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Abstract

Routing and channel assignment is a fundamental problem in computer/communication

networks. In wavelength division multiplexing (WDM) optical networks, the problem is

called routing and wavelength assignment or routing and path coloring (RPC) problem:

given a set of connection requests, find a routing path to connect each request and assign

each path a wavelength channel (often called a color) subject to certain constraints. One

constraint is the distinct channel assignment: the colors (channels) of the paths in the same

optical fiber must be distinct. Another common constraint is the channel continuity: a

path is assigned a single color. When a path may be assigned different colors on different

fibers, the RPC problem is known as the routing and call control (RCC) problem. When

the routing paths are given as part of the problem input, the RPC and RCC problems are

called the path coloring and call control problems, respectively. Major optimization goals

for the above problems include to minimize the number of colors for realizing a given set

of requests and to maximize the number of accommodated requests using a given number

of colors. Those optimization problems are NP-hard for most network topologies, even for

simple networks like rings and trees of depth one. In this thesis, we make the following

contributions. (1) We give better approximation algorithms which use at most 3£ (£ is

the maximum number of paths in a fiber) colors for the minimum path coloring problem in

trees of rings. The 3£ upper bound is tight since there are instances requiring 3£ colors.

We also give better approximation algorithms for the maximum RPC problem in rings.

(2) We develop better algorithms for the minimum and maximum RPC problems on multi­

fiber networks. (3) We develop better algorithms for the call control problem on simple

topologies. (4) We develop carving-decomposition based exact algorithms for the maximum

edge-disjoint paths problem in general topologies. We develop and implement tools for

computing optimal branch/carving decompositions of planar graphs to provide a base for the

branch/carving-decomposition based algorithms. These tools are of independent interests.
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Chapter 1

Introduction

In recent years, Internet traffic has increased enormously due to the various bandwidth­

intensive applications, such as video-conferencing, video-on-demand [106] and peer-to-peer

(P2P) applications [116]. Optical networks, which employ optical fibers as the carrier, can

provide the huge bandwidth needed. The bandwidth of optical fibers is about 50THz, which

is much higher than that of conventional carriers such as copper wires. The huge bandwidth

of optical fibers is usually utilized through multiplexing. Wavelength Division Multiplexing

(WDM) is a multiplexing technology widely used in optical networks. It allows multiple

channels to be carried on the same fiber by assigning a different wavelength to each channel.

A network is called all-optical (or single-hop) network if optical signals remain in optical

form (without conversion to electrical form) from source to destination. A fundamental

problem in all-optical WDM networks (and in circuit-switched networks in general) is that

given a set of connection requests (source-destination pairs) in a network, find a path for

each request (routing) and assign each path a channel such that the paths with the same

channel do not share any communication link in the network (channel assignment). The

problem is also known as the off-line routing and channel assignment problem. In this

thesis, we study the off-line routing and channel assignment problem and related problems

in optical networks.

1



CHAPTER 1. INTRODUCTION 2

1.1 Routing and Wavelength Assignment in WDM Optical

Networks

In all-optical WDM networks, each channel is supported by a wavelength or a color and the

routing and channel assignment is known as routing and wavelength assignment or routing

and path coloring (RPC). We will use the two terms interchangeably. The wavelength

assignment sub-problem has two basic constraints. The first constraint, called distinctive

channel assignment constraint, requires that the paths must be assigned different colors if

they are on the same fiber. The second constraint, called the channel continuity constraint,

requires that each path must be assigned the same color on every link from source to

destination. There are two natural optimization problems. One is to minimize the total

number of colors for accepting and coloring all the given routing requests in a network.

This problem is called the minimum routing and path coloring (Min-RPC) problem. The

other is to select a maximum subset of requests, route and color the selected requests with

a given number of colors. The problem is called the maximum routing and path coloring

(Max-RPC) problem. Algorithms for the Min-RPC problem are important to reduce the

resource required for realizing a set of requests, and they are widely used in network planning

and design stages. Algorithms for the Max-RPC problem are critical for improving the

performances of a network when the resources in the network are not enough to support

all connection requests, and they are widely used in network design and operating stages.

In the Max-RPC problem, each request may be assigned a weight (e.g., the profit obtained

if the request is accepted). The goal is to maximize the total weight of accepted requests.

This generalized problem is called the maximum weight routing and path coloring problem

(weighted Max-RPC). In all the problems defined above, routing paths may be given as part

of the input (i.e., a set of pre-specified paths is given instead of a set of requests), and only

the path coloring sub-problem needs to be solved (we will use "PC" instead of "RPC" in

the abbreviations). All these problems are NP-hard for general networks [92, 105].

The routing and path coloring problems are first studied in single fiber optical networks,

i.e., each link has a single fiber (thus paths with the same color must be edge-disjoint).

Recently, there are renewed interests in the multifiber optical networks. In these networks,

each link e has J..L(e) parallel fibers, and at most J..L(e) paths can use the same color on link e.

Thus, in multifiber optical networks, more than one path may use the same color on a link.

All the problems defined above can be studied in the multifiber environment. The path
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coloring problem in multifiber networks is often referred to as path multicoloring (PMC).

The routing and call control problem is closely related to the routing and path coloring

problem, and can be defined as follows: Given a set R of requests in a graph G = (V, E)

with every edge e E E(G) assigned a non-negative capacity c(e), find a maximum subset

of R such that each request in the subset is assigned a path, and the number of paths on

any edge e is at most c(e). Each request may be given a positive weight, and the goal is to

accept a subset of requests with maximum total weight. When routing paths are given as

part of the input, the problem is simply called the call control problem. The call control

problem can be considered as a variant of the path coloring problem in which a path may

use different colors on difl'erent links (the channel continuity constraint is relaxed) and the

number of available colors on different links may be different. When c(e) = 1 for every

edge e E E(G), the routing and call control problem is called the maximum edge-disjoint

paths (MEDP) problem. The Max-RPC problem with one available color is the same as the

MEDP problem. The maximum edge-disjoint paths with pre-specified paths (MEDPwPP)

problem is the same as the call control problem with c(e) = 1 for every edge e E E(G), or

the Max-PC problem with one available color.

The call control problem is also closely related to the maximum path multicoloring (Max­

PMC) problem in multifiber optical networks. The Max-PMC problem asks to maximize

the number of paths that can be colored by a given number w of colors in a multifiber

optical network. When w = 1, this is simply a maximum edge-disjoint paths problem in a

single fiber network, and is a call control problem (with edge capacity c(e) = p(e) on edge

e) in a multifiber network. Solving the call control problem is an important step towards

solving the Max-PMC problem in the iterative greedy approach.

The routing and path coloring problem and the related problems have been extensively

studied in general topologies and in various special topologies, including the tree, a connected

graph without cycles; the ring, a cycle with at least three nodes; and the tree of rings, a set

of rings connected through a tree structure. The ring and tree of rings are popular topologies

in optical networks. For example, a 140-node metropolitan area network of 12 rings with a

conceptual tree of rings topology has been deployed in Jacksonville, Florida, based on the

Optical Metro 3500 Multiservice Platform of Nortel (see [2, 3] for the conceptual topology).

In this thesis, we focus on the path coloring and call control problems. We study the Min-PC

problem on trees of rings, the Max-RPC problem on rings, the path multicoloring and call

control problems on trees with special properties. We also study the MEDP and Max-PC
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problems on more general topologies. We give details of our studies in the following section.

1.2 Contributions of the Thesis

In this section, we give an outline of the problems that we solved in this thesis. For each

problem considered, we first give the previously known best result, and then show our

contributions. In what follows, a network is a single fiber network (i.e., each link has one

fiber) unless it is explicitly referred to as a multifiber network. An undirected network is

expressed by an undirected graph, and a directed network is expressed by a directed graph.

Optical networks are directed because the optical amplifier, a key element to boost the

optical signals in a fiber, is directed. However, the undirected network model is an abstract

theoretical model, and has been used in many previous studies. In the following discussion,

graphs are undirected unless explicitly stated as directed when we give a specific result on

the problems we are interested in.

1.2.1 Contributions on Special Topologies

We first give the results we obtained on special topologies. Given a set of paths in a network,

the maximum number L of paths on any link of the network is a lower bound on the number

of colors required for coloring the set of paths. For the Min-PC problem, the number of

colors required is often evaluated in the unit of L.

The path coloring problem on trees of rings

A tree of rings is an important topology for optical networks, with several subrings connected

to a main ring, sub-subrings to subrings, and so on, to form a larger network. An algorithm

using at most 4L colors is known for the Min-PC problem on the undirected trees of rings

with arbitrary node degrees [47J. The algorithm has an approximation ratio of 4. A 2­

approximation algorithm is known for a restricted class of trees of rings with maximum

node degree four [44]. A 3L and 2-approximation (resp. 2.5-approximation) algorithm is

given for a restricted class of trees of rings with maximum node degree four (resp. six)

in [25]. It is also shown in [25J that at least 3L colors are needed for some instances in the

trees of rings with degree four. It has been an interesting open problem whether 3L is the

upper bound for the Min-PC problem on the entire class of trees of rings. We settle this
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problem by giving a 3£ algorithm for trees of rings with arbitrary node degrees. We further

give a 2.75-approximation algorithm which improves the previous approximation ratio of 4.

For the restricted class of trees of rings with node degree six (resp. eight and ten), we give a

3£ and 2-approximation (resp. 2.5-approximation) algorithm which improves the previous

results. Our algorithms are based on novel applications of edge-coloring of multigraphs and

efficient local greedy path coloring schemes.

Our algorithms work for directed trees of rings as well, with an upper bound of 6£ (this

improves the 8£ upper bound of [47]).

The Min-RPC problem in trees ofrings has been studied in [92, 105]. Using the cut-one­

link approach, they obtained 3-approximation and 1O/3-approximation algorithms for the

Min-RPC problem in undirected and directed trees of rings, respectively. For undirected

trees of rings with arbitrary degree, our algorithms imply a 3-approximation algorithm

without using the cut-one-link approach.

The maximum routing and path coloring problem on rings

The Max-PC, Max-RPC, weighted Max-PC and weighted Max-RPC problems in rings can

all be approximated with a ratio of 1.58 using the iterative greedy method. Various al­

gorithms aim to improve this ratio. In particular, the Max-PC, Max-RPC and weighted

Max-PC problems in rings can all be approximated with ratios better than 1.5 [33]. We

show that the weighted Max-RPC problem in rings can be approximated with a ratio of

1.5, improving the previous 1.58-approximation result. Our approach is to use a combina­

tion of the cut-one-link method and the maximum matching method introduced in [98] for

approximating the (unweighted) Max-RPC problem in rings.

The path multicoloring problem in generalized stars

A multifiber optical network has more than one fiber per link. If every link has the same

number k of fibers, the network is called a k-fiber network. Otherwise, the network is called

a non-uniform network. For every even k > 1, the path multicoloring problem is known

solvable in polynomial time in a k-fiber undirected star (also known as the depth-1 tree), a

tree in which one node has degree greater than one and all other nodes have degree exactly

one [87, 88]. This should be contrasted to the single fiber case (k = 1), which is NP-hard.

The complexity of the problem for arbitrary odd k (k ~ 3) was not known. We show that
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for every odd k .2: 3, the Min-PMC and Max-PMC problems in a k-fiber star are NP-hard.

The NP-hardness results also hold for a spider (also known as the generalized star), a tree

in which one node has degree more than two and all other nodes have degree one or two. We

give efficient algorithms for the Min-PMC problem in non-uniform stars with even number

of fibers in every link and k-fiber (k even) spiders. We also give a (1 + k~l )-approximation

algorithm for the Min-PMC problem in k-fiber spiders for every odd k .2: 3.

We have some algorithmic results for the Max-PMC problem. We give an optimal

algorithm for the Max-PMC problem in non-uniform stars with even fibers in every link.

We also give an optimal algorithm and a 1.58-approximation algorithm for the Max-PMC

problem in k-fiber (k even) spiders and non-uniform spiders, respectively. The algorithms

for spiders rely on an optimal algorithm for the call control problem.

The call control problem in trees

The call control problem is solvable in undirected stars (depth-1 trees) with arbitrary ca­

pacities, but is NP-hard and Max SNP-hard in depth-3 trees even if the capacities are either

one or two [63]. An interesting question is, what is the boundary to separate the class of

trees for which the call control problem is in P from those for which the problem is NP-hard.

For this question, we have obtained the following results. We show that the call control

problem is NP-hard and MAX SNP-hard even in depth-2 trees with capacities 1 or 2. We

give a polynomial time algorithm for the call control problem in double-stars which are

special depth-2 trees. These results suggest that the boundary is in depth-2 trees, and the

call control problem is in P or NP-hard, depending on the node degrees of the trees. We also

give 2-approximation and 3-approximation algorithms for the weighted call control problem

on depth-2 and depth-3 trees, respectively. This improves the previous 4-approximation

algorithm for the problem on those trees. We show that the call control problem in spiders

can be solved optimally. All of our algorithms depend on a subroutine which optimally

solves the restricted weighted call control problem on arbitrary trees in which all paths

contain a same node of the tree.

1.2.2 Contributions on General Topologies

Results given in Section 1.2.1 are obtained on special topologies. In this section, we first

briefly review the maximum edge-disjoint paths problem, then we show an approach for
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solving the problem in more general topologies.

The maximum edge disjoint paths problem

7

Given a set of k source-destination pairs in a graph G = (V, E), the maximum edge-disjoint

paths (MEDP) problem is to connect as many of these pairs as possible using edge disjoint

paths. The MEDP problem has been known to be NP-hard in directed graphs with only

two terminal pairs [58J. In directed graphs, the MEDP problem is NP-hard to approximate
1

within a factor better than O(IElz-f) unless P = N P [67], and can be approximated with ra-

tio O(min{IVI 2/ 3 , IEI 1/ 2 }) [40J. In undirected graphs, the MEDP problem is solvable for any

fixed k [111], but is NP-hard for general value k. The MEDP problem is hard to approximate

within ratio log~-f IVI for any fixed E > 0 unless NP ~ ZPTIME(IVIPoly(loglVl») [9]. Poly­

logarithmic approximation algorithms are only known for some special topologies. Although

these results are very important theoretically, the hidden constants behind are usually large

and the practical performance of them is unknown but is likely far from optimal. We design

exact algorithms for the MEDP problem in planar graphs. Our algorithms are based on

carving decompositions of the planar graphs.

Branch/Carving decomposition based algorithms

Recently, there has been increasing interest in the tree/branch/carving-decomposition based

method for solving optimization problems. A tree/branch/carving-decomposition of a graph

is a way to partition the graph into pieces recursively. There are two major steps in a

tree/branch/carving-decomposition based algorithm for solving a problem: (1) computing

a tree/branch/carving-decomposition with a small width and (2) applying a dynamic pro­

gramming algorithm based on the decomposition to solve the problem.

To develop a tree/branch/carving decomposition based algorithm, we need a tool to

find a tree/branch/carving decomposition. Step (2) usually runs in time exponential in

the width of the decomposition computed in Step (1). Thus, it is important to compute a

decomposition with small width. Developing such a tool is non-trivial, since deciding the

treewidth/branchwidth/carvingwidth of a general graph is NP-hard [113]. There are good

news for planar graphs. Given a planar graph G with n vertices and an integer {3, Seymour

and Thomas give a decision procedure which decides if G has a branchwidth/carvingwidth

at least (3 in O(n2) time [113].
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We propose efficient implementations of the decision procedure of [113]. Our imple­

mentations run much faster and use less memory than a straightforward implementation

reported in [70], and can compute the branchwidth of some planar graphs with one hundred

thousand edges. We further develop divide-and-conquer algorithms for finding the optimal

branch/carving decomposition of planar graphs. Our decomposition finding algorithms are

much faster than those reported in previous studies [71], and can compute the optimal

branch decomposition of some planar graphs with 50,000 edges. This provides the base for

using the branch/carving decomposition based method to solve optimization problems.

Carving decomposition based algorithm for the MEDP problem

The MEDP problem in directed trees of bounded degree, and the MEDPwPP problem in

bounded degree trees of rings are both optimally solvable. The optimal algorithms are

based on dynamic programming as well. Note that bounded degree trees and bounded

degree trees of rings both have bounded carvingwidth. Furthermore, trees and trees of

rings are both planar. A nature question is, whether the MEDP and MEDPwPP problems

in planar graphs with bounded carvingwidth are optimally solvable? We show that the

maximum edge-disjoint paths problem (with pre-specified paths) can be solved optimally

in planar graphs with bounded carvingwidths. We give a dynamic programming algorithm

based on an optimal carving decomposition of the planar graphs. (For the MEDP and

MEDPwPP problems, and other problems related to path subsets, it seems that the carving­

decomposition is a better choice than the tree/branch-decomposition.) Our experimental

results show that the algorithm can compute a set of maximum edge-disjoint paths with

reasonable load on graphs of practical size. We also show that the maximum path coloring

problem is solvable in graphs with small carvingwidth if the number of available colors is

also small, using carving-decomposition based method.

1.3 Thesis Outline

The rest of the thesis is organized as follows. We give the preliminaries of the thesis and

review some previous work related to path coloring and call control in Chapter 2.

In Chapter 3, we study the path coloring problem on trees of rings. We give an efficient

algorithm which solves the Min-PC problem on a tree of rings with an arbitrary (node)

degree using at most 3£ colors and achieves an approximation ratio of 2.75 asymptotically,
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where £ is the maximum number of paths on any link in the network. The 3£ upper bound

is tight since there are instances of the Min-PC problem that require 3£ colors even on

a tree of rings with degree four. We also give approximation algorithms for the Min-PC

problem on trees of rings with bounded degrees.

In Chapter 4, we first study the call control problem in trees. We show that the call

control problem is NP-hard and MAX SNP-hard even in depth-2 trees with capacities 1

or 2. We then give efficient algorithms for the call control problem in several classes of

bounded depth trees, and the restricted call control problem on arbitrary trees in which all

paths contain a same node of the tree. In the remaining part of Chapter 4, we study the

related maximum path coloring problem. We mainly focus on multifiber optical networks.

We show that for every odd integer k ~ 3, the Min-PMC and Max-PMC problems in k-fiber

stars are NP-hard. We give efficient algorithms for the Min-PMC problem in multifiber

stars and spiders with even number of fibers in every link. We also give several algorithms

for the Max-PMC problems in multifiber stars and spiders. We show that the maximum

weight routing and path coloring problem in rings can be approximated with a ratio of 1.5.

In Chapter 5, we develop efficient algorithms for computing optimal branch/carving

decompositions of planar graphs. We first give several efficient implementations of Seymour

and Thomas decision procedure which, given an integer (3, decides whether an input graph

has the branchwidth at least (3 or not. Our implementations are faster and use less memory

than previous implementations, and can compute the branchwidth of some instances with

one hundred thousand edges. Using the decision procedure as a subroutine, we further

give several divide-and-conquer algorithms for computing optimal branch decompositions of

planar graphs. Our implementations of the divide-and-conquer algorithms are fast and can

compute an optimal branch decomposition of some instances with 50,000 edges.

Exact algorithms for the maximum edge-disjoint paths problem in planar graphs are

given in Chapter 6. We first show that the maximum edge-disjoint paths problem can

be solved optimally in planar graphs with bounded carvingwidths. We give a dynamic

programming algorithm based on an optimal carving decomposition of the planar graphs.

Experimental results show that the algorithm can compute a set of maximum edge-disjoint

paths with reasonable load on graphs with practical size.

We summarize the thesis and discuss directions for future work in the final chapter.



Chapter 2

Preliminaries and Related Work

In this chapter, we will introduce the preliminaries of the thesis and review some related

work. In Section 2.1, we give the graph notation and the definitions for bipartite graph,

matching and graph coloring. These concepts can be found in most graph theory books,

such as [21] and [121]. We also give some well known results on edge-coloring of multigraphs,

and on matching and its generalization. We will define several important parameters related

to the routing and path coloring problem. We will also introduce several popular network

topologies that are frequently used in WDM optical networks. In Section 2.2, we review the

previous results for the routing and path coloring problem and its variants in single-fiber

and multifiber optical networks, and for the routing and call control problem. The network

topologies considered include chains, rings, trees, trees of rings, and meshes.

2.1 Preliminaries

We use standard graph notation which can be found in a graph theory book such as [121].

An undirected network is expressed by a simple undirected graph G with node set V(G)

and edge set E(G), where an edge {u, v} E E(G) expresses a link between u and v. We

use n for IVI and m for lEI. We use b"c(u) for the node degree of u E V(G), and ~(G) =
max{b"c(u)lu E V(G)} for the maximum node degree of G. A vertex coloring of a graph G

is an assignment of colors to the vertices of G such that adjacent vertices are given different

colors. The chromatic number of G is the minimum number of colors required in a vertex

coloring of G.

A circuit of a graph G is a sequence of consecutive edges that begins and ends at the

10
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same node with no repeated edge. A component of a graph G is a maximal connected

subgraph of G. An Euler circuit of a component of G is a circuit which contains all edges

of the component. A component of G has an Euler circuit if every node of the component

has even degree.

We use a path for a simple path in a graph (i.e. a sequence of consecutive edges with no

repeated node). An undirected path between node u and node v is denoted by u - v. The

length of a path is the number of edges in the path. We use length-i path to denote a path

with i edges.

We define some well used topologies here. A chain of n nodes is a path of n - 1 edges. A

tree of n nodes is a connected graph with n - 1 edges. A star is a tree with one node (called

center) having degree greater than one and all other nodes having degree one. A spider

is a graph obtained by replacing every edge in a star by a chain. These chains are called

legs of the spider. Spiders are also called generalized stars. A ring is a cycle with at least

three nodes. The ring is the simplest graph in which routing is an issue. A tree of rings

can be defined recursively as follows: a single ring is a tree of rings; the graph obtained

by connecting a new ring and an existing tree of rings at exactly one node is also a tree of

rings. See Figure 2.1 for examples of the topologies.

Given a path p in a graph G, we say p is on an edge e (resp. a node v) if p contains e

(resp. v). Given a set P of paths in a graph G, for an edge e E E(G) and a subset Q ~ P

we use LQ(e) = I{plp E Q and p is on e}1 and LQ = maXeEE(G) LQ(e) to denote the load of

Q on edge e and the load of Q in G, respectively. We will simply use L(e) and L for Lp(e)

and Lp, respectively, and call L the load. We use w(P) to denote the clique number of P,

i.e., the maximum number of pairwise intersecting paths in P. For a set P of paths, both

Land w(P) are lower bounds on the number of colors required to color P. For a set P of

paths in a graph G, we say P is w-colorable if each path of P can be assigned one of the

w colors and paths with the same color are edge-disjoint. Such a coloring is referred to as

a valid w-coloring. Similarly, a set of routing requests R is said w-colorable if there exists

a set P of paths such that each request in R is assigned one of the paths in P and P is

w-colorable.

Given a set W = {AI, A2, ... } of colors and a set P of paths, a color assignment from W

to P is called a valid coloring if each path in P is assigned a single color from Wand the

paths with the same color are edge-disjoint. Finding a valid coloring for P is also called

coloring P.
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(a) A chain (b) A star (c) A spider

(d) A double star

(e) A ring (f) A tree of rings

Figure 2.1: Some well-used topologies.

A well used strategy for the Min-PC problem is the first-fit coloring: Given a set W =

{AI, A2, ...} of colors and a set P of paths, the paths in P are colored one by one in arbitrary

order, and a path pEP is assigned a color Ai with the smallest index i such that no path

of P\{p} already colored by Ai intersects with p.

Given an undirected graph G = (V, E), we can obtain a symmetric directed graph

D = (V, A) by replacing every edge e E E(G) with two arcs with opposite directions. We

use (u, v) to denote an arc with tail u and head v. We use m for IAI, the number of arcs

in D. We use directed graphs for symmetric directed graphs in this thesis, unless otherwise

stated. A directed path is a sequence of consecutive arcs with no repeated node. We use

u -+ v to denote a directed path from node u to node v. Given a set P of directed paths

in a directed graph D, we can define the load of P on an arc and the load of P in D in a

similar way as in the undirected case. In the following discussion, we will state whether the
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graph under consideration is undirected or directed when we give a specific result on the

problems we are interested in. Other graphs constructed (to help solve these problems) are

undirected unless otherwise stated.

Given a set P of paths in an undirected graph G (resp. directed graph D), the conflict

graph associated with P is the undirected graph Ge(P, Ee) with the node set P such that

each node of Ge corresponds to a path in P and two nodes of Ge are adjacent if and only

if the corresponding paths in P share an edge of G (resp. an arc of D). The path coloring

problem for P in G is equivalent to the vertex coloring problem in the corresponding conflict

graph Ge(P, E e).

An independent set in a graph G is a set of pairwise non-adjacent vertices. A graph G

is bipartite if the node set V (G) is the union of two disjoint independent sets of G. The

clique number of a graph G is the maximum size of a set of pairwise adjacent vertices (called

clique) in G. A matching in a graph G is a set of edges with no shared endpoints. A maximal

matching in a graph is a matching that cannot be enlarged by adding an edge. A maximum

matching is a matching of maximum size among all matchings in the graph. A maximum

matching can be computed in polynomial time, both in bipartite graphs [74] and in general

graphs [91]. The maximum weight cardinality k matching is a maximum weighted matching

of size k. It can also be found in polynomial time [60].

Given a (multi)graph G with vertex set V(G) and edge set E(G), an edge-coloring of G

is an assignment of colors to the edges of G such that every pair of edges incident to the

same vertex are given different colors. We call such an assignment a valid edge-coloring of

G. It is NP-hard to find a minimum edge-coloring of a graph [73]. Recall that .6.(G) is the

maximum degree of G. The following results on edge-coloring are well known.

Proposition 2.1.1 [114J A valid edge-coloring of a multigraph G using at most l3.6.(G)/2j

colors can be found in O(IE(G)I(.6.(G) + IV(G)I)) time.

Proposition 2.1.2 [95J A valid edge-coloring of a multigraph G using at most max{ l (11.6.(G)+

8)/lOj,l(G)} colors can be found in O(IE(G)I(.6.(G) + IV(G)I)) time, where

l(G) = max { L(H) = IlIt~~1~2j 11 H is a subgraph of G with IV(H)I 2: 3}

is a lower bound on the number of colors for the edge-coloring of G.

If the number of nodes of a multigraph G is bounded by a constant, then an optimal
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edge-coloring of G can be computed in polynomial time, using a dynamic programming

approach [46].

Given a multigraph graph G and an integer t, the maximum edge t-coloring problem is

to edge-color a maximum subset of edges of G using at most t colors.

The degree-constrained subgraph (DCS) is a generalization of the matching, and can

be defined as follows. Given a graph G and functions b1 ,b2 : V(G) -+ N (set of non­

negative integers), a DCS is a subgraph M of G such that for each node v E V(G),

b1(v) ::; 15M (v) ::; b2 (v). We call b1(v) and b2 (v) the lower bound capacity and upper

bound capacity of v, respectively. We say a node v is matched by edge e in a DCS if v

is an end-node of the edge e in the DCS. A DCS with the maximum number of edges

can be found (or reported non-existing) in O(V"LvEV(G) b2(v)IE(G)I) time [59]. In the

weighted DCS problem, each edge has a real-valued weight. The goal is to maximize the

total weight of the edges in the subgraph M. A DCS of maximum weight can be found

in O(("LvEV(G) b2(V)) min{jE(G)llog W(G)I, W(GW}) time [59]. The algorithms of [59]

work for multigraphs as well, and a DCS of maximum weight in multigraphs can be found

in O(IE(GW(log W(G)I)(log J-Lmax)) time, where J-Lmax is the maximum edge multiplicity.

The DCS problem is similar to the well-known b-matching problem. For a given function

b: V(G) -+ N, a b-matching is a set M of edges such that the number of edges in M incident

to any node v is at most b(v). See pages 257-259 of [65] for details.

We sayan algorithm is a p-approximation algorithm for a minimization (resp. maximiza­

tion) problem if the algorithm runs in polynomial time and the value SOL of any solution

produced by the algorithm satisfies 6~~ :::; p (resp. ~{;r::; p), where OPT is the value of

an optimal solution. If such an algorithm exists, we say the problem is p-approximable. If

one can show that such an algorithm does not exist, under the commonly believed P =I- N P

or similar conjecture, then the problem is inapproximable up to factor p. In this thesis, if

an algorithm achieves an approximation ratio of Q' + E, for some constant Q' 2: 1 and a small

additive constant E > 0, the running time is usually exponential in 1/E. In particular, a

polynomial time approximation scheme or PTAS is an algorithm that can achieve an ap­

proximation ratio 1 + E, for any fixed E > 0, in time that is polynomial in the input size.

The notion of MAX SNP was introduced in [100]. An optimization problem does not have

PTAS if it is MAX SNP-hard.



CHAPTER 2. PRELIMINARIES AND RELATED WORK

2.2 Previous Work

15

The (off-line) path coloring and call control problems have been extensively studied in both

communication and graph theory communities. There have been rich literatures on these

problems. In this section, we review previous work related to the path coloring and call

control problems. It should be noted that for all problems studied in this thesis, if the graph

considered is a chain, then any algorithm for the undirected chain works for the directed

chain, by considering each direction separately. Similarly, if the graph considered is a ring

and the paths are fixed, then any algorithm for the undirected ring works for directed ring

as well, by considering the clockwise and counter-clockwise directions separately.

2.2.1 The Minimum Path Coloring Problem

The path coloring problem is NP-hard in general graphs. In fact, for every graph G, there

is a set P of paths in a grid-like graph such that the conflict graph of P is isomorphic to G.

Thus, the path coloring problem is in general as hard as the vertex coloring problem. The

vertex coloring problem is hard to approximate with ratio n 1-(, for any fixed f. > 0 [68].

Thus, the path coloring problem is hard to approximate within ratio 1P1 1
-t as well. It makes

sense to develop approximation algorithms for the path coloring problem in special graphs

often found in communications networks. In this section, we review results for the path

coloring problem in chains, trees, rings, trees of rings, and meshes. For trees (chains are

also trees), the PC and RPC problems are the same, since there is a unique path between any

two nodes. For graphs containing cycles, the PC and RPC problems are different because

there might exist more than one way to route a connection request. We will also review the

RPC problem in such topologies.

Min-PC in chains.

Given a set P of paths in an undirected chain, the conflict graph G c of P is an interval

graph (an interval graph is a graph whose nodes correspond to a set of intervals on a chain,

and two nodes are adjacent if and only if the corresponding intervals overlap). Since an

interval graph is a perfect graph, the chromatic number of Gc is equal to the clique number

of Gc [121]. Thus, P has a valid coloring using L colors. There is a simple greedy algorithm

that colors P using L colors: process the nodes in the chain one by one from left to right;

when processing a node v, consider the paths with left endpoint v in an arbitrary order and
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assign a path p a color A such that no path intersecting p is already colored by A [38]. It is

not hard to see that the above algorithm colors P using exactly L colors, since at the time

a path p is colored, no path with left endpoint on the right of v is already colored and at

most L - 1 colored paths intersect p. The Min-PC problem in directed chains can be solved

by considering each direction separately. The algorithm for path coloring in chains is often

used as a subroutine for path coloring in more complex topologies.

Min-PC in trees.

The Min-PC problem in trees has received much attention in the past decade. The Min­

PC problem in undirected stars is known to be equivalent to the edge-coloring in multi­

graphs [105], a well-studied problem in graph theory community. Since the edge-coloring

problem in multigraphs is NP-hard, the Min-PC problem in undirected stars (thus undi­

rected trees) is also NP-hard. The Min-PC problem in undirected stars remains NP-hard

even if the given set of paths has load L = 3 [48, 82]. Similar result holds for the directed

case: the Min-PC problem in directed trees (with depth at least 2) remains NP-hard even if

the given set of paths has L = 3 [48, 82]. The proofs use reductions from the edge-coloring

problem in graphs with maximum degree three [73].

Before we discuss various algorithms for the Min-PC problem in undirected and directed

trees, we will give a general framework of these algorithms. All known deterministic algo­

rithms for the Min-PC problem in trees are greedy in the sense that they process the nodes

of the tree in a breadth first search (BFS) order, and paths are never re-colored once they

are colored. The algorithms work as follows: do a breadth first search of the nodes start­

ing from an arbitrary node of the tree, then process the nodes in this BFS order. When

processing a node u, paths on nodes with BFS number strictly smaller than u are already

colored, and their colors will not be changed; all uncolored paths on u are colored and colors

are re-used as much as possible, according to some scheme. This color reusing scheme is

important and differs for different algorithms.

It was proved in [48] and [105] that the Min-PC problem in undirected trees can be

reduced to the edge-coloring problem in multigraphs. There is a greedy algorithm that

accomplishes such task. Suppose we process the nodes of the tree according to the BFS

order defined above, and we are now processing node u. Let v be the parent of u. All

paths on v are already colored. We are now coloring the paths on u, and they can be

colored by reducing to the edge-coloring problem. Let pi be the set of paths on u that are
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Figure 2.2: (a) A 3L/2 lower bound on undirected trees; (b) A 5L/410wer bound on directed
trees.

already colored. Their colors cannot be changed. However, paths in pi are on the edge

(u, v) and thus must have been assigned distinct colors. In any valid edge-coloring of the

graph constructed from the paths on u, the edges corresponding to paths in pi are assigned

different colors. Thus, having pre-colored paths pi does not complicate the edge-coloring.

From the above discussion, one can see that any approximation algorithm for the edge­

coloring problem can be used as an algorithm for the Min-PC problem in undirected trees,

with the same performance guarantee. In particular, an asymptotic 1.1-approximation al­

gorithm follows from the edge-coloring algorithm of [95]. Note that the Min-PC problem in

bounded degree undirected trees can be solved optimally since the edge-coloring problem in

multigraphs with constant number of vertices can be solved optimally in polynomial time

using a dynamic problem approach (see Theorem 3.1.7 of [46]). For a set P of paths in an

undirected tree, there is a valid path coloring of P using at most l3L /2J colors [105]. This

result follows from Shannon's edge-coloring bound and the equivalence of path coloring in

undirected trees and edge-coloring in multigraphs. The l3L/2J bound is tight. Consider

for example an undirected 3-star with three paths each of which connects a different pair of

leaf nodes (see Figure 2.2(a)). The paths have load two but need three colors. The bound

also holds for arbitrarily large load, by adding duplicate paths.

The Min-PC problem in directed trees is somewhat different. The Min-PC problem in

directed spiders can be solved optimally in polynomial time. In fact, a stronger result is

known: for a set P of directed paths in a directed tree D, P can be colored by L colors if

and only if D is a directed spider [64, 122]. The Min-PC problem in directed binary trees

is already NP-hard [48]. The reduction is from circular arc graph coloring. The Min-PC

problem remains NP-hard in directed trees of depth-2 even if the given set of paths has load
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three [48, 82]. The Min-PC problem remains NP-hard in directed trees of depth-3 even if

the given set of paths has load two [47J. On the positive side, it was proved in [75] that in

a directed tree, any set P of paths can be colored by at most f5L/31 colors. The algorithm

has asymptotic approximation ratio 5/3. It works in a greedy way, as described before.

When processing a node u, it extends the partial coloring to include all the paths on u. In

doing so, it reduces the problem to the edge-coloring problem of a bipartite graph, in which

some edges are already colored.

No local greedy algorithm can do better than 5L/3. The following result was given

in [52]: Let A be a deterministic greedy Min-PC algorithm in directed trees. There exists

an algorithm called ADV which, on any input 8 > 0 and integer L > 0, outputs a binary

directed tree T and a pattern of communication requests P of load L on T, such that A

colors P with at least (5/3 - 8)L colors.

For directed binary trees, a better randomized algorithm is known. It was proved in [16]

that any set P of paths in a directed binary tree can be colored by at most 7L/5 colors

with high probability (thus the algorithm has approximation ratio 7/5). Better approxi­

mation algorithms are also known for bounded degree directed trees. It was proved in [35]

that there exist randomized 1.511 + o(I)-approximation and 1.336 + o(I)-approximation

algorithms for the Min-PC problem in bounded degree directed trees and binary directed

trees, respectively, providing that the load is not small. The 1.511 + 0(1 )-approximation

algorithm improves a previous 1.61 + o(I)-approximation algorithm of [34]. The algorithms

in [34] and [35] first formulate the Min-PC problem as an integer linear program (ILP),

then solve the relaxed linear program (LP) optimally, and get an integral solution through

randomized rounding. This approach has also been used by other researchers to obtain

good approximation algorithms for many other problems, such as the edge-disjoint paths

problem [40, 41]. It works as follows. For a valid coloring of a set of paths, the paths with

the same color are edge-disjoint. Thus, the Min-PC problem can be rephrased as covering

all the paths with the minimum sets of edge-disjoint paths. It can be formulated as follows:

Minimize

Subject to

LIEI x(I)

LIEI:PEI x(I) ~ 1,

x(I) E {O, I},

pEP

lET.

where T denotes the collection of all sets of edge-disjoint paths. This integer linear program

is NP-hard to solve. One can relax the integral constraint to 0 S x(I) S 1. The relaxed



CHAPTER 2. PRELIMINARIES AND RELATED WORK 19

linear program is the formulation for the fractional path coloring problem, which is to color

a set of paths with fractional colors such that the sum of the fractional colors assigned

to any path is at least one. The fractional path coloring problem is NP-hard in general as

well [65], but is solvable for some graphs (in particular, undirected rings and bounded degree

directed trees). The fractional solution can then be rounded to get an integral solution using

randomized rounding techniques introduced in [104].

On the lower bound side, it was proved in [85] that there is a set P of paths with load

L in a directed binary tree such that any valid coloring of P requires at least 5L/ 4 colors.

This lower bound is for all kinds of algorithms, deterministic or randomized, greedy or

non-greedy. In Figure 2.2(b), each arrow represents L/2 paths. There are 5 arrows which

represent a total of 5L/2 paths. No more than two paths can be assigned the same color,

thus at least 5L/ 4 colors are needed. Closing the gap (between the 5L/ 4 lower bound and

the 5L/3 upper bound) is an interesting and challenging open problem.

The special case of symmetric paths in directed trees was studied in [36]. For any two

nodes sand t, the two directed paths s --+ t and t --+ s are called symmetric. A set of

directed paths is called symmetric if it can be partitioned into pairs of symmetric paths. If

each pair of symmetric paths is assigned the same color, a set of symmetric paths can be

colored using the 3L/2 algorithm for undirected trees. In this way, a 3L/2 upper bound can

be obtained for the case of symmetric paths. If the two symmetric paths are not required

to use the same color, then a 1.367L + o(L) upper bound is known for directed binary

trees [37]. This is better than the 7L/5 bound for directed binary trees in which paths are

not symmetric. In general, however, it is not known whether the Min-PC problem is easier

if the set of paths is restricted to be symmetric. In particular, no better lower bound is

known in the symmetric case. Caragiannis et al. showed that for every 0 > 0, there exists

an integer l > 0, a directed binary tree and a set P of symmetric paths on the tree with

load L = 4l such that no algorithm can color P using less than (5/4 - o)L colors [36].

Min-PC in rings.

The Min-PC problem in undirected rings is NP-hard [61]. The Min-PC problem in undi­

rected rings is also known as circular arc graph coloring, since the conflict graph is a circular

arc graph (a circular arc graph is a graph whose nodes correspond to a set of paths on a

ring, and two nodes are adjacent if and only if the corresponding paths overlap). It was

shown in [118] that any set P of paths with load L in an undirected ring can be colored by
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Figure 2.3: (a) A 2L - 1 lower bound on undirected rings; (b) A ~w(P) lower bound on
undirected rings.

2L - 1 colors. The algorithm is very simple: select one node v which is an end-node of some

paths, and color the paths with v as an internal node using at most £ - 1 colors, and the

remaining paths (which are on an undirected chain) using at most £ colors. The algorithm

has an approximation ratio of 2 since £ is a lower bound on the number of colors required

for any optimal solution. The 2£ - 1 upper bound is tight, since there are instances that

require this many colors. For example, consider five paths which are pairwise intersecting

and cover the whole ring (see Figure 2.3(a». The load is three, but five colors are needed.

For any integer £ ~ 2, it is easy to construct a set P of paths with load £ such that 2L - 1

colors are needed to color P.

A generalization of the 2£ - 1 upper bound is known. Let l be the minimum number of

paths in P that are needed to cover the whole ring. Tucker showed that if l ~ 4, then l ~£ J
colors suffice to color P [118]. This result is further generalized in [119]. It was shown that

if l ~ 5, then r(:=~)£1colors suffice to color P, and this bound is tight.

A better deterministic approximation algorithm is known. It was proved in [77] that

any set P of paths in an undirected ring can be colored by ~w(P) colors. The algorithm has

approximation ratio 1.5, which is the current best ratio among all deterministic algorithms.

Roughly speaking, the algorithm works as follows. Let £ be the load of the given set P of

paths. The algorithm first chooses l~J sets of paths along the clockwise direction of the

ring, and then chooses at most £ sets of paths along the counter-clockwise direction of the

ring. Each of these sets contains a set of edge disjoint paths and thus can be colored by
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a single color. If there is no path left during the two phases, then obviously at most l ~LJ
colors are used. Otherwise, more than l~LJ colors are needed, but it was shown that the

clique number w(P) of the set P of paths is greater than L and at most ~w(P) colors are

needed. The ~w(P) upper bound is also tight. Consider a set of five paths as shown in

Figure 2.3(b). The conflict graph is a pentagon which has a maximum clique of size two,

but has chromatic number three.

The current best (randomized) approximation algorithm for the Min-PC problem in

undirected rings achieves an asymptotic approximation ratio of 1 + lie (about 1.37) with

high probability, if the load is not small [84]. The algorithm first transforms the problem

into an integral multi-commodity flow problem, then solves the relaxed linear programming

problem, and finally obtains a solution using a randomized rounding technique introduced

in [104]. Caragiannis et al. obtained the following generalized result: if the load is not

small, there exists a polynomial time randomized algorithm which has approximation ratio

1 + In(:=~) + 0(1) with high probability, where l is the minimum number of paths required

to cover the ring [35].

The Min-PC problem in directed rings can be solved similarly by considering each di­

rection separately, since the paths are fixed.

Min-RPC in rings.

As mentioned before, the ring is the simplest graph in which routing is an issue. The

routing and path coloring problem seems to be harder than the path coloring sub-problem

alone (for many topologies other than tree). In fact, it is not clear how to simultaneously

solve the routing problem and the path coloring problem. Most algorithms solve the two

sub-problems in two steps: first the requests are routed, then the obtained paths are colored.

The Min-RPC problem is NP-hard for both undirected and directed rings [48]. The

Min-RPC problem in undirected rings was studied in [105], and the problem in directed

rings was studied in [92]. They proposed the following method: remove an arbitrary link

from the ring and obtain an chain, then route (uniquely) all the requests on the chain, and

color the paths using the optimal path coloring algorithm for chains. This approach has

an approximation ratio of two (for both undirected and directed rings). Suppose the paths

routed on the chain have load L and thus are colored by L colors. Consider an edge e on the

chain with load L. Any optimal algorithm (for the Min-RPC problem on rings) has to route

the requests corresponding to paths on e along one of the two possible routes on the ring.
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This results in a load of at least rL/21 on the ring and thus requires at least rL/21 colors.

Better approximation algorithms are known for undirected rings. In particular, Kumar gave

an algorithm which uses at most OPT· (1.5 + 1/2e + 0(1)) + O( ";OPT ·In n) colors with

high probability [83]. The approximation ratio is close to 1.5 + 1/2e if OPT is large, but

may be greater than 2 if OPT is not large enough. Cheng gave an approximation algorithm

which has an approximation ratio of 2 - 1/8(log n) with high probability [42]. This value

holds for all values of OPT, although asymptotically it is not better than Kumar's. We

are not aware of any deterministic algorithm which achieves a constant approximation ratio

strictly better than 2.

Min-PC in trees of rings.

The Min-PC problem in trees of rings is clearly NP-hard, since a ring is the simplest tree of

rings, and the Min-PC problem in rings is NP-hard, for both undirected and directed cases.

The Min-PC problem in undirected trees of rings was first studied in [44J. They gave a

2-approximation algorithm for undirected trees of rings of maximum degree four (i.e., each

node can be contained in at most two rings). Erlebach showed that a set P of paths on an

undirected tree of rings TR can be colored by at most 4L colors [47J. The 4L algorithm can

be extended to work for directed trees of rings, with an upper bound of 8L. His algorithm

works as follows.

Algorithm GreedyColoring (TR, P):

1. Initially, all paths are uncolored.

2. Process each node u of TR in a depth first search (DFS) order starting from an

arbitrary node s E V as follows:

Let Pu be the set of uncolored paths on u. Assign every path p of Pu , in arbitrary

order, the color A with the smallest index (break tie arbitrarily) such that no path

intersecting p is already colored by A.

The coloring strategy used for Pu in the algorithm is the first-fit stmtegy. Although the

first-fit approach is simple (and effective sometimes), it is not always the best possible. It

was shown in [25] that a set P of paths on an undirected tree of rings with maximum degree

eight can be colored by at most 3L colors. The 3L algorithm is based on a processing order

first proposed by Erlebach [47], and a better color reusing strategy when processing each
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node. They further gave a 2-approximation algorithm for undirected trees of rings with

degree at most four and a 2.5-approximation algorithm for undirected trees of rings with

degree at most six.

There are instances that require 3£ colors even on undirected trees of rings with max­

imum degree four [25]. An example of such instances is as follows: Let P = A u B u C u
DuE u F be the set of paths, with each subset having £/2 (£ is even) paths, as shown in

Figure 2.4. The maximum number of paths on any link in the tree of rings is L. Any two

paths in P must be assigned different colors since they intersect with each other. There are

a total of 3£ paths in P, thus 3£ colors are needed. This lower bound shows that in the

worst case one cannot do better than 3£ even for undirected trees of rings with node degree

four.

Min-RPC in trees of rings.

The Min-RPC problem in trees of rings is NP-hard, following from the NP-hardness of the

problem in rings. The following method is known for the Min-RPC problem on trees of

rings: cut one link from each ring in the given tree of rings and obtain a tree, then route

(uniquely) the requests and solve the Min-PC problem in the obtained tree. It is known
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that through this cut-one-link method, any algorithm for the Min-PC problem in undirected

trees using at most o:L colors can be used to obtain a 20:-approximation algorithm for the

Min-RPC problem in undirected trees of rings [105]. The same result holds for the directed

case as well [92]. The best upper bounds (in terms of load) are 3L/2 and 5L/3 for the

Min-PC problem in undirected and directed trees, respectively. Thus, one can obtain 3­

approximation and 1O/3-approximation algorithms for the Min-RPC problem in undirected

and directed trees of rings, respectively.

For undirected trees of rings with degree at most eight, a 3-approximation algorithm not

based on cut-one-link can be obtained as follows: route optimally the requests such that the

load L is minimized, then use the 3L algorithm of [25J to color the obtained paths. Since

L is the optimal load and thus is a lower bound for the Min-RPC problem, the algorithm

has approximation ratio 3. It is interesting to design approximation algorithms with ratios

strictly better than 3 and 10/3 for the Min-RPC problem in undirected and directed trees

of rings, respectively.

Min-RPC in meshes.

The Min-PC problem in meshes is equivalent to the vertex color problem in general graphs.

Thus, any hardness or algorithmic result on vertex coloring applies to the Min-PC problem

in meshes.

The Min-RPC problem in N x N undirected square mesh networks is NP-hard, since the

special case of edge-disjoint paths is already NP-hard [103]. It was shown in [103] that the

number of colors needed can be approximated with a constant factor. The author formalized

the problem as a sequence of integer linear programs. It was then shown that the solutions

to the relaxations provide a constant factor approximation to the number of colors needed.

The ratio was established through a complicated randomized rounding procedure, which

proceeds iteratively. In each iteration, the solution gets closer to an integral solution. After

a small number of iterations, the solution is near-integral. The author was then able to

convert it into an integral solution without much increasing in the number of colors. The

above procedure gives a constant factor approximation to the number of colors needed.

Unfortunately, the argument is non-constructive and does not give a routing and path

coloring. Nevertheless, the author showed that the Min-RPC problem can be approximated

within a factor of poly(ln In N). This improves a previously best ratio of O(ln N) [80J (which

is an improvement over an even earlier ratio of O(ln2 N)).
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In this section, we review results for the maximum (routing and) path coloring problem in

chains, trees, rings, and trees of rings. The maximum routing and path coloring (Max-RPC)

problem can be defined as follows: Given a set R of requests and an integer w > 0, find a

maximum cardinality subset R ' ~ R of requests that is w-colorable. The maximum path

coloring (Max-PC) problem is similar to Max-RPC, but the paths are given as part of the

input. For trees, Max-RPC and Max-PC coincide since the routing is unique. When w = 1,

the Max-RPC (resp. Max-PC) problem is equivalent to the MEDP (resp. MEDPwPP, the

maximum edge-disjoint paths with pre-specified paths). The MEDP problem has attracted

much attention in theoretical computer science, and we will review it in more details in

Section 2.2.5.

Before we introduce the individual algorithms for Max-PC in various graphs, we describe

a generic approach (hereinafter will be called iterative greedy approach). Suppose we have

a p-approximation algorithm for the MEDPwPP problem (equivalently, a p-approximation

algorithm for the Max-PC problem with only one color). To solve the Max-PC problem, we

call the algorithm for the MEDPwPP problem, select a maximum cardinality subset pi ~ P

of pairwise disjoint paths, and remove the set pi of paths from P (Le., P := P \ Pi). The

procedure is repeated w times. Each selected subset is colored by a distinct color. The

union of the w chosen sets is taken as the solution for the Max-PC problem. It is known

that if the MEDPwPP algorithm has approximation ratio p, then this iterative algorithm

for the Max-PC problem has approximation ratio l-e~lIP (which is at most p+ 1) [54]. This

simple approach sometimes gives very good approximation for the maximum path coloring

problem.

Max-PC in chains.

The Max-PC problem in undirected chains was studied in [38]. It was shown that a simple

greedy algorithm can solve the problem optimally. They also gave a clever linear time

implementation. The algorithm is very simple and works as follows: process the nodes of

the chain one by one from left to right; when processing a node v, consider greedily the

paths with right endpoint v, and include a path p if p can be assigned a color A. such that

no path intersecting p is already colored by A.. The weighted Max-PC problem in chains can

also be solved optimally in polynomial time, by reducing to a minimum cost network flow
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problem. The same result holds for the directed chains. This algorithm is often used as a

subroutine for solving the maximum path coloring problem in more complex topologies.

Max-PC in trees.

When W = 1, the Max-PC problem is simply the MEDP problem, and is known solvable

in undirected trees [63]. Erlebach proved that the MEDP problem is NP-hard and MAX

SNP-hard in directed trees [49]. The MAX SNP-hardness of the MEDP problem in directed

trees implies that it does not have polynomial time approximation scheme (PTAS) unless

P = N P. Erlebach also gave a 5/3 + (-approximation algorithm for the MEDP problem

in directed trees, where ( can be chosen arbitrarily small [49]. The Max-PC problem in

undirected and directed trees with w > 1 was studied in [46]. It was showed that the Max­

PC problem is solvable if wand the degree of the (undirected or directed) tree are both

bounded by a constant, using a dynamic programming approach. If either w or the degree

is unbounded, the problem is NP-hard. For arbitrary w, Erlebach used the iterative greedy

approach to obtain 1.58-approximation algorithms for undirected trees and bounded degree

directed trees, and a 2.22-approximation algorithm for directed trees with arbitrary degree.

The iterative greedy approach seems to be one of the best known tools so far for dealing

with the Max-PC problem in trees (and many other topologies).

The Max-PC problem in undirected stars is NP-hard [48, 105]. It is equivalent to the

maximum edge t-coloring problem in multigraphs. The latter problem was studied by Feige

et al. [56]. They showed that for every fixed t 2: 2 there is some ( > 0 such that it is

NP-hard to approximate maximum edge t-coloring within a ratio better than 1:€' They

also gave an approximation algorithm whose ratio tends to Q as t -> 00, where Q is the best

approximation ratio for the edge-coloring in multigraphs. The current best approximation

algorithm for the edge-coloring problem has asymptotic approximation ratio 1.1. Thus, the

maximum edge t-coloring problem can be approximated with an asymptotic ratio 1.1 as

t -> 00. Accordingly, the Max-PC problem in undirected stars can be approximated with

an asymptotic ratio 1.1 if the number of available colors w approaches infinity.

The Max-PC problem in directed stars and spiders can both be solved optimally in

polynomial time as follows: first select a maximum subset of paths with load at most Wj

then color the selected paths using w colors. The first step is actually a call control problem

(see Section 2.2.4). It can be solved optimally in polynomial time for directed stars, since it

is equivalent to the b-matching problem in bipartite graphs, which is known to be solvable.
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It can also be solved optimally for directed spiders, since Erlebach et al. showed that the call

control problem in directed spider can be solved optimally in polynomial time by reducing

to a network flow problem [55]. The second step can also be done in polynomial time,

since in any directed spiders (thus stars), any set of paths with load w can be colored by w

colors [64, 122].

Max-PC and Max-RPC in rings.

For general values of w, the Max-PC and Max-RPC problems (and the weighted cases)

on rings are NP-hard, for both the undirected and directed cases [98, 99]. This follows

easily from the NP-hardness of the corresponding minimization problems. Several methods

are well used for solving these problems on rings. Many existing work use either a single

method or a combination of several methods. The first method, called the cut-one-link

method, simply ignores one link of the ring and solves the problem on the obtained chain

using an algorithm of [38] or its variants. (We have already seen the use of the cut-one-link

approach in Section 2.2.1.) The second method, called the maximum matching method, tries

to use one color for two requests (or paths) according to a matching found in the auxiliary

graph constructed. The third method is the iterative greedy approach already discussed,

which solves the problem by calling w times an approximation algorithm for the single color

case. Intuitively, the iterative greedy method may be better than the maximum matching

method, since the iterative greedy method may color more than two paths using a single

color, while the maximum matching method always colors at most two paths using a single

color.

The Max-PC problem on rings was first studied by Wan and Liu [120], who gave a poly­

nomial time exact algorithm for the MEDPwPP problem in rings, and then used the iterative

greedy approach to get a 1.58-approximation algorithm (for both the undirected and the

directed cases). The approximation ratio was improved to 1.5 in undirected rings [99] (the

algorithm works for directed rings with the same performance ratio). The 1.5-approximation

algorithm is based on cut-one-link and maximum matching. Let e be an arbitrary edge on

the ring, Pe be the set of paths on e and Pc be the set of paths not on e. The algorithm first

cuts the ring at e and then selects a maximum w-colorable subset of paths from Pc. The

algorithm then tries to color some paths in Pe , using colors each of which is used to color

only one paths in Pc. This latter step is done based on a maximum matching in a bipartite

graph with bipartitions Pe and Pc.
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Very recently, Caragiannis gave a 4/3-approximation algorithm for the Max-PC prob­

lem in undirected rings [33]. His algorithm is based on cut-one-link and a variant of the

iterative greedy method. Essentially, he showed that if OPT/ w is large, then the cut­

one-link approach ensures a good approximation ratio; otherwise (0PT/ w is small), the

iterative greedy method has a good approximation ratio. The algorithm works for Max-PC

in directed rings with the same approximation ratio. In the same paper, he also gave a

randomized 1.49015-approximation algorithm for the weighted Max-PC problem in rings.

For the Max-RPC problem in undirected and directed rings, the iterative greedy algo­

rithm also works and has approximation ratio 1.58. Nomikos et al. gave a 1.5-approximation

algorithm for undirected rings and a 1l/7-approximation algorithm for directed rings, both

based on two separate algorithms, cut-one-link and maximum matching, and the best of the

two is taken as the final solution [98]. Caragiannis improved the ratios to 4/3 and 1.41257

for undirected and directed rings, respectively, by using cut-one-link with iterative greedy

algorithm [33].

Max-PC and Max-RPC in trees of rings.

When w = 1, the Max-PC and Max-RPC problems reduce to MEDPwPP and MEDP prob­

lems, respectively. The MEDPwPP problem is NP-hard and MAX SNP-hard and can be

approximated with ratios 4 and 8 in undirected and directed trees ofrings, respectively [47].

It was also shown in [47] that the MEDP problem is NP-hard in undirected and directed trees

of rings, and any a-approximation algorithm for MEDP in trees gives a 3a-approximation

algorithm for MEDP in trees of rings, both in the undirected case and in the directed case.

Since the MEDP problem in undirected and directed trees has exact algorithm and 5/3 +[­
approximation algorithm, respectively, the MEDP problem can be approximated with ratio

3 and 5 + [ in undirected and directed trees of rings, respectively.

The Max-PC and Max-RPC problems with arbitrary ware both NP-hard in trees of

rings. Currently, there is no algorithm better than the iterative greedy approach. Simple

calculations show that the iterative greedy approach has approximation ratios close to 4.5

(resp. 8.5) for Max-PC in undirected (resp. directed) trees of rings, and has approximation

ratios close to 3.5 (resp. 5.5) for Max-RPC in undirected (resp. directed) trees of rings.
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Many optical networks have multiple parallel optical fibers in a link. Such a network is known

as a multifiber optical network. For a link e with J.L(e) fibers, up to J.L(e) routing paths can use

the same color on link e. Note that in directed multifiber networks, both directions of a link

should have the same number of fibers. Figure 2.5(a) shows a set of three paths in a single

fiber undirected star. The paths need three colors, since they are pairwise intersecting. On

the other hand, in Figure 2.5(b), the three paths need only one color in a 2-fiber undirected

star. Thus, less colors are needed in multifiber optical networks, at the cost of extra fibers.

The path coloring problem in multifiber optical networks is known as the path multicoloring

(PMC) problem [97]. Recently, there are renewed interests in multifiber optical networks

and the PMC problem [53, 54, 86, 87, 88, 89, 96, 97]. Inapproximable results were given

in [10, 11, 12J. As in the single fiber case, there are two optimization problems in multifiber

optical networks: the minimum path multicoloring problem (denoted as Min-PMC), and the

maximum path multicoloring (Max-PMC) problem. Multifiber networks are distinguished

into two types according to the number of fibers in every link. One is a uniform network in

which every link has the same number of fibers. The other is a non-uniform network in which

different links may have different number of fibers. We will use k-fiber network to denote

a uniform network with k fibers in every link in the undirected case. In a directed k-fiber

network, both directions of a link have k fibers. When k = 1, the Min-PMC and Max-PMC

problems are simply the conventional Min-PC and Max-PC problems, respectively. In the

single fiber case, the load L is a lower bound on the number of colors needed. Similarly, in

the multifiber case, Wlb = maxeEE r~~:~1is a lower bound for the number of colors required.

The maximization is taken over both directions of a link in the directed case.

The Max-PMC problem asks to maximize the number (or the weight) of paths that can

be colored by a given number w of colors in a multifiber optical network. When w = 1, this is

simply a maximum edge-disjoint paths problem in a single fiber network, and is a call control

problem (with edge capacity c(e) = J.L(e) on edge e) in a multifiber network. Thus, a natural

way to solve the Max-PMC problem is the iterative greedy approach (see Section 2.2.2).

Erlebach et al. showed that if the call control algorithm has an approximation ratio of p,

then the iterative greedy approach has an approximation ratio of l_e11 / p (which is at most

p + 1) [54]. The proof is similar to the one in [120J.
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(a) a single fiber star (b) a 2-fiber star

Figure 2.5: A single fiber undirected star and a 2-fiber undirected star.

Min-PMC and Max-PMC in uniform k-fiber networks.

The Min-PMC problem in k-fiber undirected chains can be solved optimally in polynomial

time [96]. In fact, the optimal algorithm uses exactly Wlb colors. For the Max-PMC problem,

suppose we have W colors. One can reduce the Max-PMC problem to the following call

control problem: set the capacity of an edge e to be W x k. Then solve the call control

problem optimally. The paths in the solution to the call control problem can be colored by

W colors, since Wlb = (w x k)/k = w.

For every even k > 1, the Min-PMC problem is known solvable in polynomial time

in k-fiber undirected stars [87, 88]. The Max-PMC problem in even k-fiber undirected

stars can be solved optimally by first reducing to a call control problem with every edge e

having capacity k x w. The Min-PMC and Max-PMC problems are NP-hard for multifiber

undirected and directed binary trees. This should be contrasted to the path coloring problem

in bounded degree undirected trees, which is known solvable. If path lengths are restricted

to at most three, the Min-PMC and Max-PMC problems in 2-fiber undirected trees are still

NP-hard. If path lengths are restricted to four, the Min-PMC and Max-PMC problems in

multifiber directed or undirected trees are NP-hard. An upper bound of 3L/(2k) is known

for the Min-PMC problem in undirected k-fiber trees. This is a generalization of the 3L/2

upper bound in the single fiber case, and the bound is tight.

The Min-PMC problem in k-fiber undirected rings is NP-hard, for every k > 1, as shown

in [87]. An upper bound of f(k + l)/k· L - 11 is also established in the same paper.
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The Min-PMC and Max-PMC problems in non-uniform multifiber undirected chains can

both be solved optimally in polynomial time, in a similar way as in the uniform case [96].

The Min-PMC problem in undirected and directed rings can be approximated with a ratio

of two, no matter whether the paths are fixed or not [96]. The Max-PMC problem can be

approximated with a ratio of 1.58 in undirected and directed rings if the paths are fixed,

and with a ratio slightly worse than 1.58 in undirected rings if the paths are not fixed, using

the iterative greedy approach.

The Min-PMC problem can be solved optimally in directed stars, and can be approx­

imated with ratio 1.5 in undirected stars [96]. The Min-PMC problem in undirected and

directed spiders can be approximated with ratios 2.5 and 2, respectively [96]. The Min­

PMC problem in undirected and directed trees can be approximated with a ratio of 4, a

by-product of [41]. The Max-PMC problem in undirected trees can be approximated with

a ratio of 2.542, using the iterative greedy approach.

2.2.4 The Routing and Call Control Problem

The routing and call control (RCC) problem can be defined as follows: Given a set R =
{(Si, ti) I i = 1, ... , k} of requests in a graph G = (V, E) where each edge e E E is assigned

a non-negative integer capacity c(e), find a maximum subset R' ~ R such that the requests

in R' can be routed without violating the capacity constraint, i.e., at most c(e) requests

use edge e. Such a subset of requests is called a routable set. In the directed case, each

direction of a link is assigned a capacity, and the capacity constraint is violated only if the

number of paths on the same direction of a link exceeds the capacity in that direction. The

problem is known as the call control problem if the paths are given. Each request (Si, ti)

may be assigned a positive weight Wi, and the goal is to find a routable set with maximum

total weight. In this case, the problem is known as the weighted routing and call control

problem. Further, each request (Si, ti) may be associated with an integer demand di ~ 1, and

the request can be realized only if the demand di is fully satisfied. If the request is required

to be on a single path, i.e., unsplittable, then the problem is known as the unsplittable flow

problem (UFP). In this thesis we assume that the requests are not splittable. Of course, for

graphs like trees, there is no splittablity problem since there is a unique path between any

two nodes. The unsplittable flow problem is clear NP-hard, since when the graph is a single



CHAPTER 2. PRELIMINARIES AND RELATED WORK 32

edge with all demands going across it, the problem simply becomes the Knapsack problem,

which is NP-hard [62]. When every edge has unit capacity, the routing and call control

problem is known as the maximum edge-disjoint paths problem, which will be discussed in

Section 2.2.5. Any inapproximability result for the MEDP problem holds for the routing

and call control problem.

The unsplittable flow problem can be modeled as the following integer linear program­

ming problem when the paths are given:

Maximize

Subject to Li:eEPath(i) diXi ::; c(e), 'Ve E E

xiE{O,l}, i=l, ... ,k.

When paths are not given, the formulation is similar but more complex. In the formulation,

Path( i) is the path along which the request i is routed. The constraint basically says that the

total demands of the requests routed on edge e can be at most c(e). This formulation is quite

generic. For example, setting di to one gives the formulation for the weighted call control

problem, and setting both di and Wi to one gives the (unweighted) call control problem.

Since the unsplittable flow problem is in general NP-hard, the above integer linear program

cannot be solved in polynomial time. However, the relaxed linear program (by setting

Xi E [0,1]) can be solved in polynomial time. The ratio between the fractional solution

and the integral solution is usually called the integrality gap. In general, the integrality gap

could be large for arbitrary graph. For example, it was shown in [63] that there is a grid-like

3-regular graph in which the integrality gap is n(..[ii) for the MEDP problem.

In the following discussion, we will mainly review the call control problems. We will also

review the routing and call control problems in rings. The unsplittable flow problem will be

discussed in Section 2.2.4. The discussion of this section is restricted to undirected graphs.

Call control in chains.

The call control problem in undirected chains was studied in [5], and it was shown that

the problem can be solved optimally in polynomial time, using a simple greedy algorithm.

They also gave a linear time implementation. The weighted call control problem can also

be solved in polynomial time, by a similar approach as [38]. If all edge capacities are the

same, the problem is equivalent to the Max-PC problem, since any set of paths with load

L can be colored by L colors in undirected chains (see Section 2.2.1).
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The call control problem in undirected trees was studied in [63]. They showed that the call

control problem in undirected stars is equivalent to the b-matching problem in multigraphs,

and can be solved optimally in polynomial time. They also showed that the call control

problem in undirected trees is equivalent to a generalization of b-matching called cross-free­

cut b-matching. They further showed that the call control problem is NP-hard and MAX

SNP-hard even in depth-3 undirected trees with capacities one or two. The reduction is

from the maximum three-dimensional matching problem. They formulated the call control

problem as an integer linear program and showed that the dual of the relaxed linear program

is exactly the minimum multi-cut problem in undirected trees (the minimum multi-cut

problem asks for a minimum number of edges whose removal disconnects all the given pairs

in a graph). They also gave a primal-dual algorithm that achieves approximation ratio two.

The primal-dual method works as follows in approximation algorithms: start with arbitrary

solutions to the primal and dual linear programs, and make alternate improvements to

each, until good integral solutions to both are found. The improvements are guided by the

complementary slackness conditions.

The weighted call control problem in undirected stars is equivalent to the weighted b­

matching problem which can also be solved optimally in polynomial time. The weighted call

control problem in undirected trees was studied in [41]. They also formulated the problem

as an integer linear program, and showed that the relaxed linear program has integrality gap

at most 4. This gives a 4-approximation algorithm. Their algorithm implies the following

result. Let J be any (multi)set of requests, and k be an integer, such that for any edge e in

the tree, at most k x c(e) of the paths contain e. Then J can be partitioned into 4k routable

sets. This latter result also implies that the (non-uniform) path multicoloring problem on

undirected trees can be approximated with ratio 4 (see Section 2.2.3 and [54]).

Routing and call control in rings.

The call control problem in undirected rings is solvable in polynomial time [5]. This is

achieved by calling the optimal chain algorithm iteratively.

The routing and call control problem in undirected rings was studied in [7], and it was

shown that there is an algorithm that admits at least OPT - 3 requests, where OPT is the

maximum number requests that can be admitted in any optimal solution. The algorithm is
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based on linear programming. They first formulate the problem as an integer linear program,

and then solve the relaxed linear program. They obtain a solution by some sophisticated

rounding techniques. The complexity of the problem is still unknown.

The weighted call control and weighted routing and call control problems in undirected

rings can both be approximated with ratio two, using a simple cut-one-link approach [6J.

However, the complexity status of both problems is still unknown. In particular, it was

shown in [6J that the exact matching problem in bipartite graphs can be reduced to the

weighted call control problem in undirected rings, thus the weighted call control problem

in undirected rings is at least as hard as the exact matching problem. The exact matching

problem is known solvable in random polynomial time (RP) [93J, but no (deterministic)

polynomial time algorithm is known. Finding the complexity of these problems is interesting

but probably challenging as well.

Routing and call control in trees of rings.

We are not aware of any algorithmic results on the routing and call control problem in trees

of rings (whether paths are given or not), when the edge capacities can be arbitrary. The

unit edge capacity case will be discussed in Section 2.2.5. The call control problem in trees

of rings with unit edge capacities has also been studied from a diff'erent prospective, with

the goal of rejecting as few requests as possible [8].

The unsplittable flow problem.

Recall that in the unsplittable flow problem, each request (Si, td has an integer demand di ~

1. Let dmax = maxf=l di be the maximum demand, and Cmin = mineEE c(e) be minimum

edge capacity. The result for the unsplittable flow problem generally requires dmax ~ Cmin,

which has been known as the no-bottleneck assumption. Without this assumption, the

unsplittable flow problem is hard to approximate within a factor of D(m 1-() unless P =

N P [17J. The unsplittable flow problem in undirected chains has been studied extensively.

In the uniform capacity case (every edge has the same capacity, not necessarily one), the first

constant factor approximation algorithm was given in [102], who obtained a 6-approximation

algorithm. The ratio was then improved to 3 [19], and then to 2+( [32J. For the unsplittable

flow problem in undirected chains with arbitrary capacity, the first constant factor (close

to 80) approximation algorithm was given in [39]. This ratio was then improved to 2 +
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f. [41J. In [18], it was shown that there is a quasi-polynomial time (i.e., in time 2polylog(n»)

approximation scheme for the unsplittable flow problem on undirected chains and rings,

provided that all capacities and demands are integers bounded by 2 poly log(n). Previously, it

was not known whether the unsplittable flow problem in chains is MAX SNP-hard or not.

This result rules out a MAX SNP-hard result unless N P S;; DTI M E(2 poly Iog(n»).

The unsplittable flow problem in undirected stars is also known as the demand matching

problem, which has also been proved to be MAX SNP-hard [115J. The demand matching

problem can be defined as follows: Given a graph G = (V, E) with each node v assigned

an integer capacity bv , each edge e having an integral demand de and a weight We, find a

subset M S;; E with maximum total weight such that the sum of the demands of the edges

incident to v is at most bv . Obviously, when de = 1 for every edge e E E, the demand

matching is actually a b-matching. For the demand matching problem in bipartite graphs,

the integrality gap is between 2~ and 2g. For general graphs, the integrality gap is between

3 and 3 1
3
0 ,

The unsplittable flow problem in undirected trees was studied in [41]. The problem

was formulated as an integer linear program. It was shown that the integrality gap for the

demand version is at most 11.542 times that for the unit demand case. The latter has an

integrality gap of 4, thus the integrality gap for the demand version is at most 48.

2.2.5 The Maximum Edge-disjoint Paths Problem

The maximum edge-disjoint paths (MEDP) problem can be defined as follows: Given a set

of k source-destination pairs in a graph G, connect as many of these pairs as possible using

edge disjoint paths. It is not hard to see that the maximum edge-disjoint paths problem is

a special case of the routing and call control problem in which every edge has unit capacity.

The maximum edge-disjoint paths problem is regarded as one of the classic NP-hard prob­

lems. In fact, its decision version is one of Karp's original NP-complete problems [78]. It

has received much attention during the past several decades. In the maximum edge-disjoint

paths with pre-specified paths (MEDPwPP) problem, a set of paths (instead of source­

destination pairs) is given. Of course, for graphs like trees, there is no routing problem. In

the weighted case, each routing request (or path) may be given a positive weight, and the

goal is to maximize the total weight of accepted requests (or paths).

In undirected general graphs, the MEDP problem is solvable for any fixed k [111], but

is NP-hard for general value k. The MEDP problem is hard to approximate within ratio
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log~-(n for any fixed f > 0 unless NP s:.: ZPTIME(nPo1y(logn)) [9J. However, there is no

corresponding poly-logarithmic upper bound on the approximation ratio for all undirected

graphs yet, and whether such upper bound exists or not is an outstanding open problem.

Until now, poly-logarithmic approximation algorithms are known only for the following

undirected graphs: trees with parallel edges, grids and grid-like graphs, expanders, even­

degree planar graphs, and planar graphs in which certain congestion on the edges is allowed

(see [79] and the references therein). The general approach for approximating MEDP in

these graphs is to decompose the graph into node disjoint induced subgraphs, and then find

a large routable set within each subgraph. The union of the solutions for the subgraphs is

taken as the solution for the problem on the original graph.

The maximum edge-disjoint paths problem has been known to be NP-hard in directed

graphs with only two terminal pairs [58]. It can also be approximated with ratio O( y!Tii)

on directed graphs D = (V, A) using a simple greedy algorithm [81]. The ratio was refined

to O(min{n2/ 3 , m l / 2 }) in [40]. On the negative side, the MEDP problem is NP-hard to
1

approximate in directed graphs within a factor better than O(m 2" -() unless P = N P [67].

The weighted MEDP problem in undirected stars is equivalent to the maximum weight

matching problem in general graphs, and can be solved optimally [63]. The weighted MEDP

problem in undirected trees can also be solved optimally, using the maximum weight match­

ing algorithm as a subroutine [63]. The MEDP problem is MAX SNP-hard in directed trees,

and the reduction is from the maximum three-dimensional matching problem. The problem

can be solved in polynomial time for directed stars and spiders. For bounded degree directed

trees, the problem can also be solved in polynomial time, using a dynamic programming

approach [46J. For directed trees with arbitrary degree, the problem can be approximated

with ratio ~ + f, for every fixed f > 0 [49]. The algorithm consists of one bottom-up pass

followed by a top-down pass. The reason for using two passes is that some paths have to

be in an intermediate state during the first pass. The weighted MEDP problem in directed

trees cannot be solved this way, but an algorithm with approximation ratio ~ + f is given

in [51], using a completely different method.

The MEDP problem in undirected rings can be solved in polynomial time as follows [120].

Let e be an edge in the ring, and R be the set of routing requests. In any set of edge disjoint

paths, either no path is on e or exactly one path uses e. For the latter case, we can try

every request (8, t) E R. We then delete all edges used by (8, t) from the ring, and solve

the MEDP problem in the obtained undirected chain in polynomial time. Similarly, the



CHAPTER 2. PRELIMINARIES AND RELATED WORK 37

MEDP in directed rings, and the MEDP problem with pre-specified paths in undirected

and directed rings can also be solved in polynomial time. The weighted MEDP problem

(and the fixed paths version) can be solved in polynomial time in undirected and directed

rings using a similar approach.

The MEDP problem, whether paths are fixed or not, is MAX SNP-hard in directed

and undirected trees of rings [47]. When paths are not fixed, there is a 3-approximation

algorithm for undirected trees of rings, and a 5+E-approximation algorithm for directed trees

of rings. When paths are fixed, there are 4-approximation and 8-approximation algorithms

for undirected and directed trees of rings, respectively. The weighted MEDP and MEDPwPP

problems in trees of rings can be approximated within the same ratio as in the unweighted

cases.



Chapter 3

Path Coloring on Trees of Rings

This chapter studies the minimum path coloring (Min-PC) problem on trees of rings. In

Section 3.1, we first give a polynomial time algorithm which uses at most 3£ colors for the

problem on trees of rings with arbitrary degrees (recall that £ is the maximum number of

paths on any link in the network). This improves the previous 4£ and 4-approximation

result of [47]. The 3£ upper bound is tight since there are instances of the Min-PC problem

that require 3£ colors even on a tree of rings with degree four. Our algorithm is based on

a processing order proposed in [47] and novel applications of edge-coloring of multigraphs.

In Section 3.2, we give two efficient path coloring schemes for trees of rings and some useful

facts on edge-coloring of multigraphs. Based on these techniques, in Section 3.3, we show

that the 3£ algorithm achieves an approximation ratio of 2.75 asymptotically for the Min­

PC problem on trees of rings with arbitrary degrees. In Section 3.4, we further give a

3£ and 2-approximation (resp. 2.5-approximation) algorithm for the Min-PC problem on

trees of rings with degree at most six (resp. eight and ten). The algorithms on trees of rings

with bounded degrees are of independent interest and improve the previous 2-approximation

algorithm for trees of rings with degree four [25, 44]' and 2.5-approximation algorithm for

trees of rings with degree six [25]. Our 3£ result also implies a 3-approximation algorithm

for the Min-RPC problem on trees of rings. The algorithm does not use the cut-one­

link approach, and gives an alternative approach for solving the Min-RPC problem. This

approach might provide a better fault-tolerance than the cut-one-link approach. Our 3£

algorithm implies a 6£ algorithm for the Min-PC problem on directed trees of rings.

38
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• processed nodes

o unprocessed nodes

(W,w-) . II'
(u,u-) specla Inks

-- longpath

.....•.. short path

Figure 3.1: Illustration of some terms defined on a tree of rings T R.

3.1 The 3L Upper Bound

In this section, we give an algorithm which solves the Min-PC problem in trees of rings with

arbitrary degrees using at most 3L colors. We start with some more definitions. A tree of

rings network is denoted by a graph T R with node set V(TR) and link set E(TR). For T R,

we have the following property.

Proposition 3.1.1 For any node U E V(TR), a path on u can be on at most two rings

which contain u.

For a node u in a ring of T R, we denote u - as the neighbor of u in the counter-clockwise

direction and u+ as t he neighbor of u in the clockwise direction in the ring (see (a) of

Figure 3.1).

We say a set of elements is assigned distinct colors if for any two different elements in

the set, the elements are assigned different colors. Throughout this chapter, we will denote

Wp as the set of colors assigned to a set P of paths, and denote Wuv as the set of colors

assigned to the paths on a link (u, v) of T R.

The 3L algorithm.

We give a simple algorithm, called ALG3.1, which uses at most 3L colors for the Min-PC

problem on T R with an arbitrary degree and show that the 3L upper bound is tight. We
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Procedure Framework(TR,P)

Input: A set P of paths in T R.

Output: A valid coloring from W = {AI, 'x'2, ...} to P.

begin

1. Fix a DFS (depth-first search) order, starting from

a node (say uo) of degree two, on the nodes of T R.

2. Process the starting node uo.

3. Process the other nodes u in the DF S order.

Let ro be the ring which contains u and the parent of u.

3.1 Color the set Po of uncolored paths on u and ro.

3.2 Color the set PI of other uncolored paths on u.

end.

Figure 3.2: A framework of algorithms for the Min-PC problem on trees of rings.
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first give a framework in Figure 3.2 for all algorithms in this chapter. Paths are colored in

some order defined later. At any stage of the coloring procedure, a path is called colored

if it has been assigned a color, otherwise uncolored. In the algorithm, processing a node u

means coloring the uncolored paths on u. We call a node u processed if the coloring process

for u has been completed, otherwise unprocessed. Notice that before the coloring process for

node u, some paths on u may have been colored due to the processing of other nodes. Node

u is still called unprocessed if the coloring process for u has not been performed even all

paths on u have been colored due to the processing of other nodes. Our algorithm processes

the nodes of TR in the DFS (depth-first search) order proposed in [47]. For a node u, its

parent is the node from which u is reached in the DFS order (see (b) of Figure 3.1). A

link is called special if it connects a processed node and an unprocessed node (see (b) of

Figure 3.1). There are either 0 or 2 special links in a ring in T R. A path on a special link

is colored and only such a path has a possibility to intersect with an uncolored path. We

assume that in Step 1, the nodes in the same ring are searched in the clockwise direction in

the DFS order. Notice that a node of degree two always exists in a finite TR.

The steps of Algorithm ALG3.1 are given in the framework in Figure 3.2. In Step 2,

we first assign colors of W to the paths on link (uo,uo-) by the first-fit coloring. Next we

assign the uncolored paths on link (uo, Uo+) the colors of W \ W - by the first-fit coloring.uouo
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In Step 3, the parent of node u in the D F S order is node u - in some ring which is called

roo If u appears in k + 1 rings, the other k rings are denoted by ri, 1 :S i :S k (see (b) of

Figure 3.1). Let Qo be the set of paths on special links (u,u-) or (w,w-). In Step 3.1, we

color Po using the colors of W \ WQo by the first-fit coloring.

In Step 3.2, we convert the path coloring problem to the edge-coloring problem of a

multigraph Gu with rings ri (0 :S i :S k) as vertices and all paths on u as edges. By

Proposition 3.1.1, a path on u is on either one ring or two rings. A path on u is called a

long path if it is on two rings, otherwise a short path (see (b) of Figure 3.1). To eliminate

self-loops, we introduce a vertex Si for every ri in Gu . More specifically, Gu is defined as:

V(Gu ) = {ri' silO :S i :S k}, and

E(Gu ) {(ri,rj,p) I p is a long path on ri and rj,O:S i < j:S k}

U {(ri' Si,p) I p is a short path on u and ri, O:S i :S k},

where (x, y,p) denotes an edge between vertices x and y with label p. From Proposition 3.1.1,

there is a one-to-one correspondence between the paths on u and the edges in G u . Assume

that a valid edge-coloring for Gu has been found and let Gc" = {Ill, 112, ... } be the set of

virtual colors used for the edge-coloring. We use the mapping !I : Gc" -----> W defined below

to color the corresponding paths on u. Let Ql be the set of colored paths on u before Step

3.2 and GQ1 be the set of virtual colors assigned to the edges (x, y, p) of Gu with p E Ql.

The mapping h is defined as follows:

1. For each IIi E GQ1 assigned to edge (x, y,p) with p E Ql, h(lli) = .Aj, where.Aj E WQl

is the color assigned to path p before Step 3.2.

2. For each IIi E Gc" \ GQl' h maps IIi to a .Aj E W \ W Ql with the smallest available

index j such that Gc" \ GQl is assigned distinct colors.

Since all paths of Ql are on ring ro, edges (x,y,p) with p E Ql are given distinct virtual

colors in the edge-coloring of Gu . From this and the above definition, !I is a function from

Gc" to W which implies that for any two edges (in Gu ), the corresponding paths are colored

by the same real color if and only if these two edges are colored by the same virtual color.

Also, h does not change the colors of the paths which were colored before Step 3.2.

To apply the edge-coloring of Gu in Step 3.2 as shown above, it is required that Ql has

been assigned distinct colors. In other words, no color has been given to more than one
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path in Ql. A set of colored paths is called a O-set if the paths are assigned distinct colors.

We say the O-set condition is true on a ring if the set of paths on special links of the ring is

a O-set. As shown later, the O-set condition is kept true for each ring of TR in Algorithm

ALG3.!. This is critical in applying the edge-coloring of Gu in Step 3.2.

Algorithm ALG3.1 colors the paths step by step. In each step, there are a set of colored

paths and a set of paths to be colored. The following lemma is useful to get the total number

of colors from that used for coloring in each step.

Lemma 3.1.2 Given a set Q of colored paths and a set R of uncolored paths, assume that

at most w colors have been used for Q, and that a subset Q' of Q contains every colored path

intersecting with a path of R. If an algorithm colors R such that the coloring for R and the

previous coloring for Q' give a valid coloring for Q' U R using at most w colors, then Q U R

can be colored with at most w colors.

Proof: From the condition of the lemma, IWR \ WQI/ = IWR U WQ,I -IWQII :S w -IWQ/I.

Since each path of Q \ Q' is edge-disjoint with any path of R, all colors of WQ \ WQI can be

used as the colors for R. Therefore, Q U R can be colored with at most w colors. 0

By the above lemma, if an algorithm colors R such that at most w colors are used for

Q' U R in every step, it solves the Min-PC problem with at most w colors. In what follows,

we only analyze the number of colors used in each step for Q' U R. Let Qu be the set of

colored paths and Pu be the set of paths to be colored when node u is being processed in

Algorithm ALG3.!.

Theorem 3.1.3 Algorithm ALG3.1 solves the Min-PC problem on T R with n nodes and

degree 2(k + 1) using at most 3L colors in O(nkL(k + L)) time.

Proof: In Step 2, since there are at most L paths on any link of T R, there are at most 2L

paths on uo. Therefore, the paths on Uo can be colored with at most 2L colors. Since each

path is given a distinct color, the O-set condition is true for every ring of T R after this step.

We now show that Algorithm ALG3.1 colors QuUPu using at most 3L colors for every node

u in TR.

In Step 3, assume that Qu has been colored with at most 3L colors and the O-set

condition is true for every ring of T R. In Step 3.1, lPo I :S L because each path in Po is

on link (u, u+). Therefore, Po can be colored with at most L colors. Since Qo defined for
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Step 3.1 of Algorithm ALG3.1 contains every colored path intersecting with a path of Po

and IQol :S 2L, Qo U Po (thus Qu U Po by Lemma 3.1.2) can be colored with most 3L colors.

Since Qo U Po is assigned distinct colors, after Step 3.1 the O-set condition is true for TO and

Ql defined for Step 3.2 of Algorithm ALG3.1 is a O-set. The latter is critical in Step 3.2.

In Step 3.2, Ql contains every colored path intersecting with a path of Pl. By the

edge-coloring of Cu , the definition of mapping it, and the O-set condition of Ql, the set of

paths on ring Ti and node u is assigned distinct colors. Also it does not change the color

of any path in QI. Therefore, it colors PI such that the colorings for PI and Ql give a

valid coloring for QI U Pl. The number of colors used for Ql U PI is ICGul. Since there are

at most L paths on any link of T R, there are at most 2L paths on node u and any ring

Ti. Therefore, ~(Cu) :S 2L. By Proposition 2.1.1, a valid edge-coloring of Cu can be found

using ICGu I ::; 3L colors. Thus, at most 3L colors are used for Ql UPt, implying at most 3L

colors for Qu U Pu. Since the set of paths on u and any ring Ti is assigned distinct colors,

the O-set condition holds for every ring.

Summarizing the above, the algorithm solves the Min-PC problem on T R using at most

3L colors. The edge-coloring of multigraph Gu is the dominant part in Algorithm ALG3.1

for the time complexity. Since ~(Cu) :S 2L, IV(Gu)j :S 2(k + 1), and IE(Gu)1 = O(kL),

by Proposition 2.1.1, the edge-coloring of Gu takes O(kL(k + L)) time. Since Algorithm

ALG3.1 executes Steps 3.1 and 3.2 O(n) times, the time complexity of the algorithm is

O(nkL(k + L)). 0

It is known that there are instances which require 3L colors for the Min-PC problem on

trees of rings [25]. This lower bound implies that in the worst case one cannot do better

than 3L even for trees of rings with node degree four. Algorithm ALG3.1 achieves the 3L

tight upper bound for trees of rings with arbitrary degrees. Since L is a lower bound on the

number of colors for any optimal solution, Algorithm ALG3.1 achieves an approximation

ratio of 3 for the Min-PC problem on T R with an arbitrary degree. The algorithm can

be used to obtain a 3-approximation algorithm for the Min-RPC problem on trees of rings

as following. First, for a given set of connection requests, a path for each request can be

found efficiently such that L is minimized [47]. Then, the set of found paths is colored

by Algorithm ALG3.1 using at most 3L colors. Since the load L is optimal, it is also a

lower bound for the original Min-RPC problem. In this way, the approximation ratio of

3 is achieved without using the cut-one-link approach. Our 3L algorithm also implies a
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6L algorithm for the Min-PC problem on directed trees of rings with two directed links,

one in each direction, between a pair of adjacent nodes. It is interesting to improve the

approximation ratio for the Min-PC problem on directed trees of rings.

3.2 Preparation for Improvement

In Algorithm ALG3.1, the O-set condition is kept for every ring for edge-coloring G u in Step

3.2 in a straightforward way. One observation is that the O-set condition may be too strict

for solving the Min-PC problem on TR since two paths on special links of a ring can have

the same color if they are edge-disjoint. Better approximation ratios may be achieved if

the O-set condition is relaxed. Another observation is that we may use less colors for the

edge-coloring of multigraph Gu if a more advanced algorithm like that in [95] is used. In

this section, we first give two schemes for coloring paths on trees of rings with the O-set

condition relaxed. The path coloring schemes make more efficient use of colors. Then we

show some properties of multigraph Gu related to its edge-coloring. The path coloring

schemes and properties of Gu will be used in the following sections to get algorithms with

better approximation ratios.

3.2.1 Efficient Path Coloring Schemes

We first introduce the notion of ;3-set which is an extension of O-set. A color for a set

of colored paths is called a multi-color if the color has been assigned to two paths in the

set. For an integer ;3 2: 0, a set of colored paths is called a ;3-set if each color is assigned

to at most two paths, the paths with the same color are edge-disjoint, and the number of

multi-colors for the path set is at most ;3. We say the ;3-set condition is true on a ring if the

set of paths on special links of the ring is a ;3-set. For any given integer (3 with 0 ~ ;3 ~ L,

the schemes given below use as few colors as possible to keep the ;3-set condition for every

ring.

Recall that Po and PI are the sets of paths to be colored in Step 3.1 and Step 3.2 of the

framework in Figure 3.2, respectively. We give a scheme for coloring Po and a scheme for

coloring a subset of Pl. The scheme for Po, called S31, works as follows. Assume that the

;3-set condition is true for every ring before Po is colored. Recall that Qo is the set of paths

on special links (u, u -) or (w, w- ). Let W~ <::: WQo be the set of multi-colors for Qo. Then

from the ;3-set condition, IW~ I ~ ;3. Define Ao (resp. Bo) to be the set of paths on link
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Figure 3.3: The sets of paths related to Schemes S31 and S32.

(u, u-) (resp. on (w, w-)), each of which has a color in WQo \ W~ (see (a) of Figure 3.3).

Then IAol + IW~I -s: L, IBol + IW~I -s: L, and Ao U Bo is assigned distinct colors. We

construct a graph Go with

V(Go) = Po U Ao and E(Go) = {(p,q) I p and q are edge-disjoint}.

We find a maximum matching Mo of Go. Notice that Go is bipartite and for each pair

(p,q) E Mo, p E Po and q E Ao. We select min{IMol,,6 -IW~I} pairs from Mo. For each

selected pair (p, q), assign the color of q E Ao to p. We assign the remaining paths of Po

the colors of W \ WQo by the first-fit coloring. As shown later, the ,6-set condition is true

for every ring after Po is colored.

The second scheme, called S32, is used to color a subset of Pl. More specifically, S32 is

used to color the long paths on rings ri and rj (i,j i- 0, i i- j) subject to the condition that

every colored path on ri or rj is also on ro when S32 is called. Without loss of generality,

we assume that ri = rl and rj = r2 for simplicity. Let PI2 ~ H be the set of long paths

on rings rl and r2 (see (b) of Figure 3.3). Recall that QI is the set of colored paths on u

before Step 3.2. Then every path of QI is on roo Let Q~ ~ QI be the set of colored long

paths on links (u,u-) or (u,u+) and on rings rl or r2. We define WQ; ~ WQ~ to be the

set of multi-colors for the set Q~. From the ,6-set condition, IWQ; I -S:,6. Define Al (resp.

B I ) to be the set of long paths on link (u,u-) (resp. on (u,u+)) and on rings rl or r2,
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each of which has a color in WQ, \ WQ~ (see (b) of Figure 3.3). Then IAII + IWQ~ I :S L,
1 1 1

IBII + IWQ11 :S L, and Al UBI is assigned distinct colors. We construct a graph G I with

V(Cd = Pl2 uAI and E(Cd = {(p,q) I p and q are edge-disjoint}.

We find a maximum matching M I of C I . For each pair (p, q) E MI, either p E Pl2 and

q E Al or p, q E P12 . We select min{IMII,,8 -!WQ1I} pairs from MI. For each selected pair

(p, q) with q E AI, assign the color of q to p. For each selected pair (p, q) with p, q E P12,

assign the pair a distinct color from W \ WQ~ by the first-fit coloring (p and q share the same

color, but different pairs are given different colors). Let W' be the set of colors assigned

to the selected pairs (p, q) with p, q E P12 . We assign each of the remaining paths of P l 2 a

color from W \ (WQ~ u W') by the first-fit coloring such that the set of the remaining paths

of Pl 2 is assigned distinct colors.

Let OPTo (resp. OPTI ) be the number of colors required to color PoUAo (resp. PI2 UAI )

in an optimal solution.

Lemma 3.2.1 OPTo = 1P01 + IAol-IMol and OPTI = 1P121 + IAII-IMII.

Proof: It is easy to see that 1P01 + IAol - IMol colors are sufficient for Po U Ao. We prove

that 1P01 + IAol - IMol colors are also necessary. Notice that each color is used by at most

two paths in Po U Ao. Assume to the contrary that there is a valid coloring which uses

OPT' = k l + k2 < [Pol + [AI - IMol colors, where each of the k l colors is used by one path

and each of the k2 colors is used by two paths. Since Mo is a maximum matching, k2 :S IMol.

The total number of paths colored by OPT' is

IPol + IAol = k l + 2k2 :S k l + k2 + [Mol < 1P01 + IAol - IMol + IMol = IPol + IAol,

a contradiction.

The proof for OPTI = 1P12/ + IAII - IMII is similar, noting that a color is used for at

most two paths in P l2 U AI. 0

Lemma 3.2.2 Scheme 831 colors Po such that the colorings for Qo and Po give a valid

coloring for Qo U Po using at least IQo U Pol - ,8 and at most

min{IQo U Pol, max{IQo U Pol - ,8, OPTo + L}} colors. Furthermore, Qo U Po is a ,8-set.

Proof: Clearly, at most IQo U Po I colors are used, paths with the same color are edge­

disjoint, and a color is used for at most two paths in QoUPo. If IMol > ,8-IW0>1 then there
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are exactly (3 multi-colors for Qo U Po and IQo U Po 1- (3 colors are used. Otherwise, there are

at most (3 multi-colors for Qo U Po and at least IQo U Pol - (3 colors are used. In the latter

case, the number of colors used is IAol + IBol + IW~I + IPol-JMol. From Lemma 3.2.1 and

IBol + IW~I :S L, at most OPTo + L colors are used. 0

Lemma 3.2.3 Scheme S32 colors P 12 such that the colorings for Q~ and P12 give a valid

coloring for Q; U PI2 using at least IQ; U H21 - (3 and at most

min{IQ'l U Pd, max{IQ~U Pd - (3, OPTI + L}} colors. Furthermore, Q; U P12 is a (3-set.

Proof: Clearly, at most IQ~ U PI2 / colors are used, paths with the same color are edge­

disjoint, and each color is used for at most two paths in Q'I U PI2 · If IMII > (3 -IW~ I then

there are exactly (3 multi-colors for Q~ U PI2 and IQ; U P I 21- (3 colors are used. Otherwise,

there are at most (3 multi-colors for Q; U H2 and at least IQ; U Pd - (3 colors are used.

In the latter case, the number of colors used is IA I / + IBII + IW~ll + IPd - IMII. By

Lemma 3.2.1 and IBII + IW~ I :S L, at most OPTI + L colors are used. 0

3.2.2 Edge-coloring of Multigraphs

For a (multi)graph G, l(G) defined in Proposition 2.1.2 is a lower bound on the number

of colors for the edge-coloring of G. The multigraph Gu constructed in Step 3.2 of Algo­

rithm ALG3.1 has maximum degree 2L, and l(Gu ) can be as large as 3L. Thus, a direct

application of more advanced edge-coloring algorithms (such as that of [95]) in Step 3.2 of

Algorithm ALG3.1 cannot improve the approximation ratio. In this subsection, we show

some properties of Gu when l(Gu ) is large. These properties, Schemes S31 and S32, and the

application of a more advanced edge-coloring algorithm in Step 3.2 will be used to improve

the approximation ratio of Algorithm ALG3.1.

Lemma 3.2.4 For any subgraph H ofGu , if L(H) > r2.5Ll then JV(H)I = 3.

Proof: If L(H) > r2.5Ll, then clearly JV(H)I ~ 3. Therefore, it suffices to show that

L(H) :S r2.5Ll if JV(H)I > 3. Consider two cases. If JV(H)/ = 2j (j ~ 2),

L(H) =

<

r
IE(H)I 1 = r,E(H)'1

lJV(H)I/2J j

r
2:uEVCH) d(U)] < rJV(H)1 x 2L1 = L

2j - 2j 2 .
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If IV(H)j = 2j + 1 (j:::: 2),

L(H) r IE(H)I 1= rIE(H)'1 < rLUEV(H)d(U)]
Il/V(H)//2J I j - 2j

< IIV(H~j x 2L1 = 1(1 + ;j) x 2L1 ::; 12.5Ll
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o

Lemma 3.2.5 For subgraphs HI and H2 of Gu with L(HI) > 12.5L1 and L(H2) > 12.5L1,

V(Hd n V(H2) = 0.

Proof: To prove the lemma by contradiction, assume that V(Hd n V(H2) f= 0. By

Lemma 3.2.4, both HI and H2 have three vertices. There are two cases to consider:

/V(Hd n V(H2 )/ = 1 and IV(Hd n V(H2)1 = 2. For the first case, the total number

of edges in HI U H2 is

However,

IE(H U H )1 < LUE(V(Hl)UV(H2» d(u) < 5 x 2L = 5£
I2_ 2 - 2 '

a contradiction.

For the second case, assume that V(HdnV(H2) = {ra , rb}' Let m(ra , rb) be the number

of multi-edges between r a and Tb. The total number of edges in HI U H2 is

However,

a contradiction. o
For multigraph Gu , let Fu be the graph obtained by contracting each subgraph H of Gu

with £(H) > 12.5L1 into a single vertex vH. More precisely, let V' = UH:L(H» r2.5L1V (H)

and E' = UH:L(H»r2.5L1 E(H). Graph Fu is defined by

and
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Figure 3.4: A multigraph Gu and its contracted graph Fu .

where for each edge in E(Gu ) \ EI
, if an end vertex of the edge is in V(H), the end vertex

is replaced by VH in E(Fu ). From Lemma 3.2.5, VH} =I- VH2 for HI =I- H 2 · We call Fu the

contracted graph of G u . Figure 3.4 gives an example of Gu and Fu .

Lemma 3.2.6 l(Fu ) :s r2.5L1and d(vH) < L.

Proof: The degree of VH in graph Fu is

d(vH) = L d(u) - 2 x IE(H)I < IV(H)I x 2L - 2 x r2.5Ll :s 3 x 2L - 5L = L.
uEV(H)

After every subgraph H with L(H) > r2.5Ll is contracted to a vertex VH in Fu , from

d(VH) < L, any subgraph of Fu with three vertices including VH has at most l d(VH)~2L+2L J <

r2.5Ll edges. Therefore, by Lemma 3.2.4, l(Fu ) :s r2.5Ll 0

3.3 A 2.75-approximation Algorithm

Applying the results of the previous section, we show a better approximation algorithm

for the Min-PC problem on TR with an arbitrary degree. By Proposition 2.1.2, the edge­

coloring of Gu can be done with at most r2.5Ll colors if l(Gu ) :s f2.5Ll. On the other

hand, if l(Gu ) > r2.5Ll, we can contract Gu into Fu with l(Fu ) :s r2.5Ll (Lemma 3.2.6)

and then apply the edge-coloring algorithm of [95] to Fu . Each contracted subgraph H has

three vertices, corresponding to three rings containing node u, and the paths corresponding
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to the edges in H can be colored by Schemes S31 and S32, with a properly chosen integer

(3. For simplicity, in what follows, we sometimes refer to the edges in the multigraph G u

and the corresponding paths on node u of T R without distinguishing them, if there is no

confusion.

Our algorithm, called ALG3.2, follows the framework in Figure 3.2. Step 2 of ALG3.2

is the same as that in Algorithm ALG3.1. Step 3.1 uses Scheme S31. By Lemma 3.2.2,

IQo U Pol :S 3L, and OPTo :S OPT, at most min{3L, max{3L - (3, OPT + L}} colors are

used for Qo U Po. In Step 3.2, we color Pl' Similar to Algorithm ALG3.1, we convert

the path coloring problem to the edge-coloring problem of multigraph Gu , but we use the

algorithm of [95] to solve the edge-coloring problem. There are two cases.

Case 1: l(Gu ) :S 12.5L1.

We apply the algorithm of [95] to Gu . Since Scheme S31 is used for Step 3.1, Ql is a

(3-set. If Scheme S31 is used with a (3 > 0, two paths of Ql may have been colored by the

same multi-color from WQl' To get a valid coloring from HI to the paths of Gu , for each

pair of paths p, q E Ql with the same multi-color from WQl' we re-assign a new virtual color

ILpq ~ Cc" to p and q. Let Cb" (resp. CQ1 ) be the set of virtual colors assigned to the paths

of Gu (resp. Qd after the re-assignment. We map Cb" to W by mapping h defined in

Section 3.1 to get a valid coloring from W to the paths of Gu . More specifically, we perform

the following:

1. For each lLi E CQ1 assigned to edge (x,y,p) with p E Q1> h(lLi) = Aj, where Aj E WQl

is the color assigned to path p before Step 3.2.

2. For each J.ti E Cb" \ CQ1 , II maps J.ti to a Aj E W \ WQl with the smallest available

index j such that Cb" \ CQ1 is assigned distinct colors.

Since Ql is a (3-set, ICb,.! :S ICc'" + (3. Also notice that .6.(Gu ) :S 2L, and l(ll.6.(Gu ) +
8)/lOj :S l2.2L + 0.8J :S 12.5L1 for any positive integer L. From Proposition 2.1.2 and

l(Gu ) ::; 12.5L1, the valid coloring uses at most 12.5L1+ (3 colors. This suggests a small (3.

However, the upper bound min{3L, max{3L - (3, OPT + L}} in Step 3.1 suggests a large (3.

To minimize max{l2.5L1+ (3, 3L - (3}, we choose (3 = l0.25L j for Scheme S31 in Step 3.1.

Notice that 12.5L1 + lO.25Lj :S 3L - lO.25Lj = 12.75L1.

Case 2: l(Gu ) > 12.5L1-

From Lemma 3.2.4, there is at least one subgraph H of Gu with L(H) > 12.5L1 and

IV(H)I = 3. There are two subcases depending on whether ring ro is a vertex of some H or
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not.

Case 2.1: Ring ro is not a vertex of any subgraph H of Gu with L(H) > f2.5L1.

We contract Gu to Fu . From Lemma 3.2.6, l(Fu ) ::; f2.5L 1. We then apply the algorithm

of [95] to Fu and get a valid coloring for the paths corresponding to the edges of Fu by

the mapping h as we did in Case 1. After this we color the paths corresponding to the

edges in each contracted subgraph H by virtual colors of CH = {VI, V2, ... }, using Scheme

S32 as a subroutine (the details will be given shortly). Notice that some paths between

ring ro and a ring of H may have been colored by multi-colors. Because those multi-colors

are also multi-colors for the paths on a ring of H, we need to subtract the number of those

multi-colors from l0.25LJ to get j3 for Scheme S32 to keep the l0.25LJ-set condition for

each ring. We need some more definitions to formally define the j3 for Scheme S32.

Assume V(H) = {ra,rb,rc}. We use Pij (i,j = a,b,c;i ::f. j) for the set of long paths

in H on ri and rj, and use R i (i = a, b, c) for the set of paths not in H but on ri (see (a)

of Figure 3.5). Notice that R a U R b U Rc has been colored and contains every colored path

intersecting with a path of Pab U Pac U Pbc' Let Q' = R a U Rb U R c and w~ be the set

of multi-colors for Q'. Since paths with a color from w~ are on ro, from the lO. 25LJ-set

condition on ro, Iw~ I ::; lO. 25LJ.

For any two paths p and q with a multi-color Am E w~, there are two cases. Case (i),

P and q are on ro and a single ring of H (say ra, the dashed edges in (a) of Figure 3.5).

Case (ii), p and q are on ro and two rings of H (say ra and rc, the dotted edges in (a)

of Figure 3.5). In Case (i), Am is a multi-color for the ring of H (say r a ). In Case (ii),

Am is not a multi-color for any ring of H. Let W m = {>.mlAm E W~ is used in Case (iin.

Then at most IW~I - IWml colors of W~ are multi-colors for each ring of H. From this,

we take j3 = lO.25LJ -IW~I + IWml for applying Scheme S32 as a subroutine. To color

Pab U Pac U Pbc by virtual colors from CH, we first assign Pab U Pac distinct virtual colors

from CH. After this, a path colored with a virtual color from CH on rb or rc must be in

Pac U Pab and thus is on ra. Subject to this condition, we color the paths of Pbc with virtual

colors from CH using Scheme S32 with j3 = lO.25LJ -IW~I + IWml, ra, rb,rc corresponding

to ro, rl, r2 in the description of S32 in Section 3.2.1, respectively, Pab U Pac corresponding

to Q~, and Pbc corresponding to P12 .

After Pab U Pac U Pbc is colored by virtual colors of CH, we map the virtual colors to the

colors of W. In the mapping, we try to use the colors of W R a to paths in Pbc . Similarly, we

try to use the colors of WR b (resp. WRJ to paths in Pac (resp. Pab)' Notice that the colors
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(a) TO is not in H (b) Ta = TO

Figure 3.5: Paths in and incident to subgraphs H with L(H) > f2.5Ll

of wm are not used in the mapping to keep the lO.25LJ-set condition on each ring. Let CPij

(i, j = a, b, c; i of. j) be the set of virtual colors for Pij . We define mapping 12 : CH --+ W to

color the paths in H as follows.

1. Select IWRa \ Wml virtual colors from CPbc \ (CPab U CPaJ arbitrarily, and 12 maps

each selected color Vi to a Aj E WR a \ W m such that the selected virtual colors are

assigned distinct real colors.

Similarly, select IWRb \ W m/ (resp. IWRc\ W m!) virtual colors from CPac \ (CPab UCPbJ

(resp. CPab \ (CPac U CPbJ) , and 12 maps each selected virtual color Vi to a Aj E

WRb \ wm (resp. Aj E WRc \ W m) such that the selected virtual colors are assigned

distinct real colors.

Let Cs be the set of selected virtual colors.

2. For each Vi E CH \ Cs, 12 maps Vi to a Aj E W \ (WRaUWRb UWRc) with the smallest

available index j such that CH \ Cs is assigned distinct colors.

The intuition of Step (1) of 12 is to use as many colors of WRa U WRbU WRc for E(H) as

possible. It is shown later that ICPbc \ (CPab uCpaJI 2: IWRa \ Wml, ICPac \ (CPab uCPbJI 2:

IWRb \ Wml, and ICPab \ (CPac U CPbJI 2: IWRc \ Wmr· This implies that Step (1) of 12 can

be done.

Case 2.2: Ring ro is a vertex of some H with L(H) > f2.5L1.
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Assume V(H) = {ra = ro, rb, rc} (see (b) of Figure 3.5). Notice that Pab U Pac U Ra

has been colored in Step 3.1 and every colored path on rb or rc is also on ra. We color Pbc

by Scheme S32 with {3 = lO.25LJ, ra,rb,rc corresponding to rO,rl,r2 in the description of

S32 in Section 3.2.1, respectively, Pab U Pac corresponding to Q~, and Pbc corresponding to

P12 . Next we color Rb (resp. Rc), trying to use the colors of Pac (resp. Pab). Note that a

color used by Pac may have already been assigned to a path in Pab or Pbc , and thus cannot

be assigned to Rb without violating the lO.25LJ-set condition for ring rb (similar situation

exists for the set Rc and the ring rc), To keep the l0. 25LJ-set condition for rings rb and rc

and for the set RaU Rb U Rc, we do not use multi-colors for Rb and Rc. More specifically, let

Wq be the set of multi-colors for Q' = Pab U Pac U Ra and Wql be the set of multi-colors

for Q" = Pab U Pac U Pbc ' Let WPab (resp. WPaJ be the set of colors for the paths of Pab

(resp. Pac). For each path p E Rb (resp. pERc), assign p a color from WPac \ (Wq UWql)

(resp. WPab \ (Wq U Wq/)) such that Rb (resp. R c) is assigned distinct colors. Finally, we

contract the H to one vertex, called rb, in multigraph Gu to get another multigraph G~.

In G~, rb rf- V(H) for any subgraph H of G~ with L(H) > 12.5L1 (by Lemma 3.2.6) and

the set of paths incident to rb is colored and satisfies the l0.25LJ-set condition (this will be

shown in the proof). We solve the edge-coloring of G~ as in previous cases to get a valid

path coloring.

Theorem 3.3.1 Algorithm ALG3.2 solves the Min-PC problem on T R with n nodes and

degree 2(k + 1) using at most min{3L, max{l2.75L1, OPT + l1.25LJ}} colors in O(nkL(k +
L1.5)) time.

Proof: We show that for every node u, Algorithm ALG3.2 colors Qu U Pu with at most

min{3L, max{l2.75L1, OPT + l1.25LJ}} colors. In Step 2, we get a valid coloring for

Qu U Pu and the l0.25LJ-set condition for every ring of T R with 2L colors. In Step 3.1, by

Lemma 3.2.2, we get a valid coloring for QoUPo and the lO.25LJ-set condition with at most

min{3L, max{l2.75L1 , OPT + L}} colors. In Step 3.2, for Case 1 of l(Gu ) ~ 12.5L1, by

the lO.25LJ-set condition, the paths corresponding to edges in G u can be colored with

at most 12.75L1 colors. Thus, we can get a valid coloring for Qu U Pu with at most

min{3L,max{l2.75L1, OPT + l1.25LJ}} colors, and the lO.25LJ-set condition holds after

the coloring.

For Case 2 of l(Gu ) > 12.5L1, in Case 2.1, we contract Gu into Fu and solve the edge­

coloring of Fu . The paths corresponding to the edges of Fu can be colored with at most
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r2.75Ll colors, according to Lemma 3.2.6 and the lO.25Lj-set condition. For each subgraph

H of Gu with L(H) > r2.5Ll, the paths in H are colored by virtual colors of CH and 12
maps the virtual colors to real colors of W. To see Step (1) of 12 can be done, we show

that ICPbc \ (CPab U CPaJI ~ IWRa \ Wml, Le., the number of virtual colors used only by

Pbc is greater than or equal to the number of real colors used only by Ra. By Lemma 3.2.3,

ICHI ~ IE(H)I- (3, where (3 = lO.25Lj -IWql + IWmr (recall that Q' = RaURbURc, Wq
is the set of multi-colors for Q', and wm is the subset of Wq such that the two paths with

a color from w m are incident to different vertices of H). Since IE(H)I > r2.5Ll,

ICHI ~ IE(H)I- (3 > r2.25Ll + jWql-lwml ~ r2.25Ll·

Therefore,

ICPbc \ (CPab U CPaJI > ICHI- (ICPabl + ICPac /)

> ICHI- (lPabl + lPac/)

> r2.25Ll - (d(ra) - IRal)

> rO.25Ll + IWRal

> IWRa \ Wml·

Similarly, ICPac \ (CPab U CPhJI ~ IWRb \ Wml and ICPab \ (CPac U CPbJI ~ IWRc \ Wml.

Summarizing the above, 12 gives a valid coloring for Ra U Rb U Rc U Pab U Pac U Pbc' In

addition, all the colors of Ra U Rb U Rc, except those in W m, are mapped to the virtual

colors in C(H). The following calculations will show that the total number of colors used

by Ra U Rb U Rc U E(H) is at most IC(H)I + IWml after the mapping 12.
Since lPab U Pac I :S 2L, Pab U Pac can be colored with at most 2L distinct colors. Notice

that IE(H)I = IPabUPacUPbcl. By Lemma 3.2.3, ICHI :S max{!PabUPacUPbc!-(3,OPT+L} =

max{IE(H)1 - (lO.25Lj - IWql + Iwm/), OPT + L}. The number of real colors used for

Ra U Rb U Rc U Pab U Pac U Pbc is at most, noting that IE(H)I < l6L-;IQ'1 j < 3L - IWq I and
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IWRa U W Rb U WRcl + max{IE(H)1 - (lO.25Lj - IW~I + IWml),

OPT + L} - (IWRa \ Wmj + IWRb \ Wmj + IWRc \ Wml)

< max{IE(H)1 - lO.25LJ + IW~I - /Wml, OPT + L} + /Wm/

< max{3L -IW~I- lO.25Lj + IW~I-Iwml, OPT + L} + /Wml

max{f2.75Ll, OPT + L + IWml}

< max{f2.75Ll, OPT + l1.25LJ}.
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Now we show the lO.25Lj-set condition is true for every ring. Notice that the paths of

Ra U Rb U Rc are given distinct virtual colors of CCu in the edge-coloring of Fu because all

these paths are incident to the same vertex vH. Therefore, only the paths incident to TO may

be colored by real multi-colors when a valid coloring from W to the paths of Fu is found.

This implies that W R; n WRj ~ W m (i, j = a, b, c, i =I j). From this, sets (WR; \ W m)

(i = a,b,c) are pairwisely disjoint. Recall that CPab and CPac are the sets of virtual colors

from CH assigned to Pab and Pac, respectively. The mapping h selects a subset of CPab

(resp. CPaJ, assigns the subset distinct real colors from W Rc \ wm (resp. WRb \ wm), and

assigns the remaining colors of CPab U CPac distinct real colors from W \ (WRaU WRb U WRc)'

From (WRb \ W m) n (WRc \ W m) = 0 and the fact that the paths in Pab U Pac are given

distinct virtual colors of CH, the mapping h assigns the paths in Pab U Pac distinct real

colors not in WRa \ W m. Therefore, the lO.25Lj-set condition is true for Ta. There are at

most /3 = lO.25Lj - IW~I + IWml virtual multi-colors of CH for Pbc and each of them is

mapped to a distinct real color in W Ra \ wm or W \ (WRa U WRb U WRc)' Therefore, there

are at most IW~I -IWm/+ /3 = lO.25Lj real multi-colors for the paths on each of rings Tb

and Tc . That is, the l0.25L j-set condition is true for every ring.

In Case 2.2, Qf = Ra U Pab U Pac has been colored with at most 2L colors and is a

lO.25Lj-set. In addition, Pab U Pac contains every colored path intersecting with a path

of Pbc' By Lemma 3.2.3 and IE(H)I ~ 3L, Q" = Pab U Pac U Pbc is colored with at most

min{3L, max{ f2.75Ll, OPT+L}} colors. From this and Lemma 3.1.2, R aUPabUPacUPbc is

colored with at most min{3L, max{f2.75Ll, OPT+ ll.25Lj}} colors. On the other hand, by

Lemma 3.2.3, Q" is colored with at least IE(H)I - lO.25Lj colors. Since IE(H)I > f2.5Ll,

IW~I ~ lO.25Lj, IW~/I ~ lO.25Lj, W~I \ W~ ~ WPbc ' and /WPab U WPac U WPbcl =
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IE(H)I-IWQi,I, we have

IWPab \ (WQi U WQi,) 1 > IWPab \ WPbcl- IWQiI
> (IE(H)I-IWQ:,I -IWPacl- IWPbcl) -jWQ:1
> 12.25L1 - (J(re ) - IRel) - lO.25LJ

> IRel·
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Similarly, IWPac \ (WQ: U WQ:') I 2": IRbl. Therefore, Re (resp. Rb) is assigned distinct colors

of WPab \ (WQ: U WQ:') (resp. WPac \ (WQ: U WQ:')), and Ra U Rb U Re U Pab U Pac U Pbe

is colored with at most min{3L, max{l2.75L1, OPT + l1.25Lj}} colors. The lO.25LJ-set

condition holds for R a U Rb U Re and each of rings ra,rb, and re, because no multi-color is

introduced when coloring Rb and Re. By solving the edge-coloring of G~, we can get a valid

coloring for Qu U Pu with at most min{3L, max{l2.75L1, OPT + l1.25L j}} colors.

The edge-coloring of Gu takes O(kL(k + L)) time by Proposition 2.1.2. It takes 0(L2.5)

time to color a subgraph H of Gu with L(H) > 12.5L1 (since H has degree at most 2L,

the graph constructed in Scheme S32 has O(L) vertices, and it takes 0(L2.5) time to find

a maximum matching in such graph [91]). There can be O(k) such subgraphs H in Gu .

Therefore, it takes O(kL(k + L) + kL2.5) = O(kL(k + L1.5)) time in Steps 3.1 and 3.2.

The algorithm executes these steps O(n) times. The time complexity of the algorithm is

O(nkL(k + L1.5)). 0

Since L ::s OPT, min{3L, max{l2.75L1, OPT + l1.25Lj} }/OPT ::s 12.75L1/L. Thus

Algorithm ALG3.2 achieves an approximation ratio of 2.75 asymptotically.

It seems difficult to extend the approach used in Algorithm ALG3.2 to improve the

approximation ratio of 2.75 for a tree of rings with arbitrary degrees. One possible direction

is to lower the threshold value to some T < 12.5L1 for subgraph H. However, this will

introduce the following problems. First, a subgraph H may have five or more vertices. A

new scheme for coloring H is needed. Second, after the contraction of H in Gu , the resulting

graph Fu may still have l(Fu ) > T. To apply the edge-coloring algorithm, we may need

to contract Fu as well. A new mapping function for converting the virtual colors of edge­

coloring to real colors is needed. It is difficult to solve either of the problems. Nevertheless,

in the next section, we show that the approach of Algorithm ALG3.2 can be used to derive

algorithms with improved approximation ratios for bounded degree trees of rings.
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3.4 Algorithms for Bounded Degrees
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The ideas for the 2.75-approximation algorithm can be used to design more efficient algo­

rithms for the Min-PC problem on trees of rings with bounded degrees. Actually, Schemes

S31 and S32 shown in Section 3.2.1 imply a 3L and 2-approximation algorithm for the Min­

PC problem on trees of rings with degree at most six. We first give the algorithm explicitly

and then describe algorithms for degrees eight and ten.

3.4.1 Algorithm for Degree Six

The algorithm, called ALG3.3, follows the framework in Figure 3.2. Step 2 of ALG3.3 is

the same as that in Algorithm ALG3.1. Step 3.1 uses Scheme S31. In Step 3.2, we first use

Scheme S32 to color the long paths in P12 . Then we color the short paths on r1 and those

on r2. Let Q' be the set of all long paths on u and r1. We assign the short paths on r1 the

colors of W \ WQ' by the first-fit coloring such that the set of short paths is assigned distinct

colors. Let Q" be the set of all long paths on u and r2. We assign the short paths on r2

the colors of W \ W Q" by the first-fit coloring such that the set of short paths is assigned

distinct colors.

Theorem 3.4.1 Algorithm ALG3.3 solves the Min-PC problem on T R with n nodes and

degree at most six using at most min{OPT + L, 3L} colors in O(nL 2.5 ) time.

Proof: To prove the theorem, we take /3 = L. We show that Algorithm ALG3.3 colors

Qu U Pu using at most min{OPT + L, 3L} colors for every node u in T R.

In Step 2, Qu = '/) and IPul :S 2L. At most 2L :S min{OPT + L,3L} colors are used

for Qu U Pu. Obviously, the L-set condition is true for every ring after Step 2. In Step 3.1,

by Lemma 3.2.2 and IQo U Pol :S 3L, at most min{3L,max{3L - L,OPTo + L}} colors are

used for Qo U Po. Since OPTo ::; OPT and L ::; OPT, max{3L - L, OPTo+ L} ::; OPT + L

and at most min{OPT + L, 3L} colors are used for Qu U Po. By Lemma 3.2.2, the L-set

condition is true for every ring after Step 3.1.

In Step 3.2, recall that Q~ <;;; Q1 is the set of colored long paths on links (u, u -) or

(u, u+). Each path of Q~ (resp. P12 ) is on one (resp. two) of the four links incident to u in

r1 and r2, implying IQ~ 1+ 21Pd ::; 4L. From this and IQ~ I :S 2L, we have IQ~ U Pd :S 3L.

Notice that Q~ contains every colored path intersecting with a path of P 12 . By Lemma 3.2.3,

OPT1 ::; OPT, L::; OPT, and IQ~ UPd :S 3L, at most min{OPT+L,3L} colors are used
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for Q~ U P12 . By Lemma 3.2.3, the L-set condition is true for every ring after the coloring

of P12 .

Since there are at most 2L paths on the two links of rl (resp. r2) that are incident to

node u, all the paths on the two links in rl (resp. r2), including all the short paths, can be

colored with 2L colors. Obviously, the L-set condition is true for every ring after the short

paths are colored. Thus, Algorithm ALG3.3 colors QuUPu with at most min{OPT+L,3L}

colors and keeps the L-set condition for every ring.

A tree of rings T R with n nodes has 0 (n) links. There are at most 0 (nL) paths in a

tree of rings with load L. To reduce the time complexity, we first construct a conflict graph

Gc whose vertex set is P and two vertices of Gc are adjacent if the corresponding paths of

P intersect with each other in TR. The conflict graph can be constructed in 0(nL 2 ) time,

assuming that each path of P is given as a linked list of links of T R. The algorithm executes

Steps 3.1 and 3.2 O(n) times. The first-fit coloring takes 0(L2 ) time to color L paths. It

takes 0(L2 ) time to construct a graph Gu of O(L) vertices, by checking the conflict graph

(there is an edge between two vertices of G u if there is no edge between the two vertices in

the conflict graph). It takes 0(L2.5 ) time to find a maximum matching of the graph [91].

Therefore, Steps 3.1 and 3.2 take 0(L2.5 ) time. The time complexity of the algorithm is

0(nL2.5 ). 0

3.4.2 Algorithm for Degree Eight

The algorithm for degree eight, called ALG3.4, is similar to Algorithm ALG3.2, but uses

a special scheme for the edge-coloring of multigraph Gu . Since the tree of rings considered

has degree eight, Gu has at most four vertices rio Since the paths with an end vertex of Si

of Gu are short paths which can be easily colored with 2L colors after the long paths are

colored, in what follows, we assume that Gu has only vertices ri and edges corresponding

to long paths. We first. show an optimal edge-coloring algorithm for a multigraph with four

vertices. We follow the notation used for Algorithm ALG3.2. Especially, for a subgraph H

of multigraph Gu with V(H) = {ra , rb, rc }, we use Pij (i,j = a, b, c; i =I- j) for the sets of

long paths in H on ri and rj, and use R i (i = a, b, c) for the sets of paths not in H but on

Lemma 3.4.2 An edge-coloring of multigraph Gu with four vertices can be done using at

most max{~(Gu),l(Gun colors in O(IE(Gu)l) time.



CHAPTER 3. PATH COLORING ON TREES OF RINGS 59

Proof: If l(Gu) > ~(Gu), then there exists a subgraph H with three vertices which has

L(H) = l(Gu ). To see this, assume that for any subgraph H with three vertices, £(H) <

l(Gu). The remaining vertex, which is not in H, has degree at most ~(Gu). Then

l(Gu) ~ r£(H) ~ ~(Gu)1< l(Gu),

a contradiction. For the subgraph H with L(H) = l(Gu ), assume that V(H) = {ra , rb, rc}

(see Figure 3.6). We first color the edges E(H) using l(Gu ) distinct colors. From E(H) =

l(Gu) > L\(Gu), we have

Thus, all edges of Ra can be colored by the colors used for Pbc , since each edge of Ra does

not share a common vertex with any edge of Pbc ' Similarly, all edges of Rb (resp. Rc) can

be colored by the colors used for Pac (resp. Pab). Therefore, Gu can be edge-colored with

at most l(Gu ) colors.

For the case of l(Gu) ~ ~(Gu), assume that d(ro) = L\(Gu). We first color the edges

incident to ro by L\(Gu) distinct colors. Assume that the remaining vertices of Gu are ra ,

rb, and rc (see (a) of Figure 3.6). Let H be the subgraph with V(H) = {ro, rb, rc}. Then

IE(H)I ~ l(Gu) ~ L\(Gu), and we have

So, all edges of Pbc can be colored by the colors used for Ra. Similarly, all edges of Pab (resp.

Pac) can be colored by the colors used for Rc (resp. Rb)' Thus, Gu can be edge-colored with

at most L\(Gu) colors.

The algorithm first needs to find the larger number of ((Gu) and L\(Gu). This takes

O(IE(Gu)l) time. The coloring takes O(IE(Gu)l) time. Thus, the time complexity of the

algorithm is O(IE(Gu)l). 0

Algorithm ALG3.4 follows the framework of Figure 3.2. Step 2 of ALG3.4 is the same

as that in Algorithm ALG3.1. Step 3.1 uses Scheme S31 to color Po taking (3 = lO.5LJ. In

Step 3.2 of ALG3.4, to color PI, we convert the path coloring problem to the edge-coloring

problem of multigraph Gu . Similar to Algorithm ALG3.2, there are two cases.

Case 1: l(Gu) ~ 2£.

In this case we edge-color Gu by the algorithm given in Lemma 3.4.2 using at most 2£

virtual colors, re-assign virtual colors to the paths which have been assigned multi-colors of



CHAPTER 3. PATH COLORING ON TREES OF RINGS 60
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(a) TO is not in H (b) T a = TO

Figure 3.6: Paths in and incident to the subgraph H with four vertices and L(H) > 2L.

W before Step 3.2, and apply the mapping II to color the paths of PI, as we did in Case 1

of Step 3.2 of Algorithm ALG3.2.

Case 2: I(Gu ) > 2L.

In this case, there is a subgraph H of Gu with L(H) = I(Gu ). There are two subcases.

Case 2.1: Ring TO is not a vertex in H.

We color the paths in H by virtual colors of CH = {VI, V2, ... }. Assume that V (H) =
{Ta , Tb, Tc }· Notice that R a URbURc has been colored. Let Wq be the set of multi-colors for

Q' = R a U R b U R c . From the lO.5LJ-set condition, IWql :s; lO.5LJ. Let Wm be the subset

of Wq such that the two paths with a color from wm are incident to different vertices of

H (see (a) of Figure 3.6). Similar to Case 2.1 of Algorithm ALG3.2, we color Pab U Pac by

distinct virtual colors and Pbc by Scheme S32 with

f3 = min{l0.5LJ -IWql + /Wm
/, [E(H)I - 2L},

using virtual colors of CH. Then we apply mapping fz in the same way as that in Algorithm

ALG3.2, using as many as possible of the colors of WRa , WRb' and WRc to color P bc , Pac,

and Pab, respectively.

Case 2.2: Ring TO is a vertex of H.

Assume V(H) = {Ta = TO, Tb, Tc } (see (b) of Figure 3.6). Notice that R a U Pab U Pac has

been colored with at most 2L colors. Let Wq be the set of multi-colors for Q' = P ab U Pac.
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Similar to Case 2.2 of Algorithm ALG3.2, we color Pbc by Scheme S32 with

f3 = max{IE(H)I- r2.5Ll, IW~I},
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using colors of W Ra \ (WPab U W Pac) first and then colors of W \ (WRaU WPab U WPaJ. After

this we assign Rb distinct colors from W~ac = WPac \ (WRaU W Pab UW Pbc) first and then from

W \ (WRa U WPab U WPac U WPbJ by the first-fit coloring such that Rb is assigned distinct

colors. Similarly, we assign Rc distinct colors from W~ab = WPab \ (WRaU W Pac U W PbJ first

and then from W \ (WRa U WRbU WPab U WPac U WPbJ by the first-fit coloring.

Theorem 3.4.3 Algorithm ALG3.4 solves the Min-PC problem on T R with n nodes and

degree eight using at most min{3L, OPT + r1.5Ll} colors in O(nL 2.5) time.

Proof: We prove that Algorithm ALG3.4 colors Qu U Pu with at most min{3L,OPT +

r1.5Ll} colors for every node u. Similar to the prooffor Algorithm ALG3.2, if l(Gu ) :S 2L,

we get a valid coloring for Qu U Pu with at most min{3L,OPT + r1.5Ll} colors and the

l0.5L j-set condition holds after the coloring.

Assume that l(Gu ) > 2L in Step 3.2. In Case 2.1, by Lemma 3.2.3, the paths in H

are colored with at least IE(H)I - f3 2 2L virtual colors, where f3 = min{ lO.5Lj - IW~I +
IW mj, IE(H) I - 2L}, Q' = Ra U Rb U Rc, and W~ is the set of multi-colors on Q'. Let CPij

(i, j = a, b, c; i :j=. j) be the subset of virtual colors of C H assigned to Pij. We have

ICPbc \ (CPab U CPaJI 2 ICHI-ICPabl- ICPaei 2 2L - (d(ra) - IRal) 2 IWRal·

Similarly, ICPac \ (CPab UCPbJI 2 IWRbl and ICPab \ (CPac UCPbJI 2 IWRcl· Thus Step (1) of

mapping 12 can be done and we get a valid coloring for Ra U Rb U Rc U E(H). The number

of colors used is, noting IE(H)I:S l6L-;IQ' lj:S 3L -IW~I and IWml:S lO.5Lj,

max{IE(H)I- {3,OPT+L} + IWml

< max{jE(H)1 - (lO.5Lj -IW~I + IWml), IE(H)I - (IE(H)I - 2L),

OPT+L}+ IWml

< max{3L -IW~I- lO.5Lj + IW~I-Iwml, OPT + L} + IWml

maxU2.5Ll,OPT + L + IWml}

< OPT + p.5Ll

Pab U Pac are given distinct real colors. There are at most f3 virtual multi-colors of C H for

Pbc and each of them is mapped to a distinct real color in W Ra \ wm or W \ (WRa U WRb U
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WRJ. Notice that W Ri n W Rj <;;, wm for i, j = a, b, c; i i- j. Therefore, there are at most

IWql- IWml + (3 = LO.5LJ real multi-colors for the paths on each of rings ra,rb, and re.

That is, the l0.5LJ-set condition is true for every ring.

In Case 2.2, Pbe is colored by Scheme S32 with (3 = max{IE(H)I- f2.5Ll, IWql}, where

Q' = Pab U Pac and Wq is the set of multi-colors on Q'. Since IE(H)I :s 3L, (3 :s lO.5LJ.

Notice that Q' contains every colored path intersecting with a path of Pbc' By Lemma 3.1.2

and Lemma 3.2.3, RaUE(H) can be colored with at most min{3L, max{f2.5Ll, OPT+L}} :s
min{3L, OPT + f1.5Ll} colors. Recall that we choose (3 = max{IE(H)1 - f2.5L1, IWql} in

the algorithm. Consider which of the two values (3 takes. Assume that (3 = IE(H) 1- f2.5L1·
We show that Rb can be assigned distinct colors of W;'ac' Notice that

By Lemma 3.2.3, at least f2.5Ll colors are used for H. Since W Pac n (WRa U WPab) is a

subset of the multi-colors on WRaU WPab U WPac ' from the lO.5LJ-set condition on ring ra,

IWPac n (WRa U W Pab )1 :s LO.5LJ. Therefore,

IW;'aci > (f2.5Ll -IWPabl-IWPbcl) -lO.5LJ

> f2.5Ll - (d(rb) -IRbl) - lO.5LJ

> IRbl·

From this, Rb can be assigned distinct colors of W~ac' Similarly, Re can be assigned distinct

colors of W;'ab' Thus RaURbUReUE(H) can be colored with at most min{3L, OPT+ f1.5Ll}

colors, and from (3 = /E(H)/- f2.5Ll :s LO.5LJ the LO.5LJ-set condition holds for RaURbURe

and each of rings Ta , Tb, and r e .

Assume that (3 = IWql. By the proof above, we can assume that /W;'acl < IRbl or

IW;'ab l < IRei. We further assume, without loss of generality, that /W;'aJ < IRbl and

IW;'ab l < IRei (the other two cases can be proved similarly). From (3 = IWql and Scheme

S32, Pbe is assigned distinct colors and W Pbc n (WPab U WPaJ = 0. From E(H) > 2L and

d(ra):S 2L, IPbel > IRal which implies that all colors of WRa \ (WPab UWPaJ are used for

Pbe' Therefore, Ra U E(H) is colored with at most E(H) - IWql colors. To color Rb and

Re ,
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additional colors are needed. Since WPbc n (WPab U WPaJ = 0,

(IRbl - IW~aJ) + (IRcl - /W~abl)

= ([Rbi + IRcl) - (IWPac \ (WRa U W pab )I+ IWPab \ (WRa U WPac)l)

< (IRbl + IRcl) - (IWPacl + IWPabl-IWPac nWRal-IWPab nWRal

-2/WPab n WPacl).
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Since (WPac n WRJ U (WPab n WRJ U (WPab n WPaJ is a subset of the multi-colors on

Ra U Pab U Pac' from the lO.5Lj-set condition on ring ra, IWpac n WRal + IWPac n WPabl +

IWPab n WRal :S lO.5Lj (noting that W Ra n WPac n W Pab = 0). Since W~ is the set of

multi-colors on Q' = Pab U Pac,

Also notice that Wac I = IE(H)I-d(rb)+IRbl and lPabl = IE(H)I-d(rc)+IRcl. Summarizing

the above,

(IRbl - [W~aJ) + (IRcl - IW~aJI)

< IRbl + IRcl- (lPacl + lPabl-IW~1 - lO.5Lj)

d(rb) + d(rc) + IW~I + lO.5Lj - 2IE(H)I·

Since at most IE(H)I-IW~/ colors are used for RaUE(H), d(rb), d(rc) :S 2L, and IE(H)/ >
2L, the total number of colors used for Ra U Rb U Rc U E(H) is bounded by

d(rb) + d(rc) + IW~I + lO.5Lj - 2IE(H)1 + IE(H)I - IW~I :S f2.5Ll

Obviously, the l0.5L j-set condition holds for Ra U Rb U Rc and each of rings ra, rb, and rc.

The edge-coloring of Gu takes O(L) time by Lemma 3.4.2. It takes 0(L2.5 ) time to color

the subgraph H of Gu with L(H) > 2L. The first-fit coloring takes 0(L 2 ) time to color L

paths. Therefore, it takes 0(L2.5 ) time in Steps 3.1 and 3.2. The algorithm executes these

steps O(n) times. The time complexity of the algorithm is 0(nL 2 .5 ). 0

It seems difficult to generalize the approach of Algorithm ALG3.4 for the Min-PC prob­

lem on trees of rings with larger constant degrees, although a similar but more complicated

analysis shows that the 2.5 approximation ratio is achievable for degree at most ten.
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3.4.3 Algorithm for Degree Ten
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The algorithm for degree ten, called ALG3.5, is similar to Algorithm ALG3.4, but uses a

special scheme for the edge-coloring of multigraph G u . Since the tree of rings considered has

degree ten, Gu has at most five vertices. For a multigraph with five vertices, Lemma 3.4.2

can be extended as follows.

Lemma 3.4.4 An edge-coloring of multigraph Gu with jive vertices can be done using at

most max{L\(Gu ) + 1, l(Gun colors.

Lemma 3.4.4 follows from the 1.1 edge-coloring algorithm [95J. In the 1.1 edge-coloring

algorithm, if a critical path does not contain two vertices with the same missing color, then

it has 3, 5 or 7 vertices. 1.1L\ + 0.8 colors are needed to ensure a valid edge-coloring. This is

not needed in a multigraph with at most 5 vertices. The lemma is true for any multigraph

with at most eight vertices.

Algorithm ALG3.5 follows the framework of Figure 3.2. We follow the notation used for

Algorithm ALG3.4. Especially, for a subgraph H of multigraph G u with V(H) = {ra , rb, rc },

we use Pij (i,j = a, b, c; i =I- j) for the sets of long paths in H on ri and rj, and use R i

(i = a, b, c) for the sets of paths not in H but on rio We use Rd to denote the set of paths

not on any ring of H (see Figure 3.7(b)).

Step 2 of ALG3.5 is the same as that in Algorithm ALG3.1. Step 3.1 uses Scheme

S31 to color Po taking f3 = l0.5£J. In Step 3.2 of ALG3.5, to color PI, we convert the

path coloring problem to the edge-coloring problem of multigraph G u . Similar to Algorithm

ALG3.4, there are two cases.

Case 1: l(Gu ) :S 2£.

In this case we edge-color Gu by the algorithm given in Lemma 3.4.4 using at most 2£+ 1

virtual colors, re-assign virtual colors to the paths which have been assigned multi-colors of

W before Step 3.2, and apply the mapping II to color the paths of PI, as we did in Case

1 of Step 3.2 of Algorithm ALG3.4. It is easy to see that II colors the paths in Gu by at

most 2£ + 1 + l0.5£J = l2.5£J + 1 colors if the l0.5£J-set condition is true before the step.

Case 2: l(Gu ) > 2L.

We give some more definitions. Edges incident to ro in Gu are already colored. Let

Ql be the set of paths on ro (corresponding to edges incident to ro in Gu ), W~ be the

set of multi-colors in W Q1' and Qf S;; QI be the set of edges each of which is colored by
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(a) TO is not in H (b) TO = Ta

Figure 3.7: Paths in and incident to the subgraph H with five vertices and L(H) > 2L.

a multi-color (IQr I = 21 WQ: I). For a set of edges E in G, we use G - E to denote the

subgraph of G obtained by removing the edges in E.

Notice that by definition, L(Gu ) ~ l(Gu ). The value l(Gu ) could be achieved on a

subgraph with three vertices (L(H) = l(Gu ) for some H ~ Gu with IV(H) I = 3), or on

graph Gu (L(Gu ) = l(Gu )). There are two cases.

Case 2A: If there is a subgraph H ~ Gu with IV(H)/ = 3, and L(H) = l(Gu ), then we

consider the following two cases .

• Case (i): Ring ro is not a vertex of the subgraph H.

We first assign each edge in Gu - (E(H) U Qd a distinct color not in WQl by the

first-fit coloring. These edges are incident to rl in Figure 3.7(a). Then we contract ro

and rl to a single node rb (throwaway any loop edges), and obtain a new graph G~

which has four vertices. In G~, only edges incident to rb are colored, and they form a

lO.5LJ-set. We color the uncolored edges in G~ as in Case 2.1 of Algorithm ALG3.4.

• Case (ii): Ring ro is a vertex of the subgraph H.

We contract rl and rz to a single node r~ (throwaway any loop edges), and obtain

a new graph G~L which has four vertices (see Figure 3.7(b)). We color the uncolored
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edges in G~ as in Case 2.2 of Algorithm ALG3.4. We then color the edges in R d with

distinct colors not in WR a U WRb U WR c '

Case 2B: If L(Gu ) = l(Gu ), and for all subgraph H <; Gu with IV(H)I = 3, L(H) <

l(Gu ), then l(Gu ) is achieved on graph Gu itself (obviously L(Gu ) :=:; 12.5L1, see Lemma 3.2.4).

Let G~ = Gu - Qf. If l(G~) :=:; 2L, then we edge-color G~ with at most 2L+1 colors (from

Lemma 3.4.4), and then apply mapping h. Otherwise, l(G~) > 2L. If L(G~) = l(G~), then

we edge-color G~ using l(G~) colors and apply mapping h. Otherwise (L(G~) < l(G~)),

there is a subgraph H' s: G~ such that L(H' ) = l(G~). Let H be the subgraph in Gu

induced by the three vertices of H'. We then consider the two cases in the same way as

Case 2A.

Theorem 3.4.5 Algorithm ALG3.S solves the Min-PC problem on TR with n nodes and

degree ten using at most min{3L,OPT + 11.5L1 + I} colors in O(nL 2.5 ) time.

Proof We only consider Case 2 of l(Gu ) > 2L in Step 3.2 (other cases are similar to

Algorithm ALG3.4). The coloring of the edges in H and edges in R a U Rb U Rc (the edges

not in H but incident to the vertices of H) is essentially the same as in the degree eight case.

There are two important facts: (1) in Case (i) of Case 2A, edges incident to rl are given

distinct colors not in WQ11 and (2) in Case (ii) of Case 2A, Rb and Rc are given distinct

colors (this is true following from the coloring process in Case 2.2 of Algorithm ALG3.4).

In both Case (i) and Case (ii), the contracted node has degree at most 2L, if the subgraph

H has at least 2L edges (this condition is always true when we do the contraction). In the

following proof, our main effort is to show that Gu - E(H) can be edge-colored by at most

12.5L1colors.

In Case 2A, there is a subgraph H s: Gu with IV(H)/ = 3, and L(H) = l(Gu ). We show

that Gu - E(H) has at most 12.5L1 edges. This is true if L(H) = l(Gu ) > 12.5L1, since

Gu - E(H) has at most 2L2X5 - L(H) < 5L - 12.5L1 :=:; 12.5L1 edges. If 2L < L(H) =

l(Gu ) :=:; 12.5L1, then the number of edges in Gu - E(H) is at most 2 x L(Gu ) - L(H) :=:;

2l(Gu ) - L(H) = l(Gu ) :=:; 12.5L1. Thus Gu - E(H) can be edge-colored by at most 12.5L1

colors. The rest of the proof is the same as the degree eight case.

In Case 2B, l(Gu ) is achieved on graph Gu itself (obviously L(Gu ) :=:; 12L4x51 = 12.5L1).

Let G~ = Gu - Qf. If l(G~) :=:; 2L, then G~ can be edge-colored by at most 2L+1 colors,

and the total number of colors used for Gu is 2L + 1 + IW~ I < l2.5L j + 1.)
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Assume l(G~) > 2L. If L(G~) = l(G~), G~ can be edge-colored by l(G~) colors. The

total number of colors used for Gu is

r2L(G ) - 2/W
ffi '1l(G~) + IW~ I = L(G~) + IW~ I = I u 2 Q1 + IW~ I = L(Gu ) :S 12.5L1·

On the other hand, if L(G~) < l(G~), there is a subgraph H' ~ G~ such that L(G~) <
L(H') = l(G~). Consider the following two cases.

2L(Gu)-2IWmI
In Case (i) (ring ro is not a vertex in the subgraph H), L(G~) = 2 Q1 =

L(Gu ) -IW01, and L(H') = L(H). Thus L(Gu ) -IW01 < L(H). The edges in Gu - E(H)

are colored by at most

(2L(Gu ) - L(H) - 21W01) + IW0 1< L(Gu ) :S 12.5L1

colors.

In Case (ii) (ring ro is a vertex in the subgraph H), define WQ'/ = WRan (WPab UWPaJ

(the set of multi-colors each of which is used to color one edge in H and one edge not in

H), WQ:2 = WJr, (the set of multi-colors in WRJ, and WQ:3 be the set of multi-colors each

of which is used to color two edges in Pab UPac. Then IW~ I = IWQ:11 + IWQ'12J + JWQ:3J.
We have L(G~) = 12L(Gu)~2IWQ111 = L(Gu ) - IW~ I, L(H') = L(H) -IWQ:1/- 2 x IWQ:3 1.

Thus,

which implies

L(G ) - L(H) _/Wffi2
/ < -IW ffi

3/.u Q1 Q1

The edges in Gu - E(H) are colored by at most

(2L(Gu ) - L(H) - 2 x IWQ:21) + IWQ:2
1 2L(Gu ) - L(H) - IWQ:2/

< L(Gu ) -IWQ'131 :S L(Gu ) :S 12.5L1

colors.

The time complexity of Algorithm ALG3.5 is the same as Algorithm ALG3.4, which

runs in O(nL2.5 ) time. D

It is not clear whether this approach can be used for trees of rings with degree more

than ten. For a multigraph with more than five vertices, the five vertices subgraph H may

have L(H) > 2L. However, we do not have an algorithm that uses at most OPT + L colors

for degree more than six.
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3.5 Summary

68

We gave a 3L and (asymptotic) 2.75-approximation algorithm for the Min-PC problem on

trees of rings with arbitrary degrees. The 3L upper bound is tight. We also presented a 3L

and 2-approximation (resp. 2.5-approximation) algorithm for the Min-PC problem on trees

of rings with degree at most six (resp. eight and ten). An interesting problem is to improve

the 2.75-approximation ratio. A possible approach is to color the edges of multigraph Gu ,

allowing two edges with a common vertex in a given subset of edges sharing the same color.

Another direction for the future work is to find better algorithms for the Min-PC problem

on trees of rings with constant degrees. Our results imply a 3-approximation algorithm

for the Min-RPC problem on a tree of rings. To our best knowledge, this is the first 3­

approximation algorithm for this problem without using the cut-one-link strategy. We are

not aware of any algorithm with performance ratio better than 3 for the Min-RPC problem

on trees of rings, even when the tree of rings has bounded degree. It would be challenging to

break this barrier. Our 3L algorithm also implies a 6L algorithm for the Min-PC problem

on directed trees of rings with two directed links, one in each direction, between a pair of

adjacent nodes. It is interesting to improve the approximation ratio for the Min-PC problem

on directed trees of rings.



Chapter 4

Call Control and Maximum Path

Coloring

The goal of the call control problem is to accommodate a maximum number of call requests

subject to the bandwidth constraint of the links in the networks. The maximum path

coloring problem, on the other hand, is to accept a maximum subset of paths that can

be colored by a given number of colors. The call control problem with unit link capacity

coincides with the maximum path coloring problem with one available color. Multifiber

optical networks have multiple parallel fibers per link. For the path coloring problem in

multifiber optical networks, each set of paths colored by a same color has maximum load

bounded by the number of fibers on each link and is a feasible solution for the call control

problem in which the capacity of an edge is equal to the number of fibers on that edge. The

call control problem and the path multicoloring problem are closely related. In this chapter,

we study these problems in tree and ring networks. We first study the call control problem

in trees in Section 4.1. Then we study the path multicoloring problem in trees in Section 4.2.

We study the maximum routing and path coloring problem in rings in Section 4.3.

4.1 Call Control in Bounded Depth Trees

In this section, we study the call control problem on bounded depth trees which are well

used topologies in communication networks. In Section 4.1.1, we show that the call control

problem is NP-hard and MAX SNP-hard even in depth-2 trees with capacities 1 or 2. Our

69
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proof is a straightforward revision on the reduction for proving the hardness results of

depth-3 trees in [63]. In Section 4.1.2, we give a polynomial time algorithm for the call

control problem in a special class of depth-2 trees called double-stars. These results suggest

that depth-2 trees are a boundary topology for which the call control problem is in P or

NP-hard, depending on the node degrees of the trees. We also give 2- and 3-approximation

algorithms in Section 4.1.3 for the weighted call control problem on depth-2 and depth-3

trees, respectively. This improves the previous 4-approximation algorithm for the problem

on those trees. We show that the call control problem in spiders can be solved optimally

in Section 4.1.4. All of our algorithms depend on a subroutine which solves the following

restricted weighted call control problem on arbitrary trees in polynomial time: Given a set

P of paths in a tree with all paths contain a same node of the tree, find an admissible subset

p' ~ P such that w(P') = L,i:PiEPI Wi is maximized. This subroutine is of independent

interest and is given in Section 4.1.5. A key technique used in our algorithms is to convert

the call control problem in trees to the problem of finding a maximum degree constrained

subgraph in auxiliary graphs. In Section 4.1.6, we show that the weighted call control

problem in any graphs can be solved optimally if all the paths have length at most 2.

We begin with some definitions. A rooted tree is a tree in which a node r is selected

as the root. All trees in this section are rooted trees unless otherwise stated, and will be

denoted by T. The level of a node v in a tree is the length of the path from v to the root

r which has level O. The depth of a tree is the maximum level among all nodes of the tree.

A depth-i tree is a tree with the maximum level i. An edge with a level-i end-node and a

level-(i + 1) end-node in a tree is called a level-(i + 1) edge. A depth-1 tree is also called a

star and the root r of the depth-1 tree is called the center node of the star. A double-star

is a depth-2 tree in which two nodes have degree greater than one and all other nodes have

degree one (see Figure 4.1 (a) for an example).

4.1.1 Hardness of Call Control in Depth-2 Trees

Given three pairwise disjoint sets X, Y, Z, IXI = WI = IZI, and a set S = {(Xi, Yj, Zk)lxi E

X, Yj E Y, Zk E Z} of triples, the three-dimensional matching problem is to find the max­

imum number of disjoint triples (two triples are disjoint if they do not have a common

element in any dimension). The three-dimensional matching problem is NP-hard and MAX

SNP-hard, even if the number of occurrences of any element in X, Y or Z is bounded by

a constant [76]. Garg et al. prove that the call control problem is NP-hard and MAX
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(a)

,
va

(b)

Figure 4.1: (a) A double-star, and (b) the double-star after pre-processing.

Figure 4.2: The depth-2 tree for the NP-hardness proof of the call control problem.

SNP-hard for trees by reducing the three-dimensional matching problem to the call control

problem on depth-3 trees with edge capacities 1 and 2 [63]. This work actually proves a

stronger result: the call control problem is NP-hard and MAX SNP-hard for depth-3 trees

with edge capacities 1 and 2.

We observe that the three-dimensional matching problem can be reduced to the call

control problem on depth-2 trees with edge capacities 1 and 2.

Theorem 4.1.1 The call control problem is NP-hard and MAX SNP-hard for depth-2 trees

with edge capacities 1 and 2.

Proof Given an instance X, Y, Z, S of the three-dimensional matching problem, we first

construct a depth-2 tree T with root r. For every Xi EX, Yi E Y, and Zi E Z, there are

level-1 nodes Xi, Yi, and Zi in T, respectively. Assume that each Xi appears in S Pi times.

Then in T each Xi has 2Pi children Xi,l,a and Xi,l,b (1 ~ l ~ Pi)' There are 3lXjlevel-1 nodes

and 2lSllevel-2 nodes in T. We assign edges {r,xd (1 ~ i ~ IX I) capacity 2 and all other

edges capacity 1. Figure 4.2 shows the construction of T. We number the occurrences of

Xi in S arbitrarily from 1 to Pi, and the lth occurrence corresponds to the two level-2 nodes
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Xi,l,a and Xi,l,b. Next we construct a call control instance P on T. If (Xi, Yj, Zk) E 8 is the

lth occurrence of Xi, we include three call requests, {Xi,l,a, Xi,l,b}, {Xi,l,a, Yj}, and {Xi,l,b, zd

into P. Notice that P has 318/ call requests.

For any disjoint subset 8' ~ 8, we construct an admissible subset P' ~ P as follows. Let

(Xi,Yj,Zk) be the lth occurrence of Xi in 8. If (Xi,Yj,Zk) E 8', then P' contains {Xi,l,a,Yj}

and {Xi,l,b,zd, otherwise (i.e., (Xi,Yj,Zk) fj 8'), P' contains {Xi,l,a,Xi,l,d. Then P' is an

admissible set and IP'I = 18'1 + 181· Next we show that given an admissible subset P' ~ P

with IP'I = t + /8/, a disjoint subset 8' ~ 8 with 18'1 = t can be constructed. Let Pi ~ P

be a maximum subset of paths with an end-node in the subtree rooted at Xi that can be

admitted. Then Pi has Pi + 1 paths and contains the two paths for {Xi,l,a, Yj} and {Xi,l,b, Zk}

for some 1, and Pi - 1 paths for {Xi,m,a,Xi,m,b} for m ¥ 1,1 :S m :S Pi' Since IP'J = t + 181,
P' has t such subsets Pi. For every Pi, let (Xi, Yj, Zk) be the corresponding triple. Let 8'

be the set of triples (Xi, Yj, Zk) corresponding to those Pi'S. Then each Xi E X appears in

at most one triple of 8'. From the capacities of edges {r,Yj} and {r,zd, each Yj E Yor

Zk E Z appears in at most one triple of 8'. Thus, a maximum disjoint subset of 8 can be

computed if and only if a maximum admissible subset of P can be computed. 0

Notice that our proof of Theorem 4.1.1 follows a similar argument of [63] where a depth-3

tree is used.

4.1.2 Call Control in Double-stars

From the previous section, we know that the call control problem is NP-hard in depth-2

trees. It is also known that the call control problem can be solved in polynomial time for

depth-1 trees. Now we explore the subset of depth-2 trees for which the call control problem

is in P. More specifically, we give polynomial time algorithms for the call control problem

in double-stars.

Let T be a double-star with two centers va and Vi (see Figure 4.1 (a)). If edge eo =
{va, Vi} has a constant capacity then the call control problem on T can be solved by a

rather straightforward enumeration approach: Given a set P of paths on T, the number of

paths on eo in any admissible subset P' ~ P is at most c(eo). Since c(eo) is a constant,

we can enumerate in polynomial time all possible subsets Q such that Q has at most c(eo)

paths on eo. For each enumerated subset Q, we find a maximum admissible subset Qi of

{pip E P \ Q,p is not on eo} in the star with center Vi (i = 0,1). Then the maximum set
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Qo UQI UQ over all QIS is a maximum admissible subset pi of P in T. The overall running

time is polynomial in the input parameters. Similarly, if c(eo) is arbitrarily large but there

are at most O(log n) paths of length three in P then we can solve the call control problem

optimally by first enumerating all possible subsets of length-3 paths on eo in any optimal

solution, in 20 (logn) = O(nC
) time for some constant c > 0, and then solving two call control

problems in the two stars.

The enumeration approach does not give a polynomial time algorithm for the double­

stars if c(eo) is arbitrarily large and P has more than O(logn) length-3 paths. The difficulty

lies in how to choose the length-3 paths in an optimal solution. We now give Algorithm

ALG4.1 which solves the call control problem in double-stars in polynomial time. For

simplicity, we do the following pre-processing. If there is a set Q of paths with Vo as an

end-node, then we create a new leaf node vb and a new edge {vo, vb} with capacity IQI, and

extend the paths in Q to vb (see Figure 4.1 (b)). We do a similar pre-processing for node

VI. It is easy to see that after the pre-processing, all end-nodes of every path are leaf nodes

in T, there are only length-2 and length-3 paths, and no length-2 path contains both Vo

and VI. From now on, we use P to denote the set of pre-processed paths. We also do the

following pre-processing on the capacities: c(e) := min{c(e), L(e)}. This does not affect the

solution, but helps to reduce the time complexity.

Given a double-star T with centers Vo and VI, let Ii (i = 0,1) be the star with center

Vi obtained by removing edge eo = {vo, vI}. Edges of Ii have the same capacities as

the corresponding edges in T. We define Eo = E(To) and E I = E(Td· Let Pi = {pip E

P,P is on edges of Ti only} and OPT! be a maximum admissible subset of Pi in Ti (i = 0,1).

OPT: can be computed using the algorithm of [63J. Notice that there are only length-2 paths

in OPT:' Let OPT be a maximum admissible subset of Pin T. Then

IOPT~1+ IOPT{1 ~ IOPTI ~ min {IOPT~I + IOPT{1 + c(eo), l~ L c(e)j}. (4.1)
eEEouEl

We define OPTi ~ OPT to be the subset of paths in OPT using only edges in Ti (i = 0,1).

Notice that OPIi is not necessarily a subset of OPT:'

In Algorithm ALG4.1, we first perform the pre-processing described above, then trans­

form the call control problem in T to a maximum weight DCS problem in an auxiliary graph

H, and finally show that an optimal solution of the DCS problem can be converted to an

optimal solution for the call control problem.
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The auxiliary graph H is constructed as follows. For each edge e in Eo U E[, we create

a node Ue in H with bl(ue) = b2(ue) = c(e). For each length-2 path on ei,ej E Eo or

ei,ej EEl, we create an edge {uei,uej } in H (H is a multigraph in general, see Figure 4.3).

These edges are shown as solid edges in Figure 4.3. For each length-3 path on a leaf edge

ei E Eo and a leaf edge ej E E1, we create an edge {uep ueJ in H. These edges are

shown as dashed edges in Figure 4.3. We create one additional node U in H, and set bl (u) =

b2(U) = LeEEo c(e) +LeEEl c(e) -2 x g, where 9 is an integer between IOPT6! + 10PT{1 and

min{IOPT61 + IOPT{/ + c(eo), l! LeEEouEl c(e)J}. We create c(ei) parallel edges {u,ueJ,

for each ei E Eo U E1 • These edges are shown as the dash-dotted edges in Figure 4.3. We

give each edge {uei ,uej } with ei E Eo and ej E E 1 a weight of 1 - f, for some small positive

f, say f = IIIPI, and give all other edges a weight of 1. Notice that H is in general a

multigraph: if c(e) > 1 or there are two paths with the same end-nodes in T, then edges

may represent multiple parallel edges in Figure 4.3(b).

Algorithm ALG4.1 finds a maximum weight DCS M in H (if there exists one), using the

algorithm of [59], for every possible values of 9 between IOPT61 + 10PT{1 and min{IOPT61 +
IOPT{1 + c(eo), l~ LeEEouEl c(e)J}. For each found M, Algorithm ALG4.I checks if the

set of paths corresponding to the edges of M is admissible. As shown later, a maximum

admissible set P' can be obtained from a maximum weight DCS M for 9 = IOPTI.

Theorem 4.1.2 Algorithm ALG4.1 solves the call control problem in double-stars in poly­

nomial time.

Proof The sum of the capacities of the nodes in H, excluding u, is LeEEo c(e) +LeEEl c(e).

Since each edge in M is incident to two nodes of Hand b2 (u) edges of M are incident to

node u, the number of edges {uei ,uej } with ei, ej E Eo U E I that can be included in any

DCS M is exactly
LeEEo c(e) + LeEEl c(e) - b2(u) 2g

- --g2 - 2 - .

Assume that there is an OPT which has k :::: c(eo) length-3 paths. Then for 9 = 10PTI =

IOPTol+IOPT11+k, there is a DCS M in H such that M has exactly IOPTol+IOPT11 edges

{uei,Uej } with ei,ej E Eo or ei,ej E E1, kedges {Uei,ueJ with ei E Eo and ej EEl, and

b2(u) edges {u, ueJ with ei E Eo U E 1. The weight of this M is w(M) = LeEEouEl c(e) ­

/0PTI - kf.. For any DCS M' of H with l > kedges {uei , uej } with ei E Eo and ej E E1,

the weight of M' is w(M') = LeEEouEl c(e) - 10PTI - If which is smaller than w(M).
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(a)

Figure 4.3: (a) An instance of the call control problem in a double-star T with c(e) = 1 for
every e E E(T), and (b) an instance of the DCS problem in an auxiliary graph H.

Therefore, any maximum weight DCS must contain at most kedges {u ei , uej } with ei E Eo

and ej E E1 • Let pI be the set of paths in P corresponding to the edges in a maximum

weight DCS in H. Then pI contains at most k ~ c(eo) length-3 paths and does not violate

the capacity constraint of any leaf edge of T either. So pI is an admissible subset of P in T.

Since pI contains exactly IOPTol + IOPT1 1 + k = IOPTI paths, pI is a maximum admissible

subset.

From Inequality (4.1) and the fact that ALG4.1 computes a maximum weight DCS of

H for every possible value of g between IOPT~1 + IOPT{1 and min{IOPT~1+ /OPT{/ +
c(eo), l~ LeEEouE

l
c(e)j}, and checks the corresponding subset of P, ALG4.1 finds a maxi­

mum admissible subset pI S;;; P in T.

The auxiliary graph H has IE(T)I nodes, and less than (IPI + IE(T)I) edges. The

maximum edge multiplicity of H is bounded by the load L of P in T. Thus, a maximum

weight DCS in H can be found in O«IPI + IE(T)I)2(1og IE(T)I)(1og L)) time. The total

running time of ALG4.1 is O«IPI + IE(T)I)2(log IE(T)/)(L log L)), since the maximum

weight DCS algorithm is called c(eo) ~ L times. 0

The complexity of the weighted call control problem in double-stars is not known. It

seems that our method above cannot be used for the weighted case, since we already assign

weights to edges in the graph H constructed in the (unweighted) call control problem and it

is not clear how to assign weights to edges in the weighted call control problem. Nevertheless,

we show in Section 4.1.3 that the weighted call control problem in depth-2 trees (thus in

double-stars) can be approximated with ratio two.
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4.1.3 Weighted Call Control in Depth-2 and Depth-3 Trees

76

The weighted call control problem can be solved optimally in depth-1 trees (stars) [63], and

it can be approximated with a ratio of four in arbitrary trees [41]. The algorithm of [41] does

not seem to have a performance ratio better than four when applied to bounded depth trees.

In this section, we show that the weighted call control problem can be approximated with

ratios two and three in depth-2 and depth-3 trees, respectively. Recall that the (unweighted)

call control problem is already NP-hard in depth-2 trees, and can be approximated with a

ratio of two. Our algorithms use the optimal weighted call control algorithm in stars [63],

and an algorithm developed in Section 4.1.5 that solves in polynomial time the weighted

call control problem for the instances in which all paths contain the root in arbitrary trees.

This algorithm is of independent interest since it optimally solves the weighted call control

problem in arbitrary trees for a restricted class of instances.

Given a set P of paths in a depth-2 or depth-3 tree T, we pre-process the paths as follows.

For every internal node u of T, if there is a set Q of paths with u of T as an end-node, then

we create a new leaf node u' and a new edge {u, u'} with capacity IQI, and extend the paths

in Q to u. The pre-processing does not change the depth of T or the value of the optimal

solution. Now we assume that the end-nodes of every path of P are leaf nodes of T. Let r

be the root of T.

We first give Algorithm ALG4.2 for the weighted call control problem in a depth-2 tree

T. The algorithm works as follows.

1. Let PI ~ P be the subset of paths such that each path of PI contains root r. Find a

maximum admissible subset of PI in T using the algorithm ALG4.5 described later,

and denote the solution by SOLI.

2. Find a maximum admissible subset of P2 = P \ PI of remaining paths (that does not

contain r) in T, and denote the solution by SOL2.

3. Output the set of SOLI or SOL2 which has the maximum weight as the final solution

SOL.

For the weighted call control problem in a depth-3 tree T, we give a 3-approximation

algorithm ALG4.3 as follows.

1. Let PI ~ P be the subset of paths such that each path of PI contains root r. Find a
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maximum admissible subset of PI in T using the algorithm ALG4.5 described later,

and denote the solution by SOLI.

2. Find a maximum admissible subset of P2 = P \ H of remaining paths (that does not

contain r) in T using Algorithm ALG4.2, and denote the solution by SOL2.

3. Output the set of SOLI or SOL2 which has the maximum weight as the final solution

SOL.

Theorem 4.1.3 ALG4.2 and ALG4.3 are 2-approximation and 3-approximation algorithms

for depth-2 and depth-3 trees, respectively.

Proof Let PI be the subset of P such that each path of PI contains root r of T. We first

assume that a maximum admissible subset of PI in T can be computed in polynomial time.

By this assumption, we get SOLI in Step 1 of ALG4.2. In Step 2, the set P2 of paths can

be partitioned into several subsets of paths, with each subset of paths on a star obtained by

removing r and the edges incident to r in the depth-2 tree. Thus, the maximum admissible

subset of P2 can be found in polynomial time by the algorithm in [63]. Let OPT be a

maximum admissible subset of Pin T, OPTI = OPT n PI and OPT2 = OPT n P2. Then

OPTlnOPT2 = 0, OPTl uOPT2 = OPT, w(OPTl ) ::; w(SOLd and w(OPT2) ::; w(SOL2).

Thus,

w(OPT) = w(OPTd + w(OPT2) ::; w(SOLd + w(SOL2 )

::; 2max{w(SOLd,w(SOL2 )} ::; 2w(SOL),

and Algorithm ALG4.2 has an approximation ratio of 2.

Similarly, let OPT be a maximum admissible subset of P in the depth-3 tree T. Then

w(OPTl ) s w(SOLd· The set P2 of paths can be partitioned into several subsets of paths,

with each subset of paths on a depth-2 tree obtained by removing r and the edges incident

to r in the depth-3 tree. Thus, w(OPT2 ) ::; 2w(SOL2 ), since ALG4.2 is used to find SOL2

and it is a 2-approximation algorithm. Therefore,

w(OPT) = w(OPTl ) + w(OPT2) s w(SOLd + 2w(SOL2)

S 3max{w(SOLd, W(SOL2)} :S 3w(SOL),

and ALG4.3 has an approximation ratio of 3.

The assumption that a maximum admissible subset of PI in T can be computed in

polynomial time is shown by Theorem 4.1.8 in Section 4.1.5. This completes the proof. 0
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Vo

Figure 4.4: A spider network.

4.1.4 Call Control in Spiders

In this section, we study the call control problem in spiders. The result will be used in

Section 4.2.2 to develop algorithms for the Max-PMC problems in spiders. We first give

some more definitions. Let P be a set of paths in a spider G, and c : E(G) ~ N be a

capacity function. We say a subset Q ~ P of paths is feasible if L Q (e) :S c(e) for all

e E E(G). Notice that any path in G can have edges in at most two legs of G. A path is

called a short (resp. long) path if it is on edges of only one leg (resp. two legs). Let Ps

(resp. PL) be the set of short (resp. long) paths of P. For the convenience of description,

we draw G as shown in Figure 4.4. The legs of G are numbered from 1 to t1. For each

leg l with nl + 1 nodes, the node set and edge set are defined as Vi = {Vo, vi 11 :S i :S nl}

and E l = {eilei = (vo,vi),ei = (VLl,vi),2 :S i :S nl}' For simplicity, we occasionally use

vb for vo. Node VLI is called the right-node of ei and node vi is called the left-node of ei.

Similarly, we can define the left-node and right-node of short paths. For a long path on legs

land m, we will also use "left-nodes" to denote its endpoints on legs land m. For P in G

and 1 :S l :S t1, let pi ~ P be the set of paths, each of which is on an edge in leg l. Let

P~ = pi nPs.

The following algorithm ALG4.4 is used to solve the call control problem in spiders.

1. For each leg l of G, process the nodes from V~l-I to vo. When we process node vL we

check the paths of P~ with right-node vi in an arbitrary order, and accept as many of

these paths as possible subject to capacities c(e). The processing for leg l is finished

when node Vo is processed. Let SOLs be the set of paths accepted in processing all

legs of G.
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2. For each edge e of G, let c'(e) = c(e) - LsoLs(e) be the new capacity function. Find

a maximum cardinality subset SOLL of PL subject to new capacities c'(e), using

Algorithm ALG4.5 described later.

3. Output SOLs U SOLL as the final solution.

In order to prove that Algorithm ALG4.4 gives an optimal solution for the call control

problem, we need to prove the following two claims: (1) The two steps can both be done

optimally in polynomial time, and (2) the two-step approach gives an optimal solution for

the original problem.

By the following proposition, the first step can be done optimally in polynomial time.

Proposition 4.1.4 [5] The call control problem can be solved optimally in polynomial time

for chains.

This result is a generalization of the algorithm for k-coloring of interval graphs [38]. The

greedy algorithm for chains processes the nodes of a chain one by one from left to right.

When processing node v, the paths with right-node v can be included into SOLs in an

arbitrary order (subject to the capacity constraint), and the solution is still optimal. This

property is critical to the correctness of Algorithm ALG4.4.

The second step can be done optimally in polynomial time, i.e., the call control problem

can be solved optimally for spiders if all the paths are long paths. This will be shown in

Section 4.1.5.

The two-step algorithm

We now show that the two-step algorithm ALG4.4 gives an optimal solution for the call

control problem in spiders.

Theorem 4.1.5 The solution SOLs U SOLL of Algorithm ALG4.4 is optimal for the call

control problem in spiders.

Proof For a given set P = Ps UPL of paths in a spider G, where Ps is the set of short paths

and PL is the set of long paths, let OPT be an optimal solution, OPTs be the set of short

paths in OPT, and OPTL be the set of long paths in OPT. Then 10PTI = 10PTsl+IOPTLI,

and 10PTsi ::; ISOLsl. Let Q = SOLsuOPTL. Recall that c(e) is the capacity of edge e for

the call control problem and c'(e) = c(e) - LsoLs(e) is the new capacity of e in Algorithm
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ALG4.4. If LQ(e) ::; c(e) for every e E E(G) then jOPTLI ::; ISOLLI, since OPTL is a

subset of PL with LOPTL (e) ::; c'(e) and SOLL is the maximum cardinality subset of PL

with LsoLL(e) ::; c'(e) for e E E(G). In this case,

10PTI = 10PTsi + 10PTLI ::; ISOLsi + ISOLLI = ISOLI,

implying SOL is optimal and we are done.

Assume that LQ(eD > c(eD for some edge e~ in leg l. We show that a new OPT' with

10PT'j ~ 10PTI can be obtained from OPT by replacing OPT~ with SOL~ and replacing

OPT;' with a subset of OPT;', for every such a leg l, such that SOLs U OPT£ is a feasible

solution. From the argument above, this implies 10PT'I ::; ISOLI. For a long path p E PL

on an edge of leg l, let p(l) be the segment of p from VQ to the endpoint of p in leg l.

Define Ql = {p(l)lp E OPTd. Let Q; be the maximum cardinality subset of paths in Ql

which can be accepted on leg l subject to the new capacity function c'. Then /Q;/ < IQLI.
Let OPT~ (resp. P~) be the subset of paths in OPTs (resp. Ps) which is on edges of leg

l. Then SOL~ U Q; is the maximum cardinality subset of paths in P~ U Ql that can be

accepted subject to the capacity function c (see the remarks following Proposition 4.1.4).

OPT~ U Ql is a feasible subset of paths in P~ U Ql subject to the capacity function c.

Thus, 10PT~ U QII ::; ISOL~ U Qll· In OPT, we replace OPT~ by SOL~, replace OPTi

by {pip E OPTi,p(l) E Qf}, and use OPT' to denote the set of paths obtained. Then

10PTI ::; 10PT'I and LOPT,(ej) ::; c(ej) (1 ::; m ::; 6, 1 ::; j ::; nm ). However, OPT' has

the additional property that for Q' = SOLs U OPT£, LQ,(e;) ::; c(e;) (1 ::; j ::; nl)'

Rename OPT' as the new OPT, and perform the above procedure as long as SOLs U

OPTL is not feasible. This process terminates after at most 6(G) rounds (since G has

6(G) legs). At this point, SOLs U OPTL is feasible, and we have proved that the solution

produced by algorithm ALG4.4 is optimal. 0

4.1.5 Call Control in Trees with Central Paths

We give Algorithm ALG4.5 which solves the weighted call control problem optimally in an

arbitrary tree T, if all the paths contain a same node of T. Suppose the tree T is rooted at

node r, and all the paths in P contain r (we call such paths central paths). After proper pre­

processing as in previous sections, we assume that no path in P contains r as an end-node.

We use Tv to denote the subtree rooted at a node v E V(T). For a node v E V(T) \ {r},

the unique neighbor of v whose level is one smaller than that of v is called the parent p(v)
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of v, and we use eo to denote the edge {v,p(v)}. For a non-leaf node v, all neighbors of v

whose level are one larger than that of v are called the children of v, and we use eY, ... ,ed

to denote the edges between v and its children (assuming v has d = o(v) - 1 children).

An important observation is that for a non-leaf node v E V (T) \ {r}, a path on any edge

ey (1 :S i :S d) must be on edge eo as well. Let Q ~ P be a set of central paths. Then

2::1=1 LQ(ei) :S LQ(eo)' Similarly, we have 2::1=1 Lp\Q(ei) S Lp\Q(eo)' If 2::t=l Lp\Q(ei) 2:

L(eo) - c(eo), then LQ(eo) :S c(eo) for every eo because

LQ(eo) = L(eo) - Lp\Q(eo) :S L(eo) - 2::1=1 Lp\Q(ef)

:S L(eo) - (L(eo)- c(eo)) = c(eo)'
(4.2)

On the other hand, if 2::1=1 Lp\Q(ey) < L(eo) - c(eo), then at least L(eo) - c(eo) ­

2::1=1 Lp\Q(ey) paths on eo (but not on ey, 1 S i :S d) cannot be included in Q if

LQ(eo) S c(eo)· These observations are essential to our algorithm.

We give Algorithm ALG4.5 which solves optimally the call control problem in trees with

only central paths. We reduce the call control problem for the set P of paths containing r in

T to the DCS (degree constrained subgraph) problem in an auxiliary graph H constructed

below. Let v be the lth child of r. We use El to denote {en U E(Tv ) (1 :S l :S o(r)). Clearly

any path of P is on exactly two children of r. For each path pEP on the lth and mth

children of r, we create two nodes Y~ and y~, and an edge ep = {y~, Y~} in H. These nodes

and edges are called path-nodes and path-edges, respectively. For each path-node y~, we set

b1(Y~) = 0 and b2(Y~) = 1. For every edge e E Ez (1 :S l :S o(r)), we create in H a node u(e).

We create an edge {u(e), Y~} if path p is on edge e EEL. Nodes u(e) and edges {u(e), Y~} are

called aux-nodes and aux-edges, respectively. We set the capacities of the aux-nodes in the

following order. The capacity of an aux-node corresponding to a non-leaf edge eo E E(T)

is set only if the capacities of all aux-nodes {u( e) Ie E E(Tv )} have been set. For a leaf node

v in T, the aux-node corresponding to the leaf edge eo is u(eo), and

b1(u(eo)) = b2(u(eo)) = max{L(eo) - c(eo),O},

and for any non-leaf node v E V(T) \ {r},

b1(u(eo)) = b2 (u(eo)) = max{L(eo) - c(eo) - L b2 (u(e)),O}.
eEE(Tv )

We find a maximum cardinality DCS in the constructed graph H. We prove that the set of

the paths corresponding to the path-edges in the maximum cardinality DCS is an optimal
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solution of the call control problem for P in T. Let OPT be an optimal solution for the call

control problem in T.

Lemma 4.1.6 There exists a DCS of cardinality 10PTI + LeEE(T) b2(u(e)) in H.

Proof Given an optimal solution OPT in T, a DCS Min H can be constructed as follows.

We first include into M all the path-edges corresponding to the paths in OPT. Since each

path-node is incident to only one path-edge, bi (v) ::S OM (v) ::S b2(v) for all nodes of M. Next,

we process every aux-node u(e) (e E E(T)) to include into M b2 (u(e)) aux-edges incident to

aux-node u(e). The processing order of u(e) (e E E(T)) is based on the order of the nodes

in VeT). Again, an aux-node corresponding to a non-leaf edge eo E E(T) is processed only

if all aux-nodes {u(e)le E E(Tv )} have been processed. For a leaf node v E VeT), since

LoPT(eo) ~ c(eo), there are at least max{L(eo) - c(eo),O} path-nodes adjacent to u(eo)

that are not matched by the edges of M prior to the processing of u(eo). So b2(u(eO))

aux-edges incident to u(eo) can be included into M such that bl(v) ~ OM(V) ~ b2(v) for all

nodes of M after processing u(eo)' Similarly, for any non-leaf node v E VeT) \ {r}, at least

b2(u(eo)) = max{L(eo) - c(eo) - L b2(u(e)),O}
eEE(Tv )

path-nodes adjacent to u(eo) are not matched by the edges of M prior to the processing

of u(eo). Therefore, b2(u(eo)) edges incident to u(eo) can be included into M such that

bl(v) ~ OM(V) 'S b2(V) holds for all nodes of M after processing u(eo)' When all aux-nodes

are processed, the constructed DCS M satisfies bI (v) 'S OM (v) 'S b2(v) for every v E V (H)

and has 10PTI path-edges. The cardinality of M is

10PTI + L b2(u(e)).
eEE(T)

o

Lemma 4.1. 7 Let SOL be the set of paths corresponding to path-edges in any DCS of H.

Then SOL is a feasible solution for the call control problem in T.

Proof We show that Lsode) ::s c(e) holds for every e E E(T). Let M be the given DCS

in H. Then oM(u(e)) = b}(u(e)) = b2 (u(e)) for e E E(T). For any leaf node v of T,

b}(u(eo)) = b2(u(eO)) = max{L(eo) - c(eo),O} and at least max{L(eo) - c(eo),O} paths on
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edge eo are not included in SOL. From this, Lsodeo) :S c(eo) holds. For any non-leaf

node v E V(T) \ {r}, if LeEE(Tv ) b2(u(e)) 2: L(eo) - c(eo) (b2(u(eO)) = 0), then at least

L(eo) -c(eo) paths on edges in E(Tv ) are not included in SOL, and LsoL(eO) 'S c(eo) holds

(see Inequality (4.2)). Otherwise, b2(u(eo)) = L(eo) - c(eo) - LeEE(Tv) b2(u(e)) and there

are b2(u(eO)) + LeEE(Tv ) b2(u(e)) = L(eo) - c(eo) path-nodes of {y~lp on eo,p E P} which

are matched by aux-edges incident to aux-nodes {u(e)le E E(Tv ) U {eo}}. From this, there

can be at most c(eo) path-edges in M whose corresponding paths are on edge eo. This

implies LsoL(eo) :S c(eo). Thus SOL is feasible. 0

Theorem 4.1.8 There is an optimal polynomial time algorithm for the call control problem

in an arbitrary tree if the set P of paths contains a same node of the tree.

Proof Any DCS contains at most LeEE(T) b2(u(e)) aux-edges and at most 10PTI path­

edges (by Lemma 4.1. 7). Thus, a maximum cardinality DCS contains exactly LeEE(T) b2(u(e))

aux-edges and /OPTI path-edges (Lemma 4.1.6). Let SOL be the set of paths correspond­

ing to the path-edges in the maximum cardinality DCS. Then SOL contains 10PTI paths.

According to Lemma 4.1.7, SOL is feasible. Thus, SOL is optimal. Since a maximum

cardinality DCS can be found in polynomial time, the theorem holds. 0

Algorithm ALG4.5 can be extended to work for the weighted call control problem in trees

with only central paths. We make the following modifications to the above construction.

Each path-edge ep in H is assigned a weight equal to the weight of the corresponding path p

in T. Each aux-edge is assigned a very small positive weight E, where E < minpEP w(p)/(IPI+

LeEE(T) b2(u(e))). We can then show that the path-edges in a maximum weight DCS in H

correspond to the paths in an optimal solution for the weighted call control problem in T.

4.1.6 Call Control with Length-2 Paths

From the proof of the NP-hardness and MAX SNP-hardness for the call control problem in

depth-2 trees, we can see that the call control problem is NP-hard and MAX SNP-hard even

if the path length is restricted to at most 3. On the other hand, we show that the weighted

call control problem can be solved optimally in any graphs, if the path length is restricted

to at most 2, even if the edge capacities are arbitrary. Let G = (V, E) be the input graph

for the call control problem and c(e) be the capacity of an edge e E E(G). Without loss of

generality, we may assume that all paths have length exactly 2, after proper pre-processing.
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We give an algorithm which optimally solves the weighted call control problem when all the

paths have length 2.

1. Construct a multigraph H as follows. For each edge e E E(G), construct a node U e

in H, and let b1(ue ) = 0 and b2(ue ) = c(e). For any path p on edges el and e2 in G,

construct an edge ep = {uel , ue2 } in H, and give ep the same weight as p.

2. Find a maximum weight DCS M in H. The paths in G corresponding to the edges in

M are taken as the solution for the weighted call control problem in G.

To see the above algorithm gives an optimal solution for the weighted call control problem

with paths length 2, we notice that for any optimal solution for the weighted call control

problem, there is a DCS with the same weight in H. On the other hand, for any DCS M in

H, the corresponding paths in G do not violate any edge capacity constraint, since the node

capacity constraint in H translates to edge capacity constraint in G. Thus, a maximum

weight DCS in H corresponds to an optimal solution for the weighted call control problem

in G.

4.1.7 Remarks

We have shown that the call control problem is NP-hard and MAX SNP-hard even in

depth-2 trees. We give polynomial time optimal algorithms for the call control problem in

double-stars which are special depth-2 trees, and for the call control problem in spiders. The

double-star has depth two but has only two nodes with degree greater than one. The spider

may have unbounded depth but only has one node with degree greater than two. These

results suggest that whether the call control problem is in P or NP-hard depends largely

on the node degree and depth of the trees. We have shown that the weighted call control

problem is optimally solvable in arbitrary trees if all the paths contain a same node of the

tree, while the weighted call control problem in any graphs can be solved optimally if all

the paths have length at most 2. The pattern of the paths may also play an important role

in the solvability of the call control problem.
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4.2 Path Multicoloring in Multifiber Star and Spider Net­

works

In this section, we study the path multicoloring problem in WDM optical trees with multiple

parallel fibers. We focus on the hardness of the PMC problems in stars and spiders in

Section 4.2.1. Recall that the Min-PMC and Max-PMC problems in I-fiber stars are NP­

hard [48, 105]. For every even k > 1, the problems are known polynomial time solvable in

k-fiber stars [87, 88]. A natural question here is whether there are efficient algorithms for

the problems in k-fiber stars for every k > 1. We give a negative answer to this question

by showing that for every odd integer k 2 3, the Min-PMC and Max-PMC problems in

k-fiber stars (and thus spiders) are NP-hard. These results are contrasted to the even k

case. We give efficient algorithms for the Min-PMC problem in non-uniform stars with even

number of fibers in every link and k-fiber (k even) spiders. The results above suggest that

the evenness of the number of fibers plays an important role in the polynomial solvability

of the problems. By the result for spiders of even fibers and the delete-one-fiber approach,

we have a (1 + k~l )-approximation algorithm for the Min-PMC problem in k-fiber spiders

for every odd k 2 3.

We study the Max-PMC problems in Section 4.2.2. By using the algorithm for the

Min-PMC problem in stars of even fibers as a subroutine, we get an efficient algorithm for

the Max-PMC problem in non-uniform stars with even fibers in every link. We also give an

efficient algorithm and a 1.58-approximation algorithm for the Max-PMC problem in k-fiber

(k even) spiders and non-uniform spiders, respectively. The algorithms for spiders rely on

an optimal algorithm for the call control problem which has been developed in Section 4.1.4.

4.2.1 Hardness of the PMC Problem in Stars

In this section, we prove that the path multicoloring problem in k-fiber stars (and thus

spiders) is NP-hard for every odd k 2 3. We also give efficient algorithms for the Min-PMC

problem in the non-uniform multifiber stars with even number of fibers in every edge and

the k-fiber (k even) spiders.
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NP-hardness result
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Efficient algorithms for the Min-PMC problem in k-fiber (k even) stars have been known [87,

88J. When each edge of the star has one fiber, the Min-PMC problem becomes conventional

path coloring problem and is NP-hard [48, 105J. Note that an efficient algorithm for the path

coloring problem in stars with bounded maximum degree is known [48]. We show that the

Min-PMC problem in k-fiber stars with unbounded maximum degree is NP-hard for every

odd k ~ 3. We first give the proof for k = 3 and then generalize the proof to arbitrary odd

k. We reduce the decision version of the path coloring problem in single fiber stars to the

decision version of the path multicoloring problem in 3-fiber stars. The NP-completeness

of the decision problem implies that both the Min-PMC and the Max-PMC problems are

NP-hard.

The decision version of the path coloring problem in single fiber stars can be stated

as follows: Given a set P of paths in a single fiber star and an integer w > 0, is P w­

colorable? The decision version of the path multicoloring problem in k-fiber stars can be

defined similarly: Given a set P of paths in a k-fiber star and an integer w > 0, is P

w-colorable?

Theorem 4.2.1 The Min-PMC problem in .'I-fiber stars is NP-hard.

Proof Let G I be the 3-fiber star with V(GI) = {vilO ~ i ~ 3} and E(GI) = {(vo,vi)/l ~

i ::; 3} (see Figure 4.5(a)). Let QI be the set of 3w - 1 paths between V2 and V3, Q~ =

{q2' q3}, where q2 is the path between VI and V2 and q3 is the path between VI and V3, and

PI = QI UQ~. Obviously there is a valid w-coloring for Pl. On the other hand, in any valid

w-coloring for PI, each color must be used by exactly three paths on (vo, V2) and three paths

on (vo, V3) since the load on each of the two edges is 3w. By the definition of QI, there are

w - 1 colors each of which is used by three of the 3w - 1 paths, and exactly one color (say

,\) which is used by two of the 3w - 1 paths of QI. The paths q2 and q3 of Q~ can only

be colored by '\. Thus, in any valid w-coloring of PI, paths q2 and q3 must be assigned the

same color.

Let Gw be the 3-fiber star with V(Gw ) = {vilO ~ i ~ 2w + I} and E(Gw ) = {(vo, Vi)l1 ::;

i ~ 2w + I} (see Figure 4.5(b)). Gw can be considered as the star obtained from w copies of

GI by merging the wedges (vo, vd in the copies into one edge. Let Qj be the set of 3w - 1

aths between V2j and V2j+ I and Qj = {q2j, q2j+d for 1 < j < w, where q2j is the pat
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between VI and V2j and q2j+ 1 is the path between VI and V2j+ 1. Let Pw = Uj= 1 (Q j UQj) in

Gw. Then it is easy to find a valid w-coloring for Pw. By the analysis on G 1 above, in any

valid w-coloring of Pw, the paths in each Qj must be given the same color. For any pairs

Qjl and Qj2 (1 :S jl f 12 :S w), there are four paths in Qjl and Qj2' the four paths are on

edge (vo, vd, and the edge has three fiLers. Therefore, in any valid w-coloring of Pw, the

two paths in any Qj are assigned the same color and any two pairs QJl and QJ2 Ul f h)

are assigned difl'ercnt colors. This implies that each of the w colors is used by exactly one

set of Qj.
We are now ready to give the reduction. Given a single fiber star G with V(G) = {utiO :s

l:S 6} and E(G) = {(un, udll :s l :s 6}, and a set P of paths in G, we create a 3-fiber star

G' with V (G' ) = {vo} U {v~ 11 :s l :s 6, 1 :s i :s 2w + I} and E(G' ) = {(vo, vD 11 :s l :s 6, 1 :s
i :s 2w + I}. G' can be considered as the star obtained from 6 copies G~ (1 :s l :s 6) of

Gw by merging the !::i. centers of the copies into one center. For 1 :s l :S !::i., let pi be the set

of paths in G~ as Pw defined for Gw above. Let P = {pip E P}, where p is a path between

vi and vr if p is a path between UI and Urn (l, m f 0) and p is a path between Vo and vi if

p is a path between Uo and UI (l f 0). Let pI = Pu (Ut:l PI ).

We show that there is a valid w-coloring for pI in G' if and only if P is w-colorable

in G. Assume P is w-colorable in G. In G', we color each path pEP using the color of

the corresponding path pEP in G. By the definition of Ut:lpi, it is easy to find a valid

w-coloring for pI \ P. Combining the colorings for P and pI \ P gives a valid w-coloring

of pI in G' , since on each edge (vo, vi) in G' , each color is used by at most one path in P
and by exactly two paths in pI \ P. On the other hand, if there is a valid w-coloring for

P', then for each edge (vo, vi) of G' , each of the w colors is used by exactly two paths in

pI \ P. Thus, on each edge (va, vi) of G' , each color is used by at most one path in P. We

can obtain a valid coloring for the set P of paths in G by coloring each path pEP using

the color for path p in G' . The above reduction clearly runs in polynomial time. 0

By a generalization of the reduction in the proof for Theorem 4.2.1, we have the following

result.

Theorem 4.2.2 The Min-PMC problem in k-fiber stars is NP-hard for every odd k 2: 3.

Proof Suppose k = 2ko+ 1 (ko 2: 1). Let G1 be a k-fiber star with V(Gd = {vilO :S i :S 3}

and E(Gd = {(vo,vi)/1 :S i :S 3}. Let Q1 be the set of kw - 1 paths between V2 and V3,
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Figure 4.5: Stars G I and Gw .
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Q~ = {q2, q3}, where q2 is the path between VI and V2 and q3 is the path between VI and

V3, and PI = QI UQ~. It is easy to prove that PI is w-colorable and in any valid w-coloring

of PI, paths q2 and q3 must be assigned the same color. Let Gkow be a k-fiber star with

V(Gkow) = {vila ~ i ~ 2kow + 1} and E(Gkow) = {(vo, vi)/1 ~ i ~ 2kow + I}. Gkow can

be considered as the star obtained from kow copies of G I by merging the kow edges (vo, vI)

in the copies into one edge. Let Qj be the set of kw - 1 paths between V2j and V2j+I and

Qj = {Q2j, Q2j+d for 1 ~ j ~ kow, where Q2j is the path between VI and V2j and Q2j+I is the

path between VI and V2j+I· Let Pkow = U;~~(Qj U Qj) in Gkow. Again Pkow is w-colorable

and in any valid w-coloring of Pkow, the two paths in any Qj are assigned the same color

and each of the w colors is used by exactly ko pairs from {Qj Ij = 1, ... , kow}. To see this last

point is true, suppose some color ,\ is used by kb < ko pairs. Each of the remaining w - 1

color can be used by at most ko pairs, since there are 2ko+1 fibers per edge. Thus, the total

number of pairs colored by the w colors is at most ko(w - 1) + kb < kow, a contradiction.

Thus, the claim is true.

We are now ready to give the reduction. Given a single fiber star G with V(G) = {uila ~

l ~ D.} and E(G) = {(uo, ui)ll ~ l ~ D.}, and a set P of paths in G, we create a k-fiber

star G' with V(G') = {va} U {viiI ~ l ~ D., 1 ~ i ~ 2kow + I} and E(G') = {(vo, vDll ~

l ~ D., 1 ~ i ~ 2kow + I}. G' can be considered as the star obtained from D. copies Giuw

(1 ~ l ~ D.) of Gkow by merging the D. centers of the copies into one center. For 1 ~ l ~ D.,

let pi be the set of paths in Giow as Pkow defined for Gkow above. Let P = {pip E P},

where p is a path between v~ and vf if p is a path between Ui and Urn (l, m =1= 0) and p is a

path between Vo and vi if p is a path between Uo and Ui (l =1= 0). Let P' = Pu (Ut-IPI). It
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is easy to prove that P' is w-colorable in G' if and only if P is w-colorable in G. 0

Efficient algorithm for Min-PMC problem in stars

Efficient algorithms for the Min-PMC problem in k-fiber (k even) stars have been known

[87, 88]. We have just shown that the Min-PMC problem is NP-hard for k-fiber (k odd)

stars. A natural question is, does the evenness of the number of fibers play an important

role in the polynomial solvability of the Min-PMC problem in stars? In this subsection, we

give an efficient algorithm for the Min-PMC problem in the non-uniform multifiber star G

with an even number J.L(e) of fibers in every edge e. This suggests that the evenness is a key

in the polynomial solvability for the problem. A path in a star is called a short path (resp.

long path) if the path is on one edge (resp. two edges). Let P be the given set of paths in

C and Wlb = maxeEE(G) r~~=? 1· Then Wlb is an obvious lower bound on the number of colors

required for coloring P. Algorithm ALG4.6 shown below uses exactly Wlb colors (thus is

optimal), if J.L(e) is even for every e E E(G).

1. For any edge e with odd L(e), add one short dummy path on e. Let P' be the union

of P and the set of dummy paths, and PL ~ P be the set of long paths in P. The

number of paths in P' \ PL (short paths) is even, since LeEE(G) Lp,(e) is even, each

path of PL is on two edges and LeEE(G) Lh (e) is even.

Create a multigraph G' with V(G') = V(G) and there is an edge between Vi and Vj in

G' if there is a path between Vi and Vj in star G. Notice that every node in multigraph

G' has even degree and there is an Euler circuit in every connected component of C'.

2. Find an Euler circuit for every connected component of multigraph G' and orient each

Euler circuit. Then each path in star C is assigned a direction by the oriented Euler

circuits. Discard the dummy paths. For any edge e in star G, the load of the paths

with the same direction on e is at most rL~e)1for each direction.

3. For each leaf node in star G, partition the outgoing paths into sets, each of which

has Wlb paths (except the last set, which may have less than Wlb paths). Similarly,

partition the incoming paths of each leaf node into sets, each of which has Wlb paths.

For the center Vo, partition the incoming (resp. outgoing) short paths into incoming

(resp. outgoing) sets each of which has Wlb paths. Let Vin (resp. Vout) be the collection
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of sets of incoming (resp. outgoing) paths. Then each path pEP is in exactly one

set of Yin and exactly one set of Vout '

4. Create a bipartite (multi-)graph with bipartitions Vin and Vout ' For each path pEP

in a set of Vin and a set of Vout , create an edge ep between the corresponding nodes

in Yin and Vout '

5. The bipartite graph has node degree Wlb, and its edges can be colored optimally by

Wlb colors [43]. Color each path p using the color of its corresponding edge ep '

Theorem 4.2.3 Algorithm ALG4.6 solves the Min-PMC problem in non-uniform stars with

even number j.L(e) of.fibers in every edge e using Wlb = maxeEE(G) I~~:?1 colors in polynomial

time.

Proof For any node u of the bipartite graph, the edges incident to u are assigned different

colors. Thus, paths in any set of Yin (or VOllt ) are assigned difl'erent colors. The color

repetition at any edge e incident to a leaf node v of the star is just the total number of

incoming and outgoing sets of v. When L(e) is even, the color repetition at edge e is at

most

2 fL (e)/21 < 2 r L(e)/2 1
Wlb - IL(e)/ j.L(e)l

f L(e)/2 1 rj.L(e)1s 2 L(e)/j.L(e) = 2 -2- = j.L(e).

The last equality holds since j.L(e) is even. Similarly, when L(e) is odd,

IL(e)/ j.L(e)l = I(L(e) + 1)/j.L(e)l

for even j.L(e). The color repetition at edge e is at most

2 rIL(e)/21 1< 2 r rL(e)/21 1
Wlb - IL(e)/ j.L(e)l

r
(L(e) + 1)/2 1 r (L(e) + 1)/2 1

= 2 r(L(e) + 1)/j.L(e)1 S 2 (L(e) + 1)/j.L(e) = j.L(e).

Therefore, the color repetition is always bounded from above by j.L(e), the number of available

fibers on edge e. Thus, the Wlb-coloring is valid. Algorithm ALG4.6 runs in polynomial time,

since the construction of the multigraph and the bipartite graph can be done in polynomial

time, and the Euler circuit and the bipartite graph edge-coloring can be found in polynomial

time. 0



CHAPTER 4. CALL CONTROL AND MAXIMUM PATH COLORING 91

The f -coloring of multigraphs is an extension of the edge-coloring, and can be defined

as follows. Given a multigraph G, a node capacity function f : V(G) --t N, color the edges

in E(G) such that each color is used by at most f(v) edges incident to node v. The goal

is to minimize the number of colors used (this number is usually called the f -chromatic

index of G). The edge-coloring problem is a special case of the f-coloring problem in

which f(v) = 1 for all v E V(G). The f-coloring problem is NP-hard and an asymptotic

(9j8)-approximation algorithm for the problem is known [94J. It is easy to show that the

f-coloring problem in multigraphs is equivalent to the Min-PMC problem in stars (following

the reduction in [48]). Thus, we can have an efficient algorithm for the f-coloring problem

if f (v) is even for every node v.

Efficient algorithm for Min-PMC problem in k-fiber spiders

We give an efficient algorithm ALG4.7 for the Min-PMC problem in k-fiber (k even) spiders.

Let G be a k-fiber spider with the center node vo. Given a set P of paths in G, rfl is a

lower bound on the number of colors for coloring P. Algorithm ALG4.7 works as follows.

1. For every edge e of G, if L(e) < rflk then add unit-length dummy paths on e until

L(e) = rflk. Let Q be the set of dummy paths on all edges of G.

2. Let Po s;;:: (P U Q) be the set of paths on the center node Vo of G. Color Po using

Algorithm ALG4.6 for the Min-PMC problem in stars.

3. For every leg in G, color the paths of P \ Po in the leg by the algorithm for a chain

regarding the segments of paths of Po in the leg as pre-colored paths.

Theorem 4.2.4 Algorithm ALG4.7 solves the Min-PMC problem in k-fiber (k even) spiders

using rf 1 colors in polynomial time.

Proof By Theorem 4.2.3 the number of colors used in Step 2 is rfl, since the load of Po is

rf 1k (k even) and the number of colors needed is simply the load divided by k. Furthermore,

on each edge incident to the central node vo, each color is used by exactly k paths in Po.

In Step 3, the paths on each leg can be colored by rf 1colors. This is true since the chain

algorithm of [96J works for the uniform case in which a subset of the paths is already colored

and all the pre-colored paths are on the same endpoint of the chain. 0
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Algorithm ALG4.7 can be used to derive an approximation algorithm for the Min-PMC

problem in k-fiber (k odd) spiders by the delete-nne-fiber approach used in [97] for stars.

For a k-fiber spider with odd k 2: 3, we consider the network as a (k - I)-fiber network and

apply Algorithm ALG4.7 to solve the Min-PMC problem by rk~ll colors. Since rtl is a

lower bound on the number of colors required for any optimal solution, this approach gives

a (1 + k~l )-approximation algorithm.

4.2.2 Max-PMC Problems in Stars and Spiders

In this section, we study the Max-PMC problem in multifiber stars and spiders. For a

multifiber network with J1(e) fibers on edge e and w colors, any optimal solution for the

Max-PMC problem has load at most J1(e) x w on edge e. Consider the call control problem

in the same network with edge capacity c(e) = J1(e) x w on edge e. The optimal solution

for the call control problem is an obvious upper bound on the optimal solution for the Max­

PMC problem. The results in this section will use this observation. Our optimal algorithms

for the Max-PMC problem achieve this upper bound.

Max-PMC problem in stars

The proofs of Theorems 4.2.1 and 4.2.2 imply that the Max-PMC problem is also NP-hard

in k-fiber (k odd) stars. We show that the Max-PMC problem can be solved optimally in

stars with even number of fibers. Let G be a star with an even number J1( e) of fibers in every

edge e and P be a set of paths in G. Recall that in any optimal solution for the Max-PMC

problem, the load of an edge e is at most J1(e) x w. Thus, we can reduce the Max-PMC

problem to the call control problem as follows: Assign an edge e a capacity of c(e) = J1(e) x w

and solve the call control problem with P as the input set of paths and c as the capacity

function. This call control problem can be solved optimally since it can be formulated as a

b-matching problem [63]. Let pI <::;; p be the optimal solution for this call control problem.

Then \p'I is an upper bound on the cardinality of the optimal solution for the Max-PMC

problem in G. The chosen set pI of paths can be colored by maxeEE(G) rll~~le)wl = w colors

using Algorithm ALG4.6 in Section 4.2.1, since J1(e) is even for every e E E(G). Thus, pI

is an optimal solution for the original Max-PMC problem.

The same argument holds for the weighted Max-PMC problem in stars with non-uniform

even fibers: one simply selects a maximum weight subset of paths with load at most J1(e) x w
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on edge e (this can also be done in polynomial time by reducing to the weighted b-matching

problem), and then color the chosen set of paths using w colors.

Max-PMC in k-fiber (k even) spiders

We show that the Max-PMC problem can be solved optimally in in k-fiber (k even) spiders.

Let G be a k-fiber (k even) spider and P be a given set of paths in G for the Max-PMC

problem. We first select a maximum cardinality subset pI ~ P of paths with load at

most kw. This can be done in polynomial time since it is a special case of the call control

problem in spiders (in which c(e) = kw for every edge e), and can be efficiently solved using

Algorithm ALG4.4 in Section 4.1.4. The selected set pI of paths has load at most kw, and

can be colored by k;: = w colors, using Algorithm ALG4.7 for k-fiber (k even) spiders (see

Section 4.2.1). IPII is an upper bound on the cardinality of the optimal solution for the

Max-PMC problem. Thus, pI is an optimal solution for the Max-PMC problem.

Max-PMC problem in non-uniform spiders

The Max-PMC problem is NP-hard in spiders with non-uniform fibers (J-l(e) can be difl'erent

for difl'erent edges and can be even or odd), since the Max-PMC problem is NP-hard in k­

fiber (k odd) stars (which are non-uniform spiders by definition). We solve the problem

using the standard approach of calling the call control algorithm as a subroutine. Note that

the call control problem is equivalent to the Max-PMC problem with w = 1. Suppose we

have an approximation algorithm for the call control problem. Let G be a spider with J-l(e)

fibers in edge e E E(G) and P be a set of paths in G. Consider the call control problem

with capacity function c(e) = J-l(e) for all e E E(G). Then we call the algorithm for this

call control problem, select a maximum cardinality subset of paths pI ~ P, and remove the

paths pI from P (i.e., P +-- P \ PI). The procedure is repeated w times. Each selected

subset is colored by a distinct color. The union of the w chosen sets is taken as the solution

for the Max-PMC problem. It is known that if the call control algorithm has approximation

ratio p, this iterative greedy algorithm for the Max-PMC problem has approximation ratio

1-e~1/p [54]. The call control problem in spiders is polynomial time solvable (as shown in

Section 4.1.4). Thus, p = 1, and the iterative greedy algorithm for the Max-PMC problem

in spiders has an approximation ratio of 1-;-1 (about 1.58). Summarizing the above, we

have the following theorem.
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Theorem 4.2.5 There is a l.S8-approximation algorithm for the Max-PMC problem in

non-uniform spiders.

4.3 The Weighted Max-RPC Problem on Rings

In this section, we study the weighted maximum routing and path coloring problem in rings.

Recall that for the weighted Max-RPC problem, we are given a set S of routing requests,

a weight function w : 5 --; 2+, and a set of k colors. Each request can be routed either

clockwise or counterclockwise. A feasible solution is a subset S' <:;;; S such that each request

(s, t) E 5' is routed (through one of the two possible routes) and assigned one of the k

colors, with no two requests using the same color if they are routed through the same edge.

The goal is to find a feasible solution which has the maximum total weight. For a set of

routing requests S, we define w(S) = 'L:sEs w(s) as the total weight of all the requests in

S. We define w(p) = w(s) if p is the routing path for s. For a set P of paths, we define

w(P) = 'L:PEP w(P) as the total weight of all the paths in P. The optimal solution is

denoted by OPT (which is used for both the set of requests and the total weight of the

requests).

The following proposition will be used several times.

Proposition 4.3.1 [38] The weighted Max-RPC problem can be solved optimally in poly­

nomial time for chain networks.

Our algorithm first discards one edge e from the given ring, and solves the weighted

Max-RPC problem on the obtained chain, using the optimal algorithm of [38] for chains.

The result is refined by considering every edge e on the ring as a candidate for deletion.

Note that this second step is not necessary in the unweighted case [98], but is critical in

the weighted case. Our algorithm uses a second approach, namely the maximum weight

matching method, to see if a better result is possible. A (weighted) compatible graph G c is

constructed as follows. Each routing request on the ring corresponds to a node in G c with

the same weight. Two nodes are adjacent in Gc if and only if the corresponding requests

are parallel. (Two requests are parallel if and only if their end-points do not interleave on

the ring, otherwise are crossing, see Figure 4.6. A pair of parallel requests may be routed

without overlapping, while a pair of crossing requests cannot.) In addition, for each node

v just created, we add a duplicated node v d with weight 0 and connect v and vd by a new
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(a) Parallel requests (b) Crossing requests

Figure 4.6: Parallel (compatible) and crossing (incompatible) requests.

edge. (The introducing of the dummy node v d is necessary, since in an optimal solution,

some request may be assigned a color that is not used by any other request.) To use the

weighted matching algorithm, we define the weight of an edge in G c to be the sum of the

weights of its two end-points. A maximum weighted matching of cardinality at most k

in Gc is found and the set of connection requests is routed and colored according to this

matching, where k is the given number of colors. Our algorithm outputs the maximum of

the two approaches. The detailed algorithm is shown in Figure 4.7.

Let OPT be an optimal solution (the selected subset ofrouting requests and the resulting

paths). Given an edge e on the ring, the paths in OPT can be divided in two subsets (with

respect to e): OPT; which contains all the paths on edge e (solid lines in Figure 4.8),

and OPT~ which contains all the paths not on edge e (dashed lines in Figure 4.8). Then

OPT = OPT~ + OPT;, and OPT~ ::; SOLI (since SOLI is the maximum of the optimal

solutions for the chain obtained by avoiding an edge e, among all edges e on the ring).

In the following discussion, we assume there exists an optimal solution OPT (with routes

chosen and paths colored), and we will compare the weight of our solution to the weight

of the optimal. Note that the assumption of having an optimal solution OPT is for the

convenience of the proof. In the algorithm, we do not need the explicit knowledge of OPT.

For any two distinct edges el and e2 on the ring, let Pel ~ OPT be the set of paths on

el (but not on e2), Pe2 ~ OPT be the set of paths on e2 (but not on el), and Pele2 ~ OPT
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ALG4.8 Output max{SOL 1, SOL2 }

96

SUBe Let e be an edge of the ring. Route requests so that the resulting set P of paths does
not use e. Color a maximum weight subset of paths in P using an optimal algorithm
for chains (Proposition 4.3.1). Denote the solution by SOLe'

ALGe Call SUBe for every edge e of the ring. Output the maximum weight SOL}.

(SOL} =maxeEESOLe).

ALGm Construct a compatible graph Ge . Find a maximum weight matching of cardinality
at most k in Ge . Route each pair of matched requests in a compatible manner and
assign a distinct color to the pair. The solution is denoted by SOL2.

Figure 4.7: The algorithm for the weighted Max-RPC
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Figure 4.9: Illustration of the idea behind the proof of Lemma 4.3.2.

be the set of paths on both el and on e2 (see Figure 4.9). Pel' Pe2 and Pele2 are pairwise

disjoint sets. We have the following lemma:

Proof Consider the paths in Po = Pel U Pe2 U Pere2 . At most two paths in Po are assigned

the same color, since paths in Po pass through at least one of the two edges el and e2, Po

is a subset of OPT, and paths in OPT have valid colorings. Paths in Pele2 are assigned

distinct colors, and do not share colors with paths in either Pel or Pe2 . Paths in Pel may

share colors with paths in Pe2 · Let P~l ~ Per (resp, P~2 ~ Pe2 ) be the subset of paths

each of which shares a color with some path in Pe2 (resp. Per)' Then lP~ll = IP~21, and

/Pell - lP~ll + lPele21 + lPe21 :S k. We can construct a matching Mp in Gc as follows. Let

vp be the node in Ge corresponding to the request assigned path p. For each path p E P~l'

let p' E P~2 be the path which has the same color as p, and we include into Mp the edge

between vp and vp ' in Ge · For each of the remaining paths p E Pele2 U(Per \P~l)U (Pe2 \P~2)'

we include into Mp the edge between vp and its duplicated node v~ in Ge . It is not hard

to see that we have selected a total of /Pell - IP~ll + lPele21 + lPe21 :S k edges from Ge ,

each selected pair can be colored using one color, and requests corresponding to paths in Po

are all selected. Thus in a matching of cardinality at most k, we can have at least all the

requests corresponding to paths in Po, and the selected requests can be colored by k colors.

The matching Mp has weight w(Pel )+w(Pe2 )+w(Pele2 ). The lemma is true since 80L2 is
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a maximum weight cardinality-k matching, and thus has weight at least equal to the weight

of the matching Mp just constructed. 0

From Lemma 4.3.2, we have the following observations. If w(Pqe2 ) = 0 (Le., no path is on

both el and e2), then 0 PT;l = w(Pe}), 0 PT;2 = w(Pe2 ), and min{OPT;1 ' 0 PT;2} :S S~L2.

Assume 0 PTe
2
1

:S 0 PT;2 (the other case is symmetric),

OPT OPT;1 + OPTe
2
1

< SOLI + 0.5S0L2

< 1.5S0L.

In other words, SOL ~ OPT/1.5. This gives a good bound on SOL. For an optimal

solution OPT, there may not exist two edges el and e2 such that w(Pe1Q ) = 0 holds.

However, we can show that for any optimal solution OPT, there exists two distinct edges

el and e2, and another optimal solution OPTI such that OPTI = OPT and no path in

OPTI passes through both el and e2. Then, we use Lemma 4.3.2 to show our algorithm

has an approximation ratio of 1.5. In what follows, we will try to find an OPTI and two

edges el and e2 that suit for this purpose.

To describe the procedure, we need some more definitions. Each path p on the ring

corresponds to an arc from some node x to y along the ring in the clockwise direction. We

call x the left-node and y the right-node of p, and denote them by pL and pR, respectively.

Given an edge e on the ring, a path p in a set of paths P on e has the left-most left-node

(with respect to e) if pL is closest to e along the countclockwise direction. Similarly, a path

p in a set of paths P has the right-most right-node (with respect to e) if pR is closest to e

along the clockwise direction. A node x is on the left of node y if y is on the arc from x

towards e in the clockwise direction.

Given an optimal solution OPT, the identifying procedure works as follows:

1. Pick up an arbitrary edge el of the ring, and repeat Steps 2-4 until return.

2. If there is no path on e1, return.

3. If there is only one path p on el, then identify any edge not on p as e2, and return.

4. Otherwise, there are at least two paths on el. Let PI be the path on el with the

left-most left-node, and P2 be the path on el with the right-most right-node (break

tie arbitrarily).
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(a)

(c)

(b)

Figure 4.10: The procedure for identifying two edges on the ring.

(a) If p~ is on the left of pf (see Figure 4.10(a)), or PI is the same path as P2

(Figure 4.1O(b)), then identify any edge on the clockwise segment from p~ to pf

as e2, and return.

(b) Otherwise, PI and P2 cover the whole ring (see Figures 4.10(c) and 4.10(d)). Re­

route PI and P2 (using the only other possible route), then switch the colors of

them. Go back to Step 2.

The identifying procedure will clearly terminate, since initially there are a finite number

paths on eI, and each time Step 4(b) is executed, the number of paths on el is reduced

by two. It is easy to see that when the procedure terminates, we have re-routed some of

the paths in OPT (but did not change the set of accepted requests) and identified an edge

e2 such that no path passes through both el and e2. The paths PI and P2 found in Step

4(b) are called a mutual-support pair. Note that the requests corresponding to PI and P2

are parallel. However, they were routed in an incompatible manner in OPT. (It may seem
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strange that OPT routes requests in such a way. However, we do not make any assumption

on how OPT works as long as the result is optimal.) For any such pair, we have re-routed

them avoiding edge el, exchanged their colors, and kept the paths which share colors with

them unchanged, without changing the color of any other path. The resulting paths still

have valid colorings. The weight of OPT is not changed, but some of the weight of OPTe
2
1

has been shifted to OPTe\. Let OPT1 be the set of paths obtained after the procedure.

Then OPT = OPT1. We are now comparing OPT with SOL obtained using ALG4.8.

Theorem 4.3.3 The algorithm ALG4.8 achieves an approximation ratio of 1.5.

Proof Consider any optimal solution and apply the identifying procedure. If the procedure

returns in Step 2, then no path in the resulting OPT1 passes through edge el, and OPT1 =
OPT1~1 :S SOLI. Thus SOL is optimal. If the procedure returns in either Step 3 or Step

4(a), then we have identified two edges el and e2 such that no path in OPT1 passes through

both el and e2. Using Lemma 4.3.2, we can show that OPT1 :S 1.5S0L. Summarizing the

above, OPT ::; 1.5S0L in all cases. Thus, our algorithm achieves an approximation ratio

of 1.5.

The algorithm clearly runs in polynomial time, since the Max-PC algorithm for chains

and the maximum weight cardinality k matching algorithm both run in polynomial time,

and we call the Max-PC algorithm for chains only a polynomial number of times. 0

The approximation ratio of 1.5 achieved by our algorithm for the weighted Max-RPC

is worse than the 4/3 ratio achieved for the (unweighted) Max-RPC problem in [33J. The

algorithm of [33] used a combination of the cut-one-link method and an advanced version of

the iterative greedy method. As mentioned earlier, the iterative greedy method may be more

efficient than the maximum matching method. It is not clear whether the approximation

ratio of our algorithm can be improved if we use the iterative greedy method instead of the

maximum matching method. It seems that the analysis of [33J cannot be extended to the

weighted case.

4.4 Summary

We have shown that the call control problem is NP-hard and MAX SNP-hard even i

depth-2 trees with edge capacities one or two. We give polynomial time optimal algorith



CHAPTER 4. CALL CONTROL AND MAXIMUM PATH COLORING 101

for the call control problem in double-stars which are special depth-2 trees. These results

suggest that depth-2 trees are a boundary topology for which the call control problem is

in P or NP-hard, depending on the node degrees of the trees. We give polynomial time

optimal algorithm for the call control problem in spiders. We also give 2-approximation and

3-approximation algorithms for the weighted call control problem in depth-2 and depth-3

trees, respectively. We show that the weighted call control problem is optimally solvable in

arbitrary trees if all the paths contain a same node of the tree. We show that the weighted

call control problem in any graphs can be solved optimally if all the paths have length at

most 2.

We have shown that the Min-PMC and Max-PMC problems are NP-hard in k-fiber (k

odd) stars. This should be contrasted to the even k case which can be solved optimally. We

give optimal algorithms for the following problems: the Min-PMC and Max-PMC problems

in non-uniform stars with even fibers, the Min-PMC and Max-PMC problems in k-fiber (k

even) spiders. We also obtain a 1.58-approximation algorithm for the Max-PMC problem in

spiders with non-uniform fibers, using our call control algorithm for spiders as a subroutine.

We have given a 1.5-approximation algorithm for the weighted Max-RPC problem in

rings. This improves the previous 1.58-approximation algorithm. Note that the Max-PC,

Max-RPC, and the weighted Max-PC problems in rings can all be approximated with ratio

better than 1.5. It would be interesting to design approximation algorithm with ratio less

than 1.5 for the weighted Max-RPC problem in rings.



Chapter 5

Branch/Carving Decomposition

Based Algorithms

In previous chapters, we have given efficient algorithms for the path coloring problem and

the call control problem in various networks. Our algorithms only work on the topologies for

which they are designed, and the techniques do not seem to be applicable in other topologies,

or different problems in the same topology. Algorithms that work for a broader class of prob­

lems in a broader class of topologies are highly desirable. Most of our algorithms in previous

chapters give only approximate solutions that are constant factors away from optimal solu­

tions. Although approximate solutions can be computed in polynomial time, in some appli­

cations, an optimal solution is desired even at the cost of exponential computation time. Re­

cently, there are increased interests in the exact algorithms for optimization problems. Many

of the exact algorithms use dynamic programming method based on a tree/branch/carving

decomposition of the graph. A graph of small treewidth/branchwidth/carvingwidth ad­

mits efficient dynamic programming algorithms for many NP-hard problems on the graph.

A key step in these algorithms is to find a tree/branch/carving decomposition of small

width for the graph. In this chapter, we propose efficient algorithms for computing opti­

mal branch/carving decomposition of planar graphs. The contents of Sections 5.1 rv 5.4

in this chapter are joint work with Qian-Ping Gu, Marjan Marzban, Hisao Tamaki, and

Yumi Yoshitake, and appeared in the Proc. of the 10th SIAM Workshop on Algorithm

Engineering and Experiments (ALENEX'08) [24].

In Section 5.1, we review some related work on optimal branch decompositions of planar

102
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graphs. We give formal definitions of branchwidth and branch decomposition in Section 5.2.

All known algorithms for the planar branch decomposition use Seymour and Thomas algo­

rithm (called ST Procedure for short in what follows) which, given an integer (3, decides

whether G has the branchwidth at least (3 or not in O(n2 ) time. In Section 5.3, we propose

efficient implementations of ST Procedure. We first review ST Procedure and give some

observations which provide the base of our efficient implementations, then describe our im­

plementations, and finally present the computational results. The computational results of

our implementations show that the branchwidth of a planar graph can be computed in a

practical time and memory space for some instances of size about one hundred thousand

edges. Previous studies report that a straightforward implementation of the algorithm is

memory consuming, which could be a bottleneck for solving instances with more than a few

thousands edges. Our results suggest that with efficient implementations, the memory space

required by the algorithm may not be a bottleneck in practice. Applying our implementa­

tions, an optimal branch decomposition of a planar graph of size up to several thousands

edges can be computed in a reasonable time, using the edge-contraction method which runs

in O(n3 ) time [66J. We describe the edge-contraction method and the computational results

in Section 5.4.

Although the edge-contraction method can compute an optimal branch decomposition

for planar graphs of practical size in a reasonable time, it is still time consuming for graphs

with larger size. In Section 5.5, we propose divide-and-conquer based algorithms of using ST

Procedure to compute optimal branch decompositions of planar graphs. Our algorithms have

time complexity O(n3 ). Computational studies show that our algorithms are much faster

than the edge-contraction algorithms and can compute an optimal branch decomposition of

some planar graphs of size up to 50,000 edges in a practical time.

Branch-decomposition based algorithms have been explored as an approach for solving

many NP-hard problems on graphs. Our results suggest that the approach could be practi­

cal. We will use the carving-decomposition based method to solve exactly the edge-disjoint

paths problem in the next chapter.
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5.1 Previous Work

The notions of branchwidth and branch decompositions are introduced by Robertson and

Seymour [110] in relation to the more celebrated notions of treewidth and tree decompo­

sitions [108, 109]. A graph of small branchwidth (or treewidth) admits efficient dynamic

programming algorithms for a vast class of problems on the graph [15, 28]. There are

two major steps in a branch/tree-decomposition based algorithm for solving a problem: (1)

computing a branch/tree decomposition with a small width and (2) applying a dynamic pro­

gramming algorithm based on the decomposition to solve the problem. Step (2) usually runs

in exponential time in the width of the branch/tree decomposition computed in Step (1).

So it is extremely important to decide the branchwidth/treewidth and compute the optimal

decompositions. It is NP-complete to decide whether the width of a given general graph

is at least an integer (3 if (3 is part of the input, both for branchwidth [113] and treewidth

[14]. When the branchwidth (treewidth) is bounded by a constant, both the branchwidth

and the optimal branch decomposition (treewidth and optimal tree decomposition) can be

computed in linear time [29, 31]. However, the huge constants behind the Big-Oh make the

linear time algorithms only theoretically interesting.

One hurdle for applying branch/tree-decomposition based algorithms in practice is the

difficulty of computing a good branch/tree decomposition because of the NP-hardness and

huge hidden constants problems. Recently, the branch-decomposition based algorithms with

practical importance for problems in planar graphs have been receiving increased attention

[45, 57]. This is motivated by the fact that an optimal branch decomposition of a planar

graph can be computed in polynomial time by Seymour and Thomas algorithm [113] and the

algorithm is reported efficient in practice [70, 71]. Notice that it is open whether computing

the treewidth of a planar graph is NP-hard or not. The result of the branchwidth implies a

1.5-approximation algorithm for the treewidth of planar graphs. Readers may refer to the

recent papers by Bodlaender [30] and Hicks et al. [72] for extensive literature in the theory

and application of branch/tree-decompositions.

Given a planar graph G of n vertices and an integer (3, Seymour and Thomas give a

decision algorithm which decides if G has a branchwidth at least (3 in O(n 2) time [113].

Using ST Procedure as a subroutine, they also give an edge-contraction algorithm which

constructs an optimal branch decomposition of G. The edge-contraction algorithm calls

ST Procedure O(n2 ) times and runs in O(n4) time. Gu and Tamaki [66] give an improved
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algorithm which calls ST Procedure O(n) times and runs in O(n3 ) time to construct the

branch decomposition. Hicks proposes a divide and conquer heuristic algorithm to reduce

the number of calls for ST Procedure [71]. Computational studies show that the heuristic

is effective in reducing the calls but has the time complexity of O(n4 ) [69, 71]. All known

algorithms for computing the optimal branch decomposition of a planar graph rely on ST

Procedure; thus, an efficient implementation of the procedure plays a key role in computing

the branch decompositions. A straightforward implementation of ST Procedure requires

O(n2 ) bytes of memory which is reported in [70] a bottleneck for solving large instances

with more than 5,000 edges. Hicks proposes memory friendly implementations in the cost of

performing re-calculations and increasing the running time of ST Procedure to O(n3 ) [70].

The time and memory space required by ST Procedure limit the size of planar graphs for

which the optimal branch decompositions can be computed in practice. Hicks reports that

the edge-contraction algorithm of [113J can solve some instances of about 2,000 edges and

the divide and conquer method can solve some instances of about 7,000 edges in a practical

time [69, 71J.

5.2 Optimal Branch Decomposition of Planar Graphs

We give formal definitions of several terms that are mainly used in this chapter. Again,

terms not defined here may be found in a standard textbook on graph theory. Let G be a

graph. A branch decomposition of G is a tree TB such that the set of leaves of TB is E(G)

and each internal node of TB has node degree 3. For each edge e of TB, removing e separates

TB into two sub-trees. Let E' and E" be the sets of leaves of the subtrees. The width of e is

the number of vertices of G incident to both an edge in E' and an edge in E". The width of

TB is the maximum width of all edges of TB. The branchwidth of G is the minimum width

of all branch-decompositions of G.

The algorithms of Seymour and Thomas [113] for branchwidth and branch decomposition

are based on another type of decompositions called carving decompositions.

A carving decomposition of G is a tree Te such that the set of leaves of Te is V(G) and

each internal node of Te has node degree 3. For each edge e of Te, removing e separates

Te into two sub-trees and the two sets of the leaves of the sub-trees are denoted by V' and

V". The width of e is the number of edges of G with both an end vertex in V' and an end

vertex in V". The width of Te is the maximum width of all edges of Te. The carvingwidth
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of G is the minimum width of all carving decompositions of G. Notice that the carving

decomposition is defined for more general graphs in [113]. The definition allows positive

integer lengths on edges of the graphs. The width of e in Tc for the weighted graph is

defined as the sum of lengths of edges with an end vertex in V' and an end vertex in VI/.

Let G be a planar graph with a fixed embedding. Let R(G) be the set of faces of

G. The medial graph [113] M(G) of G is a planar graph with an embedding such that

V(M(G)) = {uele E E(G)}, R(M(G)) = {rsls E R(G)} U {rvlv E V(G)}, and there is an

edge {ue , ue'} in E (M(G)) if the edges e and e' of G are incident to a same vertex v of G

and they are consecutive in the clockwise (or counter clockwise) order around v. M(G) in

general is a multigraph but has O(IV(G)I) edges. Seymour and Thomas [113] show that

the carvingwidth of M(G) is exactly twice the branchwidth of G and an optimal carving

decomposition of M(G) can be translated into an optimal branch decomposition of G in

linear time. To decide whether a planar graph G has the branchwidth at least an integer (3,

ST Procedure actually decides whether M(G) has the carvingwidth at least 2(3.

Proposition 5.2.1 (Seymour and Thomas [113]) Given a planar graph G of n vertices

and an integer (3, bw(G) = cw(M(G))/2, ST Procedure decides if bw(G) ~ (3 by computing

if cw(M(G)) ~ 2(3 in O(n2 ) time, and an optimal carving decomposition of M(G) can be

translated into an optimal branch decomposition of G in O(n) time.

A face r E R(G) and an edge e E E(G) are incident to each other if e is a boundary

of r in the embedding. Notice that an edge e is incident to exactly two faces. For a face

r E R(G), a vertex v is incident to r if v is an end vertex of an edge incident to r. For a face

r E R(G), let V(r) and E(r) be the sets of vertices and edges incident to r, respectively.

For a vertex v E V(G), let E(v) be the set of edges incident to v.

The planar dual G* of G is defined as that for each vertex v E V (G), there is a unique

face r~ E R(G*); for each face r E R(G), there is a unique vertex v; E V(G*); and for each

edge e E E(G) incident to rand r', there is a unique edge e* = {v;, v;,} E E(G*) which

crosses e.

A walk in a graph G is a sequence of edges el,e2, ... ,ek of G, where ei = {Vi-I,Vi} for

1 :S i :S k. A walk is closed if VQ = Vk. The length of a walk is the number of edges in the

walk. For two vertices U and v in a graph G, the distance d(u, v) is the minimum length of

all walks between u and v. The walk with distance d(u, v) is a shortest path between u and

v.
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5.3 Empirical Study on Branchwidth of Planar Graphs

In this section, we propose efficient implementations of ST Procedure. Our implementations

can be classified into two groups. Group (1) does not perform re-calculations and runs in

O(n2 ) time. The most memory efficient implementation in this group can compute the

branchwidth of some instance of size up to one hundred thousand edges with 500Mbytes

memory and in a couple of hours. Group (2) performs re-calculations and can compute the

branchwidth of the instance of one hundred thousand edges with 200Mbytes of memory.

The implementations in Group (2) may run in O(n3 ) time in the worst case. All of our

implementations still use O(n2 ) bytes of memory. However, the constants behind the Big­

Oh are much smaller than those in a straightforward implementation. In contrast, the

results of this thesis and those of [70] show that straightforward implementations can only

handle instances of size up to about 5,000 edges within 1Gbytes of memory. Our most

time efficient implementation is faster than the straightforward one by a factor of 3 rv 15.

Compared with the previous memory friendly implementations of [70], our most memory

efficient implementations of Group (1) and Group (2) use at most 1/4 memory and 1/8

memory and run faster by a factor of 100 rv 400 and a factor of 100 rv 200, respectively.

Notice that the CPU used in [70] has frequency 194MHz and the CPU used for testing our

implementations has frequency 3.06GHz, so we need to keep in mind this difference of speed

when we compare the running time.

The results of this section suggest that the memory size required by ST Procedure

may not be a bottleneck for computing the branchwidth and optimal branch decomposition

of a planar graph in practice. Our implementations also imply more efficient algorithms

which call ST Procedure to find the optimal branch decompositions. We will discuss the

decomposition algorithms in Sections 5.4 and 5.5.

5.3.1 Seymour and Thomas Procedure

We give a brief review of ST Procedure and readers may refer to [113] for more details of

the decision procedure. ST Procedure is often called the rat-catching algorithm because it

can be intuitively described by a rat catching game introduced in [113]. We first review the

game and then give a formal description of ST Procedure.
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Rat catching game

In this game, there are two players, a rat and a rat-catcher. The game is on a planar graph

G of a fixed embedding, with a face and an edge of G interpreted as a room and a wall of

a room, respectively. The rules for the game are as follows.

(Rl) The rat-catcher selects a room.

(R2) The rat selects a corner of a room (a vertex of G).

(R3) The rat-catcher selects a room adjacent to the current room and moves to the wall

between the two rooms (the edge of G incident to the current face and the selected

face). The rat-catcher generates a noise of a fixed level that may make walls noisy.

The condition of making a wall noisy will be given later.

(R4) The rat moves to a different corner via walls or stays at the current corner. The rat

can not use a noisy wall but can use as many quiet walls as possible in one move.

(R5) The rat-catcher moves to the room it selected and can not change its mind to move

back to the previous room. The rat-catcher keeps making noise.

(R6) If the rat is in a corner, all walls incident to the corner are noisy, and the rat-catcher

is in a room with this corner, then the rat-catcher catches the rat and wins the game.

Otherwise goto (R3).

Now we give the condition on a wall becoming noisy. For the planar dual G* of G, let v; and

e* be the vertex and edge of G* corresponding to the face r and edge e of G, respectively.

Let k be the noise level produced by the rat-catcher. When the rat-catcher is on edge e,

edge f is noisy if and only if there is a closed walk of length smaller than k containing edges

e* and 1* in G*. Similarly, when the rat-catcher is in face r, edge f is noisy if and only

if there is a closed walk of length smaller than k containing vertex v; and edge 1* in G*.

The rat-catcher wins the game if the rat is at a vertex v with node degree smaller than k

and the rat-catcher is in a face incident to v. The rat wins the game if there is a scheme

by which the rat can escape from the rat-catcher for ever. We use RC(G, k) to denote the

rat catching game on G and k. Seymour and Thomas show that the rat wins the game

RC(G, k) if and only if G has carvingwidth at least k and give ST Procedure which, given

G and k, computes the outcome of the game RC(G, k) [113].
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ST Procedure

Now we present ST Procedure using the language of the game RC(G, k). Our presentation

is different from the original one which is based on a notion called antipodality [113]. For

a graph G with maximum node degree at least k, the rat always wins the game RC(G, k)

because the rat will never get caught if it stays at a vertex with node degree at least k. So we

assume that G has maximum node degree smaller than k in the following discussion. Given

G and k, ST Procedure computes an escaping scheme for the rat or decides no such scheme

exists. The escaping scheme is represented by a collection of vertex subsets and subgraphs

of G by which the rat can escape from the rat-catcher for ever. The collection contains

a non-empty subset of vertices of G (a subset of corners) for every face and a non-empty

subgraph of G (a subset of corners and quiet walls) for every edge.

Given G and k, we define Ge to be the subgraph of G obtained by deleting noisy edges

from G when the rat-catcher is on edge e. More specifically, V(G e ) = V(G) and

E(Ge ) = U I every closed walk of G* containing e*

and 1* has length at least k}.

Notice that every edge of Ge is quiet when the rat-catcher is on e. For each face r E R(G),

we define

Sr = {(r,v)lv E V(G)} and S = UrER(G)Sr.

For each edge e E E(G), we define

Te = {(e, C)IC is a connected component of Ge }.

Let T = UeEE(G)Te . Then the game R(G, k) can be described by a bipartite graph H(G, k),

where the vertex set of H (G, k) is S U T and there is an edge between (r, v) E Sand

(e, C) E T if face r is incident to edge e and v is a vertex of C. The vertices of H(G, k) can

be interpreted as the states of the game: a (T, v) E S represents that the rat-catcher is in

face r and the rat is at vertex v, and a (e, C) E T expresses that the rat-catcher is on edge

e and the rat is at a vertex of C and can use the edges of C to move. The edge between

(r, v) E Sand (e, C) E T indicates the possible state transitions of the game: when the rat

is at v and the rat-catcher moves from face r to edge e, the game state transits from (T, v)

to (e, C); or when the rat is at some vertex of C and moves to v, and the rat-catcher moves

from edge e to face r, the game state transits from (e, C) to (r, v).
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A game state of R(G, k) is called a losing state if the rat will lose the game at the state.

To compute an escaping scheme for the rat, ST Procedure deletes the losing states from

H(G,k). For a face r E R(G) and a vertex v incident to r (v E V(r)), (r,v) is a losing

state because the rat gets caught if the rat is at v and the rat-catcher is in r. For an edge

e incident to face r, (e, C) is a losing state if for every vertex v of C, (r, v) is a losing state.

To see this, assume that the rat-catcher is on edge e and the rat is at some vertex of C. The

rat-catcher may move to r or r', the other face incident to e, in the next step. In either of

the moves, the rat can only move to a vertex v of C. If the rat-catcher moves to r then the

game transits to (r, v) at which the rat will get caught. If the rat-catcher moves to r' then

the rat is at some vertex of C. The rat-catcher can move back to e and then to r, and the

rat will get caught. Similarly, if (e, C) is a losing state then for every face r incident to e

and every vertex v of C, (r, v) is a losing state.

For every edge e E E(G), ST Procedure initializes set X e to include all states of Te .

For every face r E R(G), ST Procedure initializes set X r to include all states of Sr and

then deletes (r,v) from X r for every v E V(r). After this initial deletion step, for each face

r and each edge e incident to r, if there is a state (e, C) such that for every vertex v of

C state (r, v) has been deleted, then the state (e, C) is deleted from X e' If this deletion

is done then for the other face r' incident to e, state (r', v) is deleted from Xr, for every

vertex v of C. This deletion may result in further deletions of losing states. The deletion

process is repeated until no further deletion is possible. It is shown in [113] that graph G

has carvingwidth at least k if and only if after the deletion process finishes, X r and X e are

not empty for every r E R(G) and every e E E(G). The collection of non-empty X r and X e

for every face r and every edge e is an escaping scheme for the rat. Below is a simplified

version of the formal description of ST Procedure [113]. We remark that ST Procedure

decides if the carvingwidth is at least k for more general planar graphs. It allows weighted

input graphs with positive integer lengths on edges.

ST_Procedure

Input: A non-null connected planar graph G with a fixed embedding, a planar dual G* of

G, an integer k 2: O.

Output: Decides if G has carvingwidth at least k.

1. If the maximum node degree of G is at least k then output G has carvingwidth at

least k and terminate.
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2. For each face r E R(G), let X r = Sr'

For each edge e E E(G), compute Ge and let X e = Te . For each (e, C) E X e and

the faces rand r' incident to e, let c(r, e, C) = jV(C)1 and c(r', e, C) = IV(C)I, where

V (C) is the set of vertices of C.

3. For each face r and each state (r, v) E X r with v E V(r), put (r, v) to a stack Land

delete (r, v) from X r .

4. If L is empty then goto the next step.

Otherwise, remove a state x from L.

Assume that x = (r, v) is a state for a face (x E S). For each edge e incident to r, find

the state (e, C) E X e such that C contains v. Decrease c(r, e, C) by one. If c(r, e, C)

becomes 0 and (e,C) E X e then put (e,C) to L and delete (e,C) from X e .

Assume that x = (e, C) is a state for an edge (x E T). If there is a face r incident to

e such that c(r, e, C) > 0 then for each vertex v of C and (r, v) E X r put (r, v) to L

and delete (r, v) from X r .

Repeat this step.

5. If X r is non-empty for every r E R(G) and X e is non-empty for every e E E(G) then

output G has carvingwidth at least k, otherwise output G has carvingwidth smaller

than k.

Notice that we can stop ST Procedure and conclude that the rat loses the game when some

X r becomes empty. The reason is that if all states of X r are deleted, all states of X e for

e incident to r will be deleted; then all states for face r' incident to e will be deleted; and

finally all states for every face and edge will be deleted. Similarly, the rat loses the game if

some X e becomes empty.

To compute Ge for each e, ST Procedure needs to find the quiet edges when the rat­

catcher is on edge e. An edge f is quiet and will be included in G e if every closed walk in

G* that contains e* and 1* has length at least k. More specifically, let e* = {u*, v*} and

1* = {x*,y*}. Edge f is included in Ge if and only if d(u*,x*) + d(v*,y*) + 2 ~ k and

d(u*, y*) + d(v*, x*) + 2 ~ k. A solution for the all-pairs shortest path problem of G* will

suffice for the distances required in computing G e for all e E E(G).
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Theorem 5.3.1 (Seymour and Thomas [113])

Given a planar graph G of n vertices and integer k 2: 0, ST Procedure decides if G has

carvingwidth at least k or not using graph H(G, k) in O(n2 ) time and O(n2 ) bytes of memory.

To decide the branchwidth of G, the input to ST Procedure is the medial graph M(G) and

the branchwidth of Gis k/2 if the carvingwidth of M(G) is k.

Observations for efficient implementations

We give some observations on the game RC(G, k) that can be used for efficient implemen­

tations of ST Procedure. By the definition of the game RC(G, k), a state (r, v) is a losing

state if v E V(r) for G with maximum node degree smaller than k. ST Procedure makes

use of this sufficient condition to delete the losing states at the initial step of the deletion

process for each face r. We observe that if we can find and delete more losing states at the

initial step for each face r, then ST Procedure may run faster and use less memory. We

prove the following sufficient condition for finding more losing states.

Lemma 5.3.2 For a face r and a vertex v in graph G with maximum node degree smaller

than k, (r, v) is a losing state if there exist two faces sand t incident to v such that there

are

(1) a closed walk WI in G* with length smaller than k that consists of the shortest path from

v; to v;, the clockwise walk from v; to vi around r;, and the shortest path from vi to v;;
and (2) a closed walk W 2 in G* with length smaller than k that consists of the shortest path

from v; to v;, the counter-clockwise walk from v; to vi around r;, and the shortest path

from vi to v;.

Proof Assume that WI and W2 exist. Then for every edge e incident to v in G, e* is either

in WI or W2 and e is noisy when the rat-catcher is in r. Let ei, ... , ej be the edges in the

shortest path from v; to v;. Assume that the rat is at v and the rat-catcher is in r. Since

all edges incident to v are noisy, the rat can not move away from v. Next, the rat-catcher

can move to edge el. Since all edges incident to v are noisy when the rat-catcher is on el,

the rat has to stay at v. Similarly, the rat has to stay at v when the rat-catcher is on edge

ei,l :S i :S j. So the rat-catcher can move to face s using edges el, ... , ej and catch the rat

at v. 0
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Once the shortest paths from v; to all other vertices of G* have been computed, it is

easy to see the time for checking if (r, v) is a losing state by the condition of Lemma 5.3.2

is proportional to the node degree of v. Therefore, it takes O(n) time to check (r, v) for

a face r and all v E V(G). For each face r, let U(r) be the set of vertices that for every

v E U(r), (r, v) is a losing state computed by the sufficient condition of Lemma 5.3.2. From

Theorem 5.3.1, we have the following result.

Theorem 5.3.3 Given a planar graph G of n vertices and k 2 0, ST Procedure decides if

G has carvingwidth at least k in O(n2 ) time and O(n2 ) bytes of memory when the losing

states (r, v), v E U(r), are deleted at the initial step of the deletion process for each face r.

For each face r E R(G), we define G r to be the subgraph of G obtained by deleting the

noisy edges from G when the rat-catcher is in face r. That is, V(G r ) = V(G) and

E(Gr ) = {f I every closed walk of G* containing v;
and f* has length at least k}.

Notice that every edge of Gr is quiet when the rat-catcher is in r. Recall that Ge is the quiet

subgraph of G when the rat-catcher is on edge e. Our next observation is that for every

edge e incident to face r, E(Gr ) ~ E(Ge ), because v; is an end vertex of e* and therefore

the set of closed walks of G* containing vertex v; and edge f* includes all closed walks of G*

containing edges e* and f*. From this, a component of Gr is a subgraph of some component

of Ge . Hence, when the rat-catcher moves from face r to edge e and the rat is at any vertex

of some component D of Gn the component of Ge on which the rat can move is the same

one which contains D as a subgraph. Thus, when the rat-catcher is in face r, the states of

the game can be expressed by

S; = {(r,D)ID is a connected component of Gr }.

Let S' = UrER(G)S;, The game RC(G,k) can be described by a bipartite graph H'(G,k),

where the vertex set of H'(G, k) is S' U T and there is an edge between (r, D) E S' and

(e, C) E T if face r is incident to edge e and D is a subgraph of C. For a face r and a

component D of Gn (r, D) is a losing state if for every vertex v of D, (r, v) is a losing state.

For an edge e incident to face r, state (e, C) is a losing state if for every component D of G r

that is a subgraph of C, (r, D) is a losing state. Similarly, if (e, C) is a losing state then for

every face r incident to e and every component D of Gr that is a subgraph of C, (r, D) is a

losing state. Summarizing the above and from Theorem 5.3.1, the following result holds.
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Theorem 5.3.4 Given a planar graph G of n vertices and k 2: 0, ST Procedure decides

if G has carvingwidth at least k using graph H'(G, k) in O(n2 ) time and O(n2 ) bytes of

memory.

When graph H'(G,k) is used for the game RC(G,k), X r is initialized as S; for each face

r E R(G) in ST Procedure. Compared with Sr, S; may have less game states and thus

require less memory.

During the deletion process of ST Procedure, losing states are deleted from sets X rand

X e . Our another observation is that the elements of X e for an edge e incident to faces r

and r' at a step of ST Procedure can be computed in O(n) time from the elements of X r

and Xr, at that step. This gives an option for implementing ST Procedure that does not

keep but dynamically computes X e from X r and Xr, during the deletion process.

Theorem 5.3.5 Given a planar graph G of n vertices and k 2: 0, ST Procedure can decide

if G has carvingwidth at least k or not in O(n3 ) time and O(n2 ) bytes of memory if for each

edge e, X e is not kept but dynamically computed during the deletion process.

Proof For an edge e incident to faces rand r', the set X e is needed when an element of X r

or Xr, is deleted during the computation and when ST Procedure terminates. So, we can

compute X e in O(n) time once there is an element deleted from X r or Xr,. Since there are

O(n) elements in X r U Xr" X e is computed O(n) times. The total time for computing X e

for all e E E(G) is O(n3 ). From Theorem 5.3.1, the theorem holds. 0

The re-calculation of edge data used in our implementations is different from the re­

calculation in the previous study of [70], where face data are re-calculated for some faces

and each re-calculation for a face r involves a computation of Te for each e incident to r.

Finally, it is easy to see that if all states of Sr (or S;) for some face r are losing states

then for every face r', all states of SrI (S;/) are losing states and the rat loses the game.

Observation 5.3.6 If X r becomes empty for some face r during the deletion process then

graph G has carvingwidth smaller than k.

By this observation we can terminate ST Procedure when some X r becomes empty. This

may save the computation time when the rat loses the game.
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5.3.2 Efficient Implementations

Let G be a connected planar graph with a given embedding and V (G) = {v 1, ... , vn }. We first

describe a straightforward implementation (called Naive) of ST Procedure and then propose

several improvements on the implementations of ST Procedure. Those improvements try to

reduce both the memory space and running time of ST procedure.

Naive implementation

A straightforward implementation of ST Procedure would use graph H(G, k) for deciding

the outcome of the game RG(G, k). We use the following data structure for graph H(G, k)

in Naive.

• For each face r E R(G), a Boolean array B r (of n elements) is assigned such that Br[i]

is used to indicate if (r, Vi) E X r or not. A list of IE(r)1 elements is used to keep the

edges incident to r.

• For each edge e E E(G), the two faces rand r' incident to e are kept. All components

of Ge are kept in a list. Each component of Ge is given an index and component Cj is

kept in the jth element of the list. The element of the list for Gj contains the set of

vertices of Gj , c(r,e,Gj ), c(r',e,Gj ), and a Boolean variable indicating if (e,Gj ) has

been deleted from X e or not. An integer array Je (of n elements) is used to indicate

which component a vertex is in. If Vi is a vertex of Gj then Jeri] is set to j.

• In addition to the face and edge data, a stack L is used and a distance matrix is kept

for the all pairs shortest distances in the dual graph G* of G.

It is easy to check that the Naive implementation runs in O(n 2
) time. A simple calculation

shows that Naive implementation requires about 40n 2 bytes of memory when G is a medial

graph. Since there are many single vertex components in G e and the operating system may

have a minimum memory allocation size of 16 bytes, the memory usage in practice is close

to 50n2 bytes.

Common improvements

We first describe two common improvements which are used in all of our efficient imple­

mentations. When we say processing a face r or an edge e, we mean deleting a losing state

from X r or X e .
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The first common improvement is that we define a processing order of the faces in our

implementations. We put losing states (r, v) to the stack for only one face at a time. When

there are losing states of multiple faces to be included to the stack, we group the losing

states according to the faces, and give an order on the groups to be put to the stack. Only

the group at the top of the order is put to the stack at a time. A face which has been

processed is given a higher priority to be put to the stack. The processing order on the faces

is used to define a subset Q ~ R(G) and to restrict the rat-catcher moving within the faces

of Q. Given a subset Q of R(C), let SQ = UrEQSr, So = UrEQS;, and TQ = UeEE(r),rEQTe'

We start with a small Q and perform the deletion process for the subgraph of H(C, k)

induced by the vertices of SQ U TQ (or the subgraph of H' (C, k) induced by the vertices

of So U TQ) until no deletion is possible. Then we enlarge Q by including a new face and

repeat the deletion process. Q is enlarged gradually until Q = R(C). By Observation 5.3.6,

ST Procedure may stop at a small Q when the rat-catcher wins the game. Also, for a given

subset Q, the losing states are deleted from X r and Xe (r E Q, e E E(r)), and after the

deletion, the data for X r and Xe can be compressed before Q is enlarged. This helps in

reducing the time and memory of ST Procedure.

The second common improvement is that we use a parsimonious data structure for edge

data. We observe that there are many single vertex components in edge data. This makes

the list of components for each edge very big. We keep the same face data as those in

Naive. For each edge e, a component of C e is called non-trivial if it has at least one edge

otherwise called trivial. We only assign an index to a non-trivial component and keep a list

of non-trivial components. We decide the integer type for Ie based on the number of non­

trivial components in Ce. The length of the integer type for Ie is just big enough to encode

the indices of non-trivial components of C e . A trivial component C = {vd is not kept in

the list and Ie[i] is used to indicate if (e, C) has been deleted from X e or not. Further, if a

non-trivial Cj has at least a constant fraction of n (c5n) vertices then the set of vertices of C j

is not kept in the list. If there are at most a constant number (c) of non-trivial components

then the sets of vertices of the components are not kept in the list. In these cases, when an

access to vertices of a non-trivial component is needed, we check Ie to find the vertices of

the component. It is easy to see that this does not increase the order of the time complexity

of the implementation. A smaller c5 saves more memory but may give a larger running time.

Similarly, a larger c saves more memory but may increase the running time. We have chosen

c5 = 1/100 and c = 100 in this study. A distance matrix is used to keep the all pairs shortest
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distances. We decide the integer type for the distance matrix based on the input integer k

to ST Procedure. When G is a medial graph, we can reduce the required memory size to

about 4n2 bytes if one-byte integer arrays are used for each Ie and the distance matrix, and

to about 7n2 bytes if two-byte integer arrays are used.

~ore inaprovenaents

Improvement Al This improvement is based on Theorem 5.3.3. In AI, the elements

(r, v), v E U(r), are deleted from X r and put to the stack at the initial step of the

deletion process for face r. From Lemma 5.3.2, U(r) :2 V(r) and computational studies

show that IU(r)j is usually much larger than lV(r)l. Therefore, Al gives a room for

improving both the running time and memory space.

Improvement D I The features of D I can be expressed by dynamic data creation and data

compression. In D I the data for a face (edge) are created only when ST Procedure

starts to process the face (edge). When some losing states are deleted, the face/edge

data are compressed. More specifically, when ST Procedure is to perform the first

deletion for a face r, U(r) is computed and array B r of n elements is created. After

the losing states (r, vd, Vi E U(r), are deleted from Xr, vertices of V (G) \ U(r) are

re-indexed and array B r is compressed to indicate if (r, vd has been deleted for vertices

Vi of V(G) \ U(r) only. Similarly, when ST Procedure is to perform the first deletion

for an edge e, G e is computed and the edge data are created. Let rand r' be the two

faces incident to e. We create two integer arrays Ie and I~ for e. If the vertices of

V(G) \ U(r) have been re-indexed and B r has been compressed then Ie is compressed

accordingly. Similarly, array I~ is compressed for the vertices of V (G) \ U (r').

To calculate U(r) and Ge , the shortest distances from vertex v; to all other vertices

in the planar dual graph G* of G are needed for each face r in G. When a distance

matrix is used to keep the shortest distances, we need to solve IR(G) I single source

shortest path problems. In D I , the distance matrix is discarded. When we process a

face r, we create the data for r and the data for Ie for all e incident to r. Since each

edge is incident to two faces rand r', the total number of single source shortest path

calculations is bounded by 2IE(G)I. When G has n vertices and is a medial graph,

IR(G)I = n + 2 and IE(G)I = 2n. From this, if the distance matrix is used, we need

to solve n + 2 single source shortest path problems while we need to solve at most 4n
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such path problems if D I is applied.

Combining D I with AI, the required memory size is now about 5n x q bytes if one-byte

integer arrays are used for Ie and I~ and about 9n x q if two-byte integer arrays are

used, where q is the average of IV(G)\U(r)l. For the Delaunay triangulation instances

tested, q is less than 0.3n (instances dependent).

Improvement A 2 This improvement is based on Theorem 5.3.4. For each face r, instead

of STl A 2 initializes X r to include all states of S;.

Improvement A3 This improvement is based on Theorem 5.3.5 and performs re-calculation

for edge data. A3 keeps the face data once they are created but keeps the edge data

for only a pre-defined maximum number of edges. Once this number is reached A 3

starts to delete the entire X e for some edge e. If a deleted X e is needed again, Xe is

re-computed from X r , where r is incident to e.

Improvement D 2 In D 2 , we use a bit vector B r for the data of face r, with one bit for one

element of X r . The memory size for face data is 1/8 of that when a one-byte Boolean

array is used. But more complex bit operations have to be used.

It is easy to check that all improvements except A3 do not change the order of running time

of ST Procedure. However, applying A3 , the running time of ST Procedure may become

O(n3 ).

5.3.3 Computational Results

All of our efficient implementations use common improvements. In our implementations

with any of improvements A 2 , A3 and D 2 , improvements Al and DI are always used. We

do not mention Al and D I explicitly in those implementations. We test Naive and Im­

plementations AI, AID!, A 2 , A2D 2 , A3 , A3D 2 , A 2A3 , and A2A3D 2 . To show that our

implementations work well for a broad class of planar graphs, three classes of instances are

used in the test: one class is the benchmark instances from previous studies, and the other

two classes are random planar graphs generated by two well-used software libraries, LEDA

and PIGALE, respectively. More specifically, Class (1) of instances includes Delaunay trian­

gulations of point sets taken from TSPLIB [107]. Those instances are used as test instances

in the previous studies [70, 7t]. The instances in Class (2) are generated by the LEDA
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library [1, 90]. LEDA generates two types of planar graphs. One type of the graphs are

the randomly generated maximal planar graphs and their subgraphs obtained from deleting

some edges. Since the maximal planar graphs generated by LEDA always have branchwidth

four, the subgraphs obtained by deleting edges from the maximal graphs have branchwidth

at most four. The graphs of this type are not interesting for the study of branchwidth

and branch decompositions. The other type of planar graphs are those generated based on

some geometric properties, including Delaunay triangulations and triangulations of points

uniformly distributed in a two-dimensional plane, and the intersection graphs of segments

uniformly distributed in a two-dimensional plane. We will report the results on the intersec­

tion graphs. The instances in Class (3) are generated by the PIGALE library [4]. PIGALE

randomly generates one of all possible planar graphs with a given number of edges based

on the algorithms of [112]. We use Naive and our implementations to compute the carving­

width of the medial graphs of the instances (i.e., the input graph to ST Procedure is not an

instance itself but the medial graph of the instance). Our implementations are tested on a

computer with Intel(R) Xeon(TM) 3.06GHz CPU, 2Gbytes physical memory and 8Gbytes

swap memory. The operating system is SUSE LINUX 10.0, and the programming language

we used is C++.

We compute an upper bound on the carvingwidth as the initial guessed input integer

k to call ST Procedure. It is known that the branchwidth of a planar graph of n vertices

is at most V4.5n [57]. From this, 2V4.5n is an upper bound on the carvingwidth of the

medial graph of an instance of n vertices. We follow a similar approach in [70] to compute

another upper bound l: Let M(G) be a medial graph of a planar graph G of n vertices. For

each face r of M(G) which corresponds to a vertex in G, we compute the eccentricity of v;
(the length of the longest shortest paths from v; to all other vertices) in the planar dual

M(G)*. We initialize l as twice as the minimum eccentricity among all v;'s. Finally, we take

k = min{2V4.5n, l}. Either the linear search or the binary search can be used to find the

carvingwidth starting from the initial guessed k. In the linear search, when the rat-catcher

wins, k is decreased by two and ST Procedure is called again until the rat wins the game.

In the binary search, we call ST Procedure to search for the carvingwidth between k (upper

bound) and the node degree of M(G) (which is four and a lower bound). For the instances

in Classes (1) and (2), the eccentricity-based guess is very close to the carvingwidth and k

always takes the value of l. The linear search uses a smaller number of iterations to find

the carvingwidth than the binary search. For instances in Class (3), the eccentricity-based
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guess could be very large and k may take 2vi4.5n for large instances. Since 2vi4.5n is still

far away from the carvingwidth, the binary search does a better job. One may run the linear

search and binary search in parallel and take the results from the one which finishes earlier.

Computation time and memory

Table 5.1 shows the computation time of Naive and efficient implementations for the carv­

ingwidth of the medial graphs of the instances in Class (1). In the table, Itr is the number

of iterations in the linear search. Table 5.2 shows the memory size (in megabytes) of those

implementations. Only the data for relatively large instances are given in the tables.

For the instances in Class (1), one-byte integer arrays are used for each edge and the

distance matrix. The most time efficient implementation is Al which is faster than Naive by

a factor of at least 10 and uses at most 1/10 memory of Naive. With more improvements,

the memory requirement is further reduced but the running time is slightly increased. The

effect of data compression in Improvement D 1 is significant. The memory used by A 1D1 is

only about 1/3 rv 1/4 of that by AI. Improvement A2 is effective in reducing the memory

size. In general, the number of non-trivial components is small for both faces and edges, and

thus the memory saving is big. The memory used by Improvement D2 for face data is 1/8

of that when one-byte Boolean arrays are used. When the memory for face data becomes

dominating, Improvement D2 reduces memory requirement significantly. The most memory

efficient implementation without re-calculation is A 2D2 which is faster than Naive by a

factor of 8 rv 9. For Instance pla33810 which has 101,367 edges (corresponding to 101,367

vertices in the input medial graph), A 2 D2 uses about 500Mbytes memory, which is about

2
1
0 n 2 bytes, where n is the number of vertices in the input medial graph. Compared with

Naive, the memory saving is by a factor of about 1000.

Improvement A3 performs re-calculation for edge data. The performance depends on the

maximum number of edges that are kept. This maximum number can be chosen based on

the size of available memory. In general, a larger maximum number gives an implementation

which uses more memory but runs faster (less re-calculations). The maximum number of

kept edges is 500 for the results presented unless otherwise stated explicitly. Among all

implementations, A2A3D2 is the most memory efficient one. A2A3D2 is faster than Naive

by a factor of 6 rv 7. For Instance pla3381O, A2A3D2 uses less than 200Mbytes memory,

which is about 510 n 2 bytes. Compared with Naive, the memory saving is by a factor of

about 2500. The memory used by Implementation A 2A3D2 can be further reduced to about
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Table 5.2: Memory usage (in megabytes) of Naive and efficient implementations for Class
(1) instances. An X in the table indicates that the implementation runs out of 2Gbyte
memory for that instance.

Instances Number Maximum Memory Usage (Mbyte)
of edges Naive Ai AiDi A2 A2D2 A3 A3D2 A2A3 A2A3 D2

pr1002 2,972 413 39 16 8 8 10 9 8 7
r11323 3,950 734 66 23 11 10 15 13 11 9
d1655 4,890 1,188 99 30 14 11 17 14 13 10
r11889 5,631 1,424 130 46 18 14 28 21 16 12
u2152 6,312 X 161 41 17 14 26 20 16 13
pr2392 7,125 X 204 66 21 17 35 26 19 15

pcb3038 9,101 X 328 76 25 21 36 27 22 19
fl3795 11,326 X 504 132 58 42 66 63 40 23

fn14461 13,359 X 698 158 39 32 66 43 33 26
r15934 17,770 X 1,226 358 67 51 155 86 50 35

p1a7397 21,865 X 1,850 436 123 85 238 144 83 44
usa13509 40,503 X X 1,534 220 153 498 271 149 79
brd14051 42,128 X X 1,600 215 149 580 283 149 82
d15112 45,310 X X 1,795 227 156 508 256 156 86
d18512 55,510 X X X 284 198 706 328 194 106

p1a33810 101,367 X X X 814 508 X 876 507 198
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155Mbytes for Instance pla33810 with a slightly increase in the running time, if we keep at

most 50 edges.

The instances in Class (2) are generated by the LEDA function random_planar_graph [1].

We have tested our implementations on instances of Delaunay triangulations and triangula­

tions of points randomly distributed in a two-dimensional plane, and intersection graphs of

segments. Our implementations have similar performances for the Delaunay triangulations

and triangulations instances as those for the instances in Class (1). Table 5.3 gives the

computation time and memory of Naive and Implementations AI, A2D2 , and A2A3D2 for

instances of intersection graphs of segments. In the table, Itr is the number of iterations

in the linear search. The instances of intersection graphs of segments may have a large

number of non-trivial components for edges and faces, and two-byte integer arrays are used

to represent the edge data. Therefore, the memory usage is considerably larger than the

Delaunay instances of the same size. As shown in the table, our efficient implementations

are faster and use much less memory than Naive.

Instances of Class (3) are generated by the PIGALE library [4J. PIGALE provides a

number of planar graph generators. Since 2-connected planar graphs are the most interesting

class of graphs in the study of branchwidth and branch decompositions, we selected the

function for generating 2-connected planar graphs. The function, given the number m of

edges, randomly generates one of all possible 2-connected planar graphs of m edges. The

output graph is usually a multi-graph with parallel edges. Since parallel edges are not

interesting for branchwidth finding, we specify the function to produce simple 2-connected

graphs. With a given m, the function outputs a 2-connected random planar graph with

m' edges. Normally m' is smaller than m, since parallel edges are not kept and there are

performance considerations [4]. Table 5.4 gives the computation time and memory of Naive

and Implementations AI, A2D 2 , and A2A3D2 • In the table, Itr is the number of iterations

in the binary search. The instances in Class (3) may have a small number of non-trivial

edge components, but we still use two-byte integer arrays for the edge data. For this class

of instances, the eccentricity-based guess is usually bad. For example, the medial graph

of Instance PI37730 has carvingwidth 12, but the eccentricity-based guess is 8974. For

large instances tested, the binary search always finishes earlier than the linear search. The

number of iterations in the binary search is about 10 for large instances, and this prohibits us

from solving very large instances in a reasonable time. The memory usage for the PIGALE

instances is very small, compared to the instances of Classes (1) and (2) even two-byte
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integer arrays are used for edge data.

For the instances in Class (3), Implementation A2D2 is very memory efficient. This

indicates that the numbers of non-trivial components for faces in those instances are small.

The gap between the running time of Implementation Al and that of Implementation A 2D2

is a little bigger for instances of this class than the gap for instances in the other two

classes. This can be explained by the following reasons. Naive and Implementation Al keep

the shortest distance matrix, while A2D2 discards the matrix. As analyzed in Improvement

D I , Naive and Al need to solve n + 2 single source shortest path problems while A 2D2

may need to solve 4n such problems, where n is the number of vertices of the input medial

graph. A2D2 also needs to calculate the components of Gr for every face r and there is no

such computation in Naive and AI' Notice that each of the shortest distances calculation,

the computation of components of Gr for all r, and the deletion process takes O(n2 ) time.

For instances of Classes (1) and (2), the time of deletion process is larger than the sum of

the other two. However, the deletion process runs faster for the instances of Class (3) than

for instances of Classes (1) and (2). In this case, the shortest distances calculation and the

computation of components of Gr may become a dominating part of the total running time.

Among all implementations, the most time efficient one is AI' Compared with Naive,

Al is faster by a factor of 3 '" 15. The memory saving of Al is also significant. Al can

solve an instance of about 20,000 edges in Class (1) and instances of about 15,000 edges in

Classes (2) and (3), while Naive can only solve instances of size up to about 5,000 edges

for all three classes. The most memory efficient implementation without re-calculation is

A2D2 • It can solve an instance of about 100,000 edges in Class (1) by about 3.5 hours

and 500 Mbytes, an instance of about 60,000 edges in Class (2) by about 1.5 hours and

1.5Gbytes memory, and an instance of about 100,000 edges in Class (3) by about 14 hours

and 200 Mbytes. Implementation A 2A3D2 is the most memory efficient one among all

implementations. It can solve an instance of about 100,000 edges in Class (1) by about 6

hours and 200 Mbytes, an instance of about 100,000 edges in Class (2) by about 6 hours

and 1.4Gbytes, and an instance of about 70,000 edges in Class (3) by by about 14 hours and

160 Mbytes. All implementations without using A3 have time complexity O(n2) since no

re-calculation for edge data is performed. In the worst case, Implementation A 2A3D2 may

perform re-calculation repeatedly for some edges and has time complexity O(n3 ). However,

the worst case scenario has not been observed and the running time of Implementation

A 2A 3 D2 is at most as twice as that of Implementation A 2D2 for most instances.
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Computation time of one iteration

To find the carvingwidth of a planar graph, ST Procedure is usually called multiple times.

The number of calls (iterations) is instance dependent. In computing the branch decomposi­

tions, the computation time of one iteration is an important measure for the time efficiency.

Table 5.5 shows the computation time of Naive and Implementations AI, A2D2, and A2A3D2

in the iteration when the rat wins the game and the iteration when the rat-catcher wins the

game with the noisy level k closest to the carvingwidth for some instances in Classes (1),

(2), and (3). From Observation 5.3.6, the deletion process of ST Procedure may terminate

earlier when the rat-catcher wins the game. It can be seen from the table that ST Proce­

dure generally uses m1Jch less time when the rat-catcher wins for instances of Classes (1)

and (2). For instances in Class (3), the computation time when the rat wins is not much

different from that when the rat-catcher wins because the time of the deletion process is not

a dominating part of the total running time.

Comparison with previous works

Hicks proposes a straightforward implementation rat and two memory friendly implemen­

tations camprat and memrat of ST Procedure [70]. The implementations are tested using

instances of Class (1) on a SGI Power Challenge with 6 x 194 MHz processors, 1Gbytes of

physical memory, and IGbytes of swap space. To compare our results with Hicks', we quote

some data of [70] in Table 5.6. An M in the table indicates that the implementation runs

out of 2Gbyte memory for that instance. From the table, rat runs out of 2Gbyte memory

for instances of 1'11889 (5,631 edges) and larger. Our Naive implementation can solve 1'11889

but runs out of 2Gbyte memory for instances of u2152 (6,312 edges) and larger. This con­

firms that straightforward implementations of ST Procedure are memory consuming. The

memory used by memrat for Instance brd14051 (the largest one reported in [70]) is about

600Mbytes. For the same instance, A2D2 uses about 1/4 and A2A3D2 uses about 1/8 of the

memory of memrat. Implementation Al is faster by a factor of 200 '" 500, Implementation

A2D2 is faster by a factor of 100 '" 400, and Implementation A2A3D2 is faster by a factor

of 100 '" 200 than camprat and memrat for large instances. Notice that the CPU used in

[70] has frequency 194MHz and the CPU used our studies has frequency 3.06GHz, so we

need to keep in mind this difference of speed when we compare the running time.
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Table 5.5: Computation time (in seconds) of several implementations for k close to the
carvingwidth 2bw. An X in the table indicates that the implementation runs out of 2Gbyte
memory for that instance.

Instances Number Computation time (seconds) for k
of edges k = 2(bw + 1) k = 2bw

Naive Al A2D2 A2 A 3D2 Naive Al A2 D2 A 2A3D2

r11889 5,631 87.6 0.196 0.526 0.545 79.2 8.55 17.5 27.2
usa13509 40,503 X X 41.9 61.2 X X 1,118 1,888
d15112 45,310 X X 687 1,153 X X 1,578 2,632

rand3050 5,032 59.4 4.33 5.43 10.7 48.4 20.7 22.7 42.7
rand22500 40,622 X X 9.2 14.4 X X 1,714 2,368
rand33000 60,398 X X 1,203 1,789 X X 3,825 6,300

PI2995 5,043 12.1 10.2 17.4 18 10.3 9.91 17.5 18.3
PI22640 40,074 X X 1,670 1,680 X X 1,673 1,676
PI32943 60,634 X X 3,725 3,727 X X 3,471 3,471

Table 5.6: Computation time (in seconds) of rat, comprat, and memrat quoted from Table
1 of [70J. An M in the table indicates that the implementation runs out of 2Gbyte memory
for that instance.

I Instances Number bw ItT Computation time (in seconds).
of edges rat comprat memrat

I

pr1002 2,972 21 2 338 448 562
r11323 3,950 22 3 876 1,519 1,590
d1655 4,890 29 3 1,318 1,608 2,206
r11889 5,631 22 3 M 3,931 4,012
u2152 6,312 31 4 M 3,207 4,704
pr2392 7,125 29 3 M 3,813 5,167

pcb3038 9,101 40 4 M 13,817 15,865
fl3795 11,326 25 3 M 18,469 17,142

fnl4461 13,359 48 4 M 35,933 51,305
rl5934 17,770 41 3 M 73,468 66,461

pla7397 21,865 33 2 M 65,197 53,564
usa13509 40,503 63 1/2 M M 413,861
brd14051 42,128 68 3 M M 594,468
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5.4 The Edge-contraction Method for Branch Decomposi­

tions

Seymour and Thomas give an algorithm, which is known as edge contraction method, for

computing an optimal branch decomposition of a planar graph [113]. The contraction of

an edge e in a graph G is to remove e from G, identify the two end vertices of e by a new

vertex, and make all edges incident to e incident to the new vertex. We denote by G/ e the

graph obtained by contracting e in G. Given a 2-connected planar graph G, the algorithm

of Seymour and Thomas computes an optimal branch decomposition of G by a sequence of

edge contractions of the medial graph M(G) of G as follows: First the carvingwidth cw of

M(G) is computed by ST Procedure. An edge e of M(G) is contractible if the carvingwidth

of M(G)/e is at most cw and M(G)/e is 2-connected. Next, a contractible edge e of M(G)

is found by ST Procedure and M(G) is contracted to graph M(G)/e. The contraction is

repeated on M(G)/e until the graph becomes one with three vertices. A optimal carving

decomposition of M (G) with width at most cw is constructed based on the sequence of edge

contractions.

Proposition 5.4.1 (Seymour and Thomas [113]) Let e = {x,y} be a contractible edge of

M(G), X e be the new vertex identifying {x,y} in M(G)/e, and Tb be an optimal carving

decomposition of M(G)/e. Then the carving decomposition Tc obtained by adding links

{xe,x} and {xe,y} to Tb is an optimal carving decomposition of M(G).

Finally, the branch decomposition of G is obtained from the carving decomposition of M(G)

in linear time (Proposition 5.2.1). It is proved in [113] that for any 2-connected planar graph

there is a contractible edge and for a 2-connected planar graph G, M(G) is 2-connected. To

check if an edge is contractible, ST Procedure is used to test if M(G)/e has carvingwidth

at most cwo In the worst case, all edges may be checked to find a contractible one and for

a graph of n vertices, the algorithm of Seymour and Thomas may call ST Procedure O(n)

times for one contraction and O(n2 ) times in total. So the time complexity of the algorithm

is O(n4 ).

We call a contractibility test on an edge a positive one if the edge is tested contractible,

otherwise a negative one. Gu and Tamaki give an algorithm which uses a better strategy to

find positive tests [66]. When a negative test is obtained on an edge then the edge will not

be tested again unless a necessary condition for that edge to be contractible is satisfied. By
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this improvement, the algorithm of Gu and Tamaki avoids the repeated negative tests on a

same edge, calls ST Procedure O(n) times, and has time complexity O(n3 ) for computing

an optimal branch decomposition of a planar graph.

We test the O(n4 ) time algorithm of Seymour and Thomas and the O(n3 ) time algorithm

of Gu and Tamaki for instances in three classes using a number of heuristics to select edges

for testing the contractibility. Implementation AI, the most time efficient one, is used as ST

Procedure. Both the algorithms have the minimum number of negative calls and running

time when the round robin edge selection heuristic is used. Our computational results

show that optimal branch decompositions of planar graphs of a few thousands edges can be

computed in a practical time. For most instances tested, repeated negative tests are not

observed on any edge in the algorithm of Seymour and Thomas. So the advantage of the

algorithm of Gu and Tamaki is not shown by those instances when the round robin edge

selection heuristic is used. On some other edge selection heuristic, more repeated negative

tests are observed in the algorithm of Seymour and Thomas. In this case, the algorithm of

Gu and Tamaki has much less negative calls and runs faster than the algorithm of Seymour

and Thomas. The details can be found in [24].

5.5 Branch Decomposition of Large Planar Graphs

For large instances, computing optimal branch decompositions is still time consuming by

the edge contraction method. Hicks reports that the divide-and-conquer approach is more

practical to compute the branch decomposition of planar graphs [69, 71.]. In this approach,

first the branchwidth 13 of a graph G is computed. Let 8 be a set of vertices that separates

G into two subgraphs. Roughly speaking, a partition by 8 is valid if 181 :::; 13, and each

subgraph has branchwidth at most 13 (a formal definition on the valid partition will be given

later). Next a valid partition of G is found. In this step, ST Procedure is used to test if

each subgraph has branchwidth at most 13. If a valid partition is found, then the branch

decomposition of each subgraph is computed recursively. The branch decomposition of G

is constructed from the decompositions of the subgraphs. How to find a valid partition

efficiently is a key for this approach. Hicks proposes the cycle method for computing a valid

partition [69, 71]. Notice that there is no guarantee on the existence of a valid partition

in a recursive step. The edge-contraction method is used to make a progress in the cycle

method when a valid partition can not be found. In the worst case, the cycle method has
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time complexity O(n4 ). Computational results show that the cycle method is faster than

the edge-contraction method by a factor of about 10 '" 30 on average for the Delaunay

triangulation instances [71].

In this section, we propose divide-and-conquer based algorithms for computing planar

branch decompositions. Our algorithms are similar to the cycle method in finding a valid

partition but make effort to balance the sizes of subgraphs. Our algorithms also use the

edge-contraction method to make a progress when a valid partition can not be found, as

is done in previous study [71]. In the worst case, our algorithms run in O(n 3 ) time. We

tested our algorithms and the O(n3 ) time edge-contraction algorithm [66] on several classes

of planar graphs. Computational results show that our algorithms are faster than the

edge-contraction algorithm by a factor of 200 '" 300 for Delaunay triangulation instances

of more than 5,000 edges. Using the more efficient implementations of ST Procedure of

[24], our algorithms can compute optimal decompositions for some instances of size up to

50,000 edges in a practical time. Previous results of the cycle method [69, 71] are obtained

by a slower computer and a less efficient implementation of ST Procedure than those in

this study. To compare our algorithms with the cycle method on a same platform, we

implemented the unaltered cycle method [71] using the more efficient implementation of ST

Procedure. Computational results show that our algorithms are faster than the unaltered

cycle method by a factor of more than 10 for the Delaunay triangulation instances. Notice

that our implementation of the unaltered cycle method is a straightforward one based on

the information available in the published literature [69, 71].

Our results suggest that the optimal branch decompositions of large planar graphs can

be computed in practice. Our divide-and-conquer algorithms are efficient tools for finding

such branch decompositions. This may make the branch-decomposition based algorithms

more attractive for many problems in planar graphs.

5.5.1 Divide-and-conquer Based Algorithms

Following the divide-and-conquer approach used in the cycle method [69, 71], we first de­

scribe a framework for our algorithms. Given a planar graph H with carvingwidth k, let

C be a set of edges (cut set) that partitions H into subgraphs HI and H2 . For each Hi

(i = 1,2), define HI to be the graph obtained by adding a new vertex v~ and the edge set

{{u, valu E V(Hd n V(C)} to Hi (see Figure 5.1). Intuitively, HI is the graph of Hi and a

vertex v~ representing the part of H other than Hi. The partition by C is valid if ICI ~ k,
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and each of H: has carvingwidth at most k. Below is the framework for our algorithms.

1. Given a planar graph G, compute the medial graph M(G) and the carvingwidth k of

M(G) by ST Procedure and let H = M(G).

2. If IE(H)I > c (c is a constant)

• then try to find a valid partition of H:

Partition H into subgraphs Hi (i = 1,2) by a set C of edges with ICI :'S k. If

every H: has carvingwidth at most k for i = 1,2, then a valid partition is found.

• else compute the carving decomposition of H by enumeration.

3. If a valid partition is found

• then goto Step 2 to compute the carving decomposition of every subgraph H:
recursively; and construct the carving decomposition of H from the carving de­

compositions of the subgraphs.

• else call an edge-contraction algorithm to contract an edge e of H such that the

contracted graph Hie has carvingwidth at most k; goto Step 2 to compute the

carving decomposition of Hie; and construct the carving decomposition of H by

Proposition 5.4.1.

4. Construct the branch decomposition of G from the carving decomposition of M(G)

(Proposition 5.2.1).

Lemma 5.5.1 An optimal branch decomposition of G can be computed by the framework.

Proof By Proposition 5.4.1, if an optimal carving decomposition of Hie has been found

then an optimal carving decomposition of H can be constructed. Assume that a valid

partition of H is found and optimal carving decompositions T I and T2 have been constructed

for subgraphs H~ and H~ in the valid partition. We assume that T I has a leaf node UI

corresponding to v~ and T2 has a leaf node U2 corresponding to v~, added in Step 2. Let

el = {UI, WI} be the link of TI and e2 = {U2, W2} be the link of T2. We get a carving

decomposition To of H by first connecting TI and T2 using a new link {WI, W2} and then

discarding links {UI' WI} and {U2, W2}. Obviously, each internal node of To has degree three.

Each link of E(Tc) \ {WI, W2} has the same width as that of the corresponding link in TI
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* 0 vertices of M(G)

• vertex of M(G)"

closed walk W'

o vertices enclosed by W'

H H{ and H~

Figure 5.1: Partition graph H into subgraphs by a cycle in H*.

or T2 . The width of link {Wl,W2} is ICI. Thus, Tc has width at most k and is an optimal

carving decomposition of H = M(G). By Proposition 5.2.1, Tc can be converted to an

optimal branch decomposition of G. 0

How to find a valid partition is a key on the efficiency of the divide-and-conquer al­

gorithms. An obvious approach for finding such a partition is to compute a closed walk

(cycle) W* of length at most k in the planar dual M(G)* of M(G). Let E*(W*) be the

set of edges in W*. Let Rw. and Vw' be the sets of faces and vertices of M (G) * enclosed

by W*, respectively (see Figure 5.1). Then the set of edges of M(G) corresponding to the

edges of E*(W*) is a cut set between the subgraph of M(G) with the vertex set and face

set corresponding to Rw. and Vw" respectively, and the rest part of M (G).

In the cycle method [69, 71], a closed walk is computed as follows. First, a face r* of

M(G)* is selected. Let E;. be the set of edges incident to r*. Next, a pair of vertices s* and

t* incident to r* is selected and a shortest path P* that does not contain any edge of E;.

between s* and t* in M(G)* is computed. A path Q* between s* and t* formed by edges of

E;. and path P* give a closed walk W* of M(G)*. For a selected face r*, the cycle method

tries every pair of vertices s* and t* incident to r*. If a valid partition is found, then the

method is applied recursively, otherwise the edge-contraction method is called.

Similar to the cycle method, our algorithms compute a closed walk W* formed by paths

Q* and P* between s* and t*. Our algorithms select the vertices s* and t* with the consid­

eration on the sizes of subgraphs. Notice that the edges of E;. is a closed walk. For vertices
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s* and t* incident to r*, there are two paths Qi and Q; formed by the edges of E;. between

s* and t*. The partition may be balanced if there is a small difference between the lengths

of Qi and Q;. Our first algorithm chooses the vertices s* and t* in an order that a smaller

difference between the lengths of Qi and Q; is selected with a higher priority. We call this

procedure the length-priority algorithm.

The cut set corresponding to a closed walk W* partitions the input graph in a recursive

step into two subgraphs. The size of a subgraph is the number of vertices in the subgraph.

The partition is balanced if there is a small difference between the sizes of the two subgraphs.

Our second algorithm chooses s* and t* in an order that a smaller difference between the

sizes of the two subgraphs is selected with a higher priority. We call this procedure the

size-priority algorithm.

In both algorithms, we try a constant number of pairs of vertices s* and t* incident to

r* in the order defined above. If a valid partition is found then the algorithms are applied

recursively, otherwise an edge-contraction method is called. In both algorithms, the constant

c in the framework is set to 3 and a subgraph in each partition has at least two vertices.

In the divide-and-conquer algorithms, we partition H into Hi (i = 1,2) and test if HI has

carvingwidth at most k by ST Procedure. A test is called positive if HI has carvingwidth at

most k, otherwise negative. Similarly, in the edge contraction method, we contract an edge

e and test if Hie has carvingwidth at most k by ST Procedure. A test is called positive if

Hie has carvingwidth at most k, otherwise negative.

Theorem 5.5.2 Both the length-priority and size-priority algorithms compute an optimal

branch decomposition of a planar graph G ofn vertices in O(n3 ) time.

Proof By Lemma 5.5.1, the algorithms compute an optimal branch decomposition of G.

The medial graph H = M(G) has IE(G)I = O(n) vertices. The carvingwidth of H can

be computed in O(n2 log n) time by ST Procedure (using a binary search). Because the

branchwidth of G is 13 = O(vn) [57], the carvingwidth of H is k = 213 = O( vn). Since

the carvingwidth of a graph is at least the maximum node degree of the graph, H and the

subgraphs in each recursive step have node degree O( vn). Therefore, there are O(n) pairs

of s* and t* incident to a face r* when we try to find a valid partition. It takes O(n) time

to compute a partition for each pair of s* and t*. Ordering O(n) partitions takes O(n log n)

time. Thus, both algorithms take O(n2
) time to find and order the partitions for the O(n)

pairs of s* and t*. ST Procedure takes O(n2 ) time to test if a graph of n vertices has
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carvingwidth at least k. Since a constant number of partitions are tested by ST Procedure,

the total time for deciding whether a valid partition can be found is O(n 2 ). If a valid

partition is not found, the edge contraction method is used to make a progress. This takes

O(n2) time [66]. Let T(n) be the time for computing an optimal carving decomposition of

H with n vertices. Then

where T(ni) (i = 1,2) and T(n - 1) are the time for computing optimal carving decompo­

sitions of HI and Hie, respectively. Since nl $ n - 1, n2 $ n - 1, and nl + n2 = n + 2,

T(n) = O(n3 ). It takes O(n) time to get a branch decomposition of G from the carving

decomposition of H (Proposition 5.2.1). 0

The bound of Theorem 5.5.2 is the worst case time complexity of the divide-and-conquer

algorithms. If a valid partition is always found and sizes of the two subgraphs differ only

in a constant factor in every recursive step, then the divide-and-conquer algorithms run in

O(n2 Iogn) time which is faster than the O(n3 ) time edge-contraction algorithm.

We call the length-priority and size-priority algorithms the 2-component method be­

cause, the input graph in each recursive step is partitioned into two subgraphs and ST

Procedure is used to test the carvingwidth of each subgraph. The 2-component method can

be generalized to the 2i -component method (i ~ 1). Given an input graph, we first choose

one pair of s* and t* to partition the graph into two subgraphs. We call the subgraphs

level-l subgraphs. A subgraph is called a level-(j + 1) subgraph if it is obtained from a

partition of a level-j (j ~ 1) subgraph. In the 2i -component method, we compute the level-i

subgraphs (there are 2i such graphs) by a sequence of partitions of the input graph. During

the sequence of partitions, only one pair of s* and t* is used for each subgraph. We only

check the sizes of the cut sets but do not check the carvingwidth for the level-j subgraphs

for j < i. We use ST Procedure to check the carvingwidth for every level-i subgraph. If

all level-i subgraphs have carvingwidth at most k, then the method is recursively applied

to each level-i subgraph. If one level-j (1 < j $ i) subgraph H' has carvingwidth greater

than k then we test the level-(j - 1) subgraph from which H' is obtained. If allievel-(j - 1)

subgraphs have carvingwidth at most k then the method is applied recursively (notice that

a level-(j - 1) subgraph H has carvingwidth at most k if allievel-j subgraphs obtained from

H have carvingwidth at most k). If a level-l subgraph has carvingwidth greater than k,
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then we give up the current pair of s* and t* and apply the method to the input graph on

a different pair of s * and t*.

This generalization is motivated by the fact that testing the carvingwidth of large graphs

by ST Procedure is the most time consuming part in finding the branch decompositions and

some observations from the computational study: in most cases, a valid partition can be

found in the first try and partitioning the input graph into smaller subgraphs can save

the time used by ST Procedure. For constant i, the 2i -component algorithms have time

complexity O(n3 ).

The branch decomposition of a graph G which is not 2-connected can be easily con­

structed from the branch decompositions of its 2-connected components. So, the study of

branch decomposition may be concentrated on 2-connected graphs.

5.5.2 Computational Results

We implemented our algorithms and the unaltered cycle method [69, 71]. A number of

efficient implementations of ST Procedure are reported in [24J. The implementations of ST

Procedure with the best practical performances are used in our algorithms and the cycle

method. The implementation of the cycle method is a straightforward one: The pair of

vertices s* and t* is selected in an arbitrary order. If there are multiple shortest paths P*'s

between s* and t* in M(G)*, an arbitrary one is used. Similarly, an arbitrary shortest path

P* is used for the length-priority and size-priority algorithms. We test our implementations

on three classes of instances. Class (1) instances include Delaunay triangulations of point

sets taken from TSPLIB [107]. The instances are provided by Hicks and are used as test

instances in the previous studies [69, 71]. The instances in Class (2) are generated by

the LEDA library [1, 90J. LEDA generates two types of planar graphs. One type of the

graphs are the randomly generated maximal planar graphs and their subgraphs obtained

from deleting some edges. Since the maximal planar graphs generated by LEDA always

have branchwidth four, the subgraphs obtained by deleting edges from the maximal graphs

have branchwidth at most four. The graphs of this type are not interesting for the study

of branch decompositions. The other type of planar graphs are those generated based on

some geometric properties, including Delaunay triangulations and triangulations of points

uniformly distributed in a two-dimensional plane, and the intersection graphs of segments

uniformly distributed in a two-dimensional plane. We report the results on the 2-connected

intersection graphs. The instances in Class (3) are generated by the PIGALE library [4].
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PIGALE randomly generates one of all possible planar graphs with a given number of edges

based on the algorithms of [112]. We report the results on the 2-connected graphs generated

by the PIGALE library.

We run the implementations on a computer with Intel(R) Xeon(TM) 3.06GHz CPU,

2GB physical memory and 4GB swap memory. The operating system is SUSE LINUX 10.0,

and the programming language we used is C++.

Results for Instances in Class (1)

The computational results for Class (1) instances are reported in Table 5.7. In the table,

IE(G)I is the number of edges in the instance and thus the number of vertices in the medial

graph M(G) which is the input to the algorithms, bw is the branchwidth of the graph G,

NT is the number of negative tests, Cycle is the unaltered cycle method, L.P is the length­

priority algorithm, 8 Y is the size-priority algorithm, and 84 is the 4-component algorithm

with size-priority. For comparison, we include the running time of the O(n 3 ) time edge­

contraction method in column EC_GT (the data is taken from [24] which uses a computer

of similar performance to the one we use for the divide-and-conquer algorithms, and the

O(n3 ) algorithm itself is given in [66]). In the table, an "X" indicates that it requires more

than 70,000 seconds to solve the instance and a blank indicates that we did not test the

algorithms for that instance.

The data show that all divide-and-conquer algorithms (Cycle, L.P, 8.P, and 84) are

much faster than the edge-contraction algorithm. The length-priority and size-priority al­

gorithms are faster than the edge-contraction method by a factor of 200 rv 300 for instances

of more than 5,000 edges in this class. It is difficult to compare the data of our algorithms

with those of the cycle method reported in previous studies [69, 71], because computers

of different speeds and different implementations of ST Procedure are used. To compare

our algorithms with the cycle method on a same platform, we give a straightforward im­

plementation of the unaltered cycle method using the same efficient ST Procedure used in

our algorithms. Our algorithms are faster than the cycle method by a factor of at least 10

for instances of more than 5,000 edges. Notice that on average the cycle method is faster

than the edge-contraction method by a factor of about 10 which is slightly smaller than

that (10 rv 30 on average) reported in previous studies [71]. Considering the fact that a

more efficient edge-contraction algorithm is used in this study, our implementation of the

cycle method has a similar performance as that used in the previous studies and our new
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Table 5.7: Computation time (in seconds) of several decomposition algorithms for Class (1)
instances. An X in the table indicates that it requires more than 70,000 seconds to solve
the instance and a blank indicates that we did not test the algorithms for that instance.

Graphs IE(G)I bw EC_GT Cycle LP 8Y 84
G time NT time NT time NT time NT time NT

pr1002 2972 21 2667 102 369 37 155 34 150 63 271 129
r11323 3950 22 6879 136 441 0 63 5 189 97 336 200
d1655 4890 29 13529 171 5958 806 295 34 218 28 402 59
r11889 5631 22 29096 178 1896 527 130 0 115 1 90 2
u2152 6312 31 26092 192 2394 92 156 0 140 0 119 0
pr2392 7125 29 45728 271 5595 210 173 0 153 0 118 0

pcb3038 9101 40 6265 53 490 8 998 17 1899 36
fl3795 11326 25 8954 52 863 3 902 11 1190 22

fnl4461 13359 48 X X 3795 31 2479 16 2441 16
rl5934 17770 41 2348 2 2585 6 3296 12

pla7397 21865 33 10291 88 3026 10 3376 21
usa13509 40503 63 25956 29 29539 79 50376 160
brd14051 42128 68 10536 19 31554 129 64802 263
d18512 55510 88 22378 44 X X X X

algorithms are faster than the cycle method. For all instances which are solved within the

70,000 seconds time limit, the edge-contraction method is never used by any divide-and­

conquer algorithm to make a progress, that is, a valid partition is always found in every

recursive step.

There are two factors improving the running time of our algorithms. Both the length­

priority and size-priority algorithms find more balanced partitions than the cycle method.

This reduces the total running time in the divide-and-conquer approach. The other factor

is that our algorithms have a smaller number of negative tests. In finding a valid partition,

once a negative test happens, all divide-and-conquer algorithms try a different pair of s*

and t* and the running time is increased. Also it takes more time for a negative test than

a positive one. For Class (1) instances, the length-priority algorithm runs faster than the

size-priority algorithm for large graphs while the size-priority algorithm does a better job

for smaller graphs. Because the running time of the algorithms depends on both the size

of the graphs and the number of negative tests, it may take a longer time to solve some

instances than that for a larger graph. For example, Instance usa13509 requires a longer

time than Instance brd14051 by the length-priority algorithm.



CHAPTER 5. BRANCH/CARVING DECOMPOSITION BASED ALGORITHMS 139

For Class (1) instances, the number of negative tests is non-trivial, especially for large

graphs. This makes the 2i -component (i > 1) algorithms less efficient, because using more

than two components generally increases the number of negative tests and thus the total

running time. As shown in Table 5.7, the 4-component algorithm is slower than the 2­

component algorithms for most instances in this class.

Results for Instances in Classes (2) and (3)

Computational results for Classes (2) and (3) instances are given in Tables 5.8 and 5.9,

respectively. In the tables, 88 is the 8-component algorithm with the size-priority. An

"X" in the tables indicates that it takes more than 150,000 seconds to solve that instance.

Similar to results for Class (1) instances, the edge-contraction method is never used by any

divide-and-conquer algorithm to make a progress for Classes (2) and (3) instances.

It takes more time to find the branch-decomposition of a Class (2) instance than a Class

(1) instance with a similar size by divide-and-conquer algorithms. This may be caused by

the fact that Class (2) instances have smaller branchwidth than that of Class (1) instances.

A larger branchwidth implies that a longer cycle is used in a valid partition and a longer cycle

usually gives a more balanced partition. For Class (2) instances, the size-priority algorithm

runs faster than the length-priority algorithm and is faster than the edge-contraction algo­

rithm by a factor of about 50 '" 150. Both the length-priority and size-priority algorithms

are faster than the cycle method. Since the number of negative tests in the divide-and­

conquer algorithms for Class (2) instances is small, the 2i -component (i > 1) algorithms

are more efficient than the 2-component ones. Especially, the 8-component algorithm is

faster than the edge-contraction, the cycle, and the 2-component size-priority algorithms by

factors of about 100 '" 200, 5 '" 8, and 2, respectively.

It takes more time to find the branch-decomposition of a Class (3) instance than a Class

(1) or Class (2) instance with a similar size by the divide-and-conquer algorithms, because

Class (3) instances have a smaller branchwidth. As shown in the table, the branchwidth

of the instances is small constants and does not increase in the size of the instances. In

each valid partition of the divide-and-conquer algorithms, we get a small subgraph of a

constant size and a large subgraph for most instances. This limits the speed-up by the

2-component divide-and-conquer algorithms to a constant factor. Similar to the results

for Class (2) instances, the number of negative tests in the divide-and-conquer algorithms
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is small and the 2i -component algorithms are faster than the 2-component ones. The 8­

component algorithm is faster than the edge-contraction, the cycle, and the 2-component

size-priority algorithms by factors of about 30 ,.... 150, 5 ,.... 8, and 2, respectively.

5.6 Summary

We give efficient implementations of the Seymour and Thomas procedure which, given an

integer {3, decides whether a planar graph G has the branchwidth at least (3 or not. We

tested our implementations on instances of size up to one hundred thousand edges. The

results show that the branchwidth of those instances can be computed within a reasonable

time and memory space. This suggests that the required memory may not be a bottleneck

for computing branchwidth and optimal branch decompositions of planar graphs in practice.

Our implementations without edge re-calculations require O(n 2 ) bytes memory, although

the constant behind the Big-Oh may be small. We have an upper bound O(n3 ) on the

time complexity of the implementations with re-calculations for edge data. Let p be the

maximum number of edges kept in those implementations. This bound is true for any p 2 1.

In general, a larger p results in a faster running time of the implementations. It is interesting

to prove a better upper bound related to p, say O(n2(njp)), on the time complexity of those

implementations.

We propose divide-and-conquer based algorithms of using ST procedure to compute

optimal branch decompositions of planar graphs. Our algorithms have time complexity

O(n3 ). Computational studies show that our algorithms are much faster than the edge­

contraction algorithms and can can compute the optimal branch decompositions for some

instances of about 50,000 edges in a practical time. This provides useful tools for applying

the branch decomposition based algorithms to practical problems.



Chapter 6

Edge Disjoint Paths Problem

Planar Graphs

•In

Given a set P of pre-routed paths in a graph G, the maximum edge-disjoint paths (MEDP)

problem is to find a maximum subset pi ~ P of paths such that no two paths in pi share a

common edge of G. As we already reviewed in Chapter 2, the MEDP problem has received

much attention in the past decades. Most of the previous studies focus on developing

performance guaranteed approximation algorithms. These algorithms are, although very

important theoretically, often far from optimal. Their practical performances are not known,

since there are very little efforts on the implementation of these algorithms. The only

implementation we are aware of is given in [50] which implemented the ( i +E)-approximation

algorithm for the MEDP problem in directed trees, where E> 0 is any fixed constant [49].

In this chapter, we study the maximum edge-disjoint paths problem. We are mainly

interested in exact algorithms for the problem. We show in Section 6.1 that the maximum

edge-disjoint paths problem in planar graphs can be solved optimally, if the carvingwidth

of the planar graph is bounded by a small constant. The running time is exponential in

the carvingwidth but is polynomial in the number of nodes and edges of the graph, and

polynomial in the number of given paths. Our algorithm has two steps: (I) computing

an optimal carving decomposition of the planar graph, and (II) computing a maximum

set of edge-disjoint paths, using a dynamic programming method based on the carving

decomposition computed in Step I. Our algorithm works also for graphs that are close

to planar graphs, by first computing a carving decomposition of the planar subgraphs. In

143
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Section 6.2, we show the practical performance of our algorithm. We implement the optimal

algorithm and test the implementation on both practical and random generated networks.

Our experimental results show that the maximum edge-disjoint paths problem can be solved

exactly for graphs with small carvingwidth in a practical time and memory space, when the

load of the given set of paths is not too large. We also give an approximation algorithm for

the maximum path coloring problem, for which an exact algorithm may not be practical.

6.1 Optimal Algorithm for the MEDP Problem

In this section, we give an algorithm which solves the maximum edge-disjoint paths problem

optimally in planar graphs. The input to an instance of the maximum edge-disjoint paths

problem consists of two parts: a set P of paths, and a graph G. In Step I of our algorithm,

we compute an optimal carving decomposition of the given planar graph, using the divide­

and-conquer algorithm given in Section 5.5. For a graph G that is not planar but close to

planar, one may compute an optimal carving decomposition Te for a planar subgraph G'
of G, and then use Te as the carving decomposition of G. (For small graphs, the planar

subgraphs may be found by hand. However, for large graphs, one may need to rely on some

heuristics to find planar subgraphs.) Recall that the width of a link e in Te is the number

of edges between the two subgraphs obtained by removing e in Te. Since G has more edges

than G' , Te may not be an optimal carving decomposition for the graph G. However, Te

is very close to optimal if G is close to planar. Note that the dynamic programming part of

our algorithm does not require the carving decomposition to be optimal, but the running

time is exponential in the width of the decomposition. A carving decomposition which is

optimal or close to optimal helps to reduce the total running time.

In order to describe Step II of our algorithm, we need some more definitions. Recall that

for each link e of a carving decomposition Te, removing e separates Te into two subtrees.

Let V' and V" be the sets of leaves of the subtrees. Let Ce be the set of edges of G incident

to both a node of V' and a node of V", Then ICel is bounded by the width of Te. We call a

link e = {x, y} of Tea leaf link if one of x and y is a leaf node of Te, otherwise an internal

link.

In Step II, we compute a maximum set of edge-disjoint paths as follows. We first convert

the carving decomposition Te of G into a rooted binary tree by replacing a link {x, y} of

Te by three links {x,z}, {z,y}, and {z,r}, where z and r are new nodes added to Te , r is
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the root, and {z, r} is an internal link. We call {z, r} the root link. For every internal link e

of Te, e has two child links incident to e. For every link e of Te, let Te be the subtree of Te

consisting of all descendant links of e. Let Ge be the subgraph of G induced by the nodes

at leaf nodes of Te . For an internal link e of Te, we use Pe to denote the set of all subsets of

edge-disjoint paths in P on Ceo For a set of edge-disjoint paths P~ <:;;; Pe, we define f(e, P~)

as IQel, where Qe is a maximum subset of paths in G e such that P~ U Qe is edge-disjoint.

To compute a maximum edge-disjoint paths in G, we find all sets of edge-disjoint paths

(solutions, Le., values f(e, P~)) of Ge from which a maximum edge-disjoint paths may be

constructed for every link e of Te by a dynamic programming method: the solutions of Ge

for each leaf link e is empty and the solutions for an internal link e is computed by merging

the solutions for the child links of e.

Initially, f(e, P~) is set to 0 for all links e of Te and for every possible subset P~ <:;;; Pe .

For a leaf link e, no computation is needed. An internal link e has child edges el and e2 in

Te. The values f(e,P~) is computed from f(el'P~l) and f(e2'P~2)' More specifically, we

enumerate all possible subsets P" of paths such that P" is edge-disjoint and each path of

P" is on some edges in Cue . Let p" C p" p" C P" and P" C P" be the sets ofel e2 e - 'el -, e2 -

paths on some edges in Ge, Cell Ge2 , respectively. Let P~~e2 = (P~~ u P~~) \ P~/. For every

P", the values f (e 1 , P~~ ), f (e2' P~~), and IP~~e21are added up. If this value is greater than

the previous value for f(e,P~/), then f(e,P~/) is updated. At the root link e = {z,r}, the

maximum value f(e, P~) over all P~ is the solution for the maximum edge-disjoint paths

problem.

The running time of the algorithm can be estimated as follows. Step I of our algorithm

runs in 0(n3 ) time (see Section 5.5). Step II is the dominant part for the time complexity.

For each internal link e of Te, Ge is bounded by cw(G), the carvingwidth of G. There are at

most (L + l)cw(G) possible subsets Qe of partial solutions to store, since each edge of Ce has

load bounded by L, and each subset Qe contains at most one path on each edge ofCe. During

the merging process, there are at most (L + 1) 1.5·cw(G) possible cases to consider: we only

need to consider paths on Ce and paths on Cq n Ge2 , while IGe U (Gel n Ce2 )I :S 1.5· cw(G).

Thus, the time complexity for processing one link of Te is O((L + 1)1.5,cW(G)) and the

memory requirement is O((L + 1)cw(G)). The total time complexity for processing all links

of Te is O((L + 1)1.5,cw(G) ·IV(G)I) and the memory requirement is O((L + l)cw(G) ·IV(G)I).

When cw(G) is bounded by a constant, the running time and memory requirement are both

polynomial in the input parameters.
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Notice that similar approach has been used in [46] to solve the call control problem in

bounded degree trees. The highly simplified structure of bounded degree trees makes the

problem easier.

The maximum path coloring (Max-PC) problem can be solved in a similar way. Recall

that for the Max-PC problem, we are given a set P of paths in a graph G, and we want

to color a maximum subset of paths in P using a given number w of colors, such that no

two overlapping paths are given the same color. The time complexity would be O((L +
1)1.5.Wocw(G) . jV(G)I) and the memory requirement would be O((L + 1)w.cw(G) . IV(G)I).

Thus, the maximum path coloring problem can be solved optimally in polynomial time, if

the number of colors and the carvingwidth are both bounded by a small constant. The

running time and memory space are huge even for very small L, cw(G) and w. Thus, this

approach is not practical. One can have a 1.58-approximation iterative greedy algorithm for

the Max-PC problem as follows: call the MEDP algorithm to select a set of edge-disjoint

paths and color the selected set using one color; remove the colored paths and repeat the

procedure on the remaining paths until the colors are used up or there is no remaining path.

Obviously, the time complexity of this approach is similar to that of the MEDP algorithm,

subject to a polynomial factor of w. It was proved in [12D] that this iterative Max-PC

algorithm has an approximation ratio of 1.58 if the MEDP algorithm is optimal. If we call

the MEDP procedure until all paths are colored, we have an approximation algorithm for

the minimum path coloring (Min-PC) problem.

6.2 Computational Results

We implemented our algorithms and tested our implementations on three classes of in­

stances. Class (1) instances are real networks deployed in the US and in Europe. They

include a 16-node NSFNET backbone (Figure 6.1), a 2D-node European Optical Network

(Figure 6.2), a 24-node ARPANET-like network (Figure 6.3), and a 3D-node UK Network

(Figure 6.4). Note that the 16-node NSFNET backbone, the 24-node ARPANET-like net­

work, and the 3D-node UK Network are not planar but very close to planar. In particular,

removing the dark edges in Figures 6.1, 6.3, and 6.4 makes these graphs planar. For these

non-planar graphs, an optimal carving decomposition Tc is first computed for a planar

subgraph (by removing the dark edges in the figure), using the divide-and-conquer algo­

rithm given in Section 5.5. Tc is then used as the carving decomposition of the original
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(non-planar) graph G. Tc may not be an optimal carving decomposition for the original

graph G because the dark edges are included. The instances in Class (2) are the intersec­

tion graphs of segments uniformly distributed in a two-dimensional plane, generated by the

LEDA library [1, 90]. The instances in Class (3) are generated by the PIGALE library [4].

PIGALE randomly generates one of all possible planar graphs with a given number of edges

based on the algorithms of [112]. We report the results on the 2-connected graphs generated

by the PIGALE library. The intersection graphs generated by LEDA and random graphs

generated by PIGALE have been used in the branch decomposition studies in Chapter 5.

We generate sets of paths as follows, given a positive integer k and an allowable maximum

load L of the k paths. We first generate k source-destination pairs randomly in the given

graph, and then connect them using shortest paths. We do not use any pair for which the

shortest path has length one. If there are multiple shortest paths between the two end-nodes

of a pair, an arbitrary one is used. If the generated set of paths has load more than L, then

we discard the generated paths and start over again. Note that for given integers k and L,

it may not be possible to generate a set of k paths with maximum load L, if L is small and

k is large.

To compute an optimal carving decomposition Tc of a planar graph, we use the length­

priority algorithm given in Section 5.5. In Step II, to save memory, we compute the partial

solutions for each link e of Tc in the postorder. Once the partial solutions are computed

for a link e, the solutions for the child links of e are discarded. The memory requirement

may be reduced to O((L + l)cw(G)), if the binary tree obtained from Tc is well balanced.

Notice that Steps I and II have time complexities 0(IV(G)1 3 ) and 0((L+1)1.5 o

cW(G) ·IV(G)I),

respectively.

We run the implementations on a computer with Intel(R) Xeon(TM) 3.06GHz CPU,

2GB physical memory and 4GB swap memory. The operating system is SUSE LINUX 10.0,

and the programming language we used is C++.

6.2.1 Results for Instances in Class (1)

The computational results for Class (1) instances are reported in Tables 6.1 - 6.4. In the

tables, cw is the width of the carving decomposition for the graph G, nand m are the

number of nodes and edges in the instances, respectively. The carving decompositions of

the input graphs are computed using the length-priority algorithm given in Section 5.5. The

time for computing the carving decompositions is small, thus we do not report it here. IFI is
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the number of given paths, L(P) is the maximum load of the paths, L(P)ave is the average

load of the edges, w(P) is the clique size of the conflict graph of the paths. Notice that L(P)

is a lower bound on w(P). We compute w(P) using the well known dfmax program [13].

OPTMEDP is the number of paths in an optimal solution for the maximum edge-disjoint

paths problem, BOLpc is the number of colors used by the iterative greedy path coloring

algorithm, TMEDP is the time used by the MEDP algorithm (in seconds), Tpc is the time

used by the iterative greedy path coloring algorithm (in seconds), and M em is the memory

used by the algorithms (in megabytes, or MB).

From the tables, we can see that when the width of the carving decomposition is small

(for example, 5 for the 16-node NSFNET backbone), our algorithms can handle a set of

paths with load as large as 40. However, when the width of the carving decomposition is

large (for example, 10 for the ARPANET-like network), the algorithms can only handle a

set of paths with load at most 5. The number of paths cannot be too large. Otherwise

the load would be too large since the graphs are small. The maximum set of edge-disjoint

paths can usually be computed within several minutes for the tested instances. For larger

instances, the program runs out of memory very quickly. The clique sizes of the conflict

graphs are usually close to the load of the paths (in many cases, the clique size is equal

to the load). This might be due to the simple structure of the networks, and the use of

shortest paths routing. The number of colors used by the iterative path coloring algorithm

is at most 1.67 times the clique size.

6.2.2 Results for Instances in Classes (2) and (3)

Computational results for Classes (2) and (3) instances are given in Table 6.5 and Table 6.6.

The columns are named in the same way as in Class (1) instances. Our algorithms can handle

large graphs in these two classes and large number of paths, providing the load is not too

large. The maximum set of edge-disjoint paths can usually be computed within several

hours for the tested instances. Again, for larger instances, the program runs out of memory

very quickly. For some instances, the clique sizes of the conflict graphs can be twice the

load of the paths (but within an additive constant of 10). The number of colors used by the

iterative greedy path coloring algorithm is at most 2.2 times the clique size.

For a graph with large carvingwidth, Step II is both time and memory consuming,

because this step runs exponentially in the carvingwidth. The time and memory increase

very quickly for large load and carvingwidth. The memory requirement seems to be the main
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hurdle for solving instances with large carvingwidth and large load. The computational

results suggest that it may not be practical to solve the MEDP problem for instances in

which (L + 1)ew > 107 on a PC with 2GB memory.

6.3 Summary

We have given an optimal algorithm for the maximum edge-disjoint paths problem in planar

graphs, and an approximation algorithm for the maximum path coloring problem. Our

algorithms use dynamic programming method based on carving decompositions of the input

graphs. We also tested the practical performances of the algorithms on both real and

randomly generated planar graphs (or graphs close to planar). The computational results

coincide with the theoretical analysis of the algorithms: they are efficient for graphs with

small carvingwidth when the load is not too large, but may not be practical for graphs with

large carvingwidth and for large load.
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Figure 6.1: A 16-node NSFNET backbone.

Table 6.1: Computation results for a 16-node NSFNET backbone (n = 16, m = 25, cw = 5).

IFI L(P)ave L(P) w(P) OPTMEDP BOLpc TMEDP Tpc Mem (MB)
100 10 15 18 10 19 1.25 3.97 17

10 20 20 11 22 2.94 9.06 60
150 14 20 22 11 25 13.4 37.6 112

16 25 25 11 28 18 57.2 325
15 30 30 10 32 20 70.8 659
16 35 35 10 35 22 99.8 1192

200 19 26 28 11 31 77 249 394
20 30 30 11 35 74 286 780
20 35 36 11 37 91 374 1634
20 40 40 11 40 85 346 1600

250 25 35 35 10 43 246 1145 1672
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Figure 6.2: A 20-node European Optical Network.

Figure 6.3: A 24-node ARPANET-like network.
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Figure 6.4: A 30-node UK Network.

Table 6.2: Computation results for a 20-node European Optical Network (n = 20, m = 38,
cw = 8).

!PI L(P)ave L(P) w(P) OPTMEDP BOLpc TMEDP Tpc Mem (MB)
40 2.5 4 5 13 6 0.36 0.41 10

2.7 6 6 11 8 1.47 2.75 244
2.8 8 8 10 9 1.63 2.41 297

60 3.7 6 7 16 7 5.66 6 245
3.9 8 8 13 9 10.6 18.8 1791

80 4.9 6 7 15 9 104 121 255
4.9 7 7 16 9 196 233 713
5.1 8 8 16 11 58 75.6 1796

100 6.1 8 9 17 12 421 484 1819
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Table 6.3: Computation results for a 24-node ARPANET-like network (n = 24, m = 49,
cw = 10).

!PI L(P)ave L(P) w(P) OPTMEDP BOLpc TMEDP Tpc Mem (MB)
30 1.5 2 2 15 3 0.1 0.1 3

1.7 3 3 12 4 0.14 0.15 17
1.7 4 4 12 5 0.85 0.99 26
1.8 5 5 11 6 4 5.03 944

40 2 3 3 15 5 1.18 1.33 17
2.2 4 4 13 6 1.35 1.43 158
2.4 5 6 11 7 4.2 5.16 944

50 2.7 4 4 17 6 4.38 4.83 159
2.8 5 6 15 6 5.61 6.39 944

60 3.1 5 6 18 7 13.7 15.1 945
I

Table 6.4: Computation results for a 30-node UK Network (n = 30, m = 57, cw = 8).

!PI L(P)ave L(P) w(P) OPTMEDP BOLpc TMEDP Tpc Mem (MB)
60 3.1 4 5 20 6 1.7 2.09 7

3.4 8 8 16 9 3.1 6 121

I
3.6 10 10 15 10 6.5 9.32 577

80 4.2 6 7 20 9 4.3 5.96 82
4.4 8 8 20 9 12.2 17.4 591
4.7 10 10 16 13 23.2 39 1337

100 4.7 6 6 23 8 25.2 39.7 82
5.2 8 9 23 11 71.1 95.6 591

120 5.7 7 8 23 10 90 123 233
6.1 8 9 22 11 524 673 591

140 6.7 8 8 22 11 270 392 591
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Chapter 7

Conclusion and Future Work

In this thesis, we have studied fundamental routing and channel assignment problems in

WDM optical networks with specific topologies and general topologies. Our study on specific

topologies includes the Min-PC problem on trees of rings, the Max-RPC problem on rings,

the Min-PMC and Max-PMC problems on multifiber trees, and the call control problem on

bounded depth trees. We developed a carving-decomposition based method to solve exactly

the edge-disjoint paths problem, and to approximate the maximum path coloring problem for

networks with more general topologies. The carving-decomposition based approach works

for graphs with bounded carvingwidths. In this chapter, we summarize the contributions of

this work, and give a few directions for future work.

7.1 Summary of Contributions

We have given an efficient algorithm which solves the Min-PC problem on a tree of rings

with an arbitrary (node) degree using at most 3L colors and achieves an approximation ratio

of 2.75 asymptotically. The 3L upper bound is tight even on a tree of rings with degree

four. We also give a 3L and 2-approximation (resp. 2.5-approximation) algorithm for the

Min-PC problem on a tree of rings with degree at most six (resp. eight and ten).

We have shown that the call control problem is NP-hard and MAX SNP-hard even in

depth-2 trees. We give optimal algorithms for the call control problem in double-stars and

in spiders. We also give 2- and 3-approximation algorithms for the weighted call control

problem in depth-2 and depth-3 trees, respectively. We show that the weighted call control

problem is solvable in arbitrary trees if all the paths contain a same node of the tree.

156
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We have shown that the Min-PMC and Max-PMC problems are NP-hard in k-fiber (k

odd) stars. We give optimal algorithms for the following problems: the Min-PMC and Max­

PMC problems in non-uniform stars with even fibers and in k-fiber (k even) spiders. We

have given a 1.5-approximation algorithm for the weighted Max-RPC problem in rings.

We give efficient implementations of the Seymour and Thomas procedure which, given

an integer {3, decides whether a planar graph G has the branchwidth at least {3 or not. We

tested our implementations on instances of size up to one hundred thousand edges. The

experimental results show that our implementations run much faster and use less memory

than previous implementations, even considering the speed difference of the computers used

(see page 127 for details).

We propose divide-and-conquer based algorithms of using Seymour and Thomas pro­

cedure to compute optimal branch decompositions of planar graphs. Our algorithms have

time complexity O(n3 ). Computational studies show that our algorithms are much faster

than the edge-contraction algorithms and can compute the optimal branch decompositions

for some instances of about 50,000 edges in a practical time. This provides useful tools for

applying the branch decomposition based algorithms to practical problems.

We have given an optimal algorithm for the maximum edge-disjoint paths problem in

planar graphs, and an approximation algorithm for the maximum path coloring problem.

We also tested the practical performances of the algorithms on both real and randomly

generated planar graphs (or graphs close to planar). The computational results coincide

with the theoretical analysis of the algorithms: they are efficient for graphs with small

carvingwidth when the load is not too large, but may not be practical for graphs with large

carvingwidth and for large load.

7.2 Future Work

Many research efforts have been devoted to the research problems we studied in this thesis.

However, there are still many open problems. In this section, we give a few directions for

the future work.

We have given a 2.75-approximation algorithm for the Min-PC problem on trees of rings

with arbitrary degrees. An interesting problem is to improve the 2.75-approximation ratio.

Our results imply a 3-approximation algorithm for the Min-RPC problem on a tree of rings.

It would be challenging to improve the approximation ratio of 3 for the Min-RPC problem.
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Our 3L algorithm also implies a 6L algorithm for the Min-PC problem on directed trees of

rings. It would be interesting to improve the approximation ratio for the Min-PC problem

on directed trees of rings.

For the optimal branch decomposition of planar graphs, the following problems are

unsettled and may be studied in the future:

• Our implementations of ST procedure may require at least n 2/8 bytes of memory

for a graph of n edges. So they may not be able to solve extremely large instances

with a few hundred thousands or more edges within a practical memory space. How

to compute the branchwidth of extremely large planar graphs is an interesting open

problem.

• Our divide-and-conquer based algorithms can compute an optimal branch decompo­

sition of planar graphs of size up to 50,000 edges in a practical time on a PC with

3GHz CPU. It is still time consuming to compute optimal branch decompositions for

planar graphs with more than 50,000 edges. An interesting future work is to design

more efficient algorithms for very large planar graphs. Using better approaches to

make balanced partitions is one possible direction to get such algorithms.

• All divide-and-conquer algorithms use the edge-contraction method to guarantee the

branch decomposition can be found. However, the edge-contraction algorithm has

never been called in our computational study. It would be interesting to prove that a

valid partition can always be found efficiently in those algorithms.

• It would be interesting to develop a performance guaranteed and yet efficient heuristic

for computing a good approximation of the carvingwidth, and for computing a carving

decomposition that is close to optimal.

Our optimal algorithm for the maximum edge-disjoint paths problem and approximation

algorithm for the maximum path coloring problem are not practical when the carvingwidth

of the input graph is large, or when the load of the paths is large. Whether the performance

of the algorithms can be improved is an interesting open problem. It is also worth to design

heuristic algorithms which can compute a solution for larger instances within a practical

time and memory, even if the solution may not be optimal.
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