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Abstract 

In~estigat~ing association between disease and single nucleotide polymorphisms (SNPs) 

has been an approach for genetic association studies and more recently investigating 

association between disease and haplot,ypes has become anot,her accept,ed method. 

Haplotypes are physically linked combinations of alleles from a stret>ch of DNA and 

can serve to increase power of finding an association due to interactions between 

inclusive SNPs and the increased area of chromosome that is taken int,o consideration. 

Determining haplotypes experimentally or by family studies is a costly and time- 

inefficient method, so haplotype reconstruction by stat,istical methods has become 

an adopted practice. The problem with computational methods is the extra. source 

of error from ambiguous haplotypes that has t,o be included in statistical analysis. 

This paper investigates methods of error management with three different 1ogist)ic 

regression packages, two of which are specific t,o analysis of genetic da.ta. Methods 

are applied to simulated data and a data set looking for genetic risk factors for non- 

Hodgkin Lymphoma. 
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Chapter 1 

Introduction 

Single nucleotide polymorphisms (SNPs) are the most common form of DNA sequence 

variation and account for 90% of human variation. They are useful genetic markers 

to investigate genes related to susceptibility to diseases or genes rela.t,ed to drug re- 

sponsiveness. Scientists use SNPs in association studies and more recently have been 

using SNPs in combination along regions of chromosomes that have not been bro- 

ken up by recombination. SNPs in combination along a. stretch of a chromosome 

are called haplotypes. Haplotypes can potsentially increase the power of an associa- 

tion becanse they take a, larger area, of the chromosome into consideration and can 

be used to investigate SNP interaction. Using methods such as family studies and 

direct physical determination of alleles on a gene to determine haplot,ypes can be a 

costly and time-consuming process, so statistical methods have gained popular it,^ in 

the reconstruction of hapl~t~ypes for use in association studies. 

There are many different statistical methods for haplotype reconstruction, in- 

cluding a parsimony algorithm, an expecta.tion-maximization (EM) algorithm and a 

Bayesian approach that uses coalescent t,heory to esti~nate haplotypes. After haplo- 

t,ypes have been reconstructed from genotype data, a, generalized linear model can be 

used to analyze the haplotype dat,a in an association analysis. However? due to ext,ra 

ambiguit,y incurred by using statistical methods t,o assign haplot,ypes a,dditional error 

should be taken into account by inflating the standard errors of regression coefficients 
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obtained from logistic regression. The ambiguity of the haplotype rec~nst~ruction can 

also be taken int,o account by doing a, weighted logistic regression on hapl~t~ype data 

properly weighted according t,o how likely the haplot.ype assignment would be, given 

the genot,ype dat,a. 

This project investigated the effect on estima.t,es and significance testing when 

using different methods of ha.plot,ype reconstruction and regression. Stat,ist,ical com- 

puting packages that do an iterative weighted logistic regression by method of weights 

adequately inflating standard errors of regression coefficients obtained by regressing 

recon~truct~ed hapl~t~ypes were compared to  weightled logist,ic regression t,ha,t doesn't 

inflate standard errors. Also, reconstructed haplotype da.ta was analyzed using com- 

puting programs that do a weighted logistic regression compared t,o regular logistic 

regression. Three haplot,ype reconstruction pachges were compared. 

Chapter 2 starts with an introdu~t~ion to non-Hodgkin lymphoma. (NHL) and 

outJines some of the causes. Section 2.2 describes how and why the SNPs used in 

analysis were chosen, as well as some background on the SNPs. Section 2.3 is a. brief 

description of the BC Cancer Agency NHL study da,ta. and how it was obtained. 2.4 

is a. short outline of the methods of analysis t,hat are used. 

Chapter 3 begins with some genetic background that will explain genetic t,ermi- 

nology and section 3.2 is a ba,ckground of the use of the Hardy-Weinberg model t,o 

test Hardy-Weinberg Equilibrium (HWE) for individual SNPs. Section 3.3 explains 

haplotype use in association st,udies and section 3.4 outlines some st,at,istical haplo- 

type reconstruction methods. Section 3.5 enumerat,es haplotype reconstruction and 

logistic regression methods being used in tjhe project and a brief sket,ch of the stat.is- 

tical theory used by each one. To conclude the chapter, statistical issues regarding 

haplot,ype reconstructiori will be outlined in section 3.6. 

Chapter 4 is an analysis of t,he BC Cancer Agency NHL data. Section 4.1 tests 

Hardy-Weinberg equilibrium for SNPs in the BC Cancer Agency dat,a set,. The next, 

section: 4.2, is a univa,riate and multivariake case co~it~rol a~ialysis of the individual 

SNPs, followed by section 4.3, analysis of combina~tioris of SNPs using three rnethods 

of hapl~t~ype reconstruct,ion and swen methods of logistic regression. The methods 
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of haplotype reconstruction and logistic regression axe contrasted with and without 

adjustment for non-SNP variables age group. sex, ethnic it,^ and region of residence. 

Chapter 5 describes a simulation study used to investigate differences in estimates 

and standard errors of regression coefficients obtained from logistic regression of re- 

constructed hapl~t~ypes. Section 5.1 gives a description of the generation of hap1ot)ype 

data. A haplotype is chosen to be the "affected" haplotype and outcome data is gen- 

erated for each individual based on the number of "affected" haplot.ypes they carry. 

To compare regression coefficients from reconstructed haplotypes, in section 5.2 initial 

estimates for original "known" haplotype data is obt,ained using logistic regression, 

followed by a coniplet,e investiga,tion of t,he three reconstruction arid seven logistic 

regression methods. 

Finally, Chapter 6 is a summary of the preceding BCCA and simulated data 

analysis sections with some conclusions. 



Chapter 2 

Non-Hodgkin Lymphoma (NHL) 

Study 

2.1 Non-Hodgkin Lymphoma 

The lymphatic system is the body's inner immune system that helps filter out infection 

and dise<a.se using a network of tube-like vessels that branch into tissues throughout 

the body. It is where certain white blood cells and antibodies are produced, and it, 

is also important for the distribution of fluids and nutrients in the body. Along the 

network of vessels are lymph nodes, small pea-sized organs grouped along the route 

of large blood vessels in the neck, underarms, groin, abdomen and pelvis. Other parts 

of the lyrnphatic system are in the spleen, bone marrow and tonsils, lymphatic tissue 

is also found in st,omach and skin. 

Lymphomas are cancers of the lymphatic system. They arise when white blood 

cells become cancerous, dividing out of control, not undergoing normal cell dearth. 

They accumulat,e, crowding out other functioning white blood cells and other nearby 

normal cells within afftict,ed organs. If cells keep dividing, when not needed, this can 

crea,te an extra mass of tissue that can turn int,o a tumor. 
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There are two groups of lymphomas: Hodgkin lymphoma. and non-Hodgkin lym- 

phoma (NHL). Hodgkin lymphoma accounts for less than 1% of all new cancers diag- 

nosed in the USA, it is more common in males than females, and has an increase in 

incidence for young adults from their teens and peaking around age 25 and those over 

55 years of age. Age-adjusted survival rates ha,ve increased in the period 1986-90 and 

can be att,ributed to better available treatments [28]. Non-Hodgkin lymphoma is less 

predictable and is more likely to spread beyond the lymphatic system to other parts 

of the body. It is a heterogeneous disease, which has many different subtypes and 

disease entities, numbering around 30. NHL subt'ypes can be grouped into low grade, 

intermediate grade, high grade and miscellaneous lymphomas [30], with the chance 

of survival depending partially on grade and stage of cancer. Low grade or indolent 

NHL can be hard to treat because some forms, such as follicular lymphoma, which 

include approximately 70% of indolent. lymphomas, tend to be resistant to  treatments 

that, induce cell death. Pat,ients with low grade or indolent lymphomas can live many 

years because the cancers can be very slow growing. Intermediate and high grade 

NHL are more aggressive forms of lymphoma but are more likely to be cured with 

chemotherapy. Also, the more aggressive the lymphoma, the more frequently it is 

localized and depending on the sit,e of the disease, can be more easily treated. 

There are many factors that have been associated with an increased risk of NHL. 

These range from factors such as inherited conditions causing immunodeficiency, ther- 

apies that artificially suppress the immune system following transplant surgeries to 

viruses such as HIV, which .acts to depress the immune system, and a herpes virus 

called the Epstein Barr Virus [33]. A link between NHL and chemicals like pesticides 

[17], solvents [39], and those in hair dyes [5] has been suggested. The rate of NHL 

increases with age and it is more common in men than women. NHL occurs in dif- 

ferent ethnicities with differing rates; in an Israeli study Jews were found to  have a. 

higher incidence rate of NHL relative to non-Jews [29]. Since the 70's NHL has been 

on the rise in Canada [31] and other developed countries [6][20], with increases seen 

in all age groups [14], in men and women, and in different ethriicities [34]. Some of 

this increase has been linked to the rise of AIDS and better diagnosis of t.he elderly 
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where ra,te increases have been the largest [13], but it cannot all be explained by these 

factors 1141. 

It has been shown that some patients with NHL have family histories revealing 

that blood relatives ha2ve similar t,ypes of immunodeficiency disorders more than one 

would expect by coincidence [7]. Given that NHL risk is associated with condit,ions 

that alter the immune system, primary immunodeficiency diseases, acquired irnmun- 

odeficiency diseases, autoimmune diseases, and patients immunosuppressed following 

transplantation [2], it is a logical step to investigate genes coding for Cyt,okines, a 

group of secreted proteins that mediate immune reactions by influencing t,he growth 

and differentiation of lymphocytes [I], making them prime candidates for genetic sus- 

ceptibility. Cytokines comprise Interleukins, which induce fever and inflammat,ion 

and activation, differentiat,ion and pr~liferat~ion of B a.nd T cells, Lymphokines, that 

act as chemical messengers activating immune reactions, Monokines, that mediate 

immune responses, and Chemokines, that activat,e and attract leukocytes to infection 

sites, playing a major role in acut,e inflammation. 

2.2 Candidate Genes 

Immunological candidate genes were chosen from different pathways and genotyped; 

T h l  a.nd Th2 cyt,okines, DNA break repair histones and S-PHASE checkpoint/DNA 

crosslink response genes. The T h l  and Th2 cyt,okine SNPs chosen were based on 

previous studies arid have an allele frequency greater than 5% in the general popula- 

tion. The break repair and checkpoint SNPs were chosen using e~perirnent~al means 

of SNP discovery, sequencing individuals, concentrating on coding regions of the gene 

and extracti~ig polymorphic regions if they occurred with a high enough frequency. 

The SNPs that were finally chosen ha.d less than 5% missing data when all individuals 

were genotyped, so that accurate analysis could be clone on the SNP dat,a. 
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2.2.1 Thl/Th2 cytokines 

Helper T (Thl/Th2) cells have two importmt functions: to  stimulate cellular immu- 

nity a.nd inflammation, and to stimulate B cells to  produce antibodies. These t,wo 

functionally distinct groups of cytokines promote different activities, regulating the 

a~tivit~ies of the other. IL-4, IL-10, IL-4RA ~yt~okines regulate Thl/Th2 responses. 

IL-10 stimulates antibody pr~duct~ion by B cells and inhibits both production of proin- 

flammatory cytokines and assisting functions of macrophages in T cell activation. 

The immunological gene IL-10 was chosen for genotyping at the BCCA since the 

gene is involved in immunity, and immune suppression for a variet.y of reasons (con- 

genital or suppression for transplants) has been found t,o be a risk factor in NHL. 

(SNP background information from discussion with Dr. J. Spinelli). 

2.2.2 Break Repair and Checkpoint Genes 

NBSl is a gene responsible for the Nijmegen breakage syndrome (NBS), a rare auto- 

soma1 recessive condition of chromosomal instability and homozygosit~y of the major 

mutation of the NBSl gene has been linked to a number of disorders such as mi- 

crocephaly, immunodeficiency, congenital heart disease and cl~romosomal instability. 

NBS shares a number of features with ataxia,-telangiectasia (AT), a, degenerat'ive dis- 

eaqe in the brain that leads to a lack of muscle control, immunodeficiency and a 

predisposition to malignancies of the blood system such as lymphoma, and leukemia. 

Functional interactions between ataxia-telangiectasia mutat,ed and NBSl genes were 

st,udied [24] and observations linked ATM and NBSl in a common signaling pathway, 

explaining the similarities bet.ween AT and KBS and providing the idea t,o study the 

NBSl gene for association with NHL. 

Chen et al. [9] report.ed t'hat the NBSl protein and histone gamma-H2AX> which 

associate with irradiation-induced DNA double strand breaks (DSBs), are also found 

at sites of variable, diversity, joining recornbina.tion-induced DSBs. Conclusior~s of 

a. study suggested t,hat surveillance of T-cell receptor recombination int,ermediat,es 
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by NBSl and gamma,-H2AX may be important for preventing t,ranslocations t1ia.t. 

contribut,e to cancer f~rmat~ion. Anot,her study of mice that. were homozygous for an 

H2AX delet,ion were radktion sensitive, growth ret,arded, and immune deficient, and 

mutant males were infertile [8]. These phenotypes were associat,ed with chromosonlal 

inst,abilit,y, repair  defect.^, and impaired recruitment of NBS1. The conclusion was 

that H2AX is critical for fa.cilitat,i~ig the assembly of specific DNA-repair complexes 

on damaged DNA. 

2.3 NHL Study Data 

The dat,a being used in this analysis was obtained as part of a, case control study 

of non-Hodgkin lymphoma. All non-Hodgkin lymphoma cases age 20-79 diagnosed 

during the period March 2000-Febraury 2004 and living in the Grea,ter Vancouver 

Regional District (GVRD) arid the Capitol Regional District (CRD; Greater Victoria.) 

were ascertained from the British Columbia Cancer R.egistry. Each case was contacted 

by 1ett.w and requested to parti~ipat~e in the st,udy, potent.ia1 subjects who had not 

replied within a certain t,ime fra.me aft,er the initial contact letter were telephoned and 

asked if they would be willing to  participate. Subjects taking part in t.he study were 

asked to complete a pho~ie interview and provide either a. blood or mouthwash sample. 

Exclusions included those subjects not able to  give informed consent, or complete the 

quest,ionnaire, due to language, illness or death. 

The cont,rol data used in t,he analysis was collected from t,he Client Registcry of 

the BC Ministry of Health. The Registry includes almost all (98%) of residents of BC 

as it. is the cent,ral list of subscribers to t,he provincial health plan. Exclusions were 

primarily people who had lived i11 the province for less than 3 months. The control 

subjects were chosen randomly and were frequency matched to  the NHL case  subject.^ 

by age (within 5-year age group), sex and region of residence (GVRD or CR.D). The 

cont.ro1 subjects were also asked to complet,e a t,elephone int,erview and provide eit.her 

a. blood or mouthwash saniple. 



CHAPTER 2. NON-HODGIW LYMPHOM4 ( M L )  STUDY 9 

Control  subject,^ were frequency matched on age, sex and region of residence, so 

these variables were adjusted for in the case-control analyses. Since the incidence of 

NHL varies with respect to ethnic origin, a. variable for ethnic group was also used as 

an a.djust,ment variable in any analysis. The variability of NHL incidence in different 

ethnic groups was accounted for because there was a, risk of it being a confounding 

factor due to genetic variability between the groups. 

H2AX, NBSl and ILlO were analyzed for association analysis with NHL. H2AX 

gene has three SNPs of int,erest that were used for association analysis as SNPs and 

reconstructed as haplotypes. The NBSl gene has five SNPs of interest but two of 

the SNPs are in high linkage disequilibrium so only one of those two were included 

in analysis, resultling in four SNPs that were analyzed as SNPs and reconstructed as 

haplotypes for association. analysis. ILlO gene has two SNPs of interest that were 

reconstructed as haplot,ypes for analysis. 

Table 2.1 shows a table of the three candidate genes and the SNPs that were 

investigated for association with NHL. For the first NBSl SNP, the possible alleles 

listed in the table are WT and del(WT). W T  st,ands for "wild t.ypen, which is the allele 

found in t,he majority of the wild population, usually the normally functioning allele. 

The first NBSl SNP has a wild type that corresponds t,o an allele sequence of AGTA, 

del(WT) stands for a deletion of the standard allele where the genetic information 

ATGA is missing in the particular spot on the chromosome. The deletion nlutations 

are slightly different than SNPs but can be analyzed the same way as a SNP. 

2.4 Methods 

All subjects in the study were genotyped using a Ta.qMan fluorogenic 5' nuclease assay, 

validated by an assay design, optimization and validation service: t,hen genotyped 

using Polynierase Chain Reaction (PCR.) machines followed by reading of fluorescent, 

products in a, PCR instrument that detect,s and quantitates nlicleic a.cid sequences. 
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Chapter 3 

Haplotype Reconstruction 

3.1 Genetic Background 

Critical t,o the understanding of the genetic basis for complex diseases is the modeling 

of humari variation. The vast majority (about. 99.9%) of genetic sequences are iden- 

tical and the remaining 0.1% of variation can be characterized by single nucleotide 

polymorphisnls (SNPs), which are mutations a t  a, single nucleotide position. Single 

nucleotide polymorphisms occur when a single nucleotide in a genetic sequence is 

altered (e.g. A replaces T or C replaces G), such as genetic sequence ATTA being 

altered to AATA. To be considered a SNP, the altemtion must occur in at, least 1% 

of the p~pula~tion. SNPs make up 90% of the genetic va.ria.tio11 in the human popu- 

lation, occurring in coding and non-coding regions of the genome. SNPs occurring in 

coding sequences are of interest. because researchers believe that some of these genetic 

variations have protective or s~scept~ibility implications for cancer and other diseases, 

a,s well as for response to therapeutic drugs. Even if a, SNP isn't directly responsible 

for a disease or response to treatment, it is possible to find genes that influence such 

tra.its using a nearby or closely-linked SNP. They are relatively stable genetically and 

they may be used as markers for harmful or positive mutatiorls. SNP markers can 

help uneart,h mutations and accelera.t,e efforts to find therapeutic drugs. An important 
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t.001 in the study of SNPs is a.n associa.tion st,udy to investigate the ext,ent to which a. 

mutat,ion is associa.t,ed with the occurrence of disease. 

Testing Hardy- Weinberg Equilibrium 

In association studies it is import.ant t,o check for association bet,ween two alleles 

a t  a SNP locus beca,use association may indicate a population substruct.ure, biased 

sampling of individuals or genot.yping error, any of which would render a positive 

association in further analysis false. A preliminary check of population equilibrium 

for t,he individuals in a study would show whether t,here was a chance of some error 

in sampling or gen~t~yping or even some substructure to the data. 

The Hardy-Weinberg equilibrium model [18][38] describes and predicts genotype 

and allele frequencies in a non-evolving population. The model has some basic as- 

sumptions, specifically: 

the population is large 

t.here is no gene flow bet8ween popula.tions 

mutations are negligible 

0 individuals are mating randomly 

natural selection is not opera.t,ing on the population. 

Given these assumptions, a population's genotJype and allele frequencies will remain 

unchanged over successive generations, and t,he population is said to be in Hardy- 

Weinberg equilibrium. The Hardy-Weinberg model equations can be applied t.o the 

genotype frequency of a single locus. 

As an example, say that we haw a diallelic locus with alleles A and a ,  A signifies 

the dominant allele and a is the recessive allele. If allele frequencies for the locus are 
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p (frequency of a dominant allele A )  and q (frequency of a. recessive a ) ,  then for t,he 

whole population we would have: 

Using Mendelian theory the homozygous genotype ,4A, heterozygous genotype Aa 

and the homozygous genotype aa would ha,ve proportions p2 : 2pq : q2, which can 

be derived using a Punnett square (used in simple mating examples to calculat,e 

proportions of offspring genotypes). This can be expressed for t,he population as: 

The Hardy-Weinberg equations enable us t,o compare a. population's act,ual genetic 

structure over time with the genetic structure we would expect if the population were 

in Hardy-Weinberg equilibrium (i.e., not evolving). If genotype frequencies differ from 

those we would expect under equilibrium, it may be assumed that the alleles within 

individuals are associated. This could prompt. an investigator to check if there is an 

error in t,he data. and if the error could not be fixed, associa.tion analysis may not be 

done on alleles of a. locus not under HWE. 

It is important to test for Hardy-Weinberg equilibrium (HWE) in a sample of 

genetic data so there will be a level of confidence in the association analysis of the 

chosen loci. For large samples, a test of HWE is a chi-square goodness of fit test, 

but sometimes with genetic data even if the sample size is large an allele may ha,ve a 

small expected count which can 1ea.d to misleading results. The large sample x2  test, 

statistic is as follows, with O=observed counts and E=expected counts for the k=3 

genot'ypes for a diallelic locus: 
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Let PMM be the observed pr~babilit~y of a hornozygous major allele genot.ype, Phfm 
is the observed probabi1it.y of a heterozygous genotype, PmT, the observed pr~babilit~y 

of an observed homozygous minor allele gent,otype, fiM is the observed proba.bilit,y 

of the major allele frequency and @, t,he observed probabilit,~ of the minor allele 

frequency for a. da.t,a set,. Explicitly, a large sample x2 Hardy-Weinberg test. sta.t,ist,ic 

to test t,he null hypothesis H, = HWE is: 

Another tool for testing HWE is a permutation test that evaluates x2 for all 

possible sets of genot,ypic counts consistent with the observed allelic count,s in the 

dat,a set. Hardy-Weinberg disequilibrium stsatistics D ,  D' and r are coniputed, a 

bootstrap confidence int(erva1 is computed for the statistics, then a, p-value for the 

permutation test is found by calculating the proportion of x2 values that are as large 

as or larger than the x2 observed value. Using bootstrapping for the confidence 

interval and simulation for the p-value avoids reliance on the assumptions of the x2 
approximation. This is important when some allele pairs have small counts because 

they won't fit. with the x2 large sample assumption, making the x2 test an incorrect, 

approach t,o testling goodness-of-fit,. 

The disequilibrium ~t~atistics are D ,  which is defined as the half of t,he ra,w difference 

in frequency between the observed number of heterozygotes and the expected number, 

D' which is defined as D rescaled to span the range [-Ill]  (DIDMAx) and r which is 

tjhe correlation coefficient bet.ween t.wo alleles. 

For a rare disease the HWE test may be performed on control data, because the 

control data. approximates a sample from the general popula.tion and should fit t,he 

Hardy-Weinberg model. Case da.ta. has been specifically chosen for a reason such as 

having a. certain disease and Hardy-Weinberg equilibrium cannot be assumed in t,his 

population. Admixture of the two popula,tions (i.e. doing a. test of HWE on t,lle whole 

population) could result in a t,ype I error when the HWE test is carried out. 
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3.3 Haplotypes 

By st,udying stretches of DNA where a SNP or many SNPs in combination mark a 

harmful mutation, researchers may locat,e disease-causing genes. SNPs in combination 

along a. stretch of the chromosorne are called haplotypes. Theoretically, there could 

be many combinat,ions of SNPs in a haplotype. If there are 10 SNPs in a haplotype, 

there are 21•‹ possible hapl~t~ypes associat,ed with these SNPs but only a few of these 

haplot,ypes will be frequently-occurring enough to warrant inclusion in analysis as a 

separat,e variable. It is common practice to combine subjects with rare haplotypes 

into a. pooled category, since there are t'ypically not enough rare haplotype individuals 

in a study to invest,igate the association of a rare ha,plot,ype with a disease or drug 

response. 

Haplot.ypes are also relatively stable genetically, occurring in genetic sequences 

that are the same in many individuals. These sequences are in sections of the chro- 

mosome that haven't been shuffled by genetic recombination, and are separated by 

sections that have been altered by genetic recombination. Many dozen kilobases long, 

haplotype blocks make up greater than 65% of the human genome. 

Gene mutations on the same haplotype block marked by SNPs can interact, with 

one another, producing effects in combination that would be difficult to evaluat,e by 

looking at one SNP marker at a time. A genetic mutation may also be located in 

or near the stretch of chromosome that is marked by the SNPs defining the haplo- 

t,ype. Essentially, examination of hapl~t~ypes versus single SNPs potentially increase 

the power of finding an associakion because of interactions between SNPs and t,he 

increased area of a. chromosome that is taken into consideration when more SNPs are 

included in haplotyping. 

If there is no family information available for an individual who has been geno- 

t'yped a t  certain loci, it is not possible t,o correctly recreate the haplot,ype unless the 

individual is homozygous for all loci or all less-one loci. Since DNA is divided int,o 

t,wo strands, the alleles for each locus tha,t ha.s been genot,yped can be arra.nged in t,wo 

different ways, also with more 1let.erozygous SNPs there are more possible hapl~t~ypes. 
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There are many available methods of haplotype det.ermination including genotyp- 

ing relatives of each individual included in a study and using the relationship da.t,a, if 

it is known, to det,ermine the phase of the markers and the haplotype; direct physical 

determination of which allele is on the same DNA molecule as another using various 

processes; and by means of a. statistical method used to infer phase at, linked loci from 

genotypes and thus reconstruct haplot.ypes. Genot.yping relatives of ea.ch individual 

and direct physical determination of alleles are t,ime-consuming and costly processes 

to determine haplotypes for all individuals, making statistical methods a superior 

choice for investigators with time and budget constraints. 

3.4 Haplotype reconstruct ion 

Computing algorithms to construct haplotypes include maximum likelihood using 

a parsimony algorithm created by Clark [ll], Bayesian methods that uses a priori 

expectations to estima,t,e haplotypes [37][32], and an expectation-maximization (EM) 

algorithm [25][15][19]. 

The parsimony method by Clark [ll] is an algorit,hm that, infers haplot,ypes from 

samples of genotyped individuals. It starts by identifying all genotypes that are 

hom~zygot~es or single-site heterozygotes, and then det,ermining whether any of t,he 

ambiguous (> 1 heterozygous site) haplotypes could be explained by the already- 

resolved haplotypes (if not, then stop; otherwise continue). Each time a previously- 

observed haplot,ype is identified as one of the possible haplot,ypes in an ambiguous case, 

the complementary haplotype is added to the list of previously observed hap1ot)ypes. 

The algorithm keeps running until as many genotypes are determined as possible. 

This method is done many times on different orderings of the data. Dra,wbacks of 

the method are that it. is possible that the algorithm won't start if there are no 

horno~ygot~es or single-site heterozygotes and that it depends on the ordering of t,he 

data. The method would also have t,o be modified to allow for the case of missing 

data due to individuals who had loci tha,t weren't able to be genotyped. 
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Stephens et al. [37] describe a Bayesia.n method t.o evaluate the ~ondit~ional dist,ri- 

bution of haplotypes, given genotype data. The method employs Gibbs sampling (a. 

Markov cha.in-Monte Carlo algorithm) to create a sample from the posterior distrib- 

ution of haplotypes, given gen~t~ypes. The algorithm is given a starting value of H(') 

for H, the set of haplot'ype pairs corresponding to G, the set of genot.ype data. An 

individual is repea.tedly chosen at random and haplot,ypes are estimated under the 

assumption that all other haplotypes are correctly estimated, this process is repeated 

enough times to obtain an approximate sample for P r ( H ( G ) .  This model is difficult to 

apply in theory but results in a. simpler algorithm that, gives similar output as an EM 

algorithm. This method can create both a most probable haplotype reconstruction 

that assigns ea,ch person the most. probable haplotype given their genot.ype informa- 

tion or a. haplot,ype reconstruction that, assigns each person all possible hapl~t~ypes 

given their genotype and the associa.ted weighh for each haplot,ype. 

The EM algorithm is an iterative optimiza.tion method to estimate some unknown 

parameters, given some known data. It is a method of finding maximum likelihood es- 

timates of model parameters that may not be obtained easily by conventional means. 

The EM algorithm can be used to estirna,te populakion haplotype probabilities via, 

maximum likelihood estimation; finding the values of the hap1ot)ype probabilities 

which optimize the pr~babilit~y of the observed da.ta [25] .  The maximum likelihood es- 

tima.t,es of the haplotype probabilities are obtained by maximization of the likelihood. 

The log-likelihood of the haplot,ype model is 

where Pr(Pi) is the probability of the it" person's phenotype (i.e. unphased genetic 

data). P r (P i )  is ~alcula~ted by summing up the probabilities of all genotypes (i.e. 

haplotype pairs) that can express the phenot.ype, based on the assuniption of Hardy 

Weinberg equilibrium for a. haplotype: 

The expectation step cal~ulat~es the expected numbers of copies that, an individual 
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contributes to the overall expected count. of hapl~t~ypes given by their phenotype Pi. 

The expecta,tion looks like: 

fobc is the frequency of a t,hree-locus haplot,ype Hobcl and the frequency of an- 

other haplot,ype Ha*b*c*, that can combine with Ha,bc to form Pi. The t,otal expected 

number of each haplotype in the data set aft'er each iteration is taken over 2x (the 

number of individuals in the data. set) t,o update the hapl~t~ype probabilities. The 

maxirniza.tion step updates the haplotype frequencies until the log-likelihood sta.bi- 

lizes. A simple haplotype assignment can be done by choosing t,he most probable 

ha.plot,ype assignment. given genot,ype data and haplotype probabilities obtained from 

the EM algorithm. 

Hapassoc [3] [4] [12] and Haplo. stats [23] [12] haplotype reconstruction and logistic 

regression packages use an extension of the maximum likelihood estimation of haplo- 

type frequencies. Both packages implement. an EM-based logistic regression for binary 

response. The maximum likelihood approach is used in jointly estimating the hap- 

lot,ype and non-SNP risk para~let~ers and the harplotype frequencies on the basis of 

case/control status, non-SNP variables and diallelic SNP da,ta. 

3.5 Reconstruction and Logistic Regression Meth- 

ods under Investigation 

3.5.1 PHASE Reconstruction and Logistic Regression 

The PHASE program [37] is an implementation of the Bayesian method of haplot,ype 

reconstruction, allowing use of a priori expectations to correctly assign haplotypes 

to individuals in a, dataset. Starting with a, sample of n diploid (receiving a chro- 

mosome from ea.ch parent,) individuals from a, population, we ha,ve known genot'ypes 

G = (GI ,  . . . , G,), corresponding urlknowri l~aplot~ype pairs H = (HI ,  . . . , H N ) ,  a. 
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set of unknown popuhtion haplot,ype frequencies F = (Fl, - . . , FAf) and a, set of un- 

known sample haplotype frequencies f = (f;, . . . , f M ) ,  M denot,ing t,he number of 

possible haplot,ypes for the sample. The A4 possible haplot,ypes are arbit,rarily la- 

beled 1, . . - , M. The PHASE method regards t,he unknown haplotypes as unobserved 

random quantities and aims t,o evaluat,e t,heir condit(iona1 distribution given the infor- 

mation t,hat, can be obtained from the known genot.ype data. PHASE uses a Gibb's 

sampling algorithm, a type of Markov chain-Monte Carlo (MCMC) algorithm t.o oh- 

tain an approximate sample from t,he posterior distribut,ion of Pr(H1G). 

We start with an initial guess for the resolved haplot,ype inforrnation for all individ- 

uals, H(O), maybe just the known genotype inf~rmat~ion a.rranged into haplot.ype form, 

for example. We want t.o obtain H('+') from H(t)  for t = 0,1,2,  . - .. The algorithm is 

as follows: 

1. An individual is chosen at random from all ambiguous individuals (t,hose indi- 

viduals who have more than one possible hapl~t~ype, given t,heir genotype) 

2. A subset S of the ambiguous (heterozygous) loci from individual 2, is chosen t,o be 

updat,ed. Let H(S) denote the haplotype information for the individual i a t  the 

ambiguous loci S arid let H (-S) denote the complement of H(S) ,  the haplot,ype 

information from all other individuals as well as the homozygous locus informa.- 

tion within the i fh individual. Sample H('+')(S) from P r [ H  (S) IG, H("(-S)]. 

3. Set Ht"'(-S) = H@)(-S).  

At each iteration it is necessary to update Pr[H(S)IG, H(~)(-S)]. For H ( S )  con- 

sistent with genot.ype informa.tion G, the conditional distribution is: 

This is equivalent to t,he corlditiorial distribution for the haplotype pair Hi = (hi,1, 

corlsistent with gen~t~ypes Gi where .ir(.I H )  is the conditional distribution of a future- 

sampled haplotype, given a. set H of previously sampled llapl~t~ypes. H-, is the set 



CHAPTER 3. HAPLOTYPE RECONSTRUCTION 20 

of haplot,ypes excluding individual i .  Stephens and Donnelly [36] suggest an approxi- 

mation to the unknown T(-1 H) a.s 

where E is the set of haplotypes for a, general mutation rnodel and Ps is a reversible 

mutation (transition) matrix that describes the probabilities of haplot.ype rr trans- 

forming to the next sampled haplotype h,. r,  is the number of hapl~t~ypes of type cx 

in the set H, r is the total number of haplot.ypes in H, and 0 is a scaled mutation 

rate. The authors simplify this further by specifying that this corresponds to the next 

sampled haplottype, h, being obtained by applying a random number of mutations, s ,  

to a randomly chosen existing haplot,ype, cx. s is sampled from a randomly generated 

geometrically-distributed population. Equation (3.3) should be substit,ut,ed into equa- 

tion (3.2) for ~ ( h . ~ ~ l l T - ~ )  to complet,e the second step of the algorithm. T ( ~ , ~ ~ I H - ~ ,  hIil) 

can be resolved because if informa.tion is known for h,il t,hen hi2 is the compliment, 

and can be resolved easily if we know information on one half of the haplot,ype pair. 

0 must also be estimat.ed to complet,e the calculation, a possible choice suggested is 

to use 0 = S*/log(2n,), S* corresponds to the number of loci that are used in the 

reconstfruct,ion. 

The key t,o the logic of the PHASE algorithm is that unresolved hapl~t~ypes tend 

t,o be siniilar to known haplot'ypes, and the way in which the a, priori expectation 

is calculated by using coalescent theory and other theories in popula,tion genetics. 

PHASE outputs include files that specify t,he number of each possible haplottype gen- 

erated from the dataset and for each individual, give the most likely haplot,ype pair 

and all possible haplotype pairs, with corresponding probabilities. The haplot,ype 

reconstruction output files can be merged ba.ck with outcome data to allow logistic 

regression using another statistical programming package. 
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3.5.2 Hapassoc Package for the R Programming Environ- 

ment 

The Hapassoc package [3] [4] [12] for the R. programming environment uses an EM al- 

gorithm by the method of weights to est.imate regression paramet,ers. The expectation 

step involves computing the conditional expected log likelihood of the complete data 

(x, y) given the observed data (sobs, y) and the current. parameter estimates. The 

maximization step maximizes the resulting function. The program also mgments 

standard errors to account for ambiguit'y in reconst,ructed haplot,ype data, using a 

formula. by Louis[26]. 

Hapassoc starts the algorithm by generating "pseudo-individuals" for all individ- 

uals that have genotypes that result in multiple possible haplotypes. These "pseudo- 

individuals" represent all possible haplotype configurations for the ambiguous geno- 

type and have a weight associated that can he calculated using Bayes' rule. 

The conditional expected log likelihood [21] is a function of haplotype counts and 

is as follows: 

lvlZ is t,he log-likelihood for the regression model and 1, is the log-likelihood for 

the parameters of the covariate model, 8(') = (/J(", y(f))  corresponds to the current, 

parameter e~t~imates,  ,O is the regression parameters and y is the covariate model 

paramet,ers. The log-likelihood for 0 doesn't involve the paramekrs of t.he di~t~ribut'ion 

of covaria,t,es y so the ma~imizat~ions can be done separately. Assuming independence 

of the non-genetic ("en~ironment~al") fact,ors, r,, and the genetic fa.ctors, x,, the 

covariate vector can be partit,ioned int,o t.wo separak components, x, a.nd z,, ea,ch 

depending on parameters ye and y,, respectively. The log likelihood of the known 

parameters can be sectioned as genet.ic and non-genetic components b,(y) = 2,, (7,) + 
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l,, ( y e ) ,  coupled with the assumption of completely observed environmenal covariat.es 

means that ye doesn't have to be estimated. 

Weights ulij for the pseudo-individuals with x ( j )  being the j th  c0va.riat.e vect,or are 

calcula.ted using Bayes' rule: 

if x ( j )  is not compatible with xobs,i 

if x ( j )  is not c,ompatible with xd,,i 

The summation over x ( ~ )  is all haplotypes that can derived from the ~ , b , , ~  gene  

type. Since pseudeindividuals representing all possible ha.plot,ype configurations for 

an individual's genotype have been generated and added to the dat,aset, the weights 

ulzj for each can be represented as ai for simplifica.t,ion of the double subscript. There 

will then be n. + (# of pseudeindividuals a.dded t,o the dataset,)= M. 

An assumption of complet,e non-genet,ic covariate information is made, which elim- 

inates the need for estimation of ye. Assuming Hardy-Weinberg equilibrium further 

simplifies the covariate distrib~t~ion, so the number of covariate paramet,ers will be a 

maximum of r - 1, where r is t,he number of haplotypes. The covaria,t,e model parame- 

ters will be the probabilities of each of the r - 1 haplotypes. Pseudo-individuals ho- 

mozygous for a. haplotype k will contribute 2bogyk to the complet,e-data log-likelihood 

for y since their weight is 1, and those heterozygous for haplot,ypes k and 1 will 
( t )  ( t )  ( t )  contJribut,e ai logykyl = ai bogyk + ai logyl. 

To update regression parameters, t,he weighted log-likelihood given by: 

is maximized, where p, is the probability that the ith person has the disease. The 

t + ltl' estimate of the regression coefficients are found by solving Pi+' = P' - 
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[I(P)-'S(P)]IB=8(f, via. Newton-Raphson opt,imization, I(P) being the Hessian and 

S(P) being the score function of the log-likelihood. 

Shndard errors calculated according to rnaximum likelihood theory for weighted 

logistic regression with known weights are not correct becaase of extra. error caused by 

ambiguous haplot,ype information. The observed data likelihood is broken up int,o a. 

sum of two terms: logPr(X = xob8, ylQ) = logPr(x,Jy,)+log(C Pr (y (x ,  P)Pr(z, ,  y,)), 

assuming independence of (P, y,) and ye. We are only estimating standard errors of 

the regression parameters which we can obtain by invert,ing the submatrix I(P, 7,). 

Using a formula by Louis[26]: 

where I(Q) is the negative Hessian of the observed data log-likelihood, and Ic(Q) and 

S,(Q) are t,he negative Hessian and score of the complete-data log-likelihood function, 

respectively. The second term of the expression for the information matrix ma,y be 

viewed as a correction t,o account for the ambiguit,~ of the haplotype phase. The 

Fisher Information matrix for I (P ,  y,) is as follows and can be used t,o estimat,e t.he 

variance of regression parameters: 

A diagonal matrix of weights W est,imated from the EM algorithm and neces- 

sary parameters are s~bst~i tuted int,o the Information matrix and it. is inverted t.o 

find variances associa.t,ed with regression parameters. S is a mat,rix whose rows are 

complete-data score vectors Sc,ij for pseudo-individuals with rows arranged so that, 

extra pseudo-individuals for subject i are arranged in consecutive order. B is a block 

diagonal ma,trix of 1's with the number of rows and columns of each block equal 

to the number of haplot.ypes compatible with a, given subject's observed c~variat~es. 

Each matrix has n.* rows corresponding to the number of pseudo-individuals with 

ambiguous haplotype phase. 
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N~, . - l ) , ( , - l )  is a diagonal matrix whose  element,^ are the sums over all individuals 

of the weighted counts of the first. r - 1 haplotypes, n,, is the sum of the weighted 

numbers of the r th haplot.ype, G(T-l)x(r-l) = diny( l /y~)  and J(r-l)x(r-l) is a ma.t,rix 

of 1's. 

3.5.3 Haplo.stats Package for the R Programming Environ- 

ment 

Haplo.st,ats package by Schaid [35][23][12] does a haplotype reconstruction and risk 

estimation in a similar manner t,o that of Burkett et al. [3][4][12], iteratively estirnat- 

ing haplotype frequencies condit(iona1 on observed data and the current est,imat,e of 

regression parameters. Maximum likelihood e~timat~ion of the regression parameters 

is cornputled with t,he EM algorithm, computing the conditional expectation of the 

complete data log-likelihood given the observed data. and current estimates of the 

paramekrs, and maximizing the resulting function. 

For the case of haplot,ype/non-genetic interactions the vector of ~ovariat~es z = 

(z, Ixglxg,), xe denot,es non-genetic (environmental) covariates, Z, denotes genetic 

covariates and z,, denot,es t,he int,eraction covariat,e terms of non-genetic and genetic 

co~ariat~es, and /3 is a vector of associat,ed regression coefficients, p = (/3pl/3g14,,). The 

likelihood for the genetic data. is a. function of haplot,ype frequencies, 0 = (Q1, . . . , O J ) ,  

O j  being the frequency for t,he j th  hapl~t~ype, j = 1, - - .  , J. h. is a vect,or of haplotype 

frequencies for an individual, with the jt,h component being equal to the number of 

h,j haplotypes t,hat, the individual possesses. The likelihood is a function of haplot.ype 

frequencies and assuming Hardy-Weinberg equilibrium the probabilit,~ of genot,ype y 

or, equivalently, haplotype h is: Prs(g) = Prs(h,) = n;=, (1%) 0:'. 

For 0 re~aramet~erized as cp,  = 'J according t,o the con~t~raint c:=, 0, = 1, 
1 - c::: 83 

the probability of 12  can be expressed as: 
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If Gi is t,he set of haplot,ype pairs corisist,ent with t,he observed phenot.ype ki for 

the i th  individual arid = (p, 9 
xg and .x, is: 

c) ,  the likelihood contributiori under independence of 

Adopting the EM by the method of weights (Ibrahim, 1990) with a. generalized 

linear model, the density of y can he expressed as: 

Assuming canonical link function q = zTp the likelihood is a function of haplot,ype 

frequencies the complete data log-likelihood for t,he i th  subject is 

The Es t ep  of the EM a.lgorithm involves taking the ~ondit~ional expectartion of 

the complete da.tja. log-likelihood given the observed data and is a. function of the 

conditional proba,bilit,y of the haplotype counts Pr (h i j ,  hijt ldjobs)) for i = 1, - . , N 

and j ,  j1 = 1, - - - , J given the observed data and d!*"). The general form of the joint 

conditional probability distxibution of hap l~ t~ype  counts under independence of x, and 

x, is 

The M-step of the EM algorithrri irivolves maximiza,tion of the conditional expec- 

tatmion of the complete dat,a log-likelihood, the model parameters p estimated from the 

kth iteration of the EM algorithm. The regression paraanet,ers can be easily estimaied 

with a weight,ed regression where the weights are the conditional proba.bilit,ies of the 

subjects' haplot,ype da,t,a,, urgi = Pr(h,,, h,,r~d!~~")). 
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Again, due to extra arribiguit'y ca.used bv uncertain haplot,ype phase the standard 

errors of the regression coefficients a.re augmented in the logistic regression. 1nstea.d of 

using the observed information matrix of the observed data computed using Louis' [2G] 

formula, the observed information matrix is approximated by the empirical observed 

information matrix 

where si(@) is the score function from the observed data likelihood for the ith indi- 

vidual [27]. 

3.6 Statistical Issues with Genotype Analysis 

The complete association analvsis of genetic data. involves analysis of individual SNPs 

and if there is two or more SNPs present from a single gene in linkage disequilibrium 

they car1 be analyzed as haplotypes. Before SNP analysis Hardy-Weinberg equilib- 

rium (HWE) should be tested on all SNPs to detect, any genotyping error, underlying 

populat,ion substructure or biased sampling. Those not in HWE may not be the most 

reliable SNPs and further analysis may not include those SNPs. Hardy-Weinberg equi- 

librium was tested on the BCCA non-Hodgkin lymphoma study genes (H2AX, NBS1, 

and IL10) that had been chosen for SNP analysis. SNPs in Hardy-Weinberg equi- 

librium were then analyzed as independent variables in univariate and multivariate 

logistic regression models, adjusted for frequency-matched and confounding variables. 

Penetrance analvsis of SNPs involves comparison of different penetrance models 

to see if a sinipler one is a better fit. Penetrance models include the most complex 

model, the codominant model, which is where each genotype is tested independently 

(e.g. for a SNP with alleles A arid G, G being the major allele, the codominant model 

is loyzt(y) = Do + P1 x G/A + Dq x A/A), a recessive model, where the homozygous 

recessive allele is tested for significance (e.g. loy~t(y) = Do + P1 x (A/A)), a dominant 

model where an increase in the number of recessive alleles doesn't affect the relative 

risk (e.g logft(y) = Po + x (G/A + A/A)) and a multiplicative model, where an 
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increase in the number of ca.usa1 alleles a, individual possesses also increases the risk of 

a, disease to that factor (e.g. dogit(y) = Po + P1 x (a.), a,=O, 1, 2 copies of A). A test of 

different models is done using an analysis of variance (ANOVA) to see if the simpler 

model is significantly different t,han the baseline codominant model. If the simpler 

model isn't significantly different, t,han the more complex model' an in~est~igat~or would 

choose a simpler model of penetrance to describe the SNP. Significant, BCCA SNPs 

were analyzed for underlying penetrance models t,o investigate if a recessive allele was 

significantly associat,ed with NHL or if the risk of developing NHL multiplied by a 

factor of the number of causal alleles that an individual possessed. 

Association studies of haplot,ypes rely on rec~nst~ruction methods to assign haplo- 

types to individuals based on t,heir phenotype. If a computational method of haplo- 

type recon~truct~ion is used that assigns the "best," possible ha,plot,ype pair t,o a sub.ject, 

out of all possible haplotype pairs, an additional source of ambiguity is added to mod- 

eling of haplotype associations. The additional source of ambiguit,~ results from those 

subjects who have several possible haplot.ype pairs, given a phenot,ype with heterozy- 

gous loci or missing genot,ype information. Using logistic regression to   nod el the 

"best" possible haplotype against a response variable would result in regression pa- 

rameters and standard errors where extra ambiguity isn't reflected accurately by the 

analysis, i.e. the error would be underestimated and regression coefficients wouldn't, 

be properly weighted. To do a correct as~ociat~ion analysis of reconst,ructed haplo- 

types, a weighted logistic regression should be used and the variance of the regression 

parameters computed would have to be inflated to account for haplotype anibiguit,~. 

Also, if there is missing genotype data in the original da,ta set and the haplotypes 

are reconstructed for all individuals, a large amount of missing data could result in 

regression coefficients biased t,owards the null. Investigators should be aware of both 

possibi1it)ies and account for them by correcting the standard errors and recording the 

fraction of missing data in a data set when reporting results of a study analysis. 

Three methods of haplot,ype reconstruction and subsequent logistic regression were 

contrasted to explore the error associat.ed with resulting regression paramet,ers. The 

packages include Ha.passoc [3] [12], Haplostats [23] [12] and PHASE version 2.1 [37]. 
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Hapassoc and Hap1o.stat.s both use weighted logistic regression in t,he M-step and 

methods t.hat inflate standard errors of the regression coefficients; the packages use 

slightly different calculations to comput,e the standard errors. PHASE outputs all 

possible haplot.ype assignments and corresponding weights so these were used to do 

a weighted logistic regression. Standard errors calculated from t,he PHASE regres- 

sion out.puts were compared with Hapassoc and Haplo.st,ats for comparison wit,h the 

inflated standard errors using those methods. The three methods were applied to 

BCCA study data where the three genes (H2AX, NBS1, and IL10) hard been chosen 

for SNP analysis, having between two and four loci each. A simulafed da,t,a set with 

three SNP loci was also used to contrast regression coefficients and standard errors 

bet,ween the methods. 

R.econstructed haplot,ypes were analyzed as continuous variables with the input 

haplot.ype data having t,hree values, O ?  1 and 2, the number of each haplotype that 

an individual possessed. This is the default method of analysis for Hapassoc and 

the only way to analyze haplotype data wit.11 Haplo.stats. PHASE re~onstmct~ed 

haplot,ype data was also analyzed as cont,inuous variables in order to have consist,ent, 

compasable regression output from all methods. The resulting model has a maximum 

of r - 1 covariat.es, the number of haplotypes present. in the data, set minus the baseline 

compa.rison haplotmypel hi is the haplot,ype covariate, i. = 1, - - . , r - 1: 

Changing default pooling and zero tolerance (smallest frequency which a. haplot'ype 

must have to be considered present in the data set) in t.he Hapassoc and Haplo.st,ats 

packages allows the user t,o specify the hapl~t~ypes that will be analyzed as individual 

variables. Hapl~t~ypes that occur with frequency below the zero tolerance weren't 

included in analysis aud haplotypes t,hat occur below the pooling t,olerance but ahove 

the zero tolermce were grouped into a pooled haplot,ype variable. 



Chapter 4 

Analysis of the BC Cancer Agency 

NHL Data 

4.1 Tests of HWE 

Permutation tests of Hardy-Weinberg equilibrium were performed for all loci of in- 

terest in the BCCA data, set because some loci have small expect,ed values for allele 

frequencies, which would lead to  questionable t,est results if large-sample test theory 

was to  be used. The control data  for a.11 loci were tested using the permutation test, 

of HWE: results are shown in table 4.1. 

At a. significance value of 0.05, all loci in the BCCA data set have Hardy-Weinberg 

equilibrium except for H2AX-12. However, the evidence against Hardy-Weinberg 

proportions for H2AX-12 is not, significant a t  t.he 5% level after Bonferroni a.djustment 

for multiple t,esting of 9 SNPs. For completeness, association analysis of the H2AX-12 

was still performed, although if it did happen t,o achieve significance, the result. ma; be 

viewed with a crit(ica1 eye. Further analysis is shown with and without. t,he H2AX-12 

SNP, i.e. haplot,ype analysis was done for H2AX with and without H2AX-12. 
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SNP Genot,vpe Proportion Observed Expeckd P-value 
H2AX-8 GIG 0.263 126 120 

T&le 4.1: Tests of Hardv-Weinberg Equilibrium 
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4.2 SNP Analysis 

The outcome of interest was t.he case/control status of the NHL data set. Analysis of 

the SNP gen~t~ypes was carried out. as a case-control analysis. Cases were individuals 

who had NHL and controls were patients who didn't have NHL. Case cont.ro1 analvsis 

of the SNPs compared the variant allele frequencies between case and control  subject,^. 

Univariate analysis was carried out on all SNPs. Multivariate analysis was done with 

a,djust.ment for non-SNP covaria.t,es that the case control dat,a was mat.ched on, sex, 

age group, region of residence and ethnicity. 

Results of ~nivar ia t~e analysis and multivariate analysis were similar, shown in table 

4.2 and table 4.3. The only SNP that reached significance at  the a=0.05 level was 

H2AX-8, examining the p-values comput,ed for the global test of gen~t~ypic  association 

(t,he first entry for each SNP in the column of p-values). Even if the significance level 

is corrected using the Bonferrorii correction for multiple tests (a=0.05/9 if H2AX-12 

included and a=0.05/8 if H2AX-12 not included in t,he multiple tests of significance), 

H2AX-8 is still borderline significant, having a p-value E 0.005. The relative risks for 

H2AX-8 indicate that with fewer copies of the G allele, the risk of developing NHL is 

less or t,hat more copies of the A allele has a protective effect. 

4.2.1 Penetrance Analysis 

The codominant model for SNP analysis was used for analysis of BCCA SNPs. The 

codominant model of penetrance was compared, using ANOVA, in turn to a. recessive 

model of penet.rance t,o test if t,he homozygosity of the recessive allele was a significant. 

predictor of NHL and a multiplicative model of penetrance to test whether an increase 

in the number of recessive or dominant alleles increased or decreased the risk of disease 

by a factor equal to  the number of those alleles present. The ANOVA p-value is the 

output. p-value for a likelihood rat,io test of model difference. 

H2AX-8 SNP was significant in SNP analysis so a, penetmnce analysis was done t,o 

see if H2AX-8 follows a, dominant, recessive or multiplica.tive model. Ta,ble 4.4 shows 
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SKP Variant. Genotype N R.R Lower Upper p-value 
H2AX-8 G/G 2 72 0.005 

Table 4.2: Univariate SNP analysis 
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95% CI 
SNP Variant Genotype RR Lower Upper pvalue 
H2AX-8 G/G 0.006 

A/G 0.903 0.665 1.226 0.513 
A/A 0.557 0.381 0.815 0.003 

H2AX- 1 1 c/c 0.582 
T /C  0.965 0.723 1.287 0.807 
c/c 0.813 0.548 1.207 0.305 

H2AX-12 A/A 0.414 
C I A  0.954 0.573 1.588 0.856 
G/G 0.223 0.024 2.067 0.186 

NBS1-11 W T I W T  0.539 
WT/del(WT) 0.748 0.444 1.258 0.274 

Ta,ble 4.3: Multivaria,t,e SNP a,nadysis 
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that, as there was no rejection of the null hypothesis of a. codominant model being 

different from a recessive model (p-val=0.47) or a multiplicative one (p-val=O. 18), they 

were improvements over the codominant model or a dominant model. Inspection of 

ANOVA p-value for significant differences from the codominant model showed tha,t the 

p-value was larger for the recessive model than for the multiplicative model. We chose 

a. recessive model of penet,rance since it had a larger p-value than the m~ltiplica~tive 

model. Therefore, only if an individual has two copies of the A allele they are at a. 

decreased risk of developing NHL. 

A comment on SNPs with intere~t~ing results: the SNP not in HWE, H2AX-12, 

didn't reach significance and SNP IL10-20 is borderline significant when adjust,ed for 

non-SNP covariates with the A allele having a protective effect or alternatively, the G 

allele increasing risk of NHL. Using the Bonferroni correction, however, IL10-20 is no 

longer significant,. Penetrarice analysis of IL10-20, summarized in ta.ble 4.4 indicates 

that the SNP follows a multiplicative model, where an increase in the number of G 

alleles corresponds to  a 1inea.r increase in the log risk of developing NHL. 

Of the SNPs analyzed for as~ociat~ion with NHL, only H2AX-8 had a borderline 

significant ass~ciat~ion wit,h NHL aft,er a Bonferroni ~orrect~ion for multiple compar- 

isons of the SNPs. Before the correction, the IL10-20 SNP had a borderline significant 

association (p=0.076). Additional studies with a larger number of individuals would 

help increase t,he power of seeing an association, and the IL10-20 may produce a 

significant result. 

H2AX-8 is a. new polymorphism being studied for associat,ion wit,h NHL and with 

no other prior published research with which to compare the results. After publication, 

other researchers will need to confirm the positrive association wit,h NHL with new 

studies. 
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4.3 Haplotype Analysis 

Using three met,hods of haplotype reco~ist~ruction and logistic regression (Hapassoc, 

Haplo.stats, PHASE haplotype reconstruction), the SNP dartla from the BC Cancer 

Agency was analyzed. There are seven different ways to do an associa,t,ion analysis 

of the data with the three methods. The seven different ways to do the analysis 

are adjusted for the non-SNP variables of age, sex, ethnicity and region of residence. 

Additionally, an unadjusted analysis could be done. 

Input for the reconst,ruction programs Hapassoc and Haplo.stats include SNP and 

non-SNP variables. SNP and out,come data were input into Hapassoc and Haplo.st,at,s 

with the non-SNP variables of a.ge, sex, region of residence and ethnic group for hap- 

lotype reconstruction of the SNP variables and EM weighted logist,ic regressions. It, 

was also of interest to see the difference in standard errors and regression coefficients 

between Hapassoc or Haplo.stats EM weighted regression t,hat inflates standard er- 

rors and a regular weighted regression with no inflation of standard errors using the 

reconstructed haplot,ype information from Hapassoc and Haplo.st,ats. Hapassoc does 

an initial step of finding starting points for t,he weights associated wit,h haplot,ypes by 

performing a. reconstru~t~ion with SNP data only. It uses initial weights in the EM 

st,ep of calculaking the regression coefficients and st,andard errors and upda,tes the as- 

sociated weights when it updat,es the regression estimates. A comparison was possible 

bet,weeri weighted regression output calculat,ed from init,ial weights output from the 

Hapassoc procedure and the weightred regression output calculated from final weights 

output from the Hapassoc procedure. We were able t,o see the impact of using slightly 

different weights in weighted regression. 

The comparisons able to be done with the PHASE program were different than 

for Hapassoc and Haplo.stats since PHASE uses only the information in SNP input 

data, for reconstruct,ion; it doesn't use information from other non-SNP variables in its 

haplotype reconst,ruct,ion or associated weight, calculat,ion. PHASE outputs files have 

a "best" haplotype assignment for individuals that assigns each individual a single 
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haplotype pair, and a. weighted reconstruction weighting all possible haplot,ype a.ssign- 

~nents  for an individual by the probability that. it is the correct haplotype assignment. 

Using PHASE out,put. a logistic regression using the "best" haplotype assignment' 

was done as well as a. weighted logistic regression with the output, haplot.ypes and 

associated weights. 

The seven different wa.ys of doing the association analysis are: 

1. PHASE "best" haplot,ype assignment with regular logistic regression, labelled 

PHASE "best" LR in tables 

2. PHASE assigns all possible haplotypes t,o each individual wit,h associat,ed weights 

analyzed with a. weighted logistic regression, labelled PHASE weighted LR in 

tables 

3. Hapassoc with full EM, labelled Hapassoc EM in tables 

4. Hapassoc with weighted logistic regression using INITIAL weights, labelled Ha.- 

passoc INITIAL LR in tables 

5. Hapassoc with weighted logistic regression using FINAL weights, labelled Ha- 

passoc FINAL LR in tables 

6. Haplo.stats with full EM, labelled Haplo.stats EM in tables 

7. Haplo.stats with weighted logistic regression using weights output from Haplo.stats 

EM, labelled Haplo.stats weighted LR in tables 

The association analysis variations were applied t o  the BC Cancer Agency SNP 

data. As discussed there were three genes analyzed, ILlO wit,h t,wo SNPs, and H2AX 

and NBS1, with three and four SNPs respectively. The multi-SNP haplot,ypes were 

reconstructled and the regression model for each gene was chosen using a pooling 

frequency of 0.01, which pools hapl~t~ypes that have pop~lat~ion frequency less than 

1%. So the regression models consisted of haplot,ype covariates that. have frequency 

great,er than 1% and a. pooled haplotype covariate (if needed). 
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H'AX, 3 loci 

- Regression Coefficients 

Overall, when comparing Hapassoc and Haplo.stats EM methods in table 

4.5, they are relatively consistent in their computation of regression co- 

efficients. The absolute values of the regression coefficients are generally 

larger for both Hapassoc EM and Haplo.stats EM than PHASE weighted 

logistic regression. One exception was the hapl~t~ype ATA in the Hapas- 

soc model, which was likely due to the slight difference in frequencies of 

the hapl~t~ypes as well as the slightly different weights comput,ed. Slightly 

different weights are computed by PHASE because PHASE only takes the 

SNP information into account when computirig weights, this affects the 

regression coefficients to a larger degree t,han was initially expected. The 

same can also be seen with the Hapassoc initial weighted regression co- 

efficients, which are smaller in absolute value tha.n the properly weighted 

Hapassoc and Haplo.stats EM and Hapassoc final weighted regression co- 

efficients. The frequencies of Hapassoc EM and Haplo.st,ats EM haplot.ype 

output are comparable with the largest difference being 0.001, PHASE fre- 

quencies are all slightly smaller, with the exception of ATA, which could 

account for the larger coefficient. 

- Standard Errors 

The standard errors are consi~t~ently larger for Hapassoc EM and Haplo.stats 

EM than for PHASE weighted and "best" regressions for the smaller fre- 

quency haplotypes, the large frequency haplotype ATA didn't. have stan- 

dard errors that, varied much between the methods. The inflation of stan- 

dard errors don't make a large difference in the p-values between the 

methods because the smaller regression coefficients output by PHASE and 

the smaller standard errors allow us t,o arrive at similar pvalues as the 

larger regression coefficients and standard errors of the Hapassoc EM and 

Haplo.st,ats EM packa,ges. 
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Comparing Hapassoc and Haplo.stats EM regressions with weightfed lo- 

gistic regressions on haplotype reconstruction output from the packages 

shows a, negligible difference between the packages. The standard errors of 

regression coefficients are larger for Hapassoc and Haplo.stats than their 

corresponding weighted 10gist~ic regressions, which was as expected. For 

example, the coefficient for GCG for both methods had a larger stan- 

dard error (Hapassoc=0.251, Ha,plo.stats=0.250) than for their correspond- 

ing weighted regression output with no inflation (Hapassoc=0.236, 0.239, 

Haplo.stats=0.233). PHASE ha.d a standard error of 0.234 for the GCG 

coefficient with a "best." haplotype regular logistic regression and 0.231 

for the weighted regression, both of which are smaller than the inflated 

standard errors from Hapassoc and Haplo.stats. 

- Interpretation 

For H2AX, both haplotypes ATA and ACA appear t,o exhibit a. protective 

effect against non-Hodgkin lymphoma. If we were trying to choose a model 

at  the 0.05 level the same out,come would be reached if any of the seven 

regression met,hods were used. Even though a correct model would be 

chosen for the PHASE "best" regression, the model conclusions would be 

found by faulty methodology. The correct conclusion is reached with this 

set of data, but for another set of data t,here is the chance that using faulty 

methodology would lead to incorrect conclusions when test,ing significance 

of model variables or calculating confidence intervals. 

NBSl 

- Regression coefficients 

The PHASE "best" regression out,put calculates the largest regression co- 

efficients of any of the methods as seen in table 4.6, particularly WTAGA 

arid DELGGA. The regression coefficients are otherwise similar for all 

methods. 
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- Standard Errors 

When doing similar comparisons for NBSl as for H2AX, the same conclu- 

sions can be reached. St.anda.rd errors are appropriately inflated for the 

Hapassoc aad Haplo.stats EM regressions and if the either package were 

being used for model selection the same models would be specified. There 

is an interesting outcome in the standard error for the Haplo.stats logistic 

regression, the standard error for WTAGA haplotype is very small (0.0008 

for Haplo.stats regression with inflatred standard error). After doing testing 

to explore the cause, the only resulting hypothesis is that there is an error 

in the Haplo.stats code that, under certain conditions (one of them being an 

extremely small frequency of the resulting haplot'ype) causes Haplo.stats to 

output an incorrect standard error. Even though the WTAGA haplot,ype 

had a. small frequency, it was still included in analysis since there was only 

4 possible hapl~t~ypes present for NBSl and haplotype DELGGA had a. 

frequency above the pooling tolerance. There were no other hapl~t~ypes in 

the "pooled" group so the WTAGA haplot,ype was analyzed 011 its own. 

- Interpretation 

The same model conclusions would be reached for all methods of regression 

on NBSl haplot.ypes - no haplot,ypes had significance at the 0.05 level. 

- Regression coefficients 

The regression coefficients for the small frequency hapl~t~ypes are larger for 

the Hapassoc EM, Hapassoc final weighted regressions and Hap1o.stat.s EM 

and weighted logistic regressions t,ha.n for t,he PHASE weighted regressions 

and Hapassoc initial weighted regressions in table 4.7. The difference may 

be due tJo the slightly different weight,~ computed by the reconstructions 

with non-SNP informat.ion and the small frequencies of t,he haplotypes. 

The int,eresting logistic regression output is t,he PHASE "best." logistic 

regression wit.h est,ima.tes that are compara.ble to the Hapassoc EM and 



CHAPTER 4. ANALYSIS OF THE BC CANCER AGENCY NHL DATA 45 

Haplo.stats EM logistic regressions, possibly because of different frequen- 

cies calculated for the resulting haplotypes, almost a 3% difference for the 

TG haplotype. 

- Standard Errors 

The ILlO SNPs were the most interesting, since there was an fairly substan- 

tia.1 infla,tion of standard errors for the Hapassoc and Haplo.stats EM lo- 

gistic regressions, compared with weighted regressions. For example, look- 

ing a t  haplotype TG, the corresponding standard error for the Hapassoc 

regression is 0.178, for the Haplo.st,ats regression is 0.177, while the regu- 

lar weighted regressions using the output from these methods only shows 

standard errors of 0.158 (Hapassoc initial weights), 0.160 (Hapassoc final 

weights) and 0.155 (Haplo.stat,s weighted). The ILlO SNPs were the best 

example of the packages adjusting coefficient standard error, as there were 

the maximum possible different haplotypes present and even though most 

of the haplotypes were characterized in tJwo groups (TA and AG), there 

was still a third haplotype group (TG) that contained almost 10% of the 

t,otal haplotypes. 

- Interpretation 

There were two haplotypes, TG and AA, which appear to significantly 

increase the risk of developing NHL. Due to the small frequency of the 

AA haplotype, we have less confidence in only saying that AA haplot,ype 

definitely increases the risk of developing NHL. 

Compared with the individual SNP analysis of the ILlO SNPs which shows 

only that the SNP i110-20 is borderline significant at the a=0.05 level, it 

would appear that haplotype analysis is a necessary tool with which to 

analyze the SNP da,ta in this instance. The haplotype analysis gives more 

clues as to where a, possible mutation may occur because a larger area was 

taken into consideration when the SNPs were analyzed as a. unit. Int,er- 

action of the two ILlO SNPs is another possible cause for the significance 

of the association with NHL. A st,udy witah a, larger number of people may 
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give a better idea. of whether these haplotypes are indeed associat,ed with 

the disease. The small number of people with these haplot,ypes makes us 

caut,ious to declare significance with much confidence. 

H2AX. 2 loci 

- Regression Coefficients 

The regression coefficients in table 4.8 are comparable to the regression 

coefficients in table 4.5, the GT variable being comparable to  the pooled 

variable in the H2AX table with three loci. 

- Standard Errors 

As with the t,hree-locus haplotypes, the coefficient st,andard errors were 

larger when comparing the Hapassoc and Haplo.sta,ts EM weightred regres- 

sion standard errors to the PHASE "best" and weighted regressions in 

table 4.8. The same haplotypes would be kept in the final model for either 

method. Conclusions don't. differ whether or not the corrected shndard 

errors are used. 

- Interpretation 

The same model conclusions would be reached for all methods of logistic 

regression. There is not. enough variability in the SNP input data. set to 

inflate the st,andard errors significantly enough to come to different con- 

clusions with regards to model selection or confidence interval calculation. 

When using t,he most frequent haplotype as a. baseline for comparison, there 

were two haplotypes (AT and AC) significant at  t,he c~=0.05 level for the 

H2AX SNPs for all methods of reconstruction and regression. These t.wo 

haplot,ypes corresponded to the first two loci of the t,wo significant three- 

locus H2AX haplotypes, indicating that we could simplify the haplot,ypes 

into two locus hapl~t~ypes and get similar results. This also cuts down 

on the area. of the genome where a possible disease-causing mutation may 

occur. If we want to simplify the area. of possible disease-ca.usation even 

more, we may turn t,o the analysis of the H2AX SNPs. SNP analysis has 
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shown t,hat H2AX-8 is significant in t.he prediction of NHL, hut H2AX-11 

is not significant in the prediction of NHL. Penetrance model selection and 

allele analysis has shown that it is most likely a larger number of copies of 

the G allele of the H2AX-8 t,liat is as~ociat~ed with increased risk of NHL 

and that a larger number of copies of the A allele is as~ociat~ed with a, 

protective effect wit,h regards to NHL. 



Chapter 5 

Simulation Study 

To investigate differences in t,he coefficients and standard errors of logistic regressions 

between haplot,ype recon~truct~ion and logistic regression methods, a, ~imula~tion study 

was used. Regression estimates and standard errors were studied for each of the three 

methods of reconstruction (Hapassoc, Haplo.st,ats, PHASE) and 1ogist)ic regression 

under differing percentages of missing da.ta. 

5.1 Haplotype Data Generation 

Using information gained from the small comparison exercise of Hapassoc EM re- 

gression and a weighted logistic regression with haplotype assignments and weights 

generated from Hapassoc, haplotype frequencies and model specifications were chosen 

to be the same as those in the Hapassoc example da.ta. The frequencies that were 

used resulted in the potential haplotype ambiguity being increased and the distrib- 

ut,ion of ha.plot'ype frequencies being more equal a.nd not mostly alloca,ted t.o one or 

two haplotypes. 

Using tJhe R program. an effective population of 50,000 individuals was generated. 

The eight, possible ha.plot,ypes used in the sirnula.tion aad corresponding frequencies 

for each are shown in tahle 5.1. 
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Haplot,ype Locus Frequency 

1 2 3  
1 0 0 0 0.2517911 
2 0 0 1 0.2605418 
3 0 1 0 0.23606001 
4 0 1 1 0.0916067 
5 1 0 0 0.10133627 
6 1 0 1 0.02636844 
7 1 1 0 0.0108126 
8 1 1 1 0.02148268 

Table 5.1: Ta,ble of Haplotype Frequencies. 

Next, to prepare data for logistic regression, outcomes had to be genera.t.ed for the 

haplot,ype dat,a. The haplotype t,ha.t was the second-most frequent was chosen t.o be 

the "affected" haplotype, meaning that a. carrier of this haplotype was at increased 

risk of developing a disease. Overall, in the sample, the proba.bility of having disease 

was fixed at 0.5 t,o make the simulat,ion as much representative of a, case/cont,rol study 

as possible. The risk increase for the having of a. single affected haplot,ype from having 

no affected haplot,ypes was arbitrarily fixed as 1.5 arid t,he risk increase of having two 

affected haplot.ypes from having no affected haplotypes was fixed at 3. The equation 

where hIi, the number of "affect,edn haplotypes, was filled in with known information, 

such as haplotype probabilit.ies from the generated data, set and the pre-specified beta. 

coefficients. Prob(D) is the probability of having the disease and hSi is the number of 

"affected" hapl~t~ypes that an individual is carrying, hl means one affect.ed haplot,ype 

is present, etc. The equation: 

was solved for Do, since all other information wm known. Pr~ba~bilities of the number 
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of "affect,edn haplot,ypes was easily calcula.t,ed, P1 was already specified t,o be ln(1.5) 

and P2 was ln(3). The probabilities of being affect,ed given 0, 1 or 2 "affected" hap- 

1ot.ypes were then calculated. Binary outcomes were generat,ed for each number of 

"affected" haplot.ypes that an individual was carrying using the calculat,ed probabili- 

ties and assigned to the corresponding haplot,ype data. 

Missing genot,ype data was randomly generated for 5% and 10% of subjects. For 

example, if t.he percentage of missing da.t,a was set a.t 5% the number of people who 

would halve missing dat.a was calculated as 0.05 * N, t,hen split between the 3 loci, 

so each locus would have 113 of the data, re-assigned as missing. The same was then 

done for 10% missing data. 

5.2 Analysis of Simulated Data 

The model used all haplotypes with frequency greater t,han 5% and a pooled variable 

for those less than 5%. The model specified is: 

where t.he pooled variable is a category crea.ted from those ha,plot,ypes that have a 

probability less than 5 % , hapl~t~ypes 6, 7 and 8. Base comparison haplotype is 

haplotype 2 (001). A logistic regression on known ha,plotypes was done t,o produce a 

basis for comparison for the three haplot,ype reconstruction and seven logistic regres- 

sion methods. 

Table 5.2 has the out,put of the logistic regression using the true haplot,ypes for the 

larger model with five covariates, table 5.3 haa PHASE regression out,put. for 50,000 

individuals, table 5.4 has Haplo.stats regression output for 50,000 individuals, table 

5.5 has PHASE regression olit,put for 100 logistic regressions of 500 subjects each, 

table 5.6 has Hapassoc regression output for 100 logistic regressions of 500 subjects 

each and table 5.7 has Haplo.stats regression output for 100 logistic regressions of 500 

subjects each. 
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50.000 indiv. 
Haplotype B SE(W 

000 0.489 0.018 
010 0.008 0.018 
011 -0.007 0.024 
100 0.011 0.024 

Pooled 0.040 0.029 
100 LR, 500 indiv. 

Haplotype Mean(P) Mean(SE(B)) SD (Y) 
000 0.497 0.183 0.183 
010 0.007 0.183 0.199 
01 1 -0.010 0.248 0.250 
100 0.012 0.239 0.263 

Pooled 0.043 0.294 0.287 

Table 5.2: Initial Estimates of Logistic Regression Coefficients, 5 Covariates 

0 PHASE and Haplo.stats, 50,000 individuals 

Looking aft table 5.3 there isn't a large difference between the regression co- 

efficients of the PHASE "best" and PHASE weighted regressions, other than 

PHASE weighted coefficients being slight,ly smaller. Both logistic regression 

methods approximate the estimates from logistic regression using the true hap- 

lotypes in table 5.2 rather well, wit,h PHASE weighted regression coefficients 

being slightly biased. The standard errors are also similar t,o those calculated 

in t,he logistic regression using t,he true haplotypes. 

Haplostats output in table 5.4 shows a similar outcome, with regression co- 

efficients being well approximated by both methods, compared t,o the logistic 

regression using the true haplotypes in table 5.2. There is some slight variation 

in the standard errors, but we can attribut'e t,hat tJo random variation. In gen- 

eral, the logistic regressions of 50,000 individuals didn't. lead to any interesting 

conclusions about the PHASE and Haplo.stats methods. 

0 PHASE, 100 logistic regressions 500 individuals each 

The PHASE methods in table 5.5 appear t.o estimat,e the regression coefficients 
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ra,ther well compared to the logistic regressions using the true haplotypes ob- 

tained in table 5.2. The PHASE "best," method even appears t,o approximate 

the regression coefficients better than the PHASE weighted regressions, as some 

of the estimates for t,he weighted regressions appear tJo be slightly biased. The 

weighted regression was biased beca.use weights out,put by tfhe PHASE hap- 

lotype reconstruction aren't computed utilizing information from the out,come 

variable, they only use informattion from SNP input data. The strandad errors 

for both PHASE methods adequately approximate t,he computed standard devi- 

ations and the standard deviations computed from the logistic regression using 

the true haplotypes. 

However, it seems that the PHASE "best" regression method has some trouble 

with rare haplotypes. One of the most, striking results is for PHASE "best" 

analysis of 100 logist,ic regressions of 500 subjects each (table 5.5) is that there 

is a rather large mean standard error for all of the coefficients for the pooled 

haplotype in the PHASE "best," reconstruction and unweighted logistic regres- 

sion of 100 regressions of 500 individuals (~ t~andard  errors=2.245, 2.250, 4.236, 

second column of table 5.5). Inspection of t,he list of regression covariates shows 

that there is t,wo groups of 500 individuals where the regression coefficient and 

associated standard error is extremely large and affects the means and st,andard 

de~iat~ions. It. appears that the logistic regressions didn't converge for these sam- 

ples and this is likely due to a sparse data problem. When t,he two simulations 

with a very large 0s  and standard errors were deleted for each of the out,come 

dat,a sets, the ~ t~andard  errors for the pooled variable (table 5.8) are more com- 

parable t,o the population standard deviations. The problem may be that since 

the pooled haplot'ypes are rare, there were very few pooled haplotypes in t,he 

one sample of 500 individuals that was calculated t,o have the large standard 

error. An alterna,tive t,o recording mean estima,t,es of regression coefficients is to 

record median est,ima.t,es. Median estimat,es for the regression coefficients and 

standard errrors are given in the table 5.8 for comparison. 
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Hapassoc, 100 logistic regressions 500 individuals ea.ch 

There is a large difference in the regression coefficients for t,he Hapassoc full EM 

method as compared to using the Hapassoc INITIAL weights with a weighted 

1ogist)ic regression, which can be seen in table 5.6 when comparing the mean(P) 

columns for Hapassoc EM and weighted regression using INITIAL weights. The 

reason is that Hapassoc does a. reconstruction of the haplotypes and associat,ed 

weights for an input data set in an initial step without non-SNP information 

before the EM regression. Even though initial weights vary only s1ight)ly from 

the updated weights calculated in t,he EM regression with weights (the largest 

difference between the initial and final weights is approximately 0.036), they 

underest,imate some of the regression coefficients in a, not,iceable way when com- 

pared with the estimates from logistic regression using the true hapl~t~ypes in 

t,able 5.2. The output for the weighted regression using the correct updated 

Hapassoc weights is in FINAL logistic regression columns of table 5.6 and was 

quite different, with estirnates being similar to those given by the Hapassoc full 

EM met,hod. The Hapassoc EM method output,s regression  coefficient,^ slightly 

larger than tjhe coefficients given by logist,ic regression using the true haplot'ypes. 

The rnean(SE(P)) for the Hapassoc EM weighted regressions were larger over- 

all and closer approximated the SD(/J), the population standard error for the 

regression coefficients than comparable mean(SE(/J)) for t,he regular weighted 

regressions in the FINAL weights columns of table 5.6. This shows that the 

inflatlion of the standard errors of the Hapassoc EM correct the bias in the 

unadjusted standard errors. 

Haplo.stats, 100 logistic regressions 500 individuals each 

In table 5.7 the standard errors between the Hap1o.stats methods were different,, 

as was expected, wit,h the Haplo.stats EM weighted regression mean(SE(P)) 

being larger than t,he mean(SE(P)) of t,he regular weighted regression and a 

better a.pproximation to the population standard deviations. 

The regression coefficients were the same between methods and approxirilate 



CHAPTER 5. SIhfULATION STUDY 60 

the est,imat,es cornputred by logistic regression using the true hapl~t~ypes in table 

5.2 to a reasonable degree. 

Overall, t,he methods of regression that adjust the standard errors (Hapassoc and 

Haplostats EM) are more conservative and would result in the correct number of 

positive conclusions in tests of significance. 



Chapter 6 

Summary and Conclusion 

6.1 Non-Hodgkin Lymphoma Data Analysis 

The SNP analysis found only two SNPs that were statistically significant,ly associated 

with the incidence of NHL. The H2AX-8 and IL10-20 SNPs were significant at the 

0.05 level. Penetxance analysis revealed that the H2AX-8 SNP followed a recessive 

model of penetrance with individuals homozygous for the A allele having a lower rela,- 

t,ive risk (RR=0.592) of developing NHL compared with having any G alleles present. 

The IL10-20 SNP also followed a, recessive model with homozygosity of the G al- 

lele increasing the risk of NHL (RR=1.470), compared to having an A allele prescnt. 

When adjustment for multiple t,ests is considered using a. Bonferroni correction, only 

t,he H2AX-8 SNP is significant in predicting NHL. The haplotypes were reconstructed 

from H2'4X and ILlO SNPs using three different reconstruction methods, then ana- 

lyzed using seven logistic regression methods, and adjusted for non-SNP variables of 

age, sex, region of residence and ethnicitmy for ea,ch regression. All regression methods 

indica,tcd that tthe t,hreelocus H2AX haplotypes ATA and ACA were significantly 

associated with NHL (table 4.6), both having a protective effect with a relative risk 

approximately 0.5 a.nd 0.82, respectively, compared with the baseline haplot,ype GCA. 

All methods also indica,t,ed t.ha.t the ILlO haplot,ypes TG and AA were significant in 
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increasing risk of NHL, ea.ch with relative risk approxiniat,ely 1.5 and 2.9, respectively 

An a.dditiona1 analysis in which the third locus of the H2AX SNPs, H2AX-12, 

was dropped from haplot,ype analysis because it wasn't in HWE was done. Also, 

there were very few individuals who had a G allele in the third position and the 

haplot,ypes with a G in the third position failed to have a significant association 

witth NHL, cornpared wit,h the baseline haplotype. The two-locus H2AX hapl~t~ypes 

AT and AC were significant with relative risks approximately 0.58 and 0.82 (ttable 

4.9). We may hypothesize further and say tha.t since the second SNP locus, H2AX-11 

wasn't significant in SNP analysis that it is H2AX-8 that is the main SNP associated 

with KHL through close linkage with a. disease-ca.using mutation. The A allele is the 

ancestral allele for the H2AX-8 locus; when the chimpanzee genome was investigated 

there was an A allele in the same position. It could be argued tliat G arose sometime 

during evolution between chimp and human and is in linkage disequilibrium with 

something that is causing NHL since the H2AX-8 SNP is non-coding and doesn't, 

appear to have any pr~pert~ies that, would make it causal. 

Comparison of standard errors after using regular weighted logistic regression 

methods and Hapassoc or Ha.plo.stats EM regression which inflates stJandard errors 

showed small increases in standard errors of small-frequency haplot,ypes for t,he EM 

regressions. 

Regression coefficie~it~s were simi1a.r for both Haplo.stats and Hapassoc EM weight,ec 

logistic regressions and Haplostats and Hapassoc final weighted logistic regressions. 

Convergence critterion for the Hapassoc package has been ma,de more strict and is cur- 

rcnt,ly available in a newer version of the package, a. result of this convergence criterion 

update is that the Hapassoc regression estimates will closer reflect those calculated by 

the Haplostats package. Regression coefficients were biased for the PHASE weight,ed 

regression and the Hapa.ssoc initial weighted regression, because w e i g h  were used 

that were calcula,ted only using SNP data. 
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Simulation 

A data. set of haplotypes was generated for 50,000 individuals with three-locus ha.plo- 

t,ypes. The haplot,ype frequencies were distributed over the eight possible haplot.ypes. 

Outcome data was genera,t,ed for the data set and the second-most, frequent haplot.ype 

was deemed the "affected" haplotype. 

Only the PHASE rec~nst~ructed met,hod and Haplo.st>a,ts method were able to be 

cornpared for a data set of 50,000 individuals, since Hapassoc had memory restrictions. 

The PHASE weighted regressions showed a slight bias to the  coefficient,^, generally 

underestimating the  coefficient,^ given by 1ogist.i~ regression using the true haplotypes. 

The PHASE "best," and both Haplo.stats methods approximated the true hqdot'ype 

regression  coefficient,^ and the standard errors adequately. The standard errors were 

all the same to t'hree decimal places. 

In the 100 regressions of 500 individuals, all t,llree methods were a.ble to be com- 

pared. The regression  coefficient,^ for the Hapassoc init,ial weightred regressions and 

the PHASE weightred regressions were underest,ima.t.ed. The weights for both methods 

were calculated without inc~rpora~ting the casecontrol information for the subjects 

and this appeared to have a bias effect on the estima.tes. 

Bot,h Hapassoc and Haplo.stats EM weighted pa.ckages had more a.ccurate standard 

errors tha.n PHASE weighted regression, Hapassoc weighted regression or Haplo.stats 

weighted regression. The EM weighted regressions had mean(SE(b)) columns that, 

more closely approximated tthe SD(p) columns, while the regular weight,ed regressions 

had smaller standard errors a.nd didn't approximate the population standard devi- 

a.t,ions as well. The standard error of the pooled variable in t,he PHASE "best" re- 

gression (table 5.3) is ext,remely large: which can be explained by tthe s111al1 frequency 

with which it occurs. Overall, PHASE "best." regression handles small frequency 

haplot,ypes poorly arid it fails t,o t,ake all haplot,ype informatmion for a.n individual into 

account. 
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6.3 Conclusions 

Haplotype research is beconling an important tjool in genetic analysis. In t,his pa- 

per I reviewed the metthodology for haplotype reconst,ructiori and explored different 

methods of analysis using real and simulated data. 

Analysis of NHL data from the BC Cancer Agency offered lit,tle insight int,o the 

irnpli~a~tions of not account.ing for haplot,ype a.mbiguit,y when doing a, case control 

arlalysis of hapl~t~ypes. The amount of ambiguous and missing data present in the 

data set, did little to  affect the outcomes when in~estigat~ing the differences in est,imates 

and associated st#andard errors. Different met,hods of reconstruction and regression 

didn't affect significance t,est,ing out,comes, akhough a data set with more ambiguit ,~ 

might, inflate standard errors enough to affect whether a test of significance hm a 

different outcome using different methods. 

Using sixnulat,ed data it was found that an implica.tion of not, inflating standard 

errors in association st,udies of hapl~t~ypes tlo account for ext,ra a.mbiguit,y of compu- 

tationally reconstructed haplotypes is the risk of dechring a, false positive significant, 

result, and having incorrectly calculated confidence intervals. This is most apparent 

when there are many possible small-frequency haplotyppe a significant amount of 

ambiguous genetic data and a, significant amount of missing genetic dat,a. Hapa.ssoc 

and Haplostmats EM weightled regressions inflate the errors the most under bhese con- 

dit,ions and it appears that under these conditions that mistakes in significance t,est,ing 

would be the most likely. 

The Hapassoc and Haplo.stats EM packages most closely approximate the popu1a.- 

tion st,andard deviations for regression coefficients of l~aplot~ypes. Using these packages 

would result in the best, analysis outcome. The PHASE reco~istruct,ion met,hod is com- 

monly used by researchers t,oda.y, but statist,ical analysis done with PHASE weight,ed 

out,put can result in biased regression coefficients and underestimated standard errors 

and PHASE "best" regression handles rare frequency harplotypes poorlv. It. is a.dvis- 

able for as~ociat~ion st,udies to use st,at,istical packages t,hat. inflate standa.rd errors in 
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order to take genetic ambiguit.y int.0 a.ccount. to avoid false positive results and incor- 

rectly calcula.ted statistics. Even though there doesn't appear to be a. large impact, 

for standard errors for data that doesn't have as much ambiguity, it is recommended 

tha,t proper methods be used at all tinies to analyze genetic data. 
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