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Abstract

For digraphs D and H, a homomorphism of D to H is a mapping f : V (D)→V (H) such

that uv ∈ A(D) implies f(u)f(v) ∈ A(H). Suppose D and H are two digraphs, and ci(u),

u ∈ V (D), i ∈ V (H), are nonnegative integer costs. The cost of the homomorphism f of D

to H is
∑

u∈V (D) cf(u)(u). The minimum cost homomorphism for a fixed digraph H, denoted

by MinHOM(H), asks whether or not an input digraph D, with nonnegative integer costs

ci(u), u ∈ V (D), i ∈ V (H), admits a homomorphism f to H and if it admits one, find a

homomorphism of minimum cost. Our interest is in proving a dichotomy for minimum cost

homomorphism problem: we would like to prove that for each digraph H, MinHOM(H)

is polynomial-time solvable, or NP-hard. Gutin, Rafiey, and Yeo conjectured that such a

classification exists: MinHOM(H) is polynomial time solvable if H admits a k-Min-Max

ordering for some k ≥ 1, and it is NP-hard otherwise.

For undirected graphs, the complexity of the problem is well understood; for digraphs,

the situation appears to be more complex, and only partial results are known. In this thesis,

we seek to verify this conjecture for “large” classes of digraphs including reflexive digraphs,

locally in-semicomplete digraphs, as well as some classes of particular interest such as quasi-

transitive digraphs. For all classes, we exhibit a forbidden induced subgraph characterization

of digraphs with k-Min-Max ordering; our characterizations imply a polynomial time test

for the existence of a k-Min-Max ordering. Given these characterizations, we show that for a

digraph H which does not admit a k-Min-Max ordering, the minimum cost homomorphism

problem is NP-hard. This leads us to a full dichotomy classification of the complexity of

minimum cost homomorphism problems for the aforementioned classes of digraphs.

Keywords: homomorphism; minimum cost homomorphism; polynomial time algorithm;

NP-hardness; dichotomy

Subject Terms: Graph Theory; Graph Homomorphism; Digraphs; Graph Algorithms
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Chapter 1

Introduction

The minimum cost homomorphism problem was first introduced, in the context of undi-

rected graphs, in [48, 85]. There, it was motivated by a real-world problem, called Level of

Repair Analysis (LORA). For a complex engineering system containing perhaps thousands

of assemblies, sub-assemblies, components etc. organized into ` ≥ 2 levels of indenture and

with r ≥ 2 possible repair decisions, LORA seeks to determine an optimal provision of re-

pair and maintenance facilities to minimize overall life-cycle costs. Barros [11] and Riley [12]

provide a generic integer programming formulation of the LORA optimization problem for

systems with ` levels of indenture and r possible repair decisions. A special case with ` = 2

and r = 3, which is called LORA-BR, is of particular importance because it corresponds to

several interesting real world problems, see Barros and Riley [12].

Let us refer to the first level of indenture in LORA-BR as subsystems s ∈ S and the

second level of indenture as modules m ∈ M. The distribution of modules in subsystems can

be given by a bipartite graph G = (V1, V2;E) with partite sets V1 = S and V2 = M . For

arbitrary s ∈ V1 and m ∈ V2, sm ∈ E if and only if module m is in subsystem s.

There are r = 3 available repair decisions for each level of indenture: discard, local

repair and central repair, labelled respectively D,L, C (subsystems) and d, l, c (modules).

Assume we also know additive nonnegative integer costs (over a system life-cycle) cz(v) of

prescribing repair decision z for a subsystem or module v. We wish to minimize the total

cost of available repair options to the subsystems and modules subject to the following

constraints.

If a module m occurs in subsystem s (i.e., sm ∈ E) we impose the following logical

1



CHAPTER 1. INTRODUCTION 2

restrictions on the repair decisions for the pair (s,m) motivated through practical consider-

ations:

R1 : Ds ⇒ dm,

R2 : lm ⇒ Ls,

where Ds, dm denote the decisions to discard subsystem s, module m, respectively, etc.

Note that even though module m may be common to several subsystems, we are required

to prescribe a unique repair decision for that module. R1 has the interpretation that a

decision to discard subsystem s necessarily entails discarding all enclosed modules. R2 is a

consequence of R1 and a policy of “no backshipment” which rules out the local repair option

for any module enclosed in a subsystem which is sent for central repair [12].

For a pair of graphs H = (V (H), E(H)) and B = (V (B), E(B)), a mapping k :

V (B)→V (H) such that if xy ∈ E(B) then k(x)k(y) ∈ E(H) is called a homomorphism

of B to H. Let FBR = (Z1, Z2;T ) be a bipartite graph with partite sets Z1 = {D,C, L}
(subsystem repair options) and Z2 = {d, c, l} (module repair options) and with edges

T = {Dd,Cd, Cc, Ld, Lc, Ll}. Observe that any homomorphism k of G to FBR such that

k(V1) ⊆ Z1 and k(V2) ⊆ Z2 satisfies the rules R1 and R2. Indeed, let u ∈ V1, v ∈ V2, uv ∈ E.

If k(u) = D then k(v) = d, and if k(v) = l then k(u) = L.

Now LORA-BR can be formulated as the following graph-theoretical problem: for a

fixed bipartite graph FBR = (Z1, Z2; T ), we are given a bipartite graph G = (V1, V2; E), with

nonnegative integer costs cz(v), z ∈ Zi, v ∈ Vi as input, and we verify whether G admits a

homomorphism k to FBR such that k(V1) ⊆ Z1 and k(V2) ⊆ Z2 (If no homomorphisms of

G to FBR exists, then the problem has no feasible solution), and if it admits one, we find a

homomorphism k of G to FBR that minimizes the following aggregation:

∑

v∈V1∪V2

ck(v)(v) (1.1)

where k(Vi) ⊆ Zi.

We call the expression in (1.1) the cost of k.

The graph-theoretical formulation of LORA-BR can be naturally extended as follows:

The above problem with FBR replaced by an arbitrary fixed bipartite graph F = (Z1, Z2; T )

is called the general LORA problem with ` = 2.

The formulation of the LORA problem in terms of particular homomorphisms led the
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authors of [48] to introduce the minimum cost homomorphism problems for general ‘undi-

rected graphs’: for a fixed undirected graph H, we are given an input graph G with costs

cz(u) of mapping each vertex u ∈ V (G) to each vertex z ∈ V (H), and the problem is to

verify whether G admits a homomorphism to H, and if it admits one, find a homomorphism

k that minimizes
∑

u∈V (G) ck(u)(u).

For undirected graphs, the complexity of the problem is well understood; for digraphs,

the situation appears to be more complex, and only partial results are known. In this thesis,

we study the complexity of the minimum cost homomorphism problem for directed graphs

(digraphs).

The thesis is structured as follows. In the remaining sections of this chapter, we first

introduce several classes of digraphs which have been studied for different derivatives of the

digraph homomorphism problem. After that, we will discuss current results concerning the

minimum cost homomorphism problem.

Chapter 2 is devoted to the different versions of the constraint satisfaction problem. In

Chapter 3, we introduce tools useful for the study of the complexity of the minimum cost

homomorphism problems.

Chapters 4 and 5 cover the main results of this thesis, concerning digraphs with some

loops (meaning at least one loop). In Chapter 4, we give a full dichotomy classification of

the minimum cost homomorphism problem for reflexive digraphs. Chapter 5 is devoted to

oriented cycles with some loops, and we study the minimum cost homomorphism problem

for this subclass of digraphs as a first step toward a dichotomy for oriented graphs with

some loops.

In Chapters 6 and 7, we study minimum cost homomorphism problem for quasi-transitive

digraphs and locally in-semicomplete digraphs, respectively. Specifically, the class of locally

in-semicomplete digraphs is the largest class of irreflexive digraphs for which such dichotomy

classification is proved.

1.1 Definitions

A relational structure D consists of a finite set of vertices, denoted by V (D), and a finite

number of relations R1, R2, . . . , Rt on V (D), of arities r1, r2, . . . , rt respectively. The vector

(r1, r2, . . . , rt) is called the type of D. A relational structure D is complete if each Ri =

(V (D))ri .
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A digraph D is a relational structure with only one binary relation A = A(D). An

element (u,v) of A is called an arc of D, and denoted by uv ∈ A(D). For a digraph D, if

uv ∈ A(D) we say that u dominates v or v is dominated by u, and denote by u→v. For sets

X, Y ⊂ V (D), X→Y means that x→y for each x ∈ X, y ∈ Y . If uv is an arc of D, we say

that u is an in-neighbor of v and v is an out-neighbor of u . The number of in-neighbors

(out-neighbors) of v is called the in-degree (out-degree) of v. We call V (D) the vertex set

and A(D) the arc set of D. A digraph D is symmetric, or reflexive, or irreflexive, etc., if the

relation A is symmetric, or reflexive, or irreflexive, etc., respectively. Note that a reflexive

digraph is a digraph such that every vertex has a loop and an irreflexive digraph is a digraph

without loops. We stress that a digraph D is not assumed irreflexive by saying that D is

a digraph with possible loops. If a digraph D has at least one loop, then we say that D is

a digraph with some loops. From now on, whenever we do not stress that a digraph is a

digraph with some loops or a digraph with possible loops or a reflexive digraph, we assume

that it is irreflexive.

Symmetric digraphs are more conveniently viewed as (undirected) graphs. In fact, each

pair of symmetric arcs uv, vu in the arc set of a digraph D can be replaced by an edge uv

in its corresponding undirected graph G. Formally, a graph G is a set V = V (G) of vertices

together with a set E = E(G) of edges, each of which is a two-element set of vertices. We

say that u and v are adjacent if uv ∈ E(G). If we allow loops to a graph G, i.e., edges

that only consist of one vertex, we have a graph with possible loops. If every vertex has a

loop, we have a reflexive graph. In this thesis, directed (undirected) graphs have no parallel

arcs (edges) and parallel loops. We always denote the edge set of an undirected graph G by

E(G) and the arc set of a digraph D by A(D).

We say that D′ is a subgraph of a digraph D, if V (D′) ⊆ V (D) and A(D′) ⊆ A(D).

Also, D′ is an induced subgraph of D if it is a subgraph of D and contains all the arcs of D

amongst the vertices of D′. For a digraph D, we denote by D[X] the subgraph of D induced

by X ⊆ V (D).

Let D be a digraph with possible loops. An arc xy ∈ A(D) is symmetric if yx ∈
A(D). We denote by S(D) the symmetric subgraph of D, i.e., the undirected graph with

V (S(D)) = V (D) and E(S(D)) = {uv : uv ∈ A(D) and vu ∈ A(D)}. We also denote

by U(D) the underlying graph of D, i.e., the undirected graph with V (U(D)) = V (D) and

E(U(D)) = {uv : uv ∈ A(D) or vu ∈ A(D)}. A digraph D is connected if U(D) is connected.

We denote by B(D) the bipartite graph obtained from D as follows. Each vertex v of D
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gives rise to two vertices of B(D) - a white vertex v′ and a black vertex v′′; each arc vw of

D gives rise to an edge v′w′′ of B(D). Note that if D is a reflexive digraph, then all edges

v′v′′ are present in B(D). A digraph H is an extension of D if H can be obtained from D

by replacing every vertex x of D with a set Sx of independent vertices such that xy ∈ A(D)

if and only if uv ∈ A(H) for each u ∈ Sx, v ∈ Sy. The converse of D is the digraph obtained

from D by reversing the directions of all arcs. Finally, we denote by I(D) the irreflexive

digraph D′ obtained from a digraph D with possible loops by removing all existing loops.

To construct ‘bigger’ digraphs from ‘smaller’ ones, we will often use the following op-

eration called composition. Let D be a digraph with vertex set {v1, v2, . . . , vn}, and let

G1, G2, . . . , Gn be digraphs which are pairwise vertex-disjoint. The composition D[G1, G2,

. . . , Gn] is the digraph H with vertex set V (G1)∪V (G2)∪. . . ∪V (Gn) and arc set (
⋃n

i=1 A(Gi))∪
{gigj : gi ∈ V (Gi), gj ∈ V (Gj), vivj ∈ A(D)}.

An oriented path P is a sequence of distinct vertices [b0, b1, . . . , bp] such that for each

i ∈ {0, 1, . . . , p− 1}, either bibi+1 ∈ A(P ) (a forward arc of P ) or bi+1bi ∈ A(P ) (a backward

arc of P ), and P has no other arcs. The direction in which P is traversed is emphasized by

saying that b0 is the initial vertex of P , and bp is the terminal vertex of P , respectively.

An oriented cycle C is a digraph obtained from an oriented path P by identifying its

initial and terminal vertices. Thus an oriented cycle C can be given by a circular sequence

of vertices [b0, b1, . . . , bp, b0], such that, for each i ∈ {0, 1, . . . , p}, either bibi+l ∈ A(C)

(a forward arc of C) or bi+1bi ∈ A(C) (a backward arc of C), and C has no other arcs.

(Subscript addition is taken modulo p + 1.) Since we do not distinguish an initial vertex of

an oriented cycle, we usually choose the most convenient vertex to start listing C. In this

thesis, we will always consider the direction b0b1 . . . bpb0 in which the number of forward

arcs is not smaller than the number of backward arcs. This way, the net length of C is the

difference between the number of forward arcs and the number of backward arcs and hence

is always nonnegative. An oriented cycle C is balanced if its net length is zero; otherwise C

is unbalanced. A digraph D is balanced if all its oriented cycles are balanced; otherwise D is

unbalanced. Let C be an oriented cycle with possible loops. The net length of C , denoted

λ(C), is equal to the net length of I(C).

A directed cycle (respectively, a directed path) is an oriented cycle (respectively, oriented

path) in which all edges are in the same direction. We denote a directed cycle (respectively,

path) with k vertices by ~Ck (respectively, ~Pk). A digraph D is acyclic, if it does not contain

any directed cycle ~Ck. A digraph D is strongly connected (or, just, strong) if, for every pair
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x, y of distinct vertices in D, there exists a directed path from x to y, denoted by (x, y)-

path. A strong component of a digraph D is a maximal induced subgraph of D which is

strong. A strong component digraph of a digraph D, abbreviated by SCD(D), is obtained

by contracting each strong component Di of D into a single vertex vi and placing an arc

from vi to vj , i 6= j if and only if there is an arc from Di to Dj [3]. (SCD(D) is also

known as the condensation of D, cf. [92].) Observe that SCD(D) is acyclic. We call a

strong component an initial strong component if its corresponding vertex in SCD(D) is of

in-degree zero. A vertex u of digraph D is a source (sink) if it has in-degree (out-degree)

zero. A digraph D is smooth if it has no sources and no sinks. An oriented graph D is a

digraph which does not contain ~C2.

A digraph D is bipartite if U(D) is bipartite. For a bipartite digraph H = (V,U ;A),

where V and U are its partite sets, H→ is the subgraph induced by all arcs directed from

V to U , H← is the subgraph induced by all arcs directed from U to V , and H↔ is the

subgraph induced by all 2-cycles of H, i.e., by the set {xy : xy ∈ A, yx ∈ A}.
A digraph D is semicomplete if U(D) is a complete graph. We say that a digraph D is

semicomplete k-partite digraph (or, semicomplete multipartite digraph when k is immaterial)

if U(D) is a complete k-partite graph. A digraph D is locally in-semicomplete if for every

vertex x of D, the in-neighbors of x induce a semicomplete digraph. A tournament is a

semicomplete digraph which does not have any symmetric arc. An acyclic tournament on p

vertices is denoted by TTp and called a transitive tournament. The vertices of a transitive

tournament TTp can be labeled 1, 2 . . . , p such that ij ∈ A(TTp) if and only if 1 ≤ i < j ≤ p.

For p ≥ 2, we denote by TT−p the digraph obtained from TTp by deleting the arc 1p. A

digraph D is quasi-transitive if, for every triple x, y, z of distinct vertices of D such that xy

and yz are arcs of D, there is at least one arc between x and z.

Let H be a digraph with possible loops and < a linear ordering of V (H). Two arcs

ab, cd ∈ A(H) are called a crossing pair if a < c, and d < b.

Definition 1.1.1 A linear ordering < of V (H) is a Min-Max ordering if, for each crossing

pair ab, cd ∈ A(H) we have ad, cb ∈ A(H).

Clearly, if H has no crossing pair then < is a Min-Max ordering.

Definition 1.1.2 Let k ≥ 2 be an integer. A digraph H admits a k-Min-Max ordering if

the following conditions hold:
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• H admits a homomorphism f to a directed k-cycle 0, 1, . . . , k − 1, 0, i.e., every arc of

H is an arc from Vi = f−1(i) to Vi+1 = f−1(i + 1) for some i ∈ {0, 1, . . . , k − 1}, and

• there is a linear ordering < of vertices of each Vi = f−1(i), so that for each crossing

pair ab, cd ∈ A(H) (a < c, and d < b) where a, c ∈ Vi, and b, d ∈ Vi+1 we have

ad, cb ∈ A(H),

where all indices i + 1 are taken modulo k.

A graph G is chordal if it does not contain an induced subgraph isomorphic to an

undirected cycle Ck for k ≥ 4. An asteroidal triple of a graph G is a triple of mutually

non-adjacent vertices such that for any two vertices of the triple there exists a path in G

between them that avoids the neighborhood of the third vertex in the triple. We say that

a graph G is AT-free if G does not contain any asteroidal triple.

The intersection graph of a family F = {S1, S2, . . . , Sn} of sets is an undirected graph

G with V (G) = F in which Si and Sj are adjacent just if Si ∩ Sj 6= ∅. Note that by

this definition, each intersection graph is reflexive. An undirected graph isomorphic to the

intersection graph of a family of intervals on the real line is called an interval graph. If the

intervals can be chosen to be inclusion-free, the graph is called proper interval graph. Thus

both interval graphs and proper interval graphs are reflexive. By a result of Lekkerkerker

and Boland [79], we have the following characterization of interval graphs.

Theorem 1.1.3 [79] A graph G is interval if and only if G is chordal and AT-free.

We refer to claw, net, and tent as the digraphs, shown in Figure 1.1. There is a nice

induced subgraph characterization of proper interval graphs due to Wegner [91].

Theorem 1.1.4 [91] Let G be a reflexive graph. G is a proper interval graph if and only if

it does not contain an induced undirected cycle Ck, with k ≥ 4, or an induced claw, net, or

tent.

The intersection bigraph of two families F1 = {S1, S2, . . . , Sn} and F2 = {T1, T2, . . . , Tn}
of sets is the bipartite graph with V (G) = F1 ∩ F2 in which Si and Tj are adjacent just if

Si ∩ Tj 6= ∅. Note that by this definition an intersection bigraph is irreflexive (since it is a

bipartite graph). A bipartite graph isomorphic to the intersection bigraph of two families

of intervals on the real line is called an interval bigraph. If the intervals in each family
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a) Claw b) Net

Figure 1.1: The claw, the net, and the tent.

    c) Bitent
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Figure 1.2: The biclaw, the binet, and the bitent.

Fi can be chosen to be inclusion-free, the graph is called a proper interval bigraph. Thus

both interval and proper interval bigraphs are irreflexive. Let biclaw, binet, and bitent be

the digraphs, shown in Figure 1.2. A Wegner-like characterization (in terms of forbidden

induced subgraphs) of proper interval bigraphs is given in [62].

Theorem 1.1.5 [62] Let G be a bipartite graph. G is a proper interval bigraph if and only

if it does not contain an induced undirected cycle C2k, with k ≥ 3, or an induced biclaw,

binet, or bitent.
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1.2 Minimum Cost Homomorphisms

For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D to H if

uv ∈ A(D) implies that f(u)f(v) ∈ A(H). Suppose D and H are two digraphs, and ci(u),

u ∈ V (D), i ∈ V (H), are nonnegative integer costs or +∞. (We treat +∞ as a special

value, with the property that +∞+x = +∞ for any x.) The cost of the homomorphism f of

D to H is
∑

u∈V (D) cf(u)(u). The minimum cost homomorphism problem for a fixed digraph

H, denoted by MinHOM(H), asks whether or not an input structure D, with nonnegative

integer costs ci(u), u ∈ V (D), i ∈ V (H), admits a homomorphism f to H, and if it admits

one, asks to find a homomorphism of minimum cost. Equivalently, we can define a decision

version of this problem as follows: Given an input digraph D, together with costs ci(u),

u ∈ V (D), i ∈ V (H), and an integer k, decide if D admits a homomorphism to H of

cost not exceeding k. We refer to the former version of this problem in this thesis unless

mentioned otherwise. Note that MinHOM(H) is NP-hard in the former version if and only

if it is NP-complete in the later version. Due to this fact, we will use the term NP-hard

even when we deal with the decision version of MinHOM(H).

The minimum cost homomorphism problem seems to offer a natural and practical way

to model many optimization problems. Special cases include for instance the list homo-

morphism problem [60, 61] and the optimum cost chromatic partition problem [57, 66, 69]

(which itself has a number of well-studied special cases and applications [74, 88]).

There is an extensive literature on the minimum cost homomorphism problem, e.g., see

[48, 49, 50, 51, 52, 53, 54]. These and other papers study the dichotomy of MinHOM(H) for

various families of directed and undirected graphs. In particular, the authors of [49] proved

a dichotomy classification for all undirected graphs with possible loops.

Theorem 1.2.1 [49] Let H be a connected graph with possible loops. If H is a proper

interval graph or a proper interval bigraph, then the problem MinHOM(H) is polynomial

time solvable. Otherwise, MinHOM(H) is NP-hard.

In contrast to undirected graphs, it is still an open problem whether there is a dichotomy

classification for the complexity of MinHOM(H) when H is a digraph with possible loops.

Gutin, Rafiey, and Yeo [50] conjectured such a classification. We will study this dichotomy

in Chapter 2.
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R

u 3u u1 2

Figure 1.3: The digraph R.

Motivated by the paper of Bang-Jensen, Hell, MacGillivray [8] that classifies the com-

plexity of homomorphism problem for the class of semicomplete digraphs, Gutin et al. began

studying MinHOM(H) for this class. The following theorem is the main result of [51].

Theorem 1.2.2 [51] For a semicomplete digraph H, MinHOM(H) is polynomial time solv-

able if H is acyclic or H = ~C2. Otherwise, MinHOM(H) is NP-hard.

The dichotomy for semicomplete digraphs has been generalized by Gutin and Kim for

semicomplete digraphs with possible loops in [54]. Let R be the digraph, shown in Figure

1.3. The following theorem is the main result of [54].

Theorem 1.2.3 [54] Let H be a semicomplete digraph with possible loops. If H is one

of the following digraphs, then MinHOM(H) is polynomial time solvable. Otherwise, it is

NP-hard.

• The digraph H = ~Ck for k = 2 or 3.

• The digraph H = TTk[D1, D2, . . . , Dk] where Di for each i = 1, . . . , k is either a single

vertex without loop, or a reflexive semicomplete digraph which does not contain R as

an induced subgraph and each U(S(Di)) is a connected proper interval graph.

As a generalization of semicomplete digraphs, semicomplete multipartite digraphs is the

second class that has been examined for dichotomy. However, showing a dichotomy for this

class is not as straightforward as for semicomplete digraphs. To overcome this difficulty,

Gutin et al. studied semicomplete k-partite digraphs for k ≥ 3, and semicomplete bipartite

digraphs separately. The following dichotomy has been shown for the former case in [53].

Theorem 1.2.4 [53] Let H be a semicomplete k-partite digraph, k ≥ 3. If H is an extension

of TTk, ~C3 or TT−p (p ≥ 4), then MinHOM(H) is polynomial time solvable. Otherwise,

MinHOM(H) is NP-hard.
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Figure 1.4: Forbidden digraphs D1, . . . , D5.

Although Theorem 1.2.4 gives us a nice characterization of polynomial cases of k-partite

semicomplete digraphs, there is not such a characterization for semicomplete bipartite di-

graphs. In fact, instead of having a few induced subgraphs to characterize polynomial cases

for semicomplete bipartite digraphs, we have a family of forbidden digraphs F . A digraph

H belongs to the forbidden family F if H or its converse is isomorphic to one of the five

digraphs, shown in Figure 1.4 or U(Hs), where s ∈ {→,←,↔}, is isomorphic to the bi-

partite claw, bipartite net, bipartite tent (See Figure 1.2), or an even cycle with at least

six vertices. The following theorem shows a dichotomy for semicomplete bipartite digraphs

[52].

Theorem 1.2.5 [52] Let H be a semicomplete bipartite digraph. If H does not contain

any digraph of F as an induced subgraph, then MinHOM(H) is polynomial time solvable.

Otherwise, MinHOM(H) is NP-hard.

The class of oriented cycles is another interesting class of digraphs for which a MinHOM

dichotomy is known. We will see this dichotomy in Chapter 5 when we study minimum cost

homomorphism problem for oriented cycles with some loops.



Chapter 2

Constraint Satisfaction Problems

In this chapter, we review different variants of the problem of existence of homomorphism

between two relational structures and their restrictions to digraphs (relational structures

with only one binary relation). The reader can skip this chapter with no loss of continuity.

2.1 HOM and CSP

Let D and H be two relational structures of the same type with relations R1, R2, . . . , Rt and

S1, S2, . . . , St respectively. A homomorphism of D to H, written as f : D→H is a mapping

f : V (D)→V (H) such that (v1, v2, . . . , vri) ∈ Ri implies that (f(v1), f(v2), . . . , f(vri)) ∈ Si,

for all i = 1, 2, . . . , t. If D→H we shall say that D is homomorphic to H. Note that if H

is a complete relational structure, then any relational structure D with the same type as

H, is homomorphic to H. Two structures such that each is homomorphic to the other are

called homomorphically equivalent. A homomorphism f of D to H is an isomorphism, if

f is bijective and the inverse of f is also a homomorphism. An isomorphism of D to D is

called an automorphism of D.

Given two relational structures D and H of the same type, a constraint satisfaction prob-

lem asks whether there exists a homomorphism of D to H. This formulation of constraint

satisfaction problem was first introduced by Feder and Vardi [39]. Let H be a fixed rela-

tional structure. The constraint satisfaction problem CSP(H) asks whether or not an input

relational structure D, of the same type as H, admits a homomorphism to H. Specifically,

if H is a digraph, we call this problem digraph H-colouring or homomorphism problem for

digraph H, and denote it by HOM(H). We say that a relational structure D is a core if it

12
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has no proper substructure D′ to which D admits a homomorphism. It is easy to see that

each relational structure including digraph is homomorphically equivalent to a unique core

[60].

The study of constraint satisfaction problems has largely been undertaken within the

artificial intelligence (AI) community. The pioneering work was undertaken in the early

1970 by Montanari in a slightly different formulation [83]. Since then, these problems

have been used to model many problems in different areas such as graph theory, machine

vision, and data bases [39, 82, 80]. However, our focus in this section is on the theoretical

aspects of constraint satisfaction problems. Specifically, we are interested in a dichotomy

(polynomial or NP-complete) of CSP and HOM for different relational structures or digraphs

H, respectively.

It is worth noting that it is likely that there exist problems in NP which are neither

polynomial time solvable nor NP-complete. Indeed, Ladner [77] has shown that if P 6= NP ,

there are NP problems that are neither polynomial nor NP-complete, also called inter-

mediate problems - in fact there must be an infinite hierarchy of such (non-polynomially

equivalent) problems. Feder and Vardi [39] investigated which subclasses of NP have the

same computational power as NP, and which do not (and hence might not contain inter-

mediate problems). They define the class MMSNP, monotone monadic strict NP without

inequality, and show that for this class Ladner’s argument does not immediately apply,

however, removing either of ‘monotone’, ‘monadic’, or ‘without inequality’ restrictions gives

the full computational power of NP. Furthermore, they show that MMSNP is polynomial

time equivalent to the class CSP [39, 76]. This observation motivated Feder and Vardi to

raise the following conjecture [39].

Conjecture 2.1.1 [39] For any relational structure H, the problem CSP(H) is NP-complete

or polynomial time solvable.

There are several other forms of this conjecture for CSP(H) in the literature, see, e.g.,

[19, 78, 84]. The primary motivation to examine the dichotomy for CSP(H) goes back to

Hell and Nešetřil [59], and Schaeffer [87]. The first form examines undirected graphs and

gives us the following dichotomy [59].

Theorem 2.1.2 [59] Let H be an undirected graph with possible loops. If H is bipartite or

has a loop, then HOM(H) is polynomial time solvable. Otherwise, HOM(H) is NP-complete.
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The second form classifies which CSP(H) are NP-complete and which are polynomial

time solvable when H is a Boolean relational structure, i.e., V (H) = {0, 1}. This result

has been later generalized for structures H with up to three vertices [20]. For the case

of Boolean structures H, Schaeffer [87] has established a dichotomy in terms of four well

known operations on tuples (AND, OR, MAJORITY, and XOR). The OR operation on two

tuples (a1, a2, . . . , as) and (b1, b2, . . . , bs) is the tuple (z1, z2, . . . , zs) where each zi = ai ∨ bi

(zi = 1 unless both ai = bi = 0, in which case zi = 0). The AND operation on two

tuples ((a1, a2, . . . , as) and (b1, b2, . . . , bs) is the tuple (z1, z2, . . . , zs) where each zi = ai ∧ bi

(zi = 0 unless both ai = bi = 1, in which case zi = 1). The MAJORITY operation on three

tuples (a1, a2, . . . , as), (b1, b2, . . . , bs), and (c1, c2, . . . , cs) is the tuple (z1, z2, . . . , zs) where

each zi is the majority value (0 or 1) of ai, bi, ci. The XOR (exclusive OR, also known as

MINORITY) operation on three tuples (a1, a2, . . . , as), (b1, b2, . . . , bs), and (c1, c2, . . . , cs) is

the tuple (z1, z2, . . . , zs) where each zi is the exclusive-or value of ai, bi, ci (equal to 1 if the

number of 1’s amongst ai, bi, ci is odd, and 0 otherwise). Schaeffer proved the following fact

[87].

Theorem 2.1.3 [87] Suppose H is a relational structure with V (H) = {0, 1} and rela-

tions S1, S2, . . . , Sp. then CSP(H) is NP-complete, except in the following, polynomial time

solvable, cases:

1. each Si contains the si-tuple (0, 0, . . . , 0); or

2. each Si contains the si-tuple (1, 1, . . . , 1); or

3. each Si is closed under the OR operation; or

4. each Si is closed under the AND operation; or

5. each Si is closed under the MAJORITY operation; or

6. each Si is closed under the XOR operation.

It is worth noting that Conjecture 2.1.1 has not been proved for digraphs H. It has been

shown by the authors of [39] that a dichotomy for digraph H-colouring problems would

imply the entire dichotomy of Conjecture 2.1.1. The following two theorems clearly show

this fact [39].
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Theorem 2.1.4 [39] Every constraint-satisfaction problem is polynomially equivalent to a

digraph H-colouring problem, where H is an unbalanced digraph.

Theorem 2.1.5 [39] Every constraint-satisfaction problem is polynomially equivalent to a

digraph H-colouring problem, where H is a balanced digraph.

Many results have been proved for digraph H-colouring when H is restricted to special

families of digraphs H [7, 8, 9, 10, 31, 43, 55]. For instance, dichotomy is known to hold for

the case when U(H) is a cycle [31], or path [55], or complete graph [8] (H is a semicomplete

digraph). The most general result is due to Barto et al. [13] for smooth digraphs, conjectured

earlier by Hell and Bang-Jensen [7].

Theorem 2.1.6 [13] Let H be a smooth digraph. If each component of the core of H is a

directed cycle, HOM(H) is polynomial time solvable. Otherwise HOM(H) is NP-complete.

This theorem is a generalization of Theorem 2.1.2, since a connected graph H (subclass

of the class of smooth digraphs) has a core which is a directed cycle if and only if the graph

is bipartite or has a loop.

2.2 ListHOM and ListCSP

A list constraint satisfaction problem for a fixed relational structure H, denoted ListCSP(H),

asks whether or not an input structure D, with lists Lu ⊆ V (H), u ∈ V (D), admits a

homomorphism f to H in which all f(u) ∈ Lu, u ∈ V (D). In particular, if H is a digraph,

we call this problem list homomorphism problem for digraph H, and denote it ListHOM(H).

ListCSP(H) tend to be more manageable than CSP(H). Many natural applications

of homomorphisms, such as frequency assignment, scheduling, and so on, tend to have

additional constraints expressible by lists. Finally, it turns out that many algorithms for

graph homomorphisms adapt very naturally to lists [59].

In the literature [15, 63], ListCSP’s are often investigated as conservative CSP’s or CSP’s

for conservative structures. A structure H is conservative if H contains all unary (arity one)

relations S ⊂ V (H). Indeed, any instance (G, l) of ListCSP(H) can be transformed to an

instance G′ of CSP(H ′) where H ′ is the structure H augmented with all unary relations S,

and G′ is constructed from G by setting unary relations R = {v ∈ V (G)|l(v) = S}. In this

transformation, it is easy to see that G is a positive instance of ListCSP(H) if and only if G′
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is a positive instance of CSP(H ′). By a similar argument, any instance G′ of CSP(H ′) for

conservative H ′ can be transformed to an instance (G, l) for ListCSP(H). To show this, let

S1, S2, . . . , Sn be the unary relations added to H, and R1, R2, . . . , Rn be their counterparts

in G′, respectively. One can easily see that if Ri ∩ Rj 6= ∅ and Si ∩ Sj = ∅, there is no

homomorphism from G′ to H ′. So, we suppose that Si ∩ Sj 6= ∅ when Ri ∩ Rj 6= ∅. Let

us now construct the pair (G, l) as follows: G is obtained from G′ by removing all unary

relations R1, R2, . . . , Rn from G′ and l(u) =
⋂

u∈Ri
Si. It remains again to see that G is a

positive instance of ListCSP(H) if and only if G′ is a positive instance of CSP(H ′). Thus,

ListCSP(H) is polynomial time equivalent to CSP(H ′) where H ′ is a conservative structure.

Bulatov [15] has shown a dichotomy for all conservative CSP problems, and hence for all

ListCSP problems. (We remark this result does not immediately imply a dichotomy for any

of HOM, or CSP).

Theorem 2.2.1 [15] For any relational structure H, ListCSP(H) is NP-complete or poly-

nomial time solvable.

It is worth noting the earlier results of Feder, Hell, and Huang [34, 35, 36] for undi-

rected graphs, which motivated this theorem. To study these results, let us first define an

interesting subclass of graphs.

A graph G is a circular-arc graph if G is the intersection graph of a family of arcs of

a circle. A graph G is a bi-arc graph if there exists a family of arcs of a circle with two

distinguished points p and q where each vertex of G is associated with two arcs (Nx, Sx)

such that Nx contains p but not q and Sx contains q but not p, and for any two vertices

x, y the following holds: (i) if xy ∈ E(G) then Nx ∩ Sy = ∅ and Ny ∩ Sx = ∅, and (ii) if

xy 6∈ E(G) then Nx ∩ Sy 6= ∅ and Ny ∩ Sx 6= ∅. Note that a bi-arc representation can not

contain bi-arcs (Nx, Sx) and (Ny, Sy) where Nx ∩ Sy = ∅ and Ny ∩ Sx 6= ∅. Finally, a graph

G is a weak interval bigraph if it is a bipartite graph whose complement is a circular arc

graph.

Theorem 2.2.2 [34] Let H be a reflexive graph. If H is an interval graph, then ListHOM(H)

is polynomial time solvable. Otherwise ListHOM(H) is NP-complete.

Theorem 2.2.3 [35] Let H be an irreflexive graph. If H is a weak interval bigraph, then

ListHOM(H) is polynomial time solvable. Otherwise ListHOM(H) is NP-complete.
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Theorem 2.2.4 [36] Let H be an undirected graph with possible loops. If H is a bi-arc

graph, then ListHOM(H) is polynomial time solvable. Otherwise ListHOM(H) is NP-

complete.

2.3 MinHOM and MinCSP

Suppose D and H are two relational structures, and ci(u), u ∈ V (D), i ∈ V (H), are

nonnegative integer costs +∞. (We treat +∞ as a special value, with the property that

+∞+x = +∞ for any x.) The cost of the homomorphism f of D to H is
∑

u∈V (D) cf(u)(u).

The minimum cost constraint satisfaction problem for a fixed relational structure H, denoted

by MinCSP(H), asks whether or not an input structure D, with nonnegative integer costs

ci(u), u ∈ V (D), i ∈ V (H), admits a homomorphism f to H and if it admits one, find a

homomorphism of minimum cost. If H is a digraph, we call this problem the minimum cost

homomorphism problem, and denote it MinHOM(H).

The minimum cost constraint satisfaction problem was introduced in [30] as a gener-

alization of the minimum cost homomorphism problem earlier appeared in several other

papers [48, 49, 50, 51]. The authors of [30] considered both D and H and the nonnegative

integer costs ci(u), u ∈ V (D), i ∈ V (H) as inputs to the problem. In this framework, it has

been shown in [30] that the hard instances of the minimum cost homomorphism problem

are inapproximable as well. To our knowledge, this is the first inapproximability result for

this problem (For further details regarding approximability we refer to [2].)

2.4 sHOM and sCSP

In the standard framework of constraint satisfaction problem, defined in Section 2.1, a

constraint is usually taken to be a relation Ri of an input structure D, specifying the allowed

combinations of values Si of a fixed structure H. In a certain sense, these constraints are

“exact”, or “crisp”.

The constraint satisfaction framework can be enhanced by extending the definition of a

constraint to include also a soft constraint. Let us define a soft constraint as follows: Let

H be a fixed complete relational structures with relations S1, S2, . . . , Sk and let each Fi for

1 ≤ i ≤ k, be a finite set of functions f : Si→R+, where R+ is the set of the nonnegative

real numbers. For an arbitrary relational structure D of the same type as H with relations
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R1, R2, . . . , Rk, a soft constraint is a function Ci : Ri→Fi. Let us call i the arity of the soft

constraint Ci.

Let H be a fixed complete relational structure and F = ∪k
i=1Fi. An instance of a soft

constraint satisfaction problem sCSP(H,F) contains an input relational structure D (of the

same type as H with relations R1, R2, . . . , Rk) with a set of soft constraints Ci : Ri→Fi, 1 ≤
i ≤ k, and the problem is to find a homomorphism h of D to H which minimizes the

following aggregation:
k∑

i=1

∑

r∈Ri

Ci(r)(h(r))

(Note that D is always homomorphic to H as H is a complete relational structure.) In

particular, if H is a complete digraph, we call this problem soft homomorphism problem,

and denote it sHOM(H,F).

The soft constraint satisfaction problem is sufficiently flexible to allow us to express a

wide range of problems such as MinHOM(H), where all ci(u) are bounded by a constant

integer c. (Since they are assumed integers, we have each ci(u) ∈ {0, 1, . . . , c}.) For any

instance of MinHOM(H), where all ci(u) are bounded by a constant integer c, we can define

a corresponding instance of soft constraint satisfaction problem sCSP (H ′,F).

Let H ′ be a complete relational structure with the same vertex set as H, i.e., V (H ′) =

V (H), and a set of complete relations S′1, S
′
2, where the arity of S′i is i. Let F = F1 ∪ F2,

where F1 contains all unary functions from S′1 = V (H) to {0, 1, . . . , c} and F2 contains only

one binary function f from S′2 to {0, +∞} defined as follows:

f(uv) =





0 if uv ∈ A(H)

+∞ otherwise

An instance of MinHOM(H) contains an input digraph D and nonnegative integer costs

ci(u), i ∈ V (H), u ∈ V (D) bounded from above by a constant c. Now, we choose an instance

of sCSP(H ′,F) as follows. The input relational structure is D′ with the same vertex set as

D, i.e., V (D′) = V (D), and a set of relations R′
1, R

′
2, where R′

1 is a complete unary relation

and R′
2 = A(D). Now, it remains to choose the set of soft constraints. We choose for the

binary constraint C2 the mapping from R′
2 to F2, which takes all elements of R′

2 to f . We

choose for the unary constraint C1 the mapping which takes each u ∈ V (D) to the mapping

fu which is equal to ci(u), i ∈ V (H). It is easy to observe that, for a mapping h of V (D) to

V (H) which is a homomorphism, the following aggregation
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2∑

i=1

∑

r′∈R′i

Ci(r′)(h(r′))

is the cost of this homomorphism in MinHOM(H), and if h is not a homomorphism, then

the above aggregation +∞. Hence, by solving sCSP(H ′,F), we will determine whether D

admits a homomorphism h to H and if it admits one, find a homomorphism of minimum

cost.

As for CSP(H), there have been some efforts to find a dichotomy for sCSP(H,F). The

main contribution to this problem goes back to Cohen et al. [22, 23, 24]. The authors

of [24] took the first step towards a systematic analysis of the complexity of sCSP(H,F)

of arbitrary arity over arbitrary finite domain V (H). This leads first to a dichotomy for

sHOM(H,F) when H has only unary and binary relations [22], and second to a dichotomy

for sCSP(H,F) when H has a boolean domain V (H) = {0, 1} [24]. The later case is beyond

the scope of this thesis. So, we only consider the former case in the rest of this section.

A binary function φ : W 2→R+ is called submodular with respect to an ordering < of

W , if for all x, y, u, v ∈ W , we have

φ(min{x, u}, min{y, v}) + φ(max{x, u}, max{y, v}) ≤ φ(x, y) + φ(u, v).

The following fact is the main result of [22].

Theorem 2.4.1 [22] Let H be a digraph with possible loops. The sHOM(H,F) is polyno-

mial time solvable if there exists an ordering < such that all functions of F are submodular

with respect to <. Otherwise, sHOM(H,F) is NP-hard.

The theorem in [22] is in fact more general, covering all relational structures, having

only unary and binary relations rather than digraphs.

Theorem 2.4.2 [22] Let H be a relational structure having only unary and binary relations.

sCSP(H,F) is polynomial time solvable if there exists an ordering < such that all functions

of F are submodular with respect to <. Otherwise, sCSP(H,F) is NP-hard.

2.5 Algebraic Approaches to CSP

There has been a lot of interest [7, 8, 9, 10, 19, 31, 39, 43, 55, 78, 84] for more than a

decade to verify the conjecture of Feder and Vardi (see Conjecture 2.1.1) for CSP problems.
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However, this conjecture is still open, although good progress has been made. Among

various techniques used, algebraic techniques have been most successful. In this section,

we define two algebraic notions, polymorphism and multimorphism, and review the results

related to these notions.

2.5.1 Polymorphisms

Let A be a finite set. An operation on A is a mapping f : An→A for some nonnegative integer

n. A polymorphism (of order k) of H is an operation f : (V (H))k→V (H) on V (H), such that

(vj
1, v

j
2, . . . , v

j
ri) ∈ Si for j = 1, 2, . . . , k implies that (f(v1

1, v
2
1, . . . , v

k
1 ), f(v1

2, v
2
2, . . . , v

k
2 ), . . . ,

f(v1
ri

, v2
ri

, . . . , vk
ri

)) ∈ Si, for all relations Si of H. For the purpose of this discussion, we shall

focus on polymorphisms f that are idempotent, i.e., satisfy f(x, x, . . . , x) = x for all vertices

x ∈ V (H). Note that every structure H admits some polymorphisms of order k. For each

i ≤ k, we have a polymorphism called the i-th projection, defined by πi(v1, v2, . . . , vk) =

vi. A structure H is projective if the only polymorphisms of H are f ◦ πi where f is an

automorphism of H. The following theorem has been proved in [67, 68].

Theorem 2.5.1 [67, 68] Let H be a projective relational structure. Then CSP(H) is NP-

complete.

It is easy to see that each HOM(H) is a special case of ListHOM(H), obtained by setting

all lists to V (H). Similarly, MinHOM(H) generalizes ListHOM(H) by setting ci(u) = 0 if

i ∈ Lu and ci(u) = 1 otherwise. Thus we have the following corollary from Theorem 2.5.1.

Corollary 2.5.2 Let H be a projective digraph with possible loops. Then MinHOM(H) is

NP-hard.

It was shown by Luczak and Nešetřil [81] that almost all structures are projective, and

hence have NP-complete CSP problems. The class of projective structures does not include

all NP-complete cases of CSP. In fact, there exists some non-projective relational structures

with NP-complete CSP [19]. However, admitting any polymorphism other than projection

by H is good evidence to candidate CSP(H) as a polynomial time solvable problem. Three

well known such polymorphisms are majority operation, Mal’tsev operation, and semilattice

operation [19, 21, 67, 68].

A majority operation is a ternary operation f on A satisfying f(u, u, v) = f(v, u, u) =

f(u, v, u) = u for all u, v ∈ A. A Mal’tsev operation is a ternary operation f on A satisfying
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f(u, u, v) = f(v, u, u) = v for all u, v ∈ A. A semilattice operation is a binary operation

f on A satisfying f(u, u) = u, f(u, v) = f(v, u) and f(u, f(v, w)) = f(f(u, v), w) for all

u, v, w ∈ A.

Theorem 2.5.3 [19, 21, 67, 68] Let H be a relational structure. If H admits a polymor-

phism which is a majority operation, or a Mal’tsev operation, or a semilattice operation,

then CSP(H) is polynomial time solvable.

All three of these operations are special cases of a more general operation called Taylor

operation. We say that an operation f is inclusive in position i, if it satisfies an identity

involving two variables, with different entries in position i. More precisely, there exist choices

uj , vj ∈ {u, v}, j = 1, 2, . . . , k, with ui 6= vi, such that the identity f(u1, u2, . . . , uk) =

f(v1, v2, . . . , vk) holds for all u, v ∈ A. A k-ary operation f is a Taylor operation if f is

inclusive in each position 1 ≤ i ≤ k. The following fact has been proved by the authors of

[78].

Theorem 2.5.4 [78] Let H be a relational structure which does not admit any Taylor op-

eration as a polymorphism. Then CSP(H) is NP-complete.

Larose and Zádori [78] have also conjectured that all structures H which admit a Taylor

operation as a polymorphism, have polynomial time solvable CSP(H).

Recall that a structure H is conservative if H contains all unary (arity one) relations

S ⊂ V (H). The class of conservative relational structures is a large subclass of relational

structures for which a dichotomy is known [15]. It is easy to see that every polymorphism of

order k of H satisfies the condition: f(u1, . . . , uk) ∈ {u1, . . . , uk}, for all u1, . . . , uk ∈ V (H).

Such an operation is said to be conservative. Let f |B denote the restriction of an operation

f onto a set B. The following result gives us a full dichotomy for conservative CSP problems

[15].

Theorem 2.5.5 [15] The problem CSP(H) for a conservative relational structure H is

polynomial time solvable if, for any 2-element subset B ⊂ V (H), there exits a polymorphism

fB of H such that fB|B is either the semilattice operation, or the majority operation, or

the Mal’tsev operation. Otherwise, CSP(H) is NP-complete.
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Recall that each ListCSP(H) is polynomially equivalent to a CSP(H ′) where H ′ is a

conservative structure obtained from H by augmenting H with all unary relations. Further-

more, we have shown in Chapter 1 that MinCSP(H) generalizes LisCSP(H). These facts

lead us to the following corollary.

Corollary 2.5.6 Let H be a digraph with possible loops and let H ′ be a conservative struc-

ture obtained from H by augmenting H with all unary relations. If there is a 2-element

subset B ⊂ V (H ′) with no polymorphism fB such that fB|B is a semilattice operation, or

a majority operation, or a Mal’tsev operation, then MinHOM(H) is NP-hard.

2.5.2 Multimorphisms

For crisp constraint satisfaction problems, we defined polymorphisms and discussed that if

a relational structure H has a polymorphism other than projections, CSP(H) has a good

chance to be polynomial time solvable. Recall that sCSP generalizes CSP by admitting

soft constraints rather than crisp constraints. To recognize tractable sCSP problems, the

authors of [24] introduced a new algebraic notion, called multimorphism. Multimorphism is

a natural generalization of polymorphism.

Throughout the rest of this section, the ith component of a tuple t will be denoted t[i].

Let f : Am→R+ be a function, where A is a fixed set, and R+ is the set of the nonnegative

real numbers. We say that g : Ak→Ak is a multimorphism of f if, for any list of k-tuples

t1, t2, . . . , tm over A we have

k∑

i=1

f(g(t1)[i], g(t2)[i], . . . , g(tm)[i]) ≤
k∑

i=1

f(t1[i], t2[i], . . . , tm[i])

k is called the arity of multimorphism g.

Let H be a fixed complete relational structure, and let F be the set of functions, de-

fined in Section 2.4. We say that g : V (H)k→V (H)k is a multimorphism of F , if g is

a multimorphism of each function f ∈ F . It has been shown in [24] that if F admits

particular multimorphisms, then sCSP(H,F) is polynomial time solvable. Among such

polymorphisms, we only study 〈Min, Max〉 polymorphism.

A 〈Min, Max〉 multimorphism is a binary multimorphism g : A2→A2, where g(x, y) =

〈Min(x, y), Max(x, y)〉. Let A be a totally ordered set. Recall that a binary function

f : A2→R+ is called submodular, if there exists an ordering of elements of A such that for
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all x, y, u, v ∈ A, we have

φ(min{x, u}, min{y, v}) + φ(max{x, u}, max{y, v}) ≤ φ(x, y) + φ(u, v).

It is easy to see that a binary function f is submodular if and only if it admits a

〈Min, Max〉 multimorphism. We close this chapter by noting that Theorem 2.4.2 can be

equivalently restated in terms of admitting a 〈Min, Max〉 multimorphism by F rather than

each binary function f be submodular.



Chapter 3

Tools

In this chapter, we introduce several tools required to study the minimum cost homo-

morphism complexity. In particular, we introduce new combinatorial techniques to prove

NP-hard cases of minimum cost homomorphism problems.

3.1 MinHOM Dichotomy

Recall that a linear ordering < of V (H) is a Min-Max ordering if a < c, d < b, and ab, cd ∈
A(H) imply that ad ∈ A(H) and cb ∈ A(H). The following theorem is folklore [51].

Theorem 3.1.1 [51] Let H be a digraph with possible loops. MinHOM(H) is polynomial

time solvable if H admits a Min-Max ordering.

A directed cycle ~Ck, k ≥ 2 is a well known example which does not admit a Min-Max

ordering, but MinHOM(~Ck) is polynomial time solvable [51]. The authors of [53] have shown

this fact is also true for extensions of ~Ck. (Extensions are defined on page 4.) More precisely,

the following Proposition has been proved in [53].

Proposition 3.1.2 [53] Let H be an irreflexive digraph. If MinHOM(H) is polynomial

time solvable then, for each extension H ′ of H, MinHOM(H ′) is polynomial time solvable.

The same authors also proposed k-Min-Max ordering (see Definition 1.1.2) as a property

which covers all digraphs H for which MinHOM(H) is polynomial time solvable, but H does

not admit a Min-Max ordering. To show that MinHOM(H) is polynomial time solvable for

24



CHAPTER 3. TOOLS 25

digraphs H with k-Min-Max ordering, Gutin et al. have polynomially reduced MinHOM(H)

to the minimum weight cut problem in a network, which is solvable in polynomial time [3].

Theorem 3.1.3 [52] Let H be a digraph with possible loops. If H admits a k-Min-Max

ordering for some k ≥ 2, then MinHOM(H) is polynomial time solvable.

It is easy to interpret the usual Min-Max ordering as conforming to the same definition

of k-Min-Max ordering with k = 1, via the trivial homomorphism f to a vertex with a

loop. Thus we shall understand k-Min-Max orderings to include Min-Max orderings. For

simplicity of description, we will also say that a 1-Min-Max ordering of H is the usual

Min-Max ordering. Very recently, Gutin, Rafiey, and Yeo conjectured that all digraphs H

for which MinHOM(H) is polynomial time solvable, should have a k-Min-Max ordering for

some k ≥ 1 [50].

Conjecture 3.1.4 [50] Let H be a digraph with possible loops. Then MinHOM(H) is

polynomial time solvable if H admits a k-Min-Max ordering for some k ≥ 1. Otherwise,

MinHOM(H) is NP-hard.

Clearly, it is the NP-hardness part of this conjecture which is the open part of it. We

remark that the NP-hardness part of this conjecture can be shown, if one gives a nice

characterization of digraphs with k-Min-Max orderings. We note that, in particular, if these

digraphs can be characterized by a few forbidden induced subgraphs, then the NP-hardness

part easily follows. Indeed, it is sufficient to prove that minimum cost homomorphism is

NP-hard for all these induced subgraphs. However, it is not easy to characterize digraphs

with these orderings for general digraphs with possible loops. So, we do not consider the

minimum cost homomorphism problem in its full generality, but rather focus on restricted

classes of digraphs for which we can characterize the digraphs with k-Min-Max orderings

with a few forbidden induced subgraphs (or a few forbidden families of induced subgraphs).

It follows from the definition of k-Min-Max ordering that a digraph H with some loops

(meaning at least one loop), can not admit a k-Min-Max ordering for some k ≥ 2. This

leads us to a simple form of the MinHOM conjecture for digraphs with some loops.

Conjecture 3.1.5 Let H be a digraph with some loops. Then MinHOM(H) is polynomial

time solvable if H admits a Min-Max ordering. Otherwise, MinHOM(H) is NP-hard.



CHAPTER 3. TOOLS 26

3.2 New Methods

It was mentioned before that it is the NP-hardness part of Conjecture 3.1.4 which is the

open part of it. In this chapter, we discuss several techniques which will be used later to

prove the NP-hardness part of Conjecture 3.1.4 for special classes of digraphs. We begin

with a few simple observations.

Let D be a digraph with possible loops. Recall that B(D) is the bipartite graph obtained

from D as follows. Each vertex v of D gives rise to two vertices of B(D) - a white vertex v′

and a black vertex v′′; each arc vw of D gives rise to an edge v′w′′ of B(D). Note that if D

is a reflexive digraph, then all edges v′v′′ are present in B(D). The following observation is

easily proved by setting up a natural polynomial time reduction from MinHOM(B(H)) to

MinHOM(H) [49].

Proposition 3.2.1 [49] Let H be a digraph with possible loops. If B(H) is not a proper

interval bigraph, then MinHOM(H) is NP-hard.

The next observation is folklore, and proved by obvious reduction, cf. [54]. Recall that

S(H) is the symmetric subgraph of H.

Proposition 3.2.2 [54] Let H be a digraph with possible loops. If S(H) is neither a proper

interval graph nor a proper interval bigraph, then MinHOM(H) is NP-hard.

Since proper interval graphs are reflexive and proper interval bigraphs are irreflexive, we

obviously have the following corollary.

Corollary 3.2.3 Let H be a reflexive digraph. If S(H) is not a proper interval graph, then

MinHOM(H) is NP-hard.

The following proposition allows us to prove that MinHOM(H) is NP-hard when MinHOM-

(H ′) is NP-hard for an induced subgraph H ′ of H.

Proposition 3.2.4 [51] Let H be a digraph with possible loops and H ′ be an induced sub-

graph of H. If MinHOM(H ′) is NP-hard, then MinHOM(H) is NP-hard.

Given this fact, we are able to determine the complexity of MinHOM(H) by checking

the complexity of MinHOM for some basic structures which are induced subgraphs of H.
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So, to verify Conjecture 3.1.4, first of all, we have to study some basic classes of digraphs

such as directed tree, oriented cycles, and semicomplete digraphs.

The other interesting tools which are used in this thesis, are described in the follow-

ing propositions. The general idea is to seek a special digraph D having a set of special

homomorphisms to H.

Proposition 3.2.5 Let D and H be two digraphs. Suppose D and H have two pairs of

vertices u, v and x, y, respectively such that:

(a) there is a homomorphism of D to H which maps both u and v to y;

(b) there is no homomorphism of D to H which maps both u and v to x;

(c) there is a homomorphism of D to H which maps u to y and v to x;

(d) there is a homomorphism of D to H which maps v to y and u to x.

Then MinHOM(H) is NP-hard.

Proof: We will construct a polynomial time reduction from the maximum independent

set problem to MinHOM(H). Let G be an arbitrary undirected graph. We replace every

edge u′v′ ∈ E(G) by the digraph D such that u′ = u, and v′ = v. We will denote this

digraph by D′. Let all costs ci(t) = 0 for t ∈ V (D′) − V (G), i ∈ V (H), and cy(t) = 1,

cx(t) = 0 for t ∈ V (G), and ci(t) = +∞ for i ∈ V (H)− {x, y}, t ∈ V (G). There is always a

homomorphism of finite cost from D′ to H. (We can map all vertices of G to y). Let f be a

homomorphism of D′ to H with finite cost and let S = {u ∈ V (G) : f(u) = x}. Then, S is

an independent set in G since we cannot assign color x to both u and v in V (G) whenever

there is an edge between them. Observe that the minimum cost homomorphism will assign

as many vertices of V (G) as possible with color x.

Conversely, suppose we have an independent set I of G. Then we can build a homomor-

phism f of D′ to H such that f(u) = x for all u ∈ I and f(u) = y for all u ∈ V (G) \ I.

Hence, a minimum cost homomorphism f of D′ to H yields a maximum independent

set of G and vice versa, which completes the proof. ¦

Proposition 3.2.6 Let D and H be two digraphs with costs c′i(u), i ∈ V (H), u ∈ V (D),

where there is at least one c′i(u) which is +∞. Suppose D and H have two pairs of vertices

u, v and x, y, respectively such that:
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(a) c′x(u) = c′x(v) = 0, c′y(u) = c′y(v) = 1, and all other costs are either +∞ or zero;

(b) there is a homomorphism with cost two of D to H which maps both u and v to y;

(c) there is no homomorphism with finite cost of D to H which maps both u and v to x;

(d) there is a homomorphism with cost one of D to H which maps u to y and v to x;

(e) there is a homomorphism with cost one of D to H which maps v to y and u to x.

Then MinHOM(H) is NP-hard.

Proof: We will construct a polynomial time reduction from the maximum independent

set problem to MinHOM(H). Let G be an arbitrary undirected graph. We replace every

edge u′v′ ∈ E(G) by the digraph D such that u′ = u, and v′ = v. We will denote this new

digraph obtaining from G by D′. Let cy(t) = 1, cx(t) = 0 for t ∈ V (G), and ci(t) = +∞ for

i ∈ V (H)− {x, y}, t ∈ V (G), and ci(t) = c′i(t) for t ∈ V (D)− {u, v}, i ∈ V (H).

There is always a homomorphism of finite cost from D′ to H. (We can map all vertices

of G to y). Let f be a homomorphism of D′ to H with finite cost and let S = {u ∈ V (G) :

f(u) = x}. Then, S is an independent set in G since we cannot have a homomorphism

of finite cost of D to H which maps both u and v to x. Observe that the minimum cost

homomorphism will assign as many vertices of V (G) as possible with color x.

Conversely, suppose we have an independent set I of G. Then we can build a homomor-

phism f of D′ to H such that f(u) = x for all u ∈ I and f(u) = y for all u ∈ V (G) \ I.

Hence, a minimum cost homomorphism f of D′ to H yields a maximum independent

set of G and vice versa, which completes the proof. ¦
Now, we can develop a technique to prove the NP-hardness of MinHOM(H) when H

does not admit a k-Min-Max ordering. Indeed, we have to look for a digraph D which

fulfills the conditions of Proposition 3.2.5 or 3.2.6. This technique has been partially used

in [48, 49, 50, 51, 52, 53, 54], but it has not been expressed in this form so far. We remark

that it is not always easy to find such a digraph D. So, we should seek new tools. One idea

is to restrict H to a special class of digraphs and find a new technique which is specially

designed for that class of digraphs. With this perspective, we customize Proposition 3.2.5

for oriented cycles with some loops C leading to the following proposition.
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Proposition 3.2.7 Let C be an oriented cycle with some loops having a loop on an arbitrary

vertex z and let D be a digraph. Suppose D has a pair of distinct vertices u, v, and C has

a pair of not necessarily distinct vertices x, y, distinct from z such that:

(a) there is a homomorphism f1 of D to C which maps both u and v to z;

(b) there is no homomorphism of D to C which maps u to x and v to y;

(c) there is a homomorphism f2 of D to C which maps u to x and v to z;

(d) there is a homomorphism f3 of D to C which maps u to z and v to y,

Then MinHOM(C) is NP-hard.

Proof: If x and y are not distinct then by Proposition 3.2.5, MinHOM(C) is NP-hard.

Thus, we may assume that x and y are distinct vertices. This way, there should be a vertex

w in C such that there are two internally disjoint oriented paths P = ww1 . . . wnz, and

Q = ww′1 . . . w′mz from w to z in C, and at least one of x and y is only in one of these

oriented paths. Without loss of generality assume that this vertex is x, which is in P , and

we have x = wi, 1 ≤ i ≤ n. Note that w may be equal to y if x and y are adjacent. If w and

y are distinct vertices then we may assume that y = w′j , 1 ≤ j ≤ m in Q.

Now, we will construct a polynomial time reduction from the maximum independent set

problem to MinHOM(C). Let G be an arbitrary undirected graph. We replace every edge

u′v′ ∈ E(G) by the digraph D′ consisting of a set of special vertices {u′, v′, r, s, t}, and a set

of digraphs between some pairs of these vertices as follows:

• there is an oriented path u′u1 . . . ui−1s from u′ to s, which is exactly isomorphic to

the oriented path from w to x in P .

• there is an oriented path sui+1 . . . unt from s to t, which is exactly isomorphic to the

oriented path from x to z in P .

• if w and y are distinct vertices then there is an oriented path v′v1 . . . vj−1r from v′ to

r, which is exactly isomorphic to the oriented path from w to y in Q. If w = y then

v′ = r and there is no oriented path between them.

• if w and y are distinct vertices then there is an oriented path rvj+1 . . . vmt from r to

t, which is exactly isomorphic to the oriented path from y to z in Q. If w = y then

v′ = r, and there is an oriented path rv1 . . . vmt from r to t, which is isomorphic to Q.
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• there is a digraph D1 between s and r, which is isomorphic to D, and this isomorphism

maps s to u and r to v.

For simplicity, let us rename s to ui and r to vj . We will denote this digraph obtained

from G by D′′.

We assign the costs as follows:

cz(a) = 1, cw(a) = 0 for a ∈ V (G), and cb(a) = +∞ for b ∈ V (C)− {z, w}, a ∈ V (G);

cwi′ (ui′) = cz(ui′) = 0 apart from cb(ui′) = +∞ for b ∈ V (C)− {z, wi′};
cw′

j′
(vj′) = cz(vj′) = 0 apart from cb(vj′) = +∞ for b ∈ V (C)− {z, w′j′};

cb(a) = 0 for b ∈ V (C), a ∈ V (D1)− {ui, vj};
There is always a homomorphism of finite cost from D′′ to C. (We can map all vertices

of D′′ to z). Let f be a homomorphism of D′′ to C with finite cost and let S = {u′ ∈ V (G) :

f(u′) = w}. Then, S is an independent set in G since we cannot assign color w to both u′

and v′ in V (G) whenever there is an edge between them. In fact, if f(u′) = f(v′) = w then

f(ui) = wi = x and f(vj) = w′j = y as the homomorphism has finite cost. Hence, f is a

homomorphism of D1 (which is isomorphic to D) to C such that it maps ui (correspondingly

u in D) to x and vj (correspondingly v in D) to y, contrary to part (b). Observe that the

minimum cost homomorphism will assign as many vertices of V (G) as possible with color

w.

Conversely, suppose we have an independent set I of G. Then we can build a homomor-

phism of finite cost f of D′′ to C such that f(u′) = w for all u′ ∈ I and f(u′) = z for all

u′ ∈ V (G) \ I. To do so, it is enough to show that if there is an edge between u′v′ in G,

there are homomorphisms g1, g2, and g3 of the gadget D′ to C such that:

• g1(u′) = z and g1(v′) = z;

• g2(u′) = w and g2(v′) = z;

• g3(u′) = z and g3(v′) = w;

We will build these homomorphisms respectively as follows:

• g1(u′) = z, g1(a) = z for a ∈ V (D′), g1(v′) = z;

• g2(u′) = w, g2(ui′) = wi′ , g2(t) = z, g2(vj′) = z, g2(v′) = z, g2(a) = f2(a) for

a ∈ V (D1);
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• g3(v′) = w, g3(vj′) = w′j′ , g3(t) = z, g3(ui′) = z, g3(u′) = z, g3(a) = f3(a) for

a ∈ V (D1);

Hence, a minimum cost homomorphism f of D′ to C yields a maximum independent set

of G and vice versa, which completes the proof. ¦
The next proposition is a slightly different form of Proposition 3.2.7 which will be used

later in proving dichotomy for oriented cycles with some loops.

Proposition 3.2.8 Let C be an oriented cycle with some loops having a loop on an arbitrary

vertex z and let D be a digraph with cost c′i(u), i ∈ V (C), u ∈ V (D), where c′i(u) is either

+∞ or zero, and there is at least one c′i(u) which is +∞. If D has a pair of distinct vertices

u, v, and C has a pair of not necessarily distinct vertices x, y, distinct from z, and the

following conditions hold:

(a) c′x(u) = 0, c′y(v) = 0;

(b) there is a homomorphism with cost zero f1 of D to C which maps both u and v to z;

(c) there is no homomorphism with finite costs of D to C which maps u to x and v to y;

(d) there is a homomorphism with cost zero f2 of D to C which maps u to x and v to z;

(e) there is a homomorphism with cost zero f3 of D to C which maps u to z and v to y,

then MinHOM(C) is NP-hard.

Proof: We will construct a polynomial time reduction from the maximum independent set

problem to MinHOM(C). Let G be an arbitrary undirected graph. We replace every edge

u′v′ ∈ E(G) by the digraph D′, introduced in the proof of Proposition 3.2.7. We will denote

this digraph obtained from G by D′′. The costs are exactly like the costs in the proof of

Proposition 3.2.7, apart from:

cb(a) = c′b(a) for b ∈ V (C), a ∈ V (D1)− {ui, vj};
where D1 is isomorphic to D, and there is a one to one correspondence between vertices of

D and D1. Let f be a homomorphism of D′′ to C with finite cost and let S = {u′ ∈ V (G) :

f(u′) = w}. Since, there is no homomorphism of finite costs of D1 (isomorphic to D) to C

which maps u to x and v to y, then, S is an independent set in G.
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Conversely, suppose we have an independent set I of G. Then we can build a homo-

morphism of finite cost f (similar to the proof of Proposition 3.2.7) of D′′ to C such that

f(u′) = w for all u′ ∈ I and f(u′) = z for all u′ ∈ V (G) \ I.

Hence, a minimum cost homomorphism f of D′ to C yields a maximum independent set

of G and vice versa, which completes the proof. ¦
We close this Section by introducing another tool. Here, we reduce the maximum in-

dependent set problem for three-partite graphs to MinHOM(H) when H does not admit a

k-Min-Max ordering. Let us denote by I3 the independent set problem for 3-partite graphs:

given a 3-partite graph G and a positive integer k, I3 asks whether G has an independent set

of cardinality at least k. The optimization version of I3, the maximum independent set prob-

lem for 3-partite graphs, attempts to find the largest independent set in a 3-partite graph

G. This problem has been useful for proving NP-hardness of minimum cost homomorphism

problems for undirected graphs [49], and we use it here for digraphs.

Proposition 3.2.9 [49] The problem of finding a maximum independent set in a 3-partite

graph G (even given the three partite sets) is NP-hard. ¦

The following proposition will be extensively used in this thesis for proving dichotomies

for different classes of digraphs.

Proposition 3.2.10 Let D0, D1, D2, and H be four digraphs. Suppose each Di, 0 ≤ i ≤ 2

has a pair of distinct vertices ui, vi and H has three pairs of vertices xi, yi, 0 ≤ i ≤ 2 such

that:

(a) there is no homomorphism of Di to H which maps ui to xi and vi to xi+1;

(b) there is a homomorphism of Di to H which maps ui to xi and vi to yi+1;

(c) there is a homomorphism of Di to H which maps ui to yi and vi to xi+1;

(d) there is a homomorphism of Di to H which maps ui to yi and vi to yi+1,

where all indices are taken modulo 3. Then MinHOM(H) is NP-hard.

Proof: We construct a polynomial time reduction from the maximum independent

set problem for 3-partite graphs to MinHOM(H). Let G be a graph whose vertices are

partitioned into independent sets U, V, W . We construct an instance of MinHOM(H) as
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Figure 3.1: (a) A three-partite graph G. (b) The digraph D obtained from G.

follows: the digraph D is obtained from G as shown in Figure 3.1 by replacing each edge

uv, u ∈ U, v ∈ V of G with the digraph D0 where u = u0, and v = v0, and replacing each

edge vw, v ∈ V, w ∈ W of G with the digraph D1 where v = u1, and w = v1, and replacing

each edge uw, u ∈ U,w ∈ W of G with the digraph D2 where w = u2, and u = v2. Let

all costs ci(t) = 0 for t ∈ V (D) − V (G) and i ∈ V (H), and let all costs ci(t) = +∞ for

i ∈ V (H), t ∈ V (G), apart from cy0(t) = 1, cx0(t) = 0, for t ∈ U , cy1(t) = 1, cx1(t) = 0, for

t ∈ V , and cy2(t) = 1, cx2(t) = 0, for t ∈ W .

There is always a homomorphism with finite cost of D to H. (We can map all vertices of

U to y0, all vertices of V to y1, and all vertices of W to y2). Let f be a homomorphism of D

to H with finite cost and let S = {u ∈ V (G) : f(u) = xi, for some i, 0 ≤ i ≤ 2}. Then, S is

an independent set in G: for instance suppose the contrary that f(u) = x0, f(v) = x1, and

uv ∈ E(G). Then f is a homomorphism of D0 to H with f(u0) = x0 and f(v0) = x1 (note

that u = u0, and v = v0), contrary to condition (a). (The other possibilities are similar.)

Conversely, suppose we have an independent set I of G, and IU = I∩U , IV = I∩V , and

IW = I ∩W . Then we can build a homomorphism f of D to H such that f(u) = x0, u ∈ IU ,

f(v) = x1, v ∈ IV , f(w) = x2, w ∈ IW , f(u) = y0, u ∈ U − IU , f(v) = y1, v ∈ V − IV ,

f(w) = y2, w ∈ W − IW . Conditions (b), (c), and (d) guarantee that such a homomorphism

exists. Hence, a minimum cost homomorphism f of D to H yields a maximum independent

set of G and vice versa, which completes the proof. ¦



Chapter 4

Reflexive Digraphs

In this chapter, we give a full dichotomy classification of the complexity of MinHOM(H)

for reflexive digraphs; this is the first dichotomy result for a general class of digraphs - our

only restriction is that the digraphs are reflexive. We shall give a combinatorial description

of reflexive digraphs with a Min-Max ordering, in terms of forbidden induced subgraphs.

Our characterization yields a polynomial time algorithm for the existence of a Min-Max

ordering in a reflexive digraph. It also allows us to complete a dichotomy classification of

MinHOM(H) for reflexive digraphs H, by showing that all problems MinHOM(H) where H

does not admit a Min-Max ordering are NP-hard. This verifies a conjecture of Gutin and

Kim from [54]. This chapter is mostly based on [46].

4.1 Structure and Forbidden Subgraphs

For a reflexive digraph H, it is easy to see that < is a Min-Max ordering if and only if for any

j between i and k, we have ik ∈ A(H) imply ij, jk ∈ A(H). (Clearly, a Min-Max ordering

has the property, by the definition applied to ik and jj. Conversely, the property implies

that is ∈ A(H) and jr ∈ A(H) if j and s are between i and r or conversely - by considering

the arcs ir respectively js; in the remaining cases i < s < r < j or s < i < j < r we apply

the property to the two arcs ir and js.) For a bipartite graph H (with a fixed bipartition

into white and black vertices), a bipartite Min-Max ordering is an ordering < such that

< restricted to the white vertices, and < also restricted to the black vertices satisfy the

condition of Min-Max orderings, i.e., i < j for white vertices, and s < r for black vertices,

and ir, js ∈ E(H), imply that is ∈ E(H) and jr ∈ E(H). Recall the definitions of S(H)

34
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and B(H) from Chapter 1. The following theorems have been shown in [49].

Theorem 4.1.1 [49] Let H be a bipartite graph. H admits a bipartite Min-Max ordering

if and only if H is a proper interval bigraph.

Theorem 4.1.2 [49] Let H be a reflexive graph. H admits a Min-Max ordering if and only

if H is a proper interval graph.

Since both reflexive and bipartite graphs admit a characterization of existence of Min-

Max orderings by forbidden induced subgraphs, our goal will be accomplished by proving

the following theorem. It also implies a polynomial time algorithm to test if a reflexive

digraph admits a Min-Max ordering.

Theorem 4.1.3 A reflexive digraph H admits a Min-Max ordering if and only if

• S(H) is a proper interval graph, and

• B(H) is a proper interval bigraph, and

• H does not contain an induced subgraph isomorphic to Hi with i = 1, 2, 3, 4,

5, 6.

The digraphs Hi are depicted in Figure 4.1. Recall that proper interval graphs and proper

interval bigraphs are characterized by a set of forbidden induced subgraphs introduced by

Theorem 1.1.4 and 1.1.5, respectively. The resulting forbidden subgraph characterization is

summarized in the following corollary. Note that forbidden subgraphs in S(H) directly de-

scribe forbidden subgraphs in H, and it is easy to see that each forbidden induced subgraph

in B(H) can also be translated to a small family of forbidden induced subgraphs in H.

Corollary 4.1.4 A reflexive digraph H admits a Min-Max ordering if and only if S(H)

does not contain an induced undirected cycle Ck, k ≥ 4, or claw, net, or tent, B(H) does

not contain an induced undirected cycle C2k, k ≥ 3, or biclaw, binet, or bitent, and H does

not contain an induced Hi with i = 1, 2, 3, 4, 5, 6.

We proceed to prove the Theorem.

Proof: Suppose first that < is a Min-Max ordering < of H. It is easily seen that

< is also a Min-Max ordering of S(H), and hence S(H) is a proper interval graph by
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Figure 4.1: The obstructions Hi with i = 1, 2, 3, 4, 5, 6.

Theorem 4.1.2. It is also easy to see that < applied separately to the corresponding white

and black vertices of B(H) is a bipartite Min-Max ordering of B(H), and thus B(H) is

a proper interval bigraph by Theorem 4.1.2. To complete the proof of necessity, we now

claim that none of the digraphs Hi, i = 1, 2, 3, 4, 5, 6 admits a Min-Max ordering. We only

show this for H3, the proofs of the other cases being similar. Suppose that < is a Min-Max

ordering of H3. For the triple x1, x2, x3, we note that x2 must be between x1 and x3 in the

ordering <, as otherwise the arcs between x2 and x1, x3 would imply that x1x3 ∈ E(S(H)).

Without loss of generality assume that x1 < x2 < x3. Since x1 and x4 are independent

and x1x2 ∈ E(S(H)), we must have x4 > x1. A similar argument yields x4 < x3; however,

x1 < x4 < x3 is impossible, as x1x3 ∈ A(H) but x1x4 6∈ A(H).

To prove the sufficiency of the three conditions, we shall prove the following claim.

Lemma 4.1.5 If S(H) admits a Min-Max ordering and B(H) admits a bipartite Min-Max

ordering, then either H admits a Min-Max ordering, or H contains an induced Hi (or its

converse) for some i = 1, 2, 3, 4, 5, 6.

Proof: Suppose < is a bipartite Min-Max ordering of B(H). A pair u, v of vertices of

H is proper for < if u′ < v′ if and only if u′′ < v′′ in B(H). We say a bipartite Min-Max

ordering < is proper if all pairs u, v of H are proper for <. If < is a proper bipartite Min-

Max ordering, then we can define a corresponding ordering ≺ on the vertices of H, where
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u ≺ v if and only if u′ < v′ (which happens if and only if u′′ < v′′). It is easy to check that

≺ is now a Min-Max ordering of H.

Suppose, on the other hand, that the bipartite Min-Max ordering < on B(H) is not

proper. Thus there are vertices v′, u′ such that v′ < u′ and u′′ < v′′. Suppose there is no

vertex s′ such that s′v′′ ∈ E(B(H)), s′u′′ 6∈ E(B(H)): then we can exchange the position of

v′′ and u′′ in < and still admits a bipartite Min-Max ordering. Furthermore, this exchange

strictly increases the number of proper pairs in H: any w with u′′ < w′′ < v′′ and u′ < w′

creates a new improper pair u,w but also creates a new proper pair v, w (and the pair u, v

is also a new proper pair). Analogously, if there is no vertex t′′ such that u′t′′ ∈ E(B(H)),

v′t′′ 6∈ E(B(H)), we can exchange u′, v′ and increase the number of proper pairs in H.

Suppose we have performed all exchanges until we reached a bipartite Min-Max ordering <

which admits no more exchanges. Then there are two possibilities: either < is now proper,

and H admits a Min-Max ordering as above, or < is still not proper, and one of the following

two cases must occur (up to symmetry):

Case 1: s′v′′, v′t′′ ∈ E(B(H)) and s′u′′, u′t′′ 6∈ E(B(H)).

It is easy to see that since < is a bipartite Min-Max ordering, we must have u′ < s′

and t′′ < u′′. (Note that means that s′′ 6= t′′.) Since u′u′′, v′v′′ ∈ E(B(H)), by the same

argument we must have u′v′′, v′u′′ ∈ E(B(H)); and similarly we obtain s′t′′ 6∈ E(B(H)). If

both v′s′′ and t′v′′ are edges of B(H) then u, v, s, t induce a claw in S(H): indeed in B(H),

we have the edges v′t′′, t′v′′, v′u′′, u′v′′, v′s′′, s′v′′ and the non-edges u′t′′, s′u′′, s′t′′. This is a

contradiction, as S(H) is assumed to admit a Min-Max ordering, i.e., be a proper interval

graph.

If neither v′s′′ nor t′v′′ is an edge of B(H), then if u′s′′ is an edge of B(H), then

s, v, u induce a copy of H1 in H, and if , t′u′′ is an edge of B(H), then t, v, u induce a

copy of H1. Thus consider the case when u′s′′, t′u′′ 6∈ E(B(H)). If t′s′′ ∈ E(B(H)), then

s′, s′′, t′, t′′, v′, v′′ would induce a copy of C6 in B(H), contrary to our assumption that B(H)

admits a bipartite Min-Max ordering, i.e., is a proper interval bigraph. Thus t′s′′ 6∈ E(B(H))

and t, s, v, u induce a copy of H2 in H.

If only one of v′s′′ or t′v′′ is an edge of B(H), assume first that v′s′′ ∈ E(B(H)) and

t′v′′ 6∈ E(B(H)). If t′u′′ is an edge of B(H), then t, v, u induce a copy of H1 in H, and

if t′s′′ is an edge of B(H), then t, v, s similarly induce a copy of H1; thus asume that

t′u′′, t′s′′ 6∈ E(B(H)). Note that u′s′′ ∈ E(B(H)), else the vertices u′, u′′, v′, t′′, t′, s′′, s′

would induce a biclaw in B(H), contrary to B(H) being a proper interval bigraph. It now
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follows that s, t, u, v induce a copy of H3 in H. If v′s′′ 6∈ E(B(H)) and t′v′′ ∈ E(B(H)), the

proof is similar, except we obtain copies of H1 and the converse of H3.

Case 2: s′v′′, u′t′′ ∈ E(B(H)) and s′u′′, v′t′′ 6∈ E(B(H)).

We again easily observe that we must have u′ < s′′, v′′ < t′′, and u′v′′, v′u′′ ∈ E(B(H)).

If s′′ = t′′ we obtain a copy of H1 induced by u, v, s in H; hence we assume that s′′ 6= t′′.

Suppose first that u′s′′, t′v′′ 6∈ E(B(H)). We have s′ < t′ and t′′ < s′′, and so t′s′′, s′t′′ ∈
A(H), implying that u, v, s, t induce a copy of H4 in H. Suppose next that both t′v′′, u′s′′ ∈
E(B(H)). If v′s′′ is not an edge of B(H), vertices u, v, s induce a copy of H1 in H, and

if t′u′′ is not an edge of B(H), vertices u, v, t induce a copy of H1 in H. Thus we have

v′s′′, t′u′′ ∈ E(B(H)). Now we have t′ < s′ and s′′ < t′′, and hence t′s′′, s′t′′ ∈ E(B(H)).

This is impossible, since u, v, s, t would induce a copy of C4 in S(H). Finally, if only one of

t′v′′, u′s′′ is an edge of B(H), say u′s′′ ∈ E(B(H)) and t′v′′ 6∈ E(B(H)) (the other case is

symmetric), then with the same argument as above, v′s′′ ∈ E(B(H)), s′t′′ ∈ E(B(H)), and

s, t, u, v induce (depending on which of the pairs t′u′′, t′s′′ are edges of B(H)) one of H1,H5

(or its converse), or H6 (or its converse). ¦

4.2 Complexity

If H admits a Min-Max ordering, then MinHOM(H) is polynomial time solvable, see The-

orem 3.1.1. Now using our forbidden induced subgraph characterization we can prove that

reflexive digraphs H without a Min-Max ordering yield NP-hard MinHOM(H) problems.

Note that we already know that MinHOM(H) is NP-hard if S(H) is not a proper interval

graph, and MinHOM(H) is NP-hard if B(H) is not a proper interval bigraph. (See Proposi-

tions 3.2.2 and 3.2.1.) Recall now Proposition 3.2.4. It states that MinHOM(H) is NP-hard

when MinHOM(H ′) is NP-hard for an induced subgraph H ′ of H. Therefore, to show a

dichotomy for reflexive digraphs H, it is sufficient to prove that MinHOM(H) is NP-hard for

digraphs H = H1, . . . ,H6. Among these digraphs, H1 is a reflexive semicomplete digraph.

Thus the complexity of MinHOM(H1) is known by Theorem 1.2.3: indeed MinHOM(H1)

is NP-hard. So it remains to prove that MinHOM(H) is NP-hard, when H = H2, . . . , H6.

The following lemmas show this fact.

Lemma 4.2.1 The problem MinHOM(H2) is NP-hard.
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Figure 4.2: (a) The digraphs D0, D1, and D2. (b) H2.

Proof: The NP-hardness of MinHOM(H2) easily follows from Proposition 3.2.10. Let

D0, D1, and D2 be the digraphs depicted in Figure 4.2.(a) and let x0 = z1, y0 = z2, x1 =

z4, y1 = z2, x2 = z3, y2 = z2, where z1, z2, z3, z4 are vertices of H2 in Figure 4.2.(b). It is

easy to check the digraphs Di, 0 ≤ i ≤ 2 with pairs ui, vi, respectively, and H2 with three

pairs xi, yi, 0 ≤ i ≤ 2, fulfill the conditions of Proposition 3.2.10, and thus MinHOM(H2) is

NP-hard.

Lemma 4.2.2 MinHOM(H3) is NP-hard.

Proof: The NP-hardness of MinHOM(H3) easily follows from Proposition 3.2.10. Let

D0, D1, and D2 be the digraphs depicted in Figure 4.3.(a) and let x0 = z1, y0 = z2, x1 =

z4, y1 = z2, x2 = z3, y2 = z2, where z1, z2, z3, z4 are vertices of H3 in Figure 4.3.(b). It is

easy to check the digraphs Di, 0 ≤ i ≤ 2 with pairs ui, vi, respectively, and H3 with three

pairs xi, yi, 0 ≤ i ≤ 2, fulfill the conditions of Proposition 3.2.10, and thus MinHOM(H3) is

NP-hard. ¦
Recall that the decision version of MinHom(H) is the following problem: Given an input

digraph D, together with nonnegative costs ci(u), u ∈ V (D), i ∈ V (H), and an integer k,

decide if D admits a homomorphism to H of cost not exceeding k. In the rest of this section

we consider the decision version of MinHOM(H) to prove the NP-hardness of MinHOM(H)

when H = H4,H5,H6.

Lemma 4.2.3 MinHOM(H4) is NP-hard.

Proof: Recall that I3 is the independent set problem for three-partite graphs. We

construct a polynomial time reduction from I3 to MinHOM(H4). Let X be a graph whose

vertices are partitioned into independent sets U, V, W , and let k be a given integer. An
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Figure 4.3: (a) The digraphs D0, D1, and D2. (b) H3.

instance of MinHOM(H4) is formed as follows: the digraph D is obtained from X by

replacing each edge uv of X with u ∈ U, v ∈ V by an arc vu, replacing each edge uw of X

with u ∈ U,w ∈ W by a directed path umuww, and replacing each edge vw of X with v ∈
V,w ∈ W by a directed path vmvww. The costs are defined by (writing for simplicity ci(y)

for cxi(y) where xi, 1 ≤ i ≤ 4 is a vertex of H4 in Figure 4.1) c1(u) = 1, c3(u) = 0 for u ∈ U ;

c2(v) = 0, c3(v) = 1 for v ∈ V ; c4(w) = 0, c1(w) = 1 for w ∈ W ; c3(muw) = c4(muw) =

|V (X)| for each edge uw of X with u ∈ U,w ∈ W ; c2(mvw) = c4(mvw) = |V (X)| for each

edge vw of X with v ∈ V, w ∈ W ; and ci(m) = 0 for any other vertex m ∈ V (D) − V (X),

and ci(y) = |V (X)| for any other vertex y ∈ V (X).

We now claim that X has an independent set of size k if and only if D admits a homo-

morphism to H4 of cost |V (X)| − k. Let I be an independent set in X. We can define a

mapping f : V (D) → V (H2) as follows:

• f(u) = x3 for u ∈ U ∩ I and f(u) = x1 for u ∈ U − I

• f(v) = x2 for v ∈ V ∩ I and f(v) = x3 for v ∈ V − I

• f(w) = x4 for w ∈ W ∩ I and f(w) = x1 for w ∈ W − I

• f(muw) = x2 when f(u) = x1, and f(muw) = x1 when f(u) = x3 for each edge uw of

X with u ∈ U,w ∈ W

• f(mvw) = x3 when f(w) = x4 and f(mvw) = x1 when f(w) = x1 for each edge vw of

X with v ∈ V,w ∈ W

This is a homomorphism of D to H4 of cost |V (X)| − k.
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Let f be a homomorphism of D to H4 of cost |V (X)| − k. Then, all cf(u)(u), u ∈ V (D)

are either zero or one. Let I = {y ∈ V (X) | cf(y)(y) = 0} and note that |I| ≥ k. It can

be again seen that I is an independent set in X, as if uw ∈ E(X), where u ∈ I ∩ U and

w ∈ I ∩ V then f(u) = x3 and f(w) = x4, thus, f(muw) = x3 or f(muw) = x4. However,

the cost of homomorphism is greater than |V (X)|, a contradiction. The other cases can also

be treated similarly. ¦

Lemma 4.2.4 MinHOM(H5) is NP-hard.

Proof: We similarly construct a polynomial time reduction from I3 to MinHOM(H5):

this time the digraph D is obtained from X by replacing each edge uv of X with u ∈ U, v ∈ V

by an arc uv; replacing each edge uw of X with u ∈ U,w ∈ W by arcs umuw, wmuw;

and replacing each edge wv of X with w ∈ W, v ∈ V by a directed path wmwvv. The

costs are defined by (writing for simplicity ci(y) for cxi(y) where xi, 1 ≤ i ≤ 4 is a vertex

of H5 in Figure 4.1) c1(u) = 1, c2(u) = 0 for u ∈ U ; c2(v) = 1, c4(v) = 0 for v ∈ V ;

c3(w) = 1, c1(w) = 0 for w ∈ W ; c1(muw) = c2(muw) = |V (X)| for each edge uw of X with

u ∈ U,w ∈ W ; c1(mwv) = c4(mwv) = |V (X)| for each edge wv of X with w ∈ W, v ∈ V ;

ci(m) = 0 for any other vertex m ∈ V (D)− V (X), and ci(y) = |V (X)| for any other vertex

y ∈ V (X).

We again claim that X has an independent set of size k if and only if D admits a

homomorphism to H5 of cost |V (X)| − k. Let I be an independent set in D. We can define

a mapping f : V (D) → V (H2) by f(u) = x2 for u ∈ U ∩ I and f(u) = x1 for u ∈ U − I;

f(v) = x4 for v ∈ V ∩ I and f(v) = x2 for v ∈ V − I; f(w) = x1 for w ∈ W ∩ I and

f(w) = x3 for w ∈ W −I; f(muw) = x3 when f(u) = x2, and f(muw) = x4 when f(u) = x1,

for each edge uw of X with u ∈ U,w ∈ W ; f(mwv) = x3 when f(w) = x3 and f(mwv) = x2

when f(w) = x1, for each edge wv of X with w ∈ W, v ∈ V . This is a homomorphism of D

to H5 of cost |V (X)| − k.

Let f be a homomorphism of D to H5 of cost |V (X)| − k. Then, all cf(u)(u), u ∈ V (D)

are either zero or one. Let I = {y ∈ V (X) | cf(y)(y) = 0} and note that |I| ≥ k. It can be

seen that I is an independent set in X, as if uw ∈ E(X), where u ∈ I ∩ U and w ∈ I ∩ V

then f(u) = x2 and f(w) = x1, thus, f(muw) = x1 or f(muw) = x2. However, the cost of

homomorphism is greater than |V (X)|, a contradiction. The other cases can also be treated

similarly. ¦

Lemma 4.2.5 MinHOM(H6) is NP-hard.
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Proof: The proof is again similar, letting the digraph D be obtained from X by replacing

each edge uv of X with u ∈ U, v ∈ V by an arc uv; replacing each edge uw of X with u ∈
U,w ∈ W by a directed path umuww; and replacing each edge vw of X with v ∈ V, w ∈ W by

an arc wv. The costs are defined by (writing for simplicity ci(y) for cxi(y) where xi, 1 ≤ i ≤ 4

is a vertex of H6 in Figure 4.1) c1(u) = 0, c2(u) = 1 for u ∈ U ; c3(v) = 0, c1(v) = 1 for

v ∈ V ; c4(w) = 0, c3(w) = 1; c1(muw) = c4(muw) = |V (X)| for each edge uw of X

with u ∈ U,w ∈ W ; and letting ci(m) = 0 for any other vertex m ∈ V (D) − V (X), and

ci(y) = |V (X)| for any other vertex y ∈ V (X).

It can again be seen that X has an independent set of size k if and only if D admits a

homomorphism to H6 of cost |V (X)| − k: letting I be an independent set in D, we define

a mapping f : V (D) → V (H2) by f(u) = x1 for u ∈ U ∩ I and f(u) = x2 for u ∈ U − I;

f(v) = x3 for v ∈ V ∩ I and f(v) = x1 for v ∈ V − I; f(w) = x4 for w ∈ W ∩ I and

f(w) = x3 for w ∈ W − I; f(muw) = x3 when f(u) = x2 and f(muw) = x2 when f(u) = x1

for each edge uw, u ∈ U,w ∈ W . This is a homomorphism of D to H6 of cost |V (X)| − k.

Let f be a homomorphism of D to H6 of cost |V (X)| − k. Then, all cf(u)(u), u ∈ V (D)

are either zero or one. Let I = {y ∈ V (X) | cf(y)(y) = 0} and note that |I| ≥ k. It can

again be seen that I is an independent set in X. ¦
We have proved the following result, conjectured in [54].

Theorem 4.2.6 Let H be a reflexive digraph. If H admits a Min-Max ordering, then

MinHOM(H) is polynomial time solvable. Otherwise, it is NP-hard.



Chapter 5

Oriented Cycles with Some Loops

Homomorphisms to oriented cycles have been investigated in a number of papers [31, 50,

56, 64]. In particular, Feder has provided a dichotomy for HOM(H) [31] and Gutin et al.

have provided a dichotomy for MinHOM(H) [50] when H is an irreflexive oriented cycle.

In this chapter, we obtain a full dichotomy for MinHOM(H) when H is an oriented cycle

with some loops. In fact, we verify Conjecture 3.1.5 for oriented cycles with some loops

(meaning at least one loop). Furthermore, we shall argue that this constitutes an important

step toward a dichotomy for all oriented graphs with some loops. This chapter is mostly

based on [71].

5.1 Preliminaries

Let P = b0b1 . . . bp be an oriented path. We assign levels to the vertices of P as follows: we

set l(b0) = 0, and l(bt+1) = l(bt) + 1, if btbt+1 is forward and l(bt+1) = l(bt)− 1, if btbt+1 is

backward. Let [p] be the set {0, 1, . . . , p}. We say that P is of type r if r = max{l(bi) : i ∈
[p]} = l(bp) and 0 ≤ l(bt) ≤ r for each t ∈ [p].

The following Proposition was first proved in [58]; see also [31, 93] and Lemma 2.36 in

[60].

Proposition 5.1.1 [58] Let P1 and P2 be two oriented paths of type r. Then there is an

oriented path P of type r that maps homomorphically to P1 and P2 such that the initial

vertex of P maps to the initial vertices of P1 and P2 and the terminal vertex of P maps to

the terminal vertices of P1 and P2. The length of P is polynomial in the lengths of P1 and

43
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P2.

We will use the following notation in this chapter: L(P ) = min{l(bj) : j ∈ [p]},
H(P ) = max{l(bj) : j ∈ [p]}, VL(P ) = {bt : l(bt) = L(P ), t ∈ [p]}, and VH(P ) = {bt :

l(bt) = H(P ), t ∈ [p]}.
Let C = b0b1 . . . bpb0 be an oriented cycle. Recall from Chapter 1 (page 5) that we will

always consider b0b1 . . . bpb0 as the direction in which the number of forward arcs is not

smaller than the number of backward arcs. We can assign levels to the vertices of C as

follows: l(b0) = k, where k is a non-negative integer, and l(bt+1) = l(bt) + 1, if btbt+1 is

forward and and l(bt+1) = l(bt) − 1, if btbt+1 is backward. Clearly, the value of each l(bi),

i ∈ [p], depends on both k and the choice of the initial vertex b0. We refer to PC
b0

as the

oriented path b0b1 . . . bpb0 obtained from the oriented cycle C = b0b1 . . . bpb0 such that the

first b0 and the last b0 are distinct vertices. (We “open C at b0”.) This way, each vertex of

PC
b0

has a unique counterpart in C. So, when we refer to a vertex in PC
b0

, one can imagine

its corresponding vertex in C.

The following notation is extensively used in the rest of this chapter: L(C) = min{l(bj) :

j ∈ [p]}, H(C) = max{l(bj) : j ∈ [p]}, VL(C) = {bt : l(bt) = L(C), t ∈ [p]}, and

VH(C) = {bt : l(bt) = H(C), t ∈ [p]}.
Recall that an oriented cycle C is balanced if its net length is zero. Note that if C is

balanced, the vertices of C that belong to VL(C) and VH(C), do not change by changing

the initial vertex b0 and k. We say that a balanced oriented cycle C = b0b1 . . . bpb0 is of the

form (l+h+)q with q ≥ 1, if there is an initial vertex b0 ∈ VL(C) such that P = C − bpb0

can be written as P = x1P1y1R1x2P2y2R2 . . . xqPqyqRq, where xi ∈ VL(C), yi ∈ VH(C) for

each i ∈ [q], and Pi, Ri are oriented paths such that Pi (respectively, Ri) contains no vertex

of VL(C) (respectively, VH(C)). We write l+h+ instead of (l+h+)1. (see Figure 5.1 for an

example of balanced oriented cycles of the form l+h+.)

In a balanced oriented cycle C of the form l+h+, a vertex b0 ∈ VL(C) is the absolute base,

if there is no vertex u ∈ VL(C) between b0 and the first vertex of VH(C) in the direction

b0b1 . . . bpb0. Correspondingly, the path PC
b0

= b0b1 . . . bpb0 is called the absolute predecessor

path.

Recall that for each oriented cycle with possible loops C, the net length of C , denoted

λ(C), is equal to the net length of I(C), where I(C) is the oriented cycle obtained from C by

removing all existing loops. Consider the oriented cycle with the vertex set C0
4 = {1, 2, 3, 4},
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y

1

1

x

Figure 5.1: A balanced oriented cycle of the form l+h+. The higher dashed lines, the higher
levels.

and the arc set {12, 32, 14, 34}. The next theorem follows from the main result of [50] for

irreflexive oriented cycles.

Theorem 5.1.2 [50] Let C be an irreflexive oriented cycle.

• If C has net length k ≥ 2, then it has a k-Min-Max ordering and MinHOM(C) is

polynomial time solvable.

• If C has net length k = 1, then it has a Min-Max ordering and MinHOM(C) is

polynomial time solvable.

• If C is balanced of the form l+h+ or C = C0
4 , then C has a Min-Max ordering and

MinHOM(C) is polynomial-time solvable. For all other balanced oriented cycles C,

MinHOM(C) is NP-hard.

5.2 Dichotomy

In this section, we provide a full dichotomy for MinHOM(C) when C is an oriented cycle

with some loops. To do that, first of all, we partition the class of oriented cycles with some

loops to three subclasses: the first contains all oriented cycles with some loops C such that

the net length λ(C) is more than one; the second contains all C such that λ(C) = 1; the

third contains all C such that λ(C) = 0. We will verify Conjecture 3.1.5 for each of these

subclasses separately.

Consider the oriented cycle C1
3 with the vertex set {1, 2, 3}, and the arc set {12, 23, 13},

and the reflexive directed cycle C2
2 with the vertex set {1, 2} and the arc set {11, 22, 12, 21}.
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Lemma 5.2.1 Let C be an oriented cycle with possible loops and and let C ′ be an oriented

cycle with some loops obtained from C by adding a loop to a vertex z of C, which is neither

a source nor a sink. If I(C ′) 6= C1
3 and C ′ 6= C2

2 , then MinHOM(C ′) is NP-hard.

Proof: Since z is neither a source nor a sink, then there is a vertex x, dominating z, and

a vertex y, dominated by z in C ′. Note that x = y if I(C ′) is a directed cycle of length 2.

Consider the digraph D with the vertex set {u, v}, and the arc set {uv}. Then there is no

homomorphism from D to C ′, which maps u to x and v to y unless I(C ′) = C1
3 or C ′ = C2

2 ,

meeting condition (b) of Proposition 3.2.7. The following homomorphisms meet conditions

(a), (c), and (d) of Proposition 3.2.7, respectively:

• f1(u) = z, and f1(v) = z;

• f2(u) = x, and f2(v) = z;

• f3(u) = z, and f3(v) = y;

Hence, MinHOM(C ′) is NP-hard. ¦

Lemma 5.2.2 Let C be an oriented cycle with possible loops and and let C ′ 6= C2
2 be an

oriented cycle with some loops obtained from C by adding a loop to a vertex z of C. If

MinHOM(C) is NP-hard, then MinHOM(C ′) is also NP-hard.

Proof: Let C ′′ be the directed cycle with the vertex set {1, 2} and the arc set {11, 12, 21},
where MinHOM(C ′′) is NP-hard by Lemma 5.2.1. C ′ has a symmetric arc (u dominates v

and v dominates u) if and only if C ′ = C2
2 or C ′ = C ′′. Since MinHOM(C ′′) is NP-hard, the

current lemma is true for C ′ = C ′′. On the other hand, it is trivial to check that C has a

Min-Max ordering and MinHOM(C) is polynomial time solvable, when I(C ′) = C1
3 ; hence

the current lemma is also true for oriented cycles C ′ for which I(C ′) = C1
3 .

Now, let us assume that C ′ is not C2
2 , C ′′, and all oriented cycles C ′ for which we have

I(C ′) = C1
3 . If z is neither a source nor a sink, then MinHOM(C ′) is NP-hard by Lemma

5.2.1. Thus, we assume that z is either a source or a sink; without loss of generality assume

that it is a sink. Moreover, as we exclude C2
2 and C ′′, I(C ′) (equivalently, I(C)) will not

have any symmetric arc.

Now, we will construct a polynomial time reduction from MinHOM(C) to MinHOM(C ′).

An instance of MinHOM(C) contains an input digraph D with n vertices and the costs ci(u),
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u ∈ V (D), i ∈ V (C). Let all costs ci(u) be bounded from above by a constant m. We can

partition the vertices of D to four sets as follows:

• U1, where each vertex u ∈ U1 has a loop;

• U2, where no vertex u ∈ U2 has a loop, and no vertex of U2 is a source or sink in D;

• U3, where no vertex u ∈ U3 has a loop, and every vertex of U2 is a source in D;

• U4, where no vertex u ∈ U4 has a loop, and every vertex of U2 is a sink in D.

It is easy to check that there is no homomorphism of D to C which maps u ∈ Ui, i = 1, 2, 3

to z in C. To make an instance of MinHOM(C ′), let us keep D as the input digraph

and change the costs as follows: c′b(a) = cb(a) for a ∈ V (D), b ∈ V (C ′) − {z}, and

c′z(u) = nm + 1, u ∈ Ui, i = 1, 2, 3 apart from c′z(u) = cz(u), u ∈ U4. Observe that if

MinHOM(C ′) returns a minimum cost homomorphism f of D to C ′ with a cost more than

nm, then there is no homomorphism from D to C. Moreover, if MinHOM(C ′) returns a

minimum cost homomorphism f of D to C ′ with a cost less than nm + 1, then f is a

minimum cost homomorphism of D to C as well. Finally, if there is no homomorphism from

D to C ′, then there is no homomorphism of D to C. ¦

5.2.1 Oriented Cycles C with λ(C) ≥ 2

Theorem 5.2.3 Let C ′ be an oriented cycle with some loops such that λ(C ′) ≥ 2. If

C ′ = C2
2 , then MinHOM(C ′) is polynomial time solvable. Otherwise, MinHOM(C ′) is NP-

hard.

Proof: It is trivial to see that C2
2 has a Min-Max ordering. Thus, we will assume that

C ′ 6= C2
2 . To prove this theorem, it is sufficient (by Lemma 5.2.2) to show that MinHOM(C)

is NP-hard, where C is an oriented cycle obtained from C ′ be removing all loops but the

loop of z. Since the net length of I(C ′) is more than one, I(C ′) is not equal to C1
3 . Thus,

if z is neither a source nor a sink in I(C), MinHOM(C) is NP-hard by Lemma 5.2.1. In

what follows, we prove that when z is either a source or a sink in I(C), then MinHOM(C)

is NP-hard. Without loss of generality, we assume that z is a sink in I(C).

To show that MinHOM(C) is NP-hard, we will construct a digraph D, which meets the

conditions of Proposition 3.2.7. First of all, consider the oriented path PC
z = za1a2 . . . anz.
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For simplicity, let us denote the last z by z′, i.e., PC
z = za1a2 . . . anz′. It follows from the

definition of PC
z and the net length of I(C) that l(z′) − l(z) ≥ 2. Hence, we will always

have a vertex x 6= z in PC
z such that l(x) − l(z) = 1. Among such vertices, we will choose

x as the first vertex with l(x)− l(z) = 1, met in the direction za1a2 . . . anz′ of PC
z . On the

other hand, if z′ 6∈ VH(PC
z ), there must be a vertex x′ such that l(x′) − l(z′) = 1 and x′

is the first vertex with l(x′) − l(z′) = 1, met in the direction z′an . . . a2a1z of PC
z . Let us

now focus on two paths Pzx = za1a2 . . . aix, i ≥ 2, and Px′z′ = x′aj . . . anz′, j ≥ 2. Let s be

an arbitrary vertex of VL(Pzx). If z 6∈ VH(PC
z ), we will also consider an arbitrary vertex of

VL(Px′z′), denoted by s′. Now, we construct the digraph D, which meets the conditions of

Proposition 3.2.7, as follows:

Case 1: Suppose that x′ does not exist

Let w be the first vertex, met in the direction z′an . . . a2a1z of PC
z , such that l(z′)−l(w) =

l(x) − l(s), and Let y be the first vertex, met in the direction of wai′ . . . anz′, such that

l(y) − l(w) = l(z) − l(s). Note that y 6= z′. It is easy to see that Pwz′ = wai′ . . . anz′, and

Psx = saj′ . . . aix are of type r = l(z′)− l(w), and Pwy = wai′ . . . y, and Psz = s . . . a1z are

of type r′ = l(z) − l(s). Applying Proposition 5.1.1, we can construct two oriented paths

P1 of type r and P2 of type r′ = r − 1, with terminal vertices u1, v1, and u2, v2, which

map homomorphically to Pwz′ , Psx, and Pwy, Psz, respectively, such that u1 (respectively,

u2) maps to x, and z′ (s, and w), and v1 (respectively, v2) maps to s and w (z, and y). To

construct D, we will join these two oriented paths at vertex v1 of P1, and u2 of P2. Let

u = u1 and v = v2. One can easily check that u, v of D and x, y, z, z′ of PC
z , which have

unique counterparts in C, meet the conditions (a), (c), and (d) of Proposition 3.2.7. To

show that condition (b) of this lemma also holds, it is enough to see that the net length of

D is one, i.e., l(u)− l(v) = 1; however, l(x)− l(y) ≤ 0 in PC
z .

Case 2: Suppose that x′ exists and l(z)− l(s) 6= l(z′)− l(s′)

Let r = l(z) − l(s), and r′ = l(z′) − l(s′) in PC
z . First, we assume that r > r′; hence

r ≥ (l(x′) − l(s′)), as l(x′) − l(s′) = r′ + 1. Let w be the first vertex, met in the direction

of Pzs = za1 . . . s, such that l(z) − l(w) = l(x′) − l(s′), and let y be the first vertex, met

in the direction of Pwz = wai′ . . . a1z, such that l(y) − l(w) = l(z′) − l(s′). Note that

y 6= z. It is easy to check that Ps′x′ = s′ . . . ajx
′, and Pwz = wai′ . . . a1z are of type r′ + 1,

and Pwy = wai′ . . . y, and Ps′z′ = s′ . . . anz′ are of type r′. As for Case 1 , we can apply

Proposition 5.1.1 to find P1 and P2 with terminal vertices u1, v1, and u2, v2 for Ps′x′ , Pwz,

and Ps′z′ , Pwy, respectively, such that u1 (respectively, u2) maps to x′, and z (s′ and w)
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and v1 (respectively, v2) maps to s′ and w (z′ and y). To construct D, we will join these

two oriented paths at vertex v1 of P1, and u2 of P2. Let u = u1 and v = v2. One can

easily check that u, v of D and x′, y, z, z′ of PC
z , which have unique counterparts in C, meet

conditions (a), (c), and (d) of Proposition 3.2.7. To show that condition (b) of this lemma

also holds, it is enough to see that the net length of D is one, i.e., l(u)− l(v) = 1; however,

l(x′)− l(y) ≥ 4 in PC
z .

Second, we assume that r < r′. Then, the only difference is that w and y are in Ps′z′

rather than Psz, and x, y are the representative pair of PC
z rather than x′, y in Proposition

3.2.7. Then l(x) − l(y) ≤ 0, as l(z′) − l(z) ≥ 2; hence condition (b) of Proposition 3.2.7

holds as l(u)− l(v) = 1.

Case 3: Suppose that x′ exists and l(z)− l(s) = l(z′)− l(s′)

Let w 6= z (respectively, w′ 6= z′) be a vertex of Pzx = za1 . . . aix (respectively, Px′z′ =

x′aj . . . anz′) with l(z) = l(w) (l(w′) = l(z′)), and let r = l(z) − l(s) = l(z′) − l(s′). One

can easily check that Ps′z′ , Ps′w′ , Psz, Psw are of type r. Applying Proposition 5.1.1, we

can construct two oriented paths P1 and P2 of type r, with terminal vertices u1, v1, and

u2, v2, which map homomorphically to Ps′z′ , Psw, and Ps′w′ , Psz, respectively, such that u1

(respectively, u2) maps to w, and z′ (s, and s′), and v1 (respectively, v2) maps to s and s′

(z, and w′). To construct D, we will join these two oriented paths at vertex v1 of P1, and

u2 of P2. Let u = u1 and v = v2. One can easily check that u, v of D and w, w′, z, z′ of PC
z ,

which have unique counterparts in C, meet conditions (a), (c), and (d) of Proposition 3.2.7.

To show that condition (b) of this lemma also holds, it is enough to see that the net length

of D is zero, i.e., l(u)− l(v) = 0; however, l(w)− l(w′) ≤ −2 in PC
z . ¦

5.2.2 Oriented Cycles C with λ(C) = 1

Before we give a dichotomy for this subclass of oriented cycles with some loops, we distin-

guish two special vertices s and t of oriented cycles with net length one. These two vertices

play an important role in our study of this subclass of oriented cycles with some loops.

Lemma 5.2.4 Let C = b0b1 . . . bpb0 be an oriented cycle of net length one and b0 be an

arbitrary vertex of C. Let t be the first vertex of VH(PC
b0

), met in the direction b0b1 . . . bpb0,

and s be the last vertex of VL(PC
b0

), met in the direction b0b1 . . . bpb0. Then the pair s, t in

C is independent of the choice of b0.
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Proof: Recall that each vertex of PC
b0

has a unique counterpart in C. So, when we refer

to a vertex in PC
b0

, one can imagine its corresponding vertex in C. Let PC
b0

= b0b1 . . . bpb0 and

PC
a0

= a0a1 . . . apa0 be two arbitrary oriented paths starting from b0, and a0, respectively.

For simplicity, we replace the last b0 and a0 in PC
b0

and PC
a0

with bp+1 and ap+1, respectively,

i.e., PC
b0

= b0b1 . . . bpbp+1 and PC
a0

= a0a1 . . . apap+1. We will show that t is the first vertex

of VH(PC
a0

), met in the direction a0a1 . . . apap+1. For s the proof is similar.

Note that both PC
b0

and PC
a0

traverses I(C) in the same direction by the assumption of

traversing oriented cycles in the direction of positive net length. Now, the following cases

may happen:

Case 1: Suppose a0 occurs on the oriented path from b0 to t (inclusively)

It is easy to see that no vertex on the oriented path from a0 to t has a level equal or

greater than t in PC
a0

. Recall that λ(C) = 1, i.e., l(bp+1)− l(b0) = 1. Now, we show that no

vertex of PC
a0

on the oriented path Q from t to ap+1 has a level more than t. In fact, the

portion of Q which is from t to bp+1 does not have such a vertex. Suppose, on the other

hand, that this vertex occurs in the portion of Q from bp+1 to ap+1. This is impossible since

l(bp+1)− l(b0) = 1, i.e., the vertices of this portion in PC
a0

are exactly in one level more than

the same vertices in the same portion in PC
b0

reaching at most to the level of t in PC
a0

. (Recall

that the levels of vertices of this portion in PC
b0

are strictly less than the level of t.) Hence,

t is also the first vertex of VH(PC
a0

), met in the direction a0a1 . . . apap+1.

Case 2: Suppose a0 occurs on the oriented path from t to bp+1 (inclusively)

Let Q be the portion of PC
a0

from bp+1 to ap+1. Since t is the first vertex of VH(PC
b0

),

met in the direction b0b1 . . . bpb0, it is easy to see that t is also the first vertex of VH(Q),

met in the direction bp+1 . . . apap+1. Now, we show that all vertices of PC
a0

on the oriented

path Q′ from a0 to bp+1 have levels less than t. In fact, there might be some vertices of the

same level as t on Q′ when we see Q′ as a portion of PC
b0

. However, since l(bp+1)− l(b0) = 1,

these vertices of this portion Q′ in PC
a0

are exactly in one level less than t in PC
a0

, as t occurs

on Q. Hence, t is also the first vertex of VH(PC
a0

), met in the direction a0a1 . . . apap+1. ¦
Let C be an oriented cycle with some loops such that λ(C) = 1. In this subsection, we

assume that s and t are fixed vertices of I(C) introduced in Lemma 5.2.4. Recall that C1
3

is an oriented cycle with the vertex set {1, 2, 3}, and the arc set {12, 23, 13}.

Theorem 5.2.5 Let C ′ be an oriented cycle with some loops such that λ(C ′) = 1. If C ′ is

one of the following digraphs, then MinHOM(C ′) is polynomial time solvable. Otherwise,
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Figure 5.2: Dashed lines represent levels.

MinHOM(C ′) is NP-hard.

(a) Any oriented cycle C ′ such that I(C ′) = C1
3 .

(b) Any oriented cycle C ′ such that I(C ′) 6= C1
3 , and C ′ has at most two loops, which are

the loops of s and t. (as defined earlier.)

Proof: It is trivial to check that C ′ has a Min-Max ordering when I(C ′) = C1
3 . Thus, we

assume that I(C ′) 6= C1
3 . To prove part (b), suppose at least one of s and t has a loop, and

no other vertex of C ′ has a loop. We wish to obtain a Min-Max ordering ¿ for C ′. Let b0

be an arbitrary vertex of C ′. In what follows l(u) represents the level of u in PC′
b0

. Once

we have PC′
b0

, we can order the vertices of C ′ with the following rules (note that we do not

order bp+1, since it is a copy of b0):

1. If l(u) < l(v) then u ¿ v;

2. If l(u) = l(v), and u has been met earlier than v in the direction b0b1 . . . bpbp+1, then

v ¿ u.

Consider that t has the highest, and s has the lowest order in ¿. Thus, there is no crossing

pair including arcs ss or tt. It is also easy to check that there is no crossing pair between

the other arcs. Hence, ¿ is a Min-Max ordering. (see Figure 5.2.)

Now, it remains to prove that if a vertex z of C ′ other than s and t has a loop

then MinHOM(C ′) is NP-hard. To do so, it is sufficient by Lemma 5.2.2 to show that

MinHOM(C) is NP-hard, where C is an oriented cycle obtained from C ′ by removing all

loops but the loop of z. Now, if z is neither a source nor a sink in I(C), then MinHOM(C)

is NP-hard by Lemma 5.2.1. So, we assume that z is either a source or a sink in I(C).

Without loss of generality we assume that z is a sink in I(C).
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Consider the oriented path PC
z = za1a2 . . . anz. For simplicity, let us denote the last z

by z′, i.e., PC
z = za1a2 . . . anz′. It follows from the definition of PC

z and the net length of

I(C) that l(z′)− l(z) = 1. Observe that since z 6= t, we will always have vertices x, q 6= z, z′

in PC
z such that l(x) − l(z) = 1, and l(q) − l(z) = 0. Among such vertices, we will choose

x and q as the first vertices with l(x) − l(z) = 1 and l(q) − l(z) = 0, met in the direction

za1a2 . . . anz′ of PC
z . On the other hand, if z′ 6∈ VH(PC

z ), there must be a vertex x′ such

that l(x′) − l(z′) = 1, otherwise x′ does not exist. Among such vertices, we will choose x′

as the first vertex with l(x′) − l(z′) = 1, met in the direction z′an . . . a2a1z of PC
z . Let us

now focus on two paths Pzx = za1a2 . . . aix and Px′z′ = x′aj . . . anz′. Let s be an arbitrary

vertex of VL(Pzx). If z 6∈ VH(PC
z ), we will also consider an arbitrary vertex of VL(Px′z′),

denoted by s′. We now construct a digraph D, which meets the conditions of Proposition

3.2.7:

Case 1: Suppose that x′ does not exist

Since x′ does not exist, we have z′ ∈ VH(PC
z ). Let w be the first vertex, met in the

direction z′an . . . a2a1z of PC
z , such that l(z′) − l(w) = l(q) − l(s), and let y be the first

vertex, met in the direction of wai′ . . . anz′, such that l(y) − l(w) = l(z) − l(s). Note that

y 6= z′, as z 6= t. It is easy to see that Pwz′ = wai′ . . . anz′, Psq = saj′ . . . aiq, Pwy = wai′ . . . y,

and Psz = s . . . a1z are all of type r = l(z′)− l(w) = l(z)− l(s). Applying Proposition 5.1.1,

we can construct two oriented paths P1 and P2 of type r, with terminal vertices u1, v1, and

u2, v2, which map homomorphically to Pwz′ , Psq, and Pwy, Psz, respectively, such that u1

(respectively, u2) maps to q, and z′ (s, and w), and v1 (respectively, v2) maps to s and w

(z, and y). To construct D, we will join these two oriented paths at vertex v1 of P1, and

u2 of P2. Let u = u1 and v = v2. One can easily check that u, v of D and q, y, z, z′ of PC
z ,

which have unique counterparts in C, meet conditions (a), (c), and (d) of Proposition 3.2.7.

To show that the condition (b) of this lemma also holds, it is enough to see that the net

length of D is zero, i.e., l(u)− l(v) = 0; however, l(q)− l(y) = −1 in PC
z .

Case 2: Suppose that x′ exists and l(z)− l(s) 6= l(z′)− l(s′)

D is constructed exactly like Case 2 in the proof of Theorem 5.2.3. Note that l(u)−l(v) =

1 in D. If r′ < r, l(x′)− l(y) = 3 as l(z′)− l(z) = 1; hence condition (b) of Proposition 3.2.7

holds as l(u) − l(v) = 1. One the other hand, if r < r′, then l(x) − l(y) = 1, which does

not necessarily guarantee that condition (b) of Proposition 3.2.7 holds, as l(u) − l(v) = 1.

However, since l(x′) − l(x) = 1, there is no homomorphism, mapping u to x and v to y

due to the existence of x′. In fact, such a homomorphism f maps D to the oriented cycle,
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existing between x and y in PC
z , such that f(u) = x, f(v) = y, and there is a vertex u′ in D,

for which we have f(u′) = x′, since x′ is in the oriented cycle between x, and y. We denote

by lD(u), the level of vertex u in D. We can easily see that lD(u′) > lD(u), as l(x′) > l(x).

This is a contradiction, since both P1 and P2 are of type r + 1 and r and no vertex of D

has a level more than u.

Case 3: Suppose that x′ exists and l(z)− l(s) = l(z′)− l(s′)

D is constructed exactly like Case 3 in the proof of Theorem 5.2.3. To show that

condition (b) of Proposition 3.2.7 also holds, it is enough to see that l(u) − l(v) = 0;

however, l(w)− l(w′) = −1 in PC
z . ¦

5.2.3 Oriented Cycles C with λ(C) = 0

We begin this subsection by introducing two special pairs of vertices s1, s2 and t1, t2 for

oriented cycles C of the form l+h+. Let C be a balanced oriented cycle of the form l+h+,

and let b0 and PC
b0

be the absolute base and absolute base path of C, respectively. (Note that

for each balanced oriented cycle C of the form l+h+, the absolute base is unique.) Let t1 be

the first vertex and t2 be the last vertex of VH(PC
b0

), met in the direction b0b1 . . . bpb0, and

s1 be the first vertex and s2 be the last vertex of VL(PC
b0

), met in the direction b0bp . . . b1.

It is easy to see that all four of these vertices are fixed in C and b0 = s1, as C is balanced

of the form l+h+. Note that t1, t2 (respectively, s1, s2) are not necessarily distinct; we can

assume a case where |VH(PC
b0

)| = 1. (respectively, |VL(PC
b0

)| = 1.) For an oriented cycle

with some loops C, s1, s2, t1, t2 are defined as s1, s2, t1, t2 in I(C), respectively. Recall that

C0
4 is an oriented cycle with the vertex set C0

4 = {1, 2, 3, 4}, and the arc set {12, 32, 14, 34}.

Theorem 5.2.6 Let C ′ be an oriented cycle with some loops such that I(C ′) is balanced.

If C ′ is one of the following digraphs, then MinHOM(C ′) is polynomial time solvable. Oth-

erwise, MinHOM(C ′) is NP-hard.

(a) Any oriented cycle C ′ such that I(C ′) = C0
4 , and C ′ has at most two loops.

(b) Any oriented cycle C ′ such that I(C ′) is of the form l+h+, and C ′ has at most two

loops, which are the loops of either s1 and t2 or s2 and t1 (as defined earlier).

Proof: If I(C ′) is not of the form l+h+ and I(C ′) 6= C0
4 , then MinHOM(I(C ′)) is NP-

hard; hence by Lemma 5.2.2, MinHOM(C ′) is NP-hard. It is trivial to check that C ′ has a

Min-Max ordering, when I(C ′) = C0
4 , and C ′ has at most two loops. If I(C ′) = C0

4 , and C ′
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Figure 5.3: Dashed lines represent levels. The higher the dashed lines, the higher levels.
The further right the vertex, the lower the order.

has three or four loops, then B(C ′) has a binet as an induced subgraph and MinHOM(C ′)

is NP-hard by Proposition 3.2.1.

Now, suppose that C ′ is an oriented cycle with some loops such that I(C ′) 6= C0
4 is of

the form l+h+, and C ′ has at most two loops, which belong to either s1 and t2 or s2 and t1.

Without loss of generality, assume that at least one of s2 and t1 has a loop and no other vertex

of C ′ has a loop. (see Figure 5.3.) We split the oriented cycle C ′ into two oriented paths P1,

and P2 from s1 to s2. In what follows lP1(u) (respectively, lP2(u)) represents the level of u

in P1 (respectively, P2), where lP1(s1) = 0, and lP2(s1) = 0. Since I(C ′) is of the form l+h+

and I(C ′) 6= C0
4 , one of P1 or P2, say P1, contains all the vertices of VH(PC′

s1
) = VH(C ′), and

P2 contains all the vertices of VL(PC′
s1

) = VL(C ′). Hence, lP2(u) < lP1(t1) for all u ∈ V (P2).

We wish to obtain a Min-Max ordering ¿ for C ′. We can order the vertices of C ′ with the

following rules:

1. If u ∈ Pi, i = 1, 2 ,v ∈ Pj , j = 1, 2, and lPi(u) < lPj (v) then u ¿ v;

2. If u, v ∈ Pi, i = 1, 2, and lPi(u) = lPi(v) , and u has been met earlier than v in the

direction s1 . . . s2 in Pi, then v ¿ u.

3. If u ∈ P1, v ∈ P2, and lP1(u) = lP2(v), then

3.1. if u is in the oriented path between s1 and t1 in P1, then v ¿ u;

3.2. otherwise, u ¿ v.

Note that t1 has the highest and s2 has the lowest order in ¿. Thus, there is no crossing

pair including arcs s2s2 or t1t1. It is also easy to check that there is no crossing pair between

the other arcs since I(C ′) 6= C0
4 is of the form l+h+, and lP2(u) < lP1(t1) for all u ∈ V (P2);

hence, ¿ is a Min-Max ordering. (see Figure 5.3.)
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It remains to prove that MinHOM(C ′) is NP-hard for all oriented cycles C ′ with some

loops, where I(C ′) is of the form l+h+, and C ′ does not fulfill the conditions of part (b).

Let b0 be the absolute base of C ′. The following lemmas cover this fact.

Lemma 5.2.7 Let C ′ be an oriented cycle with some loops such that I(C ′) is balanced and

of the form l+h+. If a vertex z of C ′, which is neither in VH(PC′
b0

) nor in VL(PC′
b0

), has a

loop, then MinHOM(C ′) is NP-hard.

Proof: It is sufficient by Lemma 5.2.2 to show that MinHOM(C) is NP-hard, where C

is an oriented cycle obtained from C ′ by removing all loops except for the loop of z. Now,

if z is neither a source nor a sink in I(C), then MinHOM(C) is NP-hard by Lemma 5.2.1.

So, we assume that z is either a source or a sink in I(C). Without loss of generality, we

assume that z is a sink in I(C).

Consider the oriented path PC
z = za1a2 . . . anz. For simplicity, let us denote the last

z by z′, i.e., PC
z = za1a2 . . . anz′. Since z is neither in VH(PC

b0
) nor in VL(PC

b0
), we will

always have a unique vertex x 6= z, z′ in PC
z such that l(x) − l(z) = 1, and x is the first

vertex with l(x) − l(z) = 1, met in the direction za1a2 . . . anz′ of PC
z . On the other hand,

there is also a unique vertex x′ such that l(x′) − l(z′) = 1, and x′ is the first vertex with

l(x′) − l(z′) = 1, met in the direction z′an . . . a2a1z of PC
z . Let us now focus on two paths

Pzx = za1a2 . . . aix and Px′z′ = x′aj . . . anz′. Let s (respectively, s′) be an arbitrary vertex

of VL(Pzx) (respectively, VL(Px′z′)). The following cases may happen:

Case 1: Suppose that l(z)− l(s) 6= l(z′)− l(s′)

D is constructed exactly like Case 2 in the proof of Theorem 5.2.3. Note that l(u)−l(v) =

1 in D. If r′ < r (respectively, r < r′), l(x′) − l(y) = 2 (respectively, l(x) − l(y) = 2) as

l(z′)− l(z) = 0; hence condition (b) of Lemma 5.2.1 holds since l(u)− l(v) = 1.

Case 2: Suppose that l(z)− l(s) = l(z′)− l(s′)

D is constructed exactly like Case 3 in the proof of Theorem 5.2.3. Since l(u)− l(v) = 0

and l(w)− l(w′) = 0, condition (b) of Proposition 3.2.7 is not easily implied. However, due

to the existence of x, this condition also holds. In fact, if a homomorphism f of D to C

exists such that f(u) = w, f(v) = w′, it must map the vertices of D to the oriented cycle

between w and w′ in PC
z . Thus, there is a vertex u′ in D, for which we have f(u′) = x, as

x is in the oriented cycle between w and w′. We denote by lD(u), the level of vertex u in

D. It is easy to see that lD(u′) > lD(u), as l(x) > l(w). This is a contradiction since both

P1 and P2 are of type r and no vertex of D has a level more than u. ¦
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Lemma 5.2.8 Let C ′ be an oriented cycle with some loops such that I(C ′) is balanced and

of the form l+h+. If a vertex z of VH(PC′
b0

) (respectively, VL(PC′
b0

)), which is neither t1, nor

t2 (respectively, neither s1 nor s2) has a loop, then MinHOM(C ′) is NP-hard.

Proof: Without loss of generality, assume that z ∈ VH(PC′
b0

), and clearly it is a sink.

Similar to the proof of Lemma 5.2.7, we consider C, which is an oriented cycle obtained

from C ′ by removing all loops but the loop of z.

Consider the oriented path PC
z = za1a2 . . . anz. For simplicity, let us denote the last z

by z′, i.e., PC
z = za1a2 . . . anz′. Since |VH(PC

b0
)| ≥ 3, we will always have a vertex x 6= z, z′

in PC
z such that l(x) − l(z) = 0, and x is the first vertex with l(x) − l(z) = 0, met in the

direction za1a2 . . . anz′ of PC
z . On the other hand, there is another vertex y 6= z, z′ such

that l(y) − l(z′) = 0, and y is the first vertex with l(y) − l(z′) = 0, met in the direction

z′an . . . a2a1z of PC
z . Note that x and y are distinct vertices, as |VH(PC

b0
)| ≥ 3, and both of

them are in VH(PC
b0

), as z ∈ VH(PC
b0

). Let us now focus on two paths Pzx = za1a2 . . . aix and

Pyz′ = yaj . . . anz′. Let s (respectively, s′) be an arbitrary vertex of VL(Pzx) (respectively,

VL(Pyz′)). Without loss of generality, assume that l(z′) − l(s′) ≤ l(s) − l(z). Observe that

neither s nor s′ is in VL(PC
z ), as I(C) is of the form l+h+, and z 6= t1, t2. In other words,

there exists a vertex s′′ ∈ VL(PC
z ), which is in the oriented path Pxy = x . . . y of PC

z .

Let w be the first vertex, met in the direction z′an . . . a2a1z of PC
z , such that l(z′)−l(w) =

l(x) − l(s). It is easy to see that Pwz′ = wai′ . . . anz′, and Psx = saj′ . . . aix are of type

r = l(z′) − l(w), and Pwy = wai′ . . . y, and Psz = s . . . a1z are of type r′ = l(z) − l(s) = r.

Applying Proposition 5.1.1, we can construct two oriented paths P1, and P2 of type r, with

terminal vertices u1, v1, and u2, v2, which map homomorphically to Pwz′ , Psx, and Pwy, Psz,

respectively, such that u1 (respectively, u2) maps to x, and z′ (s, and w), and v1 (respectively,

v2) maps to s and w (z, and y). To construct D, we will join these two oriented paths at

vertex v1 of P1, and u2 of P2. Let u = u1 and v = v2. One can easily check that u, v of D

and x, y, z, z′ of PC
z , which have unique counterparts in C, meet conditions (a), (c), and (d)

of Proposition 3.2.7.

Note that l(u) − l(v) = 0 in D. Since l(x) − l(y) = 0, the condition (b) of Proposition

3.2.7 is not easily implied, as l(u)− l(v) = 0. However, there is no homomorphism, mapping

u to x and v to y due to existence of s′′. In fact, such a homomorphism f maps D to the

oriented path, existing between x and y in PC
z , such that f(u) = x, f(v) = y, and there

is a vertex u′ in D, for which we have f(u′) = s′′ as s′′ is in the oriented cycle between x,
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and y. This way, we must have: lD(u) − lD(u′) = l(x) − l(s′′) = l(z′) − l(s′′), which is a

contradiction since D does not contain u′ with such a level. ¦

Lemma 5.2.9 Let C ′ be an oriented cycle with some loops such that I(C ′) is balanced and

of the form l+h+. If distinct vertices t1 and t2 (respectively, s1 and s2) have loops, then

MinHOM(C ′) is NP-hard.

Proof: Without loss of generality, we prove this lemma for t1 and t2, and we consider

C, which is an oriented cycle obtained from C ′ by removing all loops but the loops of t1,

and t2.

Let z = t1 and x = t2. Consider the oriented path PC
z = za1a2 . . . anz′. Let s be an

arbitrary vertex of VL(Pzx), where Pzx = za1a2 . . . aix. Observe that s 6∈ VL(PC
z ) since

I(C) is of the form l+h+. Hence, there exists a vertex s′, which is in the oriented path

Pxz′ = xai+1 . . . anz′ of PC
z , where l(s)− l(s′) = 1. Among such vertices, we will choose s′ as

the first vertex with l(s)− l(s′) = 1, met in the direction z′an . . . a2a1z of PC
z . Let y be the

first vertex, met in the direction of Ps′z′ = s′ai′ . . . anz′, such that l(y)− l(s′) = l(z)− l(s).

Note that y 6= z′. We will virtually assume a vertex x′ such that x dominates this vertex.

(Note that x = t2 has a loop in C.) It is easy to see that Ps′z′ = s′ai′ . . . anz′, and

Psx′ = saj′ . . . aixx′ are of type r = l(z′) − l(s′), and Ps′y = s′ai′ . . . y, and Psz = s . . . a1z

are of type r′ = r − 1.

Applying Proposition 5.1.1, we can construct two oriented paths P1 of type r and P2 of

type r′, with terminal vertices u1, v1, and u2, v2, which map homomorphically to Ps′z′ , Psx′ ,

and Ps′y, Psz, respectively, such that u1 (respectively, u2) maps to x′, and z′ (s, and s′), and

v1 (respectively, v2) maps to s and s′ (z, and y). One can easily see that all vertices that

these homomorphisms map to x′, can also be mapped to x, since x has a loop in C. Now, we

construct a digraph D, which fulfills the conditions of Proposition 3.2.8. To construct D, we

will join these two oriented paths at the vertex v1 of P1, and the vertex u2 of P2. Let u = u1

and v = v2. Let all ci(u) = 0 apart from ci(u) = +∞, i ∈ V (Pxs′)−{x, s′}, u ∈ V (D), where

Pxs′ = xai+1 . . . s′.

One can easily check that u, v of D and x, y, z, z′ of PC
z , which have unique counterparts

in C, meet the conditions (a), (b), (d), and (e) of Proposition 3.2.8. To show that condition

(c) of this lemma also holds, it is enough to see that there is no homomorphism of D

to C, which maps u to x, and v to y, unless one of the vertices of D maps to a vertex

i ∈ V (Pxs′) − {x, s′}, i.e., the cost of homomorphism is infinity, meeting condition (c) of
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Proposition 3.2.8. Thus, MinHOM(C) is NP-hard. ¦

Lemma 5.2.10 Let C ′ be an oriented cycle with some loops such that I(C ′) is balanced and

of the form l+h+. If s1 and t1 (or s2 and t2) have loops, and |VH(PC′
b0

)| ≥ 2, |VL(PC′
b0

)| ≥ 2,

then MinHOM(C ′) is NP-hard.

Proof: Without loss of generality, we prove this lemma for s1, t1, and we consider C,

which is an oriented cycle obtained from C ′ by removing all loops but the loops of s1, and

t1.

Let z = t1. Consider the oriented path PC
z = za1a2 . . . anz′. Since |VH(PC

b0
)| ≥ 2, we

will always have a vertex x 6= z, z′ in PC
z such that l(x) − l(z) = 0. Among such vertices,

we will choose x as the last vertex with l(x) − l(z) = 0, met in the direction za1a2 . . . anz′

of PC
z . Let s′ be an arbitrary vertex of VL(Pzx), where Pzx = za1a2 . . . aix. Observe that

s′ 6∈ VL(PC
z ), as I(C) is of the form l+h+. Thus, all vertices of VL(PC

z ) are in the oriented

path Pxz′ = xai+1 . . . anz′. One can easily see that s1 is the last vertex of VL(PC
z ), met

in the direction za1a2 . . . apz
′, since s1 is the first vertex of VL(PC

b0
), met in the direction

b0bp . . . b1 of PC
b0

. Let s′′ be the first vertex of VL(PC
z ), met in the direction za1a2 . . . apz. It

is easy to see that s′′ and s1 are distinct as |VL(PC
z )| = |VL(PC′

b1
)| ≥ 2.

It is easy to see that Ps′′x = s′′ . . . ai+1x, and Ps1z′ = s1aj′ . . . apz
′ are of type r =

l(z′)− l(s1).

Applying Proposition 5.1.1, we can construct an oriented path P1 of type r with terminal

vertices u1, v1, which maps homomorphically to Ps′′x, Ps1z′ , such that u1 maps to x, and

z′, and v1 maps to s′′ and s1. Let P2 be an oriented path with terminal vertices u2 and

v2, isomorphic to Pzs′′ = za1 . . . s′′, where u2 maps to s′′, and v2 maps to z with this

isomorphism. To construct D, we will join these two oriented paths at vertex v1 of P1, and

u2 of P2. Let u = u1 and v = v2. One can easily check that u, v of D and x, s1, z, z′ of PC
z ,

which have unique counterparts in C, meet the conditions (a), (c), and (d) of Proposition

3.2.7. Note that when f(v1) = s1, then all vertices of P2 can map to s1.

Observe that l(u) = l(v) in D, and there is a vertex u′ 6= u, v in D, for which l(u′) =

l(u) = l(v). However, the oriented path between x and s1 does not contain any vertex w

with the same level as x, since x was the last vertex with the highest level, met in the

direction za1a2 . . . anz′ of PC
z . Thus, there is no homomorphism of D to C, mapping u to

x, and s1 to v, meeting condition (b) of Proposition 3.2.7. ¦
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Figure 5.4: Hi, i = 1, 2.

Thus, if we have any loop (or a set of loops) which does not satisfy the condition of part

(b) for a balanced oriented cycle with some loops of the form l+h+, then MinHOM(C ′) is

NP-hard by the previous four lemmas. This completes the proof of this theorem. ¦

5.3 Oriented Graphs

Our new dichotomy for oriented cycles with some loops is an important step towards a

MinHOM dichotomy for oriented graphs with some loops. Recall that oriented graphs do

not have ~C2 as an induced subgraph. Thus, oriented graphs with some loops do not have

C2
2 as an induced subgraph. On the other hand, MinHOM(C) is NP-hard for all oriented

cycles C with some loops when λ(C) ≥ 2, except for C = C2
2 by Theorem 5.2.3. Hence, if

an oriented graph H contains an induced oriented cycle C with some loops and λ(C) ≥ 2,

then MinHOM(H) is NP-hard by Proposition 3.2.4 and Theorem 5.2.3. We conjecture that

this fact will also hold when an oriented graph with some loops H contains an irreflexive

oriented cycle C with λ(C) ≥ 2 as an induced subgraph.

Conjecture 5.3.1 Let H be an oriented graph with some loops. If H contains an irreflexive

oriented cycle C with λ(C) ≥ 2 as an induced subgraph, then MinHOM(H) is NP-hard.

Let H be an oriented graph with some loops such that H contains an irreflexive oriented

cycle C, with λ(C) ≥ 2. It is easy to show that H must contain at least one of the following

cases as an induced subgraph: (a) the digraph H1, consisting of C, a vertex z with a loop,

and an oriented path R = za1 . . . anr between z and a vertex r of C; (b) the digraph H2,

consisting of C, a vertex z with a loop, and at least two arcs between z and some vertices
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of C. (See Figure 5.4.) Thus, to show that MinHOM(H) is NP-hard, it is sufficient by

Proposition 3.2.4 to show that MinHOM(Hi), i = 1, 2 is NP-hard. The authors of [65]

have shown that if an irreflexive digraph H has an induced directed cycle of length k and

oriented cycle C of net length n not divisible by k, then MinHOM(H) is NP-hard. Since

loops are special cases of directed cycles (directed cycles with only one vertex), we think

that the same approach used in [65], can be applied to show that MinHOM(Hi), i = 1, 2 is

NP-hard. We conclude that if Conjecture 5.3.1 holds, one should only seek a dichotomy for

oriented graphs having no oriented cycles or having oriented cycles with possible loops C,

with λ(C) ≤ 1.



Chapter 6

Quasi-Transitive Digraphs

Along with semicomplete digraphs and semicomplete multipartite digraphs, quasi-transitive

digraphs are the most studied families of generalizations of tournaments [3]. Thus, it is a

natural problem to seek a dichotomy for quasi-transitive digraphs. As with semicomplete

digraphs and semicomplete multipartite digraphs, structural properties of quasi-transitive

digraphs play a key role in proving this dichotomy. We hope that the study of well-known

classes of digraphs will eventually lead to a proof of full dichotomy for irreflexive digraphs.

A digraph H is quasi-transitive if, for every triple x, y, z of distinct vertices of H such that

xy and yz are arcs of H, there is at least one arc between x and z. In this chapter, we always

assume that H is connected, as otherwise we can study the problem for each component of

H. The following two sections study the tractable and intractable MinHOM(H) for different

quasi-transitive digraphs H.

6.1 Polynomial Cases

Let H be a quasi-transitive digraph. Recall the definitions of extension of H and B(H)

from Section 1.1. The following theorem gives us a sufficient condition for tractability of

MinHOM(H) when H is a quasi-transitive digraph.

Theorem 6.1.1 Let H be a quasi-transitive digraph. Then MinHOM(H) is polynomial

time solvable if H is one of the following digraphs.

• H is
−→
C2

• H is an extension of
−→
C3

61
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Figure 6.1: The obstructions Oi with i = 1, 2, 3, 4

• H is acyclic, B(H) is a proper interval bigraph and H does not contain Oi with

i = 1, 2, 3, 4 as an induced subdigraph. (See Figure 6.1.)

Proof: If H is
−→
C2 or an extension of

−→
C3, then it has a 2-Min-Max ordering or a 3-Min-

Max ordering, and thus MinHOM(H) is polynomial time solvable.

Now assume that H is acyclic. Then, for every triple x, y, z of distinct vertices of H such

that xy, yz ∈ A(H), we must have xz ∈ A(H). Let us call this property the transitivity of

H. We remind the reader of the definitions of bipartite Min-Max ordering, proper bipartite

Min-Max ordering, and proper pairs for B(H) from Chapter 4. For the bipartite graph

B(H) (with a fixed bipartition into white and black vertices), a bipartite Min-Max ordering

is an ordering < such that < is restricted to the white vertices, and < is also restricted to

the black vertices satisfy the condition of Min-Max orderings, i.e., i < j for white vertices,

and s < r for black vertices, and ir, js ∈ E(H), imply that is ∈ E(H) and jr ∈ E(H)). A

pair u, v of vertices of H is proper for < if u′ < v′ if and only if u′′ < v′′ in B(H). We say a

bipartite Min-Max ordering < is proper if all pairs u, v of H are proper for <.

Recall Theorem 4.1.1 that B(H) has a bipartite Min-Max ordering if and only if it is a

proper interval bigraph. We will show that a bipartite Min-Max ordering of B(H) can be

transformed to produce a proper bipartite Min-Max ordering of B(H), and thus a Min-Max

ordering of H. Suppose < is a bipartite Min-Max ordering of B(H) which is not proper.
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That is, there are vertices x′, y′ such that x′ < y′ and y′′ < x′′. In the remaining part of this

proof, we will show that we can always exchange the positions of x′ and y′ or the positions

of x′′ and y′′ in < whenever we have an improper pair x, y and < is a bipartite Min-Max

ordering of B(H).

Suppose that for every pair of vertices c′′ and d′′ such that d′′ < c′′ and x′d′′, y′c′′ ∈
E(B(H)), we have both x′c′′ and y′d′′ in E(B(H)). Then we can exchange the positions of

x′ and y′ in < while perserving the Min-Max property. Furthermore, it can be checked that

this exchange strictly increases the number of proper pairs in H: if a proper pair turns into

an improper pair or vice versa by this exchange, then one of the two vertices of this pair

must be x or y. Clearly the improper pair consisting of x and y is turned into a new proper

pair. Suppose that vertex w constitues a pair with x or y which is possibly affected by the

exchange. Observe that we have x′ < w′ < y′ or y′′ < w′′ < x′′. When w lies between x and

y in both partite sets in B(H), the improper pairs (w, x), (w, y) are transformed to proper

pairs by the exchange of x′ and y′. When x′ < w′ < y′ and w′′ is not between x′′ and y′′,

there is a newly created proper pair and improper pair respectively, which compensate the

effect of each other in the number of proper pairs in H. Similarly, there is no change in

the number of proper pairs of the form (w, x) or (w, y) when y′′ < w′′ < x′′ and w′ is not

between x′ and y′. Hence, the exchange increases the number of proper pairs at least by

one.

Analogously, we can exchange the positions of x′′ and y′′ in < if for every pair of vertices a′

and b′ such that b′ < a′ and a′x′′, b′y′′ ∈ E(B(H)), we have both a′y′′ and b′x′′ in E(B(H)).

This exchange does not affect the Min-Max ordering of B(H) and strictly increases the

number of proper pairs as well.

Suppose, to the contrary, that we performed the above exchange for every improper pair

as far as possible and still the Min-Max ordering is not proper. Then, there must be an

improper pair x and y with x′ < y′, y′′ < x′′ in < which satisfies the following conditions:

1) there exist vertices c′′ and d′′, d′′ < c′′ such that x′d′′, y′c′′ ∈ E(B(H)) and at least one

of y′d′′ and x′c′′ is missing in B(H). 2) there exist vertices a′ and b′, b′ < a′ such that

b′y′′, a′x′′ ∈ E(B(H)) and at least one of b′x′′ and a′y′′ is missing in B(H).

Note that a, d and x are distinct vertices in H since otherwise, the edges a′x′′ and x′d′′

induce
−→
C2 or a loop in H. With the same argument b,c and y are distict vertices in H. On

the other hand, by transitivity of H, the edges a′x′′ and x′d′′ imply the existence of edge

a′d′′ in E(B(H). Similarly, there is an edge b′c′′ in E(B(H)). Note that we do not have



CHAPTER 6. QUASI-TRANSITIVE DIGRAPHS 64

x′x′′ and y′y′′ in E(B(H)) as H is irreflexive.

We will consider cases according to the positions of a′, b′, c′′, d′′ in the ordering <. We

remark the two edges b′y′′ and y′c′′ cannot cross each other. That is, they either satisfy

b′ < y′ and y′′ < c′′, or y′ < b′ and c′′ < y′′, since otherwise there must be an edge y′y′′ by the

Min-Max property, which is a contradiction. Similarly, the two edges a′x′′ and x′d′′ cannot

cross each other, since otherwise there must be an edge x′x′′ by the Min-Max property,

which is a contradiction. Hence we have either x′ < a′ and d′′ < x′′, or a′ < x′ and x′′ < d′′.

If y′ < b′ and c′′ < y′′, then the positions of all vertices are determined immediately so

that we have x′ < y′ < b′ < a′ and d′′ < c′′ < y′′ < x′′. On the other hand, when b′ < y′ and

y′′ < c′′ we can place the edges a′x′′ and x′d′′ in two ways, namely to satisfy either x′ < a′

and d′′ < x′′ or a′ < x′ and x′′ < d′′ due to the argument in the above paragraph. In the

latter case, however, the positions of all vertices are determined as well and this is just a

converse of the case when y′ < b′ and c′′ < y′′. Therefore we may assume that x′ < a′ and

d′′ < x′′ whenever b′ < y′ and y′′ < c′′.

CASE 1 b′ < y′ and y′′ < c′′ (x′ < a′ and d′′ < x′′)

We say that u ≤ v for u, v ∈ V (B(H)) if and only if u < v or u is v. There are the

following cases to consider. We show that in every case we have a contradiction.

Case 1-1 y′ < a′ and d′′ < y′′

The two edges a′d′′, y′c′′ ∈ E(B(H)) imply the existence y′d′′ ∈ E(B(H)) by the Min-

Max property. The edge y′d′′, however, together with b′y′′ ∈ E(B(H)) enforce the edge

y′y′′ ∈ E(B(H)), which is a contradiction.

Case 1-2 y′ ≤ a′ and y′′ ≤ d′′(< x′′)

Case 1-2-1: b′ < x′. We know that a′d′′ ∈ E(B(H)). We can easily see y′d′′ ∈ E(B(H))

since < is a Min-Max ordering. (Note that y′c′′, a′d′′ ∈ E(B(H)).) Now consider the two

vertices c′′, d′′. The existence of y′d′′ ∈ E(B(H)) enforces x′c′′ 6∈ E(B(H)). On the other

hand, however, we must have the edge x′c′′ ∈ E(B(H)) due to edges b′c′′, x′d′′ ∈ E(B(H))

and the Min-Max property, a contradiction.

Case 1-2-2: x′ ≤ b′ < y′. If x′ = b′ or y′′ = d′′ then x′y′′ ∈ E(B(H)) since b′y′′ ∈
E(B(H)) and x′d′′ ∈ E(B(H)). If x′ < b′ and y′′ < d′′, it is easy to see that we have

x′y′′ ∈ E(B(H)) by the Min-Max property. (Note that b′y′′, x′d′′ ∈ E(B(H)).) With

a′x′′, x′y′′ ∈ E(B(H)), the transitivity of H implies a′y′′ ∈ E(B(H)). However, the two

edges y′c′′, a′y′′ ∈ E(B(H)) and the Min-Max property enforce that y′y′′ ∈ E(B(H)), a

contradiction.
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Case 1-3 (x′ <)a′ ≤ y′ and y′′ ≤ d′′(< x′′)

Case 1-3-1: x′′ < c′′. We will show that we cannot avoid having the edge x′c′′ ∈
E(B(H)). Once this is the case, the two edges x′c′′ and a′x′′ imply the existence of edge

x′x′′ ∈ E(B(H)), which is a contradiction.

If x′ ≤ b′, we again easily observe that x′y′′ ∈ E(B(H)) and thus, x′c′′ ∈ E(B(H)) by

transitivity of H and x′y′′, y′c′′ ∈ E(B(H)). On the other hand, when b′ < x′ we have

x′c′′ ∈ E(B(H)) again by the Min-Max property and the two edges b′c′′, x′d′′ ∈ E(B(H)).

Case 1-3-2: c′′ ≤ x′′. We again easily observe that y′x′′ ∈ E(B(H)) by the Min-Max

property and the two edges y′c′′, a′x′′ ∈ E(B(H)).

If x′ ≤ b′, the Min-Max property implies x′y′′ ∈ E(B(H)). Since H does not contain
−→
C2

as an induced subgraph, this is a contradiction.

If b′ < x′, it is again implied that b′x′′ ∈ E(B(H)) by transitivity of H and b′y′′, y′x′′ ∈
E(B(H)). The two edges b′x′′, x′d′′ ∈ E(B(H)) enforce x′x′′ ∈ E(B(H)) by the Min-Max

peoperty, which is a contradiction.

Case 1-4 (x′ <)a′ ≤ y′ and d′′ < y′′

We will show that we cannot avoid having the edge b′x′′ ∈ E(B(H)). Once this is the

case, by focusing on two vertices a′, b′, and the arc b′x′′ ∈ E(B(H)), we can easily see that

a′y′′ 6∈ E(B(H)). On the other hand, however, we must have the edge a′y′′ ∈ E(B(H)) due

to edges a′d′′, b′y′′ ∈ E(B(H)) and the Min-Max property, a contradiction.

If x′′ = c′′, we trivially have b′x′′ ∈ E(B(H)). If x′′ < c′′, the Min-Max property and the

two edges b′c′′, a′x′′ ∈ E(B(H)) imply b′x′′ ∈ E(B(H)). If x′′ > c′′, the Min-Max property

and the two edges a′x′′, y′c′′ ∈ E(B(H)) imply y′x′′ ∈ E(B(H)). For b′y′′, y′x′′ ∈ E(B(H)),

we again have b′x′′ ∈ E(B(H)) by the transitiviety of H. This completes the argument.

CASE 2 y′ < b′ and c′′ < y′′

In this case, we claim that H has one of Oi with i = 1, 2, 3, 4 as an induced sub-

graph. Remember that x′ < y′ < b′ < a′ and d′′ < c′′ < y′′ < x′′. On the other

hand, by transitivity of H, we have a′d′′, b′c′′ ∈ E(B(H)). Since < is a bipartite Min-

Max ordering, {a′x′′, a′y′′, a′c′′, a′d′′, b′y′′, b′c′′, b′d′′, y′c′′, y′d′′, x′d′′} ⊂ E(B(H)). Now by the

primary assumptions on the pairs a′, b′ and c′′, d′′, we have b′x′′, x′c′′ 6∈ E(B(H)); hence

y′x′′, x′y′′ 6∈ E(B(H)) as < is a bipartite Min-Max ordering. It is easy to see from the

set of edges existing in B(H) that a, b, x, y, c, d are distinct vertices in H. Let us define

H ′ = H[{a, b, x, y, c, d}]. As H ′ is acyclic we do not have symmetric arcs in H ′.
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From E(B(H ′)), we have {ax, ay, ac, ad, by, bc, bd, xd, yc, yd} ⊂ A(H ′) and xy, yx, bx, xc 6∈
A(H ′). We can easily see that xb 6∈ A(H ′), since otherwise from xb, by ∈ A(H ′) and the

transitivity of H ′ we must have xy ∈ A(H ′), a contradiction. With the same argument

we see that ba, cx, dc 6∈ A(H ′). Therefore we can only add a subset of S = {ab, cd} to the

previous arc subset of H ′ mentioned above, and each such subset of S makes H ′ isomorphic

to one of Oi with i = 1, 2, 3, 4, via the isomorphism g where g(a) = 1, g(b) = 2, g(x) =

3, g(y) = 4, g(c) = 5, g(d) = 6. ¦

6.2 Complexity

We begin this section with the following lemma showing that MinHOM(H) is NP-hard

when H = Qi, i ∈ {1, 2, 3, 4}, as depicted in Figure 6.1. Recall that the decision version of

MinHOM(H) is the following problem: Given an input digraph D, together with nonnegative

costs ci(u), u ∈ V (D), i ∈ V (H), and an integer k, decide if D admits a homomorphism to

H of cost not exceeding k. An extended decision version of MinHOM(H) allows the costs to

be negative, with a lower bound C, i.e., ci(u) ≥ C, u ∈ V (D), i ∈ V (H). It is easy to see that

the regular and the extended decision versions of MinHOM(H) are polynomially equivalent.

In the following lemma, we show that the extended decision version of MinHOM(H) is

NP-hard when H = Qi, i ∈ {1, 2, 3, 4}, and hence so is the regular decision version.

Lemma 6.2.1 Let H ′ be an arbitrary digraph over vertex set {1, 2, 3, 4, 5, 6} such that

{13, 14, 15, 16, 24, 25, 26, 36, 45, 46} ⊆ A(H ′),

A(H ′) ⊆ {12, 13, 14, 15, 16, 24, 25, 26, 36, 45, 46, 56}.

Let H be H ′ or its converse. Then MinHOM(H) is NP-hard.

Proof: Recall that I3 is the independent set problem for three-partite graphs. We construct

a polynomial time reduction from I3 to MinHOM(H). Let X be a graph whose vertices

are partitioned into independent sets U, V, W , and let k be a given integer. We construct

an instance of MinHOM(H) as follows: the digraph D is obtained from X by replacing

each edge uv of X with u ∈ U, v ∈ V by an arc uv, replacing each edge vw of X with

v ∈ V, w ∈ W by an arc vw, and replace each edge uw of X with u ∈ U,w ∈ W by an arc

umuw, nuwmuw, nuww, where muw, nuw are new vertices. Let us assign the costs as follows:
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c2(u) = 0, c1(u) = 1, c3(v) = 0, c4(v) = 1, c5(w) = 0, c6(w) = 1, c3(muw) = c3(nuw) =

−|V (X)|, ci(muw) = ci(nuw) = |V (X)| for i 6= 3; apart from these, set all costs to |V (X)|.
We now claim that X has an independent set of size k if and only if D admits a homo-

morphism to H of cost |V (X)| − k. Let I be an independent set in D. We can define a

mapping f : V (D) → V (H) as follows:

• f(u) = 2 for u ∈ U ∩ I, f(u) = 1 for u ∈ U − I

• f(v) = 3 for v ∈ V ∩ I, f(v) = 4 for v ∈ V − I

• f(w) = 5 for w ∈ W ∩ I, f(w) = 6 for w ∈ W − I.

When uw ∈ E(X):

• If f(u) = 2, f(w) = 6 then set f(muw) = 6, f(nuw) = 3.

• If f(u) = 1 and f(w) ∈ {5, 6} then set f(muw) = 3, f(nuw) = 1,

One can verify that f is a homomorphism from D to H, with cost |V (X)| − k.

Let f be a homomorphism of D to H of cost |V (X)| − k. Note that we cannot assign

color 3 to both nuw and muw simultaneously due to the arc nuwmuw. Hence, all the costs

cf(u)(u), for the vertices u ∈ V (X) are either zero or one, and for each edge uw ∈ E(X),

the costs cf(muw)(muw) and cf(nuw)(nuw) sum up to zero.

Let I = {u ∈ V (X) | cf(u)(u) = 0} and note that |I| = k. It can be seen that I is an

independent set in D, as if for example uw ∈ E(D), where u ∈ I ∩ U and w ∈ I ∩W then

f(u) = 2 and f(w) = 5, which implies that f(muw) 6= 3 and f(nuw) 6= 3 contrary to f being

a homomorphism of cost |V (X)| − k. ¦
Let us now partition the class of quasi-transitive digraphs into two subclasses: the first

is the class of acyclic quasi-transitive digraphs; the second is the class of quasi-transitive

digraphs having at least one cycle. The following two lemmas cover the NP-hard cases of

for these two subclasses of quasi-transitive digraphs H.

Lemma 6.2.2 Let H be an acyclic quasi-transitive digraph. If B(H) is not a proper interval

bigraph or H contains at least one of Oi with i = 1, . . . , 4 as an induced subgraph, then

MinHOM(H) is NP-hard.

Proof: If B(H) is not a proper interval bigraph then MinHOM(H) is NP-hard by

Proposition 3.2.1. If H contains at least one of Oi with i = 1, . . . , 4 as an induced subgraph,

then MinHOM(H) is NP-hard by Lemma 6.2.1 and Proposition 3.2.4.
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Lemma 6.2.3 Let H be a quasi-transitive digraph which is neither acyclic nor
−→
C2 nor an

extension of
−→
C3. Then MinHOM(H) is NP-hard.

Proof: We can easily observe that H has a directed cycle
−→
Ck = 0, 1, . . . k − 1, 0 for

k ≥ 2. If this cycle is
−→
C2, then there is a vertex k + 1 outside this cycle which is adjacent

with one of the vertices in
−→
C2, as H is connected and is not

−→
C2. Furthermore, the quasi-

transitivity of H enforces k +1 to be adjacent with both vertices in this cycle, and the cycle
−→
C2 together with k + 1 induce a semicomplete digraph. By Theorem 1.2.2 and Proposition

3.2.4, MinHOM(H) is NP-hard in this case. Therefore, we assume that H does not have

any symmetric arc hereafter.

Note that H cannot have an induced cycle
−→
Ck = 0, 1, . . . , k−1, 0 of length greater than 3.

Otherwise, by quasi-transitivity of H a chord appears in the cycle, a contradiction. Hence

we may consider only
−→
C3 as an induced cycle of H. Choose a maximal induced subdigraph

H ′ of H which is an extension of
−→
C3 with partite sets X1, X2 and X3. Clearly such a

subdigraph H ′ exists.

By assumption, we have H ′ 6= H. Hence, there exists a vertex x in H\H ′ which is

adjacent with at least one vertex of H ′. Without loss of generality, suppose that x→1, for

some 1 ∈ X1. As H is quasi-transitive, the vertex x must be adjacent with every vertex of

X2. There are two possibilities.

Case 1. x→2 for some 2 ∈ X2. Then x is adjacent with every vertex 3 ∈ X3 due to quasi-

transitivity. Consider the subdigraph induced by x, 1, 2 and a vertex of X3. MinHOM(H)

is NP-hard by Theorem 1.2.2 and Proposition 3.2.4.

Case 2. X2→x. Then there is an arc between x and each vertex of X1 by quasi-

transitivity. If 1′→x for some 1′ ∈ X1, x is adjacent with every vertex of X3 and MinHOM(H)

is NP-hard by Theorem 1.2.2 and Proposition 3.2.4. Else if x→X1, there is a vertex 3 ∈ X3

which is adjacent with x since otherwise, H ′ ∪ {x} is an extension of
−→
C3, in contradic-

tion to the maximality assumption. Again MinHOM(H) is NP-hard by Theorem 1.2.2 and

Proposition 3.2.4. ¦
The following theorem is the main result for quasi-transitive digraphs which easily follows

from Theorem 6.1.1, Lemma 6.2.2, and Lemma 6.2.3.

Theorem 6.2.4 Let H be a quasi-transitive digraph. Then MinHOM(H) is polynomial

time solvable if H is one of the following digraphs.

• H is
−→
C2
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• H is an extension of
−→
C3

• H is acyclic, B(H) is a proper interval bigraph and H does not contain Oi with

i = 1, 2, 3, 4 as an induced subdigraph.

Otherwise, MinHOM(H) is NP-hard.



Chapter 7

Locally In-Semicomplete Digraphs

The class of locally in-semicomplete digraphs was first introduced in [6] as a generalization

of tournaments. This class contains a wide variety of digraphs ranging from very sparse

digraphs such as a directed path to very dense ones such as semicomplete digraphs. It has

been shown in [3, 4, 5, 6] that the locally in-semicomplete digraphs have very nice properties

leading to a nice reconstruction of them (See Theorem 7.2.4). In this chapter, we verify the

minimum cost homomorphism conjecture for locally in-semicomplete digraphs, the largest

class of irreflexive digraphs for which a dichotomy has been proved. It is worth noting that

the reconstruction of locally in-semicomplete digraphs introduced in [3] plays a key role

towards this dichotomy. This chapter is mostly based on [47].

Recall that a digraph H is locally in-semicomplete if for every vertex x of H, the in-

neighbors of x induce a semicomplete digraph. Throughout this chapter, we always assume

that the fixed digraph H is locally in-semicomplete unless stated otherwise. To show a

MinHOM dichotomy, first of all, we partition the class of locally in-semicomplete digraphs

into three subclasses: the first consists of all strongly connected locally in-semicomplete

digraphs; the second consists of all non-strong locally in-semicomplete digraphs having at

least one directed cycle; the third consists of all acyclic locally in-semicomple digraphs. We

will verify Conjecture 3.1.4 for each of these subclasses separately.

7.1 Strong Locally In-Semicomplete Digraphs

We start to investigate the complexity of MinHOM(H) by considering the strongly connected

case. Due to Proposition 3.2.4, in many cases it suffices to focus on small subgraphs and

70
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Figure 7.1: M1 and M2.

prove that they are NP-hard instead of looking at the whole digraph. In the arguments

which will follow, we shall sometimes omit to mention Proposition 3.2.4 when it is obvious

from the context. The following Lemma has been proved in [54].

Lemma 7.1.1 [54] Let H be a digraph obtained from
−→
Ck = 0, 1, . . . , k − 1, 0, k ≥ 2, and an

additional vertex k. MinHOM(H) is NP-hard if k is dominated by at least two vertices of

the cycle and no other arc exists.

Let M1 and M2 be the digraphs shown in Figure 7.1, obtained from a directed cycle
−→
Ck = 0, 1, . . . , k − 1, 0, k ≥ 2 and an extra vertex k. The following two lemmas are impor-

tant tools for characterizing the strong locally in-semicomplete digraphs H with tractable

MinHOM(H).

Lemma 7.1.2 Let M1 be a digraph obtained from
−→
Ck = 0, 1, . . . k − 1, 0, k ≥ 2, and an

additional vertex k. MinHOM(M1) is NP-hard if there are two consecutive vertices i, i + 1

in
−→
Ck such that i→k and k→i + 1, and no other arc exists.

Proof: Without loss of generality, assume that the vertex k is dominated by k − 1 and

dominates 0. To show that MinHOM(M1) is NP-hard, we construct the digraph D which

fulfills the conditions of Proposition 3.2.5. Let D be the following digraph.

V (D) = {u0, u1, . . . , uk(k+1)−1} ∪ {u′′, v′′, u′, v′, u, v}
A(D) = {uiui+1 : 0 ≤ i ≤ k(k+1)−1}∪{u2k−1u

′, u′u, uk(k+1)−2v
′, v′v}∪{u′′v′′, u′′u0, v

′′u0}
where the addition is taken modulo k(k + 1).

Observe that in any homomorphism f of D to M1, we must have f(u0) = 0. Once

we assign the first k vertices u0, . . . , uk−1 color 0, . . . , k − 1, the vertex uk is assigned with

either color 0 or color k. If we opt for color 0, then through the whole remaining vertices
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uk, . . . , uk(k+1)−1 we must assign these vertices with colors along the k−cycle 0, 1 . . . , k − 1

in M1. Else if we opt for color k, then we must assign the whole remaining vertices with

colors along the (k + 1)−cycle 0, 1 . . . , k in M1. To see this, suppose to the contrary that

we assign the vertices u0, . . . , uk(k+1)−1 in M1 with colors along the k−cycle s times and

with colors along the (k + 1)−cycle t times, where 0 < t < k. Then, we have the following

equation.

k · (k + 1) = s · k + t · (k + 1)

which again implies

(k + 1)(k − t) = s · k
Knowing that the least common multiple of k and k + 1 is k(k + 1), this leads to a con-

tradiction. Hence, (f(u0), . . . , f(uk(k+1)−1)) coincides with one of the following sequences:

(0, 1, . . . , k − 1, . . . , 0, . . . , k − 1): the sequence 0, 1, . . . , k − 1 appears k + 1 times; or

(0, 1, . . . , k, . . . , 0, . . . , k): the sequence 0, 1, . . . , k appears k times.

If the first sequence is the actual one, then we have f(u2k−1) = k − 1, f(u′) ∈ {0, k},
f(u) ∈ {0, 1}, f(uk(k+1)−2) = k − 2, f(v′) = k − 1 and f(v) ∈ {0, k}. If the second

one is the actual one, then we have f(u2k−1) = k − 2, f(u′) = k − 1, f(u) ∈ {0, k},
f(uk(k+1)−2) = k − 1, f(v′) ∈ {0, k} and f(v) ∈ {0, 1}. In both cases, we can assign both

of u and v color 0. Furthermore, by choosing the right sequence, we can color one of u and

v with color 1 and the other with color 0. However, we cannot assign color 1 to both u

and v in a homomorphism. Let y = 0, x = 1. Then x, y, u, v and the digraph D fulfill the

conditions of Proposition 3.2.5. ¦

Lemma 7.1.3 Let M2 be a digraph obtained from
−→
Ck = 0, 1, . . . k − 1, 0, k ≥ 3, and an

additional vertex k. MinHOM(M2) is NP-hard if there are three consecutive vertices i, i +

1, i + 2 such that i→k and k→{i + 1, i + 2}, and no other arc exists.

Proof: Without loss of generality, assume that vertex k is dominated by k − 1 and

dominates 0 and 1. To show that MinHOM(M2) is NP-hard, we construct a digraph D

which fulfills the conditions of Proposition 3.2.5. Let D be defined as in the proof of Lemma

7.1.2.

Observe that in any homomorphism f of D to M2, we must have f(u0) = 0. And

also by the same argument discussed in the proof of Lemma 7.1.2, the vertices of the

k(k +1)−cycle in D must be assigned with vertices either along the k−cycles, 0, 1, . . . , k−1

and k, 1, . . . , k − 1, or the (k + 1)−cycle 0, 1, . . . , k in M2. If the vertices of k(k + 1)−cycle
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in D are assigned with k−cycles in M2, then we have f(u2k−1) = k − 1, f(u′) ∈ {0, k},
f(u) ∈ {0, 1}, f(uk(k+1)−2) = k − 2, f(v′) = k − 1 and f(v) ∈ {0, k}. If the vertices of

k(k +1)−cycle in D are assigned with (k +1)−cycles in M2, then we have f(u2k−1) = k−2,

f(u′) = k− 1, f(u) ∈ {0, k}, f(uk(k+1)−2) = k− 1, f(v′) ∈ {0, k} and f(v) ∈ {0, 1}. In both

cases, we can assign both of u and v color 0. Furthermore, by choosing the right sequence,

we can color one of u and v with color 1 and the other with color 0. However we cannot

assign color 1 to both u and v in a homomorphism. Let y = 0, x = 1. Then x, y, u, v and

the digraph D fulfill the conditions of Proposition 3.2.5. ¦
The next theorem characterizes the tractable cases of strongly connected locally in-

semicomplete digraph.

Theorem 7.1.4 Let H be a strongly connected locally in-semicomplete digraph. Then

MinHOM(H) is polynomial time solvable if H is a directed cycle. Otherwise, MinHOM(H)

is NP-hard.

Proof: If H is
−→
Ck, then it has a k-Min-Max ordering, and thus MinHOM(H) is polynomial

time solvable. Hence assume that H is nontrivial and is not a directed cycle. Then it

contains at least one induced cycle
−→
Ck, k ≥ 2, and a vertex x /∈ V (

−→
Ck) which dominates

at least one vertex, say z, of
−→
Ck. If k = 2, x is adjacent with both vertices of

−→
C2 and

MinHOM(H) is NP-hard by Theorem 1.2.2. If k = 3 then there should be an arc between x

and the vertex z′ of
−→
C3 that dominates z . For any combination of arcs between x and the

third vertex z′′ of
−→
C3, x, z, z′, z′′ induced a digraph which is either O1 or M1 or M2. Thus,

MinHOM(H) is NP-hard. Else if k ≥ 4, the following observations can be made on H since

it is locally in-semicomplete and
−→
Ck is induced.

(a) The vertex x cannot be domintated by more than two vertices of
−→
Ck. Other-

wise
−→
Ck has a chord, contrary to the assumption that

−→
Ck is an induced directed

cycle.

(b) If x is dominated by two vertices of
−→
Ck, then these vertices appear consec-

utively on
−→
Ck. Otherwise

−→
Ck has a chord, leading to the same contradiction as

Observation (a).

By Observation (a), we have the following three cases according to the number of vertices

by which x is dominated by. We show that in each case H inevitably has an induced subgraph

for which the problem is NP-hard.
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Case 1: No vertex of
−→
Ck dominates x.

Recall that x dominates z ∈ −→
Ck. It is straightforward to see that x dominates every

vertex of the cycle since H is locally in-semicomplete. Hence, according to Lemma 7.1.1,

MinHOM(H) is NP-hard.

Case 2: Only one vertex, say y, of
−→
Ck dominates x.

We may assume without loss of generality that z is the only vertex which is dominated

by x among the vertices from the (z, y)-path (meaning the directed path from z to y) on
−→
Ck. Observe that x dominates every vertex of (y, z)-path on

−→
Ck except for y. Consider the

subgraph induced by the union of (z, y)-path on
−→
Ck, x and the immediate predecessor w of

z on
−→
Ck. If y = w, i.e., y→z on

−→
Ck, MinHOM(H) is NP-hard by Lemma 7.1.2. Else if y 6= w

but y→w, MinHOM(H) is NP-hard by Lemma 7.1.3. (Note that we have the converse of

the digraphs introduced in Lemma 7.1.3). Otherwise MinHOM(H) is NP-hard by Lemma

7.1.2.

Case 3: Exactly two vertices, say y1 and y2, of
−→
Ck dominate x.

By Observation (b), we have y1→y2. Again we may assume that z is the only vertex

which is dominated by x among the vertices from the (z, y1)-path on
−→
Ck. Consider the

subgraph induced by the union of (z, y1)-path on
−→
Ck, x and y2. If y2→z, MinHOM(H) is

NP-hard by Lemma 7.1.3. Otherwise MinHOM(H) is NP-hard by Lemma 7.1.2. ¦

7.2 Non-Strong Locally In-Semicomplete Digraphs

Before we start to show a dichotomy for non-Strong Locally in-semicomplete digraphs, let

us define out-branching and path-mergeability. We say that a digraph D is a directed tree if

U(D) (meaning underlying graph of D) is a tree. An oriented tree is a directed tree without

any ~C2. An out-tree is an oriented tree T with only one vertex r of in-degree zero (called

the root of D). A subgraph T of a digraph D is a spanning oriented tree of D if U(T )

is a spanning tree in U(D) and T is an oriented tree. A subgraph T of digraph D is an

out-branching if T is a spanning out-tree of D. The following is a basic characterization of

digraphs with out-branchings.

Proposition 7.2.1 [3] A connected digraph D contains an out-branching if and only if D

has exactly one initial strong component, or equivalently, SCD(D) has only one vertex of

in-degree zero.
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A digraph D is path-mergeable if for any choice of vertices x, y of V (D) and any pair

of internally disjoint (x, y)-paths P ,Q, there exists an (x, y)-path R in D such that V (R) =

V (P ) ∪ V (Q). The following two propositions are due to Bang-Jensen, see [4].

Proposition 7.2.2 [4] Let D be a digraph which is path-mergeable and let P = xx1 . . . xry,

P ′ = xy1 . . . ysy, r, s ≥ 0 be internally disjoint (x,y)-paths in D. The paths P and P ′ can

be merged into one (x,y)-path P ∗ such that vertices from P (respectively, P ′) remain in the

same order as on that path.

Proposition 7.2.3 [4] Every locally in-semicomplete digraph is path-mergeable.

We remind the reader of the definitions of SCD(H) from Chapter 1. SCD(H) is ob-

tained by contracting each strong component Hi of H into a single vertex vi and placing an

arc from vi to vj , i 6= j if and only if there is an arc from Hi to Hj . The next theorem was

first proved for locally in-tournaments in [5] and later slightly modified into a more general

statement in [6].

Theorem 7.2.4 [6] Let H be a connected non-strong locally in-semicomplete digraph. Then

the following holds for H.

(a) Let A and B be distinct strong components of H. If a vertex a ∈ A dominates

a vertex in B, then a→B.

(b) H has only one initial strong component, or equivalently SCD(H) has an

out-branching.

Corollary 7.2.5 Let H be a connected non-strong locally in-semicomplete digraph and con-

sider the strong components of it. If H has a non-trivial initial strong component other than

a directed cycle or a non-trivial non-initial strong component, then MinHOM(H) is NP-

hard.

Proof: By Theorem 7.1.4, every strong component of H must be a directed cycle, otherwise,

MinHOM(H) is NP-hard. Now, suppose a non-initial strong component B is nontrivial, i.e.,

|B| ≥ 2. It follows from Theorem 7.2.4 that there exists a vertex a such that a→B. Choose

an induced cycle C from B and let H ′ be the subgraph induced by V (C) ∪ {a}. Then

MinHOM(H ′) is NP-hard by Lemma 7.1.1. ¦
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Theorem 7.2.4 and Corollary 7.2.5 above tell us that if MinHOM(H) is polynomial time

solvable for a non-strong locally in-semicomplete digraph H, the structure of H is globally

’acyclic’ once we shrink the initial strong component to a vertex.

In the next two subsections we will show that a locally in-semicomplete digraph H for

which MinHOM(H) is polynomial time solvable has a special structure.

7.2.1 Locally In-semicomplete Digraphs Having a Cycle

Let N be the class of connected non-strong locally in-semicomplete digraphs having a non-

trivial directed cycle C as an initial strong component where the other strong components

are trivial.

Lemma 7.2.6 Let O1 be a digraph obtained from a directed cycle
−→
Ck = x1x2 . . . xkx1,

k ≥ 2, and the digraph D with vertex set xk+m, xk+m+1, xk+m+2,m ≥ 0, and arc set

{xk+mxk+m+1, xk+mxk+m+2, xk+m+1xk+m+2} by joining xk to xk+m with the directed path

xkxk+1 . . . xk+m (see Figure 7.2.). Then MinHOM(O1) is NP-hard.

Proof: To show that MinHOM(O1) is NP-hard, we construct the digraph D which fulfills

the conditions of Proposition 3.2.5. Consider the digraph D, shown in Figure 7.2. D consists

of a set of special vertices {u, v, u0}∪{ui, u
′
i : 1 ≤ i ≤ k− 4}∪{v1, v2}, and a set of directed

paths existing between them as follows:

• for every u′i, 1 ≤ i ≤ k − 4, there is a directed path of length m + 2 from ui−1 and a

directed path of length m + 1 from ui to u′i;

• there is a directed path of length m + 2 from uk−4 to u;

• there is a directed path of length k + m− 1 from u0 to v1;

• there is a directed path of length 1 from v2 to v1;

• there is a directed path of length 2 from v2 to v.

Let x = xk+m and y = xk+m+2. In what follows, we show that x, y, u, v and the digraph

D fulfill the conditions (a)-(d) in the Proposition 3.2.5. Let f be a homomorphism with

f(v) = xk+m. Then f(v2) = xk+m−2, f(v1) = xk+m−1, f(u0) = xk. On the other hand

let h be a homomorphism with h(u) = xk+m. Then h(uk−4) = xk−2, h(uk−5) = xk−3, . . .
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Figure 7.2: (a) O1. (b) The digraph D. Note that each arc represents a directed path with
the length marked beside it.

and h(u0) = x2. Hence, condition (b) is satisfied. The followings are homomorphisms that

satisfy conditions (a),(c) and (d).

(a) f(u0) = x3,f(u1) = x4, . . . , f(uk−4) = xk−1 and f(u) = xk+m+2. f(v1) = xk+m+2,

f(v2) = xk+m and f(v) = xk+m+2.

(c) f(ui) = xk for each i and f(u) = xk+m+2. f(v1) = xk+m−1, f(v2) = xk+m−2 and

f(v) = xk+m.

(d) f(u0) = x2,f(u1) = x3, . . . , f(uk−4) = xk−2 and f(u) = xk+m. f(v1) = xk+m+1,

f(v2) = xk+m and f(v) = xk+m+2.

¦
Let O1 and O2 be the family of digraphs, introduced in Lemma 7.2.6 and Lemma 7.1.1,

respectively. The following theorem is the main result of this section.

Theorem 7.2.7 Consider a digraph H ∈ N . If H does not contain any digraph in O1

and O2 as an induced subgraph, then H has a k-Min-Max ordering for some k ≥ 2 and

MinHOM(H) is polynomial time solvable. Otherwise, MinHOM(H) is NP-hard.
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Proof: It is easily derived from Lemma 7.2.6, and Lemma 7.1.1, that if H contains a

digraph in O1 or O2 as an induced subgraph, then MinHOM(H) is NP-hard.

We say that H has a bypass if there exist two vertices u and v in H such that there

are two different directed paths from u to v. First of all, we will show that by excluding

the digraphs in O1 and O2, H has no bypass, and later we will see if H does not have any

bypass, then it has a k-Min-Max ordering, where k is the length of the directed cycle
−→
Ck

which is the initial strong component. (See Corollary 7.2.5.)

Suppose that there exists a pair u, v, which makes a bypass. Note that since
−→
Ck is the

initial strong component, no vertex of H outside of
−→
Ck can dominate the vertices of

−→
Ck.

It follows that v can not be a vertex of
−→
Ck, since if v is a vertex of

−→
Ck, all vertices of two

different paths including u must be a vertex of
−→
Ck, which means there are two different

directed paths from u to v on
−→
Ck, a contradiction.

Let us assume that there are two directed paths P and Q from u to v with sequences

ux1x2 . . . xpv and uy1y2 . . . yqv, respectively. Moreover, we will choose a pair u, v such that

x1 6= y1. Now, two following cases may happen:

Case 1: Either x1 or y1 is a vertex of
−→
Ck.

If x1 is a vertex of
−→
Ck, then we can easily show that u is the predecessor of x1 on

−→
Ck,

while y1 is not a vertex of
−→
Ck. Since a locally in-semicomplete digraph is path-mergeable,

using Proposition 7.2.2, we can find a new (u, v)-path R on H such that it includes all

vertices of P and Q and the vertices of P and Q remain in the same relative order. In the

path R, the vertex x1 must be immediately after u, as otherwise some vertex not in
−→
Ck

dominates it. Thus, there exists a directed path of the form ux1 . . . xiy1, i ≥ 1. If i = 1 then

x1 dominates y1 and we have a digraph in O2 as an induced subgraph. Otherwise, since

H is locally in-semicomplete, u dominates all xj , 1 ≤ j ≤ i including x2, where again H

contains a digraph in O2.

Case 2: Neither x1 nor y1 is a vertex of
−→
Ck.

There is a directed path of length m′,m′ ≥ 0, from a vertex s of
−→
Ck to u since SCD(H)

has an out-branching. On the other hand, with the same argument as Case 1, there must

exist a directed path of the form ux1 . . . xiy1, i ≥ 1 or uy1 . . . yjx1, j ≥ 1. Hence, it follows

that there exists a transitive tournament of length three, a transitive triple, starting from

u as H is locally in-semicomplete. Let us choose a transitive triple, for which the starting

vertex has the minimum distance m,m ≥ 0 from the cycle
−→
Ck. We will refer to this transitive

triple as minimal transitive triple. It is easy to check that the directed path from
−→
Ck to
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u

0 1 2 k−2 k−1

Figure 7.3: H without any bypass.

this transitive triple is an induced path, since otherwise this transitive triple is not minimal.

Moreover, no vertex other than the starting vertex of the path can dominate a vertex of

this path and the minimal transitive triple, as otherwise we have case 1. Hence, H contains

a digraph in O1 as an induced subgraph, a contradiction.

Since H does not have any bypass, H has out-trees T0, . . . , Tk−1, which are the com-

ponents of the digraphs remaining after removing the k arcs of the cycle
−→
Ck as the initial

strong component. Let Tu be the out-tree to which u belongs. (See Figure 7.3.)

Suppose r is a fixed vertex in
−→
Ck. We will denote the vertex, which dominates u by

P (u), and the distance of u from this fixed vertex r of
−→
Ck by l(u) or level of u.

It is easy to see that H retracts to
−→
Ck. In fact, each vertex u ∈ V (Ti) for which

(i + l(u)) ≡ s (mod k) is mapped to the vertex s ∈ −→
Ck in this retraction. Hence we can

partition all vertices of H to k independent sets V1, V2, . . . Vk where Vi consists of the vertices

of H which are mapped to vertex i of
−→
Ck.

Let us order the vertices of each independent set Vi by the linear ordering ¿ as follows:

• if l(u) < l(v), we have u ¿ v.

• if l(u) = l(v), P (u) 6= P (v), and P (u) ¿ P (v), we have u ¿ v.

• if l(u) = l(v) and P (u) = P (v), we arbitrarily order u and v.

It remains to see that this ordering is a k-Min-Max ordering. To do this, we will show

that we can not have the following situation in the ordering: m,n ∈ Vi and r, s ∈ Vi+1,

where m ¿ n, s ¿ r, and mr, ns ∈ A(H).

Suppose such a case occurs. By definition, we know that P (r) = m, and P (s) = n.

Suppose first that l(s) < l(r) then it is trivial to see that l(n) < l(m); hence n ¿ m, contrary

to our assumption that m ¿ n. Suppose next that l(r) = l(s). We have P (r) 6= P (s) and

P (r) ¿ P (s), and so r ¿ s, a contradiction. ¦
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7.2.2 Acyclic Locally In-Semicomplete Digraphs

Let A be the class of connected acyclic locally in-semicomplete digraphs. For any H ∈ A
we have SCD(H) = H. Thus, by Theorem 7.2.4, H, and any induced connected subgraph

of H have an out-branching, and only one vertex of in-degree zero. However, any digraph H

from this family may have multiple out-branchings. We consider a particular out-branching

of H, denoted by T (H), constructed on the same vertex set V (H) recursively as follows: Let

H ∈ A and r be the unique vertex of H of in-degree zero. Let C1, . . . , Ci be the components

of H − r and ri be the unique vertex of Ci of in-degree zero. (Note that each Ci ∈ A.) We

place the arcs rr1, rr2, . . . , rri in T (H) and add to T (H) all arcs of T (C1), T (C2), . . . , T (Ci).

We say that a non-trivial H has one stem (or we also say H is one-stem), if i = 1 in

the above definition for T (H). Otherwise, H is multi-stem. In this subsection, we verify

Conjecture 3.1.4 separately for one-stem and multi-stem H.

The level of a vertex x, denoted by l(x), is the length of the (r, x)-path in T (H). The

parent of a vertex u, denoted by P (u), is a unique vertex which dominates u in T (H). A

child of a vertex u is a vertex v which is dominated by u in T (H). A vertex v is an ancestor

of vertex u, if there is a (v, u)-path from v to u in T (H). For any u, v ∈ V (H), the join

of u and v, denoted by join(u ,v), is the maximum level common ancestor of u and v in

T (H) (Note that this vertex is unique in T (H)). A subjoinv(u) is a vertex w which is in the

directed path between join(u ,v) and u in T (H). The following fact is easily derived from

the definitions.

Observation 7.2.8 Let H be in A and uv ∈ A(H). Then u is an ancestor of v (in T (H)).

Proof: Suppose the contrary that u is not an ancestor of v in T (H). Note that v is

definitely not an ancestor of u on T (H), as otherwise H has a cycle. Thus, neither u nor

v is the ancestor of the other one in T (H). So, there are two disjoint paths P and Q from

join(u,v) to u and v in T (H), respectively. It is easy to see that P and Q are the longest

paths from join(u,v) to u and v in H. Since uv ∈ A(H) and H is path-mergeable, there is

a path R in H from join(u,v) to v such that it includes all vertices of P and Q; hence R is

the longest path from join(u,v) to v in H, contrary to the assumption that Q is the longest

path from join(u,v) to v. ¦
We can easily see by Observation 7.2.8 that if l(u) ≥ l(v) then uv 6∈ A(H). The vertex

v is the minimal dominating ancestor of u in T (H), denoted by MDA(u), if v→u, and for

all vertices v′ 6= v that v′→u, l(v′) > l(v).
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The following lemma proved in [53], is extensively used in this subsection.

Lemma 7.2.9 [53] Let F1 be given by V (F1) = {x1, x2, x3, x4}, A(F1) = {x1x2, x2x3, x3x4,

x1x4, x2x4}. Then MinHOM(F1) is NP-hard.

Since H is acyclic and locally in-semicomplete, the following observation is trivial.

Observation 7.2.10 Let H be in A, uv ∈ A(H) and X be the set of all vertices between u

and v in T (H) (including u and v). If H does not contain F1 as an induced subgraph, then

X induces a transitive tournament in H.

CASE 1: One-Stem Digraphs

As H has only one stem then r can not be the join of any pair u and v in H. So, for

each pair u, v, the join(u, v) has a parent in H. In the following four Lemmas, we assume

that H is in A and it has only one stem.

Lemma 7.2.11 Let T be a transitive tournament with at least two vertices and the unique

source v1, and F2(k) be the digraph obtained from T with k vertices and three other vertices

u1, u2, and u3 such that V (T )→{u1, u2}, (V (T ) − v1)→u3, u1→u2, and there is no other

arc in A(F2(K)). Then MinHOM(F2(K)) is NP-hard.

Proof: See Section 7.3. ¦

Lemma 7.2.12 Let F3 be given by V (F3) = {x1, x2, x3, x4, x5, x6}, A(F3) = A1∪A2, where

A1 = {x1x2, x2x3, x2x4, x3x4, x2x5, x5x6, x2x6} and A2 is any subset of {x1x3, x1x4, x1x5, x1x6}.
Then MinHOM(F3) is NP-hard.

Proof: See Section 7.3. ¦

Lemma 7.2.13 Let F4 denote the family of all digraphs H satisfying all the following

conditions for u, v ∈ V (H):

• l(u)− l(x) = l(v)− l(x) = 2, where x is the join(u,v);

• xu ∈ A(H) \A(T (H));

• l(MDA(P (v))) < l(MDA(P (u))).

Then for any H in F4, MinHOM(H) is NP-hard.
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Figure 7.4: H1. The dashed arcs are missing. There may be additional arcs st, where s is
an ancestor of t in T (H1).

Proof: As l(MDA(P (v))) < l(MDA(P (u))), there is always a common ancestor of P (u)

and P (v) in T (H) such that it dominates P (v) in H, but it does not dominate P (u) in H.

From now on, we will denote P (u), P (v), and this common ancestor by u′, v′, and w. We will

also assume that w has the maximum level among such ancestors in T (H). Let us enumerate

all common ancestors of u′, v′ in T (H) with level more than l(w) by w1, . . . , wk (Note that

wk = x). If H contains F1 as an induced subgraph then MinHOM(H) is NP-hard by

Lemma 7.2.9, otherwise w, w1 . . . , v′, and w1, w2, . . . , u
′ induce two transitive tournaments

by Observation 7.2.10. Since w does not dominate u′, it also does not dominate u by the

same observation. This leads us to the structure shown in Figure 7.4.a, denoted as H1. In

this figure, there may be additional arcs st, where s is an ancestor of t in T (H1). We will

prove in Section 7.3 that MinHOM(H1) is NP-hard.

Lemma 7.2.14 Let F5 denote the family of all digraphs H such that H contains vertices

u, v where l(u) = l(v), and arc wu ∈ A(H) \ A(T (H)), where w is a subjoinv(u). Then for

any H in F5, MinHOM(H) is NP-hard.

Proof: Among such vertices u and v in H, we choose u and v so that they have the

minimum level. Let us enumerate all ancestors of u and v in T (H) from join(u,v) to u and

v by u1, u2, . . . , uk and v1, v2, . . . , vk, k ≥ 2, respectively. (see Figure 7.5.) Depending on

whether vk−1v is in the arc set or not, we will have either H2 or H3 in Figure 7.5. For
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Figure 7.5: (a) H2 (b) H3. The dashed arcs are missing. There may be additional arcs st,
where s is an ancestor of t in T (H2) or T (H3).

the later case H3, if H contains F1 as an induced subgraph then MinHOM(H) is NP-hard

by Lemma 7.2.9, otherwise since vk−1v is missing, no other vertex than vk dominates v by

Observation 7.2.10. In both cases, there may be additional arcs st, where s is an ancestor

of t in T (H2) or T (H3). We will prove in Section 7.3 that MinHOM(H2) and MinHOM(H3)

is NP-hard. ¦

Lemma 7.2.15 Let F6 denote the family of all digraphs H satisfying all the following

conditions for u, v ∈ V (H):

• l(u) = l(v), and P (u) = P (v);

• l(MDA(v)) < l(MDA(u));

• u and v lie respectively on the path P and Q of T (H) such that there is an arc v′v′′ ∈
A(H) \ A(T (H)) on Q, where l(v) ≤ l(v′) = l(v′′) − 2, and a vertex u′ in P , where

l(v′) + 1 = l(u′) = l(v′′)− 1.

Then for any H in F6, MinHOM(H) is NP-hard.

Proof: As l(MDA(v)) < l(MDA(u), there is always a common ancestor of u and v in

T (H) such that it dominates v, but it does not dominate u. From now on, we will denote

this common ancestor by w. We will also assume that w has the maximal level among

such ancestors in T (H). Let us enumerate all common ancestors of u, v, which have level

more that l(w) by w1, . . . , wk. If H contains F1 as an induced subgraph then MinHOM(H)
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is NP-hard by Lemma 7.2.9, otherwise w,w1 . . . , v, and w1, w2, . . . , u induce two transitive

tournaments by Observation 7.2.10. Since w does not dominate u, it also does not dominate

any vertex of P with level more than l(u) by the same Observation. Note that wi also does

not dominate any vertex of P with level more than l(u), as otherwise we will have one of

the forbidden digraphs in Lemma 7.2.13, for which MinHOM(H) is NP-hard. On the other

hand, the directed path p′ from wk to u′ is also an induced path, since otherwise, one of the

digraphs of Lemma 7.2.14 appears. This leads us to a structure like Figure 7.6.a, denoted

as H4. There may be additional arcs st, where s is an ancestor of t in T (H4). We will prove

in Section 7.3 that MinHOM(H4) is NP-hard. ¦

Lemma 7.2.16 Let F7 denote the family of all digraphs H satisfying all the following

conditions for u, v ∈ V (H):

• l(u) = l(v), and P (u) = P (v);

• P (v) dominates a child of v;

• u and v lie respectively on path P and Q of T (H) such that there is an arc v′v′′ ∈
A(H) \ A(T (H)) on Q, where l(v) ≤ l(v′) = l(v′′) − 2, and a vertex u′ in P , where

l(v′) + 1 = l(u′) = l(v′′)− 1.

Then for any H in F7, MinHOM(H) is NP-hard.

Proof: As H has only one stem, there is always a vertex w which dominates join(u,v) in

T (H). We will refer to join(u,v) by x. The directed path P ′ from x to u′ is an induced

directed path, otherwise we will either have F3 or one of the forbidden digraphs of Lemma

7.2.14, for which we already proved MinHOM(H) is NP-hard. If H contains F1 as an induced

subgraph then MinHOM(H) is NP-hard by Lemma 7.2.9, otherwise since P ′ is an induced

directed path, w can not dominate any vertex of P ′ other than w and x by Observation

7.2.10. According to that, we will have one of the structures H5 or H6, shown in Figure

7.6.b or c. There may be additional arcs st, where s is an ancestor of t in T (H5). We will

prove in Section 7.3 that MinHOM(H) is NP-hard, when H is H5 or H6. ¦
We now handle all the forbidden subgraphs from Lemmas 7.2.9, 7.2.11, 7.2.12, 7.2.13,

7.2.14, 7.2.15, 7.2.16. Let F1 = {F1}, F2 = {F2(k) : k = 2, 3, . . .}, F3 = {F3} and

F =
⋃7

i=1Fi. Let us call F the forbidden family.
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between u and u′. (b)H5. (c) H6. There may be additional arcs st, where s is an ancestor
of t in T (H4).
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Theorem 7.2.17 Let H be in A and assume it has one stem. If H does not contain any

digraph in the forbidden family F =
⋃7

i=1Fi as an induced subgraph, then it has a Min-

Max ordering and MinHOM(H) is polynomial time solvable. Otherwise, MinHOM(H) is

NP-hard.

Proof: It is easily derived from Lemmas 7.2.9, 7.2.11, 7.2.12, 7.2.13, 7.2.14, 7.2.15,

7.2.16, that if H contains a digraph in the forbidden family F as an induced subgraph, then

MinHOM(H) is NP-hard.

Now, assume that H does not contain any digraph in the forbidden family F as an

induced subgraph. Let us order the vertices of H by the linear ordering ¿ as follows. Let

u ¿ v if

1. l(u) < l(v), or

2. l(u) = l(v) and P (u) ¿ P (v), or

3. l(u) = l(v), P (u) = P (v), and MDA(u) ¿ MDA(v), or

4. if l(u) = l(v), P (u) = P (v), and MDA(u) = MDA(v)

(a) P (u) dominates a child of u, or

(b) u and v lie respectively on path P and Q of T (H) such that there is an arc

v′v′′ ∈ A(H) \ A(T (H)) on Q, where l(v) ≤ l(v′) = l(v′′)− 2, and a vertex u′ in

P , where l(v′) + 1 = l(u′) = l(v′′)− 1.

Otherwise, order u ¿ v or v ¿ u arbitrarily.

Because H does not contain any of the digraphs in F3,F5, and F7 as an induced sub-

graph, we see easily that if u ¿ v by Rules 4.(a) or 4.(b), then we can not have v ¿ u by

these rules.

Now let us prove that ¿ is a Min-Max ordering. Throughout the remainder of the

proof, we consider two arcs uu′, vv′ ∈ A(H) with u ¿ v and v′ ¿ u′. We will try to derive

uv′, vu′ ∈ A(H).

We claim that at least one of uu′, vv′ is in A(H) \A(T (H)). Indeed, if both of them are

in T (H), then u = P (u′), v = P (v′), Which is easily led to a contradiction by Rules 4.(a)

and 4.(b).

Suppose vv′ ∈ A(T (H)). Then uu′ ∈ A(H)\A(T (H)) by the previous argument and the

path R between u and u′ on T (H) induces a transitive tournament by Observation 7.2.10.
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Note that vertex v cannot be an ancestor of u in T (H) as l(u) ≤ l(v). Now, suppose u is not

an ancestor of v in T (H). Recall that l(u) ≤ l(v), l(u′) ≥ l(v′) and l(u′) ≥ l(u) + 2. Thus,

it easily follows that l(u) = l(v), since otherwise there exists a forbidden subgraph from

F5 including vertices v′, u′′ and arc wu′′ ∈ A(H) \ A(T (H)) where u′′ and w are vertices

in R and l(v′) = l(u′′). Since u ¿ v, we can recursively see that u′′ ¿ v′′ by Rule 2.

Since l(u′′) = l(v′′) and P (u′′) = P (v′′), we must have MDA(u′′) ¿ MDA(v′′), by Rule 3

and 4.(b). This would imply that H contains a digraph from F6 as an induced subgraph.

Therefore, we may conclude that u is an ancestor of v.

There are two cases to consider: (a) v is not in R (b) v is in R. Let us denote join(u′,v′)

by x. In both cases, we claim that l(v′) − l(x) ≤ 2. Otherwise, there are two vertices u1,

and u2 such that l(u2) = l(v′), and u1u2 ∈ A(H) \ A(T (H)), where u1 is a subjoinv′(u2),

leading to a digraph in F5.

In case (a), since v is not in R, we have l(v′) − l(x) = 2. In this case, we also have

l(u′) = l(v′), as otherwise we shall encounter a digraph in F7. Let us denote P (u′) by u′′.

Then u′ ¿ v′ by applying Rule 4.(a) and Rule 2 recursively, unless MDA(v) ¿ MDA(u′′).

If MDA(v) ¿ MDA(u′′), H has a digraph in F4 leading to a contradiction.

In case (b), H has the arc vu′. Suppose we do not have the arc uv′. Then we must

have v = x, as otherwise v′ is an ancestor of u′, i.e., uv′ ∈ A(H) by Observation 7.2.10.

(Note that l(v′) − l(v) = 1 by assumption.) Since uv′ is missing, if l(u′) = l(v′), then

MDA(u′) ¿ MDA(v′), implying that u′ ¿ v′, a contradiction. On the other hand, if

l(u′) > l(v′), we have F2 as an induced subgraph leading to a contradiction.

Finally let us assume vv′ ∈ A(H)\A(T (H)). Then, we must have uu′ ∈ A(H)\A(T (H)),

since l(u) ≤ l(v) ≤ l(v′)−2 ≤ l(u′)−2. Now we can consider P (v′)v′ and vv′′ instead of vv′,

where v′′ is the child of v on the path from v to v′ in T (H). Then the previous argument

for vv′ ∈ A(T (H)) can be applied, which means that we have the arcs uv′ and vu′. ¦
CASE 2: Multi-Stem Digraphs

Let B be the subclass of A consisting of all H ∈ A, such that each stem of H has a Min-

Max ordering. For any multi-stem digraph H 6∈ B, MinHOM(H) is NP-hard by Theorem

7.2.17. So, we should only study the digraphs H ∈ B. It was mentioned before that any

two stems of a multi-stem digraph H only share the root r of T (H) and these stems are

different components of H after removing r. In the following six lemmas, we assume that

H ∈ B, u, v, w ∈ V (H), join(u,v) = join(u,w) = join(v,w) = r, and u, v, w are in different

stems of H.
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Lemma 7.2.18 Let G1 denote the family of all digraphs H satisfying all the following con-

ditions:

• l(u) = l(v) = l(w) = l(r) + 2;

• ru, rv, rw ∈ A(H) \A(T (H)).

Then for any H in G1, MinHOM(H) is NP-hard.

Proof: The digraph H ′ induced by r, u, v, w and the vertices between r and each of u,

v, and w in T (H), is quasi-transitive and MinHOM(H ′) is NP-hard by Theorem 6.2.4. ¦

Lemma 7.2.19 Let G2 denote the family of all digraphs H satisfying all the following con-

ditions:

• l(u)− l(r) > 2, l(v)− l(r) > 2, l(w)− l(r) > 2;

• u′u, v′v, w′w ∈ A(H) \A(T (H)), where u′ 6= r, v′ 6= r, and w′ 6= r.

Then for any H in G2, MinHOM(H) is NP-hard.

Proof: We can easily see that H contains a structure like E1 in Figure 7.7 as an induced

subgraph. The longest paths from r to u, v, and w in E1 are some paths in T (E1). There

may be additional arcs st in the structure, where s is an ancestor of t in T (E1). We will

show in Section 7.3 that MinHOM(E1) is NP-hard. ¦

Lemma 7.2.20 Let G3 denote the family of all digraphs H satisfying all the following con-

ditions:

• l(u)− l(r) > 2, l(v)− l(r) > 2;

• l(w) = max(l(u), l(v));

• u′u, v′v ∈ A(H) \A(T (H)), where u′ 6= r, v′ 6= r.

Then for any H in G3, MinHOM(H) is NP-hard.

Proof: We can easily see that H contains a structure like E2 in Figure 7.7 as an induced

subgraph. The longest path from r to u, v, and w in E2 are some paths in T (E2). There

may be additional arcs st in the structure, where s is an ancestor of t in T (E2). We will

show in Section 7.3 that MinHOM(E2) is NP-hard. ¦
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Lemma 7.2.21 Let G4 denote the family of all digraphs H satisfying all the following con-

ditions:

• l(u)− l(r) > 2, l(v)− l(r) > 2;

• l(w) = max(l(u)− 1, l(v));

• u′u, ru′′, v′v ∈ A(H) \ A(T (H)), where u′ 6= r, v′ 6= r, and u′′ is in the same stem as

u′, where l(u′′)− l(r) = 2.

Then for any H in G4, MinHOM(H) is NP-hard.

Proof: We can easily see that H contains a structure like E3 in Figure 7.7 as an induced

subgraph. The longest path from r to u, v, and w in E3 are some paths in T (E3). There

may be additional arcs st in the structure, where s is an ancestor of t in T (E3). Note that

u′′ is not necessarily in the longest path P between r and u in T (H). In this figure, we have

shown both possibilities. However, at least one of them is sufficient for E3. We will show in

Section 7.3 that MinHOM(E3) is NP-hard. ¦

Lemma 7.2.22 Let G5 denote the family of all digraphs H satisfying all the following con-

ditions:

• l(u)− l(r) > 2, l(v)− l(r) > 2;

• l(w) = max(l(u)− 1, l(v)− 1);

• u′u, ru′′, v′v, rv′′ ∈ A(H) \ A(T (H)), where u′ 6= r, v′ 6= r, u′′ is in the same stem as

u′ with l(u′′)− l(r) = 2, v′′ is in the same stem as v′ with l(v′′)− l(r) = 2.

Then for any H in G5, MinHOM(H) is NP-hard.

Proof: We can easily see that H contains a structure like E4 in Figure 7.7. The longest

path from r to u, v, and w in E4 are some paths in T (E4). There may be additional arcs

st in the structure, where s is an ancestor of t in T (E4). Similar to the proof of Lemma

7.2.21, there are two possibilities for each of u′′ and v′′ in this figure. However, at least one

of them is sufficient for E4. We will show in Section 7.3 that MinHOM(E4) is NP-hard. ¦

Lemma 7.2.23 Let G6 denote the family of all digraphs H satisfying all the following con-

ditions:
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• l(u) = l(v) = l(r) + 2;

• {ru, rv, yw} ∈ A(H) \A(T (H)), where y 6= r;

• there exist two vertices w1 and w2 , where w1 is in the same stem as u, and w2 is in

the same stem as v and l(w1) = l(w2) = l(w).

Then for any H in G6, MinHOM(H) is NP-hard.

Proof: We can easily see that H contains a structure like E5 in Figure 7.7. The longest

path from r to w, w1, and w2 in E5 are some paths in T (E5). There may be additional arcs

st in the structure, where s is an ancestor of t in T (E5). Note that there are two possibilities

for u and v in this figure. However, at least one of them is sufficient for E5. We will show

in Section 7.3 that MinHOM(E5) is NP-hard. ¦
We now handle all the forbidden subgraphs from Lemmas 7.2.18, 7.2.19, 7.2.20, 7.2.21,

7.2.22, 7.2.23. Let us define the forbidden family G =
⋃6

i=1 Gi.

Theorem 7.2.24 Let H be a multi-stem digraph in B. If H does not contain any digraph

in the forbidden family G =
⋃6

i=1 Gi as an induced subgraph, then it has a Min-Max ordering

and MinHOM(H) is polynomial time solvable. Otherwise, MinHOM(H) is NP-hard.

Proof: One can easily see by Lemmas 7.2.18, 7.2.19, 7.2.20, 7.2.21, 7.2.22, 7.2.23 that

if H contains a digraph in G as an induced subgraph then MinHOM(H) is NP-hard. Thus,

we assume that H does not contain any digraph in the forbidden family G as an induced

subgraph.

Let p1, p2, . . . , pl denote all stems of H. We shall explain how to partition the stems into

sets A1 and A2 to obtain a Min-Max ordering ≺ for each of A1 and A2 (preserving ordering

¿ for each stem) and combine them to obtain a Min-Max ordering ¢ for H.

The stems of H can be categorized into four subsets as follows:

• S1 is the set of all stems having only one arc in A(H) \ A(T (H)), and the arc is rv′

with l(v′)− l(r) = 2.

• S2 is the set of all stems having at least one arc uv ∈ A(H) \ A(T (H)) where u 6= r

and not having any arcs of the form rv′ in A(H) \A(T (H)).

• S3 is the set of all stems having two arcs uv, rv′ ∈ A(H) \A(T (H)) where u 6= r, and

l(v′)− l(r) = 2.
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Figure 7.7: (a) E1. (b) E2 with l(w) = max(l(u), l(v)). (c) E3 with l(w) = max(l(u) −
1, l(v)). (d) E4 with l(w) = max(l(u)− 1, l(v)− 1) (e) E5 with l(w1) = l(w2) = l(w). There
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possibilities for u′′ in E3, two possibilities for each of u′′ and v′′ in E4, and two possibilities
for each of u and v in E5.



CHAPTER 7. LOCALLY IN-SEMICOMPLETE DIGRAPHS 92

• S4 is the set of all stems without any arc in A(H) \A(T (H)).

We now define ≺ on a set of stems, preserving ¿ for each stem. We only need to order

vertices u and v, which are in different stems. In the ordering ≺, we will always obey the

following rules:

1. if l(u) < l(v), then u ≺ v.

2. if l(u) = l(v), and P (u) = P (v) = r then

1. if u is a vertex of a stem in S1 ∪ S3, and v is a vertex of a stem not in S1 ∪ S3

then u ≺ v.

2. if u is a vertex of a stem in S2, and v is a vertex of a stem in S4, then v ≺ u.

3. else, order u and v arbitrarily.

3. If l(u) = l(v) and P (u) ≺ P (v), then u ≺ v.

Now, we are going to find a proper partition of stems into A1 and A2 so that ≺ is a

Min-Max ordering for Ai. To do that, first, we will construct a graph G from H which

satisfies the following statement: G is 2-(vertex) colorable if and only if the stems of H

can be partitioned into two families A1 and A2 such that the vertices in each family have a

Min-Max ordering ≺. Second, we will show that if H has no induced subgraph in G, then

the constructed G will be 2-colorable and so the stems can be so partitioned.

For each stem p of H, we introduce two measures s1(p) and s2(p). The first measure

s1(p) denotes the length of a longest path in the stem p. The second measure is defined as

follow.

s2(p) =





∞ if p ∈ S1 ∪ S4;

l(u′) if p ∈ S2

l(u′)− 1 if p ∈ S3

where u′ is a vertex with minimum level among all vertices which are the ending vertices of

some arc uu′ ∈ A(H) \A(T (H)), u 6= r in p.

Suppose ≺ is a Min-Max ordering of the sets A1 and A2. Given two stems p and q with

s1(p) ≥ s2(q) or s1(q) ≥ s2(p), we clearly must have p and q in different Ai.

Now we are ready to give the construction of a graph G from H. The vertex set of G

is {p1, . . . , pl}, i.e., there is a one-to-one correspondence between V (G) and the stems of
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H. Let us denote by S1, . . . , S4 the subset of vertices of G corresponding to the stems in

S1, . . . , S4, respectively. The edge set of G is created as follows.

1. S4 is an independent set.

2. S1 ∪ S3 is a clique.

3. S2 ∪ S3 is a clique.

4. For a pair (p, q) which is not covered in 1,2, and 3, we have (p, q) ∈ E(G) unless

s1(p) < s2(q) and s1(q) < s2(p).

Given the rules for the ordering ≺ of the vertices of each Ai, it is not difficult to check

that two vertices p and q are not adjacent in G if and only if ≺ induces a Min-Max ordering

for the vertices of the corresponding stems p, q in H which belong to the same family Ai.

Note that there is no edge between S1 and S4.

We assert that the length of the largest induced cycle of G is at most 4. Indeed, if there

is an induced cycle C whose length is at least 5, at least one vertex u in C must be from S4.

Otherwise, there are three vertices of C, which are either in S1 ∪ S3 or S2 ∪ S3, i.e., they

make a clique, a contradiction. Since S4 is independent, and there is no edge between S1

and S4, then the neighbors of u are in S2∪S3, i.e., there is an edge between these neighbors;

contrary to the assumption that C is an induced cycle.

In fact, G has no cycle of length 3. Suppose a cycle C consists of three vertices x, y and z.

Then without loss of generality there are the following six possibilities: (a) x, y, z ∈ S1 ∪ S3

(b) x, y, z ∈ S2 ∪ S3 (c) x, y ∈ S2 and z ∈ S1 ∪ S4 (d) x ∈ S2, y ∈ S3 and z ∈ S1 ∪ S4 (e)

x, y ∈ S3 and z ∈ S4 (f) x, y ∈ S1 and z ∈ S2. It is straightforward to see that each of

(a)-(f) leads to a digraph in G1,G2, . . . ,G6, respectively. Therefore G is a bipartite graph,

i.e., 2-colorable.

Let A1 and A2 be the families of stems of H obtained from a 2-coloring of G. It is

clear that for every pair of stems p and q from Ai, ≺ is a Min-Max ordering for the digraph

induced by the vertices of the union of these two stems. Since no arc exists between stems,

the crossing pairs can only have both arcs inside an stem or have one arc in one stem and

the other arc in another stem. Since we have shown before that ≺ is a Min-Max ordering

for each stem and for every pair of stems, then , ≺ is a Min-Max ordering for A1, and for

A2. Note that r comes first in the ordering of both families. It is easy to see that the reverse
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Figure 7.8: (a) F2. The dashed arc is missing. (b) The digraph D. Note that each arc
represents a directed path with the length marked beside it.

of a Min-Max ordering is also a Min-Max ordering. Now, since A1 and A2 do not share any

vertex and arc except the root r that comes first in the ordering ≺ in both families A1 and

A2, it is easy to see the ordering ¢ obtained from ≺ in A1 and the reverse of ≺ in A2 is well

defined for H, i.e., v ¢ r ¢ u for u ∈ A1, v ∈ A2, and it is a Min-Max ordering. ¦

7.3 NP-hardness

Proof of Lemma 7.2.11: Consider the digraph D, shown in Figure 7.8. D consists of a

set of special vertices {u, v, w}, and a set of directed path existing between them as follows.

• there is a directed path of length k from w to v.

• there is a directed path of length 1 from w to u.

Let x = u3 and y = u2. It is easy to see that the conditions of Proposition 3.2.5 are satisfied

for F2 and D with vertices x, y and u, v, respectively. ¦
Recall that I3 denotes the independent set problem for 3-partite graphs: given a 3-

partite graph G and a positive integer k, I3 asks whether G have an independent set of

cardinality at least k.
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Figure 7.9: (a) F3. There may be additional arcs st, where s is an ancestor of t in T (F3).
(b) The digraphs D0, D1, and D2. Note that each arc represents a directed path with the
length marked beside it.

Proof of Lemma 7.2.12: We now construct a polynomial time reduction from I3

to the decision version of MinHOM(F3). Let G be a graph whose vertices are partitioned

into independent sets U, V,W , and let k be a given integer. We construct an instance of

MinHOM(F3) as follows: the digraph D is obtained from G by replacing each edge uv of G

with the digraph D2, replacing each edge uw of G with the digraph D0, and replacing each

edge vw of G with the digraph D1 in Figure 7.9.

The costs are defined by cx5(u) = 0, cx2(u) = 1 for u ∈ U , cx3(v) = 0, cx2(v) = 1 for

v ∈ V , and cx2(w) = 0, cx1(w) = 1, for w ∈ W . All other ci(y) = +∞ for y ∈ V (G). All

ci(y) = 0 for y ∈ V (D)− V (G) apart from cx5(z) = +∞, and cx3(s) = +∞, where z and s

are special vertices of D0, and D1, shown in Figure 7.9.

We now claim that G has an independent set of size k if and only if D admits a homo-

morphism to F3 of cost |V (G)| − k. Let I be an independent set in G. We can define a

mapping f : V (G) → V (F3) as follows:

• f(u) = x5 for u ∈ U ∩ I and f(u) = x2 for u ∈ U − I

• f(v) = x3 for v ∈ V ∩ I and f(v) = x2 for v ∈ V − I

• f(w) = x2 for w ∈ W ∩ I and f(w) = x1 for w ∈ W − I

This is a homomorphism of G to F3 of cost |V (G)| − k.

Let f be a homomorphism of G to F3 of cost |V (G)| − k. Then, all cf(u)(u), u ∈ V (D)

are either zero or one. Let I = {y ∈ V (G) | cf(y)(y) = 0} and note that |I| ≥ k. It can
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Figure 7.10: (a) H1. The dashed arcs are missing. There may be additional arcs st, where
s is an ancestor of t in T (H1). (b) The digraph D.

be seen that I is an independent set in G: for instance when uv ∈ E(G) with u ∈ I ∩ U

and v ∈ I ∩ V , then f(u) = x5 and f(v) = x3, contrary to f being a homomorphism or a

homomorphism of finite cost. (The other possibilities are similar.) ¦
Proof of Lemma 7.2.13: We will construct the digraph D which fulfills the conditions

of Proposition 3.2.6. Let D be the digraph shown in Figure 7.10 , whose vertex set and arc

set are as follows:

V (D) = {u,m1,m2, z1, z2 . . . , zk, v}
A(D) = {m1u, m2m1,m2z1, z1z2, z2z3, . . . , zk−1zk, zkv}
Let all costs ci(t) = 0 for t ∈ V (D) − {u, v}, i ∈ V (H1) a part from cwi(m1) = +∞,

1 ≤ i ≤ k, and cu′′(zk) = +∞. We also have cx(u) = cx(v) = 0, cy(u) = cy(v) = 1,

ci(u) = ci(v) = +∞ for i ∈ V (H1)− {x, y}. Then, there are homomorphisms f1, f2, f3 with

finite costs from D to H1 such that:

• f1(u) = f1(v) = y

The other vertices of D may be mapped by f1 as follows: f1(m1) = v′′, f1(m2) = w,

f1(zi) = wi, 1 ≤ i ≤ k − 1, f1(zk) = v′′.

• f2(u) = x, and f2(v) = y

The other vertices of D may be mapped by f2 as follows: f2(m1) = u′′, f2(m2) = w1,

f2(zi) = wi+1, 1 ≤ i ≤ k − 1, f2(zk) = v′′.
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• f3(v) = x, and f3(u) = y

The other vertices of D may be mapped by f3 as follows: f3(m1) = v′′, f3(m2) = w,

f3(zi) = wi, 1 ≤ i ≤ k,

On the other hand, there is no homomorphism of finite cost, which maps both u, and v

to x. Suppose to the contrary, there exists such a homomorphism f . Since cu′′(zk) = +∞
and f(v) = x, then f(m2) = w. However, as wu′′ is missing and cwi(m1) = +∞, 1 ≤ i ≤ k,

then it is impossible to have f(u) = x. ¦
Proof of Lemma 7.2.14: We now construct a polynomial time reduction from I3

to MinHOM(H2). Let G be a graph whose vertices are partitioned into independent sets

U, V, W , and let k be a given integer. We construct an instance of MinHOM(H2) as follows:

the digraph D is obtained from G by replacing each edge uv of G with the digraph D2,

replacing each edge uw of G with the digraph D0, and replacing each edge vw of G with

the digraph D1 in Figure 7.11.b.

The costs are defined by cx1(u) = 0, cc(u) = 1 for u ∈ U , cy1(v) = 0, cc(v) = 1 for v ∈ V ,

and cc(w) = 0, ca(w) = 1, for w ∈ W . All other ci(y) = +∞ for y ∈ V (G). All ci(y) = 0 for

y ∈ V (D) − V (G) apart from cx1(z) = +∞, and cy1(s) = +∞, where z and s are special

vertices of D0, and D1, shown in Figure 7.11.b.

We now claim that G has an independent set of size k if and only if D admits a homo-

morphism to H2 of cost |V (G)| − k. Let I be an independent set in G. We can define a

mapping f : V (G) → V (H2) as follows:

• f(u) = x1 for u ∈ U ∩ I and f(u) = c for u ∈ U − I

• f(v) = y1 for v ∈ V ∩ I and f(v) = c for v ∈ V − I

• f(w) = c for w ∈ W ∩ I and f(w) = a for w ∈ W − I

This is a homomorphism of G to H2 of cost |V (G)| − k.

Let f be a homomorphism of G to H2 of cost |V (G)| − k. Then, all cf(u)(u), u ∈ V (D)

are either zero or one. Let I = {y ∈ V (G) | cf(y)(y) = 0} and note that |I| ≥ k. It can

be seen that I is an independent set in G: for instance when uv ∈ E(G) with u ∈ I ∩ U

and v ∈ I ∩ V , then f(u) = x1 and f(v) = y1, contrary to f being a homomorphism or a

homomorphism of finite cost. (The other possibilities are similar)

To prove that MinHOM(H3) is NP-hard, we construct an instance of MinHOM(H3) by

replacing each edge uv of G with the digraph D2, replacing each edge uw of G with the
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digraph D0, and replacing each edge vw of G with the digraph D1 in Figure 7.11.d. The

other parts of the proof are similar to MinHOM(H2). ¦
Proof of Lemma 7.2.15: Consider the digraph D, shown in Figure 7.12. D consists

of a set of special vertices {u, v, w}, and a set of directed paths existing between them as

follows.

• There is a directed path of length m from w to v.

• There is a directed path of length m + k from w to u.

Let x = xm and y = ym+1. It is easy to see that the vertices u, v, x, y and the digraph D

fulfill the conditions of Proposition 3.2.5. ¦
Proof of Lemma 7.2.16: Consider the digraph D, shown in Figure 7.13. D consists

of a set of special vertices {u, z1, z2, z3, v}, and a set of directed path existing between them

as follows:

• There is a directed path of length m + 1 from z1 to u.

• There is a directed path of length 2 from z1 to z2.



CHAPTER 7. LOCALLY IN-SEMICOMPLETE DIGRAPHS 100

c) D

m−1

ww

x

x

x

x

y

y

y

y

y

x

x

x

y

y

y

y

y

1

2

m−1

m

1

2

m−1

m

m+1

1

2

m

1

2

m−1

m

m+1

vu z z z1 2 3

m−112m+1

w’ w’’

a) H5 b) H6

x

Figure 7.13: (a) H5. (b) H6. There may be additional arcs st, where s is an ancestor of t
in T (H5) or T (H6). (c) The digraph D. Note that each arc represents a directed path with
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• There is a directed path of length 1 from z3 to z2.

• There is a directed path of length m− 1 from z3 to v.

Let x = xm and y = ym+1. It is easy to see that the vertices u, v, x, y and the digraph D

fulfill the conditions of Proposition 3.2.5. This is also true for H6. ¦
Proof of Lemma 7.2.19: Without loss of generality, we assume that i ≤ j ≤ k in

Figure 7.14 for E1. Let D0, D1 and D2 be the digraphs, shown in Figure 7.14.b and let

x0 = a1, x1 = b1, x2 = c1, y0 = y1 = y2 = r. Then it is easy to see that the digraphs

D0, D1, D2 and the pairs ui, vi and xi, yi for i = 0, 1, 2 fulfill the conditions of Proposition

3.2.9. ¦
Proof of Lemma 7.2.20: Without loss of generality, we assume that i ≤ j in Figure

7.15. Then the proof of Lemma 7.2.19 can be applied to this case as well without any

change. ¦
Proof of Lemma 7.2.21: Let D0, D1 and D2 be the digraphs
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Figure 7.14: (a) E1. i ≤ j ≤ k. There may be additional arcs st, where s is an ancestor of t
in T (E1). (b) The digraphs D0, D1, and D2. Note that each arc represents a directed path
with the length marked beside it.
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• in Figure 7.16.b if, j ≤ i− 1 and E3 is like Figure 7.16.(a) (ra2 exists in the arc set of

H).

• in Figure 7.16.c if, j > i− 1 and E3 is like Figure 7.16.(a) (ra2 exists in the arc set of

H).

• in Figure 7.17.b if, j ≤ i− 1 and E3 is like Figure 7.17.(a) (ra2 does not exist in the

arc set of H).

• in Figure 7.17.c if, j > i − 1 and E3 is like Figure 7.17.(a) (ra2 does not exist in the

arc set of H).

Now let x0 = a1, x1 = b1, x2 = c1, y0 = y1 = y2 = r. Then it is easy to see that the

digraphs D0, D1, D2 and the pairs ui, vi and xi, yi for i = 0, 1, 2 fulfill the conditions of

Proposition 3.2.9. ¦
Proof of Lemma 7.2.22: We know that if rc2 is in the arc set of E4 in Figure 7.18, then

MinHOM(E4) is NP-hard by Lemma 7.2.18. Thus suppose that rc2 is missing. Without

loss of generality, assume that i ≤ j. Let D0, D1 and D2 be the digraphs, shown in Figure

7.18.b and let x0 = a1, x1 = b1, x2 = c1, y0 = y1 = y2 = r. Then it is easy to see that

the digraphs D0, D1, D2 and the pairs ui, vi and xi, yi for i = 0, 1, 2 fulfill the conditions of

Proposition 3.2.9. ¦
Proof of Lemma 7.2.23: We know that if rc2 is in the arc set of E5 in Figure 7.19,

then MinHOM(E5) is NP-hard by Lemma 7.2.18. Thus suppose that rc2 is missing. Let

D0, D1 and D2 be the digraphs, shown in Figure 7.19.b and let x0 = a1, x1 = b1, x2 =

c1, y0 = y1 = y2 = r. Then it is easy to see that the digraphs D0, D1, D2 and the pairs ui, vi

and xi, yi for i = 0, 1, 2 fulfill the conditions of Proposition 3.2.9. ¦
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