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Abstract

Investigating association between disease and single nucleotide polymorphisms (SNPs)
has been an approach for genetic association studies and more recently investigating
association between disease and haplotypes has become another accepted method.
Haplotypes are physically linked combinations of alleles from a stretch of DNA and
can serve to increase power of finding an association due to interactions between

inclusive SNPs and the increased area of chromosome that is taken into consideration.

Determining haplotypes experimentally or by family studies is a costly and time-
inefficient method, so haplotype reconstruction by statistical methods has become
an adopted practice. The problem with computational methods is the extra source
of error from ambiguous haplotypes that has to be included in statistical analysis.
This paper investigates methods of error management with three different logistic
regression packages, two of which are specific to analysis of genetic data. Methods
are applied to simulated data and a data set looking for genetic risk factors for non-

Hodgkin Lymphoma.
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Chapter 1
Introduction

Single nucleotide polymorphisms (SNPs) are the most common form of DNA sequence
variation and account for 90% of human variation. They are useful genetic markers
to investigate genes related to susceptibility to diseases or genes related to drug re-
sponsiveness. Scientists use SNPs in association studies and more recently have been
using SNPs in combination along regions of chromosomes that have not been bro-
ken up by recombination. SNPs in combination along a stretch of a chromosome
are called haplotypes. Haplotypes can potentially increase the power of an associa-
tion because they take a larger area of the chromosome into consideration and can
be used to investigate SNP interaction. Using methods such as family studies and
direct physical determination of alleles on a gene to determine haplotypes can be a
costly and time-consuming process, so statistical methods have gained popularity in

the reconstruction of haplotypes for use in association studies.

There are many different statistical methods for haplotype reconstruction, in-
cluding a parsimony algorithm, an expectation-maximization (EM) algorithm and a
Bayesian approach that uses coalescent theory to estimate haplotypes. After haplo-
types have been reconstructed from genotype data, a generalized linear model can be
used to analyze the haplotype data in an association analysis. However, due to extra
ambiguity incurred by using statistical methods to assign haplotypes additional error

should be taken into account by inflating the standard errors of regression coefficients
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obtained from logistic regression. The ambiguity of the haplotype reconstruction can
also be taken into account by doing a weighted logistic regression on haplotype data
properly weighted according to how likely the haplotype assignment would be, given

the genotype data.

This project investigated the effect on estimates and significance testing when
using different methods of haplotype reconstruction and regression. Statistical com-
puting packages that do an iterative weighted logistic regression by method of weights
adequately inflating standard errors of regression coefficients obtained by regressing
reconstructed haplotypes were compared to weighted logistic regression that doesn’t
inflate standard errors. Also, reconstructed haplotype data was analyzed using com-
puting programs that do a weighted logistic regression compared to regular logistic

regression. Three haplotype reconstruction packages were compared.

Chapter 2 starts with an introduction to non-Hodgkin lymphoma (NHL) and
outlines some of the causes. Section 2.2 describes how and why the SNPs used in
analysis were chosen, as well as some background on the SNPs. Section 2.3 is a brief
description of the BC Cancer Agency NHL study data and how it was obtained. 2.4

is a short outline of the methods of analysis that are used.

Chapter 3 begins with some genetic background that will explain genetic termi-
nology and section 3.2 is a background of the use of the Hardy-Weinberg model to
test Hardy-Weinberg Equilibrium (HWE) for individual SNPs. Section 3.3 explains
haplotype use in association studies and section 3.4 outlines some statistical haplo-
type reconstruction methods. Section 3.5 enumerates haplotype reconstruction and
logistic regression methods being used in the project and a brief sketch of the statis-
tical theory used by each one. To conclude the chapter, statistical issues regarding

haplotype reconstruction will be outlined in section 3.6.

Chapter 4 is an analysis of the BC Cancer Agency NHL data. Section 4.1 tests
Hardy-Weinberg equilibrium for SNPs in the BC Cancer Agency data set. The next
section, 4.2, is a univariate and multivariate case control analysis of the individual
SNPs, followed by section 4.3, analysis of combinations of SNPs using three methods

of haplotype reconstruction and seven methods of logistic regression. The methods
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of haplotype reconstruction and logistic regression are contrasted with and without

adjustment for non-SNP variables age group, sex, ethnicity and region of residence.

Chapter 5 describes a simulation study used to investigate differences in estimates
and standard errors of regression coefficients obtained from logistic regression of re-
constructed haplotypes. Section 5.1 gives a description of the generation of haplotype
data. A haplotype is chosen to be the "affected” haplotype and outcome data is gen-
erated for each individual based on the number of "affected” haplotypes they carry.
To compare regression coefficients from reconstructed haplotypes, in section 5.2 initial
estimates for original "known” haplotype data is obtained using logistic regression,
followed by a complete investigation of the three reconstruction and seven logistic

regression methods.

Finally, Chapter 6 is a summary of the preceding BCCA and simulated data

analysis sections with some conclusions.



Chapter 2

Non-Hodgkin Lymphoma (NHL)
Study

2.1 Non-Hodgkin Lymphoma

The lymphatic system is the body’s inner immune system that helps filter out infection
and disease using a network of tube-like vessels that branch into tissues throughout
the body. It is where certain white blood cells and antibodies are produced, and it
is also important for the distribution of fluids and nutrients in the body. Along the
network of vessels are lymph nodes, small pea-sized organs grouped along the route
of large blood vessels in the neck, underarms, groin, abdomen and pelvis. Other parts
of the lymphatic system are in the spleen, bone marrow and tonsils, lymphatic tissue

is also found in stomach and skin.

Lymphomas are cancers of the lymphatic system. They arise when white blood
cells become cancerous, dividing out of control, not undergoing normal cell death.
They accumulate, crowding out other functioning white blood cells and other nearby
normal cells within affected organs. If cells keep dividing, when not needed, this can

create an extra mass of tissue that can turn into a tumor.
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There are two groups of lymphomas: Hodgkin lymphoma and non-Hodgkin lym-
phoma (NHL). Hodgkin lymphoma accounts for less than 1% of all new cancers diag-
nosed in the USA, it is more common in males than females, and has an increase in
incidence for young adults from their teens and peaking around age 25 and those over
55 years of age. Age-adjusted survival rates have increased in the period 1986-90 and
can be attributed to better available treatments [28]. Non-Hodgkin lymphoma is less
predictable and is more likely to spread beyond the lymphatic system to other parts
of the body. It is a heterogeneous disease, which has many different subtypes and
disease entities, numbering around 30. NHL subtypes can be grouped into low grade,
intermediate grade, high grade and miscellaneous lymphomas [30], with the chance
of survival depending partially on grade and stage of cancer. Low grade or indolent
NHL can be hard to treat because some forms, such as follicular lymphoma, which
include approximately 70% of indolent lymphomas, tend to be resistant to treatments
that induce cell death. Patients with low grade or indolent lymphomas can live many
years because the cancers can be very slow growing. Intermediate and high grade
NHL are more aggressive forms of lymphoma but are more likely to be cured with
chemotherapy. Also, the more aggressive the lymphoma, the more frequently it is

localized and depending on the site of the disease, can be more easily treated.

There are many factors that have been associated with an increased risk of NHL.
These range from factors such as inherited conditions causing immunodeficiency, ther-
apies that artificially suppress the immune system following transplant surgeries to
viruses such as HIV, which acts to depress the immune system, and a herpes virus
called the Epstein Barr Virus [33]. A link between NHL and chemicals like pesticides
[17], solvents [39], and those in hair dyes [5] has been suggested. The rate of NHL
increases with age and it is more common in men than women. NHL occurs in dif-
ferent ethnicities with differing rates; in an Israeli study Jews were found to have a
higher incidence rate of NHL relative to non-Jews [29]. Since the 70’s NHL has been
on the rise in Canada [31] and other developed countries [6][20], with increases seen
in all age groups [14], in men and women, and in different ethnicities [34]. Some of

this increase has been linked to the rise of AIDS and better diagnosis of the elderly
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where rate increases have been the largest [13], but it cannot all be explained by these
factors [14].

It has been shown that some patients with NHL have family histories revealing
that blood relatives have similar types of immunodeficiency disorders more than one
would expect by coincidence [7]. Given that NHL risk is associated with conditions
that alter the immune system, primary immunodeficiency diseases, acquired immun-
odeficiency diseases, autoimmune diseases, and patients immunosuppressed following
transplantation [2], it is a logical step to investigate genes coding for Cytokines, a
group of secreted proteins that mediate immune reactions by influencing the growth
and differentiation of lymphocytes [1], making them prime candidates for genetic sus-
ceptibility. Cytokines comprise Interleukins, which induce fever and inflammation
and activation, differentiation and proliferation of B and T cells, Lymphokines, that
act as chemical messengers activating immune reactions, Monokines, that mediate
immune responses, and Chemokines, that activate and attract leukocytes to infection

sites, playing a major role in acute inflanmation.

2.2 Candidate Genes

Immunological candidate genes were chosen from different pathways and genotyped;
Thl and Th2 cytokines, DNA break repair histones and S-PHASE checkpoint/DNA
crosslink response genes. The Thl and Th2 cytokine SNPs chosen were based on
previous studies and have an allele frequency greater than 5% in the general popula-
tion. The break repair and checkpoint SNPs were chosen using experimental means
of SNP discovery, sequencing individuals, concentrating on coding regions of the gene
and extracting polymorphic regions if they occurred with a high enough frequency.
The SNPs that were finally chosen had less than 5% missing data when all individuals

were genotyped, so that accurate analysis could be done on the SNP data.
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2.2.1 Thl/Th2 cytokines

Helper T (Th1/Th2) cells have two important functions: to stimulate cellular immu-
nity and inflammation, and to stimulate B cells to produce antibodies. These two
functionally distinct groups of cytokines promote different activities, regulating the
activities of the other. IL-4, IL-10, IL-4RA cytokines regulate Th1/Th2 responses.
IL-10 stimulates antibody production by B cells and inhibits both production of proin-

flammatory cytokines and assisting functions of macrophages in T cell activation.

The immunological gene IL-10 was chosen for genotyping at the BCCA since the
gene is involved in immunity, and immune suppression for a variety of reasons (con-
genital or suppression for transplants) has been found to be a risk factor in NHL.

(SNP background information from discussion with Dr. J. Spinelli).

2.2.2 Break Repair and Checkpoint Genes

NBS1 is a gene responsible for the Nijmegen breakage syndrome (NBS), a rare auto-
somal recessive condition of chromosomal instability and homozygosity of the major
mutation of the NBS1 gene has been linked to a number of disorders such as mi-
crocephaly, immunodeficiency, congenital heart disease and chromosomal instability.
NBS shares a number of features with ataxia-telangiectasia (AT), a degenerative dis-
ease in the brain that leads to a lack of muscle control, immunodeficiency and a
predisposition to malignancies of the blood system such as lymphoma. and leukemia.
Functional interactions between ataxia-telangiectasia mutated and NBS1 genes were
studied [24] and observations linked ATM and NBS1 in a common signaling pathway,
explaining the similarities between AT and NBS and providing the idea to study the
NBS1 gene for association with NHL.

Chen et al. [9] reported that the NBS1 protein and histone gamma-H2AX, which
associate with irradiation-induced DNA double strand breaks (DSBs), are also found
at sites of variable, diversity, joining recombination-induced DSBs. Conclusions of

a study suggested that surveillance of T-cell receptor recombination intermediates
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by NBS1 and gamma-H2AX may be important for preventing translocations that
contribute to cancer formation. Another study of mice that were homozygous for an
H2AX deletion were radiation sensitive, growth retarded, and immune deficient, and
mutant males were infertile [8]. These phenotypes were associated with chromosomal
instability, repair defects, and impaired recruitment of NBS1. The conclusion was
that H2AX is critical for facilitating the assembly of specific DN A-repair complexes
on damaged DNA.

2.3 NHL Study Data

The data being used in this analysis was obtained as part of a case control study
of non-Hodgkin lymphoma. All non-Hodgkin lymphoma cases age 20-79 diagnosed
during the period March 2000-Febraury 2004 and living in the Greater Vancouver
Regional District (GVRD) and the Capitol Regional District (CRD; Greater Victoria)
were ascertained from the British Columbia Cancer Registry. Each case was contacted
by letter and requested to participate in the study, potential subjects who had not
replied within a certain time frame after the initial contact letter were telephoned and
asked if they would be willing to participate. Subjects taking part in the study were
asked to complete a phone interview and provide either a blood or mouthwash sample.
Exclusions included those subjects not able to give informed consent or complete the

questionnaire, due to language, illness or death.

The control data used in the analysis was collected from the Client Registry of
the BC Ministry of Health. The Registry includes almost all (98%) of residents of BC
as it is the central list of subscribers to the provincial health plan. Exclusions were
primarily people who had lived in the province for less than 3 months. The control
subjects were chosen randomly and were frequency matched to the NHL case subjects
by age (within 5-year age group), sex and region of residence (GVRD or CRD). The
control subjects were also asked to complete a telephone interview and provide either

a blood or mouthwash sample.
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Control subjects were frequency matched on age, sex and region of residence, so
these variables were adjusted for in the case-control analyses. Since the incidence of
NHL varies with respect to ethnic origin, a variable for ethnic group was also used as
an adjustment variable in any analysis. The variability of NHL incidence in different
ethnic groups was accounted for because there was a risk of it being a confounding

factor due to genetic variability between the groups.

H2AX, NBS1 and IL10 were analyzed for association analysis with NHL. H2AX
gene has three SNPs of interest that were used for association analysis as SNPs and
reconstructed as haplotypes. The NBS1 gene has five SNPs of interest but two of
the SNPs are in high linkage disequilibrium so only one of those two were included
in analysis, resulting in four SNPs that were analyzed as SNPs and reconstructed as
haplotypes for association. analysis. IL10 gene has two SNPs of interest that were

reconstructed as haplotypes for analysis.

Table 2.1 shows a table of the three candidate genes and the SNPs that were
investigated for association with NHL. For the first NBS1 SNP, the possible alleles
listed in the table are WT and del{ WT). W'T stands for ”wild type”, which is the allele
found in the majority of the wild population, usually the normally functioning allele.
The first NBS1 SNP has a wild type that corresponds to an allele sequence of AGTA,
del(WT) stands for a deletion of the standard allele where the genetic information
ATGA is missing in the particular spot on the chromosome. The deletion mutations

are slightly different than SNPs but can be analyzed the same way as a SNP.

2.4 Methods

All subjects in the study were genotyped using a TagMan fluorogenic 5" nuclease assay,
validated by an assay design, optimization and validation service, then genotyped
using Polymerase Chain Reaction (PCR) machines followed by reading of fluorescent

products in a PCR instrument that detects and quantitates nucleic acid sequences.
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Chapter 3

Haplotype Reconstruction

3.1 Genetic Background

Critical to the understanding of the genetic basis for complex diseases is the modeling
of human variation. The vast majority (about 99.9%) of genetic sequences are iden-
tical and the remaining 0.1% of variation can be characterized by single nucleotide
polymorphisms (SNPs), which are mutations at a single nucleotide position. Single
nucleotide polymorphisms occur when a single nucleotide in a genetic sequence is
altered (e.g. A replaces T or C replaces G), such as genetic sequence ATTA being
altered to AATA. To be considered a SNP, the alteration must occur in at least 1%
of the population. SNPs make up 90% of the genetic variation in the human popu-
lation, occurring in coding and non-coding regions of the genome. SNPs occurring in
coding sequences are of interest because researchers believe that some of these genetic
variations have protective or susceptibility implications for cancer and other diseases,
as well as for response to therapeutic drugs. Even if a SNP isn’t directly responsible
for a disease or response to treatment, it is possible to find genes that influence such
traits using a nearby or closely-linked SNP. They are relatively stable genetically and
they may be used as markers for harmful or positive mutations. SNP markers can

help unearth mutations and accelerate efforts to find therapeutic drugs. An important

11
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tool in the study of SNPs is an association study to investigate the extent to which a

mutation is associated with the occurrence of disease.

3.2 Testing Hardy-Weinberg Equilibrium

In association studies it is important to check for association between two alleles
at a SNP locus because association may indicate a population substructure, biased
sampling of individuals or genotyping error, any of which would render a positive
association in further analysis false. A preliminary check of population equilibrium
for the individuals in a study would show whether there was a chance of some error

in sampling or genotyping or even some substructure to the data.

The Hardy-Weinberg equilibrium model [18]{38] describes and predicts genotype
and allele frequencies in a non-evolving population. The model has some basic as-

sumptions, specifically:

e the population is large

there is no gene flow between populations

mutations are negligible

individuals are mating randomly

natural selection is not operating on the population.

Given these assumptions, a population’s genotype and allele frequencies will remain
unchanged over successive generations, and the population is said to be in Hardy-
Weinberg equilibrium. The Hardy-Weinberg model equations can be applied to the

genotype frequency of a single locus.

As an example, say that we have a diallelic locus with alleles A and a, A signifies

the dominant allele and a 1s the recessive allele. If allele frequencies for the locus are
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p (frequency of a dominant allele A) and ¢ (frequency of a recessive a), then for the

whole population we would have:

p+g = L

Using Mendelian theory the homozygous genotype AA, heterozygous genotype Aa
and the homozygous genotype aa would have proportions p? : 2pq : ¢*, which can
be derived using a Punnett square (used in simple mating examples to calculate

proportions of offspring genotypes). This can be expressed for the population as:
P +2pg+q = L

The Hardy-Weinberg equations enable us to compare a population’s actual genetic
structure over time with the genetic structure we would expect if the population were
in Hardy-Weinberg equilibrium (i.e., not evolving). If genotype frequencies differ from
those we would expect under equilibrium, it may be assumed that the alleles within
individuals are associated. This could prompt an investigator to check if there is an
error in the data and if the error could not be fixed, association analysis may not be

done on alleles of a locus not under HWE.

It is important to test for Hardy-Weinberg equilibrium (HWE) in a sample of
genetic data so there will be a level of confidence in the association analysis of the
chosen loci. For large samples, a test of HWE is a chi-square goodness of fit test,
but sometimes with genetic data even if the sample size is large an allele may have a
small expected count which can lead to misleading results. The large sample 2 test
statistic is as follows, with O=observed counts and E=expected counts for the k=3

genotypes for a diallelic locus:

k (07 _ Ei)Q

2 _
X > o)
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Let Pasas be the observed probability of a homozygous major allele genotype, Prim
is the observed probability of a heterozygous genotype, Pnm the observed probability
of an observed homozygous minor allele gentotype, Py is the observed probability
of the major allele frequency and p,, the observed probability of the minor allele
frequency for a data set. Explicitly, a large sample }? Hardy-Weinberg test statistic
to test the null hypothesis H, = HWFE is:

(pMM "ﬁ?\/[)2 + (PM'm - QﬁMﬁm)Q + (ﬁmm _ﬁzﬂ)2
Par 2P M Pm Pa,

X%—IW:N

Another tool for testing HWE is a permutation test that evaluates y? for all
possible sets of genotypic counts consistent with the observed allelic counts in the
data set. Hardy-Weinberg disequilibrium statistics D, D" and r are computed, a
bootstrap confidence interval is computed for the statistics, then a p-value for the
permutation test is found by calculating the proportion of )2 values that are as large
as or larger than the y? observed value. Using bootstrapping for the confidence
interval and simulation for the p-value avoids reliance on the assumptions of the y*
approximation. This is important when some allele pairs have small counts because
they won’t fit with the y? large sample assumption, making the y* test an incorrect

approach to testing goodness-of-fit.

The disequilibrium statistics are D, which is defined as the half of the raw difference
in frequency between the observed number of heterozygotes and the expected number,
D’ which is defined as D rescaled to span the range [-1,1] (D/Dpax) and r which is

the correlation coefficient between two alleles.

For a rare disease the HWE test may be performed on control data, because the
control data approximates a sample from the general population and should fit the
Hardy-Weinberg model. Case data has been specifically chosen for a reason such as
having a certain disease and Hardy-Weinberg equilibrium cannot be assumed in this
population. Admixture of the two populations (i.e. doing a test of HWE on the whole

population) could result in a type I error when the HWE test is carried out.
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3.3 Haplotypes

By studying stretches of DNA where a SNP or many SNPs in combination mark a
harmful mutation, researchers may locate disease-causing genes. SNPs in combination
along a stretch of the chromosome are called haplotypes. Theoretically, there could
be many combinations of SNPs in a haplotype. If there are 10 SNPs in a haplotype,
there are 219 possible haplotypes associated with these SNPs but only a few of these
haplotypes will be frequently-occurring enough to warrant inclusion in analysis as a
separate variable. It is common practice to combine subjects with rare haplotypes
into a pooled category, since there are typically not enough rare haplotype individuals
in a study to investigate the association of a rare haplotype with a disease or drug

response.

Haplotypes are also relatively stable genetically, occurring in genetic sequences
that are the same in many individuals. These sequences are in sections of the chro-
mosome that haven’t been shuffled by genetic recombination, and are separated by
sections that have been altered by genetic recombination. Many dozen kilobases long,

haplotype blocks make up greater than 65% of the human genome.

Gene mutations on the same haplotype block marked by SNPs can interact with
one another, producing effects in combination that would be difficult to evaluate by
looking at one SNP marker at a time. A genetic mutation may also be located in
or near the stretch of chromosome that is marked by the SNPs defining the haplo-
type. Essentially, examination of haplotypes versus single SNPs potentially increase
the power of finding an association because of interactions between SNPs and the
increased area of a chromosome that is taken into consideration when more SNPs are

included in haplotyping.

If there is no family information available for an individual who has been geno-
typed at certain loci, it is not possible to correctly recreate the haplotype unless the
individual is homozygous for all loci or all less-one loci. Since DNA is divided into
two strands, the alleles for each locus that has been genotyped can be arranged in two

different. ways, also with more heterozygous SNPs there are more possible haplotypes.
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There are many available methods of haplotype determination including genotyp-
ing relatives of each individual included in a study and using the relationship data, if
it is known, to determine the phase of the markers and the haplotype; direct physical
determination of which allele is on the same DNA molecule as another using various
processes; and by means of a statistical method used to infer phase at linked loci from
genotypes and thus reconstruct haplotypes. Genotyping relatives of each individual
and direct physical determination of alleles are time-consuming and costly processes
to determine haplotypes for all individuals, making statistical methods a superior

choice for investigators with time and budget constraints.

3.4 Haplotype reconstruction

Computing algorithms to construct haplotypes include maximum likelihood using
a parsimony algorithm created by Clark [11], Bayesian methods that uses a priori
expectations to estimate haplotypes [37][32], and an expectation-maximization (EM)
algorithm [25][15](19].

The parsimony method by Clark [11] is an algorithm that infers haplotypes from
samples of genotyped individuals. It starts by identifying all genotypes that are
homozygotes or single-site heterozygotes, and then determining whether any of the
ambiguous (> 1 heterozygous site) haplotypes could be explained by the already-
resolved haplotypes (if not, then stop; otherwise continue). Each time a previously-
observed haplotype is identified as one of the possible haplotypes in an ambiguous case,
the complementary haplotype is added to the list of previously observed haplotypes.
The algorithm keeps running until as many genotypes are determined as possible.
This method is done many times on different orderings of the data. Drawbacks of
the method are that it is possible that the algorithm won’t start if there are no
homozygotes or single-site heterozygotes and that it depends on the ordering of the
data. The method would also have to be modified to allow for the case of missing

data due to individuals who had loci that weren’t able to be genotyped.
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Stephens et al. [37] describe a Bayesian method to evaluate the conditional distri-
bution of haplotypes, given genotype data. The method employs Gibbs sampling (a
Markov chain-Monte Carlo algorithm) to create a sample from the posterior distrib-
ution of haplotypes, given genotvpes. The algorithm is given a starting value of H(©
for H, the set of haplotype pairs corresponding to G, the set of genotype data. An
individual is repeatedly chosen at random and haplotypes are estimated under the
assumption that all other haplotypes are correctly estimated, this process is repeated
enough times to obtain an approximate sample for Pr(H|G). This model is difficult to
apply in theory but results in a simpler algorithm that gives similar output as an EM
algorithm. This method can create both a most probable haplotype reconstruction
that assigns each person the most probable haplotype given their genotype informa-
tion or a haplotype reconstruction that assigns each person all possible haplotypes

given their genotype and the associated weights for each haplotype.

The EM algorithm is an iterative optimization method to estimate some unknown
parameters, given some known data. It is a method of finding maximum likelihood es-
timates of model parameters that may not be obtained easily by conventional means.
The EM algorithm can be used to estimate population haplotype probabilities via
maximum likelihood estimation; finding the values of the haplotype probabilities
which optimize the probability of the observed data [25]. The maximum likelihood es-
timates of the haplotype probabilities are obtained by maximization of the likelihood.

The log-likelihood of the haplotype model is
N

InL = Z InPr(F;)
i=1

where Pr(P;) is the probability of the i" person’s phenotype (i.e. unphased genetic
data). Pr(P;) is calculated by summing up the probabilities of all genotypes (i.e.
haplotype pairs) that can express the phenotype, based on the assumption of Hardy
Weinberg equilibriumn for a haplotype:

P(hih) pi o if k=l
1. 1L =
o 2pepy if K #1

The expectation step calculates the expected numbers of copies that an individual
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contributes to the overall expected count of haplotypes given by their phenotype F;.

The expectation looks like:

2fa.bc ZHu'b“C" fa‘b‘c’
Pr(F)

E[nabclf)i] =

fabe 18 the frequency of a three-locus haplotype Hge, and fg-p++ the frequency of an-
other haplotype Hgysp(+, that can combine with Hg,. to form P;. The total expected
number of each haplotype in the data set after each iteration is taken over 2x(the
number of individuals in the data set) to update the haplotype probabilities. The
maximization step updates the haplotype frequencies until the log-likelihood stabi-
lizes. A simple haplotype assignment can be done by choosing the most probable
haplotype assignment given genotype data and haplotype probabilities obtained from
the EM algorithm.

Hapassoc [3][4][12] and Haplo.stats [23][12] haplotype reconstruction and logistic
regression packages use an extension of the maximum likelihood estimation of haplo-
type frequencies. Both packages implement an EM-based logistic regression for binary
response. The maximum likelihood approach is used in jointly estimating the hap-
lotype and non-SNP risk parameters and the haplotype frequencies on the basis of

case/control status, non-SNP variables and diallelic SNP data.

3.5 Reconstruction and Logistic Regression Meth-

ods under Investigation

3.5.1 PHASE Reconstruction and Logistic Regression

The PHASE program [37] is an implementation of the Bayesian method of haplotype
reconstruction, allowing use of a priori expectations to correctly assign haplotypes
to individuals in a dataset. Starting with a sample of n diploid (receiving a chro-
mosome from each parent) individuals from a population, we have known genotypes

G = (Gi,--+,G,), corresponding unknown haplotype pairs H = (Hy,---,Hy), a
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set of unknown population haplotype frequencies F' = (F},---, Fjy) and a set of un-
known sample haplotype frequencies f = (f1, -+, fa), M denoting the number of
possible haplotypes for the sample. The M possible haplotypes are arbitrarily la-
beled 1,---, M. The PHASE method regards the unknown haplotypes as unobserved
random quantities and aims to evaluate their conditional distribution given the infor-
mation that can be obtained from the known genotype data. PHASE uses a Gibb's
sampling algorithm, a type of Markov chain-Monte Carlo (MCMC) algorithm to ob-

tain an approximate sample from the posterior distribution of Pr(H|G).

We start with an initial guess for the resolved haplotype information for all individ-
uals, H© maybe just the known genotype information arranged into haplotype form,
for example. We want to obtain H®*V from H® for t = 0,1,2,---. The algorithm is

as follows:

1. An individual is chosen at random from all ambiguous individuals (those indi-

viduals who have more than one possible haplotype, given their genotype)

2. A subset S of the ambiguous (heterozygous) loci from individual 7 is chosen to be
updated. Let H(S) denote the haplotype information for the individual ¢ at the
ambiguous loci S and let H(—S) denote the complement of H(S), the haplotype
information from all other individuals as well as the homozygous locus informa-
tion within the 7*" individual. Sample H#+V(S) from Pr[H(S)|G, H®(-S)).

3. Set H'*1(=S) = HO(-S).

At each iteration it is necessary to update Pr[H(S)|G, HD(-S)]. For H(S) con-

sistent with genotype information G, the conditional distribution is:
Pr[H(S)|G, HY(=S)] o Pr(H|H_;) (3.1)
X ﬂ'(h»illH_i)ﬂ'(h,ﬂ’H_,j,h,“). (32)
This is equivalent to the conditional distribution for the haplotype pair H; = (F1, hi2),

consistent with genotypes G; where 7(:|H) is the conditional distribution of a future-

sampled haplotype, given a set H of previously sampled haplotypes. H_; is the set
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of haplotypes excluding individual 7. Stephens and Donnelly [36] suggest an approxi-

mation to the unknown 7(-|H) as

rhH) = Y3

xeE s=0 r

o \° r s
(r+6’> r+6’(P ot (3.3)

where E is the set of haplotypes for a general mutation model and P* is a reversible
mutation (transition) matrix that describes the probabilities of haplotype « trans-
forming to the next sampled haplotype h. 74 is the number of haplotypes of type o
in the set H, r is the total number of haplotypes in H, and 6 is a scaled mutation
rate. The authors simplify this further by specifying that this corresponds to the next
sampled haplotype, h, being obtained by applying a random number of mutations, s,
to a randomly chosen existing haplotype, o. s is sampled from a randomly generated
geometrically-distributed population. Equation (3.3) should be substituted into equa-
tion (3.2) for w(h;|H_;) to complete the second step of the algorithm. w(hi|H_;, hi1)
can be resolved because if information is known for hil then hi2 is the compliment
and can be resolved easily if we know information on one half of the haplotype pair.
6 must also be estimated to complete the calculation, a possible choice suggested is
to use § = S*/log(2n), S* corresponds to the number of loci that are used in the

reconstruction.

The key to the logic of the PHASE algorithm is that unresolved haplotypes tend
to be similar to known haplotypes, and the way in which the a priori expectation
is calculated by using coalescent theory and other theories in population genetics.
PHASE outputs include files that specify the number of each possible haplotype gen-
erated from the dataset and for each individual, give the most likely haplotype pair
and all possible haplotype pairs, with corresponding probabilities. The haplotype
reconstruction output files can be merged back with outcome data to allow logistic

regression using another statistical programming package.
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3.5.2 Hapassoc Package for the R Programming Environ-

ment

The Hapassoc package [3][4][12] for the R programming environment uses an EM al-
gorithm by the method of weights to estimate regression parameters. The expectation
step involves computing the conditional expected log likelihood of the complete data
(z,y) given the observed data (z.,y) and the current parameter estimates. The
maximization step maximizes the resulting function. The program also augments
standard errors to account for ambiguity in reconstructed haplotype data using a
formula by Louis[26].

Hapassoc starts the algorithm by generating " pseudo-individuals” for all individ-
uals that have genotypes that result in multiple possible haplotypes. These "pseudo-
individuals” represent all possible haplotype configurations for the ambiguous geno-

type and have a weight associated that can be calculated using Bayes’ rule.

The conditional expected log likelihood [21] is a function of haplotype counts and

is as follows:

QUMY = 3 Elly(81zi, yi)| Tops.s- vi, 69

1=1
n 15| n |5

= 33w (e 0127 1) + 3 Y wis (0V)0a(8, 20,

i=1 j=1 1=1 j=1

lyx is the log-likelihood for the regression model and I is the log-likelihood for
the parameters of the covariate model, ) = (3® ~(t)) corresponds to the current
parameter estimates, § is the regression parameters and « is the covariate model
parameters. The log-likelihood for ( doesn’t involve the parameters of the distribution
of covariates ¥ so the maximizations can be done separately. Assuming independence
of the non-genetic ("environmental”) factors, z., and the genetic factors, x4, the
covariate vector can be partitioned into two separate components, x. and x4, each
depending on parameters 7. and 7, respectively. The log likelihood of the known

parameters can be sectioned as genetic and non-genetic components I (y) = o, (7,) +
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l..(7e), coupled with the assumption of completely observed environmenal covariates

means that v, doesn’t have to be estimated.

Weights w;; for the pseudo-individuals with £ ) being the jth covariate vector are

calculated using Bayes’ rule:

U7g) = Pr{l‘i = x(j)|$obs,i7yi79(t)}
0, if ) is not compatible with T ;
= Prigile(® 00 Pr(zU) |6(t) e () . .
‘:;(ry(s!jlz“”,mt)))lr’(:(r”""Wz))’ if 29 is compatible with g, s

0, if (%) is not compatible with s
= Pr(y;|ct) 60 Pr(z) |6 Pr(z\))o(t))

‘ - if £ is compatible with z .
3 Pr(yilat®) 00) Pr(z |00 Pr(zF)|oi0)) p obsri

The summation over ¥ is all haplotypes that can derived from the z,,; geno-
type. Since pseudo-individuals representing all possible haplotype configurations for
an individual’s genotype have been generated and added to the dataset, the weights
w;; for each can be represented as a; for simplification of the double subscript. There

will then be n + (# of pseudo-individuals added to the dataset)= M.

An assumption of complete non-genetic covariate information is made, which elim-
inates the need for estimation of 7,. Assuming Hardy-Weinberg equilibrium further
simplifies the covariate distribution, so the number of covariate parameters will be a
maximum of r— 1, where r i1s the number of haplotypes. The covariate model parame-
ters will be the probabilities of each of the r — 1 haplotypes. Pseudo-individuals ho-
mozygous for a haplotype k will contribute 2logvy, to the complete-data log-likelihood
for v since their weight is 1, and those heterozygous for haplotypes &k and [ will
contribute aEt)log'yk'yl = agt)log'yk + az(t)log'yl.

To update regression parameters, the weighted log-likelihood given by:

M i
> aiSylog(——) +log(1 —p;) ¢,
i=1 1—p;

is maximized, where p; is the probability that the ¢th person has the disease. The

t + 1% estimate of the regression coefficients are found by solving g'*! = ' —
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1(3)1S(8))| p=ger via Newton-Raphson optimization, /{f3) being the Hessian and
S(0) being the score function of the log-likelihood.

Standard errors calculated according to maximum likelihood theory for weighted
logistic regression with known weights are not correct because of extra error caused by
ambiguous haplotype information. The observed data likelihood is broken up into a
sum of two terms: [0gPr(X = Tops, y|0) = logPr(xe|ve) +Hlog(X Pr(ylz, B)Pr(ze, 7)),
assuming independence of (3,7,) and .. We are only estimating standard errors of

the regression parameters which we can obtain by inverting the submatrix I(53, ).

Using a formula by Louis|26]:

1(0) = E0[10(0)|I0b37 y] - (EG[SC(Q)SC(Q)Tl‘Tobsa y] - E@[SC(0)|IObS7 y]Ef)[Sc(e)Tl‘/Eobsa y])
= Ep[I(0)|Zobs, y] — cov[Se(0)|Tons, Y]

where 1(0) is the negative Hessian of the observed data log-likelihood, and 1.(#) and
S.(0) are the negative Hessian and score of the complete-data log-likelihood function,
respectively. The second term of the expression for the information matrix may be
viewed as a correction to account for the ambiguity of the haplotype phase. The
Fisher Information matrix for /(3,7,) is as follows and can be used to estimate the

variance of regression parameters:

XTWvX 0

- ST(W — WBW)S
0 NG +n. /(1= m)?J

A diagonal matrix of weights W estimated from the EM algorithm and neces-
sary parameters are substituted into the Information matrix and it is inverted to
find variances associated with regression parameters. S is a matrix whose rows are
complete-data score vectors S.;; for pseudo-individuals with rows arranged so that
extra pseudo-individuals for subject ¢ are arranged in consecutive order. B is a block
diagonal matrix of 1’s with the number of rows and columns of each block equal
to the number of haplotypes compatible with a given subject’s observed covariates.
Each matrix has n* rows corresponding to the number of pseudo-individuals with

ambiguous haplotype phase.
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N —1)x(r—1) is a diagonal matrix whose elements are the sums over all individuals
of the weighted counts of the first » — 1 haplotypes, n, is the sum of the weighted
numbers of the rth haplotype, G(,_1yx(r-1) = diag(1/7}) and J;_1yx(r—1) is & matrix
of 1's.

3.5.3 Haplo.stats Package for the R Programming Environ-

ment

Haplo.stats package by Schaid [35][23]{12] does a haplotype reconstruction and risk
estimation in a similar manner to that of Burkett et al. [3][4][12], iteratively estunat-
ing haplotype frequencies conditional on observed data and the current estimate of
regression parameters. Maximum likelihood estimation of the regression parameters
is computed with the EM algorithm, computing the conditional expectation of the
complete data log-likelihood given the observed data and current estimates of the

parameters, and maximizing the resulting function.

For the case of haplotype/non-genetic interactions the vector of covariates z =
(Te|ZglTge), Te denotes non-genetic (environmental) covariates, z, denotes genetic
covariates and x4 denotes the interaction covariate terms of non-genetic and genetic
covariates, and 3 is a vector of associated regression coefficients, 5 = (3.|5,4|84). The
likelihood for the genetic data is a function of haplotype frequencies, 8 = (6,,---,6;),
6; being the frequency for the jth haplotype, j =1,---,J. h is a vector of haplotype
frequencies for an individual, with the jth component being equal to the number of
h; haplotypes that the individual possesses. The likelihood is a function of haplotype
frequencies and assuming Hardy-Weinberg equilibrium the probability of genotype ¢

or, equivalently, haplotype h is: Pry(g) = Prg(h) = [I7. ( 2 ) g

j=1 h,_»,' j
For § reparameterized as op; = —03_—1— according to the constraint 327 . 6. =1,

- j=1Yj
1 Zy:l 0]
the probability of h can be expressed as:

o\ =1 /o j-1 -2
Pry(h) = (h) l:[1 (h,j> o7 <1+§¢j> :
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If G; is the set of haplotype pairs consistent with the observed phenotype k; for
the ith individual and ® = (3, ¢), the likelihood contribution under independence of

zg and z. is:

Li(®) = 3 _{fs(yl2)}Pro(g).

geGi

Adopting the EM by the method of weights (Ibrahim, 1990) with a generalized

linear model, the density of y can be expressed as:

N yn — b(n)
fa(ylz) = €$P{—a@}-)—+c(y,1/))}‘

Assuming canonical link function 5 = 273 the likelihood is a function of haplotype

frequencies the complete data log-likelihood for the ith subject is

logL{?(®) = log{fs(y:lz:)} + log{Pr,(g:)}

=T = b(Tg) 12 >
Yiz; / (= ) +zhijl09¢j_2[09(l+z¢j)
a(y) =1 =

The E-step of the EM algorithm involves taking the conditional expectation of
the complete data log-likelihood given the observed data and is a function of the
conditional probability of the haplotype counts Pr(hi]-,hij/]dﬁ"bs)) fori =1,---,N
and j,7' = 1,---,J given the observed data and dEObS). The general form of the joint
conditional probability distribution of haplotype counts under independence of x4 and

T, 1S

higlde) = JaWilz)Pra(g)

Pr(h
r 5o Fol2) Pro(g)

YK

The M-step of the EM algorithm involves maximization of the conditional expec-
tation of the complete data log-likelihood, the model parameters ¢ estimated from the
kth iteration of the EM algorithm. The regression parameters can be easily estimated
with a weighted regression where the weights are the conditional probabilities of the

subjects’ haplotype data, wg; = Pr(hi;, hij| dl(obs))‘
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Again, due to extra ambiguity caused by uncertain haplotype phase the standard
errors of the regression coefficients are augmented in the logistic regression. Instead of
using the observed information matrix of the observed data computed using Louis’ [26)
formula, the observed information matrix is approximated by the empirical observed
information matrix

L(®iy,m, X.) = > si(®)s] (®)]gog-
i=1
where s;(®) is the score function from the observed data likelihood for the ith indi-
vidual [27].

3.6 Statistical Issues with Genotype Analysis

The complete association analysis of genetic data involves analysis of individual SNPs
and if there is two or more SNPs present from a single gene in linkage disequilibrium
they can be analyzed as haplotypes. Before SNP analysis Hardy-Weinberg equilib-
rium (HWE) should be tested on all SNPs to detect any genotyping error, underlying
population substructure or biased sampling. Those not in HWE may not be the most
reliable SNPs and further analysis may not include those SNPs. Hardy-Weinberg equi-
librium was tested on the BCCA non-Hodgkin lymphoma study genes (H2AX, NBSI,
and IL10) that had been chosen for SNP analysis. SNPs in Hardy-Weinberg equi-
librium were then analyzed as independent variables in univariate and multivariate

logistic regression models, adjusted for frequency-matched and confounding variables.

Penetrance analysis of SNPs involves comparison of different penetrance models
to see if a simpler one is a better fit. Penetrance models include the most complex
model, the codominant model, which is where each genotype is tested independently
(e.g. for a SNP with alleles A and G, G being the major allele, the codominant model
is logit(y) = Bo + B1 X G/A + B2 x A/A), a recessive model, where the homozygous
recessive allele is tested for significance (e.g. logit(y) = Bo+ 51 x (A/A)), a dominant
model where an increase in the number of recessive alleles doesn’t affect the relative

risk (e.g logit(y) = Bo +  x (G/A+ A/A)) and a multiplicative model, where an
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increase in the number of causal alleles a individual possesses also increases the risk of
a disease to that factor (e.g. logit(y) = o+ 51 x (a), a=0, 1, 2 copies of A). A test of
different models is done using an analysis of variance (ANOVA) to see if the simpler
model is significantly different than the baseline codominant model. If the simpler
model isn’t significantly different than the more complex model, an investigator would
choose a simpler model of penetrance to describe the SNP. Significant BCCA SNPs
were analyzed for underlying penetrance models to investigate if a recessive allele was
significantly associated with NHL or if the risk of developing NHL multiplied by a

factor of the number of causal alleles that an individual possessed.

Association studies of haplotypes rely on reconstruction methods to assign haplo-
types to individuals based on their phenotype. If a computational method of haplo-
type reconstruction is used that assigns the "best” possible haplotype pair to a subject
out of all possible haplotype pairs, an additional source of ambiguity is added to mod-
eling of haplotype associations. The additional source of ambiguity results from those
subjects who have several possible haplotype pairs, given a phenotype with heterozy-
gous loci or missing genotype information. Using logistic regression to model the
"best” possible haplotype against a response variable would result in regression pa-
rameters and standard errors where extra ambiguity isn’t reflected accurately by the
analysis, i.e. the error would be underestimated and regression coefficients wouldn’t
be properly weighted. To do a correct association analysis of reconstructed haplo-
types, a weighted logistic regression should be used and the variance of the regression

parameters computed would have to be inflated to account for haplotype ambiguity.

Also, if there is missing genotype data in the original data set and the haplotypes
are reconstructed for all individuals, a large amount of missing data could result in
regression coefficients biased towards the null. Investigators should be aware of both
possibilities and account for them by correcting the standard errors and recording the

fraction of missing data in a data set when reporting results of a study analysis.

Three methods of haplotype reconstruction and subsequent logistic regression were
contrasted to explore the error associated with resulting regression parameters. The

packages include Hapassoc [3][12], Haplo.stats [23][12] and PHASE version 2.1 [37].
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Hapassoc and Haplo.stats both use weighted logistic regression in the M-step and
methods that inflate standard errors of the regression coefficients; the packages use
slightly different calculations to compute the standard errors. PHASE outputs all
possible haplotype assignments and corresponding weights so these were used to do
a weighted logistic regression. Standard errors calculated from the PHASE regres-
sion outputs were compared with Hapassoc and Haplo.stats for comparison with the
inflated standard errors using those methods. The three methods were applied to
BCCA study data where the three genes (H2AX, NBS1, and IL10) had been chosen
for SNP analysis, having between two and four loci each. A simulated data set with
three SNP loci was also used to contrast regression coefficients and standard errors

between the methods.

Reconstructed haplotypes were analyzed as continuous variables with the input
haplotype data having three values, 0, 1 and 2, the number of each haplotype that
an individual possessed. This is the default method of analysis for Hapassoc and
the only way to analyze haplotype data with Haplo.stats. PHASE reconstructed
haplotype data was also analyzed as continuous variables in order to have consistent,
comparable regression output from all methods. The resulting model has a maximum
of r—1 covariates, the number of haplotypes present in the data set minus the baseline

comparison haplotype, h; is the haplotype covariate, i = 1,---,r — 1:

logit(y) = ﬁo—i-z:ﬁi*hi, fori=1,---,r—1.

=1

Changing default pooling and zero tolerance (smallest frequency which a haplotype
must have to be considered present in the data set) in the Hapassoc and Haplo.stats
packages allows the user to specify the haplotypes that will be analyzed as individual
variables. Haplotypes that occur with frequency below the zero tolerance weren’t
included in analysis and haplotypes that occur below the pooling tolerance but above

the zero tolerance were grouped into a pooled haplotype variable.
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Analysis of the BC Cancer Agency
NHL Data

4.1 Tests of HWE

Permutation tests of Hardy-Weinberg equilibrium were performed for all loci of in-
terest in the BCCA data set because some loci have small expected values for allele
frequencies, which would lead to questionable test results if large-sample test theory
was to be used. The control data for all loci were tested using the permutation test
of HWE; results are shown in table 4.1.

At a significance value of 0.05, all loci in the BCCA data set have Hardy-Weinberg
equilibrium except for H2AX-12. However, the evidence against Hardy-Weinberg
proportions for H2AX-12 is not significant at the 5% level after Bonferroni adjustment
for multiple testing of 9 SNPs. For completeness, association analysis of the H2AX-12
was still performed, although if it did happen to achieve significance, the result may be
viewed with a critical eye. Further analysis is shown with and without the H2AX-12
SNP, i.e. haplotype analysis was done for H2AX with and without H2AX-12.

29
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SNP Genotype Proportion Observed Expected P-value
H2AX-8 G/G 0.263 126 120
G/A 0.468 224 239

A/A 0.269 129 120 p=0.166
H2AX-11 Cc/C 0.389 185 177
C/T 0.44 209 223

T/T 0.171 81 72 p=0.104
H2AX-12 A/A 0.916 437 430
G/A 0.075 36 39

G/G 0.008 4 1 p=0.016

NBSI1-11 WT/WT 0.004 2 1

WT/del{ WT) 0.081 39 37

del(WT)/del(WT) 0.915 442 445 p=0.071
NBS1-12 G/G 0.112 53 55
G/A 0.446 211 212

A/A 0.442 209 206 p=1.000
NBS1-14 C/C 0.115 55 59
C/G 0.473 226 217

G/G 0.412 197 202 p=.435
NBS1-16 A/A 0.423 180 186
G/A 0.474 202 191

G/G 0.103 44 49 p=0.280
i110-20 A/A 0.422 186 186
A/G 0.458 202 201

G/G 0.12 53 54 p=0.770
il10-21 T/T 0.348 146 146
A/T 0.489 205 203

A/A 0.162 68 70 p=0.916

Table 4.1: Tests of Hardy-Weinberg Equilibrium

30
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4.2 SNP Analysis

The outcome of interest was the case/control status of the NHL data set. Analysis of
the SNP genotypes was carried out as a case-control analysis. Cases were individuals
who had NHL and controls were patients who didn’t have NHL. Case control analysis
of the SNPs compared the variant allele frequencies between case and control subjects.
Univariate analysis was carried out on all SNPs. Multivariate analysis was done with
adjustment for non-SNP covariates that the case control data was matched on, sex,

age group, region of residence and ethnicity.

Results of univariate analysis and multivariate analysis were similar, shown in table
4.2 and table 4.3. The only SNP that reached significance at the a=0.05 level was
H2AX-8, examining the p-values computed for the global test of genotypic association
(the first entry for each SNP in the column of p-values). Even if the significance level
is corrected using the Bonferroni correction for multiple tests (a=0.05/9 if H2AX-12
included and a=0.05/8 if H2AX-12 not included in the multiple tests of significance),
H2AX-8 is still borderline significant, having a p-value = 0.005. The relative risks for
H2AX-8 indicate that with fewer copies of the G allele, the risk of developing NHL is

less or that more copies of the A allele has a protective effect.

4.2.1 Penetrance Analysis

The codominant model for SNP analysis was used for analysis of BCCA SNPs. The
codominant model of penetrance was compared, using ANOVA, in turn to a recessive
model of penetrance to test if the homozygosity of the recessive allele was a significant
predictor of NHL and a multiplicative model of penetrance to test whether an increase
in the number of recessive or dominant alleles increased or decreased the risk of disease
by a factor equal to the number of those alleles present. The ANOVA p-value is the

output p-value for a likelihood ratio test of model difference.

H2AX-8 SNP was significant in SNP analysis so a penetrance analysis was done to

see if H2AX-8 follows a dominant, recessive or multiplicative model. Table 4.4 shows
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95% CI
SNP Variant Genotype N RR Lower Upper p-value
H2AX-8 G/G 272 0.005
A/G 446 0.894 0.661 1.209  0.467
A/A 204 0.558 0.386 0.808  0.002
922
H2ZAX-11 C/C 363 0513
T/C 400 0950 0.715 1.262  0.723
T/T 143 0.796 0.539 1.174  0.250
906
H2AX-12 A/A 838 0.496
G/A 67 0.938 0.570 1.546  0.803
G/G 5 0.272 0.030 2448  0.246
910
NBSI1-11 WT/WT 815 0.657
WT/del(WT) 65 0.790 0472 1.322 0.370
del(WT)/del(WT) 4 1.185 0.166 8.453  0.866
884
NBS1-12 G/G 387 0.950
G/A 390 0.996 0.752 1.321  0.978
A/A 95 0.930 0.592 1462 0.754
872
NBS1-14 G/G 390 0.485
C/G 441 0971 0.739 1.128  0.833
Cc/C 96 0.761 0.485 1.194 0.235
927
NBSI-16 A/A 357 0.253
G/A 383 0911 0683 1.216 0.528
G/G 72 0.647 0.38 1.086  0.099
812
i110-20 A/A 267 0.138
G/A 384 1.064 0.770 1.441 0.744
G/G 151 1.473 0.986 2199 0.058
802
i110-21 T/T 346 0.285
A/T 388 1.070 0.801 1.431 0.646
A/A 117 1404 0922 2.138 0.114
851
Table 4.2: Univariate SNP analysis
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95% CI

SNP Variant Genotype RR Lower Upper p-value
H2AX-8 G/G 0.006
A/G 0903 0.665 1.226 0.513
A/A 0.557 0.381 0.815  0.003
H2AX-11 C/C 0.582
T/C 0965 0.723 1.287  0.807
C/C 0.813 0.548 1.207 0.305
H2AX-12 A/A 0.414
G/A 0.954 0.573 1.588  0.856
G/G 0.223 0.024 2.067 0.186
NBS1-11 WT/WT 0.539
WT/del(WT) 0.748 0.444 1.258 0.274
del(WT)/del(WT) 1.188 0.165 8.537 0.864
NBS1-12 G/G 0.991
G/A 1.018 0.765 1.353  0.905
A/A 0.997 0.629 1.580 0.989
NBS1-14 G/G 0.617
C/G 0.997 0.757 1.314  0.985
C/C 0.804 0.509 1.271  0.350
NBS1-16 A/A 0.296
G/A 0.928 0.693 1.242 0.615
A/A 0.658 0.38¢ 1.113  0.119
i110-20 A/A 0.076
G/A 1.168 0.828 1646 0.377
A/A 1.639 1.064 2.524  0.025
i110-21 T/T 0.285
C/T 1.107 0.815 1.503 0.516
C/C 1.450 0.941 2234 0.092

Table 4.3: Multivariate SNP analysis
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that, as there was no rejection of the null hypothesis of a codominant model being
different from a recessive model (p-val=0.47) or a multiplicative one (p-val=0.18), they
were improvements over the codominant model or a dominant model. Inspection of
ANOVA p-value for significant differences from the codominant model showed that the
p-value was larger for the recessive model than for the multiplicative model. We chose
a recessive model of penetrance since it had a larger p-value than the multiplicative
model. Therefore, only if an individual has two copies of the A allele they are at a

decreased risk of developing NHL.

A comment on SNPs with interesting results: the SNP not in HWE, H2AX-12,
didn’t reach significance and SNP IL10-20 is borderline significant when adjusted for
non-SNP covariates with the A allele having a protective effect or alternatively, the G
allele increasing risk of NHL. Using the Bonferroni correction, however, IL10-20 is no
longer significant. Penetrance analysis of IL10-20, summarized in table 4.4 indicates
that the SNP follows a multiplicative model, where an increase in the number of G

alleles corresponds to a linear increase in the log risk of developing NHL.

Of the SNPs analyzed for association with NHL, only H2AX-8 had a borderline
significant association with NHL after a Bonferroni correction for multiple compar-
isons of the SNPs. Before the correction, the IL10-20 SNP had a borderline significant
association (p=0.076). Additional studies with a larger number of individuals would
help increase the power of seeing an association, and the IL10-20 may produce a

significant result.

H2AX-8 is a new polymorphism being studied for association with NHL and with
no other prior published research with which to compare the results. After publication,
other researchers will need to confirm the positive association with NHL with new

studies.
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4.3 Haplotype Analysis

Using three methods of haplotype reconstruction and logistic regression (Hapassoc,
Haplo.stats, PHASE haplotype reconstruction), the SNP data from the BC Cancer
Agency was analyzed. There are seven different ways to do an association analysis
of the data with the three methods. The seven different ways to do the analysis
are adjusted for the non-SNP variables of age, sex, ethnicity and region of residence.

Additionally, an unadjusted analysis could be done.

Input for the reconstruction programs Hapassoc and Haplo.stats include SNP and
non-SNP variables. SNP and outcome data were input into Hapassoc and Haplo.stats
with the non-SNP variables of age, sex, region of residence and ethnic group for hap-
lotype reconstruction of the SNP variables and EM weighted logistic regressions. It
was also of interest to see the difference in standard errors and regression coeflicients
between Hapassoc or Haplo.stats EM weighted regression that inflates standard er-
rors and a regular weighted regression with no inflation of standard errors using the
reconstructed haplotype information from Hapassoc and Haplo.stats. Hapassoc does
an initial step of finding starting points for the weights associated with haplotypes by
performing a reconstruction with SNP data only. It uses initial weights in the EM
step of calculating the regression coefficients and standard errors and updates the as-
sociated weights when it updates the regression estimates. A comparison was possible
between weighted regression output calculated from initial weights output from the
Hapassoc procedure and the weighted regression output calculated from final weights
output from the Hapassoc procedure. We were able to see the impact of using slightly

different weights in weighted regression.

The comparisons able to be done with the PHASE program were different than
for Hapassoc and Haplo.stats since PHASE uses only the information in SNP input
data for reconstruction; it doesn’t use information from other non-SNP variables in its
haplotype reconstruction or associated weight calculation. PHASE outputs files have

a "best” haplotype assignment for individuals that assigns each individual a single
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haplotype pair, and a weighted reconstruction weighting all possible haplotype assign-
ments for an individual by the probability that it is the correct haplotype assignment.
Using PHASE output a logistic regression using the "best” haplotype assignment
was done as well as a weighted logistic regression with the output haplotypes and

associated weights.

The seven different ways of doing the association analysis are:

1. PHASE "best” haplotype assignment with regular logistic regression, labelled
PHASE "hest” LR in tables

2. PHASE assigns all possible haplotypes to each individual with associated weights
analyzed with a weighted logistic regression, labelled PHASE weighted LR in
tables

3. Hapassoc with full EM, labelled Hapassoc EM in tables

4. Hapassoc with weighted logistic regression using INITTIAL weights, labelled Ha-
passoc INITTAL LR in tables

5. Hapassoc with weighted logistic regression using FINAL weights, labelled Ha-
passoc FINAL LR in tables

6. Haplo.stats with full EM, labelled Haplo.stats EM in tables

7. Haplo.stats with weighted logistic regression using weights output from Haplo.stats
EM, labelled Haplo.stats weighted LR in tables

The association analysis variations were applied to the BC Cancer Agency SNP
data. As discussed there were three genes analyzed, IL10 with two SNPs, and H2AX
and NBS1, with three and four SNPs respectively. The multi-SNP haplotypes were
reconstructed and the regression model for each gene was chosen using a pooling
frequency of 0.01, which pools haplotypes that have population frequency less than
1%. So the regression models consisted of haplotype covariates that have frequency

greater than 1% and a pooled haplotype covariate (if needed).
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e H2AX, 3 loci

— Regression Coeflicients

Overall, when comparing Hapassoc and Haplo.stats EM methods in table
4.5, they are relatively consistent in their computation of regression co-
efficients. The absolute values of the regression coefficients are generally
larger for both Hapassoc EM and Haplo.stats EM than PHASE weighted
logistic regression. One exception was the haplotype ATA in the Hapas-
soc model, which was likely due to the slight difference in frequencies of
the haplotypes as well as the slightly different weights computed. Slightly
different. weights are computed by PHASE because PHASE only takes the
SNP information into account when computing weights, this affects the
regression coeflicients to a larger degree than was initially expected. The
same can also be seen with the Hapassoc initial weighted regression co-
efficients, which are smaller in absolute value than the properly weighted
Hapassoc and Haplo.stats EM and Hapassoc final weighted regression co-
efficients. The frequencies of Hapassoc EM and Haplo.stats EM haplotype
output are comparable with the largest difference being 0.001, PHASE fre-
quencies are all slightly smaller, with the exception of ATA, which could

account for the larger coeflicient.

— Standard Errors

The standard errors are consistently larger for Hapassoc EM and Haplo.stats
EM than for PHASE weighted and "best” regressions for the smaller fre-
quency haplotypes, the large frequency haplotype ATA didn’t have stan-
dard errors that varied much between the methods. The inflation of stan-
dard errors don’t make a large difference in the p-values between the
methods because the smaller regression coefficients output by PHASE and
the smaller standard errors allow us to arrive at similar p-values as the
larger regression coeflicients and standard errors of the Hapassoc EM and

Haplo.stats EM packages.
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Comparing Hapassoc and Haplo.stats EM regressions with weighted lo-
gistic regressions on haplotype reconstruction output from the packages
shows a negligible difference between the packages. The standard errors of
regression coefficients are larger for Hapassoc and Haplo.stats than their
corresponding weighted logistic regressions, which was as expected. For
example, the coefficient for GCG for both methods had a larger stan-
dard error (Hapassoc=0.251, Haplo.stats=0.250) than for their correspond-
ing weighted regression output with no inflation (Hapassoc=0.236, 0.239,
Haplo.stats=0.233). PHASE had a standard error of 0.234 for the GCG
coefficient with a "best” haplotype regular logistic regression and 0.231
for the weighted regression, both of which are smaller than the inflated

standard errors from Hapassoc and Haplo.stats.

— Interpretation

For H2AX, both haplotypes ATA and ACA appear to exhibit a protective
effect against non-Hodgkin lymphoma. If we were trying to choose a model
at the 0.05 level the same outcome would be reached if any of the seven
regression methods were used. Even though a correct model would be
chosen for the PHASE "best” regression, the model conclusions would be
found by faulty methodology. The correct conclusion is reached with this
set of data but for another set of data there is the chance that using faulty
methodology would lead to incorrect conclusions when testing significance

of model variables or calculating confidence intervals.
e NBS1

— Regression coeflicients

The PHASE "best” regression output calculates the largest regression co-
efficients of any of the methods as seen in table 4.6, particularly WTAGA
and DELGGA. The regression coefficients are otherwise similar for all

methods.
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— Standard Errors

When doing similar comparisons for NBS1 as for H2AX, the same conclu-
sions can be reached. Standard errors are appropriately inflated for the
Hapassoc and Haplo.stats EM regressions and if the either package were
being used for model selection the same models would be specified. There
is an interesting outcome in the standard error for the Haplo.stats logistic
regression, the standard error for WTAGA haplotype is very small (0.0008
for Haplo.stats regression with inflated standard error). After doing testing
to explore the cause, the only resulting hypothesis is that there is an error
in the Haplo.stats code that under certain conditions (one of them being an
extremely small frequency of the resulting haplotype) causes Haplo.stats to
output an incorrect standard error. Even though the WTAGA haplotype
had a small frequency, it was still included in analysis since there was only
4 possible haplotypes present for NBS1 and haplotype DELGGA had a
frequency above the pooling tolerance. There were no other haplotypes in

the "pooled” group so the WTAGA haplotype was analyzed on its own.
— Interpretation

The same model conclusions would be reached for all methods of regression

on NBS1 haplotypes - no haplotypes had significance at the 0.05 level.

e 1110

— Regression coefficients

The regression coeflicients for the small frequency haplotypes are larger for
the Hapassoc EM, Hapassoc final weighted regressions and Haplo.stats EM
and weighted logistic regressions than for the PHASE weighted regressions
and Hapassoc initial weighted regressions in table 4.7. The difference may
be due to the slightly different weights computed by the reconstructions
with non-SNP information and the small frequencies of the haplotypes.
The interesting logistic regression output is the PHASE "best” logistic

regression with estimates that are comparable to the Hapassoc EM and
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Haplo.stats EM logistic regressions, possibly because of different frequen-
cies calculated for the resulting haplotypes, almost a 3% difference for the
TG haplotype.

— Standard Errors

The IL10 SNPs were the most interesting, since there was an fairly substan-
tial inflation of standard errors for the Hapassoc and Haplo.stats EM lo-
gistic regressions, compared with weighted regressions. For example, look-
ing at haplotype TG, the corresponding standard error for the Hapassoc
regression is 0.178, for the Haplo.stats regression is 0.177, while the regu-
lar weighted regressions using the output from these methods only shows
standard errors of 0.158 (Hapassoc initial weights), 0.160 (Hapassoc final
weights) and 0.155 (Haplo.stats weighted). The IL10 SNPs were the best
example of the packages adjusting coefficient standard error, as there were
the maximum possible different haplotypes present and even though most
of the haplotypes were characterized in two groups (TA and AG), there
was still a third haplotype group (TG) that contained almost 10% of the
total haplotypes.

— Interpretation

There were two haplotypes, TG and AA, which appear to significantly
increase the risk of developing NHL. Due to the small frequency of the
AA haplotype, we have less confidence in only saying that AA haplotype
definitely increases the risk of developing NHL.

Compared with the individual SNP analysis of the IL10 SNPs which shows
only that the SNP il10-20 is borderline significant at the a=0.05 level, it
would appear that haplotype analysis is a necessary tool with which to
analyze the SNP data in this instance. The haplotype analysis gives more
clues as to where a possible mutation may occur because a larger area was
taken into consideration when the SNPs were analyzed as a unit. Inter-
action of the two IL10 SNPs is another possible cause for the significance

of the association with NHL. A study with a larger number of people may
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give a better idea of whether these haplotypes are indeed associated with
the disease. The small number of people with these haplotypes makes us

cautious to declare significance with much confidence.
e H2AX, 2 loci

— Regression Coefficients

The regression coefficients in table 4.8 are comparable to the regression
coefficients in table 4.5, the GT variable being comparable to the pooled
variable in the H2AX table with three loci.

— Standard Errors

As with the three-locus haplotypes, the coeflicient standard errors were
larger when comparing the Hapassoc and Haplo.stats EM weighted regres-
sion standard errors to the PHASE "best” and weighted regressions in
table 4.8. The same haplotypes would be kept in the final model for either
method. Conclusions don’t differ whether or not the corrected standard

errors are used.

— Interpretation

The same model conclusions would be reached for all methods of logistic
regression. There is not enough variability in the SNP input data set to
inflate the standard errors significantly enough to come to different. con-

clusions with regards to model selection or confidence interval calculation.

When using the most frequent haplotype as a baseline for comparison, there
were two haplotypes (AT and AC) significant at the @=0.05 level for the
H2AX SNPs for all methods of reconstruction and regression. These two
haplotypes corresponded to the first two loci of the two significant three-
locus H2AX haplotypes, indicating that we could simplify the haplotypes
into two locus haplotypes and get similar results. This also cuts down
on the area of the genome where a possible disease-causing mutation may
occur. If we want to simplify the area of possible disease-causation even

more, we may turn to the analysis of the H2AX SNPs. SNP analysis has
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shown that H2AX-8 is significant in the prediction of NHL, but H2AX-11
is not significant in the prediction of NHL. Penetrance model selection and
allele analysis has shown that it is most likely a larger number of copies of
the G allele of the H2AX-8 that is associated with increased risk of NHL
and that a larger number of copies of the A allele is associated with a

protective effect with regards to NHL.



Chapter 5
Simulation Study

To investigate differences in the coefficients and standard errors of logistic regressions
between haplotype reconstruction and logistic regression methods, a simulation study
was used. Regression estimates and standard errors were studied for each of the three
methods of reconstruction (Hapassoc, Haplo.stats, PHASE) and logistic regression

under differing percentages of missing data.

5.1 Haplotype Data Generation

Using information gained from the small comparison exercise of Hapassoc EM re-
gression and a weighted logistic regression with haplotype assignments and weights
generated from Hapassoc, haplotype frequencies and model specifications were chosen
to be the same as those in the Hapassoc example data. The frequencies that were
used resulted in the potential haplotype ambiguity being increased and the distrib-
ution of haplotype frequencies being more equal and not mostly allocated to one or

two haplotypes.

Using the R program. an effective population of 50,000 individuals was generated.
The eight possible haplotypes used in the simulation and corresponding frequencies

for each are shown in table 5.1.

48
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Haplotype Locus Frequency

123

000 0.2517911
001 0.2605418
010 0.23606001
011 0.0916067
100 0.10133627
101 0.02636844
110 0.0108126
111 0.02148268

O O Ul W N+

Table 5.1: Table of Haplotype Frequencies.

Next, to prepare data for logistic regression, outcomes had to be generated for the
haplotype data. The haplotype that was the second-most frequent was chosen to be
the "affected” haplotype, meaning that a carrier of this haplotype was at increased
risk of developing a disease. Overall, in the sample, the probability of having disease
was fixed at 0.5 to make the simulation as much representative of a case/control study
as possible. The risk increase for the having of a single affected haplotype from having
no affected haplotypes was arbitrarily fixed as 1.5 and the risk increase of having two
affected haplotypes from having no affected haplotypes was fixed at 3. The equation

Pr(D) = > Pr(h;)* Pr(D|h;)

i=0

where h;, the number of ”affected” haplotypes, was filled in with known information,
such as haplotype probabilities from the generated data set and the pre-specified beta
coefficients. Prob(D) is the probability of having the disease and h; is the number of
"affected” haplotypes that an individual is carrying, h; means one affected haplotype

is present, etc. The equation:

0.5

Pr(hg) * Pr(Dlho) + Pr(hy) * Pr(D|hy) + Pr(hs) * Pr(D}hy)
exp(fo) exp(SBo + 51)

_ . N0 * xp(fo + 0s)
= Pr(ho) T+ exp(30) + Pr(hy) 1+ exp(Bo + /1) 1+ exp(By + 52)

was solved for §y, since all other information was known. Probabilities of the number

+ Pr(hs) +
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of "affected” haplotypes was easily calculated, 5, was already specified to be In(1.5)
and (, was In(3). The probabilities of being affected given 0, 1 or 2 "affected” hap-
lotypes were then calculated. Binary outcomes were generated for each number of
" affected” haplotypes that an individual was carrying using the calculated probabili-

ties and assigned to the corresponding haplotype data.

Missing genotype data was randomly generated for 5% and 10% of subjects. For
example, if the percentage of missing data was set at 5% the number of people who
would have missing data was calculated as 0.05 x N, then split between the 3 loci,
so each locus would have 1/3 of the data re-assigned as missing. The same was then

done for 10% missing data.

5.2 Analysis of Simulated Data

The model used all haplotypes with frequency greater than 5% and a pooled variable
for those less than 5%. The model specified is:

logit(y) = o+ B1*h000+ B2 % h010 + B3 % h011 + B4 x h100 + G5 * pooled

where the pooled variable is a category created from those haplotypes that have a
probability less than 5 % , haplotypes 6, 7 and 8. Base comparison haplotype is
haplotype 2 (001). A logistic regression on known haplotypes was done to produce a
basis for comparison for the three haplotype reconstruction and seven logistic regres-

sion methods.

Table 5.2 has the output. of the logistic regression using the true haplotypes for the
larger model with five covariates, table 5.3 has PHASE regréssion output for 50,000
individuals, table 5.4 has Haplo.stats regression output for 50,000 individuals, table
5.5 has PHASE regression output for 100 logistic regressions of 500 subjects each,
table 5.6 has Hapassoc regression output for 100 logistic regressions of 500 subjects
each and table 5.7 has Haplo.stats regression output for 100 logistic regressions of 500

subjects each.
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50,000 indiv.

Haplotype I} SE(4)
000 (0.489 0.018
010 0.008 0.018
011 -0.007 0.024
100 0.011 0.024

Pooled 0.040 0.029

100 LR, 500 indiv.
Haplotype Mean() Mean(SE(3)) SD(B)

000 0.497 0.183 0.183
010 0.007 0.183 0.199
011 -0.010 0.248 0.250
100 0.012 0.239 0.263
Pooled 0.043 0.294 0.287

Table 5.2: Initial Estimates of Logistic Regression Coefficients, 5 Covariates

e PHASE and Haplo.stats, 50,000 individuals

Looking at table 5.3 there isn’t a large difference between the regression co-
efficients of the PHASE "best” and PHASE weighted regressions, other than
PHASE weighted coefficients being slightly smaller. Both logistic regression
methods approximate the estimates from logistic regression using the true hap-
lotypes in table 5.2 rather well, with PHASE weighted regression coefficients
being slightly biased. The standard errors are also similar to those calculated

in the logistic regression using the true haplotypes.

Haplo.stats output in table 5.4 shows a similar outcome, with regression co-
efficients being well approximated by both methods, compared to the logistic
regression using the true haplotypes in table 5.2. There is some slight variation
in the standard errors, but we can attribute that to random variation. In gen-
eral, the logistic regressions of 50,000 individuals didn’t lead to any interesting

conclusions about the PHASE and Haplo.stats methods.

e PHASE, 100 logistic regressions 500 individuals each

The PHASE methods in table 5.5 appear to estimate the regression coefhicients
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rather well compared to the logistic regressions using the true haplotypes ob-
tained in table 5.2. The PHASE "best” method even appears to approximate
the regression coeflicients better than the PHASE weighted regressions, as some
of the estimates for the weighted regressions appear to be slightly biased. The
weighted regression was biased because weights output by the PHASE hap-
lotype reconstruction aren’t computed utilizing information from the outcome
variable, they only use information from SNP input data. The standard errors
for both PHASE methods adequately approximate the computed standard devi-
ations and the standard deviations computed from the logistic regression using

the true haplotypes.

However, it seems that the PHASE "best” regression method has some trouble
with rare haplotypes. One of the most striking results is for PHASE "best”
analysis of 100 logistic regressions of 500 subjects each (table 5.5) is that there
is a rather large mean standard error for all of the coefficients for the pooled
haplotype in the PHASE "best” reconstruction and unweighted logistic regres-
sion of 100 regressions of 500 individuals (standard errors=2.245, 2.250, 4.236,
second column of table 5.5). Inspection of the list of regression covariates shows
that there is two groups of 500 individuals where the regression coefficient and
associated standard error is extremely large and affects the means and standard
deviations. It appears that the logistic regressions didn’t converge for these sam-
ples and this is likely due to a sparse data problem. When the two simulations
with a very large s and standard errors were deleted for each of the outcome
data sets, the standard errors for the pooled variable (table 5.8) are more com-
parable to the population standard deviations. The problem may be that since
the pooled haplotypes are rare, there were very few pooled haplotypes in the
one sample of 500 individuals that was calculated to have the large standard
error. An alternative to recording mean estimates of regression coefficients is to
record median estimates. Median estimates for the regression coefficients and

standard errrors are given in the table 5.8 for comparison.
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e Hapassoc, 100 logistic regressions 500 individuals each

There is a large difference in the regression coefficients for the Hapassoc full EM
method as compared to using the Hapassoc INITIAL weights with a weighted
logistic regression, which can be seen in table 5.6 when comparing the mean(g3)
columns for Hapassoc EM and weighted regression using INITIAL weights. The
reason is that Hapassoc does a reconstruction of the haplotypes and associated
weights for an input data set in an initial step without non-SNP information
before the EM regression. Even though initial weights vary only slightly from
the updated weights calculated in the EM regression with weights (the largest
difference between the initial and final weights is approximately 0.036), they
underestimate some of the regression coefficients in a noticeable way when com-
pared with the estimates from logistic regression using the true haplotypes in
table 5.2. The output for the weighted regression using the correct updated
Hapassoc weights is in FINAL logistic regression columns of table 5.6 and was
quite different, with estimates being similar to those given by the Hapassoc full
EM method. The Hapassoc EM method outputs regression coefficients slightly

larger than the coefficients given by logistic regression using the true haplotypes.

The mean(SE(3)) for the Hapassoc EM weighted regressions were larger over-
all and closer approximated the SD(/3), the population standard error for the
regression coefficients than comparable mean(SE(/7)) for the regular weighted
regressions in the FINAL weights columns of table 5.6. This shows that the
inflation of the standard errors of the Hapassoc EM correct the bias in the

unadjusted standard errors.

e Haplo.stats, 100 logistic regressions 500 individuals each

In table 5.7 the standard errors between the Haplo.stats methods were different,
as was expected, with the Haplo.stats EM weighted regression mean(SE((3))
being larger than the mean(SE(3)) of the regular weighted regression and a

better approximation to the population standard deviations.

The regression coefficients were the same between methods and approximate
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the estimates computed by logistic regression using the true haplotypes in table

5.2 to a reasonable degree.

Overall, the methods of regression that adjust the standard errors (Hapassoc and
Haplo.stats EM) are more conservative and would result in the correct number of

positive conclusions in tests of significance.



Chapter 6

Summary and Conclusion

6.1 Non-Hodgkin Lymphoma Data Analysis

The SNP analysis found only two SNPs that were statistically significantly associated
with the incidence of NHL. The H2AX-8 and IL10-20 SNPs were significant at the
0.05 level. Penetrance analysis revealed that the H2AX-8 SNP followed a recessive
model of penetrance with individuals homozygous for the A allele having a lower rela-
tive risk (RR=0.592) of developing NHL compared with having any G alleles present.
The IL10-20 SNP also followed a recessive modcl with homozygosity of the G al-
lele increasing the risk of NHL (RR=1.470), compared to having an A allele present.
When adjustment for multiple tests is considered using a Bonferroni correction, only
the H2AX-8 SNP is significant in predicting NHL. The haplotypes were reconstructed
from H2AX and IL10 SNPs using three different reconstruction methods, then ana-
lyzed using seven logistic regression methods, and adjusted for non-SNP variables of
age, sex, region of residence and ethnicity for each regression. All regression methods
indicated that the three-locus H2AX haplotypes ATA and ACA were significantly
associated with NHL (table 4.6), both having a protective effect with a relative risk
approximnately 0.5 and 0.82, respectively, compared with the baseline haplotype GCA.
All methods also indicated that the IL10 haplotypes TG and AA were significant in

61
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increasing risk of NHL, each with relative risk approximately 1.5 and 2.9, respectively
(table 4.8).

An additional analysis in which the third locus of the H2AX SNPs, H2AX-12,
was dropped from haplotype analysis because it wasn't in HWE was done. Also,
there were very few individuals who had a G allele in the third position and the
haplotypes with a G in the third position failed to have a significant association
with NHL, compared with the baseline haplotype. The two-locus H2AX haplotypes
AT and AC were significant with relative risks approximately 0.58 and 0.82 (table
4.9). We may hypothesize further and say that since the second SNP locus, H2AX-11
wasn't significant in SNP analysis that it is H2AX-8 that is the main SNP associated
with NHL through close linkage with a disease-causing mutation. The A allele is the
ancestral allele for the H2AX-8 locus; when the chimpanzee genome was investigated
there was an A allele in the same position. It could be argued that G arose sometime
during evolution between chimp and human and is in linkage disequilibrium with
something that is causing NHL since the H2AX-8 SNP is non-coding and doesn’t

appear to have any properties that would make it causal.

Comparison of standard errors after using regular weighted logistic regression
methods and Hapassoc or Haplo.stats EM regression which inflates standard errors
showed small increases in standard errors of sinall-frequency haplotypes for the EM

regressions.

Regression coefficients were similar for both Haplo.stats and Hapassoc EM weighted
logistic regressions and Haplo.stats and Hapassoc final weighted logistic regressions.
Convergence criterion for the Hapassoc package has been made more strict and is cur-
rently available in a newer version of the package, a result of this convergence criterion
update is that the Hapassoc regression estimates will closer reflect those calculated by
the Haplo.stats package. Regression coefficients were biased for the PHASE weighted
regression and the Hapassoc initial weighted regression, because weights were used

that were calculated only using SNP data.
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6.2 Simulation

A data set of haplotypes was generated for 50,000 individuals with three-locus haplo-
types. The haplotype frequencies were distributed over the eight possible haplotypes.
Outcome data was generated for the data set and the second-most frequent haplotype

was deemed the “affected” haplotype.

Only the PHASE reconstructed method and Haplo.stats method were able to be
compared for a data set of 50,000 individuals, since Hapassoc had memory restrictions.
The PHASE weighted regressions showed a slight bias to the coefficients, generally
underestimating the coefficients given by logistic regression using the true haplotypes.
The PHASE "best” and both Haplo.stats methods approximated the true haplotype
regression coefficients and the standard errors adequately. The standard crrors were

all the same to three decimal places.

In the 100 regressions of 500 individuals, all three methods were able to be com-
pared. The regression coefficients for the Hapassoc initial weighted regressions and
the PHASE weighted regressions were underestimated. The weights for both methods
were calculated without incorporating the case-control information for the subjects

and this appeared to have a bias effect on the estimates.

Both Hapassoc and Haplo.stats EM weighted packages had more accurate standard
errors than PHASE weighted regression, Hapassoc weighted regression or Haplo.stats
weighted regression. The EM weighted regressions had mean(SE(J)) columns that
more closely approximated the SD(J) columns, while the regular weighted regressions
had smaller standard errors and didn’t approximate the population standard devi-
ations as well. The standard error of the pooled variable in the PHASE "best” re-
gression (table 5.3) is extremely large, which can be explained by the sinall frequency
with which it occurs. Overall, PHASE "best” regression handles small frequency
haplotypes poorly and it fails to take all haplotype information for an individual into

account.
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6.3 Conclusions

Haplotype research is becoming an important tool in genetic analysis. In this pa-
per I reviewed the methodology for haplotype reconstruction and explored different

methods of analysis using real and simulated data.

Analysis of NHL data from the BC Cancer Agency offered little insight into the
implications of not accounting for haplotype ambiguity when doing a case control
analysis of haplotypes. The amount of ambiguous and missing data present in the
data set did little to affect the outcomes when investigating the differences in estimates
and associated standard errors. Different methods of reconstruction and regression
didn’t affect significance testing outcomes, although a data set with more ambiguity
might inflate standard errors enough to affect whether a test of significance has a

different outcome using different methods.

Using simulated data it was found that an implication of not inflating standard
errors in association studies of haplotypes to account for extra ambiguity of compu-
tationally reconstructed haplotypes is the risk of declaring a false positive significant
result, and having incorrectly calculated confidence intervals. This is most apparent
when there are many possible small-frequency haplotypes, a significant amount of
ambiguous genetic data and a significant amount of missing genetic data. Hapassoc
and Haplo.stats EM weighted regressions inflate the errors the most under these con-
ditions and it appears that under these conditions that mistakes in significance testing

would be the most likely.

The Hapassoc and Haplo.stats EM packages most closely approximate the popula-
tion standard deviations for regression coefficients of haplotypes. Using these packages
would result in the best analysis outcome. The PHASE reconstruction method is com-
monly used by researchers today, but statistical analysis done with PHASE weighted
output can result in biased regression coefficients and underestimated standard errors
and PHASE "best” regression handles rare frequency haplotypes poorly. It is advis-

able for association studies to use statistical packages that inflate standard errors in
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order to take genetic ambiguity into account to avoid false positive results and incor-
rectly calculated statistics. Even though there doesn’t appear to be a large impact
for standard errors for data that doesn’t have as much ambiguity, it is recommended

that proper methods be used at all times to analyze genetic data.
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