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ABSTRACT

As solid-state image sensors become ubiquitous in sensing, control and photography

products, their long-term reliability becomes paramount. This thesis experimentally examines the

nature of in-field faults and demonstrates two combined hardware-software approaches for

detecting and mitigating them. Characterization experiments found that most tested commercial

cameras developed hot pixels that create image bright spots and degrade dynamic range. Faults

appear spatially point-like and uniformly distributed, and they develop continually over time.

Silicon displacement damage, induced by terrestrial cosmic rays, is the likely cause.

A fault tolerant active pixel sensor is developed to isolate hot defects to a portion of the

pixel, enabling software algorithms to correct the faults without sacrificing dynamic range.

Experimentally-emulated hot pixels can be corrected within ±5% error.

A new statistical software approach is developed to identify and calibrate stuck and

abnonnal-sensitivity faults from only regular photographs. Monte Carlo simulations verify the

detection accuracy in complex environments.

Keywords:

Subject Terms:

image sensor; fault tolerance; hot pixel; active pixel sensor; reliability

Digital cameras; Imaging systems; Semiconductors--Failures;

Semiconductors--Reliability; Integrated circuits--Fault tolerance
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CHAPTER 1

INTRODUCTION

Digital imaging has rapidly transformed how we interact with the physical world around us.

With applications extending across arts and entertainment, safety, and security, the possibilities

offered by electronic vision seem endless, and the demand for associated products only continues

to grow. Digital photography is a prime example. Standing in any museum, concert recital, or

park with throngs of people snapping countless photographs leaves no doubt that digital still

cameras (DSCs) have been embraced by consumers. The Camera and Imaging Products

Associate (CIPA) representing the major manufacturers in the industry reports that more than 42

million DSCs were shipped in the first halfof2007 alone[l] with annual sales projected to climb

to 103 million units by 2009[2].

Seemingly less widespread than photo cameras, recently developed automotive vision

systems remain hidden from users while potentially preventing accidents. Lane Departure

Warning (LOW) systems, for example, record video of the road ahead of the vehicle and warn the

driver when he is about to drift unexpectedly from the lane. With the success that LOW systems

have already experienced in commercial trucks, passenger vehicles manufacturers, like Nissan

Motors and General Motors, have recently begun incorporating LOW in their own vehicles[3-5].

Other products in varied stages of development include simple back-up assistance video,

pedestrian detection, and driver drowsiness detection[6].



Further behind the scenes, automatiol1o and inspection systems help protect the integrity of

the goods we buy. In carmakers' factories, robots detect components in three dimensions in order

to expertly manoeuvre these components into place[7]. Large-scale bakeries analyze photos of

bread products to ensure a perfectly toasted crust[8]. Even agricultural distributors scan potatoes

and other products to guarantee that only high quality vegetables are delivered to stores[9].

While these systems appear to be wildly different, at the heart of each one is a solid-state

image sensor that delivers visible-light image data. Continued development of the sensor

technology, in parallel with signal processing algorithms and hardware, has been critical in

enabling the end products. Both dominant imager technologies, Charge Coupled Device (CCD)

and CMOS Image Sensor (CIS) arrays, have evolved to meet a diverse set of requirements.

The majority of electronic imaging applications extract fine details from high-quality source

images. Therefore, most research to date has focused on bringing optical performance in line with

that of traditional photographic film cameras. In the field of digital photography, this research has

led to sensors with vastly improved spatial resolution, usable light sensitivity that exceeds film,

and excellent uniformity across the entire image area. Automotive sensors, meanwhile, must

deliver equally usable images whether operating in direct sunlight, the black of night, or a

combination of both, such as when a car passes through tunnels. This requirement has led to the

development of very wide-dynamic range imagers that have optimum performance in all lighting

environments[ 10].

In other products, factors beyond pure image quality must be considered. The need for small

and inexpensive embedded cameras in mobile phones has been one part of the driving force

behind highly-integrated CIS arrays[ II].

All of these advances have contributed to the ubiquitous nature of electronic imaging.

However, as sensor technologies mature and are deployed in an increasingly large number of

products, reliability must become a primary concern. All microelectronics are known to degrade

2



over time and imagers are no exception. As a great deal of study has been devoted to failures in

standard digital and analog circuits, many of the supporting function blocks in an imager chip are

already well understood. However, the optoelectronic nature of sensor pixels places them in a

separate category that has received comparatively little attention in the literature. Change in a

pixel's characteristics over the time that it is deployed in the field can lead to an unacceptable

reduction in image quality. Coupled with the fact image sensors are often larger than even

microprocessors, making them more likely to develop defects, this sensitivity to even small

variations in perfonnance makes defects a serious issue. In addition, image sensors are analog

devices so changes that would not affect classic digital devices (e.g. small threshold shifts in

transistors, etc) can have a significant impact.

Concern for the lifetime of cameras may seem superfluous when many electronics are

conveniently discarded and upgraded. Nonetheless, consider the example of autQmobile lane­

departure warning systems, where some manufacturers must plan on the cars having a lifetime

well in excess of a decade. The safety components of the vehicle, camera systems included,

should guarantee reliable operation for the same period as the automaker will be liable for

degradation-based failures. Similarly, plant automation equipment. usually involves large capital

investment, which carries with it the expectation of long product lifetimes.

Even in the DSC market, camera lifetime is expected to become a more prominent factor in

purchasing decisions. Until recently, rapid growth in DSC sales could be attributed to users

frequently upgrading their existing cameras to those with improved performance (usually spatial

resolution, i.e. "more Megapixels"). However, modest improvements to recently-released new

models indicate the pace of future progress will slow down, and frequent replacement may

become less attractive to consumers. Moreover, the CIPA reports show than an increasingly

larger proportion of sales are being captured by higher performance and higher priced Digital

Single Lens Reflex (DSLR) cameras[2]. We can conclude that consumers are becoming more
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interested in making a long-term investment in photographic equipment, and they will

correspondingly expect the quality of their equipment to match that investment. Therefore, the

longevity of digital cameras will have to match that expectation.

The objective of this thesis is to address the void in reliability information available for

commercially off-the-shelf image sensors such as those deployed in ordinary digital still cameras.

This goal is achieved in three complementary steps by:

• QuantifYing the characteristics of performance-degrading defects in real sensors;

• Experimentally demonstrating a pixel design for mitigating the most common type offailure;

• Developing a novel algorithm for detecting and studying defects in existing sensors.

A brief introduction to the motivation and goals of each point is given in the section below.

1.1.1 Defective Pixel Characterization

The development of faulty pixels is considered the primary failure mode of image sensors,

particularly when those faults arise after a camera leaves the manufacturing plant. A key

contribution of this thesis is in determining whether commercial DSCs are likely to suffer faulty

pixels throughout their lifetime and in quantifYing the extent of that degradation. Until now, much

of the attention on this topic has focused on imagers operating in harsh environments like space

(see [12-14] for examples), while commercial DSC data has been limited to anecdotal reports of

defective pixels from photographers. This shortcoming is addressed in Chapter 3 with an analysis

of numerous commercial DSCs operating in common, benign terrestrial environments. Using

standard calibration techniques, both the quantity and behaviour of faulty pixels are characterized.

These results give a first estimate of the prevalence of defective pixels, and the accompanying

analysis provides insight into possible mechanisms that cause faulty pixels, allowing more robust

sensor designs to be developed.
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1.1.2 Fault Tolerant Pixel

The Fault Tolerant Active Pixel Sensor (FTAPS) was proposed by Chapman and Audet[ IS]

as a means of improving the manufacturing yield of image sensors. Work on the FTAPS has since

focused on evaluating its imaging performance. Sensors have been tested without faults[16-19]

and with simple fully-stuck faults[20-23]. However, Chapter 3 shows that more complex "hot

pixels" are the dominant failure in commercial cameras, and Chapter 4 shows how the FTAPS

can be applied to mitigate these faults as well. The concept is experimentally evaluated via two

methods: by electrically simulating "hot pixels" in a custom designed FTAPS array implemented

in 0.18 JlIl1 CMOS technology; and by optically simulating hot pixels in a standard FTAPS array

previously implemented in 0.35 11m CMOS technology. A recovery algorithm is also described

and tested.

1.1.3 In-field Fault Identification Algorithm

Many failure modes beyond the dominant hot pixel type are conceivable in all imagers, with

each fault further reducing image quality. Such failures may be corrected by software if the faults

can be correctly located and identified, but fault identification through sensor calibration is a

complex procedure that is costly and impractical to implement in the field. To add robustness to

existing ordinary camera systems, Chapter 5 describes a novel algorithm that can automatically

identify these faults on-line, in the field, using only images captured by the cameras, without any

special sensor or calibration hardware. The algorithm operates by using Bayesian inferences to

match pixel values from images to those expected by mathematical defect models. The resulting

probabilities are accumulated over a moderate sequence of images to reduce false positive tests

experienced by competing algorithms. Monte-Carlo simulations demonstrate the effectiveness of

this technique in mitigating a range of fault types.
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1.2 Summary

Solid-state image sensors form the core electronic imaging systems that have enabled so

many creative applications. While the optical performance of imagers has been the primary focus

of imager research until now, camera technology is reaching maturity, thereby placing an

increasing importance on sensor reliability. This thesis aims to provide quantitative data on

performance degradation in commercial sensors and to provide a solution to combat defects in

future design iterations.

The remainder of this thesis is organized as follows: Chapter 2 provides background on the

physical operation of modern commercial image sensors. In addition, pixel defects and possible

mechanisms for the development of defects are introduced in this chapter. Previous work on fault

tolerant active pixel sensors is described here as well. Chapter 3 describes experiments that

characterize in-field defects found in common DSCs and describes various analysis techniques

used to propose which mechanisms are responsible. Chapter 4 describes how the Fault Tolerant

APS can mitigate hot pixels and presents experimental verification for this idea. Finally,

Chapter 5 describes and demonstrates a novel algorithm that automatically identifies a range of

defect types simply by analyzing standard images captured on a DSC. Concluding thoughts and

directions for future work are offered in Chapter 6.
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CHAPTER 2

SOLID-STATE IMAGE SENSOR BACKGROUND

In order to model and evaluate how imager defects influence performance, we need to

understand the fundamental principles behind solid-state image sensors. This section describes

the basic operation of commercially available variants from two imaging technologies: Charge

Coupled Device (CCD) and CMOS Image Sensor (CIS) arrays. We begin by describing the light

detection mechanism shared by both technologies before providing details of their unique readout

mechanisms. These operating principles are then used to build a simple model of image sensor

response that can be used to extract the most crucial metrics of imager performance. In light of

these models, we examine possible defect mechanisms and their influence on pixel behaviour.

Finally, a fault tolerance mechanism previously proposed for simple defect types is introduced.

2.1 Light Detection

The photoelectric effect forms the basis of light detection in any semiconductor sensor.

When a photon flux impinges on a semiconductor, some of the light may be absorbed if the

photon energies are larger than the material bandgap, as given by

(2.1 )

where EpholOn is the photon energy, h is Planck's constant, v is the photon frequency, and E g is the

bandgap of the semiconductor. The absorbed energy from a photon elevates an electron from the

valence band to the conduction band, thereby creating free carriers. The generation process is
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illustrated in Figure 2.1 for an ideal semiconductor with valence band, conduction band and

forbidden gap energies E,., Ee, and Eg respectively. One result of this relationship is that material

properties place an upper bound on the wavelength of light that can be absorbed. Silicon, for

example, has a bandgap of approximately 1.1 eV so that it is sensitive up to wavelengths of about

1100 11m, corresponding to the near-infrared range.

Figure 2.1. Photo generation of carriers in an ideal semiconductor.

This absorption is a statistical process that continues through the bulk of the material such

that the remaining photon flux, ep(z), at a given depth, z, is governed by the exponential Beer-

Lambert relationship

<p(z) = <Po exp(-za), (2.2)

where epo is the incident flux at the surface and a is a wavelength-dependant absorption

coefficient (measured in cm'l) that is unique to each material. Light at shorter wavelengths has a

larger absorption coefficient owing to its higher energy and is thus more likely to be fully

absorbed at a shallow depth. Conversely, long wavelength red light has a small absorption

coefficient, allowing it to penetrate deep into the semiconductor and requiring a thick material to

absorb the light completely. Table 2.2 gives some typical values for the absorption coefficient, a,

as well as the absorption length, a,l, which shows the depth at which 63% of the incident light

energy has been absorbed[24]. We can readily see that the majority of illumination is absorbed

within several micrometers of the silicon surface.

8



Table 2.1. Absorption of visible light in Silicon[24].

Absorption Absorption
Wavelength coefficient length

Colour nm

Red 600 3.75 x 103 2.67

Green 525 7.07 x 103 1.41

Blue 450 1.98 x 104 0.51

However, simply generating free carriers is insufficient to measure light because several

carrier recombination mechanisms occur in parallel with photogeneration, meaning that charges

disappear before they can be measured. For example, the average minority carrier lifetime is less

than I ~s in a modem silicon substrate. To counter this recombination, carriers can be captured in

the electric field of a depleted region of semiconductor.

2.1.1 Photodiodes

Most modem imagers utilize the depletion region of a reverse-biased photodiode[25],

pictured in Figure 2.2, for charge accumulation.

v-

I"," n-diffusion ~---
I I
\ I
\ I

\ d I· . I
'_ ~_e~o~~eJl~~/

p-type substrate

Figure 2.2. Structure of a photodiode and process of charge collection.

Device operation begins in a reset phase in which a positive voltage is applied to VPD,

thereby maximizing the diode depletion region. Next, the reset bias is removed and the diode is

allowed to float. Light penetrating to the depth of the depletion region creates free electron-hole

pairs. The intrinsic electric field sweeps these carriers out of the depletion region, separating them

to opposite ends of the photodiode, thereby inducing an instantaneous photocurrent. In addition,
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free carriers generated outside the depletion region but sufficiently nearby (i.e. within several

diffusion lengths as appropriate for the material and carrier type) may diffuse toward the

depletion region and contribute to the photocurrent.

However, the photocurrent is usually on the order of picoamperes and is difficult to measure

directly. Instead, the process is allowed to continue for some finite duration, called the integration

time, while charge is integrated (collected) in the diode, as described by the following expression:

Q(Tint ) :::; Qresel - (Iphoto . Tint ), (2.3)

where Tifll is the integration period, Q(I'inJ is the charge remaining on the photodiode after

integration, Qresel is charge on the diode immediately after reset, and Ipholo is the induced

photocurrent that is assumed to remain constant. Note that the above result is only a first-order

approximation. ]n reality, Ipho,o varies throughout the integration period due to the change in

volume of the photodiode collection region (i.e. the reverse-biased diode becomes discharged) so

that fewer optical carriers are captured, especially from deep-penetrating long-wavelength

(redish) light.

This collection process can continue until the diode is completely discharged (i.e. integrated

optical charge exceeds Qresel)' Therefore, very low intensity illumination can be measured by

collecting light over longer periods. Finally, the magnitude of collected charge is read by the rest

of the imaging system and the collection process begins again at the reset phase.

Nonetheless, non-optical generation mechanisms put an upper bound on the maximum

integration time. Even in an ideal semiconductor, spontaneous thermal generation creates free

carriers that are readily captured by the photodiode, resulting in dark current. Therefore, the

diode is discharged even in the dark and its capacity to collect further optically generated carriers

is reduced. ]n real devices, defects in the silicon lattice give rise to "trap" energy states in the

forbidden band, which enable trap-assisted thermal generation to proceed more rapidly. The result
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is a "hot pixel fault" discussed in a later section. Equation (2.3) for the charge collected during

integration can thus be updated to include a term for dark current, Idark, that includes all dark

generation sources:

Q(1int ) = Qreset - Tint Vphoto + I dark ). (2.4)

While bulk silicon tends to be highly regular, the fabrication process can create defects at the

interface between different materials, like at the silicon surface. Therefore, modern sensors move

the charge-collection region of the photodiode away from the surface by implementing the pinned

photodiode (PPD) structure[26] shown in Figure 2.3. Here, an extra p+ layer is implanted at the

surface to shield the charge collection volume from carriers generated at the surface. To reset the

PPD, a transfer gate, TX in Figure 2.3, completely moves all charge from the collection volume to

a floating diffusion (FO) region. Note that the PPO operates entirely in the charge domain, such

that all of the collected carriers are transferred to the floating diffusion (where they are converted

to a measurable voltage), regardless of the PPO capacitance.

n+ floating
diffusion

p+
Jt

I

TX

:<:: "- "'9'0" 7~
\ I
\ t
\ d I' . I
'_~_e~o~~eil~'2.1

p-type substrate

Figure 2.3. Simplified structure of a pinned-photodiode.

2.1.2 Photogates

A photogate is a metal oxide semiconductor (MOS) capacitor used to collect photo carriers.

Photogates are light-sensitive CCDs but have also been implemented in CIS systems. To create

the charge collection region, a positive voltage is applied to the electrode of the structure in

Figure 2.4(a), which depletes the lightly doped substrate and creates a potential well under the
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gate, thereby allowing photogenerated carriers to be collected. The gate electrode material is

typically made transparent to maximize light sensitivity.

Much like the photodiode, defects at the substrate-oxide interface can lead to enhanced dark

current, so many sensor designs utilized the buried MOS diode structure pictured in Figure 2.4(b).

The extra implant shifts charge collection deeper into the substrate and away from dark current

sources.

_____S_u_b_s_tr_at_e_ p-type substrate

(a) Standard Phatagate. (b) Buried Phatagate.

Figure 2.4. Simplified structure of (a) a photogate and (b) a buried photogate.

The photogate is also a purely charge domain device with a linear illumination response,

such that the total charge accumulated during integration is given by the familiar expression:

Q(Tint) = Tint Vphoto +1dark ). (2.5)

Once we have captured light and stored it as charge, it needs to be communicated to the rest

of the imaging system. A useful image sensor will include a matrix of many photosites, and each

one must be read to form an image. This readout methodology is the primary difference between

the two dominant imaging technologies that are described in the following two sections.

2.2 .CMOS Image Sensors

CMOS Image Sensors (CIS), previously also referred to as CMOS Active Pixel Sensors

(APS), are a relatively new imaging technology that encompass a wide range of architectures.

12



They were first described by Noble in 1968[27] but their development remained largely stagnant

until the mid-1990's when reduced CMOS device geometries and improved fabrication

technology made the sensors viable[28]. Modem CIS are created in a standard or slightly

modified CMOS fabrication process that gives them several advantages over competing methods:

• Low production costs through leveraging existing, mature CMOS foundries;

• Straightforward integration of control, signal processing and support electronics;

• Low power consumption due to reduced power supplies and simplified control signalling

(especially over CCDs).

These benefits, and others, can be realized to varying degrees depending on the application and

its requirements.

CIS have led to many creative designs that maximize parameters like intra-scene dynamic

range and imaging speed. However, the architectures that find widespread use in DSCs are the

simple variants of the Active Pixel Sensor (APS): the 3-transistor (3T APS) and 4-transistor (4T

APS) devices.

2.2.1 Three-Transistor APS

The three-transistor APS is the classic design and is the most straightforward. Figure 2.5

shows schematic diagrams of the 3T APS configured for both voltage and current domain

operation. Both designs utilize a simple photodiode, PD, a single transistor amplifier, M j , a row­

select transistor, M}, and a reset transistor, MJ• In the preferred voltage domain operation, the

amplifier is configured as a source follower such that Valli closely follows the photodiode voltage,

V(X), with good linearity, nearly unity gain and a small offset. When M j is configured as a

transconductance amplifier, the 3T APS operates in the current domain with the drawback that

the output current, 10111> is a non-linear function of the photodiode terminal voltage. This is the

operating mode employed in the fault tolerant APS described in Section 2.5.5.
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(a) Voltage domain. (b) Current domain.

Figure 2.5. Schematic diagram of 3T APS in (a) voltage-domain and (b) current-domain.

The control and output signal wavefonns shown in Figure 2.6 provide an overview of the

image capture process at a single pixel, which is comprised of the following steps:

I. Reset photodiode PD through reset transistor M 3 at time Ireset.

2. Collect photogenerated carriers for Tint seconds (the integration period) on PO and get of

amplifier M2•

3. Transfer output signal to column line by activating row-select transistor, M 2•

4. Read and store output signal.

5. Reset PD again.

6. Read and store reset signal.

7. Subtract measurements from 4 and 6 to calculate pixel value.

Oreset

Read
Signal

Reset

RowSel : I !:,I~i-:--,---- t, •
: :

-H i lj
! 1----[,:-----41· i ~.

V out I lout i-:-+! i~ i

L....-V_(_X_)__+-+- ...;:I~::..=:::;:I==r_+_i--..time

Read

Figure 2.6. Control signal waveforms for a 3T photodiode APS.
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In more detail, imaging begins by resetting the photodiode at time lresel> when transistor M3 is

pulsed on to charge PD to the power supply level, Voo. During the following integration interval,

which lasts for a period of Tim, light striking PD is converted to charge according to Eq. (2.3).

This charge is effectively collected on the combined capacitances at node X in Figure 2.5, causing

a voltage to develop at X:

VeX) = Qresel - Tint~;hOIO + I dark),
(2.6)

where Cx is the combined total capacitance at X due to the photodiode depletion and junction

capacitances, all of the gate capacitances of M I , and any other parasitic capacitances due to

wiring. In practice, the photodiode capacitance is about IO-times greater than the other parasitic

components of CX.

After integration, each pixel in a column is accessed individually by activating the row select

transistor, M 2• In a voltage domain device, immediately after integration, the source follower

output follows the expression

V
_ Qreset -Iint (Ipholo + I dark) A

oul - a +uSF,
Cx

(2.7)

where a is the source follower gain, which is typically slightly less than unity, and J SF is the small

offset of the same device. This value for Vour is stored by column-level sample-and-hold circuitry.

The pixel is then reset again and the output value stored to estimate Qrese,. Finally, the difference

is taken between the reset value and the signal value to remove any fixed offsets that arise due to

variations across in-pixel devices. This process is called double sampling. Consequently, the

recorded pixel output value is a linear function of illumination, dark current, integration time, and

some noise components that are beyond the scope of this discussion:
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1intVphoto + I dark) .
Vpixel = a + < NOise >.eX

(2.8)

Additional components of the imaging system may then apply further processing like noise

suppression, analog gain, and analog-to-digital conversion. Operation of the current domain 3T

APS is similar with the exception of the non-linear response of the in-pixel amplifier, which

results in a less intuitive result.

2.2.2 Four-Transistor APS

As was noted, the Pinned Photodiode (PPO) is currently the preferred detector technology

because of its superior dark performance. Because of its charge-domain operation, the PPO

requires a 4T APS architecture, a schematic diagram of which is shown in Figure 2.7 for voltage

domain operation. This architecture again includes a source-follower amplifier, a row-select

transistor for random access readout of pixels, and a reset transistor. However, unlike the 3T

ApS, the potential of charge integrated on the PPO cannot be read directly. Here, a transfer gate,

M~, is used to move charge from PPD to a floating diffusion segment, FD, which causes a

potential to develop at the gate of the amplifier transistor.

Reset...
Transfer...

PPD

~

VDD

M1

(Amplifier)

M2

(Row Select)

~_--1...~Vout

1~COI"m"~I""Bi"

Figure 2.7. Schematic diagram of a 4T photodiode APS.
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Control signal timing and the resulting outputs for a single, simplified capture cycle of the

4T APS are shown in Figure 2.8. The complete capture process can be summarized as follows:

I. At time trese" reset photodiode PD by transferring all charge through transfer gate M./.

2. Collect photogenerated carriers for Tim seconds (the integration period) on PD.

3. Reset floating diffusion through reset transistor M 3•

4. Record reset charge, Qreset.

5. Transfer signal charge to floating diffusion.

6. Read and record signal charge.

7. Subtract values from 4 and 6 to calculate final pixel value (Correlated Double Sampling).

Reset

V(FD)

RowSel

Transfer

I---Tint----.l·l i

J1;, rn--7----Jrl
--+-------Jrhl
-4__--.JJN
---+-----'~

L..- ---' -+-.......j-__-I~ time
./': :..........

Read Qreset Read Signal

Figure 2.8. Control signal waveforms for 4T photodiode APS.

In more detail, operation begins by resetting PPD by pulsing Transfer to remove all charge

in the diode. Because of the fixed pinning potential of PPD, charge transfer is complete[26], thus

resetting PPD at the same time. During integration, the transfer gate, M./, is turned off and charge

is collected in PPD. Readout of a single pixel begins by pre-charging FD through M3• RowSel is

also activated and the reset value is buffered by the source follower (described in Section 2.2.1)

before being stored by sample and hold circuitry. Finally, all collected charge from PPD is

transferred to FD, creating a potential given by,

V(FD) = Qresel-1int(1pholo +ldark),

CFD

(2.9)
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where CFD is the combined capacitance of the floating diffusion, the amplifier gate, and parasitic

elements; the remaining terms of the above equation were given in Eq. (2.6). This signal voltage

is also sampled by the sample and hold circuit and subtracted from the reset value in a process

called Correlated Double Sampling (CDS). In this case, the sampling is correlated because the

signal is read immediately after the reset value so the temporal noise component of Qre.e, is

common to both values. The final stored pixel output is again a linear function of illumination,

dark current and integration time as given earlier in Eq. (2.8) because the 4T APS operates in

fundamentally the same manner as the 3T APS.

2.2.3 CIS Arrays

Both of the CMOS APS pixel architectures are typically implemented as a matrix of pixels

like the system shown in Figure 2.9, albeit varying levels of integration. Pixels can be randomly

accessed because each one in includes a photosensing element, charge-to-voltage conversion

element, and an amplifier (i.e. the simple source-follower). Typically, the imager is arranged in a

column-parallel architecture, such that output signals from a column of pixels are multiplexed

together and fed to a dedicated sample and hold circuit for use in the CDS process. Some designs

may also incorporate on-chip analog-to-digital converters, including dedicated column-parallel

devices, although the cameras tested in Chapter 3 integrate only the analog components prior to

digital conversion. Discussion of the exact circuit used for each block varies significantly

between sensors but additional information can be found in [29].
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Figure 2.9. Block diagram of a typical CMOS APS array.

2.3 Charge-Coupled Device Arrays

Despite the many apparent advantages of CIS, Charge Coupled Devices (CCD) continue to

be widely employed due to their maturity and reliable performance. CCDs were first conceived

and implemented by Boyle and Smith at Bell Labs in 1969 for use as analog memories, but they

quickly discovered that CCDs could be charged by visible light via the photoelectric effect and

were thus useful as solid-state imagers[30]. Since their inception, CCD sensor designs have

evolved significantly, but current· commercial chips primarily use the multiphase clocking

variation of the Interline Transfer CCD (lTCCD) or Full Frame CCD (FFCCD) designs[31].

Many manufacturers do not reveal which particular design is implemented in their chips, but the

ITCCD and FFCCD dominate the high-end market because of their superior performance.

Both systems split imaging into three distinct functions. Light collection takes place in either

a photodiode or photogate, charge transfer occurs in the Vertical CCD (VCCD), and charge

readout is done by the Horizontal CCD (HCCD). Further system processing tasks like analog gain

and digital conversion are typically perfonned off-chip and will not be discussed here. Because
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the design and operation of photosensors were described Section 2.1, the remainder of this section

will focus on the basics of CCD operation.

2.3.1 Charge Transfer

The CCD is primarily used to move charge around the semiconductor. Its basic structure is

an array of closely-space MOS capacitors with overlapping dual gates to allow careful control of

the semiconductor surface potential everywhere. Individually, each CCD cell is the same as the

photogate described in Section.2.1.2. A unit cell for a simple 4-phase CCD is shown in

Figure 2.10; this same structure is repeated many times to build a VCCD or HCCD.

p-type substrate

Figure 2.10. Physical structure of a basic 4-phase charge-coupled device (CCO).

To move charge, the voltage applied to each electrode is varied in order to raise or lower the

surface potential under the electrodes. Diffusion and drift transport mechanisms then cause

charge to move from positions of high potential to low potential. Figure 2.1 I demonstrates the

process of moving a packet of charge along the VCCD; Figure 2.1 I(a) shows the surface potential

underneath each electrode at each instant in time, while Figure 2.11 (b) illustrates the voltage

applied to each electrode phase.

20



TO

Q)

E
i= T2

T3

<1>4 <1> 1 <1>2 <t>3 <1>4 <1>1

..L-..L..L..L...L..J.. <1>1 <1>2 <t>3 <1>4

~~~~
Electrode Potential
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Figure 2.11. Charge transfer process in a CCO as it proceeds over time. (a) Surface
potential underneath each transfer electrode. (b) Voltage applied to each

electrode, after Yamada[31].

Initially, at time TO, a high voltage is applied to electrodes <1>2 and <1>3, while a low voltage is

applied to <I> I and <1>4, creating a potential well under the centre of the CCO. In this state, charge

can be transferred to the resultant well from an attached photodiode, but the charge cannot be

transferred laterally to other pixels. To transfer charge along to the next pixel, the electrodes are

toggled according to the pattern of Figure 2.1 I until the charge packet reaches its next

destination.

Note that deep trap states in the CCO channel can inhibit charge movement between wells,

affecting the charge transfer efficiency (CTE), which quantifies the percentage of charge that is

successfully transferred. This limitation is particularly important when considering that charge

must be shifted across thousands of wells in a readout operation. Even if 99.9% CTE is achieved

in individual cells, only 35.9% of the charge remains after shifting across 1024 CCO phases,

which corresponds to a relatively small sensor array. As discussed earlier, Si-SiOz interface traps

are a major source of traps in the channel, thus most commercial sensors modify the CCO
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structure to use a buried CCD (BCCD) akin to the structure described earlier in Figure 2.4(b).

Defects in the silicon bulk within the CCD well also reduce CTE but with lessened impact

because such damage is typically not repeated across an entire row of pixels.

2.3.2 Interline Transfer CCO

We can now put together a simplified interline transfer CCD (lTCCD) sensor shown in

Figure 2.12. The device utilizes a matrix of pinned photodiodes to capture light and accumulate

charge. Arrays of 4-phase BCCDs are placed in vertical stripes between columns of photodiodes

and are hence called the vertical CCDs (VCCD). A single row of CCDs, called the horizontal

CCD (HCCD), is placed at the end of the VCCDs and is used to move charge packets toward the

output amplifier. Both the HCCD and VCCDs are shielded from light by metal conductor layers

so that the photodiodes are the only photosensitive elements in the system.

Vertical CCD

Readout and Amp

Figure 2.12. Block diagram of an industry-standard interline transfer CCD image sensor,
after Yamada[31].

Operation begins by transferring all charge out of the PPDs, then 'light integration proceeds

as described earlier. Immediately after this period, charge is transferred from the photodiodes to

the optically-shielded VCCDs so that an electronic shuttering effect is achieved. Next, the
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VCCDs shift charge down by one row so that the bottom-most row is transferred into the HCCD,

which in-turn rapidly transfers packets into the output amplifier. This process repeats until each

row of charge is shifted into the HCCD.

Pixel readout may be performed in one of two sequences, depending on the complexity of

the sensors: Progressive-Scan ITCCDs (PS-ITCCD) transfer all of the pixels at once, as described

above; conversely, simpler Interlace-Scan ITCCD (lS-ITCCD) arrays first transfer charge from

photodiodes in even-numbered rows and then transfer charge from the odd rows of the sensor.

Regardless of the scan sequence, charge-to-voltage conversion is done pixel-serially at the

end of the HCCD by a single combination ofa floating diffusion and a source-follower amplifier

(sometimes multiple amplifiers are placed at each end of the CCD). Therefore, despite the

complex circuits involved, the stored pixel output is again a linear function of illumination

intensity, integration time and dark current, as given by the now-familiar equation:

Tint Vphoto + I dark)
Vpixel = a ,

C FD

(2.10)

where a includes the gain of the source-follower as well as losses due to less-than-ideal CTE, and

CFD includes the floating diffusion capacitance and connected parasitic elements.

2.3.3 Full Frame CCO

The basic FFCCD is illustrated in the block diagram of Figure 2.13. Here, the VCCD plays

the dual role of combined photosensing element and vertical transfer element, while the rest of

the system is the same as the lTCCD. During integration, the VCCDs act like photogates,

collecting charge in a potential well. During readout, they behave like shift-register CCDs used in

the ITCCD. This simpler structure allows more of the pixel area to be made light sensitive, which

improves the overall illumination sensitivity of the imager.
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Figure 2.13. Block diagram of a full frame eeD system, after Yamada[31]

2.4 Pixel Response

The preceding discussion showed that, as a first approximation, the imagers of interest

respond to light in almost identical fashion. Therefore, we can build the following common model

of the desired pixel response:

Y = {m. Tint· (Iphoto +1dark )+ L\+ < Noise >,

YSat ,

0< Y < YSat }

otherwise '

(2.11 )

where Y is the normalized pixel output (i.e. independent of the physical quantity measured); m is

a combined gain term, called the sensitivity, that incorporates all appropriate factors, such as

collection efficiency of a given wavelength of light, charge-conversion gain in the photodiode or

floating diffusion, source-follower attenuation, and any analog gain; L\ is any residual offset not

removed by double-sampling; <Noise> represents all the collective temporal noise sources in the

signal path; and the remaining terms are familiar from previous sections. YSot indicates the

saturated output level (a value of I in this normalized system) that is reached when the potential

well of the photo-collection element (i.e. photodiode or photogate) has been completely filled
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with electrons. Once the pixel reaches this state, the output remains constant and further incident

illumination cannot be measured.

Note that analog gain, and consequently the sensitivity, m, is programmable in most imagers

systems to accommodate a variety of scene brightness levels. In photographic cameras, this gain

is adjusted in increments such that the camera's absolute light sensitivity conforms to an

international standard, International Standards Organization (ISO) 12232:2006, that relates scene

luminance to pixel output in several ways. Thus, the programmable gain level is often referred to

as "ISO sensitivity" or "ISO speed" with appropriate values.

The relationship in Eq. (2.11) is expressed graphically in Figure 2.14 as an illumination

response curve, where the illumination intensity (directly related to IphOlo) is taken as the

independent variable. The curve is given for a fixed Tint so that offsets due to dark current and

other elements are lumped together.

Dynamic
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Figure 2.14. Representative illumination response curve of an image sensor.

The key performance measures that can be extracted from Figure 2.14 are sensitivity and

dynamic range (DR). Sensitivity is the slope of the response curve, measured as pixel output per

illumination intensity.
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Dynamic range is the range of usable signal swing at the pixel output and directly determines

the range of illumination intensity that can be imaged in a single exposure. Dynamic range is

bounded on the lower end by offset and noise floor and on the higher end by the saturation level,

which is determined by the pixel capacity, Qrese,. Factors that increase offset, like excessive dark

current, will reduce dynamic range and consequently the measurable illumination range.

Figure 2.15 shows a typical scene imaged with a wide dynamic range sensor and a reduced

dynamic range sensor. Clearly, the image with larger dynamic range conveys more detail and

demonstrates the importance of reducing dark current-induced pixel offset to maintain dynamic

range.

(a) Wide dynamic range image (b) Reduced dynamic range image.

Figure 2.15. Scene imaged with (a) wide and (b) reduced dynamic range.

Note that device properties can fluctuate across the area of an image sensor, leading to inter­

pixel variations in sensitivity and offset that are collectively called Fixed Pattern Noise (FPN).

Specifically, differences in m are labelled photo-response non-uniformity (PRNU) while shifts in

D. are termed offset FPN.
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2.5 Faulty Pixels

Like all microelectronic devices, image sensors are susceptible to defects in the materials,

which can cause undesired pixel behaviour. Damage to key structures like interconnects, gate

oxides, or silicon bulk can cause outright pixel failure (e.g. disconnected or short-circuited power

supplies) or less obvious but equally severe effects like reduced sensitivity. Circuit failures can be

classified as either "hard" or "soft" depending on whether they have a permanent or transient

effect. This work considers only hard fails, which are permanent damage to the pixel and which

degrade every image captured after they develop. Moreover, although failures can conceivably

occur in any functional block of an imager, this thesis considers only effects on the pixels because

the photosensing region of the sensor occupies the vast majority of the chip area, making it the

most susceptible to failure.

2.5.1 Fault Types

In standard terminology, physical damage to semiconductor structures, such as the

displacement of atoms in the silicon bulk, is referred to as a defect. The physical process causing

the defect is called the defect mechanism. The observed erroneous behaviour is termed a fault.

Here, a faulty pixel is empirically defined as one that either behaves significantly different from

Eq. (2.11) or has parameters that deviate from the rest of the sensor.

With reference again to Eq. (2.11), a number of conceivable fault types arise due to large

shifts in sensitivity, m, offset, /1, dark current, Idark. or combinations of these three variables.

Table 2.2 gives a summary of the fault types considered in this work. Similar faults can be

grouped into families, as listed in the first column of Table 2.2. The second column gives the

common name of each fault type, and the parameter change column describes which variables in

Eq. (2.11) deviate from the norm to cause the given fault. The final column in Table 2.2 describes

how that faulty pixel would distort a monochrome (grey scale) image. In order to maintain

generality across all sensor technologies, this fault model is completely descriptive and does not
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specify which defects cause each fault. The impact of these faults on a sample image is shown in

Figure 2.16.

Table 2.2. Summary of faulty pixel types.

Fault family Fault name Parameter chanJ!e Description

Stuck low m=O Always dark

Fully stuck Stuck high 11 = 1.0, m = 0 Always bright

Stuck mid o< 11 < 1.0, m = 0 Always grey.

Partially stuck Partially stuck 0<11 < 1.0
Responds to light but never goes
black.

Abnormal High sensitivity m» 1.0 Always brighter than neighbours.

sensitivity Low sensitivity 0< m« 1.0 Always darker than neighbours.

Hot Hot pixel Idark » 0 Bright spots in long exposures.

Stuck
Low

Figure 2.16. Sample scene distorted by standard faulty pixels.

Note that we can classify the above failures as catastrophic faults (usually shortened to

faults) or parametric faults, although the distinction is somewhat fuzzy when applied to imaging

pixels. Here, catastrophic faults are those whereby the pixel no longer produces any usable

output, such as fully stuck pixels. Parametric faults refer to pixels that produce some illumination

dependant output with a non-catastrophic shift in some imaging parameter, such as partially

stuck, abnormal sensitivity, and hot pixels that have shifts in m, 11, and I dark, respectively.
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The impact of the fully stuck faults (stuck high, low and mid) is the most severe because

those pixels cannot measure light and can only create FPN. Similarly, while partially-stuck and

hot pixel faults remain sensitive to light, they contribute to increased FPN and a much reduced

dynamic range due to the offset component, as explained in Section 2.4. Abnormal sensitivity

faults contribute to PRNU.

2.5.2 Defect Mechanisms

Defects can be broken down into two categories based on when they occur: at manufacture

time (i.e. before the product is shipped) or after the product is in the field. Manufacture-time

defects have been a focus of the semiconductor industry since its inception in order to maximize

the yield of usable chips on a wafer and lower production costs. Although yield is always a

concern, manufacture-time faults in image sensors pose a relatively minor challenge to the final

application because imager chips can be readily calibrated before leaving the factory. Unlike

digital devices, small numbers of defects can be tolerated in image sensors.

After calibration, only two solutions are available. The simplest solution is to discard sensors

with excessive faulty pixels so that only high-quality imagers reach the product. Alternately,

when the quantity and nature of defects is acceptable, the locations and types of defects can be

stored in a memory, allowing the end application to deal with them intelligently. For example,

manufacturers typically subject cameras to an optical calibration procedure in order identifY

faulty pixels before the product leaves the factory (see Section 3.1 for an example process) [32­

37]. The location (i.e. pixel coordinates) of each fault is recorded in a fault-map, which is stored

in the camera's firmware. During in-field operation, the DSC can therefore apply a correction

algorithm to fix the resultant pixel value at each known-faulty pixel location in every image

captured. Often, the correction is as simple as replacing the faulty pixel with a neighbour or an

average of several neighbours.
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Conversely, in-field defects, those created after the product leaves the factory, pose a further

challenge: because in-field faulty pixels develop after factory calibration, the final application

does not know about them and cannot correct for them.

A detailed review of individual in-field failure mechanisms in microelectronics is beyond the

scope of this thesis(see [38-41] for more details). However, the cause offaults in imagers needs to

be determined in detail. To this end, this section classifies defects into two categories, "material

degradation" or "external stress," according to the source of the damage mechanism. Material

degradation arises from intrinsic changes of the materials within the sensor array under ordinary

operating conditions. External stresses are unexpected events that cause failures in good devices.

The characteristics of these defect mechanisms, which are detailed in the section to follow, will

be used in Chapter 3 to determine the underlying mechanism responsible for in-field faults in

imagers. In both cases, a particular challenge of evaluating defect mechanisms in image sensors is

their sensitivity to parametric faults that may otherwise be tolerated by digital systems.

2.5.3 Material Degradation

Material degradation refers to changes in electrical properties of any of the thin-film layers

in a semiconductor device, including the silicon bulk, ion-implanted regions, gate dielectrics, gate

materials, conductors, and inter-layer dielectric materials. Some common examples in standard

CMOS circuits are gate oxide dielectric breakdown, ion migration, hot carrier degradation, and

electromigration [38].

Briefly, gate oxide dielectric breakdown increases transistor gate currents, which contribute

to signal leakage. Ion migration into gate oxides can lead to variations in transistor threshold

voltages, affecting parameters like leakage drain currents, source-follower gains, or even APS

reset levels. Hot carrier degradation occurs when electrons and holes, accelerated by large electric

fields in MOSFETS, are injected into the gate oxide, where they can be trapped or cause defects.
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Consequently, the transistor experiences a threshold voltage shift with the associated effects on

pixel characteristics. Electromigration is the movement of metal atoms in conductor lines, caused

by the flow of electrons when large currents are applied. This displacement of metals can

eventually cause open circuits (or short circuits in some instances) that would completely disable

pixels[38].

While all of the above mechanisms are vastly different, they all affect the same family of

materials in integrated circuits (lCs) and we can expect the resulting faults to share the following

spatial and temporal traits:

• Multiple faults will form in clusters of closely-spaced failures localized to relatively small

areas;

• Parametric faults will develop in a gradual and continuous process with the observed effects

becoming progressively more pronounced over time;

• Faults will develop at an increasing rate, such that the fault density over time will grow faster

than linearly.

The spatial distribution of faults can be directly related to the IC manufacturing processes

because the initial quality of the resulting thin-film materials determines the susceptibility to

failure of circuit elements and thus pixels. This is especially true for the very regular arrays found

in imagers, where the local environment around each pixel is the same everywhere across the

chip. Consequently, in-field material-related failures will follow the same statistics as

manufacture-time defects that affect production yields. In particular, early yield models

(incorrectly) assumed that defects develop independently across a wafer's surface, resulting in a

uniform distribution as in Figure 2.17(a). To the contrary, fabrication engineers quickly found

that defects tended to cluster into localized clumps, thereby affecting fewer die simultaneously, as

illustrated in Figure 2. I7(b)[41]. Thus, we can expect in-field material-related failures to form in

similarly sized clusters. Given the large area sensors utilized in current high-end DSCs (i.e. about
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2.5-times the area of the large modern digital microprocessors; see Chapter 3), these fault clusters

would be readily localized to regions in a given sensor.
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(a) Uniform defect distribution. (b) Clustered defect distribution.

Figure 2.17. Theoretical defect distributions across a single wafer. (a) Na'ive uniform
distribution, (b) observed distribution with clustering.

Some imager-related device failures can safely be treated as sudden events, as is typically

done in the literature on general IC reliability. For example, electromigration may pass unnoticed

until an open circuit develops and disconnects a pixel from the column bus. However, most of the

physical degradation mechanisms are themselves continuous processes that gradually change

device parameters over time. For instance, ions may accumulate over time in oxides, continually

varying the threshold voltage and transconductance of the transistor. Similarly, injected hot

carriers accumulate over time with similar effects. In digital devices, these mechanisms have little

impact until sufficient damage accumulates to cause outright failure in a transistor (e.g. complete

dielectric breakdown through a gate oxide), justifying the treatment of those failures as sudden

events. However, imagers are sensitive analog circuits, and even small shifts in the parameters of

the device in any of the imaging architectures could lead to noticeable changes in imaging

characteristics. Thus we can expect that most faults, with the exception of a few catastrophic

failures like the open circuit example above, would develop gradually over time. Parameters like

sensitivity, offset, or dark current are all analog quantities that may be shifted by the

accumulation of damage as the device materials degrade over time.
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The failure rate of devices due to material-related catastrophic faults is well-known to be an

increasing function of time (i.e. the number of failures per day increases with the age of the

lC)[38]. This occurs because the continuous degradation of material properties makes an

increasing quantity of devices susceptible to failure from ordinary applied stresses. However, the

exact rate of increase will depend on the physical mechanism responsible for the observed failure.

Similarly, the degradation rate of parametric faults will depend on the exact nature of the

mechanism responsible such that the nature of the failure rate cannot be predicted ahead of time

(note: in the case of parametric faults, we can define failure rate as the rate of change of

parameters like sensitivity, etc). Many of degradation processes described in this section are

positive feedback processes that will indeed lead to an increasing parametric failure rate, while

many others may exhibit a nearly constant degradation rate. Nonetheless, few mechanisms slow

down or reverse themselves in the conditions typical for image sensors [38].

2.5.4 External Stresses

External stresses typically refer to user or environment-induced damage, such as over­

voltage power supplies or electrostatic discharge (ESD), which can rupture gate oxides and render

sensors unusable. Similarly, packaging failures, like delamination of the die from the package

frame, can also occur due to thermal stress or excessive moisture absorption[38]. However, in all

such cases, the entire imager is disabled, making these mechanisms irrelevant to pixel-level

faults.

Radiation is another external stress known to cause failures in all microelectronics in both

terrestrial and space environments, although imagers are especially vulnerable because of their

sensitive analog nature. Specifically, research on space-borne devices indicates that energetic

particles like ions, protons, neutrons, photons, etc., create hard pixel-level failures via two

dominant mechanisms: ionizing and displacement damage[42].
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Displacement damage results when particles collide directly with atoms in the device,

causing them to move. When this occurs in the silicon bulk, the regular structure of the silicon

lattice is disrupted and additional energy states are created inside the bandgap[43]. As was

described in Section 2.1, these trap states give rise to increased dark current when the defect is

located in or near the photodetector depletion region. Laboratory experiments have demonstrated

the creation of hot pixels as a result of proton and neutron irradiation in both CCD and APS

arrays [6, 44-46]. Moreover, Chugg et al. confirmed that a single neutron interaction is sufficient

to create a hot pixel [46], demonstrating that hot pixel effects are not limited to environments

with a high particle flux. Accordingly, in low flux environments, radiation-induced displacement

damage is likely to be confined to small areas (i.e. regions within a single pixel).

Both photogate and photodiode sensors perform photoelectric conversion and charge

collection within the silicon bulk, making them both susceptible to dark current spikes induced by

displacement damage. Consequently, all of the CIS and CCD architectures described in this thesis

are sensitive to displacement damage-induced hot pixels. However, CCD sensors are potentially

further affected because lattice defects in the transfer channels can cause reduced charge transfer

efficiency (CTE).

Ionizing damage results when an energetic charged particle travels through dielectric layers

(i.e. gate and isolation oxides) and deposits charge along its path. In many cases, the deposited

charge is immobile and remains permanently in the oxide, causing threshold voltage shifts in

MOS devices[47]. For example, accumulated positive charge in the CCD gate oxide will increase

the depth of the depleted region and hence increase device sensitivity, as well as dark current.

Moreover, charge accumulation in the gate oxides of transistors in an APS could lead to a shift in

sensitivity if the source-follower or transfer-gate are hit. Ionizing damage also leads to an

increase in trap states at the Si-Si02 interface, giving rise to increased dark currents in some
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photodetectors[48]. Similarly, electrically-neutral particles, like neutrons, can also deposit charge

as a by-product of collisions with the device[49].

Note that several other, more destructive radiation-induced mechanism are also known to

occur in space-borne microelectronics, including single-event latchup, single-event gate rupture,

and single-event snap-back [50]. However, many of those effects are typically limited to dense

digital circuits, and none of the detailed experimental radiation-effects studies have reported

significant occurrences of such faults in CIS or APS arrays[I2, 42, 44-46, 48,51-53].

2.5.4.1 Cosmic Rays and Radiation Sources

Cosmic rays and radioactive emission from materials in the camera's environment are the

primary sources of radiation for imagers. Cosmic rays are energetic particles originating from

various sources in outer space. Primary cosmic rays in space are made up predominantly of

protons and alpha-particles (i.e. Helium nuclei) with very high energies[54], which readily inflict

damage on space-borne sensors.

Space-borne cosmic rays also impinge on the earth, interacting with the planet's magnetic

field and atmosphere. As these energetic particles travel toward the surface, they collide with

atmospheric particles, with each collision creating a dispersed shower of new, lower-energy

particles. This cascade of showers produces ground-level cosmic rays, called Terrestrial Cosmic

Rays (TCR), that are distributed relatively uniformly over large areas up to 100 kIn, although

even small showers are much larger than a typical image sensor. Neutrons make up the most

significant component of TCR, arriving at an attenuated but significant flux of approximately

103 neutrons/mm2-year. Ziegler further estimates that this flux results in about 2.5 collisions per

year between neutrons and active silicon in an average chip[54].

Note that both altitude and geographic location severely affect the flux and spectrum of

terrestrial cosmic rays. Altitude effects arise because of the interactions between atmospheric and
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cosmic ray particles. Geographic location is a factor because the Earth's magnetic field, which

shields the surface by deflecting particles, becomes progressively less effective near the planet's

magnetic poles. for example, neutron flux at transcontinental airplane cruising altitudes (about

12 kIn) is approximately 100 times higher than at ground level and contains a slightly larger

proportion of protons[54]. Similarly, mountainous regions or cities at high elevations, such as

Denver, Colorado, experience higher cosmic ray densities than sea-level cities like Vancouver,

BC. As an example, Table 2.3 shows the cosmic ray intensities from several locations relative to

the author's location in Vancouver[55]. Note that the TCR intensity throughout this sampling of

locations varies only by a ratio of 7.1 in the worst case.

Table 2.3. Relative cosmic ray intensities of some sample cities[55]

Cit Relative intensit Elevation m

Vancouver, BC 1.00 12

Calgary, AB 2.52 1048

Denver, CO 3.95 1610

Geneva, Switzerland 1.38 430

Hong Kong, China 0.56 "''''.).)

Tokyo, Japan 0.63 4

Over time, TCR flux intensities at a particular location remain very stable. Variations caused

by the changes in the solar cycle amount to than 20% worst-case difference over 40 years, with

year-over-year variations limited to less than 5% [54].

Damaging radiation may also originate inside the camera system. The camera housing, lens

glass, and even the cover glass used to shield the sensor have been suggested as sources of

damaging radioactive particles. For example, trace amounts of radioactive thorium and uranium

in the packaging materials of early dynamic memories 'contributed to significant and unexpected
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soft error rates in those devices[56]. However, recent experiments have concluded that cosmic ray

neutrons are more likely to cause such damage[52].

2.5.4.2 External Stress Characteristics

With TCR established as the most prominent source of energetic particles that lead to

radiation-induced external stress failures, we can predict the following spatial and temporal

characteristics of such faults:

• Uniformly distributed faulty pixels across any given sensor;

• Faults limited to a individual pixels (i.e. no large clusters offaults);

• Sudden activation offaults arising after a successful particle interaction;

• Continuous and roughly constant rate of fault development.

2.5.5 In-Field Fault Summary

This section has reviewed the basic expected behaviour of in-field faults in image sensors.

The temporal and spatial characteristics determined for each class of defect mechanisms will be

applied again in Chapter 3 to attribute a source to experimentally-located faults in commercial

imagers.

2.6 Fault Tolerant Active Pixel Sensor

The Fault Tolerant Active Pixel Sensor (FTAPS) was proposed in 1999 by Chapman and

Audet[15] to improve the manufacturing yield of image sensors. Originally intended to negate

simple manufacture-time stuck-high and stuck-low faults, the design incorporates redundancy

directly into the APS cell with minimum area overhead or control complexity.

The block diagrams of Figure 2.18 illustrate how this redundancy is achieved with minimal

impact to sensing performance. A standard current-mode APS is split into two equal halves and

the control transistors are replicated in each sub-pixel. The photosensor is also divided into equal

components so that the overall photosensitive area remains the same. Because the active
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components occupy so little area in modem fabrication processes, the impact is a minor reduction

in fill-factor compared to a standard pixel when the pixel dimensions are kept the same.

Photosenstive Regions

Photosenstive
Region

Control Transitors

(a) Standard 3T APS.

Sub-pixel Sub-pixel
A B

Control Transitors

(b) Fault Tolerant APS.

Figure 2.18. Block diagram of circuit layout for (a) standard 31 APS and (b) FlAPS.

The schematic of the FTAPS in Figure 2.19 suggests how the two sub-pixels operate

independently and in parallel. During integration, both sub-pixels collect and store light in their

respective photodiodes. Once the common row select signal is activated, the current-mode

outputs from both sub-pixels are mixed into a single common current-mode signal, lout. In this

way, a fault in either sub-pixel is isolated to that side, while the other sub-pixel continues to

produce a usable output. A detection and correction algorithm can then be used to extract the

value measured by the working half. For example, to correct for a stuck-low sub-pixel fault, lout

simply needs to be multiplied by 2.0 in the camera.
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Figure 2.19. Schematic diagram of the FlAPS.

Because the control and output signals are shared between both halves, no complexity is

added to the control and readout circuitry. Moreover, the shared nature of the pixels allows them

to be placed closer together to sample the same incident light.

The FTAPS was previously implemented in 0.35 Ilm and 0.18 Ilm standard CMOS

technologies and shown to exhibit sensitivity on par with standard 3T APS designs [16, 17, 20,

21]. Jung [20] and La Haye [21] also analyzed the noise performance of the FTAPS with and

without defects and found the SNR output from the FTAPS is greater than or equal to the SNR.
from standard sensors without defects. When defective, the FTAPS SNR was at worst one half

that of a working standard pixel but infinitely better than a faulty standard pixel.

These previous works focused on testing the ITAPS with simple stuck faults. Chapter 4 of

this thesis extends that research by evaluating how the FTAPS behaves under the influence of

more complex hot pixel faults, which Chapter 3 shows are the dominant fault type in commercial

cameras
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2.7 Summary

Both CCD and CIS imagers convert incident photons to charge via the photoelectric effect in

the silicon bulk and then capture that charge in a reverse-biased photodiode or depleted

photogate. Dark generation also occurs inside both photoelements and leads to an undesired dark

signal that diminishes their continued light collection capacity. Active pixel sensors use a single­

transistor source-follower inside the pixel to amplifY signal from the photodiode for transmission

to chip-level amplifiers and analog-to-digital converters. Charge-coupled device imagers shift

charge to chip-level circuitry by controlling the surface potential of rows of abutting MOS

capacitors. Both sensor types achieve a similar, linear illumination response, which is

characterized by the sensitivity, offset, and dark current parameters.

Pixels that exhibit significant shifts in these parameters are called faulty. Fully stuck,

abnormal sensitivity, and hot pixels are used to describe potential fault types. Defects are the

physical points of damage that lead to faulty pixels. In-field faults occur when a defect develops

after the camera leaves the factory. Physical mechanisms causing in-field failures can be

categorized as material degradation or external stress, where the former is due to an intrinsic

failure of the materials in an imager, while the latter refers to external event causi~g damage to

otherwise good imagers. Material degradation mechanisms will be related to the fabrication

process and will share its characteristics. Such faults will likely occur in large areas, forming

clusters; they will develop gradually over time as the material fail; and their growth rate will

increase over time. External stress-related failures will most likely be caused by radiation

damage, whereby incident energetic particles collide with or pass through the semiconductor,

damaging it. As such, these faults will likely occur at individual pixels, with fault locations

distributed uniformly across as a sensor. In addition, radiation-related failures will develop

suddenly and at a constant rate throughout the imager's lifetime. Chapter 3 will gather empirical

evidence about the nature of in-field defects that really occur in common cameras to determine
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the prevalence of the defect types discussed so far, and determine which category of mechanisms

best applies to common sensor arrays.

Furthermore, fault tolerant pixel designs have already been shown to handle manufacture­

time fully stuck faults. Experiments in Chapter 4 will build on this previous research and show

that the FTAPS can also combat the more complicated hot pixel fault type.
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CHAPTER 3

IN-FIELD DEFECT CHARACTERIZATION

Camera users have long reported anecdotally that some pixels in their DSCs become faulty

over time, even when operated in benign environments like a living room. However, such reports

have usually been qualitative in nature, and details like how and when pixels fail, the number of

failures, and the behaviour of failed pixels have not been available. There is also the reporting

bias: only users experiencing failures report them while those without faults are silent. Although

space-borne imagers and other research instrument cameras destined for harsh environments have

been studied extensively, in-field pixel failures in terrestrial imagers have been seemingly ignored

in the literature. One relevant study was conducted recently by Theuwissen [53], but his

experiments were limited to a particular CCD sensor model and considered a simplified defect

model by measuring only the magnitude of hot pixels.

This chapter describes experiments to determine the nature of in-field pixel failures in

ordinary consumer digital cameras, with the aim of understanding the responsible defect

mechanism and proposing a future solution. Laboratory calibration is performed on a set of

digital still cameras to measure pixel response characteristics and determine how faulty pixels

deviate from the norm. The quantity, location, and illumination response of pixel faults are then

considered in order to quantify the following:

• Prevalence of in-field faults;

• Types of faults affecting real cameras;

• Rate at which faults develop;
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• Long-term stability of pixel faults.

Finally, these measured parameters are subjected to statistical analysis to extract details about the

spatial and temporal distribution of in-field faults in order to infer characteristics of the causing

defect mechanism. Ultimately, the most probable mechanism is identified.

3.1 Experimental Method

Previous studies of aging in solid-state imagers specifically focused on hot-pixels, measuring

and reporting only the distribution of dark currents in a given sensor[53], while ignoring other

important details like spatial and temporal relationships between faults; as well as the illumination

. response of those faults. Furthermore, most aging experiments directly applied cumbersome

laboratory tests to a particular sensor, limiting data to that particular implementation design and

technology. The experiments described here build on that earlier work by collecting both spatial

and temporal fault data while testing for all possible fault behaviour described in Section 3.1.

Furthermore, the tests are designed to be performed on complete camera systems, allowing many

different sensor designs to be considered in the same data set.

Darkfield (no illumination) and brightfield (uniform illumination) calibration of pixel

responsivity form the core of the testing procedure. In addition, to verify that identified pixel

faults are the result of in-field defects and not manufacture-time failures, photographs taken early

in the lifetime of each camera were analyzed for the presence of faulty pixels. This processing

step was a limiting factor in determining the criteria for labelling a pixel as faulty. Only those

pixels that had anoticeable impact on a reasonable photograph (e.g. a 0.5 second exposure in the

case of a hot pixel) were labelled as faulty.

A brief summary of the test procedure is as follows:

I. Capture darkfield images.

2. Capture brightfield images.

3. Analyze data and identify faults.
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4. Compare fault map to early-lifetime images to isolate in-field defects.

These experiments were designed to simplify data collection from a large sample of

commercially available OSCs. Because the focus is on in-field defects, only cameras that have

been in the field for a significant amount of time can be considered. Therefore, to keep the cost

and timeframe of this project reasonable, volunteer photographers were asked to calibrate their

own cameras according to the specified procedure and submit the resulting data for analysis. As

such, the procedures in the following sections were designed to balance accuracy with ease-of use

because the typical camera user does not own complex optical apparatus.

3.1.1 Test Cameras

Testing was performed on high-end digital Single-Lens Reflex (SLR) cameras at various

stages in their lifetimes. These cameras are professional or semi-professional grade, commercially

available OSCs, selected because they allow manual control over most aspects of image

acquisition so that almost any calibration process can be applied. Both CIS and CCO imagers

from several technology generations were included. All tested sensors were relatively large area

(about 3.5 cm2
) devices as is the state-of-the art in high quality cameras.

Further details about each camera are given in Table 3.1 Cameras are sorted according to

sensor technology (CCO or CIS) and, when publicly available, the specific sensor topology is

given in the third column. Age is the approximate time between the most recent testing of each

camera and the time it was first used by the owner (which may differ from the manufacturing

date). The shortest recognizable model name is listed for each camera.
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Table 3.1. Details of tested digital still cameras.

Number
of pixels

Camera Model Sensor e (millions)

A Nikon DIX Unnkown CCD 5.3 23.7 x 15.7 4.8

B Nikon D50 PS-ITCCD 6.1 23.7 x 15.5 2.0
•

C Nikon D70 PS-ITCCD 6.1 23.7 x 15.5 1.4.
D Nikon D80 PS~ITCCD 10.2 23.7 x 15.5 0.6

.E Nikon D80 PS-ITCCD 10.2 23.7 x 15.5 0.7

F Nikon 0200 PS-ITCCD 10.2 23.6 x 15.8 0.4

G Canon EOS 300D '4T PPD APS 6.3 22.7 x 15.1 3.3

H Canon EOS 10D 4T PPD APS 6.3 22.7 x 15.1 4.3

Canon EOS 3500 4T PPDAPS 8.0 22.2 x 14.8 1.6

J Nikon D2X Unknown CIS 12.4 23.7 x 15.7 0.1

K Nikon D2X Unknown CIS 12.4 23.7 x 15.7 1.5

The primary benefit of using high-end DSLR cameras is the ability to read out raw image

data. Separating the subtleties of pixel response from in-camera image processing is a particular

challenge in characterizing commercial hardware, where only the pixel hardware characteristics

are of interest, but the sensor functions as part of a larger system designed to create pleasing

photographs. Consequently, pixel behaviour is distorted by processing that transforms raw image

.data into a recognizable picture.

For instance, some steps performed in the imaging pipeline of most high-end OSCs are

linearization, (limited) dark signal removal, image scaling, demosaicing, exposure compensation,

and compression. Linearization maps the non-ideal nonlinear pixel response (i.e. due to changes

in pixel and floating diffusion capacitance) back to the ideal linear response. Basic dark signal

removal eliminates the average background dark signal present in all pixels by estimating that

offset from specially designated light-shielded pixels at the sensor periphery. Oemosaicing is

applied to images from all colour filter array cameras, where individual pixels are made sensitive
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to a small range of wavelengths (i.e. a pixel senses either red, green, or blue light). Demosaicing

is the interpolation process that converts these individual colour samples into a complete red,

green, and blue colour vector at each pixel site in the output image. Finally, compression

processes, like the familiar JPEG method, are typically lossy, discarding some data from the

image.

In short, all of these blocks in the imaging pipeline alter pixel values between the exposure

and file-save steps, potentially enhancing or masking the impact of faults in an unknown way.

Thus, it is absolutely necessary to use raw image data (prior to any processing) for characterizing

faults. All measurements presented in the following section were obtained from linearized raw

images prior to any geometric transformations or colour processing. Of course, each manufacturer

may perform undocumented steps prior to saving raw data, which can be a hindrance to extracting

meaningful measurements from captured data.

3.1.2 Darkfield Calibration

Darkfield calibration identifies hot pixels and any partially-stuck pixels with offset

components. Hot pixels are identified by measuring the magnitude of dark current at each sensor

site, while stuck pixels are found simply by locating pixels with exposure duration-independent

offsets.

With the sensor kept in the dark, several images are captured at increasing exposure times.

The dark current is then obtained by fitting a linear function to the results. Because of the

temporal noise associated with dark current, curve fitting gives a more consistent result than the

more commonly used method of sampling pixel values at long exposure durations. Figure 3.1

illustrates the results of a typical dark current fitting operation.
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Figure 3.1. Measured pixel response from darkframe calibration with fitted linear curve.

During testing, 10-15 images were captured at exposure durations ranging from 1 ms to 6 s,

and the camera gain was set to ISO 400 (see Section 2.4) to represent a typical photographing

situation (photographers use this setting because output noise is typically negligible at ISO 400

and below on modem DSLR cameras). Keeping with the requirement that identified pixel faults

should noticeably impact a photograph, pixels with dark current greater than 0.05/s (note the

normalized units) were labelled as hot. Similarly, pixels with a dark offset greater than 0.10 were

marked as faulty.

3.1.3 Brightfield Calibration

Stuck low and abnormal sensitivity faults require a more complex testing procedure because

of their light-sensitive behaviour. The related lIumination-dependant response parameters, such as

pixel sensitivity and offset, are tested through brightfield calibration, in which the sensor is

uniformly illuminated at several intensity levels (each one called a brightfield or flatfield) and the

pixel output is recorded. Ideally, a linear function can then be fit to the data to determine the

pixel's sensitivity and offset (terms m and f!,., respectively, in Eq.(2.ll ». Pixels are deemed faulty

when their sensitivity or offset deviate significantly from the rest of the population. To

compensate for variations in spectral response, pixels of each colour are treated and compared

independently.

47



However, generating a uniform light field and controlling its intensity is very challenging

without specialized and expensive apparatus that are not commonly owned by even avid amateur

photographers. Thus, a simplified test procedure was devised to enable any camera user to

calibrate their camera with sufficient accuracy to identify most faults. Consequently, fault

characteristics could be collected from a large sample, thereby increasing the statistical relevance

of this study. The sample size is limited only by the willingness of users to contribute their time,

enabling future extensions of this work to consider a broader range of cameras.

In this simplified method (details of which are given in Appendix A), users were asked to

perform tests in an environment with relatively uniform ambient lighting, such as an office. With

the lens removed to expose the sensor, a stack of diffusive and absorptive sheets (i.e. paper or

similar material) were placed over the opening to create an even illumination across' the sensor

area (see Figure 3.2). The illumination intensity was controlled by varying the number of"sheets

in the diffuser stack. In this simple manner, about five uniform intensity levels could be generated

without the need for any optical elements or the complexity of aligning a reflective diffuser.

ambient lighting

~

}
diffuser
stack

DSLR camera with lens removed

Figure 3.2. Experimental setup for simple in-field brightfield calibration.

Tests were performed with the camera lens removed to prevent lens defects and dust from

influencing results. Very short exposure durations (10 ms or less) were used to avoid the
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accumulation of dark current. Camera gain was set to ISO 400 to simulate photographing

conditions.

Figure 3.3 shows histograms of the pixel intensities in each colour channel of a single

representative brightfield image captured using the stacked diffuser technique. The narrow peak

in the distribution of all four histograms indicates that a reasonably uniform light field reached

the sensor. Nonetheless, this method is clearly coarse, and fault detection was limited to pixels

with large shifts in sensitivity (±20% or greater), stuck pixels, and pixels with large offsets.
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Figure 3.3. Sample histogram of brightfield values.

The coarse method was also augmented with a second technique whereby the output of each

known faulty pixel (e.g. hot pixels) was compared to the mean of the outputs of the pixel's

known-good neighbours of the same colour. Thus, fluctuations in the illumination could be

smoothed by using good pixels as a reference, and the sensitivity of defects could be calibrated to

a fine tolerance.
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3.1.4 Temporal Data

Regular laboratory calibration is not feasible for the vast majority of cameras in users'

hands. This led us to consider examining regular photographs captured throughout a camera's

history. Because photographs are affected by faulty pixels in the same way as calibration frames,

the presence of faults can be readily identified. Moreover, digital photographs store a wealth of

information about the capture conditions, including the time and date the photograph was taken,

the camera gain (ISO sensitivity), which lens was used, etc, which is all stored as metadata in

most image files. Specifically, the Exchangeable image file format (Exit) defines how and where

such information is stored in common image file formats like JPEG and TJFF, as well as

proprietary raw file formats, which are often based on the TIFF standard. Thus, once faulty pixels

are identified by calibration, their time of development can be determined by searching

photographers' image collections for the earliest image that shows the influence of each fault.

The error in each development date is the period between the last known good image and the

first image affected by the fault. Therefore, the accuracy of this search method is determined by

the frequency of use .and the habits of the photographer. For example, only long exposure images

(greater than 1/30s) are useful for detecting many hot pixels, but photographers rarely shoot

ordinary pictures at these speeds because of image blurring. Nonetheless, experience has shown

the defect develop~entdate can often be determined with a margin of± 15 days or better.

3.2 Fault Characterization Results

Testing identifir;:d a multitude of in-field defects in most of the cameras tested. All faults

were of the hot pixel.type aDd some exhibited a partial offset as well (i.e. some were a combined

hot-partially-stuck type). The light sensitivity of all hot pixels closely matched that of their good

. neighbours.
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Despite their apparent prevalence in informal discussions of image sensor reliability, no

fully-stuck (high or low) pixels were identified in any of the tested cameras. In addition, no pixels

exhibited a significant shift in sensitivity. A detailed breakdown of the quantities and types of

pixels found in each camera is given in Table 3.2.

Table 3.2. Summary of faulty p.ixels identified in calibrated cameras.

Camera Quantity ofidentifiedfaults

Hot
Age Abnormal Without With

Name Sensor tvpe (vears) Stuck sensitivitv offset offset Total

A Unknown CCD 4.8 0 0 26 0 26

B PS-ITCCD 2.0 0 0 6 0 6

C PS-ITCCD 1.4 0 0 17 0 17

D PS-lTCCD 0.6 0 0 II 12

E PS-ITCCD 0.7 0 0 11 0 II

F PS-l'rCCD 0.4 0 0 9 10

G 4T PPDAPS 3.3 0 0 0

H 4T PPD APS 4.3 0 0 10 4 15

4T PPD APS 1.6 0 0 2 3

J Unknown CIS 0.1 0 0 0 0 0

K Unknown CIS 1.5 0 0 0 0 0

Note again that all of the identified faults were hot pixels. Moreover, the same types of

defects were found in both CCD and CIS imagers and across all the technology variations of each

type.

3.2.1 Fault Magnitudes

The dark current and dark offset magnitudes varied greatly from pixel to pixel in all of the

sensors tested. Figure 3.4 shows histograms of both parameters, zoomed-in to highlight only the

larger magnitudes. Both plots show that the vast majority of pixels exhibit very small dark current
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or offset while a small quantity show spikes in the parameters. The resulting distribution appears

exponential, although no attempt has been made to quantifY this. In short, the background dark

current level remained low in all tested sensors, while a handful of faulty pixels showed extreme

behaviour.
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Figure 3.4. Histogram tails of (a) dark current and (b) dark offset found in all hot pixels.

3.2.2 Random Telegraph Signal Faults

During testing, the magnitude of dark current appeared to fluctuate randomly in some hot

pixels. To further investigate this phenomenon, 100 images were captured in rapid succession at

the same exposure duration on Camera H. Images were taken at about 30s to 60s intervals to not

excessively heat the sensor. The results (see Figure 3.6 on page 54) match the behaviour of

Random Telegraph Signal (RTS) faults observed by other researchers during both proton [51,57]

and neutron[46] irradiation experiments.

For reference, Figure 3.5 shows the output values measured from a simple hot pixel, while

Figure 3.6 and Figure 3.7 show the values measured from RTS hot pixels. Given that integration

time is fixed, the offset due to dark current should remain constant and the recorded value should

be the same in all frames. However, Figure 3.6 shows that the output appears to hop between two

distinct values, suggesting that the dark current is randomly switching between two discrete

levels. Similarly, Figure 3.7 shows that RTS defect hopping between four distinct states.
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Histograms of the output values in all three figures show that the normal hot pixel output is

confined to one narrow range, while the RTS faults alternate between two or four distinct ranges.

The few values that fall between the two discrete levels can be explained by a dark current

transition during the middle of an exposure.

Of the 15 hot pixels in Camera H, 20% (i.e. 3 pixels) were identified as hopping hot pixels

with a noticeable change in dark current. Because the transition between states appears to be

random in all three pixels, the RTS fault can be described by three parameters: base dark current

level, hopping amplitude, and average lifetime in the lowest state. Visual inspection of Figure 3.6

suggests that the lifetime can vary from under 30 seconds to several minutes. To obtain a more

accurate lower bound on the lifetime, the above experiment was repeated several times for

exposure durations from 0.25 s to 8 s (we cannot acquire frames at a faster rate from a standard

DSLR camera). The lower bound on lifetime was taken to be the exposure duration at which a

continuous range of output values were observed instead of two discrete values. In all cases but

the small-amplitude state in the 4-state fault, the lifetime appears to be greater than 8s, while the

minor state appears to have a lifetime on the order of 1s.
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Figure 3.5. Rapidly sampled output values and histograms of values from a simple hot
pixel at a single exposure duration.

53



0.45

0.4

.9- 0.35

~ 0.3
"~ 0.25
"C .,."~ cJ) roco <l1jJ<l1lDal§P~
~ 0.2 0 0 0 0

'"E 0.15 a

~ 0.11a=0~0 00 ~00!llD~ a&t:P ~ 00

0.05

°0~--2=0---C40::-----:60-:-::------::':80::----,:'100

Sample Number

3Or-----~-------___,

25

20
~
c
~ 15g
.t

10

5

~
a0'-----LO...2--..,.0.~4---:0:-'":.6,-----~0.~8------1

Normalized pixel output

(a) Sampled output values from RTSfault 1. (b) Histogram ofsamples from RTSfault I.

6Or----y--~--~--r--__,

0.4 0.6 0.8
Normalized pixel output

50

10

20

40
~
c

~30
~
u.

10080

a
a

40 60
Sample Number

a

20

0.45

_ 0.4
:J

%0.35
o
~ 0.3

ii: 0.25~~~~!I1IIlll=Ill1llJ3I1ll1l!l!/l!llt<lltJlljj!llzl-~1'
~ 0.2-

~ 0.15
o
z 0.1 a a

0.05

0
0

(c) Sampled output values from RTSfault 2. (d) Histogram ofsamples from RTSfault 2.

Figure 3.6. Rapidly sampled output values and histograms of values from 2-state RTS hot
pixels at a single exposure duration.

15r-----~--....__----__,

0.9

:; 0.8

8" 0.7
.D. .-, Q:Illo~ 'li9~ a '0

~ 0.6 ro8Sb =' Cf"'O'

c; 0.5 '15' 0'"' 00 a ~'09!i'
l! 0.4 '0 a rfjJ a ~ <lll a a ,qp&
~ 0.3 &> a a ~ <lll
o
z 0.2

0.1

°0L-..--2~0---4~0--60~--60-----'100

Sample Number

10

5

°0L-..--0~.2--- 0.4 0.6 -~0.-8---'

Normalized pixel output

(a) Sampled values from 4-state RTSfault. (b) Histogram ofsamples from 4-state RTSfault.

Figure 3.7. Rapidly sampled output values and histograms of values from a 4-state RTS
hot pixel at a single exposure duration.

54



The measured parameters for each RTS hot pixel are summarized in Table 3.3. The age of

each fault (extracted in Section 3.3.3) is given in the final column to show that the RTS behaviour

is not a transient anomaly in newly formed faults, which could stabilize over time.

Table 3.3. Summary of RTS hot pixel parameters.

Base dark Number of Defect age
Pixel current s-J levels da s

0.12 0.20 >8 2 1259

2 0.15 0.15 >8 2 785
..,

0.30 0.30 <I 4 365oJ

3.3 Fault Development Analysis

Faulty-pixel analysis has typically focused on the quantity of hot pixels and the distribution

of their measured dark currents as seen in [53]. However, such an approach discards much of the

information stored in each captured image, which could otherwise be used to gain further insight

into the causing defect mechanism. In this section, traditional yield-analysis techniques that are

usually applied to complete wafers are extended to in-field fault analysis in these large-area

imagers. The coordinates of faulty pixels, which are readily found, are used to identify patterns in

the spatial distribution of hot pixels and consequently the size of the underlying defect. Similarly,

time stamps from captured photos are examined to determine temporal growth rates. All three

characteristics are highly influenced by the nature of the degradation process and are examined in

further detail in Section 3.4.

3.3.1 Fault Spatial Distribution

Detailed maps showing the positions of in-field faults across the sensor were created for all

tested cameras. Figure 3.8 shows two such plots from representative cameras. On visual
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inspection of Figure 3.8, the faults appear to be uniformly distributed without any obvious

clustering in localized areas.

.. . .. . . .Blue.
• Green..
.Red. . .. .

•.
(a) Camera C.

• •
• •.

. . .Blue.. · .Green

.Red

·. .. . ·.
(b) Camera H.

Figure 3.8. Defect maps showing the position of in-field hot pixels in two cameras.

Most significantly, no two faults developed adjacent to one another. That is, at each

\i.. identified hot pixel, all eight neighbours were carefully characterized, and all of the neighbours

were found to be good pixels. Thus, only a single pixel appears to be affected by each individual

defect that causes hot pixels.

However, due to the small number of hot pixels observed in any given sensor, traditional

statistical methods like the Chi-squared test cannot be applied directly to the defect locations to

verify the uniformity of their spatial distribution. Instead, the distribution of inter-defect distances

is examined. The distances between every pair of defects within each sensor are computed and

are then compiled into a single distribution for all the cameras of each imaging technology.

Histograms of the resultant distributions, shown in Figure 3.9, appear to be roughly uniform and

exhibit no peaking toward short inter-defect distances.
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Figure 3.9. Distributions of inter-fault distances for tested (a) CCD and (b) CIS cameras.

In fact, descriptive statistics for the distribution (see Table 3.4) indicate that mean CCO-

imager inter-fault distance is about 10 mm or one third of the distance across a sensor chip (33%

of the sensor diagonal dimension). Moreover, if defect clustering were prevalent, defects would

be more likely to develop closer to one another and we would expect to observe multiple distinct

peaks in the histograms. Peaks at small separations would arise due to narrow fault spacing within

a cluster, while other peaks at larger separations would likely arise due to the spacing between

distinct clusters.

Also, note the similarity between distributions from CCO and CIS imagers, despite the

difference in available data.

Table 3.4. Summary of inter-fault distance statistics.

4.66

5.08

Inter-fault distance statistic

Standard deviation
(mm)

10.20

Technolo

CCO

CIS
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For comparison, a simple Monte Carlo simulation was performed to estimate the expected

inter-defect distribution for cases without clustering (clustering simulation models typically do

not reflect physical processes and depend on additional parameters so they were not considered

here). Defects were randomly placed in a simulated sensor according to a uniform distribution

and the inter-defect distances measured. An average defect density of 16 defects per sensor was

used (to match the average case for CCO imagers) and the experiment was repeated for 200

sensors. A histogram of the cumulative inter-defect distributions is given in Figure 3.10. As

expected, the uniform random model generated an even distribution of defects as was observed in

the real sensors. A Pearson-i comparison of the observed and simulated distributions for CCO

sensors gives an excellent i value of 5.05, compared to a critic~1 value of 27.6 (for 0.05

significance level).
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Figure 3.10. Simulated distributions of inter-defect distances with uniform random model.

In summary, the above analysis strongly indicates that hot defects can be treated as

uniformly distributed across large area image sensors. With reference to the two classes of

potential defect mechanisms, material degradation and external stress, this evidence conflicts with

the expected behaviour of material degradation-related defects while supporting the possibility of

radiation-induced damage. In particular, interaction between individual TCR and sensor particles

can be treated as independent events, which gives rise to a uniform defect distribution across any

given sensor.
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3.3.2 Defect Size Estimate

The absence of multiple-pixel faults (e.g. only a single pixel is observed as hot while all

neighbours function properly) strongly indicates that the size of the defects leading to hot pixels

is much smaller than the dimensions of a single pixel. While the exact size of the defect cannot be

measured directly, a straightforward statistical analysis of the existing data shows that hot pixel

defects are indeed very small and almost point-like.

We begin by modelling the imager as an array of square pixels with dimensions w x w ~m,

as shown in Figure 3.11. Hot pixel defects are treated as circular spot defects with some random

radius, r. In this first order approximation, the entire pixel area is assumed sensitive to defects

such that any overlap between the defect area and a pixel will lead to a hot pixel fault. Because of

the similarities between CCD and CIS imagers in developing hot pixels despite the significant

difference in circuit layout, this first assumption seems well justified.

~:T,-------,----,-------, Identified
S I Hot Pixel
----'- f---I----::+----j

Spot
Defect

Figure 3.11. Sensor and defect model.

A hot pixel without faults in adjacent pixels is called an isolated fault. When a defect lands

in the pixel area, it causes an isolated fault if the entire defect area remains within the w x w

boundaries of the original defective pixel. Conversely, a cluster of faults is created if the defect

area extends into any neighbouring pixels. Therefore, an isolated fault develops if the centre of a

defect with radius r is within the hatched Safe Area shown in Figure 3.12.
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Figure 3.12. Safe region of the pixel area that leads to isolated faults.

Assuming that defects are uniformly likely to develop anywhere in the pixel, the probability

of a defect with random radius, R=r, causing an isolated fault is thus given by

Pr(Isoloted _ Fault IR =r) ={(1- ;r r< w
2

r> w
- 2

(3.1 )

We now consider all N identified hot pixels and make the simplifying assumption that all of

these faults have been caused by defects with the same radius, R=r, which is justified by the final

result that the defect size is indeed very small. Therefore, the probability of observing only

isolated faults at all N hot pixels is given by

{(
2r)2N

Pr(N _Isolated_FaultsIR=r)= I-~
r< w. 2

r> w
-2

(3.2)

Finally, Bayes' theorem can be applied to obtain on upper bound on the hot defect radius,

Rma;n according to the following expression:
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rmax ( 2 )2Nf 1-: f(r)dr

Pr(R~rmax IN _Isolated_Faults) = ° 2N
W/2( 2r)l 1- --; f(r)dr

(3.3)

wheref(r) is some assumed probability distribution function for the defect radius. Without further

knowledge about the exact nature of the defects and their sizes, several simple but common

distributions can be tried. In the simplest case of the uniform distribution, all defect radii on the

range [0, /'i] are assumed equiprobable, giving the distribution in Eq. (3.4).

fUniform(r l ={~
otherwise

(3.4)

Although the implied lower bound of zero in Eq. (3.4) appears to unreasonably suggest the

existence of zero-radius defects, this simplification allows us to consider infinitesimally small

point-defects. Conversely, the fixed upper bound was chosen because the values greater than O.5w

will not influence the results due to the limits of Eq. (3.1).

To better align with more realistic defect models used in manufacturing yield analysis [58],

an exponential distribution of defect radii is also considered in the following expression:

{k -k·r·e
f Exponential (r) = 0

r~O

otherwise

(3.5)

where, the parameter k is allowed to vary according to the desired spread in radii.

To establish an upper bound on defect diameter with some confidence level, CL, we set

Pr(R ~ I'll/ax I NjSOLATED_FAULTS) = CL in Eq. (3.3), substitute the desiredf(r), and solve for

the upper bound, I'll/ax' A conservative approach is taken in the following calculations by setting
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CL to 99%. The defect size upper bound is calculated as a relative value, 2rma/w, called the

maximum normalized defect diameter, which allow the results to be applied to sensors with any

pixel size.

The plot in Figure 3.13(a) shows the resulting 2rma/w for increasing values of N when a

uniform prior defect size distribution is considered. When the number of isolated hot pixels is

large (i.e. greater than 100), we can be 99% certain that the diameter of all hot defects is less than

2.3% of the pixel width.

Similar results are obtained when considering a more realistic exponential prior distribution

of defect sizes. Figure 3.13(b) plots the defect size upper bound for several values of the

parameter k and increasing quantities of observed isolated faults. Small values of k (i.e. k=2/w)

describe a nearly uniform distribution, while larger values of k (i.e. k=20/w) describe a highly

skewed distribution where small defects are common and large defects are highly improbable.

Once a large number of isolated hot pixels have been observed, results using all three exponential

distributions converge. At 100 observed hot pixel faults, we can be 99% certain that all of the

observed isolated faults were created by defects whose diameter is less than 4.5% of the pixel

width.

_ 0.15,--~-----~-------,

~.

3
~
"0
c:E 0.1

50 100 150 200
Number of isolated faults observed (N)

(a) Uniform.

"0c:

E
~
g-
o;
;; 0.05
E
'"i5
n
.)I!
~

0

50 100 150 200
Number of isolated faults observed (N)

(b) Exponential.

Figure 3.13. Upper bound on relative defect diameter assuming (a) uniform and
(b) exponential distributions of possible defect sizes.
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The fact that all of the tried distributions result in very small values of r mox strongly indicates

that hot defects are point-like and supports the assumptions made above. Given that testing has

identified 92 in-field hot pixels, all of which are isolated faults, 2rmox is conservatively 4.2% of

the pixel width, and each defect occupies less than 0.15% of the pixel area. The tested sensors had

an average pixel size of 6.9 11m x 6.9 11m, therefore the hot defect radius upper bound is less than

0.15 Ilffi, and the defect area occupies less than 0.07 11m2.

Once again, this evidence favours radiation-induced damage as the root cause of hot pixel

faults. The single-event nature of cosmic-ray impacts and their limit area of effect aligns well

with the observed point-like nature of hot pixels. On the contrary, material degradation would be

expected to affect several pixels in any neighbouring region.

3.3.3 Temporal Characteristics

A key result of repeated darkframe analysis and defect history tracing through regular photos

is that hot pixels appear static over time. Faulty pixels appear to develop suddenly, rather than

gradually "turning on" over an extended period, and they do not heal over the durations tested in

these experiments.

Camera H was the only camera with a sufficiently detailed photographic history available to

trace the growth of all hot pixels over its lifetime, and this representative camera offers an

excellent prototype for developing and testing some defect analysis techniques. Therefore, despite

the limited statistical significance of the data, the following section demonstrates the

effectiveness of the defect history analysis in viewing defect growth from a novel perspective.

The date when each defect developed in Camera H is plotted in Figure 3.14(a) along with

error bars showing the accuracy of each measurement. The number of pictures captured by

Camera H at the time when each defect developed is plotted in Figure 3. 14(b). Large errors in the

63



development date reflect either the availability of appropriate images (i.e. long exposure photos)

or lulls in photographic activity by the user.
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Figure 3.14. Development date of hot pixels in Camera H as a function of (a) Camera
lifetime and (b) camera usage.

The above results are plotted again in Figure 3.15 to more clearly show a constant defect

growth rate throughout the lifetime of the camera. Although the total quantity of defects is

relatively low, these figures suggest the growth could continue indefinitely until image quality is

significantly impacted. The data also shows a reasonable fit to a linear regression as indicated by

the dashed lines in Figure 3.15. Defect growth rate is about 3.2 defects per year, or 0.53 defects

per 1000 pictures.
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Figure 3.15. Development rate of hot pixels in Camera H as a function of (a) Camera
lifetime and (b) camera usage.
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The roughly constant defect growth rate suggests that defect growth can be modeled by a

Poisson process in which defects develop independently of one another at unrelated intervals. A

simple Pearson l can quantify how well this model fits the observed data. The expected inter­

defect intervals are modeled by an exponential distribution with parameter A=1/102 days and

collected into three ranges with roughly equal expected frequency of occurrence. Table 3.5 shows

the expected and observed number of inter-defect intervals falling into each range. The resulting

l statistic,1.2, is much less than the critical value of 6.0 (for a 0.05 significance level), giving

quantitative support to the hypothesis that inter-arrival times follow an exponential distribution

and that defects develop independently.

Table 3.5. Distribution of defect arrival times for X2 test.

Interval between defects

Expected frequency

Measured frequency

0-41.4

5

6

44.4 -112

5

4

> 112

5

5

While the above data set is admittedly limited, it serves several very useful purposes. First,

the data clearly illustrates that defect growth is continuous. Second, preliminary analysis suggests

that defects develop independently. Finally, the above investigation demonstrates that image

history analysis can provide accurate information about the development rate of in-field defects

from a viewpoint that has not been considered elsewhere.

Furthermore, these temporal characteristics contribute further evidence toward discerning

the responsible mechanism. The "sudden tum-on" nature of hot pixel faults is consistent with the

single-event nature of TCR interactions but completely at odds with the gradual degradation

expected from material-related failures. The nearly constant fault development rate (with

statistical variations associated with the small sample of faults) also supports TCR as the causing

mechanism because of the steady flux intensities observed over long time periods. Variations in
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hot pixel development rates can be directly related to exact geographic location of a particular

camera, which affects the incident TCR flux, as well as the availability of local shielding that may

further attenuate incident particles.

3.4 Interpretation

In summary, hot pixels were the dominant fault type and no abnormal sensitivity or fully

stuck pixels were found. Combining the results of the above analysis, radiation-induced external

stress damage is the most likely cause of these faults, which presented the following

characteristics:

• Uniform spatial distribution across sensors;

• Small and point-like with impact limited to a single pixel;

• Instantaneous activation from good to faulty;

• No change in fault characteristics following activation;

• Constant growth rate over time.

These attributes are all consistent with terrestrial cosmic ray (TCR) radiation damage but are

opposed to the expected behaviour of material degradation, leaving the former as the most

probable cause.

Moreover, faults exhibited the same characteristics in both CCD and CIS imagers and across

several technology generations in both classes, indicating a common defect mechanism is

responsible. In addition to the list above, all hot pixels shared the same basic illumination

response in which sensitivity remained unaffected, and no other fault types beyond hot pixels

were observed. Therefore, we can reasonably assume hot pixels in both CIS and CCD sensors are

caused by the same mechanism or a family of closely-related mechanisms, which makes material

degradation unlikely because the differing technologies and architectures rely on slightly different

materials and processing techniques. Thus, an external stress, like radiation damage, is a more

likely cause.
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We can extend this reasoning to further isolate the responsible defects. First, as noted above,

the similarity in fault behaviours indicates a common defect is responsible in all of the tested

imaging technologies. Because only single-pixel faults were observed instead of column-wide or

row-wide faults, the defect must occur inside each individual pixel. Moreover, given the wide

variations in pixel architectures, the damage is most likely isolated to the photosensing element,

which is similar in all designs. lnparticular, silicon displacement damage is the most likely

mechanism because it can drastically increase dark current without affecting other imaging

parameters, like sensitivity.

Terrestrial cosmic rays remain the most likely source of this radiation because of the

apparently random and independent arrival of defects at a low rate. In fact, if the neutron collision

rate predicted in Section 2.5.4 is repeated for image sensors with an active area of 350 mm2 and

an active depth ofl 0 11m, a defect development date of 5.5 defects/year would be expected. This

rate is well in the range observed in the cameras tested in this experiment. Variations in defect

growth rate between cameras and users can be readily explained by variations in the sensitivity of

different designs to defects and variations in cosmic ray flux around the globe. For example, the

depth of the photosensing element's depletion region and the relative size of the photosensing

element will strongly influence how much dark current is collected, but these parameters are not

made public by camera manufacturers:

Furthermore, the cameras with the fastest defect growth rates are known to have been taken

on numerous high-altitude air flights, and have thus been exposed to larger amounts of radiation.

For example, as a first order approximation, a return flight from Vancouver to Hong Kong would

expose a sensor to the equivalent of 108 Vancouver-days of cosmic radiation.
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3.4.1 Partially-Stuck Faults

While the bulk displacement damage clearly explains the creation of hot pixels, the source of

partially-stuck sites is less obvious. Nonetheless, the described mechanism is consistent with that

offsets observed at these faults, although the precise method varies for each of the three major

imaging technologies considered. In all cases, an exposure duration-independent offset can only

develop during a fixed-time interval of the imager operation.

The case of CMOS image sensors is straightforward because the 4T CMOS APS with

pinned photodiode is the dominant pixel architecture[59, 60]. After the exposure duration in such

cameras, the collected charge in all photodiodes is simultaneously transferred to their respective

storage nodes (i.e. the floating diffusion - see Section 2.2.2) to await readout. During this waiting

period, called the readout delay, dark current generated outside the photodiode can also diffuse to

the floating diffusion to be captured there, as illustrated in Figure 3. I6(a). The readout delay,

which is illustrated in Figure 3. I6(b), can be significant for' pixels at the end of the read-out

queue, leading to relatively long integration times and thus large offsets. For example, consider

that most DSLR cameras cannot capture more than 10 frames per second, suggesting that dark

current can be accumulated for up to 100 ms. Because the readout delay for a given pixel is

independent of exposure duration, partially-stuck faults develop with fixed offsets.

68



reset

" ~_M ,~,N~
\ I" /

" " .....-" signal charge
.... - - - - - - - - "" diffusing awaiting readout

defect dark carriers

substrate

(a) Physical mechanism.

Transfer

RowSel

Reset

V(FD)

I Exposure I Readout I
-J Time r- Delay -+!

: '

! :'------y----' ~Time
Read Qre';

Integrate Offset Read
Charge Signal

(b) Timing diagrams.

Figure 3.16. (a) Physical mechanism and (b) readout timing leading to partially-stuck faults
in 4T CMOS APS imagers.

In addition, many sensors employ anti-blooming circuitry that is disabled during readout to

prevent alteration of the signal charge[31], which would increase amount of collected offset

charge relative to the exposure-dependant dark current. The exact offset magnitude will depend

on the dark current magnitude, defect location within the pixel (i.e. dark current generated nearer

to the FD is more readily collected), and the pixel's position in the readout sequence.

Determining the source of partially-stuck offsets in CCD imagers is complicated by the

presence of two competing architectures (ITCCD and FFCCD) and the reluctance of

manufacturers to reveal the particular design used. The principle of ITCCD offset is very similar

to that of the 4T APS described above: after light integration, signal charge is transferred to a

storage node, the VCCD, where it waits to be transferred to the readout node. However, in

Progressive Scan ITCCDs (PS-ITCCD), signal packets do not dwell for a long time in any single

VCCD well because they are shifted immediately after the HCCD is emptied, making it unlikely

that any individual signal packet could be significantly affected. Conversely, in the more common

Interlaced Scan ITCCDs (IS-ITCCD), all of the pixels are still exposed simultaneously but the

array is read out one half-frame at a time[31]. Thus, the readout delay for every other pixel is at
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least half of the complete frame readout time, which increases the likelihood of accumulating a

fixed offset in the same manner as the 4T APS.

In Full Frame CCO-equipped cameras, all of which must be equipped with a mechanical

shutter, the fixed offset can potentially accumulate prior to exposure. When a frame capture is

initiated, immediately before the shutter is opened, the CCOs are rapidly shifted out to empty any

dark or residual charge. The finite duration of this rapid reset process and the delay before the

slow mechanical shutter opens can combine to create a sufficient interval in which a fixed

quantity of dark current can be accumulated in each CCO. Again, the exact magnitude of the

offset will depend on the dark current magnitude and the pixel's position in the readout sequence.

Note that a similar scenario is plausible in PS-ITCCO sensors.

3.5 Summary

Several high-end digital still cameras were put through calibration procedures by end-users

to identify in-field faults. Cameras at varying ages with both CCO and CIS sensors were

included. Oarkfield calibration was used to find hot pixels and stuck high pixels, and a simplified

brightfield calibration test was used to locate pixel faults with large sensitivity shifts. Almost all

cameras were found to have developed significant quantities of hot pixels, some of which showed

an offset in the illumination response, but no other faults were located.

Analysis of the distances between faults shows that hot pixels developed at uniformly

random locations across all sensors. Furthermore, the absence of multi-pixel fault clusters

suggests that hot defects can be treated as spot defects with less than 0.15 ~m diameter. A

detailed analysis of photographs from one representative camera shows that hot pixels develop

continuously and suddenly throughout the lifetime of the camera with a rate of about

3.5 faults / year in this case. Together, these characteristics indicate that hot pixels in commercial
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cameras are caused by an external stress, particular displacement damage from terrestrial cosmic

rays, rather than material degradation or user-induced damage.

Because complete shielding is likely ineffective against the cosmic ray neutrons causing this

damage, the following chapter describes how the fault tolerant APS architecture can be used to

mitigate the effect of hot pixels in the field without sacrificing dynamic range and image quality.
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CHAPTER 4

FAULT TOLERANT ACTIVE PIXEL SENSOR

The previous section clearly demonstrated that hot pixel faults are widely prevalent in many

cameras and their quantities only increase with age. While a handful of faulty pixels in a two­

year-old photo-camera may not be a cause for concern, 30-100 hot pixels are likely to impede the

functioning of a five-year-old machine vision system. Moreover, image processing steps like

demosaicing are known to enhance and spread the influence of hot faults over many pixels,

further degrading image quality. Thus, a methodology is required to mitigate the impact of hot

pixel faults in the long run.

Conventionally, darkframe subtraction is employed to "erase" hot pixels from pictures:

following each image, a darkframe image with the same exposure duration is captured to estimate

the dark signal at each pixel, and this value is subtracted from the original photo to remove the

bright spots due to hot pixels. Although this simple method appears effective, it does not restore

the lost dynamic range of the sensor because the accumulated dark current drives hot pixels into

early saturation at lower than expected light levels, preventing them from measuring light

accurately. For example, consider how a hot pixel's illumination response curves, shown in

Figure 4.1, are truncated by darkframe subtraction, which thereby reduces the dynamic range and

thus usability of sensors once they are damaged by hot defects. Simple darkframe subtraction

ignores this effect and discards this region of dynamic range.
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Figure 4.1. Illumination response characteristics of hot pixels (a) before and (b) after
darkframe subtraction.

Given the shortcomings of existing software-only darkframe subtraction methods, the aim of

the work presented in this chapter is to develop a hardware method to alleviate the impact of hot

pixel damage without sacrificing dynamic range. Experimental evidence from the previous

chapter strongly indicates that bulk displacement damage to the photodiode elements is the cause

ofhot pixels. However, if cosmic ray impacts are indeed the source of these defects, such damage

would be extremely difficult to prevent because of the penetrating nature of the impinging

particles. Moreover, even if the above conclusions are incorrect and other damage mechanisms

are responsible, modifying the pixels' materials properties may eliminate hot defects but would

incur very expensive modifications to the manufacturing process.

Previously, a fault tolerance method, based on the Fault Tolerant Active Pixel Sensor

(FTAPS) architecture (see Section 2.5.5) was created to reduce the impact of regular defects. In

this thesis, we examine the FTAPS as a low-cost technique to mitigate the impact of hot pixels.

Similar to how simple stuck faults are handled, the FTAPS can quarantine hot defects to one

portion of the pixel while the remaining circuitry operates as intended. Faults are then identified

by a simple darkframe test and a software algorithm corrects their output values, eliminating the

offset due to the hot portion. The primary cost of this fault tolerance is a small reduction in fill
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factor and the necessity of contending with the non-linear response of the FTAPS, which operates

in current mode.

A more detailed description of the hot fault tolerant pixel is presented next, after which the

recovery algorithm is fully described. The effectiveness of this tolerance method is then

investigated experimentally by emulating hot pixel behaviour in fabricated FTAPS arrays. First,

an optical method is used to induce additional dark current in one sub-pixel, simulating deeply

located displacement damage. In a second experiment, specially designed test pixels generate

dark current that would be induced by damage located nearer to the surface. In both cases, the

accuracy of recovered data is used as the metric for the viability of this scheme.

4.1 Theory of Operation

For convenience, a schematic diagram of the FTAPS is repeated in Figure 4.2. Recall that

the device mitigates defects by quarantining their effects to a single sub-pixel. In the case of hot

pixels, the two photodiodes independently collect all charge generated in their respective

depletion regions, including both photocurrent and dark current. Therefore, the excessive dark

current induced by the hot defect will deplete only one half of the complete pixel while the other

half continues to operate unimpeded.

In short, the combined output of a partially defective FTAPS is always the sum of the good

signal from the working half and some error value, such that an accurate image can always be

recovered. Most importantly, the correction method is useful even when some sub-pixels have

saturated from excessive dark signal. The complete dynamic range of the original pixel is

preserved and sensitivity is only reduced by a factor of 2 in the worst case

Now consider the impact of a hot pixel defects on an FTAPS pixel. Given the miniscule

estimated size of the hot pixel defect, as shown in Chapter 3, defects will be confined to one of

the two halves of the FTAPS, making the above operating mode the most common. However,
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should multiple defects affect a single pixel, the FTAPS behaves simply behaves like a hot

standard pixel, and perfonnance is not lost over the standard pixel architecture.

Reset
Voo

Figure 4.2. Schematic diagram of the FlAPS.

Now consider the behaviour of an FTAPS where one side follows the good curve of

Figure 4.1 (a), while the other side follows the hot pixel curve of the same figure. The expected

illumination response curve is plotted in Figure 4.3 for three idealized c.ases: a hot FTAPS pixel

with minimal, moderate and large dark offset. Dark offset is the dark currentXlime product,

which represents that amount of dark current carriers collected throughout a complete exposure.

Similarly, illumination energy is used to represent the total accumulated light after a given

exposure duration, or equivalently, the accumulated amount of photogenerated charge. From the

plot, we see that when the dark current is minimal, the FTAPS responds linearly to illumination

until it saturates (corresponding to the curve with minimal dark offset). Equivalently, the same

curve results when a very short exposure duration is used, even at non-zero dark current levels

because the dark offset is a function of both dark current and exposure duration.
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Figure 4.3. Idealized illumination response of an FTAPS pixel with a single hot sub-pixel.

At increased dark currents or exposures (i.e. the moderate dark offset curve), the response

curve exhibits an offset and is divided into three operating regions. In the first region, both

sub-pixels respond to illumination and the pixel output increases with full sensitivity. Once the

hot sub-pixel saturates, only the good sub-pixel can collect more illumination, and the combined

output responds at half sensitivity, saturating when both sub-pixels saturate. As exposure duration

or dark current increase, the larger dark offset causes the full-to-half-sensitivity transition point to

shift further left on the plot.

At long exposure durations or very hot pixels with excessive dark current, any illumination

level saturates the hot sub-pixel and no useful information is recorded. In such cases, standard

APS designs would generate no useful output, but the working sub-pixel of the FTAPS continues

to respond at half the standard sensitivity. Thus, the FTAPS reaches full saturation at the same

illumination as an undamaged pixel.

4.2 Circuit Simulation

To validate the predicted FTAPS behaviour with hot pixel defects, HSPICE simulations

were performed using the circuit model shown in Figure 4.4(a), where the dark current is

modelled as an additional current in parallel with the photocurrent. Figure 4.4(b) shows the
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resulting illumination response. All simulations were conducted with a short, 2ms, exposure

duration, but are representative of results at any duration.

Simulated as a working pixel without dark current (i.e. 0 pA), the FTAPS responds linearly

to illumination at full sensitivity until it saturates. At moderate dark current levels, up to 5-10 pA

in Figure 4.4(b), the pixel initially responds with full sensitivity and transitions to the half-

sensitivity region when the hot sub-pixel saturates, matching the "moderate dark offset" curve

predicted in Figure 4.3. In extreme cases, when dark current approaches 30 pA, the hot sub-pixel

saturates regardless of the illumination intensity and the pixel responds with half of its nominal

sensitivity throughout the entire illumination range. Again, these simulated curves match well

with the predicted "excessive dark offset" response in Figure 4.3. Thus, the simulated model of a

hot FTAPS matches closely with the expected response characteristics, albeit not as linearly. It

should be noted that even standard, commercially deployed pixel designs exhibit measurable non-

linearity. The final linear response is in fact a result of signal processing applied after each

exposure (i.e. the linearization step discussed earlier).
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Figure 4.4. HSPICE circuit simulation of FTAPS with hot pixel defect. (a) Simulation circuit
model. (b) Simulated illumination response.

4.3 Recovery Algorithm

The true (i.e. defect-free) output of an FTAPS pixel can be recovered from the defect-

affected output by first estimating the magnitude of the dark current impact and subtracting that
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value in light of the known pixel response. However, the algorithm outlined here is significantly

more complex than darkframe subtraction because the non-linear response of the current­

mediated FTAPS must be considered. Moreover, the hot sub-pixel typically operates near

saturation, which further limits the linear range of operation and makes recovery more

challenging. Nonetheless, most camera systems already include dedicated image processing

hardware that can be adapted to carry out the limited number of correction operations required for

the low fault densities observed thus far.

As a prerequisite to this algorithm, the illumination response of a good sub-pixel is

characterized at the factory and stored in memory. The output current, 10111' at each hot pixel is

then described as the sum of the outputs from a good sub-pixel and a hot sub-pixel,

lout = f (Qphoto + Qdark ) + f (Qphoto) , (4.1 )

where QpholO and Qdark, are the charge resulting from integration of photocurrent and dark current,

respectively. The function f(Q) is the illumination response characteristic of a single good sub­

pixel.

Ideally, the sensor is calibrated at the factory andf(Q) is stored as a common look-up table

shared by all pixels across the sensor. The characterization results discussed in Section 3.2

demonstrated that the sensitivity of hot pixels remains the same as that of good pixels, allowing

the same calibration curve to be applied to faulty pixels. However, the sensitivity varied

considerably from pixel to pixel in the sensor arrays used for testing, necessitating the calculation

and storage of individual functions for each tested pixel. Imagers fabricated in carefully

monitored, dedicated processes are not expected to show this spread in sensitivity, further

simplifying the algorithm.

Figure 4.5(a) and (b) respectively show sample forward and inverse calibration functions,

where the markers indicate measured data points and the solid lines shows the smooth f(Q) and
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fieQ) obtained by linear interpolation.. These functions were obtained in the same way they

might be recorded in the factory: the illumination response of a complete FTAPS pixel was

measured and the result divided to 2 to give the response ofa single sub-pixel.
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Figure 4.5. (a) Forward and (b) inverse calibration curves used to recover data from hot
FlAPS pixels.

Once an image is captured, the correction process begins by locating all hot pixels. A

darkframe is captured with the same exposure duration, and hot pixels are identified as bright

pixels in this image. At each identified hot pixel, we record the pixel values from the darkframe,

denoted as Idark/rome, and the photograph, denoted as IpiclUre. The accumulated charge due to dark

current, Qdark, is then estimated from the darkframe value using the reverse calibration curve.

Given this dark offset and forward calibration curve, an expected illumination response curve is

constructed, and the photogenerated charge in the good pixel, QphOIO, is determined by minimizing

the error between the expected curve and the pixel value in the final image.

Summarized from the start, the correction process proceeds as follows:

1. Build the illumination response look-up function,j(Q).

2. From the captured image record the output, IpicllIre = f(Qdark + QphOlo) + f(QphOlo)'

3. From the darkframe, record the output Idarkframe = f(Qdarkframe)'

4. Estimate Qdark = f-I (Idark/rame).

5. Estimate Qphata such that Ipiclure ;::::; f(Qdark + Qphata) + f(Qphata) is satisfied.
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6. Map Qpohlo onto the range used by the image format and store to the image file.

The correction accuracy of this algorithm will now be experimentally validated in the

following section.

4.4 Experimental Configuration

The efficacy of this hot pixel recovery technique was evaluated experimentally using FTAPS

arrays fabricated in standard CMOS processes. However, creating hot pixels by inflicting

displacement damage using radiation sources would be impractical because the magnitude and

distribution of faults would be difficult to control. In addition, it is challenging to generate

sufficient energetic particles to ensure a sufficient quantity of interactions between impinging

particles and sensor materials. Instead, hot pixels were emulated by inducing an additional current

in parallel with the typical photocurrent in a single sub-pixel (e.g. the equivalent circuit of

Figure 4.4 was implemented). Two methods were employed in two stages of testing: an optical

method that can be appl ied to any FTAPS sensor, and an electrical method using specially­

designed FTAPS arrays. Details of both test methods, the test sensors, and the control equipment

are given in the following sections.

4.4.1 Optical Hot Pixel Emulation

In this optical emulation technique, the "dark current" is induced by creating an additional

illumination in half of the pixel. This added light is created by focusing a laser onto a single

ordinary FTAPS sub-pixel while a second broadband light source provides flood illumination to

the entire array. Figure 4.6 illustrates how the two illumination sources combine to generate the

fault conditions. The flood illumination source covers the entire sensor array with a unifonn

lightfield that represents the scene. The primary benefit of optical emulation is that It can be

readily applied to any existing FTAPS for quick evaluation of the technique. However, the
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complexity of the optical apparatus makes it impossible to automate testing and thus a limited

sample set could be acquired.

Sub-photodiodes

0-1
I II I
I II I
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(a) Good pixel.
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J II I
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(b) Hot left sub-pixel. (c) Hot right sub-pixel.

Figure 4.6. Hot pixels emulated by selective laser illumination of sub-pixels.

In these experiments, an incandescent microscope lamp was used to provide the flood

illumination, as it is designed to provide a uniform light field. Likewise, a focused 488 nm Argon

ion laser produced the "dark current." Two separate optical power meters were used to monitor

and set both illumination levels independently. Moreover, to facilitate comparison between

incident illumination energy and the energy predicted by the correction algorithm, the output of

the broadband flood illumination source was calibrated to the output of the Argon laser. That is,

each specified flood illumination energy corresponds to the laser energy required to produce the

same output level from a typical FTAPS pixel.

To emulate faulty pixels of varying hotness, the laser illumination intensity at each pixel was

swept across a range of values, inducing larger levels of dark current, while the flood illumination

was also swept across a range of values to generate varying levels of scene brightness. Due to the

symmetry of the design, all experiments were conducted with the laser aimed at the left sub-pixel

only.
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4.4.1.1 Test and Control Hardware Implementation

The test chip used with this method was an array of FTAPS pixels implemented in a

standard, single-polysilicon, 4-metal, non-silicided 0.35 11m CMOS process by Cory Jung [20].

As shown in Figure 4.7. power, digital and analog control signals to the device under test

(DUT) were all generated by a PC running a modified version of LabVIEW software designed by

previous graduate students [16, 17]. Off-chip trans-impedance amplifiers converted the FTAPS'

current-mode output to voltage signals that were recorded by a digital storage oscilloscope.
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Software Test
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Figure 4.7. Control equipment for optical emulation experiments.

Laser and flood illumination intensity were controlled manually using their respective
.'

interfaces. A sub-micrometer precision computer-controlled 2-axis table was used to aim the laser

at individual sub-pixels.

4.4.2 Electrical Hot Pixel Emulation

To overcome the limited test sample size of the optical test method, an FTAPS array was

designed with dedicated in-pixel transistors that electrically induce dark current. This test circuit,

shown in Figure 4.8, allows the emulated dark current to be controlled by an external analog

signal, VFoull' Note, however, that l Dark and I plrolO are very low magnitude signals, which requires

that M res , operate in the sub-threshold region to generate accurate results.
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Figure 4.8. Schematic of FTAPS test pixel with electrically-emulated hot pixel fault.

4.4.2.1 Test and Control Hardware Implementation

The test circuit was implemented for this thesis in a standard, single-polysilicon, 6-metal,

silicided, 0.18 flm CMOS process tuned for logic circuits. A total of 841 pixels of various designs

were included on the 1.2 mm x 1.4 mm chip.

Similar to the procedure used for the optical emulation, a LabVIEW software-controlled PC

generated power, analog and digital control signals sent to the test sensor, including the dark

current control signal, VFaulf. (see Figure 4.9). Off-chip trans-impedance amplifiers again

converted output currents to voltage signals, which were measured and recorded directly by the

data acquisition (DAQ) Pc.

ce

t Illumination Sources

~,~~
I tI I

Data Acquisition
Analo~ Trans-impedan

f-+ Diaital

~r>
Output Hardware Sensor

LabVIEW Array
Control Under

Software Test
Data Acquisition....-
Input Hardware

..
i
I

Figure 4.9. Control equipment for electrical emulation experiments.
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Flood illumination was generated by an array of current-controlled red LEDs, which were

commanded by the same DAQ equipment controlling the sensor. A glass diffuser plate created a

uniform lightfield with less than 5% nonuniformity at the sensor array.

4.4.2.2 Limitations

Unlike the 0.35 11m sensors used previously, the 0.18 11m sensors exhibited very large dark

current, which compressed the dynamic range and introduced anomalies into the response of test

pixels. This increased dark current can be attributed trap states created in or near the photodiode

by two key features of the fabrication process: metals used in the silicide process can travel into

the Silicon bulk and create trap states; and shallow trench isolation (ST!) creates many surface

traps at the Si-Si02 interface [61].

To minimize the impact of these uncontrollable dark currents, experiments with the 0.18 11m

sensors were conducted at a very short exposure duration: 4 ms. Consequently, very intense flood

illumination and high VFaul,-induced dark current were required to exercise the complete dynamic

range of test pixels. These large dark and photo currents competed with the current through M 3a

(see Figure 4.8) during pixel reset, which in tum created a voltage drop across M 3a and prevented

the photodiode from being complete drained of electrons. Consequently, the pixels' internal reset

states varied by as much as 22% between best and worst-case conditions. In most cases, this reset

level reduction was calibrated out of the results, but some errors remain at the worst-case end of

the spectrum, particularly because of the FTAPS' highly non-linear response.

4.5 Characterization Results

The following sections describe experimental results confirming the viability of hot pixel

mitigation using the FTAPS and an appropriate correction algorithm. In both experiments, the

aim of correction is to recover the illumination intensity impinging on the hot pixel using the
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faulty output data. Correction accuracy is determined by comparing the measured illumination

intensity to the recovered value.

4.5.1 Optical Emulation

Figure 4.10 below shows the measured response curves for two representative pixels.

Qualitatively, the hot FTAPS pixels behave as predicted, with increasing levels of dark current

adding an increasingly-larger offset to the output until the hot sub-pixel becomes saturated.

However, the response characteristics are more strongly non-linear than the idealized or

simulated curves described in Section 4.1. Some of this non-linearity can be attributed to the

quadratic response of the in-pixel transconductance amplifier (M2 in Figure 4.2) and is accurately

predicted by the earlier HSPICE simulations above. However, pixel sensitivity is further reduced

at high flood illumination intensities because the photo-collection volume is reduced by the

shrinking of the photodiode depletion region as its reverse-bias is discharged.
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Figure 4.10. Measured illumination response of 2 FTAPS pixels with emulated hot pixel
faults.

Thus, hot FTAPS pixels clearly generate usable output data under all hot fault conditions,

making this a viable technique for isolating hot defects in the field. The impact of increased non-

linearity and other non-ideal characteristics are best quantified by evaluating how accurately the
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true scene illumination can be recovered from faulty FTAPS output data using the accompanying

correction algorithm.

Figure 4.11 shows the pixel response predicted by the correction algorithm (solid lines)

overlaid on the measured data points (markers). At a given output current, the horizontal distance

between the estimated and actual incident illumination represents the error in the correction

algorithm. Thus, the accuracy of the algorithm is measured by its ability to recover the true

illumination intensity that was incident on the pixel. At all dark current levels, the predicted

curves appear to pass directly through the measured marker points, indicating a high degree of

correction accuracy.
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Figure 4.11. Measured and predicted illumination response curves of two pixels as used by
the correction algorithm.

The prediction error has been compiled into a single statistic for all five of the pixels tested

at each dark current level and is displayed in the histogram showed in Figure 4.12. To enable

seamless comparison between experiments, the estimation error (difference between predicted

and actual incident light energy at a given current level) has been normalized to the illumination

dynamic range of the pixel under test. Thus, "normalized light energy estimation error," is the

estimation error, measured as illumination energy, normalized by the lowest illumination energy

that causes the pixel to saturate.
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In the vast majority of situations, the correction algorithm is very accurate, recovering the

true normalized illumination value within ±O.OS error 96% of the time.
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Figure 4.12. Error incurred by hot pixel correction algorithm across all tested pixels.

All of the outliers occurred when both laser and flood illumination were set to very high

levels, causing excess carriers to bloom from that saturated hot sub-pixel to the still-working one.

In more detail, blooming occurs when the hot sub-pixel photodiode has been largely discharged,

minimizing the size of the depletion region and leaving the excess flood illumination-induced

carriers free to diffuse to the working sub-pixel, where they are collected. Thus, the effective

photosensitive area of the good sub-pixel is increased and with it the effective sensitivity of the

FTAPS. Consequently, the correction algorithm underestimates the expected output value under

these situations, as highlighted in Figure 4.13. In particular, note how the predicted curve at high

laser energy is well below the measured data points, while the error is smaller and randomly

distributed at lower laser energy (i.e. dark current).
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Figure 4.13. Close-up view of hot pixel recovery error from an FlAPS pixel under intense
flood and laser illumination.

Correcting for this estimation error would be very challenging to accomplish in software

without extensive calibration, making it unlikely that this sensor design could eliminate the worst-

case error plotted above. Nonetheless, in 96% of test cases, the recovery algorithm produced

excellent results that surpass the dynamic range-limiting correction offered by darkframe

subtraction. Furthermore, commercial sensor designs often limit blooming by lowering substrate

resistivity or designing dedicated anti-blooming structures into the pixels, both of which may be

explored in future sensor designs. At the same time, we must recognize that this hot pixel

emulation method does not perfectly model the true defect scenario. ]n these experiments, both

photo and dark current sources are generated by light sources that cover a large area of the

photodiode. Thus, both sources inject significant quantities of excess carriers at the periphery of

the hot photodiode, allowing those carriers to very easily diffuse to the working half of our

design. Conversely, defect-induced dark carriers are most likely created at a point source (see

Section 3.3.2), which implies that those carriers must travel longer distances to reach the working

photodiode, furthering reducing the likelihood that the dark carriers themselves will contribute to

blooming. Photogenerated carriers will remain free to diffuse in the same manner in emulated or

defect-induced hot pixels.
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4.5.2 Electrical Emulation

A second set of experiments were conducted using the electrical emulation technique in

order to gain a larger sample or results and more precise measurements. The raw illumination

response curves of two FTAPS pixels with electrically-emulated hot faults are shown in

Figure 4.14. The plots describe dark current amplitude by the gate voltage (VFault) applied to the

control transistor. Because these control transistors are operating deep in the subthreshold region,

variations between pixels can be quite large and the exact dark current magnitude cannot be

precisely predicted. For clarity, only a handful of VFault levels are displayed, although

measurements were collected at 25 distinct dark current amplitudes. In addition, all data points

have been corrected as much as possible to account for the reset-level issue discussed earlier.

Qualitative analysis of the plots once again suggests that the emulated hot 0.18 11m CMOS

sensors behave according to the ideal behaviour outlined earlier in Figure 4.3. When dark current

is made very small (e.g. VFault = -0.15 V), the FTAPS responds linearly until the illumination

energy approaches about 25 pJ, where it begins to roll off toward saturation. Between VFau11 levels

of -0.08 V and about 0 V, the FTAPS is operating in the "moderate dark offset" regime,

responding with full sensitivity until one sub-pixel saturates, and subsequently responding at half

sensitivity until total saturation. The large dark current regime is represented by the 0.05 V curves

in both plots, whereby one sub-pixel is saturated even at 0 illumination energy, and the pixel

correspondingly responds at half sensitivity until saturation. In all cases, the response closely

follows the idealized curve presented above but with greater non-linearity near the saturation

regions.
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Figure 4.14. Measured and illumination response curves of two FTAPS pixels with
electrically-emulated hot pixel faults.

Figure 4.15 shows the predicted illumination response curve from the correction algorithm

(solid lines) superimposed on measured illumination response data points (markers). Unlike the

0.35 11m CMOS sensors tested previously, blooming does not appear to be an issue at intense

illumination levels, as evidenced by the close match between measured data points and the

predicted curve.
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Figure 4.15. Comparison of measured and predicted illumination response curves from
two FTAPS pixels with electrically-emulated hot pixel faults.

Once again, the correction algorithm accuracy was taken as the horizontal distance

(measured as energy) between predicted illumination energy and actual incident illumination

energy. For convenience, this value was normalized to the dynamic range (i.e. smallest saturating
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illumination energy) of each pixel. The sensor-wide prediction error, collected from 17 FTAPS

pixels with electrically-induced faults, has been combined into a single statistic for which the,

histogram is shown Figure 4.16. In the majority of cases, the normalized error using this more

robust experimental method is less than 0.05 and is much better than predicted by the optical

emulation method. In fact, 98% of the tested data points yielded a normalized error within ±0.05

(light energy estimation error normalized to pixel's illumination dynamic range).
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Figure 4.16. Error incurred by hot pixel correction algorithm across all tested pixels.

However, when both dark current and illumination level are extreme, experimental error is

greatly increased. Because of the very short exposure times used, the induced dark current must

be very large, which makes the reset operation incomplete and reduces the dynamic range of the

hot sub-pixel, in turn reducing its apparent sensitivity. Nonetheless, this only occurs at very

extreme cases and is an aberration of the experimental method rather than a shortcoming of the

fault tolerant design. Dark current magnitudes encountered in the field would typically be an

order of magnitude smaller than those induced in this test. Moreover, the correction algorithm

could be extended to test for rare situations when hot pixels are operating in this extreme regime

and alternate corrective steps, such as replacing the hot pixel with an average of its neighbours,

could be used instead of the error-prone value given above.

In summary, two experimental approaches have been demonstrated to validate the hot

FTAPS correction technique. Both sets of results closely match the simulated and idealized

91



illumination response behaviour, featuring operating regions with minimal, moderate, and large

dark offsets, which consequently cause a O.5x shift in the FTAPS sensitivity when the hot sub­

pixel saturates. In both cases, a comparison of predicted illumination energy with measured

incident illumination intensity showed that the true signal value can very accurately be extracted

from the faulty FTAPS output.

4.6 Summary

While software correction methods, like darkframe subtraction, can sometimes remove

bright spots in images caused by hot pixel faults, they cannot recover the original dynamic range

of the device. A fault tolerant pixel architecture was proposed to remedy that limitation by

partitioning pixels into two identical halves. Thus, hot defects are isolated to one sub-pixel that

may saturate early from increased dark current, while the other sub-pixel continues to operate

unaffected. The current-mode output signals from the two sub-pixels are summed at the pixel

level, allowing software algorithms to separate the usable signal from the hot offset. Because the

sub-pixels share the same control and output signals, the added cost of this redundancy is a

minimal reduction in fill factor.

The concept was evaluated experimentally using two techniques to emulate hot pixels In

fabricated FTAPS arrays. In the first, optical method, dark current was emulated by preferentially

illuminating one sub-pixel with a focused laser beam. In the second technique, a test transistor

was included in the pixel design to leak charge from the photodiode. Blooming effects in the

sensors used with the optical tests limited the correction accuracy to ±O.05 normalized error in

96% of cases. The more robust electrical tests recovered the true scene illumination within ±O.05

normalized error in 98% of test cases. Extreme photo and dark currents prevented better accuracy

in the electrical tests, which could be improved in future designs by limiting intrinsic dark

current.
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CHAPTER 5

ON-LINE FAULT IDENTIFICATION ALGORITHM

Although not seen in the characterization experiments of Chapter 3, many of the complex

fault types listed in Table 2.2 have been reported by users and do threaten to degrade sensor

quality over time. Such faults can be overcome by identifYing their location and type and

correcting for them in-field using software algorithms, but we saw in Chapter 3 that calibrating a

sensor is a challenging process. While darkframe data is relatively easy to obtain, generating a

uniform lightfield requires relatively complex hardware and optics. Automatically generating a

uniform illumination to self-calibrate a camera in the field is nearly impossible without greatly

increasing system cost and complexity. Thus, a new algorithm has been developed to use ordinary

photographs as inputs for an on-line defect identification system.

The initial motivation for this algorithm was to create a general-purpose self-healing sensor

by detecting fully stuck faults on the fly in an FTAPS imager. However, for a self-repairing

system like the FTAPS to be useful, it must be able detect the faults in the field rather than

relying on cumbersome laboratory calibration. Thus, an FTAPS pixel with one half stuck low

could be readily identified in the field and corrected simply by multiplying the output by 2. Using

an intelligent, robust algorithm, the entire procedure could occur without human intervention or

knowledge.

At the same time, the detection system is also valuable when manufacture-time defects,

including those that lead to the fault types listed in Table 2.2, are considered. Factory calibration
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would typically be used to locate these faults and mask them in software. However, because the

calibration process is time-consuming and can significantly add to the cost of a sensor, a cheaper

solution is to transfer the calibration burden to the final application. Consider, for example, the

small and defect-prone cell phone cameras that must sell for less than a few dollars to be

commercially viable. In-field calibration of these sensors would noticeably reduce production

costs as well as add in-field robustness.

Moreover, a simple, automated detection algorithm could be used to extend even further the

in-field characterization ·study from Chapter 3. By eliminating any specialized, labour-intensive

calibration procedures, a very large sample of digital cameras could be examined easily and

simply with minimal user interaction. The resulting data would potentially yield both spatial and

temporal fault information. In fact, the wealth of metadata stored in standard digital images (e.g.

capture date and time, all camera settings, lens used, etc.) enables photograph analysis to collect

as much information as a more cumbersome, hands-on laboratory experiment. Therefore, we

would benefit greatly from the development of a robust fault identification algorithm capable of

locating a large range of fault types .. Such a system should be free of the errors that plague the

existing identification methods discussed later in this chapter.

The algorithm presented here goes beyond early fault detection systems by identifYing both

the type and location of a large class of faults with perfect accuracy. Furthennore, only regular

images are required as input, enabling this system to be applied to existing cameras without any

sensor hardware modifications. For example, sequences of images may be downloaded from

cameras to a host computer for automated analysis and the images could be corrected

accordingly. Future cameras could also implement this fault tolerance without additional

hardware cost because the integrated firmware could be used to detect faults online and correct

them on the fly without the need for a host computer.
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This chapter begins with a brief review of existing fault detection methods, followed by a

description of how the sensor and faults are modelled by this fault identification algorithm. Three

distinct algorithms are then described in detail, with each algorithm increasing in complexity and

building on the others' shortcomings. Results from Monte-Carlo simulations of proof-of-concept

implementations of each algorithm are then presented, demonstrating the effectiveness of this

identification scheme in mitigating the effects of specific fault types.

5.1 Comparison to Existing Methods

Traditionally, imager faults have been corrected by performing factory lightfield calibration

to map fault locations and replacing the image pixels with a corrected interpolated value from

neighbouring pixels. However, this simple method has three major shortcomings. First, many

faults, such as abnormal sensitivity faults, still contain useful information that is simply discarded

by blind interpolation. Although some algorithms have been proposed to intelligently correct

some faulty pixels by, for example, multiplying the output of a half-sensitivity pixel by two, these

systems also rely on factory calibration to generate a fault map[62]. The second drawback is that

factory calibration is expensive. Illuminating and reading sensors to calculate and update a fault

map is a time-consuming step in fabrication that adds to the cost of the final product. Finally,

factory calibration produces a static fault map that remains the same throughout the sensor's

lifetime. Therefore, this one time calibration precludes the detection of in-field faults that develop

after manufacturing unless the camera is returned to the manufacturer for recalibration. In

applications like remote sensing or space missions, recalibration is simply impossible, while in

other products, like consumer cameras, recalibration is an undesired hassle. The algorithm

described in the remainder of this chapter is designed to overcome these limitations by using

ordinary photographs to update the sensor fault map in the field.

Some competing algorithms for locating fully stuck and abnormal sensitivity faults during

operation have previously appeared in the literature. lin et aI.[63] compare the difference between
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a pixel and the average of the eight nearest neighbour pixels to a threshold level to determine

which pixels are faulty. Tan and Acharya[64] use the minimum difference between a pixel and its

neighbours, combined with sequential probability ratio testing on multiple images, to find defects.

Both methods tend to identifY most defective pixels, but they are also very susceptible to falsely

identifYing good pixels as faulty (i.e. creating false positive results). Simulations of these

techniques often report as many or more false positives than correctly identified faults, which is

undesirable because correcting a working pixel also discards useful image information.

Furthermore, neither algorithm provides precise details like sensitivity and offset of the faulty

pixel, making truly intelligent correction impossible.

5.2 System Model

Throughout this work, an imager is described as an array of I x J pixels, with the incident

illumination at location (i,j) denoted by x ,J• For the majority of these initial experiments, only

monochrome greyscale sensors are considered. The extension to colour sensors can be made by

treating each individual colour as a separate monochromatic plane.

Following the notation laid out in Section 2.4, each pixel produces a normalized output, YiJ'

which depends on the incident illumination XiJ according to a linear function Yi,j = m XiJ + !'1,

where the sensitivity, m, and offset, !'1, depend on the fault type. To simplifY notation, each fault

type is referred to by an ordered pair, F(m,!'1), consisting of its sensitivity, m, and offset, !'1. Fault

F(m,LJ) is assumed to occur with probability p(m.6).

Consistent with the findings of the in-field defect characterization experiments, faults are

assumed to be uniformly distributed across the sensor in relatively small quantities. Without

evidence to the contrary from the experiments in Chapter 3, faults are assumed to be caused by

spot defects, and neither clustered nor row or column faults are considered in this preliminary

work. The proportion of pixels that are faulty is termed the fault density.
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5.2.1 Fault Types

To detect faults, we need to model how they behave, although sensors of differing designs

and technologies and operating in different environments will naturally develop different types of

faults. Several fault models, which are collections of possible fault types, are now presented in

order of increasing complexity. An identification algorithm for a particular application may

implement a given model based on the faults known to occur in that environment or simply based

on the faults that have a sufficient impact on image quality.

The Simple fault model includes only fully stuck faults that produce pure black or white

outputs and might by considered by an inexpensive camera to remove only the most noticeable

blemishes. Table 5.1 gives a summary of the fault types considered, their designation, and the

transfer equation between normalized input illumination and the pixel output value.

Table 5.1. Simple fault model.

Fault t e

Stuck high

Stuck low

Desi nation

F(O, J)

F(O,O)

Trans er e uation

y=l

y=O

The FTAPS Stuck model includes more complex fault behaviour that arises when stuck faults

individually afflict the sub-pixels of the FTAPS array. Table 5.2 lists all of the possible fault

conditions and the condition of each sub-pixel that generates a given fault. Because each sub­

pixel drives half of the total pixel's output, a number of "half' faults are created. For example,

one working sub-pixel combined with a stuck low sub-pixel creates a pixel with exactly half

sensitivity. Although spot defects are unlikely to strike both sub-pixels simultaneously, and two

defects are unlikely to simultaneously strike adjacent sub-pixels, double faults are still included

for completeness.
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Table 5.2. FTAPS Stuck fault model.

Sub-pixel condition

Fault t e Desionation Trans er e uation Le t Rioht

Fully stuck high F(O, 1) y=1 Stuck high Stuck high

Fully stuck low F(O, 0) y=O Stuck low Stuck low

Fully stuck mid F(O, 0.5) Y=0.5 Stuck high Stuck low

Half stuck high F(0.5,O.5) y = 0.5x + 0.5 Good Stuck high

Half stuck low F(0.5,0) Y= 0.5x Good Stuck low

It is instructive to consider in more detail the relative probabilities that a single FTAPS pixel

will become afflicted by any of the faults described above. Here, we treat a fault in either sub­

pixel as an independent event. Then, we can denote the probabilities of observing a stuck high or

stuck low sub-pixel by PH and PL, respectively. The probability of observing a good sub-pixel is

denoted by PC. Table 5.3 shows the resulting expressions for observing any FTAPS fault type

given these probabilities. For the sake of example, we can then assume that stuck high and low

sub-pixels are equiprobable and occur at the rate of 100 faults per I million pixels (note that this

fault density is much larger than observed in any sensors tested in this thesis but is used here only

for illustrative purposed). Consequently, the probability of observing a good sub-pixel is 0.9998,

and the probabilities of all FTAPS fault types are computed in Example value column of

Table 5.3. We can readily see that fully stuck pixels of any form will indeed be unlikely to

develop in any sensor. At these rates, only I in every 10 cameras (with 10 million pixels) would

develop a fully stuck high FTAPS pixel.
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Table 5.3. Relative probabilities of FTAPS faults.

Sub-pixel condition Probabilities

Fault e Le t Rioht Ex ression Exam Ie value

Fully stuck high Stuck high Stuck high PH
2 I x10-8

Fully stuck low Stuck low Stuck low PL
2 I x 10-8

Fully stuck mid Stuck high Stuck low 2 (PH x pd 2x10-8

Half stuck high Good Stuck high 2 (PH x po) 1.9996x I0-4

Half stuck low Good Stuck low 2 (PL x Po) 1.9996x 10-4

The previous defect models have only included abnormal sensitivity faults at specific

discrete sensitivity levels, which were represented by a single fault type. However, in-field

sensitivity shifts or manufacture-time defects are likely to inject faults with a continuous range of

sensitivities such that pixels sensitivities may range anywhere from 0.0 to 1.0. Perfectly

identifying the sensitivity of each fault would lead to an infinitely large defect model. Instead, the

complete range of sensitivities is partitioned into sub-intervals, where each interval is represented

by a fault with some nominal sensitivity. Thus, an interval of physically-possible faults are

grouped and diagnosed as a single fault type. The granularity of this grouping offers a tradeoff

between diagnostic accuracy and algorithm complexity. For example, an interval of fault types

may include real-valued sensitivities anywhere in the range 0.80-0.90, but they would all be

assigned the fault type F(0.85, 0). Similarly, faults in the range 0.90-1.0 would be detected as

type F(0.95, 0). Therefore, a continuous range of defects is sorted into a finite number of discrete

bins to reduce computational requirements. The interval between the two closest fault types in the

model is called the bin size.

In this preliminary work, two fault models with differing ranges of abnormal sensitivity

faults are considered: the Continuous Half model includes pixels with sensitivities in the range

0.50-1.0, and Continuous Full model extends the range of sensitivities to 0-1.0. As described

above, the continuous range of sensitivities in each model is broken down into several equal-
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width intervals called bins. To avoid confusion, the interval width, called the bin size, will be

appended to the model name where relevant. Furthermore, the offset, /1, for all fault types in all

three models is assumed zero for simplicity.

For example, the Continuous Half- 0.10 model includes five fault types, representing pixels

with abnormal sensitivity in the range 0.5-1.0, divided into five bins of width 0.10. Table 5.4

shows the fault types and the associated sensitivity intervals that would be included in this fault

model. For comparison, the Continuous Half - 0.025 model would include 21 fault types, each

with interval width 0.025.

Table 5.4. Example of the Continuous Half - 0.10 fault model.

Fault e Desi nation Included sensitivi ran e

Good F(J,O) 1.0 - 00

0.95 sensitivity F(0.95,0) 0.9 - 1.0

0.85 sensitivity F(0.85,0) 0.8 -0.9

0.75 sensitivity F(0.75,0) 0.7 -0.8

0.65 sensitivity F(0.65,0) 0.6-0.7

0.55 sensitivity F(0.55,0) 0.5 -0.6

For reference, Table 5.5 gives a list of the fault models that have been described here along

with the nature offault types included in each model.
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Table 5.5. Summary of fault models.

Model name

Simple

FTAPS Stuck

Continuous Half

Continuous Full

5.3 Algorithm

Simple fully stuck faults.

Stuck and discrete partial sensitivity faults occurring in the FTAPS.

Continuous range of abnormal sensitivities in the interval 0.60-1.0.

Continuous range of abnormal sensitivities in the interval 0.00-1.0.

The identification algorithm performs a statistical calibration of the sensor by replacing

uniform lightfield calibration frames with a sequence of normal photographs. In analyzing each

image, the algorithm calculates the probability that a particular fault type would produce the

observed output value. These likelihoods are collected over an entire sequence of images to

balance variations in image scene content, and a decision is made based on the overall most

probably fault type. For instance, consider the simple example of a stuck low pixel. In a single

image, there exists a finite, non-zero probability that this pixel is good and produced a correct

black. However, it is unlikely that this pixel should be black in an entire sequence of images, and

thus the likelihood of that pixel being good diminishes with each tested image. At the end of the

process, our sample pixel is clearly stuck low because that probability is the greatest.

In more detail, a sequence of T photographs is considered in addition to an optional darkfield

(considered the Ollt image). At a given pixel location (i,j), this results in a sequence of samples

y = /oJ,y(/J, ... ,y({), which is used as evidence in forming Bayesian Inferences into the likelihood

of a particular fault residing at that location (where the i,j indices are omitted for brevity). This

statement is evaluated for every fault type, F, and is expressed mathematically as,
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( I
- (0) (I) (T))_ P(YIF)P(F)

P FY - y ,y , ... ,Y - L p(Yj F')p(F')'
F'={all F}

(5.1 )

The a priori probability, P(F), is the initial likelihood of observing fault F without any

further evidence, and is usually obtained from previous characterization of faults. The conditional

term, P(YjF), represents how well the observed pixel values match the expected output of a given

fault type. This probability is a statistical metric computed from the image sequence.

In practice, the calculations are implemented recursively such that each image in the

sequence is processed individually, with previous iterations (images in the sequence) forming the

a priori probability for subsequent steps. The following equation gives the likelihood of fault F

after testing the f(h image in the series:

(5.2)

Thus, after analyzing the kth image, the system only needs to store P(FI y ....y(k)) for each

fault type at each pixel, rather than the individual conditional probabilities. Note that a complete

fault model also includes good pixels, such that P(y(k) IF(1.0. 0)) is also evaluated as part of the

above sequence. The algorithm proceeds by evaluating Eq. (5.2) for the entire sequence of T (or

T+J if a darkfield is used) images, after which the fault type with the highest likelihood is taken

as correct. In this design, the parameter T is fixed before testing begins, although more elaborate

stopping criteria are possible.

Several algorithms have been considered for implementing the decision making term

P(y(k) IF). The simplest approach looks at the image histogram to determine if a pixel value is
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likely to occur. A second technique estimates the expected value of a pixel by interpolating its

neighbours, and uses that result to find the fault type that best fits the discrepancy between

expected and observed values. Finally, the robust round robin technique builds on the

interpolation statistics method by considering each of the neighbours separately. These algorithms

were developed sequentially, with each increasingly-complex implementation overcoming the

limitations of the previous iteration and allowing a more complex fault model to be identified.

This progression is justified by the Monte Carlo simulation results presented in Section 5.5.

5.3.1 Image Statistics Method

The image statistics method is the simplest implementation because it uses information that

is already calculated by most DSCs during image capture. Recall that Eq. (5.2) is evaluated

separately at each pixel for every fault type in the model. The conditional probability for fully

stuck faults is calculated from Eq. (5.3), which states mathematically that the output from stuck

pixels is expected to be constant in all images.

yCk) = D.

otherwise

(5.3)

For example, a pixel cannot have a stuck low fault if its output reaches a non-zero value. In

reality, stuck pixel values are never fixed because of the various noise sources in a sensor.

Therefore, the unit impulse probability density function (PDF) given in Eq. (5.3) is actually

replaced by a function representing the noise distribution. The implementation of this algorithm

will use a Gaussian distribution with a mean of D. and the appropriate variance to represent noise

power. Nonetheless, equations showing stuck faults will continue to use the unit impulse to

simplify notation.

To arrive at p(y(k) IF) for light sensitive faults, we evaluate the possibility of generating that

pixel value from the range of illumination intensities striking the sensor. Although we cannot
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know the true illumination at anyone pixel, the image intensity histogram gives a good estimate

of the illumination values actually impinging on the sensor. That is, we use the image histogram

probability density, py(y), to accurately estimate Px(x), because the number of faulty pixels is

relatively small. Figure 5.1 shows a histogram from a typical image, where many pixels take on

mid-level grey values but few are found toward either extreme.
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Figure 5.1. Sample image intensity histogram showing probability density py(y).

Now consider the test for a good pixel type at a single location: p(yJk} IF(l,O)) = py(yJk}).

At each image, we determine ifthaty(k} is likely to occur given the scene content. Any given pixel

may record extreme values in some photos, but if the recorded values are consistently improbable

then the accumulated likelihood will be small for the good type. Complex faults are now tested by

finding the probability of generating the observed y(k} from the combined gain and offset of the

fault type given the input illumination, as per Eg. (5.4).

(5.4)

For example, consider the likelihood of a low sensitivity fault (say, a gain of 0.5 or lower)

when the observed pixel value is 0.45 in the image matching the histogram of Figure 5.1. To

arrive at this middle-grey output, the intensity hitting this test pixel must have been very bright,
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but the histogram indicates that there were no bright regions in this image. Therefore, P(y(k)IFj is

very small or zero for this fault type at this pixel location.

To better demonstrate how this algorithm would be implemented, Table 5.6 shows a

complete list of the equations evaluated at each pixel for the FTAPS Stuck fault model. A

flowchart of the algorithm is also shown in Figure 5.2 on page 106.

Table 5.6. Equations computed by image statistics method for FTAPS Stuck model.

Fault e

Good

Fully stuck high

Fully stuck low

Fully stuck mid

Half stuck high

Half stuck low

py ~Ck))

{
I, yCk) =]

0, otherwise

{
I, yCk) =°
0, otherwise

{
I, yCk) = 0.5

0, otherwise

py (2~Ck) - 0.5D

py (2. yCk) )

Monte Carlo simulations of the Image Statistics algorithm, detailed in Section 5.5.1-5.5.2,

found the method to be very effective at identifying simple stuck fault types. However, this

algorithm performed more slowly when identifying the complex fault types in the FTAPS Stuck

model, necessitating the development of an improved algorithm, described next.
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Figure 5.2. Algorithm flowchart for the implementation of the image statistics method.

5.3.2 Interpolation Statistics Method

The image statistics method takes a global approach to estimating the illumination striking a

pixel but ignores local information about illumination behaviour, which caused false

identifications in simulations and led to long convergence times. For example, a sequence of

images.with patches of a dark forest near the bottom could cause those pixels to be misidentified

as low-sensitivity because of their consistently dark output. To remedy this shortcoming in

identifYing complex fault types, the interpolation statistics method was devised to utilize

information from neighbouring pixels to determine the expected output of a pixel.

The likelihood of fully stuck faults is found using Eq. (5.3) in an identical manner to the

image statistics method. Detecting complex fault types begins by assuming the pixels surrounding

the test pixel are good and using their outputs to estimate the true incident illumination. As with
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the image statistics algorithm, we then test if each combination of gain and offset are likely to

transform the estimated input into the .observed pixel value. If the error between the measured

value and transformed estimate is within the accuracy of the estimation method, then a strong

match is found. When a dense fault model with many fault types is used, several faults types will

initially be equally likely, but processing a long sequence of images will narrow the possibilities

to only a single fault type.

In more detail, detection in 'th'e f(h image starts by making an estimate, z(k), of the incident

illumination at the every pixel. The estimation error, e(k) = z(k) -lk), is then calculated everywhere

across image, and the statistics of this error are accumulated in the distribution pde), which

describes the effectiveness of the estimation scheme without defects. At every individual pixel,

the likelihood for each fault type is determined by computing the error, eF, between the estimated

value and the observed value transformed using the gain and offset for that type. The likelihood

of eF arising from pure interpolation error is then found by retrieving pderJ as summarized in

Eq. (5.5). The effectiveness of this scheme comes from realizing that the estimate may not

precisely predict x(k) at each frame, but the error is "averaged out" as more test images are

processed.

(5.5)

Thus, unlike [63], the interpolation statistics method does not use fixed thresholds to directly

compare pixel values to their neighbours. Rather, a model of the expected fault behaviour is

included in the comparison to neighbouring values, which allows more complex fault types, like

those with abnormal sensitivity, to be considered. The evidence is once again accumulated over

many images, thereby accounting for dynamic variations in scene content and avoiding the
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inherent inaccuracies of blind, fixed-threshold comparisons. Consequently, simulation results

presented in Section 5.5.1-5.5.3 show fault identification can be achieved without false positive

results, unlike the fixed-threshold results in [63]. Moreover, this method goes beyond [64] by

including specific fault models in each comparison (i.e. testing for a specific sensitivity and offset

pair), enabling the algorithm to extract and subsequently correct the actual sensitivity and offset

of faults. This detailed modelling may also account for the reduced number of false positives

observed in simulation results as compared to [64].

Table 5.7 shows some example calculations performed by the interpolation statistics

technique for selected fault types.

Table 5.7. Equations computed by interpolation statistics method for selected fault
types.

Fault type

Good

Full stuck high

Halfstuck high

PE(Z - y(k))

{
I, yCk) =1

0, otherwise

In addition, a flowchart of the complete process is shown in Figure 5.3.
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Figure 5.3. Algorithm flowchart for the implementation of the interpolation statistics
method.

5.3.2.1 Interpolation Schemes

Although numerous highly-accurate interpolation schemes are available, fault identification

places emphasis on different perfonnance parameters than typical applications. Most techniques

use many neighbouring pixels to accurately estimate the missing value, but the probability of

including multiple faulty pixels in the calculation also increases with the area of interest.

Furthennore, most schemes strive to maintain high-frequency image components, while the ideal

detection algorithm should smooth the impact of point defects in the image. Finally, computation

time is a concern because interpolation may have to be performed many times before a solution is

reached. As such, three simple interpolation schemes are considered here: an average of the 4

nearest neighbour (4NN) pixels, an average of the 8 nearest neighbour (8NN) pixels, and a
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biquadratic method [65] as defined by Eqs.(5.6-5.8), respectively. Note that while all three

schemes are described here, the biquadratic method was omitted from experiments due to a

clerical error.

X i,J.4NN =+(Xi-I,J + X',J+I + Xi+I,J + Xi,J-I)' (5.6)

Xi,j,Biq110d = tk-I,j + Xi,j+1 + xi+l,j + Xi,j-I)- t(Xi-l,j+1 + xi+I,j+1 +xi+l,j_1 + Xi_I,j_I)' (5.8)

Each equation can be implemented by 2-dimensional convolution with the kernel

coefficients shown in Figure 5.5.

1.
4

1. X· 1.
4 1,1 4

1.
4

(a) 4NN averaging

1. 1. 1.
8 8 8

1. X" 1.
8 1,1 8

1. 1. 1.
8 8 8

(b) 8NN averaging

.=l 1. .=l
4 2 4

l. X" 1.
2 1,1 2

.=l 1. .=l
4 2 4

(c) Biquadratic interpolation

Figure 5.4. Two-dimensional filter kernels for (a) 4NN averaging (b) 8NN averaging and (c)
biquadratic interpolation schemes.

To evaluate the accuracy of the interpolation schemes, each method was applied to a bank of

defect-free images (see Section 5.4), and the error was calculated between the estimate and actual

image value at every pixel. Figure 5.5 shows histograms of the resulting estimation error

distribution, pde), obtained for each scheme. Although the graphs show that all three algorithms

yielded similar results, 4NN averaging provided the best compromise between typical and worst-

case accuracy, which it achieved with the least computation effort.
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Figure 5.5. Estimation error in fault-free images using (a) 4NN (b) 8NN and
(c) biquadradatic interpolation schemes.

5.3.3 Round Robin Method

Simple interpolation methods occasionally make a very large estimation error when

operating near defects or fine image features, thus making it difficult for the interpolation

statistics method to distinguish between fault types with small variations in gain. For example,

consider the common situation depicted in Figure 5.6, where a black feature edge is located

adjacent to our faulty, F(0.60, 0) pixel under test (cross-hatched, at centre). Now, when the

estimation uses the 4 neighbouring pixels to compute ZiJ' the result will be drastically lower than

the correct value because 25% of the input values are black. Consequently, the fault type with the

best fit to the observed pixel response would be F(O.BO, 0) rather than the correct F(0.60. 0).

Ordinarily, the next analyzed image would contain different features and the estimation error

would recover to a more reasonable value. However, in the rare, but possible, event that a dark

feature edge lands in the same location in multiple images, the incorrect decision can become

solidified in the Bayesian decision-making logic, leading to an incorrect result. Such subtle errors

will not be noticeable when coarse fault models like FTAPS Stuck are employed. However, the

highly similar fault types in fine-grained models like the Continuous family are more susceptible

to these (rare) errors.
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Object Edge
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Figure 5.6. Estimation error influenced by neighbouring feature edge.

Therefore, to prevent a single pixel error from influencing the results so strongly, the 4NN

interpolation statistics method is partitioned into four separate "tests to create a majority-voting

scheme calIed the round robin method.

The algorithm executes as folIows: first, pixel (i, j) is compared to its neighbour to the left,

and the probability P(FI y(k)) is evaluated; next, the pixel is compared to its neighbour above, and

P(FI y(k)) is evaluated using the left-pixel test result as its prior probability. The process continues

until alI four neighbours have been included, and then the k+ til frame in the sequence is

examined. This four-test sequence is calIed the 4 round robin (4RR) test. Likewise, 8NN

interpolation statistics can be partitioned to form the 8 round robin (8RR) test.

Figure 5.7 shows histograms of the resulting estimation error when the round robin methods

are applied to a bank of fault-free images. As expected, round robin estimation error is greater

than the traditional interpolation methods, but the scheme offers the advantage of mitigating the

effects of a catastrophic error while maintaining low computational cost.
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Figure 5.7. Estimation error in fault-free images using (a) 4RR and (b) 8RR methods.

The round robin algorithm was found to be particularly effective at identifYing abnonnal

sensitivity faults; simulation results are presented in Section 5.5.3.

5.4 Monte Carlo Simulation

The effectiveness of each identification algorithm was evaluated with a Monte Carlo

software simulator that implements the system model pictured in Figure 5.8. In this model,

simulations begin by adding to a sensor randomly placed faults. Then, a scene is created by

loading a random image from a bank of known photographs and is transfonned according to the

fault map of the simulated sensor (e.g. stuck-high pixels become white and the values of half-

sensitivity pixels are reduced accordingly). The resulting image, which represents the output from

a faulty sensor, is passed to an algorithm from Section 5.3 to locate and identifY faults. The

simulator then compares the identified fault map to the simulated sensor fault map to measure

accuracy, and the cycle is repeated until all T pictures have been processed.

Once a complete image sequence has been analyzed, a new faulty sensor is generated and

the complete process is repeated for another random sequence. In the simulation experiments

described next, all but the most computationally-intensive simulations were repeated 100 times to

ensure thorough simulation coverage before varying parameters for the next experiment.
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Figure 5.8. Simulation system model with scene, sensor and detection algorithm.

5.4.1 Fault Distribution

In line with the findings of Chapter 3, which showed that faults developed independently

without clustering, the simulator creates sensor fault maps by first generating a list of uniformly

distributed pixel locations. Next, each location is assigned a fault type, which is straightforward

for simple fault types, like those found in the Simple Stuck and FTAPS Stuck models, because

each fault type has a single sensitivity and offset associated with it. To simulate ranged fault types

(i.e. from the Continuous models), each fault location is assigned a sensitivity value from a

uniform random distribution with the appropriate bounds. As such, sensors simulated with a

Continuous fault model are afflicted by a continuous range of sensitivities.

In every simulation, all fault types are made equiprobable, and the total number of faults in

the simulated sensor is (IxJ) xp,owl, where I and J are the sensor dimensions, and PlOwl is the total

fault density given by the sum of the individual fault probabilities. In general, there appeared to

be no interaction between different fault types, such that the exact proportion of fault types used

in simulation had little bearing on the algorithm's effectiveness.
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In most experiments, the uniform random, cluster-free fault distribution was strictly enforced

by ensuring that only one fault was assigned to each 3x3 pixel region (i.e. faults were assigned in

the 9-pixel pattern shown in Figure 5.9(a)). This step was necessary because uniformly

distributed faults can form small clusters with a significant probability when high fault densities

are considered. ]n such cases, algorithm performance can degrade prematurely because multiple

incorrect pixel values in a single neighbourhood reduce interpolation accuracy and cause fault

identification errors. Therefore, because existing experimental evidence indicates that fault

clustering remains highly improbable in most cases, clusters were artificially inhibited to enable

other aspects of the identification scheme to be more easily studied.

Nonetheless, clustering was explicitly included in some experiments with the aim of

developing a robust detection algorithm capable of handling complex defect models. In these

configurations, fault clusters were distributed according to a simplified common-centroid model.

That is, a sequence of uniform random locations was again generated, representing the centre of

each cluster. Then, each location was allocated as cluster of faults ranging in size from 2 to 8

pixels. Only adjacent-pixel clusters were considered, and the shape of each cluster was fixed

according to its size (see Figure 5.9(b) for an example of a 3-pixel cluster fault). Fault types at

pixels were assigned independently of other faults in the cluster.

No further
faults in

neighbourhood

(a) Typical no clustering case.

Original
faulty pixel

No further
faults in

neighbourhood I-----t--+---!---'>-<'-i

(b) Forced clustering.

3-pixel fault
cluster

Figure 5.9. Fault cluster configurations in simulation experiments.
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5.4.2 Performance Metrics

Fault identification effectiveness was measured in one of two ways: speed of convergence or

accuracy. When processing the simple stuck fault models, the algorithm was able to fully identify

the location and type of all faults without creating any false-positive or false-negative diagnoses.

Therefore, performance in these simulations was measured as the minimum number of images

required to be analyzed before all faults were found (i.e. the minimum image sequence length

necessary for 100% accuracy). Simulations were allowed to continue for 5-10 images beyond

this 100% accuracy point to ensure that no new false-positives would enter the results.

Faults types in the continuous models, however, could not be diagnosed with perfect

accuracy because complete continuous ranges of sensitivities were detected as a single nominal

fault type. Therefore, simulations of these defect models were run for a fixed number of images

(typically 100 images) and the detection error was used as the metric of accuracy. At each pixel

location, the detection error was calculated from the absolute difference between the injected

fault-type sensitivity (e.g.. F(0.578, 0)) and the detected fault-type sensitivity (e.g. F(0.55, 0)).

The mean and maximum values of detection error across the entire simulated sensor array were

taken as the average and worst-case accuracy, respectively.

5.4.3 Source Images

Test images were selected randomly without replacement from a bank of 398 digital

photographs, including a wide range of landscape, interior and people-based images taken by a

typical amateur photographer (samples are shown in Figure 5.10).

Images were stored in uncompressed 8-bit greyscale format obtained by performing

desaturation and bicubic downsampling operations on the high-resolution colour originals.

Several resolutions of each picture were derived from the same source, enabling simulations on

photos from approximately I M to 6 M pixel (MP) sizes in I MP increments. Only one resolution
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of pictures was used for a given simulation run, and most simulations were performed using the

1 MP set to reduce computation time. Colour imagers were simulated by splitting the original

source images into red, green and blue colour planes to obtain three independent sets of

monochrome images. Sensor orientation was maintained constant in the images so image rotation,

which is performed automatically in many DSCs, was ignored.

Figure 5.10. Sample images from simulation image bank.

5.4.4 Sensor Noise

Most simulations were performed using unmodified I MP images, which are smoothly

varying and nearly noise-free due to the downsampling used to derive them. To simulate more

realistic imaging systems, temporal noise was introduced into the test data in one of two ways. In

the simplest method, greyscale versions of full resolution, 6 MP, images were passed to the

algorithm, allowing the intrinsic sensor noise to affect the images. Noise power was varied by

restricting simulations to include only images taken at particular camera gain settings (i.e. ISO

Sensitivity). Because this gain is applied prior to any digital processing, the noise component

from each pixel is also amplified, and increased ISO SensitiVIty directly translates into increased

noise power.
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In a second set of simulations, a random value was added to every pixel output (not only

faulty or good pixels) prior to processing by the detection algorithm. A zero-mean Gaussian

random variable was used for simplicity, where the distribution variance was taken as the noise

power.

5.5 Simulation Results

Results from simulations are now given to demonstrate how faults can be effectively

identified in sensors affected by fault models of increasing complexity. In each case, the

feasibility of fault identification is shown in the most basic experimental configuration that

represents a simplified ideal system and then additional experiments are performed to show how

the algorithm scales with various system parameters, such as sensor resolution and fault density.

The goal of these tests is to confirm that such an algorithm could be successfully deployed in a

real camera system.

5.5.1 Simple Stuck model

In the first set of simulations, the convergence rates of the image statistics and interpolation

statistics methods were compared when implementing the Simple Stuck defect model. Table 5.8

gives a summary of some of the key simulation parameters.

Table 5.8. Simulation parameters used with the Simple Stuck fault model.

Parameter

Number of iterations

Image resolution

Fault density

Value

100

IMP

0.002

Statistics of the convergence rate (the number of images required to achieve 100%

accuracy), accumulated over all 100 simulations, are given in Table 5.9 for both algorithms.
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Exact values were not available for the interpolation statistics method, but both algorithms were

observed to perform very similarly with this simple defect model. In contrast to the results of [63,

64], this algorithm always correctly identified 100% of faults and correctly labelled 100% of all

good pixels as well. Thus, the perfonnance values presented below are a measure of the algorithm

execution time rather than accuracy, which is already perfect at this model complexity.

Table 5.9.Algorithm performance using the Simple Stuck fault model.

AI orithm

Convergence time

(# ofimages analyzed)

Mean Standard deviation

Image statistics

Interpolation statistics (4NN averaging)

3.45 3.91

::::4

The histogram of convergence times in Figure 5.11 is representative of results obtained from

both algorithms and shows that both identified all faults in less than 5 images 88% of the time.

However, the outliers in the same histogram show that particularly poor fault placement, such as

a stuck low fault affecting the dark regions of the first several images, can slow down

identification and extend the required detection time to 25 pictures. Nonetheless, this rapid

convergence speed clearly demonstrates that both the image statistics and interpolation statistics

algorithms are well suited to identifying fully stuck faults because almost any application can

readily produce 10 photographs. Note, however, that the image statistics implementation requires

lower computational effort because it does not rely on any filtering steps beyond those already

used by in-camera processing, making it ideal for low-cost applications.
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Figure 5.11. Histogram of convergence rates from 100 simulations of the Simple Stuck
model, representing results of both Image Statistics and Interpolation Statistics

algorithms.

5.5.2 FTAPS Stuck Model

Simple stuck fault types proved straightforward to diagnose because their outputs are fixed

at one value in all images. However, complex abnormal sensitivity fault types in the FTAPS Stuck

model are more challenging because their output value varies from image to image such that no

fixed reference for the expected value is available. A second set of experiments were conducted

to compare the performance of the image statistics and interpolation statistics identification

algorithms in finding these faults. To better compare the effects of fault model complexity on

performance, simulation parameters were maintained at the equivalent values to those specified in

Table 5.10 (Note: the total fault density was increased in order to maintain the same density of

individual fault types).

Table 5.10. Simulation parameters used with the FTAPS Stuck fault model.

Parameter Value

Number of iterations 100

Image resolution IMP

Fault density 0.005

Interpolation type 4NN averaging

Darkfield used? Yes
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Simulated convergence rates from the first simulations of both the image statistics and

interpolation statistics methods with FTAPS Stuck faults are summarized in Figure 5.12 and

Table 5.11. The greatly increased convergence time values show that both algorithms require

more information to pinpoint these complex light-sensitive faults compared to the Simple Stuck

types. Here, the image statistics method analyzed 114 images on average, compared to only 3.5

with the Stuck Simple model. In the worst case, the image statistics algorithm needed data from

more than 200 images before generating a perfect diagnosis, which is a prohibitively large data

set for performing on-line identification.

Table 5.11. Algorithm performance using the FTAPS Stuck fault model.

Convergence time (# ofimages analyzed)

AI orithm

Image statistics

Interpolation statistics (4NN averaging)

Mean

114.3

27.2

Standard deviation

41.0

5.56
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(b) Interpolation stats. algorithm (4NN averaging).

Figure 5.12. Histogram of convergence times from simulations of the FTAPS Stuck fault
model using the (a) image statistics and (b) statistics algorithms.

Results from the interpolation statistics algorithm were more reasonable. On average, the

algorithm analyzed 27.2 images with FTAPS Stuck faults, compared to 3.5 images in simulations
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with Simple Stuck faults. In the worst case, the simplest 4NN averaging interpolation statistics

method required data from only 50 images to deliver a complete identification of all faults in the

sensor, making this technique a viable option for implementing an in-camera fault identification

system.

The disparity in convergence speed between the image statistics and interpolation statistics

methods can best be understood be examining more closely the decision-making behaviour. In

both cases, we can treat that decision as a continuous process of elimination that discards fault

types when the observed pixel value is improbable. For example, the image statistics method will

quickly determine that a pixel cannot be stuck high when a value of zero is observed. However,

this image statistics process is slow to reach conclusions about complex abnormal-sensitivity

faults because photographs tend to have a very wide distribution of pixel values. Thus, most fault

types remain nearly equiprobable until a particular illumination value makes that combination of

sensitivity and offset impossible. Then, the likelihood of that fault type becomes zero and it is

effectively eliminated from the list possible candidates at the pixel location. In this way, incorrect

fault types are "eliminated" as each pixel is exposed to a range of illumination values, but this

process can require a large number of input photographs.

Conversely, the estimation step provides detailed information to the interpolation statistics

method, resulting in a very narrow decision-making histogram (i.e. the Pde) distribution). Once

the estimated pixel value is known, only a small range of sensitivity or offset parameters can

accurately map the observed value onto the expected value, eliminating a large number of other

fault types from future consideration. As more images are tested, the remaining range of plausible

fault types is further reduced, according to the accuracy of the interpolation method. Thus, the

interpolation method statistics quickly converges on the correct fault type, justifying the added

computation burden of performing the interpolation on each image.
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5.5.2.1 Comparison of Interpolation Methods

Thus far, the 4NN averaging interpolation scheme has been used as a benchmark because it

is the simplest of the schemes presented in Section 5.3.2.1. However, simulations were also run

with the 8NN averaging scheme and the convergence time statistics from each run are presented

in Table 5.12.

Table 5.12. Algorithm performance with varied interpolation methods.

Inter olation method

4NN averaging

8NN averaging

Convergence time

(# ofimages analyzed)

Mean Std. dev.

27.15 5.56

17.58 7.87

The 8NN averaging scheme converges in less than 18 images on average and improves

significantly on the simpler 4NN scheme, which takes, on average, 27 images to complete. The

performance improvement is likely due to the smaller weighting given to each pixel, which in

tum gives faulty pixels a smaller influence on interpolation results and allows quicker diagnosis

of the good pixels around each fault. Here, the slightly reduced accuracy of 8NN averaging

compared to 4NN (see Figure 5.5 on page III for a comparison) is insignificant because the

interpolation error is much less than the error from faulty pixels themselves.

5.5.2.2 Application to Real-World Cameras

Once the interpolation statistics identification algorithm was demonstrated as a viable

solution for locating defects in the FTAPS Stuck model, simulations were performed to evaluate

how the software might perform in more realistic scenarios. The fault density was varied to

represent a wide class of image sensors, and several resolutions of sensors were tested (i.e. those

with increasing numbers of pixels and, consequently, image detail). Simulations were conducted
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with and without darkfield tests to determine whether this algorithm is equally applicable to

cameras without a shutter, which cannot capture darkfields. The extension to colour imagers has

not yet been made with the FTAPS Simple model, however. Both 4NN and 8NN averaging

interpolation schemes were tested to find the range of situations in which both may be applicable.

Simulated algorithm performance is given in Table 5.) 3 as the fault density is increased

from 5x) 0.5 to 0.05. We have already seen that these fault densities are orders of magnitude

greater than those observed for in-field defects in commercial cameras, but the values may be

applicable to some specialty imaging systems, such as infrared cameras. Nonetheless, even at

these atypically high fault densities, both interpolation algorithms converged in less than 48

images in the worst-case. Typical convergence times were 27 and 18 images for the 4NN and

8NN schemes, respectively.

Table 5.13 shows that performance degraded as the defect density was increased, which can

be attributed to two simple facts. First, because the distribution of PE(e) is derived at run-time

from an image with faults, this function becomes less accurate as the number of faults increases.

Furthermore, faults at certain locations will be more challenging to identify because they

frequently affect regions of images with edges and will consequently give less accurate

interpolation results. As fault density is increased, the probability of faults occupying these

locations is increased, and thus the identification process is slowed down.
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Table 5.13. Algorithm performance with increasing fault density.

Convergence time (# ofimages analyzed)

4NN averaging 8NN averaging

Fault densit Mean Std. dev. Fail Mean Std. dev. Fail

5x 10'5 8.78 4.84 0 7.33 2.28 0

5x10-4 17.09 6.58 0 10.61 6.82 0

5xlO,3 27.15 5.56 0 17.58 7.87 0

5xlO,2 100 86.42 58.13 74

Convergence sensitivity to image sensors with varied spatial resolving capability was

simulated by processing images with the corresponding pixel count, as described in Section 5.4.3.

Recall that each image was available in several resolutions such that all of the following

simulations processed the same scene content but with varying levels of details. Because the

interpolation step is so crucial to the algorithm, the level of image detail is expected to influence

performance greatly. Table 5.14 lists the simulated convergence times for 1-3 MP sensors at two

fault densities. Higher resolution sensors were not yet simulated because of the prohibitively long

simulation time required to run these non-optimized implementations of the software. No failed

tests were observed.

In all cases, the algorithm convergence time increased as sensor resolution was increased,

but the resulting performance remained acceptable for most applications. In the worst-case

scenario, the mean convergence time for 3 MP sensors using the 4NN scheme rose to 21.2 images

from 17.1 images in the I MP case. Given the small magnitude of this performance decrease, it

can likely be explained by the fact that higher resolution sensors will have more faults at a given

fault density. Therefore, faults are more likely to occur in trouble locations, as discussed above,

and the algorithm is slowed down.
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Table 5.14. Algorithm performance with varied sensor resolutions.

Convergence time (# ofimages analyzed)

Sensor
4NN averaging 8NN averaging

resolution Fault densi~y Mean Std. dev. Mean Std. dev.

IMP 8.78 4.84 7.33 2.28

2MP 5x10's 13.20 6.75 8.31 4.04

3MP 13.26 5.95 10.71 6.08

IMP 17.09 6.58 10.61 6.82

2MP 5x 10-4 20.23 7.05 14.27 8.45

3MP 21.20 6.47 15.51 8.58

Simulations were also performed with and without a darkfield test at the beginning of the

image sequence. Such data is very simple to acquire in cameras equipped with a shutter and is

expected to improve detection. However, simulations surprisingly showed that including

darkfield data has negligible benefits in the identification of FTAPS Stuck faults (see Table 5.15).

In fact, the darkframe contains little information because many of the faults in this model behave

similarly under zero illumination. For example, both partial sensitivity faults and stuck low faults

produce a black output without any light, and only the partially stuck high faults can be diagnosed

this early in the process. Consequently, cameras without a mechanical shutter can employ this

identification system without suffering a significant performance penalty.

Table 5.15. Algorithm performance with and without a darkfield image.

Convergence time (# ofimages analyzed)

4NN averaging 8NN averaging

Dark leld used?

Yes

No

Mean

8.78

13.20

Std. dev.

4.84

6.75
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All of these simulations thus far have been conducted without any clustering of faults. In a

final simulation, this limitation was relaxed to allow multiple faults to strike the same 3x3 pixel

space. However, the majority of these tests failed to converge on a correct defect map, illustrating

a shortcoming of the interpolation statistics algorithm: the fault likelihood depends strongly on

the pixel value estimate, ZiJ' which in turn depends on the validity of the neighbouring pixel

outputs. When multiple pixels in the neighbourhood become defective, the interpolation error

becomes very large and a correct diagnosis cannot be made. Consequently, the interpolation

statistics algorithm should be replaced with the image statistics method when search for FTAPS

Stuck faults in environments where clustering is known to be prevalent. Because image statistics

does not estimate pixel values or compare neighbouring pixels in any way, this simpler algorithm

is unaffected by clustering and can therefore provide a more accurate result, albeit after

processing many more photographs.

The impact of estimation accuracy was observed to affect simulations of models that

included additional partial sensitivity faults, such as the F(0.25, 0) and F(0.75,0) types. In these

cases, the estimate Z,J at a location neighbouring a fault will clearly be incorrect If only half­

sensitivity faults are considered, that estimation error is not large enough to mistake the good

pixel as F(0.5,0), for example. However, as a finer granularity of sensitivity values is considered,

the interpolation error can cause two closely spaced faults to be mistaken for each other, leading

to false positive tests.

Despite this limitation, the interpolation statistics identification algorithm can clearly be

combined with the Fault Tolerant Active Pixel Sensor design to create a complete self-healing

camera system that can resist a wide range of faults in the field. Although hot pixels have not yet

been considered in this statistical algorithm, ongoing research has already demonstrated that hot

pixel faults can also be incorporated into the FTAPS model to make the camera truly resilient.
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The following section demonstrates how the round-robin algorithm can overcome the

limitations introduced by estimation error in the interpolation statistics algorithm.

5.5.3 Continuous Fault Models

The interpolation statistics and round robin algorithms are now applied to the Continuous

fault models that include faults with no offset and a continuous range of sensitivities. In effect,

these following experiments simulate an in-field camera recalibration procedure. As discussed

earlier, perfect identification of such faults is no longer feasible because of this continuous range

of values. Therefore, detection error (absolute difference between injected and detected

sensitivity) is now used as the performance metric. All simulations were run for 100 images, after

which statistics of the error were accumulated and plotted before repeating the simulation for a

total of 25 iterations. Once again, I MP source images were used. Table 5.16 lists the pertinent

simulation parameters used in the remainder of the experiments.

Table 5.16. Simulation parameters used with the Continuous ranged fault models.

Parameter Value

Number of iterations 25

Number of images tested 100

Image resolution IMP

Fault density 0.005

Darkfield used? No

Cluster faults allowed? No

We begin by evaluating the performance of the 4NN averaging interpolation statistics

algorithm in identifying Continuous Half faults. Figure 5.13 shows the evolution of maximum

and mean detection error throughout individual simulation runs. Results are plotted from two

simulations: one with coarsely spaced 0.10 width bins and another simulation with more finely
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spaced 0.0 I bins. From Figure 5.13(b) we see that mean detection error falls very quickly (in less

than 10 images) and remains at this steady-state value until the simulation completes after 100

images. When using a model with 0.10 width bins, the algorithm settles to a mean error of

±0.026, while using finely spaced 0.01 bins results in a mean error of±0.009. However, the large

maximum error, which settles to ±0.16 in Figure 5.13(a), confirms the shortcomings of

interpolation statistics. The aim of this algorithm is to improve image quality, and therefore

occasional large errors cannot be tolerated as a tradeoff for correcting some smaller faults.
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Figure 5.13. Tracking detection error from the 4NN interpolation statistics algorithm using
the Continuous Half defect model with 0.10 and 0.01 bin sizes.

Closer inspection of the algorithm workings suggested that occasional large errors in the

estimation step cause a pixel to be incorrectly diagnosed. Furthermore, as very low sensitivity

faults are introduced, the magnitude of these errors becomes very large near these faults, which in

turn causes good pixels to be falsely identified as faulty and creates a large detection error.

Therefore, although the interpolation statistics method is well suited to efficiently identifYing

simple, coarsely spaced fault types, another technique is required to mitigate occasional large

estimation errors.

The majority voting nature of the round robin algorithm is expected to overcome the

limitations discussed above because each estimation step is partitioned into four separate tests.

Figure 5.14 shows the simulation results that demonstrate the success of round robin testing.
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Figure 5.14. Tracking detection error from the 4RR algorithm using the Continuous Half
defect model with 0.10 and 0.01 bin sizes.

From Figure 5.14(b), we see that mean error once again settles to very small values: ±0.024

and ±0.005 for bin sizes of 0.10 and 0.0 I, respectively. However, the greatest improvement is

seen in the maximum (worst-case) error plotted in Figure 5.14(a). With the round-robin

algorithm, maximum error settles to about ±0.077 and ±0.046 for bin sizes of 0.10 and 0.0 I,

respectively. Furthermore, this accuracy is achieved very rapidly. Maximum detection error

reaches a steady state value within 40 images and mean detection error settles within 20 images,

demonstrating that a very high accuracy can be achieved with a reasonable amount of test data.

As the model complexity is increased to include the Continuous Full faults, the round-robin

algorithm continues to perform with excellent accuracy. Figure 5.15 shows that maximum and

mean detection error both settle very quickly to the expected values. With 0.10 bins, maximum

error settles to ±0.064 within about 40 images and mean error settles to 0.025 in less than 20

images. This closely corresponds to the ideal best-case scenario where accuracy is limited purely

by bin granularity. That is, the worst-case error comes entirely from sensitivities at the bin edge

being detected as the nominal value (e.g. both 0.901 and 0.999 faults are detected as the nominal

0.950 sensitivity, giving rise to ±0.05 error).
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Figure 5.15. Tracking detection error from the 4RR algorithm using the Continuous Full
defect model with 0.10 and 0.02 bin sizes.

To better quantify the effects of defect model bin granularity, the Continuous Full model

was simulated with 0.10, 0.05 and 0.02 bin sizes. Because of the large range of sensitivities

included in this model, bin sizes smaller than 0.02 have prohibitively high computational

requirements and were thus not tested. Simulation results, summarized in Table 5.17, show the

expected linear relationship between bin size and mean error, but maximum error is only

marginally affected. This limited improvement may once again be attributed to large errors in the

estimation step that invariably occur in each image. Therefore, the limiting factor in maximizing

accuracy is the estimation method and not necessarily the fault model granularity. Nonetheless, it

should be noted that the round-robin algorithm accurately identifies abnormal sensitivity faults

within ±0.05 even with the relatively coarse Continuous Full-O.10 fault model that requires

modest computation time. Once again, this accuracy corresponds closely to the best-case error

achievable with this finite bin granularity. Given these encouraging results, all further simulations

will focus on the Continuous Full-O.l 0 model.
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Table 5.17. Detection error as fault model bin size is varied. Values after 60 test images
using 4RR algorithm with Continuous Full fault model.

Detection error

Model bin size

0.10

0.05

0.02

Maximum

0.064

0.034

0.050

Mean

0.024

0.013

0.006

5.5.3.1 Application to Real-World Sensors

Once again, several simulations were performed to verify the applicability of the round robin

algorithm to a wide range of camera systems. Fault density and sensor resolution were varied to

examine algorithm behaviour in a range of environments. In addition, simulations were run with

varying noise powers to investigate the effects on estimation. Finally, colour image sensors were

simulated by partitioning tests to operate individually on the red, green and blue colour planes.

In the first experiment, fault density was increased from 5xl 0-4 to 5xl 0-2 with the

Continuous Full-O.lO model (i.e. Continuous Full fault model with 0.10 bin sizes). The plots of

that the detection error in Figure 5.16 show that the round-robin algorithm achieves an excellent

and nearly constant accuracy at all tested fault densities. Both maximum and mean errors remain

approximately constant near 0.06 and 0.04, respectively. This negligible impact of fault density

on detection accuracy is explained again by the majority voting nature of the round robin

algorithm which prevents good pixels from being labelled as faulty even when a faulty pixel is

included in the estimation process. Note that this experiment was performed with artificially

prohibited fault clusters. Nonetheless, at the moderate fault densities expected in commercial

imagers, the likelihood of clustering is small.
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Figure 5.16. Detection error with increasing fault density using 4RR detection with
Continuous Full-O.10 fault model.

In addition, sensor resolutions ranging from I MP to 6 MP were tested with the same fault

model and I x I0-3 fault density. The results are summarized in Figure 5.17, which shows that both

maximum and mean detection accuracy remain approximately constant at all resolutions. Clearly,

this algorithm is less sensitive to variations in image detail, which come from downsampling of

photographs, because of the simple estimation method used.
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Figure 5.17. Detection error with increasing sensor resolution using 4RR detection with
Continuous Full-O.10 fault model.

5.5.3.2 Noisy Sensors

Noisy sensors were also simulated using both of the methods discussed In Section 5.4.4.

Figure 5.18(a) shows the detection error achieved at four distinct noise levels. As expected,

moderate noise powers, up to ISO 1600 on this particular camera (corresponding to a normalized

luminance noise power of about 0.0 12), had little effect on detection error, and variations
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between simulations can be more likely attributed to the particular scene content. However,

detection error in the noisiest images, at ISO 3200 (normalized luminance noise power of about

0.0164), was nearly double that of the moderate tests. Mean error was largely unaffected at any

noise intensity, suggesting once again that increased temporal noise caused occasional estimation

errors. At all moderate noise levels, however, detection accuracy remained at less than ±0.06,

demonstrating that this algorithm can be applied to most mainstream sensors. Applications unable

to tolerate the ±0.114 error introduced by the extremely noisy images could avoid this limitation

by simply not processing them.

100-200200-40mOO-1600 3200
ISO Sensitivity

o

o

~~
0.020~=~0.=05==~0:.1=---0~.1-5-~0.2

Simulated Noise Power (Normalized)

0.16rr=====,----.------,
,loMax Error Ie0.14 :I-e- Mean Error! 0

W
c 0.12
.9
g 0.1
0;
00.08
Q)

~ 0.06<10
<J)

.0

~ 0.04

.I,_MaxError rlCJMean Error

h n n n

0.12

o

e 0.1
W
5 0.08
:g
Q)

0; 0.06
o
Q)

:; 0.04
o
<J)

1i. 0.02

(aj Noisy source images. (bj Simulated noisy sensor.

Figure 5.18. Detection error under varied sensor noise levels using 4RR algorithm with
Continuous Full-O.10 fault model. Noise was injected by using (a) noisy source

images and (b) simulated noise injection.

For completeness, simulations were also performed using artificially-injected temporal noise

in I MP images, which allows much larger noise powers to be considered. Figure 5.18(b) shows

that the resulting detection accuracy degrades with increasing noise power, but the decline in

performance is quite slow. Even at an unrealistic noise power of 0.20 (in normalized units), the

4RR algorithm achieves ±0.14 accuracy, providing further evidence that the identification method

can be safely applied to most commercial sensors.
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5.5.3.3 Colour Sensors

To demonstrate how this identification algorithm can be extended to colour imagers,

simulations were performed on data extracted from the individual colour planes (red, green, and

blue) of full-colour source images. Plots of the resulting detection accuracy are shown in

Figure 5.19 along with results from greyscale tests presented thus far. Simulations were

performed on both I MP and 3 MP images for completeness. From the plot of maximum error in

the Figure below, we can see that the worst-case detection error remains approximately constant

regardless of the colour channel being processed. In addition, the accuracy from colour images is

about the same as that obtained from greyscale images in all of the simulations thus far.

These results help to validate this proposed approach to processing data from colour

imagers. Although not implemented in time for this thesis, future versions of the software can

expect to achieve excellent detection accuracy simply by separating test images into their

constituent colour planes.
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Figure 5.19. (a) Maximum and (b) mean detection error in a simulated full-colour camera
using 4RR algorithm with Continuous Full-O.10 fault model. Individual colour

planes at 1MP and 3MP resolutions are tested.

Finally, the impact of clustering on detection was investigated in the following experiment.

Using the 4 round-robin estimation scheme, up to two defects were placed at adjacent sites, while
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the 8RR scheme was examined with 2 and 4 adjacent defects in a 3x3 pixel block. Table 5.18

gives a summary of the maximum and mean detection error from simulations of both methods.

The results consistently show that both methods fail to provide reasonable detection

accuracy when any level of clustering is allowed. Clearly, even the majority voting round robin

method can be fooled when multiple faults impact the estimated value at a pixel site. The fact that

mean error remains constant with defect cluster size indicates that these estimation errors only

occur occasionally - most likely near fine details and edges in the image. However, such mistakes

are unavoidable because a wide range of image types must be processed to apply this algorithm in

the field. Future work that aims to correct errors in high fault density sensors should focus on

overcoming these cluster errors using alternative approaches, such as an iterative algorithm.

Table 5.18. Simulated detection error from 4RR and 8RR algorithms with fault clustering.

Detection error

4RR algorithm 8RR algorithm

Maximum Mean Maximum Mean

0.064 0.024 0.060 0.024

2 0.51 0.024 0.38 0.024

4 0.39 0.024

Despite these limitations under heavy fault clustering, the simulations reported in this section

have served to validate this Bayesian inference-based algorithm as an effective tool for

identifying a diverse set of fault types in widely varying conditions. Typically, sensors are

affected by only moderate fault quantities, which the round robin method can fully calibrate with

excellent accuracy (down to ±0.05 errQr in sensitivity). Even when clusters are considered, large

detection errors are very rare and the vast majority of the fault map achieves the same accuracy.

Furthermore, when the fault density becomes sufficiently high to produce large numbers of
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clusters, much of the information originally captured by the sensor will be discarded by the

correction algorithm, in which case hardware fault tolerance or outright replacement should be

considered as alternatives to this software-only approach.

5.6 Summary

Three closely-related algorithms have been described for locating faults and identifying their

type, all of which use Bayesian inferences to match observed pixel response to mathematical fault

behaviour models. The simplest technique, called the image statistics method, looks at the

histogram from each image to find when resulting pixel values are unlikely. In the interpolation

statistics method, the expected pixel value is estimated using interpolation and is compared to the

observed pixel value to find the most likely fault model. The round robin methods partition

interpolation into separate steps to effectively form a majority-voting scheme with the aim of

avoiding catastrophic errors in the estimation step.

Monte Carlo simulations were performed on all three algorithms to determine their accuracy

and speed in identifying particular fault types. The image statistics method was able to identify

fully stuck faults in less than 20 images with 100% accuracy, while the more complex partial

sensitivity faults in the FTAPS model required up to 220 images to be fully diagnosed. The

interpolation statistics method improved on this performance by identifying FTAPS faults in less

than 60 images every time. Extended simulations showed that the interpolation-based

identification scheme could be applied to a wide range of sensors without a significant

performance penalty. Sensors up to 3 MP resolution were tested with fault densities extending to

an unrealistic 5x I0-3
.

Although the interpolation statistics method was not effective at identifying continuously

distributed faults due to large errors in the estimation step, round robin partitioning enabled a very

accurate calibration of abnormal sensitivity faults. In the best case, pixel sensitivities were

137



identified within an error of ±0.034, and average results with only moderate algorithm complexity

(i.e. 4RR method with 0.10 bin size fault model) yielded a maximum error of no more than

±0.064. Further simulations demonstrated that the round-robin methods could be extended to

sensors up to at least 6 MP resolution at any fault density without degrading performance.

Furthermore, the algorithm performed equally well on three-colour, red-green-blue sensors.

Clustering of multiple faults in a single 3x3 continues to limit accuracy in some cases, but such

clustering would not be significant in sensors with any reasonable fault density arising either in

the field or during manufacturing.

Thus, a novel and robust fault identification scheme has been presented and shown to be

effective at finding the locations and types of faults distributed throughout electronic image

sensors. This software may be readily deployed using existing sensor hardware to improve the

robustness of cameras in the field without adding significant cost to the camera. In some

applications, this system may even be used to replace some stages of manufacture-time

calibration to further reduce production costs or improve yield.
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CHAPTER 6

CONCLUSIONS

Solid-state image sensors have reached ubiquitous status, promising to transform aspects of

daily life ranging from traditional photography to automobile safety. This widespread reliance on

image sensors necessitates a better understanding of their long-term reliability and systems to

mitigate potential failures. The aim of this thesis was to address that need in three ways: by

characterizing in-field defects; demonstrating how the FTAPS can mitigate the most common

fault type; and developing a novel fault identification and correction algorithm for all image

sensors.

6.1 Fault Characterization

In Chapter 3, this thesis demonstrated concretely how a straightforward suite of darkfield,

uniform lightfield, and photograph analysis procedures could identify and track in-field defect

growth in commercial cameras. While specialized scientific cameras have been the subject of

limited investigations in the past, this work is the first to make publicly available a detailed study

of aging effects on ordinary solid-state imagers in readily-available cameras.

As a part of this research, in-field defect development was characterized in high-end digital

SLR cameras. Contrary to commonly-cited anecdotal reports, quantitative tests found no fully

stuck or abnormal sensitivity faults in any of the II cameras tested. However, hot pixels were

determined to be the dominant fau)t type, with 101 hot pixels identified across 9 cameras. Of all

faults, 8 were previously-unknown partially-stuck hot pixels, which degrade images at any
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exposure duration. Moreover, extended tests on a single camera found that 3 of 15 hot pixels

exhibited random telegraph signal behaviour that would confuse most correction algorithms

because of their frequently-changing dark current levels.

A detailed statistical analysis methodology was also developed to examine the spatial and

temporal behaviour of in-field pixel faults beyond the simple fault-counting methods typically

found in the literature. Maps of fault locations were generated and the inter-defect distances

computed, which indicated that faults are distributed uniformly across sensors and do not form

smaller clusters. All hot pixels developed as single-pixel faults, suggesting that the physical

defects are small and point-like, confined to less than 0.15% of the total pixel area.

Temporal data was extracted from series of regular photographs, which showed that hot

pixels develop suddenly and do not heal over time. In addition, the growth of new faults over

time was found to be a continuous process, producing hot pixels in one test camera at a steady

rate of about 5.5 hot pixels per year. The observed time intervals between the arrivals of

subsequent faults suggests they are produced by a Poisson random process.

Together, these clues indicate that the in-field faults were the result of an external stress,

rather than intrinsic material degradation. The observed behaviour is consistent with the findings

of previous radiation experiments by researchers for space-borne cameras, suggesting that hot

pixels are specifically caused by silicon bulk displacement damage arising from single radiation

events. Although the test cameras had operated only in benign environments, they were

constantly bombarded by terrestrial cosmic rays consisting primarily of high-energy protons and

neutrons impinging at a sufficient rate to cause about 5.5 annual faults, on average.

Six or fewer faults developed annually may seem insignificant, but these blemishes mark

every image captured by the camera and quickly stand out in ordinary photographs. Furthermore,

because cosmic ray intensities vary with geographic location and altitude, cameras subjected to

more harsh environments, like those frequently taken on trans-continental flights, can expect to
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develop orders of magnitude more hot pixels. Similarly, large area imagers, which will become

more commonplace as semiconductor manufacturing processes improve, can expect to develop

even more hot pixels with a very noticeable impact on image quality.

Overall, this study has quantified, for the first time in public literature, the significance of in­

field faults in multiple common silicon solid-state imagers. The quantitative fault growth

evidence presented here can aid future engineers in designing sensors to estimate and mitigate the

impact of hot pixels.

Moreover, the simple testing and analysis procedures developed here can be readily

extended to collect data from a much larger and diverse sample set. For example, future studies

can re-use these test processes to calibrate many more DSLR cameras to improve the statistical

significance of the results. Alternately, the same process can be very easily adapted to other

classes of imagers, such as cell phone cameras or more compact consumer-grade cameras. In

either case, this work has helped to lay the groundwork for a straightforward user-centric imager

calibration process.

6.2 Hot Pixel Mitigation with Fault Tolerant Active Pixel Sensors

Hot pixel faults not only add false bright spots to images, they also degrade a pixel's

dynamic range by causing pixels to saturate earlier than expected. Consequently, simple

darkframe subtraction is insufficient for correcting these faults. Chapter 4 described how the

redundant architecture of the FTAPS could overcome this limitation by isolating hot defects to a

portion of the in-pixel circuitry. The FTAPS partitions the standard 3-transistor APS architecture

into two parallel sub-pixels, achieving pixel-level fault tolerance with minimal overhead. When

afflicted by a hot defect, only one half of the total pixel saturates due to the enhanced dark

current, while the other sub-pixel continues to operate unaffected. Thus, the output current

summed from each sub-pixel includes both light-dependant and offset components.
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This thesis developed an accompanying software algorithm to recover the desired light­

dependant portion of the FTAPS signal by estimating the amount of dark signal accumulated in

the hot sub-pixel. Stored calibration curves of the non-linear pixel response are then referenced to

solve for the correct output signal. The accuracy of the system was evaluated experimentally in

two stages. Initially, hot pixels were optically emulated in a standard FTAPS array by

preferentially illuminating one sub-pixel using a focused laser, inducing an additional "leakage

current." At this first stage, charge blooming between sub-pixels limited the correction algorithm

accuracy to ±0.05 nonnalized error in 96% of cases. In a second round of testing, hot pixels were

emulated electrically to enable automated testing. A custom FTAPS array was designed with in­

pixel control transistors to induce and control a leakage current in parallel with the photocurrent.

In these experiments, the recovery algorithm computed the true scene illumination within ±0.05

normalized error in 98% of cases. Extreme photo and dark currents prevented better accuracy in

the electrical tests, which could be improved in future designs by limiting intrinsic dark current.

Thus, a complete, self-healing, fault tolerant imaging solution has been developed and

validated. While such a system may be unnecessary given the relatively small fault quantities

observed in characterization experiments, the FTAPS will be valuable in safety-critical and

specialized long-term applications. For example, automobile safety systems must reliably

withstand a variety of harsh environment conditions for periods up to 20 years, which would lead

to possibly hundreds of hot pixels and other faults that the FTAPS can effectively mitigate.

Similarly, high-altitude imaging systems in aircraft will be subjected to cosmic ray intensities

orders of magnitude greater than imagers on the ground, potentially creating many dozens of hot

pixels per year. The FTAPS can effectively mitigate the effects of those large fault quantities

while maintaining nearly the same image quality as a new, undamaged sensor.
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6.3 In-Field Fault Identification Algorithm

Traditional methods to locate faults in imagers are complex, labour intensive and time

consuming, and are thus not suitable to automatic in-field identification. However, for a hardware

fault tolerance solution like the FTAPS to be a viable stand-alone, self-healing imaging solution,

it must be able to locate and identify faults in the field without manual user interaction. To serve

that need, this thesis described three related Bayesian algorithms for locating and quantitatively

identifying fault types by processing only regular photographs from cameras. Algorithm

performance was verified with Monte Carlo simulations of the imaging system.

The simplest image statistics algorithm identified fully stuck faults after analyzing only 5

images, making it ideal for correcting even manufacture-time faults in inexpensive mobile

cameras. An interpolation-based algorithm, meanwhile, was successfully able to identify fully

stuck, partially stuck, and half-sensitivity faults in less than 60 images. When combined with the

fault tolerant active pixel sensor architecture, this software creates a robust imaging system that

can mitigate faults online, in the field, without user interaction or knowledge. Furthermore, both

algorithms achieved 100% accuracy, unlike competing methods. The third method, termed the

round-robin algorithm, identified large quantities of abnormal sensitivity pixels within ±0.06 of

their true sensitivity after processing only 40 images.

This novel software would be combined with existing sensor hardware to improve the

robustness of cameras in the field without adding complexity or cost to the imaging systems. [n

cost-sensitive applications, portions of the factory calibration can now be skipped. Furthermore,

these algorithms can be used to automate faulty-pixel calibration in the field, eliminating the need

for extensive user interaction and greatly broadening the range of devices that can be tested.

In addition, this identification algorithm allows a much wider exploration of defects in the

field. For example, the methods described here can already be used to determine the behaviour of
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anecdotal fully stuck faults by simply analyzing photograph sequences submitted by users in the

field.

6.4 Future Work

Each of the three components of this work have been preliminary in nature and would

benefit from further research. Work is already underway to extend the in-field fault identification

algorithm to detect the most commonly found in-field fault type: hot pixels[66]. Detecting the

presence and magnitude of hot pixels would ordinarily be difficult because of the dark current

variations that occur from image to image due to exposure duration and temperature variations.

However, the algorithm could be simplified to look only for pixels with an obvious offset, and the

probability likelihood could be readily modified to simultaneously consider a complete range of

offset values in a single fault type.

The study of in-field fault characteristics In Chapter 3 would benefit greatly from an

increased sample size to improve the statistical relevance of the results. Testing many cameras

would also allow the radiation effects theory to be better validated by incorporating geographical

information from a more diverse dataset. However, the time-consuming and complex nature of

the tests makes it difficult to find users willing to contribute data from their cameras. Thus, future

research should focus on implementing an automated camera calibration test suite that can be run

from users' computers at the click of the mouse. Publicly-available software libraries, such as the

gPhotoLib suite[67] could be readily used to control a range of commercial cameras while custom

software would prompt users to perform simple tasks.

Similarly, the on-line fault identification algorithm could readily be extended to perform

fault characterization without any significant user interaction at all. By analyzing only

photographs, the calibration step could be eliminated, making it more likely that a very large

sample of camera data could be acquired. This work is already under way with software being
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developed for [66], which would automatically trace defect growth over time, transmitting only

the resulting data instead of entire photographs, and thereby eliminating privacy and copyright

issues with users images.

The FTAPS has been extensively tested and characterized by other students, while this work

demonstrated its usefulness in mitigating hot pixels. To fully validate this recovery operation,

however, devices should be subjected to neutron bombardment to induce and examine

displacement-damaged hot pixels. Designing sensors for imaging-specific fabrication processes,

such as those offered by Taiwan Semiconductor Manufacturing Corporation would also help to

demonstrate the commercial value of this architecture.
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Appendix A: User Camera Calibration Procedure

The following represents that instructions provided to camera users on how to perform simple
darkfield and brightfield calibration procedures on their cameras. Also specified is the
information requested about the origins and lifetime of the camera.

Darkfield Calibration

Darkfield images are manually captured by the photographer. In addition, we ask that you send us
a small number of photos you recorded when you first purchased the camera. These extra photos
will tell us whether the defective hot pixels were present when the camera was manufactured or
they developed over time.

Camera Setup

The camera should be configured according to the settings in the following table:

Table I. Suggested camera configuration for darkframe calibration.

Parameter

Sensitivity

Output Mode

Capture Mode

Noise Reduction

PC Connection

Auto Focus

Aperture

Darkframe Capture

Value

ISO 400

RAW images (not lPEG)

Manual (or Exposure Priority / Tv)

Disable any "long-exposure noise
reduction" settings

Either tethered or hand-held operation is okay

Off (i.e. set to Manual Focus)

Any

Follow the procedure below to capture a sequence of darkframe calibration photos:

I) Place the lens-cap on the camera.

2) Cover the viewfinder with a heavy cloth or a bag, etc.

3) Set the exposure duration to 2 seconds.

4) Capture one photo.

5) Wait for the capture and save process to complete (i.e. wait for the "CF Busy" indicator to
turn oft).

6) Repeat steps 2-5 for each of the exposure durations listen in Table 2.
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Desired exposure durations are given for both possible camera configurations for convenience.

Table 2. Suggested exposure durations for darkframe capture.

Exposure Duration

Camera set to
Yz stop

increments

2s

I s

0.800 s

0.500 s

0.300 s

1/4 s

1/5s

1/8s

1/11 s

1/15 s

Early Lifetime Photos

Camera set to
1/3 stop

increments

2s

I s

0.800 s

0.500 s

0.300 s

1/5 s

1/8 s

1/13 s

1/20 s

1/30 s

We need a few (3-4) photos taken near the time when you first got your camera. The pictures
should have the following characteristics:

• Any format is ok (RAW, JPEG, TIFF)
• Full sensor size (not cropped or enlarged)
• Exposure duration should be EQUAL OR LONGER THAN I/i0s
.Jfyou post-process the photos, please leave EXIF and other metadata in the file.
• Any image content is suitable.

These pictures will never be published, sold, displayed or otherwise shared with anyone. They
will be stored on a secure server with no public access.

Flatfield Calibration

Flatfield images are again manually captured by the photographer. They will help calibrate the
light sensitivity of the sensor and detect if any subtle changes happen over time. We do this by
starting with a roughly uniform light source and adding make-shift filters / diffusers to cut down
the intensity and to distribute the light more evenly.
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Camera Setup

Once again, please configure the camera according to the settings below:

Table 3. Suggested camera configuration for flatfield calibration.

Parameter

Sensitivity

Output Mode

Capture Mode

Lens

Noise Reduction

PC Connection

Auto Focus

Exposure Duration

Value

ISO 400

RA W images (not IPEG)

Manual

Remove (i.e. camera lightbox exposed)

Disable any "long-exposure noise
reduction" settings

Either tethered or hand-held operation is okay

Off(i.e. set to Manual Focus)

Any

Note: we remove the lens to distinguish between sensor defects and blemishes or dust that may be
present on the lens. If possible, please try to ensure that the sensor surface is free of dust.

Flatfield Capture

The following procedure assumes you do not have access to more sophisticated lighting
equipment that is typically used to create a uniform field oflight (or don't have the time to use it).
If you do can use such equipment, we would welcome the additional information.

To capture flatfield images, a uniformly illuminated surface must be photographed under several
levels of illumination brightness. The challenge is to distinguish between sensor defects and those
on the lens. Without specialized equipment, the simplest method to accomplish this is the
following:

I) Find a location with reasonably uniform ambient lighting (i.e. overhead fluorescent
lighting in an office setting works well, outside on a sunny day will work as well).

2) Cut 2 sheets of standard white letter paper into about 16 rectangular pieces that are just
large enough to cover the lens-mount on your camera. These paper pieces will be stacked
to form a makeshift variable diffuser.

3) Remove the lens, and orient the camera so the sensor is pointing at the illumination source.

4) Place 2 pieces of paper over the sensor opening.

5) Find the maximum exposure duration that just causes the image to saturate. Reducing the
duration one increment should result in very few saturated pixels, as indicated by the
luminosity histogram. Approximate values are okay.
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6) Keeping the exposure duration constant, capture about 10 images, adding another piece of
paper to the diffuser stack each time. Continue capturing images until the image is
completely black. Alternately, just capture as many images as you have pieces of paper.

Critical Information

Please fill out the following information about your camera. lnclude your contact info if you wish
to be updated with results or if you are interested in participating further.

Camera model:

Approximate purchase date: _

Has the camera been serviced before?
------------
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