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Abstract

Named Entities (NEs) in biomedical text refer to objects that are of interest to biomedi­

cal researchers, such as proteins and genes. Accurately identifying them is important for

Biomedical Natural Language Processing (BioNLP). Focusing on biomedical named entity

recognition (BioNER), this thesis presents a number of novel results on the following topics

of this area.

First, we study whether corpus based statistical learning methods, currently dominant

in BioNER, would achieve close-to-human performance by using larger corpora for training.

We find that a significantly larger corpus is required to achieve a performance significantly

higher than the state-of-the-art obtained on the GENIA corpus. This finding suggests the

hypothesis is not warranted.

Second, we address the issue of nested NEs and propose a level-by-Ievel method that

learns a separate NER model for each level of the nesting. We show that this method works

well for both nested NEs and non-nested NEs.

Third, we propose a method that builds NEs on top of base NP chunks, and examine the

associated benefits as well as problems. Our experiments show that this method, though

inferior to statistical word based approaches, has the potential to outperform them, provided

that domain-specific rules can be designed to determine NE boundaries based on NP chunks.

Fourth, we present a method to do BioNER in the absence of annotated corpora. It

uses an NE dictionary to label sentences, and then uses these partially labeled sentences to

iteratively train an SVM model in the manner of semi-supervised learning. Our experiments

validate the effectiveness of the method.

Finally, we explore BioNER in Chinese text, an area that has not been studied by

previous work. We train a character-based CRF model on a small set of manually annotated

Chinese biomedical abstracts. We also examine the features usable for the model. Our
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evaluation suggests that corpus-based statistical learning approaches hold promise for this

particular task.

All the proposed methods are novel and have applicability beyond the NE types and the

languages considered here, and beyond the BioNER task itself.

Keywords: Biomedical Named Entity Recognition; Support Vector Machine; Conditional

Random Field; Annotated Corpus; Biomedical Text; Chinese Text; Nested Named Entity;

Noun Phrase Chunking.

Subject Terms: Natural Language Processing (Computer Science); Text Processing (Com­

puter Science); Supervised Learning (Machine Learning); Information Retrieval; Computa­

tional Linguistics; Text Mining; Information Extraction.
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Chapter 1

Introduction

1.1 Named Entity Recognition

Named entity recognition (NER) is a subtask of information extraction (IE) and text mining

(TM). Given a piece of text, the goal is to identify those phrases that correspond to the

names of persons, places, organizations, or other entities of interest. In the newswire domain,

an NE often refers to the name of a person, an organization, a location, or the expression

of a time, a quantity, etc. In the biomedical domain, the NE often refers to the names of

proteins, genes and other biomedical objects.

NER is important to IE and TM in the sense that it serves as a building-block for more

advanced IE and TM tasks, e.g., relation extraction (RE), which identifies relations between

NEs. This is particularly true in the biomedical domain, where millions of biomedical

research papers have become electronically available, and thus opened opportunities to

facilitate biomedical research by extracting or mining useful knowledge from the biomedical

texts. The recognition of biomedical NEs is therefore the very fundamental task underlying

further biomedical text mining.

While NER in the newswire domain (NewsNER) has been well studied since the 1990s,

NER in the biomedical domain (EioNER) is still in its early stage of development. Tech­

niques proposed for NewsNER have achieved close-to-human performance, whereas EioNER

has not matured enough to support advanced IE and TM tasks. For instance, the state-of­

the-art performance of EioNER typically falls in 70% to 80% F-score1 range on benchmark

IPlease refer to Section 1.2.1 for the definition of F-score.
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CHAPTER 1. INTRODUCTION 2

biomedical data sets, far below that of NewsNER which has an F-score well above 90%.

Besides the performance issue, there are quite a number of important yet unsolved issues in

BioNER. In this thesis, we will study some of these issues.

1.2 Background and Motivation

1.2.1 NER in Newswire Text

The NER task was first introduced for newswire text in the Sixth Message Understanding

Conference (MUC-6) in 1995. The purpose was to recognize various information units, in­

cluding person, organization and location names, and numeric expressions including time,

date, money and percent expressions. Three categories of NEs were defined in MUC-6:

TIMEX, NUMEX, and ENAMEX. TIMEX phrases are temporal expressions, which were

further divided into date expressions (e.g. July 1) and time expressions (e.g., noon PST).

NUMEX phrases were numeric expressions, and further divided into percent expressions

(e.g., 3.6%) and money expressions (e.g., $50 million). ENAMEX phrases were proper

names, representing references in a text to persons (e.g., Bill Clinton), locations (e.g., Van­

couver), and organizations (Simon Fraser University).

In MUC, the NER systems were required to output the recognized NEs by tagging them

with the predefined categories. For example, the sentence "Handz bought 100 shares of

Google Corp. in 2000" would be tagged as follows:

<ENAMEX TYPE=IPERSON">Handz</ENAMEX> bought <NUMEX TYPE=IQUANTITY">100

</NUMEX> shares of <ENAMEX TYPE=IORGANIZATION">Google Corp.</ENAMEX>

in <TIMEX TYPE="DATE">2000</TIMEX>.

Conceptually, NER can be considered as a two-step task: first, identify the phrases of

interest, and second, categorize them into predefined categories. Typical approaches adopted

by previous NER systems include rule-based as well as statistical learning approaches. Using

hand-crafted rules, rule-based systems typically can give satisfactory results for a particular

domain, but suffer from the difficulty of adapting to new domains. Statistical learning

systems require much training data, but can be ported to other languages or domains more

easily. While early approaches tended to be rule-based, the more recent and currently

dominating technology is supervised learning. The learning algorithms that have been

reported in the literature include Decision Tree (DT) [103], Hidden Markov Model (HMM)



CHAPTER 1. INTRODUCTION 3

[7], Maximum Entropy model (ME) [10], Support Yector Machine (SYM) [6], Boosting and

voted perceptron [25] and Conditional Random Field (CRF) [73J.

Benchmarking and evaluation have been conducted in MUC-6, MUC-7 and other con­

ferences, such as the Computational Natural Language Learning (CoNLL) shared tasks

2002 and 2003, and the Multilingual Entity Task Conference (MET). Though the focus was

mostly on English text (e.g., as in MUC-6 and MUC-7), recent evaluations have extended

to other languages, e.g., Spanish in MET-I, Japanese and Chinese in MET-1 and MET-2.

Language-independent NER has also been evaluated, e.g., in CoNLL-2002 and CoNLL-2003.

Evaluation of system performance was typically done based on two measures - recall and

precision. Recall is the percent of the NEs mentioned in the text and correctly recognized

by the system; precision is the percent of the NEs that are recognized by the system and

are actually correct. The recall score R and precision score P are then used to calculate a

balanced F-score, where F = 2PR/(P + R).

Generally speaking, NER is a relatively simple task in NLP, but it has proven difficult

to achieve high accuracy, probably because there is considerable ambiguity involved, such

as variations in NE spellings, ambiguity in determining NE types, and ambiguity with non­

NE words. Significant progress has been made over the past 10 years, although the task is

still not a "solved problem". Human performance on the NER task has been determined

to be quite high, with F-scores typically better than 96%. Some NER systems in recent

evaluations had performance approaching this human performance [90J. For example, the

highest scoring system for NER at MUC-6 showed an F-score of 96.5%, with 96% recall and

97% precision [110]. Existing systems perform very well on mixed-case English newswire

corpora, probably due to the years of research and organized evaluations on this specific task

in this language. It is still not clear how the existing high-scoring systems would perform

on less well-behaved texts, such as single-case texts, non-newswire texts, or texts obtained

via optical character recognition (OCR) [90J.

1.2.2 NER in Biomedical Text

Historically, NER has been focusing on identifying names appearing in newspapers (we

thereby call it newswire NER hereafter in the thesis). Since late 1990s, the NER com­

munity has paid more attention to NEs in biomedical domain, probably in coping with

the increasingly strong need for mining biomedical text. In order to distinguish from the

newswire NER, we will hereafter use BioNER to stand for the NER in biomedical literature.
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I Type of NE I Examples

Gene PuB1, peri-kappa B, IL-2 gene
Protein NF-kappa B, CD28, IL-2
Cell T-cell, monocytes, Saos-2
Drug Interferon, Zidovudine, Methotrexate
Chemical P5E-fe

Penta-N-methylpyrrolecarboxamide-edta-Fe(II) ,1 ,4-diazabicyclo[2 .2 .2]octane

Disease HIV, AA amyloidosis, Haemoglobin C disease

Table 1.1: Examples of biomedical named entities

4

In the domain of biology and medicine, the NEs include genes, proteins, cells, drugs,

chemicals, diseases, etc, which are frequently used in biomedical text and interesting to

biomedical researchers. Table 1.1 shows some examples of biomedical NEs. Accordingly,

BioNER is the task that aims at automatically recognizing all such NEs in biomedical text.

It can be simply viewed as NER applied to the biomedical domain.

The necessity of BioNER mainly lies in the fact that BioNER is often the first step

for biomedical text mining, which is urgently needed to cope with the explosive volume

of published biomedical research. For example, MEDLINE (Medical Literature Analysis

and Retrieval System Online), compiled by the U.S. National Library of Medicine (NLM),

is a literature database of life sciences and biomedical information, including medicine,

nursing, pharmacy, dentistry, veterinary medicine, and health care. It is freely available on

the Internet and searchable via PubMed2 and NLM's National Center for Biotechnology

Information's Entrez system3 . As of March 24, 2008, PubMed contains 17,857,762 citation

records from approximately 5,000 of the world's leading biomedical journals published since

1949. The number is growing quickly, e.g., 10,857 new papers were indexed from March 17

to March 21, 20084.

With such tremendous volume and explosive growth, it is extremely challenging for

biomedical researchers to keep up with new research results, even within one's own research

field. Only with the help of effective and efficient text mining techniques, is it possible

for them to absorb knowledge and information from the literature so as to benefit their

own research. For biomedical researchers, the NEs in biomedical text are the basic units

2http://www.ncbLnlm.nih.gov/sites/entrez/

3http://www.ncbi.nlm.nih.gov/Entrez/

4http://www.nlm.nih.gov/bsd/revup/revup_pub.html
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IL-2 gene expression and NF-kappa B activation through CD28 requires reactive
oxygen production by 5-lIpoxygenase.

Los M, Schenk H, Hexel K, Baeuerle PA, Droge W, Schulze-Osthoff K.

Institute of Biochemistry, Albert-Ludwigs-University, Freiburg, Germany.

Activation of the C028 surface receptor provides a major costimulatory signal for
T cell activation resulting In enhanced production of interleukin-2 (IL-2) and cell
proliferation. In primary T lymphocytes we show that C028 ligation leads to the
rapid intracellular formation of reactive oxygen intermediates (ROIs) which are
required for CD28-mediated activation of the NF-kappa B/C028-responsive
complex and IL-2 expression. Delineation of the CD28 signaling cascade was
found to involve protein tyrosine kinase activity, followed by the activation of
phospholipase A2 and 5-lipoxygenase. Our data suggest that Iipoxygenase
metabolites activate ROI formation which then induce IL-2 expression via
NF-kappa B activation. These findings should be useful for therapeutic strategies
and the development of immunosuppressants targeting the CD28 costimulatory
pathway.
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PMID: 7641692 [PubMed - indexed for MEDLlNE] PMCID: PMC39444€

Figure 1.1: An example abstract retrieved from PubMed

conveying various knowledge and information. It would be impossible to fully understand

an article unless all the NEs within it could be precisely identified. Moreover, recognition

of the biomedical NEs allows further extraction of relationships and other information by

identifying the key concepts of interest and allowing those concepts to be represented in

consistent and normalized formats. An example MEDLINE abstract and the annotated

NEs are shown in Figure 1.1 and Figure 1.2 respectively.

The BioNER task is non-trivial for several reasons. First, there is no complete dictionary

for most types of biomedical NEs. Therefore simply using string-matching algorithms cannot

solve the problem. Although there are some manually curated terminological resources (such

as gene and protein databases), they are often limited to very specialized sub-domains,

and cannot even fully cover NEs in these sub-domains, not to say that new names are

continuously created and cannot be collected into the dictionaries immediately.

Second, ambiguity, synonymy and name variations are very common in biomedical liter­

ature, largely due to the fact that there are no solid naming conventions in the community,

although guidelines for naming do exist. The same word or phrase can refer to a different

thing depending on context (e.g., ferritin can be a biologic substance or a laboratory test).

Many biological entities have several names (e.g., PTEN and MMAC1 refer to the same
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{{IL-2 geneh expressionh and {{NF-kappa Bh activationhthrough {CD28}2 requires reactive
oxygenproductionby {5-lipoxygenaseh.

Activation ofthe {{CD28l2 surface receptor}) provides a major costirnulatory signal for {T cell
activationh resulting in enhanced production of{interleukin-2l2 ( {IL-2h ) and {cell proliferationh.

In {primaryT lymphocytes}, we showthat {CD28}2ligation leads to the rapid intracellular formation
of {reactive 0 xygen intermediates} ,( {ROls}, ) which are required for {CD28}2-mediated activation
ofthe {NF-kappa Bh I {{CD28l2 -resporsive complex}. and {{IL-2l2 expressionh.

Delineation of the {{CD28} 2signaling casc ade }7 was found to involve {{protein tyrooine kinase})
activity} 7 • followed by the activation of {phospholipase A2} 2and {5-lipoxygenase}2.

Our data suggest that {{lipoxygenase}2 metabolites}) activate {{ROlli formationhwhich then induce
{IL-2h expressionvia { {NF-kappa Bh activationh .

These fmdings shouldbe useful for {therapeutic stralegies} 7 and the development of
{imrnunosuppressanlsh targeting the {{CD28l2 costirnulatory palhwayh .
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Figure 1.2: Annotation of named entities in the abstract Medline No.95369245 as in the
GENIA corpus. Tokens in each sentence are separated by space. NEs are enclosed by
curly braces, with the entity types labeled by the subscripts defined as following: 1: DNA
domain/region, 2: protein molecule, 3: protein family/group, 4: protein complex, 5: cell
type, 6: inorganic, 7: other names (Le., those not yet fully categorized in GENIA ontology).

gene). Often the same name can have minor variations in spelling form (e.g., NF kappa B,

NF-kappa Band NF kappa-B). Even if biologists start to use exclusively well-formed and

approved names, there are still a huge number of documents containing legacy and ad-hoc

names.

Third, biomedical NEs often have multiple words (e.g., CD28 surface receptor), and

shorter NEs can compound together to form a longer NE, so the problem is additionally

complicated by the need to determine name boundaries and resolve overlap of candidate

names.

Fourth, the total number of biomedical NEs is expected to be very large, and new names

are introduced on a daily basis. Therefore, any NER system must be scalable in the sense

that it should be able to identify most, if not all, NEs in millions of biomedical articles in

reasonable time. Also, it should possess the ability of resolving previously unseen names.

Lastly, the techniques developed for newswire NER may not be directly applicable to

BioNER, because the NEs in the biomedical domain exhibit very different characteristics
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from those in newswire domain. For example, while most newswire NEs are proper nouns

(appearing as capitalized words), many biomedical NEs are not proper nouns (e.g., more

than 60% words in biomedical NEs are in lowercase [140]).

Due to the above mentioned reasons, the BioNER task is much more complex than the

newswire NER task. We could still apply the methodologies proven successful for newswire

texts (e.g., the corpus-based machine learning methods), however, we have to explore the

language phenomena specific to the biomedical domain, so as to develop methods to deal

with them appropriately.

1.2.3 Language Phenomena in BioNER

In general, most (if not all) of the challenges brought to BioNER spring from the variety

of ambiguities involved in biomedical articles. From an NLP perspective, much ambiguity

comes from various linguistic phenomena5 , for example, extensive lexical variations (i.e., one

name has several spelling variations, all representing the same concept), synonymy (i.e., one

concept is represented by several names), and homonymy6 or polysemy (i.e., one name has

several meanings, representing several concepts). These phenomena are common in natural

language, but pose specific challenges to biomedical NER. Besides, problems can also come

from tokenization and abbreviation. Below we will discuss some of the most significant

language phenomena commonly seen in biomedical text.

(1) NE Variations: Biomedical entity names show considerable variations probably be­

cause of the existence of multiple naming conventions. Consider protein naming as an

example. Researchers may name a newly discovered protein based on its function, sequence

features, gene name, cellular location, molecular weight, or other properties, as well as us­

ing abbreviations and acronyms. For example, the EphB2 receptor, a protein involved in

signalling in the brain, was initially referred to as Cek5,Nuk, Erk, Qek5, Tyro6, Sek3, Hek5,

and Drt before being standardized as EphB2 [84]. Potential standardization based on pub­

lishing guidelines and community consensus is hard to uniformly enforce. Moreover, there

are entity names whose status is tentative, and there is also a vast amount of legacy data.

5There are other types of ambiguity, e.g., structural ambiguity.

6Two words are called homonyms, if they have the same spelling and pronunciation, but are different in
meaning or origin. For example, the noun bear and the verb bear are homonymy.
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I Type of Variation I Example of Variants

Orthographic 9-CIS retinoic acid and 9-cis retinoic acid
amyloid beta-protein and amyloid f3-protein

Morphological nuclear receptor and nuclear receptors
Down's syndrome and Down syndrome

Lexical hepatic leukaemia factor and liver leukemia factor
human cancer and human carcinoma

Structural cancer in humans and human cancers
SMRT and Trip-l RNAs and SMRT RNA and Trip-l RNA

Acronyms RAR alpha, RAR-alpha, RARA, RARa, RA receptor alpha
NF-kappaB, NF(kappa)B, NFkappaB, NFKB factor, NF-KB

Table 1.2: NE variation types and examples
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Besides, various orthographic styles (upper cases, lower cases, digits, special charac­

ters, and their combinations), Greek/Latin spellings (e.g., NF-kappa B, NF-kappa B, NF

Kappa B, NF kappa B, NF-kappaB, NF kappaB, all referring to the same entity), adjecti­

val expressions, gerund expressions (e.g., GTPase-activating protein), nominalizations and

prepositional phrases (e.g., activation of NF-kappa B by SRC-1), are all frequently used.

Table 1.2, taken from [4], gives a simple categorization of the variation types, along with

example names. As will be discussed later, the variety of token formation is a major obstacle

for dictionary-based approaches.

(2) Abbreviations: Abbreviations, shortened forms of names or concepts, are prevalent

in the biomedical literature. Nearly one half of MEDLINE abstracts contain abbreviations

[17]. In 2004, 64262 new abbreviations were introduced, and there is an average of one

new abbreviation in every 5 to 10 abstracts [17]. It is believed that more than 800,000

abbreviations exist in biomedical literature, and only a small fraction of them have been

compiled into dictionaries of abbreviations [17].

Abbreviations are one of the major sources of ambiguity. It is often the case that an

abbreviation can be interpreted as several different definitions (i.e., different full forms of the

abbreviation), if it were not explicitly defined in the context. That is, many abbreviations

are involved in polysemy. For example, ACE can be either angiotensin converting enzyme or

affinity capillary electrophoresis, while EGFR might correspond to epidermal growth factor

receptor or estimated glomerular filtration rate, depending on the context.

Sometimes even referring to the same full form, an abbreviation can refer to different
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things. For example, NF2, simultaneously names a gene, the protein it produces, and the

disease resulting from its mutation. Similarly, CAT can be a protein, an animal, or a medical

device. Although linking an abbreviation to its full form is not the task of EioNER, it is

closely related to EioNER, and we will discuss this issue in Chapter 2.

(3) Synonyms: also called aliases, referring to the phenomenon that one entity can be

denoted by multiple names in a synonymy relation. One gene, officially designated as SELL,

or selectin L, which controls cell adhesion during immune responses, has 15 aliases. Another

gene, MT1, is used to describe at least 11 members of a cluster of genes encoding small

proteins that bind to metal ions [91.]. It is estimated that the HUGO Nomenclature includes

more than 26,000 aliases among more than 23,000 human genes. A project conducted by

a Columbia research group has collected more than 557,000 gene and protein synonyms

from only 32,000 full-text articles. Although recognizing synonyms is not the main task of

EioNER, it is certainly related to the task, and is partially addressed by NE mapping as a

post-processing of EioNER. We will discuss this issue in Chapter 2.

(4) Tokenization: The text in an article has to be tokenized before the NER step is carried

out. The tokenization usually includes splitting the article into paragraphs, the paragraph

into sentences, and the sentence into tokens. For languages like English, tokens are typically

separated by a space.

Linguistic phenomena that can cause problems for tokenization include abbreviations

(e.g., those signalled by a period), apostrophes (e.g., IL-10's activity), hyphenation (e.g.

IL-10 or IL 10), multiple formats (e.g., 123,456.78 and 123456.78), various sentence bound­

aries (e.g., demarcated by period, exclamation mark, question mark, colon, semi-colon, or

dash).

In biomedical text, tokenization encounters additional challenges due to domain-specific

terminology, and non-standard punctuation and orthographic patterns (e.g., an alpha­

galactosyl-1,4 -beta-galactosyl-specific adhesion, and, the free cortisol fractions were 4.53 +/­
0.15% and 8.16 +/- 0.23%).

As another example, consider the sentence "we here report that interferon inhibits growth

and survival of NB4 APL cells in cooperation with RA." Here, the acronyms NB4 and

APL come as two separate tokens. However, sometimes the two tokens appear as one

token NB4-APL connected by a hyphen. From a biological point of view, NB4 is a cell

line derived from acute promyelocytic leukemia (APL) cells. From a NLP perspective,
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however, it is essential that both formats be tokenized in a consistent and unified way. This

example also highlights the importance of acronym detection, because APL can stand for

acute promyelocytic leukemia, and also antiphospholipid syndrome (an autoimmune disease),

while RA can stand for retinoic acid, retrogmde amnesia, refractory anemia, or rheumatoid

arthritis.

(5) Multi-word NEs: the majority of biomedical NEs are multi-token phrases (com­

pounds), containing at least one white space or a hyphen. For example, 90% of the NEs

in the GENIA corpus7 contain typically two or three tokens per NE, while NEs with six or

more tokens are rare, although they do exist. The main problem caused by multi-word NEs

is the difficulty in detecting their boundaries in a sentence.

(6) Nested NEs: one NE may occur within a longer NE (as a proper string), as well as

occur independently. For example, T cell is nested within nuclear factor of activated T

cells family protein. In the GENIA corpus, nested NEs account for about 21.5% of all NE

occurrences, with 8.4% of all distinct NEs occurring as nested. Meanwhile, it is reported

[88] that about two-thirds of Gene Ontology (GO) terms contain another GO term as a

proper substring. Another almost third of all nested NEs appear more than once as nested,

while more than a half of nested NEs do not appear on their own elsewhere in the GENIA

corpus. These facts suggest that the recognition of the inner structure of NEs cannot rely

on spotting the occurrences of the corresponding sub-NEs elsewhere in the corpora.

(7) NEs encoded in Coordinations: Coordination is a multi-word variation phenomenon

where lexical parts common for two or more NEs are shared (appears only once), while their

distinct lexical parts are enumerated and coordinated with a coordination conjunction (CC).

Therefore, coordination encodes at least two NEs. In the GENIA corpus, about 2% of all

NE occurrences are involved in coordination, with the majority containing two NEs. About

one third of coordinated NEs appear also as ordinary NEs elsewhere in the corpus. For

example: adrenal glands and gonads can be interpreted as coordination (i.e., adrenal glands

and adrenal gonads) or conjunction (i.e., adrenal glands and gonads). Note that resolving

coordination would involve deep semantic understanding, and likely remains a hard problem

in computational linguistics.

7The GENIA corpus is a corpus of biomedical term annotation that has been frequently used by previous
BioNER study. We also use it in this thesis. More details are given in Chapter 4 and Appendix A.
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~ Unknown Word Rate I
Brown 25K 28.2%
WSJ 40K 25.5%
Brown + WSJ 50K 22.4%
GENIA 15K 5.3%
Brown + WSJ + GENIA 60K 4.6%

I Lexicon

Table 1.3: Unknown word rates in GENIA using dictionary made from the Brown, WSJ
news corpora and GENIA biomedical corpus.

1 Linguistic Forms I Example Gene and Protein Names

Abbreviation IL-2
Plural P38 MAPKs, ERK1/2
Compound Rpg1P/Tif32p
Coordination 91 and 84 kDa proteins
Cascade Kappa 3 binding factor
Anaphoric It, this enzyme
Description Inhibitor of p53, a protein that binds RNA
Acronym Phospholipase D (PLD)
Apposition PD98059, specific MEK1/2 inhibitor

Table 1.4: Example gene and protein names in various linguistic forms

(8) Unknown Words: compared to newswire texts, biomedical texts typically contain

more unknown words. Table 1.3, taken from [64], shows the unknown word rate on the

GENIA corpus, using lexicons extracted from two well-known newswire corpora (i.e., Wall

Street Journal (WSJ) corpus and Brown corpus) and one biomedical corpus (i.e., the

GENIA corpus). From the table, we can see that the unknown word rate is undesirably

high when using a general purpose lexicon. Even using a domain specific lexicon (such as one

made from the GENIA corpus), the unknown word rate would still be quite considerable.

For lexicon-based string-matching approaches and some rule-based approaches, the high

unknown word rate can be a big obstacle.

In short, biomedical NEs can appear in many linguistic forms in biomedical articles.

Table 1.4 summaries various linguistic forms with examples of gene and protein names. Note

that the above mentioned linguistic phenomena, though exemplified with NEs appearing in

English biomedical text, are typically observed in biomedical text written in other languages

(e.g., Chinese). Ideally, a BioNER system should be able to handle most, if not all, of these

forms, to become a practical tool for biomedical text mining.
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1.3 The Target Problems and Our Methodology

In this thesis we will address the following questions:

1. How can BioNER performance be improved?
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2. How can we decrease or remove the dependency of BioNER systems on annotated

corpora?

3. How can BioNER be performed on non-English texts?

In addressing these questions we will do the following:

First, we will study whether corpus based supervised learning methods, currently dom­

inant in BioNER, would achieve higher performance by using larger corpora for training.

We will evaluate this hypothesis by drawing the learning curves of two popular learning

methods, namely SVM and CRF, using a benchmark data set. Our goal is to see whether

the hypothesis would hold for BioNER.

Second, we will look into the issue of nested (or embedded) named entities, which has

been largely neglected by previous work. The idea is to learn a separate NER model for each

nesting level in the training phase and applying to the corresponding level in the testing

phase. We will evaluate the idea on a benchmark corpus to see how well it would work for

both the non-nested NEs and nested NEs.

Third, we will investigate the applicability of NP chunks to the BioNER task, based on

the intuition that an NE is basically an NP. Inspired by the good performance of current

NP-chunking systems, we would like to see if NEs can be built on top of NP chunks. We

will examine the benefits as well as the problems associated with this idea.

Fourth, we will explore the feasibility of doing BioNER in the absence of annotated cor­

pora, as they are often very expensive to obtain. Noticing that domain-specific dictionaries

sometimes are more readily available than annotated corpora, we will see if they can be

used to label some of NEs in a sentence, and if these partially labeled sentences can be used

to train a classification model by semi-supervised learning.

Finally, we will look at the problem of doing BioNER in Chinese biomedical texts, an

area that has not been studied by previous work. Given that there are no publicly available

annotated corpus for Chinese BioNER, we will manually annotate a small set of Chinese

biomedical abstracts. We will use the corpus to conduct a preliminary evaluation to see if
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statistical learning methods are applicable for the particular task, and if so, what kinds of

features are usable.

Among the above five problems, the first three address the performance issue, while the

fourth deals with the annotated corpora issue, and the fifth studies the issue of non-English

texts.

Our methodology, in general, is to consider the BioNER problem as a classification

problem and approach it by supervised learning methods. As we will discussed in the next

chapter, supervised learning has been currently the dominant approach in BioNER. Given

a training corpus with annotated BioNEs, this approach aims to learn a model with the

ability to recognize previously unseen entities. The model is characterized by distinctive

features associated with the positive and negative examples seen in the training corpus.

1.4 Summary of Contributions

As the result of studying the above problems, this thesis makes the following contributions

to BioNER research:

• A comprehensive and up-to-date survey of previous work in BioNER;

• An empirical study showing that using larger corpora to train supervised learning

models may not be a good way to improve BioNER performance;

• A supervised learning based method for BioNER that identifies NE boundaries based

on noun phrase (NP) chunks;

• A semi-supervised learning method to do BioNER when annotated corpora are not

available;

• A character-based supervised learning method as well as an annotated corpus for

BioNER in Chinese texts;

Moreover, the thesis provides statistics about language phenomena existing in the stud­

ied biomedical texts. These results and the data should be useful for future research in

BioNER, BioNLP, general NLP as well as computational linguistics.
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1.5 Thesis Organization
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The thesis is presented in the article-style format. All chapters can be read independently.

The necessary terminology is introduced (and in many cases repeated) wherever used in the

stand-alone articles.

The rest of thesis is organized as follows. Chapter 2 presents a survey of previous work

in BioNER, from which the subtopics of the thesis are identified. In Chapter 3 we study the

relationship between the NER performance and the size of annotated data used for training

a supervised model, showing that using a larger annotated corpus may not be a good way to

improve the performance for statistical learning approaches. In Chapter 4 we study how to

effectively recognize embedded NEs by training a word-based model for each level of nested

annotations. In Chapter 5 we study how to do BioNER by NP chunking, assuming that

NP chunking would help to detect NE boundaries, based on the intuition that an NE is

very likely within an NP. In Chapter 6 we study how to do BioNER when the annotated

corpus is not available. In Chapter 7 we study BioNER in Chinese texts. In Chapter 8 we

summarize our results and discuss directions for future work.
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Survey of Previous Work

A Named Entity (NE) historically refers to a phrase that denotes a specific object (or a group

of objects) of reader's interest, such as person(s), organization(s), and place(s) appearing

in news papers. Named Entity Recognition (NER) is a task that seeks to automatically

recognize the NEs in a text. In this thesis we study EioNER, aiming at identifying NEs in

biomedical text.

This chapter is a survey of the area of Biomedical Named Entity Recognition. It is

organized as follows. In Section 2.1, we classify previous BioNER work into four approaches

and discuss their strengths and weaknesses. In Section 2.2, we discuss the methods for

performance evaluation of a BioNER system. In Section 2.3, we review topics that are

closely related to EioNER. We propose future research directions and summarize the chapter

in Section 2.4.

2.1 Approaches to BioNER

2.1.1 Problem Definition

We now formally define the EioNER problem. Given a biomedical article, we assume that it

has been properly tokenized and sentence boundaries have also been properly detected. As

an NE usually does not span across two sentences, we can reduce the problem of recognizing

NEs in the article into one of recognizing NEs in each sentence. Here we do not address

the problem of anaphora resolution, which has been long studied and still remains a hard

problem. In other words, we only recognize those NEs that are explicitly expressed or

15
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1) raw sentence

2) tokenized
sentence

3) NE boundary
recognized

4)NE type
recognized

r
lL-2 gene expression and NF-kappa B activation through CD28 requires reactive
oxygen production by 5-lipoxygenase.

( Text Tokenization ]c:=::>

[ IL-2 gene expression and NF-kappa B activation through CD28 requires reactive
oxygen production by 5-lipoxygenase.

( NE Boundary Detection ]c:=::>

[ IL-2 gene expression and NF·kappa B activation through CD28 requires reactive
oxygen production by S-lipoxygenase.

[ NE Type Classification Ic:=::>

[ (1L-2 genelsene expression and (NF-kappa B}prolein activation through
(CD28}protein requires reactive oxygen production by (S-Iipoxygenase}p,ot<in'

Figure 2.1: An example of typical procedure of BioNER

mentioned in the sentence. Whenever encountering an anaphoric expression, we simply

ignore it. Under these assumptions, a sentence S that has n tokens (Le., words) in sequence

can be denoted as S =< tl, t2, t3, , tn >. Suppose we want to extract entities that belong

to k biomedical categories, CI, C2, , Ck. The problem of BioNER is to find all proper sub-

sequences of S that identify as entities of the k categories. That is, each token is associated

with one of the k category names.

Procedurely, the BioNER task can be done in two steps: NE boundary detection and

NE type classification. The NE boundary detection step is to decide if a single token or

several adjacent tokens represent an NE without considering the type of the NE. In other

words, it only distinguishes NEs from non-NEs. The NE type classification step is to assign

a specific type to each NE identified in the boundary detection step. In practice, the two

steps can also be merged into one step, as in some machine-learning based BioNER systems

that we will discuss later. Figure 2.1 shows an example of typical procedure of BioNER,

where NE boundary detection and NE type classification are separated.
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Previous approaches to the BioNER problem roughly fall into four groups: dictionary­

based, rule-based, machine-learning, and combined approaches. The dictionary-based ap­

proaches try to find names in the text based on well-formed dictionaries, where the dictio­

naries can be constructed manually or automatically. The rule-based approaches employ

pre-defined rules or patterns for matching NEs in text, where the rules and the patterns

can be manually crafted or automatically learned. The machine-learning approaches use

machine learning techniques, such as HMMs or SVMs, to induce statistical models for

biomedical NEs. Each of the approaches typically has its own strengths as well as weakness.

Therefore, two or more approaches can be combined in order to achieve better performance,

if the weakness of one approach can be remedied by the strength of another.

2.1.2 Dictionary-based Approaches

The dictionary-based approaches identify NEs in a text by looking up (e.g., string matching)

a provided list of known NEs, typically compiled from existing lexicons or databases. The

only assumption is the existence of such a list. In the biomedical domain, there are some well­

managed lexicons or databases especially for genes (e.g., GenBank), proteins (e.g., UniProt),

and chemicals (e.g., ChemIDplus ). The string matching can be exact or approximate (e.g.,

using edit distances to tolerate minor spelling variations).

The strength of this approach is that it is simple and efficient, because the string match­

ing problem has been well studied in computer science and there are various efficient algo­

rithms available. The major problem is that the performance in terms of accuracy usually

is not satisfactory. The main reason is that most lexicons have limited coverage, typically

specialized to some particular domains and usually not up-to-date. Other reasons include

spelling variations (e.g., punctuation and word order) and homonymy (e.g., manyabbrevi­

ations share lexical forms with common English words).

The spelling variation problem can be alleviated by using approximate string-matching

techniques, however, such elastic-matching methods have much greater computational cost

than exact-matching techniques. The homonymy problem is more difficult to solve than

spelling variation, and typically requires computationally expensive analyses of syntax and

semantics. Below we will review some representative works that adopt this approach.

Hirschman et al [48] employed a simple pattern matching strategy, to locate genes using

gene names in FlyBase. They reported very low precision rate (2% in full articles and 7% in

abstracts) with recall ranging from 31% for abstracts to 84% for full articles. They suggested
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that the main reason for such poor precision was homonymy, as many gene names shared

their lexical forms with common English words (e.g., gene name/abbreviations such as an,

by, can, and for).

Thason et al [123] reported that name variations could account for up to 79% of the

missing genes if straightforward string matching was used. They indicated that punctuation

variation (e.g., bmp-4 and bmp4), using different numeral styles (e.g., syt4 and syt iv),

different transcriptions of Greek letters (e.g., iga and ig alpha), and word order variations

(e.g., integrin alpha 4 and alpha 4 integrin) were the most frequent causes of gene name

recognition failures.

Tsuruoka and Tsujii [122] designed a probabilistic generator of spelling variants based

on edit distance operations (namely substitution, deletion, and insertion of characters and

digits). Only NEs with edit distance less or equal to one were considered as spelling variants.

They reported improved lookup performance especially for long NEs. In [121] they further

presented an adjusted method for approximate string matching against a dictionary of

protein names. By fine tuning the cost function for edit operations and using a naive

Bayesian classifier trained on protein names in GENIA corpus, they reported precision

73.5% and recall 67.2% using the same corpus.

Tanabe and Wilbur [113] processed MEDLINE documents to obtain a collection of over

two million names, using a gene and protein name tagger (called ABGene) derived from

Brill's POS tagger [11] trained on Medline abstracts to full articles. In [114] they fur­

ther explored methods to purify the collection, in order to obtain a high quality subset

of gene/protein names. Their approach was based on the generation of certain classes of

names that are characterized by common morphological features. Within each class, induc­

tive logic programming (ILP) is applied to learn the characteristics of gene/protein names.

The criteria learned in this manner were then applied to the collection.

Egorov et al [33] proposed a simple and practical dictionary-based approach for recog­

nizing proteins in Medline abstracts. They first constructed a dictionary of mammalian

proteins in a semi-automatic way from various public-domain sequence databases, followed

by an intensive expert curation step. In order to handle the variations in protein names, they

designed a specialized tokenization algorithm, instead of using approximate string matching

algorithms, to identify and tag protein name occurrences in biomedical texts. The idea was

to convert the input text into a sequence of tokens that are made from the longest sequences

of characters belonging to the same class. This conversion actually reduced the variations
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by normalizing them before the NER step. They evaluated the system, ProtScan, using

1000 randomly selected and hand-tagged Medline abstracts, reporting 98% precision and

88% recall. The processing speed was about 300 abstracts per second.

In summary, research on the dictionary-based approach has been mainly on these aspects:

(1) performance evaluation, (2) how to handle the variations in names, (3) how to (semi-)

automatically construct the dictionary. These results have suggested that the dictionary­

based approach, if used alone, would not achieve satisfactory performance, and therefore

more effort should be made on using the approach in combination with rule-based and/or

machine-learning approaches. We will discuss this issue later.

2.1.3 Rule-based Approaches

The rule-based approaches generally attempt to recognize NEs by predefined rules. The

rules typically describe common naming structures using either orthographic or lexical

clues, or morpho-syntactic features, e.g., word alphanumerical composition, the presence

of special symbols, capitalization, and special nouns or special verbs. Crafting such rules

typically requires extensive knowledge of linguistics, biology, medicine, and possibly com­

puter programming languages. In some cases, small lists of typical name constituents (e.g.,

terminological heads, prefixes, suffixes, acronyms, positive names and negative names) are

also used.

The strength of rule-based approach is that rules can be carefully designed to deal with

specific linguistic phenomena. The main problem is that developing good rules usually re­

quires extensive domain knowledge and can be very time-consuming. Moreover, the defined

rules are usually specific to a particular domain, which makes it difficult to be applied to

other domains. Some representative works that adopt this approach are reviewed below.

Ananiadou [2] implemented a computational morphological grammar and lexicon, and

applied it to medical term recognition. Observing that medical terminology heavily relies on

Greek and Latin neoclassical elements for creating terms such as erythrocyte and angioneu­

rotic, the author proposed a four-level ordered morphology to describe the term formation

patterns. However, no evaluation was reported for the proposed methodology.

Fukuda et al [37] presented a system KEX to recognize protein names using surface

clues on character strings. The system first identifies core terms (e.g., containing special

characters) and feature terms (e.g., protein and receptor). It then concatenates the terms
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by handcrafted rules and patterns, and extends the boundaries to adjacent nouns and ad­

jectives. They reported very good performance (precision=94.7%, recall=98.8%) on a small

collection of abstracts of specific domains.

Proux et al [94] studied gene names for Drosophila and found that they fall into three

categories: (1) names including special characters (32%) (e.g., Hrp54); (2) names using only

lower case letters and common English words (32%) (e.g., vamp and ogre); and (3) names

using only lower case letters but not common English words (36%) (e.g., ynd and zhr). In­

stead of using the approach proposed by [37], they employed a tagger with a nondeterministic

finite-state automaton that works in three steps: tokenization, lexical lookup, and disam­

biguation using HMM. They reported performance of (precision=91.4%, recall=94.4%).

Gaizauskas et al [38] used a manually constructed context-free grammar for protein name

recognition. They first split a protein name into component terms, based on its apparent

syntactic structure. They then added corresponding grammar rules in the process of recom­

bining the components. For example, for the enzyme name calmodulin N-methyltmnsfemse,

they recognized the first word calmodulin as a potential "enzyme modifier" by looking up

the dictionary of enzyme modifiers manually constructed from Swiss-Port and EMTREE.

They also identified the last word N-methyltmnsfemse as a potential "enzyme head", as

suggested by the suffix "-ase". They finally derived two context-free grammar rules from

the phrase:

rule!: enzyme --> enzyme_modifier, enzyme;

rule2: enzyme --> character, '-', enzyme_head;

In total, they constructed 160 rules for protein names and reported good performance on

recognizing enzyme names (precision=96%, recall=98%).

Thomas et al [116] customized existing general-purpose NE recognizers (e.g., those used

in FASTUS) for the protein NE task. Recognition was carried out in several phases using a

cascade of finite-state transducers, which recognized complex units (e.g., 3,4-dehydroproline)

and "basic phrases" that are extended to the surrounding words using domain-independent

rules for the construction of complex noun groups. Although the performance was not as

good as the above domain-dependent systems, they argued that the customization to a new

domain can be fast, reliable and cost-effective.

Franzen et al [36] developed a system called Yapex by extending the idea of KEX [37].
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In particular, they added data sources (e.g., "core" terms compiled from Swiss-Prot), addi­

tional heuristic lexical filters and results of syntactic parsing for detecting NE boundaries.

They reported performance of (precision=66.4%, recall=67.8%) for strict match, tested on

a human-annotated collection of 100 Medline abstracts.

Narayanaswamy et al [83] used an idea similar to that of KEX [37] to recognize chemical

and source NEs (e.g., cells, cell parts and organisms). They used chemical roots and suffixes

to identify chemicals, while different classes of "feature" terms are used to perform more

sophisticated classification. In addition, context and surrounding words are used for fur­

ther classification (e.g., in a context such as "expression of CD40", the word "expression"

indicates that CD40 is a protein or gene). The performance was evaluated on a manually

annotated collection of 55 Medline abstracts, achieving performance of (precision=90.4%

and recall=95.6%).

Hou and Chen [50] utilized protein/gene collocates extracted from biological corpora as

restrictions to filter false candidates for improving precision of protein/gene name recogni­

tion. In addition, they integrated the results of multiple NE recognizers (e.g., Yapex and

KeX, and ABGene) to improve the recall rates. They reported significantly improved per­

formance, using both filtering and integration strategies together (e.g., the F-score increases

by 7.83% compared to the pure Yapex method).

In summary, most rule-based approaches have focused on designing specialized high

quality rules for specialized subdomains , while some studied customizing general-purpose

NER systems to the biomedical domain. Probably because of the carefully crafted rules,

accuracy obtained with this approach typically was satisfactory. However, there are few

works addressing the essential difficulties faced by the rule-based approaches: hard to adapt

to new domains, and time-consuming in rule construction. As we will see in the next section,

the machine-learning approach should be preferred, if domain adaptability is desired. As

for reducing the time in rule construction, automatic rule construction methods might be a

future direction for the rule-based approach.

2.1.4 Statistical Machine Learning Approaches

Most machine learning methods used in BioNER have been supervised learning, using train­

ing data to learn features useful for NE boundary detection and NE type classification. The

main strength of the ML approach is that it has demonstrated better performance than the
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rule-based approach. Moreover, it is easier to adapt to new domains, compared to the rule­

based approach. The main problem with this approach is that it requires reliable training

resources.

Another main challenge is how to select discriminating features. Besides, as the number

of features for machine learning systems increases to cover more linguistic information,

data sparseness can be a serious problem for the ML methods used, resulting in degraded

generalization capability.

The supervised ML-methods that have been exploited for NER include Hidden Markov

models (HMM), Maximum Entropy (ME), Support Vector Machines (SVM), and more

recently Conditional Random Field (CRF). Note that all these machine learning methods

have also been used in NLP tasks other than NER, e.g., pas tagging and syntactic parsing.

Depending on the tasks and the types of NEs, these methods yield more or less similar

results.

Collier et al [24J used a bi-gram HMM based on lexical and character orthographic

features for recognizing NEs of 10 classes. For each sentence, the model took an input that

consists of the sequence of words in the sentence and their features. For each given class, the

model then calculated the probability of a word belonging to the class. Finally, it produced

the sequence of classes with the highest probabilities for the sentence. The evaluation was

done on a small corpus of 100 Medline abstracts, reporting an F-score of 73%.

Kazama et al [54] trained multi-class SVMs on the GENIA corpus, using position­

dependent features (such as pas, prefix, and suffix features), as well as a word cache

(captures similarities of patterns with a common keyword) and HMM state features in

order to address the data sparseness problem. In general, an F-score of 50% was achieved.

Morgan et al [81] used HMMs based on local context and simple orthographic and

case variations. They first applied simple pattern matching to identify gene names in the

associated abstracts and filtered these entities using the list of curated entries for the article.

This process created a data set that was then used to train the HMM entity tagger. The

results from the HMM tagger were comparable to those reported by other groups (F-score

of 75%). The authors suggested that their method has the advantage of being rapidly

transferable to new domains that have similar existing resources.

Shen et al [107J trained HMM using prefix/suffix information, part-of-speech (paS)

tags, and noun heads as features, in addition to orthographic features. They achieved F­

scores of 16.7-80% depending on the class (overall F-score 66.1%; the protein class F-score
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was 70.8%), and reported that POS tags (obtained by a tagger trained on the biomedical

domain) proved to be among the most useful features.

Takeuchi and Collier [112] trained SVMs with surface word forms, part-of-speech tags,

head-nouns and orthographic features. They reported better performance (Fscore of 74.2%

for 10 classes) on a small corpus of 100 Medline abstracts.

Yamamoto et al [128] combined boundary features (based on morpheme-based tokeniza­

tion) with morpho-lexical (POS tags, stems), "biomedical" (whether a given word exists

in a compiled database of biomedical resources), and syntactic features (head morpheme

information) to train SVMs on the GENIA corpus. They reported an F-score of 0.75 for

protein names, and determined that "biomedical" features were crucial for recognizing them.

(Lee et aI, 2003) suggested strict separation of the recognition and classification steps in the

SVM-based NER. For NE boundary detection, they used "standard" features (orthographic,

prefix, and suffix information) coupled with a simple dictionary-based refinement of bound­

aries of the selected candidates (by examining the adjacent words-if they appeared in the

dictionary, they were included as part of the term). For NE type classification, they com­

bined a set of class-specific "functional" words and contextual information as features. They

reported that the two-phase model showed better performance compared to the "standard"

approach, mainly because discriminative features were selected for each subtask separately.

Zhou et al [140] presented another HMM with various features, including word formation

patterns, morphological patterns, part-of-speech, semantic triggers, and name alias features.

A k-NN algorithm was proposed in order to deal with the data sparseness problem caused by

the large number of used features. They also conducted post-processing based on rules au­

tomatically drawn from training data to deal with nested NEs phenomenon. They reported

the F-score ranging from 83.6% to 86.2% evaluated on the GENIA corpus.

Lin et al [66] adopted ME for biomedical NER, incorporated with dictionary-based

and rule-based methods for post-processing. They considered orthographical features, head

nouns, and morphological features in training the ME model. Evaluated on the GENIA

corpus, they reported overall performance of precision/recall/F-score 51.2%/53.8%/52.5%

for 23 categories when simply using ME for NER. In order to overcome inaccurate bound­

ary detection of NEs and misclassication with the ME classifier, they incorporated a post­

processing stage, using dictionary-based and rule-based methods to extend the boundary of

partially recognized NEs and to adjust classification. After the post-processing the perfor­

mance was significantly improved to precision 72.9%, recall 71.1%, and F-score 72%.
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Finkel et al [35] built an NER system based on the Maximum Entropy Markov Model,

an ME enhancement of traditional HMMs. The system made extensive use of local and

syntactic features within the text, as well as external resources including the web and

gazetteers. The total number of features added up to over a million. It achieved an F-score

of 70% on the COLING 2004 NLPBAjBioNLP shared task of identifying five biomedical

named entities in the GENIA corpus.

Settles [104] built an NER system using Conditional Random Fields (CRF), which could

recognize multiple entity classes at the same time. They used orthographic features including

capitalization, affixes, and word shapes. In particular, semantic domain knowledge was

incorporated through prepared lexicons. Some lexicons were manually collected (e.g., those

of Greek letters, amino acids, chemical elements, known viruses, and abbreviations), whereas

others were automatically created (e.g., the lexicon of signal words by means of the Chi­

Square test). The system achieved overall performance of an F-score around 0.70, near the

current state of the art, with only simple orthographic features.

In summary, research that adopts the statistical and machine learning approach has

frequently focused on (1) adopting new ML algorithms that were successfully used in other

NLP tasks to BioNER, and (2) incorporating linguistic information as much as possible into

features. In general, the performance of ML methods is better than that of dictionary- and

rule-based approaches.

2.1.5 Combined Approaches

Since the three approaches discussed above all have their own strength and weakness, there is

a clear need for combining them to obtain better performance. In fact, some research works

introduced above already used a hybrid of different approaches. For example, Hanisch et

al [47] utilized a machine learning technique for computing optimized parameters of scoring

measures in a dictionary-based system, while Zhou et al [140] automatically constructed

rules to deal with cascaded NEs for their machine learning system. Below we will introduce

some other representative works.

Proux et al [94] used a cascade of finite state lexical tools to recognize single-word gene

names. Their method was based on a morphological POS tagger, which used a special tag

("guessed") for tokens that cannot be matched with classical transducers. Most gene names

were tagged with the "guessed" tag, and eventually confirmed through contextual analysis
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(e.g., the presence of a word gene next to a candidate token validates its status as a gene­

name). Special post-processing steps are necessary to recover or remove erroneously tagged

tokens, including the use of a dictionary of general expressions from biology. They reported

a performance of 91 % precision and 94% recall on a small corpus of 1200 sentences selected

from Flybase , a database of Drosophila genome.

Rindflesch et al [97] built a system called ARBITER for recognizing binding terms by

combining several approaches. A binding term is a noun phrase referring to a binding

entity, which can be a molecule, a genomic structure, a cell or cell component, or some

topographic aspect of a molecule, cell or cell component. They selected NPs as potential

binding terms if the NPs map to the UMLS or GenBank, or exhibit abnormal morphological

characteristics compared to a constrained list of regular English terms or contain heads

(e.g., ligand or subunit). Similar to PROPER's extension rules, simple binding terms are

joined into complex expressions under specific conditions (e.g., prepositional modification,

appositival complementation, etc). Overall, the reported precision was 79% at 72% recall.

Tanabe and Wilbur [113] proposed a combination of statistical and knowledge-based

strategies to extract gene and protein names from MEDLINE abstracts. First they applied

automatically generated rules from the Brill POS tagger [11] to extract single word gene

and protein names. These results were then filtered extensively using manually generated

rules formed from morphological clues, low frequency tri-grams, indicator words, suffixes,

and part-of-speech information. A key step during this process was the extraction of multi­

word gene and protein names that were prevalent in the literature but inaccessible to the

Brill tagger. Finally, they applied Bayesian learning to rank the documents by similarity to

documents with known gene names and showed the effect of an assumption that documents

below a certain threshold do not contain gene/protein names. They tested the method on

a collection of 56469 Medline abstracts, and obtained an F-score of 89%.

Mika et al [75] proposed a system NLProt that combines a pre-processing dictionary­

and rule-based filtering step with several separately trained SVMs to identify protein names

in the MEDLINE abstracts. The NLProt is capable of extracting protein names with a

precision of 75% at a recall of 76% after training on a corpus, which was used before by

other groups and contains 200 annotated abstracts. For the dictionary to filter irrelevant

words, such as common words, medical terms, and species names, they utilized the online

version of the Merriam-Webster dictionary (http://www.m-w.com).adictionary of medical

terms (http://cancerweb.ncl.ac.uk/omd), and the species names in UniProt Knowledgebase
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(http://us.expasy.org/cgi-bin/speciist). They also used a rule to filter names that are fol­

lowed by cell(s) or cyte(s) (e.g., CD4+T lymphocytes, Streptococcus mutans cells).

In summary, the combined approach has demonstrated the potential to obtain better

performance than any single approach. Previous works differ in the ways that the combi­

nation was implemented.

2.2 Performance Evaluation

The reported performance of most research discussed in the previous section cannot be

directly compared with each other, because they were not tested on common test corpora or

did not use the same evaluation metrics. To deal with this problem, some evaluation metrics

have been proposed, and some evaluation conferences have been held for the BioNER task,

as will be discussed below.

2.2.1 Evaluation Metrics

Most NER systems use precision, recall, and F-score to measure performance. Precision

(P) is the number of NEs a system correctly detected divided by the total number of NEs

identified by the system. Recall (R) is the number of NEs a system correctly detected

divided by the total number of true NEs contained in the input text. F-Score (F) combines

these two into a single score and is defined in the equation: F = 2 * P * R/(P + R).

As has been shown in the previous section, many BioNER systems also used these metrics

to report their performance. However, it has been noticed that the P/R/F performance

measure might not be sufficient for the BioNER task, because the boundaries and the

categories of biomedical NEs are often ambiguous. Therefore, it is necessary to design

various matching criteria to meet the needs of different applications.

Tsai et al [120J proposed some other useful metrics, as summarized in Table 2.1. Their

experiments showed that the NER performance varied with different matching criteria.

They suggested that relaxed matching criteria can be used to realistically cope with various

application requirements.
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Exact match A candidate NE can only be counted as a match if both
its boundaries and its class fully coincide with an annotated NE.

Left match If the left boundary matches exactly, the tagged NE is scored
as a match.

Right match If the right boundary matches exactly, the tagged NE is judged
as correct.

Left-or-Right If a tagged NE exactly matches either boundary of the
match human-annotated NE, the hit is counted as a match.
Partial match A detected NE is counted as correct when any fragment

composing the NE is correctly detected.
Approximate A tagged NE must be a substring of the human-annotated NE or
match vice versa. Less restricted than Left-or-right match criteria.
Name-Fragment Considering each token in an NE separately, it assesses
match what percentage of an NE has been correctly recognized.
Core-Term machine-annotated NEs must contain a core term to be considered
match correct. The core term can be defined based on the task.

Table 2.1: Various matching criteria for BioNER

2.2.2 Evaluation Conferences

Gene Name Extraction Task in BioCreAtIvE

Held in 2004, the first BioCreAtIvE challenge (Critical Assessment ofInformation Extraction

in Biology) was to provide a set of common evaluation tasks to assess the state-of-the­

art for text mining applied to biological problems. BioCreAtIvE Task lA was for gene

name extraction, in which 15 teams participated. Participants were given 10,000 annotated

sentences for training, and another 5000 sentences for testing. All the sentences were selected

from MEDLINE, tokenized and marked for mentions of "names" related to genes, including

binding sites, motifs, domains, proteins, promoters, and so on. All systems' output were

compared to the "golden standard" manually annotated names using exact match.

Among the 15 teams, four teams achieved scores over 80% F-score, with the highest

being 83%, all using some kinds of Markov model at the system's top level. However, the

teams used different techniques on their Markov models: maximum entropy, hidden Markov

models (HMM) and conditional random fields. In addition, one team also had an SVM

system at the top level: decisions were made by having two HMMs and an SVM system

vote. There were teams using manually generated rules for the task, achieving F-score

around the 67% level.
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The results are good, but still somewhat lag the best scores achieved in some other

domains such as English newswire (e.g., extraction of organization names has been reported

higher than 90% F-score). Yeh et al [131] provided an analysis of what causes the gap. They

suggested that approximately one-half of the difference in the F-score can be attributed

to the fact that gene names are often longer than organization names. The remaining

discrepancy may be due to annotation inconsistency in the biological corpora, i.e., the

ambiguity about what constitutes a gene or protein name. The common difficulty of this

task was determining the boundaries of the names. For a detailed overview of the task, we

refer readers to [131].

BioNLP Shared Task in JNLPBA

Also held in 2004, the BioNLP Shared Task was organized by the international Joint Work­

shop on. Natural Language Processing in Biomedicine and its Applications (JNLPBA),

focusing on recognizing biological NEs. The training data came from GENIA version 3.02,

containing 2000 annotated MEDLINE abstracts that were selected based on keyword hits

for the MeSH terms human, blood cells, and transcription factors. There were 36 classes of

biological NEs, however, only 5 were used for the shared task: protein, DNA, RNA, cell line

and cell type. The testing data were created by annotating 404 new abstracts with the 5

classes. About one-half of the abstracts were chosen from the same domain as the training

data (i.e., retrieved using the same set of keywords), while the other half were chosen from

a more general domain, using only the MeSH keywords blood cells and transcription factors.

The test set was also subdivided according to the year of publication, resulting in somewhat

different proportions of the five classes of NEs. Results were measured in F-scores, using

exact match, right boundary match, and left boundary match.

Eight teams participated in the task. The best F-score for the exact match was around

0.73, using a combination of HMM and SVM. All teams used the machine learning approach

as the backbone of their systems. Roughly four types of classification models were applied:

Support Vector Machines (SVMs), Hidden Markov Models (HMMs), Maximum Entropy

Markov Models (MEMMs) and Conditional Random Fields (CRFs). The most frequently

applied models were SVMs. Maximum Entropy Models were applied by only one system

[35], while it was the most successfully applied model in the CoNLL-2003 Shared Task of

Language-Independent Named Entity Recognition. [56J gives a detailed description of the

shared task.
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Evaluation Task Target NEs Best F-score Approach used by
the Best System

BioCreAtIvE (2004) Gene (and related proteins) 83% Maximum Entropy
BioNLP (2004) protein, DNA, RNA, 73% HMM + SVM

cell line, cell type

Table 2.2: Performances in BioCreAtIvE and BioNLP BioNER Tasks

In summary, at least two evaluation competitions have been held in the BioNER commu­

nity. The best performance is summarized in Table 2.2, where one can immediately notice

the discrepancy in performance between the two competitions. One reason could be the

differences in task difficulty. BioNLP had 5 classes of NEs to identify, while BioCreAtIvE

had only 1 class of NEs. Another reason could be due to the annotation quality in the

corpora used in the two competitions. Dingare et al [32] found that about 70% of errors

could be attributed to inconsistent annotation in the training or evaluation data used in

BioNLP.

2.3 Related Research Topics

So far we have seen the general approaches to tackling the BioNER task and their evaluation.

However, there are some outstanding issues that are directly related to the BioNER task

but are examined in related areas. In this section, we will briefly describe three of them,

namely acronyms/abbreviations detection, named entity mapping, and research in general

NER.

2.3.1 Detecting Acronyms/Abbreviations

Biomedical NEs often appear in shortened or abbreviated forms. The purpose of acronym

detection is to recognize and link an acronym to its expanded long form. In order to locate

potential acronym definitions in text, a majority of approaches use pattern matching based

on parenthetical forms (i.e., occurrences of acronyms within parentheses). Then, an optimal

definition candidate string is selected and the candidate expanded form is analyzed with the

aim of discovering the relation between the given acronym and the expanded candidate.

Approaches usually are dictionary-based, rule-based and machine-learning-based. Chang

and Hinrich [15] provided a detailed account of this area. Zahariev [138] proposed a universal
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explanatory theory for acronym acquisition and disambiguation.

2.3.2 Mapping Named Entities
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Most NER systems have done their job when the NEs in a raw text have been recognized

and output in specified format. However, in practice these recognized NEs often need to be

mapped to predefined concepts of a certain ontology, or be mapped to database entries of

previously recognized entities. This is especially important for biomedical text mining.

For example, consider two hypothetical sentences: (1) "SELL regulates p53 protein",

and (2) "p53 protein is regulated by Selectin L". The NER step recognizes p53 protein as

a protein, and SELL and Selectin L as a gene respectively. If we want to extract relations

based on the NER results, we will probably obtain two regulation relations onto p53 protein

by two different genes. However, the SELL and the Selectin L actually refer to the same

gene which controls cell adhesion during immune responses. Therefore, the two relations

actually mean the same. Even worse, it has been found that SELL actually has at least

15 aliases used in biomedical literature [91], but the NER step does not recognize them as

synonyms.

From an NLP perspective, NE mapping deals with NE variations and NE ambiguity. NE

variation can be orthographic, morphological, lexical, structural variations, and abbrevia­

tions/acronyms, as we have mentioned in Section 1.3. These variations are often combined,

to make things worse. The simplest approach to handle morphological variation is based on

stemming. We can also recognize NE variants by looking up existing dictionaries with ap­

proximate string matching and edit distance techniques. Rule-base approaches and various

machine learning approaches can be used to deal with the rest types of variations [133].

NE ambiguity arises when an NE has multiple meanings. This is typically the case when

the same NE is used to denote several different views or aspects of a concept. For example,

an occurrence of the CAT protein can be associated with several different protein entries in

a protein database, depending on the species in question. Meanwhile, some NEs (especially

acronyms) can have multiple independent meanings. For example, CAT can be a protein,

animal, or medical device. Disambiguation methods typically rely on contextual analysis of

a given occurrence, mainly using various machine learning strategies (e.g., classification) to

decide which sense is correct in the given context.
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2.3.3 Research in General NER
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To gain a better understanding of the current status of biomedical NER research, it would

be worthwhile to examine some approaches to the NER task in the general domain, and

compare them with those used in biomedical NER. In general NER, the learning task is often

formulated as a classification of single words. Every word is classified into the predefined

name categories and the additional is-not-a-name class. This notation assumes that all

adjacent items tagged with the same class-label form part of one single name (e.g., Foreign

Ministry is an organisation and George Bush is a person).

The evaluation of NER is typically based on the exact match criteria, i.e., all partially

tagged names count as mismatch (e.g., tagging only Ministry as ORG would be counted as

complete failure). The testing and training data for learning are prepared from all candidate

words for the given categories. An instance consists of the word, its features, and the correct

category (label). Among the learning methods are HMM [7], Maximum Entropy [lOJ, SVM

[112], Boosting and Voted Perceptron [26].

Features for names can represent different aspects: mere surface form of a word, lin­

guistic knowledge about the word (morphological, syntactic, semantic), and statistics of the

occurrence of the word in a document collection. In general, the approaches to biomedical

NER have evolved similarly to those in general domains, probably because many of the

methods for biomedical NER are actually adopted from those in general domains.

The state-of-the-art performance in general NER is achieved by a hybrid method [lOJ

and some have shown accuracy close to human performance [90], but the hybrid approaches

to biomedical NER have not yet shown such performances, possibly due to the lack of

high quality linguistic resources in biomedicine. By far biomedical NER has assumed the

language is English, possibly due to the fact that the majority of biomedical literature is

published in English, while general NER has begun to explore many other languages, as well

as the problem of NE alignment among multiple languages. Most approaches to biomedical

NER have focused on gene and protein names, while approaches to general NER have dealt

with language-independent issues as well.

2.4 Chapter Summary and Future Directions

We have surveyed previous research in biomedical NER, its origin from NER in the newswire

domain, and research issues particular to it. We have reviewed different approaches to the
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task, and the performance evaluation of BioNER systems. We have also briefly discussed

some research topics that are closely related to BioNER. We note that the reported perfor­

mance of some BioNER systems have been good enough for practical applications.

Based on the above survey, we identify the following issues as future directions to advance

the research and application of BioNER. They are performance, annotated corpora, and

non-English texts.

First, the ways to improve performance. For an application-oriented technique

like BioNER, performance is always the most important issue. However, the state-of-the­

art performance of gene and protein NER systems achieves F-scores between 75 and 85

percent, as reported by different research groups using a variety of approaches on different

data sets. Such a performance level is still substantially inferior to that of newswire NER

systems, which typically are above 90% F-scores, and that of human beings (over 97%).

Obviously, more research is needed to fill up the remarkable gap.

As discussed above, previous approaches tend to do feature engineering, introduce new

machine learning frameworks, and/or integrate more domain knowledge as postprocessing

to improve the performance. All of these approaches have proven to only achieve limited

success. For example, the best performance evaluated on the BioNLP-2004 Shared Task

data set is 72.94% F-score [14], just a little bit better than that of the Shared Task. This

make us think of other ways to improve the performance. In this thesis, we will explore the

following potential ways:

• to use larger annotated corpora for training a model;

• to recognize nested NEs as well as non-nested NEs;

• to detect NE boundaries more effectively (possibly with the help of NP chunking);

The second issue is about annotated corpora. This issue is important in that all

statistical machine learning based methods require annotated corpora as the training data.

However, it is very costly to create a good corpus such as the GENIA corpus for the biomed­

ical domain. Besides, our own work has shown that even if a larger corpus were available,

we would not be able to improve the performance as much as we expected. Given the result,

we believe that there would be applications where BioNER is wanted without having an

annotated corpus. In this thesis, we will study this issue.

The third issue is about non-English biomedical texts. Currently most BioNER

research is done for English texts, while there are millions of non-English biomedical texts
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which have been collected and are ready for bio-text mining but have been largely ignored.

Non-English texts will likely present language processing challenges different from English,

and thus can not be addressed by simply porting the techniques developed for English texts.

In this thesis, we will study how to do BioNER in Chinese texts.

Besides, we also identify the following issues that are important but still open problems

in BioNER. We will not address them in this thesis and will leave them as future work.

• Inferencing across Sentences: Given a text, most approaches so far recognize the NEs

sentence by sentence, without considering clues across sentences. This could be one

reason for the low reported performance. Intuitively, information across sentences can

be very useful for the BioNER task, especially when one NE appears in more than

one sentence of the same text. For example, the NE might be easier to identify in one

sentence than in another, and thus if it had already been identified in the easier one,

it is not necessary to solve it in the harder one.

• From abstract to full text: Most previous works have been focusing on Medline ab­

stracts, probably due to the easy access via the PubMed service. For the ultimate

purpose of text mining in biomedical literature, there is also an obvious need to mine

the full text. Intuitively, there would be remarkable linguistic differences between an

abstract and its full text. A simple migration from the former to the latter would lead

to degraded performance. Therefore, it is necessary as well as non-trivial to investigate

the task in the full text environment.



Chapter 3

BioNER by Machine Learning

Supervised machine learning methods have been widely used for NER and other NLP tasks.

Differing in the way of learning, these methods all require a set of labeled data for training

and attempt to learn a model from the data. Some popular methods that have been exploited

for NER are Hidden Markov models (HMM), Maximum Entropy (ME), Support Vector

Machines (SVM), and more recently Conditional Random Fields (CRF). These methods

have also been used in other NLP tasks, e.g., POS tagging and syntactic parsing.

When applying supervised learning to a classification problem, a rule-of-thumb is that

the more labeled data used for training, the better the classification performance. Therefore,

it seems natural to use a larger annotated corpus to train an NER model as a straightforward

way of improving the NER performance (perhaps also a feasible way if not considering the

cost of annotation). In this chapter, we evaluate this idea by empirically studying the

relationship between the size of labeled data and the performance of the learned NER

model, which we call learning curve thereafter. In particular, we use SVM and CRF as the

supervised learning methods to evaluate the relationship on the BioNLP-2004 Shared Task

data set. Our results show that the learning curves will quickly become flat. This suggests

that increasing training data size substantially would not lead to significant improvement

in performance.

The rest of the chapter is organized as follows. In Section 3.1, we briefly describe how

the NER task can be modeled as a classification problem so as to be handled by supervised

learning methods. In Section 3.2 and 3.3, we introduce the principles of SVM and CRF

respectively. We present how feature selection is done for supervised learning in Section 3.4.

We evaluate the learning curves of SVM and CRF in Section 3.5.

34
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3.1 Modeling NER as a Classification Problem
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To apply supervised learning methods to our NER task, here we formulate it as a classi­

fication problem. Since an NE usually does not span across two sentences, we can reduce

the problem of recognizing NEs in the article into one of recognizing NEs in each sentence.

Given a sentence in a biomedical article, we assume that it has been properly tokenized.

Here we do not address the problem of anaphora resolution [79], which still remains a hard

problem in NLP. In other words, we only recognize those NEs that are explicitly expressed

or mentioned in the sentence. Whenever encountering an anaphoric expression, we simply

ignore it.

Under these assumptions, a sentence S that has n tokens in sequence can be denoted as

S =< tl, t2, t3, . .. ,tn >. Suppose we want to extract entities that belong to k biomedical

categories (i.e., k types of entities), CI, C2, ... , Ck. Thus the problem of BioNER actually

becomes to find all proper sub-sequences of S that identify as entities of the k categories.

That is, each token of the sentence is identified either as one of the k category names or as

not of any entity (which can be thought of as a null entity). Therefore, the task of finding

which category a token is supposed to associate with can be thought as a classification

problem which can be solved by any supervised learning methods, e.g., SVM or CRF.

There are many ways to represent the association, though. And among them, the IOB2

[99] notation is probably the one that is most commonly used in the NER community. In

this notation, each word (or token) is associated with one of the three tags B, I, 0, where a

B tag is given for every token which is at the beginning of an NE, an I tag is given for all the

following token in that NE, and an ° tag is given for all the rest tokens that are not in any

NEs. An example sentence labelled using the IOB2 notation is given in Table 3.1. Note that

there are other ways of tagging the NEs, readers are referred to [108] for further references,

which experimentally compares different tagging methods for text chunking tasks (NER can

also be seen as a text chunking task).

3.2 Support Vector Machines

SVM is based on the structural risk minimization principle from statistical learning theory

introduced by V. Vapnik [124]. It learns a linear decision hyperplane to separate positive and

negative examples by maximizing the distance to the closest data points from both classes.
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I Token I Label
IL-2 B-DNA
gene I-DNA
expression 0
and 0
NF-kappa B-protein
B I-protein
activation 0
through 0
CD28 B-protein
requires 0
reactive 0
oxygen 0
production 0
by 0
5-lipoxygenase B-protein

0

Table 3.1: An example sentence labelled using the IOB2 notation.

In its basic form, the SVM learns the linear decision hyperplane h(x) = sign{w. x + b},

described by a weight vector wand a threshold b. The input is a set of n training examples

Sn = ((Xl,Yl),oo.,(x-;',Yn» E RN,Yi E {+1,-1}.

If Sn is linearly separable, the SVM finds the hyperplane with maximum Euclidean

distance to the closest training examples. This distance is called the margin 8, as depicted

in Figure 3.1. If Sn is not linearly separable, the SVM uses either a kernel function to map

the original data into another dimensional space where the data points are linearly separable,

or tries to find a hyperplane with a soft margin the allows some degree of training error

in order to obtain a large margin. Computing the hyperplane is equivalent to solving an

optimization problem. The resulting model is actually the decision hyperplane, expressed

by wand b.

The problem of finding the hyperplane can be stated as the following optimization prob­

lem:

Minimize: ~wTw,

Subject to: Yi(WT . Xi + b) ~ 1, i = 1,2, ... , n,

where wT is transpose of vector W.

To deal with the cases where there may be no separating hyperplane due to noisy labels
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Figure 3.1: A linear SVM for a two dimensional training set
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of both positive and negative training examples, the following soft margin SVM can be used

[51]:

M · ... 1 T c",n Cllllmize. 'lW W + 6i=1 <,i,

Subject to: Yi(WT Xi + b) ~ 1 - ~i, i = 1,2, ... , n,

where C ~ 0 is a parameter that controls the amount of training errors allowed, and ~i is a

slack variable which measure the degree of misclassification of the datum Xi.

Generally speaking, the SVMs have the following advantages over other machine learning

algorithms (e.g., Naive Bayes and Decision Trees). First, they have the ability to handle

high dimension feature space (e.g., hundreds of thousands or even millions of features). This

is very useful for NER tasks where a large number of features are often necessary to achieve

high performance.

Second, they have the ability to handle learning problems where there are very few

irrelevant features. This is the case for NER tasks: most features are relevant but not very

strong in distinguishing the NEs. To make a good classifier, one has to combine many such

features, although the combination might result in some degree of redundancy. SVMs have

proven particularly good at learning from such features [51].

Third, theoretical and empirical study has shown that SVMs are good at learning from
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a sparse data space [51J. This is also desirable for NER tasks, where annotated data are

available in limited amounts.

Fourth, the SVMs in principle are able to maximize their generalizability in the presence

of noisy data [51J. This is particularly helpful for NER tasks, where the data sets often

contain many mislabelled noisy data.

The above four properties make SVMs desirable for NER, however, it is often not very

straightforward to apply SVMs to NER tasks due to two reasons. First, NER tasks often

involve multi-classes l , whereas SVMs are in principle designed for binary classification prob­

lems. Extra adaptive processing is required to allow SVMs to handle multi-classes. Second,

it is sometimes more convenient to model NER as a sequence labeling problem, in order

to better reflect the sequential properties of the language. Although the sequence labeling

problem can be further reduced to a classification problem and solved by general supervised

learning algorithms such as SVMs, it would be ideal to have an algorithm naturally designed

for the sequence labeling problem. Conditional Random Fields (CRFs), to be introduced in

the next section, are just one such algorithm.

3.3 Conditional Random Fields

CRFs belong to a type of discriminative probabilistic model that is useful for the labeling

sequential data, such as natural language text or biological sequences. In principle, a CRF

is an undirected graphical model in which each vertex represents a random variable whose

distribution is to be inferred, and each edge represents a dependency between two random

variables. The distribution of each random variable Y in the graph is conditioned on an

input sequence X. In practice, the Y can be simply interpreted as "labels" for each element

in the input sequence X. A model can be trained by learning the conditional distributions

between the Y s and feature functions from training data. The obtained model can be used

to determine the most likely assignment of a new Y given a new input sequence X and the

trained conditional distributions.

CRFs are undirected statistical graphical models, a special case of which is a linear chain

that corresponds to a conditionally trained finite-state machine. Such models are well suited

1With the IOB2 notation described earlier, if the task involves k types of NEs, there will be 2k + 1 class
labels. In the example sentence shown in Table 3.1, there are two types of NEs: DNA and protein. So five
class labels are to be used, namely, B-DNA, I-DNA, B-protein, I-protein, and O.
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x= Xt ,X2 •... ,Xn-1.Xn

Figure 3.2: A linear chain CRF

39

to sequence analysis, and CRFs in particular have been shown to be useful in part-of-speech

tagging [63], shallow parsing [105], and named entity recognition for newswire data [73].

Biomedical named entity recognition can be thought of as a sequence tagging problem:

each word is a token in a sequence to be assigned a label (e.g., B-protein for the beginning

of a protein entity, I-DNA for inside a DNA entity, 0 for outside any entities). Let ° =

(01,02, ... , On) be an sequence of observed words of length n. Let S be a set of states in a

finite state machine, each corresponding to a labell E L (e.g., B-protein, I-DNA, etc.). Let

8 = (81,82, ... , 8 n ) be the sequence of states in S that correspond to the labels assigned to

words in the input sequence 0. Linear chain CRFs define the conditional probability of a

state sequence given an input sequence to be:

1 n m

P(810) = zeXP(LL Aj!J(8i-1, 8i,0,i))
o i=l j=l

(3.1)

where Zo is a normalization factor of all state sequences, !J (8i-1, 8i, 0, i) is one of m functions

that describes a feature, and Aj is a learned weight for each such feature function.

Usually a first order Markov independence assumption with binary feature functions is

used to construct the features. For example, a feature may have a value of 0 in most cases,

and value 1 when 8i-1 is in a state with the label "0", and 8i in a state with the label "B­

Protein", and !J is the feature function "Word=ATPase E ° at position i" in the sequence.

Other feature functions that could have the value 1 along this transition are "Capitalized",

"MixedCase" , and "Suffix is ase" .
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Intuitively, the learned feature weight Aj for each feature fj should be positive for

features that are correlated with the target label, negative for features that are anti­

correlated with the label, and near zero for relatively uninformative features. These weights

are set to maximize the conditional log likelihood of labeled sequences in a training set

D = (0, l)(l), ... , (0, l)(n):

n m A~

LL(D) = Llog(P(l(i)lo(i)) - L~'
i=l j=1 20-

(3.2)

When the training state sequences are fully labeled and unambiguous, the objective

function is convex, thus the model is guaranteed to find the optimal weight settings in

terms of LL(D). Once these settings are found, the labeling for an new, unlabeled sequence

can be done using a modified Viterbi algorithm. CRFs are presented in more complete

detail by [63] and [111].

Compared to other sequential analysis algorithms such as HMMs, CRFs are conceptually

more complicated, but do not suffer from strong Markov assumptions on the input and

output sequence distributions of HMMs. Similar to SVMs, CRFs also have the potential to

incorporate large number of features. These two properties make CRFs particularly suitable

for our NER task.

3.4 Feature Selection for BioNER

To apply supervised learning methods, raw data (e.g., words in sentences) must be featur­

ized, that is, be expressed in such a way that they can be distinguished from each other as

much as possible. Previous studies have found the following types of features are generally

useful for BioNER.

• Orthographical features: they are used to capture information about capitaliza­

tion, digitalization, special characters and their combination about a word or a token.

For example, many protein names contain capital letters and digits .

• Morphological features: these refer to the roots, prefixes and suffixes of words.

This is based on the observations that many biomedical named entity names contain

roots, prefixes and suffixes of biomedical meanings. For example, haemo means blood,

aero implies oxygen.
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I in an NE I not in an NE ~ subtotal
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I having the feature 011 012 011 + 0 12

I not having the feature 0 21 022 0 21 + 022

____su_b_t_o_ta_I -LI_O--'l:..::1_+_0...:2"'-1I 012 + 022 ~ N = 0 11 + 012 + 021 + 022 I

Table 3.2: Contingency table of feature occurrences for chi-square test of independence

• Part-of-Speech features: they have been shown useful in determining boundaries

of biomedical NEs. POS tagging tools can be used to obtain this information, e.g.,

GENIA tagger 2.

• Frequent Surface Words: many words or phrases are more (or less) often used in

biomedical names, and therefore might be helpful in determining whether a word is in

an NE or not. For example, factor, receptor, protein, kinase are often seen in protein

names, while gene, promoter, site, enhancer are often used in DNA names.

• Contextual Features: words sometimes appear together. Thus information about

surrounding words might help to make decision on the current word. That is, features

of contextual words can also be features of the current words.

Not all features are useful for the classification, and sometimes it is not obvious to see

whether a feature is useful or not. While too few features might not be sufficient to learn

a good classifier, using too many features may not necessarily classify better. Also using

too many features would incur too much computation. Therefore, feature selection is often

used to filter out features that are not of good distinguishing power.

Among many feature selection methods, the chi-square test of independence (also called

Pearson's chi-square test)3 has proven very effective. What it does is test the association

between two categorical variables. In our case, we want to test whether having a feature

is associated with having an NE label. In order to use the chi-square test, we organize

related information into a contingency table of two categorical variables as shown in Table

3.2, where Oij refers to occurrences of the corresponding items.

Here the null hypotheses is that there is no association between the two variables (i.e.,

they are independent from each other), while the alternate hypotheses is that there is an

association between the two variables.

2http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/

3http://en.wikipedia.org/wiki /Pearson's_chi-square_test
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Note that in order to use the chi-square test, we assume that (1) none of the expected

values may be less than 1, and (2) no more than 20% of the expected values may be less than

5. In cases where these two assumptions are violated, we may speculate that the feature in

consideration might not be useful for the classification, because they are not even frequently

seen in the data.

The general formula for expected cell frequencies is:

g._Ti XTj

'J - N (3.3)

where Eij is the expected frequency for the cell in the ith row and the jth column, 1'; is the

total number of item jth column, and N is the total number of items in the whole table.

The formula for chi-square test for independence is:

2 (E _ 0)2
X

2
= L.. E

',J=}

(3.4)

Having the chi-square value, we can refer to a chi-square table to see if it is significant.

For the contingency table, the degree of freedom is equal to (R - 1)(C - 1), where R is the

number of rows and C is the number of columns. In our case, R = 2 and C = 2 (because

each variable takes only two possible categorial values), thus df = 1. From the chi-square

table, we can find the critical values for the desired significance levels. If the chi-square value

is greater than the critical value, we accept the null hypothesis, i.e., that the two variables

are independent; otherwise, we reject it. For example, the critical value for 0.05 significance

level is 3.8415, which means that we have about 95% chances to observe the numbers in

the contingency table, provided that the null hypothesis is correct. By the way, the critical

values for significance level 0.01 and 0.005, corresponding to 99% and 99.5% chances, are

6.6349 and 7.8794 respectively.

We applied the chi-square independence test on a set of orthographical features and

obtained 30 features whose chi-square test results are significant (see Table 3.3).

3.5 Experiments

In this section, we ran experiments on a real BioNER data set, including a training set

and an independent testing set, to obtain the learning curves of SVM and CRF. Given the

training set, we take a random sample of it to train an SVM and a CRF model. We then
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Feature f # of words # of words # of words not # of words not X~

for a word with f and with f but not with f but with f and not value
in an entity in any entity in an entity in an entity

contains '-' 26411 3076 144350 317104 41509.24
contains '(' 2091 5007 168670 315173 89.97
contains ')' 2096 5048 168665 315132 94.68
contains' /' 1928 798 168833 319382 1561.25
contains '+' 683 391 170078 319789 393.88
contains ',' 847 17178 169914 303002 7465.33
contains '.' 500 19585 170261 300595 9627.30
contains ';' 75 491 170686 319689 115.81
contains ':' 32 720 170729 319460 309.41
contains ,*, 33 1 170728 320179 58.13
contains '[' 29 149 170732 320031 26.84
contains ']' 23 152 170738 320028 36.14
1st char capital 48954 17620 121807 302560 50983.54
1st char digit 3201 3876 167560 316304 345.58
1st char lowercase 111111 250010 59650 70170 9700.13
last char capital 25125 2220 145636 317960 41620.01
last char digit 18029 4035 152732 316145 22430.02
last char lowercase 121812 265164 48949 55016 8796.39
all chars capital 18529 1763 152232 318417 29818.27
all chars digit 1525 2547 169236 317633 12.89
all chars lowercase 100650 247898 70111 72282 18475.0
capital-in-middle 32236 1428 138525 318752 59238.61
lowercase-in-middle 125501 194031 45260 126149 8148.44
digit-in-middle 9291 1817 161470 318363 11960.75
5>word-len>1 75685 224314 95076 95866 31037.81
1O>word-len>5 69336 79732 101425 240448 12985.72
15>wordJen>10 21709 15409 149052 304771 9946.00
20>wordJen>15 3294 639 167467 319541 4191.42
word-len>20 737 86 170024 320094 1090.08

Table 3.3: The results of chi-square independence test on orthographic features
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protein DNA RNA cell type cell line All
Training # ofNEs 30269 9533 951 6718 3830 51301
Data # of tokens 55117 25307 2481 15466 11217 109588
Testing # ofNEs 5067 1056 118 1921 500 8662
Data # of tokens 9841 2845 305 4912 1489 19392

Table 3.4: Entity and token distributions of the BioNLP-2004 data set
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test the models against the standalone testing set to see the performance. By varying the

sample sizes, we get a group of performance numbers from which we can draw the learning

curve. The learning curve thus show how the performance of each learning method changes

with the size of training data. Our purpose here is to illustrate the learning ability as well

as the limitations of these corpus-based learning methods for the BioNER task.

We used SVM-light4 and CRF++5 as the implementations of SVM and CRF respec­

tively. Both are freely available for research purposes, and have been previously used in

NER research (e.g., [39] and [55]).

3.5.1 BioNLP-2004 Data Set

The data set we used was the BioNLP-2004 data set. As mentioned in the introduction

chapter, this data set was used for the BioNLP-2004 Shared Task on BioNER. The training

data contains 2000 annotated Medline abstracts (18546 sentences or 492551 words in total),

while the testing set has 404 annotated Medline abstracts (3856 sentences or 101039 words in

total). The number of distinct words is 22056 for the training data and 9623 for the testing

data. Five types of entities were annotated, namely, protein, DNA, RNA, cell line, and cell

type. The numbers of occurrences of each entity type and the number of token occurrences

involved in each entity type are shown in Table 3.4. All the entities are annotated using the

IOB2 notation, where B stands for the beginning of an NE, I for inside the NE, and a for

being outside any NE. Both the training data and the testing data have been preprocessed

into the format as shown in Table 3.1. Note that in case of nested entities, only the outmost

entities (Le., the longest tag sequence) are considered for the shared task. We will discuss

more about the nested entities in next chapter.

4 available at http://svmlight.joachims.org/

5http://crfpp.sourceforge.net/
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Relative Feature Feature Feature Feature
Position Token (capitalized?) (prefix='gen' ?) (suffix='tion' ?) (... ) Label

-4 IL-2 I 0 0 ... B-DNA
-3 gene 0 1 0 ... I-DNA
-2 expression 0 0 0 ... 0
-1 and 0 0 0 ... 0
0 NF-kappa 1 0 0 ... B-protein

+1 B 1 0 0 ... I-protein
+2 activation 0 0 1 ·.. 0
+3 through 0 0 0 ... 0
+4 CD28 1 0 0 · .. B-protein
+5 requires 0 0 0 ... 0
+6 reactive 0 0 0 ... 0
+7 oxygen 0 0 0 ... 0
+8 production 0 0 1 · .. 0
+9 by 0 0 0 · .. 0

+10 5-lipoxygenase 0 0 0 ·.. B-protein
+11 0 0 0 · .. 0

45

Table 3.5: An example of the features and the context window used for SYM learning. The
example context window ranges from position -3 to position +3.

3.5.2 Features for SVM Learning

For SYM learning, we used all the types of features mentioned in the previous section. In

particular, the orthographical features were the 30 features selected by using the Chi-Square

test. For the morphological features, we used 10000 frequent prefixes and 10000 frequent

suffixes automatically generated from the training set, which are 3-5 characters long and

appear more than 3 times. The Part-of-Speech tags were provided by the GENIA Tagger,

for a total of 45 distinct POS tags. The frequent token features are made by selecting the

top 4925 distinct tokens that appear more than 3 times in the training set.

In order to capture context clues of a token, we incorporated the features of its previous

3 tokens and its next 3 tokens (i.e., the context window size is 7). An example of some

features for the tokens in the example sentence given in Table 3.1 is shown in Table 3.5.

The first column of Table 3.5 is the position of a token relative to the current token, which

is "NF-kappa" in this case. The second column is the token, while the last column is its

entity label. The third column shows the value of each token for the specified feature ("is

the token capitalized?"). If yes, the value is 1; otherwise, it is zero. The values in the

remaining columns are set similarly.

We then converted the features into SYM-light's vector data format. Note that here

each specific feature corresponds to one dimension in the resulting vector. For example, the
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30 orthographical features as shown in Table 3.3 will correspond to 30 dimensions in the

resulting vector. Without considering the context, each token corresponds to a row vector

with 25000 columns (i.e., dimensions). With the features of tokens in the context, for each

token we generate a row vector, whose dimension number is 175000, and whose values are

binary (i.e., 1 for having a specific feature while 0 otherwise).

Note that the dimension number is quite high, and the generated vectors contain many

zeros, implying the sparsity of the corresponding feature space. As discussed earlier, SVMs

have been shown relatively good at handling the high dimensionality and data sparsity,

compared to other machine learning algorithms, e.g., Decision Trees and Naive Bayes [51].

In our experiments, they were amenable to SVM-light, too.

Also note that we have five types of entities annotated with the IOB2 notation. In total,

we have 11 class labels, namely, B-protein, I-protein, B-DNA, I-DNA, B-RNA, I-RNA,

B-celUype, I-celUype, B-celUine, I-celUine, and O. We converted the multi-class problem

into a combination of 11 binary classification problems. Basically, we built a binary classifier

for each class label. When predicting the class label for a token, we ran all the 11 classifiers

and got 11 predicted values, from which we chose the one having the largest absolute value

to be the predicted class label. Though the combination looks simple, it works well for the

task.

3.5.3 Features for CRF Learning

For CRF learning, we used the feature template provided by the CRF++ package and let

the package automatically generate the features, rather than explicitly making a dimension

for each individual feature as we did for SVM learning. For this purpose, we prepared

five lists from the training set. The first and the second list contain frequent prefixes and

suffixes, the same as used for SVM learning. The third list contains about 3000 frequent

tokens, all appearing inside the entities at least 4 times. The fourth list contains about

5000 frequent tokens, all appearing outside any entities for at least four times.

We then prepared the data into the format as shown in Table 3.6. In Table 3.6, the first

column is the token, the second column is the POS tag of the token, while the last column

is the entity tag. Each of the remaining columns corresponds to one of the lists, and is set

as this: if the word matches any item of the list, it is set to 1; otherwise, it is zero. For

example, the fifth column corresponds to the list of frequent tokens inside entities. If the

current word matches any of the tokens, it is set to 1; otherwise, it is set to zero. Note that
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the pas has a freq has a freq is it is it NE
char tag? prefixes? suffixes? freq freq tag

in NEs? out NEs?

IL-2 NN 1 1 1 1 B-DNA
gene NN 1 1 1 1 I-DNA
expression NN 1 1 1 1 a
and CC 1 1 1 1 a
NF-kappa NN 1 1 1 1 B-protein
B NN 0 0 1 1 I-protein
activation NN 1 1 1 1 a
through IN 1 1 0 1 a
CD28 NN 1 1 1 0 B-protein
requires VBZ 1 1 0 1 a
reactive JJ 1 1 1 1 a
oxygen NN 1 1 0 1 a
production NN 1 1 0 1 a
by IN 0 0 0 1 a
5-lipoxygenase NN 1 1 1 0 B-protein

0 0 1 1 a

Table 3.6: Example data prepared in CRF++ format.
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here the features are used collectively rather than individually as in SVM learning. Also

note that we did not use the orthographical features, as they are not distinguishing when

used collectively.

For each item in each column of Table 3.6, we consider the previous two items, the

current item, and the next two items. That is, the context window size is 5, from -2 to

+2. The feature template for one column is shown in Table 3.7, and it is basically the same

for all the columns except the NE tag column. Note that all the features generated by the

template are called "Unigram" features in the CRF++ package, which actually correspond

to the state features of the CRF framework. The transition features of the CRF framework

are automatically generated in the CRF++ package by considering the bigrams of NE tags.

We now can estimate how many features are actually generated by the template. Assume

that there are N distinct items in one column of the data, and there are K distinct NE tags

used in the problem, then the CRF++ package will generate K N features for each item

Ti, KN2 features for each combination of two items Ti and Tj, and KN3 features for each

combination of three items Ii, 7j, and Tk. That is to say, we will have (KN +KN2 +KN3 )

state features for the column. As we only consider the bigram of NE tags for the transition

features, we will have K 2(KN +KN2 +KN3 ) such features. So the total number of features
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I template I data item to be I
used as feature

UOO:%x[-2,0] T_2
U01:%x[-1,0] T_ 1
U02:%x[0,0] To
U03:%x[1,0] T+t
U04:%x[2,0] T+2
U05:%x[-2,01/%x[-1,0] T-2T-1
U06:%x[-1,01/%x[0,O] T- 1To
U07:%x[0,0]/%x[1,0] ToT+t
U08:%x[1 ,0] /%x[2,O] T+tT+2
U09:%x[-1 ,0] /%x[O,Ol/%x[l ,0] T-1TOT+1

Table 3.7: The feature template used by CRF++ package for one column of the data shown
in Table 3.6.

is order O(CK3N3), where C is the total number of columns (as those in Table 3.6) to be

used for generating features. In our data set, we have K = 11 and N = 22,000 for the

total number of unique words in the training data. Therefore, the total number of features

considered by the CRF++ package would be of order 1015 . In fact, lots of these features do

not appear in the training data and thus can be treated as zero when we actually compute

them. In our experiments, the CRF++ package actually generated 11,510,928 features (and

kept them in memory) using the above template.

As our purpose was not to look for the features for the best performance, we did not do

further feature engineering, though it is possible as well as interesting to do it. We leave it

for future work.

3.5.4 Baseline System and Performance Measure

For comparison purposes, we built a baseline system which takes a dictionary-based ap­

proach. Given a sentence and a dictionary of known entity names, it does a longest match

through the sentence against each entry of the dictionary. For example, assume a small

dictionary contains two proteins NF-kappa Band IL-2, and one DNA IL-5 gene. Given

the example sentence shown in Table 3.1, after applying the longest matching against the

dictionary, we would have the token labels as shown in Table 3.8.

From Table 3.8, we can see that the baseline system can only identify the token NF­

kappa and B as a protein, because it exactly matches the dictionary entry NF kappa B. It
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I True Label I Dictionary Label I
IL-2 B-DNA B-protein
gene I-DNA 0
expression 0 0
and 0 0
NF-kappa B-protein B-protein
B I-protein I-protein
activation 0 0
through 0 0
CD28 B-protein 0
requires 0 0
reactive 0 0
oxygen 0 0
production 0 0
by 0 0
5-lipoxygenase B-protein 0

0 0

I Token

Table 3.8: An example of dictionary matching.

misses the other two proteins CD28 and 5-lipoxygenase, because they are not contained in

the dictionary. Besides, the dictionary matching also misses the DNA IL-2 gene. Instead

it mislabels the token IL-2 as a protein, because it uses the longest match. This example

shows that the performance of dictionary-based approaches will be affected by the coverage

of the dictionary and the matching method in use.

Given a matching method, typically, the more entries the dictionary contains, the more

likely a match is found, and thus the better the recognition performance. In our experiments,

the dictionary is collected from training data and thus independent of the testing data. In

total, the dictionary has 18582 distinct NEs, including 8640 protein, 5278 DNAs, 461 RNAs,

2063 cell types, and 2150 cell lines.

We used precision P, recall R, and F-Score F to measure NER performance. P is the

ratio of the number of correctly found NE chunks to that of found NE chunks, while R

is the ratio of the number of correctly found NE chunks to that of true NE chunks. F

is defined as (2PR)/(P + R). A found NE chunk is considered correct only if it exactly

matches the boundary of the true NE chunk. Taking the dictionary matching in Table 3.8

as an example, the baseline system predicts two proteins IL-2 and NF kappa B, but only

one (i.e., NF kappa B) is correct. So the precision for protein is 50.0%. Originally, there are
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Learning Curves of CRF,SVM,and baseline
systems

nl
iii 80 .-------------~-----....
"'0
Ol 70

---------J --+- CRF

--------j ...... SVM

baseline8 30 -- ~-------------~
rnu:. 20 ~ --------~----------..--~~----

iii 10...
~ 0 ~
o

'0'0 ~'0 rv'0 ~'0 ~~ ~~ ~~ ~~ ~~ ~~ I:)~ ~~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

" "V " "
number of sentences used for training

Figure 3.3: Learning Curves of SVM, CRF and the baseline systems. The x-axis is the
number of sentences used for training, while the y-axis is the F-score averaged over 5 random
runs.

three proteins in the sentence, but only one is correctly identified. So the recall for protein

is 33.3%. Similarly, the precision for DNA is 0, while the recall for DNA is O.

3.5.5 The Resulting Learning Curves

From the BioNLP-2004 training set, we selected a random sample of size x to train the SVM

and the CRF. The trained SVM and CRF model was then evaluated on the BioNLP-2004

testing set. We let x be 1%, 3%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of

the total number of sentences (i.e., 18546 sentences). For each size, we ran experiments for

5 times and reported averaged results. The learning curves of SVM, CRF and the baseline

system are shown in Figure 3.3. The exact-match performances of the three systems using

all of the training data are shown in Table 3.9, which also gives the precision, recall, and

F-score for each entity type.

From Figure 3.3, we can see that the SVM and CRF outperform the baseline system

on every size of the training data, in terms of the F-Score. This result demonstrates the

learning ability of machine learning techniques - they can learn to generalize from the

labeled examples provided in the training set. From the figure, we can also see the trend
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Entity CRF SVM Baseline
Type (P / R / F) (P / R / F) (P / R / F)
Protein 69.03% / 69.80% / 69.41 71.21% / 62.04% / 66.31 58.24% / 47.03% / 52.04
DNA 72.12% / 63.45% / 67.51 53.69% / 67.10% / 59.65 33.33% / 22.81% / 27.09
RNA 63.87% /64.41% /64.14 55.93% / 63.46% / 59.46 32.20% /16.96% / 22.22
celLtype 80.59% / 62.88% / 70.64 57.47% / 80.00% / 66.89 55.44% / 41.86% /47.70
celLline 56.60% / 54.00% / 55.27 46.20% / 56.48% / 50.83 32.20% / 29.65% / 30.87
[-ALL-] 70.70% /66.51% /68.54 64.37% / 65.19% /64.78 52.72% / 41.04% / 46.15
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Table 3.9: The Performance of CRF, SVM, and the baseline system using the 100% training
data

of how the performance changes with the size of the training data: it increases as the size

does. That is, the more data used for training, the better the learned model.

However, the learning curves become flat at the end, which means that the increase

in performance would be very little even if the size of training data increases a lot. This

observation is important in practice. It suggests that increasing training data size is not

an ideal way to improve the BioNER performance. Previously people often notice the fact

that it would be extremely expensive in terms of human labor to build a large annotated

corpus. Our learning curves further suggest that even if the annotation were possible, we

would not expect a big improvement in the performance.

3.5.6 Modeling the Learning Curves

In order to obtain a more accurate relation between the training data size and the BioNER

performance, we model the learning curves by curve fitting. A previous work [43] on mod­

eling the learning curves of machine learning algorithms suggests that the learning curves

could be well fit by the power law model (y = a x x b, where a > 0 and b> 0). We thus

use it to model the above CRF and SVM learning curves. The curve fitting was done using

the Curve Expert6 software. The resulting model for CRF is y = 21.7790xO.1219, while it is

y = 21.2733xo.1l68 for SVM. Here y is the F-score, and x is the number of sentences used

for training.

With the above models, we can estimate how many sentences are needed for training in

order to achieve a desired F-score, that is, x = exp(ilog(~)). The state-of-the-art perfor­

mance on the BioNLP data set is about 73% F-score. In order to achieve a 90% F-score, we

probably need about 113,500 annotated sentences for training the CRF model, and about

6http://www.ebicom.net/dhyams/cmain.htm
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230,700 annotated sentences for training the SVM model. Note that it took the GENIA

team about three to four years to annotate the 18546 sentences in the GENIA corpus. As­

suming the same annotating speed by the same team, it would take them about 18 years to

finish the amount needed for the CRF model, and about 36 years for the SVM model, both

of which are not feasible.

Even if the annotation were feasible, it would not be feasible to train an SVM or CRF

on such a large corpus. The time complexity of the SVM-light package, currently one of

the best SVM implementations, is super-linear, Le., O(NC
), in terms of the training data

size N, where c > 1 is a domain-specific or corpus-specific constant (usually between 1.2

and 1.5 as suggested in [129]). The time complexity of CRF is more difficult to estimate,

but typically super-linear in terms of the number of training sequences (or sentences in our

cases) [23]7. Given the time complexity, it can be imagined that the computation would

quickly become intractable if such a large number of sentences were used for training SVM

or CRF.

3.5.7 Discussion and Previous Work

The state-of-the-art performance on the BioNLP-2004 data set is still not satisfactory for

BioNER, varying from 70%-80% F-score depending on the targeted data sets. Two reasons

might account for it. One is the highly ambiguous nature of biomedical names, and the other

is the inconsistent annotation existing in the training and testing data. The former can be

seen in Table 3.10, while the latter in Table 3.11. Table 3.10 lists the frequency distribution

of NE tags of some common biomedical words in the training data, from which we can see

that these words are highly ambiguous and their actual meanings would have to be decided

by the context. Table 3.11 compares the frequencies of a list of words that are sometimes

labelled as single-word entities but some other times as non-entities. We are not suggesting

that all these inconsistencies are annotation errors - we are not biologists anyway thus

are not in the right position to judge, but it seems hard to attribute the inconsistent labels

purely to the ambiguity of biomedical names, especially when they can stand alone as an

entity.

7Typically CRF training requires many hundreds or thousands of iterations, each of which involves calcu­
lating of the log-likelihood and its derivative. The time complexity of a single iteration is O(L2 NTF) where
L is the number of labels, N is the number of sequences, T is the average length of the sequences, and F
is the average number of activated features of each labelled clique, which often increases with N. In our
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token total B-P I-P B-D I-D B-R I-R B-CT I-CT B-CL I-CL 0
freq freq freq freq freq freq freq freq freq freq freq freq

cell 2869 42 187 11 38 0 2 4 215 70 835 1465
gene 2307 4 72 4 1381 0 4 0 0 0 0 842
human 2298 197 29 345 26 6 0 639 141 254 106 555
protein 1894 208 1090 9 28 0 2 0 0 0 2 555
binding 1788 20 232 51 258 0 1 0 0 0 0 1226
receptor 1360 28 857 1 124 0 38 0 1 0 7 304
alpha 909 44 613 13 131 1 22 1 2 1 7 74
IL-2 820 562 13 171 30 19 1 1 1 3 3 16
T-cell 513 60 31 17 13 0 0 28 18 30 86 230
erythroid 299 24 3 10 2 3 1 73 30 11 16 126
lymphocyte 213 12 13 3 4 0 0 21 36 1 16 107
c-fos 184 15 3 99 11 30 3 0 0 0 0 23
c-jun 170 19 1 88 4 33 9 0 0 0 0 16
GATA-l 168 123 7 20 6 5 1 0 0 3 1 2
CD4 144 49 4 26 2 0 0 26 14 11 9 3

Table 3.10: The frequency distribution of some common biomedical words' NE labels over
the 11 entity tags in the BioNLP-2004 training data set.

In order to achieve better performance, recent efforts have been made mainly in three

directions: to use better machine learning algorithms, to use more features, and/or to

incorporate more domain knowledge.

In the first direction, people have tried various algorithms, from SVM [65], HMM [140],

and Maximum Entropy [66] to CRF [104]. In the second direction, people have tried features

from orthographical (e.g., word formation) [140], morphological (e.g., roots/prefixes/suffixes),

and surface word features (a.k.a., dictionaries or gazetteers) [140], to shallow syntactic fea­

tures (e.g., part-of-speech, phrase chunks) [140], and even to deep syntactic features (e.g.,

parse tree as in [35] to capture longer distance information). While some researchers try to

use a minimal set of features [31] by carefully combining different features, others tend to

use as many features as possible without paying too much attention to redundancy. As a

result, the total number of features can be well above a million, as in [35] and [14]. In the

third direction, people have tried to apply domain knowledge as much as possible in feature

selection and post-processing [140].

However, with all these efforts, the best BioNER performance on the BioNLP Shared

Task data sets, as far as we know, is the 72.94% F-score reported by Chan et al [14]. In

order to achieve higher performance, people may have to look in different directions. One

experiments, CRF training takes much longer time than SVM training.
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word frequency as entity types frequency labelled
single-word entity as non-entity ('0')

IL-2 340 protein 16
NF-kappaB 322 protein 7
monocytes 272 cell type 40
IL-4 242 protein 5
AP-1 240 protein 24
cytokines 207 protein 13
TNF-alpha 175 protein 7
IFN-gamma 170 protein 5
IL-lO 167 protein 7
lymphocytes 156 cell type 36
Stat3 134 protein 4
c-Fos 125 protein 3
c-Jun 123 protein 3
NFAT 108 protein 5
macrophages 108 cell type 11
p50 107 protein 9
p65 100 protein 5
IL-6 97 protein 8
TNF 86 protein 13
bcl-2 64 DNA 4
promoter 58 DNA 226
mRNA 55 RNA 146
promoters 52 DNA 25
genes 43 DNA 293
Jurkat 36 cell line 21
enhancer 33 DNA 81
granulocytes 31 cell type 6
leukocytes 29 cell type 3
T-cells 20 cell type 5
HL-60 21 cell line 11

54

Table 3.11: A frequency comparison of 30 words labelled as single-word entity vs. labelled
as non-entity in the BioNLP-2004 training data.
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possible direction would be using a larger annotated corpus, which has not been explored

by previous research.

Our experimental results suggest that this does not look like a promising direction, even

if we do not consider the total cost needed to manually annotate such a corpus, and the

potentially expensive computation required by learning from the large corpus. Instead, we

would suggest the BioNER community to pay attention to other directions, e.g., improving

the quality of the annotation corpus, and making use of clues across sentences.

The issue of annotation quality has been noticed by several researches, e.g., [101], [32]

and [140]. It was noticed in [101] that the GENIA corpus was annotated partly by domain

experts and partly by linguists, and no interannotator agreement for the annotation was

published. In [32], Dingare et al suggested that the low performance on the BioNLP data

set stems from high inconsistency in its annotation. They manually checked 50 errors made

by their NER system and found that 34 of the errors could be attributed to inconsistent

annotation of the training or evaluation data. In [140], Zhou et al manually examined

100 random selected errors from their recognition results, and found that about 50% of

errors can be avoided by flexible annotation scheme (e.g., regarding the modifiers in the

left boundaries) and consistent annotation. However, due to the highly ambiguous nature

of biomedical names and the prohibitive cost of human annotation, making an annotated

corpus with the desired quality would probably remain a formidable task.

Given the current level of annotation quality, it might be worth considering NER across

sentences. So far most BioNER research takes a text as a set of sentences and tries to identify

NEs within each sentence. Even if the context is considered, it is often limited within the

sentence, and seldom goes beyond a sentence. However, according to our observation on

MEDLINE abstracts, it is rather common that some NEs occur in multiple sentences, and

some of the occurrences are easier to identify than others. We believe that making use of

such clues across sentences should help to better identify NEs. Due to limited time, we did

not explore further along this direction and leave it for future work.

3.6 Chapter Summary

In this chapter, we studied the relationship between the BioNER performance and the size

of data used for training a supervised learing model. We began by introducing two popular

learning methods, namely SVM and CRF. We described their principles as well as the pros
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and cons when used for BioNER. We discussed feature selection for supervised learning.

We applied the two learning methods on the BioNLP-2004 Shared Task data sets, and

experimentally obtained their learning curves. We also modeled the learning curves by the

power law model. While the results show that both supervised learning systems outperform

the baseline system which uses exact dictionary matching, we proposed that increasing

the size of training data is not an ideal way to further improve the performance of the

two learning methods, and perhaps other corpus-based statistical learning methods. We

recommended the BioNER research community look for other directions to achieve higher

performance.



Chapter 4

Recognizing Nested Named

Entities

4.1 Introduction

Nested Named Entities (nested NEs, also called embedded NEs, or cascaded NEs), expres­

sions in which one NE contains another, are commonly seen in biomedical text. For example,

the phrase human immuneodeficiency virus type 2 enhancer refers to a DNA domain, while

its sub-phrase human immunodeficiency virus type 2 represents a virus. In the well-known

GENIA corpus, nested NEs account for 21.75% of all named entities, with up to four nesting

levels. Moreover, the nested NEs often represent important relations between entities [85],

as in the above example.

In spite of the importance of nested NEs and the fact that significant effort has been

made to annotate them (e.g., as done in the GENIA corpus), there has been limited attention

paid to recognizing them. For example, most previous studies conducted on the GENIA

corpus considered only the outmost containing NEs when encountering nested NEs, as done

in the BioNLPjNLPBA 2004 Shared Task [56J.

When the nesting structure is ignored, it is convenient to reduce the NER problem to

an NE tagging problem (or a sequence labeling problem), which can then be approached by

supervised learning methods (such as SVM and CRF, as discussed in Chapter 3), because

each token only associates with one NE label (i.e., one NE tag). However, the same tech­

niques cannot be directly applicable to nested NEs, because when the nesting structure is

57
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considered, each token in the nested entities may have multiple NE labels, one for each level

of the nesting.

In this chapter, we study how to effectively recognize nested NEs. Instead of ignoring the

annotations about the nesting structure and training the NER model all by the outermost

level NE tags, we propose to do it level-by-Ievel. That is, we train a set of models, one for

each nesting level. When used for prediction, the models can be applied to predict NE tags

on each presumed level. The advantage of doing so is that both non-nested NEs and nested

NEs can be recognized simultaneously.

We evaluated this idea on the GENIA corpus and found that the model trained on a

certain level would perform well only on testing data of the same level (i.e., tested on the

data labeled with NE tags on the same level). In other words, a model trained by using the

outmost NE tags would only be good at recognizing outmost NEs but not the inner NEs,

and vice versa. As for the performance, the combined models achieve 70.13% F-Score on

recognizing the outermost NEs, and 41.72% F-Score on the level-two inner NEs.

The rest of the chapter is organized as follows. We describe the NEs as well as the nested

NEs in the GENIA corpus in Section 4.2 and 4.3. The proposed level-by-Ievel method is

described in Section 4.4, and evaluated in Section 4.5. We briefly discuss previous work in

Section 4.6 and summarize the chapter in Section 4.7.

4.2 NEs in the GENIA Corpus

In this section, we will briefly describe the GENIA corpus l . The main purpose is to give

readers a general idea about the NEs in GENIA. Readers who are familiar with GENIA can

skip this section.

The abstracts annotated in GENIA are selected from the search results with keywords

(MeSH terms) Human, Blood Cells, and Transcription Factors. In its version 3.0x, it con­

tains 2000 MEDLINE abstracts (1999 distinct ones), 18546 sentences, 490941 tokens (19883

distinct ones), and 97876 named entities (35947 distinct ones) 2. That is, on average, there

are 9.27 sentences per abstract, 26.47 tokens and 5.28 entity occurrences per sentence.

INote that the training data of the BioNLP Shared Task 2004 was actually built on the GENIA corpus,
with all the nested structures for NEs discarded. That is, only the outmost NEs are considered there.

2 Among the 97876 NE occurrences, 5154 are annotated as "null", accounting for 2373 distinct ones of
such NEs.
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The NEs considered the GENIA Corpus are a subset of the substances and the biological

locations involved in reactions of proteins. They are annotated in XML format. For example,

one sentence reads as follows:

IL-2 gene expression and NF-kappa B activation through CD28

requires reactive oxygen production by S-lipoxygenase . (4.1)

In the GENIA corpus, it is annotated as follows:

<sentence>

<cons lex="IL-2_gene_expression" sem="G#other_name">

<cons lex="IL-2_gene" sem="G#DNA_domain_or_region">

IL-2 gene

<Icons>

expression

<Icons>

and

<cons lex="NF-kappa_B_activation" sem="G#other_name">

<cons lex="NF-kappa_B" sem="G#protein_ molecule">

NF-kappa B

<Icons>

activation

<Icons>

through

<cons lex="CD28" sem="G#protein_molecule">

CD28

<Icons>

requires reactive oxygen production by

<cons lex=IS-lipoxygenase" sem="G#protein_molecule">

S-lipoxygenase

<Icons>

</sentence>

These NEs are annotated into 36 types, based on the GENIA Ontology (see Appendix

A for the ontology tree). However, previous works typically use their super-types, e.g., the
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# of words total distinct # of words total distinct
in an NE occurrences occurrences in an NE occurrences occurrences

1 42232 5915 11 87 86
2 30058 12070 12 46 46
3 14374 8993 13 16 16
4 6033 4474 14 12 12
5 2365 2014 15 7 7
6 1240 1023 16 6 6
7 693 630 17 3 3
8 370 342 18 2 2
9 201 186 19 2 2
10 124 115 ~20 4 4

Table 4.1: Distribution of entity lengths (Le., number of words) in GENIA corpus
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BioNLP-2004 Shared Task considered only five super-types, namely, protein, DNA, RNA,

cell type, and cell line, while taking all other types as non-entities. In this chapter, we will

follow this practice by considering six general types: protein, DNA, RNA, cell type, cell line

and other name3 • Note that here other name refers to entities that are not of the other five

types, but are still entities. For readers' information, statistics about the 36 types of NEs

are listed in Appendix A.

The number of words (or tokens) in an entity name, also called entity length, varies from

one word to more than twenty words. The length distribution of GENIA NEs is shown in

Table 4.1.

4.3 Nested NEs in the GENIA Corpus

As mentioned earlier, about 22% of GENIA NEs are involved in nesting. The maximum

number of nesting levels is four, as in the following sentence:

The results identify functionally distinct epitopes on the CD4

co-receptor involved in activation of the Ras /protein kinase C

and calcium pathways (4.2)

3Note that in the BioNLP Shared Task 2004, only first five entity types were used. The other name was
not considered.
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Iwords in the entity I type of the entity I
Ras / protein molecule kinase C pathways other name
Ras / protein kinase C pathway other name
Calcium pathways other name
Ras/protein kinase C protein molucule
Ras protein molecule
protein kinase C protein molecule

Table 4.2: An example of nested NEs in the GENIA with four nesting levels

which contain the nested NEs4 shown in Table 4.2.

To make the concept of nesting more clearly understood, we distinguish between the

following seven terms:

• nested NEs: NEs that are involved in nesting; refers to those containing others and

those contained in others. For example, in the above mentioned example sentence

(4.1), 1L-2 gene expression refers to an other name, while IL-2 gene refers to a DNA.

Both are called nested NEs;

• non-nested NEs: NEs that are not involved in nesting; they do not contain others,

and are not contained in others. For example, in sentence (4.1), 5-lipoxygenase refers

to a protein. It is a non-nested NE.

• containing NNEs: NEs involved in nesting and containing other NEs. For example,

the above mentioned lL-2 gene expression is a containing NNEs.

• contained NNEs: NEs involved in nesting but not containing other NEs (Le., con­

tained by others). For example, the above mentioned IL-2 gene is a contained NNEs;

• outermost NNEs: the NNEs that contain others but are not contained in others.

For example, the 1L-2 gene expression is an outermost NNEs.

• middle NNEs: the NNEs that contain others and are contained in others. For

example, if the IL-2 in IL-2 gene expression were annotated as a protein, then the

nesting would have three levels, with the IL-2 gene being the middle NNEs;

4Note that the original phrtu3e "the Ras / protein kinase C and calcium pathways" contains a coordina­
tion, by which the entity "Ras / protein kinase C pathway" is implicitly expressed. If recovered from the
coordination, the phrase would be explicitly read tu3 "the Ras / protein kinase C pathway and the calcium
pathway". Later on in Section 4.4, we will use this explicit form tu3 an example to show how the GEN1A
annotations are converted to 10B2 notations.
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NE type number of occurrences percentage
nested NEs 36653 21.75% of all NE occurrences (97876)
non-nested NEs 61223 78.25% of all NE occurrences (97876)
containing NNEs 16144 44.05% of all nested NEs (36653)
contained NNEs 21284 58.07% of all nested NEs (36653)
outermost NNEs 15369 41.93% of all nested NEs (36653)
middle NNEs 775 2.11% of all nested NEs (36653)
innermost NNEs 20509 55.95% of all nested NEs (36653)

Table 4.3: The number of occurrences of the NEs involved in nesting

entity type occurring as occurring as occurring as
outermost NNEs middle NNEs innermost NNEs

G#protein 2342 210 9088
G#DNA 1849 221 1231
G#RNA 324 106 119
G#celLtype 498 9 791
G#celLline 544 10 173
G#otherJlame 7521 109 588

Table 4.4: Numbers of outermost NNEs, middle NNEs and innermost NNEs
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• innermost NNEs: the NNEs that are contained in others but not containing NEs.

For example, the IL-2 in the above example would be the innermost NNEs.

Note that some containing NNEs are also contained NNEs, as they may stand in the middle

levels of a nesting. The number of occurrences of these seven types of NEs is given in Table

4.3.

From Table 4.3, we can see that 21.75% of NE occurrences (36653 out of 97876) of the

GENIA corpus are involved in nesting, of which 16144 (or 44.05%) are containing entities,

implying that one containing entity may contain more than one other entity (otherwise,

there would be only 16144 x 2 = 32288 nested NEs, instead of 36653). The nested NEs

may locate at the outermost, middle and innermost levels of a nesting. The distributions of

different entity types over these different nesting levels are shown in Table 4.4.

From Table 4.4, we can see that a protein, if involved in a nesting, would more likely

occur at the innermost level than at the outermost level, which is in turn more likely than

at the middle levels. In contrast, an NE of type other name would more likely appear as

the outermost NNEs than as the innermost NNEs or the middle NNEs.
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I CC word I occurrences I examples

and 1642 alpha and beta subunits
or 184 wild-type or mutant LTRs
but not 23 OKA but not TNF stimulation
and/or 8 Spi-1 and/or Fli-1 genes
plus 4 CD2 plus CD28 adhesion molecules
as well as 3 PMA- as well as calcium- mediated activation
nor 2 neither LMP1 nor LMP2B mRNA
than 2 neonatal than adult T cells
and not 2 B and not T cells
minus 2 rectal minus oral values

Table 4.5: Distribution of NEs containing coordinating conjunction words in the GENIA
corpus

I count I
otherJlame protein 4418
protein protein 2474
DNA protein 1394
otherJlame DNA 775
DNA DNA 419
otherJlame otherJlame 380
RNA protein 348
celLtype celLtype 327
otherJlame celLtype 265
celLline protein 204

I outer entity I entity

Table 4.6: Top 10 formation patterns of nested NEs in the GENIA corpus

In the GENIA corpus, we also observe that an important way to form nested NEs is

coordination. About 2% NE occurrences contain coordinating conjunction (CC) words, Le.,

they are composed of multiple shorter entities. The common CC words include: and, or,

but not5 , etc, as shown in Table 4.5.

Nested NEs can be formed by various types of NEs. The top ten frequent formation

patterns are shown in Table 4.6, while the full ranking of all possible combinations are given

in Appendix A.

Assuming the outermost level of a nesting is level one, the number of GENIA entities at

each nesting level are shown in Table 4.7, where the entity types are collapsed into 6 major

5Here we consider but not as one word.
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NE type occurrences occurrences occurrences occurrences
at level 1 at level 2 at level 3 at level 4

Protein 24965 9856 448 15
DNA 8552 2386 69 3
RNA 719 381 8 0
Cell Type 6221 1439 30 1
Cell Line 3663 598 18 0
Other Name 19358 2181 55 0

Table 4.7: The numbers of GENIA entities at each embedded level
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types: protein, DNA, RNA, celLtype, cellJine, and otherJlame. From Table 4.7, we can

see that most NNEs occur at level one and level two, with less than 700 NNEs at level three

and level four. As the number of NE occurrences at level three and four are too few to do

machine learning, we only consider level one and level two NNEs in our experiments.

4.4 Methodology

As mentioned earlier, the GENIA corpus provides annotations of both nested NEs and

non-nested NEs of 36 entity types. In order to compare with previous work, we consider

6 super-types of the 36 entity types, namely protein, DNA, RNA, cell type, cell line, and

other name. We encode the GENIA named entity annotations using the IOB2 notation,

where each token is assigned a tag to indicate whether it is the beginning (B), inside (I), or

outside (0) of an NE.

As the maximum level of nesting in GENIA is four, we deliberately pad imaginary 0

tags to those NEs which are non-nested or involved in less-than-four levels of nesting. For

example, if a token originally belongs to a non-nested NE, then after the padding, it will

have 3 0 tags for nesting level one to three. Table 4.8 shows an example of how the padding

is done for the multiple nesting levels, where the padded NE tags are shown as italic.

As the result of NE tag padding, each token is associated with four tags, one for each

nesting level, with level one corresponding to the outermost level. By now, we are able

to reduce the nested NER problem to several one-level non-nesting NER problems, each

of which can then be handled by statistical machine learning techniques as we did in the

previous chapter. In our experiments to be described below, we will train a set of CRF

models for the nested NER problem.
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the level-one level-two level-three level-four
word NE tag NE tag NE tag NE tag

the a 0 0 0
Ras B-other-llame B-other_name B-proteinJllolecule B-proteinJllolecule

/ I-other_name I-other-llame 1-proteinJllolecule a
protein I-other_name I-other-llame 1-proteinJllolecule B-proteinJllolecule
kinase I-other-llame I-other-llame 1-proteinJllolecule 1-proteinJllolecule
C I-other-llame I-other-llame 1-proteinJllolecule 1-proteinJllolecule
pathway I-other-llame I-other-llame 0 0
and I-other-llame a 0 0
the I-other-llame a 0 0
calcium I-other-llame B-other-llame 0 0
patheway I-other-llame I-other-name 0 0

Table 4.8: An example of padding NE tags with imaginary a tags (drawn as italic)

As most NNEs in GENIA are located in the first two levels of nesting, we only use these

two levels of NE tags in the CRF training. We call the model trained on level one NE tags

the level-one model, and that trained on level two NE tags the level-two model. We will

evaluate the models using data of corresponding levels in the section below.

Here we do not consider the NNEs at level three and level four, because the number

of NNEs occurrences are too sparse to train a feasible model using a statistical machine

learning method. We suggest they might be better recognized using rule-based approaches,

and leave them for future work.

4.5 Evaluation

As we did in Chapter 3, we still use the CRF++ package for the CRF implementation. We

do 5-fold cross validation on the GENIA data set and report averaged results. In each run,

four folds are used as training data, with the remaining one fold as testing data.

As the CRF training time would increase significantly if too many features were consid­

ered in the model, here we only used the following types of features: the current token, the

pas tag, and the tokens frequently seen inside entities. The context window is set to be

(-2, +2). That is, the two words (or tokens) immediately before and after the current token

are considered.

As mentioned in the previous section, each token in the whole data set is assigned four
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levels of NE tags, corresponding to four nesting levels. We train the level-one model using

the level-one NE tags, and the level-two model using the level-two NE tags. We evaluate

each of the two models on the two levels of data respectively. The results are given in Table

4.9.

From Table 4.9, we have the following observations:

• the level-one model performs very well on the level-one testing data (overall F-Score

70.13%), but performs very poor on the level-two testing data (overall F-Score 2.30%) .

• the level-two model performs fairly well on the level-two testing data (overall F-Score

41.72%), but performs very poor on the level-one testing data (overall F-Score 2.18%).

These observations suggest that the model trained on different nesting levels should only be

used to make predictions for the data of the same nesting level. When applied to the data

of a different level, the model would not give useful predictions.

We also observe that when applied to the testing data of the same nesting level as the

training, the two models have significant differences in the NER performance in terms of the

F-Scores. This can be explained by the significant differences of NE occurrences at level-one

and level-two of the nesting, as has been shown in Table 4.7: trained on more positive data,

the level-one model is supposed to do better.

4.6 Previous Work

Although there have been a considerable number of papers published in EioNER, we know

only a few of them addressed the issue of nested NEs. In [140], a rule-based approach

was proposed to deal with nested NEs. A set of six patterns (shown in Table 4.10) are

hand-crafted, based on language patterns observed in the GENIA corpus, to generate the

nesting structure from the innermost NEs, provided that they have been recognized by an

HMM model. The evaluation was done by 10-fold cross-validation on the GENIA corpus

(Version 3.0). The results show that the rule-based processing of the nested NEs improved

the overall F-score of all NEs by 3.9, compared to that without the processing. However,

since the approach is basically rule-based, it would suffer the problems associated with

general rule-based methods, for example, difficult to adapt to a new domain. Besides, the

performance was reported in terms of all NEs, including non-nested NEs as well as nested

NEs. It was not clear how well the nested NEs were recognized.
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testing level-one model on level-one data

Entity Type Precision Recall F-Score
Protein 74.85% 72.35% 73.57%
DNA 74.08% 61.22% 66.97%
RNA 83.98% 63.95% 72.382%
cell type 78.25% 72.05% 75.02%
cell line 72.69% 62.57% 67.14%
other name 69.07% 62.75% 65.61%
All types 73.37% 67.21% 70.13%

testmg level-two model on level-two data

Entity Type Precision Recall F-Score
Protein 66.09% 42.11% 51.39%
DNA 53.47% 19.45% 28.48%
RNA 61.93% 30.37% 39.656%
cell type 54.24% 16.04% 24.62%
cell line 40.91% 9.67% 15.44
other name 46.23% 11.40% 18.27%
All types 62.35% 31.37% 41.72%

testmg level-one model on level-two data

Entity Type Precision Recall F-Score
Protein 2.80% 6.86% 3.98%
DNA 0.95% 2.85% 1.42%
RNA 1.48% 2.38% 1.81%
cell type 0.61% 2.48% 0.98%
cell line 0.44% 2.36% 0.74%
other name 0.37% 2.97% 0.65%
All types 1.48% 5.11% 2.30%

testmg level-two model on level-one data

Entity Type Precision Recall F-Score
Protein 10.66% 2.70% 4.30%
DNA 5.81% 0.60% 1.09%
RNA 7.03% 1.62% 2.62%
cell type 3.17% 0.21% 0.39%
cell line 9.93% 0.30% 0.58%
other name 3.06% 0.09% 0.17%
All types 9.16% 1.23% 2.18%

Table 4.9: NER performance of 5-fold cross validation on GENIA data
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pattern example
ENTITY := ENTITY + head noun PROTEIN binding motif --+ DNA
ENTITY := ENTITY + ENTITY LIPID PROTEIN --+ PROTEIN
ENTITY := modifier + ENTITY anti Protein --+ Protein
ENTITY := ENTITY + word + ENTITY VIRUS infected MULTICELL

--+ MULTICELL
ENTITY := modifier + ENTITY + head noun (not given)
ENTITY := ENTITY + ENTITY + head noun (not given)

Table 4.10: The six patterns used in [140] for handling nested NEs.

In a preliminary study [41], we showed that training with outermost labeling yields better

performance on recognizing outermost entities, and conversely, using the inner labeling

results in better F-scores for recognizing inner entities. The results were obtained by training

a binary SVM model on protein and DNA NEs only. In this chapter, we further extend those

results by proposing a level-by-level learning method for recognizing both the non-nested

NEs and nested NEs. Moreover, we train a CRF model for more entity types.

The most recent work we know on nested NEs is [1]. Three methods were introduced and

compared to model and recognize nested NEs. The basic idea was to reduce the nested NER

problem to one or more BID tagging problems so that existing NER tools can be used. One

of the methods, called layering, used an idea similar to our level-by-level method. However,

it does not explicitly distinguish the NEs at different nesting levels as we do. Rather, it

only distinguishes nested NEs by separating them as "containing NEs" or "contained NEs" .

Another different aspect is that we evaluate the NER performance on different nesting

levels, while only the overall NER performance (for all NE types at all levels of nesting) was

reported in [1.]. Therefore, it was not clear that how well the nested NEs themselves were

recognized.

4.7 Chapter Summary

In this chapter, we propose a level-by-level method to train supervised learning models for

recognizing nested NEs. The idea is to use the NE tags on different nesting levels separately.

We tested the idea using the GENIA corpus, where the maximum level of nesting is four.

Particularly, we train a CRF model for each nesting level, and find that the model trained

on a particular level would only predict well the NE tags of the same nesting level. Although
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evaluated only on the GENIA corpus, we expect the proposed method should be applicable

to other corpora that contain nested NEs.

A number of issues are worth consideration for future work. First, we can apply other

machine learning algorithms to see which one works best for nested NEs. Second, we can

evaluate the proposed method on other corpora that contain nested NEs. Third, we can

explore features that are suitable for different levels of nesting. The intuition here is that

NEs at different nesting levels might have different characteristics. Fourth, we can consider

how to make use of annotation information across the nesting levels. The idea is that

knowing the level one annotation of a word should benefit the recognition of its level two

annotation and so forth.



Chapter 5

BioNER by NP Chunking

Readers might have noticed that a named entity is basically a noun phrase (NP) or a

part of it. They might wonder, is it possible to do NER by an NP-based method? That is,

instead of approaching NER using a word-based classification task, can we go with a phrase­

based method? For example, could we first identify all NPs in a given sentence and then

determine which of the NPs are NEs? This seems intuitively straightforward. Moreover,

it seems feasible too, considering the fact that NP chunking has been well studied in NLP,

and its performance in the newswire domain has been very close to that of human. In this

chapter we will explore this idea for the biomedical NER task.

5.1 Motivation

In previous chapters, we have seen how the NER task can be reduced to a word-based

classification problem. In this framework, we manage to train a classifier to assign each

word of a given sentence an entity label. For this end, we express each word as a vector

in some feature space, where each dimension of the vector corresponds to a feature of the

word. We try to use features that can best represent the words as well as to distinguish each

from the others. Given a training corpus where each word in a sentence is annotated with

an entity label, we run a classification algorithm (e.g., SVM) to learn the mapping from the

vector to the label. The resulting classifier can then be used to assign entity labels to words

in previously unseen sentences.

Note that the word-based approach has actually combined the two subtasks of NER­

entity boundary detection and entity type classification - into one step. This combination

70
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has an obvious drawback in feature selection. The two subtasks may require different fea­

tures, if combined together, all the features have to be considered together in one model.

This would lead to larger feature space (Le., larger dimensions). Many supervised learning

algorithms would suffer from the increased feature dimensions, because their computation

complexity is often super-linear in terms of the number of features (e.g., SVM). Therefore,

if we do NER in the two steps, we would be able to reduce the number of features required

for each step, and thus spend less computational resources in total.

Further, using NP chunking for entity boundary detection would bring us one more

advantage. NP chunking has been well studied in NLP. The overall performance has been

very good (e.g., in the newswire domain). Thus accurate NE boundary detection could be

possible with the accurate NP chunking results, given the special relationship between the

two.

Besides the possible saving in detecting entity boundaries, making use of NP chunks may

improve the overall performance of NER by helping to identify entity boundaries more accu­

rately. This is possible because previous works on NP chunking have shown close-to-human

performance (F - score ~ 94%) on newswire texts [100]. Given that these NP chunkers

could be tuned to perform similarly well on biomedical texts, we expect entity boundary

detection could become easier with the help of the accurately separated NP chunks. More­

over, the entity type classification step may also benefit from it, because we could use more

features specifically good for entity type classification without worrying about how they

would affect entity boundary detection.

5.1.1 Dependency Between NPs and NEs

An example of how NP chunks correspond to NEs is given in Table 5.1. In the table we can

see that the NEs in the sample sentence are either within base NPs or just the base NPs

themselves.

To understand the dependency between being in an NP and being in an NE, we obtained

the contingency table from the GENIA corpus (Table 5.2) by counting how many tokens

(or words) occur in (or not in) NEs and/or NPs. From the second column of the table,

we can see that there are 109588 tokens appearing in NEs, of which 106091 also appear

in NPs, while only 3497 do not occur in an NP. This observation suggests that NEs are

strongly dependent on NPs. The chi-square independence test l on Table 5.2 shows that the
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sentence IL-2 gene expression and NF-kappa B activation through CD28
requires reactive oxygen production by 5-lipoxygenase .

base NPs IL-2 gene expression, NF-kappa B activation, CD28,
reactive oxygen production, 5-lipoxygenase

bio NEs Proteins: NF-kappa B, CD28, 5-lipoxygenase
Genes: IL-2 gene
Other types: IL-2 gene expression, NF-kappa B activation

Table 5.1: An example of base NP and NE mapping

Nurn of Tokens in an NE not in an NE Total
In an NP 106091 189463 295554
Not in an NP 3497 193500 196997
Total 109588 382963 492551
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Table 5.2: The contingency table of GENIA tokens being in an NE vs. being in an NP

dependency is statistically significant: the chi-square value = 79553.31 (degree of freedom

= 1, p-value = 5.535 for 1% level, p-value = 3.841 for 5% level, p-value = 10.83 for 0.1%

level) .

5.1.2 Background on NP Chunking

In NLP, the task of dividing a sentence into non-overlapping phrases is called text chunking.

NP chunking is part of the task, aiming to recognize the chunks that consist of noun phrases

(NPs) [100]. One characteristic of NPs is that they can be recursively defined. Two or more

adjacent shorter NPs can form a longer NP, connected by a conjunction, a preposition or

other words. For example, the compound noun phrases "IL-2 gene expression and NF-kappa

B activation", "reactive oxygen production by 5-lipoxygenase" as in the above sentence.

In order to avoid the ambiguity introduced by such recursions, here we only consider

base NPs. We define base NPs as non-recursive noun phrases ending after their nominal

head and excluding any type of postmodification (e.g., prepositional phrases, attributes,

appositions).

Base NP chunking has been a standard task in NLP, and a number of systems [lOti] have

shown good performance (F-score 90% rv 94%) on newswire texts.

1 Please refer to Chapter 3 for details about the chi-square independence test.
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Here we used CRF++ 2, an open source implementation of CRF for base NP chunk­

ing3 . We train the CRF model using the WSJ_15_18 section (containing 8936 sentences)

of the Wall Street Journal corpus, and evaluate it on the WSJ_20 section (containing

2012 sentences). Among the 12335 base noun phrases annotated in the testing set, the

trained CRF++ chunker found 12311, of which 11503 are correct (accuracy: 97.86%). The

precision/recall/F-score are 93.44%/93.25%/93.35% respectively. This is very close to the

best performance (F-score 94%) evaluated on the same data set, which was reported in [62]

using SVM.

5.2 The Proposed Method

Our proposed method consists of three steps, namely base NP chunking, base NP classifi­

cation, and NE boundary recovery. The first step is to find out all base NP chunks in a

given sentence. In our experiments, this is done by the CRF++ chunker trained on the Wall

Street Journal corpus. Given a base NP output by step one, the second step is to determine

whether it contains an NE. This is done by training a binary classifier that classifies the NP

to 1 (has an NE inside) or 0 (has no NE inside). The type of the NE is also decided in this

step. For all the base NPs that are classified as having an NE inside, we decide the NEs'

boundaries in the third step. The procedure is illustrated in Figure 5.1 for the example

sentence shown in Table 5.1.

As mentioned in the motivation section, the proposed NP-based method is hypothe­

sized to have three advantages over traditional word-based approaches. First, it can take

advantage of the high performance of NP chunking techniques. Second, it allows us to use

appropriate features for each step, resulting in a smaller feature space to be dealt with.

Third, it helps to modulize the NER process, and thus allows easy combination of different

techniques and incorporating domain knowledge, for example, using domain-specific rules

for the third step, while using machine learning methods for the first and the second step.

Note that here we have made an assumption that an NE can only be within a base

NP. Although this has been observed to hold for most NEs, there are some NEs that cross

multiple NPs. Besides, base NP chunking sometimes makes mistakes which could result in

2The package can be downloaded at http://crfpp.sourceforge.net/

3Recall that we have used the same package in Chapter 3 for NE tagging. Both tasks can be modeled by
CRF.
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IL-2 gene expression and NF-kappa B activation through CD28
requires reactive oxygen production by 5-lipoxygenase .

I

Step 1:
I

I base NP chunking I
IL-2 gene expression and NF-kappa B activation through CD28
requires reactive oxygen production by 5-lipoxygenase .

I
Step 2:

I

I classifying NP chunks to N!"J
I

[IL-2 gene expression] contains an NE of "other name"
[NF-kappa B activation] contains an NE of "other name"
[CD28] contains an NE of "protein"
[reactive oxygen production] contains no NE
[5-lipoxygenase] contains an NE of "protein"

[ Step 3:
I

I deciding NE boundary
I

[IL-2 gene expression] is anNE of "other_name"
[NF-kappa B activation] is anNE of "other name"
[CD28] is anNE of "protein"
[5-lipoxygenase] is an NE of "protein"

Figure 5.1: Illustration of the procedure of BioNER by NP chunking.
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more cases that violate the assumption. We will see how severely the violation would affect

the overall performance of NER later.

In order to classify a base NP into a type of NE, an immediate question here is how to

represent its features as a vector, in order to apply a supervised learning algorithm. In word­

based approaches, we construct the feature vectors by checking each word against the same

set of features. This way we can guarantee that all feature vectors have the same dimensions.

However, this featurization method does not work in our current setting, because base NPs

can have different number of words.

To overcome this problem, we design the following method to make features for each

base NP. We first create a feature vector for each word, following the method used in the

above mentioned word-based approaches. We then make the feature vector of a base NP

from four parts. The first part is made by merging the feature vectors of all tokens in the
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tokens feature vectors

IL-2 (I I I I 0)
gene (0 I I 00)

}expression (0 I I 0 I)
and (00 I 00)
NF-kappa (I I I 00) }
B (10000)
activation (00 I I 0) }-
through (00 I 00)

}CD28 (I I 0 I 0)
requires (0 I 0 I 0)
reactive (0 I 00 I)
oxygen (0 I I I 0)
production (0 I I 0 I)
by (00 I 00)
5-lipoxygenase (0 I I I I)

(0000 I)

merged vectors

1(02301)1

1c2 I I 00)1

1(00 I I 0)1

1(1 2 I 20)1

(2 I I 0 0, 0 0 I I 0, 0 2 3 0 I, I 2 I 2 0)

the resulting vector for the chunk

Figure 5.2: Illustration of the featurization method of an NP chunk.

NP except the head token (assuming it is the last word). The merge is done by a simple

vector addition. The second part is just the feature vector of the head word. The third part

is the concatenated feature vectors of the k tokens in the NP's left context, while the fourth

part is the concatenation of features of the k tokens in the NP's right context4 . Finally, the

four parts are concatenated together to form one long vector to represent the base NP. By

this method, we not only guarantee that base NPs of different words have feature vectors of

the same length, but also take into account the features of head words, the non-head words

and the words in context. Figure 5.2 shows an example of the featurization method for the

NP chunk "NF-kappa B activation" in the sentence of Table 5.1.

Another problem is how to assign an entity tag to a base NP. For now, we simply set it

to that of the head word (usually the last noun) of the base NP. The intuition here is that

the head word often suggests the category of the NP5. We find that this basically works well

4In our experiments, we let k = 3 based on our experience gained in word-based approaches as described
in Chapter 3.

5The linguistic relationship (both syntactic and semantic) between the head and the phrase is similar to
that formalized in head-driven phrase structure grammar (HPSG). We refer readers to [93] for more details.
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# of proteins # of DNA # of RNA # of celLtype # of celiJine
training 30269 9533 951 6718 3830
testing 5067 1056 118 1921 500

Table 5.3: Number of entities in BioNLP-2004 Shared Task data

in our experiments.

5.3 Evaluation
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We evaluate the proposed method using the data set of the BioNLP-2004 Shared Task, as

we did in Chapter 3. Here we only show the number of NEs of different types in the training

and testing set in Table 5.3, and refer the reader to Chapter 3 for other details.

For both the training data and the testing data, we apply our method step by step: to

do base NP chunking, to make a feature vector and to assign an entity type for each base

NP. We then train an SVM model for classifying a base NP to an entity type. The model is

then evaluated on the stand-alone testing data. We use SVM-light6 as the implementation

ofSVM.

5.3.1 The Assumption about NE Boundaries

We first evaluate how the performance would look like under the assumption that the NE

boundaries are exactly the base NP boundaries. Given the base NP chunks output by the

base NP chunker, we train an SVM classifier which takes a base NP chunk as input and

classifies it into any of the five entity types. The labels for the base NP chunks are set to

be the same as the type of the NE contained in it if any; otherwise, the type of the chunk

is set to non-entity. The performances for all the five NE types are measured on the testing

data set and shown in Table 5.4.

Note that the NP type classification results, although looking good, are not considering

the boundaries of the NEs. In order to recognize the actual NEs, we still need to decide the

NE boundaries.

If we simply assume the NE boundaries are just the corresponding base NPs, we have

the following NER performance for proteins (see Table 5.5), which is far inferior to that of

the BioNLP-2004 (around 70% F-score for exact match).

6The package is available at http://svmlight.joachims.orgf.
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Protein 82.43% 83.00% 82.7%
DNA 80.86% 65.04% 72.1%
RNA 73.83% 69.30% 71.5%
celLtype 90.90% 66.84% 77.0%
cellJine 82.16% 55.78% 66.4%

I Entity type I Precision I Recall IF-score I

Table 5.4: Performance (P/R/F) of classifying base NP chunks into NE types (on testing
set)

I # of matches I Precision I Recall IF-score I
Exact match 1817 35.86% 48.02% 41.06%
Right boundary match 2942 58.06% 77.75% 66.48%
Left boundary match 2178 42.98% 57.56% 49.21%

Table 5.5: The Performance of recognizing proteins using exact match, right boundary
match,and left boundary match, assuming NE boundaries are just the NP boundaries.

By examining the BioNLP-2004 data set, we observe that all the annotated NEs do

not contain a determiner (i.e., a, an, and the). However, the results of base NP chunking

included the determiner as part of an NP. In particular, we found that in the testing set,

2785 base NPs contain a or the. So we ignore the first token's tag if the token is a or

the. This adjustment involves the left boundaries of the base NP chunks. The resulting

recognition performance is shown in Table 5.6. We can see that we gain about 8% F-score

for exact match, and about 10% for left-boundary match.

5.3.2 The Problem of Boundary Mismatch

From the above experiments, we realize that boundary mismatch seems the biggest problem

to map a base NP to an NE. In order to see how severe the problem is, we count how

many words or tokens are labeled as parts of NEs but not identified as parts of base NPs.

I # of macthes I Precision I Recall IF-score I

Exact match 2177 42.96% 57.53% 49.19%
Right boundary match 2942 58.06% 77.75% 66.48%
Left boundary match 2619 51.69% 69.21% 59.18%

Table 5.6: Performance of recognizing proteins after removing all determiners from base NP
chunks when mapping them to corresponding NEs.
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token Freq in token Freq in token Freq in token Freq in token Freq in
Protein DNA RNA celLtype cellJine

( 530 ( 379 ( 32 ( 99 ( 109
) 276 ) 134 , 26 and 45 , 55
of 174 , 79 and 12 + 40 ) 44
, 102 and 78 ) 11 ) 38 and 30
and 75 ; 76 not 1 , 36 clones 21
: 16 to 70 neither 1 - 10 - 14
to 15 of 33 forms 1 subsets 9 + 12
or 12 constructs 33 chain 1 isolated 6 or 9
activated 10 upstream 32 cfms 1 not 5 not 8
+ 7 or 14 but 1 to 4 infected 7

Table 5.7: Top 10 words/tokens that appear in different types of NEs but not identified as
part of a base NP

entity training set training set testing set testing set
type (original) (base NP) (original) (base NP)

protein 30269 21418 5067 3861
DNA 9533 8688 1056 989
RNA 951 708 118 98
celLtype 6718 6197 1921 1763
cellJine 3830 3696 500 482

Table 5.8: Comparison of the number of true entities and those resulted from base NP
chunks

We found that there are a total of 3497 and 866 such occurrences of words/tokens in the

training and testing data respectively. We list the top 10 frequent words/tokens in Table

5.7. The mismatches that appeared in the training data will no doubt playa negative role

in training the SVM classifier. Besides, the 866 mismatches in the testing data could cause

misidentifying up to 17% of the 5067 entities, if we assume one such mismatch accounts for

one recognition error. In other words, the boundary mismatch does look like a big, if not

the biggest, problem.

Another problem resulting from base NP chunking is that there are fewer ntities (shown

in Table 5.8) resulting from base NP chunking, if we assume an entity exactly corresponds

to a base NP. We think this problem is also related to the errors made by the base NP

chunker we used, which is trained on newswire texts, rather than biomedical texts. We

believe that such errors could be greatly reduced if we had used a base NP chunker trained

on biomedical texts.
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and 1642 alpha and beta subunits
or 184 wild-type or mutant LTRs
but not 23 OKA but not TNF stimulation
and/or 8 Spi-1 and/or Fli-1 genes
nor 2 neither LMP1 nor LMP2B mRNA
than 2 neonatal than adult T cells
and not 2 B and not T cells
as well as 3 PMA- as well as calcium- mediated activation
plus 4 CD2 plus CD28 adhesion molecules
minus 2 rectal minus oral values

I CC word I occurrences I examples

Table 5.9: Distribution of NEs containing coordinating conjunction words in the GENIA
corpus

I CC words I occurrences I examples

and··· and··· 8 normal and leukemic Band T cell precursors
and T lymphocytes

and··· or ... 3 unstimulated and PMA- or TNF- stimulated cells
or··· or ... 1 11 alpha-chloromethyl or 11 alpha- or 11 beta-phenyl

Table 5.10: Examples of NEs containing multiple CC in the GENIA corpus

5.3.3 NEs Spanning Multiple Base NPs

There is yet another problem related to our one-base-NP-for-one-NE assumption. We find

that there are a considerable number of NEs involved in conjunctions, implying that they

are supposed to span multiple base NPs, as shown in Table 5.9. Some NEs are even involved

in multiple conjunctions, as shown in Table 5.10. Though it is hard to estimate how much

this violation of our assumption accounts for the performance reduction, there is no doubt

that the violation should be taken into consideration to improve the performance. As we

lack biomedicine domain knowledge, we leave this issue for future work.

5.3.4 Effects of POS Tags on the NP-NE Relation

Since part-of-speech (POS) is probably the most important information used in deciding

base NP boundaries, we naturally want to see how it is related to NE boundaries. We

therefore count how frequently each type of POS occurs or not in a base NP and an NE.

We use the GeniaTagger to do POS tagging on the BioNLP 2004 training data. The tagger
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achieved 98.26% F-score tested on the GENIA corpus 7. The frequencies are given in Table

5.11.

This information can help us make rules to determine NE boundaries. For example,

knowing that PRPs (Possessive pronouns) have always appeared in base NPs but not in

NEs, we can create a rule to exclude these words when we want to decide the boundary of

an NE within a base NP.

5.3.5 Adjusting Base NP Boundaries for NEs

Based on the above error analysis, especially the statistics about POS distributions over

base NPs and NEs, we make a rule to adjust the boundaries of base NPs. For those NPs

that contain an NE inside (we know this from the NP classification step), the rule prevents

words from being included in the NE if their POS tags are any of {DT, CC, RB, PRP, VBG,

WDT, FW, JJR, POS, JJS, EX, PDT, RBS, WP, NNP}, based on the frequencies in Table

5011. All these words, if appearing in an NP, are much more likely outside an NE than inside

an NE. The results of overall NER performance on testing data is given in Table 5.12. To

compare, we have also given the best performance using a word-based SVM classifier with

the same features in Table 5.13.

From Table 5.12 and Table 5.13 we can see that the POS adjustment rule does signifi­

cantly improve the NER performance, compared to that shown in Table 5.6, although it is

still about 8% less than the word-based SVM performance (dominant by protein) which we

obtained in Chapter 3. We believe that the performance could be further improved if more

domain knowledge could be incorporated to make more effective rules.

As an error analysis, we compare the number of base NPs to the number of true NEs

before and after applying the adjustment rule. They are given in Table 5.14 and Table 5.15,

respectively. The true NE numbers are given in column two for training data and column

four for testing data, while the identified base NP numbers are given in column three and

column five. Note that these identified base NPs will be used as unit data to train and

test the SVM classifier. We can see from the tables that the adjustment rule does help in

identifying NE boundaries more accurately, resulting in more NEs being identified. That is,

more positive data can be used in the training phase.

Encouraged by the significant improvement resulting from our simple rule for boundary

7See details on http://www-tsujiLisosou-tokyooacojp/GENIA/tagger/
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POS Total Freq in Freq in NP Freq not in NP Freq not in NP
Tag Freq NP and NE but not in NE but in NE and not in NE
NN 151140 72935 77708 142 355
IN 63085 1 194 270 62620
JJ 47013 13009 29870 104 4030
DT 36456 72 36341 7 36

NNS 33019 14990 18005 6 18
18440 0 17 9 18414

, 18079 133 760 298 16888 I

CC 17442 913 6068 299 10162
VBN 12804 4 25 14 12761
RB 11938 145 1420 50 10323

VBD 10164 2 26 96 10040
VBP 9393 2 17 39 9335
VBZ 9322 0 17 117 9188
CD 8898 2335 6547 7 9
TO 7615 35 82 89 7409

) 7444 957 1166 508 4813
( 7395 307 889 1157 5042

PRP 3792 0 3792 0 0
VBG 3364 6 62 23 3273
VB 3102 2 16 24 3060

WDT 2483 0 2482 0 1
MD 1931 0 0 0 1931
FW 1500 23 731 2 744

SYM 1480 118 789 117 456
: 1428 0 0 109 1319

WRB 921 0 2 0 919
JJR 454 17 271 0 166
POS 210 44 166 0 0
JJS 181 0 123 0 58
EX 153 0 153 0 0

PDT 153 0 122 (I 31
" 146 33 62 10 41

RBS 103 6 59 0 38
WP 49 0 49 (I 0
RBR 22 0 3 0 19
NNP 15 0 15 0 0

" 6 1 4 0 1
PRP$ 0 0 0 0 0

Table 5.11: Frequencies of POS occurring in base NPs and NEs

81
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I Entity type I Precision I Recall IF-score I
protein 53.68% 62.80% 57.88%
DNA 47.54% 57.70% 52.13%
RNA 50.85% 56.07% 53.33%
celLtype 54.66% 73.12% 62.56%
celLline 41.60% 58.10% 48.48%

82

Table 5.12: NER Performance of exact boundary match on testing set after applying the
boundary adjustment rule based on POS tags

I Entity type I Precision I Recall IF-score I

protein 71.21% 62.04% 66.31%
DNA 53.69% 67.10% 59.65%
RNA 55.93% 63.46% 59.46%
celLtype 57.47% 80.00% 66.89%
celLline 46.20% 56.48% 50.83%

Table 5.13: NER performance of word-based SVM classifier using the same features

Entity Training set Training set Testing set Testing set
type (original) (base NP) (original) (base NP)

protein 30269 21418 5067 3861
DNA 9533 8688 1056 989
RNA 951 708 118 98
celLtype 6718 6197 1921 1763
celiJine 3830 3696 500 482

Table 5.14: Numbers of base NPs and true NEs before the adjustment

Entity Training set Training set Testing set Testing set
type (original) (base NP) (original) (base NP)

protein 30269 26628 5067 4832
DNA 9533 10429 1056 1177
RNA 951 862 118 121
celLtype 6718 7134 1921 2096
celLline 3830 4407 500 578

Table 5.15: Numbers of base NPs and true NEs after the adjustment
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protein 91.20% 83.73% 87.30%
DNA 74.24% 84.94% 79.23%
RNA 77.97% 90.20% 83.64%

celLtype 79.59% 94.09% 86.24%
cellJine 61.80% 69.59% 65.47%

I Entity type I Precision I Recall IF-score I

Table 5.16: NER performance of exact match, assuming base NP chunks exactly match the
true NE boundaries

adjustment, we believe that if the base NP chunks reflected the actual boundaries of the

NEs very well (e.g., by using a base NP chunker trained specifically for biomedical texts),

then the NER performance of the NP-chunking based method could approach that of the

word-based performance.

To show this is possible, we did another experiment by assuming that the base NP

chunks exactly match the true NEs. This can be done by manipulating the base NP tags in

the training and testing data: if np_tag = "I" but ne_tag = "0", then reset np_tag = "0".

The resulting NER performance on the five types of NEs is given in Table 5.16.

From Table 5.16 we can see that the NER performance on all entity types would be

substantially better than those of the word-based SVM as shown in Table 5.13. This result

suggests that if NE boundaries could be accurately recovered from base NP chunks, the

proposed NP-chunking based method could classify the chunks very well and thus achieve

very good NER performance. From another perspective, this result also implies that how

one determines NE boundaries is probably the key or bottleneck issue for the BioNER task.

5.4 Chapter Summary

In this chapter, we have empirically studied how biomedical NER can be done by using base

NP chunks. The idea is inspired by the observation that although NER and NP chunking

are different tasks, they are closely related - an NE must be an NP or inside an NP. As

base NP chunking on newswire texts has achieved close-to-human performance (F > 0.90),

we conceived that NER could benefit by making use of NP chunks to decide NE boundaries.

We assumed that one base NP corresponds to one NE, and view NER as a classification

problem that classifies an NP into a category (type) of entity. Given a sentence, we do NER

in two phases. In phase one, we run base NP chunking over the sentence, assigning an NP
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tag to each word. In phase two, we decide, for each base NP, whether it corresponds to an

NE.

Two treatments were made in order to use the NE annotations of BioNLP-2004 Shared

Task data sets. First, a featurization method was designed to express an NP as a vector,

where the NP can have a varying number of words, but the vector has fixed dimensions.

Second, a set of heuristics were designed to match the boundaries of corresponding NPs and

NEs, based on the knowledge of their distributions over pas tags.

An SVM classification model was trained and tested on the BioNLP-2004 data sets. In

the training process, a sentence was first chunked into base NPs, then each NP was converted

into a vector and assigned a class label based on the NE tag of the last word in the NP,

and then an SVM model was learnt from all the base NPs in the training sentences. In the

testing process, a sentence was first chunked into base NPs, then each NP was converted

into a vector, and assigned a class label based on the model.

We obtained F-score 57% on the BioNLP-2004 evaluation data set, which is about 8%

less than that obtained by using word-based SVM learning. We conducted error analysis

and found that boundary mismatches introduced most class labeling errors in training and

testing process, while some errors were introduced by the assumption of one base NP match­

ing one NE. Provided that the base NP chunks exactly match the NEs, we obtained very

good results with F-score close to 87%.

Our study suggests that although NER is closely related to NP chunking, it is not easy

to do NER directly based on NP chunking results. The difficulty may be due to the intrinsic

difference between the two tasks: while NEs are words grouped together by their semantic

meanings, NPs are more dependent on syntactic relations (e.g., which word modifies which)

and functions (e.g., used as noun or adjective) of words. Our experience also suggests that

determining NE boundaries is probably the most difficult process in BioNER, and rule-based

methods that use linguistic patterns in combination with in-depth domain knowledge should

have the good potential to help deal with it. In this sense, the proposed NP-chunking based

method actually provides a framework to incorporate domain knowledge. Finally, our study

also brings an immediate demand to the BioNLP community: an NP chunker for texts of

the biomedical domain is highly desired.



Chapter 6

BioNER in the Absence of Human

Annotated Corpora

Biomedical Named Entity Recognition (BioNER) is an important task in biomedical text

mining. Currently the dominant approach is supervised learning, which requires a suffi­

ciently large human annotated corpus for training. In this chapter, we propose a novel

approach aimed at minimizing the annotation requirement. The idea is to use a dictionary

which is essentially a list of entity names compiled by domain experts and sometimes more

readily available than domain experts themselves. Given an unlabelled training corpus, we

label the sentences by a simple dictionary lookup, which provides us with highly reliable but

incomplete positive data. We then run a SVM-based self-training process in the spirit of

semi-supervised learning to iteratively learn from the positive and unlabelled data to build a

reliable classifier. Our evaluation on the BioNLP-2004 Shared Task data sets suggests that

the proposed method can be a feasible alternative to traditional approaches when human

annotation is not available1 .

6.1 Introduction

As we have reviewed in Chapter 2, approaches to the BioNER task basically fall into three

groups: dictionary-based, rule-based, and supervised-learning-based. The dictionary-based

1A paper based on the work described in this chapter was accepted for oral presentation in the IEEE
International Conference on Natural Language Processing and Knowledge Engineering (NLP-KE 2007) and
published in its proceedings (http://caaLcn;8086/nlpke07/) [42]
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approach assumes the presence of a dictionary of names of target types and identifies names

in text by using string-matching techniques, which makes it suffer from low coverage of

the dictionary used. The rule-based approach typically uses hand-crafted linguistic rules

(or patterns/templates) and seeks named entities by pattern-matching or template-filling.

The problem is that good rules require hard work from domain experts, and are not easily

adaptable to new domains. In recent years, supervised learning techniques have become

dominant, with better performance and adaptability. However, their major drawback is

that they need a sufficiently large annotated corpus to build an accurate model.

So far most annotation work is manually done by humans (e.g., domain experts), and

the process has proven to be time-consuming and error-prone. For example, the well-known

GENIA corpus, debuted in the year 2000 with 500 annotated Medline abstracts [115] took

about 4 years to evolve into its third version, which contains 2000 annotated abstracts.

Though it is widely used in biomedical NER as a benchmark as in the BioNLP-2004 Shared

Task [56], it has been shown to suffer from considerable inconsistencies in its annotation [32].

While annotated texts are difficult to obtain, un-annotated texts (e.g., Medline abstracts)

are more readily available. As such, active learning and semi-supervised learning have

recently attracted attention, making use of unannotated texts to reduce the requirement

of annotated texts. However, both methods, among other things, still require humans'

involvement in annotation either at the beginning or during the process of learning.

In this chapter, we consider the BioNER task in a new setting where human annotation is

not available. The idea is to use a dictionary (a list of names), instead of a human annotator,

to label sentences, and then employ a technique similar to semi-supervised learning to

automatically learn a model from the partially labelled sentences. The assumption of having

such a dictionary is sometimes easier to satisfy than that of having a human annotator.

This is the case in biomedical NER, where many names of proteins and genes can be found

in a number of established databases. Although they might have limited coverage, the

dictionaries typically are compiled by domain experts and thus are supposedly of good

quality.

The difficulty of this new setting lies in that we often cannot completely label all words

in a sentence, because some entities in it may not be covered by the dictionary. In fact,

after dictionary labeling, we will only have positive examples (i.e., those words matching

dictionary entries), but no negative examples (i.e., all other words remain unlabelled because

their true labels are not clear). Thus, the problem becomes how to learn from positive and
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unlabelled examples.

To address this issue, we propose a self-training technique using support vector machines

(SVMs) as the base learner. Given the positive and unlabelled examples, we let the SVM

iteratively identify reliable (or strong) negatives from unlabelled examples and use its own

classification results to teach itself. We evaluated our technique onthe BioNLP-2004 Shared

Task corpus and obtained encouraging results. The rest of this chapter is organized as

follows: the details of our method are presented in Section 6.2. Section 6.3 describes the

evaluation. Related work is discussed in Section 6.4. Our conclusions and future work are

discussed in Section 6.5.

6.2 The Proposed Technique

We treat the NER task as a word classification problem as we did in Chapter 3. Given a

sentence, the task is to assign a class label to each word (or token). If multiple classes are

involved, we reduce it to binary classification sub-problems. As mentioned in the introduc­

tion, our technique has two steps: (1) labelling sentences using a dictionary; (2) building

a stable classifier by learning from the partially labelled sentences. We assume that a dic­

tionary containing hundreds and even thousands of recognized entity names is not difficult

to obtain. In the biomedical domain, a number of established databases are available, for

example, SwissProt2 and GenBank3 . In this section, we will describe the details of the two

steps as well as some relevant issues.

6.2.1 Labelling Sentences Using a Dictionary

Given a sentence, we label the words in it by performing longest match through the sentence

against all entries in the dictionary. Consider the following sentence from the GENIA corpus:

IL-2 gene expression and NF-kappa B activation through CD28

requires reactive oxygen production by 5-1ipoxygenase . (6.1)

According to the GENIA annotation, here IL-2 gene is a gene, while NF-kappa B, CD28

and 5-lipoxygenase are all proteins. If the target entity type is protein, and the protein

2 A curated database of proteins managed by the Swiss Bioinformatics Institute
{http://www.ebi.ac.uk/swissprot/

3 A database of nucleotide sequences maintained by the US National Center for Biology Information
{www.ncbi.nlm.nih.gov/Genbank/}.
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dictionary we have only contains two entries: NF-kappa Band CD28, then only the 3 words

in the sentence will be labelled as positives, while all others will remain unlabelled. Note

that the protein 5-lipoxygenase is not correctly labelled, because it is not in the dictionary.

After labelling sentences using the given dictionary, we have only positive tokens but

no negative ones. Among the remaining tokens, some could be positive tokens that are not

covered by the dictionary, while all the others are those true negative tokens. We take them

as unlabelled data.

The labels for the positive tokens are reliable in most cases, except that when the token

appears in embedded entities, we might obtain false positives. This can be demonstrated by

the example sentence (6.1). Actually, the token IL-2 is also annotated as a protein when it

appears independently (e.g., not followed by the word gene) in the corpus. However, IL-2

would be labelled as positive if it were in our protein dictionary, resulting in a contradiction

with the GENIA annotation, which labels IL-2 gene as a whole as a gene.

We note that GENIA also labels IL-2 gene expression in the same sentence as some entity

that relates to IL-2 gene. Thus, we speculate that it is not unacceptable to label IL-2 as an

embedded entity, as it appears to us that the IL-2 gene is a gene that relates to protein IL-2.

We attribute such issues to ambiguity resulting from inconsistent annotation, and will leave

them to biologists to solve. In our later evaluation, we still take the GENIA annotation

as the gold standard. For all those words whose dictionary labels are different from the

GENIA annotation, we neglect the dictionary labels and treat the words as unlabelled.

6.2.2 Choosing the Base Learner

We use SVM as the base learner. As a binary classification algorithm, SVM has shown

outstanding performance in many classification problems (e.g., document classification).

Besides, it has two salient properties that are highly desirable for our task: (1) it can handle

high dimensions and tolerate sparse instance spaces [51], and (2) for each prediction, it

produces the distance from the classification boundary, which can be taken as the confidence

of the prediction. The first property allows us to associate hundreds of thousands of features

with each word, while the second property helps us to identify reliable negatives from the

unlabelled data, which are far from the classification boundary.

Here we do not describe how SVM works, which can be easily found in the SVM literature

(e.g., [52]). The basic idea of how SVM builds a classifier is illustrated in Figure 6.1. Note

that other classifiers (hyperplanes) may also separate the positive data (marked as "+")
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Figure 6.1: An illustration of a linear SVM in a two-dimensional feature space

from the negative data (marked as "-"). However, the SVM hyperplane is the one that

maximizes the margins between the two classes. The data points on the boundary are

called support vectors.

We speculate that the base learner actually can be any classification algorithm as long

as it outputs a value that measures the confidence or goodness of its prediction. In the case

of SVM, this value is the distance of a data point from the hyperplane.

As we did in Chapter 3 and Chapter 5, we still use the SVM-light package4 as the

implementation of SVM [52]. For efficiency reasons, we used the default linear kernel in our

experiments, and found that the classification accuracy is acceptable. In the future, we plan

to explore other types of kernels.

6.2.3 Selecting the Initial Negatives

Now our task becomes building a classifier from the initial positive set Po and the unlabelled

set U obtained from the dictionary labelling. For this end, we need to select the initial set

of negatives No. We do this using the algorithm as shown in Figure 6.2.

Here k is an adjustable parameter which can be set by experiments. In our evaluation,

we set it to be equal to the size of Po, which already works well. The initial classifier built in

4The package is available at http://svmlight.joachims.org/
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1. Assign to each token in Po the class label +1;
2. Assign to each token in U the class label -1;
3. Build an SVM classifier using Po and Uj
4. Classify U with the classifier;
5. Sort the predictions of U by the distance from classification boundary

in descending orderj
6. Select the bottom k words that are predicted as negatives to form

the initial reliable negative set No, while the remaining are left in
the U by resetting the class labels to 0 (meaning unlabelled);

Figure 6.2: The algorithm for selecting the initial negatives

1. Let N = No;
2. If (U is empty), go to step 8; otherwise, go to step 3j
3. Build an SVM classifier M from Po and N;
4. Classify U using the classifier M;
5. Sort the predictions by the distancej
6. Select the bottom k negatives from the predictions and add them to N;

all others are remained in U;
7. If the model is stable, go to step 8; otherwise, go back to step 2;
8. Output the final model M;

Figure 6.3: The algorithm for SVM self-training

this stage is likely not accurate. We will expand the set N by SVM self-training described

in the next section.

6.2.4 SVM Self-Training

Self-training allows the learner to teach itself. Given the positive set Po and the initial

negative set No, following the above notations, we describe the self-training algorithm in

Figure 6.3.

Note that other stopping criteria can also be used, e.g., the maximum number of iter­

ations. Instead of specifying the parameter k, we can also set a predefined cut-off value

of distance to select reliable negatives from unlabelled data. However, in our experiments,

we observe that this has actually introduced more misclassified negatives into the expanded

negative set. Thus, we did not use it.

The self-training process can be illustrated by Figure 6.4. Though we did not draw the
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Figure 6.4: Graphical representation of how the negative set is expanded in the self-training
process. The solid points are positives, while the empty points are negatives. The ellipse
Po stands for the set of initial positives, while No is the initial set of negatives obtained
by taking all unlabelled data as negatives. Ellipses N l to N4 are the expanded sets of
negatives resulted from iteration 1 to 4. H is the true SVM hyperplane, while Ho to H4
each corresponds to the hyperplane between Po and the corresponding negative set (i.e., No,
NI, N 2 , N3, and H 4, respectively).

classification hyperplane generated by the 5th (or a later) iteration, readers can imagine

that it is located right in the middle between the positive and the corresponding negative

set. And as the self-training continues, it will approach the true SVM hyperplane H.

6.2.5 Learning Without Negative Examples

Why is it possible to learn with no negative examples?

Denis et al [30J gave an explanation from a probability perspective. Using the positive

training data, we can estimate the conditional probability of example x given that it is

positive: P(xl+) . Using the unlabelled data, we can estimate the probability of x: p(x).

If the probability of the positive class can be estimated, we can calculate the conditional
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probability of x given that it is negative:

p(xl-) = [P(x) - p(+)p(xl+)]jp(-) (6.1)

where p(-) = 1 - p( +).

With the p(x[-), we can compute the probability of being positive or negative given the

probability of x by using Bayes rule as following:

p(+lx) =p(+)p(xl+)/p(x), p(-Ix) =p(-)p(xl-)/p(x).

We can then choose the one with higher probability as the predicted class.

6.2.6 Positive Set Expansion

(6.2)

Why not expand the positive set?

Ideally we hope to expand the positive set as well as the negative set, so that the

resulting classifier could approach the one built from fully annotated data. We could do the

two expansions at the same time, or at different times (e.g., first expanding the negative

set to some predefined size). However, the idea did not work well in our experiments. We

tracked the class labels assigned to selected "reliable" positives and negatives during the

self-learning. We found that a significant portion of predicted reliable positives are false

positives. In our experiments, the misclassification rate sometimes can be 40%, which is

far larger than that of the negatives. Therefore, if we also expanded the positive set, many

mislabelled data would be introduced, so that would seriously bias the classifier built in

later iterations. This could be related to the nature of the problem: positive words are in

themselves harder to identify. How to reduce the misclassification rate of the positives is

our ongoing work.

6.3 Evaluation

6.3.1 The Data Sets

As we did in Chapter 3, we use the data sets of the BioNLP-2004 Shared Task [56] in the

evaluation. Recall that the training data contains 2000 annotated Medline abstracts (in total

18546 sentences, 492551 tokens), while the testing set has 404 annotated Medline abstracts

(in total 3856 sentences, 101039 tokens). For the shared task, all entities were annotated

into 5 classes: protein, DNA, RNA, cell line, and cell type, using the IOB2 notation [99].
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1st-char_upper MHC Has_dot PU.1
1st-charlower Gene Has_comma 1,25(OH)2D3
1st_char_digit 5-lip Has-hyphen peri-kappa
Last-char_upper ROI Has..slash enhancer/promoter
Last_charlower c-myc Has_parenthesis CCK(B)
Last_char_digit CD28 Has_plus K+
UpperJnside hEpoR RomanJlum Type-II
Lowerjnside PuB2 Greek_num Gamma(c)
DigiUnside E1A Has_others FY*B, t(8;21)

I Feature name I Example ~ Feature name I Example

Table 6.1: Some orthographic features and examples

6.3.2 The Features

Feature selection is essential to any classification task. Previous studies (e.g., [140]) have

found that the orthographic, morphological, gazetteer, syntactic features are usually useful

for BioNER. As our goal in this study was not to seek the best features toward the best

performance, but rather was to evaluate the proposed method, we followed the research of

[140] by only considering the features listed below. These features, though perhaps not the

best features and not in the best combination, already gave us comparable performance.

1. Orthographical features: they were used to capture capitalization, digitalization, and

other token formation information. Some of these features and examples are given in Table

6.1

2. Morphological features: We used frequent prefixes and suffixes. Given all token

occurrences in the training set, we counted the frequencies of each prefix and suffix (3-5

chars long) of a token, and selected those occurring more than 3 times as the frequent

prefixes and suffixes respectively.

3. Part-of-Speech features: they have been shown useful in detecting boundaries of

biomedical NEs. We used the GENIA Tagger for POS tagging.

4. Frequent token features. This feature set is also called gazetteer features. Among

the distinct tokens in the training set, we took those appearing more than 3 times as the

frequent tokens.

As such, we had 25000 features for each token. In order to capture context clues of a

token, we incorporated the features of its previous 3 tokens and its next 3 tokens (Le., the

context window size is 7). In total, we used 175000 features for each token. Note that the
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same set of features have also been used in Chapter 3 for the SVM model.

6.3.3 Handling Multiple Class Labels

As we saw in Chapter 3, there are five types of entities in the data set. Annotated in

the IOB2 notation, we have 11 class labels, namely, B-protein, I-protein, B-DNA, I-DNA,

B-RNA, I-RNA, B-celUype, I-celUype, B-celUine, I-ceil_line, and O. We converted the

multi-class problem into a combination of 11 binary classification problems. Basically, we

built a binary classifier for each class label. When predicting the class label for a token, we

ran all the 11 classifiers and got 11 predicted values, from which we chose the one having

the largest absolute value to be the predicted class label. Though the combination looks

simple, it works well for the task.

6.3.4 The Input Dictionary

The dictionary used in the evaluation was built from the training set. By extracting all

the distinct entities provided in the training set, we made a 100% coverage dictionary.

This dictionary contains 18582 unique entity names, of which 8630 are proteins, 5278 are

DNAs, 461 are RNAs, 2063 are cell types and 2150 are cell lines). By randomly selecting a

subset of this 100% dictionary, we assessed the performance of our technique under different

dictionary coverages.

6.3.5 The Baseline and Skyline System

For comparison purposes, we built both a baseline and what we call a skyline system. The

baseline system took purely a dictionary-based approach, doing longest match through the

sentences against the input dictionary. The performance varies with the dictionaries used.

The overall F-score on the testing set using the 100% dictionary is given in Table 6.2, which

is close to the baseline of the BioNLP-2004 Shared Task.

The skyline system adopted a fully supervised learning approach, to simulate the best

performance that our proposed technique could possibly achieve. It used all annotations

given in the training set to train a SVM classifier (using the features as mentioned in

Subsection 6.3.2, and handling multiple class labels as described in Subsection 6.3.3). No

further post-processing was done. The performance on the testing set is shown in Table
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Entity Type Skyline System Baseline System
Precision/Recall/F-score Precision/Recall/F-score

Protein 71.21% / 62.04% / 66.31% 58.24% / 47.03% / 52.04%
DNA 53.69% / 67.10% / 59.65% 33.33% / 22.81% / 27.09%
RNA 55.93% / 63.46% / 59.46% 32.20% / 16.96% / 22.22%
celLtype 57.47% / 80.00% / 66.89% 55.44% / 41.86% / 47.70%
cellJine 46.20% / 56.48% / 50.83% 32.20% / 29.65% / 30.87%
[-ALL-] 64.37% / 65.19% / 64.78% 52.72% / 41.04% / 46.15%

Table 6.2: Performance of the skyline and the baseline system using the 100% dictinoary

6.2. The overall F-score would rank the 5th among all the 8 systems participated in the

BioNLP-2004 Shared Task.

6.3.6 Our System

We implemented the technique described in Section 6.2. Tokens were featurized as described

in Subsection 6.3.2, and class labels were handled as in Subsection 6.3.3. To simulate real

world scenarios where a perfect dictionary is hard to obtain, we used a random subset of the

above-mentioned 100% dictionary as the input dictionary. By adjusting the sampling size,

we tried 10%, 20%, up to 90% of the 100% dictionary. With the dictionary of a given size,

we labelled all sentences in the training set from which an SVM model was learned by the

self-training process. The model was then evaluated against the testing set. The base learner

was the SVM-light package with the default settings. In the self-training process, we set the

initial size of the negative set equal to that of the true positives labelled by the dictionary.

For each iteration, we select a fixed number of new negatives (Le., set the parameter k to

be 5% of initially total unlabelled tokens). We stopped the training iterations when 80% of

unlabelled tokens had been labelled, which is typically sufficient to produce a stable model.

6.3.7 Results and Discussion

Averaged over 3 runs, the overall F-scores of our system and the baseline system on all

the entity types are shown in Figure 6.5. From the results, we can see that our system

beats the baseline system that uses the same dictionary, and approaches the skyline system

performance when using larger dictionaries. For example, using the same 50% random subset

of the perfect dictionary, our system achieves a 0.46 F-score, while the baseline system has

a 0.30 F-score.
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Performance Comparison
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Figure 6.5: The overall F-scores of the prototype and baseline system under different dic­
tionary coverages.

We observed that even using the 100% dictionary to label the corpus, the performance

of our system is still about 0.1 F-score less than the skyline performance5 . This may be

due to the fact that we ignored the dictionary labels that contradict the true labels, and

did not expand the positive set in the self-training process. As a result, the number of

positive data available for our system is smaller than that for the skyline system. Thus the

trained model is less accurate. Also note that the improvement of the self-training upon

the baseline was nearly constant (about 0.15 F-score) for every size of the used dictionary,

which coincides with that of the skyline over the baseline. These observations suggest that,

given the learning ability of the base learner, properly expanding the positive set would be

the key to further improving the final performance of the self-training method.

5Note that the skyline performance is not shown in Figure 6.5, because it assumes all available annotation
are used for training and does not vary with the dictionary coverage.
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6.4 Related Work

6.4.1 Supervised Learning in NER

A number of supervised learning algorithms have been explored in the newswire domain,

for example, HMM [78], Maximum Entropy [9], SVM [72], and CRF [73]. Supervised

learning based systems have shown better performance than rule-based systems, e.g., [139].

In the biomedical domain, the representatives are SVM [65], HMM [140], Maximum Entropy

[66] and CRF [104]. Two best-known shared tasks held in this area are BioNLP [56] and

BioCreAtIvE [131], where most participants used supervised learning techniques.

6.4.2 Using Unlabelled Data in NER

The idea of employing unlabelled data was first introduced to the NLP community by

Yarowsky [130] for the task of word sense disambiguation. Collins and Singer [26] probably

were the first to use unlabelled data for NE classification. RUoff and Jones [96] proposed a

bootstrapping method for NER in web documents by iteratively learning language patterns

from unlabelled text. Ando and Zhang [5] presented a structural learning paradigm for

semi-supervised learning, which aims to learn the most predictive low-dimensional feature

projection from unlabelled data. Shen et al [107] studied active learning for NER by using

multi-criteria in example selection.

6.4.3 Using Unlabelled Data in Text Classification

Much previous work using unlabelled data involved text classification (or document cate­

gorization), where semi-supervised learning was studied along two lines. One line of work

requires a small set of labelled texts and tries to use a large set of unlabelled texts to aug­

ment the labelled set. Blum and Mitchell [8] proposed co-training which uses two distinct

views of each document. Nigam and Ghani [86] studied the effectiveness and applicability of

co-training. Joachims [52] introduced Transductive SVMs to minimize misclassifications of

unlabelled documents. We did not use the popular co-training algorithm, because it has two

conditions: (1) it requires a natural split of the feature set, and (2) each subset of features is

sufficient to train a reliable classifier. In the case of biomedical NER, the second condition

seems hard to satisfy, because currently the best performance (F-score 70%) was achieved

by using all the available features plus some post-processing heuristics [56].
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Another line of work addresses practical tasks where only positive (but no negative)

examples and unlabelled examples are provided. In order to build a classifier, one has to

first identify reliable negative examples. Algorithms proposed for this purpose include Spy

in S-EM [68], 1-DNF in PEBL [136], and NB in [67]. Once reliable negative examples have

been selected, an iterative process like that in semi-supervised learning can be applied, for

example, Mapping-Convergence of SVM in [136], and NB plus EM in [68].

Our work is more similar to the second line of work. However, ours is different in that

we use a dictionary to label the text instead of requiring any human involvement. Besides,

we use an SVM to identify reliable negatives, and let the SVM teach itself in later iterations.

Also, the task we study is NER, which is different from text classification. To our knowledge,

[53] is probably the most similar work to ours, which studied semi-supervised learning for

general NER. However, their approach required preliminary chunking of syntactic categories

(Le., noun phrases, verb phrases, and prepositional phrases). In other words, they only

considered the potential semantic relations between a noun phrase and its context. If their

work can be considered phrase-based, ours is purely token-based in the sense that we do

not assume any phrase-chunking as pre-processing.

6.5 Chapter Summary

We address the problem of how to recognize named entities in biological text in the absence

of any human annotated corpus. The idea is to use a dictionary lookup to label the training

sentences. Given the positive words labelled by the dictionary, we design an SVM-based

self-training algorithm to identify negative words from unlabelled text so as to build an

accurate classifier.

The purpose is to minimize the requirement of annotated corpora by traditional super­

vised learning algorithms. Our preliminary experiments suggest that this is possible, largely

because the used dictionary is actually made by the domain experts. In this sense, the idea

is somewhat equivalent to asking the dictionary to do the annotation job (as a dummy

annotator).

We plan to study the following issues based on this work. First, whether the method

can be applied to NER tasks in other domains (e.g., clinical text), so as to develop the

proposed technique into a general method. Although our intuition suggests that this is the

case, we still need to empirically demonstrate it. Second, we shall study how to improve
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the performance up to the level achieved by traditional supervised learning. Third, how to

effectively identify reliable positive data from the unlabelled data. We believe the solution

to the third issue will finally lead to solving the second issue.

Another interesting direction would be to apply our method in active learning for NER.

In contrast to selecting the most reliable predictions as we were doing in this work, we could

select the most unreliable ones for humans to label.



Chapter 7

BioNER in Chinese Texts

Most research on biomedical named entity recognition has focused on English texts, e.g.,

MEDLINE abstracts. However, recent years have also seen significant growth of biomed­

ical publications in other languages. For example, the Chinese Biomedical Bibliographic

Database l has collected over 3 million articles published after 1978 from 1600 Chinese

biomedical journals. We present here a Conditional Random Fields (CRF) based system

for recognizing biomedical named entities in Chinese texts. Viewing Chinese sentences as

sequences of characters, we trained and tested the CRF model using a manually annotated

corpus containing 106 research abstracts (481 sentences in total). The features we used

for the CRF model include word segmentation tags provided by a segmenter trained on

newswire corpora, and lists of frequent characters gathered from training data and external

resources. Randomly selecting 400 sentences for training and the rest for testing, our sys­

tem obtained an 68.60% F-score on average, significantly outperforming the baseline system

(F-score 60.54% using a simple dictionary match). This suggests that statistical approaches

such as CRFs based on annotated corpora hold promise for the biomedical NER task in

Chinese texts. 2

Ihttp://www.imicams.ac.cn/cbm/index.asp

2 A paper based on the study described in this chapter has been accepted for oral presentation in the 21 th
Canadian Conference on Artificial Intelligence (AI-2008) [44J.

100
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7.1 Introduction
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Our study, and most previous work in BioNER, has actually focused on biomedical research

papers that are written in English. This is probably due to the availability of the well-known

MEDLINE repository3, about 90% of whose collection is originally written in English. While

MEDLINE is currently and will likely remain the largest collection of English biomedical

research publications, significant growth has also been seen in other languages. Take Chinese

biomedical literature as an example. There are 5 large Chinese biomedical bibliographic

databases, and they have collected millions of articles from at least 2500 Chinese biomedical

journals, only 6% of which are indexed by MEDLINE [127]. With the increasingly large

volume of these research papers becoming available, we believe that there will soon be

strong needs for biomedical NER as well as for mining deeper knowledge in Chinese and

other non-English languages.

In this chapter, we study biomedical NER in Chinese texts. To the best of our knowl­

edge, this topic has not been studied so far. Previous research has shown that for the

counterpart task in English texts, the state-of-the-art performance can be achieved by sta­

tistical approaches based on annotated corpora. Thus it is natural for us to assume that

these approaches would also work for Chinese texts. To validate this hypothesis, however,

we face an immediate difficulty: currently there are no annotated Chinese corpora in the

biomedicine domain publicly available. Moreover, it is not clear what kinds of features

should be used for the task.

We have created a small annotated corpus by ourselves, on which we trained and tested

a CRF model. Given that there are no spaces between Chinese words and that doing word

segmentation as a preprocessing step might introduce extra errors, we considered the NER

task as a character-based sequence labeling problem. We used lists of frequent characters

obtained from the training set and some external resources to construct features for the

CRF model. We also tried to use word segmentation labels as features. We obtained en­

couraging results (Precision(P)jRecall(R)jF-Score(F) = 73.27% j 64.65% j 68.60%), which

significantly outperforms our dictionary-based baseline system (P jRjF = 69.89% j 52.88% j

60.14%). The results suggest that statistical approaches based on annotated corpora should

still be promising for biomedical NER in Chinese texts.

The rest of the chapter is organized as follows: Section 7.2 summarizes the properties of

3http://www.ncbLnlm.nih.gov/pubmed/
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the biomedical NEs in Chinese texts. Section 7.3 describes how the annotation was done.

Section 7.4 recaps the CRF framework for sequence labeling and explains how it was used for

the Chinese NER. Section 7.5 gives evaluation details, Section 7.6 reviews previous related

research, and Section 7.7 concludes this chapter.

7.2 Properties of Biomedical Named Entities in Chinese Texts

Previous studies in the newswire domain have shown that Chinese NER is in general more

difficult than English NER. First, while capitalization plays a important role in English

names, there is no such information in Chinese text. Second, English words are naturally

separated from each other by spaces, however, there is no space between Chinese words.

Chinese word segmentation is in itself a difficult task, whose overall performance on newswire

texts is still awaiting further improvement.

By reading the Chinese abstracts and consulting domain experts, we observed the fol­

lowing language phenomena that could make Chinese Biomedical NERs more complicated

than their English counterparts:

1. mixed use of Chinese words and their English counterparts or synonyms, e.g., AACATl£

~P7,g iJJ T (meaning "human ACATI gene P7 initiator"), can also be written as:

A~£tM.A: )l!!OO.~£~~.l (ACATl) £~P7,gi1JT ;

2. One English term may have different Chinese translations, e.g., Aptamer has several

equivalent translations in use: .JA~iflfUL£, ~rJt~1*-, Aptamer, RNA~1*-, ~rJt

~ET;

3. Chinese has its own printing form for punctuation, special symbols, and even English

letters. Many times they are mixed with English counterparts, e.g., periods can appear

as "." or "0 " , dashes can be "-" or "-" , commas can be "," or ", " , English

letters GP can be "GP" or "G P" ;

4. One term may have spelling variations, often involved in English and Chinese charac­

ters, e.g., ACATl, A-CATl, A-CATl; A s ~M!., A~ s f:alM!. (meaning: human

leukocytes) ;
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7.3 Annotating a Corpus for Chinese Biomedical NER
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Our core annotation was performed by a Chinese Biochemistry PhD student who is familiar

with biomedical terms in both English and Chinese. These annotations were then double­

checked by the first author, who is also a native Chinese speaker. As most biomedical NER

projects are mainly interested in proteins and genes, we decided to only annotate these two

types of entities. We issued the query" (!It or ~1* or tt1*) and.£~ "(meaning: {(enzyme

or receptor or antibody) and gene} ) to the CQVIP portal4 , which returned us 287 abstracts.

We downloaded all of them and selected 103 for the annotation, discarding those containing

too few (less than 5) protein/gene terms. One of the abstracts reads as follows:

3t1i#;j!L~Aftt.£fIll!ltA: )ll!1~Hlftt.£~#!lt1 (ACAT1) .£~P7A5 i9J
~~~~,*-*.#ACfl1.£~*~~~ ••~#!#~~~##

'ii~ .tt ! 0 ;jl~GenBank~~ ftF itt 1# ~ AA-CAT1'£ ~P7A5 i9J ~~
'If ~ff f~, t-I mPCR:;lf*}}"Al(1.~ fl!I~*THP-1:ft:!f~~ ill ACAT1,£

~P7A5 i9J~±*Jt&, ¥fPCRF#J3tIiAT~1*, #MfjftU!f~~

~*fi~#J•••~~o~••••a~~~1•• ~.~,3t1i

~ACAT1.£~P7A5 T!J~ Jt & • .£fff~ ~GenBank~~ ftF-.ft.o JfX.1JJ 3t

Ii! ACAT1,£ ~ P7A5 i9J ~, JJ~~1t T!J JJ* m;ij:~ 1t:i:t{I ~ACAT1,£ ~

~ ~•• ~;t)L~J }t~.£~0

Similar to the GENIA corpus, the annotation guideline was to mark all character se­

quences that are either proteins or genes according to the context. Embedded named entities

are also required to be marked. The original annotation was marked by the first annotator

using color markers on paper. Double-checking was done by both annotators going through

the annotation together. The annotation was then typed into the computer using the an­

notation tool Callisto (available from http://callisto.mitre.org/). We then converted the

annotation from Callisto's XML format into IOB2 format, where B denotes the beginning

character of an NE, I denotes each following character that is inside the NE, and 0 denotes a

character that is not a part of any NE, to agree with the convention of the NER community.

4 ~l't~i.R , http://www.cqvip.comj. According to [127], which compares accessibility and coverage of
five large Chinese biomedical bibliographic databases, CQVIP seems to have the best coverage, and allows
free abstract search.



CHAPTER 7. BIONER IN CHINESE TEXTS

7.4 Chinese Biomedical NER using CRF

7.4.1 A Recap of the CRF Model

104

We will view Chinese sentences as sequences of characters, and use CRFs to model them.

Recall that we have described the CRF framework in Chapter 3. For the reader's conve­

nience, we will recap the basic idea of CRFs below, and refer readers to Chapter 3 for more

details.

CRFs are undirected graphical models for calculating the conditional probability of out­

put vertices based on input ones. While sharing the same exponential form with maximum

entropy models, they have more efficient procedures for complete, non-greedy finite-state

inference and training.

A linear chain CRF model defines the conditional probability of a state sequence s =<
Sl, S2, ... , Sn > given an input sequence x =< Xl, X2, ... , Xn > to be:

1 n m

P(slo) = ZexP(L L Aj/](Si-1, Si, 0, i))
o i=l j=l

(7.1)

where Zo is a normalization factor of all state sequences, /](Si-1, Si, 0, i) is one of m functions

that describes a feature, and Aj is a learned weight for each such feature function.

CRFs allow us to utilize a large number of observation features as well as different state

sequence based features and actually any other types of features we want to add. Note that

there are other models, e.g., SVMs as described in Chapter 3 that can also deal with a large

number of features. However, previous work [73] has shown that CRFs usually work better

for sequence analysis. This has been also observed in our experimental results in Chapter

3, suggesting that CRFs tend to have better NER performance than SVMs in English text.

Therefore, we decide to use CRFs in our evaluation below.

7.4.2 Chinese NER as a Sequence Labeling Task

We view each sentence as a sequence of characters, each of which is associated with a tag.

The tag indicates whether the character is part of an NE, and the location if it is within

the NE. Assume there are k types of entities under consideration, we can reduce the NER

problem to the problem of assigning one of 2k + 1 tags to each character. For example,

in our small annotated corpus, we label two types of entities: protein and gene. If we are
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going to recognize each type, the tag set will contain 5 tags: B-PROTEIN, I-PROTEIN,

B-GENE, I-GENE, O. Thus we need to assign one of the five tags to each character.

Note that in our experiments to be described later, we did not try to distinguish between

protein and gene due to the small scale of our annotated corpus. We did not consider em­

bedded entities either. Rather, we considered both of them as an "ENTITY", an imaginary

super type of protein and gene. That is, our tag set is B-ENTITY, I-ENTITY, 0, and we

want to assign one of them to each character.

For English NER tasks, a character-based model introduced in [58] proposed the use

of substrings within English words. In Chinese NER, the character-based model is more

straightforward, since there are no spaces between Chinese words, and each Chinese char­

acter is actually meaningful. Besides, using a character-based model can avoid errors made

by a Chinese word segmenter. Moreover, there are currently no word segmentation tools

available for the biomedicine domain.

7.5 Evaluation

With the above formulation, we train and test a CRF model on the annotated corpus. In

our experiments, we use the CRF++ version 0.425 which implements the CRF model and

is designed for typical NLP tasks including NER.

7.5.1 The Annotated Corpus

To better understand the text we are dealing with, we obtained some basic statistics from

the corpus. It has 106 abstracts in total, containing 481 sentences or 38645 characters.

There are 1199 distinct characters, including Chinese and English ones, and all numbers

and special symbols. The top 20 frequent uni-gram, bi-gram and tri-gram characters are

given in Table 7.1.

In total, there are 1062 mentions of 472 unique named entities, either proteins or genes,

annotated in the corpus. The top 30 frequent entities are listed in Table 7.2. The longest

entity is spelled as " J3 -*-~L.tf a 1, 2-:!5••~;§~ ( a 1, 2-fucosyltansferase, a 1, 2­

FT) ", which is a protein and occurs only once in the corpus.

5CRF++: Yet Another CRF Toolkit, available at http://crfpp.sourceforge.netf.
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I-gram Frequency 2-gram Frequency 3-gram Frequency
characters characters characters

i¥J 894 £1ZSl 507 RNA 88. 741 ~:iii 289 DNA 84
£ 595 fffiHl!! 222 PCR 78
A 577 NA 196 a<J~~ 75 I

Em 543 ms 123 mRN 60
0 493 PC 113 ERT 58
T 462 RN 96 TER 57
P 459 1fft;. 96 hTE 57
R 442 RT 91 ywfSLM 51
1 420 O. 91 cDN 47
C 399 CR 87 £Em~ 47
11 389 !S* 86 . 05 46
0 377 ~~I} 86 £1ZSli¥J 43
2 356 DN 84 ~~11 41
~ 352 ffl:~m 83 1rL~Em 39
a 340 mtt 83 ~~, 39
N 303 . 0 79 ~1rL¥ 39
:iii 302 hT 76 Mmtt 38
e 286 i¥J~ 75 ¥Emffi. 37
D 284 l~$ 72 P<O 36

Table 7.1: Top 20 uni-gram, bi-gram, tri-gram characters.
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I the Spelling of the Named Entity I the Entity Type I Frequency of Occurrences I
yw;#LM PROTEIN 39
hTERT PROTEIN 36
PEPC PROTEIN 14
CHS GENE 13

mRNA GENE 13
CD147 PROTEIN 11

Survivin PROTEIN 11
I-PROTEIN GENE 10

I

VEGF PROTEIN 10
survivin GENE 9
MTHFR PROTEIN 9

GUS GENE 9
p53 PROTEIN 8
TS PROTEIN 8

eNOS PROTEIN 8
MARs GENE 8

bax GENE 7
ST13 GENE 7

MARs~Jtl GENE 7
SV40 GENE 7

p16~12SI GENE 7
TIMP-2 PROTEIN 7

Ha-ras~12SI GENE 7
pacs PROTEIN 7

MOMP PROTEIN 6
GSTM1 PROTEIN 6
hTNFa PROTEIN 6
HpcagA GENE 6

PCF PROTEIN 6

Table 7.2: Top 30 frequent entities.
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7.5.2 Feature Construction
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To obtain a good estimation of the conditional probability of the tags assigned to the

characters, we should use features that can distinguish between the characters. In our

experiments, we used two types of features for the CRF model, i.e., character list features

and word segmentation features.

We considered four character lists. The first two character lists were made from our

corpus. We randomly selected 400 sentences from our corpus to form the training set, and

used the remaining 81 sentences to form the testing set. From the training set, we counted

character frequencies and selected those appearing in entities more than twice as the first

list (called L1), and those appearing outside entities more than twice as the second list

(called L2).

The third list was gathered from external resources. We downloaded from the Web a free

dictionary6 (in PDF format) containing Chinese translations of more than 20,000 human

gene names from widely-used gene databases such as NCBI Gene7 and GOs. We converted

it into plain text format, and counted the character frequencies. We used the top 1000

frequent characters as the third list (called L3). We assume this list contains the characters

that are most frequently seen in protein and gene names.

The fourth list was also from external resources. We retrieved the first 1000 abstracts

from the CQV1P web site with the disjunction of four Chinese words: ., tli:1*, ~1*, ~~
(i.e., "enzyme or antibody or receptor or gene"). We used the top 2000 frequent characters

as the fourth list (called L4). We assume this list contains the characters that are most

frequently seen in Chinese biomedical abstracts.

Corresponding to the above four character lists, we have four columns of binary features

for each character in the corpus. If the character is in any list, then we set the value for the

corresponding feature to be 1; otherwise, it is set to O.

We also considered using word segmentation information. We think this information may

be useful in deciding entity boundaries. As we could not find a segmentation tool specifically

for Chinese biomedical texts, we used the Stanford Chinese Word Segmenter9 . Although

it is trained on newswire texts, we expect it could still provide some basic word boundary

6 http://wzhangcnster.googlepages.com/hg608.zip

7Entrez Gene, http://www.ncbLnlm.nih.gov/sites/entrez?db=gene

8 t he Gene Ontology, http://www.geneontology.org

9http://nlp.stanford.edu/software/segmenter.shtml
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the is it is it is it is it WS NE tag
char in L1? in L2? in L3? in 14? tag

fJJ 0 1 0 1 B 0
2i7 0 1 0 1 E 0
~J 0 1 0 1 B 0
};E 0 1 1 1 E 0
C 1 1 1 1 B B-ENTITY
H 1 1 1 1 M I-ENTITY
S 1 1 1 1 E I-ENTITY
tE 0 1 1 1 S 0
1§: 0 1 1 1 B 0
fjL 1 1 1 1 E 0
IJ\ 0 1 1 1 B 0
3t 1 1 0 1 E 0
9=J 0 1 1 1 S 0

Table 7.3: Example data prepared in CRF++ format.
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information that would be useful for our CRF model. We used the word segmenter's output

to assign a segmentation tag for each character. The segmentation tags use the BMES

notation, which are commonly used in word segmentation task, where B stands for beginning

of a word, M for the middle of the word, E for the end of the word, and S stands for a word

consisting of a single character.

Using the corpus and the feature construction described above, we prepared the training

and testing data in the format of the CRF++ package, part of which is shown in Table 7.3.

We let the CRF++ package automatically generate feature functions for the CRF model,

by defining the feature template provided by CRF++. Table 7.4 is the template we defined

to use the characters themselves (Le., those in column 1 of Table 7.3) and their occurrences

in L1 (Le., those in column 2 of Table 7.3). Detailed usage of the template and associated

meanings are given at the CRF++ home page.

As an example of how the actual feature functions are automatically generated, consider

the template "U03:%x[l,O]" in Table 7.4. CRF++ automatically generates a set of feature

functions (func1 ... funcN) as in Table 7.5.

The total number of feature functions generated by this template amounts to (L * N),

where L is the number of output classes and N is the number of unique string expanded
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[ template I~ata items used ,
ill feature
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# Unigram
UOO:%x[-2,0] ~J

U01:%x[-1,0] }:E
U02:%x[0,0] C
U03:%x[1,0] H
U04:%x[2,0] S
U05:%x[-2,0]/%x[-1,0] ~J/}:E

U06:%x[-1,0]/%x[0,0] }:E/C
U07:%x[0,0]/%x[1,0] C/H
U08:%x[1,0]/%x[2,0] H/S
U09:%x[-1,0]/%x[0,0]/%x[1,0] }:E/C/H
U10:%x[-2,1] °Ull:%x[-l,l] °U12:%x[0,1] 1
U13:%x[1,1] 1
U14:%x[2,l] 1
U15:%x[-2,1]/%x[-1,1] 0/0
U16:%x[-1,1]/%x[O,l] 0/1
U17:%x[0,l]/%x[1,1] 1/1
U18:%x[1,1]/%x[2,1] 1/1
U19:%x[-1,1]/%x[0,1]/%x[1,1] 0/1/1
# Bigram
B

Table 7.4: The meaning of CRF++ feature template, assuming the current character is "C"
in Table 7.3

fund = 1, if (tag = B-GENE and char ="H")
func2 = 1, if (tag = I-GENE and char ="H")
func3 = 1, if (tag = B-PROTEIN and char = "H")
func4 = 1, if (tag = I-PROTEIN and char = "H")
func5 = 1, if (tag = 0 and char ="H")

Table 7.5: Example feature functions generated from the template
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Baseline 90.10 68.77 53.79 60.19
1.71 4.92 6.53 5.15

C 93.44 74.12 57.98 64.98
1.35 4.15 6.06 5.15

C+L1 93.55 72.69 60.05 65.70
1.41 5.06 6.43 5.64

C+L2 93.66 73.45 58.34 64.96
1.27 4.36 5.97 5.17

C+L3 93.56 73.54 58.17 64.88
1.31 4.28 6.04 5.16

C+L4 93.48 73.81 58.17 64.98
1.30 4.17 5.91 5.03

C+WS 93.72 74.36 61.22 67.09
1.29 3.81 5.16 4.35

IFeatures IAccuracy I Precision IRecall IF-score I

Table 7.6: Performance of CRF vs. baseline average over 50 runs

from the given template.

1.5.3 Experimental Results

As mentioned ealier, our annotated corpus contains 481 labeled sentences in total. We

randomly selected 400 sentences for training and the remaining 81 for testing. Though

we have annotated two types of NEs: protein and gene, we combined them into one type

"ENTITY" in our experiments, as the size of the corpus may not be sufficient to support

fine classification. Thus the NER task became that of assigning one of three tags to each

character: B-Entity, I-Entity, O.

For comparison purposes, we built a baseline system, which implements a simple dictio­

nary matching strategy to label the testing set with a dictionary consisting of all distinct

NEs found in the training set. To see how useful the different types of features are for the

CRF performance, we tried different combinations of the features. The averaged results of

exact NE boundary matches over 50 random runs are given in Table 7.6, where "C+L1"

means the character and L1 are used as features and so on. In each cell, the number below

is the standard deviation.
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Hypothesis p-value
mean(baseline) i- mean(C)? 1.014e-05
mean(C) i- mean(C+L1)? 0.5096
mean(C+L1) i- mean(C+L2)? 0.4982
mean(C+L2) i- mean(C+L3)? 0.9395
mean(C+L3) i- mean(C+L4)? 0.9223
mean(C+L4) i- mean(C+WS)? 0.0275

Table 7.7: The Welch two-sided t-test of two paired sample means for Table 7.6.
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Note that the purpose of running the random experiments 50 times is to apply a sta­

tistical significance test (e.g., the Welch's t-test lO ) on the sample means, so that we do not

assume any knowledge about the distribution of the samples. Probably due to the data

sparsity resulted from the small scale of the training data, in some runs of our experiments,

the performance of the learned CRF model was a bit worse than that of the baseline. How­

ever, it outperforms the baseline in most runs. Table 7.7 shows the results of the Welch

two-sided t-test on paired samples of the averaged F-scores for the feature combinations

used in Table 7.6. The calculation was done using R 11. The t-test results confirm that the

difference between the CRF models and the baseline is significant, suggesting that they can

do significantly better than the baseline method.

From Table 7.6 and Table 7.7, we can see that: (1) the CRF model using the character

features alone already outperforms the baseline system; (2) adding any of the four character

lists as features does not result in any significant increase nor decrease in the F-score of

using 'C' alone, while adding word segmentation tags as features can significantly improve

the F-score; (3) the two greatest performance improvements over the baseline result from the

"C+WS" combination and the "C+L1" combination. This shows that information about

word segmentation and frequent entity characters are probably the most important features.

We then used the 'C+WS' combination as the base features and experimented the effects

of adding the character list features. The averaged results over 50 independent random

runs are given in Table 7.8, showing that the best performance is obtained by using all

the available features, with 68.60% F-score vs 60.54% of the baseline. The corresponding

Welch's t-test results are given in Table 7.9.

lOhttp://en.wikipedia.org/wiki/Welch%27s_uest

liThe R Project for Statistical Computing, http://www.r-project.org/
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I Features I Accuracy I Precision I Recall IF-score I
Baseline 90.32 68.44 54.54 60.54

1.77 6.00 7.28 6.26
C 93.51 74.57 59.45 66.05

1.42 4.59 6.65 5.58
C+WS 93.61 74.03 61.75 67.24

1.32 4.49 5.76 4.81
C+WS+L1 93.62 73.90 63.69 68.32

1.31 4.54 6.31 5.13
C+WS+L1+L2 93.85 73.26 64.40 68.44

1.27 4.40 6.21 4.91
C+WS+L1+L2+L3 93.89 72.99 64.29 68.27

1.29 4.55 6.15 5.02
C+WS+L1+L2+L3+L4 93.93 73.27 64.65 68.60

1.25 4.46 6.07 4.93

Table 7.8: Performance of CRF vs. baseline averaged over 50 runs

Hypothesis p-value
mean(baseline) =I- mean(C)? 5.352e-06
mean(C) =I- mean(C+WS)? 0.1270
mean(C+WS) =I- mean(C+WS+L1)? 0.1415
mean(C+WS+L1) =I- mean(C+WS+L1+L2)? 0.4512 I

mean(C+WS+L1+L2) =I- mean(C+WS+L1+L2+L3)? 0.5660
mean(C+WS+L1+L2+L3) =I- mean(C+WS+L1+L2+L3+L4)? 0.3723

Table 7.9: Welsh Two Sample two-sided t-test for Table 7.8
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7.5.4 Discussion
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We are a bit surprised by the impact of word segmentation information on the NER per­

formance, because the word segmenter we used is trained on newswire corpora and may

make many errors in segmenting biomedical texts. For example, in the following abstracts

containing only 4 sentences, the segmenter has made at least 4 obvious errors. The errors

are given in Table 7.10, together with the ideal segmentation determined by human.

§ i¥.J : t-'JZ1ft" El1* 5'~)aJ Jfn. -=f fm H@! f$:f1i Jf*-g. *mJ:i: ttff ~ff ~tt Jfn.

~ m i¥.J :ilIAA ff~ 0 13ft.: 8 {1IJ ~tt Jfn.~m ( ~~~ar- ~m E:.m! 7 {1IJ

, $ ~tt fUlm!l{11J ) *ffl ttff Jf*-g. G - CSF q;!J!J. 5'~)aJ Jfn. -=f fmH@!

, Cobe SpectraJfn. fmH@! 7ti'l'im *~ fmIfJfn. l:f i¥.J • l' ~ fmH@! ,8 {1IJ

.1jZ:l$J • l' ~ fm H@! ~ 3.0 X 10E8 • kg-1 , .1jZ:l$J CD34 + fm H@! j; 3.5 X

lOE6 • kg-I, - 80·e {lUff 'lfF.ff- 0 8{11J:l$J tE **,J:i: ttff f§ @J~ fmH@!

o !li*: 5'~)aJ Jfn.-=f fmH@! @J~ f§ WBC 't9(~ ~ 2 X 10E9· L - 1 .1jZ:l$J

j; 11d , Jfn./H& 't9(~ ~ 50 X lOElO· L - 1 .1jZ:l$J j; 13d 0 8{11J f$:f1i
f§ mAA J*J:l$J it ~M 0 !li~: ttff Jf*-g. G - CSF ~ - ~~, 1lUi
i¥.J q;!J!J. 13~ ; El1* 5'~)aJ Jfn. -=f fm H@! f$:f1i Jf*-g. **,Jli ttff ~ ~ ff ~
~tt ~tt Jfn.~ m i¥.J - ;flP :ti.:~, :ilIAA ff~ ~JE i¥.J ~ff 13ft. 0

So why does the poor segmentation information help so much? We think the reason is

two-fold. First, though trained on newswire texts, the segmenter provides nearly correct

segmentation on the phrases or sentences similar to those in newswire texts. This infor­

mation can help determine the NE boundaries. Second, many NEs in our corpus contain

English abbreviations of the Chinese NEs, and as we have observed, the segmenter rarely

made mistakes on these abbreviations. Thus the errors made by the segmenter might not

hurt the NER performance.

7.6 Previous Work

The NER task was originally set to identify names of people, locations, and organizations

in English newswire texts. Influential approaches make use of either handcrafted rules

[76] or machine learning algorithms [7] or their combination [77]. Most recent works have

adopted supervised learning algorithms, e.g., HMM [78], Maximum Entropy [9], SVM [72],

and CRF [73]. The state-of-the-art performance (about 94%-96% F-scores) was achieved

by supervised learning based systems (e.g., [139]).
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Raw Phrase
English Meaning
Segmenter Output
Human Output

Raw Phrase
English Meaning
Segmenter Output
Human Output

Raw Phrase
English Meaning
Segmenter Output
Human Output

Raw Phrase
English Meaning
Segmenter Output
Human Output

Table 7.10: Examples of phrases wrongly segmented by the Standford Chinese Segmenter

Recent years have also seen some NER works in Chinese newswire texts. The dominant

approaches are supervised learning algorithms based on annotated corpora, e.g., HMM [137]

and CRFs [13] [19] [34]. As the best performance of Chinese word segmentation is still not

very satisfactory (about 85%-90% F-Score on newswire texts), and using it as a preprocessing

step of NER would introduce errors affecting the final performance, recent works tend to

treat the NER task as a character-based sequence tagging problem, similar to the Chinese

word segmentation task.

In the biomedicine domain, supervised learning approaches have also been dominant.

Representative works include SVM [65], HMM [140], Maximum Entropy [66] and CRF

[104]. Two best-known shared tasks held in this area are BioNLP [56] and BioCreAtIvE

[131], where most participants used supervised learning techniques. The best performance

of the BioNLP 2004 competition was an F-score of about 73%. All these works target at

English text.

Our work is different from all the above works in that we study Chinese NER in the

biomedicine domain, which is a subarea of NER that has not been explored.
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7.7 Chapter Summary

116

We have studied the problem of recognizing biomedical named entities in Chinese research

abstracts. We adopted the statistical approach based on annotated corpora. The model

we used is Conditional Random Fields, which has proven very effective in Chinese NER

in newswire texts as well as biomedical NER in English abstracts. As there is no publicly

available annotated Chinese corpus, we have created a small one by ourselves, which consists

of 106 Chinese biomedicine abstracts. We trained and tested the CRF model on this small

corpus, and obtained performance that is significantly better than the baseline system by

gaining about 8% in F-score. We also experimented on combinations of different features,

and found that among all the features, word segmentation information and frequent char­

acters appearing in targeted entities might be the most useful ones. Our results suggest

that the CRF model and perhaps other statistical models such as HMM and the Maximum

Entropy model, which are based on annotated corpora, hold good promise on the biomedical

NER task in Chinese texts. We hope that this work would elicit more attention to BioNER

in Chinese language as well as to other non-English languages.



Chapter 8

Conclusion and Future Work

8.1 Summary of Main Results

In this thesis we have presented a number of results aiming to enhance and enrich the

research of BioNER.

We have first presented a comprehensive survey of previous work in this area, from which

we identified some key issues to address in this thesis.

Performance remains the most important issue for BioNER. As the dominant approaches

are statistical machine learning based, it seems straightforward to assume that the models

trained on larger annotated corpora would have better performance. However, our experi­

mental results on the GENIA corpus, perhaps by far the best biomedical corpus available

to public, suggest that this may not be a cost-effective way, since human annotation costs

substantial amount of time and money and tends to be error-prone. This result is novel and

is important for future work that attempts to improve the performance.

Nested (or Embedded) named entities are very common in biomedical texts but have

been largely ignored in previous work. We have proposed a method to effectively recognize

them. Our method assumes nested NEs have been annotated in the training corpus, where

each word may have multiple NE tags. For all levels of the nesting, the main idea of the

method is to learn a separate classification model for each level in the training phase, while

applying the learnt model for the corresponding level in the testing phase. Our experiments

show that this level-by-level method can identify both the non-nested NEs and nested NEs

very well.

One of the difficulties in BioNER is to determine the NE boundaries. Previous work

117
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based on statistical learning tends to combine the boundary detection and the entity type

classification into one model. Motivated by the intuition that an NE is often an NP or

part of it, and inspired by the good performance of NP-chunking systems, we proposed an

NP-chunking based method to recognize the NEs. We have explored the benefits as well

as the problems associated with such an approach. Our experimental results show that

this method would be useful for BioNER with the help of rules that can determine the

NE boundaries based on the NP chunks. As the state-of-the-art BioNER systems tend to

use both machine learning techniques and manually-created rules, we expect the proposed

method to provide a novel way to incorporate domain knowledge with machine learning.

Statistical machine learning approaches to BioNER require a sufficiently large annotated

corpus to train a good model. In practice, however, annotating the large corpus is often

labor-intensive and time-consuming as well as error-prone. We have proposed a method

that can do BioNER in the absence of annotated corpus. The idea is to make use of an

existing dictionary of NEs to label sentences, and to use these partially labeled sentences to

iteratively train a classification model in the manner of semi-supervised learning. We have

designed an SVM-based self-training algorithm for this purpose. Our experiments validate

the potential usefulness of this approach.

Most previous work has focused on English texts, and to the best of our knowledge, none

has addressed Chinese biomedical texts. Conceiving similar needs for other non-English

languages, we have studied the BioNER task in Chinese biomedical texts. We manually

annotated a small set of Chinese biomedical abstracts. We then applied CRF, a state-of­

the-art statistical machine learning algorithm suitable for sequence labeling tasks, to build

a classification model for BioNER. Considering the fact that there are no spaces between

Chinese words, and Chinese word segmentation itself is an unsolved problem, we decided to

build a character-based model. Our experiments show that the CRF learnt from the small

corpus significantly outperforms the baseline system that uses a simple dictionary matching

for NER. We also experimented on different types of features to find out which would be

useful for the task.

Although the above methods are proposed and evaluated for the BioNER task, we believe

that they are potentially applicable to other NLP tasks.



CHAPTER 8. CONCLUSION AND FUTURE WORK

8.2 Future Work
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In general, we observe that the research of NER has been progressing in the following

directions:

• Higher Performance: to pursue higher performance aiming at human-like perfor­

mance (e.g., [139]);

• More Languages: to handle more languages, from English to Non-English (e.g.,

Chinese texts as studied in this thesis), from single language to multiple languages

(Le., cross-lingual and multilingual texts, e.g., as in [29]);

• More Domains: to adapt to more domains, from general (e.g., newswire) to specific,

for example biomedicine (as in this thesis), chemistry [119], astronomy [82], and law

[18].

• More Entity Types: to identify more types of entities in the given domains. For

example, the Sekine's Extended Named Entity Hierarchy [102] has defined nearly 200

NE types.

This thesis has focused on the specific biomedicine domain, studying five subtopics as

recapped in the previous section. In previous chapters, we have discussed the future work

for each subtopic. As a summary, we identify the following directions as future work in the

biomedical domain:

• to look for ways to further improve the recognition performance. As discussed in

Chapter 3, the state-of-the-art performance is still far less than human performance.

It has been a bottleneck for downstream applications, waiting for major breakthroughs.

Ideally, the community should make more efforts to produce higher quality corpora

and introduce better machine learning algorithms. However, when these were not

available, some of the methods proposed in this thesis should help for this purpose.

For example, to use the method described in Chapter 4 to handle nested entities and

the method described in Chapter 5 to help better determine NE boundaries. Another

potential way would be to make use of clues beyond one sentence, e.g., the paragraph,

the abstract, or even the full text of the article. The intuition behind this is that an

NE might be mentioned multiple times in a text, and some might be easier to identify

than others.
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• to move from abstract to full text. Currently most research focus on abstracts only.

However, an abstract is only a summary of a research, and many details about the

NEs are covered in the full text. For the ultimate purpose of text mining in biomedical

literature, BioNER systems must be able to handle full text. Intuitively, there would

be remarkable linguistic differences between an abstract and a full text. Also there

would be more noise contained in the full text. A simple migration from the former

to the latter would lead to degraded performance. Therefore, it is necessary as well

as non-trivial to investigate BioNER in the full text environment.

• to move from English to non-English languages (e.g., Chinese), and possibly mixed­

language texts. Exploration along this direction can help advance biomedicine research

by making research results published in different languages. For example, disease A

is reported to be related to protein B in an English paper, while protein B is reported

to be controlled by drug C in a Chinese paper. Then BioNER in different languages

would help building the connection between the disease and the drug. The research

along this direction may also benefit related areas such as machine translation of

biomedical text, e.g., by mapping named entities written in different languages. The

research challenge would involve the linguistic properties of different languages as well

as different naming conventions in different languages.

• to move down along a concept hierarchy to identify more and finer entity types. Most

work in BioNER only considers general entity types. For example, the GENIA corpus

has actually annotated 36 entity types as defined in the GENIA Ontology (shown in

Appendix Figure A.l), but when it was used as the training data for the BioNLP-2004

Shared Task, all the NEs in it were generalized to only five entity types, namely, pro­

tein, DNA, RNA, cell type, and cell line. According to the GENIA Ontology, the type

protein actually has six sub-types, namely, protein family or group, protein complex,

individual protein molecule, subunit of protein complex, substructure of protein, and

domain or region of protein. When all NEs of various sub-types of protein were iden­

tified only as protein, the subtle distinction among the sub-types would be overlooked.

Recognition of these sub-type NEs allows deeper understanding of their functions as

well as the relations among them. Of course, the recognition would become more

difficult as more ambiguity would be involved in the finer NE types. An immediate

issue would be to prepare more annotations about the finer entity types.
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• to improve the recognition speed in order to efficiently process huge amount of texts

potentially as large as MEDLINE and CQVIP. This is actually a scalability issue:

solving the problem using affordable computational resources in acceptable time. It

is especially important for practical applications of BioNER, in order to keep up

with the explosive growth of the biomedical literature. Though currently dominant

in BioNER, supervised learning algorithms typically spend significant time in model

training. Considerable time is also spent in processing raw text, e.g., creating features

(the number could be up to several millions) for all the words. We note that this issue,

although important, has been largely neglected by the BioNER community. We plan

to study it in our future work.

In particular, some immediate extensions of this thesis are:

• How might changes in feature space affect the learning curves and performance of

BioNER systems? For example, when the amount of data becomes much larger than

that experimented in this thesis, is it possible that the flat pattern of the learning

curves changes?

• To recognize nested NEs, would knowledge of NE tags of other nesting levels help?

Intuitively, the answer is yes, but it is not clear to what extent.

• To build a good NP chunker for biomedical text. If available, it should benefit BioNER

immediately, and very possibly some other biomedical text mining tasks, too.

• For BioNER without annotated corpora, how to effectively expand the positive set? If

successful, such a research would bring good insights to the semi-supervised learning

research.

• For Chinese BioNER, it would be interesting to map the recognized Chinese NEs to

their English counterparts. This would contribute to machine translation of the named

entities in different languages.

• Would some combinations of the approaches proposed in this thesis lead to better

performance? For example, the combination of the explicit treatment of nested NEs

with the NP chunk based approach.



Appendix A

More Statistics about the GENIA

Corpus

The GENIA corpus (version 3.02) contains 97876 named entities (35947 distinct) of 36

types, and 490941 tokens (19883 distinct). There are 16672 nested entities, containing

others or nested in others (the maximum embedded levels is four). Among all the outmost

entities, 2342 are proteins and 1849 are DNAs, while there are 9298 proteins and 1452 DNAs

embedded in other entities.

The GENIA entities are annotated based on the GENIA Ontology (Figure A.l). The

meanings of the classes (types) used in the ontology are explained in the project's web pagel.

Note that while most GENIA entities are annotated as the leaf types of the ontology tree,

some are not. For example, some NEs are labelled as the type lipid, which is a super type

of the leaf type steroid in the ontology tree. Moreover, some entity types are not shown in

the ontology tree, but still appear in the annotation. For example, DNA_N/A, RNA_N/A,

and protein_N/A, all probably referring to corresponding subtypes which are not defined in

the ontology.

The distribution of entity occurrences over the 36 types is shown in Table A.I. Some

entities appear more frequent than others, ranging from 21511 for protein molecule to 2 for

RNA-substructure. The distribution perfectly fits the famous Zipf's law2 : given a corpus of

natural language utterances, the frequency of any word is inversely proportional to its rank

1 http://www-tsujii.is.s.u-tokyo.ac.jp/genia/topics/Corpus/genia-ontology.html

2http://en.wikipedia.org/wiki/Zipf%27sJaw
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+- -----+-source- ---+-natural----+-organism-- ------+-multi-cell organism
I I I +-mono-cell organism
I I I +-virus
I I +-body part
I I +-tissue
I I +-cell type
I I +-cell component
I I +-other (natural source)

I I
I +-artificial-+-cell line
I +-other (artificial source)

I
+-substance-+-compound-+-organic-+-amino acid-+-protein-+-protein family or group

I I +-protein complex
I I +-individual protein molecule
I I +-subunit of protein complex
I I +-substructure of protein
I I +-domain or region of protein
I +-peptide
I +-amino acid monomer

I
+-nucleic acid-+-DNA-+-DNA family or group
I I +-individual DNA molecule
I I +-domain or region of DNA

I I
I +-RNA-+-RNA family or group
I I +-individual RNA molecule
I I +-domain or region of RNA

I I
I +-polynucletotide
I +-nucleotide

I
+-lipid-+-steroid
+-carbohydrate
+-other (organic compounds)
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I
I
+-other

+-inorganic
+-atom

Figure A.l: The GENIA Ontology
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I Entity type Occurrences I Entity type Occurrences

G#protein..molecule 21511 G#DNA..molecule 529
G#otherJIame 20055 G#peptide 518
G#protein-family_or..group 8247 G#body_part 438
G#DNA_domain_or-region 7810 G#atom 340
G#celLtype 7021 G#RNA-family_or..group 332
G#other_organic_compound 4081 G#polynucleotide 258
G#celLline 3846 G#inorganic 255
G#protein_complex 2397 G#nucleotide 236
G#lipid 2357 G#mono_cell 222
G#virus 2117 G#other_artificial...source 207
G#multLcell 1745 G#protein...substructure 127
G#DNA-family_or_group 1511 G#DNA...substructure 106
G#protein_domain_or-region 990 G#carbohydrate 97
G#protein...subunit 895 G#protein-N/ A 97
G#amino_acid..monomer 780 G#DNA_N/A 48
G#tissue 678 G#RNA_domain_or-region 39
G#celLcomponent 662 G#RNA-N/A 14
G#RNA..molecule 557 G#RNA...substructure 2

Table A.l: Distribution of occurrences of 36 types of entities in the GENIA corpus

in the frequency table. In our case, though, we consider the ranks and the frequencies of

the 36 NE types, instead of the words. The curve-fitting result is shown in Figure A.2. The

resulting function is y = 24709.7x-O.978659, where x is the rank of an NE type and y is the

frequency of the type.

Table A.2 shows the names of top 50 frequent entities together with their types and

frequencies, most of which are protein molecules.

As we mentioned in Chapter 4, the NEs in GENIA can appear in a nesting structure, as

outermost NEs, innermost NEs or in the middle of the nesting. The distribution of these

occurrences for the 36 entity types are shown in Table A.3. We can see that NEs of type

other name most likely appear outermost in a nesting structure (overall 7521 occurrences),

while NEs of type protein molecule most likely appear innermost in the nesting (overall 6349

occurrences) .

Table A.4 shows the frequencies of different nesting patterns in the GENIA corpus. Here

the 36 entity types are generalized to six super-types, namely, protein, DNA, RNA, cell type,

cell line, and other name. From this table we can see that when being the outer entity of a

nesting structure, an NE of type other name, protein, DNA, RNA or cell line, most likely

contains a protein as an inner entity, while a cell type entity most likely contain another cell

type entity inside (the corresponding lines shown in bold fonts).
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I Entity Name Entity Type Occurrences

NF-kappa B G#protein-lIlolecule 1094
lL-2 G#protein-lIlolecule 742
T cells G#celLtype 694
NF-kappaB G#protein-lIlolecule 659
patients G#multLcell 587
HIV-1 G#virus 417
AP-1 G#protein_N/ A 403
LPS G#lipid 396
transcription factors G#protein-family_or..group 389
lL-4 G#protein-lIlolecule 383
transcription factor G#protein-family_or..group 337
apoptosis G#other..name 327
monocytes G#celLtype 315
tyrosine G#amino_acid-lIlonomer 298
TNF-alpha G#protein-lIlolecule 285
PMA G#other_organic_compound 281
IFN-gamma G#protein-lIlolecule 254
cytokines G#protein-family_or..group 227
lymphocytes null 223
EBV G#virus 221
c-Jun G#protein-lIlolecule 218
cytokine G#protein-family_or_group 213
B cells G#celLtype 211
lL-lO G#protein-lIlolecule 208
c-Fos G#protein-lIlolecule 205
NFAT G#protein-family_or..group 199
tax G#protein-lIlolecule 197
TCR G#protein-lIlolecule 190
HIV G#virus 189
lL-6 G#protein-lIlolecule 187
NF-AT G#protein-lIlolecule 183
RA G#other_organic_compound 182
T lymphocytes G#celLtype 177
Stat3 G#protein-lIlolecule 174
CD40 G#protein-lIlolecule 166
gene expression null 162
GM-CSF G#protein-lIlolecule 161
CD28 G#protein-lIlolecule 156
PKC G#protein-lIlolecule 153
tyrosine phosphorylation G#other..name 151
Sp1 G#protein-lIlolecule 150
GATA-1 G#protein-lIlolecule 148
TNF G#protein-family_or_group 148
dexamethasone G#lipid 148
transcription G#other..name 140
glucocorticoid receptor G#protein_domain_or-region 140
GR G#protein-family_or_group 140
lL-12 G#protein-lIlolecule 138
p65 G#protein...subunit 137
p50 G#protein...subunit 135

Table A.2: Top 50 frequent entities in the GENIA corpus
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entity type occurrences as occurrences as occurrences as
outmost NEs innermost NEs middle NEs

G#amino_acid-IIlonomer 16 396 3
G#atom 16 182 0
G#body_part 11 52 3
G#carbohydrate 7 28 1
G#celLcomponent 47 32 2
G#cell.line 544 173 10
G#celLtype 498 791 9
G#DNA_domain_or-region 1499 1025 211
G#DNA-family_or_group 193 141 9
G#DNA-IIlolecule 149 59 1
G#DNA.-N/A 1 2 0
G#DNA..substructure 7 4 0
G#inorganic 9 45 0
G#lipid 54 660 3
G#mono_cell 1 43 0
G#multLcell 168 149 2
G#nucleotide 1 107 0
G#other..artificial..source 47 8 2
G#other-Ilame 7521 588 109
G#other_organic_compound 182 501 2
G#peptide 42 115 2
G#polynucleotide 18 11 0
G#protein_complex 293 750 9
G#protein_domain_or-region 126 51 5
G#protein-family_or_group 820 1724 82
G#protein-IIlolecule 1006 6349 99
G#protein.-NIA 11 14 0
G#protein..substructure 9 26 0
G#protein..subunit 77 174 15
G#RNA_domain_or-region 7 1 1
G#RNA-famfly_or-group 86 56 11
G#RNA-IIlolecule 231 60 94
G#RNA_N/A 0 2 0
G#tissue 35 50 2
G#virus 53 1056 7

Table A.3: Numbers of outermost NNEs, middle NNEs and innermost NNEs
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I outer entity I inner entity I count I,

cellJine cellJine 100
cellJine celLtype 75
cellJine DNA 8
cellJine otherJlame 15
celLline protein 204
celLtype cellJine 7
celLtype celLtype 327
celLtype otherJlame 26
celLtype protein 87
celLtype RNA 2
DNA cellJine 3
DNA celLtype 8
DNA DNA 419
DNA otherJlame 28
DNA protein 1394
DNA RNA 2
other_name cellJine 29
other_name celLtype 265
otherJlame DNA 775
otherJlame otherJlame 380
other_name protein 4418
otherJlame RNA 190
protein cellJine 14
protein celLtype 83
protein DNA 143
protein otherJlame 120
protein protein 2474
protein RNA 12
RNA cellJine 2
RNA DNA 56
RNA protein 348
RNA RNA 16

Table A.4: Counts of different types of nested entities in the GENIA corpus
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Figure A.2: The curve-fitting result of GENIA NE types' ranks and frequencies in terms of
Zipf's law.

Table A.5 shows the top 20 frequent words (tokens) occurring different types of NEs of

the GENIA corpus. Here the entities are generalized to five types, namely, protein, DNA,

RNA, cell type and cell line. An interesting observation from this table is that the word

and appears very frequently in all the five types of NEs, suggesting that many entities are

formed by conjunction of smaller entities. This phenomena should be kept in mind when

dealing with nested NEs as well as doing NER by NP chunking.

Table A.6 shows the top 20 frequent words appearing inside an NE and outside an NE.

Here the entities are also generalized to five types, namely, protein, DNA, RNA, cell type

and cell line. An interesting observation here is that the parentheses can frequently appear

both inside and outside an NE, suggesting the complexity of biomedical entity names.
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word (freq) word (freq) word (freq) word (freq) word (freq)
in protein in DNA in RNA in cell type in cell line

B (1610) gene (1385) mRNA (665) cells (3005) cells (1680)
factor (1388) promoter (1096) transcripts (75) T (1469) cell (905)
protein (1298) genes (589) RNA (72) human (780) lines (504)
transcription (1124) site (567) ( (51) lymphocytes (715) line (431)
NF-kappa (1086) ( (430) ) (51) monocytes (509) T (399)
receptor (885) ) (429) and (47) B (476) human (360)
) (715) element (395) mRNAs (44) blood (315) Jurkat (298)
( (714) human (371) c-jun (42) peripheral (302) U937 (181)
factors (693) enhancer (353) , (38) cell (219) B (147)
proteins (659) and (329) receptor (38) mononuclear (214) ( (134)
alpha (657) sites (314) c-fos (33) and (193) ) (134)
NF-kappaB (605) binding (309) transcript (32) macrophages (183) and (123)
IL-2 (575) region (288) B (27) leukocytes (142) THP-l (121)
nuclear (574) elements (260) 1 (25) activated (130) T-cell (116)
kinase (528) sequence (254) beta (25) ) (120) clones (92)
kappa (454) B (251) alpha (23) ( (119) monocytic (86) I

receptors (413) IL-2 (201) GR (22) primary (119) HeLa (85)
and (382) DNA (193) IL-2 (20) normal (115) leukemia (85)
I (382) LTR (187) c-myc (17) endothelial (104) HL-60 (81)
AP-l (380) reporter (184) IL-6 (17) erythroid (103) K562 (76)

Table A.5: Top 20 frequent words inside GENIA entities

I word in entities I freq I word outside entities I freq I
cells 4771 of 21117
B 2511 the 19867
T 2118 18412
human 1743 , 17648
factor 1483 in 12857
gene 1465 and 12082
) 1449 to 7215
( 1448 a 6535
cell 1404 ) 5748
protein 1339 ( 5702
transcription 1207 that 5182
NF-kappa 1202 by 4746
promoter 1103 with 4321
and 1074 is 3966
receptor 1056 expression 3028
alpha 835 was 2933
IL-2 804 for 2828
lymphocytes 785 The 2542
factors 695 activation 2203
mRNA 669 as 1869

Table A.6: Top 20 frequent words inside and outside proteinjDNAjRNAjcell-typejcell-line
entities
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