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Abstract

There is a shortage of software development tools that support researchers in academia

and industry alike in experimentation for performance evaluation of resource scheduling

algorithms based on stochastic local search (SLS) techniques. Given their stochastic na­

ture researchers rely on empirical techniques for performance analysis of SLS algorithms.

This work contributes an effort to develop such a tool, called ScheduleLab, based on the

EclipsejOSGi platform. The class of SLS algorithms is expansive, so we focus our efforts on

SLS algorithms solving resource scheduling problems to control the scope of the work. The

tool is non-invasive to the developer's code base and extensible. The tool focuses on support­

ing problem instance generation and providing an experimentation harness for performance

evaluation of such algorithms. We illustrate the utility of the tool with experimentation on

algorithms that solve the job shop scheduling problem.
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Chapter 1

Introduction

1.1 Motivation

Local search and systematic search are contrasting search paradigms used to solve hard

combinatorial problems. Systematic search algorithms scan the search space for a given

problem instance systematically, such that if there is a solution to the problem then it will

be found and if no solution is found that means that there is no solution for the problem in­

stance. This is referred to as the completeness property of systematic search. Local search

algorithms start at a point in the search space and move to a neighbouring point in the

search space in search of the solution, using knowledge local to the neighbourhood of the

previous search position. Stochastic Local Search algorithms are characterised by the use of

randomization in the decisions to move through the search space.

Stochastic Local Search (SLS) algorithms are widely applied to solve academic as well as

industrial decision and optimisation problems. SLS algorithms are typically applied to find

in reasonable time best approximations to the optimal solutions of many NP-Hard problems

where complete and optimal techniques would not be able to find solutions in a reasonable

amount of time. Practitioners are faced with the issues of selecting the most appropriate

algorithm from a set of algorithms for the task at hand or to gain deeper insights into

the behaviour of algorithms. Mathematical analytical techniques would be the preferred

choice [11, cA] for the analysis of SLS algorithms. However mathematical analysis of SLS

algorithms is hard given their inherently non-deterministic behaviour. Instead practitioners

must base their understanding of the performance characteristics of a given SLS algorithm,

1



CHAPTER 1. INTRODUCTION 2

on its own and relative to other algorithms, on a chosen portfolio of empirical techniques.

Over time, experts in the field have identified several best practices in this regard. There is

also acknowledgement that this is an active research area [2]. The prevalence of real world

problems that can be solved using SLS algorithms and the increasing recognition of the

importance of optimisation in strategic and operational decision making means that indus­

trial practitioners need to be supported with comprehensive tools that can enable them to

efficiently analyse SLS algorithms. Currently there is a paucity of such tools for industrial

and academic practitioners, leading to duplication of effort in this regard. We see this appli­

cation area as having rich potential for continuous industrial-academic collaboration given

the active synergy between industry and academia in the area of solving hard optimisation

problems.

1.2 Contribution

This work contributes to addressing the need for tools for academic and industrial practition­

ers applying or studying SLS algorithms. We note that there is a growing focus on rigorous

. ~mpirical analysis of SLS algorithms that is not matched by availability of tools to support .

efficient and effective application of important empirical analysis techniques. We present a

proof-of-concept tool called ScheduleLab intended to fill this need. ScheduleLab is intended

to be useful to both industrial as well as academic researchers by providing an extensible

empirical analysis toolbox for researchers. We restrict our focus to Resource Scheduling SLS

algorithms to control the scope of our work. We demonstrate problem instance generation

and basic empirical analysis of the performance of two algorithms that solve the Job Shop

Scheduling Problem. We discuss how to extend ScheduleLab to incorporate more advanced

analysis and experimentation tools as needed.

1.3 Report outline

In chapter 2 we present a literature review looking at any tools that support empirical re­

search. We also explore fundamental empirical research concepts and practises in the field

that can help us identify features for design of a comprehensive tool. In chapter 3 we focus

on the system architecture and design of our tool, ScheduleLab. We summarise what we

think are the desirable features in an empirical analysis tool and we present ScheduleLab
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a comprehensive tool that is based on the Eclipse IDE and written in the Java program­

ming language. In chapter 4 we present an operational evaluation of ScheduleLab by doing

preliminary empirical analysis on two SLS algorithms that solve the Job Shop Scheduling

problem. We define the problem and walk through the steps of extending ScheduleLab to

add the necessary capabilities to do the experimentation and discuss the results obtained.

In chapter 5 we make concluding remarks and discuss thoughts about future work.



Chapter 2

Literature Review

ScheduleLab is a software tool that supports empirical analysis of resource scheduling SLS

algorithms. In this chapter we discuss some fundamental concepts in the empirical analysis

of SLS algorithms from the literature and explore related work.

2.1 Empirical Analysis of SLS algorithms

There are two ways to study thE performance of algorithms [9, Il]: a theoretical approach

and an empirical approach. An example of the theoretical approach is to use deductive

mathematics to derive worst-case and/or average case analysis of algorithm behaviour. The

empirical approach relies on computational experiments that eventually arrive at a predictive

model that relates causal factors (such as problem instance characteristics and algorithm pa­

rameters) to algorithm behaviour. Theoretical analysis is considered to be a formal scientific

technique, while empirical analysis unfairly suffers from the image of being less scientific or

more of an art than a science. However, as compared to empirical analysis, theoretical anal­

ysis is usually significantly more laborious and less prolific, and can have limited practical

applicability even when theoretical analysis results are available for a given algorithm. For

instance, Simulated Annealing (SA) is theoretically proven to converge to the global opti­

mum solution under certain conditions that includes an infinitesimally slow cooling schedule

[8], which is not practical. Worst-case complexity results are asymptotic and represent a

worst-case that may seldom occur. Average-case complexity analysis available for simple

algorithms, are often based on problem instances sampled from random distributions that

4



CHAPTER 2. LITERATURE REVIEW 5

are unlikely to be encountered in practise. Given the non-deterministic nature of SLS al­

gorithms and the diversity of complex SLS techniques in the literature, current theoretical

analysis techniques unfortunately fall short of enabling the researcher to gain practical and

accessible insight into algorithmic behaviour. Therefore empirical analysis is the common

methodology applied by SLS algorithm researchers. Further, there is a need to have at least

a more principled approach to study algorithm performance using empirical analysis.

Hoos et aI.[l1] offers a comprehensive survey of techniques for empirical analysis of SLS

algorithms, covering two categories of SLS algorithms: SLS algorithms that solve decision

problems and those that solve optimisation problems. Our focus in this project is resource

scheduling problems that are optimisation problems that require minimising/maximising

some objective function. Hoos et al. [11] adopts the more general terminology of Las Vegas

Algorithms (LVAs) in that SLS algorithms are a special case of LVAs. An LVA:

• Returns a correct solution when it finds one.

• Its run-time is a random variable.
, i ,

Further, an Optimisation Las Vegas Algorithm (aLVA), is additionally characterised by

solution quality that is a random variable. Examples of LVAs include SLS algorithms solving

decision problems such as graph-colouring and satisfiability (SAT) problems. Examples of

OLVAs include SLS algorithms solving optimisation problems such as travelling salesman

problem (TSP), vehicle routing problem (VRP) and job-shop scheduling problem (JSP).

Thus, due to their stochastic nature the run-time of SLS algorithms even on a single problem

instance can vary across a sampling of independent runs. We could plot solution run-time

(y-axis) for individual sample runs (x-axis) for a given problem instance. But researchers

prefer to think of the run-time performance of an SLS algorithm as a cumulative probability

distribution function called Run-Time Distribution (RTD) [11, cAl giving a smoother and

more informative graph of the run-time behaviour of the algorithm. The RTD is a function

rtd(t) that defines the probability Ps of the run-time RT of algorithm A of successfully

finding a solution for instance 1r as:

rtd(t) = Ps (RTA,1r <= t) (2.1)

In addition to being characterised by run-time performance, SLS algorithms solving resource

scheduling problems are solving optimisation problems in that they are also characterised
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by solution quality as represented by an objective function that must be minimised or max­

imised. In the travelling salesman problem (TSP) [11, c.8] the objective is to minimise the

total edge weights of the Hamiltonian cycle going through all the nodes (cities). In the job­

shop scheduling problem (JSP), usually we concern ourselves with minimising the makespan

(maximum completion time of all jobs). Thus the performance of resource scheduling SLS

algorithms is characterised by both run-time as well as solution quality in the form of a

bivariate probability distribution over these two variables. Of course a bivariate probability

distribution plot gives the researcher a visually complete perspective of the empirically de­

termined performance characteristics of a given optimisation SLS algorithm. But researchers

prefer to work with the following marginal univariate probability distributions derived from

the bivariate distribution (reproduced from [11]) :

• Qualified Run-time distribution: If rtd(t, q) is the bivariate RTD of optimisation SLS

algorithm A on instance 1f then for any solution quality q', the qualified run-time

distribution (QRTD) of A on 1f given q' is defined by the distribution function:

qrtdq,(t) := rtd(t, q') = Ps (RTA,1r <= t, SQA,1r <= q')

where RT is the algorithm's run-time and SQ is the solution quality.

(2.2)

• Solution Quality Distribution: If rtd(t, q) is the bivariate RTD of optimisation SLS

algorithm A on instance 1f then for any run-time t', the solution quality distribution

(SQD) of A on 1f for t' is defined by the distribution function:

sqdt'(q) := rtd(t', q) = Ps (RTA,1r <= t', SQA,1r <= q) (2.3)

We think that the preference for working with univariate probability distributions de­

rived from the bivariate distribution of an optimisation SLS algorithm is because researchers

prefer to apply common empirical analysis techniques for decision-variant SLS algorithms

and optimisation-variant SLS algorithms. In optimisation-variant SLS algorithms, QRTDs

are useful for characterising the run-time ability of an SLS algorithm to find the optimal or

near-optimal solution quality for a given instance. Similarly SQDs are useful to characterise

the solution quality performance of an algorithm in a given time-limit.

QRTDs and SQDs for every instance are the fundamental performance observations re­

searchers can make about a given SLS algorithm solving (optimisation) resource scheduling
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problems. As noted by [11, cAl we can obtain both QRTDs as well as SQDs by collect­

ing the solution traces of each of k independent runs of optimisation SLS algorithm A on

instance 7r. A solution trace is the pair (RT, SQ) that is reported every time the algo­

rithm finds an improved solution. For k independent runs, let sq(t, j) represent the solution

reached by run j by time t. Then the empirical QRTD of A on 7l" is defined as the following

probability: Ps(RT <= t,SQ <= q):= #{jlsq(t,j) <= q}jk. In addition to being able to

obtain distributions and summary statistics for the performance of optimisation SLS algo­

rithm A on an instance 7l" researchers also need to characterise the performance of A on an

ensemble of instances. Further, researchers need to compare the performance of algorithms

both on single instances as well as on an ensemble of instances. This entails obtaining

descriptive statistics like mean, quantiles, quantile ratios, performance variation coefficient

and performing statistical tests based on the QRTDs and SQDs of the algorithms.

During characterising algorithm performance, researchers may need to qualify QRTDs with

the value of other factors such problem instance size or algorithm tuning parameters [14].

In the above distributions solution quality is measured as relative solution quality. For

a minimisation problem, relative solution quality is defined as (qjq*) -1, and for a maximi­

sation problem it is (q* jf]) - 1, where q is solution quality achieved by the algorithm and

q* is the optimal solution quality. When the optimal solution quality is not known, then a

tight lower bound (in the case of minimisation) can be used. For a minimisation problem

like traveling salesman problem (TSP) the optimal solution quality would be the least cost

hamiltonian cycle and for a JSP it is usually the minimum makespan (maximum completion

time of all jobs). Thus relative solution quality is the percentage deviation of the solution

quality found from the optimal solution value. The closer to 0 the better.

As noted above, QRTDs and SQDs are the fundamental empirical observations of the

performance of an optimisation SLS algorithm on a given instance. They can form the basis

for further visual and statistical analysis. Basic statistics such as mean, median, quantiles

and standard deviation can be obtained for each QRTD and SQD. A solution quality

distribution over Time (SQT), shows the development of a statistic of solution quality over

time. In effect an SQT represents the plot of a SQD (solution quality distribution for time

t) statistic such as mean or median solution quality taken from a series of SQDs corre­

sponding to an entire time interval (SQD for iI, SQD for tz, etc). Quantiles are preferred
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statistics over means because of their inherent stability. Combinations of SQTs are use­

ful for illustrating trade-offs between run-time and solution quality for an entire series of

SQDs.The orthogonal notion of SQT is a qualified run-time distribution statistics depen­

dent on solution quality (RTQ). Here, we plot a statistic of run-time performance taken

from a series of QRTDs corresponding to an entire solution quality interval (QRTD for ql,

QRTD for q2, etc.)

While measuring run-time, one can measure operation counts (constant time) in addi­

tion to cpu-time. In fact when the algorithm is run on different machines with different

run-times it is necessary to measure operation counts for comparability. For SLS algorithms

a local search move can be used as a unit operation count. When operation counts are

used instead of CPU seconds, run-time distribution is referred to as run-length distribution

(RLD) [ll][c.4].

2.2 Generating Problem Instances

-Researchers characterise the behaviour of a given SLS algorithm or a set of competing al··

gorithms by running them against one or more problem instances. For example, given two

SLS algorithms A and B that solve Job Shop Problems (JSP) we may want to ask what

is the expected run-time (in CPU seconds) of each algorithm when solving JSP instances

to optimality. Ideally we want our algorithms to be robust, that is our algorithms should

be able to find optimal solutions to any problem instance, however difficult. The issue of

using relevant and representative problem instances is an important issue to address in the

empirical analysis of heuristic algorithms. Hooker [10] laments a tendency in the heuristic

algorithms literature for" competitive testing". By competitive testing he means the prac­

tise of over-fitting a new algorithm implementation in order to perform favourably against

an existing state of the art algorithm, solving a fixed set of benchmark problem instances.

From a research perspective this is a fruitless exercise because it yields no new insights into

why the new algorithm performs well (or doesn't) on the benchmark instances. Further,

from a practical standpoint it is necessary to ask if the chosen ensemble of benchmark in­

stances is representative enough. If the algorithm performs favourably on one ensemble of

benchmark instances can we expect it to perform well on a different ensemble of instances? A
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more appropriate endeavour would be to characterise the performance of the new algorithm

with respect to characteristics of the problem instances. For example, how does problem

size affect performance, or how does the combination of problem size and algorithm param­

eter values affect algorithm performance. Hooker [9] promotes the practise of controlled

experimentation using sound statistical techniques to arrive at a predictive model that can

explain and predict why a given algorithm performs well or poorly against specific problem

characteristics. It is generally believed in the literature that random synthetic instances

are usually more difficult to solve than structured problem instances found in real world

situations. This is because researchers can design algorithms that exploit the structure of

the problem instances. This means that testing algorithms solely on random instances may

say nothing about how the algorithm would perform in a practical setting. However it is

not always the case that an structured problem instances are easier to solve than random

instances, as noted by [18]. In general it is safe to say that testing algorithm performance

against difficult random instances alone may not be sufficient. In fact in practical appli­

cations, it maybe sufficient to use an algorithm that is not a stellar performer on random

instances because the typical instances are much easier to solve.

.' Whitley et al. [21, 20] acknowledge that "horse-race" competitive testing has serious

disadvantages but in practise faced with an optimisation problem class having specific char­

acteristics, researchers and practitioners still need to recommend one algorithm over others.

So we still need to be able to do comparative evaluations of algorithms' performance. Whit­

ley emphasises specifically the need to consider testing on structured problem instances as

well as the traditional unstructured or random problem instances. Comparative evaluation

of algorithms should be qualified by the characteristics of test problems.

There a numerous examples in the literature of methods to generate random as well

structured problem instances of a particular problem type. For example for JSP, Taillard

[17] proposes a simple technique to generate random JSP instances of any size in which job

operation durations are sampled from a random uniform distribution and machine ordering

for a job is a random permutation. Watson [18] presents two techniques to create structured

JSP problem instances: machine correlated instances have the duration of a job operation

sampled from a gaussian distribution specific to its machine; job correlated instances have

the duration sampled from a gaussian distribution specific to the operation's job. We are not
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aware of any software tools or frameworks in the literature that support generating problem

instances. Some authors publish all or a sample of their generated benchmark instances [17]

while others simply describe the problem generating code that maybe available by person­

ally contacting the authors. Even when the instances are published they are usually in a

non-standard format and the users are expected to write their own code to read/write these

instances. As a result there is a lot of duplication of effort.

In ScheduleLab we support the development and sharing of custom parameterized prob­

lem instance generators thereby encouraging researchers to consider testing on both struc­

tured as well as unstructured instances. Further, users can share and import problem

instance ensembles. The instances are saved in a consistent format and ScheduleLab can

readily read/write these instances.

2.3 Related work

To the best of our knowledge there is a paucity of comprehensive software tools that sup­

port researchers to do empirical analysis of SLS algorithms. This is noted by Hoos et al.

[11 ][Epilogue, pp. 533-534] as an important area for further work. The one comprehensive

software tool found in the literature is EasyAnalyzer [7].

EasyAnalyzer is an extensible framework written in C++ to support empirical analysis

on SLS algorithms. It is independent of the underlying solver or algorithm implementation.

It covers a comprehensive array of empirical analysis techniques for SLS algorithms:

• Search Space analysis: how the topography of the search space affects performance.

• Runtime analysis: Run-time distribution (RTD), Run-length distribution (RLD), So­

lution Quality Distribution (SQD).

• Comparative analysis: of solvers, and of parameter configurations for a single solver.

EasyAnalyzer aims to make SLS practitioners more productive by providing scaffolding

based on an inversion of control design to support the empirical analysis of SLS algorithms.

By inversion of control we mean that the framework effectively has a "don't call us, we'll
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call you" policy in that the researcher simply provides the framework specific pieces of func­

tional implementation. The framework consists of a top-level layer of Analyzers that are

responsible for coordinating execution and delegating (making call-backs) to the special­

ized functionality provided by the researcher when appropriate. An Analyzer implements

the control logic for a particular analysis task (search space analysis, run-time behaviour

analysis, comparative analysis). The researcher is expected to provide a possibly re-usable

integration layer between Analyzers and the underlying solver or algorithm implementation.

This integration layer provides hooks into the underlying solver in order to get the data for

the various Analyzers. The integration layer includes providing implementations for:

• StateManagerAdapter: it provides methods to enumerate and sample the search space

independently of the neighbourhood function and to calculate the cost function value

on a given state.

• NeighbourhoodExplorerAdapter: it provides methods to enumerate the neighbourhood

of a given search space, point and evaluate the cost function value.

• SolverAdapter: it provides methods to execute a complete run returning running time

and cost function values for the trajectory of search states explored.

The researcher states which analysis is needed by' specifying the appropriate command

line parameters and supplying his implementation of the solver(s) that implements the in­

tegration layer mentioned above. Unfortunately, its not clear from the description of Easy­

Analyzer [7] if the researcher is required to provide an implementation for all three of the

above solver specific components even if he is only interested in performing, say, run-time

behaviour analysis. That would force the user to write unnecessary code, taking away some

of the benefits of using a scaffolding such as EasyAnalyzer that is meant to minimise the

amount of user written code for the task.

EasyAnalyzer offers comprehensive empirical analysis features but it also induces a tight

coupling between the user code and EasyAnalyzer. This can be a concern in industrial

scenarios where the optimisation code is integrated as part of a much larger system and

introducing a compile-time dependency on EasyAnalyzer may not be practical as it may

further complicate the software build process. ScheduleLab offers an alternate approach in

which we focus on providing compile-time decoupling between user code and ScheduleLab.
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This means that the user's algorithm code is not expected to extend any abstract classes

or implement any interfaces in order to integrate with ScheduleLab. Instead ScheduleLab

relies on user specified meta-data to integrate with the solver at run-time using the Java

platform's run-time introspection capabilities [13]. Unlike ScheduleLab, EasyAnalyzer has

no support for problem instance generation and by delegating the monotonous task of read­

ing/writing problem instances to the underlying user code, it does not address the issue of

duplication of effort in this respect.

ScheduleLab currently lacks the breadth of concrete empirical analysis features offered

by EasyAnalyzer, but as explained in the next chapter, ScheduleLab's architecture sup­

ports extensions that could provide more advanced analysis features. As an alternative to

command-line run EasyAnalyzer, ScheduleLab is a Java IDE (Eclipse [3]) based tool that

is also an extensible inversion of control scaffolding. We believe that implementing Sched­

uleLab as a Java IDE based tool enhances usability. Unlike EasyAnalyzer, ScheduleLab

does not require the user to implement a tight integration layer for every solver library used

so that the scaffolding can extract data from the solver for analysis. EasyAnalyzer seems

to assume that the solver library is the entry-point to the algorithm solving the problem

instance. We think that this is seldom the case. Mostly, the solver library (EasyLocal++,

ConstraintWorks, COMET, etc) is used behind the scenes by a wrapper component that is

the entry point to the algorithm implementation code. This wrapper component is respon­

sible for taking a problem domain specific instance object, doing any pre-processing, setting

up the underlying solver and then running the solver. In a sense the wrapper component

is a black-box providing solving capability using an underlying solver library behind the

scenes. Any empirical analysis tool would need to integrate with such a solving component

without direct integration with the underlying solver library. ScheduleLab does not expect

to integrate directly with the underlying solver library. Instead ScheduleLab requires the

user's solving component to exhibit behaviour that ScheduleLab can integrate with at run­

time. In particular for run-time behaviour analysis ScheduleLab expects the user's code to

generate events on solution improvements and to provide methods to register event listeners,

query the run-time, operation count and solution quality. The user is expected to declare in

the meta-data the signature of the methods and the event listener interface. ScheduleLab

relies on the Java reflection API to integrate with the solving component using the user

specified meta-data.



Chapter 3

System Architecture & Design

3.1 Desirable features

Before we present the architecture and design of ScheduleLab, it would be useful to sum­

marize what we think are the desirable features of a tool that supports empirical analysis

of resource scheduling SLS algorithms.

3.1.1 Generating Problem Instances

As explained in section 2.2 in order to test for robustness we need to test our algorithms

against problem instances with varying characteristics including random and structured

problem instances. Further researchers should be able to re-use problem instance genera­

tors and to share benchmark instances without having to duplicate the code to read/write

problem instances.

An empirical analysis tool should support generating new random as well as structured

problem instances. Researchers should be able to write custom instance generators as well

as share generators. It should be possible to write parameterized generators with support for

validation of input provided by the user. It should be possible to publish instance ensembles

and use ensembles generated by others in a seamless way. The tool should free researchers

from duplicating effort in writing code to read/write problem instances.

13
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3.1.2 Support for Empirical Performance Analysis
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We saw in section 2.1 that the fundamental observations that a researcher can make about

the performance of an SLS algorithm solving resource scheduling problems are QRTDs

(qualified run-time distributions) and SQDs (qualified solution quality distributions). These

can form the basis for further visual and statistical analysis. The tool should support a

workflow that includes:

• create or import problem instance ensembles

• integrate algorithms to conduct experiments on

• specify sample size and algorithm parameters

• collect solution traces for every combination of an algorithm and problem instance.

• analyse the solution traces to yield QRTDs, SQDs, SQTs and basic descriptive statis­

tics such as mean, quantiles and standard deviation.

• provide support to do statistical tests to determine if statistics (mean, quantiles) of

the distributions of two algorithms are different.

• provide visualisation support to view distributions in semi-log or log-log plots if de­

sired.

3.1.3 Software Engineering and Development considerations

SLS researchers include both academic as well as industrial users. From a user's point of

view a tool for empirical analysis of resource scheduling SLS algorithms must be easy to

use and it should leverage the user's existing development environment. We believe that

graphical user interface (CUI) based development environments are much easier to use and

enjoy wide acceptance amongst academic as well as industrial developers, as compared to

command line development environments. Further, forcing the user to learn a new program­

ming language is not a practical expectation at least of industrial users. From the point of

view of developing the tool itself, re-inventing the wheel in terms of creating a new inte­

grated development environment (IDE) from scratch that is dedicated to empirical analysis

would be undesirable. It would also force the user to work with separate IDEs that offer

different functionality, operating on shared code. In other words, the tool should integrate
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with popular software development contexts so as to minimise the complexity of learning

and using the tool.

In industrial projects the algorithm implementations are usually a part of a software

component that fits into a larger system of components. The empirical analysis tool should

be easy to integrate with in that the tool should have minimal or no compile-time impact on

the user's algorithm implementation code. For example if the tool is a library that exposes

its application programming interface (API) [5] and expects the user to extend certain base

classes in order to use the tool to do empirical analysis then that is undesirable because it

introduces a compile time dependency between the empirical analysis tool library and the

entire code base of the user. This may not be acceptable in some development projects and

would introduce additional complexity in the software build, test, release process.

The empirical analysis tool should support re-usability and minimise duplication of effort

in the practise of empirical analysis. When researcher R1 publishes benchmark JSP prob­

lem instances, and researcher R 2 wants to do empirical analysis using those instances or

create more instances based on the original instance distributions then R2 without any help

from R 1 must re-implement the code to read and generate instances, implement R1's al­

gorithm, etc. This would be mitigated if R 1 could share his code, data and analysis in a

format that R2 can seamlessly consume and extend, knowing that they're both working

on the same class of resource scheduling SLS problems. It should be possible for users to

contribute new re-usable extensions to the tool such as problem instance generators, new

problem type capabilities, new experimentation, data analysis and visualization capabilities.

3.2 ScheduleLab

We now introduce ScheduleLab, our proof-of-concept tool for empirical analysis of resource

scheduling SLS algorithms. In order to control the scope of our work we focus on a subset

of the features introduced in Section 3.1. These features will be elaborated upon in later

sections. ScheduleLab is a software development tool to assist the user to perform empiri­

cal analysis on one or more resource scheduling SLS algorithm implementations. Features

supported by ScheduleLab are, support for:

• defining new resource scheduling SLS problem types, such as job shop scheduling
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problem, vehicle routing problem with time window constraints, etc.

• instance Ensemble generation.
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• performing sample runs of one or more algorithms on one or more instances in order

to collect solution traces for data analysis.

• data analysis to obtain RTQs and SQDs.

• visualizing algorithm performance distributions.

• customizing and contributing new capabilities in each of the above areas.

• Minimal impact on target user code. ScheduleLab uses meta-data to integrate with

the target code at run-time and imposes no compile time dependencies on the target

user code.

ScheduleLab is implemented in the Java programming language as a plugin of the Eclipse

IDE [3J.

3.2.1 Why Eclipse and Java?

Traditionally SLS algorithms in the literature tend to be implemented on C/C++ because·

of the sheer speed of natively compiled code as compared to interpreted execution. However,

C/C++ has some disadvantages such as the developer is responsible for memory manage­

ment (which can be a tedious and error prone exercise) and the compiled and linked program

is not generally portable. The usual argument against using an interpreted language such as

Java for SLS algorithms is that Java is slow. It is true that Java is slower than C/C++ how­

ever there are some important advantages in using Java over C/C++. One can argue that

Java's automatic memory management, platform independence (compiled Java bytecode is

mostly portable), proliferation of open source Java software libraries and development tools,

its ubiquity as a programming language both in industry as well as academia and vibrant

developer community means that the average developer will be more productive writing

software in Java to solve practical enterprise related problems. Further with advances in

hardware performance and affordability as well as in just-in-time (JIT) compilers for the

Java Virtual Machine (JVM), the performance difference between Java and C/C++ code

has diminished, albeit far from completely. Java particularly suffers from a relatively slow
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startup phase as the JVM loads the large platform libraries into memory. However the ben­

efits of the JIT compiler become apparent as the JVM is kept running for longer periods.

Thus we believe that in real world applications that are either server-side or client-side Java

applications where the SLS algorithm is part of a larger system, implementing the algorithm

in Java is a reasonable choice. Further, it is possible to interface Java with C/C++ using

the Java Native Interface (JNI) bridge, effectively accessing C/C++ code with a thin Java

wrapper.

IBM's Eclipse IDE (www.eclipse.org) is an open-source software development platform

that is written in Java and based on an implementation of the OSGi runtime. It is the most

popular IDE in the Java development space, circa 2008. Even though Eclipse is written in

Java it supports writing software in a wide array oflanguages including C/C++, JavaScript,

Perl, PHP and of course Java. IBM intended Eclipse to be an extensible development plat­

form to which developers could add new capabilities dynamically at run-time as platform

plugins. IBM chose to implement the Eclipse plugin kernel to comply with the OSGi spec­

ification. OSGi (a legacy acronym that stands for Open Services Gateway initiative) is a

module system specification for Java (www.Qsgi.org), that emerged out of the space of Java

for embedded devices. It allows OSGi modules called bundles or plugins to dynamically be

part of an in-JVM network of services that can be consumed by other services or objects.

Essentially each plugin either extends a base class or implements an interface and the OSGi

runtime then instantiates the plugin when there is a need for that service. Services can

be added or removed dynamically in an OSGi runtime. Eclipse itself provides a powerful

environment to write plugins for the Eclipse platform.

Eclipse is a mature extensible development platform with an expansive user community.

Implementing ScheduleLab as an Eclipse/OSGi plugin means that we can build on the ex­

isting extensive user interface infrastructure provided by Eclipse and that we can integrate

with the user's preferred software development environment. This would contribute signifi­

cantly to usability. Further, Eclipse allows plugins to be extensible themselves by declaring

appropriate plugin extension-points. Other developers can contribute extensions to Sched­

uleLab's extension-points. Thus we can achieve our goal of making ScheduleLab itself be

extensible.
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3.3 ScheduleLab Architecture
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ScheduleLab broadly comprises of two parts: the core ScheduleLab experimentation frame­

work and the ScheduleLab extension-points. The core ScheduleLab experimentation frame­

work comprises of the following capabilities that are internal to the tool:

• Instance generator engine: given the appropriate parameters - problem type, instance

generator, relevant parameters - the instance generator engine coordinates instance

ensemble generation.

• Sampling engine: it is responsible for coordinating the running of experiments given

instance ensemble, target solvers, problem type, data collectors, relevant algorithm

parameters.

• Analysis and visualisation engine: it is responsible for coordinating data analysers to

analyse the data and visualises to view results.

• Persistence engine: it is responsible for the efficient disk storage and retrieval of objects

like problem instances, solution traces, analysis results, etc. in Extensible Markup

Language (XML) format.

ScheduleLab defines the following primary extension-points for extensibility.

• Problem type extension-point: Allows new problem type capabilities to be added

to ScheduleLab. Each problem type capability defines the resource scheduling SLS

problem class it supports (e.g. JSP), declares the expected structure of a problem

instance of this class and provides a transformer service to transform between (bi­

directional) any external problem instance type to an internal problem instance type

of this problem class. We explain in later sections the details of this feature.

• Problem insta~ce generator: Adds one or more new instance generators for a given

problem type to ScheduleLab. Each instance generator must also declare how its

internal representation of an instance object corresponds to the instance structure

expected by the problem type plugin.

• Data collector: Adds new data collection capabilities to ScheduleLab. The basic data

collector knows how to connect to a solver and collect solution traces of a given sample
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run. Another data collector may be focussed on collecting data to study search space

topology.

• Data analyzer: Adds new data analysis capabilities to ScheduleLab. Declares the

data collector it is compatible with and processes data collected from sample runs for

visualization and/or statistical analysis.

• Data visualizer: Adds new data visualization capabilities to ScheduleLab. Declares

the data analyzers it is compatible with and provides graphical views of analyzed or

raw data.

In later sections we elaborate on the above components and extension points of Sched­

uleLab.

3.3.1 User scenario

The following is the user scenario supported by ScheduleLab

• The user creates a new ScpeduleLab project in Eclipse, specifying the name and loca-, .

tion on disk and the problem type of interest. The user adds the Eclipse projects that

have the target algorithms as project references to the new ScheduleLab project.

• From the project the user can choose to add a new problem set ensemble by choosing

an instance generator and specifying parameters such as number of instances, size of

the problem and any generator specific parameters.

• The user can then create a new experiment session, specifying the target algorithms

and their run-time meta-data, the intended data collector and one or more run-sets.

A run-set is a configuration of algorithms, instances and algorithm parameters. The

user can then launch the experiment session and ScheduleLab will execute each of the

specified run-sets.

• The user can select an action to analyze the data collected in the previous step.

• The user can select an action to visualize the results of data analysis.
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3.4 Leveraging the Eclipse platform
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ScheduleLab is implemented as an extensible Eclipse plugin to be used by Java developers.

Eclipse allows plugin developers to contribute new functionality to the Eclipse IDE such as

(see [4] for a comprehensive study of Eclipse plugin development):

• Projects: Eclipse allows the user to create projects (top-level folders) in the Eclipse

workspace. A project is of a particular type. The most common project in eclipse is a

Java project. A Java project allows developers to create packages and Java source files

in the project. The project has a build-path (Java classpath) that can be configured

through the user-interface by the user and can include libraries (.jar files internal and

external to the project) as well as other Java projects in the Eclipse workspace. Plugin

developers can contribute new project types to Eclipse. A project of a particular type,

say Java project, is tagged as having a corresponding project nature. A Java project

is tagged as having a Java project nature. Various user interface (VI) components

in the Eclipse environment customise their behaviour in response to the presence of

a particular project nature. For example, when the user selects a Java project and

. brings up the Proper·ties dialog; the dialog shows the Build Path properties page that

allows the user to set the build-path for the project. But doing the same for a plain

project does not show the Build Path properties page.

• Editors: The notion of editors in Eclipse is more general than the usual text editor

available in any operating system. An Eclipse editor allows the user to change the

contents of an underlying workspace resource (usually a file) but its VI may take a

form different from the typical window that allows the user to edit text. For example

an Eclipse editor for an XML file could be a master-detail VI, showing the XML

elements as a tree, on the left, forming the master view. When the user selects an

element in the tree then the detail view on the right, shows a form with text fields

that allow the user to edit XML element attribute values. Eclipse provides some

base classes for writing custom editors. Overall the plugin developer is responsible

for implementing the complete VI functionality (VI design, editor actions and model­

view synchronization). Eclipse allows the plugin developer to associate the editor to a

specific file type (.xml, .slab) or a specific file name so that when the user double-clicks

on such a file, Eclipse automatically instantiates the plugin developer's editor to edit
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the file .
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• Views: Eclipse views are simply arbitrary VI components that conventionally are used

to provide a visual representation for some underlying workspace resource. Views can

use the entire workspace as their underlying resource (as in the Navigator view that

displays a file system view of the workspace projects) or only the currently selected or

active workspace resource (such as the Outline view that displays the structure of the

Java source file currently being edited). Plugin developers can contribute new views

to the Eclipse IDE, that can be opened by user action or programmatically.

• Wizards: Eclipse offers a wizard user interface framework and allows a plug-in devel­

oper to contribute a wizard of a pre-defined category. A wizard is a dialog window that

pops up on specific user actions, such as create a new project or export a workspace

resource into a specific format. It guides the user through a series of steps to elicit the

required data input for the task being requested. For example, a plug-in developer

can contribute a new project creation wizard by declaring a contribution to the

org. eclipse. ui .newWizard extension point and providing an implementation of the
.., '

. interface org. eclipse. ui. INewWizard and possibly extending the base class

org.eclipse.jface.wizard.Wizard.

Our ScheduleLab plugin contributes a new ScheduleLab project type as well as a new

integrated editor that provides the main VI for ScheduleLab and a new ScheduleLab project

wizard. Fig. 3.1 shows the VI contributions made by ScheduleLab to the Eclipse workbench

(Eclipse IDE user interface). Contributing the editor means declaring the contribution to

the extension point org. eclipse. ui. editors in the ScheduleLab plugin. xml plugin de­

scriptor using the PDE, and providing an implementation of the interface

org. eclipse. ui. IEditorPart. More details of the ScheduleLab VI are presented in sec­

tion 3.7. The editor effectively gives the user a single entry point that allows the user to edit

a set of meta-data files that are created inside the user's ScheduleLab project. Meta-data

files store information that includes the project name, the project's problem type, problem

instance ensemble descriptions and experiment session descriptions. The meta-data files are

usually in XML format and are meant to be transparent to the user. The user only inter­

acts through the ScheduleLab editor VI which supports a high-level workflow as outlined in

section 3.3.1. The user's actions, choices and results are saved as files in the user's Schedule­

Lab project. We will see more details of the ScheduleLab project and editor functionality
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later in the chapter. Like other projects in the Eclipse workspace, a user will be able to

export a ScheduleLab project to a source control repository like CVS or Subversion using

the excellent plugins available for this purpose in Eclipse.

A ScheduleLab project contains the following top-level folders and files:

1. sLabProject.xml: A sample ScheduleLab descriptor file is show in section A.4. A given

ScheduleLab project can have only one problem type (e.g. JSP, Vehicle Routing with

Time Windows [ltl).

2. ensembles folder: The ensembles folder contains sub-folders that correspond to prob­

lem instance ensembles for the project's problem type. Details are provided in section

3.5.1.

3. sessions folder: The sessions folder contains sub-folders that correspond to experiment

sessions. Each experiment session includes setting up algorithms, a data-collector and

run-sets. The session sub-folder contains the experiment raw-data and output from

analysers. Details are provided in section 3.5.

Eclipse has an extensible plugin architecture in which a plugin can declare extension

points that other developers can contribute to using the ro1;Just Eclipse plugin development

environment (PDE) that is part of the IDE. In fact all of Eclipse is built as plugin extensions

around a core aSCi kernel called Equinox [6]. ScheduleLab defines a set of extension points

(detailed later) such as problem instance generators, data analysers and visualizers that

other developers can write and share with other ScheduleLab users promoting re-use and

minimising duplication of effort. The latter can install these extension plugins using the

standard ways of deploying plugins in eclipse [4, 6]. It is important to keep in mind that an

Eclipse plugin or plugin extension when activated is a single instance of that plugin in the

Eclipse aSCi run-time. Typically the activated plugin provides services (e.g. compiling,

editing, viewing Java source files) to process Eclipse workspace related resources such as

files and projects. Therefore the plugin code is usually stateless, but Eclipse itself does not

require that design convention.
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Figure 3.1: ScheduleLab's contributed extensions to Eclipse workbench VI
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3.5 ScheduleLab core components
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ScheduleLab core components are internal components that take as input the meta-data

obtained from the user and create or update artifacts in the ScheduleLab project. The

meta-data includes descriptors for the project, problem instance generation, solvers and

experiment sessions. The artifacts produced by the core components include experiment

raw-data, problem instances and analysis data. The core components are described below:

3.5.1 Instance generator engine

The instance generator engine is responsible for coordinating the creation of new problem

instances according to the information supplied by the user. The instance generator engine

requires as input:

• the location of the user's ScheduleLab project in the Eclipse workspace,

• the unique name of the problem instance ensemble specified by the user. This must

correspond to a sub-folder of that name in the project's ensembles top-level folder.

The sub-folder must contain an ensemble.xml file that contain" all the information

necessary for the instance generator engine to instantiate an instance generator and

produce new instances.

See fig. 3.2 showing the instance generator engine's dependencies. The engine needs an

instance generator implementation to generate new instances in memory and a persistence

engine (section 3.5.4) to save the generated instances to disk. A sample ensemble.xml file

is shown in section A.5. The ensemble.xml file is generated and edited by the ScheduleLab

editor, described later in the chapter, that obtains all the necessary information from the

user. The editor allows the user to select an action to launch the instance generator engine

for a specific ensemble descriptor.

The instance generator engine queries the Eclipse plugin registry [41 [c. 11] to get access

to the instance generator plugin extension having the specified genemtodd. An instance

generator extension implements an interface listed in section B.lo The instance genera­

tor engine is only interested in invoking the IInstanceGenerator. createlnstance(. .)

method repeatedly to generate instances by passing it a Map of parameter values from the

ensemble.xml file. The problem instance returned by the instance generator is assigned a
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global unique id (GUID), transformed appropriately (explained below) and saved in the

ensemble sub-folder using the persistence engine.
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Note that the instance generator extension plugin returns its own problem instance type

that is external to ScheduleLab effectively providing a level of decoupling. ScheduleLab

allows the user's solver code and instance generator plugins to define their own respective

problem instance type (a Java object hierarchy representing a problem instance and all its

constituents). Thus, a user's solver code solving JSP problem instances can define a problem

instance type (hvastani. msc. j sp. solveri. JSPlnstance) that is different from that used

by a random JSP problem instance generator:

(hvastani. msc. generators. j sp. taillard. Schedule). The cornerstone for this decou­

pling to work is a problem instance transformer service offered by the problem-type ex­

tension plugins. Problem-type extention plugins are described in later sections, but they

essentially define a new problem-type capability (e.g. JSP, VRPTW) for ScheduleLab to

support empirical analysis for algorithms of that problem type. The problem-type plugin's

transformer service can do bi-directional transformation between an external problem in­

stance type and the problem-type plugin's internal problem instance type, in a transparent

way from the perspective of the ScheduleLab core components. It is the problem-type plu­

gin's internal problem instances that are read/~ritten to the user's ScheduleLab project

ensemble folders. This decoupling is particularly useful for the algorithm code because it

frees it from any dependencies on ScheduleLab. However, the external problem instance

type must share the same structure as the problem-type plugin's internal problem instance

type for the transformation to be feasible. The details of the transformation service are

addressed in later sections.

3.5.2 Sampling Engine

The sampling engine is responsible for coordinating an experimentation session. An experi­

mentation session involves running one or more algorithms against one ore more ensembles

of problem instances. The sampling engine requires the following as input:

• the location of the user's ScheduleLab project in the Eclipse workspace,

• the unique name of the experimentation session specified by the user. This must corre­

spond to a sub-folder of that same name in the project's sessions top-level folder. The

sub-folder must contain session.xml and dataCollector.xml files that contain all the

information necessary for the sampling engine to instantiate and run a data collector,

algorithms and problem instances.
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As shown in fig. 3.2, the sampling engine uses a IDataCollector to run the specified exper­

iment session. The IDataCollector in turn needs the persistence engine (section 3.5.4 and

the correct implementation of IProblemType. The problem type allows the data collector to

transparently transform problem instances stored in the ScheduleLab project using an inter­

nal representation, into a representation expected by the user's algorithm implementation.

The data collector extension point is described in detail later in this chapter. A data col­

lector plugin encapsulates the control logic to execute a particular data sampling procedure

corresponding to a specific kind of performance analysis of SLS algorithms. For example,

a solution trace data collector plugin is capable of taking multiple samples of an algo­

rithm's solution trace while solving a single problem instance. A search space analysis

data collector plugin would be capable of mapping the search space topography correspond­

ing to an algorithm solving one or more problem instances.

A sample session.xml file is listed in section A.5. The contents of the dataCollector.xml

file are specific to a given data collector plugin and the details are described in later sections

(e.g., for a solution trace data collector, the dataCollector.xml contains meta-data about

what methods to invoke on the user's solver code to start running the solver, description of

, the expected problem instance type and t.he solver's event publishing interface). Bot.h the

files are populated with values obtained from the user through the ScheduleLab editor. The

editor allows the user to select an action to launch the sampling engine to run an experi­

mentation session. The session.xml file specifies the Eclipse plugin id of the data collector

plugin selected by the user and one or more run-sets. A run-set is a named combination

of algorithms, algorithm parameters and instance ensemble (present in the project). The

sampling engine queries the Eclipse plugin registry to get access to the data collector plugin

matching the specified id. For every run-set specified in session.xml the sampling engine

invokes the data collector. The data collector runs each run-set algorithm with its parame­

ter values on each of the instances belonging to the instance ensemble. Every data collector

plugin implements a Java interface listed in section B.3. The sampling engine must supply

the parameters required by the IDataCollector. start ( .. ) method. Given the project

location the sampling engine determines the associated problem type. The IRunSet and

IDataCollectorDescriptor are object wrappers for a given session run-set and the data­

Collector.xml file respectively. The data collector obtains the necessary meta-data informa­

tion for each solver specified in the run-set from the supplied IDataCollectorDescriptor.
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The output of the data collector is saved in a sub-folder called simply, data inside the

specified session folder. A further sub-folder is created for output data corresponding to

each run-set, named with the run-set id.

3.5.3 Analysis and visualisation engines

The analysis and visualisation engines are responsible for coordinating running user specified

analysers on the output of a compatible data collector and running user specified visualisers

on the output of compatible analysers, respectively. The engines require the following as

input:

e the location of the user's ScheduleLab project in the Eclipse workspace,

e the unique name of the experimentation session specified by the user. This must

correspond to a sub-folder of that same name in the project's sessions top-level folder.

The sub-folder must contain session.xml file and a data sub-folder containing the

output of the session's data collector for each session run-set.

e. for analysis tasks, the unique name of an analysis task specified by the user. This

must correspond to a sub-folder of that same name in the analysis sub-folder of the

session, that contains an analyser.xml descriptor file (section A.7).

e for visualisation tasks, the unique name of an analysis task corresponding to a sub­

folder by that name under the analysis sub-folder of the session, containing the output

of a compatible analysis task for each run-set.

Fig. 3.2 shows that both the analysis and visualisation engines need access to a persistence

engine in order to read the compatible input data for processing. The analysis engine in­

puts the data into an implementation of IAnalyser and saves the output data to disk using

the persistence engine. The visualisation engine inputs the data into an implementaiton of

IVisualiser that in turn may for example save graph image files in the project. A Sched­

uleLab analyser extension plugin declares the data-collectors it is compatible with, that is,

the data-collectors who's output it can analyse. For example, a SQD and QRTD analyser is

only compatible with a solution trace data-collector. Similarly, a ScheduleLab visualiser
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plugin declares the analysers it is compatible with.
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The ScheduleLab editor allows the user to select and launch an analyser that is com­

patible with the experimentation session's data collector. Similarly, the user can launch a

visualiser that is compatible with the output of a previously run analyser. When the user

launches an analyser the result is a sub-folder in the analysis folder of the session, with a

user specified name, that contains a descriptor file called analyser.xml and the output of

the analysis task. A sample descriptor file is show in section A. 7.

3.5.4 Persistence engine

The ScheduleLab plugin generally saves data in Extensible Markup Language (XML) format.

Java objects like problem instances, solution trace data and analysis output data need

to be stored and retrieved from the user's ScheduleLab project, in XML format. The

actual XML schema that these files are represented in is irrelevant. On the other hand,

ScheduleLab related descriptor files (sLabProject.xml, ensemble.xml, session.xml, etc.) are

XML files with a predefined structure, that may be directly edited by the user and we need

to programmatically read the XML element and attribute values throughout ScheduleLab.

ScheduleLab has a XML persistence engine that it expose5 to other core components and

any dependent plugins as shown in fig. 3.2. The persistence engine provides services such

as transparently storing and retrieving Java objects from XML files, as well as reading and

writing descriptor files. Behind the scenes the persistence engine relies on two third-party

libraries:

• XStream: Given a Java class that has been annotated with XStream annotations,

XStream can transparently and efficiently save and retrieve Java objects from XML

files. The XML files are saved in an XStream specific schema and are in a sense

internal to ScheduleLab. In later sections we see how ScheduleLab plugins use XStream

annotations to save and retrieve their Java objects.

(http://xstream.codehaus.org/)

• Jakarta Commons Configuration: Given an XML configuration file that can be edited

in a text editor, Commons Configuration allows us to programmatically read and edit

XML element and attribute values.

(http://commons.apache.org/configuration/)
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3.6 ScheduleLab extension points

3.6.1 Problem Type extension point

31

Problem type plugins allow ScheduleLab to support new resource scheduling problem in­

stances. Problem type plugins act as a bridge between ScheduleLab's core components, the

user's algorithm code and problem instance generators. As shown in figure 3.2, a problem

type plugin contributes an implementation of IProblemType that in turn is used by the

sampling engine (passed as input to a data-collector) as well as the instance generator en­

gine. ScheduleLab allows user's algorithm code and problem instance generators to expect

their own problem instance object types. But it is the problem type plugin that provides

the internal translation service.

The problem type plugin has the following responsibilities:

• It specifies the expected structure of the problem instances for this type of resource

scheduling problem.

• It provides a service to transform between an arbitrary target problem instance type

object that complies with the expected instance structlue into the plugin's internal

problem instance representation.

The decoupling between ScheduleLab, instance generators and user algorithm code is

desirable because it minimizes the amount of compile-time coupling and effort needed for

a user to use ScheduleLab. The user's algorithm implementation may use its own object

hierarchy representing a problem instance. Also the user's problem instance may need to

hold additional application specific data that may be irrelevant to ScheduleLab. Discarding

application specific Java objects for classes that are compatible with ScheduleLab is tedious

and undesirable.

In order for this decoupling to work, it must be feasible for the problem type plugin to

transform between external and internal problem instance representations. If two arbitrary

objects are structurally the same, differing only in naming or in concrete types that have

the same superclass (java.util.ArrayList and java.lang.Set are both

java. util .Collection), then it would be feasible to transform between them. For exam­

ple, in the case of JSP problem instances, we can say that the problem instance should

have an array or a collection of resource objects and job objects. Each of these can define
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additional properties and further associations with other domain object types. If two JSP

problem instance types comply with the above structure, they can be transformed into each

other.

The basis for this mechanism is the Java Reflection API. Through the Reflection API,

the Java platform provides a programmer the ability to introspect and instantiate any ar­

bitrary Java class. Introspection includes listing the fields and methods of a class as well as

being able to invoke public visibility methods on the object, with the appropriate parame­

ters. The expected XML meta-data (empty values) is specified by the problem type plugin

and the meta-data values are specified by the user or instance generator plugin developer,

once only. See section A.2 for an example of a meta-data file for a JSP problem-type plugin.

The meta-data file must be specified by the user or a problem instance generator plugin

developer. The meta-data file captures all the necessary information that the problem type

plugin will need to transform between the target problem instance to the plugin's internal

problem instance representation. The meta-data file also describes the expected structure of

the target problem instance. In the given example, the target problem instance is expected

to 'be an object that has afield that provides a (string) description of the instance. The

target instance must have a collection or an array of objects representing resources. Each

resource must have a field for a (long integer) id and a field for the name of the resource.

Similarly, the target instance must have a collection or an array of objects representing

JSP jobs, and each job must have a duration field, a resource assignment field and a start

time field. The values of the XML elements of the meta-data file correspond to actual field

names or fully-qualified Java class names that the problem type plugin uses with the Java

Reflection API to provide a bi-directional problem instance transformation service between

external and internal problem instance representations.

The problem type plugin developer is expected to implement the interface listed in sec­

tion B.2. ScheduleLab's core components register the external instance meta-data with the

problem type before invoking methods to do transformations. Finally, the problem type plu­

gin developer is expected to publish supplementary documentation explaining the expected

structure from the target problem instance, in addition to an empty XML meta-data file.
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3.6.2 Problem Instance generator extension point
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Instance generators are contributed to ScheduleLab as Eclipse plugins that are extensions

of ScheduleLab's problem instance generator extension point. Figure 3.2 shows that an in­

stance generator plugin contributes one or more implementations of IInstanceGenerator

that are used by the instance generator engine to generate new instances in memory. In­

stance generators are specific to a ScheduleLab problem type that they must declare. They

implement an interface given in section B.lo The key method is

IInstanceGenerator. createInstance ( .. ) that accepts a map of parameters needed by

the generator and returns a new instance object. The generator plugin must describe its

parameters in a file named generator.xml in its directory. See section A.9 for a sample

listing of generator.xml. This file will describe each parameter that the generator accepts.

For each parameter the following is required:

• name

• type of the parameter: int, long, double, string

• validation rule: expressed as a java boolean expression that can refer to other param­

eters by name. e.g. ((rriinDuration > O)and(maxDuration > 0))

Internally, ScheduleLab uses an expression evaluation library called Jakarta Commons Jexl

to evaluate validation expressions (with parameter references) [1]. ScheduleLab accepts and

validates the parameter inputs from the user and when the user gives the command to gen­

erate instances, it invokes the createInstance ( .. ) method of the plugin with a Map of the

user specified parameters. The implementation of the createInstance ( .. ) method would

typically create an empty problem instance object and populate it according to a specific

algorithm. For example, a plugin implementing TaiIIard's [17] random JSP generating algo­

rithm would create the user specified jobs and machines and for each job operation, sample

a random uniform distribution to assign durations.

An instance generator must specify the meta-data for its own instance object hierarchy

so that ScheduleLab can transform instances generated by the generator to an internal for­

mat for disk storage. ScheduleLab will transform the instance generator's instance object

into the internal problem instance type of the corresponding problem type plugin, before
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saving the generated instance using the persistence engine.

3.6.3 Data collector extension point

34

The data collector extension point represents the heart of ScheduleLab's experimentation

capabilities and hence is the most complex plugin type to implement. It implements the

IDataCollector interface listed in sec B.3. The data collector is meant to encapsulate the

control logic to initialise solvers, pass them problem instances as input, perform sample runs

and extract the appropriate data necessary for a particular type of experimental analysis.

Run-time and solution quality performance analysis [ll][c.4] and search space topography

analysis [Ill [c.5] are two kinds of experimental analysis for SLS algorithms. As an exam­

ple, we discuss the former. Figure 3.2 shows that a data collector plug-in contributes an

implementation of IDataCollector that in turn is used by the sampling engine to execute

an experiment session.

A data collector for run-time and solution quality performance accepts a

IDataCollectorDescriptor' object that wraps a descriptor file like in section A.IO. This

descriptor is specified by the user thr6ugh the ScheduleLab Editor. The descriptor pro­

vides the data collector plugin with the information necessary to instantiate and integrate

at run-time with the run-set solvers. Using Java Reflection API the plugin can instantiate

the solver and know how to query methods on the solver. But more importantly the data

collector plugin must register appropriate listener objects with each solver at run-time to

be notified of solution trace events. This is achieved using dynamic proxies available as

part of the Java platform. Dynamic proxies allow us to create a proxy object implementing

any interfaces, such that we can assign it a handler object and then any method calls on

the proxy will be delegated to the handler object. Thus, we can create dynamic proxies for

the target solver code's event handler interface specified in the dataCollector.xml file and

register those as event-handlers with the solver. A pseudo-code example to illustrate this is

shown in program 3.1.

When the data collector is notified of a solution improvement event, it invokes methods

on the solver to collect the sample point data: time elapsed, operations count and metric

value (solution quality). The sample points are collected in memory. Once all the samples
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Ilwe'll create a dynamic proxy for SolverEventHandler
Ildefine our proxy handler
InvocationHandler handler = new InvocationHandler(){

Ilany method call on the proxy gets delegated to this method
public Object invoke(Object proxy, Method method, Object[] args){

Ildepending on method name, do something
Ilif method name is "notifylmprovement" then get trace data
Ilif method name is "notifyStop" then sample run has ended.

}

};

Ilnow create proxy and register with instantiated solver object
Class lstnrClass = Class.forName( .. );
Object 1 = Proxy.newProxylnstance(lstnrClass.getClassLoader(),

new Class[] { lstnrClass },
handler);

Ilregister our dynamic proxy with the solver using reflection api

35

Program 3.1: Pseudo-code showing usage of Java dynamic proxies to register event handlers
with solvers

are obtained, the data is saved to disk using the persistence engine (see section C.2).

3.6.4 Data analysers and visualisers

As shown in figure 3.2 a data analyser plug-in must provide an implementation of the

ScheduleLab interface IDataAnalyser listed in section B.4. A data analyser plugin declares

which data collectors it is compatible with by giving an array of the unique plugin-ids of the

compatible data collectors. The ScheduleLab editor only displays those data analysers to

the user that are compatible with the active experiment session's data collector. The user

must specify any parameters implemented in the same way as that for problem instance

generators. When the data analyser is launched it must save the output of the analysis

in XML format using the supplied persistence engine object, in the folder specified by the

Data analysis engine.

The QRTD, SQD data analyser plugin can extract QRTDs and SQDs from the solution

trace data produced by the solution trace data collector.
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A data visualiser plugin must implement the ScheduleLab interface

IDataVisualiser listed in section B.5. A data visualiser declares which data analysers it

is compatible with through the implemented interface's methods. The ScheduleLab editor

allows the user to select a visualiser that is compatible with the analysers used in the active

experiment session. The QRTD, SQD data visualiser plugin generates combined QRTDs and

SQDs graph files for the session's algorithms, corresponding to each run-set.

-SampleProject
l_sLabProject.xml
I_ensembles
I l_taillard_10x50
I I I_ensemble.xml
I I 1_1.xml
I I 1_2.xml ...
I l_watson_machCorr_10x50
I I_ensemble.xml
I_sessions

I_cworks_jsp
I_session.xml
l_dataCollector.xml
I_data
I l_taillard_10x50
I I 1_1.xml ...
I l_watson_machCorr_10x50
I 1_1.xml
I 1_2.xml ...
I_analysis

I_sqd_qrtd
I_analyser.xml
l_taillard_10x50
I 1_1
I I I_qrtd
I I I l_solver1_1_10y'.xml
I I I l_solver1_1_200Y..xml
I I I_sqd
I I I l_solver1_C5s.xml '"
I I I l_solver1_C180s.xml
1 1_2 ...
l_watson_machCorr_10x50

1_1 ...

Figure 3.3: Sample ScheduleLab project structure
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Figure 3.3 shows a skeletal view of the ScheduleLab project structure after an analysis

task. The output of a visualiser is specific to a plugin and will be described in later sections.

Vsually a visualiser plugin contributes new Eclipse views or editors to graphically display

the analysis output. At the top level the project has a

sLabProject.xml descriptor file, an ensembles folder containing generated problem instance

ensembles (one sub-folder for each ensemble) and a sessions folder containing experiment

session related files. Each ensemble sub-folder must contain an ensemble.xml descriptor file

and may contain the generated instance files stored in XML format. The sessions folder

contains a sub-folder for every experiment session created in the project. A session sub­

folder must contain session.xml and dataCollector.xml descriptor files. If the experiment

session has been run then the session sub-folder must contain a data folder containing sample

raw-data corresponding to each ensemble instance of a run-set. If any analysers have been

run then the sessions folder must contain an analysis folder containing a sub-folder for each

analysis task performed.

3.7 ScheduleLab User Interface

In this section we present the ScheduleLab user interface. As mentioned earlier, the Sched­

uleLab plug-in contributes a new-project wizard and a custom editor to the Eclipse work­

bench VI. Thus, the when the Ui"er selects the menu New> Project .. , he is offered a new

project category for creating a ScheduleLab project. This is shown in the screen-shot in

figures 3.4 and 3.5. When the user selects to create a new ScheduleLab project the Sched­

uleLab new project wizard is instantiated by Eclipse and displayed to the user, as shown in

figure 3.6.

Once the user specifies all the fields in the wizard, the wizard's control logic creates a

new ScheduleLab project and opens the ScheduleLab editor for this newly created project,

as shown in figure 3.7. The ScheduleLab editor is declaratively associated to be the editor

for the following file types: sLabProject.xml, ensemble.xml, session.xml, dataCollector.xml,

analyser.xml, visaliser.xml. Thus, when the user double-clicks on any of these files in a

ScheduleLab project, the editor is opened. The ScheduleLab editor is a multi-page editor

in that it has multiple pages or tabs as seen in 3.7. The editor is a single editor that

transparently updates all the meta-data files in the ScheduleLab project. But the role of
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the ScheduleLab editor is to effectively support an experimentation workflow of generating

problem instances, setting up experiment sessions, running experiment sessions to collect

raw-data, analysing and visualising raw data.

Figure 3.8 shows the Ensembles page of the ScheduleLab editor. The user can click on

the Add button to bring up a wizard to create a new problem instance ensemble. Once

the user completes the wizard, the wizard's control logic creates a new ensemble.xml file

in the ScheduleLab project and updates the editor's view. Figure 3.9 shows two things:

the ensembles master-detail view (in the background), and the user having launched the

instance generator engine for the ensemble taillard_l0x50. The user can edit the param­

eter values and save the editor to update the underlying ensemble.xml file. The instance

generator engine is launched by selecting the ensemble in the master view and clicking the

Launch button. This opens a progress dialog that gives a status of the instance generator

engine's progress. Also, the user can choose to run this job in the background by clicking on

the Run in Background button, so as to continue doing other tasks in the Eclipse workbench.

Figure 3.10 shows the result of the previous step in the Package Explorer view on the

left with newly generated problem instances in the ensemble folder. The figure also shows

the Experiment Sessions editor page master-detail view. The master view is a tree with all

the experiment sessions of this project a& top-level nodes. Each session node has exactly one

Data collector node and one Run-sets node. The user can add exactly one data-collector by

selecting the Data collector node clicking on Add to bring up a wizard that asks the user to

select an data collector implementation. The screen-shot shows that the user has selected

a solution trace data collector. Similarly, one or more run-sets can be added under the

Run-sets node. Clicking on any top-level node or leaf-node activates the corresponding

details page in the details section on the right. The screen-shot shows the details view of

the selected run-set. Figure 3.11 shows the user launching the sampling engine to run the

selected experiment session. This is done by selected a top-level session node and clicking

on the Launch button. This action opens a progress dialog similar to that for the Ensembles

editor page.

Figure 3.12 shows the master-detail view on the Session Data Analysis editor page in

the background with the user having launched the selected analysis task. The user can add
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new analysis tasks by clicking on the Add button and edit the parameters in the details

view. Finally, figure 3.13 shows the master-detail view of the Session Data Visualisation

editor page with similar interaction features.

3.8 Summary

In this chapter we described the architecture and design of ScheduleLab implemented as an

extensible Eclipse plug-in. We described the working of the core components of Schedule­

Lab, the primary extension points and the ScheduleLab user interface within the Eclipse

IDE context. ScheduleLab is an effective, extensible tool for empirical analysis of resource

scheduling SLS algorithms that facilitates re-usability.
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-~- -

~ New Project ~@®

41

Select a wizard

Wizards:
[type fil-te-rt-e-xt----~---~--

fi§; Java Project
': Java Project from Existing Ant Bllildfile

• Plug-in Proiect
1+ (Co General

C3 CVS
Java

fC7 Plug-in Development
c: ScheduleLab

ScheduleLab Project
SVN

B Team Logical Model Example
~ Examples

Next> I 1'1 Cancel

Figure 3.5: New Projects wizard showing ScheduleLab Project wizard entry
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-- ---------------------------
~ ~@®

42

Create a ScheduleLab Project

Credte a ScheduleLab project in the workspace.

Project name: !JSPHiliClimbing l
Workspace: C:/Documents and Settings/Hussein Vastanilruntime-EclipseAppli';tion/JSPHiIICli1
Problem Tl'pe: !IMm,li3fl4.11@!tfflW. e.isp

<Back ____F_in_is_h_...J1 [ Cancel

Figure 3.6: New ScheduleLab Project wizard



CHAPTER 3. SYSTEM ARCHITECTURE & DESIGN 43

o

;...
0
.~
-0
r:Ll
.0
:II

.....:l
~
;:J

-0
~

(l)

..c:
t l 0

x j
en

! to-
M

V
;...
;:J
co
Ii:



CHAPTER 3. SYSTEiVI ARCHITECTURE & DESIGN

f: Package Ex M EJ

Problem In anee Enser ble

44

,J 'vJ
JSPAlgos

-, 8 JSPHiliClimbing

(C. ensembles

t27 sessions

sLabProiect

All Instance Ensembles
Define problem instance ensembles for this ScheduleLab project

- -- - ~ ~ --

~ ~@®

Create a ScheduleLab Problem Instance Ensemble

Create a ScheduleLab Problem Instance Ensemble in the current ScheduleLab project.

Ensemble name: laillard_' Ox5_0 _

Problem Type: l!2v~ta.!!i.ms:.p..'..o~mtJ'Pe.0J ~

Problem Generator: tm!IDffljD";MM&

Overview Ensembles) Experiment Sessions' Session Data Analysis Session Dala Visualisation

• ..,.......I.Ai_r

Figure 3.8: New ScheduleLab Problem Instance Ensemble wizard
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Chapter 4

Operation & Evaluation

ScheduleLab is a proof-of-concept tool based on the Eclipse platform [3] that aims to pro­

vide comprehensive support for doing empirical analysis of SLS algorithms solving resource

scheduling problems. ScheduleLab allows users to extend and contribute functionality to the

tool while facilitating experimentation on algorithm implementations in a loosely coupled

manner. There is a need for increased research effort in tool support for empirical analysis

of SLS algorithms and we see ScheduleLab as a contribution in that direction. ScheduleLab

is not a standalone software library for experimentation on SLS algorithms like EasyAna­

lyzer [5], that must be run from the command-line. Instead ScheduleLab integrates with a

feature-rich integrated development environment (IDE) with the aim of enhancing the tool's

usability. We also believe that software developers increasingly expect that new development

tools and products integrate with their favourite IDE that they are familiar with instead of

expecting the developer to learn to use a new piece of software in conjunction with their IDE.

ScheduleLab aims to make the experimentation process efficient for researchers by mini­

mizing duplication of effort through the re-use of plugins contributed by other users. Sched­

uleLab is an extensible Eclipse IDE plugin targeted at researchers programming in Java

(note that it is possible to integrate with CjC++ code from Java). So users who want to

contribute new functionality to ScheduleLab are expected to know how to use the Eclipse

Plugin Development Environment (PDE) [4, 6, 3] to write Eclipse extension plugins for

ScheduleLab. However, deep knowledge of the working of the Eclipse platform is not re­

quired. Eclipse plugin extension points are essentially Java interfaces and Eclipse plugins

that extend an extension point, basically implement interfaces represented by the extension

50
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point. Thus, ScheduleLab contributors would have to contribute one or more classes im­

plementing one or more ScheduleLab interfaces (see chapter 3). Eclipse in turn manages

the lifecycle of the plugin, namely its initialisation, registration in a central plugin registry

and finally disposal of the plugin. ScheduleLab's core components delegate control to plu­

gins that extend ScheduleLab's extension points. These plugins are discovered through the

Eclipse plugin registry.

In this chapter, we present an operational evaluation of ScheduleLab by using Schedule­

Lab to do preliminary empirical analysis of two SLS algorithms solving Job Shop Scheduling

problems. The intention here is not to present a case study of effective empirical research,

but to illustrate that ScheduleLab can be used to effectively pursue that endeavor. As part

of this exercise we wrote plugins to add new functionality to ScheduleLab, described in later

sections, in order to conduct our experiments. Also, we only discuss the effort involved by

the developer to achieve his goals in terms of programming or configuration work involved.

To see a discussion of the ScheduleLab user interface, please refer to section 3.7.

4.1 Setup & Methodology

In this section we describe that we started with the choice of a resource scheduling problem

domain and two candidate algorithms implementations and we went through the necessary

steps to use ScheduleLab to do preliminary empirical analysis. We discuss the effort involved

in using ScheduleLab for this exercise. The experiment was run on a machine having a

1.2GHz Xeon processor with 1.7GB RAM on an Ubuntu Linux operating system with Sun

Java 6.

4.1.1 Job Shop Scheduling Problem

The JSP is characterized by m machines or resources and n jobs. Each job is executed

exactly once on each machine in a pre-determined way. The execution of a job i (1 <=

i <= n) on a machine j (1 <= j <= m) is called an operation or task. Thus each job i

is comprised of m operations and the pre-determined permutation of machines 7r that each

job is routed through implies precedence constraints between the operations of that job.

Operation Oij cannot initiate processing until Oij-i has completed. For our study, the JSP
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objective function is to minimize the makespan, that is, the maximum job completion time

of the entire schedule. Please refer to [19, llJ for a thorough treatment of JSP and related

scheduling problems.

We selected the JSP for our study because of its familiarity. The JSP is one of the most

studied resource scheduling problems in the literature. At the same time this prototypical

scheduling problem is NP-Hard and continues to pose a constant challenge to researchers

[12J.

4.1.2 Algorithms

We obtained two functional, yet preliminary algorithm implementations that can solve

JSPs. The two algorithms were supplied by researchers at Actenum Corporation, Vancou­

ver, Canada (www.actenum.com) and are based on Actenum's ScheduleWorks scheduling

library. For our purposes we treat each algorithm as a black box, with the following brief

descriptions:

• Simple Hill-Climbing: A simple hill-climbing algorithm that does a first-improving

local search 011 a neighbourhood that re-inserts a single activity at a time, using a slack

heuristic. The activities are ordered by the slack heuristic. This heuristic looks at the

earliest and latest possible start times for each activity, and gives a higher heuristic

value to activities with the least slack. For example, it assigns the largest heuristic

value to any activity that is on the critical path. The neighbourhood systematically

iterates through the insertion points of the candidate activity.

• Random Hill-climbing: A hill-climbing algorithm that does a first-improving local

search on a random single activity re-insertion neighbourhood. Each local move is

a random walk to find the first improving solution. The neighbourhood chooses an

activity and an insertion point randomly.

Both algorithms are first-improvement hill-climbing algorithms and so we can expect

them to be prone to get stuck in local minima sooner or later. However the random hill­

climbing algorithm probably has a better chance of avoiding local minima because it ran­

domly chooses both the activity as well as its re-insertion point.

Each algorithm is implemented as a component that uses ScheduleWorks behind the

scenes. The algorithm component is the entry point to the solving functionality and it
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accepts its own problem instance type as input. Further, each algorithm component can

register solver event listeners that can receive solver events. This interface is described in

later sections.

4.1.3 JSP Problem Type

In order to do experimentation on JSP problems we need to ensure that ScheduleLab has a

JSP problem type capability. Without a JSP problem type, ScheduleLab would not let us

create a ScheduleLab project. For a user, this means writing a JSP problem type extension

plugin or installing one written by some other user.

For this evaluation a new ScheduleLab problem type was implemented to support JSP

algorithms and instances. This would be a one-time effort to implement in the form of an

Eclipse plugin extension that can be published for other researchers to download into their

respective Eclipse installation [6].

Recall from Section 3.6.1 that implementing a new problem type extension plugin entails:

• Implementing an internal problem instance object hierarchy that will be used for

saving JSP problem instances to disk as XML files.

• Specifying the structure of a JSP problem instance (in XML) that problem generators

as well as algorithm target code must comply with.

• Implementing a bi-directional transformation service that will take an arbitrary exter­

nal problem instance object representing a JSP instance that complies with a structure

prescribed by our problem type plugin.

Section A.l lists the problem instance structure meta-data XML file that we publish as

part of our problem type extension plugin. Note that the tags have no values. Our problem­

type extension plugin publishes this in its documentation. Problem generator contributors

and users are expected to use this empty meta-data file as a template and fill in the ap­

propriate values. The hierarchy of the XML tags in the meta-data indicates the expected

structure of the problem instance. Thus, an instance has a description and a type as

fields. The type is expected to be a fully qualified Java class name. Further, the instance

must have resources and jobs as child lists (Java collection or array). Note that all the
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XML element value types are character or string. The values essentially represent the name

of a field that can be accessed via public getters/setters. A descriptor file specified by a

JSP problem instance generator for our JSP problem-type is listed in program 4.1:

Our problem type's internal problem instance object looks like the listing in program

4.2. The Java annotations are XStream annotations required by the ScheduleLab persis­

tence engine to transparently save/retrieve our JSP problem instance. These annotations

are not required for our problem type plugin to function. They are included here in or­

der to customize how XStream represents our problem instance object in XML. Here the

@XStreamlmplicit annotation tells XStream not to surround the machine XML elements

with an arrayList parent element, but to simply list out machine elements representing

each JSP machine object, contigously in the XML file without any surrounding parent XML

element.

Finally, we implemented the bi-directional object transformer service in our JSP prob­

lem type, using an open-source framework called Morph [15] that provides a scaffolding for

the task of transforming between objects and requires the library user to implement any

custom fine grained object-to-object transformers if necessary that Morph then delegates

to, while doing coarse grained object-to-object transformations. See section B.2 for the

listing of the Java interfaces of ScheduleLab's problem-type. Note that Morph provides a

higher layer of abstraction above the Java Reflection API [13J that minimizes the amount of

code we need to write to do object tranformations. The choice of using third-party libraries

like Morph is internal to the plugin development. ScheduleLab does not impose such choices.

4.1.4 Problem Instance Generation

We decided to do preliminary analysis of our two algorithms by running them against two

ensembles - one of unstructured (random) and the other of structured instances. In all

we generated 20 instances, 10 instances in each ensemble. Each of the instances has 10

machines and 50 jobs and the activity durations are in the interval [1,99].

Since this is a first time use, we have to implement the problem instance generators

ourselves. In order to generate the unstructured instances we wrote an instance generator

in ScheduleLab that implements the technique from Taillard's ORLIB [17]. Basically the

duration of each activity is sampled from a uniform distribution over [1,99] and then each
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<?xml version="1.0" encoding="UTF-8"?>
<instance-defn>
<instance>

<type>hvastani.msc.jsp.randomNbrHood.Schedule</type>
<desc>description</desc>
<resources>

<name>machines</name>
<resource>

<type>hvastani.msc.jsp.randomNbrHood.Resource</type>
<id>id</id>
<name>name</name>

</resource>
</resources>
<jobs>

<name>jobs</name>
<job>

<type>hvastani.msc.jsp.randomNbrHood.Job</type>
<i.d>id</id>
<name>~ame</name>

<tasks>
<name>activities</name>
<task>

<type>hvastani.msc.jsp.randomNbrHood.Activity</type>
<id>id</id>
<duration>duration</duration>
<startTime>startTime</startTime>
<assignment>assignment</assignment>

</task>
</tasks>

</job>
</jobs>

</instance>
</instance-defn>

Program 4.1: JSP problem instance type descriptor targStructure.xml
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@XStream(alias="instance")
public class Instance {

private String description;

@XStreamImplicit(itemName="machine")
private ArrayList<Machine> machines;

@XStreamImplicit(itemName=ljob")
private ArrayList<Job> jobs;

//getters, setters ...

}

Program 4.2: Internal instance object skeleton for JSP problem-type

job's operations go through a random permutation of the machines.
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We also wrote a structured instance generator that implements the technique presented

in [18J to generate machine correlated JSP instances with no workflows imposed OIl ma­

chine ordering for jobs. In machine correlated JSPs the duration of every activity going

through machine mi is correlated in the sense that it is sampled from the same Gaussian

distribution. Thus each machine has its own Gaussian distribution. The further apart the

various distributions are the less overlap in the durations of job operations across machines

implying more structure in the problem. The parameter a E [0,1], controls the degree of

Gaussian distribution overlap. Smaller values of a mean greater overlap and less structure.

A workflow imposes a pre-determined partition on the set of machines that each job must

go through yielding an ordering of machine subsets such that the job must finish processing

on the machines in subset i before initiating processing on subset (i + 1). Wkl means no

partitioning, W k2 means that machines are partitioned into 2 subsets and W km means m

subsets.

We used a = 0.5 to generate our instances. The other parameters were (alb, aub, J.llb)

that were used to select (a, J.l) for each machine's Gaussian distribution. We used alb = 1
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and (Tub = 20 and /-LIb = 30 for the entire ensemble.
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See section B.l for a listing of the Java interface for an instance generator extension

plugin and the generator descriptor file for the Taillard technique instance generator. As

required by ScheduleLab, our generator extension plugin has a descriptor file named genera­

tors.xml (section A.9). The descriptor file declares any input parameters that the generator

will need with optional validation expressions. At run-time, ScheduleLab only needs to parse

generators.xml in order to acquire all validated parameters from the user before invoking the

instance generator through the instance generator Java interface. The validation expression

must be a Java boolean expression that can refer to other generator properties by name as

shown in the listing. Internally, ScheduleLab uses an expression evaluation library called

Jakarta Commons Jexl to evaluate validation expressions (with parameter references) [1].

Section C.l for a snippet of the random problem instance stored in XML format.

4.1.5 Experiment Session

We set up our experiment session.by choosing both- our algorithms &<.; targets and selecting

a data collector. We selected the solution trace data collector that required us to supply

the target algorithm meta-data that would allow the data collector to integrate with each

algorithm component to pass problem instances and receive instances and to collect solution

trace data.

See section A.3 for a listing of our target instance structure and section A.lO for our data

collector descriptor file. Note that the descriptor specifies the methods that ScheduleLab's

data collector should call on the solver in order to obtain the solution trace tuple for a given

solution improvement event. We specified our cutoff time to be 180 seconds and our data

collector to be the solution trace data collector.

Our experiment entailed collecting solution trace data from 50 independent sample runs

of a run-set. We had two run-sets: each run-set involved running both algorithms against

one instance ensemble (random, structured) generated previously. We also specified that

the sample size should be 50 meaning there will be 50 independent runs for each problem

instance solved by each algorithm.

The contents of the solver descriptor file are specific to the data collector and specify



CHAPTER 4. OPERATION & EVALUATION 58

how the solution trace data collector can connect to the solver to execute a sample run

and collect solution trace tuples at every improving solution (see section 3.6.3).

Once we ran the experiment session, we could fire an analyze action to get the SQDs

and RTDs out of our raw solution traces. See section C.2 for a snippet of the solution trace

raw-data for a given instance produced by the solution trace data collector.

4.2 Analysis

We used ScheduleLab to delegate analysis to the QRTD and SQD analyzer that is compatible

with the output of the solution trace data collector. The analyzer accepts the solution

traces that are the output of the solution trace data collector and extracts qualified run-time

distributions and solution quality distributions. For the SQDs we must specify either the

optimal solution quality for every instance or a lower bound. This is necessary for com­

parability of algorithm performance over ensembles of instances. We specified TaiIlard's

lower bound (maximum of the maximum total job duration or the maximum machine job

duration) for every instance [17]. In order to generate qualified run-time distributions, the

analyzer requires an upper-bound on the solution quality and a step value. We specified 3.0

and 0.1 respectively. The analyzer then generated QRTDs corresponding to solution qual­

ity going from 0% to 300% in 10% increments. For the SQDs the analyzer takes as input

the cut-off time and a step value to generate SQDs qualified by run-time. We specified 180

seconds and 1 second. The output of the analysis is saved to disk in XML format and can

be inputted to a compatible visualizer to graph the QRTDs, SQDs and other statistics.

See section C.3 for a snippet of the output produced by the QRTD_SQD analyser.

We selected the QRTD and SQD visualizer that takes the QRTD and SQD analysis for a

given instance belonging to an ensemble and generates combined QRTD and SQD graphs

showing the performance of both algorithms.

4.3 Experiment results

For discussion, we look at a sampling of QRTDs and SQDs for one instance from each

ensemble. For each instance (random, structured) we have the combined SQDs for both
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algorithms corresponding to 25% and 75% of the cut-off time. We also have combined al­

gorithm Q RTDs corresponding to a solution quality of 5.0.

Fig. 4.1 shows the combined SQDs for the random instance and fig. 4.2 shows the com­

bined QRTD for the random instance. Similarly, Fig. 4.3 shows the combined SQDs for

the structured instance and fig. 4.4 shows the combined QRTD for the structured instance.

4.3.1 Random instance results

As was expected, both the algorithms perform quite poorly, as seen in the SQDs in fig.

4.1, assuming Taillard's lower bound is tight. Its clear from the SQDs in fig. 4.1 that the

random hill-climbing algorithm is able to find better quality solutions faster than the simple

hill-climbing algorithm, on this random instance. In the case of the random hill-climbing

algorithm, it does find better solutions when given more time, as seen in the shift to the left

of the distribution mass. But this is barely the case for the simple hill-climbing algorithm.

In fact the simple hill-climbing algorithm shows very little variability in its distribution and

seems to relatively stagnate into a consistent local minima even with more run-time, as

highlighted by the increasing gap between the two distributions in earh combined SQD.

The QRTD in fig. 4.2 confirms the relatively superior performance of the random hill­

climbing algorithm over the simple hill-climbing algorithm.

4.4 Structured instance results

According to the SQDs in fig. 4.3, the performance of both algorithms on the structured in­

stance is similar to that on random instance. That is also true of their relative performance.

This is interesting because we had expected both algorithms to perform much better on the

structured instance than on the random instance, based on the belief in the literature [12]

that structured instances are usually easier to solve. The random hill-climbing algorithm

seems to exhibit lesser variability on the structured instance than on the random instance.

Though for the simple hill-climbing algorithm there is barely any variability just like on the

random instance.
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The QRTD in fig. 4.4 suggests that both algorithms consistently reach a solution quality

of 5.0 much earlier for the structured instance than for the random instance.
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Figure 4.1: Combined SQDs for sample random problem instance

4.5 Discussion

Does ScheduleLab minimize the effort needed to do empirical analysis on SLS algorithms

solving resource scheduling problems? V/hen the user is only re-using ScheduleLab com­

ponents and plugins to do experimentation tasks (create new instances, configure target

algorithm code, configure an experiment session, execute run-sets and analyze and visualize

results) the amount of effort is minimal in that the user does not need to write any code to

enhance ScheduleLab and can focus completely on the experimentation part. However, the

more new plugins the user needs to write in a given situation to customize ScheduleLab, the

more the effort appears to be greater than that for using a library like EasyAnalyzer. This is

because, the plugin contributor has to not only implement a ScheduleLab interface, but also

declare meta-data in XML files in order to support the decoupling feature of ScheduleLab.

vVe think that this is an acceptable cost to pay for the more important decoupling between

ScheduleLab and the user's algorithm code. The user is free to design his algorithm code as

he wants, albeit his problem instance type and solver invocation methods comply with the
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Figure 4.4: Combined QRTD for sample structured problem instance

structural requirements of a ScheduleLab problem type and data collector.

ScheduleLab delegaes the responsibility for the correctness and stability of plugin code

to the plugin developer. For example, the problem imitance generator con ributor speci­

fies validation rules for its input parameters in the generator.xml file. ScheduleLab does

not prevent the developer from specifying a divide-by-zero expression, for instance. Fur­

ther, this project does not address any ScheduleLab specific design time tool support for

ScheduleLab plugin developers to catch and diagnose errors in their plugin code or plugin

configurations at design time. A plug-in developer could also shutdown the .JVM by calling

System. exit (). Vole acknowledge this issue, but note that our focus has been on creating

a proof-of-concept usable and extensible tool for empirical analysis. This is an area that

needs further investigation.

4.6 Summary

We discus:,;ed how we used ScheduleLab to perform preliminary empirical analysis on two

hill-climbing algorithms solving .JSP instances. We discussed how we did a one-time imple­

mentation of the JSP problem-type extension plugin. We decided to do our experimentation
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on two (small) ensembles of instances, one generated by a ScheduleLab instance generator

that implemented Taillard's random JSP technique and the other by Watson's structured

machine correlated JSP technique. We used two algorithms supplied by researchers from

Actenum Corporation, Vancouver, BC, one a simple first improvement hill-climbing algo­

rithm, and the other a randomized first improvement hill-climbing algorithm. Both algo­

rithms use a one activity re-insertion neighbourhood. The randomized algorithm selects

and activity and its insertion point randomly to perform a first improvement move, while

the simple hill-climbing algorithm selects an activity based on a slack heuristic and then

systematically searches its insertion points to perform a first-improvement move. We pre­

sented and discussed the exported graphical output of the qualified run-time distributions

and solution quality distributions of both these algorithms on the instances. Note that the

experiment setup can be easily shared and replicated by another ScheduleLab user. We

have illustrated how ScheduleLab as an integrated tool can be used for empirical analysis

of resource scheduling SLS algorithms.
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Conclusion

In this report, we have presented ScheduleLab, a proof-of-concept Eclipse/OSCi based tool

that allows industrial as well as academic researchers alike to do empirical analysis of stochas­

tic local search algorithms that solve resource scheduling problems. ScheduleLab supports

flexible problem instance ensemble generation and publishing for re-use. It also supports

experimentation to study the performance characteristics of one or more algorithms solving

one or more instance ensembles. ScheduleLab also provides a set of extension points for

developers to contribute new capabilities and extensions to ScheduleLah. We illustrated the

operation of ScheduleLab by implementing a Job Shop Scheduling problem-type capability

in ScheduleLab and did preliminary empirical analysis of the performance characteristics of

two local search algorithms solving JSPs.

In section 5.1 we summarize the approach taken by this work. Section 5.2 we review our

contributions and finally section 5.3 we discuss future work.

5.1 Project Summary

Chapter 2 presented a literature review with two goals: one to identify any previous work

done and two, to discuss issues and practices in empirical analysis of SLS algorithms in

the literature. We looked at EasyAnalyzer, a C++ command-line driven library that is

designed to integrate with cooperating local search solver implementations. However any

algorithms must implement or extend EasyAnalyzer's base classes which imposes a compile

time dependency on EasyAnalyzer in the target code. Further EasyAnalyzer has no support

64
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for problem instance generation and analysis visualization and is not part of a mainstream

Integrated Development Environment. We also looked at the notion that because of the

non-deterministic nature of SLS algorithms, their run-time performance is characterized by

a bi-variate probability distribution rtd(t, q) where t is the run-time and q is solution quality

found upto time t.

Chapter 3 delved into the design and architecture of ScheduleLab. ScheduleLab is an

extensible and re-usable Eclipse based plugin in that new problem types can be contributed

to ScheduleLab as well as new problem instance generators, data collectors, data analyser

and visualizers. ScheduleLab enforces decoupling with the user's target source code in that

it has no compile time impact on the target source code. The integration of ScheduleLab

and the target source code is based on a meta-data layer defined in XML configuration files

that is only a run-time integration and not a compile time dependency.

Chapter 4 presented an operational evaluation of ScheduleLab by using ScheduleLab

to do preliminary empirical analysis on 2 SLS algorithms that solve JSP problems. We

generated a pair of instance ensembles comprising an equal number of structured as well as

unstructured problem instances. We performed sample runs 011 each ensemble and analysed

the solution trace data to extract QRTDs and SQDs for the experiment setup. We illus­

trated that it is possible to use ScheduleLab as an effective tool for empirical analysis.

5.2 Contributions

We believe there is a need to focus on effective tool support for empirical analysis of SLS

algorithms in a way that supports both industrial as well as academic researchers and is

based on a mainstream software platform for acceptance and sustainability. We believe that

ScheduleLab is a contribution in that direction. As a tool for empirical analysis ScheduleLab:

• is extensible in that it allows researchers to develop and share their own extensions to

ScheduleLab to add new problem types that can be solved using resource scheduling

SLS algorithms, new problem instance generators for a given problem type, new data

collectors for different experimental data collection from algorithms, new data analyz­

ers for analyzing collected data and data visualizers for visualizing distributions and
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statistics.
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• ScheduleLab does not impose compile time dependencies on user's target code, but

instead relies on a XML based meta-data layer that describes to ScheduleLab how

to integrate with the user's target code at run-time (using Java Reflection API or its

abstractions) .

Thus, we believe that ScheduleLab is a viable alternative to comprehensive standalone

libraries like EasyAnalyzer to do empirical analysis of SLS algorithms solving resource

scheduling problems.

5.3 Future Work

We would like to pursue enhancing ScheduleLab in the following directions going forward:

• Adding more problem-types and other extensions as well as looking into expanding

ScheduleLab to deal with other classes of SLS algorithms.

• Research requirements like finding the optimal tuning parameters for SLS algorithms

like simulated annealing, tabu search and ant colony optimisation requires more sophis­

ticated tool support for design of experiments methodology because we have several

additional factor levels to vary in addition to just instance ensembles and algorithms.

Supporting the work flow for design of experiments methodology would be an impor­

tant and interesting direction to pursue.

• In ScheduleLab we assume that the user is interested in the metrics that are being

published in the solution trace by the algorithm during sample runs. But this may

not be the case in general. A user may want to specify custom metrics derived from

the current solution. In ScheduleLab we could have the solver provide a method that

ScheduleLab could invoke to get the instance when a solution improvement is reported.

User specified code or scripts could then query this instance and generate the solution

trace tuple. This assumes that measuring run-time is paused during publishing and

processing a solution improvement event.
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ScheduleLab Descriptor files

A.I JSP Problem Instance structure descriptor published by

a problem type plugin

<?xml version="1.0" encoding="UTF-8"?>

<instance-defn>

<instance><!-- No tag values. Users must fill in the values.

<type></type>

<desc></desc>

<resources>

<name></name>

<resource>

<type></type>

<id></id>

<name></name>

</resource>

</resources>

<jobs>

<name></name>

<job>

<type></type>

<id></id>

<name></name>

<tasks>

<name></name>

<task>
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<type></type>

<id></id>

<duration></duration>

<startTime></startTime>

<assignment></assignment>

</task>

</tasks>

</job>

</jobs> -->

</instance>

</instance-defn>
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A.2 Problem instance type structure descriptor targStruct.xml

from instance generator

<?xm1 version="l.O" encoding="UTF-8"?>

<instance-defn>

<instance'>

<type>hvastani.msc.jsp.taillard.Schedule</type>

<desc>description</desc'>

<resources>

<name>resources</name>

<resource>

<type>hvastani.msc.jsp.tai11ard.Resource</type>

<id>id</id>

<name>name</name>

</resource>

</resources>

<jobs>

<name>jobs</name>

<job>

<type>hvastani.msc.jsp.tai11ard.Job</type>

<id>id</id>

<name>name</name>

<tasks>

<name>activities</name>

<task>
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<type>hvastani.msc.jsp.taillard.Activity</type>

<id>id</id>

<duration>duration</duration>

<startTime>startTime</startTime>

<assignment>assignment</assignment>

</task>

</tasks>

</job>

</jobs>

</instance>

</instance-defn>
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A.3 Problem instance type structure descriptor from target

solver

<?xm1 version="1.0" encoding="UTF-B"?>

<instance-defn>

<instance>

<type>hvastani.msc.jsp.so1verl.Instance</type>

<desc>name</desc>

<resources>

<name>resources</name>

<resource>

<type>hvastani.msc.jsp.so1verl.Machine</type>

<id>id</id>

<name>name</name>

</resource>

</resources>

<jobs>

<name>jobs</name>

<job>

<type>hvastani.msc.jsp.so1verl.Job</type>

<id>id</id>

<name>name</name>

<tasks>

<name>activities</name>

<task>

<type>hvastani.msc.jsp.solverl.Task</type>

<id>id</id>
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<duration>duration</duration>

<startTime>startTime</startTime>

<assignment>assignment</assignment>

</task>

</tasks>

</job>

</jobs>

</instance>

</instance-defn>
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A.4 ScheduleLab project descriptor

<?xml version="1.0" encoding="UTF-8"?>

<sLabProject>

<projName>sampleProject</projName>

<problemTypeld>hvastani.msc.problemtype.jsp</problemTypeId>

<problemTypeName>Job Shop Scheduling</problemTypeName>

<ensemblesFolder>ensembles</ensemblesFolder>

<sessionsFolder>sessions</sessionsFolder>

</sLabProject>

A.5 Instance ensemble descriptor file ensemble.xml

<?xml version="1.0" encoding="UTF-8"?>

<ensemble>

<problemTypeld>hvastani.msc.problemtype.jsp</problemTypeId>

<generatorld>hvastani.msc.generators.jsp.taillard</generatorld>

<parameter name="nOflnstances" type="long" value="10"/>

<parameter name="minDuration" type="long" value="l"/>

<parameter name="maxDuration" type="long" value="99"/>

<parameter name="jobs" type="long" value="50"/>

<parameter name="machines" type="long" value="10"/>

</ensemble>

A.6 Experiment session descriptor file session.xml

<?xm.l version=="1.0" encoding="UTF-S Il ?>

<session>

<dataCollectorld>hvastani.msc.dataCollectors.solutionTrace</dataCollectorld>
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<run-set>

<id>random_instances</id>

<ensembleld>taillard_l0x50</ensembleld>

<solver>

<id>hvastani.msc.jsp.solverl.SimpleHillClimbSolver</id>

<param name="cutOff" type="long" value="180000"/>

</solver>

<solver>

<id>hvastani.msc.jsp.solver2.RndHillClimbSolver</id>

<param name="cutOff" type="long" value="180000"/>

</solver>

</run-set>

<run-set>

<id>structured_instances</id>

<ensembleld>watson_machineCorr_l0x50</ensembleld>

<solver>

<id>hvastani.msc.jsp.solverl.SimpleHillClimbSolver</id>

<param name="cutOff" type="long" value="180000"/>

</solver>

<solver>

<id>hvastani.msc.jsp.solver2.RndHillClimbSolver</id>

<param name="cutOff" type="long" value="180000"/>

</solver>

</run-set>

</session>
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A.7 Analyser descriptor file analyser.xml

<?xml version="1.0" encoding="UTF-8"?>

<analyser>

<analyserld>hvastani.msc.analyser.sqdQrtd</analyserld>

<dataCollectorld>hvastani.msc.dataCollectors.solutionTrace</dataCollectorld>

</analyser>

A.8 Visualiser descriptor file visualiser.xml

<?xml version="1.0" encoding="UTF-8"?>

<visualiser>
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<visualiserld>hvastani.msc.visualiser.sqdQrtd</visualiserld>

<analyserld>hvastani.msc. analyser. sqdQrtd</analyserld>

<analysisName>sqds_qrtds</analysisName> <!-- corresponds to sub-folder in

session's analysis folder -->

</visualiser>
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A.9 Sample ScheduleLab instance generator plugin parame­

ter descriptor generator.xml

<?xml version="l.O" encoding="UTF-8"?>

<!-- describes generator type as well as parameters + validation

expressions -->

<generators>

<generator>

<type>hvastani.msc.jsp.generators.TaillardUniformGenerator</type>

<name><! [CDATA[Taillard Random JSP]]></name>

<description><! [CDATA[Implementation of Taillard's random JSP instance

generator ]]></description>

<touch-point>

<name>createlnstance</name>

<return-type>hvastani.msc.jsp.generators.Schedule</return-type>

<parameters> <!-- passed in as a hash-map with 'string keys and

object values -->

<parameter name="minDuration" type="long" required="true"/>

<parameter name="maxDuration" type="long" required="true"/>

<parameter name="seed" type="long" required="false"/>

<parameter name="jobs" type="long" required="true"/>

<parameter name="machines" type="long" required="true"/>

<validations>

<validation>

<rule>

<! [CDATA[ (minDuration >= 0) && (maxDuration >= 0)

&& (minDuration <= maxDuration) ]]>

</rule>

<error-message>

<! [CDATA[ Minimum and Maximum duration must be

non-negative and minimum

duration must be <= maximum duration ]]>

</error-message>
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</validation>

<validation>

<rule>

<! [CDATA[ (jobs> 0) && (machines> 0)]]>

</rule>

<error-message>

<! [CDATA[ Number of Jobs and Machines must be

non-negative ]]>

</error-message>

</validation>

</validations>

</parameters>

</touch-point>

</generator>

</generators>
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A.I0 Sample ScheduleLab data-collector descriptor for solu­

tion trace data collector dataCollector.xml

<?xml version="1.0" encoding="UTF-8"?>

<dataCollector>

<noOfSamples>50</noOfSamples>

<executeParallel>false</executeParallel> <!-- use threads to

execute samples -->

<solvers>

<solver>

<solverld>hvastani.msc.jsp.solverl.SimpleHiIIClimb</solverld>

<name>Actenum Job Shop Simple Hill Climbing</name>

<problem-type>hvastani.msc.schedulelab.jsp</problem-type>

<type>hvastani.msc.jsp.solverl.Solverl</type>

<listener>

<type>hvastani.msc.jsp.solverl.SolverEventHandler</type>

<begin-method>notifyBegin</begin-method>

<end-method>notifyEnd</end-method>

<improve-method>notifylmprovement</improve-method>

</listener>

<trace>

<cpu-time>cpuTime</cpu-time>

<op-count>opCount</op-count>
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<metric>makespan</metric>

</trace>

<solve-method>

<name>solve</name>

<instance-type>hvastani.msc.jsp.solverl.Schedule</instance-type>

</solve-method>

<stop-method>stopSolve</stop-method>

</solver>

<solver>

<solverId>hvastani.msc.jsp.solver2.RndNhbrHillClimb</solverId>

<name>Actenum Job Shop Random Neighbourhood Hill Climbing</name>

<problem-type>hvastani.msc.schedulelab.jsp</problem-type>

<type>hvastani.msc.jsp.solver2.Solver2</type>

<listener>

<type>hvastani.msc.jsp.solver2.SolverEventHandler</type>

<begin-method>notifyBegin</begin-method>

<end-method>notifyEnd</end-method>

<improve-method>notifyImprovement</improve-method>

</listener>

<trace>

<cpu-time>cpuTime</cpu-time>

<op-count>opCount</op-count>

<metric>makespan</metric>

</trace>

<solve-method>

<name>solve</name>

<instance-type>hvastani.msc.jsp.solver2.JSPInstance</instance-type>

</solve-method>

<stop-method>stopSolve</stop-method>

</solver>

</solvers>

</dataCollect or>
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ScheduleLab extension points

B.l Java interface for ScheduleLab instance generators

public interface IInstanceGenerator<T> {

1** returns unique string id of IProblemType extension that this generator

corresponds to *1
public String getProblemTypeld();

1** gets description *1
public String getDescription();

1** creates and returns an instance of type T *1
public T createlnstance(Map<String. Object> params);

1** returns inputstream to xml file that has generators config *1
public InputStream getGeneratorsConfig();

1** returns inputstream to target structure *1
public InputStream getTargStructConfig();

}
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B.2 Java interface for ScheduleLab problem type extension

point

public interface IProblemType {

/** get plugin id */

public String getProblemTypeld();

/** gets description */

public String getDescription();

/** register the specified target meta-data */

public void registerlnstanceTransformer(Configuration targStructureXML);

/** converts the specified external object to internal instance type using

registered meta-data */

public IInstance convertTolnternal(Object external);

/** convert internal instance to target instance type using corresponding

registered meta-data*/

public Object convertToExternal(IInstance internal, Class targetClass);

}

B.3 Java interface for ScheduleLab data collector

public interface IDataCollector {

/** gets description */

public String getDescription();

/** method to start the data collector */

public void start(IRunSet runSet,

IDataCollectorDescriptor dataCollectXml,

IProblemType problemType,

IXMLPersistenceEngine xml, File sessionFolder);

/** method to interrupt and halt data collection */

public void stope);
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}
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B.4 Java interface for ScheduleLab data analyser

public interface IDataAnalyser {

/** returns an array of unique string id of IDataCollector extensions that

this analyser is compatible with */

pUblic String[] getCompatibleDataCollectors();

/** gets description */

public String getDescription();

/** method to perform analysis */

public void doAnalysis(Map<String, Object> params, ISessionDescriptor

sessionXml, IAnalysisDescriptor analysisXml, File analysisFolder,

IXMLPersistenceEngine xmlEngine);

}

B.5 Java interface for ScheduleLab data visualiser

public interface IDataVisualiser {

/** returns an array of unique string id of IDataAnalyser extensions that

this analyser is compatible with */

public String[] getCompatibleDataAnalysers();

/** gets description */

public String getDescription();

/** method to perform visualisation */

public void doVisualisation(Map<String, Object> params, ISessionDescriptor

sessionXml, IAnalysisDescriptor analysisXml, File analysisFolder,

IVisualisationDescriptor visualXml, File visualsFolder,

IXMLPersistenceEngine xmlEngine);
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}
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Output files

C.l Snippet of problem instance file generated by Taillard

Uniform Generator for JSP

<instance probType="hvastani.msc.schedulelab.jsp" guid="25B72197-9120-4064-1DAF-645A3BB053BO">

<parentEnsemble>Taillard</parentEnsemble>

<description>Taillard. m = 10, n = 50</description>

<machine id=1I0">

<name>Machine O</name>

</machine>

<machine id="l">

<name>Machine l</name>

</machine>

<machine id="2 11 >

<name>Machine 2</name>

</machine>

<machine id=1l3">

<name>Machine 3</name>

</machine>

<machine id="4">

<name>Machine 4</name>

</machine>

<machine id="5">

<name>Machine 5</name>

</machine>

<machine id="6 11 >

<name>Machine 6</name>
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</machine>

<job id="O">

<name>Job O</name>

<task id="l">

<durat ion>33</durat ion>

<assignment reference=" .. / .. / .. /machine [9]" />

</task>

<task id="2">

<duration>60</duration>

<assignment reference=" .. / .. / .. /machine [8]" />

</task>

<task id="3">

<duration>64</duration>

<assignment reference=" .. / .. / .. /machine [6] "/>

</task>

<task id="4">

<durat ion> ll</duration>

<assignment reference=" . ./ .. / .. /machine" />

</task>

<task id="5">

<duration>81</duration>

<assignment reference=" .. / .. / .. /machine [5] "/>

</task>

</job>

<job id="l">

<name>Job l</name>

<task id="ll">

<duration>62</duration>

<assignment reference=" .. / .. / .. /machine [5]" />

</task>

</job>

</instance>
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C.2 Snippet of output produced by solution trace data col­

lector

<instance-raw-data>

<instance-guid>E77EC72F-56A7-03BF-A070-9D55946C96DF</instance-guid>

<solver-raw-data>

<solverld>simpleSearchHillClimbing</solverld>

<metricNames>

<string>makespan</string>

</metricNames>

<sample>

<sample-run-pt>

<cpuTime>10188</cpuTime>

<opCount>2</opCount>

<metrics>

<double>18530.0</double>

</metrics>

</sample-run-pt>

<sample-run-pt>

<cpuTime>21469</cpuTime>

<opCount>17</opCount>

<metrics>

<double>18512.0</double>

</metrics>

</sample-run-pt>

</sample>

</solver-raw-data>

</instance-raw-data>

C.3 Snippet of output produced by QRTD, SQD data anal-

yser

<instance-analysis>

<instance-guid>25B72197-9120-4064-1DAF-645A3BB053BO</instance-guid>

<solutionBound>2735.0</solutionBound>

<solver-analysis>

<solverld>simpleSearchHillClimbing</solverld>
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<rtd>

<q>o.o</q>

<median>NaN</median>

<mean>NaN</mean>

<__O__75Quantile>NaN</ __O__75Quantile>

<__O__9Quantile>NaN</__O__9Quantile>

<rtdPt>

<runTimeOrLength>O.O</runTimeOrLength>

<prob>O.O</prob>

<!rtdPt>

<rtdPt>

<runTimeOrLength>500.0</runTimeOrLength>

<prob>O.O</prob>

</rtdPt>

<rtdPt>

<runTimeOrLength>1000.0</runTimeOrLength>

<prob>O.O</prob>

</rtdPt>

<rtdPt>

<runTimeOrLength>1500.0</runTi~eOrLength>

<prob>O.O</prob>

</rtdPt>

<rtdPt>

<runTimeOrLength>2000.0</runTimeOrLength>

<prob>O.O</prob>

</rtdPt>

<rtdPt>

<runTimeOrLength>2500.0</runTimeOrLength>

<prob>O.O</prob>

</rtdPt>

<rtdPt>

<runTimeOrLength>3000.0</runTimeOrLength>

<prob>O.O</prob>

</rtdPt>

<rtdPt>

<runTimeOrLength>3500.0</runTimeOrLength>

<prob>O.O</prob>

</rtdPt>
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<rtdPt>

<runTimeOrLength>180500.0</runTimeOrLength>

<prob>1.0</prob>

<!rtdPt>

</rtd>

<sqd>

<rt>110000.0</rt>

<median>4.395612431444241</median>

<mean>4.449250084850075</mean>

<__O__75Quantile>4.892870201096892</__O__75Quantile>

<__O__9Quantile>5.244826325411335</__O__9Quantile>

<sqdPt>

<relSolnError>O.O</relSolnError>

<prob>O.O</prob>

</sqdPt>

<sqdPt>

<relSolnError>O.l</relSolnError>

<prob>O.O</prob>

</sqdPt>

<sqdPt>

<relSolnError>5.4999999999999964</relSolnError>

<prob>1.0</prob>

</sqdPt>

</sqd>

</solver-analysis>

</instance-analysis>
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