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Abstract 

In a case-control study, subjects are selected according to disease status and their risk fac- 

tors are determined retrospectively. When risk factors are fully observed for all subjects, 

maximum-likelihood inference of disease associations may be obtained by applying prospec- 

tive logistic regression to  case-control data as though it were collected prospectively. We 

investigate the statistical properties of prospective maximum-likelihood (PML) inference of 

disease associations with risk factors known as haplotypes when haplotype phase is not fully 

observed in some subjects. We motivate applying PhlL to  case-control data and compare 

PML to an estimating equation (EE) approach developed specifically for such data. We 

conduct limited simulations of case-control data to  investigate the bias of PhlL and EE, 

both in estimated haplotype risks and in their standard errors. PhlL performed well in the 

simulation configurations we considered. By contrast, EE gave anticonservative inference 

when there was marked haplotype ambiguity. 
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Chapter 1 

Introduction 

This chapter reviews briefly the underlying epidemiologic and genetic concepts used in the 

thesis and provides a brief overview of the thesis. 

1.1 Epidemiologic Background 

Two commonly used epidemiologic study designs are cohort and case-control designs. In 

a cohort or prospective study, risk factors and baseline characteristics are measured on 

disease-free subjects who are then observed over a defined follow-up time to see if they 

become diseased. The sample is required to represent the underlying population, and thus 

the population disease rate may be estimated. By contrast, in a case-control or retrospec- 

tive study, subjects are selected according to  their disease status, and their risk factors 

are determined retrospectively. The sample does not represent the underlying population, 

though diseased and disease-free subjects are representative of their sub-groups within the 

population. If a disease is rare, it is difficult to observe an acceptable number of incident 

cases in a cohort study without increasing the follow-up time considerably. It may also 

be economically and/or practically impossible to  measure covariates for all members of a 

cohort. Hence, for rare diseases, a case-control study design is considered more suitable [GI. 

Throughout this thesis, we consider logistic regression models for genetic associations 

with a disease. Logistic regression is a standard model for binary disease status. The 

logistic function t ( t )  = (1 + exp(-t))-I takes on values between 0 and 1 and so is a natural 
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candidate for modelling probabilities of a disease. The S-shape of the function is consistent 

with a model in which the effects of risk factors, or covariates, on an individual's disease risk 

is minimal until some threshold [13]. Logistic regression models an individual's probability 

of disease (D  = 1) given his or her row-vector of covariates x as pr(D = 1 I x)  = !(Po + xp),  

where Po is an intercept term and ,L? is a column vector of parameters describing the log- 

odds-ratio. The odds of disease for an individual with a given set of risk factors is the 

ratio of the probability of developing a disease to  the probability of staying disease-free; 

that is odds(x) = pr(D = 1 I x) / ( l  - pr(D = 1 I x)). The odds ratio or OR is the ratio 

of odds of developing a disease for two different individuals given their risk factors. If the 

risk factors for the first individual are denoted xl and those for the second individual are 

denoted x2, 0R(x1,x2) = ~ d d ~ ( x ~ ) / o d d ~ ( x ~ ) .  The relative risk (RR), also called the risk 

ratio, is the ratio of the probabilities of disease for two distinct individuals given their risk 

factors: RR(xl,x2) = pr(D = 1 / xl)/pr(D = 1 I 22). Though the RR may be viewed as 

having a more natural interpretation than the OR, an important advantage of the OR is 

that it can be estimated from case-control data, while disease risks, and therefore the RR, 

can not [2]. However, for a rare disease, 1 -pr(D = 1 I x) z 1, in which case the OR and RR 

are effectively the same. Since case-control studies are most appropriate for rare diseases, 

the inability to estimate disease risks from such data does not usually pose a problem. For 

rare diseases, investigators typically identify risk factors on the basis of their relative risks 

and this information is preserved in a case-control study. 

1.2 Genetic Background 

DNA is comprised of four different building blocks or nucleotide bases denoted by A, T ,  

C, G ,  and is packaged into chromosomes, each of which has a linear DNA sequence. An 

organism's total DNA content is called its genome. All human cells except germ cells and 

red blood cells are diploid and thus carry pairs of chromosomes. These pairs are called 

homologous chromosomes. One member of each pair is inherited from the mother, while 

the other is inherited from the father. There are 22 pairs of autosomal chromosomes and a 

pair of sex chromosomes in diploid cells. Haploid cells such as germ cells or gametes (sperm 
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and egg cells) have only a single copy of each chromosome. 

The location of a gene or another identifiable point on the genome is called a locus. The 

DNA at a locus may come in a variety of forms or alleles. In diploid cells, an individual has 

two (possibly identical) alleles at each locus. The unordered pair of alleles (with respect to 

inheritance) that an individual has is the individual's genotype at this locus. Individuals 

who are heterozygous have a genotype in which the alleles are different. Individuals who are 

homozygous have a genotype with the same alleles. If the locus is one relating to a functional 

gene, the resulting potentially observable characteristic of the individual is the phenotype 

or trait. Penetrance is the probability of expressing a phenotype such as a disease, given a 

specific genotype. 

Hardy- Weinberg equilibrium (HWE) defines the relationship between the frequency of 

genes in a population and the frequency of genotypes in individuals. Once the allele fre- 

quencies are stable in a population, the expected genotype frequencies in the offspring 

generation will be in equilibrium after one generation of random mating. For example, 

suppose A and a are the two alleles at a locus, and that P(A)  = p and P(a)  = 1 - p = q are 

their frequencies. Then, after one generation of random mating, the genotype frequencies 

should be in Hardy- Weinberg proportions (HWP) with P(AA) = p2, P(Aa) = 2pq, and 

P(aa)  = q2. Numerous factors affect the frequency of alleles and genotypes at any particu- 

lar locus and thus will perturb HWE. These factors include mutation, selection, migration 

and nonrandom mating [12]. 

Exchange of genetic material between homologous chromosomes (cross-over) occurs 

during meiosis, the process of gamete formation. hleiosis leads to four different haploid 

gametes (sperm or egg cells). If two loci are relatively far from each other on a chromosome, 

many crossing-over events are expected to occur between them in a meiosis. In this case, 

the expectation is that half of the gametes will be recombinant, or have alleles of different 

parental origin at the two loci. Hence, the recombination frequency between the two loci, or 

the ratio of the expected number of recombinants to  the total number of observed gametes, 

is r = 0.5 and the loci are unlinked. The closer the two loci are, the fewer gametes are 

expected to be recombinant (so that r < 0.5). These loci are said to be genetically linked. 

Linkage analysis tracks the transmission of genetic material in gametes and is based on the 
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principal that nearby loci on a chromosome tend to co-segregate to  the next generation. For 

completely linked loci (r  = 0), the parental origin of the allele a t  one locus on a gamete 

completely determines the parental origin of the allele at the other locus. 

DNA alterations that involve a single base pair and are observed in a t  least 1% of the 

population are called single nucleotide polymorphisms (SNPs). SNPs are abundantly dis- 

persed throughout the genome and form part of the natural genetic variation. They are 

diallelic and are therefore less informative on their own for studying linkage than loci hav- 

ing more alleles. In spite of this, SNPs are increasingly used in both genetic linkage and 

association studies due t o  their high frequency throughout the genome, low mutation rates, 

and easily automated detection. The high density of SNPs throughout the genome allows 

investigators t o  combine nearby SNPs, creating a potentially more informative pseudo-locus 

with variant forms called haplotypes. A haplotype is a sequence of alleles a t  several loci 

on the same chromosome. Each individual has two haplotypes, one on the paternal chro- 

mosome and the other on the maternal chromosome. If an individual is homozygous at  

all constituent loci, then his/her dosage of the corresponding haplotype is two. If an in- 

dividual is heterozygous at  one or more constituent loci, then his/her dosage of each of 

the corresponding haplotypes is one. Experimental determination or phasing of an indi- 

vidual's haplotypes can be technically challenging and expensive. The haplotype phase of 

an individual may be inferred from the individual's genotype data a t  the constituent loci 

if family members are also genotyped. However, gellotyping family members in large-scale 

association studies is impractical. 

1.3 Overview of Thesis 

In this thesis, we consider the problem of assessing haplotypic risk factors for a disease 

using data from a case-control study in which haplotype phase information is missing for 

some individuals. Two approaches are compared: PILIL, prospective maximum likelihood 

developed for cohort data with uncertain haplotype phase (Burkett et al. [4]) and EE, an 

estimating equation approach developed specifically for case-control data (Zhao et al. [20]). 

Chapter 2 reviews both approaches, provides a theoretical justification for applying PhlL to  
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case-control data, and explores the similarities and differences between the two approaches. 

Chapter 3 describes the results of a limited simulation study comparing statistical properties 

of the two approaches when there are no non-genetic covariates. The impact of haplotype 

ambiguity on bias in risk estimators and their standard errors is explored. Chapter 4 

summarizes the main conclusions and discusses directions for future research. 



Chapter 2 

Met hods 

Burkett et al. [4] and Lake et al. [14] independently developed an Eh/l algorithm for PhlL 

inference of haplotype risks from prospective or cross-sectional data on unphased genotypes, 

non-genetic attributes, and trait values in generalized linear models (GLhls) of trait pen- 

etrance. Similar methodology was developed by Stram et al. [17] for the special case of 

binary disease traits, where the GLM is a logistic regression. In this chapter, we investigate 

theoretically the validity of PML applied to case-control data and compare it to the EE 

approach of Zhao et al. [20] developed specifically for case-control data, after reviewing 

some general concepts. 

2.1 EM Algorithm for Missing Data Problems 

The EM algorithm is phrased in terms of the observed, incomplete data Y and the un- 

observed, complete data Z from a statistical experiment. The complete data 2 is usually 

viewed as the observed data augmented in some way. The algorithm is useful for max- 

imizing an observed-data likelihood function L,(O; y)  that may be difficult to maximize 

explicitly, hut which has a corresponding complete-data likelihood LC(@ z )  that is easily 

maximized [IS]. In our context, we assume non-genetic covariates are fully observed so that 

the observed data Y will be a random vector of the disease status, unphased single-locus 

genotypes and non-genetic covariates on all subjects. Let pr(y; 8) be the pdf or pinf of 

Y, and 1,(8; y) = log pr(y; 8) be the observed-data log-likelihood for parameters 8. The 
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complete data Z are the unphased single-locus genotypes augmented by the haplogeno- 

types or underlying haplotype pairs on all individuals. Let pr(z: 0) be the pdf or pmf of Z,  

and 1,(0; t) = log pr( t ;  0) be the complete-data log-likelihood. The Ehl. algorithm involves 

repeatedly maximizing the conditional expected value of the complete-data log-likelihood 

given the observed data. Specifically, starting from an initial guess 0(') of 0, iterate through 

the following expectation (E) and maximization (h1) steps for t = 0 , l . .  . .: 

E-step: Calculate Q(O I dt)) = Ee(t) [1,(8; Z )  I Y], where dt) is the estimate of 0 at  iteration 

t ,  and Eect, denotes expectation under parameter value d t ) .  

hl-step: hlaximize Q(O I dt)) over 8 to obtain dtf '1. 

T'C'ith each iteration of the Ehl algorithm, the log-likelihood either increases or stays the 

same [ i]: i.e. 1,(0(~+ l): y) 2 1,(0(~); y). This iteration stops when dt) converges to a local 

maximum of the likelihood function. For example, stop when lO(dtf1);  y) - y) is 

small (preferred) or when I Idtf '1 - dt) I I is small. 

2.2 Direct Maximization for Missing Data 

Direct maximization of the log-likelihood by Newton-Raphson requires calculation of the 

score and hessian matrix. Formulas for the observed-data score and hessian in missing data 

problems were derived by Louis [15], and can be summarized as follows. Keep the same 

notation as before and, in addition, let 

denote the observed- and complete-data scores, respectively. Let 

a2 a? 
I , ( )  = - L O ( O ; y )  and IC(0:z) = --1 ( 0 : ~ )  ao aen " 

denote minus the observed- and complete-data hessians, respectively. Here, I is intended to 

indicate the "observed information", not its expectation (the Fisher information). However, 

the term "observed" is also used to  distinguish observed- from complete-data likelihoods 

which could lead to confusion. For brevity and to avoid confusion, refer to I, and I, as the 

observed-data information and complete-data information, respectively, rather than as the 
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observed-data observed information and the complete-data observed information. Louis [15] 

showed that: 

io(e; Y )  = EO [ic(e; 2) I Y = Y ]  , (2.1) 

and that 

where Vo denotes variance under parameter value 8.  Equations (2.1) and (2.2) are known as 

Louis' equations. If the conditional expectations and variances in Louis' equations can be 

computed for given values of 0, then the likelihood may be maximized directly by Newton- 

Raphson in the usual way. That is, starting with an initial value @'), perform a series of 

Newton-Raphson updates dt+') = dt) - I0(d t ) ;  y)-1i0(8(t); y )  until convergence. 

2.3 Applications to  Haplotype Risk Estimation 

Both direct maximization using Louis' formulas and the Ehl algorithm require calculation 

of conditional expectations of functions of the complete data Z given the observed data 

I-. For direct maximization, the appropriate functions of Z are the complete-data scores 

and hessians. For maximization via the EM algorithm, the appropriate function is the 

complete-data log-likelihood. Hence, both approaches require expressions for the condi- 

tional distribution of Z given Y. Recall that the complete data are the observed data on 

disease status, single-locus genotypes and non-genetic covariates, augmented by the h a p  

logenotypes. The complete data need only include as much information as required for 

the penetrance model, and so can be less detailed than the haplogenotypes. For example, 

if the penetrance model is comprised of a single multiplicative effect for a particular risk 

haplotype, the complete data need only indicate the number of copies of that haplotype. 

However, penetrance models such as the saturated haplogenotypes model or a multiplicative 

model that includes terms for all haplotypes (except a baseline haplotype) require the com- 

plete haplogenotype information. In addition, specifying haplogenotypes as the complete 

data leads to  estimates of haplogenotypes frequencies, which are often of interest on their 

own. Hence we adopt the convention that the complete data include the haplogenotypes. 

There are a finite number of haplogenotypes consistent with the observed single-locus 
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genotypes. Hence, there are a finite number of probabilities that comprise the conditional 

distribution of the complete data given the observed data. Thus, conditional expectations of 

functions of the complete data given the observed data are weighted averages over the finite 

number of complete data values consistent with the observed data, where the "weights" 

are the conditional probabilities. Therefore, both the direct and EM approaches require 

calculation of weights for likelihood maximization. From the general description of EM, 

it can be seen that the weights are updated in the E-step, but then treated as fixed in 

the M-step when the weighted complete-data log-likelihood is maximized to  update the 

parameter estimates. By contrast, in Newton-Raphson, the complete-data log-likelihood 

and the weights are both considered as functions of the current parameter values in a single 

update step. 

2.4 PML and Case-Control Data 

2.4.1 Previous Theoretical Results 

Carroll et al. 151, hereafter referred t o  as CWW, state that applying a prospective approach 

to retrospective data typically gives unbiased parameter estimates and conservative or cor- 

rect standard errors. However, a key assumption of CWW is that the estimating equations 

the estimators solve are retrospectively unbiased in the sense that their expected values under 

the retrospective sampling scheme are zero. CWW require mean zero for all sample sizes, 

a stronger condition than having mean zero as the sample size tends to  infinity. Estimating 

equations with the weaker property of having mean zero as the sample size tends to  infin- 

ity are asymptotically unbiased. Zhao et al. [20] showed that the estimating equations for 

their approach are asymptotically unbiased, but not retrospectively unbiased. We suspect 

that the PLIL estimating equations are also retrospectively biased because the weights, or 

conditional haplogenotype probabilities given the observed data on an individual, are only 

approximate for case-control data. If the weights were instead correctly specified, the result- 

ing estimating equations would be retrospectively unbiased because they would correspond 

to  the retrospective score functions. Score functions have expectation zero regardless of the 

sample size. A detailed investigation of retrospective unbiasedness for the PAIL estimating 
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equations is beyond the scope of this project. 

2.4.2 Previous Empirical Results 

Stram et al. [17] applied PML to  ated case-control data and concluded that bias in esti- 

mated haplotype risks increases with decreasing ability of single-locus genotypes to  predict 

the underlying haplotypes (haplogenotypes). However, the design of their simulation study 

raises some questions. In particular, they appear to estimate risks for haplotypes of a subset 

of three of six possible loci at which single-locus genotypes are available. With single-locus 

genotypes at  only three loci, the effect of a six-locus risk haplotype can be confounded with 

the effect of a non-risk haplotype. For example, based on the first, third and fifth loci, 

a six-locus risk haplotype 0-0-0-0-0-0 would be indistinguishable from non-risk haplotypes 

0-1-0- 1-0-1, 0- 1-0-1-0-0, 0-1-0-0-0-1, 0-1-0-0-0-0, 0-0-0-1-0-1, 0-0-0-1-0-0 and 0-0-0-0-0-1. In 

this situation, we would expect the estimated effect of the three-locus risk haplotype 0-0-0 

based on the first, third and fifth loci to  be a weighted average of the odds-ratio of the six- 

locus risk haplotype 0-0-0-0-0-0 and the odds-ratios of the confounded non-risk haplotypes 

0-1-0-1-0-1, 0-1-0-1-0-0, 0-1-0-0-0-1, 0-1-0-0-0-0, 0-0-0-1-0-1, 0-0-0-1-0-0 and 0-0-0-0-0-1. 

The estimated effect for the three-locus risk haplotype 0-0-0 would therefore be attenuated 

relative to  that of the six-locus risk haplotype 0-0-0-0-0-0. In their simulations, the partic- 

ular six-locus risk haplotypes for which they claimed a bias toward zero in estimated effect 

were in fact those haplotypes confounded with other non-risk haplotypes of non-trivial fre- 

quency when a reduced set of three loci were examined. Hence, the bias they observed 

may be due to  the more fundamental problem of confounding rather than to  the applica- 

tion of a prospective approach to retrospective data. In this thesis, we will examine both 

theoretically and through simulations the potential bias in haplotype risk estimators and 

their standard errors arising from applying PML to  case-control data, in a context where 

confounding is not an issue. 

In summary, doubts about Stram et al.'s empirical evidence motivated us to  reconsider 

the bias arising from applying PML to case-control data. In the following sections, we 

investigate in more detail the theoretical justification for applying PML. Specifically, we 
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examine a )  whether prospective weights are sensible in the E-step, and b) whether maxi- 

mizing the prospective weighted likelihood is reasonable in the I\I-step. To gain additional 

insight into PhlL versus EE, we derive the PML estimating equations for retrospective data 

and compare them to those of the EE approach. 

2.5 Review of PML 

Let Di denote disease status with value 1 for diseased and 0 for non-diseased, Gi denote 

single-locus genotypes and Ai denote non-genetic attributes on the i th subject. These 

variables comprise the observed data on the i th subject. Suppose there are n independent 

subjects. Let Hi denote the haplogenotype of the i th subject. The observed data (Di, Gi, Ai) 

augmented by Hi comprise the complete data on the i th  subject. Since Gi is determined 

by Hi, the complete data may be written (Di,  Hi, Ai). Let D denote a vector of disease 

status indicators on all n subjects. Similarly, let G, A and H denote, respectively, the 

collections of single-locus genotypes, non-genetic variables and haplogenotypes on all n 

subjects. Let lower-case letters denote observed values. For example, di is the observed 

disease status on the ith subject and d denotes a vector of observed disease status indicators 

on all subjects. Let X(Hi,  Ai) be the covariate row-vector for the i th  subject in the logistic 

model of penetrance: 

where Do is an intercept term and B is a column-vector of odds-ratio parameters. For cohort 

data it is cumbersome to separate Po from the odds ratio parameters, because Do can also 

be estimated. However, we do so now because such a separation will be necessary when 

considering case-control data, where Do can not be estimated. Let y denote the parameters 

that describe the joint distribution of H and A. For notational convenience, suppose 3 is a 

column-vector. The collection of all parameters in this problem is 8 = (Do, pT,  3 T ) T .  
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2.5.1 E-step of the EM Algorithm 

The conditional expectation of the complete-data log-likelihood given the observed data 

and the value of the parameters 1 9 ( ~ )  at iteration t is 

Q(0 I 8@)) = E,(t, [1,(8; D ,  H,  A) ( D = d, G = y, A = a'] where, 

1,(8; D ,  H, A) = log pr(D, H, A; 8) (independence of subjects) 
n n 

= ~ l o g p r ( D i l H i , A i ; 8 ) ~ ~ l , i ( 8 : D i , H i , A i ) .  Hence, 
i=l i=l 

The conditional expectations in equation (2.3) may now be written as weighted sums of 

complete-data log-likelihoods lci(8) over complete-data values consistent with the observed 

data for an individual. Let Si = {h:; I; = 1, . . . , denote the set of haplogenotypes 

consistent with gi; i = 1 , .  . . , n. For h," E Si, let 

= pr(Di = di, Hi = h,", A~ = ai I Di = di, Gi = gi, Ai = ai ; dti) 

Replacing the conditional expectation in equation (2.3) with the appropriate weighted sum 

gives: Q(8 I dt)) = x:=l ~ F L ~  ~ ~ ~ ( 8 ( ~ ) ) ~ ~ ~ ( 8 ~  di, h,", ai) ,  where 

lci(O; di, h f ,  ai)  = log pr(Di = di, Hi = hf ,  Ai = ai; 8). Recall that 8 = (Po, g T ,  rT)T where 

Po and /? are from the penetrance model and y is the parameter vector that describes the 
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joint distribution of H and A. Write the weights in terms of 19 as: 

Calculation of disease probabilities pr(Di = di I Hi = hfAi = ai ; p t ) ,  /3(')) is straight- 

forwad using the penetrance model and the estimates p!) and ~ ( ' 1  from fitting a logistic 

regression model in the M-step a t  iteration t .  

Calculation of joint probabilities pr(Hi = hkAi = a, ; ?('I) is not as straightforward. As 

discussed by Horton and Laird [ll] when the covariate sample space is large (e.g. when the 

non-genetic attributes are continuous), there may be very little information in the data to  

infer y and hence to  calculate such probabilities. One possible solution to  the difficulties 

posed by continuous non-genetic attributes is to impose independence of genetic and non- 

genetic attributes where reasonable [3,4,14]. Note that such an assumption may not be 

reasonable if non-genetic attributes are ethnicity or body-mass index, for example. Under 

this independence assumption, let yh denote the parameters in the marginal distribution of 

H and y, denote the parameters in the marginal distribution of A. Then the formula for 

the weights simplifies to: 

so that estimation of 3, is not required. Henceforth, assume independence of H and A. 

The distribution of haplogenotypes, specified by the vector of haplogenotype frequencies ~ h ,  

remains in the calculation of the weights. However, this distribution can not be estimated 

from single-locus genotype data, as illustrated by the following simple example involving 
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two-locus haplotypes. Let the alleles a t  both loci be denoted 0 and 1 and let a haplotype 

with allele a1 at  the first locus and as at  the second locus be denoted alas .  Individuals 

who are doubly heterozygous at the constituent SNPs can have either 00/11 or 01/10 as 

their haplogenotype. The proportion of subjects who are either 00/11 or 01/10 can be 

estimated by the proportion of double heterozygotes in the sample. However, neither of 

these two haplogenotypes are ever observed on their own unambiguously. Hence, there is no 

information in the data about the relative proportion of 00/11 versus 01/10 haplogenotypes. 

The frequencies of the 00/11 and 01/10 haplogenotypes are therefore not identifiable from 

single-locus genotype data. One possible solution to this identifiability problem [3,4, 141 

is to  impose HWP for haplogenotype probabilities and model them in terms of haplotype 

frequencies. Under HWP, haplotypegenotype frequencies can be est,imated from data on 

single-locus genotypes, based on information provided by haplotypes within haplogenotypes 

that are observed unambiguously. We assume HWP throughout and redefine yh to be the 

vector of haplotype frequencies. 

2.5.2 M-step of the EM algorithm 

The function of 8 t o  be maximized is: 

Q(8 I 

12 Iij 

= 
wik (d') ) log pr(Di = di 1 Hi = hr . Ai = ai; Po, 8) + 

C C U;~(O(')) log pr(Hi = h:; yh) + C C u!ik(8(')) logpr(Ai = ai: x) 
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Each of the three expressions on the last line of the above equation may be maximized 

separately. The first expression, Q(Do, /3 I o ( ~ ) ) ,  is a weighted log-likelihood from a logistic 

regression model of penetrance and can be maximized using standard statistical software. 

The second expression, Q(yh / o ( ~ ) ) ,  is a weighted multinomial log-likelihood and so its 

maximization is also straightforward. The last expression, Q(y, I o ( ~ ) ) ,  involves only the 

nuisance parameter y, which is not required for the weights and hence need not be estimated. 

The two assumptions made for PhlL inference of haplotype risks are: 1) independence of 

haplotypes and non-genetic attributes in the population, and 2) HWP of haplogenotypes 

in the population. Simulation studies suggest that PML inference is robust to  moderate 

departures from the independence assumption [4] and to  moderate departures from HM'P 

1141. 

2.6 Justification of PML for Case-Control Data 

lye shall argue that naive application of PhlL to  case-control data entails maximization of 

a weighted retrospective log-likelihood in the hl-step, with approximate weights obtained 

in the E-step. Hence any bias in risk estimators arises due to  the weight approximation in 

the E-step. 

In a case-control study, exposures are sampled conditional on disease status. In our 

context this means the observed data G and A are sampled conditional on D. The change 

in the sampling scheme requires slight changes in the notation used previously. Let D,:, , G,:,, 

HZj and A,:, denote, respectively, the disease status, single-locus genotypes, haplogenotypes 

and non-genetic attribute for the j t h  subject in the i th  disease group; i = 0,1, j = 1, . . . , n,, 

where n, is the number of subjects in disease group i. By definition Dtj  = i. Let D ,  G, H 

and A denote the collections of disease status, single-locus genotypes, haplogenotypes and 

non-genetic attributes for all subjects, as before. 

For cohort (or cross-sectional) data, the parameters in the model were 0 = (Po, pT, -,T)T, 

where Do is an intercept and p is a vector of odds-ratio parameters in the logistic penetrance 

model, and y is a vector of parameters that describes the joint distribution of H and A. 

The case-control likelihood may be parametrized in terms of pr(Hoj , Aoj I Doj = 0) and 3, 
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where pr(Hoj, Aoj I Doj = 0) depends on 8. Accordingly, define the parameters in the case- 

control likelihood to  be 19 = [P, pr (Hoj , Aoj I Doj = O)] [16] . Under case-control sampling, 

write 1,(19; g, a )  = log pr(G = g, A = a I D = d: 8) for the observed-data log-likelihood and 

1,(19; h, a)  = logpr(H = h, A = a I D = d; 19) for the complete-data log-likelihood. 

2.6.1 A Variant Sampling Scheme 

Several calculations in this section rely on a variant sampling scheme (VSS) used implicitly 

throughout the arguments of Prentice and Pyke 1161. This is a two-stage sampling design 

with random sampling of disease status and covariates, but in which the total number of 

subjects is fixed to  n.  The first step is Bernoulli sampling of disease status, with probability 

n l /n  of sampling a case and no/n of sampling a control. Thus, for a study with n subjects 

(i.e. n Bernoulli trials), the expected number of cases and controls sampled are n l  and 

n - nl  = no, respectively. 

In the second step, covariates are sampled (observed) from the appropriate conditional 

distributions of covariates given disease status. The conditional distributions in this second 

step are the same conditional distributions as in the true case-control sampling scheme. 

Under VSS, disease-status/covariate pairs are sampled jointly. However, given disease sta- 

tus, covariates are sampled independently. In contrast, under the basic stratified sampling 

of unmatched case-control studies, disease status is fixed rather than random and, condi- 

tional on disease status, covariates are sampled independently. Let pr, denote probability 

densities or mass functions, as appropriate, under VSS and let pr denote probabily densi- 

ties or mass functions under the true case-control sampling. From the description of VSS, 

pr(H = h, A = a I D = d; 8) = pr,(H = h, A = a I D = d; 19). Define the VSS hypothetical 

population to  be a population with case frequency n l /n  and control frequency no/n. Then, 

VSS corresponds to  random sampling from the VSS hypothetical population. 

The conditional expectation of the complete-data log-likelihood given the observed data, 

disease status and the value of the parameters 19(t) a t  iteration t is now 
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, ( :  H 4 )  = logpr(H, A I D = d; 19) 
1 n, 

= C log pr(Hij, Aij / D, = i: 19) (independence within disease groups) 

denote the set of haplogenotypes consistent with the single- 

locus genotypes gij; i = 0) 1, j = 1,. . . ,n i .  For h$ t Sij7 let 

Equation (2.7) establishes that case-control weights describe the same conditional prob- 

abilities as the cohort weights in equation (2.4). Equation (2.6) is then Q(19 I t9(t)) = 

~1 C" ~ h ' 7 '  

Z=O ]=I k=l wiik(19('))lCij (8: hFj, a,), where lcii (19; h*,  23 a,,) = log pr(Hii = hfj, Ail = 

aij 1 Dij = i: 19). 

At iteration t ,  writing the weights in terms of quantities that are estimated in the AI-step 

requires consideration of the variant sampling scheme (VSS). Recall that 
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i t)  (t)  where pr,(Dij = i I Hij = h.. 21 r -Aij = a , .  11 . 1 p vo 1 P ) is a logistic regression model with 

the same odds-ratio parameters P as the logistic model for a population sample, but with 

a different intercept Pvo; y, parameterizes the joint distribution of H and A under VSS; 

and pr,(Dij = i )  is the disease risk under VSS, which is ni /n  by definition [16]. The 

new parameter 79, -- (P,y,) reparametrizes 79 = [p, pr(HOj, -AOj I DOj = O)] ,  while PCO is a 

function of /3 and y, [16]. Substituting equation (2.9) into the expression (2.8) for the 

weights gives: 

which is of the same form as equation (2.5) for the weights under population sampling, 

but with population probabilities replaced by probabilities under VSS. This expression for 

the weights suggests they can be calculated as though the case-control data were collected 

prospectively. We show pr,(Dij = i / Hij = h$, Aij = au  ; 79:)) can be calculated with the 

estimates ,B,$ and ,Bit) obtained in the hi-step, by fitting a weighted logistic regression to 

the case-control data as though it were collected prospectively. However, calculation of 

pr, (Hij = h" 11 1 A 13 = aij ; ?:)) is not as straightforward. 

As with data collected prospectively, there will be little information available to infer the 

joint distribution of H and A under VSS. Additionally, the distribution of haplogenotypes 

under VSS will not be identifiable from the data on single-locus genotypes. For prospectively 

collected data, the solution to  these problems is to impose the assumptions of population 

HIVP and independence of H and A. The expression for the weights then simplifies and 

depends only on the population haplotype frequencies, which can be estimated. Due to 

oversampling of the cases, assumptions such as HWP and independence of H and A that 

may be valid in the general population need not hold in the combined case-control sample 

(i.e., in the VSS hypothetical population), because the pooled case-control sample is not 

representative of the general population. Hence weights calculated for case-control data 
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assuming HIYP and independence of H and A may be incorrect, which could potentially 

lead to incorrect inference of haplotype risks. However, for prospectively collected data, 

modest mis-specification of the weights arising from incorrectly assuming HWP [14] and 

independence of H and A [4] appears to have little effect on maximum likelihood inference 

of haplotype risks. Hence, approximate weights for case-control data which incorrectly 

assume H\VP and independence of H and A in the VSS hypothetical population may still 

lead to reasonable inference. Using the notation for case-control data, the approximate 

weights are: 

where Frv(Hij = h ; T ~ ~ )  is the haplogenotype frequency in the VSS hypothetical population 

that would obtain if HWP held, and 3,h is a vector of haplotype frequencies in the VSS 

hypothetical population. We stress that haplogenotype frequencies in the hypothetical 

population are approximated by values that would obtain under HWP. In summary, we 

propose that the E-step for case-control data be carried out in exactly the same way as 

the E-step for cohort data. Consequently, the resulting risk estimators obtained from case- 

control data will not be maximum likelihood. 

Substituting the reparametrization 8, for 8 in Q(8 I 19(~)) and using the approximate 

weights, the function of 1 9 ~  to be maximized is now: 

which is a weighted retrospective log-likelihood. Similar arguments to those in Prentice and 

Pyke [16] may be used to show that this weighted retrospective likelihood is maximized by 

(i) b from a weighted logistic regression, fit as though the data were collected prospectively, 

and (ii) the empirical distribution of H and A from the case-control sample to which 
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( t )  ( h , a )  (i = 0, 1 j = 1 , .  n ,  k = 1 , .  . . , K,) contributes mass li.,,r(t9, ) / n  This 

argument is sketched in Appendix C. 

In the hl-step the distribution of H and A is not modelled so that appropriate estimates 

of 9 are obtained given fixed weights. However, the approximation to  the weights made 

in the E-step requires estimates of the haplotype frequencies y,h under VSS, rather than 

estimates of the joint distribution y, of H and A under VSS. For prospective data, sample 

haplotype frequencies are used to  estimate population haplotype frequencies. Hence ap- 

plying PhlL to case-control data will estimate the haplotype frequencies y,h in the pooled 

case-control sample by the corresponding empirical frequencies %h. Using the empirical 

haplotype frequencies 5,h in the E-step is reasonable, because the approximate weights de- 

pend on the joint distribution y, of haplogenotypes H and non-genetic covariates A only 

through y,h. In summary, the M-step for case-control data may be carried out in exactly the 

same way as the Ill-step for cohort data, but inference is not maximum likelihood because 

the weights in E-step are only approximate. 

To recap, when PML is naively applied t o  case-control data, weights in the E-step 

are approximated under the incorrect assumptions of HWP for H and independence of 

H and A in the VSS population. The hl-step properly maximizes the resulting weighted 

retrospective log-likelihood. In prospective or cross-sectional studies of populations with 

departures from HWP and from independence of H and A, the weights in the E-step would 

also be approxinlations. However, simulation studies of the prospective approach suggest 

these approximate weights do not lead to  substantial bias in haplotype risk estimators [4,14]. 

Hence, we might hope that approximate weights in the case-control context would also work 

reasonably well. We will investigate this hypothesis in the simulation study. 

2.7 PML versus EE for Case-Control Data 

Due to heavy oversampling of cases in a case-control study of a rare disease, the PhlL 

estimators of haplotype frequencies are obviously incorrect. We thus consider estimating 

equations for 3 only. We shall find that i11 these estimating equations the only point of 
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difference between approaches is how they approximate the weights. In the E-step of PhIL, 

where 8, = (p, y,), and y, parametrizes prv(Hij = h, Aij = a). In the M-step, we maximize 

~ ( 8 ,  I 8;)) over 8, to find 8:+'). The corresponding estimating equation for ( ' + ' )  is 

therefore 

Upon convergence, the resulting estimates 6, solve an estimating equation for P that is 

analogous to Louis' equation for the score function for P [see equation (2.1)] 

where 

fiv(Hij = h ;yvh)  is the haplogenotype frequency in the VSS hypothetical population 

that would obtain if HWP held, and yvh is a vector of haplotype frequencies in the VSS 

hypothetical population. The weights used are approximations to the correct weights: 

In the EE approach, the estimating equations for ,O are: 

where 2&jk(9) denotes their approximation to the true weights, as described below. These 

estimating equations are clearly very similar in form to those of PAIL. Equation (2.7) shows 

that the weights for case-control data are the same conditional probabilities as the weights 

for cohort data in equation (2.4). Writing the weights for case-control data in equation 
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(2.7) in terms of the prospective parameters 8 = (Po, PT, 3T)T rather than 19 and expanding 

these conditional probabilities in the manner outlined in equation (2.5) leads to: 

Assuming independence of H and A and HWP in the population, Zhao et al. [20] and Stram 

et al. 1171 simplify these weights to: 

To obtain their approximation &ijk(8) to the weights, Zhao et al. 1201 first approximate 

the penetrance pr(Dij = i 1 Hii = hfj, Aij = aij ;Po, p) under a rare disease assumption, 

substitute this approximation into equation (2.10), and find that Po cancels out of the ex- 

pression. Such cancellation is convenient because po cannot be estimated from case-control 

data without knowledge of the population disease risk [5]. Moreover, since population h a p  

lotype frequencies yh cannot be estimated conveniently from a biased sample, Zhao et a1 [20] 

again invoke the rare disease assumption and use the control sample to approximate the 

frequencies. Since the rare disease assumption is invoked both in approximating the pene- 

trance and the population haplotype frequencies, we speculate that for case-control studies 

of more common diseases, the approximation GYjk from EE may provide a poorer fit to the 

true weights than the approximation Gijk from PML. 
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Simulation Study 

There are two specific aims of the simulation study: 1) to assess the bias of PML and EE 

haplotype risk estimators and their standard errors when these methods are applied to  case- 

control data, and 2) to compare the efficiency of PML and EE to true maximum-likelihood 

inference (hlL) for estimating haplotype risks when there are no non-genetic covariates in 

the penetrance model, but haplogenotypes are ambiguous. For penetrance models with 

non-genetic attributes, no maximum likelihood procedure has been developed. We used the 

software packages hapassoc [4], Hplus [20] and Chaplin [8] for PML, EE and hlL inference, 

respectively. 

3.1 Design 

We considered haplotypes comprised of 3 SNPs in two separate simulation configurations 

which differed in haplotype frequencies. The choice of haplotype frequencies was motivated 

by the observations of Stram et al. [17]. These authors noted an apparent bias in haplotype 

risk estimates from PhIL when the ability of the single-locus genotypes to  predict the 

number of copies of a risk haplotype h, as measured by R: (Appendix B), was 5 80%. We 

investigated the bias of haplotype risk estimators a t  one value of R; just under 80% (78.75%) 

and one value well below 80% (59.78%). Haplotype frequencies for the two coilfigurations 

are given in Table 3.1, and have been deliberately set to  achieve the desired Ri values. We 

have observed that haplotype frequencies are not typically this uniform. The haplotype 
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labelled hl (SNP1 = 0, SNP2 = 0, SNP3 = 0) was chosen to  be the risk haplotype. It was 

necessary to choose the frequency of l z l  to  be less than at  least one of the other haplotypes 

because of a limitation in the Hplus software that prevents calculation of haplotype risk 

estimates for the most frequent haplotype in the sample. (Hplus automatically chooses the 

most frequent haplotype in the sample to  be the baseline haplotype in the logistic regression 

model.) The haplotype frequencies of the first and second set of simulations give R ; ~  of 

78.75 % and 59.78 %, respectively. Note that R i Z ,  i # 1, does not have any impact on the 

results, since h,, i # 1, are non-risk haplotypes. 

In both configurations, the risk haplotype was simulated to  have a multiplicative effect on 

disease risk, increasing the odds of being affected by a factor of exp(0.7) = 2 (i.e. Ph, = 0.7) 

for every copy of the risk haplotype that replaces a baseline haplotype. The intercept term in 

the penetrance model for each configuration was chosen so that the probability of developing 

disease over the study period was 0.0009. This corresponds to  a two-year study of a disease 

with an annual incidence rate of 45 per hundred thousand people per year, consistent with 

Scandinavian rates of Type 1 Diabetes. 

For each set of simulations, haplogenotypes and disease status were generated for a 

sample of size 1.5 x lo6 individuals. From this sample, 1000 cases and 1000 controls were 

sub-sampled randomly from within each disease class and were recorded as data. The 

large number of cases and controls was chosen to  limit the well-known finite-sample bias 

of maximum-likelihood inference in logistic regression [lo], which could cloud bias com- 

parisons. A penetrance model with nlultiplicative effects for each of the 7 non-baseline 

haplotypes was then fit to the data with hapassoc, Hplus and Chaplin. (The Hplus soft- 

ware package does not allow specification of any other penetrance model, in fact.) For each 

set of simulations, 1000 data sets were generated t o  obtain the empirical distribution of 

haplotype risk estimators. their standard errors, estimates of 95% coverage probabilities, 

and power. 
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Table 3.1: Haplotype Frequencies in Configuration 1 (Left) and 2 (Right) 
haplotype 

000 
00 1 
010 
01 1 
100 
101 
110 
111 

label 

h 1 

h2 

h3 
h.4 
h5 
h6 
h7 
h8 

haplotype 
000 
001 
010 
011 
100 
101 
110 
11 1 

3.2 Results 

In the tables and figures summarizing the results, risk estimates for haplotype h.l are com- 

pared to their true value of Ph, = 0.7. Similarly, the empirical means of their associated 

standard errors are compared to  the standard deviations of risk estimates over simulation 

replicates. The standard deviations of the risk estimates are considered to be the true 

values that the standard errors are estimating (within simulation error). In the figures, 

mirror-image distributions are drawn to compare the results of hapassoc and Hplus (above 

the horizontal axis) against the "gold standard" Chaplin (below the horizontal axis). 

3.2.1 First Set of Simulations 

The risk haplotype hl estimated the most frequent haplotype among controls in 19 of the 

1000 simulation replicates generated under the first configuration by Hplus. Consequently, 

the investigation of Hplus is based on only 981 simulation replicates. The investigation of 

hapassoc and Chaplin is based on all 1000 replicates. Results for haplotype risk estimators 

are summarized in Table 3.2 and Figure 3.1. Bias of the hapassoc and Chaplin estimators 

is within simulation error of zero (see Appendix A for a review of simulation error), while 

bias of the Hplus estimator slightly exceeds simulation error. 

Results for standard errors are summarized in Table 3.3 and Figure 3.2. All methods 

show a slight upward (conservative) bias in the standard error estimator (0.00075, 0.00041, 

0.00659 for Chaplin, hapassoc, and Hplus, respectively). Bias in the hapassoc estimator 

(0.00041) is of the same order as the finite-sample bias in the Chaplin estimator (0.00075). 
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Table 3.2: Haplotype Risk Estimates - Configuration 1 

Table 3.3: Standard Error of Haplotype Risks - Configuration 1 

In contrast, bias in the Hplus estimator is noticeably larger than that of the other two 

methods (0.00659). Additionally, the empirical distribution of standard errors for Hplus 

is clearly more spread out and has a heavier right tail than the empirical distributions for 

either hapassoc or Chaplin (see Figure 3.2). 

All methods had empirical power of 100% to detect the effect of the risk haplotype (i.e. 

the null hypothesis of no effect was rejected for all simulated data sets). The 95% confidence 

intervals for all 3 methods had slightly conservative coverage probabilities of -96%. 

3.2.2 Second Set of Simulations 

method 
Chaplin 
hapassoc 

Hplus 

For all 3 methods, the investigation of statistical properties is based on 1000 simulation 

mean(=) 
0.10836 
0.11297 
0.11686 

replicates. Results for haplotype risk estimators are summarized in Table 3.4 and Figure 

3.3. Those of hapassoc and Chaplin appear unbiased, but the Hplus estimator appears to 

simulation error 
0.00014 
0.00021 
0.00102 

3 std dev 
0.10761 
0.1 1256 
0.11026 

be biased upward. 

The results for standard errors are summarized in Table 3.5 and Figure 3.4. The methods 

all show bias, with Chaplin and Hplus biased downwards (anticonservative) and hapassoc 

biased upwards (conservative). As with the first configuration, the magnitude of bias in the 

hapassoc estimator is comparable to the finite-sample bias in the Chaplin estimator. As 

bias 
0.00075 
0.00041 
0.00659 

before, bias is greatest for the Hplus estimator, which is again the most variable of the 3 

estimators. 
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Figure 3.1: Distribution of Haplotype Risk Estimates - Configuration 1 

Beta Estimates - Hapassoc vs Chaplin 

Beta Estimates - Hplus vs Chaplin 

1- - hi?& mnan I 

The anticonservative estimates and standard errors from Hplus combine to give an an- 

ticonservative coverage probability of only 83.6% for the 95% confidence interval. Coverage 

probabilites from hapassoc and Chaplin are 94.5% and 94.2%, respectively, and within sim- 

ulation error. The empirical power of Chaplin to detect the effect of the risk haplotype is 

97.1%. Standard large-sample theory suggests that true maximum-likelihood inference (i.e. 

Chaplin) should be the most efficient of the 3 methods, and so it is not surprising that the 

97.1% power of Chaplin is greater than the 92.7% power of hapassoc. The power of Hplus 

is not relevant given the anticonservative behaviour of the Hplus haplotype risk estimators, 
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Figure 3.2: Distribution of Standard Errors - Configuration 1 

Standard Errors - Hapassoc vs Chaplin 

Standard Errors - Hplus vs Chaplin 

standard errors and coverage probabilities. 
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Table 3.4: Haplotype Risk Estimates - Configuration 2 

bias simulation error 
Chaplin 0.70066 0.00066 0.01214 
hapassoc 0.70913 0.00913 0.01341 

Hplus 0.81807 0.11807 0.01177 1 

Table 3.5: Standard Error of Haplotype Risks - Configuration 2 

method 
Chaplin 
hapassoc 

Hplus 

mean(=) 
0.18641 
0.21404 
0.15976 

,B std dev 
0.19191 
0.21209 
0.18608 

bias 
-0.00550 
0.00195 
-0.02631 

simulation error 
0.00054 
0.00061 
0.00139 
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Figure 3.3: Distribution of Haplotype Risk Estimates - Configuration 2 

Beta Estimates - Hapassoc vs Chaplin 

Beta Estimates - Hplus vs Chaplin 
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Figure 3.4: Standard Error Distributions - Simulation 2 

Standard Errors - Hapassoc vs Chaplin 

Standard Errors - Hplus vs Chaplin 
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Conclusions and Future Work 

We have considered the problem of haplotype risk inference from case-control data in which 

haplotype phase information is missing for some subjects. We have provided a theoretical 

justification for applying PML to case-control data, and have explored similarities and dif- 

ferences between PhiIL and EE. Statistical properties of the two approaches were compared 

by simulation for penetrance models with one risk haplotype and no non-genetic covariates. 

Two simulation configurations with different R: were considered. In contrast to the conclu- 

sions of Stram et al. [17], PML provided unbiased haplotype risk estimates for Ri < 80%. 

However, RE < 80% lead to EE-estimates of haplotype risk that were too large. In our 

simulations, standard errors of haplotype risk estimates were biased for both PML and EE. 

Bias increased as R: decreased and was largest for the EE approach. The distribution 

of EE-standard errors was the most variable, possibly due to the empirical nature of this 

estimator. For a lower Ri of 59.78%, EE but not PhiIL lead to anticonservative inference 

(eg .  EE coverage probabilities of 83.6% for 95% confidence intervals). Future work in- 

cludes a comparison of PML and EE for other models of disease penetrance, such as those 

which include non-genetic risk factors, but software for true maximum-likelihood inference 

in this situation is not currently available. However, this future work is hampered by the 

Hplus software (EE), which currently does not permit specification of a non-multiplicative 

penetrance model. 



Appendix A 

Simulation Error 

In this thesis, simulation was used to investigate statistical properties of two different meth- 

ods of haplotype risk inference. For each of a large number of simulated data sets, haplotype 

risk estimates and their standard errors, coverage of 95% confidence intervals and the out- 

come of the hypothesis test of no genetic effect on disease were calculated and recorded. 

Mean values of such quantities over simulation replicates provide estimates of bias, coverage 

probabilities, and power, respectively. The simulation-based estimates are subject to error, 

which may be quantified as follows. Let be a random variable with unknown mean p 

and variance a2 .  Suppose we estimate p by taking an average, c, of a large number N of 

independent realizations of E : El . -  - EN. By the Central Limit Theorem, k N (p, a 2 / ~ ) ,  

where denotes "approximately distributed as". The Monte Carlo or simulation error 
h 

in the estimate, c, of p is 2 JG , where 02 is some estimate of the variance of E. If 

1 - p is larger than 2 J ~ / N  , we would reject Ho : p = po at the 5% level, because the 

approximate 95% confidence interval for p, * 2 JG does not cover po. 



Appendix B 

The R; Measure 

Ri = measures how well the single-locus genotype data G predicts the "dosage" 

Sh (=0,1,2) of haplotype h in an individual [l'i]. Let H be the haplogenotype, and ph, p~ 

and p~ be, respectively, the population frequencies of h, H and G. We consider hap- 

lotypes specified for our simulation configurations (see Table 3.1). Assuming HWP for 

haplogenotypes, the haplotypes within an individual are independent. Hence, Sh(H) is bi- 

nomial with "success" probability ph and number of trials 2, so that E[hh(H)] = 2ph and 

V[hh(H)] = 2ph(1 - ph). Also, 

Since hl is the risk haplotype, we are interested in RE1. To calculate xG E[&, (H) I Gl 'p~ ,  

we need only consider haplogenotypes H that contain at least one hl or that contain no hl 

but lead to single-locus genotypes G consistent with H's that contain an hl. So, we obtain: 

And so, 

where den = 1 - pl and, 



Appendix C 

Retrospective Log-Likelihoods 

In this appendix we show that (i) the weighted retrospective log-likelihood ~ ( 1 9 ,  1 19:)) 

(defined in section 2.6.3) is maximized with respect t o  ,B by fitting a weighted logistic 

regression as though the data were collected prospectively; and (ii) the maximizer with 

( t )  respect to y, is an empirical distribution that puts mass Gijk(19, ) /n  a t  each (hFj, aij). These 

results are a slight extension of Prentice and Pyke [16], which states that (i) the retrospective 

log-likelihood (no weights) is maximized with respect t o  the odds-ratio parameters by fitting 

a logistic regression as though the data were collected prospectively; and (ii) the maximizer 

with respect to the covariate distribution under VSS is an empirical distribution that puts 

mass l / n  a t  each covariate value observed in the case-control sample. We start with a 

review of the Prentice and Pyke argument, and then discuss the extension to  accommodate 

weights. 

C. l  No Missing Data 

Assuming fully observed haplogenotypes, the case-control log-likelihood is: 

i(B) = Xi=, XY:, logpr(Hij = hij, Aii = a, 1 Dij = i ,  19). Restating equation (2.9), 
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( t )  ( t )  
where pr , (Dij  = i I Hij = hij, Aij = aij ; ,BUo , ,B ) is a logistic regression, with population 

W) odds-ratio parameters 9 but with a different intercept ho; pr,(Hij = hij, Aij = aij ; "/2. 

is parametrized by 7,; and pr,(Dij = i) = ni/n.  Therefore, up to a constant term, the 

reparametrized log-likelihood is: 

The parameters (,BUo, ,B, 7,) are constrained by the fact that the joint distribution of hap- 

logenotypes and attributes given disease status integrates t o  one, or by: 

where 7-l is the set of all haplogenotypes and A is the set of all attribute values. It can be 

shown that if equation (C.l) holds for one value of i (e.g. i = I) ,  it holds for the other. 

Therefore, equation (C. 1) describes a single constraint 

Hence, from equation (2.9), an equivalent expression for the constraint is: 

Though maximization of the log-likelihood l(6,) is subject to  the constraint of equation 

(C.2), Prentice and Pyke [16] maximize without regard to the constraint. They then show 

that the unconstrained maximizer 8, = (,&o, b, +,) satisfies the constraint and hence is the 

MLE. Details are as follows. 

The factorization of the reparametrized log-likelihood obtained when the constraint on 

6, = (Duo, ,B, %) is ignored implies that maximization with respect to a. and ,b' is obtained 

by maximizing the first term of I (fit,): 
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which is of the same form as a log-likelihood from a prospective logistic regression. The 

maximizers (,&,b) may be obtained in the usual way as the solution to a set of score 

equations. 

hlaximization of the log-likelihood with respect to 3;, is obtained by maximizing the 

second term of l(8,) : 

Assuming the joint distribution of H and A is not modelled, this expression is a non- 

parametric log-likelihood whose maximizer ;i; is the usual empirical distribution function 

that puts mass 1/72. at  each data point (hij,aij) observed in the case-control sample (e.g. 

van der Vaart [19], pages 402-403). 

The unconstrained maximizers 8, can be seen to  satisfy the constraint in equation (C.2) 

by comparing the score equation for PVo evaluated at  8, to  the constraint evaluated at  8,. 
The score equation for PVo evaluated at 8, is: 

The constraint (C.2) evaluated at 8, is: 

because an integral with respect to an empirical distribution function is a sum over the 

observed data points, with each data point weighted by l ln .  The above expression for the 

constraint simplifies to  

which is the same as equation (C.3). Hence the joint maximizer a,, which satisfies the score 

equation (C.3) by definition, also satisfies the constraint of equation (C.2). The conclusion 

is that (i) the maximizer f i  with respect to the odds-ratio parameters of interest is obtained 

by solving score equations from a logistic regression, as though the data were collected 

prospectively; and (ii) the maximizer 5, with respect to  y, is the empirical distribution 

that puts mass 1/72. at each value (hij, aij) observed in the case-control sample. 
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C.2 Weighted Case 

The argument for the weighted case is very similar and so in places only a sketch of the 

details is given. The weighted retrospective log-likelihood is, up to a constant term, 

(t) Maximization of ~ ( 1 9 ,  1 19, ) is subject to the same constraint on 19, = (PUo, P, 3/v) as in the 

unweighted problem (see equation C.2). As in the unweighted problem, the approach in the 

weighted problem is to  maximize without regard to the constraint and then show that the 

unconstrained maximizer 19?+') = (&cl), ,!3('+') , y, ('+I)) satisfies the constraint. 

Maximization with respect to Pvo and P, ignoring the constraint on 19, = (ao, P, %), is 

achieved by maximizing 

The maximizers (/?$+'), j('+')) may be obtained as the solution to prospective weighted 

logistic regression score equations. l\ilaximization of the log-likelihood with respect to y, is 

achieved by maximizing 

Assuming the joint distribution of H and A is not modeled, this expression is a weighted 

non-parametric log-likelihood. Similar arguments to those in the unweighted problem show 

(t) that the maximizer y?+') is the empirical distribution function that puts mass ziOk(19, )In 

at each (hfj, aij) . 

The unconstrained maximizers fl::+l) can be seen to satisfy the constraint in equation 

(C.2) by comparing the score equation for ,3,0 evaluated a t  1,9!+') to the constraint evaluated 
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at &+ ' ) .  The score equation for $'t,o evaluated at o!+ l )  is: 

(C.4) 

The constraint (C.2) evaluated at 19?+') is: 

which is the same as equation (C.4). Hence the unconstrained joint maximizer 19tt1) satisfies 

the constraint of equation (C.2). 

The conclusion is that (i) the maximizer P(~+' )  with respect to  the odds-ratio parameters 

of interest is obtained by solving score equations from a weighted logistic regression, as 

though the data were collected prospectively; and (ii) the maximizer y:+') with respect to 

( t )  y, is the empirical distribution that puts mass Gijk (19, ) I n  at  each (h:j, a i j ) .  
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