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Abstract

This thesis is on applying standard combinatorial optimization methods, dynamic
programming and linear programming, to help solve two important problems in
computational molecular biology: (1) predicting the secondary structure of RNA
molecules and (2) predicting the functionality of small biological compounds.

After 25 years of effort, the RNA secondary structure prediction has proven to
be very elusive. Much of the available algorithms are based on total free energy
minimization. Yet, despite the numerous attempts to perfect this thermodynamic
approach, the end results are far from being practical.

We demonstrate that delocalizing the thermodynamic cost of forming an RNA
substructure through energy density notion can significantly improve available sec-
ondary structure prediction methods. Because the notion of energy density is non-
linear, the standard dynamic programming approach had to be updated. This up-
dated algorithm can capture the secondary structure of many non-coding RNAs
which have been difficult to approximate with alternative methods.

One key application of RNA structure prediction is in understanding how two or
more RNAs interact (e.g. an mRNA and a regulatory RNA). In this thesis we formu-
late the RNA-RNA interaction prediction problem as a combinatorial optimization
problem and show how to solve it again via dynamic programming. Because the
complexity of the algorithm to solve the most involved formulation of the prob-
lem is very high, we also describe heuristic shortcuts, which, in practice, are highly
accurate.

The second set of problems we tackle are related to small chemical molecules,
which have key cellular functions. In particular we focus on structural similarity

search among small chemical molecules, a standard approach used for in-silico drug

il



discovery. Tt is possible to use structural similarity to deduce the bioactivities of new
compounds provided that the notion of similarity reflects the bioactivity in question
and we have efficient data structures to perform structural similarity search.

This thesis shows how to computationally design the “optimal” weighted Minkowski
distance wL, for maximizing the discrimination between active and inactive com-
pounds with respect to a bioactivity. It also demonstrates how to construct an
iterative pruning based data structure for performing “nearest neighbor” search un-

der the weighted L, distance computed.
keywords: rna secondary structure prediction, energy density, rna-rna joint sec-

ondary structure prediction, small chemical compounds, k-nearest neighbor classifi-

cation.
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Glossary

bp:
C. Elegans:

codon:

DNA:

D. Melanogaster:

E.Coli:

genome:

gRNA:

miRNA:

mRNA:

nucleotide:

plasmid:

base pair.
Caenorhabditis Elegans; soil nematode.

A sequence of three adjacent nucleotides constituting the ge-
netic code that determines the insertion of a specific amino acid

during protein synthesis or the signal to stop protein synthesis.

Deoxyribonucleic acid; a nucleic acid which is capable of car-
rying genetic instructions for the biological development of all

cellular forms of life and many viruses.
Drosophila melanogaster; fruit fly.

Escherichia Coli; one of the main species of bacteria that live

in the lower intestines of warm-blooded animals.

the whole hereditary information of an organism that is en-

coded in the DNA (or, for some viruses, RNA).

Guide RNA; RNA that guides the insertion of uridines (RNA
editing) into mRNAs.

Micro RNA; a form of single-stranded RNA which is typically
20-25 nucleotides long, and is thought to regulate the expres-

sion of other genes.

Messenger RNA; RNA that carries information from DNA to

the ribosome sites of protein synthesis in the cell.

A monomer or the structural unit of nucleotide chains forming

nucleic acids such as RNA and DNA.

typically circular double-stranded DNA molecules that are sep-
arate from the chromosomal DNA. They usually occur in bac-

teria, sometimes in eukaryotic organisms.
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RINA:

rRNA:

siRNA:

snoRNA:

snRNA:

stRNA:

tRNA:

small chemical molecules:

QSAR:

bioactivity:

metabolites:

Ribonucleic acid; a nucleic acid consisting of a string of covalently-

bound nucleotides.
Ribosomal RNA; the primary constituent of ribosomes.

Small interfering RNA; a class of 20-25 nucleotide-long RNA

molecules that interfere with the expression of genes.

Small nucleolar RNA; a class of small RNA molecules that are
involved in chemical modifications of ribosomal RNAs (rRNAs)

and other RNA gene.

Small nuclear RNA; a class of small RNA molecules that are
found within the nucleus of eukaryotic cells. They are involved

in a variety of important processes such as RNA splicing.

Small temporal RNA, small RNA duplexes that are instable

and degrade quickly.

Transfer RNA; RNA that transfers a specific amino acid to
a growing polypeptide chain at the ribosomal site of protein

synthesis during translation.

Molecules with molecular weights of 500 or below and con-

tributes 90% of the current drugs.

Quantitative structure-activity relationship; the process by which
chemical structure is quantitatively correlated with a well de-
fined process, such as biological activity (bioactivity) or chem-

ical reactivity.

Beneficial or adverse effects of small chemical molecules, mostly

drugs, on living matter.

Any substance produced by metabolism or by a metabolic pro-

Ccess.
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Chapter 1

Introduction

This thesis aims to present computational methods for solving two seemingly un-
related problems: (1) structural prediction of non-coding RNAs and (2) functional
prediction of small chemical compounds. Both of these important bioinformatics
problems can be formulated as combinatorial optimization problems, which are typ-
ically solved through exact or approximate combinatorial algorithms, heuristics or
machine learning tools. In this thesis our goal is to develop exact algorithms for
solving these combinatorial optimization problems with (small) polynomial running
time and space. Our algorithms, which are variants of two powerful optimization
techniques, dynamic programming and linear programming, not only have provable

performance and accuracy guarantees but they also work very well in practice.

1.1 Motivation

RNA is a linear polymer with a sugar ribose and phospahate backbone linked to-
gether by phospodiester bonds and four different types of nucleotides: Adenine(A),
Guanine(G), Cytosine(C) and Uracil(U). Like its cousin DNA, most of RNAs are
extensively base paired to form double stranded helices in their natural form. How-
ever unlike DNA, this structure is not just limited to long double-stranded helices
but rather collections of short helices packed together into substructures. Given an
unpaired RNA molecule, most of the bases start to form weak hydrogen bonds with

each other and fold into its native secondary structure where each base is either
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paired or left empty. In this process the complementary base pairs C-G and A-U
can form hydrogen bonds. It is not uncommon, however, to find other types of base
pairs in RNA for example G pairing with U (wobble pair) occasionally.

Until early 2000s, RNA was considered to have two functions: (i) transferring
genetic information from DNA to protein in the form of messenger RNA (mRNA) -
these are the coding RNAs, and (ii) decoding the protein code and combining amino
acids together in the form of ribosomal RNA (rRNA) and transfer RNA (tRNA).
The discovery of RNA interference (RNA1i), the post transcriptional silencing of
gene expression via interactions between mRNAs and their “regulatory RNAs“ has
changed this simple picture of RNA functionality [56, 22]. This revolutionary dis-
covery of RNA based gene regulation by Fire and Mello in 1998 has recently been
awarded with the Nobel Prize in Physiology or Medicine in 2006.

Recent studies have revealed that regulatory RNAs are only a very small subset
of "non-coding” RNAs. A large fraction of mammalian genome sequences (at least
10% in the human genome and possibly much more [51], about 60% of the mouse
genome) appear to give rise to RNA transcripts that do not code for proteins [14].
Non-coding RNAs have been found to have roles in a great variety of processes,
including transcriptional regulation, chromosome replication, RNA processing and
modification, messenger RNA stability and translation, and even protein degrada-
tion and translocation. As a result, non-coding RNAs are now known to be far more
abundant and important than initially imagined; unfortunately their functionalities
are only scarcely known.

A regulatory RNA usually employs the "antisense effect”, the process of forming
interactions via weak hydrogen bonds between complementary unpaired nucleotides
of the regulatory RNA itself and its target RNA. Native structures of both regu-
latory and target RNAs are important determinants of the pairing rates and have
evolved for optimizing the functions of the regulatory RNA. Generally, regulatory
RNASs contain one or more loop structures (unpaired regions of the native structure)
that are (almost) complementary to specific sequences in the target RNAs. Inter-

action with a target is usually initiated at such a loop structure of the regulatory
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RNA and a loop structure from the target, forming “kissing loop pairs”. The ther-
modynamic parameters involved in establishing the kissing loop pairs (as well as
loop-single stranded RNA pairs) and the specific tertiary structures they form are
mostly unknown and constitute a major challenge in gene regulation research.

This thesis presents a number of results in resolving problems related to RNA
based gene regulation. More specifically we introduce new algorithms and software
tools to computationally predict the exact form of interactions between a non-coding
RNA and its target. Our methods can determine the joint secondary structure of two
interacting RNA molecules or those that predict whether two RNAs can form a stable
interaction are essential to predicting how regulatory RNAs hybridize with target
mRNAs and effectively downregulate the corresponding genes. These methods can
also help predict how target RNAs bind to probes on a microarray or what might be
the active site of a ribosome. Central to our tools for predicting the joint structure of
two interacting RNAs is the accurate prediction of the independent structures of the
RNA sequences before the interaction. This thesis also introduces new algorithms
and software to improve the accuracy of the existing methods for predicting the
independent structure of a single RNA molecule as well.

We note that determining the exact form of RNA-RNA interactions have im-
mediate applications in medicine. In principle, regulatory RNA molecules can be
employed to silence desired genes and thus used for treating a variety of human dis-
eases such as several types of cancer, rheumatoid arthritis, brain diseases and viral
infections. Regulatory RNAs have already been demonstrated to cure disease: for
example, an siRNA targeted against the activated oncogene H-Ras in proliferating
cancer cells, was able to revert the cells back into normal cells [24] - H-Ras is known
to be involved in many types of cancer. More recently RNAi was demonstrated to
effectively turn off the mutated Fibulin 5 gene - which is responsible for wet macular
generation, a disease that effects 30 million elderly people in the world. The siRNA
called Cand5 (discovered and named by Acuity Pharmaceuticals) which targets the
mutated Fibulin 5 gene can be directly injected into a patient’s eye and thus can be
used as a drug - it already passed the Phase II clinical trials with top-line results.

If Cand5 passes all clinical trials with success, it would provide a landmark for the
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field of RNAi-based therapeutics [10].

We would like to add that developing a successful RNAi based drug necessitates
the identification of all interactions between the drug and all functional RNAs. In
particular, interactions of the drug with unrelated mRNAs will likely to result in

severe side effects.

The second part of this thesis is on predicting the functionality of small chemical
compounds. Until recently regulation of gene expression, in all organisms, is almost
exclusively attributed to regulatory proteins. However mRNA gene expression and
proteomic analysis do not tell the whole story of how biological processes are carried
out in the cell. Almost all gene regulation mechanisms and biochemical pathways
involve small chemical compounds which act as metabolites(such as metabolic inter-
mediates, hormones and other signaling molecules). Small chemical molecules (with
molecular weights < 500) are very important in the exploration of molecular and
cellular functions such as normal growth, development and reproduction. They also
play key roles in treating diseases: almost all medicines available today are small
molecules.

Novel technological advances in chemistry have given us the ability to rapidly
and efficiently synthesize large numbers of novel small chemical compounds. Further-
more, new improvements in Mass Spectrometry and Nuclear Magnetic Resonance
methods have made it possible to efficiently and accurately determine the chemi-
cal structures of a given compound. Unfortunately determining the functionality of
these small chemical molecules, in particular those which are effective at modulating
a given biological process or disease state is still far from trivial.

Chemical compounds which are structurally similar are typically similar in phys-
iochemical properties such as boiling/melting point, solubility, etc and as a result
their functionality [47]. Thus one standard tool for determining the functionality of
a small chemical compound is structural similarity search among compounds with
known functionalities. Alternatively one can query small molecule databases with a
probe compound possessing desirable biological activity to discover chemically simi-

lar database entries, which would have a higher probability to have the bioactivity
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of interest.
The above structural similarity search and classification approach is associated

with two fundamental computational problems which are addressed in this thesis:

1. The notion of similarity used in search determines the molecules that are ex-
tracted from the database must be determined such that the highest level of
bioactivity discrimination can be achieved. We show how to obtain such a

similarity measure through a combinatorial optimization approach.

2. It is quite important to have efficient algorithms for structural and chemical
similarity search as the molecular databases of interest include several millions
of compounds and linear/brute force search may take significant amount of
time (several days in certain large private databases). We present a new data
structure that exploits the available memory as much as possible so as to
minimize the running time of search. The data structure is again optimized

through combinatorial algorithms.

1.2 Contributions

As mentioned earlier, this thesis studies the problems of (i) computational RNA
secondary structure prediction as well as the joint secondary structure of two inter-
acting RNA molecules and (ii) efficient and effective classification of small chemical
compounds as well as efficient data structures to handle large datasets. In particular,

this thesis presents the following results.

1. We introduce the notion of normalized free energy or energy density criteria
to improve the accuracy of the existing algorithms for secondary structure
prediction of one or more RNA sequences [4]. The algorithms we describe
in this thesis minimize a linear combination of the total energy density and
total free energy of an RNA sequence. Based on this optimization function,
we developed the Densityfold program for folding a single sequence and the

MDensityfold program for folding multiple sequences.



CHAPTER 1. INTRODUCTION 6

2. A natural follow up problem to RNA secondary structure prediction problem
is the determination of interactions between two RNA sequences. We first
describe the general RNA-RNA Interaction Prediction (RIP) Problem combi-
natorially; Given two RNA sequences S and R (e.g. a regulatory RNA and
its target), RIP problem asks to predict their joint secondary structure. We
aim to compute the joint structure between S and R through minimizing their
total free energy [3]. We then show how to obtain efficient algorithms to mini-
mize the free energy of the joint structure via dynamic programming approach
and test the accuracy of our algorithms on known joint structures. We finally
apply our structure prediction techniques to compute target mRNA sequences

to any given non-coding RNA molecule.

3. In order to determine the structural similarity of small chemical compounds, we
focus on the k-nearest neighbors (k-nn) classification method, which deduces
the bioactivity of a chemical compound based on the bioactivity of its k-nn
with respect to a distance measure of choice. In this thesis we introduce use
of the weighted Minkowski distance of order 1, namely wL; such that for
each bioactivity of interest, the real valued weights w; of the wL; distance are
determined so as to maximize the discrimination between active and inactive
compounds in a training set. The (near) optimal values for weights w; are

computed via a linear optimization procedure [33].

4. An efficient data structure is necessary for fast nearest neighbor search queries
in large datasets with millions of compounds which is generally true for small
chemical molecule databases. Space Covering Vantage Point (SCVP) trees [63]
where the vantage points in each level are chosen randomly until all search
space is covered, are natural choice for this purpose. Clearly, it is desirable
to minimize the number of vantage points that cover the search space. We
first prove that the problem of minimizing the number of vantage points at
each level is an NP-hard problem. However, we show how to approximate the
minimum number of vantage points and thus obtain the optimum allocation of

available memory through a simple polynomial time algorithm. The resulting



CHAPTER 1. INTRODUCTION 7

data structure, which we call the deterministic multiple vantage point tree
(DMVP tree), when built in full, is guaranteed to have O(log¥) levels, where
¢ is the size of the data set [33]. If the maximum number of children of an
internal node at level ¢ is ¢;, the query time guaranteed by our data structure
is O(E:‘ff ¢;. Because ¢; is typically a small constant, the query time is only
O(log¥#), a significant improvement over linear/brute force search. In case
of limited memory, techniques are developed for selecting the the optimum

subtree that minimize the expected query performance.

1.3 Organization of the thesis

The remainder of the thesis is structured as follows:

1. Inchapter 2, we first present the description of the following problems: (i) RNA
secondary structure prediction problem, (ii) RNA-RNA interaction prediction
problem and (iii) clustering and classification of small chemical compounds

based on structural similarity. We then give an overview of the related work.

2. In chapter 3, a novel RNA secondary structure prediction method based on
energy density ,Densityfold, is developed [4]. Densityfold aims to minimize the
linear combination of the total free energy and total free energy density of an
RNA sequence via a dynamic programming approach. Because the running
time of the most general approach is exponential with the maximum number
of branches allowed in a multibranch loop, a divide and conquer approach
is developed for approximating energy density of such loops. Experimental

results are supplied for demonstrating Densityfold’s predictive power.

3. Even though there are a number of algorithms for predicting the secondary
structure of a single RNA molecule including Densityfold, no such algorithm
exists for reliably predicting the joint secondary structure of two interact-
ing RNA molecules or measuring the stability of such a joint structure. In
chapter 4, we address the RNA-RNA interaction problem and develop effi-

cient algorithms to solve it. Our algorithms minimize the joint free energy
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o

between the two RNA molecules under a number of energy models with grow-
ing complexity [3]. Because the computational resources needed by our most
accurate approach is prohibitive for long RNA molecules, a heuristic approach
is described while experimentally maintaining the original accuracy. Equipped
with this fast approach, we apply our method to discover targets for any given

antisense RNA in the associated genome.

. The problem of structural similarity search among small chemical molecules is

studied in chapter 5 using k-nearest-neighbor (k-nn) search method. Not only
do we develop classification methods for molecules with unknown bioactivi-
ties, we also develop methods for designing the optimal weighted Minkowski
distance wL, for maximizing the discrimination between active and inactive
compounds with respect to bioactivies of interest [33]. The accuracy achieved
by our classifier under the optimal wL, distance is better if not as good as
the alternative methods. Furthermore in terms of running time we achieve

considerably faster results compared to competition.

Efficient data structures for performing nearest neighbor search in large dataset
is addressed in chapter 6. A variation of Space Covering Vantage Point
(SCVP) tree, Deterministic Multiple Vantage Point (DMVP) tree, is pre-
sented [33]. The study indicates a deterministic selection of vantage points
through exploiting the available memory, can improve the search time consid-
erably. Theoretical analysis for the search time is also presented. In case of
limited memory, we show how to obtain the subtree to fit into memory for

minimizing the expected search performance.

Finally the thesis is concluded in chapter 7 with a brief summary of our algo-

rithms.



Chapter 2

Definition of the Problems and

Background

In this chapter, we describe problems related to discovering relations between struc-
ture and function of biomolecular compounds such as RNAs and small chemical
compounds. We first describe the single RNA secondary structure prediction prob-
lem and the general methodology - referred as free energy minimization- for solving
this problem. Later we extend this methodology to determine the interactions be-
tween two RNA sequences. The second part of the chapter focuses on the structural
similarity search among small chemical molecules which is one of the standard meth-

ods used in conventional in-silico drug discovery.

2.1 RNA Secondary Structure Prediction Prob-
lem

As mentioned earlier an RNA molecule can be considered as strand of four different
types of bases which are Adenine (A), Cytosine (C), Guanine (G), and Uracil (U),
with two chemically distinct ends, known as the 5 and 3’ ends. Thus RNA strands
are typically represented as a string over A,C,G,U, with the left end corresponding
to the 5’ end of the molecule. Although RNA sequences are transcribed as single

stranded molecules, many bases of an RNA molecule form basepairs through weak
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hydrogen bonds. The resulting form of RNA sequence is called ”secondary structure”
of RNA sequence. The most common basepairs are the complementary pairs C-G
and A-U being the strongest and the ”"wobble” pair G-U being the weakest [72].
More formally a secondary structure of an RNA sequence, R = ry, 7y, ...1,, can
be defined as the set of basepairs( Figure 2.1). A basepair between nucleotides r;
and r; (i < j) is denoted by (i - j) The following constraints are usually imposed on

RNA secondary structures:

1. Two base pairs (¢ - j) and (¢’ - j') are either identical, or else ¢ # ¢’ and 7 # j'.

Thus base triples are excluded fron the definition of secondary structure.

2. Sharp U-turns are prohibited. A U-turn, called hairpin loop, must contain at

least three bases.

3. Pseudoknots are prohibited. That isif (z-j) and (i'-j') are basepairs in an RNA

secondary structure, then a pseudoknot occurs assuming 7 < 7' ,7 <4 < j < 7.

The last condition excludes pseudoknots. Pseudoknots are excluded because
energy minimizing methods based on the nearest neighbor thermodynamic model,
cannot deal with them. Inclusion of pseudoknot to the RNA secondary structure
problem transforms the problem into NP-hard (Non-deterministic Polynomial-time
hard) problem for general case [2]. For this reason, pseudoknots are often considered
as belonging to tertiary structure.

Given an RNA sequence, RNA secondary structure prediction problem (some-
times referred to as the RNA folding problem) asks to compute all pairs of bases
that form hydrogen bonds. Much of the literature on RNA secondary structure pre-
diction is devoted to the free energy minimization approach. This general method-
ology (which is sometimes called the thermodynamic approach) aims to compute the
secondary structure by minimizing the total free energy of its substructures such as
stems, loops and bulges. This model is almost universally accepted and it is the only

available model for determining the total free energy of an RNA structure.
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2.1.1 The Nearest Neighbor Thermodynamic Model

The nearest neighbor thermodynamic model aims to provide a framework that can
be used to calculate the free energies of RNA secondary structures more accurately.
The main premise of the nearest neighbor thermodynamic model is that the energy
value of a basepair is not only determined by itself but also its nearest neighbor.
Energy values for the unpaired bases are estimated according to the type of sub-
structure that encloses them. Total free energy of an RNA secondary structure can
be approximated as the sum of independent terms for total free energies of stacked
pairs and loop sequences(Figure 2.1). The thermodynamic model has been developed
in conjunction with the development of dynamic programming folding algorithms,
so the independence assumptions in the thermodynamic models terms have been
made compatible with the independence assumptions needed for recursive dynamic
programming algorithms to work.
Stacked pairs:
Two basepairs (i-j) and (¢’ j') are referred as a stacked pair if they are immediately
adjacent to each other where i’ =14+ 1 and 5/ = j — 1. For each possible base pair
there is a certain energy value which is stored in a static table. A group of 2 or more
consecutive base pairs is called a heliz. The first and last basepairs are referred the
closing basepairs of the helix. Free energy of the helix is then calculated as the total
free energy of the stack pairs between closing basepairs.
Loop Structures:

A base i’ or a basepair (¢ - 7') is called accessible from a basepair (3 - j) if ¢ < #/(<
J') < j and if there is not other basepair, (k- 1) such that i < k < (< j') <1 < j.
The collection of unpaired bases accessible from a given basepair (i - j) but not
including that basepair is called the loop closed by (i-7), L(¢, 7). Notice that a loop
sequence can contain many stacked pairs. There are different types of loops and
for each different loop type there exist a function that can estimate its free energy.
The possible types of loops in an RNA secondary structure and their free energy

calculations can be summarized as follows:

1. The collection of unpaired bases not accessible from any basepair is called
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Figure 2.1: Sample pseudoknot free RNA secondary structure containing all elemen-
tary substructures.

the exterior or external loop. These loops are existent only in linear RNA
sequences and the free energy of external loops can be be estimated as a
function of the (i) size of the loop and (ii) terminal mismatch stacking energies

(helix closing basepairs included in the loop sequence)

2. A loop, L(%,7), containing no helix closing basepair is called a hairpin loop.
Free energy of a hairpin loop is a linear function of (i) size of the hairpin loop,
(i1) terminal mismatch stacking free energy obtained from the basepair (7 - j),
(ili) bonus free energy for hairpin loops of size < 4 and (iv) bonus or penalty

free energy for special cases.

3. Aloop, L(i,j), containing one helix closing basepair (i'-j') where both |i'—i| >
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0 and |j — 7’| > 0, is called an internal loop. Free energy of an internal loop is
a linear function of (i) size of the loop, (ii) terminal mismatch stacking energy
obtained from basepair (i’ - j') and (iil) asymmetric penalty which depends on

" = = 15" = Jll.

4. An internal loop, L(4, j) (with closing basepair (i'-j")), where either |¢' —i| = 0
and |j — 7’| = 0, is called a bulge. Free energy of a bulge is a linear function of
(i) size of the bulge, (ii) terminal mismatch penalty and (iii) bonus or penalty

free energy for special cases.

5. A loop, L(i,j), containing more than one helix closing basepair is called a
multi-branch loop. Because so little is known about the effects of multi branch
loops on RNA stability, free energies are assigned in a way that makes the
computations easy. Free energy of a multi-branch loop is approximated as a
linear function of (i) number of closing basepairs in the loop, (ii) number of

unpaired bases in the loop and (iil) terminal mismatch penalties.

The parameters of the nearest neighbor thermodynamic model have been deter-
mined experimentally by Turner et al. and the details of thermodynamic parameters
can be found in [23]. Based on these thermodynamic parameters, a number of dy-
namic programming algorithms have been developed [57, 79, 44| to compute the
RNA secondary structure with minimum free energy. The popular mfold and its

more efficient version RNAfold (from the Vienna package) are implementations of

these algorithms.

2.1.2 Multiple RNA secondary structure prediction

Single RNA secondary structure prediction methods disscussed above have many
limitations which are usually attributed to the following factors. The total free
energy is effected by tertiary interactions which are currently poorly understood and
thus ignored in the energy tables 49] currently used by all structure prediction tools.
There are also external, non-RNA related factors that play important roles during

the folding process. Furthermore, the secondary structure of an RNA sequence is
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formed as the molecule is being transcribed. A highly stable substructure, formed
only after a short prefix of the RNA sequence is transcribed, can often be preserved
after the completion of the transcription, even though it may not conform to a
secondary structure with the minimum free energy. !

In order to address these issues, much of the recent research on RNA secondary
structure is focused on simultaneously predicting the secondary structure of many
functionally similar RNA sequences. The intuition underlying this approach is that
functional similarity is usually due to structural similarity, which, in many cases,
correspond to sequence similarity. Because this approach can utilize the commonly
observed covarying mutations among aligned basepairs in a stem, the accuracy of
this approach can outperform single sequence structure prediction approach.

There are three main techniques for simultaneously predicting the secondary

structure of multiple sequences via energy minimization.

e The first general technique, used in particular by the alifold program [29] of
the Vienna package, assumes that the multiple alignment between the input
RNA sequences (in the case of alifold, computed by the Clustal-W pro-
gram [67]) corresponds to the alignment between their substructures. The
structure is then derived by folding the multiple alignment of the sequences.
Clearly this method crucially relies on the correctness of the multiple sequence
alignment; thus its prediction quality is usually good for highly similar se-

quences (60% or more) but can be quite poor for more divergent sequences.

e The second general technique aims to compute the sequence alignment and the
structure prediction simultaneously [64, 27, 50]. When formulated as a rigor-
ous dynamic programming procedure, the computational complexity of this

technique becomes very high; it requires O(n®) time even for two sequences

! Another crucial issue that limits the prediction accuracy of many energy minimization based
tools is that they do not allow pseudoknots. This is due to the the fact that the energy minimization
problem allowing arbitrary pseudoknots is NP-hard [2]. The only software tool we are aware of
which allows certain types of pseudoknots (as described by [16]) is Pknots (2], which suffers
[rom elficiency problems. Thus our current iimplementation does not allow any pscudoknots due
to efficiency considerations; however it can easily be extended to allow the class of pseudoknots
captured by Pknots.
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and is NP-hard for multiple sequences [19]. In order to decrease the computa-
tional complexity, it may be possible to restrict the number of substructures
from each RNA sequence to be aligned to the substructures from other se-
quences. In [8], this is done through a preprocessing step which detects all
statistically significant potential stems of each RNA sequence by performing
a local alignment between the sequence and its reverse complement. When
computing the consensus structure, only those substructures from each RNA
sequence which are enclosed by such stems are considered for being aligned to
each other. This strategy is successfully implemented by the RNAscf program

recently developed by Bafna et al. [8].

e The final approach to multiple sequence structure prediction is the so called
consensus folding technique. Rather than minimizing free energy, the con-
sensus folding technique first extracts all potential stems of each input RNA
sequence. The consensus structure is then computed through determining the
largest set of compatible potential stems that are common to a significant ma-
jority of the RNA sequences. A good example that uses the consensus folding
technique is the comRNA program [32] which, once all stems of length at least
£ are extracted from individual sequences, computes the maximum number
of compatible stems 2 that are common to at least k of the sequences via a
graph theoretic approach. As one can expect, the consensus technique also re-
lies on the availability of many sequences that are functionally (and hopefully

structurally) similar.

2.1.3 Machine Learning Approaches

All methods described above rely on physics models of RNA structure in the form
of the traditional thermodynamic model. Note that the thermodynamic parameters
used by these methods are determined through experimentation where there are

some limitations on which parameters are measurable, and with what accuracy these

2The notion of compatibility here allows the types of pscudoknots that are captured by the
Pknots program.
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parameters are measured. Some of the accuracy loss using the thermodynamic model
is attributed to these limitations of the thermodynamic parameter determination.
Recently machine learning methods that estimate thermodynamic parameters based
on known RINA secondary structures are emerging as an alternative to the physics
based methods.

A popular machine learning approach, the stochastic context-free grammars
(SCFGs), provides a probabilistic method for predicting RNA secondary struc-
ture [21, 35, 36]. An implementation of this general approach, CONTRAfold, is
based on the conditional log-linear models (CLLMSs), a flexible class of probabilistic
models which generalize upon SCFGs by using discriminative training and feature-
rich scoring [20]. It is possible to define an RNA secondary structure as a vector
of RNA substructures where each substructure is associated with a certain weight
value. Using this model and a given set of known RNA secondary structures, CON-
TRAfold estimates the weights using maximum likelihood methods.

Another recent parameter estimation method is proposed by Andronescu et al.
based on the constraint generation method. 6] Here each RNA secondary structure
is represented using probabilistic methods where estimation of the parameters can
be formulated as an optimization problem. For each RNA sequence, constraints
ensures that the known RNA structure has a better energy value than all the al-
ternative foldings. However the number of the constraints depends on the possible
RNA secondary structures which is exponential. The solution for the optimization
problem is found using a heuristic iterative constraint generation method.

Although hoth of these methods improve the prediction accuracy of the training
data, the quality of the predictions highly depends on the training data. The errors
in the structures and the errors in the annotations have a significant effect on these
methods. Another problem is that these methods still assume the minimum energy
state and ignores the kinetics of the folding process. For our research purposes, we

are going to focus mostly on the physics based RNA secondary structure methods.
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2.2 RNA-RNA Interaction Prediction Problem

As described above there are a number of computational methods for predicting the
secondary structure of a single RNA molecule. However, there are only a few studies
related to the problem of predicting the secondary structure formed by two RNA

molecules.

2.2.1 Problem Definition

Given two RNA molecules, one being an regulatory RNA and the other its potential
target, RNA-RNA Interaction prediction problem asks to compute the joint struc-
ture formed by those RNA molecules that has the minimum total free energy. A
joint secondary structure between two RNA sequences is a set of basepairs where
each nucleotide is paired with at most one other nucleotide, either internal or exter-
nal. An illustration of the RNA-RNA joint seconcary structure is given in Figure 2.2
between two RNA sequences CopT and CopA.

Figure 2.2 shows the natural joint structure of interacting RNA molecules CopA
and CopT. Similarly, Figure 2.3 shows the natural joint structure of interacting
RNA molecules OxyS and fhlA. The sequence written in black is the target RNA,
where the red one is the regulatory RNA CopA. Target RNA is given in 5’ to 3’
direction whereas the regulatory RNA is given in the reverse order from 3’ to 5’ in
order to represent the joint secondary structure easier to understand. In Figures 2.4
and 2.5 the same interactions are presented in a more illustrative manner: here blue
links represent internal bonds whereas red links represent external bonds between
nucleotides. The green boxes are used to mark the nucleotides which do not form
any kind of bonds.

CopT is a part of the RNA that encodes repA gene in E. coli plasmid R1, and the
encoded protein is responsible for the plasmid replication. But when the number of
Cop™T in the cell increases, CopA comes into the picture. CopA is the plasmid copy
number regulator RNA which is actually transcribed from the same portion of the
plasmid; so CopT and CopA are cis-encoding. The CopA molecules tend to come

across to the CopT molecules; they form a joint structure as given in these figures;
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Figure 2.2: Natural joint structure be- Figure 2.3: Natural joint structure be-

tween small RNA molecules CopA (regu- tween small RNA molecules fhlA (tar-

latory[red]) and CopT (its target[black]) get[black]) and OxyS (regulatory|red]) in

in E.Coli. E.Coli. Notice that there are dots in
OxyS and fhlA sequences. Actually these
sequences are much longer, but whole se-
quence was not given in [70], and the
missing sequence was not effective in the
interaction [37].

which will essentially block the repA gene translation [48].

2.2.2 Previous Work

There are a number of computational tools for predicting the secondary structure of
a single RNA molecule [44, 62, 78, 79]; these tools are especially accurate if the length
of the RNA sequence is relatively short. There are also several algorithms to compute
the “similarity” or “alignment” between two non-interacting RNA molecules [15,
45, 55|. However, there have only been a few studies related to the problem of
predicting the secondary structure formed by two RNA molecules.

The HyTher package [59, 60] predicts the hybridization thermodynamics of a

given duplex given the two strands; it does not aim to minimize the joint free energy
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Figure 2.4: Known joint structure between small RNA molecules CopA (regula-
torybottom], in 3’ to 5 direction) and CopT (its target[top], in & to 3’ direction)
in E.Coli.

or predict the secondary structure of the interacting RNA strands. The Pairfold pro-
gram 5] aims to predict the secondary structure of two interacting RNA sequences
by simply concatenating two RNA strands and performing a secondary structure
prediction as if there is only one strand, using the mfold algorithm (for folding a
single strand (44, 78, 79]). Because mfold avoids pseudoknots, possible topologies
that can be predicted by PairFold are very limited; in fact Pairfold can not pre-
dict any “kissing” hairpin loops, which are essential to joint structure prediction of
two RNA sequences (See Figure 2.6 for example). In principle, PairFold can em-
ploy the pknots method of Rivas and Eddy [62] which can predict certain types of
pseudoknots. However the pseudoknot types allowed by pknots (as per the charac-
terization in [16]) do not capture any non-trivial kissing loop complex such as the
ones explored in this work. Thus even by employing pknots, the PairFold approach
would not be able to predict the joint structure of interacting RNA molecules of
interest. A more recent paper [58] describes the RIS tool which aims to solve the
joint structure prediction problem in a more formal manner. [RIS is based on a
simple energy model that considers the free energies of paired bases only. This is

quite similar to the energy model of Nussinov and Jacobson [57] for a single RNA
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Figure 2.5: Known joint structure between small RNA molecules fhlA (tar-
get[bottom], in 3’ to 5’ direction) and OxyS (regulatory|top], in 5 to 3’ direction) in
E.Coli.

molecule, and almost identical to the basepair energy model, which is described in
Section 4.2 as a warm-up exercise. As can be expected, this energy model leads to
unreliable predictions: on the only known natural joint RNA structure examined
in [58] (OxyS-fhlA pair), the structure predicted by RIS is topologically different

from the natural one.

2.3 Classification of Small Chemical Molecules

Given a notion of similarity among data elements, it is usually possible to obtain
a corresponding distance measure; searching for structurally most similar molecules
to a query molecule in this context corresponds to searching for molecules with
the smallest distance to the query molecule. The key premise of this approach
is that the notion of a distance is mathematically well defined and algorithms for
handling distance based classification, clustering and search are better understood.
For example, the search for the most similar molecule to a query compound becomes
the Nearest Neighbor Search (NN) problem in the distance domain. This problem is
well studied in computer science and a number of efficient algorithms are available
for it.

There are various ways to define the descriptors/parameters for the chemical
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Figure 2.6: Sample RNA-RNA interaction that can’t be captured by Pairfold em-
ploying mfold. Concatenating two sequences end to end makes such a kissing hairpin
structure be treated as a pseudoknot by single RNA folding algorithms.

structures [9, 1, which cither (1) mercly reflect the structural organization of molecules
in qualitative manner, such as those used in the popular structural fingerprints (em-
ployed in NCBI's PubChem database), e.g. the existence of a doubly bonded Car-
bon pair, a three membered ring, an aromatic atom etc. [46] or (2) reflect various
local and global physical-chemical molecular features (chemical descriptors) which
are quantitative, such as atomic weight, aromaticity, hydrophobicity, the number of
specific atoms, charge, density, etc(See Figure 2.7). These descriptors serve as in-
dependent variables for QSAR (Quantitative Structure-Activity Relationship) tools
including the structural similarity search engines in chemical compound databases.
Given an adequate set of descriptors, it is desirable to have a measure of similarity
or alternatively a distance measure under which chemically equivalent molecules have
a high level of similarity or small distance, and non-equivalent compounds have a low
level of similarity or large distance. The most common measure of similarity amongst
sets of molecular descriptors is the so called Tanimoto coefficient [73]. Given two
descriptor sets (which can be organized in arrays) X and Y, the Tanimoto coefficient
is defined to be the ratio of the number of descriptors that are identical in X and Y
and the total number of descriptors available for X and Y. The Tanimoto coefficient
is in the range [0, 1]; a value close to 1 implies similarity and a value close to 0 implies

a dissimilarity among the two descriptor sets compared.
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Figure 2.7: Structural and Conventional Chemical Descriptor representation of a
given small chemical molecule.

Often a collection of descriptors are represented as a bit-vector (e.g. struc-
tural fingerprints) where each one of the n possible descriptors is assigned a di-
mension, i.e. natural number between 1 and n (this is the representation used
by PubChem and other databases). Let B(xz) represent the bit-vector correspond-
ing to a molecule z and let B(z)[i] represent its i* dimension. Given two com-
pounds z and y, the Tanimoto coefficient T(z,y) is then defined as T'(z,y) =
(SrL(B@)li A BE)) / (i (B2 v B))).

Although the Tanimoto coefficient provides a measure of similarity, it is possible
to define a Tanimoto distance measure as Dr(z,y) = 1 — T(z,y). Notice that a
Tanimoto distance close to 0 implies a Tanimoto coefficient close to 1, i.e. a high
level of similarity and a Tanimoto distance close to 1 implies a Tanimoto distance
close to 0, i.e. a low level of similarity between z and y.

The Tanimoto coefficient is very popular mostly due to its simplicity. For real val-
ued descriptor arrays (where each dimension has a real value) it is also quite common
to use the Minkowski distance of order p, denoted L, for measuring their similarity.
Given two real valued n dimensional descriptor arrays X and Y, their Minkowski
distance of order p, namely L,, is defined as L,(X,Y) = (30, | X[i] — Y[i]P)/7.

When comparing two structural fingerprints B(z) and B(y), the Minkowski distance
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of order 1 is equivalent to the well known Hamming distance (see for example [11]):
H(B(z), B(y)) = >i—1 | B(z)[i] — B(y)[i]|-

In order to capture the similarity between compounds more accurately with re-
spect to a particular bioactivity, more sophisticated distance measures can be used.
For example, it is possible to assign a relative importance to each structural de-
scriptor in the form of a weight w; € [0,1]. The resulting weighted Minkowski
distance of order 1 can then be defined for two descriptor arrays X and Y as

wLi(X,Y) =30 wi - X [i] - Y]]

2.3.1 Classification methods for small molecules.

The descriptor arrays described above can be used for classification of compounds
according to a given bioactivity.

One of the most popular classification techniques is the MLR (Multiple Linear
Regression) [18] method which quantifies the activity level of a descriptor array X
as: Activity(X) = ¢+ > 1, 0i - X[i] where ¢ is a constant. If Activity(X) > ¢ for
a (user specified) threshold value ¢ then it is likely that the molecule is active with
respect to the bioactivity of interest. Notice that the MLR classifier is described
by a planar separator in the multi-dimensional descriptor array space; those points
on one side of the separator are classified as active and those on the other side are
classificd as inactive. There are many different optimization criteria for determining
the separator plane, ie. the coefficients o;. The most widely used one (which we
used in our experiments) is the partial least squares criteria [25], which suggests to
minimize the sum of the squares of differences between actual and predicted activity
levels of the compounds in a training set. The separator plane which satisfies this
criteria is NP-hard to compute deterministically but can be approximated through
genetic algorithms, local search heuristics, etc.

Another popular statistical classification method is Linear Discriminant Analy-

sis(LDA) [43]. Given a set of descriptor arrays, LDA computes a linear projection

3To the best of our knowledge all recent studies in this direction show how to assign binary
values to weights w; i.e. how to choose the specific descriptors that are mnost relevant for the
application of interest (e.g. [77, 31]). As will become clear later in this Chapter, we show how to
compute optimal real valued weights so as to improve the predictive power of our classifier.
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of the descriptor array space into a Euclidean space with 2 or 3 dimensions (i.e.
each descriptor array is mapped to a point in the 2/3-D Euclidean space). The
projection aims to maximize the ratio of between-class variance and within-class
variance. The projection of descriptor arrays to points in the Euclidean space is
followed by the computation of a line/plane which best separates the active and
inactive compounds, i.e. maximizes the accuracy of the classifier. For a given query
compound with unknown activity, its class is then simply determined by checking
to which subspace its projection falls into; clearly this can be performed very fast.

It is also possible to perform compound classification via well known machine-
learning techniques such as SVM (Support Vectors Machines) [75] and, more com-
monly, ANN (Artificial Neural Networks) [80].

All these QSAR techniques (i.e. compound classifiers) have their own advantages
and drawbacks. Statistical techniques such as LDA and MLR typically produce lower
accuracy compared to the machine-learning approaches. On the other hand ANN
only returns a binary value for the bioactivity (YES or NO) and provides no insight
into the level of the bioactivity or the importance of the descriptors with respect to
the bioactivity. It also does not provide a way of probing/similarity search, and can

be somewhat slow.

2.3.2 Similarity search among small molecules.

The number of the public small chemical compound databases is fastly increasing.
More importantly the number of compounds in these databases are also increas-
ing exponentially. Currently one of the major small chemical compound databases,
PubChem, contains 100.000 compounds with known bioactivities and a total of 10
million unique small chemical compounds. This initiative is expected to lead new
techniques to reveal the relationship between the structural information of chemical
compounds and their bioactivities. It is anticipated that these projects will also facil-
itate the development of new drugs by providing early stage chemical compounds to
validate new drug targets which could be then move into drug-development pipeline.

How to use a distance measure for capturing the functional similarity among

chemical compounds is described above. Classification of new compounds under
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this distance measure can be performed through nearest neighbor queries. Another
possibility is to use range queries where all the compounds within a search range is
returned. It is quite easy to modify range queries by iteratively increasing the the
range until all nearest neighbors are found.

The primary example of these distance based proximity search data structures is
the Vantage Point (VP) Trees [69] which exploits the triangle inequality satisfied
by the metric distance measures. In a VP tree, efficient similarity search in a large
data set is achieved through iterative pruning. Among the data elements, the VP
Tree randomly picks a Vantage Point V' and partitions the data set into two equal
size subsets according to their proximity to V. Those which are close to V' form the
wnner partition and those which are far form the outer partition. The two subsets are
further partitioned via the iterative application of the above procedure until each
subset includes a single data element.

When performing a similarity search, the query element X is first compared to
the Vantage Point of the entire set. If X is sufficiently close to V' the search is
performed in the its inner partition. If X is sufficiently far from V' the search is
performed in the outer partition. It is possible the X is neither too close nor too far;
in this situation the search is performed simultaneously in both partitions implying
that no pruning has been achieved.

A modification to traditional VP trees, which we call Space Covering VP Trees
(or SCVP trees) was described by Sahinalp et al. [63] to avoid situations in which
pruning is not achieved. At each level of the SCVP tree there are multiple vantage
points which are chosen in a way that the union of the inner partitions of these
vantage points cover the entire data set. In other words, each data element is
included in at least one of the inner partitions of a vantage point. Thus a SCVP
tree has multiple branches at each internal node, each representing a vantage point
and its inner partition. No branch exists for representing an outer partition. If a
query element is not close to any of the vantage points at a given level, it is deduced
that there are no similar items to it in the data set.

The SCVP trees introduce some redundancy in the representation of the data

elements: clearly each data element may be included in more than one inner partition
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and thus need to be represented in more than one subtree. Thus the memory
requirements of the SCVP tree can be fairly large. In case the full SCVP Tree
requires more memory than available, some of the lower levels could be cut out -

after which linear search needs to be employed.



Chapter 3

RNA Structure Prediction via
Densityfold

As described in chapter 2, the most commonly used objective in secondary structure
prediction is total free energy minimization. In the context of multiple sequence
structure prediction, this objective can be used in conjunction with additional cri-
teria such as covariation in mutations on predicted stems etc.

The goal of this thesis is to show that delocalizing the thermodynamic cost
of forming an RNA substructure by considering the notion of energy density can
improve on secondary structure prediction via total free energy minimization. We
describe a new algorithm and a software tool that we call Densityfold which aims
to predict the secondary structure of an RNA sequence by minimizing the sum of
energy densities of individual substructures. We believe that our approach may help
understand the process of nucleation that is required to form biologically relevant
RNA substructures.

Our starting observation is that potential stems that are most commonly realized
in the actual secondary structure are those whose free energy density (i.e. length
normalized free energy) is the lowest. Figure 3.1(a) depicts the known secondary
structure of the F.coli 5S rRNA sequence. This sequence is one of the central
examples used in [8] for illustrating the advantage of multiple sequence structure
prediction approach (i.e. RNAscf) over single sequence structure prediction (i.e.

mfold/RNAfold). Indeed, the mfold/RNAfold prediction for this sequence is quite

27
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poor as can be seen in figure 3.1(d). However, although RNAscf prediction using 20
sequences from 5s rRNA family is quite good, as reported in [8], the accuracy of the
prediction deteriorates considerably when only 3 sequences, E.coli, asellus aguaticus
and cyprinus carpio are used; this is illustrated in figure 3.1(e).! The prediction
accuracy of the alifold program is also poor as depicted in figure 3.1(f). Most
importantly, all of the above programs miss the most significant stem (enclosed
by the basepair involving nucleotides 79 and 97) depicted in figure 3.1(b); when
normalized by length, the mfold/RNAfold free energy table entry of this basepair
is the smallest among all entries. (Compare this to the prediction of our program
Densityfold, given in figure 3.1(c).)

We believe that some of the accuracy loss in structure prediction via total energy
minimization can be attributed to “chance stems” which are sometimes chosen over
“actual stems” due to problems commonly encountered in local sequence alignment.
A stem is basically a local alignment between the RNA sequence and its reverse
complement. Some of the energy minimization approaches (e.g. RNAscf program [8])
explicitly perform a local alignment search between the input RNA sequence and its
reverse complement, in order to extract all potential stems of interest. However not
all significant potential stems are realized in the actual secondary structure.

In the context of searching for significant alignments, the problems attributed to
Smith-Waterman approach is usually considered to be a result of:

(1) the shadow effect, which refers to long alignments with relatively low conservation
levels often having a higher score (and thus higher priority) than short alignments
with higher conservation levels, and

(2) the mosaic effect, which refers to two highly conserved alignments with close
proximity being identified as a single alignment, hiding the poorly aligned interval
in between.

It is possible that the stem discovery process, which is performed either explicitly
(e.g. in RNAscf) or implicitly (e.g. in mfold), may encounter with similar problems.

For example, two potential stems, which, by chance, occur in close proximity, can

IThis example is particularly interesting as the independent mfold/RNAfold prediction for some
of these sequences are very accurate.
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easily be chosen over a conflicting longer stem due to the mosaic effect: the free
energy penalty of an internal loop (which will be left in between the two chance
stems) is often insignificant compared to the benefit of “merging” two stems.

In the context of local sequence alignment, the impact of these effects could be
reduced by the use of normalized sequence alignment introduced by Arslan, Egecioglu
and Pevzner [7]. The normalized local alignment problem asks to find a pair of
substrings with maximum possible alignment score, normalized by their length (+L,
a user defined parameter to avoid “trivial” alignments of length 1).

Inspired by this approach we propose to apply a normalized free energy or energy
density criteria to compute the secondary structure of one or more RNA sequences.
The algorithms we present aim to minimize the sum of energy densities of the sub-
structures of an RNA secondary structure.? The energy density of a basepair is
defined as the free energy of the substructure that starts with the basepair, normal-
ized by the length of the underlying sequence. The energy density of an unpaired
base is then defined to be the energy density of the closest basepair that encloses it.
The overall objective of secondary structure prediction is thus to minimize the total
energy density of all bases, paired and unpaired, in the RNA sequence.

The algorithms we describe also enables one to minimize a linear combination of
the total energy density and total free energy of an RNA sequence. Based on these
algorithms, we developed the Densityfold program for folding a single sequence
and the MDensityfold program for folding multiple sequences. We tested the pre-
dictive power of our programs on the RNA sequence families used by Bafna et al. [8]
to measure the performance of the RNAscf program. We compare Densityfold and
MDensityfold against all major competitors based on energy density minimiza-
tion criteria - more specifically mfold/RNAfold, the best example of single sequence
energy minimization, RNAscf, the best example of multiple sequence energy mini-
mization without an alignment and alifold, the best example of multiple sequence

energy minimization with an alignment. We show that when only one or a small

?Notc that, unlike the Arslan, Egecioglu, Pevzner approach we do not need to introduce an
additive factor, L, artificially: a basepair in an RNA structure has at least three nuclcotides in
between.
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Figure 3.1: (a) Known secondary structure of the E.coli 5S rRNA sequence. (b) The sub-
structure with minimum energy density (missed by mfold/RNAfold, RNAscf and alifold
programs). (c) Structure prediction by our Densityfold program. We capture the sub-
structure with minimum energy density and correctly predict 28 of the 37 basepairs in the
known structure. (d) Structure prediction by mfold/RNAfold program - only 10 of the
37 basepairs correctly predicted (e) Structure prediction by RNAscf program (consensus
with the the asellus aquaticus and cyprinus carpio 5S rRNA sequences) - only 10 of the
37 basepairs correctly predicted (f) Structure prediction by alifold program (consensus
with the asellus aquaticus and cyprinus carpio 5S rRNA sequences) - only 3 of the 37

basepairs correctly predicted.
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number of functionally similar sequences are available, Densityfold can overperform
the competitors, establishing the validity of energy density criteria as an alternative
to the total energy criteria for RNA secondary structure prediction.

In the remainder of the chapter we first describe a dynamic programming ap-
proach for predicting the secondary structure of an RNA sequence by minimizing
the total free energy density. Then we show how to generalize this approach to
minimize a linear combination of the free energy density and total free energy, a
criteria that seems to capture the secondary structure of longer sequences. Because
the running time of the most general approach is exponential with the maximum
number of branches allowed in a multibranch loop we show how to approximate the
energy density of such loops through a divide and conquer approach which must
be performed iteratively until a satisfactory approximation is achieved. We finally

provide some experimental results.

3.1 Energy Density Minimization for a Single RNA
Sequence

We start with description of our dynamic programming formulation for minimizing
the total free energy density of the secondary structure of an RNA sequence. We
denote the input sequence by S = S[1 : n|; the i** base of S is denoted by S]i]
and S[¢].S[j] denotes a basepair. Given input sequence S, its secondary structure
ST(S) is a collection of basepairs S[i|.S[j]. A substructure ST(S[i,j]) is always
defined for a basepair S[i].S[j] and corresponds to the structure of the substring
S[i,j] within ST(S). The basepair S[i].S[j] is said to enclose the substructure
ST(S[i,j]). The free energy of the substructure ST(S]z,j]) is denoted by Es(3i, 7).
Thus the free energy density of ST(S]i, j], denoted by EDg(i,5), is defined to be
Es(i, )/ —i+1).

The notion of the free energy density of a substructure enables us to attribute
an energy density value to each base S[i]. The individual energy density of S[i],

denoted ED(7) is defined as the energy density of the smallest substructure that
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encloses S[i]. More specifically, let k be the largest index in S such that S[k].S[¢]
form a basepair in ST(S) for some ¢ with the property that k < ¢ < £. Then the
energy density attributed to S[¢] is EDg(k, ¢).

Our goal is to compute a secondary structure where the total energy density
attributed to the bases is minimum possible. We now show how to minimize the
total free energy density for S.

We first give some notation. The values of the following thermodynamic energy

functions are provided in [49].
1. eH(3,j): free energy of a hairpin loop enclosed by the basepair S[z].S[7].
2. eS(i,7): free energy of the basepair S[i].S[j] provided that it forms a stacking
pair with S[¢ + 1].5[j — 1].

3. eBI(1,7,7,7'): free energy of the internal loop or a bulge that starts with
basepair S[i).S[j] and ends with basepair S[i'].S[j’] (an internal loop becomes
abulgeifi =i+1lorj =5-1).

4. eM(i, 7,11, J1, 92, J2, - - - , Lk, Jk): {ree energy of a multibranch loop that starts

with basepair S[i].S[j] and branches out with basepairs
S[ihjl]’ S[¢2aj2}a s 7S[ik7jk]‘

5. eDA(j,j — 1): free energy of an unpaired dangling base S[j] when S[j — 1]

forms a basepair with any other base (used for approximating eM).

By using the above functions we need to compute the following tables that cor-

respond to total energies and energy densities of potential substructures.

1. ED(7): minimum total free energy density of a secondary structure for sub-

string S[1, j].

2. E(j): free energy of the energy density minimized secondary structure for

substring S[1, j].

3. EDg(i,j): minimum total free energy density of a secondary structure for

S[i, j], provided that S[3].S[j] is a basepair.
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4. Es(i,7): free energy of the energy density minimized secondary structure for

the substring S|i, j], provided that S[i].S[j] is a basepair.

5. EDpg;(i,7): minimum total free energy density of a secondary structure for
S[i, j], provided that there is a bulge or an internal loop starting with basepair

Sli.S[).

6. Epr(i,7): free energy of an energy density minimized structure for Sfi, j],

provided that a bulge or an internal loop starting with basepair S[i].S[j].

7. EDp(4,7): minimum total free energy density of a secondary structure for

S[i, j], such that there is a multibranch loop starting with basepair S[¢].S[j].

8. Eum(i,7): free energy of an energy density minimized structure for S|, j], pro-

vided there is a multibranch loop starting with basepair S[i].S[j].

The above tables are computed via the following dynamic programming formu-
lation. Note that as per mfold/RNAfold method we do not have any penalty for the

unpaired bases at the very ends of the secondary structure.

: .| ED(j-1)
ED(j) = min
minlSiSj—l {ED(Z - 1) + EDS(i,j)}

[ +ox, (i)

eH (1, 7), @)
EDs(i,j) = min  2¢3CIESEID | EDg(i+1,5-1), (i) (

EDBI(Z.aj)v (ZU)

| EDwm(5,7) (v) |

EBI(i,j, ilaj,) + ES(ilvj,) .
J—it1

EDg((i,j) =  min { (@ =)+ G-+ EDs(i’,j’)}

gl <G <G
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Jj—1i

EDn (i, 3) = min
+  [EDs{i1,51) + ... EDs(ix, jx)]

11,01tk Jk
li<ipt <j1 <. .. i <Jp<iJ

em (i,ds81010 i dk )+ Eg(i1,d1)+ . Eg (g, i ; : ;
{ M (6:3,81551 1P s i) »+sl(1 1) sGedk) () — 4.+ = ja] }

For each (3, j), once the total energy density under the three possible structures
(stack, bulge/internal loop and multibranch loop) are computed, the corresponding

free energies can be computed as follows.

(i): 4+ oo,

(#3) : eH(i,j),

Es(z‘,j)=J (i) - Es(t+ 1,5 —1)+eS(,7), ¢
(i) : Epi(1,7),

(v):  Eum(i,j)

Epr(i,7) =eBI(i,5,7,5) + Es(?,j')  fori,j computed above

En(i,5) = eBI(i, 4,11, 41, - - -ty Jk) + Es{i1,51) - - . + Es(ik, k),

for iy, j1 ... ik, jx computed above
The algorithm above assumes that the maximum number of branches in a multi-
branch loop is k. Under this assumption the running time of the algorithm is
O(n**%) and the space complexity is O(n?). Clearly this is not very practical for
large values of k. Thus for £ > 2 we make a number of simplifying assumptions
on the free energy of a multibranch loop akin to the assumptions made by the
mfold/RNAfold method. In particular we assume that the multibranch loop energy
eM(i,j, 11,71, ik, Jx) is a linear function of the number of unpaired bases and the
dangling energies of the bases that follow the basepairs in the multibranch loop,
namely eDA(i + 1,i),eDA(j — 1,7),.... This assumption helps mfold/RNAfold to
partition a multibranch loop into two iteratively, so that its minimum possible free

energy can be computed in time linear with the size of the loop.
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However, because we want to minimize the normalized free energy of the multi-
branch loop, which is non-linear, we can not apply the same divide-and-conquer
approach directly. Thus we provide an alternative formulation which (at least in
practice) converges to the correct value of the multibranch loop energy density in a

small number of iterations. We describe this formulation in the following section.

3.2 Minimizing a linear combination of the energy
density and energy

The initial tests we performed on the above dynamic programming formulation
provided good outcomes for short RNA sequences; however as the sequence length
increased, the predictive performance of this formulation deteriorated considerably.
We noticed that although the energy density itself can help identify short structural
motifs well, it may not provide the right criteria for “stitching them together”.
Thus, in this section we describe a modified version of the dynamic programming
formulation we gave above for energy density minimization. The goal of this modified
version is to minimize a linear combination of the energy density and the total free
energy. More specifically, for any = € {S,BI, M} let ELC,(i,5) = ED(4,7) + o -
E;(t,7). The function we would like to optimize is thus ELC'(n) = ED(n) + E(n).

. . ) ELC(j - 1)
ELC(j) = min
minlgigj_l {ELC(l - 1) + ELCS(la])}
( o)
+00, (4)
eH(i, j) - (1+ o), (1)
ELCs(i, ) = min < gesﬁvﬂffi?l»f—l) + ELCs(i+ 1,7 — 1) + o - eS(4, 5), (iii)
ELCB]O;,]'), (ll})
| BLCM(i.j) (v) |
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ELCp(i,j) =, min
i\ g i< <3<

DICILIWPLD (7 ) + (j - 1)
+ELCs(¥', ') + o - eBI(i, j, 7, j')

For computing the value of our optimization function for multibranch loops effi-
ciently we have to perform an approximation to the multibranch loop energy density
through a divide and conquer approach For this we have to define a new energy ta-
ble m%{ﬂ(k, ) = ﬁﬁfj](k, ) +U-F5f/}ﬂ(k, ¢) where EE@ﬂ(k, ¢) and E_DE;’ﬂ(k, ¢) are
the free energy and the energy density of the optimal substructures for Sk, ¢] pro-
vided that both S[k] and S[¢] are on a multibranch loop starting with the basepair
S[e].S[j].

ELCy(i,j) = o - a+ min, {_ELC[;j] (i, k) + ELO )k + 1, j)}

i<k<]
Here a is the multibranch loop opening score. Define:
(j—i+1)
where E;(i, 7) is an estimation (a lower bound) for Ep (i, ) of the optimal structure.

The initial value of Ej (1,7) is obtained through the following dynamic programming

routine.
Ey(i,5) = a+ min {Ey(i,k) + Exg(k +1,)}
i<k<]
En(k, k) =b
_ Es(k,£) +c+eDA(k —1,k) + eDA((, £ + 1
Bas(k. £) = min s(k, ) ( ) ( )

mink5h<g{EM(k, h) + E}y[(h + 1, 5)}
Here c is the contribution for each basepair on the multibranch loop and b is the

unpaired base penalty. Based on this initial estimation EM(i, j) we have:
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ELC:(k,k) =b+0-b

ELCs(k,6) + o - [c+eDA(k — 1,k) + eDA(L, £ + 1)]

ELCy ' (k,f) =min{ = o o
minkenee{ ELC27 (k, h) + ELCS (h + 1,0)}

The corresponding energies of the substructures are as in the previous section:

4 3\

(i) :  + oo,

(i1) : eH(i,j),

Es(i,j) =< (i) : Es(i+1,7—1)+eS(i,7),
(i) : Epi(i,7),

(V)1 Eum(i,5)

\ /

N

Epi(i,7) = eBI(i,5,7,7) + Es(i', 7)) for i,j' computed above

EM(7/7.]) = 6M<iaj7il’jl>' . 'ikajk) +ES(ilajl) oot ES(iku].k)a

for iy, 71 .. ik, jr computed above

Note that if En(i,7) > Ea(i,j) + € for some user defined (small) value of e
we set EM(i, i) = EM(i, j) + € and re-iterate the above procedure for computing
ELCy(i,7). The reader can easily verify that the running time of this dynamic

programming algorithm is O(n*).

3.2.1 Multiple Sequence Energy Density Minimization

The dynamic programming algorithm for minimizing ELC(n) for a single sequence
is generalizable to multiple sequences without difficulty. Here we assume that the
multiple alignment between the input RNA sequences which can be computed by
any multiple alignment method (e.g. Clustal-W program [67]), corresponds to the
alignment between their structures. The consensus structure is then derived by

folding the multiple alignment of the sequences where the linear combination of
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energy and energy density of all bases of input RNAs is minimized. The total energy
and total energy density of each substructures in the alignment is assigned to the
energy and, respectively, energy density of the corresponding consensus substructure.
The gaps are also included in the calculations as a base.

The reader can verify that for m sequences the running time of this dynamic

programming algorithm is O(m - n?).

3.3 Experimental Results and Discussion

We implemented and tested the performance of our algorithms for minimizing the
linear combination of the energy density and the total free energy of a single sequence
as well as of multiple sequences, respectively called Densityfold and MDensityfold.
Two datasets are selected for evaluating performance of our algorithms which are
used by two recent RNA secondary structure prediction tools, respecively [8] and
[20].

Our first test set is comprised of the same 12 RNA families from the Rfam
database [28] used by Bafna et al. [8] for testing the performance of RNAscf program.
Using this test set, we compared the performance of Densityfold and MDensityfold
with varying values of ¢ (which determines the contribution of the total energy to
the optimization function) against mfold/RNAfold, the best single sequence energy
minimization program, alifold the best multiple sequence energy minimization
program that uses the alignment between the input sequences, and RNAscf the best
multiple sequence energy minimization program that computes the alignment and
the folding simultaneously. In the context of multiple sequence folding, our goal is
to demonstrate the predictive power of MDensityfold when only a limited number
of sequences are available; thus we only report on the jointly predicted structures of
a pair of sequences, randomly selected from each family.

The most common measure for demonstrating the predictive power of a single
sequence secondary structure determination method is the number of correct base-

pairs (see for example [32]). Unfortunately the Rfam database only provides the
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consensus structure of a family and not individual sequences; thus it is not possi-
ble to reliably count the number of predicted basepairs which appear in the actual
structure of an individual sequence and vice versa. To overcome this problem Bafna
et al. used an alternative, stack counting measure [8] which is defined as the number
of actual stacks and predicted stacks that overlap. As mentioned in [8] this mea-
sure is intended for comparing methods that explicitly extract stacks - which is not
performed by most of the methods we compare.

We thus measure the predictive power of the programs we tested under the
structural edit distance measure [42, 45|. which considers the differences between
two RNA molecules in terms of both sequence/stack composition and structural
elements. Given the tree representation of two RNA secondary structures, where
each branch is labeled with a stack and every node represents a loop, their structural
edit distance is defined to be the minimum possible sum of edit distances between
the stack compositions of branch pairs and sequences of node pairs that are aligned
to each other.

We computed the structural edit distances (SED) between the actual (consensus)
structure of each of the 12 test families and the structure predictions by each test
program via the RNA_align tool, publicly available on the web [76]. A distance of
0 corresponds to an identical sequence and structure, i.e. a perfect prediction. A
higher distance value implies a poorer prediction.

The results of our comparative tests are summarized in the table below. (In ad-
dition, figure 3.1 demonstrates the outcome of Densityfold on the F.coli 5s TRNA
sequence (from RF00001 family) with that of mfold/RNAfold, alifold and RNAscf.)
We used the default parameters in all programs we tested. We list the outcome of
Densityfold for ¢ = 1.5, 3.0 and 5.0, and list the outcome of MDensityfold for the
best possible o value. As can be seen, Densityfold is at the top or near the top for
most of the families. Densityfold with ¢ = 5.0 is always better than Densityfold
with ¢ = 3.0. However Densityfold with ¢ = 1.5 outperforms both in a number
of examples. Note that as ¢ approaches oo the outcome of Densityfold gets more

and more similar to the outcome of mfold/RNAfold.? However Densityfold with

3In fact, we observed that for the families tested o = 100 gives almost indistinguishable results
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o = 5.0 (the highest value we report) significantly outperforms mfold/RNAfold in
a number of examples. Furthermore there is no clear winner between Densityfold
and MDensityfold, each one outperforming the other in almost equal number of ex-
amples. However, in general, the longer the sequence gets, the better MDensityfold

seemed to perform.

Single sequence methods Multiple sequence methods

Name mfold/ Densityfold MDensity. | RNAscf | alifold

(Rfam.id) || RNAfold [0 =15 [a=3]0=5 fold

5srRNA (RF00001) 149 84 89 89 92 134 122
Rhino_CRE (RF00220) 94 93 93 93 77 88 30
ctRNA_pGA1l (RF00236) 45 83 83 83 48 91 44
glmS (RF00234) 194 288 230 230 189 249 198
Hammerhead_3 (RF00008) 2 2 2 2 74 2 88
Intron_gpll (RF00029) 100 93 103 103 85 113 78
Lysine (RF00168) 182 256 194 186 178 131 173
Purine (RF00167) 64 103 103 103 133 56 141
Sam _riboswitch (RF00162) 124 129 129 99 110 133 121
Thiamine (RF00059) 156 170 179 149 187 179 149
tRNA (RF00005) 31 67 67 67 50 31 32
ykok (RF00380) 158 200 189 189 168 203 157

Table 3.1: Structural edit distances between the actual {consensus) structure of a
family and the predicted structures by each one of the programs tested.

The results for the 12 RNA families clearly demonstrates that each RNA sec-
ondary structure prediction method performs quite well on certain RNA families
while performing poorly on other RNA families. [t is quite desirable to be able
to identify certain characteristic of different prediction methods in terms of their
prediction quality. It may be possible to improve the overall accuray of the RNA
secondary structure prediction by determining which tool to use based on the RNA
sequence. It is our aim to identify the characteristics of these prediction methods in

terms of RNA sequences that they can predict uniqely and RNA equally well.

Our second test set is the same as the test set used by Do et al. [20] for testing
the perdormance of their CONTRAfold program. Test set is composed of 151 RNA

sequences from 151 unique Rfam [28] RNA families where the sequence that has

to that by mfold/RNAfold.
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the best alignment to the consensus family secondary structure is selected. RNA
secondary structures of all 151 RNA families are verified through physical methods.

Using this test set, we compared the performance of Densityfold with varying
values of o (which determines the contribution of the total energy to the optimization
function) against mfold/RNAfold, the best pysics-based single sequence energy min-
imization program, CONTRAfold the best statistical learning single RNA secondary
structure prediction method.

In order to identify the similarities and differences among these prediction meth-
ods we focused on the set of RNA sequences that can be predicted perfectly by
any of these prediction methods. This resulting set is represented using a Venn
diagram where each set represents one of the tested prediction methods and inter-
sections represent the RNA sequences that are predicted correctly by more than one
method. For a more accurate analysis we should consider the RNA sequences that
are predicted almost perfectly by one the prediction methods. For a given RNA
sequence X and a prediction method A, lets define SED 4(X) as the structural edit
distance between the known structure of X and the structure predicted by A. The
secondary structure of an RNA molecule, X, is considered as almost perfect by a

prediction method A, if for any other prediction method B, gggjgg;gggzgg is

above a threshold value which is selected as 0.5 for our tests.
The results of our comparative tests for single RNA structure prediction tools;

mfold, CONTRAfold and Densityfold, are summarized in the figure below.

DENSITYFOLD MFOLD o SITYFOLD MFOLD

o
/SN SN

CONTRAFOLD CONTRAFOLD

(a) (b)

Figure 3.2: (a) RNA secondary structures predicted perfectly by using Densityfold, mfold
and CONTRAfold. (b) RNA secondary structures predicted almost perfectly by using
Densityfold, mfold and CONTRAfold.
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In conclusion, Densityfold demonstrates that an energy density minimization
objective is a valid alternative to the total energy minimization objective. It can be
used both on a single sequence or on multiple sequences. Qur goal for the future is
to test non-linear combinations of energy density and total energy as well as non-
linear normalizations of the free energy as objective functions; we hope that such
variations can explain the better performance of MDensityfold over Densityfold

on longer sequernces.



Chapter 4

RNA-RNA Interaction Prediction

The second problem described in chapter 2 as an extension to RNA secondary struc-
ture prediction is the prediction of joint structure of two interacting RNAs which we
call the general RNA-RNA Interaction Prediction (RIP) Problem. Given two RNA
sequences S and R (e.g. an antisense RNA and its target), RIP problem asks to
predict their joint secondary structure. A joint secondary structure between S and
R is a set of “pairings” where each nucleotide of S and R is paired with at most one
other nucleotide, either from S or R.

Interactions between nucleotides of two such RNA molecules can be established
in the molecular level in two different ways. If the number of bases in the interaction
is more than the length of one turn of a double helix (~10nt), a helical structure
is formed as is the case in CopA/CopT interaction (see Figure 4.1, courtesy of Dr.
Gerhart Wagner).

If the interaction is not long enough to form a stable double helix, the interacting
bases on the sugar backbone of the interacting RNAs flip outside and a line up
structure is formed as in Figure 4.2, similar to that in a pseudoknot on a single
RNA molecule.

Let the i** nucleotide of an RNA sequence S be denoted by S[i] and the substring
of S extending from S[i] to S[j] denoted by S[i, j]. As a notational convenience, let
S|k, k] denote S[k|, S[i,i — 1] denote an empty sequence and S[i,i — 1]” denote the
reverse of S[¢ —1,4]. In the rest of the definitions and algorithms, it is assumed that

S[1] denotes the 5 end of S and R[1] denotes the 3’ end of R.

43
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Figure 4.1: The helical structure of the interaction between CopA and CopT
pair. [38|.

We compute the joint structure between S and R through minimizing their total
free energy, which is, in general, a function of (stacked) pairs of bases as well as the
topology of the joint structure.

Three models are considered for computing the free energy of the joint structure

of interacting RNA sequences.

1. We first use the sum of free energies of individual WatsonCrick basepairs as
a crude approximation to the total joint free energy. This basepair energy
model is quite similar to that used by Nussinov and Jacobson [57] for pre-
dicting the structure of a single RNA molecule. Although the basepair energy
model is known to be inaccurate, it provides a good starting point for further

explorations.

2. Our second free energy model is based mostly on stacked pair energies given by
Mathews et al [49], which provide the main contribution to the energy model
employed by the mfold program for pseudoknot free single RNA structure
prediction. Unfortunately, there is very little thermodynamic information on
pseudoknots or kissing loops in the literature. Thus we employ the approach

used by Rivas and Eddy 62 to differentiate the thermodynamic parameters
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Figure 4.2: Establishment of interactions between bases of a short kissing loop pair
at the molecular level 34].

of "external” bonds from internal” bonds by by multiplying the external
parameters with a weight slightly smaller than 1. This stacked pair energy
model turns out to be quite accurate, especially in predicting the joint structure

of shorter (< 150 bases) RNA molecule pairs.

3. The final energy model enriches the above models by summing up the free
energies of various types of internal loops and stacked pairs as per [79, 49] as
well as the weighted free energies of externally interacting (“kissing”) loops.
This model, which will be referred to as the loop energy model, appears to be

more accurate especially for longer (> 150 bases) RNA molecules.

Although we allow arbitrary loops to form kissing pairs, we impose the following
constraints on the topology of a joint structure between RNA sequences. First, a
joint structure can have no internal pseudoknots; i.e., if S[i] bonds with S[j] then
no S[¢'] for © < 7 < 7 can bond with any S[j’] for j < j'. The same property will be
satisfied by the nucleotides of R as well. Second, a joint structure can not have any
external pseudoknots; 1.e., if S[i| bonds with R[j] then no S[¢’] for ¢/ > ¢ can bond

with any R[j'] for j' < 7.
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These assumptions are satisfied by all examples of complex RNA-RNA interac-
tions encountered in the literature search. Furthermore allowing arbitrary pseudo-
knots in the secondary structure of even a single RNA molecule makes the energy
minimization problem NP-hard [2]. In fact we proved in in Section 4.1 that the RIP
problem is NP-hard for each one of the energy models, even when no internal or
external pseudoknots are allowed. This necessitates the addition of one more natu-
ral constraint on the topology of the joint secondary structure prediction, which is
again satisfied by all known joint structures in the literature. Under this constraint
it is then shown how to obtain efficient algorithms to minimize the free energy of
the joint structure under all three energy models and testing the accuracy of the
algorithms on known joint structures are presented. Finally the structure prediction
techniques are applied to search for target mRINA sequences to any given small RNA

molecule in whole genomic or plasmid sequences.

4.1 RIP problem for Both Basepair and Stacked
Pair Energy Models is NP-Complete

First NP-Completeness of the RIP problem under both the basepair and the stacked

pair energy models will be proven.
Theorem 1 RIP problem under the Basepair Energy Model is NP-Complete.

Proof: The NP-Completeness of RIP is established through a reduction from the
longest common subsequence of multiple binary strings (mLCS) which is a known
NP-Complete problem. This proof is an extension to the one in [2] for the single
RNA secondary structure prediction problem with pseudoknots.

The decision version of the mLCS problem is as follows: Given a set of binary
strings L = {51,852, - ,Sn},(|S1] = -+ = |Sn| = n) and an integer k, decide
whether there exists a sequence C of length & which is a subsequence of each S;.
Here we assume that m is an odd number; if it is even, one can simply add a new

string Syma1 = Sm to L.
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From an instance of mLCS, first construct two “RNA” sequences S and R, us-
ing an extended nucleotide alphabet ¥¢ = {a,b,c,d,e, f,u,w,z,y,2}. (The NP-
hardness proof for the -more interesting- stacked pair energy model below uses the
standard RNA nucleotide alphabet {A,C,G,U}.)

Let v/ denote the string formed by concatenating j copies of character v and let
T denote the complementary residue of v. In our extended alphabet, we set T = w,
y=za=>bc=d, and e = f. Given a string T, its reverse complement is denoted
by T.

For ¢« = 1,---,m, construct strings D; and E; as follows. Note that we set s;;

th

to z if the j** character of string S; is 0; if it is 1, s;; is set to be y.

Di=asj1as20 - - as,a, if 118 odd,;
Di=a%5,a8,1a - asia, ifiiseven;
E,=b510352b - 03,0, if i is odd,
=08 U8y b --- b8 b, if 1 1s even.

Now we construct the RNA sequences § and R as follows.

S = Ulk) Dla Cl> DQ) D3> dl) CQ) D41 DSa d2 e c(nl_l)/z; Dm-"l, -Dm7 d(m;”"ﬂ?
R = el> El) EZ’ flv 62, ES’ E4) f2 T e(m‘_l)/za Em—Zv E”m,—la j.'(m—l)/‘.!, Emauk

Note that the lengths of S and R are polynomial with the total size of all se-
quences Sy ...Sy,.

Now we set the energy function for bonded nucleotides pairs. The bond between
each nucleotide with its complement has a free energy of —1.0. The bond between
uw with z,y, z, w also has a free energy of —1.0. For other bonds between nucleotide
pairs, the free energy is 0.0.

In the basepair energy model, the free energy of the overall structure is defined
to be the sum of the free energies of all bonded pairs of nucleotides. Thus, according
to the above setting, each nucleotide other than « will tend to get bonded with their
complementary nucleotides, and u will tend to get bonded with any of z,y, z, w and

vice versa. Such bondings are called valid bondings. The free energy of the joint
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structure is minimized when the number of valid bondings between nucleotide pairs
1s maximized.

Now it will be shown that there exists a common subsequence of length & among
S1, ..., Sy if and only if there exists a joint secondary structure of S and R where
every nucleotide forms a valid bonding. Suppose that Sy ...S, have a common
subsequence C' of length k; one can construct a secondary structure of S and R

where every nucleotide forms a valid bonding as follows.
e For each 7, form a bond between the it* @ in S with the i** b in R.

e For each 7, bond the substring ¢* to the substring d in S and bond the substring

e’ to the substring f* in R.

e For each string S; € L there is a corresponding substring D; in S and F;
(which is the complement of D;) in R. Consider for each S; the sequence that
remains when the common subsequence C' is deleted out; denote this sequence
by C’. Bond each nucleotide in D; that corresponds to a character in C’ to its

corresponding complementary nucleotide in F;.

e All that remains in S and R are those nucleotides that correspond to the
common subsequence C in each string S;. There is also the substring u* at
the left end of S and another substring of the form u* at the right end of R.
Bond the u* block in S to the unbonded nucleotides (that correspond to C)
in D). Foralll <4< (m—1)/2, bond the unbonded nucleotides in Fy;_;
to those in Fs;. Similarly bond the unbonded nucleotides in Dy; to those in

Dsy;.1. Finally bond the unbonded nucleotides in E,, to the u* block in R.

The reader can easily verify that this construction establishes a valid bonding for
all nucleotides in S and R. The process of constructing S and R and establishing the
bonds described above is demonstrated in Figure 4.3. Here L = {s) = zyzx, sy =
TTYT, S3 = TYYT}.

Now we show that if there is a joint secondary structure between S and R where
every nucleotide forms a valid bonding, then there is a common subsequence of

strings S1, Ss, -+, Sy, of length k.



CHAPTER 4. RNA-RNA INTERACTION PREDICTION 49

e Nucleotides a and b are complementary and do not form bonds with . S only
has as and R only has bs. If all as and bs form valid bonds, the i** a must form

a bond with the i** b.

e Nucleotides ¢, d only occur in .S and only form valid bonds with each other. Be-
cause allow internal pseudoknots are not allowed, each ¢’ block will be bonded
with the d* block. Similarly, nucleotides e, f only occur in R and only form
valid bonds with each other. Again, because there are no internal pseudoknots,

each e* block will be bonded with the f* block.

e The above bondings necessitate that nucleotides of the u* block in S must
bond with those in D; and nucleotides of the u* block in R must bond with
those in E,,. The remaining nucleotides of D; must bond with correspond-
ing nucleotides in £y and the remaining nucleotides of E,, must bond with

corresponding nucleotides in D,,.

e The nucleotides that are left in E; are the nucleotides that correspond to
those in D; which have been bonded to u* block - they must be bonded to
complementary nucleotides in Es. The bonds between E7 and Es corresponds

to a common subsequence of S; and Sy of size k.

e Inductively, for i = 1...(m — 1)/2, the nucleotides left out in Fy; must form
bonds with corresponding nucleotides in Ds;. The ones that are left out in
Ds; must form bonds with complementary nucleotides in Dg; ;. The bonds

between Doy; and Ds; ) corresponds to a common subsequence of So; and Sa;4 1.

e Similarly, the nucleotides left out in Dy; 1 must form bonds with corresponding
nucleotides in E9;.1. The ones that are left out in Es;,; must form bonds with
complementary nucleotides in FEs;..o. The bonds between Fo;11 and Fayo

corresponds to a common subsequence of Sy; 1 and Sa;yo.

e Finally, the nucleotides that are left out in F,, must be bonded to nucleotides

in * block in R.
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The bonds between consecutive D;, D, pairs and E;, F;41 pairs correspond to com-

mon subsequences between S5; and S;+1. Thus the strings S, ...,S, must have a
common subsequence of length k. [ |
e g
uuuaxayaxaxacawazawawa axayayaxad

|

ebwbzbwbwob bxbybxbxbfbwbzbzbwb uuu

S N

Figure 4.3: Sample RIP solution for mLCS problem on S; = {zyzz},S; =
{zzyz}, S3 = {zyyz}. The mLCS is determined with the internal bondings, here it
s zyzx.

Now we established the NP-hardness of the RIP problem under the stacked pair

energy model.
Theorem 2 RIP problem under the Stacked Pair Energy Model is NP-Complete.

Proof: The proof is through an indirect reduction from the mL.CS problem as
per Theorem 1. Consider the reduction of the mLCS problem to the RIP problem
under the basepair energy model. Given sequences S and R that were obtained as
a result of this reduction, it is possible to construct two new RNA sequences S and
R’ from the standard nucleotide alphabet by replacing each character in S and R
with quadruples of nucleotides as follows: a — CCGU, b — GGCU, ¢ — GCCU,
d — CGGU, e — CGCU, f « GCGU, u «— AAAU, z — ACAU, z — CACU,
y — AGAU, w — GAGU.

The energy function for stacked pairs of nucleotides will be determined as follows.
The free energy of the following stacked pairs are all set to —0.5:
(A—AA-C),(A-AC-A),(A-A A-G),(A-AG-A),(A-C,A-A),(A-
C,C—-A),(A-G,A-A),(A-G,G—-A),(C-A,A-A),(C-A,A-C),(C-G,C—-
G),(C-G,G-C),(G-AA-A),(G-AA-G),(G-C,C-G),(G-C,G-C).
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For other bondings between nucleotides, the free energy is set to 0.0. Thus bonding
U with any nucleotide will not reduce the free energy of the joint structure.

In the stacked pair energy model, the free energy of the overall structure is
defined to be the sum of the free energies of all stacked pairs of bonded nucleotides.
The reader can verify that above setting of stacked pair energies ensure that the
bonds between the characters of S and R presented in Theorem 1 will be preserved
between S’ and R’. (e.g. a bond between a and b has free energy —1.0. Because a
corresponds to CCGU and b corresponds to GGCU, the stacked pairs obtained will
be (C - G,C — G) and (C — G,G — C) each with free energy —0.5. The total free
energy will thus be —1.0.) [ |

4.1.1 Additional topological constraints on joint structures

The hardness of the RIP problem under both basepair and stacked pair energy
models necessitate one more constraint on the topology of the interaction between
two RNA molecules. Based on our observations of known joint structures of RNA
molecule pairs in Figure 2.2, the following constraint (which is satisfied by all known
structures in the literature) is imposed. Let S[i] be bonded with S[j] and R[] be
bonded with R[j’]. Then exactly one of the following must be satisfied:

1. There are no ¢« < k < j and 7" < k" < j' such that S[k] bonds with R[£’.
2. Forall i < k < j, if S[k] bonds with some R[k’] then 7 < k' < j'.
3. Forall i < &' < §', if R[K'] bonds with some S[k] then i < k < j.

The condition simply states that if two “substructures” S[i, j| and R[i’, j'] interact,
then one must “subsume” the other. A joint structure of two RNA sequences S and

R is considered to be wvalid if all above conditions are satisfied.
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4.2 Structure prediction in the Basepair Energy

Model

The basepair energy model approximates the free energy of the joint structure be-
tween interacting RNA molecules as the sum of the free energies of bonded nucleotide
pairs. The Watson-Crick free energy of a bond between nucleotides z and y is de-
noted by e(z,y) if they are on the same RNA strand (this is called an internal
bond) and by €'(xz,y) if they are on different strands (this is called an ezternal bond).
Although in our experiments ¢’ = e is preset, this formulation also allows to dif-
ferentiate these two energy functions. Below, we obtain a valid pairing between
the nucleotides of S and R that minimizes the free energy of their joint structure
through the computation of E(S[s, 7], R[i’,j']) the free energy between interacting
RNA strands S[i, 7] and R[¢,j] for all i < j and ¢ < k’. Clearly E gives the
overall free energy between S and R when i = i = 1 and j = |S| and j' = |R)|.
E(S[i,1], R[i',4']) is set to €'(S[il, R[Z']) and the value of E(S[i,j], R[¢,']) is com-
puted inductively as the minimum of the following:

L Wi,y kit 1<k <kt -1 or ittt 1), Gkt or kiotsty B(STE KL, RE KD + E(S[k+1,3]), RIE +1,5]).

2. B(Sli+1,7 — 1}, Rii", §']) + e(Sli), S3]).

3. B(S[ij], Rl +1,5 — 1]) + e(R#], Rlj")).

The above dynamic programming formulation will return the optimal structure

by considering the following two cases:

1. Consider the case that either S[i] or S[j] or R[i] or R[j’] bonds with a nu-
cleotide on the other RNA strand. Wlog, let S|i] bond with R[R]; then either
(1) R[] bonds with R[j'] for which condition (3) will be satisfied, or (ii) 2/ = A’
so that R[i’] bonds with S[i] for which condition (1) will be satisfied for k& = i
and k' = ¢/, or (iii) R[¢'] bonds with some R[] for which condition (1) will
be satisfied for some “break-point” S[k], R[K'], for i < k < jand ¢/ <k <7
such that S 7, k] interacts only with R[', k'] and S[k + 1, j] interacts only with
Rk +1,7'].
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2. If the above condition is not satisfied then wlog one can assume that S[i]
bonds with S[h| and R[¢'] bonds with R[A']. If for no £ > h, S[¢] interacts with
any R[¢] for £ > K’ then condition (1) will be satisfied with k = h and either
k' =1 —1ork' = j+1. If for no £ < h, S[¢] interacts with any R[¢'] for ' < b’
then condition (1) will be satisfied again with £ = h and either &' = ¢ — 1 or

k' = 7'+ 1. The possibility of none of these two cases hold is excluded by the

topological constraints described earlier.

Table E is a four dimensional table Eli,i,j, 7] where 4,7 € {1---]S|} and

|R|}, requiring space O(|S|? - |R|?). Step 1 in the dynamic program-
-S|} and

j, j’ c {1 A
ming formulation partitions the table E around breakpoints £ € {1--

k' € {1---|R]|} and recurses around these points, making the run time O(|S|3-|RJ%).

4.2.1 Testing the Basepair Energy Model

We tested the basepair energy model on naturally occurring joint structures of in-
teracting RNA molecule pairs CopA-CopT and OxyS-fhlA. The results are given in
Figures 4.4 and 4.5. Perhaps not surprisingly, the predicted joint structures by

_a_aagﬁx':cg’auaaucuuwueaa?uuuggcgaTuacgaaaagauuaccgg ccac

! l l ‘ |

Figure 4.4: Joint structure of CopA and CopT as predicted by Basepair Energy
Model.

the Basepair Energy Model is quite different from the natural secondary structures
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Figure 4.5: Joint structure of OxyS and fhlA as predicted by Basepair Energy Model.

(Figures 2.4 and 2.5). Observe that in natural joint structures, internal or exter-
nal bonds usually form stacked pairs; i.e., a bond S[i| — S[j] usually implies bonds
Sli+1]—8j — 1] and S[t — 1] — S[j + 1]. Similarly a bond S[i] — R[i'] usually
implies bonds S[i 4+ 1] — R[¢' + 1] and S[¢ — 1] — R[¢' — 1]. Furthermore, in natural
joint structures unbonded nucleotides seem to form uninterrupted sequences rather

than being scattered around.

4.3 Structure Prediction Based on Stacked Pair
Energy Model

The limitations of the Basepair Energy Model promotes the use of a Stacked Pair
Energy Model where the bonds between nucleotide pairs form uninterrupted se-
quences. Let ee(X[i,7+1], X[j —1,7]) denote the energy of the internal stacked pair
(X[i] = X[j], Xli+1] — X[j — 1]) and ee’(X[i,i + 1], Y[j, 7 + 1]) denote the energy
of the external stacked pair (X[i] — Y[j], X[t + 1] = Y[j + 1]). As per the pknots
approach [62] one can set e¢’ = ¢ - ee for a user defined weight parameter 0 < o <1
(externally kissing pairs are similar in nature to pseudoknots). The thermodynamic
free energy parameters that are used in our tests are taken from (49|, and listed on
Table 4.3. Note that the energy functions ee(.,.) and ee'(.,.) are not symmetric;

they can differ according to the relative directions of the stacked pairs (3’ — & or
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5 — 3') involved.

|A-U C-G GC GU UA UG ¥

A-U|-09 -22 -21 -06 -1.1 -1.4
C-Gl-21 83 24 -14 =21 41
G-C|-24 -34 -33 -15 -22 -25
G-U|-13 -25 -21 -05 -14 13
U-A|-13 24 -21 -10 -09 -1.3
U-G|-10 -15 -14 03 -06 -05
5/

Table 4.1: Free energy parameters for stacking pairs used in Stacked Pair Energy
Model as given in [49].

To compute the joint structure between S and R under the Stacked Pair Energy

Model we introduce four energy functions.

1. Eg(S[i, 7], R[i',j']) denotes the free energy between S and R such that S[q]
bonds with S[j].

2. Eg(S[:, 7], R[i’,j']) denotes the free energy between S and R such that R[i']
bonds with R[j'].

3. Ei(Sli,j], R[,J']) denotes the free energy between S and R such that S[i]
bonds with R[#].

4. E.(S[i, 7], Rl7,j']) denotes the free energy between S and R such that S|[j]
bonds with R[j].

The complete dynamic programming formulation is given in Table 4.2, and the
initial settings of the energy functions Es, Eg, E,, E, are listed in Table 4.3. Note
that because sequence R is assumed to be in 3’ — &’ direction, reversing the stacked
pairs involved is required for the correct use of ee function in Eg.

The dynamic programming formulation is an extension to the algorithm for Base-
pair Energy Model, thus it obeys the same constraints on joint structures as de-
scribed above. Tables Eg, Eg, B, E,, E are each four dimensional tables Ei,7, j, j]

where 4,7’ € {1---|S|} and j,7’ € {1---|R|}, requiring space O(|S|*- |R|?). The
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Es(Sli, ], Rli',5')). Er(Sli. il R, 51),
Er(Sli:j]vR{ﬂv‘j/]%EZ(S[i’j]vR[i’nj/])u

. - E(S[i, k], R[', ')+
e { E(S[k + 1,5]), R[K' +1,5') }
N E(S[i k], =)+

SRSITLY EB(S[k +1,4]), BRIV, 57)

. E(S[i, k], R[', 7'])+
m‘“"f“’—'f‘l{ B(S[k +1,4]), -) }

, E(S[i,j), Rli', k'])+
sk { E(~, RK +1,5]) }

. _ E(—, R[{,K])+
TR { B(8i,j]), R[K +1,5) }

E(S]i,j], R[i',7']) = min

. PPN . P - PP
Ei(S[i, 4], R, 7)) = min E (S + 1,5, R[{' +1,5']) + ee'(Si, i+ 1], R, i + 1]), }

E(S[s+1,5],R[{ +1,5'])

80 B #)— mind FOEI—URES D Pl — WL

ES(S[i,j},R[i/,jl]) —  min ES(S[Z +1,7 - 1]7R[i,>j’]) o ee(S[i’;i + 1Jv5[j - 1s.j])v }

E(S[i+1,7 -1],R[Z, 5]

Bn(Sl R, 71) = min{ PRSTILRE 41T 1) 4 el L AT REE 430 )

E(S[i, 5], Rl +1,5' — 1))

Table 4.2: Complete description of the dynamic programming algorithm for Stacked
Pair Energy Model.

dynamic programming formulation also partitions the overall energy table £ around
breakpoints £ € {1---|S|} and &' € {1---|R|} and recurses around these points,

making the run time O(|S|® - |R|?).

4.3.1 Testing Stacked Pair Energy Model

The Stacked Pair Energy Model as defined above has only one user defined parameter

(as per [62]), o, which is the ratio between the free energies of internal and external

El(Si,j].—)ZOO ET(S[i,j],—):OO
El(_’R[":lnj/:) = E"‘(—vR[ilvj/J) =00
E(S[i,i), B, #]) =0 B, (S[i,i], Rl #]) = 0
Es(b'[i,i],—) = 00 ER(-,R[’£/,2'/]) o0

Table 4.3: Initial settings of the energy functions for Stacked Pair Energy Model.
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stacked pairs. Unfortunately no miracle prescription for determining the right value
of o is available (see for example [62]). It is possible to approximately determine
the value for o by closely inspecting the natural joint structure of CopA-CopT pair
(Figure 2.4). CopA and CopT sequences are perfectly complimentary to each other,
thus they can, in principle, form a stable duplex structure that would prevent any
internal bonding pairs. However, as one can observe from Figure 2.4 this does not
happen. The ratio between the length of the external bonding sequences in the joint

structure and that of the internal bonding sequences implies that o € [0.7,0.8].

aaaccccgaUaaucuucuucaacuuuggcgaguacgaaaagaulaccggggeccac
| | | | | |

; AR +
‘ [ \

\‘ \
14 ] | LIl | | |
uuu cuauuagaagaaguugaaaccgcucau cuubuauaau ccccgggu
W/ %

Figure 4.6: Joint structure of CopA and CopT as predicted by Stacked Pair Energy
Model.

Under these observations we tested our algorithm that implements the Stacked
Pair Energy Model is tested with o € [0.7,0.8]. The secondary structures predicted
by our algorithm on CopA-CopT and OxyS-fhlA pairs are given in Figures 4.6
and 4.7 respectively. As one can observe, there are only very slight differences
between the natural joint structure and the predicted joint structure of the RNA
pairs. For example, the predicted joint structure of OxyS-thlA pair (Figure 4.7) has
53 internal-bonds, 14 external-bonds, and 23 unbonded nucleotides. In all aspects,
these figures are superior to the natural joint structure of the pair (Figure 2.5), which
has 50 internal-bonds, 16 external-bonds, and 25 unbonded nucleotides. Because the

external bond scores are smaller than internal ones, under any selection of ¢ < 1



CHAPTER 4. RNA-RNA INTERACTION PREDICTION 58

Figure 4.7: Joint structure of OxyS and fhlA as predicted by Stacked Pair Energy
Model.

the prediction of this algorithm results in a higher score/lower free energy than
that implied by the natural joint structure of OxyS-fhlA pair. Nevertheless, the
differences between the natural structures and the predicted ones are very small
implying that the Stacked Pair Energy Model can be used as the central tool of the

RNA target prediction algorithm.

4.3.2 A More General Stacked Pair Energy Formulation

As will be discussed below, the Stacked Pair Energy Model formulation works very
well with the joint structure prediction problems considered in this dissertation.
However this formulation does not necessarily aim to cluster gaps in uninterrupted
sequences, as observed in natural joint structures. Thus, a more general formulation
is also provided for the Stacked Pair Energy Model, that employs an “affine” cost
model for the gaps involved. Also considered in this formulation are penalties for
switching from internal to external bonds (and vice versa). This general formulation
does not necessarily improve the predictions for the joint structures considered above;
however it could be useful for other examples and thus provided below.

The more general formulation of the Stacked Pair Energy Model adds two more
energy functions e and €', and two penalty parameters g and G. This necessitates the

addition of four more energy tables Es,, Fs,, Er, Er, to the set (Eg, Eg, Ey, E,)
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already used in Section 4.3:

1. Esu(S[s, j], R[?', j']) denotes the free energy between S and R such that S|i]

remains unbonded.

2. Es,(S[t, j], R[#, j']) denotes the free energy between S and R such that S[j]

remains unbonded.

3. Egr,(S[i, 7], R[, 5']) denotes the free energy between S and R such that R[]

remains unbonded.

4. Er.(S[i, ], R[?, j/]) denotes the free energy between S and R such that R[j’]

remains unbonded.

The addition of four more parameters (and four new degrees of freedom) makes this
approach more adjustable to specific properties of the input RNA strands.

In addition to the stacked pair energies, this formulation also considers the free
energies of an internally and externally bonded individual nucleotide pairs denoted
e(XTi],Y[s]) and €'(X[i], X[j]) respectively. For further generality, this formulation
induces an additive penalty for switching between the two types of bonds. More
specifically, the energy function has an additive penalty g to any nucleotide X [k] (X
could be S or R), if (i) X[k] is bonded with X[j] however X[k + 1] is not bonded
with X[j — 1], (ii) X[k] is bonded with X ;] however X[k — 1] is not bonded with
X[j+1], (iii) X[k] is bonded with Y'[k’] however X [k+1] is not bonded with Y[k'+1],
(iv) X[k] is bonded with Y[k/] however X[k — 1] is not bonded with Y[k’ — 1]. For
unbonded nucleotides X [k] another additive penalty G is charged if (1) X[k + 1] is
bonded, (ii) X[k — 1] is bonded. The gap penalties are also added to the first and
last nucleotides of X - this is only for avoiding further complexity in the dynamic
prograining formulation and does not affect the energy minimization process or
the resulting structure prediction.

This more general energy formulation is given in Table 4.4, and the initializations

are in Table 4.5.
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Table 4.4: The full dynamic programming algorithm for Stacked Pair Energy Model.
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Table 4.5: The initializations for full dynamic programming algorithm for Stacked
Pair Energy Model.

4.4 Structure Prediction Based on Loop Energy
Model

The structure prediction algorithmn to find the optiinal joint structure between two
RNA molecules based on Stacked Pair Energy Model requires substantial resources
in terms of running time and memory. On a Sun Fire v20z server with 16GB
RAM and AMD Opteron 2.2GHz processor, the running time for predicting the
joint secondary structure of OxyS-fhlA pair is 15 minutes; this could be prohibitive
for predicting the targets of sufficiently long RNA molecules. Here we describe a
number of observations on the natural joint structures of RNA molecule pairs for
speeding up the previous approach through heuristic shortcuts - without losing its
(experimental) predictive power.

An interesting observation is that the (predicted) self structures are mostly pre-
served in the joint secondary structures. In fact, external interactions only occur
between pairs of predicted hairpins. Thus it may be be sufficient to compute the
joint structure of two RNA sequences by simply computing the set of loop pairs that
form bonds to minimize the total joint free energy.

The above observation prompts an alternative, simpler approach which is de-
scribed below. This new approach maintains that each RNA sequence will tend to
preserve much of its original secondary structure after interacting with the other
RNA sequence, which is achieved by means of preserving what we call “independent

subsequences” that form hairpins. More formally:

Definition 1 Independent Subsequences:
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Given an RNA sequence R and its secondary structure, the substring R(¢,7) is an

independent subsequence of R if it satisfies the following conditions.
e R[i] is bonded with R[j].
e j —1 < k for some user specified length .

e There exists no?’ < 7and j' > j such that R[i'] is bonded with R[j'] and j'—i' <

. (This condition prohibits overlaps between independent subsequences).

It is possible to compute the (locations of) independent sequences of a given
RNA molecule, from its secondary structure predicted by mfold, through a simple

greedy algorithm as follows.
1. Let IS be the set of independent subsequences in R; initially set IS = 0.

2. Starting from the first nucleotide of R find the first nucleotide R|[i] which bonds
with another nucleotide R[j], ( > 4).

3. If 7 — % < x then update IS = ISU RJi, j|] and move to R[j + 1].
Else move to R[i + 1].

4. Repeat Steps 2 and 3.

The preprocessing step of computing single RNA folding assumes that there are
no pseudoknots in the RNA molecule. Thus, for any pair 7, j, when R[i] bonds with
R[y] all the bases between R[] and R[j] must either form no bonds or form bonds
with bases in the same subsequence. Such a subsequence has no interactions with the
rest of the RNA that it lies on, making R[i, j] an independent subsequence. Step 2
in the above formulation captures subsequences where start and end points form
base pairing with each other, and Step 3 ensures that the length of the independent
subsequence is less than or equal to the user-specified parameter x and that it is not
subsumed by a larger independent subsequence that satisfies the same constraints.
Each character in the input RNA sequence R is visited at most once, thus the

independent subsequences of R is computed in O(|R|) time.
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4.4.1 Computing the Interactions between Independent Sub-
sequences

In our new model, the external bondings between nucleotide pairs will be permitted
among the independent subsequences of the two RNA sequences S and R, predicted
by mfold. Below it is given how to compute the external bonds between such
nucleotides which minimize the total free energy in the interacting RNA sequences.

From this point on each RNA molecule will be treated as an (ordered) set of
independent subsequences (/S), where each IS is indeed a string of nucleotides. The
it" IS of an RNA molecule S is denoted by S;gi]. The sequence of ISs between
S1sli] and Syg[j] are thus denoted as Sig[i, j].

The joint structure between S and R is calculated by minimizing the total free
energy of their /5s via means of establishing bonds between their nucleotides as
follows. Let the minimum free energy of the joint secondary structure of the two
ISs Sis[i] and Rys[j] be ers(i,5). The value of es(7,7) can be computed via the
algorithm described in Section 4.3.

The minimum joint free energy between the consecutive sets of ISs of S and R
is calculated once ess(i, j) is computed for all ¢, j. Let n and m denote the number
of ISs in S and R respectively. Now let E(Sys[i|, Ris[j]) = E[i, j] be the smallest
free energy of the interacting independent subsequence lists Sig[l,:] and Ryg[l, 7]
(which satisfy the distance constraint) provided that Srg[i] and Rrg[j] interact with
each other.

Before showing how to compute the values of E[i, j|, we make one final observa-
tion on the OxyS-fhlA pair that the “distance” between two interacting subsequences
in OxyS appears to be very close to that in fhlA. This may be due to the limited
flexibility of “root stems” that support the independent subsequences when they
interact with each other. In order to ensure that the predictions made by our algo-
rithm satisfy such limitations, restrictions are imposed on the “distances” between

interacting independent subsequences as follows.

Definition 2 Let Sisli| and Sis(j| be two independent subsequences in a given

RNA sequence S. The distance between Sys[i] and Sis[j], denoted d(Sis[i], Srslj])
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is defined as the number of nucleotides S|k that do not lie between a bonded pair of
nucleotides S[h] and S[h'] that are both located between Sigli] and Srs[j].

il

The above definition simply ignores all nucleotides that lie in the independent
subsequences between Sigli] and Syg[i’] regardless of their lengths. Our algorithm
ensures that if Sys(i] — Rg[j] and Sis[i'] — Ris(j’] are pairs of consecutive
independent subsequences that interact with each other and if d(Sys[i], Sis[?']) >
d(Rrsljl, Ris[j']) then d(Ss[i], Sis[i']) < (1 + ¢€) - d(Ryslj], Ris[j’]) + &; here e < 1
and & > 0 are user defined parameters.

The value of Eli,j] can be computed through dynamic programming given in
Table 4.6 with one exception. Rather than calculating the free energy of a kissing
loop pair only by the Rivas and Eddy approach [62], the pair is also allowed to
establish a double helix structure. Every turn of the double helix (of length ~10nt)
must now be compensated by a non-interacting counter turn with length ~3nt (see,

for example, the interaction between CopA and CopT).

Eli,j] = Yircine €15(1"7,0) +

Eli,j'] +ers(i,§) + )
<G <G 615(0,]'”).

min
¥<i,j'<j | d(S15[i',Srsli)<(1+e)-d(Rrs[i), Rrsli]))+6 (

Table 4.6: Energy table for the loop energy model.

In the energy tables given in Table 4.6, e;s(¢”,0) and e;5(0, j”) denote the free

energy of independent subsequences Srs[i] and Rys[j"] respectively.
The overall free energy of the interacting independent subsequence sets of S and
R is thus:

min B[i, j] + D ers@,0) + > ers(0,5)
! i<d! i<’

The run time of the algorithm for Stacked Pair Energy Model is O(|S|® - |R|?)
for input sequences of size |S| and |R|. Because the lengths of all independent
subsequences are limited by «, the computation of each e;s(3, ;) takes O(x°). If
there exists n independent subsequences in S, and m independent subsequences in
R, the total cost of computing all e;s(z, j) values is O(n - m - k%). Due to the fact

that 37, e ers(d”,0) and > . v, ers(0,5") can be computed in O(1) time by a
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preprocessing step of O(n-+m) time prefix sum, the values of F can be computed in
time O(n?-m?). The total cost of the overall algorithm is then O(n-m - &% +n? - m?).
Because n < |S|/k and m < |R|/x the worst case running time of this algorithm is
O(|S| - |R| - k* + |S|? - |RI*/KY).

This is substantially faster than the earlier approach requiring O(|S]*-|R|*) time.
In fact this version can predict the joint structure of the OxyS-thlA pair in 5 seconds

using the same hardware, improving the earlier approach by a factor of 180.

4.4.2 Testing the Loop Energy Model

We tested the Loop Energy Model on the interacting RNA pairs CopA-CopT and
OxyS-fhlA, with the same o values used in Stacked Pair Energy Model: ¢ € [0.7,0.8].
Joint structure predictions obtained by Loop Energy Model are given in Figures 4.8

for CopA-CopT pair, and 4.9 for OxyS-fhlA pair.
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Figure 4.8: Joint structure of CopA and CopT as predicted by Loop Energy Model.

Although there is a slight loss in the prediction quality in CopA-CopT pair with
respect to the Stacked Pair Energy Model prediction (Figure 4.6), the “kissing”
hairpin sequence is predicted correctly. This test also includes a post processing
step that leaves one third of the interacting part unbonded and then does an extra

free energy test to check the stability of this modified version. The aim here is to
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Figure 4.9: Joint structure of OxyS and fhlA as predicted by Loop Energy Model.

capture the topological property of the helical structure as explained earlier. This
extra post-processing step can be used if the interacting part is longer than a certain
threshold; because shorter interactions do not tend to form a helical structure as it
is the case in the OxyS/fhlA pair. In the OxyS-fhlA test, notice that the predictions
obtained by the Loop Energy Model and the Stacked Pair Energy Model are even
more similar. Furthermore, careful observation shows that the total free energy in

the predicted structure is still better than the natural joint structure (Figure 2.5).

4.5 Target Prediction for Antisense RNAs

An important byproduct of our algorithms for the RIP problem is the ability to
search for target sequences for specific antisense RNA molecules in whole genomic
and plasmid sequences. Because of the time and space constraints, the Stacked Pair
Energy Model is not efficient when searching through large sequences. Therefore,
the target prediction approach is based on Loop Energy Model. Our search strategy

employs the following steps:

1. First, we need to find the “candidate” target sequences from a given genome
sequence (or plasmid) that is known or suspected to include the target. This
is achieved via using the gene annotation available for genomic sequences. To

compute the potential mRNA each such gene is extended towards 5 and 3’
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UTR ends as follows.

(a) Each gene is extended up to /; nucleotides at its 5 UTR, and by 0
nucleotides at its 3’ UTR, where /; and [y are user defined parameters.

(In the experiments these parameters are set as [; = 250 and [y = 25).

(b) Then each “extended” gene sequence is trimmed from both ends via a dy-
namic programming routine in order to compute its subsequence which
has the lowest “energy density” (this will be the subsequence of the ex-
tended gene sequence whose secondary structure is most stable.) We
predict the resulting mRNA of each such gene as its trimmed extension

and after replacing each T character with a U.

2. The joint secondary structure prediction algorithm based on Loop Energy
Model is then run to determine if there are any external bonds formed be-
tween each candidate target sequence and the antisense RNA sequence under
the following constraints. (1) At least one /.S in the candidate target sequence
which lies before the start codon (i.e. AUG) should interact with an indepen-
dent subsequence in the query sequence. We impose this constraint in order
to capture the ribosome binding site interactions. (2) All predicted interac-
tions between pairs of I.Ss should include at least £ uninterrupted bonds for
some user specified constant £&. We impose this constraint to favor long un-
interrupted external bonds, since ribosomes are capable of breaking shorter
interactions. (3) At least two pairs of independent sequences must be inter-

acting with each other.

4.5.1 Testing the Target Prediction Strategy

We tested the above approach on both RNA-RNA interactions that are considered
in the previous tests. (1) First, the target mRINA sequences for CopA are searched in
the R1 plasmid sequence in F.coli. It is known that CopA regulates the copy number
of R1 plasmid by binding to the CopT sequence which is a part of the 125Kb long
plasmid [37, 70]. Our search program needed about 12 hours on a PC equipped with

3.2 Ghz Pentium IV processor and 2 GB of main memory to detect all targets of
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the CopA sequence on the complete R1 plasmid. Out of the 141 potential mRNA
segments obtained from the annotated gene sequences it returned the correct target
CopT as a potential target, along with 8 other potential targets. But when the
returned “hits” are sorted with respect to their free energies, CopT ranks in the first
place.

(2) We then used our program to detect the target mRNA sequences of the OxyS
antisense RNA on a 130Kb long portion of F.coli genome that included the known
target fhlA [71]. Out of the 100 potential mRNA segments obtained from the anno-
tated gene sequences, the program returned 9 hits including the known target thlA,
again ranking in the first place when the hits are sorted with respect to their free
energies.

Notice that the joint structure between CopA and CopT are much more stable
than that between OxyS and fhlA (the former one has a half-life of about an hour
where as the latter one has a half-life of only a couple of minutes). It is possible
that OxyS may have other targets in the E.coli genome with which it may establish

unstable joint structures, not strong enough to make impact.



Chapter 5

Classification of Small Chemical

Molecules

In the second part of this thesis, we focus on the functional prediction of small
chemical compounds. How to use a distance measure for capturing the similarity
among small chemical compounds is described in chapter 2. Here we describe how
to compute a distance measure that will maximize the discrimination between active
and inactive compounds with respect to a given bioactivity.

The k-nearest neighbor (k-nn) classification method, deduces the level of the
bioactivity of a query molecule based on the number (and the biocactivity levels)
of active elements among its k-nn with respect to a distance measure of choice.
Although k-nn classification is a well known data mining method, it was not con-
sidered for small molecule classification until recently [77, 31]. The few known
applications of k-nn method to compound classification aim to select the most rele-
vant set, of chemical descriptors to reduce the size of the descriptor arrays used. The
compounds are then compared under the standard (unweighted) L; or Ly distance.

We introduce use of the (more general) weighted Minkowski distance of order 1,
namely wl,; for classification of small chemical compounds. For each bioactivity of
interest, we determine real valued weights w; of the wl, distance so as to maximize
the discrimination between active and inactive compounds in a training set. (Thus,
earlier applications of £-nn to compound classification can be seen as limited versions

of our approach where the weights w; are set to either 0 or 1.) We compute the

69
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optimal values for weights w; via a linear optimization procedure.

Our experiments show that our k-nn classifier with respect to wl; distance
provides better accuracy than the LDA and MLR, sometimes significantly so. Note
that, as per LDA and MLR, our classifier is also based on a projection of molecules
to a metric space. As per MLR (and in contrast to LDA) the number of dimensions
in the projection space is equal to the number of descriptors. However, unlike MLR
and LDA, our classifier is not described by a simple planar cut on the projection
space but by a complex surface defined by the combination of surfaces in the form
of balls with specific data elements in their center. Although our classifier uses
more complex surfaces (which results in higher accuracy) we can still perform fast
classification, thanks to the efficient data structures we develop for nearest neighbor
- see below. Our method is comparable to the ANN classifier in terms of accuracy.
Yet it is superior to the ANN classifier in the sense that it determines the level of
bioactivity (rather than giving a simple YES or NO answer) as per the MLR based
solutions. It turns out that our classifier is also faster than the ANN classifier -
this we achieve through an efficient data structure we develop for efficient similarity

search as described below.

5.1 Distance measures for small molecules and
distance based classification

Given a chemical compound s, its descriptor array S is defined to be an n dimensional
vector in which each dimension 7, denoted by S|[i], is a real value corresponding to the
descriptor associated with dimension 4. For a given bioactivity, it is of significant
interest to come up with a distance measure D(S, R) between pairs of descriptor
arrays S and R that correspond to the similarity in the bioactivity levels of the
corresponding compounds s and r: if the bioactivity levels are similar, the distance
must be small and vice versa. Such a distance measure could be very useful in the
classification of new chemical compounds in terms of the bioactivity of interest: the

bioactivity level of the new compound is likely to be identical to the bioactivity level
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of the set of compounds that have the smallest distance to the new compound.

A distance measure D forms a metric if the following conditions are satisfied.
(i) D(S,S) = 0 for all S and D(S,R) > 0 for all S and R (non-negativity). (ii)
D(S,R) = D(R,S) (symmetry). (iii) D(S,R) < D(S,Q) + D(Q, R) (triangle in-
equality). Metric distance of interest include the Hamming distance, Euclidean
distance and the Tanimoto distance. Metric distances are of particular interest due
to the availability of efficient data structures they admit for fast similarity search.

The commonly used QSAR approach estimates the level of bioactivity of a com-
pound via a linear combination of its descriptors each of which correspond to a
specific dimension of its descriptor array. In distance based compound classification,
it is thus natural to consider a distance between two descriptor arrays which is a
linear combination of the differences in each one of the dimensions. More specifically
one can define D(S, R) = 5", w;-|S[i] — R[i]| where w;, the weight of the dimension
i is a real value in the range [0,1]. It is easy to show that this distance, which is
usually called the weighted Minkowski distance of order 1 forms a metric.

In this thesis we focus on classification of biomolecules according to five specific
bioactivities: (i) being an antibiotic, (ii) being a bacterial metabolite, (iii) being a
human metabolite, (iv) being a drug, and (v) being drug-like. The biomolecular data
sets available usually do not specify the level of bioactivity of interest but rather
provide whether a compound is active or inactive. Thus we only perform a binary
classification of compounds for each bioactivity, although our methods are general
to provide a real valued level of bioactivity.

Our classification method for a given bioactivity first computes a distance mea-
sure for a training data set which separates the subset of active compounds from
those that are inactive. Given a training set of descriptor arrays T = {1y, Ts, ..., T}
(each of which belonging to a compound) we determine the distance measure D,
more specifically compute the associated weights w;, through a combinatorial opti-
mization approach.

Given the training set 7T, let 74 = {T{, T, ..., T2} denote its subset of active
compounds and 77 = {T{,TJ,..,TEL .} denote its subset of inactive compounds.

Clearly T =T u T4
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We obtain a linear program for determining each w; as follows. The objective

function of the linear program which is to be minimized is

m m n

S = (030w [T~ TG (5.1)
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where C' is a user defined constant.

The objective function f(7") has three components: Component (1) is the aver-
age distance among active compounds and component (2) is the average distance
among the inactive compounds; their sum provides the within-class average distance.
Component (3), on the other hand, is the average distance between an active com-
pound and an inactive one; thus it stands for the between-class average distance.
As a result our linear programming formulation aims to maximize the difference
between the average between-class distance and the average within-class distance.
The distance measure obtained will separate the typical active compound from the
typical inactive compound, while clustering all active compounds and all inactive

compounds as much as possible.
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There are three types of constraints on the weights w; in our linear program-
ming formulation. Constraint (4) ensures that the average distance among active
compounds is no more than the average distance between active and inactive com-
pounds.} Constraints (5) impose bounds on the values of weights w; and their sum.?

A note on the performance. We used CPLEX, an open-source linear pro-
gramming solver for computing the distance measure for a given bioactivity. Because
the number of constraints is proportional to the number of active compounds, which
is no more than 1500 for the bioactivities we considered, the running time for com-
puting all distance measures of interest was quite reasonable, no more than 2 minutes

on a standard 3.2Ghz Intel Pentium D Workstation.

k-nearest neighbor classification of biomolecules

A distance measure defined as above can be used for the classification of compounds
with unknown levels of bioactivity as the bioactivity level of a compound is likely
to be similar to the bioactivity levels of compounds within its close proximity. Our
k-nn classifier estimates the (binary) bioactivity of a given compound by (1) either
taking the majority of the bioactivities of its k-nearest compounds w.r.t. the distance
measure or by (2) checking whether sum of the binary bioactivity levels of the k-
nearest neighbors normalized by their distances to the compound is above a threshold
value. Under each approach, it is possible to select the value of £ which maximizes
the accuracy of the estimator, i.e. the ratio of the sum of true positives and true

negatives to the size of the training data set.

! A more stringent set of constraints can be imposed on active compounds such that the distance
between a given active compound 73! and any other active compound is no more than the distance
between 77} and any inactive compound. Such a set of constraints can, in principle, can separate
active and inactive compounds into tighter clusters. Unfortunately, the number such constraints,
m? - (£ —m), turns out to be impractical, even for the most advanced linear program solvers.

2The number of descriptors related to a specific bioactivity is usually no more than a few, thus it
is desirable to simplify the distance measure by limiting the number of non-zero weights. The final
constraint aims to achieve this by imposing an upper bound on the sum of the weights. Although
this constraint does not guarantee to upper bound the number of non-zero weights, in practice, the
number of non-zero weights obtained arc no more than 2C.



CHAPTER 5. CLASSIFICATION OF SMALL CHEMICAL MOLECULES 74

5.2 Experimental Results

Here we aim to provide some insight into the comparative performance of our k-
nn classifier, both in terms of accuracy and efficiency. We applied our classifier to
five types of bioactivities: (i) being antibiotic, (ii) being a bacterial metabolite, (iii)
being a human metabolite, (iv) being a drug, and (v) being drug-like.

The first data set we used is the complete small molecule collection from [12],
which includes 520 antibiotics, 562 bacterial metabolites, 958 drugs, 1202 drug-like
compounds, and an additional 1104 human metabolites. The total number of the
compounds in the data set 1s 4346. Each compound in the dataset is represented
with a descriptor array of 62 dimensions, which is a combination of 30 inductive
QSAR descriptors [12] and 32 physicochemical properties such as molecular weight,
number of specific atoms (O, N, S), acidity, density, etc. This data set was used for
testing the classification quality of our approach. A second data set which enriches
the first data set by the addition of 20000 additional drug like compounds was later
used for testing the running time of our approach. . For each bioactivity, a wl,
distance is determined to establish a model for compound classification w.r.t. this
bioactivity using our k-nn method. Note that the descriptors of each compound are
normalized according to the observed maximum and minimum values in the data
set in order to remove the bias to parameters with larger values.

The comparative results of the four classification methods, namely k-nn, LDA,
MLR and ANN are provided in Table 5.1. For each bioactivity, we provide the
sensitivity,specificity and accuracy obtained by each classifier. We demonstrate the
performance of our k-nn classifier only for £ = 1; i.e. given a query compound,
our classifier returns the bioactivity of its nearest neighbor in the training data set.
We constructed the wl; measure for three different values of C - the upper bound
on the sum of weights, i.e., Z:-;l w; < C. Setting C = oo removes the restriction
on the sum of weights and thus computes the wl; distance that achieves the best
classification. We also sct C to 3 and 10 to restrict the number of non-zero weights,
with the aim of focusing only on the C' most relevant descriptors to the bioactivity

of interest. As the resulting non-zero weights turned out to be equal to or very
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Model [ TP | TN | FP | F-N SPEC | SENS | ACCUR | PPV | NPV |
Antibacterial Model, C=co Train 269 2610 | GO 95 97 74 95 8 ™96
Test 117 1119 | 28 39 .98 .75 .95 .81 | .97
Auntibacterial Model, C=10 Train || 224 2538 141 140 .95 .62 91 61 .95
Test 92 1085 | 62 64 .95 .59 .90 .60 .94
Antibacterial Madel, C=3 Train 201 2526 | 163 163 94 55 90 57 i
Test 75 1074 | 73 81 .94 4R (58 51 | .93
Aotibacierial Model, LDA Train || 364 ] 2679 | 0 0.00 1.00 0.12 618 | «
) Test 156 | 0 1147 | 0 0.00 1.00 0.12 0.1 | -
Antibacterial Model, MLt Train 104 564 2115 | 170 0.21 0.53 0.25 0.08 | 0.77
Test 61 1129 | 18 95 0.98 0.49 0.91 077 | 092
Antibacterial Model, ANN Train 294 2651 | 27 70 0.99 0.81 0.97 0.92 0.97
Test 129 1132 | 16 27 0.99 0.83 0.97 0.89 0.98
Bacterial Metabolite Model, C=nc Train 311 2537 112 83 .96 .79 .94 .74
Test 135 1091 | 44 33 .80 .94 .75
Bacterial Metabolite Model, C=10 | Train 220 2436 | 213 174 56 87 B1
Test 98 1038 | 97 70 .58 .87 .50
Bacterial Metabolite Model, C=3 Train 152 2376 | 273 242 39 83 36
Test, 80 1018 | 117 B8 .48 R4 41
Bacterial Metabolite Model, LDA Train 240 2587 62 154 0.61 0.93 0.79
. . Test 90 1088 | 47 78 0.54 0.90 0.6G6
Bacierial Metabolite Model, MLR Train 301 2525 | 124 a3 0.76 0.93 0.71
Test 119 1073 | 62 49 0.71 0.91 0.66
Bacierial Metabolite Model, ANN | Train 338 2597 | 52 55 0.86 0.96 0.87
L Test 159 1076 | 59 10 0.94 0.95 0.73
Drug Model, C=oa Train 474 2158 214 197 7 § .86 .69
Test 204 928 88 83 L .87 .70
Drug Model, C=10 Train 349 2072 | 300 322 52 B0 54
Test 151 861 155 136 .53 78 .49
Drug Model, C=3 Train || 305 2026 | 346 366 -ab 77 a7
Test 126 846 170 161 .44 .75 .43
Drug Model, LDA Troin 0 2372 | 0 671 0.00 0.78 =
Test 0 1014 | 2 287 0.00 0.78 0.00
" Drug Model, MLR Truin 279 2234 138 392 0.42 0.83 0.67
Test 109 951 65 178 0.38 0.81 0.63
Drug Maodel, ANN Train 489 2178 194 182 0.73 0.55 0.72
Test, 177 978 39 110 0.62 0.89 0.82
Druglike Model, C=5c Train || 674 2043 | 158 166 T80 89 T
" Test 28 866 77 79 | .78 .88 0.78
Druglike Model, C=10 Train 560 1959 | 242 252 |67 83 70
Test, 239 842 101 121 .66 83 .70
Druglike Model, C=3 Train 467 1813 | 388 375 58 78 55
Test 107 275 168 163 .55 54
Druglike Model, LDA Train 683 1917 | 284 159 T0.81 0.55 0.71
Test 205 801 142 65 0.82 0.84 0.68
“Druglike Model, MLR Train 665 | 1951 | 250 177 ~70.79 0.86 0.73
Test 282 812 131 78 0.78 0.84 0.68
Druglike Model, ANN Train 734 2086 | 114 107 0.87 0.93 0.87
Test 334 891 52 27 0.93 0.94 0.87 |
Human Metabolite Model, C=no Train 773 2270 | O 0 T 1.00 1.00 1.00
Test 331 972 0 0 | 1.00 1.00 1.00
“Human Metabolite Model, C=10 Train 772 2266 | 4 1 99 99 99
Test 330 972 0 1 0.99 .99 1.00
Human Metabolite Model, C=3 Train [ 772 2270 0 1 0.99 .99 1.00
Test 330 972 0 1 0.99 .99 1.00
Human Metabolite Model, LDA Train [ 773 2270 | © 0 1.00 1.00 1.00
Test || 331 972 0 0 1.00 1.00 1.00
Human Metabolite Model, MLR Train || 773 2270 | 0 0 1.00 1.00 1.00
Tent 331 972 0 0 1.00 1.00 1.00
Human Metabolite Model, ANN Train || 773 2270 | -0 0 1.00 1.00 1.00
lest || 331 972 0 0 1.00 1.00 1.00 }

Table 5.1: Binary classification of the biocactivities of the test set according to four
classification methods: k-nn, LDA, MLR, ANN.



CHAPTER 5. CLASSIFICATION OF SMALL CHEMICAL MOLECULES 76

close to 1, these two classifiers are quite similar to those described in recent papers
(e.g. [77, 31]) that focus on determining the most relevant descriptors for modeling
a bioactivity of interest.

We used MOE(Molecular Operating Environment) PLS module for MLR, classi-
fication and SNNS (Stuttgart Neural Network Simulator) with default parameters
(52 nodes and 420 connection network) for ANN classification. LDA classification
is performed through the use of standard C libraries for matrix operations.

For each bioactivity, a tramming data set comprising of 70 percent of both the
active and the inactive compounds are formed via random selection. The remaining
compounds are used as the test data set. Each training data set is used for building
the four classifiers corresponding to the related bioactivity and the test data is used
for the evaluating their performance.

For each biocactivity/classifier pair we report the following test results: The num-
ber of true positives (T_P), the number of true negatives (T_N), the number of false
positives (F_P), the number of false negatives (F_N), sensitivity (T.P/(T_-P+F_.N)),
specificity (T_-N/(T.N+F _P)), accuracy ((T-N+T_P)/(T_-P+T_N+F_P+F N)), pos-
itive predictive value (T.P/(T_P+F _P)), negative predictive value (T_N/(TN+F_N)).

We have demonstrated that our k-nn classifier with respect to wl, distance
obtains better accuracy than the LDA and MLR, sometimes significantly so. It is
comparable to the ANN classifier in terms of accuracy and is superior in the sense
that it is capable of determining a real valued level of bioactivity rather than giving

a simple YES or NO answer.

5.2.1 Separation of Drugs, Nondrugs, Antimicrobials, and

Metabolites in Descriptor Space

To gain a better understanding of the distinctive behavior of human metabolites and
their positioning in the descriptors space we considered a data set of more than 2
million druglike chemical structures downloaded from the ZINC database [30]. For
every substance in that data set we calculated the same 62 descriptors selected for

modeling and assumed that such large data set should sufficiently cover all feasible
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values of QSAR parameters.

To assess separation between the studied groups in the descriptors space and to
sample their compactness and overlaps, we utilized the previously trained distance
measures for each bioactivity. Thus, for each studied class of chemical substances
we considered every constituent molecule as a probe that has then been placed
into chemical space consisting of 4346 studied compounds mixed with 2.066.095
ZINC structures. For each probe we applied the corresponding distance function
to identify all active entries located within a certain radius R. For each studied
group of compounds, we have continued such probing until all active elements in
the class are identified. Understandably, the established number of the required
probe-based queries strongly depended on the probe radius. Figure 5.1 features
probe-based recovery of antimicrobials, bacterial metabolites, drugs, druglikes, and
human metabolites from the pool of 2.071.251 entries as the neighbors of the query
compounds with different radius values of 0.10, 0.15, and 0.20. The blue recovery
curves in Figure 5.1 , corresponding to probing with radius R = 0.20, illustrate that
k-nn recovery of the majority of antimicrobials, drugs, nondrugs, and metabolites
can be accomplished in less than 100 iterations. When the database has been queried
with R = 0.15 and, particularly R = 0.10 probes (red and green curves, respectively),
the complete recovery may require as many as 500-700 steps.

Figure 5.1 also feature random recovery of 520 antimicrobials, 959 drugs, 1202
druglikes, and 562 bacterial and 1104 human metabolites from the total of 2.071.251
chemicals structures (the corresponding curves are marked in dashed lines). As
random recovery curves illustrate, only members of the inactive druglike compounds
group could be found somewhat efficiently by random placing of probes into chemical
space. On another hand, active probe-based recovery of druglike substances was not
very efficient either (see Figure 5.1(d)). These observations may justify that druglike
entries are spread throughout the descriptors space without distinctive clustering.
In contrast, other types of substances, particularly human metabolites, could be
recovered very rapidly by the k-nn search, which characterizes them as compact
collections of entries.

One useful criterion for assessing clustering of active entries in a large database is
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Figure 5.1: (a) Retrieval of antimicrobial compounds from the general molecular database
( > 2M entries) using the range queries with varying distance constrains (solid lines).
The dashed lines correspond to random identification of antimicrobial compounds. This
representation (solid/dashed line) is same for the remaining bioactivities. (b) Retrieval
of bacterial metabolite compounds from the general molecular database. (c) Retrieval of
drugs from the general molecular database. (d) Retrieval of druglike compounds from
the general molecular database. (e) Retrieval of human metabolite compounds from the
general molecular database.
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% of DB entries used as queny probes

Antmcrobiak  Bacteral Drugs Drug -likes Human
Metabolites Metabolges

Figure 5.2: Histograms of P/, values -fractions of cluster entries required to retrieve
50% members of the corresponding cluster from a large molecular database using
the k-nn approach. The values have been identified for the searches with varying R
parameters.

the number of k-nn probes of a certain radius that are required for identification of
50% of active entries. Thus, we have computed the corresponding parameters P /o
for five k-nn models with search radius values of 0.10, 0.15, and 0.20. The established
numbers of probes required to identify 50% of each group are featured in Figure 5.2,
where they are normalized by the size of the corresponding activity group. Thus, it
required only 81 probes (or 7% of the total number of entries) with R = 0.10 radius
to identify 552 human metabolites (50% of the total number) from the mixed pool
of more than 2 million chemical structures. This illustrates that human metabolite
substances are clustered very tightly in multidimensional descriptors space. The
grouping becomes less profound for conventional drugs, followed by antimicrobials,
bacterial metabolites, and, finally, by the group of druglikes which required more
than 15% of actives to be used as probes to locate 50% of the group (see Figure 5.2).

The results of cross-recognition analysis also confirmed uncharacteristic QSAR
behavior of human metabolites: the ANN model trained to recognize them in the
mixed set of compounds did not produce any false positive predictions. The later
may reflect the fact that QSAR descriptors computed for human metabolites follow

different trends when compared to drugs, inactive chemicals, antimicrobials, and
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Figure 5.3: (a) Median values for selected "inductive” and conventional QSAR descriptors
(normalized) calculated independently within studied sets of chemical substances. (b)
Averaged values of selected "inductive” and conventional QSAR descriptors (normalized)
calculated independently within studied sets of chemical substances.

bacterial metabolites. To illustrate this point we plotted median and mean values of
inductive and 2D-QSAR. descriptors that have been computed independently for the
studied groups of chemicals (see Figure 5.3(a) and Figure 5.3(b)). The charts clearly
demonstrate that descriptors computed for human metabolites appear differently.
To summarize the results of the above-described experiments it is possible to con-
clude that groups of antimicrobial compounds, conventional drugs, druglike chemi-
cals, and bacterial and human metabolites form distinctive and relatively compact
clusters in chemical space where the dimensions are defined by inductive and con-
ventional QSAR descriptors. Such clustering allows rather accurate recognition of
these types of biological activity using various statistical and machine-learning tech-
niques that include methods of artificial neural networks, k-nearest neighbors, linear
discriminative analysis, and multiple linear regression. The QSAR separation of an-
timicrobials, drugs, nondrugs, and metabolites with these approaches demonstrates
a certain degree of similarity between the members of these activity classes resulting
in their cross-recognition by the corresponding QSAR models. On another hand, the
group of human metabolites demonstrated rather distinctive behavior com- pared to
all other studied types of chemicals, with the corresponding cluster of entries being
the most compact and completely separated from other groups in the descriptors
space. Thus, the results of the comparative QSAR analysis allow categorizing hu-

man metabolites as a distinctive class of chemical structures and raises questions
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about structural determinants of their unusual QSAR properties.



Chapter 6

Data Structures for k-nn

Classification

Given the "optimal” distance measure which is computed using the linear program-
ming described in chapter 5, it is desirable to construct an efficient data structure for
performing k-nn search. Another common way of performing k-nn search is through
range queries where all the compounds within a certain search radius is returned.
K-nn search can be performed by starting with a small range query and increasing
it iteratively until all £ neighbors of the query is returned. In this chapter, we show
how to construct an efficient data structure for performing range queries under any
given metric distance measure and provide some experimental results.

Vantage Point(VP) Trees and its extension Space Covering Vantage Point(SCVP)
Trees are desribed in chapter 2 for performing range queries. In the original SCVP
tree construction, the vantage points in each level are chosen randomly until all
search space is covered [63]. Clearly, it is desirable to minimize the number of
vantage points that cover the search space. With fewer vantage points picked at
each level, a better space utilization can be achieved, implying that more levels of
the tree can be fitted in the available memory.

We first prove that the problem of minimizing the number of vantage points at
each level is an NP-hard problem. However, we show how to approximate the
minimum number of vantage points and thus obtain the optimum allocation of

available memory through a simple polynomial time algorithm. The resulting data

82
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structure, which we call the deterministic multiple vantage point tree (DMVP tree),
when built in full, is guaranteed to have O(log¥) levels, where £ is the size of the
data set. If the maximum number of children of an internal node at level 7 is ¢;, the
query time guaranteed by our data structure is O(Zi‘flz c¢;. Because ¢; is typically
a small constant, the query time is only O(log#), a significant improvement over
linear/brute force search.

Due to redundant representation of data items, the memory usage of the DMVP
tree can be super-polynomial. In case the full version of the DMVP tree requires
more memory than available, lower levels of the DMVP trees could be cut out. In
this case, when the search routine reaches the final level built, the pruning in the
respective subspace can be achieved by linear search. We also show how to obtain
the optimum cut so as to minimize the expected query performance.

Our data structure is not only interesting for classification purposes; similarity
search among small molecules under various notions of similarity is of independent
interest. To the best of our knowledge, this is the first application of an efficient
similarity search data structure to small molecule data collections. In particular,
all known k-nn classifiers employ brute force search, which is not scalable with the
growth in the size of compound databases (e.g. PubChem).

We demonstrate that the DMVP tree performs very well in practice, achieving
fast classification and similarity search. We compare the performance of our data
structure against brute force search in terms of the number of comparisons between
descriptor arrays that we need to perform under the weighted Minkowski distance.

We also demonstrate how well our classifier performs against available alternatives

in terms of running time.

6.1 Efficient data structures for k-nn search

Typical similarity search methods for large collections of data elements usually per-
form iterative partitioning of the data set into smaller subsets so as to perform
efficient querying by pruning - which is achieved at each iteration by checking out

to which partition the query falls into [69, 74]. The pruning strategy can be made
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particularly effective on data collections where similarity is measured with respect
to a metric distance. The partitions in such a metric space are usually achieved with
respect to simply defined planar cuts; given a query element, it is quite simple to
check to which side of the planar cut it falls into.

Given a set of data elements X = {X},..., X,} in a metric space with distance
D, similarity search for a query element Y can be posed in two flavors. (1) Range
query: retrieve all items whose distance to Y is at most some user defined R. (2)
k-nn query: retrieve the £ > 1 items whose distances to Y are as small as possible.

One particularly efficient similarity search tool for performing range queries is the
Vantage Point (VP) trees [69, 74]. Traditionally, a vantage point tree is defined as a
binary tree that recursively partitions a data set into two equal size subsets according
to a randomly selected vantage point X, as follows. Let M is the median distance
among the distances of the data elements to X,. The inner partition consists of the
elements Y such that D(X,,Y) < M and the outer partition consists of the elements
Z such that D(X,,Z) > M.

For a given query element Y, the set of data elements X; for which D(Y, X;) < R
for the search radius R can be computed as follows. Let X, be the vantage point
chosen for the entire data set and let M be the median distance among the distances
of the data elements to X,. If D(X,,Y)+ R > M then recursively search the outer
partition. If D(X,,Y) — R < M then recursively search the inner partition. If both
conditions are satisfied then both partitions must be searched. The correctness of
the search routine follows from the triangle inequality.

A natural extension to the traditional vantage point trees is what we call the
Space Covering VP trees (SCVP Trees) first described by Sahinalp et al [63]. At
each level of the SCVP trees, multiple vantage points are chosen so as to increase the
chance of inclusion of the query region in one of the inner partition of the vantage
points. The original SCVP trees chose the vantage points at each level randomly.
Although this approach can perform quite well for certain data collections, it can
also result in poor space utilization.

Clearly it is desirable to cover the entire data collection by the fewest number of

(inner partitions of) vantage points. However, the problem of minimizing the number
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of vantage points for this purpose turns out to be an NP-hard problem under all
distance measures of interest (i.e. weighted Minkowski distance of any order p, wL,);
this is proven below. Nevertheless it is possible to approximate the minimum number
of vantage points in any metric space through a simple polynomial time algorithm
as we show later. As a result we obtain a data structure that deterministically picks
the vantage points (whose inner partitions cover the entire data set) which results
in almost optimal redundancy; we call this data structure Deterministic Multiple
Vantage Point tree (DMVP tree).

We start with showing that the optimal vantage point selection problem, which
we call OVPS problem, is NP-hard for any weighted Minkowski distance of order p,

namely wLl,.

Theorem 3 OVPS problem under the weighted Minkowski distance of any order
p is NP-hard.

Proof: We establish the NP-hardness of the OVPS problem under L, through
a reduction from the Dominating Set Problem which is known to be NP-hard. The
decision version of the Dominating Set problem is as follows: Given a graph G(V, E)
and an integer k decide whether there exists a subset V* of vertices V' such that
every vertex in V — V’ has a neighbor in V’. The decision version of the OVPS
problem in L, is as follows: Given a set S of points in L,, a radius r, and an integer
k, decide whether there exists k (vantage) points such that the distance between
each point in the set and at least one of the k points is less than r.

From an instance of the Dominating Set problem we first construct a |V| dimen-

sional space S where each vertex V; is mapped to a point X; in § as follows.

1 ifi=j

0 if (VW) €E

One can calculate upper and lower bounds for the L, distance between two

vectors X; and X, as follows.
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In other words, b, the distance between any two vectors whose corresponding vertices

are connected (by an edge) is less than a, the distance between any two vertices which

are not connected. We now simply pick r so that a > r > b.

We now show that G has a dominating set of size k if and only if there exists k

vantage points for which the distance between each point in the data set S and at

least one of the vantage points is at most 7.

Given G, and a dominating set D of size &, we show that the k points in S that

correspond to the k vertices in D, cover the entire set S. For any vertex V; ¢ D,

there must exist a neighboring vertex Vj, € D. But if V; and V}, are neighbors then

by the above argument L,(X;, X;) < r, i.e. X; is in the radius-r-neighborhood of
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the vantage point Xj.

Given S, and k vantage points whose radius-r-neighborhoods cover all points in S,
we show that the & vertices in G that correspond to the k£ vantage points form a
dominating set. For any point X; which is not a vantage point, there must exist a
vantage point X, s.t. wL,(X;, Xp) < r. But this implies that V; and V}, must be
neighbors in G, i.e. V; must have a neighbor which is in the dominating set.

The generalization of the proof to wL, is not difficult and is not given here. M
Corollary 4 OVPS problem under Tanimoto distance is NP-hard.

Proof: The Tanimoto distance is no more than L, on binary vectors normalized

by the number of dimensions (which is a constant). [ |

An O(log¥) approximation to the optimal vantage point se-
lection

The variant of the OVPS problem for which we establish NP-hardness assumes a
fixed radius r for each neighborhood around a vantage point. One can think of
two natural variants of the OVPS problem: (1) each neighborhood includes a fixed
number of points (e.g. £/2 points as per the original VP Tree construction), (2) each
neighborhood has at least £/k and at most ¢/k’ points for some k& > k. It is not
difficult to show that these variants are NP-hard as well.

In the remainder of this section we focus on variant (2) of the OVPS problem and
describe a polynomial time O(log¢) approximation algorithm for solving it. Such
a solution will also imply an O(log¥) approximation algorithm for variant (1) by
setting k = k’. The approximation algorithm is achieved by reducing the OVPS
problem to the weighted set cover problem as follows.

Consider each point X; in S. We construct the following ¢ sets for X; named
X1 X2, ..., Xt X} consists of only X;. X? consists of X; and its nearest neighbor.
In general, Xij consists of X; and its j — 1 nearest neighbors. Let the cost of X7 be
]

Now given sets Xij, forall 1 < i < fand k < j < K, each with cost j, if

we can compute the minimum cost collection of sets such that each X; € S is
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in at least one such set, we would get a solution to the variant (2) of the OVPS
problem. This problem is equivalent to the weighted set cover problem for which
a simple greedy algorithm provides an O(log¥) approximation (e.g. [13]). The
greedy algorithm works iteratively: each iteration simply picks a set where the cost-
per-uncovered-element is minimum possible. The algorithm terminates when all

elements are covered.

Optimal fitting of the multiple vantage point tree in the mem-
ory

Although the deterministic multiple vantage point tree improves the memory usage
of the randomized space covering vantage point tree, it is still possible that the
tree may not fit in the main memory. If this is indeed the case, we try to place
a connected subtree (which includes the root) to the memory. The search again is
performed starting with the root. When an internal node whose children are not
represented in the memory is reached, the search is done in a brute force manner on
the set of points represented by that node.

Clearly it is of interest to obtain the best subtree for optimizing the query per-
formance of the data structure. For that we use the following 0 — 1 programming
formulation.

Given a Multiple Vantage Point tree T and a node i, let S; be the number of
points in the neighborhood represented by ¢. During a search, when a node j is
reached, its children i, + 1, ... are considered for further search in linear order; i.e.
we first check whether the query fits in the neighborhood of %, then we check ¢+ 1 and
so on until a suitable vantage point i + A is found. Let S, be the number of points
in the neighborhood represented by node 7 + h which are not in the neighborhoods
represented by ¢,i+1,...,i+h — 1.

Our 0-1 programming formulation sets the probability that node i+ h is reached
during a search to S, ,/¢. If the children of the node i + h are not placed in the
memory, i.e. if node i+h is on the cut-set, the time needed for performing a search on

the neighborhood represented by this node is S;;+,. Thus the expected contribution
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of node i + h to the query time is Siph - S; 11/

Let b; be a binary variable, which takes the value 1 if vertex 7 is in the cut-set and
is 0 otherwise. Our goal is to minimize the expected running time of the brute-force
search performed for each query; i.e. our objective function is f(T) = >\, b;5:5;
subject to the following constraints.
For any pair of consecutive sibling nodes ¢ and 7 + 1, we must have b; = b;,.
We should not exceed the memory M dedicated to the cut-set; thus )", b,S; < M.
Finally, at least one node in every path from the root to a leaf in 7" must include
one vertex in the cut-set. Thus for any such path P we have )", b, = 1.

A 0—1 assignment to b;’s that minimize the objective function will minimize the

expected query time while fitting the data structure in the main memory.

6.2 Experimental Results

We use the same dataset with the same separation of training and testing set in the
previous section for evaluating the efliciency of our data structure. Our similarity
search data structure for computing the nearest neighbor of the query compound
is quite eflicient, especially when compared to brute force search. We tested our
data structure under the wi, distance computed for each of the five bioactivities,
on both of the data sets. The crucial parameter that determines the performance of
our data structure is the pruning it achieves for any given query compound. Thus
we determine the percentage of compounds pruned in the second training data set
(the first training data set enriched with 20000 drug like compounds), averaged over
all compounds in the test data set. On a 32GB Sun Fire V40Z server (with 2.4
Ghz AMD 64bit Opteron processor) the respective pruning ratios are as follows.
We achieved (i) 84.4% pruning for being antibiotic, (ii) 84.5% pruning for being
bacterial metabolite, (iii) 86.1% pruning for being human metabolite, (iv) 81.7%
pruning for being drug, and (v) 81% pruning for being drug-like. This is significant
improvement over brute force search.

As a result our k-nn classifier turns out to be very fast. On the first data set, the

running time of our k-nn classifier averaged over all 4346 compounds (training-+test
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data sets) and all five bioactivities is 0.3 milliseconds on the above server. In contrast
the ANN classifier requires 39.7 milliseconds on the same data set. On the second
data set (which simply has additional 20000 compounds in the data structure) the
running time of our k-nn classifier increases only to 1.3 milliseconds (again averaged
over the 4346 compounds from the first data set and five bioactivities), still 30 times
better than the ANN trained over a much smaller set.

Notice that our classifier is faster, thanks to the DMVP tree data structure
which improves the existing vantage point tree data structures in multiple ways. It
provides a deterministic selection of the optimal vantage points in each level as well
as providing the optimal cut of the tree so as to fit it in the available memory. Our
data structure can be applied to any metric distance including the wL, distance for
any p and the Tanimoto distance. It performs very well in practice, achieving fast

similarity search and classification.



Chapter 7

Conclusion and Discussion

In this thesis we show how to apply combinatorial optimization methods, in par-
ticular dynamic programming and linear programming, to help solve two important
problems in computational molecular biology: (1) structural prediction of RNA
molecules and (2) functional prediction of small biological compounds.

We first describe the RNA secondary structure prediction problem and introduce
the notion of energy density which improves the accuracy of the available methods
significantly. Because the notion of energy density is non-linear, the standard dy-
namic programming approaches that has been used in the available total free energy
minimization methods are updated. The end result, which is described in this thesis,
can perfectly capture the secondary structure of many non-coding RNAs which have
been difficult to even approximate with alternative methods.

One key application of RNA structure prediction is determination of interactions
between two RNA sequences (e.g. an mRNA and a regulatory RNA). We formu-
late the RNA-RNA interaction prediction problem as a combinatorial optimization
problem and show how to solve it again via dynamic programming. Because the
complexity of the algorithm to solve the most involved formulation of the problem
is very high, we also describe some heuristic shortcuts, which, in practice, are highly
accurate.

The second set of problems we tackle are related to functionality of small chemical
molecules. In particular we focus on structural similarity search among small chem-

ical molecules, a standard approach used for in-silico drug discovery. It is possible

91



CHAPTER 7. CONCLUSION AND DISCUSSION 92

to use structural similarity to deduce the bioactivities of new compounds provided
that the notion of similarity reflects the bioactivity in question and we have good
data structures to perform structural similarity search efficiently.

We show how to computationally design the “optimal” weighted Minkowski dis-
tance wL, for maximizing the discrimination between active and inactive compounds
with respect to a bioactivity of interest. We also describe how to construct an it-
erative pruning based data structure for performing “nearest neighbor” search for a

query compound with respect to the weighted L, distance computated.
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