, the

l-value of an expression, when it is defined), a multiset of update instructions,

and a value (that is, the r-value of an expression)8. We access elements and

establish properties of such triples through the following derived functions:

– loc : Node 7→ Location returns the location (l-value) associated to the given

node, i.e. loc(n) ≡ [[n]] ↓ 1.

– updates : Node 7→ Multiset(Update) returns the updates associated to the

given node, i.e. updates(n) ≡ [[n]] ↓ 2.

– value : Node 7→ Element returns the value (r-value) associated to the given

node, i.e. value(n) ≡ [[n]] ↓ 3.

– evaluated : Node 7→ Boolean indicates if a node has been evaluated. We

have,

evaluated(n) ≡ [[n]] 6= undef

• plugin : Node 7→ Plugin is the plugin associated to a node, that is, the plugin

responsible for parsing and evaluation of the node.

2. A special variable pos holds at all times the current position in the tree (i.e., the

current node being evaluated).

3. We use a form of pattern matching which allows us to concisely denote complex con-

ditions on the nodes. In particular:

• we denote with
e
? a generic node;

8The structure of the triple is intended to be mnemonic, with the l-value in the leftmost and the r-value
in the rightmost position in the triple.

CHAPTER 5. COREASM: THE KERNEL 73

• we denote with
e

a generic unevaluated node; as an aid to the reader, we will also

use the semantically equivalent
e
e ,

e
r , and

e
l to denote unevaluated nodes whose

evaluation is expected to result respectively, in a value (from an expression), a

multiset of updates (from a rule), and a location;

• we denote with x an identifier node;

• we denote with v (value) an evaluated expression node (that is, a node whose

value is not undef); we denote with u (update multiset) an evaluated statement

node (a node whose updates is not undef); we denote with l (location) an evaluated

expression for which a location has been computed (a node whose loc is not

undef). We will at times add subscripts to these variables, or use different names

for special cases that will be discussed as appropriate;

• we use prefixed Greek letters to denote positions in the parse tree (typically

children of the current node, as denoted by pos) as in if αe then βr where α

and β denote, respectively, the condition node and the then-part node of an if

statement;

• rules of the form

L pattern M → actions

are to be intended as

if conditions then actions

where the conditions are derived from the pattern according to the conventions

above, as more formally specified in Table 5.1; in the action part of such a

rule, an unquoted and unbound occurrence of l is to be interpreted as the loc

of the corresponding node; an unquoted and unbound occurrence of v is to be

interpreted as the value of the corresponding node; an unquoted and unbound

occurrence of u as the updates of the corresponding node; and an unquoted and

unbound occurrence of x as the token of the corresponding node.

Table 5.2 exemplifies how our compact notation can be translated into actual ASM

rules.

4. The value of local variables (e.g., those defined in import and let rules) is maintained

by a global dynamic function of the form env : Token 7→ Element. We have

env(x) ≡ top(envStack(x))

CHAPTER 5. COREASM: THE KERNEL 74

Abbreviation Condition part Action part
α, β etc. first(pos), next(first(pos)), etc.

α
e
? class(α) 6= Id

α
e

class(α) 6= Id ∧ ¬evaluated(α)
α
e
e , α

e
r , α

e
l ? class(α) 6= Id ∧ ¬evaluated(α)

αx class(α) = Id token(α)
αv value(α) 6= undef value(α)
αu updates(α) 6= undef updates(α)
αl loc(α) 6= undef loc(α)

? These symbols are semantically equivalent to the
e

symbol; as a visual cue to the reader, the embedded

letters express the intended result of evaluation.

Table 5.1: Abbreviations in Syntactic Pattern-matching Rules

where envStack is a function of the form envStack : Token 7→ Stack(Element) which

can be maintained by the following rules:

Interpreter

AddEnv(x, v) ≡ Push(envStack(x), v)

RemoveEnv(x) ≡ Pop(envStack(x))

Notice that, according to the rule ExecuteTree previously described in Section 4.2, inter-

preter rules in the kernel or from plugins are only executed when evaluated(pos) does not

hold, i.e. when the current node has not been fully evaluated yet. Control moves from node

to node either by explicitly assigning values to pos, or by setting [[pos]] to a value that is not

undef; in which case, control is returned to the parent of pos by the ExecuteTree rule (unless

an explicit assignment to pos is also made in the same step). Hence, the general strategy

in our rules will be to evaluate all needed subtrees of a node, if any, by orderly assigning

pos accordingly; when all needed subtrees are evaluated, we compute the resulting location,

updates or value and assign it to [[pos]], thus implicitly returning control back to our parent.

As exemplified in Table 5.2, our notation allows us to clearly visualize this process by the

progressive substitution of evaluated u nodes for unevaluated
e
r nodes, and of v or l nodes

for unevaluated
e
e nodes. Notice that identifiers do not have to be evaluated, hence we do

not need a “boxed” version of x.

CHAPTER 5. COREASM: THE KERNEL 75

Compact notation Actual rule

L if α
e
e then β

e
r M→ pos := α

let α = first(pos), β = next(first(pos)) in
if class(pos) 6= Id
∧ pattern(pos) = IfThen
∧ class(α) 6= Id
∧ ¬evaluated(α)
∧ class(β) 6= Id
∧ ¬evaluated(β)

then
pos := first(pos)

L if αv then β
e
r M→ if v = truee then . . .

let α = first(pos), β = next(first(pos)) in
if class(pos) 6= Id
∧ pattern(pos) = IfThen
∧ value(α) 6= undef
∧ class(β) 6= Id
∧ ¬evaluated(β)

then
if value(α) = truee then . . .

L if αv then βu M→ . . .

let α = first(pos), β = next(first(pos)) in
if class(pos) 6= Id
∧ pattern(pos) = IfThen
∧ value(α) 6= undef
∧ updates(β) 6= undef

then . . .

Table 5.2: Examples of Pattern Matching Notation Translated into ASM Rules

CHAPTER 5. COREASM: THE KERNEL 76

5.2.2 Kernel Expression Interpreter

As previously described, the kernel interpreter rules implement the Boolean domain (but

not the Boolean algebra), function evaluation and rule call (which share the same syntactic

pattern), assignment, and import statement. We present in this section rules that result in

values, namely for evaluating literals (true, false, undef) and nullary or n-ary functions.

Literals are simply lifted to their semantic counterparts:

Interpreter: Kernel Expressions

L true M → [[pos]] := (undef, undef, truee)

L false M → [[pos]] := (undef, undef, falsee)

L undef M → [[pos]] := (undef, undef, undefe)

L self M → [[pos]] := (undef, executingAgent, undefe)

Evaluation of identifiers as expressions depends on whether the identifier refers to a local

variable or a function. To evaluate an identifier as an expression, the Interpreter first checks

the set of in-scope local variables for a possible value for the identifier. If the identifier was

not a local variable (i.e., it is not found in the local environment), the Interpreter checks if

the identifier refers to a (nullary) function, in which case the Abstract Storage is queried for

the value of that function in the current state. If instead the identifier is not defined, the

macro HandleUndefinedIdentifier (described later) is called. The rule for n-ary functions is

similar, except that the arguments of the function are evaluated first. The formal definition

is as follows:

Interpreter: Kernel Expressions

L αx M → if env(x) 6= undef then

[[pos]] := (undef, undef, env(x))

else

if isFunctionName(x) then

let l = (x, 〈〉) in

[[pos]] := (l, undef, getValue(l))

if undefinedToken(x) then

HandleUndefinedIdentifier(pos, x, 〈〉)

CHAPTER 5. COREASM: THE KERNEL 77

L αx(λ1
e
? 1, . . . ,

λn
e
? n) M → if isFunctionName(x) then

choose i ∈ [1..n] with ¬evaluated(λi)

pos := λi

ifnone

let l = (x, 〈value(λ1), . . . , value(λn)〉) in

[[pos]] := (l, undef, getValue(l))

if undefinedToken(x) then

HandleUndefinedIdentifier(pos, x, 〈λ1, . . . , λn〉)
where

undefinedToken(x) ≡ ¬(isFunction(x) ∨ isRule(x) ∨ isUniverse(x))

Notice how in the second pattern, the
e
? symbol is used to denote arguments, both

unevaluated and evaluated. If x is bound to a function, the rule specifies that all arguments

must be evaluated, without any specific order, to determine the location of the node. While

there are still unevaluated arguments, the rule sets pos to the node representing an unevalu-

ated argument; as soon as the evaluation of the argument is complete, control returns to the

parent node (and thus, again to the same rule), until all arguments are evaluated. At this

point (ifnone branch), the location and values of the function are computed and stored in

[[pos]].

Finally, if the Interpreter encounters an identifier that is not bound to any element of

the state, the HandleUndefinedIdentifier rule (see Appendix A.2) will consult all the plugins

that are registered to handle undefined identifiers. More specifically, such plugins are asked

to evaluate the node with the undefined identifier.9 If none of the plugins could evaluate

the node, KernelHandleUndefIdentifier will be called to create a new function element with

a default value of undefe for the given arguments. This default behavior of the kernel is a

“liberal” approach toward type-checking; it allows identifiers to be used without declaration,

which is suited for early analysis and specification.

Interpreter: Undefined Identifier

KernelHandleUndefIdentifier(pos, x, args) ≡
let f = new(FunctionElement) do

stateFunction(state, x) := f

[[pos]] := ((x, args), undef, undefe)

9It is considered an error if more than one plugin evaluate the undefined identifier with different results.

CHAPTER 5. COREASM: THE KERNEL 78

5.2.3 Kernel Rule Interpreter

Rule plugins provide the execution semantics of rules. Execution of rules results in a multiset

of update instructions that is the underlying value for the rule node of the parse tree. As

discussed in Section 4.2, accumulated update instructions are used by the Abstract Storage

to compute the updates set that will ultimately be applied to the current state to generate

the next state.

We start with the skip rule or the no-operation rule. The semantics of the skip rule is

simply to produce an empty multiset of updates:

Interpreter: Kernel Rules

L skip M → [[pos]] := (undef, {||}, undef)

Rule Calls

To evaluate an identifier as a rule, the Interpreter first checks if a rule element is bound to

the identifier. If so, the RuleCall macro is called to execute the rule. Notice that in this case,

arguments are not evaluated prior to calling the rule: in fact, the semantics of rule calls

in [25] prescribes that the formal parameter in the body of the rule must be substituted

with the entire term that is used as the actual argument, not its value.

Interpreter: Kernel Rules

L αx M → if isRuleName(x) then

RuleCall(ruleValue(x), 〈〉)

L αx(λ1
e
? 1, . . . ,

λn
e
? n) M → if isRuleName(x) then

RuleCall(ruleValue(x), 〈λ1, . . . , λn〉)

Traditionally, rule calls in ASMs have been used in two form: as macros, or as sub-

machines. The difference between the two forms is that calling a macro simply means

executing its body (possibly with parameter substitution) and collecting the resulting up-

dates, whereas running a submachine results in an entire encapsulated computation of the

rule, that is iterated until completion, as defined in [25, Section 4.1.2]. Here, we model

macro calls, while the effect of submachine calls can simply be achieved by using the iter-

ate construct; see Section 6.1.8 for the specification of the iterate construct.

CHAPTER 5. COREASM: THE KERNEL 79

As we have already noted, ASMs differ from many other languages in that call-by-

substitution is used for parameters instead of the more usual call-by-value. In other words,

actual parameters are evaluated at the point of use (in the callee) rather than at the point

of call (in the caller). Due to the presence of seq-rules, the difference can be observable,

as parameters can be evaluated in different states. Hence, we have to substitute the whole

parse tree denoting an actual parameter (i.e., an expression) for each occurrence of the

corresponding formal parameter in the body of the callee. Also, we substitute parameters

in a copy of the callee body, to avoid modifying the original definition.

There are several static semantic constraints on valid rule declarations; for example, it is

assumed that the formal parameters of a rule are all pairwise distinct, and that the formal

parameters are the only freely occurring variables in the body of the rule (see [25], Definition

2.4.18). For simplicity, we do not explicitly check for such conditions in our specification.

The RuleCall routine, defined below, describes how rule calls (possibly with parameters)

are handled.

Interpreter: Kernel Rules

RuleCall(r, args) ≡
if workCopy(pos) = undef then

let b′ = CopyTreeSub(body(r), param(r), args) in

workCopy(pos) := b′

parent(b′) := pos

pos := b′

else

[[pos]] := (undef, updates(workCopy(pos)), value(workCopy(pos)))

workCopy(pos) := undef

The rule CopyTreeSub returns a copy of the given parse tree, where every instance of

an identifier node in a given sequence (formal parameters) is substituted by a copy of the

corresponding parse tree in another sequence (actual parameters). We assume that the

elements in the formal parameters list are all distinct (i.e., it is not possible to specify the

same name for two different parameters). Also, formal parameters substitution is applied

only to occurrences of formal parameters in the original tree passed as argument, and not also

on the actual parameters themselves. See Appendix A.2 for the definition of CopyTreeSub.

CHAPTER 5. COREASM: THE KERNEL 80

Assignment and Import

The kernel of the CoreASM engine also includes assignment and import rules. Assignment

is performed as follows:

Interpreter: Kernel Rules

L α
e
? := β

e
? M → choose τ ∈ {α, β} with ¬evaluated(τ)

pos := τ

ifnone

if loc(α) 6= undef then

if isModifiable(stateFunction(state,namelc(loc))) then

[[pos]] := (undef, {|〈loc(α), value(β)〉|}, undef)

else

Error(‘Cannot update a non-modifiable function’)

else

Error(‘Cannot update a non-location.’)

It is worthwhile to remark that the rule above does not syntactically constrain assignment

to be performed exclusively to variables or functions: rather, any plugin can contribute new

forms of expressions which, as long as they result in a modifiable location (e.g., not a

monitored function), are deemed syntactically acceptable in the lhs of an assignment.

The import rule is defined as follows:

Interpreter: Kernel Rules

L import αx do β
e
r M → let e = new(Element) in

AddEnv(x, e)

pos := β

L import αx do βu M → RemoveEnv(x)

[[pos]] := (undef, u, undef)

To perform an import, a new element is created and it is assigned to the value of the

given identifier (x) in the local environment. The rule part
e
r is then evaluated in this new

environment by assigning pos to the corresponding node. The identifier is then removed

from the local environment when the evaluation of the rule part is complete.

CHAPTER 5. COREASM: THE KERNEL 81

5.2.4 Operators

Although plugins can extend the CoreASM language by introducing (almost) arbitrary ex-

pression forms, operators are treated specially in the CoreASM engine. To avoid lengthy

expressions with unnecessary parenthesis, the engine provides plugins with a mechanism to

declare a precedence level for the operators they contribute.

Precedence level of an operator is defined by a numeric value p ∈ [0 . . . 1000], where 1000

is the highest priority. This value should be attached to all operator patterns. The following

example introduces a new operator Ω with precedence level 300:

L
e
e Ω

e
e M

[300]
→ . . .

The only operator provided by the kernel is the equality operator (“=”). Two values

are considered to be equal if they are equal according to at least one of their corresponding

backgrounds. In the following rule, the equality functions provided by the backgrounds of

the operands are queried to determine the equality:

Interpreter: Kernel Operators

L α
e
? = β

e
? M

[600]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

let e1 = value(α), e2 = value(β) in

let b1 = bkg(e1), b2 = bkg(e2) in

if equalb1(e1, e2) ∨ equalb2(e2, e1) then

[[pos]] := (undef, undef, truee)

else

[[pos]] := (undef, undef, falsee)

5.3 Rules and Updates

According to the original definition of ASMs, evaluation of each ASM rule results in a

potentially empty set of updates of the form (l, v) where l is a location and v is a value to

be assigned to that location if the update is successfully applied to the state. At the end of

each computation step, the update set produced by evaluating the program of the machine

(or programs of the agents in a multi-agent ASM), if consistent, will be applied to the state

CHAPTER 5. COREASM: THE KERNEL 82

to form the new state.10

In CoreASM, we originally followed exactly the same idea: rules would produce update

sets of the form 〈l, v〉. However, this approach would seriously limit and complicate in-

cremental or partial modification of elements with internal structure that are composed of

other elements, such as sets, maps, and trees. For example, parallel addition of elements 5

and 7 to the set {1, 2} residing at the location f(a) would lead to two inconsistent updates

of 〈(“f”, 〈a〉), {1, 2, 5}〉 and 〈(“f”, 〈a〉), {1, 2, 7}〉.
Inspired by the idea of partial updates introduced in [76, 77], we extend CoreASM updates

from a pair of location-value to a triplet of the form

〈Location,Element,Action〉,

called update instruction, that is general enough to represent regular and partial updates.11

Update instructions consist of a location, a value, and an action that defines the type of

modification that has to be done on the location. The most basic action, which is defined

in the CoreASM kernel, is the updateAction ∈ Action. An update instruction of the form

〈l, v, updateAction〉 is semantically equivalent to an original ASM update of (l, v). However,

background plugins may introduce their own special actions; for example, a plugin providing

the background of sets may introduce two new actions setAddAction and setRemoveAction

respectively representing the actions of adding and removing elements from a set. As a

result, in our example of adding 5 and 7 to the set {1, 2} above, the parallel execution

of the rules will lead to the following update instructions: 〈(“f”, 〈a〉), 5, setAddAction〉 and

〈(“f”, 〈a〉), 7, setAddAction〉 which will have to be later aggregated by the plugin into one

single regular update on the given location.

5.3.1 Update Instruction Notation

We define the following functions on update instructions:

• uiLoc : Update 7→ Location

returns the location associated with the given update instruction.

10The ideas presented in this section has been previously discussed in more detail in M. Memon’s M.Sc.
thesis [99].

11In practice, we define update instructions as quadruples of the form 〈Location, Element, Action,
Set(Element)〉 where the 4th element is the set of agents that produced the update instruction (an update
may be the result of aggregating two or more updates); however, in this work we often leave out the reference
to the 4th element and view update instructions as triples.

CHAPTER 5. COREASM: THE KERNEL 83

• uiVal : Update 7→ Element

returns the value associated with the given update instruction.

• uiAction : Update 7→ Action

returns the action associated with the given update instruction.

• uiAgents : Update 7→ Set(Element)

returns the set of agents that produced the given update instruction.

• aggStatus : Update×Plugin 7→ {successful, failed}

indicates the aggregation status of an update instruction, set by a given aggregator

plugin. If an update instruction ui has not been processed by a plugin, aggStatus(ui)

is undef.

5.3.2 Aggregation of Updates

According to the original ASM definition, after every computation step, location contents

are changed by and only by updates. In order to be faithful to that definition, with the

introduction of partial updates, we introduce an aggregation phase in every computation step

that takes place before the application of updates to the state. Aggregation is the process of

combining all update instructions affecting a single location, into one single update which is

called the resultant update. The aggregation phase of a CoreASM step performs aggregation

on all locations affected by the step and results in a set of regular updates.12

Since the CoreASM kernel does not introduce any special update actions other than

the one for regular updates, it only defines the framework in which background plugins

can provide their background-specific partial updates and their corresponding aggregation

algorithms. We say that a plugin is responsible for an action, if it is registered to aggregate

update instructions of that action. A plugin is said to be responsible for aggregation of a

given update instruction if the update instruction contains an action for which the plugin

is responsible. Finally a plugin is considered to be responsible for aggregation of a given

regular update if there is an update instruction that operates on the the same location. A

plugin that is registered for aggregation of one or more update action is called an aggregator

plugin.

12This is also in line with the integration phase introduced in [76].

CHAPTER 5. COREASM: THE KERNEL 84

Recalling the definition of AggregateUpdates on page 59, Abstract Storage calls the

following rule in its Aggregation control state before firing the updates to the state (see also

Figure 4.8):

Abstract Storage

AggregateUpdates ≡
updateSet ← Aggregate(updateInstructions)

The Aggregate method runs the aggregation method of all the aggregator plugins on

the update instructions, gathers the resulting updates and returns the compiled set. When

called for aggregation, an aggregator plugin aggregates all update instructions for which

it is responsible and flags them as either successful or failed. It is important to note that

the order in which plugins are called to perform aggregation should not affect the resultant

updates produced. Also note that the failure in aggregation of a single plugin should not

fail the aggregation attempt of other plugins.

Abstract Storage

Aggregate(updates) ≡
let ap = {a | a ∈ Plugin ∧ aggregator(a)} in

seq

forall p ∈ ap do

let R = aggregatorRule(p) in

resultantUpdates(p, updates) ← R(updates)

next

result :=
⋃
p∈ap resultantUpdates(p, updates)

The resultantUpdates function is used to collect resultant updates from plugins for a given

multiset, and the aggregatorRule(p) function returns the aggregation rule provided by plugin

p. Note that a plugin aggregator rule is expected to accept a multiset of update instructions

as an argument, and its invocation should cause the return of its resultant updates with the

return-result rule syntax as described in [25, Def. 4.1.7].

Plugin Aggregation Consistency

Aggregation algorithms provided by plugins also implicitly define the acceptable semantics

of the combination of updates they process. During an aggregation process, a plugin may

encounter a situation where the updates and instructions for a given location cannot be

CHAPTER 5. COREASM: THE KERNEL 85

aggregated into a regular update. Such a situation may occur, for example, if there are

updates or instructions that are semantically inconsistent, such as addition and removal of

the same element from a set.

When the aggregation of all updates and instructions affecting a given location are

deemed inconsistent, the plugin flags all updates to the location as failed.

Abstract Storage

HandleInconsistentAggregation(loc, updateMset, plugin) ≡
forall ui ∈ updateMset with uiLoc(ui) = loc do

aggStatus(ui, plugin) := failed

Although aggregation for a single location may have failed, the aggregation of the rest

of the update instructions a plugin is responsible for would continue.

Basic Update Aggregator

Once aggregation of all aggregator plugins have completed successfully, the resultant update

set may still have updates with a regular update action that do not need aggregation but

are not flagged as processed. The Basic Update Aggregator provided by the Kernel plugin

(see Section 4.2.1) solves this problem by returning a set of all regular updates for locations

which do not require any aggregation and flagging all those updates as successful. The basic

update aggregator is called by AggregateUpdates along side all aggregator plugins.

Abstract Storage

BasicUpdateAggregator(updateMset) ≡
seq

result := {}
next

forall ui ∈ updateMset with uiAction(ui) = updateAction do

if 6 ∃ ui2 ∈ updateMset, uiLoc(ui) = uiLoc(ui2) ∧ uiAction(u2) 6= updateAction then

add ui to result

aggStatus(ui, kernelPlugin) := successful

5.3.3 Composition of Updates

Aggregation as we have described it so far gives semantically acceptable results with basic

ASMs. However, for Turbo ASMs, which allow for sequential composition and iteration

CHAPTER 5. COREASM: THE KERNEL 86

of ASMs within one single step of the machine, aggregation alone is insufficient. While

the sequential composition of ASMs imposes an order between the sets of updates (on a

location), it is not always desirable for a Turbo ASM rule to return aggregated resultant

updates. On the other hand, update instructions produced by a Turbo ASM rule has to be

composed in a form that preserves the sequential semantics of the updates. As an example,

consider the following sequential composition, where s = {1, 2}:

seq

add 5 to s

add 7 to s

next

remove 5 from s

add 6 to s

The semantics of this rule is to add 6 and 7 to s. Since this rule may be executed in parallel

with other rules that may also modify the set s, it is desirable that the evaluation of this

rule does not result in aggregated updates (i.e., a regular update assigning {1, 2, 6, 7} to s).

On the other hand, there is an explicit order between the update instructions produced by

the two parts of this sequence which has to be reflected in the resulting update multiset.

As a result, a special composition process has to be introduced on update instructions that

composes two multisets of update instructions into one multiset with respect to the order of

updates. In the above example, removing 5 from s neutralizes the addition of 5 in the first

step and so neither of the two modifications will appear in the result of the composition,

which will be {|〈(“s”, 〈〉), 6, setAddAction〉, 〈(“s”, 〈〉), 7, setAddAction〉|}.
Since the CoreASM kernel does not define any special update action, its composition

(captured by the Compose rule defined below) basically relies on the composition behaviors

provided by background plugins. As a result, every aggregator plugin is required to also pro-

vide a composition algorithm which, when given two update multisets, produces composed

update instructions for all locations for which the plugin is responsible.

It is important to note that the Compose rule expects the first update multiset to be

consistent with respect to typical ASM consistency and aggregation consistency. The re-

sult of sequential composition of the two update multisets would then be the union of all

composed update instructions produced by individual plugins.

CHAPTER 5. COREASM: THE KERNEL 87

Abstract Storage

Compose(uMset1, uMset2) ≡
seq

let ap = {a | a ∈ Plugin ∧ aggregator(a)} in

forall p ∈ ap do

let R = composerRule(p) in

composedUpdates(p, uMset1, uMset2) ← R(uMset1, uMset2)

next

result :=
⋃
p∈ap composedUpdates(p, uMset1, uMset2)

In the above rule, the composedUpdates function is used to collect the updates resulting

from plugins performing sequential composition of two update multisets. The composerRule

function is expected to return the composition behavior of the given plugin, implementing

the composition of updates on locations for which it is responsible. Note that the composi-

tion rule for each plugin is expected to accept two multisets as arguments, and its invocation

should cause the return of the sequentially composed update multiset with the return-result

rule syntax as described in [25, Def. 4.1.7].

A plugin which provides aggregation, must also provide facilities for sequential composi-

tion of actions for which it is responsible. A plugin is deemed responsible for the composition

of updates at a given location, if and only if:

• The plugin is responsible for aggregation of the location with respect to the second

update multiset.

• The plugin is responsible for aggregation of a location with respect to the first update

multiset, if and only if that location is not affected by the second update multiset.

Basic Update Composer

To complement the basic update aggregator we introduced earlier, the Kernel plugin also

provides a default update composition behavior. The Basic Update Composer is responsible

for performing sequential composition of locations affected solely by basic updates. Sequen-

tial composition of updates in basic ASMs (without partial updates) is formally defined in

[25, Def. 4.1.1] as

U ⊕H = {u ∈ U | location(u) 6∈ locations(H)} ∪H

CHAPTER 5. COREASM: THE KERNEL 88

In CoreASM, with the existence of partial updates, sequential composition of basic updates

is similarly defined as:

compose(U,H) ≡ {u ∈ U | location(u) 6∈ locations(H) ∧ isBasicUpdate(u)}
∪ {u ∈ H | isBasicUpdate(u)}

The basic update composer is then defined as follows:

Abstract Storage

BasicUpdateComposer(uMset1, uMset2) ≡
result := {ui1 | ui1 ∈ uMset1 ∧ isBasicUpdate(uMset1, ui1) ∧ ¬locUpdated(uMset2, uiLoc(ui1))}

∪ {ui2 | ui2 ∈ uMset2 ∧ isBasicUpdate(uMset2, ui2)}
where

isBasicUpdate(uMset, ui) ≡ ∀ 〈l, v, a〉 ∈ uMset, l = uiLoc(ui)⇒ a = updateAction

locUpdated(uMset, l) ≡ ∃ ui ∈ uMset, uiLoc(ui) = l

We refer to Mashaal Memon’s M.Sc. thesis [99] for further details on aggregation and

composition of updates.

5.4 The Parser

CoreASM offers the possibility of extending and modifying the syntax and semantics of its

language, keeping only the bare essential parts of the ASM language as static. In order

to achieve this goal, CoreASM plugins should be able to extend the grammar of the core

language by providing new grammar rules together with their semantics. As a result, the

kernel of the engine does not have a comprehensive parser. Plugins used in a given specifi-

cation can provide portions of the grammar (sets of grammar rules) of the language based

on which the specification has to be parsed. Upon loading a specification, the engine will

combine all the provided grammar rules into a single grammar. Based on this grammar, a

parser is generated which will be used to generate the parse tree of the specification. Hence,

the CoreASM parser is in fact a parser generator which, when given a grammar, produces

a parser that can be used to parse a given specification. As a result, the grammar used

for two different specifications may be different, depending on the plugins required by the

specifications. One of the challenges in the implementation of CoreASM had been to equip

the engine with a fast parser generator capable of generating parsers with look-ahead of

CHAPTER 5. COREASM: THE KERNEL 89

more than one to allow co-existence of more than one grammar rule starting with the same

pattern.

We do not intend to specify the details of the CoreASM parser; we only require that the

parser provides the following function and rule as part of its interface:

• A function of the form requestedPlugins : Specification 7→ Set(Plugin) that for

every specification returns the list of plugins used by that specification. In practice,

this would be achieved by looking for the use clauses in the specification.

• An ASM rule of the form Parse(spec,G) that parses the given specification spec with

respect to the given grammar G, produces a parse tree of nodes (values of the domain

Node, see Section 5.2.1) representing the specification, and returns the root node of

the parse tree.

5.5 The Plugin Framework

The CoreASM plugin architecture supports two extension mechanisms: plugins can either

extend the functionality of specific components of the engine, by contributing additional

data or behavior to those components (i.e., adding new grammar rules to the Parser, new

semantic rules to the Interpreter, new backgrounds, universes, and functions to the Abstract

Storage, and new policies to the Scheduler) or they can extend the control state ASM of

the engine, by interposing their own code in between state transitions.

Practically speaking, a CoreASM plugin can be implemented as a Java class that imple-

ments one or more of the interfaces defined by the CoreASM extensibility framework (see

Table 5.3 and also Section 7.2.1). In this section we look at various plugin interfaces and

explore the mechanisms through which they extend the CoreASM engine.

5.5.1 Parser Extensions

Plugins can implement the Parser Plugin interface and/or the Operator Provider interface

to extend the Parser by respectively contributing additional grammar rules and new op-

erator descriptions. We assume that for any parser plugin pp, pluginGrammar(pp) holds

the set of all the grammar rules contributed by pp, and for any operator provider op,

pluginOperators(op) holds the descriptions (syntax and semantics) of new operators con-

tributed by op.

CHAPTER 5. COREASM: THE KERNEL 90

Plugin Interface Extends Description
Parser Plugin Parser provides additional grammar

rules to the parser
Interpreter Plugin Interpreter provides new semantics to the In-

terpreter
Operator Provider Parser, Interpreter provides grammar rules for new

operators along with their prece-
dence levels and semantics

Vocabulary Extender Abstract Storage extends the state with additional
functions, universes, and back-
grounds

Aggregator Abstract Storage aggregates partial updates into
basic updates

Scheduler Plugin Scheduler provides new scheduling policies
for multi-agent ASMs

Extension Point Plugin all components extends the control state model
of the engine

Table 5.3: CoreASM Plugin Interfaces

Before parsing a specification, the engine gathers all the grammar rules and operator de-

scriptions provided by all parser plugins and operator providers. The Parser then combines

these grammar rules and operator descriptions with the kernel grammar and builds a new

‘parser’ to scan the specification. While building the abstract syntax tree, this parser labels

the nodes that are created by plugin-provided grammar rules with the plugin’s identifier;

these labels can later be used by the Interpreter to evaluate the nodes.

Parser plugins and operator providers are probed by the LoadSpecPlugins rule before

the engine starts parsing the specification (see Figure 4.5). This rule iterates over all the

plugins required by the loaded specification and after ensuring dependency requirements,

loads the plugins by calling the LoadPlugin rule presented below. The latter initializes the

plugin, then loads all the provided grammar rules and operator descriptions to be processed

by the parser in the next step of the process.

CHAPTER 5. COREASM: THE KERNEL 91

Control API

LoadPlugin(p) ≡
if p 6∈ loadedPlugins then

seq

InitializePlugin(p)

next

add p to loadedPlugins

if isParserPlugin(p) then

add pluginGrammar(p) to grammarRules

if isOperatorProvider(p) then

add pluginOperators(p) to operatorRules

InitializePlugin(p) ≡
let R = pluginInitRule(p) in

R

5.5.2 Interpreter Extensions

Plugins can extend the Interpreter component of the engine by implementing either the

Interpreter Plugin interface or the Operator Provider interface (or both). These plugins

provide the semantics for rules and operations contributed as per Section 5.5.1. Traversing

the abstract syntax tree, the ExecuteTree rule of the Interpreter (see Figure 4.9) uses these

semantic rules to evaluate nodes that correspond to the extended grammar rules.

The semantics contributed by a plugin p which implements the Interpreter Plugin in-

terface can be obtained through pluginRule(p). As already mentioned earlier, nodes of the

parse tree corresponding to grammar rules provided by a plugin are annotated with the

plugin identifier. If a node is found to refer to a plugin, the Interpreter obtains the semantic

rules provided by that plugin and executes it; otherwise, the default kernel Interpreter rules

are used (see ExecuteTree on page 58).

A similar approach is also used by the KernelInterpreter rule to obtain semantics of

extended operators from operator providers. A detailed discussion on how the engine deals

with operators and their extensions is provided in [99].

CHAPTER 5. COREASM: THE KERNEL 92

5.5.3 Abstract Storage Extensions

Vocabulary Extender plugins extend the vocabulary of the CoreASM state by contributing

new backgrounds, universes, and functions to the Abstract Storage. Such plugins in fact

extend the initial state and the signature of the simulated machine. The following func-

tions, defined on vocabulary extender plugins, respectively hold the backgrounds, universes,

functions, and rule elements such plugins provide:

pluginBackgrounds : Plugin 7→ (Name 7→ BackgroundElement)

pluginUniverses : Plugin 7→ (Name 7→ UniverseElement)

pluginFunctions : Plugin 7→ (Name 7→ FunctionElement)

pluginRules : Plugin 7→ (Name 7→ Rule)

In the Abstract Storage, stateUniverse and stateFunction bind the names of functions

and universes in the CoreASM state to the mathematical objects that represent them (see

Section 5.1). Backgrounds are considered as special universes and hence are handled by

stateUniverse. The value of these functions is initialized by the InitAbstractStorage rule (see

Figure 4.5). While creating the default universe and functions, the engine calls LoadVocabu-

laryPlugins to iterate over all vocabulary extender plugins and to extend the CoreASM state

with the vocabulary they provide.

Abstract Storage

LoadVocabularyPlugins(state) ≡
forall p ∈ specPlugins do

if isVocabularyExtender(p) then

forall (bkgName, bkg) ∈ pluginBackgrounds(p) do

stateUniverse(state, bkgName) := bkg

forall (uName, universe) ∈ pluginUniverses(p) do

stateUniverse(state, uName) := universe

forall (fName, f) ∈ pluginFunctions(p) do

stateFunction(state, fName) := f

forall (rName, rBody) ∈ pluginRules(p) do

stateRule(state, rName) := rBody

Plugins can also implement the Aggregator interface and provide aggregation and com-

position rules to be applied on update instructions before they are submitted to the state.

Aggregator plugins are called to aggregate update instructions by the AggregateUpdate rule

in the Aggregation state of the engine; see Figure 4.8 and Section 5.3.2 for more details. For

CHAPTER 5. COREASM: THE KERNEL 93

any aggregator plugin ap, aggregatorRule(ap) and composerRule(ap) respectively hold the

aggregation and composition behaviors provided by ap.

5.5.4 Scheduler Extensions

Policy plugins, also called Scheduler plugins, extend the scheduler of the engine by providing

new scheduling policies that affect the selection of agents in multi-agent ASMs. They provide

an extension to the scheduler that is used to determine at each step the next set of agents to

execute. We assume that for any scheduling plugin sp, pluginSchedulingPolicy(sp) holds the

scheduling policy provided by sp. For any scheduling policy, the following functions should

be defined:

• newSchedulingGroup : SchedulingPolicy 7→ SchedulingGroup

returns a new scheduling group for the given policy. A scheduling group binds a group

of schedules together. The exact semantics of such a group would be defined by the

scheduling policy. For example, in a one-by-one scheduling policy that tries to offer a

fair schedule, all the schedules created within a group share the same ‘memory’, i.e.

they avoid scheduling already scheduled elements before scheduling the ‘remaining’

elements.

• newScheduleRule : SchedulingPolicy 7→ Rule

returns an ASM rule modeling a function of the form

f : SchedulingGroup × Set 7→ List(Set)

that given a scheduling group and an initial set of elements (agents), provides a

new schedule based on the given policy. The schedule is in form of a list of sub-

sets of the initial set of elements. For example, a schedule on the set {a, b, c} can be

〈{a, b, c}, {a, b}, {b, c}〉 or 〈{c}〉.

See Section 6.4.2 for an example of a policy plugin.

5.5.5 Extension Point Plugins

In addition to modular extensions of specific components, plugins can also extend the con-

trol state of the engine by registering themselves for Extension Points. Each control state

transition in the execution engine is associated to an extension point. At each extension

CHAPTER 5. COREASM: THE KERNEL 94

point, if there is any plugin registered for that point, the code contributed by the plugin

for that transition is executed before the engine proceeds to the next control state. Such

a mechanism enables arbitrary extensions to the engine’s lifecycle, which facilitates imple-

menting various practically relevant features such as adding debugging support, adding a

C-like preprocessor, or performing statistical analysis of the behavior of the simulated ma-

chine (e.g., coverage analysis or profiling). A plugin, for example, could monitor the updates

that are generated by a step before they are actually applied to the current state of the simu-

lated machine, possibly checking conditions on these updates and thus implementing a kind

of watches (i.e., displaying updates to certain locations) or watch-points (i.e., suspending

execution of the engine when certain updates are generated), which are useful for debugging

purposes. As an additional example, a plugin could provide syntax for declaring assertions

and invariants. Assertions have to be checked when the corresponding node is evaluated,

hence the plugin would also implement the Interpreter extension to give semantics to asser-

tions. In contrast, invariants have to be checked at each step (not when a particular rule is

executed), for example immediately before applying updates: thus, the plugin would hook

on the FireUpdateSet extension point to check that the declared invariants really hold in

each state.

As we mentioned earlier, we have used a variant of control state ASMs to present a high-

level specification of the CoreASM engine. Recalling the definition of control state ASMs

from Section 2.3, a control state ASM is an ASM whose rules are all of the form presented

in Figure 2.1.

To model the CoreASM engine, we introduce a variation of control state ASMs, called

an Extensible Control State ASM, which is a control state ASM with an additional (and

potentially dynamic) set of extension point plugins contributing supplementary rules that

are executed before the machine switches to a new state (i.e. before ctl state gets a new

value).

Extensible control state ASMs are pictured with almost the same control state diagrams

as shown in Figure 2.1. The difference is that in EFSM diagrams, the transition with an

extension point is marked with a small diamond;13 see Figure 5.2(a) for an example. Rules

of extensible control state ASMs are formulated in textual form by a set of Extensible Finite

State Machine (EFSM) rules, where EFSM is defined as follows:

13In order not to confuse the reader, we have omitted the diamond from our diagrams. However, this
should not be a concern since the extension points are always on the transitions leading to control states.

CHAPTER 5. COREASM: THE KERNEL 95

EFSM

EFSM(i, if cond then rule, j) ≡
if ctl state = i and cond then

rule seq Proceed(i, j)

Proceed(i, j) ≡
seq

forall p ∈ extensionPointPlugins do

marked(p) := isPluginRegisteredForTransition(p, i, j)

seq

iterate

let eps = {p | p ∈ extensionPointPlugins with marked(p)} in

choose p′ ∈ eps with ∀p′′ ∈ eps holds priority(p′) ≥ priority(p′′) do

marked(p′) := false

let R = pluginExtensionRule(p′) in

R(i, j)

next

ctl state := j

where

priority(p) ≡ pluginCallPriority(p, i, j)

An EFSM rule, instead of updating the control state of the machine in parallel with the

execution of the transition rule, first executes the transition rule, then iterates over all the

extension point plugins (according to their priority) and one by one executes their extension

rules before switching the control state of the machine to a new state.14

As an example, the extensible control state ASM of Figure 5.2(a) can be executed

with a set of extension point plugins {p1, p2} contributing rules PRule1 and PRule2 which

extend the control state of the machine (during its execution) to the control state ASM of

Figure 5.2(b).

The following functions are defined on extension point plugins:

• isPluginRegisteredForTransition : Plugin × EngineMode × EngineMode 7→ Boolean

holds true if the given plugin is registered to extend the behavior of the transition be-

tween the two given engine modes.

14If two plugins have the same call priority, their rules will be executed in a non-deterministic order.

CHAPTER 5. COREASM: THE KERNEL 96

i rulecond j

(a)

i rulecond j

PRule2PRule1

(b)

Figure 5.2: (a) An extensible control state ASM and (b) one of its possible extensions

• pluginExtensionRule : Plugin 7→ Rule

returns the behavior of the plugin on extension points it is registered for.

• pluginCallPriority : Plugin × EngineMode × EngineMode 7→ Number

is the call priority of the plugin on the extension point between the two engine modes.

Zero (0) is the lowest priority and 100 is the highest call priority. The engine will

consider this priority when calling plugins at extension point transitions. Default call

priority is 50.

The Signature and IO plugins from the standard CoreASM library, among others, imple-

ment the Extension Point interface to extend the control state ASM of the engine. We will

look into these plugins in more detail in sections 6.4.1 and 6.4.3.

5.5.6 Plugin Service Interface

In many cases, there is a legitimate need for the environment of the CoreASM engine (e.g., the

GUI of a simulator or of a debugger) to interact directly with some plugins. To support this

interaction, the CoreASM extensibility framework introduces the concept of a Plugin Service

Interface through which plugins can expose part of their functionality to the environment

of the engine.

pluginServiceInterface : Plugin 7→ PluginServiceInterface

The Plugin Service Interface allows CoreASM plugins to define and provide their own

interfaces to the environment. Applications utilizing the engine can access these interfaces

CHAPTER 5. COREASM: THE KERNEL 97

through Control API and directly interact with such plugins. As an example, the IO Plugin

provides its own interface to expose the output of its print rules to the environment of the

engine (see Section 6.4.3). A GUI for the engine, for example, can utilize this interface to

obtain the printed output and display it in a console window.

As each plugin exposes different functionalities, users of the Plugin Service Interface have

to know in advance what to expect from a specific plugin. This requirement is in keeping

with the assumption that the environment will access specific services from a specific plugin,

as in the case of print rules.

5.5.7 Plugin Background

We model CoreASM plugins by elements of a domain Plugin. In addition to the special-

purpose functions mentioned in this chapter, the following functions define a general inter-

face for all plugins:

• pluginName : Plugin 7→ Name

returns the unique name of a plugin. The engine cannot load two plugins that share

the same name.

• pluginVersion : Plugin 7→ Version

returns the version information of the given plugin.

• pluginDependencySet : Plugin 7→ Set(Name × Version)

is a set of the names and minimum required version of all the plugins that this plugin

depends on.

• pluginLoadPriority : Plugin 7→ Number

returns the suggested loading priority of this plugin. Zero (0) is the lowest priority and

100 is the highest loading priority. The engine will consider this priority when loading

plugins. All plugins with the same priority level will be loaded in a non-deterministic

order.

• pluginInitRule : Plugin 7→ Rule

provides an ASM rule that initializes the plugin. This rule is called when the plugin

is loaded by the engine; see the LoadPlugin rule on page 91.

CHAPTER 5. COREASM: THE KERNEL 98

For convenience, CoreASM allows plugins to be packaged together in one plugin, called a

package plugin. For example, a set of standard CoreASM plugins (such as sets, numbers,

and lists) can be packed in package plugin called the “Standard Plugin”. If a plugin p is a

package plugin, the value of isPackagePlugin(p) holds true and enclosedPlugins(p) returns

the set of all the plugins enclosed in p.

Chapter 6

CoreASM: The Plugins

Most of the functionalities of CoreASM and its language constructs are provided through

plugins to the CoreASM kernel. In this chapter we present the specification of those plugins

that are currently available as part the CoreASM project. Most of these plugins are part of

the standard library of CoreASM and can be loaded by simply loading the Standard package

plugin.

Here, we divide the plugins into four categories: plugins that extend the CoreASM

language by introducing new rule constructs (Section 6.1), plugins that provide the primitive

data types such as numbers and character strings (Section 6.2), plugins that offer more

complex data structures as collections of other elements (Section 6.3), and lastly, auxiliary

plugins that extend the language and the engine with practically useful constructs and

functionalities such as input/output mechanisms and scheduling policies (Section 6.4). The

final section of this chapter introduces a special plugin, called JASMine, that allows access

to Java objects and classes from CoreASM specifications.

Notation

Throughout this chapter, we use the pattern-action notation of Section 5.2.1 to formally

define rule constructs, operators, and expression forms. In addition, we use the notation

foo: A -> B

in the description of a plugin p, denoting the extension of the vocabulary of the CoreASM

state by plugin p through addition of a new Function element fooFunction, with the following

99

CHAPTER 6. COREASM: THE PLUGINS 100

specification:
fooFunction ∈ FunctionElement

(“foo”, fooFunction) ∈ pluginFunctions(p)

signature(fooFunction) ≡ 〈“A”, “B”〉

6.1 Standard Rule Constructs

Abstract state machines come with a handful of standard control structures or transition

rules (see Section 2.1.3). The most basic ASM rules (assignment, import, and skip) are

defined in the kernel of the CoreASM engine as explained in Section 5.2.3. In this section,

we extend the parser and the interpreter of the CoreASM engine through a number of rule

plugins that provide the syntax and the semantics of standard and commonly-used ASM

rule forms. The result of evaluating each rule, as we explained earlier, will be a multiset of

update instructions that becomes the underlying value for the corresponding rule node in

the parse tree.

We initiate by presenting rule plugins for all the rule forms defined for basic ASMs; we

will then introduce plugins providing Turbo ASMs rule forms.

6.1.1 Block Rule Plugin

The most fundamental control structure in ASM is the block-rule, specified as follows:1

Block Rule

L {λ1
e
r . . . λn

e
r } M → choose i ∈ [1..n] with ¬evaluated(λi)

pos := λi

ifnone

[[pos]] := (undef,
⋃
i∈[1..n] updates(λi), undef)

Here, all the rules in a block are evaluated in an unspecified order, with the final result

being the multiset-union of all the update instructions produced by the various rules in the

block.

1We provide here a rule for an n-elements block, whereas one for a two-elements block would suffice.
Notice also that the same rule could be used for the alternative syntax R par Q, meaning that P and Q are
to be executed in parallel. Finally, also note that we are disregarding here the scope constructors provided
by the grammar—either relying on braces { } or on indentation to express nesting are common choices.

CHAPTER 6. COREASM: THE PLUGINS 101

6.1.2 Conditional Rule Plugin

Close in importance comes the conditional rule construct, or the if-then-else rule. We

accept a slightly extended syntax, where the guard is not restricted to be a formula (basically

a Boolean predicate, as per Definition 2.4.14 in [25]), but rather any expression that may

return true. This guarantees that plugins will be able to extend the set of allowable guards

if needed. Notice that this approach is conservative with respect to the standard definition,

given that formulae in the sense of [25] are indeed expressions supported by the Predicate

Logic plugin (Section 6.2.1) in the CoreASM standard library.

Conditional Rule

L if α
e
e then β

e
r M → pos := α

L if αv then β
e
r M → if v = truee then pos := β else [[pos]] := (undef, {||}, undef)

L if αv then βu M → [[pos]] := (undef, u, undef)

L if α
e
e then β

e
r else γ

e
r M → pos := α

L if αv then β
e
r else γ

e
r M → if v = truee then pos := β else pos := γ

L if αv then βu else γ
e
r M → [[pos]] := (undef, u, undef)

L if αv then β
e
r else γu M → [[pos]] := (undef, u, undef)

6.1.3 The let-rule Plugin

The let-rule construct allows the definition of environment (read-only) variables (also called

logical variables) which are not defined in the ASM state, but in a finite local environment.

Once defined, the value of a logical variable cannot be updated by a transition rule.

Let Rule

L let αx = β
e
e in γ

e
r M → pos := β

L let αx = βv in γ
e
r M → pos := γ

AddEnv(x, v)

L let αx = βv in γu M → RemoveEnv(x)

[[pos]] := (undef, u, undef)

In a let-rule of the form ‘let x = e in R’ the scope of the logical variable x is the rule R

but not the expression e.

CHAPTER 6. COREASM: THE PLUGINS 102

6.1.4 The extend-rule Plugin

The extend rule is a syntactical sugar that imports a new element and adds it to a uni-

verse (extends the universe) [25, Table 2.4]. The semantics of an extend-rule of the form

‘extend U with x do R’ is as follows: a new element is created and put in a logical variable

x, the given rule R is evaluated, and the result of the evaluation of the extend-rule will

be the union of the update multiset of its inner rule and a single update that adds the new

element to universe U .

ExtendRule

L extend α
e
e with βx doγ

e
r M → pos := α

L extend αv with βx doγ
e
r M → if isUniverse(v) then

pos := γ

let e = new(Element) in

AddEnv(x, e)

else

Error(‘Extending a non-universe.’)

L extend αv with βx doγu M → RemoveEnv(x)

let u′ = u ∪ {〈uniLoc(v, e), truee, updateAction〉} in

[[pos]] := (undef, u′, undef)

where

uniLoc(v, e) ≡ (name, 〈e〉) s.t. stateUniverse(state,name) = v

6.1.5 The choose-rule Plugin

The choose-rule has the form ‘choose x ∈ X with ϕ do R’ where X is a collection of

elements, ϕ is a Boolean expression and R is a rule. The semantics of the rule is execute

R with an arbitrary element x from X that satisfies ϕ. In CoreASM, we extend this rule

form by an optional ifnone clause that acts as an ‘else’ part: if no such element can be

found the ifnone rule will be evaluated. We present here a simple form of choose-rule,

with no additional condition on the chosen value and with an existing ifnone clause. A

more comprehensive semantic definition is provided in Appendix A.5.1.

CHAPTER 6. COREASM: THE PLUGINS 103

Choose Rule

L choose αx in β
e
e doγ

e
r ifnone δ

e
r M → pos := β

L choose αx in βv doγ
e
r ifnone δ

e
r M → if enumerable(v) then

let s = enumerate(v) in

if |s| > 0 then

choose t ∈ s do

AddEnv(x, t)

pos := γ

else

pos := δ

else

Error(‘Choosing from a non-enumerable.’)

L choose αx in βv doγu ifnone δ
e
r M → RemoveEnv(x)

[[pos]] := (undef, u, undef)

L choose αx in βv doγ
e
r ifnone δu M → [[pos]] := (undef, u, undef)

6.1.6 The forall-rule Plugin

The semantic definition of forall-rule is similar to that of choose-rule with the difference

that all the elements of the given enumerable element that satisfy the optional guard are

given a chance to be the free variable in the do-rule. Here, we present the semantics of forall-

rule with a guard. The semantics of forall with no guard is presented in Appendix A.5.2.

Forall Rule

L forall αx in β
e
e 1 with γ

e
e 2 doδ

e
r M → pos := β

[[pos]] := (undef, {||}, undef)

considered(β) := {}
L forall αx in βv1 with γ

e
e 2 doδ

e
r M → if enumerable(v1) then

let s = enumerate(v1)\considered(β) in

if |s| > 0 then

choose t ∈ s do

AddEnv(x, t)

considered(β) := considered(β) ∪ {t}
pos := γ

else

Error(‘Forall on a non-enumerable element’)

CHAPTER 6. COREASM: THE PLUGINS 104

L forall αx in βv1 with γv2 doδ
e
r M → if v2 = truee then

pos := δ

else

pos := β

RemoveEnv(x)

ClearTree(γ)

L forall αx in βv1 with γv2 doδu M → pos := β

RemoveEnv(x)

ClearTree(γ)

ClearTree(δ)

[[pos]] := (undef, updates(pos) ∪ u, undef)

Notice that considered is used to keep track of values already considered for assignment

to the free variable.

6.1.7 The case-rule Plugin

We present here the specification for a plugin implementing a parallel form of a switch case

rule. The syntax is similar to the one that is used in [118],2 but the semantics is quite

different. Instead of evaluating the first rule with a matching guard value, all the rules with

matching guard values will be evaluated in parallel. In essence, this parallel-case rule acts

as a block rule in which all child rules are guarded against a given value.

To evaluate this rule, the case condition will be evaluated first and then all the guards

will be evaluated in an unspecified order. Afterward, rules with a guard value equal to

the value of the case condition will be evaluated. Finally, the updates generated by the

matching cases are united to form the set of updates generated by the parallel-case rule.

Formally, the construct is defined as follows:

Case Rule

L case α
e
e of {λ1

e
e 1 : λ

′
1
e
r 1 . . .

λn
e
e n : λ

′
n
e
r n} M → pos := α

L case αv of {λ1
e
? 1 : λ

′
1
e
r 1 . . .

λn
e
? n : λ

′
n
e
r n} M →

choose i in [1..n] with ¬evaluated(λi)

pos := λi

2Here we use colons (:) instead of arrows (→).

CHAPTER 6. COREASM: THE PLUGINS 105

L case αv of {λ1v1 : λ
′
1
e
? 1 . . .

λnvn : λ
′
n
e
? n} M →

choose i in [1..n] with equal(v, vi) ∧ ¬evaluated(λ′i)

pos := λ′i

ifnone

[[pos]] := (undef,
⋃
i∈[1..n]∧equal(v,vi)

updates(λ′i), undef)

6.1.8 The TurboASM Plugin

Basic ASMs are further extended by operators for sequential composition and iteration

of ASMs, and also by parameterized submachines [25]. These extended ASMs are called

Turbo ASMs. Following the definitions of those operators, the TurboASM plugin provides

sequentiality and iteration rule forms, together with support for local state definitions and

constructs allowing rules to return values.

The seq-rule

Sequential composition of rules is facilitated by the seq-rule acting as an operator on rules.

According to [25, Def. 4.1.1], the semantics of ‘P seq Q’ is defined as the effect of first

executing P in the current state A, and then executing Q in the resulting state A + UP

where UP is the update set produced by P . If UP is inconsistent, the result of the sequence

composition will be UP .

Since we want to model the effect of evaluating the second rule in a sequence in the

state that would be produced by applying the updates produced by the first rule, we have

to “simulate” the application of the updates, without really modifying the current state.

This is obtained by using a stack of states, managed through three macros: PushState copies

the current state in the stack, PopState retrieves the state from the top of the stack (thus

discarding the current state), and Apply(u) applies the updates in the update set u to the

current state. Formal definitions for these macros are given in Appendix A.1. Based on

the intuitive understanding of these macros, the interpreter plugin for the seq-rule can be

specified as follows:

CHAPTER 6. COREASM: THE PLUGINS 106

SeqRule

L α
e
r 1 seq β

e
r 2 M → pos := α

L αu1 seq β
e
r 2 M → let uSet = Aggregate(u1) in

if isConsistent(uSet) ∧ aggregationConsistent(u1) then

PushState

Apply(uSet)

pos := β

else

[[pos]] := (undef, u1, undef)

L αu1 seq βu2 M → local uMset [uMset ← Compose(u1, u2)] in

PopState

[[pos]] := (undef, uMset, undef)

Before consistency of the update instructions produced by the first rule can be checked,

the resultant update instructions must be aggregated into regular updates. If both aggre-

gation consistency and update set consistency hold, the resultant update set is applied to

the current state producing a temporary state; otherwise the inconsistent update multiset

is returned. If the update instructions produced by the first rule are consistent, the second

rule is fired in the temporary state, resulting in the second update multiset. The first and

second update multisets must then be sequentially composed. The update multiset result-

ing from the sequential composition is the update multiset produced by the seq-rule in the

simulated machine.

In order to improve the readability of specifications, CoreASM provides the following

syntax for the sequential composition of rules, in which the next keyword is optional:

seq P next Q ≡ P seq Q

The iterate Rule

The iterate-rule repeatedly executes its body, until the update set produced is either empty

or inconsistent; at that point, the accumulated updates are computed. The resulting update

set can be inconsistent if the computation of the last step had produced an inconsistent set

of updates. The semantic definition is similar in principle to that of the seq-rule:

CHAPTER 6. COREASM: THE PLUGINS 107

Iterate Rule

L iterate α
e
r M → PushState

composedUpdates(pos) := {||}
pos := α

L iterate αu M → if u 6= {||} then

let uSet = Aggregate(u),

composed ← Compose(composedUpdates(pos), u) in

composedUpdates(pos) := composed

if aggregationConsistent(u) ∧ isConsistent(uSet) then

Apply(uSet)

ClearTree(α)

pos := α

else

PopState

[[pos]] := (undef, composed, undef)

else

PopState

[[pos]] := (undef, composedUpdates(pos), undef)

Notice here how iteration is carried on in a separate state, after saving the original one in

the stack. After the iteration is completed, the update instruction multisets are composed

into a single multiset of update instructions to be applied to the initial state. The initial

state is then restored from the stack, and the computed updates are assigned to the node.

Also, notice that after each step in the iteration, the entire subtree is cleared (i.e., the [[·]]
function of each node is set to undef), so that the computation of the next step can proceed

on a clean parse tree.

The while Rule

The non-standard while-rule can also be defined in a similar way. The semantics of a rule

‘while (cond) R’ is to iterate the execution of R as long as cond evaluates to true and

R does not produce an empty or inconsistent update set. Thus, the following equivalence

holds:

while (cond) R ≡ iterate if cond then R

Thus, the semantics of the while rule closely follows that of the iterate rule:

CHAPTER 6. COREASM: THE PLUGINS 108

While Rule

L while (α
e
e) βr M → PushState

composedUpdates(pos) := {||}
pos := α

L while (αv) β
e
r M → if v = truee then

pos := β

else

PopState

[[pos]] := (undef, composedUpdates(pos), undef)

L while (αv) βu M → if u 6= {||} then

let uSet = Aggregate(u),

composed ← Compose(composedUpdates(pos), u) in

composedUpdates(pos) := composed

if aggregationConsistent(u) ∧ isConsistent(uSet) then

Apply(uSet)

ClearTree(α)

ClearTree(β)

pos := α

else

PopState

[[pos]] := (undef, composed, undef)

else

PopState

[[pos]] := (undef, composedUpdates(pos), undef)

Notice that other choices for the semantics of while were also possible: for example, [25,

Example 4.1.4] presents a variant that does not terminate when the update set produced

by the rule is empty (their Example 4.1.2 is instead consistent with our definition).

More generally, both iterate and while could also be defined to terminate when the

update set contributed by the body of the rule does not modify the state. To our knowledge,

this semantics has not been explored and applied in practice.

Local State and Return Values

Local state is introduced in rules by a special syntax [25, Def. 4.1.5] which introduces local

state function names together with their initialization rules. Updates made to these special

CHAPTER 6. COREASM: THE PLUGINS 109

locations are then discarded before returning the final update set to the caller. In the same

spirit, return values are simulated by designating a special location in the state, and by

using the last update to that location as return value.

We sketch here only the basic idea of how local state and return values are handled.

In particular, we omit the details of how local state initialization is performed, based on

the observation that a declaration of local state with initialization can be transformed into

a declaration without initialization followed by an explicit sequential composition of an

assignment and the main rule.

Local Rule

L local λ1x1 . . .
λnxn in α

e
r M → pos := α

L local λ1x1 . . .
λnxn in αu M → [[pos]] := (undef, u	 {x1, . . . , xn}, value(α))

where the 	 operator is defined as follows:

U 	H = {〈l, v, a〉 ∈ U | namelc(l) 6∈ H}

A frequent and idiomatic use of Turbo ASMs is to compute functions by executing a

rule and then extracting a value from the resulting set of updates, rather than applying the

updates to the state. The semantics of the following Turbo ASM call with return values

l← R(a1, . . . , an)

is to replace every occurrence of a special variable result in the body of the rule R with l,

and call rule R [25, Def. 4.1.7]. The following pattern provides a formal semantics for this

rule form in CoreASM:

Return Result Rule

L α
e
l ← βx(λ1

e
? 1, . . . ,

λn
e
? n) M → if isRuleName(x) then

ReturnResultRuleCall(ruleValue(x), 〈λ1, . . . , λn〉, l)

The ReturnResultRuleCall routine, defined below, describes how calls to rules with the

special result location are handled in CoreASM.

CHAPTER 6. COREASM: THE PLUGINS 110

Turbo ASM Plugin

ReturnResultRuleCall(r, args, l) ≡
if workCopy(pos) = undef then

let params = concat(“result”, param(r)), args = concat(l, args) in

let b′ = CopyTreeSub(body(r), param(r), args) in

workCopy(pos) := b′

parent(b′) := pos

pos := b′

else

[[pos]] := (undef, updates(workCopy(pos)), value(workCopy(pos)))

workCopy(pos) := undef

The syntax provided above, however, is not particularly practical, as the computation

is restricted to be a statement assigning a value to a given identifier, and so cannot be used

inside a complex expression. For example, one has to write

x← R(a1, . . . , an)

y ← Q(b1, . . . , bm)

seq

z := x+ y

instead of the more natural

z := R(a1, . . . , an) +Q(b1, . . . , bm)

Hence, we propose here an alternative syntax and semantics of the form

return e in R

in which e is an expression and R is a rule. The semantics of this construct is to execute R

in the current state A and if the resulting update multiset is consistent, evaluate e in the

state A+UR (where UR is the updates produced by R) and return the value of e, discarding

UR. We formally describe this semantics in the following rules:

CHAPTER 6. COREASM: THE PLUGINS 111

ReturnRule

L return α
e
e in βr M → pos := β

L return α
e
e in βu M → let uSet = Aggregate(u) in

if isConsistent(uSet) ∧ aggregationConsistent(u) then

PushState

Apply(uSet)

pos := α

else

[[pos]] := (undef, {||}, undefe)

L return αv in βu M → PopState

[[pos]] := (undef, {||}, v)

In this construct, the rule r is executed first; the return expression is evaluated in the

state obtained by provisionally applying the updates from r to the current state, and the

resulting value is returned, while the updates and the provisional state itself are discarded.

6.2 Primitive Data Types

In this section we introduce those plugins that extend the CoreASM engine with backgrounds

of primitive data types, basically numbers and character strings. We also include in this

section the Predicate Logic plugin that offers Boolean operators defined on Boolean elements

introduced in the CoreASM kernel.

6.2.1 The Predicate Logic Plugin

The Predicate Logic plugin provides operators implementing a Boolean algebra. Since the

corresponding background is already provided by the kernel, this plugin extends only the

parser and the interpreter of the CoreASM engine to provide the standard Boolean operators

together with the universal and the existential quantifiers.

The only unary operator provided by this plugin is the negation operator: not. The

semantics of this operator is very simple and is formally defined by the following rule:

CHAPTER 6. COREASM: THE PLUGINS 112

Predicate Logic Plugin: not

L not α
e
? M

[850]
→ if ¬evaluated(α) then

pos := α

else

if isBoolean(value(α)) then

if value(α) = truee then

[[pos]] := (undef, undef, falsee)

else

[[pos]] := (undef, undef, truee)

The Predicate Logic plugin also provides the standard binary operators and, or, xor,

and implies, together with the not-equality operator !=. As an example, we present here

the semantic definition of the logical implication operator:

Predicate Logic Plugin: implies

L α
e
? implies β

e
? M

[375]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

if isBoolean(value(α)) ∧ isBoolean(value(β)) then

if ((value(α) = falsee) ∨ (value(β) = truee)) then

[[pos]] := (undef, undef, truee)

else

[[pos]] := (undef, undef, falsee)

In addition, the Predicate Logic plugin also provides the membership operator ‘∈’. If

the operand on the right hand side (rhs) is an enumerable, this operator returns true if that

enumerable includes the operand on the left hand side (lhs). We have:

Predicate Logic Plugin: memberof

L α
e
? memberof β

e
? M

[550]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

if enumerable(value(α)) then

if value(β) ∈ enumerate(value(α)) then

[[pos]] := (undef, undef, truee)

else

[[pos]] := (undef, undef, falsee)

CHAPTER 6. COREASM: THE PLUGINS 113

The formal definition of other operators is available in Appendix A.5.3.

Two logical quantifiers ∃ and ∀ are also provided by the Predicate Logic plugin with the

following syntax
exists x in X with ϕ

forall x in X holds ϕ

in which X is an enumerable, ϕ is a Boolean predicate and the scope of x is limited to ϕ.

We present here the semantic definition of the existential quantifier. The definition of the

universal quantifier is very similar and is presented in Appendix A.5.3. Notice again the use

of the considered function to keep track of the elements that we considered so far.

Predicate Logic Plugin: exists

L existsαx in β
e
e with γ

e
e M → pos := β

considered(β) := {}
L existsαx in βv with γ

e
e M → if enumerable(v) then

let s = enumerate(v)\considered(β) in

if |s| > 0 then

choose t ∈ s do

AddEnv(x, t)

considered(β) := considered(β) ∪ {t}
pos := γ

else

[[pos]] := (undef, undef, falsee)

else

Error(‘Cannot enumerate a non-enumerable element’)

L existsαx in βv with γv M → if (value(γ) = truee) then

[[pos]] := (undef, undef, truee)

else

pos := β

RemoveEnv(x)

ClearTree(γ)

CHAPTER 6. COREASM: THE PLUGINS 114

6.2.2 The Number Plugin

The Number plugin extends the abstract storage, the parser, and the interpreter of the

CoreASM engine to provide the Number background, representing the domain of Real num-

bers R, together with necessary functions and operators needed to work with both inte-

ger and real numbers. The background of Number elements is defined as numberBkg ∈
BackgroundElement; we have

name(numberBkg) = “NUMBER”

newValue(numberBkg) = zero

Number elements are values of the domain NumberElement. We have

∀ne ∈ NumberElement memberue(numberBkg, n) = true

We define the following functions to provide a mapping from Number elements to the

actual numeric values they represent and vice versa:

numberElement : R 7→ NumberElement

numericValue : NumberElement 7→ R

Finally, the equality of two Number elements is defined as the equality of the numeric

values they represent (see also Section 5.1):

∀ne′ ∈ NumberElement equalNumber(ne, ne′) ≡ numericValue(ne) = numericValue(ne′)

Operators

The Number plugin provides the following numeric operators:

• “+” : the addition binary operator (precedence level: 750)

• “-” : the subtraction binary operator (precedence level: 750)

• “-” : the negation unary operator (precedence level: 850)

• “*” : the multiplication binary operator (precedence level: 800)

• “/” : the division binary operator (precedence level: 800)

• “div” : the integer division binary operator (precedence level: 800)

a div b ≡ floor(a/b)

CHAPTER 6. COREASM: THE PLUGINS 115

• “%” : the modulus (remainder) binary operator (precedence level: 800)

a % b ≡ floor(a/b)

• “ˆ” : the exponential binary operator (precedence level: 820)

We present here the semantics of the addition operator (i.e., “+”). The same approach is

used to define the rest of the above operators.

Number Plugin

L α
e
? + β

e
? M

[750]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

if l ∈ NumberElement ∧ r ∈ NumberElement then

[[pos]] := (undef, undef, result)

where

result ≡ numberElement(numericValue(l) + numericValue(r))

l ≡ value(α)

r ≡ value(β)

The Number plugin also provides the following relational operators defined on Number

elements:

• “>” : greater-than binary operator (precedence level: 650)

• “>=” : greater-than or equal-to binary operator (precedence level: 650)

• “<” : less-than binary operator (precedence level: 650)

• “<=” : less-than or equal-to binary operator (precedence level: 650)

The greater-than operator is defined as follows:

CHAPTER 6. COREASM: THE PLUGINS 116

Number Plugin

L α
e
? > β

e
? M

[650]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

if l ∈ NumberElement ∧ r ∈ NumberElement then

[[pos]] := (undef, undef, result)

else

Error(‘Both operands must be numbers.’)

where

result ≡ booleanValue(numericValue(l) > numericValue(r))

l ≡ value(α)

r ≡ value(β)

The semantics of the other three relational operators are also defined in a similar fashion.

Functions

The Number plugin extends the vocabulary of the state with the following two functions:

• infinity: -> NUMBER

returns the positive infinity.

• toNumber: ELEMENT -> NUMBER

if possible, maps the given element to a Number element it represents.

Number Classes

The Number plugin provides the user with the following predicates in order to identify

whether a number belongs to a particular numerical class:

• isNaturalNumber: NUMBER -> BOOLEAN

fGetValue(isNaturalNumberFunction, 〈n〉) =

{
truee, if numericValue(n) ∈ N;

falsee, otherwise.
.

• isIntegerNumber: NUMBER -> BOOLEAN

fGetValue(isIntegerNumberFunction, 〈n〉) =

{
truee, if numericValue(n) ∈ Z;

falsee, otherwise.
.

CHAPTER 6. COREASM: THE PLUGINS 117

• isRealNumber: NUMBER -> BOOLEAN

fGetValue(isRealNumberFunction, 〈n〉) =

{
truee, if numericValue(n) ∈ R;

falsee, otherwise.
.

Number Characteristics

To identify the characteristics of numbers, the following predicates are defined on all Number

elements:

• isEvenNumber: NUMBER -> BOOLEAN

fGetValue(isEvenNumberFunction, 〈n〉) ={
truee, if numericValue(n) ∈ Z ∧ numericValue(n)%2 = 0;

falsee, otherwise.
.

• isOddNumber: NUMBER -> BOOLEAN

fGetValue(isOddNumberFunction, 〈n〉) ={
truee, if numericValue(n) ∈ Z ∧ numericValue(n)%2 = 1;

falsee, otherwise.
.

Number Ranges

Number plugin also provides the NumberRange background which is the background of

number ranges of the form [a..b : s] where a and b are respectively the starting and the

ending values of the range (inclusive) and s is the step of the range. The background of

Number Range elements is provided by numberRangeBkg ∈ BackgroundElement, where

name(numberRangeBkg) = “NUMBER RANGE”

newValue(numberRangeBkg) = [0..1 : 1]

The following functions are defined on Number Range elements (see Section 5.1):

• bkg(r) = “NumberRange” where r ∈ NumberRange.

• rangeFrom : NumberRange 7→ Number

holds the lower boundary of the Number Range element.

• rangeTo : NumberRange 7→ Number

holds the upper boundary of the Number Range element.

CHAPTER 6. COREASM: THE PLUGINS 118

• rangeStep : NumberRange 7→ Number

holds the range step.

• ∀nr1, nr2 ∈ NumberRange equalNumberRange(nr1, nr2) ≡
rangeFrom(nr1) = rangeFrom(nr2)

∧ rangeTo(nr1) = rangeTo(nr2)

∧ rangeStep(nr1) = rangeStep(nr2)

• ∀r ∈ NumberRange, enumerable(r)

All Number Range elements are enumerable.

• enumerateIntegerRange : NumberRange 7→ List(Element)

provides a collection of Elements representing the numbers that are included in the

given Number Range.

enumerate(r) ≡ [x | x = rangeFrom(r) + i ∗ rangeStep(r) ∧ i ∈ N ∧ x ≤ rangeTo(r)]

The following expression form creates a Number Range element:

Integer Range

L [α
e
? ..β

e
? : γ

e
?] M → choose λ ∈ {α, β, γ} with ¬evaluated(λ)

pos := λ

ifnone

if ∀v ∈ {l, r, s} isNumber(v) then

let newRange = newValue(numberRangeBack) in

rangeFrom(newRange) := numericValue(l)

rangeTo(newRange) := numericValue(r)

rangeStep(newRange) := numericValue(s)

[[pos]] := (undef, undef,newRange)

else

Error(‘Both operands must be numbers.’)

where

l ≡ value(α)

r ≡ value(β)

s ≡ value(γ)

In the above form, the step of a range (γ) can be omitted in which case it would be

considered to be 1.

CHAPTER 6. COREASM: THE PLUGINS 119

6.2.3 The String Plugin

The String plugin provides all that is needed to work with character strings as elements

of the CoreASM state. The background of String elements is provided by stringBack ∈
BackgroundElement; we have

name(stringBack) = “STRING”

newValue(stringBack) = emptyString

We model String elements as values of a domain StringElement. The following functions

are defined on String elements:

• stringValue : StringElement 7→ List(Character)

for every String element returns the sequence of characters in that string.

• stringElement : Element 7→ StringElement

maps every element to a String representation of that element. The exact semantics

of this function depends on the Element itself and it is left abstract here.

• concatString : StringElement × StringElement 7→ StringElement

concatenates two string elements into one. For all s1, s2 ∈ StringElement, we have

concatString(s1, s2) ≡ concat(stringValue(s1), stringValue(s2))

For every s ∈ StringElement we have (see Section 5.1):

• bkg(s) = “StringElement”

• ∀s′ ∈ StringElement equalString(s, s′) ≡ stringValue(s) = stringValue(s′)

• ∀s ∈ StringElement, enumerable(s)

All String elements are enumerable.

• enumerateString(s) = l ∈ List(StringElement)

where l is a list of String elements representing the characters of s.

CHAPTER 6. COREASM: THE PLUGINS 120

Operators

The String plugin provides the following concatenation operator on String elements:

String Plugin

L α
e
? + β

e
? M

[750]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

if l ∈ StringElement ∧ r ∈ StringElement then

[[pos]] := (undef, undef, concatString(l, r))

where

l ≡ value(α)

r ≡ value(β)

Functions

The String plugin extends the CoreASM state with the following two functions defined on

String elements:

• toString: ELEMENT -> STRING

returns a string representation of the given element. We have,

∀e ∈ Element valuefe(toStringFunction, 〈e〉) = stringElement(e)

• strlen: STRING -> NUMBER

returns the length of the given string. For all s ∈ StringElement we have,

valuefe(strlenFunction, 〈s〉) = numberElement(|stringValue(s)|)

The String plugin relies on the availability of the Number background provided by the

Number plugin.

6.3 Collections

We use the term collection to refer to the most abstract concept of a grouping of zero or

more elements with potential multiplicities of more than one. In this section, we introduce

those CoreASM plugins that offer backgrounds implementing different kinds of collections.

The most liberal implementation of collections in CoreASM is provided by the Bag plugin

(Section 6.3.3). Other plugins, such as the Set plugin (Section 6.3.2) and the List plugin

CHAPTER 6. COREASM: THE PLUGINS 121

(Section 6.3.4), offer more specialized forms of collections. The Collection plugin, introduced

in Section 6.3.1, provides the foundation for collection backgrounds in CoreASM.

6.3.1 The Collection Plugin

The Collection plugin provides a cornerstone for collections in CoreASM, offering a set of

common functions and rule forms defined on collections. However, each specific collection

background (e.g., list or set) is provided separately by its corresponding plugin.

Modifiable Collections

The Collection plugin introduces a modifiable-collection attribute on elements, defined by

the following function:

isModifiableCollection : Element 7→ Boolean

The modifiability attribute set on an element indicates that generic collection modifications

(at this point limited to addition and removal of an element) can be applied to the element.

Plugins that provide modifiable collection elements (such as sets and list) must also provide

the semantics of such modifications through two functions of the form

computeAddUpdatebkg : Location × Element 7→ Multiset(Update)

computeRemoveUpdatebkg : Location × Element 7→ Multiset(Update)

where bkg is the collection background the plugin provides. These two functions are expected

to produce proper update instructions to add/remove elements to/from locations holding

collection elements.

Rule Forms

The Collection plugin extends the CoreASM language with two rule forms for adding and

removing elements to and from collections. As explained above, the semantics of these rule

forms relies on the add and remove semantics provided by the plugin of each collection

element.

CHAPTER 6. COREASM: THE PLUGINS 122

Collection Plugin: Add-To

L add α
e
e to β

e
l M → choose τ ∈ {α, β} with ¬evaluated(τ)

pos := τ

ifnone

let c = value(β) in

if isModifiableCollection(c) then

let u = computeAddUpdatebkg(c)
(loc(β), value(α)) in

[[pos]] := (undef, u, undef)

Collection Plugin: Remove-From

L remove α
e
e from β

e
l M → choose τ ∈ {α, β} with ¬evaluated(τ)

pos := τ

ifnone

let c = value(β) in

if isModifiableCollection(c) then

let u = computeRemoveUpdatebkg(c)
(loc(β), value(α)) in

[[pos]] := (undef, u, undef)

Functions

The Collection plugin also provides the following functions defined on enumerable elements:

• foldl: ELEMENT * FUNCTION * ELEMENT -> ELEMENT

which implements the following function:

foldl([x1, . . . , xn], f, i) ≡ f(xn, f(xn−1, . . . f(x1, i))) . . .)

• foldr: ELEMENT * FUNCTION * ELEMENT -> ELEMENT

which implements the following function:

foldr([x1, . . . , xn], f, i) ≡ f(x1, f(x2, . . . f(xn, i))) . . .)

• fold: ELEMENT * FUNCTION * ELEMENT -> ELEMENT

is the same as foldr.

• fold: ELEMENT * FUNCTION -> ELEMENT

which implements the following function:

map([x1, . . . , xn], f) ≡ [f(x1), f(x2), . . . f(xn)]

CHAPTER 6. COREASM: THE PLUGINS 123

• filter: ELEMENT * FUNCTION -> ELEMENT

which implements the following function:

filter({x1, . . . , xn}, f) ≡ {xi | f(xi)}
filter([x1, . . . , xn], f) ≡ [xi | f(xi)]

The Collection plugin depends on the availability of the Number background provided by

the Number plugin.

6.3.2 The Set Plugin

The Set plugin extends the CoreASM state by providing the background of sets with its

operations and functions.3 The background of Set elements is provided by setBack ∈
BackgroundElement; we have

name(setBack) = “SET”

newValue(setBack) = emptySet

Set elements are values of the domain SetElement. The following functions define the

interface of Set elements by providing a mapping between Set elements and the actual set

of elements they represent:

• setElement : Set(Element) 7→ SetElement

for every set of elements, returns a Set element representation of that set.

• setMembers : SetElement 7→ Set(Element)

for every Set element, returns the set of its members.

For all s ∈ SetElement we have:

• bkg(s) := “Set”

• ∀s′ ∈ SetElement equalSet(s, s′) ≡ setMembers(s) = setMembers(s′)

• enumerable(s)

All Set elements are enumerable.

3This section is based on Mashaal Memon’s M.Sc. work previously published in [99] with improvements
and modifications.

CHAPTER 6. COREASM: THE PLUGINS 124

• enumerateSet(s) = setMembers(s).

• s ∈ FunctionElement

All Set elements also behave as functions.

• classfe(s) = static

• ∀e ∈ Element valuefe(s, 〈e〉) ≡ booleanValue(e ∈ setMembers(s))

To facilitate partial updates to sets, the add/to-rule and remove/from-rule are sup-

ported by the Set plugin (see Section 6.3.1). We have

∀s ∈ SetElement isModifiableCollection(s)

The single addition of an element from a set, or the add/to-rule, results in an instruction

to carry out a setAddAction action; the removal of a single element from a set, or the

remove/from-rule, results in an instruction to perform a setRemoveAction action. For all

loc ∈ Location and value ∈ Element, we have

computeAddUpdateSet(loc, value) ≡ {|〈loc, value, setAddAction〉|}
computeRemoveUpdateSet(loc, value) ≡ {|〈loc, value, setRemoveAction〉|}

Notice that no checks are made to ensure that the value of the location is in fact a set.

This is deferred to the aggregation phase.

Set Enumeration and Comprehension

The set plugin provides two methods of set description: namely set enumeration and set

comprehension. With the former, one is able to explicitly describe the contents of a set by

listing its individual elements:

Set Plugin: Set Enumeration

L { λ1
e
? 1, . . . ,

λn
e
? n } M → choose i ∈ [1..n] with ¬evaluated(λi)

pos := λi

ifnone

let s = {value(λi) | i ∈ [1..n]} in

[[pos]] := (undef, undef, setElement(s))

The latter allows one to describe set contents algorithmically. There are many accepted

syntactic and semantic variants; the Set plugin provides three variants which we believe

CHAPTER 6. COREASM: THE PLUGINS 125

encompass a wide range of algorithmically expressible finite sets. Given a set comprehension

expression of the form

{x0 is exp0 | x1 in exp1, . . . , xn in expn with expg}

we refer to the free variable x0 as the specifier variable, the expression exp0 as the speci-

fier expression, the free variables x1 . . . xn as the constrainer variables, exp1 . . . expn as the

constrainer expression, and expg as the guard.

The simplest variant of set comprehension binds the specifier variable to a constrainer

expression producing a single enumerable element:

Set Plugin: Set Comprehension

L { αx | β1x1 in γ1
e
? 1} M →

if x = x1 then

if ¬evaluated(γ1) then

pos := γ1

else

if enumerable(value(γ1)) then

let s = {m | m ∈ enumerate(value(γ1))} in

[[pos]] := (undef, undef, setElement(s))

else

Error(‘Free variables may only be bound to enumerable elements’)

else

Error(‘Constrainer variable must have same name as specifier variable’)

Notice how we use the setElement(s) mapping to get a Set element representation of the

set s. This variant would support set comprehension expressions of the form {x | x in X}
where X is an enumerable element.

A slightly more complex version supports set comprehensions of the form

{x | x in X, y1 in Y1, . . . , yn in Yn with ϕ}

where X and Yi’s are enumerable elements and x and yi’s are free variables in ϕ. This form

binds multiple constrainer variables to multiple constrainer expressions, and adds more fine

grained control with a guard. The semantic definition of this form involves creating tempo-

rary logical variables for each constrainer variable and iterating their values over the values

offered by their corresponding constrainer expressions and evaluating the guard for each

CHAPTER 6. COREASM: THE PLUGINS 126

combination of these values. A formal semantic definition is provided in Appendix A.5.4.

This variant supports set comprehension expressions such as:

{x | x in X with x > z}
{x | x in {1, 3, 5}, z in {2, 4, 6} with (x+ z) in {3, 4, 5, 6, 7, 8, 9, 10}}

Finally the most complex variant of the form

{x is e | x1 in X1, . . . , xn in Xn with ϕ}

in which e is an expression, ϕ is a guard and x1 to xn are free variables in both e and

ϕ, allows the specifier to be defined in terms of a specifier expression. In this form the

constrainer variables are themselves expected to be present in the specifier expression, and

this expression is re-evaluated for all possible combinations of the contrainer variables.

Similar to the previous form, the semantics definition of this form also involves creating

logical variables for each constrainer variable, evaluating the guard for each combination of

their values, and additionally evaluating the specifier expression for each combination that

satisfies the guard. The semantics of this variation is also available in Appendix A.5.4.

The last variation is the most expressive form as it allows the user to create sets using

a function on constrainer variable values rather than simply being bound to some subset of

a single constrainer expression. Here are two examples of defining sets using this form:

{x is {a, b, c} | a in 1..100, b in 1, 2, 3, c in aSet}
{x is y ∗ z | y in {1, 3, 5}, z in {2, 4, 6} with (y + z) in {3, 4, 5, 6, 7, 8, 9, 10}}

Operators

The Set plugin extends the vocabulary of the CoreASM engine by providing the following

operators: ⊂, ∪, ∩, and \ (set difference). Here, we present the formal definition of ⊂ and

∪ and refer to Appendix A.5.4 for the definition of the other two operators.

Set Plugin : Operators

L α
e
? ⊂ β

e
? M

[700]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

if enumerable(value(α)) ∧ enumerable(value(β)) then

let lv = enumerate(value(α)), rv = enumerate(value(β)) in

[[pos]] := (undef, undef, (∀e ∈ lv e ∈ rv))

CHAPTER 6. COREASM: THE PLUGINS 127

L α
e
? ∩ β

e
? M

[675]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

if SetElement(l) ∧ SetElement(r) then

let l = value(α), r = value(β) in

let v = {x | x ∈ enumerate(l) ∧ x ∈ enumerate(r)} in

[[pos]] := (undef, undef, setElement(v))

Notice that the evaluation of an operation results in a new Set element rather than

modification of an existing Set element.

Aggregation Algorithm

The Set plugin is responsible for the aggregation of update instructions with setAddAction

and setRemoveAction that add or remove elements to and from Set elements. The result

of aggregation of set updates on a location will be a regular update assigning a new Set

element (representing all the changes) to that location.

For every location with a set partial update, the Set plugin first checks the consistency

of update instructions before performing the aggregation. The following requirements in-

formally define the consistency of set update instructions [99]:

• If there is a regular update to a given location l along with partial updates:

– All regular updates to l may only result in a Set element.

– There cannot exist two regular updates to l resulting in two different values; this

is a typical consistency requirement of regular updates.

– The Set element S assigned by the regular update(s) on l must satisfy all the add

and remove update instructions to l; i.e., ∀〈l, va, setAddAction〉 ∈ updates, va ∈ S
and ∀〈l, vr, setRemoveAction〉 ∈ updates, vr 6∈ S.

• If there are only partial updates to a given location l:

– There cannot exist two update instructions adding and removing the same ele-

ment e to location l.

– The value of location l in the current state of the simulated machine must be a

Set element.

CHAPTER 6. COREASM: THE PLUGINS 128

The following rule defines the aggregation algorithm offered by the Set plugin; we have

aggregatorRule(setPlugin) ≡ @AggregateSet

Set Plugin

AggregateSet(uMset) ≡
local resultantUpdate in

seq

result := {}
next

forall l ∈ locsToAggregate do

if regularUpdatesExist then

if inconsistentRegularUpdates ∨ regularUpdateIsNotSet ∨ addRemoveConflictWithRU then

HandleInconsistentAggregation(l, uMset, setPlugin)

else

let resultantUpdate = GetRegularUpdate(l, uMset) in

add resultantUpdate to result

else

if addRemoveConflict ∨ setNotInLocation then

HandleInconsistentAggregation(l, uMset, setPlugin)

else

let resultantUpdate = BuildResultantUpdate(l, uMset) in

add resultantUpdate to result

where

locsToAggregate ≡ {l | 〈l, v, a〉 ∈ uMset ∧ a ∈ {setAddAction, setRemoveAction}}
regularUpdatesExist ≡ ∃〈l, v, updateAction〉 ∈ uMset

inconsistentRegularUpdates ≡ ∃〈l, v1, updateAction〉 ∈ uMset,

∃〈l, v2, updateAction〉 ∈ uMset, v1 6= v2

regularUpdateIsNotASet ≡ ∃〈l, v, updateAction〉 ∈ uMset, bkg(v) 6= “Set”

addRemoveConflictWithRU ≡ addConflictWithRU ∨ removeConflictWithRU

addConflictWithRU ≡ ∃〈l, vu, updateAction〉 ∈ uMset,

∃〈l, va, setAddAction〉 ∈ uMset, va 6∈ enumerate(vu)

removeConflictWithRU ≡ ∃〈l, vu, updateAction〉 ∈ uMset,

∃〈l, vr, setRemoveAction〉,∈ uMset, vr ∈ enumerate(vu)

addRemoveConflict ≡ ∃〈l, v, setAddAction〉 ∈ uMset,∃〈l, v, setRemoveAction〉 ∈ uMset

setNotInLocation ≡ bkg(getValue(l)) 6= “Set”

In the case where at least one regular update exists for a location, after checking the

CHAPTER 6. COREASM: THE PLUGINS 129

consistency of partial updates with the regular updates on that location, one of the regular

updates will be chosen as the result of the aggregation.

Set Plugin

GetRegularUpdate(loc, uMset) ≡
choose u ∈ uMset with uiLoc(u) = loc ∧ uiAction(u) = updateAction do

result := u

forall u ∈ uMset with uiLoc(u) = loc do

aggStatus(u, setPlugin) := successful

When there is no regular update for a location, all the partial updates are aggregated

into a regular update assigning a new Set element to the location resulting from the addition

and removal of elements from the value of the location in the current state.

Set Plugin

BuildResultantUpdate(l, uMset) ≡
local newSet [newSet := {}] in

seq

forall e ∈ enumerate(getValue(l)) do

if 6 ∃〈l, e, setRemoveAction〉 ∈ uMset then

add e to newSet

forall 〈l, v, setAddAction〉 ∈ uMset do

add v to newSet

next

result := 〈l, setElement(newSet), updateAction〉
forall u ∈ uMset with uiLoc(u) = l do

aggStatus(u, setPlugin) := successful

Composition Algorithm

The Set plugin provides the semantics of sequential composition of Set partial updates.

There are five cases to be considered:

1. If the location is not updated in the second step, all the updates of the first step are

carried forward.

2. If the location is not updated in the first step, all the updates of the second step are

carried forward.

CHAPTER 6. COREASM: THE PLUGINS 130

3. If there is a regular update on the location in the second step (i.e., a Set element

is assigned to the location in the second step), all the updates in the first step are

discarded and the updates of the second step are carried forward.

4. If there is a regular update on the location in the first step and there are partial updates

in the second step, the updates need to be aggregated into one regular update.

5. If there are only partial updates on the location in both the first and the second step,

those partial updates in the first step that are overridden by the updates in the second

step must be removed.

The Set composition algorithm, capturing the five cases above, is formally defined as follows:

Set Plugin

ComposeSet(uMset1, uMset2) ≡
seq

result := {||}
next

forall l ∈ locsAffected do

if locHasAddRemove(uMset1) ∧ ¬locUpdated(uMset2) then

forall ui ∈ uMset1 with uiLoc(ui) = l do

add ui to result

else if ¬locUpdated(uMset1) ∧ locHasAddRemove(uMset2) then

forall ui ∈ uMset2 with uiLoc(ui) = l do

add ui to result

else if locHasAddRemove(uMset2) ∧ locRegularUpdate(uMset2) then

forall ui ∈ uMset2 with uiLoc(ui) = l do

add ui to result

else if locHasAddRemove(uMset2) ∧ locRegularUpdate(uMset1) then

add SetAggregateLocation(l, uMset1, uMset2) to result

else if locHasAddRemove(uMset1) ∧ locHasAddRemove(uMset2) then

forall ui ∈ EradicateConflictingUpdates(l, uMset1, uMset2) do

add ui to result

CHAPTER 6. COREASM: THE PLUGINS 131

where

locsAffected ≡ {l1 | 〈l1, v, a〉 ∈ uMset1} ∪ {l2 | 〈l2, v, a〉 ∈ uMset2}
locHasAddRemove(uMset) ≡ ∃〈l, v, a〉 ∈ uMset, a ∈ {setAddAction, setRemoveAction}
locRegularUpdate(uMset) ≡ ∃〈l, v, a〉 ∈ uMset, a = updateAction

locUpdated(uMset) ≡ ∃〈l, v, a〉 ∈ uMset

In case (4), the regular update produced is created by aggregating the partial updates in

the second step, assuming that the location currently contains the value of the regular update

from the first step. The following rule formally defines the semantics of this aggregation.

Set Plugin

SetAggregateLocation(loc, uMset1, uMset2) ≡
return resultantUpdate in

local newSet [newSet := {}] in

seq

forall e ∈ enumerate(getLocRegularUpdateValue(uMset1))

if 6 ∃〈loc, e, setRemoveAction〉 ∈ uMset2 do

add e to newSet

forall 〈loc, v, setAddAction〉 ∈ uMset2 do

add v to newSet

next

resultantUpdate := 〈loc, setElement(newSet), updateAction〉
where

getLocRegularUpdateValue(uMset) ≡ v s.t. 〈loc, v, a〉 ∈ uMset ∧ a = updateAction

Partial update instructions occurring in a sequence may nullify one another. In case (5),

we remove the updates that fall into one of these categories:

• For any location, addition of an element e in the first step followed by the removal

of the same element e in the second step, clearly causes no change to the resulting

Set element. Update instructions containing both these opposing actions on the same

location are removed from the composed update multiset.

• For any location, removal of an element e in the first step is neutralized by the addition

of the same element e in the second step. Thus, such removal update instructions

should be excluded from the composed update multiset.

The following rule formally defines the composition behavior in case (5):

CHAPTER 6. COREASM: THE PLUGINS 132

Set Plugin

EradicateConflictingSetUpdates(loc, uMset1, uMset2) ≡
return remainingUpdates in

seq

remainingUpdates := {||}
next

forall v ∈ locValues do

if locValAct(uMset1, v, setAddAction) ∧ locValAct(uMset2, v, setRemoveAction) then

skip

else if locValAct(uMset1, v, setRemoveAction) ∧ locValAct(uMset2, v, setAddAction) then

forall ui ∈ {|〈loc, v, setAddAction〉 ∈ uMset2|} do

add ui to remainingUpdates

else

forall ui ∈ getAllLocValUpdates do

add ui to remainingUpdates

where

locValues ≡ {v1 | 〈loc, v1, a1〉 ∈ uMset1} ∪ {v2 | 〈loc, v2, a2〉 ∈ uMset2}
locValAct(uMset, v, a) ≡ ∃〈loc, v, a〉 ∈ uMset

getAllLocValUpdates ≡ {〈loc, v, a1〉 ∈ uMset1} ∪ {〈loc, v, a2〉 ∈ uMset2}

6.3.3 The Bag Plugin

The Bag plugin extends the CoreASM language with the background of finite Bags or mul-

tisets. The background of Bag elements (or Multiset elements) is defined by bagBack ∈
BackgroundElement; we have

name(bagBack) = “BAG”

newValue(bagBack) = emptyBag

We model Bag elements as values of a domain BagElement. The following functions

define the interface of Bag elements and provide a mapping between Bag elements and the

multisets of elements they represent:

• bagElement : Multiset(Element) 7→ BagElement

for every multiset of elements, returns a bag element representation of that multiset.

• bagElementf : (Element 7→ N) 7→ BagElement

CHAPTER 6. COREASM: THE PLUGINS 133

for every mapping of elements to positive integers (multiplicity function), returns a

bag element with the given multiplicity function.

• bagValue : BagElement 7→ Multiset(Element)

for every bag element, returns the multiset of elements that the bag represents.

• bagMultiplicity : BagElement 7→ (Element 7→ N)

for every bag element, returns the multiplicity function of the multiset it represents.

The value of this function is zero for all the elements that are not in the bag.

• bagDomain : BagElement 7→ Set(Element)

for every bag element, returns the set of all the elements that are in the bag.

For all b ∈ BagElement we have:

• bkg(b) := “Bag”.

• ∀b′ ∈ BagElement equalBag(b, b′) ≡
bagDomain(b) = bagDomain(b′)

∧ ∀e ∈ bagDomain(b) bagMultiplicity(b)(e) = bagMultiplicity(b′)(e)

• enumerable(b)

All bag elements are enumerable.

• enumerateBag(b) = bagValue(b).

• b ∈ FunctionElement

All bag elements also behave as functions.

• classfe(b) = static

• ∀e ∈ Element valuefe(b, 〈e〉) ≡ numberElement(bagMultiplicity(b)(e))

To facilitate partial updates of Bag elements, the add/to-rule and remove/from-rule

are supported by the Bag plugin (see Section 6.3.1). We have

∀b ∈ BagElement isModifiableCollection(b)

Since incremental updates on bags do not come with much constraints as for sets (due to

multiplicity of elements), instead of using different update actions for adding/removing ele-

ments to/from bags, Bag plugin uses a more general action, bagUpdateAction, with special

CHAPTER 6. COREASM: THE PLUGINS 134

values (elements) that also include the actions of adding, removing, or an ordered com-

bination of adding or removing of elements; the latter is useful in composing incremental

updates on bags:

computeAddUpdateBag(loc, value) ≡
{|〈loc, bagUpdateElement(“add”, value), bagUpdateAction〉|}

computeRemoveUpdateBag(loc, value) ≡
{|〈loc, bagUpdateElement(“remove”, value), bagUpdateAction〉|}

Expression Forms

The interpreter is extended with the following Bag enumeration forms:

Bag Plugin

L<< >> M → [[pos]] := (undef, undef, emptyBag)

L<< λ1
e
? 1, . . . ,

λn
e
? n >> M → choose i ∈ [1..n] with ¬evaluated(λi)

pos := λi

ifnone

let m = {|value(λi) | i ∈ [1..n]|} in

[[pos]] := (undef, undef, bagElement(m))

Various forms of bag comprehension similar in syntax and semantics to those of sets (see

Section 6.3.2) is also introduced by the Bag plugin.

Operators

Bag plugin provides the following four operators on Bag elements: ∩ (multiset intersection),

\ (multiset difference), ∪ (multiset union), and + (multiset join) as defined below:

Bag Plugin

L α
e
? ∩ β

e
? M

[675]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

let l = value(α), r = value(β) in

if BagElement(l) ∧BagElement(r) then

let f = {x 7→ y | x = (bagDomain(l) ∩ bagDomain(r))

∧ y = min(bagValue(l)(x), bagValue(r)(x))} in

[[pos]] := (undef, undef, bagElementf (f))

CHAPTER 6. COREASM: THE PLUGINS 135

L α
e
? \β

e
? M

[650]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

let l = value(α), r = value(β) in

if BagElement(l) ∧BagElement(r) then

let f = {x 7→ y | x ∈ bagDomain(l) ∪ bagDomain(r)

∧ y = max(0, bagValue(l)(x)− bagValue(r)(x))} in

[[pos]] := (undef, undef, bagElementf (f))

L α
e
? ∪ β

e
? M

[650]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

let l = value(α), r = value(β) in

if BagElement(l) ∧BagElement(r) then

let f = {x 7→ y | x ∈ bagDomain(l) ∪ bagDomain(r)

∧ y = max(bagValue(l)(x), bagValue(r)(x))} in

[[pos]] := (undef, undef, bagElementf (f))

L α
e
? + β

e
? M

[750]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

let l = value(α), r = value(β) in

if BagElement(l) ∧BagElement(r) then

let f = {x 7→ y | x ∈ bagDomain(l) ∪ bagDomain(r)

∧ y = bagValue(l)(x) + bagValue(r)(x)} in

[[pos]] := (undef, undef, bagElementf (f))

6.3.4 The List Plugin

The List plugin extends the CoreASM language providing the background of lists (sequence

of elements) with corresponding operators and rule forms. We denote the background of

List elements by listBkg ∈ BackgroundElement; we have

name(listBkg) = “LIST”

newValue(listBkg) = emptyList

List elements are values of the domain ListElement. The following functions define the

interface of list elements and provide a mapping between List elements and the sequence of

CHAPTER 6. COREASM: THE PLUGINS 136

elements they represent.

• listElement : List(Element) 7→ ListElement

returns a list element representing the given sequence of elements.

• listValue : ListElement 7→ List(Element)

returns the sequence of elements that are represented by the given list element,

• headle : ListElement 7→ Element

lastle : ListElement 7→ Element

return the first and last elements of the list, or undefe if the list is empty.

• taille : ListElement 7→ ListElement

returns the tail of the list excluding its first element, or an empty list if the list has

only one element.

• consle : Element × ListElement 7→ ListElement

consle(e, l) constructs a new list with e as its head and l as its tail.

• concatle : ListElement × ListElement 7→ ListElement

concatle(l1, l2) ≡ consle(headle(l1), concatle(taille(l1), l2))

• listItemle : ListElement × N 7→ Element

listItemle(l, i) ≡ listValue(l)(i)

• takele : ListElement × N 7→ ListElement

takele(list, i) returns a list element containing the first i elements of list as a list

element. The first element of the list is at index 1.

• drople : ListElement × N 7→ ListElement

drople(list, i) returns a list element containing what is left after dropping the first i

elements of the list list. The first element of the list is at index 1.

For every l ∈ ListElement, we have

• bkg(l) = “List”

• ∀l′ ∈ ListElement equalList(l, l′) ≡ listValue(l) = listValue(l′)

CHAPTER 6. COREASM: THE PLUGINS 137

• enumerable(l)

All list elements are enumerable.

• enumerateList(l) = listValue(l).

• l ∈ FunctionElement

All list elements also behave as functions.

• classfe(l) = static

• ∀ne ∈ NumberElement valuefe(l, 〈ne〉) ≡{
listItemle(l,numericValue(ne)), if listItemle(l,numericValue(ne)) 6= undef;

undefe, otherwise.

Every list element is considered to be a modifiable collection, so we have

∀l ∈ ListElement isModifiableCollection(l)

However, List plugin does not offer partial updates on List elements; hence, adding and

removing elements to and from List elements cannot be done incrementally. As a result,

computeAddUpdateList and computeRemoveUpdateList on lists return an update instruction

with a regular update action defined as:

computeAddUpdateList(loc, value) ≡
{|〈loc, concatle(getValue(loc), listElement(〈value〉)), updateAction〉|}

computeRemoveUpdateList(loc, value) ≡{
{|〈loc, concatle(left, right), updateAction〉|}, if |indices(getValue(loc))| > 0;

{||}, otherwise.

where
indices(le) = {j | j ∈ [1..|listValue(le)|] ∧ listValue(le)(j) = value}
left = takele(getValue(loc),m− 1)

right = drople(getValue(loc),m)

m = min(indices(getValue(loc))

Expression Forms

The List plugin extends the interpreter to support List comprehension:

CHAPTER 6. COREASM: THE PLUGINS 138

List Plugin

L [] M → let newList = newV alue(listBkg) in

[[pos]] := (undef, undef, newList)

L [λ1
e
? 1, . . . ,

λn
e
? n] M → choose i ∈ [1..n] with ¬evaluated(λi)

pos := λi

ifnone

let l = 〈value(λ1), . . . , value(λn)〉 in

[[pos]] := (undef, undef, listElement(l))

To facilitate locating a specific element in a List element, the List plugin also offers the

following expression form that searches a List element for the occurrence of an element and

returns an index to the element of interest. If there is no such element in the list, the result

will be undefe. If the element appears more than once in the list, one index will be returned

non-deterministically.

List Plugin : Search

L indexof α
e
e in β

e
e M → choose τ ∈ {α, β} with ¬evaluated(τ)

pos := τ

ifnone

let e = value(α), v = value(β) in

if v ∈ ListElement then

let l = listValue(v) in

choose i ∈ [1..|l|] with l(i) = e do

[[pos]] := (undef, undef,numberElement(i))

ifnone

[[pos]] := (undef, undef, undefe)

In addition, the following expression forms, return an index to the first and the last

occurrence of an element in a list.

CHAPTER 6. COREASM: THE PLUGINS 139

List Plugin : Search

L first indexof α
e
e in β

e
e M →

choose τ ∈ {α, β} with ¬evaluated(τ)

pos := τ

ifnone

let e = value(α), v = value(β) in

if v ∈ ListElement then

let l = listValue(v) in

let indices = {j | j ∈ [1..|l|] ∧ l(j) = e} in

if |indices| > 0 then

[[pos]] := (undef, undef,numberElement(min(indices)))

else

[[pos]] := (undef, undef, undefe)

L last indexof α
e
e in β

e
e M →

// Similar to above; replace min(indices) by max(indices).

Operators

The List plugin provides the following concatenation operator on List elements:

List Plugin : Concatenation

L α
e
? + β

e
? M

[750]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

let l = value(α), r = value(β) in

if l ∈ ListElement ∧ r ∈ ListElement then

[[pos]] := (undef, undef, concatle(l, r))

Rule Forms

The List plugin extends the interpreter of the engine to provide the following rule forms

facilitating shifting of List elements one index to the left or right. In shift left, the first

element of the list is dropped into the given location. In shift right, the last element of the

list is dropped into the given location.

CHAPTER 6. COREASM: THE PLUGINS 140

List Plugin

L shift left α
e

into β
e
l M →

choose τ ∈ {α, β} with ¬evaluated(τ)

pos := τ

ifnone

if value(α) ∈ ListElement then

if loc(β) 6= undef then

let updates = {|〈loc(β), headle(value(α)), updateAction〉,
〈loc(α), taille(value(α)), updateAction〉|}

[[pos]] := (undef, updates, undef)

else

Error(‘Cannot shift list to a non-location.’)

L shift right α
e

into β
e
l M →

choose τ ∈ {α, β} with ¬evaluated(τ)

pos := τ

ifnone

if value(α) ∈ ListElement then

if loc(β) 6= undef then

let le = value(α), l = listValue(le) in

if |l| ≤ 1 then

let updates = {|〈loc(β), lastle(le), updateAction〉,
〈loc(α), emptyList, updateAction〉|}

[[pos]] := (undef, updates, undef)

else

let updates = {|〈loc(β), lastle(le), updateAction〉,
〈loc(α), takele(le, |l| − 1), updateAction〉|}

[[pos]] := (undef, updates, undef)

else

Error(‘Cannot shift list to a non-location.’)

Functions

The List plugin also extends the vocabulary of the engine to provide the following functions

defined on List elements:

CHAPTER 6. COREASM: THE PLUGINS 141

• head: LIST -> ELEMENT

valuefe(headFunction, 〈l〉) = headle(l)

• last: LIST -> ELEMENT

valuefe(lastFunction, 〈l〉) = lastle(l)

• tail: LIST -> LIST

valuefe(tailFunction, 〈l〉) = taille(l)

• cons: ELEMENT * LIST -> LIST

valuefe(consFunction, 〈e, l〉) = consle(e, l)

• nth: LIST * NUMBER -> ELEMENT

valuefe(nthFunction, 〈l, i〉) = listItemle(l,numricValue(i))

• take: LIST * NUMBER -> LIST

valuefe(takeFunction, 〈l, i〉) = takele(l,numricValue(i))

• drop: LIST * NUMBER -> LIST

valuefe(dropFunction, 〈l, i〉) = drople(l,numricValue(i))

• reverse: LIST -> LIST

valuefe(reverseFunction, 〈l〉) ={
emptyList, if |listValue(l)| = 0;

reverse(l), otherwise.
where

reverse(l) ≡ l′ s.t. ∀i∈[1..|listValue(l)|] listItemle(l′, i) = listItemle(l, |listValue(l)| − i+ 1)

• indexes: LIST -> LIST

valuefe(indexesFunction, 〈l〉) = listElement(〈1, . . . , |listValue(l)|〉)

• indices: LIST -> LIST

same as indexes.

• setnth: LIST * NUMBER * ELEMENT -> LIST

valuefe(setnthFunction, 〈l, n, e〉) ={
l′ s.t. listItemle(l′,numericValue(n)) = e, if 1 ≤ n ≤ |listValue(l)|;
undefe, otherwise.

CHAPTER 6. COREASM: THE PLUGINS 142

6.3.5 The Queue Plugin

The Queue plugin does not provide any new type domain but it provides two rule forms

that operate on Lists elements as queues: enqueue and dequeue. The former adds an

element to end of the list, and the latter removes an element from the head of the list. We

present here a formal definition of these two rule forms:

Queue Plugin

L enqueue α
e
e into β

e
M → pos := β

L enqueue α
e
e into βl M → if value(β) ∈ ListElement then

pos := α

else

Error(‘Cannot enqueue into a non-list.’)

L enqueue αv into βl M → let newList = concatle(value(β), listElement(〈v〉)) in

[[pos]] := (undef, {|〈l,newList, updateAction〉|}, undef)

L dequeue α
e
l from β

e
l M → pos := β

L dequeue α
e
l from βl2 M → if value(β) ∈ ListElement then

if |listValue(value(β))| > 0 then

pos := α

else

Error(‘Cannot dequeue from an empty queue.’)

else

Error(‘Cannot dequeue into a non-list.’)

L dequeue αl1 from βl2 M → let u1 = 〈l1, headle(value(β)), updateAction〉,
u2 = 〈l2, taille(value(β)), updateAction〉 in

[[pos]] := (undef, {|u1, u2|}, undef)

6.3.6 The Stack Plugin

Similar to the Queue plugin introduced above, the Stack plugin also does not provide any

new type domain but it provides two rule forms that operate on Lists as stacks: push and

pop. The former one, pushes an element at the head of a list and the latter one removes

CHAPTER 6. COREASM: THE PLUGINS 143

the first element of the list.

Stack Plugin

L push α
e
e into β

e
M → pos := β

L push α
e
e into βl M → if value(β) ∈ ListElement then

pos := α

else

Error(‘Cannot push into a non-list.’)

L push αv into βl M → let newList = consle(v, value(β)) in

[[pos]] := (undef, {|〈l,newList, updateAction〉|}, undef)

L pop α
e
l from β

e
l M → pos := β

L pop α
e
l from βl2 M → if value(β) ∈ ListElement then

if |listValue(value(β))| > 0 then

pos := α

else

Error(‘Cannot pop from an empty stack.’)

else

Error(‘Cannot pop from a non-list.’)

L pop αl1 from βl2 M → let u1 = 〈l1, headle(v), updateAction〉,
u2 = 〈l2, taille(v), updateAction〉 in

[[pos]] := (undef, {|u1, u2|}, undef)

6.3.7 The Map Plugin

The Map plugin extends CoreASM by providing the background of Map elements and the

corresponding operators and rule forms defined on them. The background of map elements

is denoted by mapBkg ∈ BackgroundElement; we have

name(mapBkg) = “MAP”

newValue(mapBkg) = emptyMap

Map elements are values of the domain MapElement. The following functions define

the interface of map elements and provide a mapping between Map elements to the unary

functions or sets of pairs they represent:

CHAPTER 6. COREASM: THE PLUGINS 144

• mapElement : (Element 7→ Element) 7→ MapElement

returns a map element representing the given mapping of elements to elements.

• mapElementFromPairs : Set(ListElement) 7→ MapElement

if the given set consists of pairs of elements (lists of size two) of the form [ki, vi]

such that ∀[ki, vi] 6 ∃[kj , vj] ki = kj ∧ vi 6= vj , this function returns a map element

representing a mapping of kis to vis; otherwise, returns undefe.

• mapValue : MapElement 7→ (Element 7→ Element)

returns the mapping (from elements to elements) represented by the given map ele-

ment.

• keyset : MapElement 7→ Set(Element)

∀m ∈ MapElement, keyset(m) ≡ domain(mapValue(m))

• valueset : MapElement 7→ Set(Element)

∀m ∈ MapElement, valueset(m) ≡ range(mapValue(m))

For every m ∈ MapElement, we have

• bkg(m) = “Map”

• ∀m′ ∈ MapElement equalMap(m,m′) ≡
keyset(m) = keyset(m′) ∧ ∀e ∈ keyset(m) mapValue(m′)(e) = mapValue(m)(e)

• enumerable(m)

All map elements are enumerable.

• enumerateMap(m) = {listElement(〈k, v〉) | k ∈ keyset(m) ∧ v = mapValue(m)(k)}.

• m ∈ FunctionElement

All map elements also behave as functions.

• classfe(m) = static

• ∀e ∈ Element valuefe(m, 〈e〉) ≡{
mapValue(m)(e), if mapValue(m)(e) 6= undef;

undefe, otherwise.

CHAPTER 6. COREASM: THE PLUGINS 145

Expression Forms

The Map plugin extends the interpreter of the CoreASM engine with the following map

comprehension forms:

Map Plugin

L {->} M → [[pos]] := (undef, undef, emptyMap)

L {λ1
e
? -> λ2

e
? , . . . , λ2n−1

e
? -> λ2n

e
? } M →

choose i ∈ [1..2n] with ¬evaluated(λi)

pos := λi

ifnone

let pairs = {listElement(〈λ2i−1, λ2i〉) | i ∈ [1..n]} in

[[pos]] := (undef, undef,mapElementFromPairs(pairs))

Functions

The vocabulary of the CoreASM engine is also extended with the following two functions

mapping Map elements to sets of pairs and vice versa:

• toMap: ELEMENT -> MAP

valuefe(toMapFunction, 〈e〉) ={
mapElementFromPairs({x | x ∈ enumerate(e)}), if enumerable(e);

undefe, otherwise.

• mapToPairs: MAP -> SET

valuefe(mapToPairsFunction, 〈m〉) ={
setElement(enumerate(m)), if m ∈ MapElement;

undefe, otherwise.

6.4 Auxiliary Plugins

In addition to the plugins addressed so far, CoreASM comes with a number of auxiliary

plugins that extend the kernel of CoreASM with concepts, constructs and functionalities

that are particularly useful in execution and analysis of specifications. Here, we present

those auxiliary plugins that are available as part of the current edition of CoreASM.

CHAPTER 6. COREASM: THE PLUGINS 146

6.4.1 The Signature Plugin

The CoreASM language is in principle an untyped language.4 While a typeless language is

desirable for writing initial specifications, defining the types of values and the signatures of

functions used in more concrete specifications often add useful semantic information. Such

information not only can improve the understandability of the specification and reduce

specification errors, but it also plays an essential role in the verification process.

The Signature plugin extends the CoreASM language with syntactic patterns to declare

universes, enumerated backgrounds, and function signatures. The corresponding nodes in

the parse tree are processed by the Signature plugin when the CoreASM engine is initial-

izing the Abstract Storage (see Initializing State in Figure 4.5). During this phase, the

engine queries plugins for their contributions to the vocabulary of the state (see definition

of InitAbstractStorage in Section 5.5). When the Signature plugin is asked for its vocabulary

contribution, it processes the parse tree and provides the engine with a list of universes,

backgrounds and functions declared in the specification. Thus, the interpretation of Signa-

ture plugin declarations directly modifies the initial state of the simulated machine.

Functions

To declare functions, the Signature plugin extends the CoreASM language with the following

syntactic patterns:

Signature Plugin

L function x : -> xr M → CreateFunction(x, controlled, 〈〉, xr)
L function controlled x : -> xr M → CreateFunction(x, controlled, 〈〉, xr)
L function static x : -> xr M → CreateFunction(x, static, 〈〉, xr)

L function x : xd1* . . . * xdn
-> xr M → CreateFunction(x, controlled, 〈xd1 , . . . , xdn

〉, xr)
L function controlled x : xd1* . . . * xdn-> xr M →

CreateFunction(x, controlled, 〈xd1 , . . . , xdn
〉, xr)

L function static x : xd1* . . . * xdn-> xr M → CreateFunction(x, static, 〈xd1 , . . . , xdn〉, xr)

The interpretation of function declaration patterns is defined by the CreateFunction rule,

which creates a new function with a specified name, class, and signature.

4This section is based on Section 5.2 of George Ma’s M.Sc. thesis [93] and Section 3.1 of our previously
published paper on “Model Checking CoreASM Specifications” [59].

CHAPTER 6. COREASM: THE PLUGINS 147

Signature Plugin

CreateFunction(name, functionClass, domain, range) ≡
let f = new(FunctionElement) in

classfe(f) := functionClass

let s = new(Signature) in

sigDomain(s) := domain

sigRange(s) := range

signature(f) := s

add (name, f) to pluginFunctions(signatureP lugin)

One can also specify the initial value(s) of a function in the function declaration by

including an initialization expression at the end of the declaration. The initialization ex-

pression may be a basic expression, for nullary functions, or a function expression, for n-ary

functions. Before the function is created, the expression giving its initial value is evaluated.

In the following patterns xc is either static or controlled.

Signature Plugin

L function xc x : -> xr initially α
e
e M → evaluate(α)

L function xc x : xd1* . . . * xdn
-> xr initially α

e
e M → evaluate(α)

L function xc x : -> xr initially αv M → CreateFunctionWithInitValue(x, xc, 〈〉, xr, v)

L function xc x : xd1* . . . * xdn
-> xr initially αv M →

CreateFunctionWithInitValue(x, xc, 〈xd1 , . . . , xdn
〉, xr, v)

CreateFunctionWithInitValue(name, functionClass, domain, range, initialValue) ≡
let f = new(FunctionElement) in

classfe(f) := functionClass

let s = new(Signature) in

sigDomain(s) := domain

sigRange(s) := range

signature(f) := s

if initialV alue 6= undef then

SetFunctionValue(f, domain, initialV alue)

add (name, f) to pluginFunctions(signatureP lugin)

The SetFunctionValue rule sets the initial value of a function. If the function is not nullary

and the specified value is a Maplement, each key in the map is viewed as an argument list

CHAPTER 6. COREASM: THE PLUGINS 148

and the value of the function for those arguments is set to the corresponding map value.

Universes and Enumerations

The Signature plugin also extends the CoreASM language with patterns for declaration of

universes:

Signature Plugin

L universe x M → CreateUniverse(x, {})

L universe x = {xe1 , . . . , xen} M → CreateUniverse(x, {xe1 , . . . , xen})

The second pattern allows the specification writer to declare a universe along with a

set of named initial member elements. Of course, a declared universe can still be extended

using standard methods, namely by using the extend rule, which imports a new element

to a universe, or by setting the value of the corresponding universe membership predicate

to true for a given element.

The universe declaration patterns are interpreted by the CreateUniverse rule, which cre-

ates a new universe with the specified name. If initial members are specified, for each

member a static function with the given name is also created.

Signature Plugin

CreateUniverse(name,members) ≡
let u = new(UniverseElement) in

add (name, u) to pluginUniverses(signatureP lugin)

forall elementName ∈ members do

let e = new(Element) in

memberue(u, e) := true

let f = new(FunctionElement) in

add (elementName, f) to pluginFunctions(signatureP lugin)

classfe(f) := static

SetValuefe(f, 〈〉, e)

To declare enumerated backgrounds, the Signature plugin provides the following pattern:

Signature Plugin

L enum x = {xe1 , . . . , xen
} M → CreateEnumeration(x, {xe1 , . . . , xen

})

CHAPTER 6. COREASM: THE PLUGINS 149

The CreateEnumeration rule is similar in spirit to CreateUniverse, as enumerable back-

grounds are analogous to static universes. The rule is defined as follows:

Signature Plugin

CreateEnumeration(name,members) ≡
let b = new(EnumerationBackground) in

add (name, b) to pluginBackgrounds(signatureP lugin)

forall elementName ∈ members do

let e = new(Element) in

bkg(e) := name

add e to enumMembers(b)

let f = new(FunctionElement) in

add (elementName, f) to pluginFunctions(signatureP lugin)

classfe(f) := static

SetValuefe(f, 〈〉, e)

We model background elements that are defined using the Signature plugin with values

of the domain EnumerationBackground. The following function, defined on Enumeration

Background elements, holds the set of elements each such background represents:

enumMembers : EnumerationBackground 7→ Set(Element)

For all eb ∈ EnumerationBackground, we have

• enumerable(eb)

All enumeration background elements are enumerable.

• enumerateEnumerationBackground(eb) ≡ enumMembers(eb)

Type Checking on Updates

In order to offer runtime type checking on updates, the Signature plugin extends the control

flow of the CoreASM engine by registering for the extension points proceeding the aggregation

of updates (see Figure 4.8). We have,

∀em ∈ EngineMode, isPluginRegisteredForTransition(signaturePlugin,Aggregation, em)

pluginExtensionRule(signaturePlugin) = @CheckUpdateSetForTypes

As a result of this registration, when the control flow of the engine moves from the

Aggregation control state to either Step Succeeded or Step Failed, the engine calls the Check-

UpdateSetForTypes rule of the Signature plugin. This rule goes through the update set and

CHAPTER 6. COREASM: THE PLUGINS 150

for every update checks the arguments and the value of the update against the signature

of the function it is updating and reports the inconsistencies. The following rules formally

define this process.

Signature Plugin

CheckUpdateSetForTypes ≡
if engineProperties(“TypeChecking”) = “strict” then

forall 〈loc, val, act〉 ∈ updateSet do

let f = stateFunction(state,namelc(loc)), sigf = signature(f) in

if sigf 6= undef then

CheckArguments(argslc(loc), sigDomain(sigf))

CheckValue(val, sigRange(sigf))

CheckArguments(args, domain) ≡
if |args| 6= |domain| then

Error(‘Number of arguments passed do not match the domain of the function.’)

else

forall i ∈ [1..|domain|] do

let universe = stateUniverse(state, domain(i)) in

if ¬memberue(universe, args(i)) then

Error(‘Argument does not match the domain of the function.’)

CheckValue(v, range) ≡
let universe = stateUniverse(state, range) in

if ¬memberue(universe, v) then

Error(‘Update value does not match the range of the function.’)

6.4.2 The Scheduling Policies Plugin

The Scheduling Policies plugin provides two basic policies for scheduling of agents by the

Scheduler. In any CoreASM specification, the particular scheduling policy to be used can be

configured using the CoreASM engine’s properties (see also Appendix A.4):

• pluginSchedulingPolicy(SchedulingPoliciesPlugin) ≡
allFirstPolicy, if engineProperties(“SchedulingPolicies.Policy”) = “allfirst”;

oneByOnePolicy, if engineProperties(“SchedulingPolicies.Policy”) = “onebyone”;

undef, otherwise.

CHAPTER 6. COREASM: THE PLUGINS 151

• newScheduleRule(allFirstPolicy) ≡ @NewScheduleallfirst

• newScheduleRule(oneByOnePolicy) ≡ @NewScheduleonebyone

All-First Policy

The all-first scheduling policy first tries to schedule all the given agents elements together

in one batch. Alternative options will be non-deterministic subsets of the given sets of

elements. Applied to the scheduling of agents, this policy first suggests the execution of all

the agents together and if that fails, it offers various subsets of agents as alternative options.

Scheduling Policies Plugin

NewScheduleallfirst(group, set) ≡
result := cons(set, 〈s | s ∈ P(set)\{set}〉)

One-by-One Policy

The one-by-one scheduling policy provides a schedule that comprises of a series of non-

deterministically selected single elements. The policy, however, tries to maintain a “fair”

set of schedules over a group by keeping a history of the already scheduled elements and

trying to avoid re-scheduling of those elements as long as other non-scheduled elements are

still available. Applied to the scheduling of agents in a CoreASM simulation, this policy

results in a sequential execution of agents.

Scheduling Policies Plugin

NewScheduleonebyone(group, set) ≡
if group 6= undef then

if scheduleHistoryobo(group) = undef ∨ set\scheduleHistoryobo(group) = ∅ then

choose e ∈ set do

result := 〈e〉
scheduleHistoryobo(group) := {e}

else

choose e ∈ set with e 6∈ scheduleHistoryobo(group) do

result := 〈e〉
add e to scheduleHistoryobo(group)

else

choose e ∈ set do

result := 〈e〉

CHAPTER 6. COREASM: THE PLUGINS 152

6.4.3 IO Plugin

In an open-system view towards modeling, the system operates in a given environment. The

environment affects system runs through actions or events and the system can as well affect

the environment by its output. In abstract state machines, the interaction between the

system (the machine) and the environment is captured through monitored (also called in),

shared, and out functions. Monitored functions are controlled only by the environment; they

are channels through which the machine observes the environment. In a given state, the

values of all monitored functions are determined (and do not change) [25]. Out functions are

updated only by the machine and they are read-only for the environment. Shared functions

are both controlled and read by the machine and the environment.

The IO Plugin utilizes this machine-environment interaction mechanism of ASM and

provides two simple channels of communication between a CoreASM machine and its envi-

ronment: a print rule that outputs values to the environment, and an input function to get

values from the environment. In both cases, textual representations of values are used.

Functions

To facilitate input from the environment, the IO plugin introduces the following monitored

function:

• input: STRING -> STRING

classfe(inputFunction) = monitored

For any given value as its argument, this input function queries an input value from

the environment (presenting the argument as a prompt or key to the input value).

Since this is a monitored function, once its value is set for a certain argument (i.e.,

message) in a computation step, it will not change before the step is completed.

Rule Forms

To provide an output channel for CoreASM specifications, the IO plugin extends the state of

the simulated machine by introducing an output function (output: -> String) which in

any given step holds the output of the previous step. Output values are assigned to output

by print rules. Every print rule generates a special update instruction with printAction

to append the a String element to the value of the output function. At the end of each

CHAPTER 6. COREASM: THE PLUGINS 153

computation step, these special updates will be aggregated into one single update to output

function.

IO Plugin

L print α
e
e M → pos := α

L print αv M → let l = (“output”, 〈〉) in

[[pos]] := (undef, {|〈l, stringElement(v), printAction〉|}, undef)

Aggregation of Output Messages

In the aggregation phase of every step, print update instructions need to be aggregated into

a single regular update to the output function. Since the print values are String elements

(see Section 6.2.3), and there is no execution order on the print rules that generated these

updates, the aggregation of these values can be achieved by concatenation of the values into

a single String element in a non-deterministic order. The IO plugin provides the semantics

of such aggregation as follows.

IO Plugin

AggregateIO(uMset) ≡
seq

result := emptyString

next

if regularUpdatesExist then

HandleInconsistentAggregation(l, uMset, ioPlugin)

else

foreach u ∈ printActionUpdates do

result := concatString(result, uiValue(u))

aggStatus(u, ioPlugin) := successful

where

regularUpdatesExist ≡ ∃u ∈ uMset, uiAction(u) = updateAction ∧ uiLoc(u) = (“output”, 〈〉)
printActionUpdates ≡ {u | u ∈ uMset ∧ uiAction(u) = printAction ∧ uiLoc(u) = (“output”, 〈〉)}

Composition of Output Messages

In order to maintain the order of output values in a sequential composition of print updates,

the composition algorithm provided by the IO plugin aggregates the output values of the

CHAPTER 6. COREASM: THE PLUGINS 154

first and second step and concatenates them together into a single print update instruction

on the output function. The the output values of the first step are only considered if the

second step does not have a regular update on the output location.

IO Plugin

ComposeIO(uMset1, uMset2) ≡
local outputStr [outputStr := emptyString] in

seq

if ¬regularUpdatesExist(uMset2) then

foreach u ∈ printUpdates(uMset1) do

outputStr := concatString(result, uiValue(u))

seq

foreach u ∈ printUpdates(uMset2) do

outputStr := concatString(result, uiValue(u))

next

result := 〈(“output”, 〈〉), outputStr, printAction〉
where

printUpdates(mset) ≡ {u | u ∈ mset ∧ uiLoc(u) = (“output”, 〈〉) ∧ uiAction(u) = printAction}
regularUpdatesExist(mset) ≡ ∃u ∈ mset, uiAction(u) = updateAction ∧ uiLoc(u) = (“output”, 〈〉)

6.4.4 The Observer Plugin

It is sometimes desirable to have a machine-readable log of the execution of a CoreASM

specification for offline analysis and visualization. One argument for such a feature is that

it allows for a clear separation of the execution and the analysis. For example, execution of

certain specifications may be time-consuming, but once the execution is done, visualization

of the run of the system can be done more quickly and repeatedly, if all the updates of

interest are recorded.

The Observer plugin monitors the execution of specifications in CoreASM and produces

an XML log of the updates that are produced after every computation step. The plugin

can be configured so that only the updates on certain locations of interest are recorded. In

order to monitor the updates, the plugin registers itself for the extension point where the

control flow of the engine switches to the Step Succeeded control state (see Figure 4.6). We

have,

∀s ∈ EngineMode, isPluginRegisteredForTransition(observerPlugin, s, stepSucceeded)

CHAPTER 6. COREASM: THE PLUGINS 155

where observerPlugin ∈ Plugin is the Observer plugin.

At this point in the engine lifecycle (when the control state changes to Step Succeeded),

the computation step is successfully completed and the updates are applied to the state.

The Observer plugin then simply goes through the last set of updates and records an XML

log of those updates that modify the locations of interest.

pluginExtensionRule(observerPlugin) = @FireOnModeTransitionObserver

Observer Plugin

FireOnModeTransitionObserver(sourceMode, targetMode) ≡
if targetMode = stepSucceeded then

local xmlElement [xmlElement := newStepXMLElement] in

seq

foreach u in updateSet with uiLoc(u) ∈ observerLocationsOfInterest then

AddXMLChildElement(xmlElement,newUpdateXMLElement(u))

next

AppendToLog(xmlElement)

6.4.5 Math Plugin

In writing executable specification, one may need to have access to various mathemati-

cal constants (such as π) or functions (such as the trigonometric functions) as part of the

Number background. The Math plugin addresses this requirement by extending the vocab-

ulary of CoreASM states and providing a number of basic mathematical functions. Most of

these functions are equivalent of their Java counterparts defined in the Java library package

java.lang.Math.

In the following, we present a few of these functions as examples. A complete list of

Math plugin functions is provided in Appendix A.5.5.

• abs(v) returns the absolute value of v.

• asin(v) returns the arc sine of an angle, in the range of −π/2 through π/2.

• floor(v) returns the largest (closest to positive infinity) value that is less than or

equal to the argument and is equal to a mathematical integer.

• log(v) returns the natural logarithm (base e) of v.

CHAPTER 6. COREASM: THE PLUGINS 156

• max(v1, v2) returns the greater of two values.

• min(v1, v2) returns the smaller of two values.

• pow(x, y) returns the value of the first argument raised to the power of the second

argument.

• powerset(set) computes the powerset of the given set.

• sum({v1,...,vn}, @f) returns the sum of a collection of numbers, after applying

function f to the values in the collection. If there is one non-number in the collection,

it returns undef.

An Example

As an example, the output of the execution of Program 6.1 is the following:

sum({1, 2, 100}) = 103

min(51, 43) = 43

asin(0.5) = 30

powerset({1, 2, 3}) = {{}, {3}, {2}, {3, 2}, {1}, {3, 1}, {2, 1}, {3, 2, 1}}

{2, 3} memberof powerset({1, 2, 3} = true

log(e) = 1

{3, 2, 4} is not a member of powerset({1, 2, 3})

sum({1, 2, 100}, @a) = 515

’e’ = 2.718281828459045

sin(30) = 0.5

6.4.6 The Time Plugin

To introduce the notion of time in CoreASM, the Time plugin extends the vocabulary of the

state with a nullary monitored function

now: -> NUMBER

that provides the current time of the system as a numeric value. Although, such a monitored

function seems to be all that is basically needed to have the notion of time in CoreASM,

future versions of this plugin could introduce various functions to extract date and time

components from time values (e.g., day of the week, hours, or minutes) or to produce

specific or relative time values, such as 12/May/2009 or now - two hours.

CHAPTER 6. COREASM: THE PLUGINS 157

CoreASM MathPluginExample

use Standard

use Math

init Init

rule Init = {
program(self) := @Main

a(1) := 5

a(2) := 10

a(100) := 500

}

rule Main =

let e = MathE in {
print "’e’ = " + e

print "log(e) = " + log(e)

print "sin(30) = " + round(sin(toRadians(30)) * 10) / 10

print "asin(0.5) = " + round(toDegrees(asin(0.5)))

print "min(51, 43) = " + min(51, 43)

print "sum(1, 2, 100) = " + sum({1, 2, 100})
print "sum(1, 2, 100, @a) = " + sum({1, 2, 100}, @a)

print "powerset(1, 2, 3) = " + powerset({1, 2, 3})
print "2, 3 memberof powerset(1, 2, 3 = "

+ ({2, 3} memberof powerset({1,2,3}))
choose x in powerset({1, 2, 3, 4}) do

if x memberof powerset({1, 2, 3}) then

print x + " is a member of powerset(1, 2, 3)"

else

print x + " is not a member of powerset(1, 2, 3)"

ifnone

print powerset({1, 2, 3})
}

Program 6.1: A CoreASM Example Using Math Plugin

CHAPTER 6. COREASM: THE PLUGINS 158

6.5 The JASMine Plugin

In this chapter we have introduced various CoreASM plugins implementing most common

mathematical objects and structures, such as numbers, sets, lists, and maps.5 While these

backgrounds are usually sufficient for modeling most algorithms and systems, complex spec-

ifications may need more advanced features, not necessarily data-oriented. For example, an

executable specification for a new peer-to-peer protocol may need access to network sockets

and files; a specification that is used as an executable stub for a software module that still

has to be implemented or for a missing piece of hardware may need to put up an on-screen

window showing its current state; a complex numerical algorithm which is already speci-

fied by some standard may be moved out of a specification and a concrete implementation

written in a standard programming language may be used in its place.

There is thus a clear need to allow interaction between CoreASM specifications and

concrete code, including operating systems functions, external libraries, and custom code.

Among the various tools for running ASM models [48], AsmL (ASM Language) [101], XASM

(eXtensible ASM) [4], and AsmGofer [113] provide some support for interaction with ex-

ternal programming languages. AsmL, built on the Microsoft .NET framework [100], incor-

porates numerous object-oriented features and constructs of Microsoft .NET and supports

interaction with external .NET classes. The XASM language allows external C-functions to

be used in XASM specifications. However, the arguments and return values of C-functions

can only be of a specific C-type that represents elements of the super-universe in XASM.

Newer versions of XASM support interaction with Java classes but the support is only lim-

ited to invoking Java object constructors. AsmGofer [113], an ASM interpreter embedded in

the functional programming language “Gofer”, supports the use of functional programming

in the definition of types and functions.

In this section, we present JASMine, a CoreASM plugin that offers a solution for the

interaction of CoreASM specifications and concrete code by integrating Java with CoreASM.

5This section is based on a joint work with Dr. Vincenzo Gervasi and is currently under publication
in [68].

CHAPTER 6. COREASM: THE PLUGINS 159

6.5.1 Requirements and Limitations

The Java Class Library provides an extremely rich (and continuously growing) set of APIs

and efficient implementations for almost any computing task. Moreover, Java offers platform-

independence, support on a wide variety of architectures, and many modern language fea-

tures that make it an attractive target for the integration of ASM specifications with concrete

code.

However, there is a risk that by intertwining the “ASM world” of elements, functions

and predicates and the “object world” of an object-oriented language, the very nature of the

ASM paradigm may be changed in fundamental ways. This is, for example, what happened

in AsmL [101], where rules and methods, elements and objects, sets and the Set object of

the .NET framework become confused.

In contrast to AsmL, we do not want interaction with Java to pollute the CoreASM word.

In particular,

• we want to maintain typelessness of the language: it must be possible to treat Java

objects as regular ASM values, and to pass untyped ASM elements as arguments to

Java methods (with type checking performed at run time only);

• we want to maintain the parallel model of execution of ASMs: the notion of step

must be preserved, as well as the assumption that the ASM state and environment is

observed in a stable snapshot, and updates are applied in parallel and only when no

conflicts arise;

• we want to avoid the introduction of extraneous fundamental concepts: the notions of

state, update and step should suffice to describe the computation.

The fundamental choice of preserving the ASM computation model sets strong constraints

on how JASMine works, which will be described later in more detail.

Four basic capabilities are needed for a minimal reasonable level of interaction, namely:

1) instantiating new objects, invoking their constructors, and storing a reference to the

new object in the ASM state; 2) accessing (reading and writing) public fields of objects,

including static fields of classes; 3) invoking public methods of objects and static methods of

classes, passing the needed arguments, and storing the result in the ASM state; 4) converting

between certain ASM types and the corresponding Java types and back, as needed to support

expression evaluation and updates. The mechanisms we propose to provide these capabilities

CHAPTER 6. COREASM: THE PLUGINS 160

constitute a conservative extension of CoreASM, in the sense that the semantics of the non-

JASMine parts of a specification are not altered by the extension6.

Notice that the integration that JASMine provides between ASMs and Java is far less

complete than the one existing between, for example, AsmL and .NET: in particular, it is

not currently possible to define new Java classes or interfaces through ASM specifications,

nor is it possible to use Java inheritance in CoreASM specifications. Interfaces and abstract

classes cannot be accessed at all.

We do not see these limitations as particularly relevant in practice. In fact, the design

goal of JASMine is to allow interaction between ASMs and Java, rather than full integration,

and we believe the JASMine plugin serves well in this capacity.

6.5.2 Language Extensions

The following subsections describe in turn the constructs implementing the four capabilities

mentioned above.

Creation of Java Objects

Java objects in JASMine are seen as part of the environment, not of the state. This is a

fundamental design choice, which differs from what others have done (e.g., AsmL), and

helps in cleanly separating the structures-based state of ASM, which only changes between

steps and through non-conflicting updates, from the independently evolving state of Java,

which can change at any time and also due to external events (e.g., a timer or GUI actions).

JASMine introduces a new background (hence, a new kind of element in the ASM state)

called JObject which holds a reference to the real Java object. Only this immutable reference

enters the ASM state as a value, and only through a special update command, hence the

basic ASM computation cycle is preserved. As a consequence, creation of a new object is

not considered an expression (as is the new operator in Java) but rather a rule, since it

results in an update. We have

jObjectBack ∈ BackgroundElement

name(jObjectBack) = “JOBJECT”

newValue(jObjectBack) = newJObject()

6In other terms, a specification which does not interact with Java, and thus does not use the JASMine
constructs, has the same semantics whether it includes the JASMine plugin or not.

CHAPTER 6. COREASM: THE PLUGINS 161

where newJObject() returns a new JObject element pointing to a new Java object.

In formal terms, using the notation described above, creation of a new Java object is

accomplished as follows:

CreationRules

L import native α
e

into β
e
l M → pos := β

L import native αx into βl M → if isJavaClassName(x) then

if hasEmptyConstructor(x) then

EvaluateImport(l, x, 〈〉)
else

Error(‘Constructor not found.’)

else

Error(‘Java class not found.’)

L import native αx(λ1
e
e 1, . . . ,

λn
e
e n) into β

e
l M → pos := β

L import native αx(λ1
e
e 1, . . . ,

λn
e
e n) into βl M →

if isJavaClassName(x) then

choose i ∈ [1..n] with ¬evaluated(λi)

pos := λi

ifnone

if hasConstructor(x, 〈jValue(value(λ1)), . . . , jValue(value(λn))〉)
EvaluateImport(l, x, 〈λ1, . . . , λn〉)

else

Error(‘Constructor not found.’)

else

Error(‘Java class not found.’)

Here, we use the jValue function to abstract from the task of potentially converting

CoreASM elements to Java objects (see Page 166). The actual evaluation of the import

native statement is defined by the following macro, which takes as parameters a location

where to store the reference to the new Java object (as a JObject value), an identifier

representing the name of the class, and a sequence of positions of values, which will be the

actual parameters for the constructor call:

CHAPTER 6. COREASM: THE PLUGINS 162

EvaluateImport

EvaluateImport(l, x, 〈λi, . . . , λn〉) ≡
let u = DefUpd(CREATE, (l, x, 〈jValue(value(λ1)), . . . , jValue(value(λn))〉)) in

let jtl = (“jasmChannel”, 〈〉) in

[[pos]] := (undef, {|〈jtl, u, jasmAction〉|}, undef)

Notice in the specification above how the execution of the rule does not really instantiate

the new object (whose constructor could have side effects, and thus alter the Java state),

but instead accumulates a special update instruction (a deferred update) akin to the up-

date instructions used for aggregation and partial updates [99]. Actual instantiation will be

performed at update application time, as will be shown later on. The designated location

(“jasmChannel”, 〈〉) accumulates all the JASMine-related update instructions that are per-

formed during a step, whereas the DefUpd macro produces an encoding of its parameters,

suitable for later execution of the relevant update.

While the subject will be discussed more fully in the following, it is worthwhile to

remark here that this strategy ensures that any action that can perturb the environment

(e.g., instantiation of a new Java object) will only be taken if the step turns out to be

effective, i.e. if no conflicting updates are generated in that step.

Access to Fields of Java Objects

Reading a field in a Java object does not have side effects and thus can be treated as a pure

expression as far as the ASM computation cycle is concerned7. In particular, the value in

the field can be computed immediately at expression evaluation time. In contrast, writing

into a field has observable side effects, and thus cannot be performed during a step, but

only between steps; the corresponding value is then stored in the field at update application

time through another deferred update. The following rules detail the semantics used for

field access in JASMine.

7In a multi-threaded context, field values can change at any moment, even without any write action by
the ASM specification. To guarantee the stability of the environment, values read from Java fields are cached
by JASMine when first read, and the same value is used if the same field read expression on the same Java
object is evaluated multiple times in the same step.

CHAPTER 6. COREASM: THE PLUGINS 163

FieldReadExpression

L α
e
e ->βx M → pos := α

L αv->βx M → if isJObject(v)

if hasField(jObj(v), x)

if ImplicitConversionMode then

[[pos]] := (undef, undef, asmValue(GetField(jObj(v), x)))

else

[[pos]] := (undef, undef,newJObject(GetField(jObj(v), x)))

else

Error(‘No such field.’)

else

Error(‘Not a Java object.’)

As can be observed, field access expressions are evaluated by first evaluating the reference

to the JObject, and then (after checking that the given value is actually a JObject and

that the corresponding class has an accessible field with the given name) the value in the

field of the Java object is retrieved, possibly converted to its ASM counterpart based on

the configuration of the plugin (see Section 6.5.2), and finally used as the value of the

whole expression. Access to static class fields are handled similarly, and we skip here the

corresponding rules for brevity.8 Assignments are treated through deferred updates:

8Reading a static field of a class that has a static block and is not initialized can potentially have side
effects. Currently, we do not handle this special case and treat static fields and object fields the same with
regard to read access.

CHAPTER 6. COREASM: THE PLUGINS 164

FieldWriteRule

L store α
e
e into β

e
e ->γx M →

choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

if isJObject(value(β)) then

if hasField(jObj(value(β)), x) then

let u = DefUpd(STORE, (value(β), x, jValue(value(α))) in

let jtl = (“jasmChannel”, 〈〉) in

[[pos]] := (undef, {|〈jtl, u, jasmAction〉|}, undef)

else

Error(‘No such field.’)

else

Error(‘Not a Java object.’)

Notice how write access to fields is treated as a partial update to the internal structure

of the JObject element. Before the engine applies the updates to the state, the JASMine

plugin as the corresponding aggregator will have to check that no conflicting assignments

to the same field of a given JObject element are performed, and moreover that the JObject

as a whole is not updated to a different value in the same step9. Once more, write access

to static fields of classes is very similar and we do not detail it here.

Invoking Methods of Java Objects

As remarked above, invocation of methods in Java objects can have side effects which can

change both the internal state of the object and of other objects as well (i.e., by calling

other methods or accessing public fields). For this reason, method invocation is handled

through a deferred update, as described below. Two forms of method invocation exists: one

for void methods, which have no return value, and one for methods returning a value. The

simplest version for void methods invocation is specified as follows:

9The same situation is found in other cases, e.g. when both a := {1, 2} and add 3 to a appear in the
same step.

CHAPTER 6. COREASM: THE PLUGINS 165

VoidMethodInvocationRule

L invoke α
e
e ->βx(λ1

e
e 1, . . . ,

λn
e
e n) M →

choose λ ∈ {α, λ1, . . . , λn} with ¬evaluated(λ)

pos := λ

ifnone

if isJObject(value(α))

if hasMethod(jObj(value(α)), x, 〈jValue(value(λ1)), . . . , jValue(value(λn))〉)
let u = DefUpd(INVOKE,

(undef, value(α), x, 〈jValue(value(λ1)), . . . , jValue(value(λn))〉)) in

let jtl = (“jasmChannel”, 〈〉) in

[[pos]] := (undef, {|〈jtl, u, jasmAction〉|}, undef)

else

Error(‘No such method.’)

else

Error(‘Not a Java object.’)

The version for non-void methods is only slightly more complex. We provide a special

update instruction (in the vein of add . . . to . . .) so that the actual method call is only

performed if the update set is guaranteed to be consistent (see section 6.5.2 for detailed

conditions).

This solution may be inconvenient at times. For example, it is not possible to assign

directly the result of a method invocation to a field of the same or of a different object,

as two separate invoke and store instructions are needed, and in two different steps. In

other words, the effect of any rule altering the state of the “Java world” is only observable

in the next step of the machine, which of course discourages programming in a sequential

style: instead, any needed sequentiality will have to be made explicit, e.g. by using an FSM

representation of the ASM. Also, field updates and method invocations performed in the

same step will be performed—in due time—in an unspecified order, since update instructions

in CoreASM constitute an unordered multiset. This behavior, too, may surprise the unaware

Java programmer at his first approach with ASMs, as will be discussed in Sections 6.5.4

and 6.5.5.

Nevertheless, we believe that the soundness of the semantics that is given by the deferred

updates approach is worth the inconvenience, and can actually help even novice specifiers in

drawing a clear line between what needs to be specified and the actual behavior (possibly,

CHAPTER 6. COREASM: THE PLUGINS 166

over-specified) of the implementation.

Formally, invocation of non-void methods is specified as follows:

NonVoidMethodInvocationRule

L invoke α
e
e ->βx(λ1

e
e 1, . . . ,

λn
e
e n) result into γ

e
l M →

choose λ ∈ {α, γ, λ1, . . . , λn} with ¬evaluated(λ)

pos := λ

ifnone

if isJObject(value(α))

if hasMethod(jObj(value(α)), x, 〈jValue(value(λ1)), . . . , jValue(value(λn))〉)
if loc(γ) 6= undef

let u = DefUpd(INVOKE, (loc(γ), value(α), x,

〈jValue(value(λ1)), . . . , jValue(value(λn))〉)) in

let jtl = (“jasmChannel”, 〈〉) in

[[pos]] := (undef, {|〈jtl, u, jasmAction〉|}, undef)

else

Error(‘Cannot update a non-location.’)

else

Error(‘No such method.’)

else

Error(‘Not a Java object.’)

As for the previous constructs, we do not detail here how static methods on classes are

invoked, as the mechanism is totally analogous.

In practice, if an exception is returned, two updates are produced: one storing the value

of the exception (as an ASM JObject) in a designated location, and another one storing

a different value to the same location. As a consequence, Java exceptions are mapped in

ASMs to conflicting updates, which can be caught via the Turbo ASM try/catch rule [25].

Type Conversion

JASMine operates in two type conversion modes: implicit conversion and explicit conver-

sion. In the implicit mode, which is the default mode, JASMine automatically converts types

between CoreASM and Java when needed. This reduces the hassle of type conversion and

helps in writing more concise CoreASM specifications. Automatic type conversion, however,

has its drawbacks in certain applications: it converts values even when such a conversion is

not needed; e.g., when returned values of Java methods are to be passed as arguments in

CHAPTER 6. COREASM: THE PLUGINS 167

Java type CoreASM background
bool, Boolean Boolean
byte, short, int, long, float, double, Number
Byte, Short, Integer, Long, Float, Double
char, Character currently not supported
String String
Set interface Set
List interface Sequence
Map interface Function (dynamic)
arrays currently not supported
any other object JObject

Table 6.1: Type Conversions Between CoreASM and Java.

future calls to other Java methods. In the explicit mode, the user is responsible for explic-

itly converting values between Java and CoreASM using the provided CoreASM functions

described further below.

JASMine constructs apply type conversion when needed, through the functions javaValue

and asmValue that convert CoreASM values to Java objects and vice versa. These two

functions are defined by cases as summarized in Table 6.1. In most of the rules presented

in this paper, the jValue function abstracts the details of type conversion based on the

conversion mode.

The JObject background offers the following two functions, which perform the same

conversion on arbitrary values:

• toJava: Element -> JObject

valuefe(toJavaFunction, 〈v〉) = javaValue(v)

• fromJava: JObject -> Element

valuefe(fromJavaFunction, 〈v〉) =

{
asmValue(jObj(v)), if isJObject(v);

undefe, otherwise.

Aggregation of Deferred Updates

As we have seen, any modification to the “Java world” is performed through special up-

date instructions, called deferred updates (but not to be confused with ASM updates), to

ensure a stable state and a stable environment in course of a single ASM computation step.

Three types of deferred updates are used by JASMine: instantiation (CREATE), field writing

CHAPTER 6. COREASM: THE PLUGINS 168

(STORE) and method invocation (INVOKE).

Each type of deferred update carries the information necessary for its execution; in

particular, CREATE carries information on the Java class to create and on the location of

the new ASM element to create; STORE carries information about the JObject whose field

is to be modified, about the name of the field to modify, and about the new value to be

written in the field; INVOKE carries information about the JObject on which the method

has to be invoked, about the name of the method, and about the (possibly empty) list of

arguments to pass to the method.

The following compatibility conditions must be met for a set of updates to be considered

consistent:

1. No other update is permitted on the ASM location used in a CREATE. Notice that

this includes JASMine deferred updates (i.e., it is not possible to import twice to the

same location) as well as regular updates (i.e., it is not possible to assign a different

value through the assignment operator := or other update rules to a location used in

a CREATE).

2. If multiple STOREs are performed on the same field of the same object, they must all

assign the same value.

3. Any location used to store the result of an INVOKE cannot appear in any other update.

Notice that this latter condition is sufficient, but not necessary to guarantee consistency.

In fact, we disallow even multiple updates that would write the same value (which are

normally permitted under standard ASM semantics). The reason for this more restrictive

choice is that in general it is impossible to know which value will be returned by a method

call without actually calling the method, and we want the method to be called only if a

consistent set of updates is generated. Hence, we require a stronger guarantee than what is

strictly needed.

If the set of update instructions is consistent, the prescribed operations are performed in

unspecified order. Notice that the first condition above ensures that newly-created JObjects

are not used in the same step, so there is no need to specify a special ordering with CREATE

update instructions performed before STORE and INVOKE ones.

A common troublesome case is when multiple method invocations are performed: if

the particular sequence is order-sensitive, ordering will have to be specified explicitly by

CHAPTER 6. COREASM: THE PLUGINS 169

using a finite state automaton. In most cases, though, the specific order will be immaterial

(e.g., Point.setX() and Point.setY()), and in these cases multiple invocations can well be

specified in the same step. We regard this as a desirable feature for a specification: in fact,

the implementer will know that fields can be written and that methods can be invoked in

any order as long as they are specified to happen in a single ASM step, whereas the ordering

between different steps is significant, and should be respected in the implementation.

6.5.3 Implementing JASMine

In its capacity as a bridging technology, JASMine has to interact closely with both the

CoreASM engine and the Java virtual machine. We will discuss these interactions in the

following.

Interacting with the CoreASM Engine

The CoreASM extensibility architecture dictates that plugins extending the basic CoreASM

language have to implement one or more interfaces, depending on which elements of the

language (both syntax and semantics) and of the computation cycle are contributed. In

particular, JASMine provides the following extensions:

• It implements the parser plugin interface to extend the parser with new syntax for

native import, field read/write, and method invocation. The syntax rules contributed

to the language correspond to the syntactical patterns shown in Section 6.5.1.

• It implements the interpreter plugin interface and contributes the semantics for the

new syntactical patterns. The semantics contributed correspond to the ASM rules

shown in Section 6.5.1.

• It implements the vocabulary extender interface to extend the CoreASM state with

the JObject background and the monitored jasmChannel function. In particular, the

two casting functions toJava and fromJava are introduced as part of the JObject

background. Moreover, element equality, ordering and conversion to a String value

are forwarded to the Java object represented by any given JObject value.

• It implements the aggregator interface to provide aggregation rules which encode all

the JASMine update instructions computed in one step into one single update to the

jasmChannel location.

CHAPTER 6. COREASM: THE PLUGINS 170

• To actually communicate with the Java virtual machine, the value of jasmChannel

must be read after every successful step and the actions encoded therein must be

parsed and applied to the corresponding Java objects. To perform this, the JASMine

plugin extends the lifecycle of the CoreASM engine and reads the value of jasmChannel

whenever the control state of the engine is switched to Step Successful, i.e. whenever

a step is completed with a consistent set of updates; it then executes all the CREATE,

STORE and INVOKE operations stored in jasmChannel.

Interacting with the JVM

Interaction between JASMine and the Java Virtual Machine is limited to a few, well-defined

operations, and is mostly mediated by the Java Reflection API [120].

The application of updates encoded in jasmChannel entails the following steps.

1. For CREATE updates, the classical Class.forName() method is invoked, passing a

string representation of the imported class name. Once a Class object for the desired

class is obtained, if the nullary version of import native was used (i.e., with no

arguments passed to the constructor of the object), the Class.newInstance() method

is invoked to obtain the instance. Otherwise, Class.getConstructor() is called to

retrieve the corresponding constructor, then the constructor’s newInstance() method

is called, with the given arguments, to obtain the instance. A new JObject element

encapsulating the new instance is then created and assigned to the ASM location

provided in the CREATE record.

2. For STORE updates, the class of the referenced object is obtained by calling getClass()

on the reference held by the JObject; the Field object is then retrieved through

Class.getField(), and finally Field.set() (or one of its primitive type variants) is

called to assign the value from the STORE record.

3. For INVOKE updates, the class of the referenced object is obtained as above, then the

matching Method object is retrieved through Class.getMethod() (notice that in this

way only public methods can be retrieved), and finally Method.invoke() is called,

with the appropriate parameters from the INVOKE record. If the method was non-

void, the resulting value is then stored in the ASM location provided in the INVOKE

record.

CHAPTER 6. COREASM: THE PLUGINS 171

It is worthwhile to remark that fields and methods name resolution is entirely delegated

to the Reflection API, and thus follows the normal resolution algorithm in Java (see [72,

sections 8.2 & 8.4]).

Evaluation of field read access is performed immediately upon encountering the cor-

responding expression, by first obtaining the Field object as for STORE updates, then

invoking Field.get() (or one of its primitive types variants) to retrieve the field value,

which is then returned as the expression’s value. These operations constitute the GetField

macro used in the semantics (Section 6.5.2).

The various functions used in Section 6.5.2 (isJavaClassName, hasEmptyConstructor,

hasConstructor, hasField, hasMethod) are directly mapped to the corresponding Reflection

API methods. All these predicates are implemented by trying to access the given class,

constructor, field or method and possibly catching the various exceptions (ClassNotFound-

Exception, NoSuchMethodException, NoSuchFieldException) thrown by the Reflection

API methods. The jObj function returns a reference to the Java object encapsulated by a

JObject.

Finally the conversion functions javaValue and asmValue are implemented by cases, as

summarized in Table 6.1. In particular, when converting from CoreASM elements to Java

values (javaValue function), Booleans and numbers are simply converted to the correspond-

ing primitive types in Java; numbers are generally converted to double, then downcast

as needed to fit smaller types. CoreASM’s strings are wrappers around Java strings, so

the conversion is trivial. More complex mathematical structures (e.g., set or sequences) are

generally implemented in CoreASM as wrappers to the various Java Collections API objects,

so in this case also conversion amounts to unwrapping the underlying object. Any other

CoreASM value is upcast to Object and passed as-is, thus realizing an opaque container for

the ASM value from the point of view of Java code.

Conversion from Java values to CoreASM elements (asmValue function) is similar, except

that any unrecognized Java object is wrapped in an opaque JObject element from the point

of view of ASM code. This allows access to fields and invocation of methods of objects

returned from other Java methods, as in

invoke calendar->getCurrentDate() result into today

followed, in a subsequent step, by

wday := today->weekDay

invoke today->add(7) result into nextWeek

CHAPTER 6. COREASM: THE PLUGINS 172

6.5.4 A Simple Example

In this section, we present a simple example of an ASM using JASMine constructs. Our

example, presented in Program 6.2, executes in three steps (distinguished by the mode

function ranging from 1 to 3) and demonstrates the employment of the sorting capabilities

of the standard Java library.

In the first step, we instantiate a SortedSet Java object based on a CoreASM list element.

Here, JASMine automatically converts the CoreASM list (and all its elements) into their

equivalent Java objects. In the second step, three tasks are done in parallel: the resulting

SortedSet Java object is printed out, its size is retrieved and stored in a CoreASM location

(by invoking its size() method), and a new value (15) is added to the list. In the last step,

the size of the list and its new value (after adding 15) is printed out. Here is the output of

execution:

The list is [4, 8, 10, 32]

Size of list is 4

After adding 15, the list is [4, 8, 10, 15, 32]

Notice that the values of the list are automatically sorted in the SortedSet Java object

and the order is maintained even after the addition of 15. It is also interesting to note

that since the addition of 15 is done in parallel with retrieving the size of the list, different

runs of the specification may result in either of the values 4 or 5 for the size of the list in

the output, depending on in which order these two method calls (size() and add(15)) are

performed by JASMine.

6.5.5 Final Remarks

As we mentioned earlier, in defining the semantics of JASMine we have chosen to be faithful

to the theoretical ASM model. This choice has important pragmatic implications that we

discuss here.

In particular, JASMine presents a stable view of the Java environment to ASMs. This is

required by ASM semantics, but may be inconvenient in practice, as any action performed

on a Java object (e.g., storing a value in a field or invoking a method) will produce observable

effects only in the next step of the machine: thus, many programming patterns typical of

sequential programming cannot be applied. This is also true in the case of Turbo ASM rules:

hence, the n-th step in a seq or iterate rule will not observe the effects on the environment

CHAPTER 6. COREASM: THE PLUGINS 173

CoreASM JASMineExample

use Standard

use Jasmine

function mode: -> NUMBER initially 1

init InitRule

rule InitRule = {
case mode of

1: import native java.util.TreeSet([8, 10, 4, 32]) into list

2: {
print "The list is " + list

invoke list->size() result into s

invoke list->add(15)

}

3: {
print "Size of list is " + s

print "After adding 15, the list is " + list

}
endcase

mode:= mode + 1

}

Program 6.2: An Example to Illustrate Application of JASMine in CoreASM

CHAPTER 6. COREASM: THE PLUGINS 174

of the previous n − 1 steps, as the corresponding updates are being deferred as described

in Section 6.5.2. This is due to the impossibility of rolling back the Java environment to

a previous state, which prevents speculative execution of the inner steps of a Turbo ASM

step. For example, a while cycle like

import native java.io.File into file

...

while (lastModified <= lastActed)

invoke file->lastModified() result into lastModified

...

which could be used to wait for a modification to a file, will not work as expected: in fact,

invocations to lastModified() will be deferred until the end of the step, most probably

defeating the programmer’s intention.

In terms of style, one could argue that such behavior should be either encapsulated inside

a single Java method waitModification() (to be invoked through JASMine), or lifted up

to the top level of the ASM specification.

Part III

Applications and Conclusions

175

Chapter 7

Implementing CoreASM

As we addressed in Section 1.4, one of the requirements of the CoreASM modeling environ-

ment is that it should be implemented as an open framework, under an open source license,

and using a platform-independent programming language, so that it can be later improved

or modified as needed by its community of users. Realizing this requirement, we decided

to implement CoreASM using the Java programming language, one of the most popular

platform-independent1 programming languages available.

In order to make CoreASM and its source code freely available for both the academic

environment and the industry, we had to carefully choose an open source license that pro-

vides users and developers the freedom they need to use and modify CoreASM, without

the restrictions that come with many open source licenses. After considering various open

source licenses such as GNU Lesser General Public License (LGPL) [62], Apache Software

License [63], and BSD licenses [109] and looking at similar open source projects, we have

decided to make CoreASM source code available under the Academic Free License (AFL)

version 3.02. AFL 3.0 is an open source license with no reciprocal obligation to disclose

source code; i.e., derivative works can be licensed under other licenses, and the source code

of those derivative works need not be disclosed. Such a license provides a good compro-

mise between the availability of the original source code in a free form and the existence of

potentially proprietary editions and extensions in the industry.

1According to Java’s download page on http://java.sun.com, its standard edition is available on a wide
variety of hardware and software platforms: Linux, Linux Intel Itanium, Linux x64, Solaris SPARC, Solaris
x64, Solaris x86, Windows, Windows Intel Itanium, and Windows x64.

2http://www.opensource.org/licenses/afl-3.0.php

176

http://java.sun.com
http://www.opensource.org/licenses/afl-3.0.php

CHAPTER 7. IMPLEMENTING COREASM 177

Currently, the CoreASM project is publicly available on Sourceforge.net,3 one of the

most popular repositories of open source software offering online resources for open source

software development and content creation. Since its first beta release in September 2006,

CoreASM has gone through a number of revisions and its latest version (under testing at the

time of writing this document) offers substantial improvements over its previous version in

terms of both features and performance.

The rest of this chapter continues with an overview of the architecture of CoreASM in

Java. Section 7.2 looks into the implementation of the CoreASM engine focusing on the

implementation of the two more challenging components, the Abstract Storage and the

Parser, and the implementation of CoreASM plugins. Section 7.3 concludes this chapter by

introducing the tools and user interfaces that are built around the CoreASM engine.

7.1 The Architecture

The CoreASM engine has a micro-kernel architecture. Recalling the architecture of CoreASM

as presented in Chapter 4, the kernel of the engine provides only the essential aspects of

the engine required for the plugins and applications to be built upon. Furthermore, the

kernel is decomposed into four components: a parser, an interpreter, an abstract storage,

and a scheduler. The interface of the engine to its environment (and in parts, to its four

components) is provided by a special component called the Control API (see Figure 4.2).

Closely following the design of the engine, the Java implementation of CoreASM im-

plements the kernel of the engine in terms of four components and a Control API. The

interface of the components are defined by four Java interface files: Parser, Interpreter,

AbstractStorage, and Scheduler. For every component, a default implementation is pro-

vided in form of a Java class file. However, every component is carefully encapsulated in

its interface and, as a result, a different implementation can be used as long as it complies

with the the interface of the component and its specification. Since Control API acts as a

double interface, providing services both to the environment of the engine and to its inter-

nal components—the former being a subset of the latter, two Java interface files together

define the interface of the engine: (i) a CoreASMEngine interface defines the interface of the

engine to its outside environment offering services such as loading, parsing, or execution

3http://www.sourceforge.net

http://www.sourceforge.net

CHAPTER 7. IMPLEMENTING COREASM 178

String

Number

Set

List

String

Number

Set

List

CoreASM
to

Promela

CoreASM
Kernel

StringMaster
mind

JASMine

Observer

Plotter

Standard Plugins
Custom Plugins

[mc]square

Custom Applications

CSDe

Eclipse Carma

User Interfaces

Figure 7.1: CoreASM Kernel, Plugins, and Applications

of specifications; (ii) a ControlAPI which extends the CoreASMEngine interface providing

access to every component, a mapping of plugin names to actual plugin instances, and error

reporting services. An implementation of the CoreASM engine is provided by the Java class

file Engine which implements the ControlAPI interface.

The CoreASMEngine interface provides a comprehensive interface to the engine. Through

this interface, applications can (i) load CoreASM specifications into the engine, execute

them step by step, and access the simulated state and the latest update set throughout the

execution, (ii) use the engine as a parser to just parse specifications into parse-trees (which

can then be externally processed for various purposes such as model checking [59, 93]),

or access the list of plugins required by a given specification, (iii) modify various engine

properties and also observe the behavior of the engine by implementing the EngineObserver

interface.

There are currently two user interfaces available for CoreASM (see Figure 7.1): a compre-

hensive command-line user interface, called Carma, and a graphical interactive development

environment in the Eclipse platform, known as the CoreASM Eclipse Plugin. There is also a

sophisticated tool under development for creating and modifying Control State ASMs and

translating them into CoreASM specifications, called CSDe. Section 7.3 presents these tools

CHAPTER 7. IMPLEMENTING COREASM 179

Figure 7.2: Components of the CoreASM Engine

in more detail.

The CoreASM kernel also defines the skeleton of a CoreASM plugin in form of a Java

abstract class Plugin. Various types of extensions that plugins can provide to the engine,

such as parser extension or vocabulary extension (see Section 5.5 for a complete list), are

defined in terms of Java interface files. Every CoreASM plugin must extend the Plugin

abstract class and most likely implement one or more of the extension interfaces to offer its

contribution to the engine.

7.2 The CoreASM Engine

In this section we briefly look into the implementation of the kernel (focusing on the more

challenging components, the Abstract Storage and the Parser) and the plugin framework.

7.2.1 The Kernel

CoreASM engine is represented by the CoreASMEngine interface and is implemented by

the Engine class file which serves two purposes: (i) it provides an implementation for the

interface of the engine to its outside environment, and (ii) it acts as a container for the

main components of the engine and maintains the control state of the CoreASM engine. In

CHAPTER 7. IMPLEMENTING COREASM 180

order for the engine to be always responsive to its environment, the Engine object runs in

two parallel processing threads: one, being the environment or the caller’s thread, responds

to requests from the environment (such as sending commands, setting engine properties, or

retrieving updates) and the other one maintains the internal control flow of the engine.

The Abstract Storage

The Abstract Storage is implemented by more than three dozen classes in the package

org.coreasm.engine.absstorage. A hierarchy of classes implement various types of el-

ements defined in the kernel (see Figure 7.3). At the root of this hierarchy, we have the

Element class which is the superclass of all the values in CoreASM states, implementing

the Element domain. Following the specification of Section 5.1, every instance of Element

has a background and a notion of equality. Three immediate subclasses BooleanElement,

RuleElement, and FunctionElement respectively implement the domains of Boolean-

Element, Rule, and FunctionElement defined in Section 5.1. The domain of Background-

Element and UniverseElement are implemented by similarly named subclasses of a more

generic class AbstractUniverse which captures similar aspects of these two domains. Since

only a finite set of elements can be represented by Universe elements, UniverseElement also

implements the Enumerable interface.

The main class of this package is HashStorage, which offers an implementation for the

Java interface AbstractStorage based on hash tables. The CoreASM state is implemented

by the Java class HashState through three separate mappings of names (Java String val-

ues) to Function elements (instances of FunctionElement), Rule elements (instances of

RuleElement), and Background and Universe elements (instance of AbstractUniverse),

thereby implementing contents of CoreASM state as defined in Section 5.1:

stateFunction : State × Name 7→ FunctionElement

stateRule : State × Name 7→ Rule

stateUniverse : State × Name 7→ UniverseElement

The Parser

Implementing the parser component of the CoreASM engine was quite a challenge. At first,

we were looking for fast and efficient parser generators that can be called upon loading a

specification to generate a parser based on the grammar provided by the specific plugins

CHAPTER 7. IMPLEMENTING COREASM 181

Figure 7.3: Core Elements Defined in the Abstract Storage

CHAPTER 7. IMPLEMENTING COREASM 182

that are used in that specification. Originally, we used the OOPS (Object Oriented Parser

System) parser generator4 developed and maintained by Axel-Tobias Schreiner and his stu-

dents Bernd Kühl and William Leiserson. The original OOPS parser generator was quite

restrictive for CoreASM as it would generate only LL(1) parsers. Later, Will Leiserson ex-

tended and improved OOPS into an LL(k) parser generator [90]. However, the new parser

generator was not fast enough on typical CoreASM specifications to be used every time a

specification is being loaded.

We looked into a number of available open source parser generators in search of an

efficient LL(k) parser generator written in Java and we eventually found jparsec,5 a recursive-

descent parser combinator framework written for Java. In contrast to traditional parser

generators like YACC or ANTLR, jparsec grammar is written in native Java language and

is defined in terms of special Java instances of a Parser class. Each parser object represents

a grammar rule and can be combined with other parser objects to create more complex

production rules. For example, a production rule of the form “A ::= B | C | D” can be

created by the following Java code:

Parser<Foo> a = Parsers.or(b, c, d);

where b, c, and d are parser instances representing the non-terminals B, C, and D in our

production rule. In jparsec, once a parser object is created, it can be asked to “parse” a

given input:

a.parse("text to be parsed");

Depending on how the parsers are defined, the return value (the result of parsing) can be a

value resulting from a calculation or an abstract syntax tree representing the input text.

This feature of jparsec appeared to be very beneficial for CoreASM. Upon loading a

specification, the kernel provides references to the core parser objects (such as white spaces,

identifiers, terms, etc.)6 and make them available for plugins to build upon. Plugins in

turn provide their contributions to the parser in form of new jparsec parser objects. The

kernel then puts all these contributions together to create the final parser that will be used

to parse the specification.

4http://www.cs.rit.edu/~ats/
5http://jparsec.codehaus.org
6Some of these core parsers, such as the one for parsing CoreASM terms, can also be extended by plugins.

http://www.cs.rit.edu/~ats/
http://jparsec.codehaus.org

CHAPTER 7. IMPLEMENTING COREASM 183

Figure 7.4: CoreASM Plugin Interfaces

7.2.2 CoreASM Plugins

Every CoreASM plugin must extend the abstract class Plugin and most likely implements

at least one of the nine plugin interfaces offered by the engine (see Figure 7.4).7 We in-

troduced the seven most important plugin interfaces in Section 5.5; the remaining two are

the PackagePlugin and the UndefinedIdentifierHandler interface. The former should

be implemented by plugins that are defined to serve as a “package” of other plugins. For

example, CoreASM comes with a Standard Plugin which is a plugin that implements only

the PackagePlugin interface and when loaded (see LoadSpecPlugins on page 52) provides a

list of plugins that it consists of. The latter one, UndefinedIdentifierHandler, is imple-

mented by plugins that offer a mechanism to deal with undefined identifiers. For example, a

plugin can implement this interface and override the default behavior of the engine and gen-

erate an error whenever an undefined identifier is recognized by the engine; see Section 5.2.2

and the definition of the rule HandleUndefinedIdentifier in Section A.2.

A CoreASM plugin is most likely accompanied by a number of auxiliary Java classes. As

a result, every CoreASM plugin is expected to be packed into a single JAR file8 together

7Even if a plugin does not implement any of the plugin interfaces, it is still a valid plugin as long as it
properly extends the Plugin class. However, the effect of loading such a plugin would be extremely limited.

8JAR (Java Archive) files are package files that are used by software developers to distribute Java classes

CHAPTER 7. IMPLEMENTING COREASM 184

with an identification file. When an instance of Engine is initialized, it searches a specific

plugin folder, creates a catalog of available plugins (abstractly modeled by the LoadCatalog

rule on page 50) and loads the plugin class files together with their corresponding classes

into the Java Virtual Machine (JVM), so that they can be later instantiated if needed. As a

result, to add a new plugin to CoreASM, one only needs to put the JAR file of the compiled

plugin into the plugin folder of the engine.

7.3 User Interfaces and Tools

The CoreASM engine is implemented as a Java component and requires a driver program

(such as a user interface) to run the engine, e.g., to pass specification files to the engine

and to control its simulation run by manipulating parameters. There are currently two user

interfaces available for the CoreASM engine: a powerful command-line tool called Carma,

and a graphical interactive development environment in the Eclipse platform, known as the

CoreASM Eclipse Plugin.

Carma

Carma is a comprehensive command-line user interface for CoreASM that offers rich control

over the runs of the engine through more than a dozen command-line options and switches.

To execute a specification, users can simply run Carma on the command line and pass

it the name of the specification file as an argument. By default, Carma does not have a

termination condition, but it offers a number of termination conditions, such as termination

after a number of steps, termination on empty updates, and termination when there is

no valid agent with a defined program. As an example, the following command runs the

CoreASM specification MySpec.coreasm using Carma and stops after 30 steps or after a

step that generates empty updates; it also provides a print-out of the final state before

termination.

carma --steps 30 --empty-updates --dump-final-state MySpec.coreasm

and their associated metadata.

CHAPTER 7. IMPLEMENTING COREASM 185

The CoreASM Eclipse Plugin

The CoreASM Eclipse Plugin is a graphical interactive development environment for Core-

ASM in form of a plugin for the well-known Eclipse software development platform. The IDE

provides various options to control execution of CoreASM specifications. The plugin extends

the Eclipse platform to support dynamic syntax highlighting and interactive execution of

CoreASM specifications. Since the language of CoreASM for a given specification is defined

by the set of plugins used by that specification, with every change to the specification, the

editor component of the CoreASM Eclipse Plugin passes the specification to the CoreASM

engine and gets the set of plugins that are used by the specification. The editor then asks

the plugins for the set of keywords, functions, universes and backgrounds they provide and

uses this information to offer a dynamic syntax highlighting of the specification.

Figure 7.5(a) shows a snapshot of the CoreASM environment in Eclipse. At the top left

corner (1), the toolbar is extended to include buttons to pause, resume and stop a simulation

run. The editor (2) provides dynamic syntax highlighting for CoreASM specifications based

on the set of CoreASM plugins used in the specification. A configurable output console (3)

provides a print-out of the results of the simulation with optional additional information on

the simulation process and the state of the simulated machine.

7.3.1 CSDe

The Control State Diagram editor (CSDe), under development by Piper J. Jackson [51], is

a sophisticated tool for creating and modifying Control State ASMs and translating them

into CoreASM specifications. The tool is implemented as a plugin for the Eclipse software

development platform. The plugin allows the user to work with Control State Diagrams

(CSDs) using a point-and-click schema (see Figure 7.5(b)).

The simplicity of control state diagrams and the intuitiveness of the graphical user inter-

face work together to allow users to confidently contribute to the design, regardless of their

technical background. The diagram editor (CSDe) is capable of automatically transforming

diagrams into CoreASM specifications. Since control state diagrams do not necessarily in-

clude initial states of the system or other more concrete information required for machine

execution, such specifications may not be directly executable. However, they provide an

abstract structure for the design of systems and act as foundations for further development

CHAPTER 7. IMPLEMENTING COREASM 186

1

3
2

(a) CoreASM Eclipse Plugin

(b) CSDe: A Control State Diagram editor for CoreASM

Figure 7.5: CoreASM Tools in Eclipse

CHAPTER 7. IMPLEMENTING COREASM 187

of the specifications. The automatic translation feature facilitates the transition from high-

level design ideas expressed in graphical form towards abstract yet relatively more concrete

specifications.

7.3.2 Model Checking CoreASM Specifications

The CoreASM engine facilitates experimental validation of ASM models by providing the

means to execute abstract specifications and to explore behavioral aspects in an interac-

tive fashion. However, experimental validation without model checking cannot formally

verify the correctness of a system with respect to all of its possible behaviors. In or-

der to provide model checking support for CoreASM, George Ma developed a tool called

CoreASM2Promela [93] that utilizes the CoreASM engine to translate CoreASM models into

equivalent Promela models which can be verified using the Spin model checker.9 From a

high level perspective, the steps in the translation and verification process are as follows: (i)

a CoreASM specification is loaded and parsed by the CoreASM engine, producing an abstract

syntax tree; (ii) the tree is translated into Promela; (iii) Spin is invoked to generate a verifier

of the Promela model, producing C code; (iv) the C code is compiled, generating a custom

verifier of the CoreASM specification; (v) the verifier is run, producing a counter example if

the property being checked does not hold.

In order to properly translate CoreASM specifications into Promela models, we needed

to extend the CoreASM language by two new plugins, namely the Signature Plugin (see

Section 6.4.1) and the Property Plugin, to support declaration of function signatures and

specification of LTL properties as part of CoreASM specifications. The Property Plugin is a

small plugin that allows correctness properties, expressed as LTL formulas, to be included

in the header of a CoreASM specification. Presently, specified properties do not have any

meaning during ASM simulations (although it may be possible to extend the Property plugin

to check simple global assertions). Correctness properties are only applicable during model

checking, and are translated by our CoreASM to Promela translator.

The Property plugin provides the following pattern to declare new LTL properties:

[check] property LTL-property

9Spin is a widely used automata based model checker that has been used extensively in the design of
asynchronous distributed systems [80].

CHAPTER 7. IMPLEMENTING COREASM 188

Including the keyword check with a property declaration indicates that the property should

be checked during model checking.

Since Spin does not allow LTL properties to be included directly in a specification, the

Property plugin was developed to improve the usability of the model checker. In Spin,

properties are defined by describing the behavior of a property automaton. Moreover, Spin

only allows a single property automaton in each model, while the Property plugin allows

multiple properties to be specified for a single specification.

George Ma has successfully used CoreASM2Promela to model check several non-trivial

ASM specifications; the details of the case studies and a comprehensive discussion of the

results are presented in George Ma’s M.Sc thesis [93]. However, there are certain limita-

tions in model checking abstract ASM specifications using Spin. For example, as Spin can

only check finite models, the translation scheme is limited to CoreASM specifications which

have finite states. Thus, the translation supports only static universes and enumerated

backgrounds.

Chapter 8

Case Studies

This chapter presents three case studies from three diverse application contexts to examine

the practicability of using CoreASM for requirements analysis, design specification and rapid

prototyping of abstract system models. These three examples result from projects that have

been carried out at SFU’s Software Technology Lab1 in close collaboration with industrial

partners, Defence R&D Canada, SFU’s Institute for Canadian Urban Research Studies and

the Royal Canadian Mounted Police,2 and they illustrate the wide scope of application

domains for CoreASM, beyond classical software system design problems.

8.1 The DRCMA Project

Dynamic Resource Configuration & Management Architecture (DRCMA) [58, 52] is a highly

adaptive and auto-configurable multi-layer network architecture for distributed information

fusion. The primary goal of DRCMA is to address large volume surveillance challenges,

assuming a wide range of different sensor types operating on multiple mobile platforms

for intelligence, surveillance and reconnaissance. The focus is on network enabled opera-

tions to efficiently manage and improve employment of heterogeneous sets of surveillance

and patrolling resources, their information fusion engines and their networking capabilities

under dynamically changing and essentially unpredictable conditions. The architecture is

built on realistic application scenarios adopted from the design and development of the

1http://stl.sfu.ca
2This chapter provides a summary of our previously published materials on these subjects [51, 58, 52, 50].

189

http://stl.sfu.ca

CHAPTER 8. CASE STUDIES 190

CanCoastWatch system [123, 57].

8.1.1 Objectives and Challenges

The overall design objective of DRCMA is a highly robust and scalable network architecture

that supports reconfigurable applications and self-organizing structures, flexibly adapting

to dynamically changing resource requirements as well as changes in the availability of

resources. Global mission goals are to be operationalized into local tasks performed by semi-

autonomously operating resource units that can handle basic adjustments and realignments

of resources automatically. The architectural design emphasizes a hierarchical command

and control structure.

Missions injected into the system are complex tasks, each of which needs to be trans-

formed into a collection of constituent elementary tasks, so as to map these tasks onto the

available resources. Complex tasks therefore are decomposed in one or more steps into

simpler ones until all of the resulting tasks are of elementary type, meaning that each of

them can directly be assigned to a physical resource capable of performing the task. Phys-

ical resources refer to individual resource entities that exist in the physical environment.

Depending on the level of abstraction, a physical resource may either identify a group of

sensor platforms or a single sensor platform or even an individual sensor unit on a sensor

platform.

Logical resources represent clusters of resources formed by aggregating two or more

physical and/or logical resources, each with a certain range of capabilities, into a higher

level resource with a greater capacity for performing complex operations. Resource clusters

operate semi-autonomously to increase robustness and to reduce control and communication

overhead by making local decisions regarding the realignment and reorganization of resources

within the cluster. Dynamic reconfiguration of clusters is performed in an ad hoc manner

using ‘plug and play’ mechanisms. Resources may join or be removed from a cluster on

demand and depending on their capabilities, geographic location, cost aspects and other

characteristics.

8.1.2 Conceptual Model

The overall organization of the dynamic resource configuration and management architecture

assumes a hierarchical command and control structure that is described by a hierarchical

CHAPTER 8. CASE STUDIES 191

network of nodes representing mobile resources as illustrated in Figure 1. There are two

basically different types of resource entities as follows:

• Physical resources refer to real-world resource entities as part of an existing distributed

fusion system. In the hierarchical structure, only the leaf nodes represent physical

resources. Depending on the level of abstraction at which a distributed fusion system

is considered, a physical resource may refer to a group of mobile sensor platforms, to

a single mobile platform or to an individual sensor unit on a sensor platform.

• Logical resources refer to abstract resource entities formed by clustering two or more

physical and/or logical resources, each with a certain range of capabilities, into a higher

level resource with aggregated (richer) capabilities needed to perform complex opera-

tions. A logical resource identifies a cluster of resources3. In the hierarchical structure

(e.g. as illustrated in Fig. 8.1(a)) all non-leaf nodes represent logical resources.

Capabilities
Surveillance
Mobility

Capabilities
Search
Rescue

Capabilities
Radar
Mobility

(a) Nodes Represent Physical or Logical Resources.

Communication Layer

Physical Distribution

Logical Distribution

Resource Management

(b) DRCMA Service Layers

Figure 8.1: Architectural View of DRCMA

Resource clusters operate semi-autonomously to increase robustness and to reduce con-

trol and communication overhead by making local decisions regarding the realignment and

reorganization of resources within the cluster identified by a logical resource. Dynamic

reconfiguration of clusters is performed in an ad hoc manner using ‘plug and play’ mech-

anisms. Resources may join or be removed from a cluster on demand and depending on

3Logical resources require command capabilities in their clusters, but we abstract away from this notion
in our model.

CHAPTER 8. CASE STUDIES 192

their sensor capabilities, mobility capabilities, geographic location, cost aspects and other

characteristics. The underlying design principles resemble those for improving performance

and robustness in mobile ad hoc networks [96].

Resource Allocation

Missions represent complex tasks, typically involving a number of explicitly or implicitly

identified subtasks, each with specific resource capability requirements that need to be

matched with the capabilities of mobile resources in order to perform any such task. In

general, the operations carried out by a set of resources allocated to a mission are distributed

in time and space, making the coordination of these resources a challenging problem.

A mission is decomposed into subtasks in one or more steps until all of the resulting

tasks are of elementary type, meaning that each of them can directly be assigned to a

physical resource capable of performing the task. New missions are introduced by assigning

the mission to the top-level node. When a logical resource receives a complex task, it tries

to find a child node with matching capabilities to perform the task. If none of the child

nodes can perform the task, the logical resource attempts to split the task into a collection

of subtasks that can be performed by two or more of its child nodes. If this attempt fails

as well, the task will be rejected.

Intuitively, one may view new tasks as ‘sinking’ downwards in the node hierarchy until

they reach a matching physical resource or become transformed into a collection of related

subtasks.

Resource Distribution

The distribution of mobile resources can change dynamically over time depending on a

number of internal and external factors. To clearly separate concerns, DRCMA distinguishes

two types of resource distribution:

• Physical distribution refers to the spatio-temporal distribution of mobile resources

in the geographical environment. Position information and projections of resource

trajectories provide important input to support the logical distribution (e.g., keeping

resources of the same group in close proximity to each other) and also to satisfy

communication requirements (e.g., moving a resource to a location in order to act as

a communication proxy).

CHAPTER 8. CASE STUDIES 193

• Logical distribution refers to the dynamic configuration of physical resources into clus-

ters that change in response to the changes in tasking information (e.g., new task

orders or changes in task priorities), changes in the capabilities of resources (e.g., de-

vice failures or new resources joining the network), changes in the environment (e.g.,

changes in weather conditions), and to maintain a desirable workload balance within

individual clusters and across the whole network.

Layered Architecture

Dynamic resource management policies govern the migration of resources between clusters

based on common prioritization schemes for resource selection, load balancing and orga-

nization of idle resource pools. Configuration and management of resources across nodes

is organized by building on a service-oriented architecture consisting of four hierarchical

service layers, namely: Resource Management (L4), Logical Distribution (L3), Physical

Distribution (L2), and Communication (L1), where L1 refers to the bottom level layer; see

Figure 8.1(b).

The proposed DRCMA model assumes clearly identified and well defined interfaces be-

tween layers, such that layern renders services to the next higher layern+1 using layern

protocols realized by means of services provided by layern−1 [70]. The encapsulation of ser-

vices in separate layers not only enhances a clear separation of concerns but also simplifies

the control of complexity by providing convenient abstractions for decomposing complex

interaction patterns.

8.1.3 Formal DRCMA Model

Starting from the design concepts described above, we turn the abstract DRCMA view into

a high-level formal model [58, 52] that can be systematically analyzed, inspected, refined

and validated. The formal representation ensures that the key system attributes are spec-

ified concisely and unambiguously, providing a reliable foundation for checking that these

attributes are well understood and actually do meet the functional requirements.

Nodes are the basic components of the DRCMA model. Every node refers to either

a logical or a physical resource in the network (see Figure 8.1(a)). Every logical resource

represents a non-empty set of subordinate resources, called child resources, that belong to

its cluster. Hence, we have:

CHAPTER 8. CASE STUDIES 194

Resources

universe Node

universe Resource

node : Resource 7→ Node

resource : Node 7→ Resource

∀r ∈ Resource ∀n ∈ Node resource(n) = r ⇔ node(r) = n

cluster : Resource 7→ Set(Resource)

isCluster : Resource 7→ Boolean

∀r ∈ Resource ¬isCluster(r)⇒ (cluster(r) = {})

Resources may have different kinds of capabilities; for instance, a helicopter can have

‘mobility’, ‘communication’, and ‘radar’. Every capability has a number of attributes de-

scribing it in more detail. An attribute is defined as a pair 〈name, value〉. For instance, a ‘mo-

bility’ capability may have a ‘speed’ attribute with a numeric value such as 〈speed, 50kmph〉.
One may specify additional aspects of mobility and define other attributes such as ‘type’,

taking values from a given set {‘air’, ‘ground’, ‘water’} to more precisely describe the capa-

bility.

Resources can have more than one instance of a capability. For instance, the helicopter in

our example may be able to communicate via two different communication links. Therefore,

it has two ‘communication’ capabilities, each with a different value for its ‘type’ attribute:

〈type, link11〉, and 〈type, link16〉. We can formally define capabilities and their relationship

to resources as follows:

Capabilities

domain Capability

capabilityName : Capability 7→ Name

capabilityAttribute : Capability 7→ Name × Value

nodeCapabilities : Node 7→Multiset(Capability)

Moreover, each node has a multiset of capabilities4 consisting of all the capabilities it

can provide. For a higher level node (logical node), which itself consists of other physical

or logical nodes, the multiset represents the aggregation of all the capabilities provided by

4Since a node may have more than one instance of a specific capability, we model the collection of
capabilities as a multiset.

CHAPTER 8. CASE STUDIES 195

its children.

Different capabilities may be required to perform a single task. In addition, various

capabilities may each satisfy a single capability requirement of a task. For instance, two

different resources, SAR helicopter and patrol aircraft, both having a mobility capability of

type ‘air’, may each satisfy the capability requirement of a task that requires air mobility. In

order to model the matching of capability requirements to capabilities, we model capability

requirements as Capability Patterns with almost the same structure that capabilities have,

with the conceptual difference that the attribute values of a capability pattern can be a

range or a set of acceptable values. A matchCapability function of the form

matchCapability : CapabilityPattern × Capability 7→ Boolean

holds if a certain capability matches a given capability pattern.

Capability Pattern

domain CapabilityPattern

requiredCapabilities : Task 7→ Set(CapabilityPattern)

decomposeCapability : CapabilityPattern 7→ Set(CapabilityPattern)

Hence, requiredCapabilities(t) is a set of Capability Patterns, describing the capabilities

a task t needs in order to be performed. Capability requirements of a task can be satisfied

by finding a matching capability for each of its capability patterns.

Logical Distribution The logical distribution of resources is reflected by the network

topology as stated through the following functions defined on nodes:

• rootNode : 7→ Node, a static function that identifies a distinguished node of the

network representing the top level command and control unit.

• childNodes : Node 7→ Node-set, childNodes(node) holds the set of nodes under direct

authority of node.

• parentNode : Node 7→ Node, points to the parent node of a node.

Physical Distribution The physical distribution of resources within a given geographical

environment in which they operate typically changes over time. This is abstractly modeled

by a monitored function

CHAPTER 8. CASE STUDIES 196

location : Resource 7→ Coordinate

which, in any given system state, associates with each of the resources a geographical lo-

cation, e.g. as identified by a global positioning system. As resources change their location

dynamically, the function location may change its interpretation from state to state. Based

on the location of resources and certain dynamic characteristics of the environment, such

as weather and terrain conditions, various derived functions model various aspects of the

physical distribution of resources. For instance, for any given node, the set of all the given

nodes that are reachable over a certain communication channel is modelled by

visibleResources : Resource × Channel 7→ Resource-set.

The physical distribution layer (see Figure 8.1(b)) provides services to query about and

manipulate the physical distribution of resources in DRCMA. We abstract here from the

internals of this layer, assuming an underlying model resembling those used in the routing

layer of mobile ad hoc communication networks [70].

Dynamic Resource Management

DRCMA handles task allocations and maintains a dynamic logical distribution of resources

by actively monitoring the operational status of resources and the tasks to be performed,

reacting to changing situations. The following events can trigger a change in the logical

distribution of resources: 1) occurrence of new or modified tasks; 2) changes in resource

capabilities or availability of resources (e.g., failure of sensor units); and 3) problems with

communication links.

In response to an event that triggers a reaction, the network configuration can be changed

by applying the following canonical transformation patterns (see also Figure 8.2):

1. New clusters can be created on demand, e.g., in response to a new high priority task.

2. Resources can be moved from one cluster to another, e.g., in order to better serve a

higher priority mission or to balance resource load.

3. Resources can form their own solitary clusters if they get disconnected (and isolated)

from other resources due to a communication failure.

CHAPTER 8. CASE STUDIES 197

New Task

(a) New clusters can be created based on new tasks received.

New Task

(b) Resources can be moved from one cluster to another in response to new
tasks.

(c) Resources can form their own solitary clusters if disconnected.

Figure 8.2: Basic Transformation Patterns

CHAPTER 8. CASE STUDIES 198

4. Clusters can be merged into a larger cluster to satisfy a new or changed goal. This

can be considered as a special case of 1.

The process of maintaining the configuration of resources is modeled as a distributed

process performed by the individual nodes of the network. Every node actively monitors

the environment and maintains the configuration of its resources to maintain stability, bal-

ance workload, and increase resource performance. The behavior of the DRCMA nodes is

captured in four layers (see Figure 8.1(b)):

DRCMANodeProgram ≡
ResourceManagementProgram

LogicalDistributionProgram

PhysicalDistributionProgram

CommunicationProgram

The behaviour of DRCMA resource management layer is decomposed into five main

activities running in parallel, as stated by the following ASM program formed by the parallel

composition of four behavioral component descriptions.

ResourceManagementProgram ≡
MonitorNewTasks

MonitorResources

MonitorComLinks

ProcessObservedEventsRM

RespondToMessagesRM

Here, as an example, we look into the refinement of MonitorNewTasks and specify how

DRCMA nodes manage new task assignments.

8.1.4 New Task Assignments

When a new task t is assigned to a nodeN , either by a parent node or as a result of a situation

analysis performed by the node itself, N uses a process similar to a ‘call for tender’ to find a

suitable set of resources that together can handle task t (see also Figures 8.2(a) and 8.2(b)):

1. Compute the capabilities required for processing task t.

2. Ask all the child nodes of N if they could provide these capabilities and, if so, what

is the estimated cost of providing such capabilities.

CHAPTER 8. CASE STUDIES 199

Idle new task?
Compute Required

Capabilities

MONITOR NEW TASKS

Requesting
Quotes

Send Quote Requests
to Child Nodes

all quotes received
or timed out?

Receiving
Quotes

Assign Task t to
Node c

Looking for
Candidate

is there a
candidate?

Choose Child c with
Minimum Cost

Assigning
Task to Node

yes

no

Choosing
 Combination

Choose a Combination
with Min Cost

need a new
cluster? Create New Cluster Transfer Capabilities

transfer
successful?

Is there such a
combination?

yes

Rejecting
Task

Send Rejection
Notification

no

no
yes

Choose Task t

Receive Quotes

yes
no

yes

no

Idle

Figure 8.3: Control State ASM of Monitoring New Tasks by Logical Nodes

3. If there is at least one potential candidate, i.e. a child node that can provide all the

required capabilities, choose one such candidate c with the minimum total cost, and

assign task t to c.

4. If there is no such child node, choose a combination of child nodes that together can

perform task t with the minimum total cost.

(a) Decide whether a new cluster should be created or a currently available one can

be used; call that cluster nc.

(b) Send a logical distribution change request to move the required capabilities from

other nodes to cluster nc, and wait for receiving the acknowledgement from all

the nodes in the sub-cluster.

(c) If all the required resources (capabilities) are transfered properly under nc, assign

task t to nc.

5. If no combination of nodes can be found to handle task t, reject task t and notify the

parent node even if task t is emerged from within node N itself.

As part of our formal model, we provide a control state ASM [25] diagram formally

defining the process of monitoring new tasks (see Figure 8.3), in which ellipses represent

CHAPTER 8. CASE STUDIES 200

control states, diamonds represent conditionals, and rectangles represent ASM rules (i.e.,

actions). While the diagram provides the overview of the process and its control flow, the

details of the conditions and the actions they trigger are defined in terms of an ASM. For

instance, the following predicates specify the condition ‘Is there a candidate?’:

candidateExists(node, task) ≡ ∃ c ∈ childNodes(node) isACandidate(c, task)

isACandidate(node, task) ≡ ∀ rc ∈ requiredCapabilities(task) quote(node, task)(rc) 6= undef

and the following rules define the actions ‘Send Quote Requests to Child Nodes’ and ‘Receive

Quotes’ of the resource management (RM) layer:5

SendQuoteRequestsRM (task) ≡
forall c in activeChildNodes(self) do

let m = new(Message) in

msgType(m) := quoteRequest

msgData(m, “task”) := task

msgData(m, “capabilities”) := requiredCapabilities(task)

quote(c, task) := undef

SendMessageRM (c,m)

where

activeChildNodes(n) ≡ {x | x ∈ childNodes(n) ∧ ¬isDead(x)}

ReceiveQuotesRM (task) ≡
choose m ∈ inbox(self) with

msgType(m) = quoteResponse ∧msgData(m, “task”) = task do

quote(sender(m), task) := msgData(m, “quote”)

remove m from inbox(self)

The above rules exhibit two important abstractions in the DRCMA model. In these

rules, the abstract view of communication services and data structures of messages allows

us to focus on the main functionality of the process. To send quote requests to child nodes,

DRCM relies on the messaging services provided by the communication layer. For every child

node, a new quote request message is created asking for a quote on the cost of performing

the new task, and the message is sent using the abstract routine SendMessageRM . In the

5In these rules, self refers to the node executing the rule.

CHAPTER 8. CASE STUDIES 201

next step, the node looks into its message inbox and non-deterministically chooses quote

messages related to the new task and stores the received quotes in an internal data structure

to be used later in the process (see ReceiveQuotes above). This rule is repeated until all the

expected quotes have either been received or timed-out.

If no single resource cluster suitable to perform the new task is available, the best

combination of resources from different clusters are selected to form a new cluster (see

“Choosing Combination” in Figure 8.3). To create a new cluster, a new logical resource and a

corresponding node is created, and the hierarchical structure is then modified by changing

the values of functions parentNode and childNodes, effectively adding the new cluster node

to the tree (see CreateNewClusterNodeLD below). The following rules define the action ‘Create

New Cluster’ of the resource management layer and the respective rule it uses from the logical

distribution (LD) layer:

CreateNewClusterRM ≡
newClusterNode(self)← CreateNewClusterNodeLD

CreateNewClusterNodeLD ≡
let nr = new(Resource) in

ConfigureResource(nr, emptyCluster,noCapability)

CreateAndConfigureNode(nr)

add node(nr) to childNodes(self)

parent(node(nr)) := self

result := node(nr)

The next step is to transfer the selected resources of the winning combination into the

newly created cluster. Here, the resource manager layer directly uses the transfer capabilities

service provided by the logical distribution layer (see TransferCapabilitiesLD below). Based on

the selected combination, a transfer map is created. Transfer of resources is done using a

messaging protocol: for every pair of (node, capability) in the given transfer map, a transfer

request message is sent to node requesting to transfer its capability to the new cluster.

Resources acknowledge a successful transfer of their capabilities by sending back a transfer

ack message, which is collected in the next step.

The following rule defines the action ‘Transfer Capabilities’ of the logical distribution (LD)

layer. Here we provide a simple implementation of the protocol. The node keeps a set of

the capability transfer requests that it has sent so far, and then it removes those requests

CHAPTER 8. CASE STUDIES 202

for which an acknowledgement is received. The transfer is considered to be successful when

all the requests are acknowledged before a time-out event occurs.

TransferCapabilitiesLD(task, target, transferMap) ≡
if requestsSent = undef then

outcome := undef

timer← GetNewTimer

SendCapabilityTransferRequestsLD(task, target, transferMap)

else

if |requestsSent| > 0 then

if timedOut(timer) then

outcome := failed

else

RemoveProcessedTransferRequests(self , task, target, transferMap)

else

requestsSent := undef

outcome := successful

where

requestsSent ≡ capabilityTransferRequestsSent(self , task, target, transferMap)

outcome ≡ transferResult(self , task, target, transferMap) = successful

timer ≡ transferTimer(self , task, target, transferMap)

SendCapabilityTransferRequestsLD(task, target, transferMap) ≡
seq

requestsSent := {}
next

forall (node, cap) in transferMap do

extend Message with m do

msgType(m) := transferRequest

msgData(m, “capability”) := cap

msgData(m, “task”) := task

msgData(m, “target node”) := target

SendMessage(node,m)

add (node, cap) to requestsSent

where

requestsSent ≡ capabilityTransferRequestsSent(self , task, target, transferMap)

CHAPTER 8. CASE STUDIES 203

8.1.5 The Executable Model

The DRCMA model is described in abstract functional and operational terms in form of

an executable distributed abstract state machine specification, using the CoreASM modeling

environment. This description of the underlying design concepts provides a concise blueprint

for reasoning about key system attributes at an intuitive level of understanding, supporting

requirements specification, design analysis and validation of system properties. A basic

graphical user interface (see Figure 8.4) has also been developed in Java to provide a live

view of the resource network and its command and control hierarchy during the simulation

of scenarios. The specification utilizes the JASMine plugin (see Section 6.5) to interact with

the graphical viewer.
As an example, Figure 8.4 shows the result of a simple search and rescue scenario

using the network configuration of Figure 8.4(a) with the following resource capabilities
and tasking requirements:

• Resource Capabilities

– Boat-1: {|{|〈mobility, high〉, 〈rescue, high〉|}|}

– Aurora-1: {|{|〈mobility, high〉, 〈radar, medium〉|}|}

– Helicopter: {|{|〈mobility, medium〉, 〈vision, medium〉|}|}

– Boat-2: {|{|〈mobility, medium〉, 〈rescue, low〉|}|}

– Aurora-2: {|{|〈mobility, high〉, 〈radar, high〉|}|}

• Tasking Information

– SOS-task: composed of search-task and rescue-task

– Required capabilities

∗ search-task: {|{|〈mobility, medium〉, 〈vision, medium〉|}|}

∗ rescue-task: {|{|〈mobility, medium〉, 〈rescue, low〉|}|}

Building an abstract yet executable model of DRCMA in CoreASM enabled us to exper-

iment with the model and validate design decisions at a fairly high level of abstraction. In

subsequent steps, we are extending and further refining the DRCMA model into a compre-

hensive architecture [52] for adaptive distributed information fusion. The result will be a

prototype for testing, experimental validation and machine-assisted verification of the key

system attributes prior to actually building the system.

CHAPTER 8. CASE STUDIES 204

(a) Initial network configuration. (b) A new cluster is created to perform the task.

(c) Task is decomposed into two tasks and they
are assigned to resources.

(d) Rescue task is assigned to Boat-1, but Boat-1
gets disconnected.

(e) Boat-2 is moved to the new cluster to perfrom
the rescue task.

(f) Rescue task is assigned to Boat-2.

Figure 8.4: Search and Rescue Scenario

CHAPTER 8. CASE STUDIES 205

8.2 Decision Support for Situation Analysis

Situation Awareness is essential for conducting decision-making activities. It is the per-

ception of elements in the environment, comprehension of their meaning, and projection of

their status in the near future [43]. Agents develop an understanding of a situation based

on a discrete perception and evaluation of events as they unfold over time and forecast their

anticipated evolution in the future. Situation Analysis (SA) is defined as a process, the

examination of a situation, its elements, and their relations, to provide and maintain a state

of situation awareness for the decision maker [28].

The rationale for establishing a formal semantic foundation for the design of situation

analysis and decision support systems is discussed in detail in [27]. Inspired by recent work

at Defence R&D Canada at Valcartier that proposes the use of Interpreted Systems (see

Section 2.4) for Situation Analysis [94, 95], a systematic approach combining ASMs and

Interpreted Systems seems appealing, as each of the two semantic modeling frameworks has

its particular focus and strength, complementing each other in several respects. They both

share common abstraction principles for describing distributed system behavior based on

an abstract operational view of multiagent systems. Additionally, pragmatic considerations

regarding practical needs for system design and development are relevant to support the

systematic refinement of abstract specifications into executable models serving as a basis

for rapid prototyping and experimental validation of decision support systems.

In the following sections (previously published in [50]), we illustrate the similarities be-

tween the two frameworks using a simple surveillance scenario originally presented in [95].

In order to put the abstract model into practice and to realize what is practically feasi-

ble, we used the CoreASM modeling suite to produce an executable model of the scenario

through refinement of the abstract rules and functions of the model. Such a refinement,

with the goal of producing an executable model, is interesting in two aspects: a) it helps

in finding ambiguities, missing pieces and loose-ends of the model and forces the system

analyst/modeler to think clearly about the main concepts and their definitions, and b) it

supports experimental validation through execution (simulation).

Our work demonstrates how one can benefit from using ASMs, and in particular Core-

ASM, to model a multiagent system while still being able to apply and extend the Interpreted

Systems approach of [95] for situation analysis. For example, by combining Interpreted Sys-

tems and multiagent ASMs, situation analysis queries can not only be analyzed using the

CHAPTER 8. CASE STUDIES 206

1
θ

ρ

AOI

2

Figure 8.5: Surveillance Scenario from [95] 6

proposed methods in [95], but they can also be examined either by explicitly encoding the

queries as computable functions in the model and running the executable model, or by

applying the available model checking techniques for ASM [93, 66].

8.2.1 The Abstract Model

The scenario involves two agents, agent1 and agent2, in a 2D environment (see Figure 8.5).

Both agents are able to move in 8 possible directions and they can both sense other agent’s

range ρ and bearing θ with some error. The local state of each agent is composed of successive

observations about the other agent’s position. The state of the environment contains the

accurate target positions. Using the ASM notation, we have:

universe Agent = {agent1, agent2, env}
universe Movement = {N,NW,W,WS,S,SE,E,EN}

ρ, θ : Agent 7→ R ρ̂1h, θ̂1h : 7→ Sequence(R)

ρ̂2h, θ̂2h : 7→ Sequence(R)

ρ̂1, θ̂1 : 7→ R errorρ : Agent 7→ R
ρ̂2, θ̂2 : 7→ R errorθ : Agent 7→ R

where ρ(a) and θ(a) are the real range and bearing of agent a, ρ̂i and θ̂i are the observed

range and bearing7 and ρ̂ih and θ̂ih are the history of observations of range and bearing of

6Courtesy of A.-L. Jousselme and P. Maupin
7A better approach would be to define ρ̂ and θ̂ as functions over agents, but to match the original syntax

of the scenario, we define them as individual indexed functions.

CHAPTER 8. CASE STUDIES 207

agent i by the other agent, and errorρ(a) and errorθ(a) are the observation errors of agent a.

To make the model more general and scalable, real ranges and bearings are defined as

functions over agents. The action sets of the two agents, ACT1 and ACT2 are equivalent to

the Movement universe defined above.

According to the scenario, agent1 is stationary. Its purpose is to observe the position of

agent2 and to send a message to a designated agent (outside of the system) if agent2 enters

an area of interest (AOI). On the other hand, agent2 is actively moving toward agent1 until

it finds out that it is “too close” to agent2, in which case it makes a U-turn.8 So, we define

the programs of agent1 and agent2 as follows:

Agent1Program ≡
RecordObservation(agent2)

if isInAOI(agent2) then

SendMessage(“Agent 2 is in AOI.”)

Agent2Program ≡
RecordObservation(agent1)

if dir(self) = toward then

MoveToward(agent1)

else

MoveAway(agent1)

if tooClose(agent1) then

dir(self) := away

At this level, we abstract away from certain details. For example, since the scenario does

not elaborate on how and to whom agent1 sends its messages, we leave the SendMessage rule

abstract. Also, since the area of interest and the exact measures for “closeness” of agent1
and agent2 are not defined, the functions isInAOI and tooClose are left abstract as well. The

rule RecordObservation(a) is a placeholder for the actual task of maintaining the observation

history.

An interesting observation is that the local state of agent2, as described by the scenario,

seems to be missing an important piece: the movement direction of agent2, toward or away

8The description of the scenario is vague on whether agent2 will ever try to move back toward agent1 or
not. We assume that it will not try to come close again.

CHAPTER 8. CASE STUDIES 208

from agent1. At some point in time, agent2 observes that it is too close to agent1 and so

makes a U-turn. The direction of the agent2 is a dynamic attribute of the agent and needs

to be captured in the local state of the agent. Here, we model the direction of agent2 by

a function dir, which is initially set to toward and will be changed to away the first time

agent2 observes that it is too close to agent1.9

In this scenario, the environment models the uncertainty of error values. The action

of the environment is to set the error values for observed ranges and bearings. Hence, the

action set of the environment ACTe is a set of tuples of the form (e1
ρ, e

1
θ, e

2
ρ, e

2
θ) in which

eiρ ∈ Eiρ and eiθ ∈ Eiθ are range and bearing observation errors for agent i, and Eiρ and Eiθ

are the corresponding error ranges. In our ASM model, the environment program models

this behavior by non-deterministically choosing values from Eiρ and Eiθ and updating errorρ
and errorθ for agents agent1 and agent2.

EnvironmentProgram ≡
forall a ∈ {agent1, agent2} do

choose eρ ∈ Eρ(a), eθ ∈ Eθ(a) do

errorρ(a) := eρ

errorθ(a) := eθ

At this point, we have an abstract operational model of the scenario in form of a multi-

agent ASM.

8.2.2 Situation Awareness

Following the approach of [95], let Φ be the basic set of our propositions, φρ ∈ Φ be “the

range of agent 2 crosses AOI”, and φθ ∈ Φ be “the bearing of agent 2 crosses AOI”. The

formula φAOI = φρ ∧ φθ will then be “agent 2 is in AOI”. In the program of agent1, the

function isInAOI(agent2) represents the awareness of agent1 about φAOI, and it can be

evaluated using the range and bearing of agent2 as observed by agent1:

isInAOI(agent2) = ρ̂2 ∈ AOIρ ∧ θ̂2 ∈ AOIθ (8.1)

9One can also argue that the knowledge about the close encounter of the agents is implicitly encoded in
the observation history of agent2 and the direction can be dynamically calculated based on the observation
history.

CHAPTER 8. CASE STUDIES 209

It is important to note that since there is a possible error in the observation of agent1,

isInAOI(agent2) being true does not necessarily mean that φAOI holds as well; i.e., agent2
could actually be outside of the area of interest. The value of isInAOI(agent2) simply

reflects the state of awareness of agent1 about the position of agent2, which may differ from

the reality. This is captured in (8.1) by using the observed range and bearing, ρ̂ and θ̂,

rather than the real values ρ and θ.

The same holds for the awareness of agent2 about its distance from agent1. Let φc ∈ Φ

be “the range of agent 1 is too close”. The function tooClose(agent1) represents the state

of awareness of agent2 about the truth of φc and can be derived from the observed range of

agent1:

tooClose(agent1) = ρ̂1 < threshold2
ρ (8.2)

where threshold2
ρ is the minimum distance that agent2 is willing to have with agent1. Again,

tooClose(agent1) being true does not necessarily mean that φc holds.

We can further extend the model and introduce non-trivial computable formulas such

as φm = “agent 2 is coming toward agent 1”. In general, derived functions can be defined

to model the awareness of agents about the truth values of such formulas. For example, the

following function can represent the awareness of agent1 about φm:

approaching2 = ρ̂2h(last) < ρ̂2h(last− 1) (8.3)

8.2.3 Situation Analysis

Once we have a proper model of the scenario, various types of queries can be used for

situation analysis. Using the Interpreted Systems framework, Jousselme and Maupin suggest

the following three types of queries for situation analysis [95]:

1. Queries about truth, such as “Does φAOI hold in a given state s?”;

2. Queries about knowledge, such as “Does agent2 know that φc holds in a given state

s?”; and

3. Queries about time, such as “Does φAOI eventually hold in a run r of the system?”

By combining Interpreted Systems and multiagent ASMs, these queries can not only

be analyzed using the proposed methods in [95], but they can also be examined either by

explicitly encoding the queries as derived functions (such as isInAOI and tooClose) and

CHAPTER 8. CASE STUDIES 210

running the executable model, or by applying the available model checking techniques for

ASM [93, 66]. Thus, the approach of integrating ASM with Interpreted Systems is consistent

with the proposed approach of [95]. Note that the idea of using model checking for situation

analysis has first been proposed in [95].

8.2.4 Executable Model

In order to put the model into practice and to realize what is practically feasible, one needs

to experiment with the model; that is, the model has to be machine executable.

In this section, we produce an executable model of the scenario through refinement of

the abstract rules and functions of the model presented in Section 8.2.1. We then use the

CoreASM execution engine to run the model. Such a refinement, with the goal of producing

an executable model, is interesting in two aspects: a) it helps finding ambiguities, missing

pieces and loose-ends of the model and forces the system analyst/modeler to think clearly

about the main concepts and their definitions, and b) it supports experimental validation

through execution (simulation).

Real Positions and Rules of Movement

The refinement of the routines MoveToward and MoveAway requires a proper encoding of the

positions of the agents. Although it is not precisely stated in the scenario, the real positions

of the agents appear to be relative to the positions of their observers. Regardless of the

encoding one chooses, the observed positions and the rules of movement both depend on

the real position values and must be defined consistently. In our refined model, we keep the

actual position of every agent in an (x, y) coordinate which makes it easier to define the

movement routines. Real relative bearing and range values are simply calculated based on

the actual positions of agents.

Observed Values

An important piece that was left abstract in our model, and was also missing in the original

scenario, is the definition of the observed range and bearing functions ρ̂i and θ̂i. These

functions play an important role in the model and their formal definition is important for

proper situation analysis. While the original model does not state how the observed values

CHAPTER 8. CASE STUDIES 211

are produced, it is clear that the observed position values of agent i are functions of both

the real position of agent i and the corresponding observation error. Hence, the following

equations are reasonable candidates:

ρ̂i = ρ(agenti) + eiρ , θ̂i = θ(agenti) + eiθ

So, the observation functions can be defined as derived functions over the actual positions

of the agents. Another approach, though less intuitive, would be to have the environment

explicitly update the observed values in every step of the system.

Recording Observation

Since we define the observation values as derived functions over the real positions of the

agents, to record the observation history we simply add the current values of ρ̂i and θ̂i to

the observation histories of each agent:

RecordObservation(agenti) ≡
add ρ̂i to ρ̂ih

add θ̂i to θ̂ih

At this point, we have a machine executable model of the scenario (see Appendix B.2)

and we can use the CoreASM execution engine to run a simulation of the model. We start

with an initial state in which agent1 is located at (0, 0) and agent2 is located at (15, 10).

To monitor the position of agent2, we extend the program of the environment to print the

current positions of the agents in every step. This is a sample output of the simulation:

agent1:(0, 0) - agent2:(15, 10)

agent1:(0, 0) - agent2:(14, 9)

agent1:(0, 0) - agent2:(13, 8)

agent1:(0, 0) - agent2:(12, 7)

agent1:(0, 0) - agent2:(11, 6)

agent1:(0, 0) - agent2:(10, 5)

Abstract Call: SendMessage(Agent 2 is in AOI.)

agent1:(0, 0) - agent2:(11, 5)

agent1:(0, 0) - agent2:(10, 6)

Abstract Call: SendMessage(Agent 2 is in AOI.)

CHAPTER 8. CASE STUDIES 212

agent1:(0, 0) - agent2:(9, 7)

Abstract Call: SendMessage(Agent 2 is in AOI.)

agent1:(0, 0) - agent2:(8, 8)

agent1:(0, 0) - agent2:(7, 9)

agent1:(0, 0) - agent2:(6, 10)

agent1:(0, 0) - agent2:(5, 11)

agent1:(0, 0) - agent2:(4, 12)

agent1:(0, 0) - agent2:(4, 13)

agent1:(0, 0) - agent2:(4, 14)

The simulation starts with agent2 moving toward agent1. When agent1 observes that

agent2 is in the area of interest, it sends a message using the abstract routine SendMessage

(which is intentionally left abstract). After some time, agent2 realizes that it is too close to

agent1 and makes a U-turn, moving away from agent1.

8.3 The Mastermind Project

The Mastermind project [32, 31, 51] is a pioneering interdisciplinary project in compu-

tational criminology that employs formal modeling and simulation as tools to investigate

offender behavior in urban environments.10 It is jointly managed by the Software Technol-

ogy Lab and the Institute for Canadian Urban Research Studies (ICURS)11 at Simon Fraser

University, aiming at developing computational models of criminal activity patterns, with

a special focus on spatio-temporal characteristics of crime, potentially involving multiple

offenders and multiple targets. The Mastermind project utilizes the ASM method and the

CoreASM tool suite to address the specific requirements of developing computational models

and analysis tools for the study of crime in a collaborative research environment.

Crime is composed of four main elements: the law, the offender, the target and the loca-

tion [29]. The Mastermind project constructs a multi-dimensional model of crime in order

to study the interaction of these elements. The focus is on the concepts of environmental

criminology, which argues that in spite of their complexity, criminal events can be under-

stood in the context of people’s movements in the course of everyday routines [29]. Through

movement within a given environment, possible offenders, characterized as agents, develop

10The Mastermind project is not a contribution of this thesis. It is addressed here only as an example of
the application of CoreASM in interdisciplinary projects.

11http://www.sfu.ca/icurs

http://www.sfu.ca/icurs

CHAPTER 8. CASE STUDIES 213

mental maps of the places they know (awareness space) and the places they regularly visit

(activity space). At its core, Mastermind captures the essence of the Crime Pattern theory

that states: crime occurs when a motivated individual encounters a suitable target [29].

Figure 7.5(b) captures this behavior in terms of a Control State ASM.

At the heart of the Mastermind project is a robust ASM ground model [26] developed

through several iterations required for checking the validity of the model with respect to

the understanding of domain experts. The process of establishing the key properties, de-

termining the right level of abstraction, and ensuring the validity of the model was greatly

facilitated using the simple graphical notation provided by CSDe and the ability to run

experiments on abstract models in early stages of design using the CoreASM engine.

The ground model has been further refined into more concrete models with specific de-

tails systematically added. The simulation model of Mastermind implemented in Java is an

example of such refinements. The Java version provides a graphical user interface and a sim-

ulation environment based on real-world Geographical Information System (GIS) data and

captures the navigation behavior of offenders with a high degree of detail and complexity.

The CoreASM executable ground model has also been further refined to run more controlled

experiments in CoreASM, which allows for a structured analysis of theories in a hypothet-

ical world. A special plugin for CoreASM is developed offering a custom visualization of

the simulation (see Figure 8.6). These simple and comprehensible models provide domain

experts with full control over the variables under study and their interdependence. Both

the Java and CoreASM model provide visualization features which are a priority for crimi-

nology publications. Figure 8.6 shows a snapshot of the Mastermind plugin for CoreASM.

The visualization shows the movement of agents between activity nodes, the formation of

their activity spaces and the effects on crime hotspots.

According to [30, 51], CoreASM has played an important role in facing the challenges of

two major phases of the Mastermind project, namely formalization and validation. In an in-

terdisciplinary research project, the communication problem is intensified, imposing serious

challenges in ensuring a correct transformation from domain knowledge to computational

artifacts. The differences between academic disciplines in terms of approach and underlying

assumptions, and the fact that real-life events, such as crime events, are not usually thought

of in a discrete, mathematical manner, further complicate the communication issues. To

this end, diagrams created by CSDe greatly facilitate an interactive design process where

domain experts are able to directly check and correct a design.

CHAPTER 8. CASE STUDIES 214

Figure 8.6: The Mastermind Plugin for CoreASM

CHAPTER 8. CASE STUDIES 215

As a final remark, it is important to compare the utility of the full-fledged Mastermind

simulation model in Java with the simpler, more abstract CoreASM model. The complexity

of the Java version and the fact that it is considered as a black-box by domain experts in-

troduces limitations on its academic use. On the other hand, the CoreASM program code is

easier for non-programmers to read, and is well-suited for designing controlled experiments.

Taking advantage of the highly flexible plugin architecture offered by CoreASM, the team

were able to rapidly develop the Mastermind Plugin to address the specific needs of crimi-

nologists, especially with respect to visualizing the results. In other words, the Mastermind

Plugin encapsulates the mathematical structure of the ASM model in a comprehensible and

familiar format for domain experts. This greatly facilitates communication with domain

experts and analysis of the results for validation purposes.

Chapter 9

Conclusions and Perspectives

This work presented the design and development of the CoreASM modeling framework and

tool environment for high-level design and analysis of abstract state machine models. The

CoreASM engine forms the kernel of a novel environment for model-based engineering of

abstract operational requirements and design specifications at the early phases of the soft-

ware design and development process. Focusing on freedom of experimentation and design

exploration, CoreASM offers a flexible modeling environment that facilitates writing of eas-

ily modifiable, concise and understandable formal specifications by minimizing the need for

encoding of domain concepts into the constructs of the language.

In order to minimize the cost of such encoding, the CoreASM language and tool archi-

tecture are both designed to be easily extensible so that they can be customized for specific

application contexts, thus realizing domain-specific ASM dialects. The ASM literature con-

tains many examples of using such ASM dialects: many published specifications of large

systems have introduced background elements or non-standard rule forms that were well

suited to express the intended behavior at an appropriate level of abstraction in the given

domain. By similarly allowing the customization of the CoreASM language, we provide the

benefits of executable specifications without loosing the expressiveness of a domain-specific

language, and avoid the introduction of a further encoding level between the conceptual

specification and its executable version.

The design of the CoreASM engine is formally specified in ASMs. The entire lifecycle

of the CoreASM engine is defined as an extensible control-state ASM and the CoreASM

language is formally defined through the specification of an interpreter (in the form of an

abstract state machine) that ensures the executability of the language and provides its

216

CHAPTER 9. CONCLUSIONS AND PERSPECTIVES 217

formal semantics.

CoreASM has been recognized by the ASM community and has been used by various

research groups in Europe, Asia, and North America [91, 3, 6, 85, 97, 40].1 Based on solid

experience gained through the practical use of CoreASM in a number of diverse applica-

tion domains (see Chapter 8), we claim that CoreASM serves practical needs of high-level

modeling and rapid prototyping of complex distributed systems and will be an asset for

industrial engineering of complex software systems by making software specifications and

designs more robust and reliable. Prior to actually building a system, CoreASM specifica-

tions facilitate development of concise blueprints for intuitive reasoning about key system

attributes, supporting requirements specification, design analysis, validation and (where

appropriate) formal verification of system properties.

9.1 Significance of the Contribution

Among all the existing ASM tool environments, CoreASM stands out as being the closest to

the spirit of abstract state machines [25]. Here, we summarize the most significant features

that distinguish it from other ASM tools.

A Rich ASM Language and Framework

CoreASM offers a rich ASM language with a syntax that closely follows the pseudo-code style

of ASMs and a formally defined semantics that is faithful to the original ASM semantics as

defined in [25]. CoreASM is the first ASM tool environment that directly supports distributed

ASM computation models with custom scheduling policies. Its language supports classes

of basic, distributed, and Turbo ASMs, making it the most comprehensive ASM language

available.

Encouraging Rapid Prototyping

The CoreASM language is an untyped language with a minimal yet human-readable syntax

that facilitates writing abstract and untyped models which can be refined into more concrete

1To name a few, CoreASM has been applied in a number of research projects at the Computer Science
Department of the University of Pisa in Italy, the Embedded Software Laboratory at the RWTH Aachen
University in Germany, the Open Systems Development Group at the University of Agder in Norway, and
the Department of Computer Science and Engineering at the Anna University in India.

CHAPTER 9. CONCLUSIONS AND PERSPECTIVES 218

versions as needed. Thus, it encourages rapid prototyping of abstract machine models

for testing and design space exploration, and facilitates agile software development [64].

An independent study performed by Jensen et al. [85], comparing the abstraction level

of specifications written in CoreASM and AsmL2, shows that the CoreASM language can

be used to specify algorithms in a higher level of abstraction compared to AsmL. In their

example of a data clustering algorithm, the CoreASM description of the algorithm is 82 lines,

almost half the size of the 155 lines of AsmL description of the same algorithm (see [85, Fig.

4]). The authors conclude that compared to AsmL, CoreASM is more suited for the early

stages of software engineering.

Extensible Language and Architecture

The most significant feature of CoreASM is the extensibility of its language and modeling

environment. To reduce the cost of writing specifications, one has to minimize the need for

encoding in mapping the problem space to a formal model. This approach usually leads

to the design of domain-specific languages. The CoreASM extensibility framework provides

utmost flexibility for extending its language definition and execution engine in order to

tailor it to the particular needs of virtually any conceivable application context. This allows

CoreASM to be used very much in the same way ASMs were meant to be used.

An Open Framework

CoreASM is one of the few ASM tools that is implemented as an open framework. Developed

in Java—a platform independent, open source programming language—and under an open

source license, CoreASM can be modified, extended and improved as needed by its user

community. The CoreASM engine comes with a simple yet comprehensive API that offers

full access to the states of simulated machines and complete control over the execution

of CoreASM specifications, and as such facilitates the integration of CoreASM as an ASM

simulator component into other applications.

2The executable ASM language developed by the Foundation of Software Engineering group at Mi-
crosoft [101]

CHAPTER 9. CONCLUSIONS AND PERSPECTIVES 219

9.2 Future Work

The CoreASM project is in continuous development. Currently, the execution engine can

execute standard ASM specifications; various plugins offer common backgrounds such as

numbers, sets, strings, and lists, and more specialized plugins offer sophisticated features

such as the JASMine plugin for interfacing ASM specifications with Java class libraries (see

Section 6.5).

However, there are a number of open issues that have not been yet sufficiently addressed

by the CoreASM project. In this section we review some of these issues and discuss them as

possible subjects of future work.

Debugging Features

Traditional debugging models of programming (e.g. step by step execution of instructions)

do not suit ASMs. There is no such concept as the “current” instruction, nor an explicit no-

tion of “stepping” over instructions. However, similar notions can be applied to computation

steps of ASMs instead.

For example, a debugging user interface can offer, after every step of simulation, the

option of browsing the ASM program as a tree of rule constructs annotated with the most

recently generated update multisets produced by the rules. Such a feature would allow

users to investigate the changes (updates) produced by different parts of ASM programs at

desired levels of detail.

The CoreASM engine provides the necessary services (such as step-by-step execution of

the engine, full access to the simulated state, and the possibility of applications to intervene

in the execution process of the engine) supporting the implementation of various debugging

features by a CoreASM user interface. Non-trivial debugging features, however, are not yet

implemented in any of the currently available CoreASM user interfaces.

Type System

The CoreASM language is designed as a primarily typeless language to encourage rapid pro-

totyping of abstract specifications. Although dynamic types are attached to every CoreASM

value (element) and various primitive and complex data types are provided by plugins (see

sections 6.2 and 6.3), there is no concept of static typing or a type system defined in the

CHAPTER 9. CONCLUSIONS AND PERSPECTIVES 220

kernel of CoreASM. State locations (a more generalized notion of programming variables)

are essentially typeless and there is no type-checking offerred by the CoreASM kernel.

The Signature plugin (see Section 6.4.1) extends the CoreASM language and the engine

by offering a means to define type signatures for state locations. It also provides runtime

type checking on function calls and on updates to locations for which a signature is defined.

However, much more can be done in this domain. For example, collection plugins could

be improved to offer parameterized type constructors and the Signature plugin could be

extended to offer static type analysis of fully-typed specifications, a practical requirement

for model checking of CoreASM specifications.

Literate Specifications

Following the idea of literate specifications [86] (an extension of Knuth’s literate programming

technique [89]), it would be beneficial to integrate facilities for writing CoreASM specifica-

tions into various document preparation systems such as OpenOffice Writer3 or the LATEX

typesetting system4. Such an integration would facilitate the development of compound

system documents, consisting of executable specifications and system documentations, that

not only provide formal specification of systems, but also offer design rationale and necessary

explanation on how such systems work.

The current implementation of CoreASM can import specifications from OpenOffice

Writer documents and the Carma user interface (see Section 7.3) can load and execute

OpenOffice Writer documents containing CoreASM fragments. The CoreASM engine could

be extended to also support import and export of specifications to and from LATEX docu-

ments.5

Integrated Development Environment

The CoreASM IDE, a combination of the CoreASM Eclipse plugin and the CSD editor (see

Section 7.3), is still in early development. We envision further improvements providing

debugging features (discussed above) and enhanced coding assistance features, such as easy

3http://www.openoffice.org/
4http://www.latex-project.org/
5A basic CoreASM-to-LATEX export feature has already been implemented in Carma which has been used

to produced the color-annotated specification of Appendix B.1.

http://www.openoffice.org/
http://www.latex-project.org/

CHAPTER 9. CONCLUSIONS AND PERSPECTIVES 221

navigation between different layers of abstraction and refinements, which would be of real

value in building complex models.

Verification and Model Checking

A proper formal specification facilitates establishing the validity of the initial formaliza-

tion step, which itself is a prerequisite for any meaningful approach to formal verification.

However, the only machine-assisted verification supported by the current implementation of

CoreASM is in the form of rudimentary model checking (see [93] and Section 7.3.2). More

sophisticated interfaces to existing model checking tools are needed to fully exploit the

potential they provide.

Automatic Code and Test Case Generation

There is currently no support for automatic code generation from CoreASM models. The

CoreASM engine is reasonably fast and efficient for interactive modeling and experimental

validation; nonetheless, there is room for improving performance by generating Java or C++

code from CoreASM specifications. Automatic test case generation for conformance testing,

comparable to AsmL Spec Explorer [122], is a work in progress independent of our work.

Part IV

Appendices

222

Appendix A

Supplementary Definitions

A.1 Abstract Storage

• PushState puts the current state in the stack. We assume that stackstate is empty in

the initial state.

PushState ≡
Push(stackstate, state)

• PopState retrieves the state from the top of the stack, thus discarding the current

state.

PopState ≡
state := top(stackstate)

Pop(stackstate)

• Apply(u) applies the updates in the update set u to the current state.

Apply(u) ≡
forall (l, v) ∈ u do

SetValue(l, v)

• ClearState resets state to an empty state.

ClearState ≡
let s = new(State) in

state := s

223

APPENDIX A. SUPPLEMENTARY DEFINITIONS 224

• newElement : Element

returns a new element; i.e., imports a new element into the state and returns the

imported element. This function is defined as follows:

newElement ≡ new(Element)

• inconsistentUpdates : Set(Update) 7→ Set(Update)

returns the set of inconsistent updates (according to [25, Def. 2.4.5]) in the given

update set. We assume that the update set consists of regular updates only (i.e.

actions are updateAction).

inconsistentUpdates(uset) ≡ {(l, v, a) ∈ uset | ∃(l′, v′, a′) ∈ uset, l = l′ ∧ v 6= v′}

• isConsistent : Set(Update) 7→ Boolean

returns true if the update set is consistent according to [25, Def. 2.4.5]. We assume

that the update set consists of regular updates only (i.e. actions are updateAction).

isConsistent(uset) ≡ |inconsistentUpdates(uset)| > 0

• isUniverseName : Name 7→ Boolean

isUniverseName(name) ≡ universes(state,name) 6= undef

• isFunctionName : Name 7→ Boolean

isFunctionName(name) ≡ functions(state,name) 6= undef

• isRuleName : Name 7→ Boolean

isRuleName(name) ≡ rules(state,name) 6= undef

A.2 Interpreter

• ClearTree(t) clears the given tree from any assigned value, location, or updates.

APPENDIX A. SUPPLEMENTARY DEFINITIONS 225

ClearTree(α) ≡
if α 6= undef then

value(α) := undef

update(α) := undef

loc(α) := undef

ClearTree(first(α))

ClearTree(next(α))

• CopyTree(t, setNext) creates a copy of the given tree, without copying assigned values,

locations, or updates. If setNext is true, it also copies the next sibling of the given

root node.

CopyTree(α, setNext) ≡
if α 6= undef then

let n = new(Node) in

class(n) := class(α)

pattern(n) := pattern(α)

token(n) := token(α)

grammarRule(n) := grammarRule(α)

plugin(n) := plugin(α)

first(n) := CopyTree(first(α), true)

if setNext then

next(n) := CopyTree(next(α), true)

result := n

else

result := undef

• CopyTreeSub(α, 〈x1, . . . , xn〉, 〈λ1, . . . , λn〉) returns a copy of the given parse tree α,

where every instance of a parameter node xi is substituted by a copy of the corre-

sponding argument λi. We assume that the elements in the formal parameters list

(xi’s) are all distinct. Also, formal parameters substitution is applied only to occur-

rences of formal parameters in the original tree passed as argument, and not also on

the actual parameters themselves.

APPENDIX A. SUPPLEMENTARY DEFINITIONS 226

CopyTreeSub(α, 〈x1, . . . , xn〉, 〈λ1, . . . , λn〉) ≡
if α 6= undef then

if class(α) = Id ∧ ∃i s.t. token(α) = xi then

result← CopyTree(λi, false)

else

let n = new(Node) in

first(n)← CopyTreeSub(first(α), 〈x1, . . . , xn〉, 〈λ1, . . . , λn〉)
next(n)← CopyTreeSub(next(α), 〈x1, . . . , xn〉, 〈λ1, . . . , λn〉)
class(n) := class(α)

pattern(n) := pattern(α)

token(n) := token(α)

grammarRule(n) := grammarRule(α)

plugin(n) := plugin(α)

result := n

else

result := undef

• HandleUndefinedIdentifier(pos, x, args) asks all the plugins registered to handle unde-

fined identifiers to evaluate the node with the undefined identifier (pos). It is consid-

ered an error if more than one plugin evaluates the undefined identifier with different

results. If none of the plugins could evaluate the node, KernelHandleUndefIdentifier

will be called to create a new function element with a default value of undefe for the

given arguments.

HandleUndefinedIdentifier(pos, x, args) ≡
local results [results := {}] in

seq

foreach p in loadedPlugins do

seqblock

ClearTree(pos)

PluginHandleUndefIndentifier(p, pos, x, args)

if evaluated(pos) then

add 〈p, loc(pos), updates(pos), value(pos)〉 to results

endseqblock

APPENDIX A. SUPPLEMENTARY DEFINITIONS 227

next

if |results| = 0 then

KernelHandleUndefIdentifier(pos, x, args)

else

choose 〈p, l, u, v〉 in results with ∃〈p′, l′, u′, v′〉 ∈ results, 〈l, v, u〉 6= 〈l′, v′, u′〉 do

Error(‘There is an ambiguity in resolving the identifier.’)

ifnone

[[pos]] := (l, u, v)

A.3 Scheduler

• updateInstructions : Multiset(Update)

is the multiset of accumulated update instructions in the current computation step.

• updateSet : Set(Update)

is the set of (aggregated) updates in last computation step.

• selectedAgentsSet : Set(Element)

is the set of selected agents contributing to the computation of the current step.

• initAgent : Element

is the initial agent the engine creates to run the init rule.

• chosenAgent : Element

is the currently running (or to be running) agent.

• chosenProgram : Rule

is the rule element that represents the program of the chosen agent. The value of this

function is set by the Abstract Storage.

• morePossibleSetsExist : Boolean

holds true if there are more possible combinations of agents that can contribute to the

current computation step.

• isSingleAgentInconsistent : Boolean

holds true if the last inconsistent set of updates is produced by a single agent.

APPENDIX A. SUPPLEMENTARY DEFINITIONS 228

isSingleAgentInconsistent ≡
∃a ∈ Element, ∃l ∈ Location,∀u1, u2 ∈ updateSet,

uiLoc(u1) = uiLoc(u2) ∧ uiAgents(u1) = uiAgents(u2) = {a}

• LoadSchedulingPolicy, based on the set of loaded plugins, loads a scheduling policy for

scheduling of agents in every computation step.

LoadSchedulingPolicy ≡
let policies = {pluginSchedulingPolicy(p) | p ∈ specPlugins ∧ isPolicyPlugin(p)}\{undef} in

if |policies| = 0 then

schedulingPolicy := undef

else

if |policies| = 1 then

choose policy ∈ policies do

schedulingPolicy := policy

schedulingGroup := newSchedulingGroup(policy)

else

Error(‘Conflicting scheduling policies.’)

A.4 Control API

The following functions and rules define the interface of the engine to its environment.

• specification : Spec

is the current CoreASM specification loaded by the engine.

• pluginCatalog : Set(Plugin)

is the set of all the plugins available to the engine.

• loadedPlugins : Set(Plugin)

is the set of loaded plugins by the engine.

• grammarRules : Set(GrammarRule)

is the set of all the grammar rules provided by the kernel and loaded plugins.

APPENDIX A. SUPPLEMENTARY DEFINITIONS 229

• isStateInitialized : Boolean

holds true if the simulation state is initialized.

• stepCount : Number

is the simulation step counter.

• state : State

holds the current simulation state.

• agentSet : Set(Element)

is the set of all the available agents in the current state retrieved from the Abstract

Storage at the beginning of every computation step.

• engineProperties : Name 7→ Name

holds all the defined engine properties and their values. The behavior of the engine

(and its plugins) can be customized by these properties.

• engineMode : EngineMode

returns the current execution mode of the engine.

• isEngineBusy : Boolean

isEngineBusy ≡ engineMode 6∈ {Idle,Error}

• UpdateState(updates), if ¬isEngineBusy, updates the current state by applying the

given set of updates.

• Step puts a step command in the command queue of the engine.

APPENDIX A. SUPPLEMENTARY DEFINITIONS 230

A.5 Plugins

A.5.1 Choose Rule Plugin

Choose Rule

L choose αx in β
e
e doγ

e
r M → pos := β

L choose αx in βv doγ
e
r M → if enumerable(v) then

let s = enumerate(v) in

if |s| > 0 then

choose t ∈ s do

AddEnv(x, t)

pos := γ

else

[[pos]] := (undef, {||}, undef)

else

Error(‘Cannot choose from a non-enumerable element.’)

L choose αx in βv doγu M → RemoveEnv(x)

[[pos]] := (undef, u, undef)

Choose Rule

L choose αx in β
e
e 1 with γ

e
e 2 doδ

e
r M →

pos := β

considered(β) := {}
L choose αx in βv1 with γ

e
e 2 doδ

e
r M →

if enumerable(v1) then

let s = enumerate(v1)\considered(β) in

if |s| > 0 then

choose t ∈ s do

AddEnv(x, t)

considered(β) := considered(β) ∪ {t}
pos := γ

else

[[pos]] := (undef, {||}, undef)

else

Error(‘Cannot choose from non-enumerable element’)

APPENDIX A. SUPPLEMENTARY DEFINITIONS 231

L choose αx in βv1 with γv2 doδ
e
r M → if v2 = truee then

pos := δ

else

pos := β

RemoveEnv(x)

ClearTree(γ)

L choose αx in βv1 with γv2 doδu M → RemoveEnv(x)

[[pos]] := (undef, u, undef)

Choose Rule

L choose αx in β
e
e 1 with γ

e
e 2 doδ

e
r ifnone ε

e
r M → pos := β

considered(β) := {}
L choose αx in βv1 with γ

e
e 2 doδ

e
r ifnone ε

e
r M →

if enumerable(v1) then

let s = enumerate(v1)\considered(β) in

if |s| > 0 then

choose t ∈ s do

AddEnv(x, t)

considered(β) := considered(β) ∪ {t}
pos := γ

else

pos := ε

else

Error(‘Cannot choose from non-enumerable element’)

L choose αx in βv1 with γv2 doδ
e
r ifnone ε

e
r M → if v2 = truee then

pos := δ

else

pos := β

RemoveEnv(x)

ClearTree(γ)

L choose αx ∈ βv1 with γv2 doδu ifnone ε
e
r M → RemoveEnv(x)

[[pos]] := (undef, u, undef)

L choose αx ∈ βv1 with γe2 doδ
e
r ifnone εu M → [[pos]] := (undef, u, undef)

APPENDIX A. SUPPLEMENTARY DEFINITIONS 232

A.5.2 Forall Rule Plugin

Forall Rule

L forall αx in β
e
e doγ

e
r M → pos := β

[[pos]] := (undef, {||}, undef)

considered(β) := {}
L forall αx in βv doγ

e
r M → if enumerable(v) then

let s = enumerate(v)\considered(β) in

if |s| > 0 then

choose t ∈ s do

AddEnv(x, t)

considered(β) := considered(β) ∪ {t}
pos := γ

else

Error(‘Cannot enumerate a non-enumerable element’)

L forall αx in βv doγu M → pos := β

RemoveEnv(x)

ClearTree(γ)

[[pos]] := (undef, updates(pos) ∪ u, undef)

A.5.3 Predicate Logic Plugin

The and Operator

Predicate Logic Plugin: and

L α
e
? and β

e
? M

[400]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

if isBoolean(value(α)) ∧ isBoolean(value(β)) then

if (value(α) = truee) ∧ (value(β) = truee) then

[[pos]] := (undef, undef, truee)

else

[[pos]] := (undef, undef, falsee)

APPENDIX A. SUPPLEMENTARY DEFINITIONS 233

The or Operator

Predicate Logic Plugin: or

L α
e
? or β

e
? M

[350]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

if isBoolean(value(α)) ∧ isBoolean(value(β)) then

if (value(α) = truee) ∨ (value(β) = truee) then

[[pos]] := (undef, undef, truee)

else

[[pos]] := (undef, undef, falsee)

The xor Operator

Predicate Logic Plugin: xor

L α
e
? xor β

e
? M

[350]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

if isBoolean(value(α)) ∧ isBoolean(value(β)) then

if ((value(α) = truee) ∨ (value(β) = truee))∧
((value(α) = falsee) ∨ (value(β) = falsee)) then

[[pos]] := (undef, undef, truee)

else

[[pos]] := (undef, undef, falsee)

APPENDIX A. SUPPLEMENTARY DEFINITIONS 234

The forall Universal Quantifier

Predicate Logic Plugin: forall

L forallαx in β
e
e holds γ

e
e M → pos := β

considered(β) := {}
L forallαx in βv holds γ

e
e M → if enumerable(v) then

let s = enumerate(v)\considered(β) in

if |enumerate(v)| > 0 then

if |s| > 0 then

choose t ∈ s do

AddEnv(x, t)

considered(β) := considered(β) ∪ {t}
pos := γ

else

[[pos]] := (undef, undef, truee)

else

[[pos]] := (undef, undef, truee)

else

Error(‘Cannot enumerate a non-enumerable element’)

L forallαx in βv holds γv M → if (value(γ) = truee) then

pos := β

else

[[pos]] := (undef, undef, falsee)

RemoveEnv(x)

ClearTree(γ)

APPENDIX A. SUPPLEMENTARY DEFINITIONS 235

A.5.4 Set Plugin

Set Comprehension Variant 2

Set Plugin : Set Comprehension variant 2

L { αx | β1x1 in γ1
e
? 1, . . . ,

βnxn in γn
e
? n with δ

e
? } M →

if n ≥ 1 ∧ ∃j ∈ [1..n], x = xj then

choose i ∈ [1..n] with ¬evaluated(γi) do

pos := γj

ifnone

if sameNameTwoConstVar then

Error(‘No two constrainer variables may have the same name’)

else if ∃c ∈ [1..n],¬enumerable(value(γc)) then

Error(‘Constrainer variables may only be bound to enumerable elements’)

else if ∃c ∈ [1..n], |enumerate(value(γc))| = 0 then

[[pos]] := (undef, undef, newV alue(setBack))

else

newSet(pos) := {}
InitializeChooseConsideredCombos

pos := δ

else

Error(‘At least one constrainer variable must exist with the same name as the specifier’)

where

sameNameTwoConstVar ≡ ∃k ∈ [1..n], ∃l ∈ [1..n] k 6= l ∧ xk = xl

L { αx | β1x1 in γ1v1, . . . ,
βnxn in γnvn with δv} M →

seq

if value(δ) := truee then

choose i ∈ [1..n] with x = xi do

add env(xi) to newSet(pos)

next

if OtherCombosToConsider then

ChooseNextCombo

ClearTree(δ)

pos := δ

else

DestroyConsideredCombos

[[pos]] := (undef, undef, setElement(newSet(pos)))

APPENDIX A. SUPPLEMENTARY DEFINITIONS 236

Set Comprehension Variant 3

In the following set comprehension form, the guard is optional.

Set Plugin : Set Comprehension variant 3

L { αx is ε
e
e | β1x1 in γ1

e
? 1, . . . ,

βnxn in γn
e
? n with δ

e
? } M →

if n ≥ 1 then

if ∀j ∈ [1..n], x 6= xj then

choose j ∈ [1..n] with value(γj) = undef do

pos := γj

ifnone

if sameNameTwoConstVar then

Error(‘No two constrainer variables may have the same name’)

else if ∃c ∈ [1..n],¬enumerable(value(γc)) then

Error(‘Constrainer variables may only be bound to enumerable elements’)

else if ∃c ∈ [1..n], |enumerate(value(γc))| = 0 then

[[pos]] := (undef, undef, newV alue(setBack))

else

newSet(pos) := {}
InitializeChooseConsideredCombos

pos := ε

else

Error(‘Constrainer variable cannot have same name as specifier’)

else

Error(‘At least one constrainer variable must be present’)

where

sameNameTwoConstVar ≡ ∃k ∈ [1..n], ∃l ∈ [1..n] k 6= l ∧ xk = xl

L { αx is ε
e
e | β1x1 in γ1v1, . . . ,

βnxn in γnvn with δv} M →
if value(δ) := truee then

pos := ε

else

if OtherCombosToConsider then

ChooseNextCombo

ClearTree(δ)

pos := δ

else

DestroyConsideredCombos

[[pos]] := (undef, undef, setElement(newSet(pos)))

APPENDIX A. SUPPLEMENTARY DEFINITIONS 237

L { αx is εv | β1x1 in γ1v1, . . . ,
βnxn in γnvn with δv} M →

seq

add value(ε) to newSet(pos)

next

if OtherCombosToConsider then

ChooseNextCombo

ClearTree(δ)

ClearTree(ε)

pos := δ

else

DestroyConsideredCombos

[[pos]] := (undef, undef, setElement(newSet(pos)))

The Set Difference Operator

Set Plugin : difference

L α
e
? \β

e
? M

[650]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

if SetElement(l) ∧ SetElement(r) then

let v = {x | x ∈ enumerate(l) ∧ x 6∈ enumerate(r)} in

[[pos]] := (undef, undef, setElement(v))

where

l ≡ value(α), r ≡ value(β)

The Set Union Operator

Set Plugin : union

L α
e
? ∪ β

e
? M

[650]
→ choose λ ∈ {α, β} with ¬evaluated(λ)

pos := λ

ifnone

if SetElement(l) ∧ SetElement(r) then

let v = {x | x ∈ enumerate(l) ∨ x ∈ enumerate(r)} in

[[pos]] := (undef, undef, setElement(v))

where

l ≡ value(α), r ≡ value(β)

APPENDIX A. SUPPLEMENTARY DEFINITIONS 238

A.5.5 Math Plugin

Most of the functions provided by the Math plugin are equivalent of their Java counter-

parts defined in the Java library package java.lang.Math. For such functions, we use the

descriptions provided by the Java 2 Platform Standard Edition 5.0 API Specification [120].

Constants

• MathE returns the Number element that is closer in value than any other to e, the

base of the natural logarithms.

• MathPI returns the Number element that is closer than any other to π, the ratio of

the circumference of a circle to its diameter.

Basic Functions

• abs(v) returns the absolute value of v.

• acos(v) returns the arc cosine of an angle, in the range of 0 through π.

• asin(v) returns the arc sine of an angle, in the range of −π/2 through π/2.

• atan(v) returns the arc tangent of an angle, in the range of −π/2 through π/2.

• atan2(x, y) converts rectangular coordinates (x, y) to polar (r, θ) and returns θ.

• cuberoot(v) returns the cube root of v.

• cbrt(v) returns the cube root of v.

• ceil(v) returns the smallest (closest to negative infinity) value that is greater than

or equal to the argument and is equal to a mathematical integer.

• cos(v) returns the trigonometric cosine of an angle.

• cosh(v) returns the hyperbolic cosine of v.

• exp(v) returns Euler’s number e raised to the power of v.

• expm1(v) returns ev − 1.

APPENDIX A. SUPPLEMENTARY DEFINITIONS 239

• floor(v) returns the largest (closest to positive infinity) value that is less than or

equal to the argument and is equal to a mathematical integer.

• hypot(x, y) returns
√
x2 + y2 without intermediate overflow or underflow.

• IEEEremainder(v1, v2) Computes the remainder operation on two arguments as

prescribed by the IEEE 754 standard.

• log(v) returns the natural logarithm (base e) of v.

• log10(v) returns the base 10 logarithm of v.

• log1p(v) returns the natural logarithm of the sum of the argument and 1; i.e.,

ln(v + 1).

• max(v1, v2) returns the greater of two values.

• min(v1, v2) returns the smaller of two values.

• pow(x, y) returns the value of the first argument raised to the power of the second

argument.

• random() returns a random value with a positive sign, greater than or equal to 0.0

and less than 1.0.

• round(v) returns the closest mathematical integer to the argument.

• signum(v) Returns zero if the argument is zero, 1.0 if the argument is greater than

zero, −1.0 if the argument is less than zero.

• sin(v) returns the trigonometric sine of an angle.

• sinh(v) returns the hyperbolic sine of v.

• sqrt(v) returns the correctly rounded positive square root of v; i.e.,
√
v.

• tan(v) returns the trigonometric tangent of an angle.

• tanh(v) returns the hyperbolic tangent of v.

• toDegrees(v) converts an angle measured in radians to an approximately equivalent

angle measured in degrees.

APPENDIX A. SUPPLEMENTARY DEFINITIONS 240

• toRadians(v) converts an angle measured in degrees to an approximately equivalent

angle measured in radians.

Special Functions

• powerset(set) computes the powerset of the given set.

• max({v1,...,vn}) returns the maximum value in a collection of numbers. If there

is one non-number in the collection, it returns undef.

• min({v1,...,vn}) returns the minimum value in a collection of numbers. If there is

one non-number in the collection, it returns undef.

• sum({v1,...,vn}) returns the sum of a collection of numbers. If there is one non-

number in the collection, it returns undef.

• sum({v1,...,vn}, @f) returns the sum of a collection of numbers, after applying

function f to the values in the collection. If there is one non-number in the collection,

it returns undef.

• powerset({e1,...,en}) returns the powerset of the given set of elements.

Appendix B

CoreASM Examples

B.1 The Railroad Crossing Example

CoreASM RailRoadCrossing

use StandardPlugins

use TimePlugin

use MathPlugin

enum Track = {track1, track2}
enum TrackStatus = {empty, coming, crossing}
enum GateSignal = {open, close}
enum GateState = {opened, closed}

function deadline : Track -> TIME

function trackStatus : Track -> TrackStatus

function gateSignal : -> GateSignal

function gateState : -> GateState

universe Agents = {trackController, gateController, observer, environment}

// Is it safe to open the guard?

derived safeToOpen = forall t in Track holds

trackStatus(t) = empty or (now + dopen) < deadline(t)

derived waitTime = dmin - dclose

init InitRule

241

APPENDIX B. COREASM EXAMPLES 242

rule InitRule = {
forall t in Track do {

trackStatus(t) := empty

deadline(t) := infinity

}
gateState:= opened

dmin:= 5000

dmax:= 10000

dopen:= 2000

dclose:= 2000

startTime:= now

program(trackController) := @TrackControl

program(gateController) := @GateControl

program(observer) := @ObserverProgram

program(environment) := @EnvironmentProgram

program(self) := undef

}

rule TrackControl = {
forall t in Track do {

SetDeadline(t)

SignalClose(t)

ClearDeadline(t)

}
SignalOpen

}

rule GateControl = {
if gateSignal = open and gateState = closed then gateState:= opened

if gateSignal = close and gateState = opened then gateState:= closed

}

rule SetDeadline(x) =

if trackStatus(x) = coming and deadline(x) = infinity then

deadline(x) := now + waitTime

rule SignalClose(x) =

if now >= deadline(x) and now <= deadline(x) + 1000 then

gateSignal:= close

rule ClearDeadline(x) =

APPENDIX B. COREASM EXAMPLES 243

if trackStatus(x) = empty and deadline(x) < infinity then

deadline(x) := infinity

rule SignalOpen =

if gateSignal = close and safeToOpen then

gateSignal:= open

// The observer

rule ObserverProgram =

seqblock

print "Time: " + ((now - startTime) / 1000) + " seconds"

forall t in Track do

print "Track " + t + " is " + trackStatus(t)

print "Gate is " + gateState

print ""

endseqblock

// The environment

rule EnvironmentProgram =

choose t in Track do {
if trackStatus(t) = empty then

if random < 0.05 then {
trackStatus(t) := coming

passingTime(t) := now + dmin

}

if trackStatus(t) = coming then

if passingTime(t) < now then {
trackStatus(t) := crossing

passingTime(t) := now + 4000

}

if trackStatus(t) = crossing then

if passingTime(t) < now then

trackStatus(t) := empty

}

APPENDIX B. COREASM EXAMPLES 244

B.2 The Surveillance Scenario

CoreASM Surveillance Scenario

use Standard

use Math

use Options

option Signature.NoUndefinedId strict

/* --- Universes --- */

enum Moves = {N, NW, W, WS, S, SE, E, EN}

enum Direction = {forward, away}
universe Agents = {agent1, agent2, environment}

/* --- Function Definitions --- */

// state of the environment

/* --- Function Definitions --- */

// state of the environment

function posX: Agents -> NUMBER

function posY: Agents -> NUMBER

function bearingError: Agents -> NUMBER

function rangeError: Agents -> NUMBER

function observationHistory: Agents -> LIST

function move:Agents -> NUMBER

function dir: Agents -> Direction

function bearingErrorRange: Agents -> NUMBER

function rangeErrorRange: Agents -> NUMBER

// --- Initial Rule ---

init InitRule

rule InitRule = {
program(agent1) := @Agent1Program

program(agent2) := @Agent2Program

program(environment) := @EnvironmentProgram

program(self) := undef

APPENDIX B. COREASM EXAMPLES 245

// initial positions of agents

posX(agent1) := 0

posY(agent1) := 0

posX(agent2) := 15

posY(agent2) := 10

dir(agent2) := forward

// setting error ranges

bearingErrorRange(agent1) := 3.14 / 20

rangeErrorRange(agent1) := 2

bearingErrorRange(agent2) := 3.14 / 20

rangeErrorRange(agent2) := 4

// initial values of agent functions

forall a in {agent1, agent2} do {
observationHistory(a) := []

bearingError(a) := 0

rangeError(a) := 0

}
}

// --- Agent Programs ---

rule Agent1Program = {
RecordObservation(agent2)

if isInAOI(agent2) then

SendMessage("Agent 2 is in the area of interest.")

if size(observationHistory(self)) > 1 then

if approaching(self) then

print "Agent 1: Agent 2 is approaching."

}

rule Agent2Program = {
RecordObservation(agent1)

if dir(self) = forward then

MoveToward(agent1)

else

MoveAwayFrom(agent1)

if tooClose(agent1) then

dir(self) := away

}

APPENDIX B. COREASM EXAMPLES 246

rule EnvironmentProgram =

forall a in {agent1, agent2} do {
bearingError(a) := bearingErrorRange(a) * (2 * random - 1)

rangeError(a) := rangeErrorRange(a) * (2 * random - 1)

}

// --- Auxiliary Rules ---

rule RecordObservation(a) =

add [obsRange(self, a), obsBearing(self, a)] to observationHistory(self)

rule SendMessage(msg) =

"SendMessage(" + msg + ")"

rule Move(dir) = {
print "agent1:(" + posX(agent1) + ", " + posY(agent1)

+ ") - agent2:(" + posX(agent2) + ", " + posY(agent2) + ")"

if dir = N then

posY(self) := posY(self) + 1

else if dir = S then

posY(self) := posY(self) - 1

else if dir = W then

posX(self) := posX(self) - 1

else if dir = E then

posX(self) := posX(self) + 1

else if dir = EN then {
Move(N)

Move(E)

}
else if dir = NW then {

Move(N)

Move(W)

}
else if dir = SE then {

Move(S)

Move(E)

}
else if dir = WS then {

Move(S)

Move(W)

}
}

APPENDIX B. COREASM EXAMPLES 247

/* Move towards agent ’a’ */

rule MoveToward(a) =

let dir = getDirection(

atan2(posX(agent1) - posX(self), posY(agent1) - posY(self))

+ (2 * random * bearingError(self) - bearingError(self))

) in

Move(dir)

/* Move away from agent ’a’ */

rule MoveAwayFrom(a) =

let nb = atan2(posX(agent1) - posX(self), posY(agent1) - posY(self))

+ (2 * random * bearingError(self) - bearingError(self))

- signum(atan2(posX(agent1) - posX(self),

posY(agent1) - posY(self))

+ (2 * random * bearingError(self) - bearingError(self)))

* MathPI in

Move(getDirection(nb))

// Compute a move direction based on the given bearing

rule getDirection(b) =

return move in

let bp = abs(b) in {
if bp < (MathPI / 8) then

move:= N

if abs(bp - MathPI / 4) < (MathPI / 8) then

if (b < 0) then

move:= EN

else

move:= NW

if abs(bp - MathPI / 2) < (MathPI / 8) then

if (b < 0) then

move:= E

else

move:= W

if abs(bp - (3 * MathPI / 4)) < (MathPI / 8) then

if (b < 0) then

move:= WS

else

move:= SE

if abs(bp - MathPI) < (MathPI / 8) then

move:= S

APPENDIX B. COREASM EXAMPLES 248

}

/* ----- Derived Functions ----- */

derived bearing(a) = atan2(posX(a) - posX(self), posY(a) - posY(self))

derived range(a) =

sqrt(pow(posX(a) - posX(self), 2) + pow(posY(a) - posY(self), 2))

derived obsBearing(observer, observed) =

bearing(observed) + bearingError(observer)

derived obsRange(observer, observed) =

range(observed) + rangeError(observer)

derived isInAOI(a) =

obsRange(self , a) > 5 and obsRange(self , a) < 12

and obsBearing(self , a) < (MathPI / 3)

and obsBearing(self , a) > (MathPI / 6)

derived tooClose(observed) =

obsRange(self , observed) < 12

derived approaching(observer) =

head(last(observationHistory(observer)))

< head(nth(observationHistory(observer),

size(observationHistory(observer)) - 1))

Bibliography

[1] The Object Management Group (OMG). http://www.omg.org.

[2] J.R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.

[3] M. Altenhofen, A. Friesen, and J. Lemcke. Asms in service oriented architectures. Journal of

Universal Computer Science, 14(12):2034–2058, 2008.

[4] M. Anlauff. XASM – An Extensible, Component-Based Abstract State Machines Language.

In Y. Gurevich and P. Kutter and M. Odersky and L. Thiele, editor, Abstract State Machines:

Theory and Applications, volume 1912 of LNCS, pages 69–90. Springer-Verlag, 2000.

[5] M. Anlauff and P. Kutter. eXtensible Abstract State Machines. XASM open source project:

http://www.xasm.org.

[6] Jörg Beckers, Daniel Klünder, Stefan Kowalewski, and Bastian Schlich. Direct support for

model checking abstract state machines by utilizing simulation. In ABZ ’08: Proceedings of

the 1st international conference on Abstract State Machines, B and Z, pages 112–124, Berlin,

Heidelberg, 2008. Springer-Verlag.

[7] B. Beckert and J. Posegga. leanEA: A Lean Evolving Algebra Compiler. In H. Kleine Büning,

editor, Proceedings of the Annual Conference of the European Association for Computer Sci-

ence Logic (CSL’95), volume 1092 of LNCS, pages 64–85. Springer, 1996.

[8] C. Beierle, E. Börger, I. Durdanovic, U. Glässer, and E. Riccobene. Refining Abstract Machine

Specifications of the Steam Boiler Control to Well Documented Executable Code. In J.-R.

Abrial, E. Börger, and H. Langmaack, editors, Formal Methods for Industrial Applications.

Specifying and Programming the Steam-Boiler Control, number 1165 in LNCS, pages 62–78.

Springer, 1996.

[9] Daniel M. Berry. Formal Methods: the very idea—Some thoughts about why they work when

they work. Science of Computer Programming, 42(1):11–27, 2002.

[10] M. Bidoit and Peter Mosses. Casl User Manual: Introduction to Using the Common Algebraic

Specification Language Casl. SpringerVerlag, 2004.

249

http://www.omg.org
http://www.xasm.org

BIBLIOGRAPHY 250

[11] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-

Language, volume 61 of Lecture Notes in Computer Science. Springer, 1978.

[12] A. Blass and Y. Gurevich. Background, Reserve, and Gandy Machines. In P. Clote and

H. Schwichtenberg, editors, Computer Science Logic (Proceedings of CSL 2000), volume 1862

of LNCS, pages 1–17. Springer, 2000.

[13] Andreas Blass and Yuri Gurevich. Abstract State Machines Capture Parallel Algorithms. ACM

Transactions on Computation Logic, 4(4):578–651, 2003.

[14] E. Börger. A Logical Operational Semantics for Full Prolog. Part I: Selection Core and Control.

In E. Börger, H. Kleine Büning, M. M. Richter, and W. Schönfeld, editors, CSL’89. 3rd

Workshop on Computer Science Logic, volume 440 of LNCS, pages 36–64. Springer, 1990.

[15] E. Börger. A Logical Operational Semantics of Full Prolog. Part II: Built-in Predicates for

Database Manipulation. In B. Rovan, editor, Mathematical Foundations of Computer Science,

volume 452 of LNCS, pages 1–14. Springer, 1990.

[16] E. Börger. Computation and Specification Models: A Comparative Study. In P. Mosses, editor,

Proceedings of the Fourth International Workshop on Action Semantics, AS 2002, number NS-

02-8 in BRICS Notes Series, pages 110–133. University of Aarhus, Department of Computer

Science, 2002.

[17] E. Börger. The ASM ground model method as a foundation of requirements engineering. In

N.Dershowitz, editor, Verification: Theory and Practice, volume 2772 of LNCS, pages 145–160.

Springer-Verlag, 2003.

[18] E. Börger. The ASM refinement method. Formal Aspects of Computing, 15:237–257, 2003.

[19] E. Börger, N. G. Fruja, V. Gervasi, and R. F. Stärk. A High-level Modular Definition of the

Semantics of C#. Theoretical Computer Science, 336(2/3):235–284, May 2005.

[20] E. Börger, U. Glässer, and W. Müller. The Semantics of Behavioral VHDL’93 Descriptions. In

EURO-DAC’94. European Design Automation Conference with EURO-VHDL’94, pages 500–

505, Los Alamitos, California, 1994. IEEE CS Press.

[21] E. Börger, U. Glässer, and W. Müller. Formal Definition of an Abstract VHDL’93 Simulator

by EA-Machines. In C. Delgado Kloos and P. T. Breuer, editors, Formal Semantics for VHDL,

pages 107–139. Kluwer Academic Publishers, 1995.

[22] E. Börger, P. Päppinghaus, and J. Schmid. Report on a Practical Application of ASMs in

Software Design. In Y. Gurevich and P. Kutter and M. Odersky and L. Thiele, editor, Abstract

State Machines: Theory and Applications, volume 1912 of LNCS, pages 361–366. Springer-

Verlag, 2000.

BIBLIOGRAPHY 251

[23] E. Börger, E. Riccobene, and J. Schmid. Capturing Requirements by Abstract State Machines:

The Light Control Case Study. Journal of Universal Computer Science, 6(7):597–620, 2000.

[24] E. Börger and W. Schulte. A Practical Method for Specification and Analysis of Exception

Handling: A Java/JVM Case Study. IEEE Transactions on Software Engineering, 26(10):872–

887, October 2000.

[25] E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System Design

and Analysis. Springer-Verlag, 2003.

[26] Egon Börger. Construction and Analysis of Ground Models and their Refinements as a Foun-

dation for Validating Computer Based Systems. Formal Aspects of Computing, 19(2):225–241,

2007.

[27] É. Bossé, A.-L. Jousselme, and P. Maupin. Situation Analysis for Decision Support: A Formal

Approach. In Proc. of the 10th Intl. Conf. on Information Fusion, July 2007.

[28] É. Bossé, J. Roy, and S. Ward. Models and Tools for Information Fusion. 2007.

[29] P. J. Brantingham and P. L. Brantingham. Patterns in Crime. New York: Macmillan Pub-

lishing Company, 1984.

[30] P. L. Brantingham, U. Glässer, P. Jackson, and M. Vajihollahi. Modeling Criminal Activity in

Urban Landscapes. Technical Report SFU-CMPT-TR-2008-13, Simon Fraser University, Aug

2008.

[31] P. L. Brantingham, U. Glässer, B. Kinney, K. Singh, and M. Vajihollahi. A Computational

Model for Simulating Spatial Aspects of Crime in Urban Environments. In M. Jamshidi, editor,

Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics,

pages 3667–74, October 2005.

[32] P. L. Brantingham, B. Kinney, U. Glässer, P. Jackson, and M. Vajihollahi. Mastermind:

Computational Modeling and Simulation of Spatiotemporal Aspects of Crime in Urban Envi-

ronments. In L. Liu and J. Eck, editors, Artificial Crime Analysis Systems: Using Computer

Simulations and Geographic Information Systems. Information Science Reference, 2008.

[33] Colin Campbell, Wolfgang Grieskamp, Lev Nachmanson, Wolfram Schulte, Nikolai Tillmann,

and Margus Veanes. Model-Based Testing of Object-Oriented Reactive Systems with Spec

Explorer. Technical Report MSR-TR-2005-59, Microsoft FSE Group, May 2005.

[34] Ora Canada. Z/eves version 1.5: An overview. In FM-Trends, pages 367–376, 1998.

[35] Giuseppe Del Castillo. The ASM Workbench: an Open and Extensible Tool Environment for

Abstract State Machines. In Workshop on Abstract State Machines, pages 139–154, 1998.

BIBLIOGRAPHY 252

[36] Giuseppe Del Castillo. The ASM Workbench: A Tool Environment for Computer-Aided Anal-

ysis and Validation of Abstract State Machine Models. PhD thesis, Informatik und Heinz

Nixdorf Institut, Universität Paderborn, Germany, 2000.

[37] A. Cavarra and E. Riccobene. Simulating UML Statecharts. In R. Moreno-Dı́az and

A. Quesada-Arencibia, editors, Formal Methods and Tools for Computer Science (Proceed-

ings of Eurocast 2001), pages 224–227, Canary Islands, Spain, February 2001. Universidad de

Las Palmas de Gran Canaria.

[38] G. Del Castillo. Towards Comprehensive Tool Support for Abstract State Machines. In D. Hut-

ter, W. Stephan, P. Traverso, and M. Ullmann, editors, Applied Formal Methods — FM-Trends

98, volume 1641 of LNCS, pages 311–325. Springer-Verlag, 1999.

[39] G. Del Castillo, I. Durdanović, and U. Glässer. An Evolving Algebra Abstract Machine. In

H. Kleine Büning, editor, Proceedings of the Annual Conference of the European Association

for Computer Science Logic (CSL’95), volume 1092 of LNCS, pages 191–214. Springer, 1996.

[40] Matteo Demuru. Modeling cell methabolic mechanisms through Abstract State Machines.

Master’s thesis, University of Pisa, Italy, February 2008.

[41] D. Diesen. Specifying Algorithms Using Evolving Algebra. Implementation of Functional Pro-

gramming Languages. Dr. scient. degree thesis, Dept. of Informatics, University of Oslo, Nor-

way, March 1995.

[42] Jan Ellsberger, Dieter Hogrefe, and Amardeo Sarma. SDL : Formal Object-oriented Language

for Communicating Systems. Prentice Hall, 1997.

[43] M. R. Endsley. Theoretical Underpinnings of Situation Awareness: A Critical Review. In

M. R. Endsley and D. J. Garland, editors, Situation Awareness Analysis and Measurement.

LEA, 2000.

[44] R. Eschbach, U. Gässer, R. Gotzhein, and A. Prinz. On the Formal Semantics of SDL-2000: A

Compilation Approach Based on an Abstract SDL Machine. In Y. Gurevich and P. Kutter and

M. Odersky and L. Thiele, editor, Abstract State Machines: Theory and Applications, volume

1912 of LNCS, pages 242–265. Springer-Verlag, 2000.

[45] R. Eschbach, U. Glässer, R. Gotzhein, M. von Löwis, and A. Prinz. Formal Definition of

SDL-2000: Compiling and Running SDL Specifications as ASM Models. Journal of Universal

Computer Science, 7(11):1024–1049, 2001.

[46] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT Press,

2003.

[47] R. Farahbod, V. Gervasi, and U. Glässer. Design and Specification of the CoreASM Execution

Engine. Technical Report SFU-CMPT-TR-2005-02, Simon Fraser University, February 2005.

BIBLIOGRAPHY 253

[48] R. Farahbod, V. Gervasi, and U. Glässer. CoreASM: An Extensible ASM Execution Engine.

Fundamenta Informaticae, pages 71–103, 2007.

[49] R. Farahbod and U. Glässer. Semantic Blueprints of Discrete Dynamic Systems: Challenges

and Needs in Computational Modeling of Complex Behavior. In New Trends in Parallel and

Distributed Computing, Proc. 6th Intl. Heinz Nixdorf Symposium, Jan. 2006, pages 81–95.

Heinz Nixdorf Institute, 2006.

[50] R. Farahbod, U. Glässer, É. Bossé, and A. Guitouni. Integrating Abstract State Machines

and Interpreted Systems for Situation Analysis Decision Support Design. In Proc. of the 11th

Intl Conf. on Information Fusion (Fusion 2008), July 2008.

[51] R. Farahbod, U. Glässer, P. Jackson, and M. Vajihollahi. High Level Analysis, Design and

Validation of Distributed Mobile Systems with CoreASM. In Proceedings of 3rd Interna-

tional Symposium On Leveraging Applications of Formal Methods, Verification and Validation

(ISoLA 2008). Springer, October 2008.

[52] R. Farahbod, U. Glässer, and A. Khalili. A Multi-Layer Network Architecture for Dynamic

Resource Configuration & Management of Multiple Mobile Resources in Maritime Surveillance.

In Proc. of SPIE Defense & Security Symposium, March 2009.

[53] R. Farahbod, U. Glässer, and M. Vajihollahi. Specification and Validation of the Business

Process Execution Language for Web Services. In Wolf Zimmermann and Bernhard Thalheim,

editors, Abstract State Machines 2004. Advances In Theory And Practice: 11th International

Workshop (ASM 2004), Germany, March 2004. Springer-Verlag.

[54] R. Farahbod, U. Glässer, and M. Vajihollahi. A Formal Semantics for the Business Process

Execution Language for Web Services. In Savitri Bevinakoppa et al., editors, Web Services and

Model-Driven Enterprise Information Systems, pages 144—155, Portugal, May 2005. INSTICC

Press.

[55] R. Farahbod, U. Glässer, and M. Vajihollahi. Abstract Operational Semantics of the Business

Process Execution Language for Web Services. Technical Report SFU-CMPT-TR-2005-04,

Simon Fraser University, Feb. 2005. Revised version of SFU-CMPT-TR-2004-03, April 2004.

[56] R. Farahbod, U. Glässer, and M. Vajihollahi. An Abstract Machine Architecture for Web

Service Based Business Process Management. International Journal of Business Process Inte-

gration and Management, 1:279–291, 2007.

[57] R. Farahbod, U. Glässer, and H. Wehn. CanCoastWatch Dynamic Configuration Manager. In

Proc. of the 14th Intl. Abstract State Machines Workshop, June 2007.

BIBLIOGRAPHY 254

[58] R. Farahbod, U. Glässer, and H. Wehn. Dynamic Resource Management for Adaptive Dis-

tributed Information Fusion in Large Volume Surveillance. In Proc. of SPIE Defense & Security

Symposium, March 2008.

[59] R. Farahbod, Uwe Glässer, and G. Ma. Model Checking CoreASM Specifications. In A. Prinz,

editor, Proceedings of the 14th International ASM Workshop (ASM’07), 2007.

[60] Formal Methods laboratory of University of Milan. Asmeta, 2006. Last visited June 2008,

http://asmeta.sourceforge.net/.

[61] Free Software Foundation. GNU General Public License, 2007. Available electronically at

http://www.gnu.org/copyleft/gpl.html (Last visited in March 2009).

[62] Free Software Foundation. GNU Lesser General Public License, 2007. Available electronically

at http://www.gnu.org/copyleft/lgpl.html (Last visited in March 2009).

[63] The Apache Software Foundation. Apache License, 2004. Available electronically at

http://www.apache.org/licenses (Last visited in March 2009).

[64] Martin Fowler. The New Methodology. April 2003.

http://martinfowler.com/articles/newMethodology.html.

[65] R. France, A. Evans, K. Lano, and B. Rumpe. The UML as a formal modeling notation.

Comput. Stand. Interfaces, 19(7):325–334, 1998.

[66] Angelo Gargantini, Elvinia Riccobene, and Salvatore Rinzivillo. Using Spin to Generate Tests

from ASM Specifications. In Abstract State Machines 2003, pages 263–277. Springer, 2003.

[67] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. A Metamodel-based Simulator

for ASMs. In Proc. of the 14th Intl. Abstract State Machines Workshop, June 2007.

[68] V. Gervasi and R. Farahbod. JASMine: Accessing java code from CoreASM. In Proceedings

of the Dagstuhl Seminar on Rigorous Methods for Software Construction and Analysis (LNCS

Festschrift). Springer, 2009 (to be published).

[69] U. Glässer, R. Gotzhein, and A. Prinz. The Formal Semantics of SDL-2000: Status and

Perspectives. Computer Networks, 42(3):343–358, 2003.

[70] U. Glässer and Q.-P. Gu. Formal Description and Analysis of a Distributed Location Service

for Mobile Ad Hoc Networks. Theoretical Comp. Sci., 336:285–309, May 2005.

[71] U. Glässer, Y. Gurevich, and M. Veanes. Abstract Communication Model for Distributed

Systems. IEEE Trans. on Soft. Eng., 30(7):458–472, July 2004.

[72] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.

Prentice Hall, third edition, 2005.

http://asmeta.sourceforge.net/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/lgpl.html
http://www.apache.org/licenses

BIBLIOGRAPHY 255

[73] Y. Gurevich. Evolving Algebras. A Tutorial Introduction. Bulletin of EATCS, 43:264–284,

1991.

[74] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor, Specification and

Validation Methods, pages 9–36. Oxford University Press, 1995.

[75] Y. Gurevich and J. Huggins. Evolving Algebras and Partial Evaluation. In B. Pehrson and

I. Simon, editors, IFIP 13th World Computer Congress, volume I: Technology/Foundations,

pages 587–592, Elsevier, Amsterdam, the Netherlands, 1994.

[76] Y. Gurevich and N. Tillmann. Partial Updates: Exploration. Journal of Universal Computer

Science, 7(11):917–951, 2001.

[77] Y. Gurevich and N. Tillmann. Partial Updates. Journal of Theoretical Computer Science,

336(2-3):311–342, 2005.

[78] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–

580, 1969.

[79] C. A. R. Hoare. Communicating sequential processes. pages 413–443, 2002.

[80] Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans. Software Eng., 23(5):279–295,

1997.

[81] J. Huggins. An offline partial evaluator for evolving algebras. Technical Report CSE-TR-229-

95, University of Michigan, 1995.

[82] J. Huggins and C. Wallace. An Abstract State Machine Primer. Technical Report CS-TR-02-

04, Computer Science Department, Michigan Technological University, 4 December 2002.

[83] ITU-T Recommendation Z.100 Annex F (11/00). SDL Formal Semantics Definition. Interna-

tional Telecommunication Union, 2001.

[84] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2006.

[85] Olav Jensen, Raymond Koteng, Kjetil Monge, and Andreas Prinz. Abstraction using ASM

Tools. In A. Prinz, editor, Proceedings of the 14th International ASM Workshop (ASM’07),

2007.

[86] C. W. Johnson. Literate specifications. Software Engineering Journal, 11(4):225–237, July

1996.

[87] A. M. Kappel. Executable Specifications Based on Dynamic Algebras. In A. Voronkov, edi-

tor, Logic Programming and Automated Reasoning, volume 698 of Lecture Notes in Artificial

Intelligence, pages 229–240. Springer, 1993.

[88] K.L. McMillan. The SMV system. Technical Report CMU-CS-92-131, 1992.

BIBLIOGRAPHY 256

[89] Donald E. Knuth. Literate programming. Comput. J., 27(2):97–111, 1984.

[90] William Leiserson. Elegant, efficient LL (k) parser generation. PhD thesis, Rochester Institute

of Technology, Rochester, USA, 2006.

[91] Jens Lemcke and Andreas Friesen. Composing web-service-like abstract state machines (asms).

Services, IEEE Congress on, pages 262–269, 2007.

[92] P. Lucas and K. Walk. On the formal description of PL/I. Annual Review of Automatic

Programming, 6:105–182, 1969.

[93] George Z. Ma. Model Checking Support for CoreASM: Model Checking Distributed Abstract

State Machines Using Spin. Master’s thesis, Simon Fraser University, Canada, May 2007.

[94] Patrick Maupin and Anne-Laure Jousselme. A General Algebraic Framework for Situation

Analysis. In Proc. of the 8th Intl. Conf. on Information Fusion, Philadelphia, PA, July 2005.

[95] Patrick Maupin and Anne-Laure Jousselme. Interpreted Systems for Situation Analysis. In

Proc. of the 10th Intl. Conf. on Information Fusion, Quebec city, Canada, 9-12 July 2007.

[96] M. Mauve, J. Widmer, and H. Hartenstein. A survey on position-based routing in mobile

ad-hoc networks. IEEE Network, 15, 2001.

[97] Daniele Mazzei, Federico Vozzi, Antonio Cisternino, Giovanni Vozzi, and Arti Ahluwalia. A

high-throughput bioreactor system for simulating physiological environment. IEEE Transac-

tions on Industrial Electronics, 55(9):3273–3280, 2008.

[98] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA Distilled: Principles of

Model-Driven Architecture. Addison-Wesley, 2004.

[99] Mashaal A. Memon. Specification language design concepts: Aggregation and extensibility in

coreasm. Master’s thesis, Simon Fraser University, Burnaby, Canada, April 2006.

[100] Microsoft Corp. Microsoft .NET Framework. Last visited Dec. 2006, http://www.microsoft.

com/net.

[101] Microsoft FSE Group. The Abstract State Machine Language, 2003. Last visited June 2008,

http://research.microsoft.com/fse/asml/.

[102] Microsoft FSE Group. AsmL Community Project on CodePlex, 2008. Last visited July 2008,

http://www.codeplex.com/AsmL.

[103] Microsoft FSE Group. Spec Explorer, 2008. Last visited July 2008, http://research.

microsoft.com/specexplorer.

[104] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.

http://www.microsoft.com/net
http://www.microsoft.com/net
http://research.microsoft.com/fse/asml/
http://www.codeplex.com/AsmL
http://research.microsoft.com/specexplorer
http://research.microsoft.com/specexplorer

BIBLIOGRAPHY 257

[105] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes. Informa-

tion and Computation, 100:1–40, September 1992.

[106] Peter D. Mosses. Action semantics. Cambridge University Press, New York, NY, USA, 1992.

[107] Peter D. Mosses. A Tutorial on Action Semantics. Technical Report NS-96-14, Basic Research

in Computer Science (BRICS), 1996.

[108] W. Müller, J. Ruf, and W. Rosenstiel. An ASM Based SystemC Simulation Semantics. In

W. Müller et al., editors, SystemC - Methodologies and Applications. Kluwer Academic Pub-

lishers, June 2003.

[109] Regents of the University of California. BSD Licenses, 1990-2009. Available electronically at

http://en.wikipedia.org/wiki/BSD_licenses (Last visited in March 2009).

[110] Frank G. Pagan. Formal Specification of Programming Languages: A Panoramic Primer.

Prentice Hall, February 1981.

[111] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.

[112] Joachim Schmid. Introduction to AsmGofeer, March 2001. Available electronically at

http://www.tydo.de/Doktorarbeit/AsmGofer/files/AsmGoferIntro.pdf (Last visited in

July 2008).

[113] Joachim Schmid. AsmGofer, 2008. Available electronically at

http://www.tydo.de/Doktorarbeit/AsmGofer/ (Last visited in July 2008).

[114] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer, 39, February 2006.

[115] Dana Scott and Christopher Strachey. [toward a mathematical semantics for computer lan-

guages. Technical report.

[116] J. Michael Spivey. The Z Notation: a reference manual. Prentice Hall International Series in

Computer Science, 2 edition, 1992.

[117] Thomas A. Standish. Extensibility in programming language design. SIGPLAN Not., 10(7):18–

21, 1975.

[118] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine: Definition, Verifica-

tion, Validation. Springer-Verlag, 2001.

[119] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Lan-

guage Theory. The MIT Press, September 1981.

[120] Sun Microsystems, Inc. The Java 2 Platform Standard Edition 5.0 API Specification. Sun

Microsystems, Inc., 2004. (http://java.sun.com/j2se/1.5.0/docs/api).

http://en.wikipedia.org/wiki/BSD_licenses
http://www.tydo.de/Doktorarbeit/AsmGofer/files/AsmGoferIntro.pdf
http://www.tydo.de/Doktorarbeit/AsmGofer/
http://java.sun.com/j2se/1.5.0/docs/api

BIBLIOGRAPHY 258

[121] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-

Wesley Professional, December 1997.

[122] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Nikolai Tillmann,

and Lev Nachmanson. Model-Based Testing of Object-Oriented Reactive Systems with Spec

Explorer. In Robert M. Hierons, Jonathan P. Bowen, and Mark Harman, editors, Formal Meth-

ods and Testing, volume 4949 of Lecture Notes in Computer Science, pages 39–76. Springer,

2008.

[123] H. Wehn et al. A Distributed Information Fusion Testbed for Coastal Surveillance. In Proc. of

the 10th Intl. Conf. on Information Fusion, July 2007.

	Approval
	Abstract
	Dedication
	Quotation
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	List of Programs
	I Introduction
	Background and Motivation
	Modeling Languages
	Formal Language Semantics
	Operational Semantics
	Denotational Semantics
	Axiomatic Semantics

	Towards a Comprehensive Framework
	The CoreASM Modeling Environment
	Thesis Organization

	Abstract State Machines
	Basic ASMs
	Basic Definition
	State Transitions
	Transition Rules
	Interaction with Environment

	Multi-Agent ASMs
	Control State ASMs
	Similar Approaches in Computational Logic
	Runs and Systems
	Actions, Protocols, and Programs

	The Railroad Crossing Example
	The Abstract Model
	The Executable Model

	Related Work
	The Dynamic Algebra Specification Language
	ASM Gofer
	XASM
	The ASM Workbench
	AsmL and Spec Explorer
	Asmeta
	Alternative Tools

	II Design and Specification of CoreASM
	CoreASM: Architectural Overview
	CoreASM Components
	Engine Lifecycle
	Engine Initialization
	Loading Specification
	Execution of Specification
	Concurrently Running Agents

	CoreASM Plugins

	CoreASM: The Kernel
	The Abstract Storage
	The Interpreter
	Notation
	Kernel Expression Interpreter
	Kernel Rule Interpreter
	Operators

	Rules and Updates
	Update Instruction Notation
	Aggregation of Updates
	Composition of Updates

	The Parser
	The Plugin Framework
	Parser Extensions
	Interpreter Extensions
	Abstract Storage Extensions
	Scheduler Extensions
	Extension Point Plugins
	Plugin Service Interface
	Plugin Background

	CoreASM: The Plugins
	Standard Rule Constructs
	Block Rule Plugin
	Conditional Rule Plugin
	The let-rule Plugin
	The extend-rule Plugin
	The choose-rule Plugin
	The forall-rule Plugin
	The case-rule Plugin
	The TurboASM Plugin

	Primitive Data Types
	The Predicate Logic Plugin
	The Number Plugin
	The String Plugin

	Collections
	The Collection Plugin
	The Set Plugin
	The Bag Plugin
	The List Plugin
	The Queue Plugin
	The Stack Plugin
	The Map Plugin

	Auxiliary Plugins
	The Signature Plugin
	The Scheduling Policies Plugin
	IO Plugin
	The Observer Plugin
	Math Plugin
	The Time Plugin

	The JASMine Plugin
	Requirements and Limitations
	Language Extensions
	Implementing JASMine
	A Simple Example
	Final Remarks

	III Applications and Conclusions
	Implementing CoreASM
	The Architecture
	The CoreASM Engine
	The Kernel
	CoreASM Plugins

	User Interfaces and Tools
	CSDe
	Model Checking CoreASM Specifications

	Case Studies
	The DRCMA Project
	Objectives and Challenges
	Conceptual Model
	Formal DRCMA Model
	New Task Assignments
	The Executable Model

	Decision Support for Situation Analysis
	The Abstract Model
	Situation Awareness
	Situation Analysis
	Executable Model

	The Mastermind Project

	Conclusions and Perspectives
	Significance of the Contribution
	Future Work

	IV Appendices
	Supplementary Definitions
	Abstract Storage
	Interpreter
	Scheduler
	Control API
	Plugins
	Choose Rule Plugin
	Forall Rule Plugin
	Predicate Logic Plugin
	Set Plugin
	Math Plugin

	CoreASM Examples
	The Railroad Crossing Example
	The Surveillance Scenario

