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Abstract 

The explosive growth of the Internet and bandwidth-intensive applications such as videeon- 

demand and multimedia conferences require high-bandwidth networks. The current high- 

speed electronic networks cannot provide such capacity. Optical networks offer much higher 

bandwidth than traditional networks. When employed with the wavelength division multi- 

plexing (WDM) technology, they can provide the huge bandwidth needed. The tree of rings 

is a popular topology which can often be found in WDM networks. In this thesis, we first 

study wavelength assignment (WA) algorithms for trees of rings. 

A tree of rings is a graph obtained by interconnecting rings in a tree structure such that 

any two rings intersect in at most one node and any two nodes are connected by exactly 

two edge-disjoint paths. The WA problem is that given a set of paths on a graph, assign 

wavelengths to the paths such that any two paths sharing a common edge are assigned 

different wavelengths and the number of wavelengths is minimized. The WA problem on 

trees of rings is known to be NP-hard. A trivial lower bound on the number of wavelengths 

is the maximum number L of paths on any link. In this thesis, we propose a greedy 

approximation algorithm which uses at most 3L wavelengths on a tree of rings with node 

degree at most 8. This improves the previous 4L  upper bound. Our algorithm uses at most 

4L wavelengths for a tree of rings with node degree greater than 8. We also show that 3L 

is the lower bound for some instances of the WA problem on trees of rings. In addition, 

we show that our algorithm achieves approximation ratios of 2h and 2& for trees of rings 

with node degrees at most 4 and 6, respectively. 

Optical switches, which keep the data stream transmitted in optical form from source to 

destination to eliminate the electreoptic conversion bottleneck at intermediate nodes, are 

key devices in realizing the huge bandwidth of optical networks. One of the common ways 

to build large optical switches is to use directional couplers (DCs). However, DCs suffer 



from an intrinsic crosstalk problem. In this thesis, we study the nonblocking properties of 

Benes networks and Banyan-type networks with extra stages under crosstalk constraints. 
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Chapter 1 

Introduction 

Internet traffic has increased dramatically during the past decade. Meanwhile we are seeing 

the continuously rising demand for network bandwidth. The major cause of this increasing 

demand is the tremendous growth of the Internet and World Wide Web, both in terms 

of number of users and the amount of bandwidth taken by each user [35]. The emerging 

multimedia applications such as videeon-demand require high bandwidth. Businesses today 

rely on high-speed networks. It is expected that the current electronic network infrastructure 

will be unable to meet this ever-increasing demand in the near future. A new technology is 

needed to support the huge bandwidth needs. 

Optical fiber offers much higher bandwidth than conventional copper cables. A single 

fiber has a potential bandwidth on the order of 50THz [30]. Meanwhile, it has low cost, 

extremely low bit error rate (typically 10-12, compared to in copper cables), low 

signal attenuation and low signal distortion. In addition, optical fibers are more secure 

from tapping, since light does not radiate from the fiber and it is nearly impossible to tap 

into it secretly without being detected. As a result, it is the preferred medium for data 

transmission with bit rate more than a few tens of megabits per second over any distance 

more than one kilometer. It is also the preferred means of realizing short distance (a few 

meters to hundreds of meters), high-speed (gigabits per second and above) interconnection 

inside large systems 1351. In the past few decades, optical fibers have been widely deployed 

in all kinds of telecommunications networks. 

Optical fiber has been used in two generations of optical networks [35]. In the first 

generation, it was essentially used for transmission and simply to provide capacity, since it 

provides lower bit error rates and higher capacities than copper cables. All the switching 
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and other intelligent network functions were handled by electronics. Thus, the bandwidth is 

limited by the electronics at the fiber endpoints. Currently, transmission rates are restricted 

to 10Gb/s (OC-192) in commercially available systems. Examples of the first generation 

optical networks are SONET and SDH networks. 

In the second generation optical networks, some of the routing, switching and intelligence 

is handled by optical layer. The fiber bandwidth is further exploited by a technique called 

wavelength division multiplexing (WDM), where the optical bandwidth is partitioned into 

a large number of channels on different wavelengths (or, equivalently, colors), and each 

channel works at peak electronic rate. These wavelengths do not interfere with each other 

as long as the channel space is large enough. Other than providing a huge bandwidth, 

WDM networks can also provide data transparency in which the network may accept data 

at any bit rate and any protocol format within the limits. Data transparency may be 

realized through all-optical (or single-hop) transmission and switching of signals. In an 

all-optical network, data is transfered from source to destination in optical form, without 

undergoing any optical-to-electrical conversion. Keeping the signal in optical form eliminates 

the "electronic bottleneck" of communications networks with electronic switching. 

1.1 WDM network model 

A WDM optical network consists of routing nodes interconnected by point-to-point fiber 

links. WDM networks provide lightpaths to its users, such as SONET terminals or IP routers. 

Lightpaths are optical connections carried from source node to destination node over a 

wavelength on each intermediate link. At intermediate nodes in the network, the lightpaths 

are routed and switched from one link to another. Different lightpaths can use the same 

wavelength as long as they do not have a common link. In this thesis, we consider switched 

optical networks with generalized switches based on accousto-optic-filters, as is done in 13, 

331. In this kind of network, the switch can differentiate between several wavelengths coming 

in along a fiber and direct each of them to a different output of the switch. The only 

constraint is that no two lightpaths sharing any link have the same wavelength. Such 

networks are often called wavelength routed networks. 

A WDM optical network can be modelled in both undirected and directed models. 

In the undirected model, the optical network is modelled as an undirected graph G = 

(V(G),  E(G) ) ,  where each undirected edge represents a point-tepoint undirected fiber-optic 
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link. A request consists of an unordered pair of nodes. In the directed model, the optical 

network is modelled as a directed graph G = (V(G), A(G)) ,  where each arc represents a 

point-to-point unidirectional fiber-optic link. A request consists of an ordered pair of nodes, 

source and destination. An instance consists of a set of requests. A solution for an instance 

consists of settings for the switches in the network, and an assignment of wavelengths to 

the requests, such that a path (directed or undirected) is set up between the nodes of each 

request, and no two paths are assigned the same wavelength if they share a link in the 

undirected model (or share an arc in the directed model). 

In this thesis, we use both undirected and directed models. In particular, both models 

are used in the literature review (Chapter 3). For simplicity, our algorithm for trees of 

rings (Chapter 4) only considers the undirected model. We use the directed model for the 

crosstalk reduction problem at  optical switches (Chapter 5). 

1.2 Routing and wavelength assignment 

The cost of a WDM network is related to the number of wavelengths used: the cost of optical 

switches and other devices depends on the number of wavelengths they handle. There is also 

a limit on the number of available wavelengths on a single fiber. Although the number of 

wavelengths per fiber could be as large as 160 in the laboratory [35], commercially available 

systems have the limitation of several tens of wavelengths per fiber. A constant goal in 

WDM optical networks is to minimize the number of wavelengths used. One of the most 

important problems is the routing and wavelength assignment (RWA) problem. 

The RWA problem is defined as follows. Given a network topology and a set of routing 

requests, determine a path and wavelength for each routing request, such that the number 

of wavelengths used is minimized. A special case of the RWA problem is that the paths are 

already given and we are asked to find a wavelength assignment with the minimum number 

of wavelengths. This problem is called the wavelength assignment (WA) problem. To solve 

the WA problem, the following two constraints apply: 

1. Distinct Channel Assignment (DCA): Two paths must be assigned different wave- 

lengths on any common link. 

2. Wavelength Continuity: If no wavelength conversion is available, then a path must be 

assigned the same wavelength on all the links in it. 
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Throughout the thesis, we assume the above two constraints hold, unless otherwise specified. 

The RWA and WA problems can be studied for both offline (or static) and online (or 

dynamic) cases. In the offline case, all the routing requests are given at  one time. For the 

online case, the routing request comes in one by one, and there is no knowledge about future 

requests. In this thesis, we consider the offline WA problem on trees of rings (Chapter 4). 

The crosstalk reduction problem (Chapter 5) is studied under the online traffic. 

1.3 Contributions 

In this thesis, we first study the WA problem on a tree of rings. This problem is NP- 

hard. A trivial lower bound is the maximum number L of paths on any link (called the 

maximum edge load). We propose a greedy algorithm which uses at most 3L wavelengths 

for trees of rings with maximum node degree 8, and at  most 4L for trees of rings with node 

degree greater than 8. This implies that the algorithm achieves an approximation ratio of 

3 for node degree at most 8. We also show that 3L is the lower bound on the number 

of wavelengths for some instances of the WA problem on trees of rings. We further prove 

that our algorithm achieves approximation ratios of 2& and 2& on trees of rings with node 

degrees at most 4 and 6, respectively. This improves over the previous 4L result, and the 

previous 2-approximation algorithm which only works for trees of rings with node degree at 

most 4. 

As introduced in Section 1.1, optical switches are widely used in WDM optical networks. 

One of the most common ways to construct large optical switches is to use directional 

couplers (DCs). Crosstalk can be a severe problem in DC-based optical switches. Previous 

results on crosstalk reduction are only available for the special cases where either no crosstalk 

constraint is enforced or no crosstalk is allowed. In this thesis, we study the general crosstalk 

reduction problem and show several lower bounds for Benes networks and Banyan-type 

networks with extra stages under arbitrary crosstalk constraints. 

1.4 Organization of the thesis 

The thesis will focus on the WA problem on trees of rings, and nonblocking properties of 

Banyan-type networks under crosstalk constraints. In Chapter 2, we introduce the basic 

concepts and notation. In Chapter 3, we survey the major results of the RWA and WA 
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problems on trees, rings and trees of rings. In Chapter 4, we propose a greedy algorithm 

for the WA problem on trees of rings and show that it improves over the previous work. 

Chapter 5 will be devoted to the analysis of crosstalk reduction in Banyan-type networks. 

In Chapter 6, we conclude the thesis and discuss the future work. 



Chapter 2 

Problem Definitions 

In this chapter, we will introduce the basic definitions for bipartite graph, matching and 

graph coloring. These concepts can be found in most graph theory books, such as [7] and [43]. 

We will give the formal definition of the routing and wavelength assignment problem. We 

will also introduce several popular network topologies in WDM optical networks. 

2.1 Bipartite graph, matching and graph coloring 

An independent set in a graph G is a set of pairwise nonadjacent vertices. A graph G is 

bipartite if the node set V(G) is the union of two disjoint independent sets called partite 

sets of G. 

A matching in a graph G is a set of edges with no shared endpoints. A maximal matching 

in a graph is a matching that cannot be enlarged by adding an edge. A maximum matching 

is a matching of maximum size among all matchings in the graph. 

The clique number of a graph G is the maximum size of a set of pairwise adjacent vertices 

(clique) in G. 

Definition (West (431) A vertex k-coloring of a graph G is a labeling f : V(G) -+ S ,  

where IS\ = k. The labels are colors. A graph is k-colorable if it has a k-coloring such 

that adjacent vertices have different labels. The chromat ic  number  is the least k such 

that G is k-colorable. 

It is easy to  see that the following theorem holds: 
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Theorem 2.1.1 (Berge [7]) For every graph G, the clique number is a lower bound on the 

chromatic number. 

Definition Given a set P of paths in a graph G, the load L(e, P) of an (undirected or 

directed) edge e is the number of paths in P containing that edge. The maximum load 

L(P)  is the maximum of the values L(e, P), taken over all edges e of the graph. 

In this thesis, the maximum load is denoted by L. The set of paths P that creates this 

maximum load will always be clear from the context. 

Definition Given a set P of paths in a graph G, the conflict graph associated with P is 

the undirected graph G,(P, E) with the node set P such that each node of G, corresponds 

to a path in P and two nodes of G, are adjacent if and only if the corresponding paths in 

P share an edge of G. 

Definition Given a graph G and a set P of paths, a valid coloring for P is that any two 

paths sharing a common edge are assigned different colors. Let w(P) represent the maximum 

number of pairwise intersecting paths, and let x (P )  represent the minimum possible number 

of colors required in a valid coloring for P .  

It is easy to see that w(P) and x (P )  are equal to the clique number and the chromatic 

number of the conflict graph G,(P, E), respectively. 

Since all paths that cross a given edge are pairwise intersecting and thus must be assigned 

different colors, for any set P, the following lemma holds: 

Lemma 2.1.2 L(P)  F w(P) I x (P ) .  

In the following discussion, we use w to denote the maximum number of pairwise in- 

tersecting paths in G which is equal to the clique number of the associated conflict graph 

Gc. 

2.2 Routing and wavelength assignment 

In this thesis, an optical network will be represented as an undirected graph G = (V(G), E(G)) 

in the undirected model and as a directed graph G = (V(G), A(G)) in the directed model. 
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We use p(x, y) to denote a path (undirected or directed) in G connecting node x and 

node y. A connection request (call) consists of a pair of nodes (x, y) (unordered in undirected 

model, or ordered in directed model) in G, and the call is realized along a path between 

these two end nodes. An instance I is a multi-set of requests (two requests are considered 

as distinct elements of I even if they have the same end points). We say that a set PI of 

paths realizes an instance I if for each (x, y) E I, there is exactly one path p(x, y) in PI. 

We will simply denote PI as P if there is no ambiguity. 

Let G be a graph, I be an instance of requests, and PI be a set of paths that realizes 

I .  The wavelength assignment (WA) problem, denoted by (G, I ,  PI) ,  assigns wavelengths 

to paths in PI with the minimum number of wavelengths such that the paths receive dif- 

ferent wavelengths if they intersect. This minimum number of wavelengths is denoted by 

x(G, I, PI). If we consider wavelengths as colors, for the problem (G, I, PI),  we try to find 

a vertex coloring of the corresponding conflict graph Gc(PI, E) ,  such that any two adjacent 

vertices are colored differently, and the number of colors used is minimized. It is easy to see 

that x(G, I, PI) is equal to the chromatic number of Gc(PI, E) .  The routing and wavelength 

assignment (RWA) problem, denoted by (G, I), seeks for a set PI of paths that realizes I 

and a solution for the WA problem (G, I, PI) such that x(G, I, PI) is minimized among all 

PI'S. We use x(G, I) to denote the smallest x(G, I, PI) over all PI'S. 

There are several related optimization problems (definitions adopted from [15]): 

Path Coloring (PC): Given a set of calls, assign paths and colors to the calls such that 

calls receive different colors if their paths intersect. The optimization goal is to mini- 

mize the number of colors. PC is the same as the RWA problem in optical networks. 

(Application: Minimize the number of wavelengths in an all-optical WDM network.) 

PC with Pre-specified Paths (PCwPP): Same as path coloring, but the paths are 

specified as part of the input. PCwPP is the same as the WA problem. 

Path Packing (PP) Given a set of calls, assign paths to the calls such that the maximum 

edge load L is minimized. (Application: Minimize the required link capacity if all 

calls request the same bandwidth.) 

Maximum Edge-Disjoint Paths (MEDP): Given a set of calls, select a subset of the 

calls and assign edge-disjoint paths to the calls in that subset. Maximize the cardi- 

nality of the subset. (Application: Maximize the number of established calls when at  
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most one call is allowed on any edge.) 

Maximum Weight Edge-Disjoint Paths (MWEDP): Given a set of calls that are as- 

signed positive weights, select a subset of the calls and assign edge-disjoint paths to  

the calls in that subset. Maximize the total weight of the subset. 

MEDP with Pre-specified Paths (MEDPwPP): Same as MEDP, but the paths are 

specified as part of the input. 

MWEDP with Pre-specified Paths (MWEDPwPP): Same as MWEDP, but the paths 

are specified as part of the input. 

In the following discussions, we will use wavelength assignment and path coloring inter- 

changeably. 

For offline maximization problems, an algorithm is a papproximation algorithm if it 

runs in polynomial time and always computes a solution whose objective value is at  least 

1 of the optimum. For offline minimization problems, an algorithm is a papproximation 
P 

algorithm if it runs in polynomial time and always computes a solution whose objective 

value is at  most p times the optimum [12]. 

By convention, for online problems, we use competitive ratios [9] to evaluate the perfor- 

mance of an algorithm. For online maximization problems, an algorithm is a pcompetitive 

algorithm if it runs in polynomial time and always computes a solution whose objective 

value is at least of the optimum (normally the optimum offline solution). For online rnin- 

imization problems, an algorithm is a pcompetitive algorithm if it runs in polynomial time 

and always computes a solution whose objective value is at most p times the optimum [9]. 

2.3 Specific network topologies 

There are several network topologies which are of particular interest in communications 

networks. In this section, we will introduce some of these networks. The definitions given 

below are for undirected graphs. Definitions for directed graphs can be easily obtained by 

replacing each undirected edge with two directed edges in opposite directions. 
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2.3.1 Ring networks 

A ring R, = ({1,2, ..., n), {(n, 1))  U {(i, i + 1)li = 1, ..., n - 1)) is a graph that consists of 

a single cycle of length at least three. The ring is a popular topology in communications 

networks. It is simple and node-symmetric. There are two edge-disjoint paths between any 

two nodes on a ring. A ring network remains connected if any single node or link fails, 

thus providing good fault tolerance. Many practical networks, such as SONET rings, are 

arranged in a ring structure. 

2.3.2 Trees and binary trees 

A tree is a connected graph with no cycles. A rooted tree is a tree with one vertex chosen 

as root. A rooted plane tree or planted tree is a rooted tree with a left-bright ordering 

specified for the children of each vertex. A binary tree is a rooted plane tree where each 

vertex has at most two children [43]. 

Trees are of particular interest since many practical networks in the telecommunica- 

tions industry have a tree-like structure. Binary trees are important in data storage and 

information retrieval. 

2.3.3 Trees of rings 

The tree of rings is a graph that can be defined inductively as follows [15]: 

1. A single ring is a tree of rings. 

2. If TR is a tree of rings, then the graph obtained by adding a node-disjoint ring R to 

TR and then identifying one node of R with one node of TR is also a tree of rings. 

3. No other graphs are trees of rings. 

Equivalently, a tree of rings (Figure 2.1) is a connected graph TR whose edges can be 

partitioned into rings such that any two rings have at most one node in common, and for 

all pairs (u, v) of nodes in TR, all simple paths from u to v touch precisely the same rings. 

We say that a path touches a ring if it contains at least one edge of that ring. Furthermore, 

a path touches a node if it starts at that node, ends at that node, or passes through that 

node. Two paths intersect if they share an edge. 
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Figure 2.1: A tree of rings 

Trees of rings can often be found in local-area networks: there is a main ring, with several 

sub-rings dangling from it, and sub-subrings from the sub-rings, and so on, as observed 

in [33]. Trees of rings are not expensive to build and require few additional links as compared 

to a tree topology. A tree of rings remains connected even if an arbitrary link fails in each 

ring, thus providing better fault tolerance than a tree network [15]. Many research efforts 

have been devoted to the study of trees of rings [13, 15, 29, 331. 

2.4 Special instances 

There are several special instances which are of particular interest [3]: 

An h-k relation is an instance in which each node is a source of at most h requests 

and a destination of at most k requests. In the directed model, a 1-1 relation is also 

known as a permutation instance. 

The One-to-All (also called broadcast) instance from a source node xo E V(G), 

10 = ((20, y)I y E V(G), y # xo). Note that the instance I. is an (N-1)-1 relation, 

where N = IV(G)I. 

The All-to-All instance IA = {(x, y) 1x E V(G), y E V(G), x # 9). Note that the 

instance IA is an (N-1)-(N-1) relation, where N = IV(G)I. 



Chapter 3 

Previous Work 

The RWA and WA problems on trees of rings are closely related to  the RWA and WA 

problems on trees and rings. We will first review the existing results on these topologies. 

3.1 Wavelength assignment on trees 

In this section, we review the main results for the WA problem on trees. It has been proved 

that the problem is NP-hard, both for undirected and directed trees. These results have 

been extended to binary trees. 

Theorem 3.1.1 (Erlebach and Jansen [17]) For undirected and directed trees, the wave- 

length assignment problem is NP-hard. 

The above theorem holds even if we restrict instances to arbitrary trees and commu- 

nication patterns with maximum load 3. The following result applies to binary trees and 

communication patterns of arbitrary load. 

Theorem 3.1.2 (Erlebach and Jansen [ la])  For undirected and directed binary trees, the 

wavelength assignment problem is NP-hard. 

Since the WA problem on trees is NP-hard, there is no polynomial time algorithm to 

solve this problem unless P = NP. Nevertheless, there are approximation algorithms. All 

known wavelength assignment approximation algorithms for trees are greedy algorithms in 

essence (so are the algorithms for trees of rings). The algorithm in [26] uses a reduction 
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Figure 3.1: The communication pattern for the proof of the 5L/4 lower bound 

of the problem to an edge coloring problem on a bipartite graph. They have the following 

result: 

Theorem 3.1.3 (Kaklamanis et al. [26]) There exists a polynomial t ime greedy algorithm 

which realizes any pattern of communication requests of load L on  a directed tree using at 

most  5L/3 wavelengths. 

Using an adversary argument, a lower bound can be found for any greedy wavelength 

assignment algorithms for trees. An adversary algorithm ADV knows how a greedy alge 

rithm performs the coloring, thus it can construct a communication pattern and it can be 

proved that there exists a lower bound on the number of wavelengths used by any greedy 

algorithm. 

Theorem 3.1.4 (Caragiannis et al. [ll]) Let A be a deterministic greedy wavelength as- 

signment algorithm in trees. There exists a n  algorithm ADV which, o n  any input 6 > 0 and 

integer L > 0 ,  output a binary tree T and a pattern of communication requests P of load L 

o n  T ,  such that A colors P with at least (513 - 6)L colors. 

From the above theorem, it is easy to see that any deterministic greedy algorithm cannot 

use less than 5L/3 colors. Therefore, the result of Theorem 3.1.3 is the best possible within 

the class of deterministic greedy algorithms. 

Kumar 1281 proved that there exists a communication pattern with load L which requires 

at least 5L/4 wavelengths for any routing algorithms: 

Theorem 3.1.5 (Kumar et al. [28]) For any integer 1 > 0 ,  there exists a communication 

pattern of load L = 41 o n  a directed binary tree T that requires at least 5L/4 wavelengths. 
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Figure 3.2: The communication pattern for the proof of the 3L/2 lower bound 

The proof of the above theorem can be shown in Figure 3.1. Each arrow represents L/2 

requests. Note that there exist 5L/2 requests and no more than 2 can be assigned the same 

color. Thus at least 5L/4 colors are needed. 

For undirected trees, Tarjan [38] proved that 3L/2 is the sufficient number of colors for 

path coloring. From Figure 3.2, it is easy to see that 3L/2 is also the lower bound [3]. In 

the figure, each line represents L/2 requests. There are 3L/2 requests and none of them can 

be assigned the same colors. Thus at least 3L/2 colors are needed. 

For the all-teal1 instance on directed trees, it has been proved that the chromatic number 

is equal to the load: 

Theorem 3.1.6 (Gargano et  al. [22]) For the all-to-all instance IA in any symmetric di- 

rected tree G, x(G, IA) = L(G, IA), and there i s  a n  efficient algorithm t o  color the paths 

using L(G, IA) colors. 

It is observed that the above theorem does not hold for the undirected model. There 

are examples where x(G, IA) > L(G, IA) for undirected trees. 

The online WA problem on undirected trees was studied in [24]. They have the following 

result: 

Theorem 3.1.7 (Gerstel et  al. [24]) For the online WA problem on  a tree network with N 

nodes and load L, the number of wavelengths required is  bounded by (2L - 1) [loga N1. 

Note that L is a lower bound for the online WA problem on trees. Thus, their algorithm 

achieves a competitive ratio of O(1og N).  

Bartal et al. [2] obtained an O(1og N)-competitive algorithm for the online WA problem 

on trees by reducing the problem to the online coloring of a d-inductive graph (a graph is 

d inductive if its vertices can be numbered in such a way that each vertex has at most d 

links to vertices with higher number). They also proved that any algorithm for online path 
lo N coloring on trees with N nodes has a competitive ratio of R(logkgN). 
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Figure 3.3: A lower bound for the wavelength assignment problem on rings 

3.2 Routing and wavelength assignment on rings 

Given a set of routing requests on an undirected ring network, there is an efficient algorithm 

to find a routing such that the maximum load is minimized: 

Theorem 3.2.1 (Frank et al. [20]) There is  a linear t ime  algorithm to find a routing for 

any instance I in any undirected ring network such that the m a x i m u m  load is  minimized. 

Wilfong 1441 extended this result to the directed case: 

Theorem 3.2.2 (Wilfong et al. [44]) For any instance I in any  directed ring network, there 

is  a n  efficient algorithm to  find a routing such that the max imum load is  minimized. 

However, it has been proved that the RWA and WA problems are NP-hard, both for 

undirected and directed rings. 

Theorem 3.2.3 (Garey et al. [21]) The  RWA and WA problems o n  rings are NP-hard. 

There is a 2L algorithm for the WA problem on rings: 

Theorem 3.2.4 (Tucker [40]) Given a set P of paths o n  a ring network with n o  wavelength 

conversion, x(P) 5 2L - 1. 

This upper bound is tight for some instances. Consider the routing requests in Figure 3.3. 

There are 5 requests. The load is 3. It is easy to see that all these 5 paths must be assigned 

different colors. Thus W = 2 x 3 - 1 = 5. In the general case, for a ring network with 
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N = 2L - 1 nodes, consider the N distinct requests (x, x + L) (the numbers are modulo N).  

The load is L, and the number of wavelengths needed is N = 2L - 1. 

Combine Theorems 3.2.1 and 3.2.2 with Theorem 3.2.4, one can get an efficient algorithm 

of approximation ratio 2 for the RWA problem on undirected and directed ring networks. 

Upper bounds on x(P) have also been found in terms of the clique number of the conflict 

graph of G,(P, E). 

Theorem 3.2.5 (Karapetian [27]) O n  a ring network, any set P of paths can be colored 

using at most  1 . 5 ~  colors such that any two paths sharing a n  edge are assigned different 

colors. 

For the all-teal1 instance on rings, it has been proved that the chromatic number is 

equal to the maximum load: 

Theorem 3.2.6 (Bermond et al. [8]) For the all-to-all instance IA in any directed ring G 

with N nodes, x(G, IA) = L(G, la) = ~qjl, and there is  a n  e f ic ient  algorithm to color 

the paths using L(G, IA) colors. 

It is well known that the number of wavelengths needed can be reduced if we use wave- 

length converters. Ramaswami has the following result: 

Theorem 3.2.7 (Ramaswami 1341) Given a set P of paths o n  a ring with fixed wavelength 

conversion at one node and n o  conversion at all other nodes, x(P) < L + 1. There is  a 

t raf ic  of load L which requires L + 1 wavelengths o n  any rings with f i e d  conversion at every 

node and suficiently large size. 

The online WA problem on rings was studied in [24]. They have the following result: 

Theorem 3.2.8 (Gerstel et al. [24]) For the online WA problem o n  a ring network with N 

nodes and load L, the number of wavelengths required is  bounded by L + Lrlog, N1. 

In [23], it was proved that 0.5L log2 N is a lower bound for the online WA problem on a 

ring network with N nodes and load L: 

Theorem 3.2.9 (Gerstel et al. [23]) O n  a ring network with N nodes, for every wavelength 

allocation algorithm, there is  a communication pattern of load L which requires at least 

0.5L log2 N wavelengths. 



CHAPTER 3. PREVIOUS WORK 17 

3.3 Routing and wavelength assignment on trees of rings 

3.3.1 Path packing 

Given a set of routing requests on a tree of rings, the problem of minimizing the maximum 

load (path packing) can be reduced to path packing in rings [15]. The idea was to consider 

the path packing problem for each ring in the given tree of rings. Erlebach has the following 

result: 

Theorem 3.3.1 (Erlebach [15]) Path Packing can be solved optimally i n  polynomial time 

for undirected and directed trees of rings. 

3.3.2 Routing and wavelength assignment 

As observed in [13, 151, the RWA and WA problems are NP-hard on trees of rings since the 

RWA and WA problems are NP-hard on rings. It is known that an algorithm for the WA 

problem on trees that uses at most a L  colors can be used to obtain a 2a-approximation 

algorithm for the RWA problem on trees of rings, both in the undirected case [33] and in 

the directed case [29]: It is sufficient to remove an arbitrary link from each ring in the tree 

of rings (the cut-one-link heuristic) and to use the tree algorithm in the resulting tree; the 

maximum load of the obtained paths is at most twice the load of the paths in the optimal 

solution, which in turn is a lower bound on the optimal number of colors. In this way, 

a 3-approximation algorithm is obtained in the undirected case and a q-approximation 

algorithm in the directed case. 

The all-to-all instance for the RWA problem on directed trees of rings was studied in [4]. 

It was shown that a routing that minimizes the maximum load L can be computed in 

polynomial time, and that the resulting paths can be colored optimally with L colors. 

Theorem 3.3.2 (Beauquier et al. [4]) For the all-to-all instance IA i n  any directed tree of 

rings G, x(G, IA) = L(G, IA),  and there is an eficient algorithm to color the paths using 

L(G, IA) colors. 

From Theorems 3.1.6, 3.2.6 and 3.3.2, we know that for the all-to-all instance in directed 

trees, rings and trees of rings, the chromatic number is equal to the maximum load. It is 

not known whether the equality x(G, IA) = L(G, IA) holds for any directed graph G. 
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For the online RWA problem on trees of rings, Bartal et  al. [2] gave an O(1og N)- 

competitive algorithm. The idea is to use the cut-one-link heuristic: remove one edge from 

each ring on the given tree of rings, thus obtain a tree. The maximum load of the obtained 

tree is at most twice the maximum load of the original tree of rings. Combine this with the 

O(1og N)-competitive algorithm on trees, one can get an O(1og N)-competitive algorithm 

on trees of rings. 

3.3.3 Wavelength assignment 

The cut-one-link heuristic does not work for the WA problem on trees of rings, since the 

paths are already given and we are not allowed to re-route the paths. For the WA prob- 

lem, Erlebach [15] proposed a greedy algorithm which used at most 4L and 8L colors on 

undirected and directed trees of rings, respectively. For undirected trees of rings, a 2- 

approximation algorithm for the WA problem was given in [13] for the special case in which 

each node is contained in at  most two rings (i.e., in trees of rings with maximum node 

degree of four). Since our algorithm is related to these two algorithms, we will introduce 

these algorithms in some detail. 

Given a set P of paths in a tree of rings TR = (V, E), Erlebach [15] proposed the 

following greedy approximation algorithm. 

Algorithm GreedyColoring (TR, P) :  

1. Initially, all paths are uncolored. 

2. Process each node u of TR in a depth first search (DFS) order starting from an 

arbitrary node s E V as follows: 

Let Pu be the set of uncolored paths that touch u. Assign every path p of Pu, in 

arbitrary order, the color c with the smallest index such that no path intersecting p 

is already colored by c.  

The coloring strategy used for Pu in the algorithm is known as first-fit strategy. The 

following result is known: 

Theorem 3.3.3 (Erlebach [15]) For the WA problem o n  trees of rings, Greedy Coloring is  

a polynomial t ime algorithm that uses at most  4L colors in the undirected case. 
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Figure 3.4: Coloring steps for Algorithm GreedyColoring 

Proof In order to derive an upper bound on the number of colors used by the greedy 

algorithm, we consider an arbitrary path p at the time it is assigned its color and show that 

it can intersect only a bounded number of paths that have already been assigned a color 

prior to p. In Figure 3.4, assume that the dark nodes have been processed based on the DFS 

order already, and the algorithm is now processing u. Let ro denote the ring containing u 

and a dark node adjacent to u that has been processed already (there is only one such ring). 

Call ring ro the current ring. The uncolored paths touching u do not touch any dark node 

(otherwise they would have been colored in previous stages). They can be classified into two 

basic types. The first type uses at least one edge in ro; for the arguments given below, take 

a path connecting nodes a and b in Figure 3.4 as a representative path of the first type. The 

second type does not use any edge in ro; take a path connecting a and c as a representative 

path. 

If p belongs to the first type, all pre-colored paths that intersect p have to use one or 

two of the links 3, 4, 5 and 6 (see Figure 3.4). There can be at most 4L - 2 such paths: at 

most L paths use link 5, at most L - 1 paths use link 6, and at most 2L - 1 paths use links 3 

and 4 (the path p itself has to pass through link 6, thus there are at most L - 1 pre-colored 

paths which use link 6; similarly, there can be at most 2L - 1 pre-colored paths which use 
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links 3 and 4). Thus, 4L colors are enough to ensure a valid coloring. 

If p belongs to the second type, all previously colored paths that intersect p must also 

touch u and touch a ring containing u that is touched by p. There are at most four links 

incident to u that belong to the two rings touched by p (in the figure, these are links 1, 

2, 3 and 4). All pre-colored paths that intersect p must pass through one of these four 

links. Therefore, the total number of such paths is at most 4L - 2 (because the path p itself 

has to pass through two of these four links), and 4L colors are enough to ensure a valid 

coloring. I 
Since L is a lower bound for the WA problem on trees of rings, GreedyColoring achieves 

an approximation ratio of 4. This is the best published result for the WA problem on trees 

of rings with arbitrary node degree. 

For undirected trees of rings, there is a 2-approximation algorithm [13]. It was later 

found to work only for trees of rings with node degree at most 4 (i.e., each node is contained 

in at most two rings) [16]. The main idea of the algorithm and the counterexample are 

described as follows. First, we will introduce the terminology and notation that were used 

in the algorithm. 

For a given tree of rings TR, a tree structure underlying TR (also called underlying tree) 

can be defined as follows [I]. Pick an arbitrary ring ro as the root and mark ro as ready, 

and mark all other rings as available. Then repeat the following process: Let v be a node 

in a ring r that is marked ready and that is contained in at least one ring that is marked 

available. Then make all available rings that contain v to be chilrdren of r and mark them 

ready as well. This procedure induces a unique parent ring to each ring (except the root 

ring), and the set of all rings forms a tree structure. 

In the algorithm [13], they first fix a DFS order of the vertices of the underlying tree 

(note that this is different from the DFS order of the vertices of the tree of rings in Erlebach's 

algorithm). They process the rings of the tree of rings TR one by one in the order defined by 

the DFS order in the corresponding underlying tree. Call the processing of a ring r a stage. 

Let Q denote the set of all the paths containing some edges in r .  At a stage for processing r, 

they color all the uncolored paths in Q. Their colors will not be changed thereafter. Repeat 

the above process until all rings are processed. 

At each stage, the algorithm consists of two parts. In the first part, along r in the 

clockwise direction, they construct m sets Ai (1 5 i 5 m) of paths, such that each Ai 
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Figure 3.5: A counterexample to Deng's algorithm 

contains a set of edge-disjoint paths. In the second phase, along r in the counterclockwise 

direction, they partition the rest of Q into t sets B j  (1 _< j < t )  of paths, such that each B j  

contains a set of edge-disjoint paths. The outputs of each stage are A = {Ai I 1 < i < m )  

and B = { B j  1 15 j 5 t ) .  

After processing each ring (except the first one), they assign colors to the newly generated 

classes as follows. Suppose r is the ring which has just been processed with output Ai7s and 

Bj's, and suppose D = {Dl  I 1 5 1 5 n )  consists of the n sets Dl of paths generated before 

processing r .  They merge a set in A or B with a set in D as long as they have a common 

path. Repeat this process until no such two sets exist. For the remaining sets in A, B and 

D ,  arbitrarily merge a set in A or B with a set in D. Repeat the process until no such two 

sets exist. The resulting sets are the color classes obtained after processing r .  

They have the following result: 

Theorem 3.3.4 (Deng et al. [13]) For the WA problem on  trees of rings with node degree 

at most 4, there i s  a polynomial t ime approximation algorithm which uses at most 2w colors 

in the undirected case. 

The algorithm was intended for general trees of rings. Later it was found out that for 

trees of rings with node degree greater than 4, the algorithm will create invalid colorings [16]. 

Consider the example shown in Figure 3.5. The tree of rings consists of three rings r l ,  7-2 

and rg (in DFS order). At each stage, the algorithm only considers the paths which share 

some edges with the current ring. After processing ring r 1, paths p and q get the same color 

(say, color l), since they are edge-disjoint. When the algorithm processes ring 7-2, only paths 

p and p' are considered. Since p' is edge-disjoint with p, according to the algorithm, p' will 
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get color 1, too. However, this is an invalid coloring since q and p' intersect on ring T Q .  The 

reason for the problem is that an uncolored path that shares some edges with the current 

ring can intersect a colored path that does not share an edge with the current ring. Such 

conflicts do not occur for trees of rings with node degree at most 4. 



Chapter 4 

Wavelength Assignment on Trees 

of Rings 

In this chapter, we consider undirected trees of rings and give our new wavelength assignment 

algorithm. Let P be a set of paths in a tree of rings TR = (V, E) .  Recall that x (P )  is the 

number of colors required to color P in an optimal solution, i.e., the chromatic number of 

the associated conflict graph, w is the maximum number of pairwise intersecting paths, and 

L is the maximum load among all edges. From Lemma 2.1.2, we know that L 5 w 5 x(P).  

We will show that for a tree of rings with node degree at most 8, 3L is both the upper and 

lower bounds for the WA problem. Furthermore, 2 &w and 2&w are upper bounds for trees 

of rings with node degrees at most 4 and 6, respectively. 

4.1 3L upper bound 

4.1.1 Algorithm 

Inspired by the work of Deng [13] and Erlebach [15], we propose the following greedy ap- 

proximation algorithm. First, we choose an arbitrary node s E V and fix a depth-first search 

(DFS) order of the vertices of TR. Then we process the nodes in TR one by one in this 

DFS order. Call the processing of a node a stage. At a stage for processing u (call u the 

current node), we color all the uncolored paths that touch u (recall that a path touches a 

node if it starts at that node, ends at that node, or passes through that node), using the 

previously used colors as many as possible. At the end of each stage, all the paths which 
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second type short path 

Figure 4.1: Illustration of the coloring steps and different types of paths 

touch the current node u are colored. Their colors will not be changed thereafter. After u 

is processed, we process the next node in the DFS order until all nodes are processed. 

In order to derive an upper bound on the number of colors used by the greedy algorithm, 

we show that an arbitrary path p can intersect only a bounded number of paths that have 

already been assigned a color prior to p. In Figure 4.1, assume that the dark nodes have 

been processed based on the DFS order, and that the algorithm is now processing node u. 

Let ro denote the ring containing u and a dark node adjacent to u that has been processed 

already (there is only one such ring). Call ring ro the current ring. The uncolored paths 

touching u do not touch any dark node (otherwise they would have been colored in previous 

stages). These paths can be classified into two basic types. The first type paths touch TO 

(i.e., use at least one edge of ro); for the arguments given below, take a path connecting 

nodes a and b in Figure 4.1 as a representative path of the first type. The second type paths 

do not use any edge in ro, and they can be further divided into two types: long paths and 

short paths. The long paths pass through two rings which contain node u, and the short 

paths only pass through one ring which contains node u. In Figure 4.1, the path connecting 

a and c is a long path, and the path connecting a and d is a short path. Note that if p 

belongs to the second type, all previously colored paths that intersect p must also touch v 
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Figure 4.2: Coloring steps for Algorithm G-Coloring 

and touch a ring containing u that is touched by p. Our strategy is to color the uncolored 

long paths first, since these paths are more difficult to color. After coloring all the long 

paths, we color the short paths. 

In the following algorithm, we process the uncolored paths which touch node u and one 

of the rings ri, for i in the order from 0 to k (suppose the maximum node degree is 2(k + l), 

see Figure 4.2). Ring ro  is the unique ring which contains node u and a dark node adjacent 

to u. Rings rl to r k  are other rings which contain node u. It is easy to see that uncolored 

paths which touch ring r o  belong to the first type. In our algorithm, the paths which touch 

ring ro are colored before the paths which do not touch ring ro. When processing ring ri, 

suppose the uncolored paths form a set U and all previously colored paths form a set V. 

We first construct a bipartite graph G(U, V) consisting of two sets of nodes, U and V, such 

that (p, q) is an edge of G if and only if p E U and q E V are edge-disjoint. (Note that U 

and V are sets of paths. For simplicity, in the discussion, we use them to denote the node 

sets in the corresponding bipartite graph). Then we find a maximum matching hl in G .  

For each edge (p, q) E h l ,  color p using the color of q. Color the remaining paths in U using 

colors by first-fit strategy. In this way, the number of colors needed is reduced. 

The detailed algorithm is given in Figure 4.3. 
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Algorithm G-Coloring ( TR, P )  
Input: A set P of paths on a tree of rings TR 
Output: A valid wavelength assignment for P 
begin 

1. Initially, all paths are uncolored. 

2. Process every node u of TR one by one based on the DFS order starting from 
an arbitrary node s. 

For node u being processed, let P, be the set of uncolored paths that touch u and 
let ri (0 5 i 5 k)  be the rings touching u with ro being the current ring. 

Color the paths of P, as follows: 

2.1 Color long paths (see Figure 4.2) 

For i = 0,1, ... , k - 1 do the following steps: 

Let Vi be the set of pre-colored paths and Ui be the set of uncolored long 
paths that touch node u and ring ri. 

Construct a bipartite graph G(u i ,  vi) such that there is an edge (p, q) in G 
if and only if paths p E ui and q E vi are edge-disjoint. 

Find a maximum matching M in G. 

For each (p, q) E M,  color p with the color of q. 

Coloring the remaining paths in U' using new colors by first-fit strategy. 

2.2 Color short paths 

For i = 0,1, ..., k do the following: 

Color the uncolored short paths that touch u and ring ri by first-fit strategy. 

end. 

Figure 4.3: The greedy algorithm for the WA problem on trees of rings 
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Figure 4.4: The coloring step for a node of degree 2 

4.1.2 Analysis 

In this section, we first show that G-Coloring uses a t  most 3L colors for trees of rings with 

node degree at most 8, then we show that for general trees of rings, G-Coloring uses at most 

4L colors. 

We have the following result: 

Theorem 4.1.1 For the WA problem on trees of rings with maximum node degree 8, 

G-Coloring is a polynomial-time algorithm that uses at most 3L colors i n  the undirected 

case. 

Proof Step 2.1 of Algorithm G-Coloring may involve constructing a bipartite graph and 

finding a maximum matching from the bipartite graph. To construct a bipartite graph 

efficiently when we process each node u, we do a pre-processing as follows: For the set P of 

the given paths and the tree of rings TR, we construct the conflict graph Gc(P, E).  This can 

be done in O ( N  x L2) time, where N is the number of nodes in TR and L is the maximum 

load of TR. By refering the conflict graph Gc(P, E) ,  a bipartite graph G can be constructed 

in O ( L ~ )  time at Step 2.1 because G has O(L) nodes. The time complexity for finding 

a maximum matching in G is O(L' .~) 1251. Since Step 2.1 is executed N times, the time 

complexity of G-Coloring is O ( N  x L ~ . ~ ) .  Clearly, the algorithm runs in polynomial time. 

If the degree of the current node u is 2, for any uncolored path p which contains u, the 

number of pre-colored paths which can intersect p is at most 2L - 1. To see this, suppose we 

have reached u from a dark node v' along the counterclockwise direction (see Figure 4.4). 

In other words, v' is the predecessor of u in the DFS order. We can find another dark node 

v" (possibly the same as v') if we go from u along the current ring in the counterclockwise 

direction. If we denote the edges as shown in Figure 4.4, there can be at most L - 1 pre- 

colored paths using link 1 (path p itself has to pass through link 1, thus there are at most 
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Figure 4.5: First type paths 

L - 1 instead of L pre-colored paths which pass through link l), and at most L pre-colored 

paths using link 2. Thus, at most 2L - 1 pre-colored paths can intersect p, and 2L colors 

are enough to ensure a valid coloring. From now on, we only consider the case where the 

degree of the current node is greater than 2. 

Since the node degree is restricted to 8, there can be at most 4 rings which contain node 

u. These rings are called TO, T I ,  ~2 and TS, respectively. Step 2.1 of the algorithm only needs 

to do the coloring for rings TO, TI ,  and TZ (i = 0,1,2, respectively), because an uncolored 

long path which touches node u and ring ri can only touch a ring r j  with j > i. We prove 

the theorem by showing that in Step 2.1, for each of these three rings, the number of colors 

needed is bounded by 3L. 

We first show that when we process the first ring TO (i = O),  for any uncolored path p 

which touches u and TO, the number of pre-colored paths that can intersect p is less than 

3L. All the pre-colored paths which can possibly intersect p are shown in Figure 4.5 (in the 

figure, rings ~2 and TS are not shown). These paths use some of the links 1, 2 and 5. They 

can be classified into the following three types: 

0 A: pass through link 1; 

0 B: pass through link 5 but do not pass through link 1; 

0 C: pass through link 2 but do not pass through link 1 or link 5. 
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Figure 4.6: Second type paths 

Note that types A and B paths were colored in previous stages, whereas type C paths 

are colored in the current stage. In Algorithm G-Coloring, to minimize the use of new 

colors, we try to color the uncolored paths using those colors of the paths in A and B,  then 

use new colors if no more old colors can be used. For any uncolored path p, there are at 

most 2L types A and B paths, and at most L - 1 colored type C paths (because path p 

itself must pass through link 2). Thus, at most 3L - 1 pre-colored paths can intersect p, 

and 3L colors are enough to ensure a valid coloring in this case. 

Now we prove that 3L colors are enough for coloring ring rl in Step 2.1 (i = 1). 

Note that an uncolored path which touches node u and ring ri can only touch exactly 

one ring rj with j > i. Suppose the sets of pre-colored paths on rings r l ,  r 2  and r3 are a l ,  

a 2  and as ,  respectively. The sets of uncolored long paths are P12, P13 and PZ3, respectively, 

as shown in Figure 4.6. I t  is easy to see that a path in a1 and a path in pp3 can never 

intersect, so they can be assigned the same color. Similarly, a 2  and P13, a 3  and P12 can 

never intersect. Thus the size of the maximum matching M for ring rl (i = 1) in Step 2.1 

is at least rnin(lazl, IP13l)+min(la31, IP12 I ) .  The number of new colors needed is at most 

wnew = IP121 + IP13( - min(lazl, IPlsl) - min(lasl, IPlzl). The total number of colors used 

after coloring the long paths touching ring rl is at most wneW + lal 1 + l a21  + la3[. 

We have the following constraints due to the maximum load L on any edge: 
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la21  + ID121 + ID231 I 2L, 

and 

To get Inequality (4.1), consider ring ro in Figure 4.6. The pre-colored paths in all a 2  and 

a 3  must pass through one of the two links on ring ro which are incident to node u. Since the 

maximum load is L, there can be at most 2L such paths. Other inequalities can be derived 

similarly. 

Consider the relations between la21 and IDl3 1 ,  and between la3 1 and IDl2/, we have the 

following four cases: 

In this case, w,,, = 0 and we do not need any new color, so the number of colors is 

bounded by 2L. 

2. l a 2 1  2 ID131 and Iff31 < ID121 

The number of new colors needed is at most w,,, = IP12J - la3[ Using Inequalities 

(4.1), (4.2) and (4.3), we can get that the total number of colors is: 

3. l a 2 1  < ID131 and l a s l  2 ID121 

The number of new colors needed is at most w,,, = IP131 - 1 4 .  Using Inequalities 

(4.1), (4.2) and (4.4), we can get that the total number of colors is: 
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4. la21 < IPi31 and la31 < IPizl 

The number of new colors needed is a t  most wnew = lP12 1 - la3 1 + lP13 1 - la2 1 .  Using 

Inequality (4.2), we can get that the total number of colors is: 

We have proved that for i = 1, we use a t  most 3L colors for long paths. Suppose that in 

coloring ring r l ,  we used a set a', of colors from al, used some colors from a 2  U a3 and used 

a set b of new colors. Clearly, Ia',l 5 Iall. NOW we prove that 3L is enough for coloring the 

long paths on ring r2. 

To color ring r2, the number of colors needed is a t  most W = I + I bl + la', I + la2 1 + la3/.  
If Ibl = 0, on ring r2 and rs ,  we have the following constraints: 

Adding them, we can get that W = + la',[ + la2[ + la3[ 5 3L. 

Assume 161 > 0. From previous analysis, we know that 
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On ring T I ,  we have 

lPizl + lPi3 + Iail L 2L. 

Adding the preceding two inequalities, we have 

161 + Iail+ la21 + l a3  

On ring 7-2 and r3, we have 

21p231 + + la21 + bsl 

Adding the last two inequalities, we can get that 

Thus, on rings TI and r2, the long paths can be colored using at most 3L colors. 

For the remaining short paths, they only pass through one of these three rings. All 

pre-colored paths have to use one of the two links incident to u. There are at most 2L - 1 

such paths, and 2L colors are enough to ensure a valid coloring. 

Thus, G-Coloring uses at most 3L colors in the undirected case for trees of rings with 

node degree at most 8. 1 
Unfortunately, the above technique cannot be applied directly to the general case (ar- 

bitrary node degree). The algorithm G-Coloring works for trees of rings with node degree 

greater than 8 using at most 4L colors. This follows directly from [15], but we are unable to 

prove an upper bound better than 4L for the general case. The author of the thesis thinks 

that in practical optical networks, node degree of 8 is probably enough if we consider load 

balance and fault tolerance issues. 

The 8approximation cut-one-link heuristic [33] works only for the RWA problem on 

trees of rings in which the routes are not fixed, not for the WA problem on trees of rings 

with pre-specified paths. The 2-approximation algorithm for the WA problem given in [13] 

works only in the case of node degree four, and it uses at most 2w colors, where w is 

the maximum number of pairwise intersecting paths. In the worst case scenario given in 

Section 4.3, w = 3L. It is not hard to see that our greedy algorithm runs more efficiently. 

4.2 A more efficient greedy algorithm 

The time complexity of the general algorithm G-Coloring is O(N x L ~ . ~ )  (Section 4.1). With 

some modification, the algorithm can run more efficiently while still achieving the 3L upper 
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bound for the special case of node degree at  most 8. The modified algorithm is given in 

Figure 4.7 and has time complexity O(N x L ~ ) .  

We have the following result: 

Theorem 4.2.1 For the WA problem o n  trees of rings with maximum node degree at mos t  

8 ,  G-Coloring-I i s  a polynomial t ime  algorithm that uses at most  3L colors in the undirected 

case. 

Proof The time complexity of Algorithm G-Coloring3 is O(N x L2),  since it does not 

involve finding a maximum matching in a bipartite graph, and the time is still needed for 

checking whether two paths intersect. 

From the previous analysis, we know that if the degree of the current node is 2, or if p 

belongs to the first type, the number of colors needed is bounded by 3L. 

If p belongs to the second type (i.e., p does not use any edge from ring r o ) ,  we have the 

following constraints due to the maximum load L on any edge (see Figure 4.6): 

l a 1  1 + b z l  + la31 I 2 4  (4.5) 

and 

According to the algorithm, the maximum number of colors needed is 

There are only eight possible cases: 

(a) 1031 2 ID121 

From Inequality (4.5), we can get that: 
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Algorithm G-Coloringl (TR,P) 
Input: A set P of paths on a tree of rings TR 
Output: A valid wavelength assignment for P 
begin 

1. Initially, all paths are uncolored. 

2. Process every node u of TR one by one based on the DFS order starting from 
an arbitrary node s. 

For node u being processed, let P, be the set of uncolored paths that touch u ,  
and ri ls  (0 5 i 5 3 )  be the rings touching u with TO being the current ring. 

Color the paths of P, as follows: 

2.1 Color the first type paths using first-fit strategy. 

2.2 Color the second type long paths (see Figure 4.6) 

Let the pre-colored paths on rings TI ,  r 2  and r3 be a l ,  a 2  and a s ,  respectively, 
and the uncolored long paths be P12, P13 and P23, respectively. 

Color P12 using the colors of a 3  if possible. 

Color PIS using the colors of cr2 if possible. 

Color P23 using the colors of a1 if possible. 

Coloring the remaining long paths using colors by first-fit strategy. 

2.3 Color short paths 

For i = 0,1,  . . . , 3  do the following: 

Color the uncolored short paths that touch u and ring ri by first-fit strategy. 
end. 

Figure 4.7: A more efficient greedy coloring algorithm 
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(b) l a 3 1  < ID121 

From Inequalities (4.5), (4.6) and (4.7), we can get that: 

(a) l a 3 1  L IPnI 
From Inequalities (4.5), (4.6) and (4.8), we can get that: 

(b) l a 3 1  < IP14 
From Inequality (4.6), we can get that: 
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From Inequalities (4.5), (4.7) and (4.8), we can get that: 

(b) l a 3 1  < IP121 

From Inequality (4.7), we can get that: 

(4 1% 2 l P i 2 l  

From Inequality (4.8), we can get that: 

(b) 1031 < ID121 

From Inequalities (4.6), (4.7) and (4.8), we can get that: 
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Thus, the second type long paths can be colored using at most 3L colors. 

For the remaining short paths, they only pass through one of the rings containing u.  All 

pre-colored paths have to use one of the two links incident to u .  There are at most 2L - 1 

such paths, and 2L colors are enough to ensure a valid coloring. 

Thus, G-Coloring1 uses at most 3L colors in the undirected case for trees of rings with 

node degree at most 8. 1 

4.3 3L lower bound 

Erlebach [15] proved that 4L is an upper bound for the WA problem on general trees of 

rings, and we have just proved that 3L is an upper bound for the WA problem on trees of 

rings with node degree at most 8. A natural question is, whether this 3L upper bound can 

be further improved? In this section, we show that 3L is also a lower bound for the WA 

problem, even for the restricted trees of rings with node degree at most 4 (note that if a 

tree of rings contains more than one ring, the node degree is at least 4): 

Theorem 4.3.1 For any integer 1 > 0, there exists a communication pattern of load L = 21 

on a tree of rings TR that requires at least 3L colors i n  the undirected case. 

Proof Let A, B, C, D, E and F be the path sets, each having L/2  paths, as shown in 

Figure 4.8. Note that the maximum load of the tree of rings in the figure is L and there are 

a total of 3L requests. None of them can be assigned the same color since they are pairwise 

intersecting (3L is the maximum clique number in the corresponding conflict graph). This 

shows that at least 3L colors are needed. I 

This lower bound is very interesting since one cannot do better than 3L even for trees 

of rings with node degree at most 4, no matter what algorithm (greedy or non-greedy) one 

uses. Our algorithm achieves the 3L upper bound for trees of rings with node degree up to 

8, which is the best possible result. 

4.4 Upper bounds based on clique number 

In Section 4.1, we have proved that 3L is the upper bound for the WA problem on trees 

of rings with node degree at most 8. Since L is a lower bound for any optimal solution, it 

turns out that our algorithm achieves an approximation ratio of 3. As we have pointed out, 
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Figure 4.8: The communication pattern for the proof of the 3L lower bound 

L < w.  With some modifications to the proving technique, we can get better approximation 

ratios. Recall that x(P) is the number of colors required to color P in an optimal solution 

and w is the maximum number of pairwise intersecting paths. We can prove that 2 &w and 

2 A w  are upper bounds for trees of rings with node degrees at most 4 and 6, respectively. 

Since w is a lower bound for x(P), this improves the approximation ratios to 2& and 2&, 

respectively. 

In order to simplify the proof, we first introduce a matching method (called multiple-step 

matching) which is slightly different from the matching methond in Step 2.1 of Algorithm 

G-Coloring, and this multiple-step matching method works only for node degree at most 6. 

Then we get the 2&w and 2&w upper bounds for the multiple-step matching. By showing 

that the general algorithm G-Coloring (which works for arbitrary node degree) is at least 

as good as the multiple-step matching when used in the special case of node degree at most 

6, we conclude that G-Coloring also achieves the 2&w and 2&w upper bounds. 

We have the following convention: 

1. For a bipartite graph G(Ua, V a )  with node sets Ua and V a ,  if Ma is a matching for 

G(Ua,Va), then U&,, = {pl(p,q) E Ma,p E Ua), V&,, = {ql(p,q) E bfa,q E Va). In 
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Figure 4.9: The coloring procedure of the multiple-step matching 

other words, UCa and Vfia are the subsets of Ua and Va saturated by matching Ma. 

We will simply denote Uha (Vha) as UIM, (VM~) if there is no ambiguity. 

2. Suppose p is a path and Q is a set of paths. When we say that p intersects with Q, 

we mean that p intersects with every path in Q. When we say that p is disjoint with 

Q, we mean that p is disjoint with some path in Q. 

Since we have restricted the node degree to 6, there can be at most three rings which 

contain node u. AS shown in Figure 4.9, assume that the dark nodes have been processed 

based on the DFS order already, and that the algorithm is now processing node u. We 

further assume that r o  is the ring containing node u and a dark node adjacent to u (there 

is only one such ring). The other two rings are named rl and r 2 ,  respectively. According to 

Step 2.1 of Algorithm G-Coloring, we will first color the uncolored paths which touch ring 

r o  and node u, then color the uncolored long paths which touch ring rl and node u. 

In Algorithm G-Coloring, when processing the uncolored paths which touch ring r o ,  

a bipartite graph will be contructed and a maximum matching will be found. Call this 
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matching method the global matching. As shown in Figure 4.5, the uncolored first type 

paths form a set C. Recall that the set A contains the pre-colored paths which pass through 

link 1, and the set B contains the pre-colored paths which pass through link 5 but do not 

pass through link 1. When coloring ring r o ,  replace the global matching method with the 

following two-step matching method: 

1. Construct a bipartite graph Ga(Ua, Va) where Ua = C and Va = A, such that (p, q) 

is an edge of Ga if and only if p E Ua and q E Va are edge-disjoint. Find a maximum 

matching Ma in G,. For each edge (p, q) E Ma, color p using the color of q. 

2. Construct a bipartite graph G ~ ( u ~ ,  vb) where ub = C\U'&, and vb = B,  such that 

(p,q) is an edge of Gb if and only if p E ub and q E vb are edge-disjoint. Find a 

maximum matching Mb in Gb. For each edge (p, q) E Mb, color p using the color of q. 

Color the rest (C\{U&, U uL*)) using first-fit strategy, and these colors form a set D. 

We have the following lemma: 

Lemma 4.4.1 In Step 2.1 of Algorithm G-Coloring, when coloring the long paths touching 

ring ro, the global matching method uses no more than the colors used by the above two-step 

matching method. 

Proof When processing ring ro, let Wold be the number of colors used already, Wnew be 

the number of new colors used by the global matching method, and WAew be the number of 

new colors used by the two-step matching. When processing ring r o ,  the global matching 

method in Algorithm G-Coloring uses no more than the colors used by the above two-step 

matching method. To see this, notice that the size of the maximum matching in Algorithm 

G-Coloring is greater than or equal to the sum of the sizes of the two maximum matchings in 

the two-step matching algorithm. Thus, more old colors can be used in the global matching 

method, hence less new colors are needed. The total number of colors used by the global 

matching method is Wold + Wnew 5 Wold + WAew, since Wnew 5 WAew. Thus, the global 

matching method is at least as good as the two-step matching method. I 

When processing the uncolored long paths which touch ring rl ,  if we denote the edges 

as shown in Figure 4.9, we can divide the uncolored second type long paths to the following 

two types: 

0 E: pass through link 1 and ring r2; 
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0 F: psss through link 2 and ring r 2 .  

The pre-colored paths have to use either link 5 or 6 .  Denote the paths which use link 5 

as set A and the paths which use link 6 as set B. Note that paths in A were colored during 

previous stages, whereas paths in B could be colored during the current stage or previous 

stages. Clearly, the sizes of both A and B are bounded by w. In the multiple-step matching 

method, we will color E using colors from set A and B if possible; for the remaining El 

use a set C of new colors. The unused colors in A and B form sets A' and B', respectively. 

After finishing coloring El we color F using the colors in set A', B' and C if possible; for 

the rest of F, use a set D of new colors. The reason that we use sets A' and B' instead of 

sets A and B in the coloring of F is that the colors in A and B which are already used to 

color E may conflict with F .  

According to the above analysis, when coloring the long paths touching ring rl ,  consider 

the following three-step matching method: 

1. Construct a bipartite graph Gal(Ual, Val) where Ual = E and Val = A, such that 

(p, q) is an edge of Gal if and only if p E Ual and q E Val are edge-disjoint. Find a 

maximum matching Mal in Gal. For each edge (p, q) E Mal, color p using the color 

of q. Construct a bipartite graph G ~ ~ ( U ~ ' ,  vbl) where ubl = E\Uzal  and vbl = B,  

such that (p, q) is an edge of Gbl if and only if p E ubl and q E vbl are edge-disjoint. 

Find a maximum matching Mbl in Gbl. For each edge (p, q) E Mbl, color p using the 

color of q. Color the rest (E\{u$~~ U uEbl)) using first-fit strategy, and these colors 

form a set C. 

2. Construct a bipartite graph Ga2(Ua2, Va2) where Ua2 = F and Va2 = A' (A' is the 

set of colors A\Vfitl), such that (p, q) is an edge of Ga2 if and only if p E Ua2 and 

q E Va2 are edge-disjoint. Find a maximum matching Ma2 in G a 2  For each edge 

(p, q) E Ma2, color p using the color of q. Construct a bipartite graph G ~ ~ ( u ~ ~ ,  vb2) 
where ub2 = F\Ui;a2 and vb2 = B' (B' is the set of colors B\V:~~), such that (p, q) is 

an edge of Gb2 if and only if p E ub2 and q E vb2 are edge-disjoint. Find a maximum 

matching Mb2 in Gb2. For each edge (p, q) E Mb2, color p using the color of q. 

3. Construct a bipartite graph Gc(UC, VC) where UC = F\{Uga2 U uEb2) and VC = C,  

such that (p, q) is an edge of Gc if and only if p E UC and q E VC are edge-disjoint. 

Find a maximum matching Mc in G,. For each edge (p,q) E Mc, color p using the 
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color of q. Color the rest (F\{Uga, U u;;~, U UhC)) using first-fit strategy, and these 

colors form a set D. 

We have the following lemma: 

Lemma 4.4.2 I n  Step 2.1 of Algorithm G-Coloring, when coloring the long paths touching 

ring r l ,  the global matching method uses n o  more than the colors used by the above three-step 

matching method. 

Proof When processing ring r l ,  let Wold be the number of colors used already, Wnew be 

the number of new colors used by the global matching method, and WLew be the number of 

new colors used by the three-step matching. When processing ring r l ,  the global matching 

method in Algorithm G-Coloring uses no more than the colors used by the above three-step 

matching method. To see this, notice that the size of the maximum matching in Algorithm 

G-Coloring is greater than or equal to the sum of the sizes of the first two maximum 

matchings in the three-step matching algorithm. Thus, more old colors can be used in the 

global matching method, hence less new colors are needed. The total number of colors used 

by the global matching method is Wold + Wnew 5 Wold + WAew, since Wnew I WAew. Thus, 

the global matching method is at least as good as the three-step matching method. I 

Before giving the main theorem, we have the following lemma: 

Lemma 4.4.3 I n  the modified coloring method associated with ring r ~ ,  for any  edge ( p ,  q) E 

Ma, p intersects with A\VMa or q intersects with UMb U D .  For any edge ( p ,  q) E Mb, p 

intersects with B\VMb or  q intersects with D. 

Proof We prove the lemma by contradiction. Suppose there exists an edge (p,q) E Ma, 

such that p is disjoint with some path f' E A\Vhf,, and q is disjoint with some path 

f" E UMb U D. Then we can assign p the color of f', and assign f" the color of q. This 

increases the matching Ma by 1, contradicts to the fact that Ma is a maximum matching. 

The proof for Mb is similar. I 

We have the following result: 

Theorem 4.4.4 For the W A  problem o n  trees of rings, when using the multiple-step match- 

ing instead of the global matching method, Algorithm G-Coloring i s  a polynomial t ime algo- 

rithm that uses at mos t  2&w and 2&w colors for node degrees u p  to  4 and 6, respectively. 
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Figure 4.10: The bipartite graph associated with Ma 

Figure 4.11: The conflict graph associated with Ma 

Proof If p belongs to the first type, the configuration can be shown in Figure 4.5. The 

number of colors needed is W = IAl + IBI + ID/. I t  is easy to see that IAl, IBI and ICI are 

all bounded by w.  If D is empty, the number of colors needed is IAl+ lBI, which is bounded 

by 2w. If A\VMa or B\VMb is empty, the number of colors needed is I BI + IC( or IAl + ICI, 

which is also bounded by 2w. From now on, we assume that A\VMa, B\VMb and D are not 

empty. 

According to Lemma 4.4.3, we can divide Ma into three types: 

1. Xa = { (p ,  q)l(p, q) E Ma, p intersects with A\VM~ and q intersects with UMb U D ) ;  

2. Ya = { (p ,  q)l(p, q) E Ma, p is disjoint with A\VMa and q intersects with Unfb u D ) ;  

3. Za = { (p ,  q)I(p, q) E Ma, p intersects with A\VMa and q is disjoint with UMb U D ) ;  

The definitions for Xb,  Yb and Zb are similar: 

1. Xb = { ( p ,  q)l(p, q) E Mb, p intersects with B\VMb and q intersects with D ) ;  

2. Yb = { (p ,  q)  I (p ,  q) E Mb, p is disjoint with B\VMb and q intersects with D ) ;  

3. 21, = { (p ,  q)l(p, q)  E Mb, p intersects with B\VMb and q is disjoint with D ) ;  



CHAPTER 4. WAVELENGTH ASSIGNMENT ON TREES O F  RINGS 

Figure 4.12: The bipartite graph associated with Mb 

Figure 4.13: The conflict graph associated with Mb 

We can show the matching Ma in a bipartite graph (see Figure 4.10). In the figure, a 

solid line represents a matching. A dashed arrow means that each path in the tail is disjoint 

from some path in the head. For example, in Figure 4.10, there is a solid line between 

Uxa and Vxa since this is a matching. There is a dashed arrow from Uya to A\Vhfa, which 

means that each path in Uya is disjoint from some path in A\VMa. We can thus construct a 

conflict graph (Figure 4.11). In this figure, a solid line means that the two sets of paths are 

conflicting, i.e., they cannot be assigned the same colors. According to the definitions of X,, 

Ya and Za, Vxa, Vya and A\VMa are conflicting with UM, u D; Uxa and Uza are conflicting 

with A\VMa. We can show that Vya conflicts with Uza by contradiction. Suppose there 

exist two edges (p, q) E Ya, (p', q') E Za such that p' and q are edge-disjoint, we can improve 

the matching Ma by 1: assign p the same color as a path in A\Vbfa, assign p' the same color 

as q and assign a path in UM, U D the same color as q'. This contradicts to the fact that 

Ma is a maximum matching. Thus Vya and Uz, must be conflicting. 

According to the conflict graph for the matching Ma (Figure 4.11), we have the following 

Similarly, according to the bipartite graph for the matching Mb (see Figure 4.12), we 
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can construct the conflict graph for the matching Mb (Figure 4.13). We have the following 

Constraints: 

IXb( + ( & I +  lBl - (Mbl + ID1 5 w 

Ixbl + lzbl + IBI - lMbl + ID1 < w 

IYbl + lZbl + lBI - IMbl + ID1 5 

The maximum number of colors needed is IAl+ I BI + I Dl. This is our object function and 

we want to  minimize it. Combine Inequalities (4.9) and (4.10) with the fact that IAl, IB( 

and ICI are all bounded by w, and solve this optimization problem using the Optimization 

Toolbox in MATLAB, wecan get that IAl + IBI + ID1 < 2Aw. 

If the maximum node degree is 4, from the proof of Theorem 4.1.1, we know that 2L 

colors are enough to color the second type of short paths, thus 2w colors are enough, since 

L 5 w. Combine this with the 2&w result for the first type paths, we have proved that for 

trees of rings with node degree at most 4, 2Aw is an upper bound on the number of colors 

needed. 

If the maximum node degree is 6, using similar technique, for the second type long paths 

which touch ring rl (Figure 4.9), we can get the following constraints: 
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and 

IXCl + IYcl + ICl- IMcl+ < w 

IXcI + Izcl+ ICI - IMcl+ ID1 I w (4.15) 

K l +  lZCl+ ICl - IMCJ + ID1 I w 

Note that each path in A and B must use one of the links 1, 2, 3 and 4; each of the long 

paths must use two of the links 1, 2, 3 and 4 (see Figure 4.9). Combine this with the fact 

that L I w, we have the following contraint: 

The maximum number of colors needed is 1 A1 + I BI + ICI + (Dl. This is our object function 

and we want to minimize it. Combine Inequalities (4.11) to (4.16) with the fact that IAl 

and IBI are all bounded by w, and solve this optimization problem using the Optimization 

Toolbox in MATLAB, we can get that IAl + IBI + ICI + ID/ < 2Aw. 

For the second type short paths, from the proof of Theorem 4.1.1, we know that 2L 

colors are enough to color this type of paths, thus 2w colors are also enough, since L I w. 

Combine this with the 2&w result for the first type paths and the 2&w result for the second 

type long paths, we have proved that for the WA problem on a tree of rings with node degree 

at most 6, 2&w is an upper bound on the number of colors. I 

According to Lemma 4.4.1 and Lemma 4.4.2, we know that the global-matching method 

in Algorithm G-Coloring is at least as good as the twestep and three-step matching meth- 

ods. Thus, G-Coloring achieves upper bounds of 2&w and 2&w as well. 

From the above proof, we can see that G-Coloring uses at most 2&w and 2&w on trees 

of rings with node degrees at most 4 and 6, respectively. Combine this with the 3L upper 

bound, we have proved that G-Coloring achieves approximation ratios of 2&, 2& and 3 on 

trees of rings with node degrees at most 4, 6 and 8, respectively. 
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Crosstalk Reduct ion 

Optical switches are now widely used in WDM all-optical networks. Directional couplers 

(DCs) can switch signals with multiple wavelengths. They are commonly used to build large 

optical switches. However, DCs suffer from an intrinsic crosstalk problem. In this chapter, 

we first study the nonblocking properties of Benes networks under crosstalk constraints 

and give lower and upper bounds on the number of wavelengths. We further study the 

nonblocking properties of the Banyan-type networks with extra stages and give the necessary 

conditions for the network to  be strict-sense nonblocking (a network is called strict-sense 

nonblocking if any permutation instance can be routed in a link-disjoint manner no matter 

how the previous paths were established). 

5.1 Introduction 

A DC is used to combine and split signals in an optical network. It can be designed to be 

either wavelength selective or wavelength independent over a useful wide range. A 2 x 2 

coupler consists of two input ports and two output ports, as shown in Figure 5.1. The most 

commonly used DCs are made by fusing two fibers together in the middle. A 2 x 2 coupler 

takes a fraction a of the power from input 1 and places it on output 1 and the remaining 

fraction 1 - a on output 2. Similarly, a fraction 1 - a of the power from input 2 is distributed 

to output 1 and the remaining power to output 2. a is called the coupling ratio [35]. a = 0 

and a = 1 correspond to the cross state and the bar state, respectively (see Figure 5.2). 

Couplers are the building blocks for large optical switches and other optical devices. 

The major shortcoming of DCs is crosstalk. Crosstalk is the effect of other signals on the 
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Figure 5.1: A directional coupler 
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Figure 5.2: Two states of a constraint switching element 

desired signal. Optical crosstalk occurs when two signal channels interact with each other. 

When two signals pass through a DC, a small portion of the signal power will be directed 

to the unintended output channel. If a signal passes many switches, the input signal will be 

distorted at the output due to the crosstalk introduced on the path. Studies indicate that 

switch crosstalk is the most significant factor which reduces the signal-tenoise ratio and 

limits the size of a network. Two forms of crosstalk exist in WDM systems: interchannel 

crosstalk and intrachannel crosstalk [35]. The first case is when the crosstalk signal is at a 

wavelength sufficiently different from the wavelength of the desired signal. The second case 

is when the crosstalk signal is at the same wavelength as that of the desired signal. The 

effect of intrachannel crosstalk can be much more severe than interchannel crosstalk, since 

the interchannel crosstalk can be filtered at the receiver, whereas intrachannel crosstalk 

cannot. 

One method to reduce crosstalk is to ensure that a switch is not used by two input signals 

simultaneously. This is called the space dilation. Another method is to use wavelength 

dilation approach. The idea is, whenever two signals pass through a coupler, they must 

use two different wavelengths. To further reduce the interchannel crosstalk, one can add 

an additional filter for each wavelength at the output. The wavelength dilation approach 

can reduce the hardware cost. In this thesis, we use wavelength dilation method to achieve 

strict-sense nonblocking under crosstalk constraints. 
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5.2 Nonblocking properties 

In this section, we give the necessary definitions. A network will be modelled as a directed 

graph with a subset S of nodes called inputs and a subset T of nodes called outputs. A 

routing request is an ordered pair ( s , t )  of the network, where s E S is a source node and 

t E T is a destination node. In this chapter, we only consider permutation instances, i.e., 

each node s can be a source of a t  most one request and each node t can be a destination of 

at  most one request. Especially, when we say an arbitrary set of routing requests, we mean 

an arbitrary permutation instance. As is done in previous chapters, circuit-switching model 

is used instead of packet-switching. We only consider the networks without wavelength 

converters. For such networks, a path from s to t must be assigned the same wavelength on 

all of its links. If there is no crosstalk constraint on the switches, the only problem left is to 

realize the connection requests using the minimum number of wavelengths, while ensuring 

that the paths with the same wavelength are edge-disjoint. The wavelength blocking is the 

case when two paths try to use the same wavelength on the same link. Under the crosstalk 

constraint on the switches, however, a DC-based switching system must satisfy a certain 

crosstalk level. Intrachannel crosstalk will be generated when two light signals of the same 

wavelength pass through the same switching element (SE). We call such SE a crosstalk SE 

(CSE). The level of crosstalk can be represented using the number of CSEs along a lightpath. 

A network is called link rearrangeable nonblocking if any set of connection requests given 

at  once can be routed in a link-disjoint manner. It is called wide-sense link nonblocking 

if there is a routing algorithm that is able to route every sequence of requests in a link- 

disjoint manner. It is called strict-sense link nonblocking if any sequence of requests can 

be routed in a link-disjoint manner no matter how the previous paths were established. In 

WDM networks, we are concerned with the wavelength nonblocking [36]. A WDM network 

is called k-wavelength rearrangeable nonblocking if any set of connection requests given at  

once can be routed in such a way that any two paths sharing the same link are assigned 

different wavelengths and at most k wavelengths are used. We define the k-wavelength wide- 

sense nonblocking (strict-sense nonblocking) similarly. Clearly, when k = 1, wavelength 

nonblocking becomes link nonblocking. Under the crosstalk constraint, the nonblocking 

property is further specified by the number of CSE's allowed on any path. We say a network 

is c-CSE and k-wavelength rearrangeable nonblocking if any set of connection requests given 

at once can be routed in such a way that any two paths sharing the same link are assigned 
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different wavelengths, at most Ic wavelengths are used, and there are at most c CSE's 

in each path. Similarly, we can define c-CSE and k-wavelength wide-sense (strict-sense) 

nonblocking. 

In the following discussion, we use the baseline topology and all the SEs are assumed to 

be 2 x 2. The n-dimensional baseline network, denoted by B,, consists of n x 2,-' nodes 

arranged in n stages connecting N = 2, inputs and N outputs. In Figure 5.3(a), the stages 

are numbered 1,2, ... , n from left to right. Each node can be represented by a binary label 

v = 21x2 ... xn-lx, E (0, 11,. The ith binary baseline permutation bi, for 1 I i I n, is 

defined by 

... xi-1 X~X~+~. . .X,-~X,)  = ~1...~i-1~,~i~i+1...~,-1 

The i th baseline connection performs a cyclic shifting of the n - i + 1 least significant digits 

in the index to the right for one position [14]. Figure 5.3(a) shows a 16 x 16 baseline network. 

Baseline networks are topologically equivalent to butterfly and omega networks. They are 

often called Banyan-type networks. 

In a baseline network, there is a unique path between each input and output. Adding 

extra stages to a baseline network can provide alternative paths. Figures 5.3(b), 5.3(c) 

and 5.3(d) show baseline networks with 1, 2 and 3 extra stages, respectively. Note that 

Figure 5.3(d) is actually a Benes network. We adapt the notation of [42] for convenience. 

For an N x N Banyan-type switch, we use the notation B(x, c) to denote the Banyan-type 

network with x extra stages and at most c CSEs are allowed on the path of each connection. 

We try to find the minimum number of wavelengths w to make the B(x,  c) network strict- 

sense nonblocking for various x and c. 

5.3 Previous work 

In this section, we will review some of the results on the nonblocking properties of Banyan- 

type networks under crosstalk constraints. 

When a Banyan-type network has x extra stages, there are log2 N + x stages. When 

c = log2 N + x, no crosstalk constraint is enforced. In this case, we are actually asked to 

find the minimum w for wavelength nonblocking. Lemma 5.3.1 gives a sufficient condition 

for a B(x,  log2 N + x) network to be w-wavelength strict-sense nonblocking. When c = 0, 

no crosstalk is allowed on any node. In this case, the paths with the same wavelength are 

required to be node-disjoint. Lemma 5.3.2 gives a sufficient condition for a B(x, 0) network 
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stage l stage 2 stage 3 stage 4 

(a) A 16x 16 baseline network 
(b) One extra stage 

(c) Two extra stages 

(d) Benes network (x=3) 

Figure 5.3: 16 x 16 Banyan-type networks with extra stages 
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to be 0-CSE and w-wavelength strict-sense nonblocking. Lemma 5.3.3 gives a sufficient 

condition for an N x N baseline network B(0, c) to be c-CSE and w-wavelength strict-sense 

nonblocking, for 0 < c < log2 N + x. 

Lemma 5.3.1 [42] A n  N x N B(x, log2 N + x) network is  w-wavelength strict-sense non- 

blocking if { 1 'flog' "" even 

1, if log2 N + x odd. 

Lemma 5.3.2 [42] A n  N x N B(x, 0) network is  0-CSE and w-wavelength strict-sense 

nonblocking if 
2x + 2& - 1, if log2 N + x even 

2 x + i @ - 1 ,  i f l og2N+x  odd. 

Lemma 5.3.3 1421 A n  N x N B(0, c) network with even log2 N i s  c-CSE and w-wavelength 

strict-sense nonblocking if 

When  log2 N is  odd, the condition becomes 

The detailed proof can be found in [41, 421. 

5.4 Benes network 

When x = log2 N - 1, the B(x, c) network becomes the Benes network, as shown in Fig- 

ure 5.3(d). For an N x N Benes network, there are 2 x log2 N - 1 stages. We have the 

following result: 

Theorem 5.4.1 The necessary and suficient number of wavelengths for an  N x N 

B(log2 N - 1,2 x log, N - 1) Benes network to  be w-wavelength strict-sense nonblocking 

is w = logz N.  
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Proof Since c = 2 x log2 N - 1 and an N x N Benes network has exactly 2 x log, N - 1 

stages, no crosstalk constraint is enforced, thus only link blocking can occur. We first show 

that log, N wavelengths are enough for an N x N Benes network (BN,) to be strict-sense 

nonblocking. Given a set of routing requests I ,  for any request (s, t )  E I, there are N/2 

paths in BN, to connect s and t. Call these paths tagged paths. Let P be a connection 

for I\{(s, t)). We say a path q E P gives m blocks to the N/2 paths if q shares a common 

edge with m of the N/2 paths. The number m can be easily calculated if the source and 

destination of q are known. We count the total number of blocks from the paths in P and 

derive the average number of blocks in one path from s to t. 

For 1 5 k 5 log2 N ,  let Sk be the set of sources in I that intersect with the tagged 

paths at stage k. Then S1 has 1 node and Sk has 2"' nodes. Similarly, let Tk be the set of 

destinations in I that intersect with the tagged paths at stage 2 x log2 N - k. Then TI has 

1 node and Tk has 2k-1 nodes. Call Sk and Tk the intersecting sets with respect to (s, t). 

This can be shown in Figure 5.3(d). 

For any path q : sf -+ t' in P, let j 2 1 and k > 1 be the integers such that s f  E Sj and 

t' E Tk. Then q contributes 2' link blocks, where r = max{log2 N - j - 1, log, N - k - 1). 

For r = log2 N - 2, we have j = k = 1. Since ISII 5 1 and JTII 5 1, there can be at most 2 

paths, each of which contributes 21•‹gz N-2 blocks. In general, for i > 2 and r = log, N - i - 1, 

we have k = i and j 2 i or j = i and k > i. Since JSil = 2i-1 and ITi[ = 2i-1, there can be at 
most 2i-1+2i-1 - - 2% . paths, each of which contributes 21•‹g2 N-i-l link blocks. Summarizing 

the above and from the fact that I has at most N pairs, the paths in P can contribute at 

link blocks. Since there are N/2 paths between s and t, the average number of blocks on 

each ~ a t h  is at most 
(log, N - 1) x N/2 

N/2 
= log, N - 1. 

Therefore, log2 N wavelengths are enough to ensure wavelength nonblocking. 

Now we show that log, N is also the lower bound. It can be proved by contradiction. 

Suppose w < log, N wavelengths are enough for a BNn network to be strict-sense nonblock- 

ing. We can disprove this by finding a connection sequence which cannot be satisfied by less 

than log, N wavelengths. For any request (s, t ) ,  we can define intersecting sets Si7s and Ti7s 

with respect to (s, t ) ,  where 1 5 i 5 log, N. Let connection requests from Si to Tlog2 N ,  and 
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connection requests from Slog, N to Ti use wavelength wi, for 1 5 i 5 log2 N - 1. From the 

proof of the upper bound, we know that there are a total of 2i elements in Si and Ti, and 

in the worst case, each of which can block 21•‹Q N-i-l paths of the N/2 paths from s to t. 

Thus, each Si and Ti can block exactly 2i x 2I0gz N-i-l = N/2 paths. The total number of 
log,N-1 i 1 the elements in Si (1 5 i < log2 N) is 2 - = - 1, which is strictly less than the 

number of elements in Tlog, N (N/2). Thus, we have enough elements in Tlog, N to create 

these connections. Similarly, we have enough elements in Slog, N for connections destined 

to Ti (1 5 i < log2 N). Thus (s, t) cannot use wavelength wi (1 5 i < log2 N - 1). It is easy 

to see that we cannot satisfy the connection request from s to t since all wavelengths have 

been used, a contradiction. So the lower bound is log2 N. I 

Theorem 5.4.2 The necessary and sufficient number of wavelengths for an N x N 

B(log2 N - 1,0) Benes network to be 0-CSE and w-wavelength strict-sense nonblocking 

i s w = 2 x l o g 2 N - 1 .  

Proof Since c = 0, no crosstalk is allowed on any node. Thus, on each wavelength, only 

one light signal is allowed to pass through an SE. This corresponds to the nodedisjoint 

case. The proof is similar to the proof of Theorem 5.4.1, except that in nodedisjoint case, 

each path in Si (Ti) can block up to 21•‹g2 N-i of the N/2 paths from s to t. Thus, the total 

number of node blocking is 

log, N - 1 

C 2kz Npi x Zi = (log2 N - 1) x N 
i=l 

Since there are N/2 paths between s and t, the average number of node blocks on each path 

is at most 

Therefore, 2 x log2 N - 1 wavelengths are enough to ensure nodedisjoint. 

Now we prove that 2 x log2 N - 1 is also the lower bound. Suppose w = 2 x log2 N - 2 

is a lower bound. Let connection requests from Si to Zog2 N use wavelength wai-1 and 

connection requests from Slog, N to Ti use wavelength wzi, for all 1 I i < log, N. Again we 

are not able to route the connection request from s to t, since all 2 x log2 N - 2 wavelengths 

have been used. Thus, the lower bound is 2 x log2 N - 1. I 
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Lemma 5.4.3 In an N x N B(log2 N - 1, c) Benes network, given a set of routing requests 

I with at most N pairs, for any ( s ,  t )  E I ,  let Si and T, be the intersecting sets with respect 

to ( s ,  t ) .  Connections originating from Si and connections destined to Ti can intersect with 

all N/2 of the paths from s to t .  In addition, each of these paths can have up to  2 x ( i  - 1) 

CSEs. 

Proof From Theorems 5.4.1 and 5.4.2, it is easy to see that connections originating from 

Si and connections destined to Ti can intersect all N/2 paths from s to t .  Let connections 

originating from Si use the same wavelength. It can be seen from Figure 5.3(d) that the 2i-1 

paths will intersect i - 1 times until they reach stage i. If we choose the 2'-' destinations 

such that they are continuous and each output SE is used by two connection requests, these 

paths will intersect another i - 1 times after stage 2 x log, N - ( i  - 1) until they reach the 

last stage. Thus, they can intersect up to 2 x (i - 1) times. I 
Theorem 5.4.4 A lower bound on the number of wavelengths for an N x N 

B(log2 N - 1, c) (0 < c < 2 x log2 N - 1) Benes network to be c-CSE and w-wavelength 

strict-sense nonblocking is 2 x log2 N - 1 - [$I. 
Proof From Theorem 5.4.1 and 5.4.2, we can see that Si and Ti combined can block N 

tagged paths (2 wavelengths) in the node-disjoint case, and can block N/2 tagged paths (1 

wavelength) in the edge-disjoint case. From Lemma 5.4.3, we know that Si and Ti can still 

block 2 wavelengths under a crosstalk level c, for [$I < i 5 log2 N - 1. Si and Ti combined 

can still block one wavelength no matter what value c is. Thus, the total number of link 

and crosstalk blocks is 

Thus, the number of wavelength needed is at least 2 x log2 N - 1 - [$I. I 
Unfortunately, we have not found a tight upper bound for the B(log2 N - 1, c) net- 

works. There are too many cases. A trivial upper bound is given in Theorem 5.4.2, which 

corresponds to the node-disjoint case (c = 0). 

5.5 Networks with extra stages 

Lemma 5.5.1 In an N x N B ( x ,  c) Banyan-type network, given a set I of routing requests 

with at most N pairs, for any ( s ,  t )  E I ,  let Si and T, be the intersecting sets with respect 
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to ( s ,  t ) .  Connections originating from Si and connections destined to Ti (1 5 i 5 x + 1) 

can intersect v i t h  all 2" of the paths from s to t .  I n  addition, paths originating from Si or 

destined to Ti can have up to 2 x (i - 1) CSEs along the route. Connections originating 

from Si and connections destined to Ti can intersect with 2i of the paths from s to t ,  where 

x + 2 5 i 5 (1/2)(log2 N + x) i f  log2 N + x even, and x + 2 < i 5 (1/2)(log2 N + x + 1) 

otherwise. I n  addition, each 2" paths originating from Si or destined to Ti can have up to 

2 x x CSEs. 

Proof Let us consider the case where log2 N + x is even. From Lemma 5.4.3, it is easy to 

see that for 1 5 i 5 x + 1, connections originating from Si and connections destined to  Ti 

can intersect all 2" paths from s to t .  Suppose connections originating from Si use the same 

wavelength. It can be seen from Figure 5.3(c) that the 2i-1 paths will intersect i - 1 times 

until they reach stage i. If we choose the 2i-1 destinations such that they are continuous 

and each output SE is used by two connection requests, these paths will intersect another 

i - 1 times after stage log2 N + x - ( i  - 1) until they reach the last stage. Thus, they can 

intersect up to 2 x (i - 1) times. For x + 2 < i 5 (1/2)(log2 N + x), we have 2i-1 elements 

in Si or Ti and 2" connections originating from Si or connections destined to  Ti are enough 

to  intersect the 2" paths from s to  t .  Thus we can have up to 2 x x CSEs along each of 

these 2"paths. The proof for other cases is similar. I 

The following proposition can be easily verified. 

Proposition 5.5.2 A lower bound on the number of wavelengths for a B(x + 1, c )  network 

to be c-CSE and w-wavelength strict-sense nonblocking i s  also a lower bound for B(x, c )  

network. 

In the following discussion, we use w~(, , , )  to denote the lower bound on the number of 

wavelengths for a B(x,  c)  network to be c-CSE and w-wavelength strict-sense nonblocking. 

Theorem 5.5.3 A lower bound on the number of wavelengths for an  N x N B(x,  c)  (0 < 
c < log2 N + x) network with even log2 N + x to be c-CSE and w-wavelength strict-sense 

nonblocking is  
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W h e n  log2 N + x i s  odd, the result becomes 

Proof From Theorem 5.4.4 and Lemma 5.5.1, we can see that for 1 < i < x + 1, Si and 

Ti combined can block 2"+' paths (2 wavelengths) in the node-disjoint case, and can block 

2" paths (1 wavelength) in the edge-disjoint case. From Lemma 5.5.1, we know that Si and 

Ti can still block 2 wavelengths under a crosstalk level c, for [$I < i 5 x + 1. Si and Ti 

combined can still block one wavelength no matter what value c is. Thus, the total number of 

blocks will reduce by [$I when 0 < c < 22. An obvious lower bound for 22 < c < log, N +x  

is equal to the lower bound of the edge-disjoint case. For odd log2 N + x, if we include the 

elements in S(log2 N+"+~)/, (T(log2~+,+1)/2), we can get a tighter low bound. We noticed 

that in the edge-disjoint case, the connections originating from S(log2 ~+"-1)/2 should be 

destined to T(log2 N+s+l)/2 to create maximum blocking. Similarly, connections destined 

to T(log2 N+z-I)/~ should originate from S(log2 ~ + ~ + 1 ) / 2 .  Thus we have 2(log2 N+z-1)/2 extra 

elements in S(log2 N+"+1)/2 and T(log2 N+z+l)/2, which can create additional crosstalk blocks. 

To block one wavelength, we need 2 x 2" elements in S(log, N+"+1)/2 and T(log2 N+"+1)/2 plus 

c - 2s elements for each of the 2" connection. So the additional blocking number is 

From Proposition 5.5.2, we know that a lower bound on the number of wavelengths for 

a B(x + 1, c) network to be strict-sense nonblocking is also a lower bound for a B(x, c) 

network. So we choose the maximum of the calculated value and w~( ,+~ , , ) .  The proof for 

even logz N + x is similar. I 

5.6 Result comparison 

Table 5.1 gives lower bounds on the number of wavelengths for Benes networks with various 

sizes and crosstalk levels to be c-CSE and w-wavelength strict-sense nonblocking. In the 

table, c = 0 is the node-disjoint case and c = 2 x log, N - 1 is the edge-disjoint case. 

The number of wavelengths reduces by 1 when c decreases by 2. This can be explained by 

Theorem 5.4.4: a lower bound is 2 x log2 N - 1 - [;I. Table 5.2 gives lower bounds for a 

64 x 64 B(x, c) network to be c-CSE and w-wavelength strict-sense nonblocking. There are 
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still gaps between the necessary and sufficient conditions. We conjecture that the number 

for the sufficient condition can be reduced. 

5.7 Summary 

In this chapter, we have analyzed the nonblocking properties of multistage interconnecting 

networks. We use wavelength dilation to  reduce the crosstalk in an optical network. Low 

bounds and upper bounds for strict-sense nonblocking are given for several well-known 

network topologies. There are still gaps between the lower and upper bounds for some 

networks. It is worth investigating whether these bounds can be made tighter. It is also a 

challenging problem to find the number of wavelengths needed for wide-sense nonblocking 

on these networks. 
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Table 5.1: Lower bounds on the number of wavelengths for B(log2 N - 1, c)  networks 

Table 5.2: Lower bounds ; on the number of wavelengths for networks 



Chapter 6 

Conclusion and Future work 

WDM all-optical networks can meet the ever-increasing demand for network bandwidth. In 

this thesis, we studied the WA problem on the tree of rings, a popular topology often found 

in WDM networks, and the crosstalk reduction problem on optical switches. In this chapter, 

we will summarize the contributions of this work, and give a few directions for future work. 

6.1 Summary of contributions 

We have studied the WA problem on a tree of rings. We have shown that the greedy 

algorithm we proposed uses at most 3L wavelengths for trees of rings with maximum node 

degree 8, where L is the maximum edge load. This improves the previous result of 4L [15]. 

We have also shown that there are instances which require at least 3L wavelengths for the 

WA problem on a tree of rings network. Our algorithm uses at most 4L wavelengths for 

node degree greater than 8. 

We have shown that our algorithm achieves approximation ratios of 2&, 2& and 3 on 

trees of rings with node degrees at most 4, 6 and 8, respectively. For node degree at most 4, 

a Zapproximation algorithm has been known [13]. However, this algorithm is much more 

complex than ours and only works for node degree 4, which allows only two rings intersect 

at the same node and is probably not enough in practice. Our algorithm works for trees of 

rings of arbitrary node degree and achieves a good approximation ratio for node degree at 

most 8, which the author thinks can probably meet most engineering requirements. 

Crosstalk can be a severe problem in directional-coupler-based optical switches. In this 

thesis, we studied the crosstalk reduction problem and showed several lower and upper 
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bounds for Banyan type networks. 

6.2 Future work 

Many research efforts have been devoted to the RWA and WA problems. However, there 

are still many open problems. In this section, we give a few directions for the future work. 

From Chapter 3, we know that for the WA problem on trees, there is a difference 

between the 5L/3 upper bound and the 5L/4 lower bound. Although greedy algorithms 

cannot achieve an upper bound better than 5L/3, it is not known whether other non-greedy 

algorithms can achieve a better upper bound. It is worth investigating whether the gap can 

be narrowed. 

For the WA problem on trees of rings, we intend to focus on the following several 

directions in the future: 

We have shown that 3L is enough for the WA problem on trees of rings with node 

degree at most 8, and 3L is also necessary. Obviously at  least 3L is needed for arbitrary 

node degree. Erlebach [15] has shown that 4L is an upper bound. One natural question 

is, whether 3L is enough for trees of rings of arbitrary node degree? We conjecture 

that 3L is also the upper bound for the WA problem on trees of rings with arbitrary 

node degree, but we do not have a proof yet. Note that although we can only prove 

that our algorithm achieves the 3L upper bound for trees of rings with node degree at 

most 8, our algorithm works for general trees of rings. In the future, we will evaluate 

the performance of our algorithm on general trees of rings, and try to find a new 

non-trivial upper bound which is strictly less than 4L (and hopefully equal to 3L). If 

we cannot find a better upper bound, then whether it is possible to find a better lower 

bound which is strictly greater than 3L? If we cannot find a better lower bound or 

upper bound (for general algorithms), is it possible to use an adversary argument to 

prove a better lower bound for the greedy algorithms? 

To the author's best knowledge, there is no published result on the upper bound in 

terms of w for trees of rings with arbitrary node degree. Combine the 4L result with 

the fact that L 5 w, we can get a trivial 4w upper bound. Although we have several 

results in terms of w for trees of rings with bounded node degrees, no better result 

is known for general trees of rings. In the future, we will try to find a better upper 
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bound in terms of w for general case. 

0 In this thesis, we have focused on the undirected trees of rings. However, the optical 

networks are directed since optical amplifiers placed on the fiber are directed devices. 

In the future, we intend to extend this algorithm and analysis to the directed model. It 

is not hard to see that the algorithm can be extended to the directed model without any 

modifications, but we need to evaluate the performance of the algorithm on directed 

trees of rings. 

0 It is also worth investigating the online RWA and WA problems on trees of rings. As 

introduced in Chapter 3, Bartal et .  al. [2] showed that there is an O(1og N)-competitive 

algorithm for the online RWA problem (path not fixed) on a tree of rings with N nodes. 

Since a low bound for the online RWA problem on rings is O(L x log N) ,  the lower 

bound for online RWA problem on trees of rings is also of the order O(L x log N). It is 

worthy finding out the exact coefficients behind these numbers. No result is available 

for the online WA problem (i.e., path fixed) on trees of rings. This is another future 

research direction. 

For the crosstalk reduction problem on directional-coupler-based Banyan-type networks, 

we have lower bounds on the number of wavelengths needed for the network to be strict- 

sense nonblocking. However, we still do not have non-trivial upper bounds for Banyan-type 

networks with arbitrary extra stages. Further efforts will be devoted to this problem. 
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