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Abstract 

In an aqueous environment and under appropriate conditions, amphiphilic molecules spon- 

taneously self-assemble to form closed membrane capsules. The morphology of these fluid 

lipid vesicles is governed by the bending elastic energy of the membrane. Fluid vesicles exist 

in a variety of shapes, which may be considered phases in analogy to  thermodynamics. This 

thesis describes experiments which explore the phase diagram of micron-scale phospholipid 

(SOPC) vesicles, concentrating on the region of prolate shapes. We have especially studied 

thermally induced parameter changes leading to budding, i.e., the spontaneous formation 

of a satellite from a prolate vesicle. 

The observations are carried out via quantitative phase-contrast microscopy. A computer- 

based protocol is developed for analyzing the two-dimensional contour shapes of the video 

images. Reconstruction of non-spherical 3D shapes from 2D contour data is discussed in 

detail. We apply the general procedure to prolate vesicles near the budding transition. 

Experimentally measured shapes and shape trajectories are compared to theory. 

There are two main contributions to  the elastic energy for single component vesicles: 

First, an unconstrained bilayer resists bending elastically. Secondly, constraint on mono- 

layer areas connected to  vesicle closure leads to an overall stretching/compression of one 

monolayer relative to the other, which gives rise to an area-difference elastic contribution. 

Both contributions are found to be important for a quantitative theoretical understanding 

of the experimental data. They have been incorporated into the area-difference-elasticity 

(ADE) model, which forms the basis for the interpretation of vesicle shapes and shape 

transitions in this work. 

Our main results are as follows: 

Fourier amplitudes describing the equilibrium prolate shapes exhibit a hierarchical 

structure dominated by a few low-order amplitudes, largely determined by volume 

and area constraints. 

iii 



0 The volume-to-area ratio of the vesicles and the effective spontaneous curvature of 

their membrane are measured. This allows for a mapping of prolate shapes into the 

phase diagram of the ADE model. We discuss corrections due to finite temperature 

and gravitational effects. 

0 In accordance with the predictions of the ADE model, the budding transition is found 

to be first order. We monitor enhanced fluctuations and increased relaxation times 

in vesicles approaching the spinodal line of the metastable prolate shape. The scaling 

behavior can be understood within the context of a simple Landau theory. 
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Chapter 1 

Introduction 

1.1 Artificial and Biological Membranes: 

The Role of Phospholipid Bilayers 

This thesis treats the shapes of artificially produced phospholipid vesicles. Each vesicle 

is a simple membrane capsule which separates interior and exterior aqueous regions. The 

capsule itself has a bilayer structure, consisting of an inner and an outer "leaf." Each leaf 

is a closely-packed layer of oriented phospholipid molecules. This bilayer structure forms 

spontaneously in aqueous solution because the phospholipid molecule is amphiphilic, con- 

sisting of a glycerol backbone attached at  one end to two fatty-acid "tails" (hydrophobic) 

and at the other end via a phosphate linkage to an hydrophilic head group (choline in 

these experiments). The phospholipid molecules are highly insoluble in water because of 

the hydrophobic tails; but, under appropriate conditions, they self-assemble into the bilayer 

structure, with heads pointing out and tails pointing in, which effectively shields the hy- 

drophobic regions of the molecules from aqueous exposure. In this work, we shall exclusively 

study vesicles of simple, spherical topology, although more complex topologies do occur and 

have been studied elsewhere [I, 2, 3, 41. For further information on the chemical properties 

of phospholipids and on the various other phospholipid lyotropic phases (in addition to  the 

bilayer phase) which they may form in aqueous solution, the interested reader is referred to  

an extensive literature [5 ] .  

The bilayer membrane may be in either a high-temperature "fluid" phase or a lower- 

temperature "gel" phase, separated by a well-defined thermodynamic phase boundary called 

the "main transition." The main transition [6] is (weakly) first order, with the membrane 

thickness D being slightly larger in the gel phase. For the phospholipids used in our studies, 



the main transition occurs in the room-temperature range. It is believed to be driven 

predominantly by the entropy of the hydrocarbon tails of the phospholipid molecules. These 

tails are single-bonded, except for, typically, one double bond, which forces a single "kink" 

into one of the two tails. For an isolated chain, there is relatively free rotation about the 

C - C axis of each single bond, so the cis and trans configurations are close in energy. In the 

fluid phase, above the main transition, the typical chain configuration has many cis bonds, so 

in the bilayer the tails form a disordered fluid-like structure in which relative lateral motion 

of nearby molecules is easy and the structure has no shear rigidity. By contrast, below the 

main transition, these internal rotations are mainly frozen out, almost all bonds are trans, 

and the molecules are rod-like. These rod-like structures pack tightly into an hexagonal 

array, which resists shear and behaves at short distances effectively as a two-dimensional 

elastic solid. The shape experiments described in this thesis are confined to the fluid 

phase. 

In the fluid phase, the membrane behaves roughly as a (two-dimensional) isotropic in- 

compressible fluid. Since the membrane is self assembled, it has a preferred (relaxed) area a0 

per phospholipid head group and, in the absence of external constraints, there is no surface 

tension. The area a0 depends on the temperature T, so there is a well-defined thermal 

expansion coefficient [lo], 
1 da 

P A =  aodr, 

which will play an important role in what follows. 

actual area per head group a to  deviate from ao. In 

is described by an elastic constant, 
. d r  Ir = a -  

da ' 

Applied lateral tension can force the 

the linear regime the area elasticity 

where r is the (isotropic) applied tension. In the experiments described herein, the number of 

molecules N in the membrane of a single vesicle is effectively fixed on laboratory timescales, 

since the lipid solubility is low. The relaxed area of the vesicle membrane is, therefore, close 

to  a value A. = Nao/2, since roughly half the lipid molecules are in each of the bilayer 

leaves. 

'In the absence of tension, the long-wavelength s tate  must, in fact, be hexatic, as originally pointed out 
by Nelson 171. In fact, some tension is generated by the volume constraint, as footnoted below, so there 
are crossover effects. In addition, the molecules in the two-dimensional solid s tate  are often tilted, an effect 
whose consequences for the shape problem have been explored by Macintosh and Lubensky [8]. 

'The phospholipid bilayers which appear in biological structures are (almost) always in the fluid phase. 
3Actually, in a vesicle, a small surface tension is generated a t  nonzero temperatures by the volume and 

area constraints. 
4The  membrane undergoes rupture a t  about 3% t o  5% excess area per molecule [lo]. 



It is important to  distinguish between flaccid and turgid vesicles. The vesicle volume is 

set by strong osmotic forces. The bilayer is an effective barrier to  solute species but not to 

water. Thus, water flows across the membrane until the internal and external osmolarity 

are balanced. If the required volume is larger than 

then elastic expansion of the relaxed area A. is required. Under these conditions, the 

vesicle is "turgid," the dominant energy is just the stretching energy, and the vesicle shape 

is effectively spherical. For volumes less than Vo, the vesicle is "flaccid", its shape cannot be 

spherical, but a whole range of nonspherical shapes is available to accommodate the required 

volume. The elastic constant K is sufficiently large so that, under flaccid conditions and 

subject only to the tensions which are generated by the geometrical constraints , the area 

change is negligible and the overall area of the vesicle remains effectively fixed at  Ao. Our 

experiments are for flaccid vesicles. 

The mechanical energy of a flaccid vesicle is still elastic in origin. As we shall see in 

more detail in Chapter 2, there are two contributions. The first is a bending elasticity, which 

comes about because bending the membrane splays the constituent molecules of the bilayer 

leaves relative to one another. This changes their chain configurations and the relative 

position of the lipid headgroups and, thus, costs elastic energy. In addition, the constituent 

lipid molecules have, in general, a natural or spontaneous splay in the relaxed state. Any 

asymmetry of this tendency between the two leaves of the bilayer produces a tendency 

for the membrane to assume a curved configuration in its relaxed state. This deviation 

from a flat sheet may be described by a preferred or "spontaneous" radius of curvature 

Ro, described by the so-called spontaneous curvature parameter Co = l /Ro. The second 

contribution is a direct consequence of the bilayer structure: "Flip-flop" processes, which 

transfer molecules from one leaf of the bilayer to the other, are slow on mechanical timescales 

[ll, 121, principally because of the high energy necessary to  drag the hydrophilic head 

group through the hydrophobic bilayer interior. Thus, the difference between the number 

of phospholipid molecules in the inner and outer leaves of the bilayer is effectively fixed and 

determines a difference AAo between the relaxed areas of the inner and outer leaves. If the 

overall configuaration of the vesicle is not consistent with this initial relaxed area difference, 

then one of the leaves must be stretched relative to the other, with a corresponding cost in 

elastic energy. Both these effects lead to contributions to the energy of order K D ~ ,  where 

50f course, if A. is too small, rupture occurs. 



D is the thickness of the bilayer, so it is crucial to include this relative stretching of the 

monolayer leaves in the shape problem. At room temperature, K D 2  is typically large on 

the scale of the thermal energy ~ B T ,  so mechanical considerations apply to  the overall vesicle 

shape, and thermal fluctuation effects are usually (but not always) small for micron-scale 

phospholipid vesicles. 

The equilibrium shape of a vesicle is determined by minimizing the mechanical energy. If 

the vesicle starts from a nonequilibrium configuration or if the parameters of the system are 

abruptly changed, the vesicle shape relaxes to the new condition of mechanical stability by 

a complicated dynamics which involves a combination of shape evolution, two-dimensional 

flow in the membrane, three-dimensional bulk flow in the surrounding fluid, and sliding of 

one monolayer over the other. For the micrometer-scale vesicles of our experiments, typical 

relaxation times are in the range - lo2  s. 

So far, we have sketched the behavior of ideal single-component laboratory vesicles. Na- 

ture uses phospholipid bilayer membranes in a wide variety of biological structures. Because 

of functional requirements, such membranes are typically far more complex than the simple 

membranes described above. We will briefly mention some of the added structure in the 

following paragraphs. 

First of all, biological membranes are chemically complex and contain many different 

lipid and nonlipid species. There are a variety of distinct phospholipids, with different 

headgroups (charged and uncharged) and different hydrocarbon chain lengths. There is 

also another major class of lipids, the so-called glycolipids, which play an important role 

in signal transduction and targeting [13]. And, then, of course, there is cholesterol, which 

is believed to  have a mainly structural role, strengthening the membrane and, at the same 

time, widening the temperature range of the fluid phase [9]. 

Second, according to  the fluid mosaic model [14], the fluid bilayer serves as a matrix 

for functional proteins, which may be incorporated into the membrane as transmembrane 

proteins or adsorbed on the membrane surface. Indeed, by weight, most of a typical biomem- 

brane consists of proteins, so one has to be very careful in generalizing properties of a pure 

lipid bilayer to  those of biomembranes. An (arbitrary) example of the plethora of such 

specific functional proteins are molecular pumps, which regulate the chemical composition 

6By contrast, the energy cost of an overall stretching of both leaves is of order KAo, which is much larger 
than the bending-energy contribution. Thus, such overall area changes are strongly suppressed, as noted 
above. 

7The generic technical statement is that thermal fluctuation effects are small as long as the vesicle size 
is significantly smaller than the de Gennes-Taupin persistence length, 6, a a o e z p ( 4 n r c / 3 k ~ T ) .  In fact, even 
this statement requires qualification: Near a shape instability one or more fluctuation modes become soft. 
Such soft modes can have important thermal effects, as we shall see in Chapter 6,  even when 6, is large. 



of the cytoplasm and the interior of the cellular organelles. 

And, third, proteins anchored in the lipid-bilayer matrix may form interlinked structures, 

which give the otherwise-fluid membrane some of the (solid) elastic structure of a cross-linked 

network. A particularly simple example is the spectrin network of the red-cell cytoskeleton. 

The red blood cell (rbc) is one of the simplest biological membranes; nevertheless, all of 

the above complexity is realized even in such a "minimal model." The rbc membrane has 

receptors in the so-called glycocalix, which extends out into the exterior fluid. It employs 

protein pumps incorporated into the phospholipid bilayer. And, it possesses a cytoskeletal 

structure, including a spectrin network, which is attached on the cytoplasmic side of the 

membrane. The rbc cytoskeletal network is restricted to the vicinity of the plasma mem- 

brane and does not extend more than about 100 nm into the cell interior. More typically, 

in other cells the cytoskeleton extends deep into the cytoplasmic interior of the cell. Never- 

theless, biochemical properties first identified in the rbc have often proven to  be of general 

significance, and the rbc continues to serve as a useful paradigm [15]. 

All the additional elements just enumerated influence the properties of the lipid bilayer. 

In turn, the (elastic) properties of the bilayer have consequences for protein function [16]. 

The whole system can only be described as a composite entity. Although a full physical 

description of a real biological membrane is beyond present capabilities, one may hope that 

the identification of some specific membrane properties and their separate study in well 

defined artificial systems or simple biological systems (such as the rbc), which are suffi- 

ciently controllable to allow a quantitative description, will contribute to an understanding 

of membrane function in the cellular environment. For further discussion of the possible 

role of elastic energies in the cell, we refer the reader to [17, 18, 191. 

In the previous few paragraphs, we could only give a glimpse of some of the properties of 

real membranes. There is a much wider spectrum of research on the physics of membranes. 

An overview of the field can be obtained in various reviews and proceedings [21,22, 23, 241. 

1.2 The Shapes of Red Blood Cells and Artificial Vesicles: 

A Brief History 

In this Section, we review some of the early history of vesicles shapes. Such work was 

originally motivated largely by biological structures, shape studies of red blood cells under 

various conditions being a prototype example. 

'The interior of the rbc is filled with hemoglobin. 



The biconcave discoid shape of the normal resting rbc has long been observed in mi- 

croscope pictures. There have been many studies of abnormal rbc shapes, including both 

clinical observations of pathological shapes [25] and, more recently, in vitro studies of rbc 

shape changes induced by chemical treatment [26]. In these studies, different chemical treat- 

ments produce different cell morphologies in a systematic manner. Observed shapes range 

from cup-shaped stomatocytes to crenated and echinocytic cells. 

Before theoretical models of rbc shape could be proposed, it was necessary to understand 

the membrane microstructure. The first evidence for the existence of the bilayer was found 

in 1925 by Gorter and Grendel [27]. However, it was not until the early 1970's that it was 

recognized that biological membranes generally have a composite structure, with a fluid 

lipid bilayer [14] containing proteins which form or are chemically linked to a cytoskeletal 

network. 

On the basis of these structural observations, elastic models of rbc shape were proposed 

starting in the 1970's. Canham proposed in 1970 [28] that the dominant energy of the rbc 

was a bending energy (see Sec. 2.2) and that the normal rbc shape could be understood as 

one which produces a minimum of this bending energy. 

Canham's work did not include a spontaneous curvature. Coming from a background in 

liquid crystals, Helfrich in 1973 [29] generalized Canham's work to include a spontaneous 

curvature (of unspecified origin) to describe the tendency of a vesicle for concave or convex 

curvature. 

In 1976 Deuling and Helfrich [30] used a variational procedure to minimize the bending 

energy. By exploring a range of parameters such as vesicle area, volume, and spontaneous 

curvature, they were able to produce a "catalogue7' of vesicle shapes which included the 

native shape of the rbc, the discocyte, and most but not all of the pathological rbc shapes 

observed in experiments. In a later paper [31], they compared the theoretically obtained 

shapes to experimental rbc contours, gathered in pioneering work by Evans and coworkers 

[321. 
Both Canham and, originally, Helfrich treated the membrane as a single elastic layer, 

with no explicit reference to  bilayer structure. The importance of the bilayer structure was 

first noted in 1974 by Sheetz and Singer [33] in the form of the "bilayer-couple hypothesis." 

In the same year, this concept of a bilayer-couple was formulated in the context of elasticity 

theory by Evans [34] and Helfrich [35]. It was noted by these authors that the shape of 

a closed bilayer vesicle should, because of elastic effects, depend on the difference AN in 

the numbers of molecules contained by the two constituent monolayers of the bilayer. This 



idea was further developed in 1989 by Svetina and Zeks [36] who performed actual shape 

calculations allowing for an effective non-local spontaneous curvature induced by the area 

differenceg AAo cc AN . 
It was demonstrated experimentally by Evans and coworkers in the 1970's [37] that the 

rbc has an appreciable resistance to shear. Its plasma membrane is, therefore, not completely 

fluid, which is an important realization with regard to the problem of the rbc shape. On 

the basis of these observations Evans proposed in 1980 [38] a model for rbc shape which 

included shear elasticity. It is now clear that this shear rigidity is caused by the spectrin 

network of the rbc, which is coupled to the membrane by specific protein complexes. lo 

The issue of how much this network influences or even dominates cell shape is controversial 

and not yet resolved. It is evident, however, that the spectrin network serves to support the 

membrane structure and provides the rbc with the necessary robustness it needs in order 

not to be torn apart in the fine capilaries each rbc is pumped through repeatedly during its 

life cycle. 

The biological reason(s) for the biconcave shape of the rbc are not clear. It could be that 

this shape represents the optimal compromise between low resistance to tank treading of 

the cell in the blood vessels, which would be lowest for a sphere, and sufficient deformability 

to squeeze through small capillaries. 

Nonbiological vesicles, artificially produced from a single pure lipid species, offer the 

possibility of studying vesicle-shape behavior without the complications of the cytoskele- 

ton or of the multicomponent lipid mixture which characterizes all biological membranes. 

Vesicles with a diameter on the order of 100 nm have been studied extensively because of 

possibilities for medical and cosmetic applications. However, shape observations of such 

objects are difficult and have only been achieved recently by cryo-electron microscopy [40]. 

Thus, to date, laboratory vesicle-shape studies have concentrated on giant vesicles, with 

typical diameters in the range of 2-20 pm. Shape studies on giant vesicle were initiated 

by Duwe, Engelhardt, and Sackmann in 1986 [41]. The first systematic work was done in 

199011 by K2s and Sackmann [49, 501. These latter measurements were mainly conducted 

with single-lipid vesicles in distilled water. Shape changes were induced by controlling the 

~ o l u m e - t o - ~ ~ ~ ~  ratio of the vesicles. This ratio can be decreased by osmotic deflation of 

the vesicle volume or by thermal expansion of the membrane area. As more area becomes 

'In this work, the geometrical area difference AA was constrained to be equal to the molecular area 
difference AAo. 

'OImportant proteins are Actin, Band 3, Band 4.1, and Glycophorin A [39]. 
''Earlier experiments with artificial giant vesicles focused on the measurement of the elastic bending 

modulus [42]and were done by a large number of groups. [43, 44, 45, 46, 47, 481 



available, nearly spherical vesicles generally deform into oblate or prolate ellipses. Under 

further deflation, these shapes eventually become unstable to other morphologies. One of 

these shape transitions is the so-called budding transition, where a small bud is expelled 

from the parent vesicle (see Fig. 1.1). Depending on the spontaneous curvature Co and area 

difference AAo of the membrane, such processes can also lead to  "inverted" shapes where 

some exterior fluid is engulfed t o  form a stomatocyte or even an internal bud. 

Figure 1.1: Example of a budding transition. For large positive spontaneous curvature Co 
(and/or large differential area AAo), prolate vesicle shapes become unstable to budding as 
the volume-to-area ratio is decreased. The two video pictures show snapshots of a fluctuating 
vesicle before and after the budding transition. The pictures were obtained by phase contrast 
microscopy. The focal plane defines a cut through the vesicle body. It has been set in such 
a way as to  include the axis of rotational symmetry of the vesicle. 

Changing temperature affects not only the volume-to-area ratio of a vesicle but also 

the area difference between the monolayers (and possibly the spontaneous curvature). As 

will be described in Chapter 2, these two (three) parameters determine the vesicle shape, 

so temperature is an effective experimental control parameter which drives vesicles along 

thermal trajectories in a two-dimen~ional'~ parameter space. 

Experimental trajectories were interpreted by Berndl, Kas, Lipowsky, Sackmann, and 

Seifert [50, 491 using the so-called AA or area-difference model. l3 This model focuses 

on the bilayer aspect of the membrane. It assumes that the geometrical area difference 

between the exterior and the interior monolayers is directly proportional to the difference 

in the number of molecules, i.e., it does not allow for relative stretching or compression 

of the monolayers. The budding transition is predicted to be a second-order transition in 

this model [51]. The up/down symmetry of a prolate vesicle is continuously broken in the 

121t turns out that  the spontaneous curvature and the area difference influence the shape only through a 
combined quantity, which will be defined in Sec. 2.4. 

13Historically, this model was also called the bilayer-couple model [36]. 



transition to a pear-shaped vesicle, which then smoothly evolves into a budded configuration 

as the volume-to-area ratio is further reduced. In contrast, the experiments performed in 

[49] find a continuous symmetry breaking to a pear shape, followed by a sudden necking 

down of the pear to form the bud [50]. 

A spontaneous first-order transition was, in fact, predicted by Miao, Fourcade, Rao, 

Wortis, and Zia [52] as well as by Seifert et al. [51] for the spontaneous-curvature (SC) 

model (see Sec. (2.2)), which neglects the bilayer aspect of the membrane but introduces a 

preferred curvature of the membrane. In this transition, however, the bud is expelled directly 

from the symmetric prolate state, and no stable weak pears (as apparently observed in [50]) 

are predicted. Thus, it would appear that neither of the two earlier models is capable of 

fully describing the experimental situation. It is a central goal of this thesis to resolve this 

puzzle by interpreting the data within the context of a more general bending-energy model, 

the area-difference elasticity (ADE) model (see below). 

In the experiments cited above, shape transitions were induced by thermally control- 

ling the volume-to-area ratio and the area difference of the vesicles. One can also keep the 

volume-to-area ratio fixed and change only the difference in molecular area between the 

outer and inner monolayer. This differential area can be set by controlling the difference in 

the number of molecules via a pH gradient across the membrane. This technique has been 

developed by Cullis and collaborators for a lipid mixture of phosphoridylcholine and phos- 

phoridylglycerol [53] l4 and was applied successfully by Mui et al. [54] to large unilamellar 

vesicles (LUV's) with a mean diameter of 100 nm. l5 Experimentally observed shapes 

(see Fig. 1.2) resemble semi-quantitatively theoretically obtained contours. This result is 

encouraging and strongly supports the notion that bending elasticity is a valid concept to 

describe shapes of membranes over a range of length scales. 

The differential area of vesicles can be changed not only by pumping lipids from one 

monolayer to the other but also by selectively removing molecules from the outer monolayer 

or adding them to it. This can be achieved by setting the chemical potential of membrane 

area via certain additives to the exterior solution. l6 Experiments by Farge and Devaux 

14The pH gradient controls the degree of dissociation of the glycerol headgroup. Since the neutral form has 
a higher flip-flop probability than the charged one, the phosphoridylglycerol lipids distribute asymmetrically 
across the membrane. Setting the pH gradient, thereby, allows to control the number difference between the 
two monolayers, and, thus, the differential area. 

''In the biochemical literature these vesicles (100 nm), which are prepared by extrusion, are called large 
a s  opposed to small vesicles (25 nm) produced by sonification. 

16The monolayer area is set by the chemical equilibrium between additives within the membrane and 
in bulk solution. This equilibrium can be controlled by the concentration of additives, like lyso-lipids, or 
albumin. 



Figure 1.2: Example of Nanometer Vesicle Shapes. The picture was obtained via cryo 
electron microscopy [54]. Shapes with various volume-to-area ratios are visible. All observed 
shape contours (in this picture) have a theoretical counterpart obtained via minimization 
of the bending energy of the ADE model. 

[55] used this idea to modify the shapes of giant (pm) vesicles. These papers [54, 551 

demonstrate clearly that an excess of molecules on the outer monolayer leads to  outwardly 

curved shapes, whereas an excess of molecules on the inner monolayer results in inwardly 

curved morphology. 

In vesicles composed of a single lipid species the topology usually does not change during 

the budding transition, i.e., full fission does not occur and the bud remains attached to  the 

parent vesicle by a narrow neck. However, in multi-component vesicles the bud can fission 

off from the parent (see Fig. 1.3). This process has been studied in vesicles prepared from 

the natural phospholipid sphingomyelin by Dobereiner, Kas, and collaborators. Fission was 

found not only in giant vesicles with a size of about 10 pm but also in much smaller vesicles 

on the submicron scale. [I91 

None of the vesicle-shape data gathered in all of the experiments mentioned above has 

been compared in detail to theory. So far, the interpretation of experimental vesicle shapes 

has been limited to  the identification of symmetry classes and estimated thermal trajectories. 

The major accomplishment of this thesis is the development of a technique for quantita- 

tive shape measurement, From data collected by this technique, all the elastic parameters 

relevant for vesicle shapes can in principle be extracted. Thermal shape trajectories are 



Figure 1.3: Example of fission of sphingomyelin vesicles. The video sequence shows the ex- 
pulsion of a small bud as the volume-to-area ratio is decreased. After spontaneous budding, 
the satellite separates from the parent vesicle (see the last picture). 

followed in detail through the parameter space and described within the ADE model, which 

will be introduced in Sec 2.4. 

Because it interpolates between the two previous models (SC and AA), the ADE model 

provides a convenient framework for comparison of theoretical and experimental shapes and 

shape trajectories. This model, parts of which were originally proposed in 1974 by Evans 

[34, 381 and Helfrich 1351, was derived from a simple mechanical model of the bilayer in 1985 

by Svetina, Brumen, and Zeks 1561. l7 In 1992, the first actual shape calculations in that 

model were performed by Miao et al. [57, 58, 591. 

In this thesis, the ADE model is tested in several ways. We find that it is, indeed, 

necessary to include aspects of both the SC and AA models in treating the bending elasticity 

of the bilayer in order to  account for all experimental vesicle-shape observations. 

"A systematic derivation of the ADE model along the same lines can also be found in [57, 581. 



1.3 An Overview of the Thesis 

Chapter 2 reviews the ADE model and its predecessors. This material provides a context 

and a language for describing the experimental observations. A schematic phase diagram of 

the ADE model is given. 

Chapter 3 is devoted to a description of experimental techniques, including sample prepa- 

ration, chamber construction, and data collection. For stable observation of vesicle shapes 

over long times, it is necessary to restrict motion of vesicles so that their shapes can effec- 

tively be monitored in a fixed focal plane. This is done by making the surrounding aqueous 

so1utio.n slightly less dense than the vesicles themselves, so the vesicles sink to the bottom 

of the measuring chamber. For prolate vesicles, then, the symmetry axis remains in or close 

to a single horizontal plane. Observations of vesicle shape are done by phase contrast video 

microscopy, looking upward through the transparent floor of the experimental chamber. 

Thus, the upshot of the experiments is a set of two-dimensional video images, which may 

be computer analyzed in real time1' or stored on tape for later use. The algorithm used to  

digitize the vesicle contours is described in detail. 

Chapter 4 discusses the procedures we have developed for analyzing these digitized 

vesicle contours. Much of our work is focussed on the part of the (shape) phase diagram 

which includes strongly prolate shapes, both near and beyond the budding boundary. To 

parameterize such shapes, we have developed a mode expansion based on identifying the 

mean symmetry axis and expressing the contour angle with respect to this axis as a function 

of the arclength from the pole. We address the principal problems and uncertainties with 

regard to finding the correct reference frame for analyzing a fluctuating shape and for 

reconstructing three-dimensional shapes from two-dimensional contour data. 

In Chapter 5, we are (mostly) interested in the fluctuation spectrum of a vesicle. We 

analyze in detail a particular set of vesicle-shape thermal trajectories, in which a prolate 

shape becomes unstable to bud formation as temperature is increased. We argue from 

the data that this instability of the symmetric prolate is, in fact, a spinodal instability 

marking the limit of stability of a metastable branch of shapes. The experimental data on 

the variation of static and dynamic shape fluctuations are consistent with a simple Landau 

theory based on an order parameter which measures the up/down asymmetry of the vesicle 

shape. We observe that vesicles are in general slightly asymmetric, even in the theoretically 

"symmetric" prolate state of the ADE model. 

In Chapter 6, the mean shape amplitudes are analyzed for a range of vesicles. This 

"This does not imply that each video frame is analyzed. 



information is then turned into a consistency check of the validity of the ADE model. To 

place each vesicle in the phase diagram, one needs not only the volume-to-area ratio of 

the vesicle, which can be infered directly from shape geometry, but also, as it turns out, a 

combination of variables which measures the spontaneous curvature and the monolayer area 

difference. Once these parameters are known, each vesicle can be located on an experimental 

phase diagram, which can then be compared with its theoretical counterpart. In principal, 

all elastic parameters relevant for vesicle shapes can be obtained from an analysis of the 

thermal shape trajectories. However, this analysis is complicated by finite-temperature and 

gravitational corrections to  the vesicle shape, and we address these issues as well as we can. 

In Chapter 7, we summarize our work and collect all the evidence in support of the 

ADE model. One central question is whether the budding transition is a continuous or 

discontinuous transition. We argue in this thesis that our data are consistent with an 

interpretation of budding as a discontinuous first-order transition with hysteretic behavior 

in accordance with the ADE model. 



Chapter 2 

Theory of Vesicle Shapes 

This Chapter presents the theory of shapes of fluid-phase lipid vesicles. As emphasized 

originally by Canham [28], the equilibrium shape of a vesicle is expected to  be that shape 

which (globally) minimizes its energy subject to  appropriate constraints. More generally, 

a shape may be mechanically (meta-) stable, if it is a 1oca.l energy minimum subject to  

appropriate constraints. In either case, identification of the right energy functional (with 

its associated constraints) is the central theoretical issue. 

Historically, there have been two somewhat different bending-energy models, which are 
' now incorporated into a single more-general model, the area-difference elasticity (ADE) 

model. In Secs. 2.2 and 2.3, we will define for completeness the earlier spontaneous curvature 

(SC) and area-difference (AA) models. The general ADE model is described in Sec. 2.4. 

The important parameters of the ADE model will be introduced and discussed and the 

general features of the predicted shape (phase) diagram for low-temperature structures will 

be described. The summary of results in Sec. 2.4 will be restricted to  a generic description 

only. Specific results will be cited later in the text, as they are needed in the discussion of 

the experimental results. 

2.1 Geometrical Constraints 

Since constraints come into all three models, it is appropriate to  discuss them at the outset: 

(a) Fixed volume. All three models constrain the vesicle volume V. Physically, this 

requirement arises because the membrane is permeable to  water but not t o  solvent 

molecules (on the timescale of mechanical experiments). Thus, the volume of the 

vesicle responds immediately to any difference in osmolarity between the interior and 



exterior aqueous environments. The energies involved in this osmotic balance are large 

on the scale of bending energies, so, once achieved, osmolarity balance assures volume 

conservation during mechanical shape equilibration. It is, thus, the permeability of the 

membrane to water which is responsible for the constancyof the enclosed water volume 

at given osmolarity. The amount of osmolarity difference which can be induced by 

membrane curvature depends on the curvature scale. This difference can be estimated 

by equating the change in bending energy EB with volume V to the osmotic pressure 
[51], 2 ! h w  av - E% - - RT An, where R is the gas constant; T, the temperature; and An, 

the molarity difference. With K = 10-19J and V = 2 ( 1 0 ~ r n ) ~ ,  one finds at room 

temperature the extremely small number An = 10-lo mol/l. Keeping the volume 

constant during minimization is, therefore, an excellent approximation. 

(b) Fixed area. All three models constrain vesicle membrane area A. This requirement 

is a consequence of the existence of the preferred, relaxed area a0 per headgroup, as 

introduced in Chapter 1. The relative importance of membrane area elasticity versus 

bending elasticity can be investigated employing a simple model of stress distribution 

within the bilayer [57, 581. In this approach, each monolayer is taken to consist of 

two hypothetical surfaces (representing the heads and tails of the lipid molecules), 

where all the elastic forces are imagined to be concentrated. Each individual surface 

has a preferred area but does not resist bending. The bending elasticities of the 

monolayers individually and of the bilayer as a whole are a result of the relative 

stretching/compression of these surfaces relative to one another. One finds that the 

energy scale for an overall expansion of the bilayer area is larger than that for a for 

pure bending deformation without overall stretch by a factor ( R * / D ) ~  N lo6, where 

Ra = ( ~ / 4 7 r ) t  is the area-equivalent radius of the vesicle which measures the overall 

scale of the membrane curvature. It is, thus, a very good approximation to assume 

that the membrane area is fixed. 

(c) Fixed area difference. This constraint enters only in the AA model. In the AA model, 

the area difference AA between the outer and inner leaves of the bilayer is assumed 

fixed. Under the assumption of fixed membrane thickness D, the area difference AA 

is directly connected to the vesicle shape via a simple geometrical relation to the 

integrated mean curvature, 



where C1 and Cz are the local principal curvatures of the membrane. The integral runs 

over the full vesicle surface. Now, the requirement of a fixed area difference reflects 

the picture that (i) the number of lipid molecules, NOUt and Nin, in the inner and outer 

leaves of the bilayer are separately conserved for low-solubility lipids in the absence of 

flip-flop and (ii) the actual area difference AA is proportional to the fixed difference 

N i n  - NOut via the relation, 

which equates AA to AAo, the relaxed area difference of the two monolayers. Under 

these assumptions, the fixed value of NOUt and Nin places a hard constraint on the 

integrated mean curvature of permissible vesicle shapes. In fact, as we shall argue in 

Sec. 2.4, assumption (i) is valid but assumption (ii) is false, and, indeed, the elastic- 

energy contribution of a difference between AA and AAo is entirely comparable to  

the bending energy. Thus, the assumptions of the AA model are not really viable. 

We come now to a discussion of the three bending-energy models. 

2.2 The Spontaneous Curvature Model 

In the SC model, the elastic bending energy is obtained by integrating over the whole vesicle 

area the contributions from local deviations in mean curvature from the preferred relaxed 

state. Helfrich's original model [29, 301 is based on the following Hamiltonian: 

where n is the (local) bending modulus. The spontaneous curvature Co explicitly recognizes 

the possibility that the relaxed state of the membrane is not flat. In the SC model the shape 

is found by minimizing Eq. (2.3) for given, fixed enclosed volume V and membrane area A 

of the vesicle. 

Generally, we expect that elastic energies should be independent of overall translations 

and rotations of the vesicle. For this reason, we expect that an energy functional such as 

Eq. (2.3) should depend only on local Euclidean invariants of the vesicle shape. Low-order 

surface invariants can all be built from the local curvature tensor C, whose eigenvalues are the 

principal curvatures Ct and Cg. Isotropy (of the fluid membrane) prohibits invariants which 

distinguish between the two principal axes. Thus, to second order in the curvature, the only 

available invariants are Tr C = C1 + C2 (the mean curvature), (Tr C)2, and Det C = ClC2 



(the Gaussian curvature). Equation ((2.3) contains the first two of these invariants. The 

third has been omitted, since the Gauss-Bonnet theorem [60] guarantees that the integral 

of the Gaussian curvature over a closed surface is a topological invariant. Since we shall be 

considering vesicles of fixed, spherical topology, such a term contributes to the energy only 

an uninteresting constant. 

2.3 The Area-Difference Model 

The AA model is based on a Hamiltonian which is formally identical to  (2.3) with Co set 

to zero: 

The energy minimization is now taken at fixed AA in addition to fixed V and A. Inspec- 

tion of Eqs. (2.3) and (2.4) reveals that the SC and AA models are related via a Legendre 

transformation, in which Co and AA are conjugate variables. Thus, including a sponta- 

neous curvature in the Hamiltonian (2.4) would only add an irrelevant constant term. The 

Legendre-transformation connection means that the two models have, in fact, the same set 

of shapes as stationary-energy solutions. This does not imply, of course, that the phase 

diagram is the same, since at  equilibrium it is the lowest energy stationary shape which is 

selected and this will in general be different for the different models. 

2.4 The Area-Difference-Elast icity Model 

2.4.1 The Hamiltonian 

The ADE model can be derived [56, 57, 581 starting from the model of stress distribution 

within the bilayer mentioned in Sec. 1.2. As was already pointed out, the energy scale for an 

overall expansion of the bilayer area is much larger than for pure bending of the membrane. 

However, the bending contributions which come from relative stretching and compression 

of the monolayers at fixed bilayer area are of the same order in an expansion in D/RA as 

those which originate from bending the monolayers separately. The upshot is that the mean 

area A. = ( A r t  + ~ ? ) / 2  can be assumed fixed, whereas changes in the area difference 

AA = AoUt - AZ" away from its relaxed value AAo = A r t  - AE have an elastic energy cost 

which is entirely comparable to  the bending energy. Thus, the assumption in the AA-model 

of a fixed area difference is untenable and must be dropped. 



The ADE model consistently keeps all terms up to order O(D/RA) and is given by 

where ii is called the nonlocal bending modulus of the membrane. In the ADE model, the 

shape is found by minimizing Eq. (2.5) at fixed enclosed volume V, membrane area A, and 

relaxed area difference AAo of the vesicle. Note that, while the first term is an integral of 

a local quantity, the second term depends on the square of the area difference (2.1) and, 

therefore, appears to be nonlocal. Actually, this term arises as the integral of an elastic 

energy associated with the local area compressibility of the monolayers. The fact that the 

two-dimensional (fluid) density becomes uniform over the individual monolayers allows 

the elastic field to  be eliminated from the problem and leads to  the apparently nonlocal 

shape interaction [58]. We shall find in what follows that the relaxation of the constraint 

AA = AAo makes the physics of the ADE model very different from that of the AA model. 

Because the extra term in the ADE energy functional only depends on the vesicle shape 

through the variable AA, it follows that the catalogue of stationary shapes for the ADE and 

AA models are the same. We shall use this fact extensively in Chapter 6, when we discuss 

the mapping of the experimental shapes into the ADE-model phase diagram. 

In the remainder of this section, we discuss the important control parameters of the 

ADE model. The two elastic moduli K and E have units of energy. At T = 0, where the 

overall energy scale disappears, it is only the ratio, 

which is relevant to  the shape problem. The remaining parameters in the energy functional 

(2.5) are all lengths and areas. Thus, the dimensionless factors which multiply K and it are 

invariant under a transformation that rescales all lengths by the same factor. We exploit 

this invariance by choosing a length scale based on the area-equivalent radius, RA defined 

by A = ~ T R A ~ .  This allows us to introduce the following dimensionless quantities: 

The reduced volume, 

the reduced value of the relaxed area difference, 

'Since the monolayers can slide past one another, they are uniformly stretched or compressed in equilib- 
rium. In general, there are cross terms between bending and stretching contributions to the energy, which 
lead to a non-uniform monolayer density. These terms come in only in higher order and are smaller by a 
factor ( D I R A ) ~  N [58]. 



and the reduced spontaneous curvature, 

as well as Aa = AA / (8nDRA) and c; = CiRA, ic{1,2), in parallel with Eqs. (2.8) and 

(2.9). In terms of these quantities, we may reexpress the energy functional (2.5) in scaled 

form, 

where da = dAI(47rRI). Note that, in this form, the relaxed area difference Aao and the 

spontaneous curvature co appear only in the combination, 

This observation is already evident in Eq. (2.5), since, apart from uninteresting, shape- 

independent terms, Co and AAo both enter only as multipliers of the integrated mean 

curvature. It will play an important role in our analysis in Chapter 6. 

The three relevant dimensionless parameters of the ADE model are, therefore, a ,  v, and 
- 
Aao. We now discuss each one briefly: 

The ratio a measures the relative importance of the two terms in Eq. (2.10). For a = 0 

there is no resistance to bending from differential area elasticity, and one recovers the SC 

model. For a -t oo the geometrical area difference AA does not deviate from the preferred 

area difference AAo of the monolayers, and the ADE model reduces to  the AA-model. The 

dimensionless parameter a has been estimated as 1.4 for SOPC, and generally is of the 

order of unity for common phospholipids [58]. This estimate is directly corroborated by 

recent measurements [61], thus demonstrating the necessity of treating the two terms in 

Eq. (2.10) on an equal basis. Note that the ratio a of elastic moduli is characteristic of 

the lipid molecules (and to  a lesser extent their aqueous environment) but should not vary 

between one vesicle and another in the same preparation. 

The reduced volume v is a purely geometrical quantity and measures in effect the mem- 

brane area available for shape changes. Spherical vesicles (v = 1) have no freedom to adjust 

their shape. For smaller reduced volume v, more shape geometries become available and the 

branch structure of the minima of Eq. (2.10) gets increasingly complicated. A completely 

collapsed vesicle, without any interior volume, would correspond to v = 0. 

The parameter Go measures the tendency of the membrane to curve. We may call it an 

effective area difference or, alternatively, an effective spontaneous curvature, depending on 



the viewpoint. In any case, it reflects the different sources of preferred membrane curvature. 

A large positive scaled area difference Aao tends to curve the membrane outward, while a 

small or negative value favors invaginated shapes. Likewise, a scaled spontaneous curvature 

co different from unity would favour outwardly or inwardly curved shapes with respect to  

the unit sphere. It is the combination of the two parameters which determines the shape, 

the relative contributions being fixed by the ratio cr of elastic moduli. 

2.4.2 The Phase Diagram 

For given a ,  the T = 0 equilibrium shape of a vesicle is uniquely determined by the two 

control parameters v and G o .  As these parameters vary, the equilibrium vesicle shape 

(i.e., the lowest-energy shape) changes. Almost everywhere in the two-dimensional (v,&) 

phase space, the change is smooth; thus defining distinct regions of a (shape) phase diagram. 

Across special loci in the two-dimensional phase space, the shape may change in a nonan- 

alytic manner, thus defining phase boundaries. The shape change across a phase boundary 

may be abrupt ("first-order," discontinuous) or it may be smooth ("second-order," contin- 

uous), as when a shape evolves smoothly from one symmetry class to  another ("symmetry 

breaking7'). A generic example of such a (shape) phase diagram for the ADE model is shown 

in Fig. 2.1. From a theoretical perspective [58], such a phase diagram reflects the structure 
" of the solutions of the variational equations which express the minimization of the energy 

functional (2.10) subject to appropriate constraints. These Euler-Lagrange equations [52] 

are highly nonlinear and have, in general, many solutions, describing different branches of 

stationary shapes. Along any given branch, shapes generally change smoothly, as the control 

parameters are varied. At nondegenerate points in the phase diagram, one of the solutions 

has an energy which is less than all others. At phase boundaries, two or more solutions 

become degenerate. A first-order transition occurs, when two branches (corresponding to  

different shapes) cross, one replacing the other as the equilibrium (lowest-energy) shape. 

Second-order boundaries occur when the lowest-energy branch undergoes a bifurcation. 

A brief discussion of the general features of the phase diagram of the ADE model [62,63] 

is given in the caption of Fig. 2.1. A detailed examination of the part of the diagram which is 

relevant for the experimental results presented in this Thesis, i.e., the region of the budding 

transition, will be done later in Sec. (5.1). 

2~ flat membrane sheet would be stable for L o  = 0. 

20 



Figure 2.1: Generic ADE Phase Diagram for (I: = 1.4 . The control parameters of vesicle 
shapes are the reduced volume v and the effective differential area Go. The reduced volume 
v describes the geometrical quantity volume-to-area ratio and is normalized to unity for 
the sphere, which is the largest possible value. Thus, going from the right to the left in 
this diagram, the volume of vesicle shapes decreases until, a t  v = 0, there is no internal 
space left. The effective differential area s o  describes the tendency of the membrane to  
curve. Roughly, positive values Go X 1 correspond to outwardly curved shapes, whereas 
values Zo A 1 correspond to  inwardly curved shapes. The shapes depicted in the diagram 
are globally minimal energy shapes of the ADE bending energy. Their location indicates 
(roughly) the values of the corresponding parameters (v ,nao) .  All shapes shown with full 
lines are rotational symmetric bodies with their axes of symmetry in the figure plane as is 
indicated for one prolate shape. The dashed contour depicts a non-axisymmetric body which 
has a flat starfish-like shape whose arms are approximately axisymmetric. Non-axisymmetric 
shapes (the dashed contour shown is only one example) are the minimal energy shapes in 
the middle part of the phase diagram located in between prolate and oblate shapes for not 
too large values of v. At large values of the reduced volume, prolate and oblate phases are 
directly connected via a (weak) first order transition  DO^'). Near the sphere (v A I), prolate 
and oblate vesicles are the only stable shapes. For small reduced volume, prolate shapes 
develop into long tubes (the boundaries of this region are not known), whereas oblate shapes 
transform into discocytic shapes resembling red blood cells (the further structure of this 
region is also not known). Both phases, prolates and oblates, have an equatorial symmetry 
plane, i.e., they are up/down symmetric. This symmetry is broken for large absolute values 
of lZo - 11. As this parameter is increased, prolate shapes become higher in energy than 
pear shapes at the budding transition (Dpear, Cpear), whereas oblate shapes are eventually 
replaced by stomatocytes as the lowest energy shapes (DSto, Csto). These two symmetry 
breaking transitions can be either first-order (full lines; DPe", Dsto) or second-order (dashed 
lines; Cpew, Csto). Increasing laao - 11 further leads to shapes where the membrane touches 
itself. The two limiting lines (Lpear, Lsto) correspond to shapes which are built out of two 
spheres which sit inside or on top of each other, respectively. Especially, the upper one of 
these lines (LPe") represents the limiting line of the budding transition. The limiting lines 
of the pear and stomatocytic regions have the interesting property that the absolute value 
of Zo diverges as v + 0. The first order transition lines (Dpew, Dsto) of the prolate and 
oblate shapes to  the pear and stomatocytic shapes, respectively, exhibit the same feature. 
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2.4.3 The ADE Model at T > 0 

Since experiments are done near room temperature, it is important to understand the effect 

of nonzero temperature on vesicle shapes. Because the vesicle is a finite system, thermal 

fluctuations wipe out all sharp phase boundaries, at  least, in principle. However, the low- 

lying energies of this finite system are of order K ,  so, as long as kBT/& << 1 ( k B T / ~ s o p c  % 

0 .O4), there are still recognizable boundaries, although they are in principle fuzzy. Shapes 

which are near the principal energy minima will continue to dominate the ensemble; but, 

there are shape fluctuations about the preferred zero-temperature configurations. 

Metastability, i.e., the existence of shapes which are locally stable, but do not correspond 

to the global minimum, will continue to be observable as long as nearby minima are separated 

by energies significantly larger than kBT; however, metastable states must in principle have 

finite lifetimes, since the full stationary ensemble averages over all low-lying regions of phase 

space. As a consequence, all thermodynamic states have the full Euclidean symmetry of the 

initial energy functional, and symmetry changes cannot occur. 

Does this make the phase-diagram considerations we have outlined above irrelevant 

to the experiments? The answer, of course, is "no". We shall argue in Chapter 4 that, 

provided we remain in the low-temperature region, it is possible to infer the ideal zero- 

temperature behavior from observation of finite-temperature fluctuating contours. Indeed, 

if fluctuations were unrestricted and Gaussian, then an appropriately defined "mean" of the 

thermally fluctuating experimental shapes would give the exact zero-temperature shape. 

The existence of constraints modifies this picture, introducing thermal shifts of the mean 

shape even at  the Gaussian level. In Sec. 6.6, we shall discuss these thermal shifts and 

estimate their magnitude. It will turn out that normally they are rather small, basically 

because 6/kBT is small. On the other hand, in certain regions of the phase diagram, where 

there are either soft modes or hard constraints, they may become appreciable. 

In regions where the thermal corrections are calculable, it is in principle possible to apply 

thermal corrections to  the observed (room-temperature) data and, thus, to  infer equivalent 

zero-temperature shapes. It is these zero-temperature shapes which must be compared 

with the predicted T = 0 phase diagram [see Chapter 61. In addition, the magnitude of 

the thermal fluctuations provide important information (for example, nearby soft modes 

produce large thermal fluctuations), which can also be compared to the predictions of the 

theory [see Chapter 51. 



Chapter 3 

Experiment a1 Techniques 

3.1 Materials 

For all experiments, vesicles were prepared from the common phospholipids l-Stearoyl-2- 

Oleoyl-sn-Glycero-3-Phosphatidylcholine (SOPC) or 1,2-Dimyristoyl-sn-Glycero-3-P hosphat- 

idylcholine (DMPC). These lipids have their main phase transition at 5 OC and 23 OC , 
respectively [5]. They were purchased in powder form (Avanti) and stored dissolved in 

chloroform:methanol (2: l )  in special chemically inert glass vials (Fischer) below -15 OC . 
It is desirable in shape experiments to cover a large range of volume-to-area ratios 

in order to  sample widely the shape (phase) diagram. Although the thermal expansion 

coefficient of lipid membranes is much larger than that of water, one still needs relatively 

large temperature changes to  induce a significant shape change. Thus, one aims for the 

largest possible temperature interval within which shape experiments on fluid vesicles can 

be performed. The experimental accessibility is, basically, limited by two factors. First, the 

vesicles have to be in a fluid phase and, second, the onset of convection makes observation 

at too high a temperature impossible. In addition, within a range of a few degrees around 

the main transition temperature, the elastic moduli are strongly temperature dependent 

[64], so it is wise in shape experiments to stay well away from this region in order to  avoid 

unnecessary complications. The main transition of SOPC is at a lower temperature than 

that of DMPC, so, for the above reasons, SOPC was used for most measurements. 

'Typical numbers are Pv(H20) CY 3 x 10-*/K and PA(SOPC) CY 3 x ~ o - ~ / K  [lo]. 
2~bservations at 60 OC are still feasible. 



3.2 Preparation of Vesicles 

Preparation was done using a standard technique developed in the laboratory of Evan Evans: 

A few drops (30 p1) of lipid solution (10 mg per ml chloroform:methanol) are spread with a 

syringe needle on a roughened teflon disk. The solvent is evaporated in a vacuum chamber 

overnight. The disk with the dried lipid is placed in a glass beaker (50 ml) and pre-hydrated 

with a stream of Argon saturated with water vapor for about 20 minutes. Then, the desired 

solution for vesicle swelling is added, and the beaker is covered with parafilm and placed in 

the oven. To avoid heat shock, the solution and the beaker with the teflon disk are heated 

separately to  the swelling temperature prior to incubation. Swelling was done with 50 mMol 

sucrose solution at  a temperature of 36 OC . 
Successful vesicle development is indicated by whitish streaks in the swelling solution. 

These streaks are collected with cleaned glass pipettes and incubated into Eppendorf tubes 

at  the swelling temperature. Excess glucose solution (48 mMol) is then added to obtain the 

desired density of vesicles in the observation chamber. The end result of this procedure is a 

vesicle suspension with an interior sucrose solution and an exterior glucose solution (with a 

slight admixture of sucrose). The excess density of the interior relative to the exterior sugar 

solution is approximately 4 g/l. This is needed in order that the vesicles sink gently to  the 

bottom of the experimental cell, as explained in Sec. 3.4.1. 

If not otherwise indicated, vesicles were stored at  the swelling temperature and used 

within a few days. 

3.3 Cleaning 

Cleaning is an important step of the preparation process, since one wants to avoid the ac- 

cumulation of surface-active impurities and dust particles in the membrane. Beakers and 

disks are pre-cleaned with laboratory soap and tap water. They are then rinsed extensively 

in double-distilled water and air dried. Prior to usage, a final cleaning step with chloro- 

fom:methanol is performed. Syringes for application of lipid organic solution to the disks are 

also cleaned before each usage in a two-step process with chloroform:methanol. All aqueous 

solutions are prepared from double-distilled water and filtered. 

31t is believed that the pre-hydration step serves to create coherent lipid bilayer "strata" prior to the 
addition of excess water. This apparently leads to a more gentle vesicle development and more good giant 
unilamellar vesicles. 



3.4 Data Aquisition and Experimental Setup 

3.4.1 Overall Procedure 

The general setup for observation and data collection is shown in Figure 3.1. Vesicles were 

incubated in a tightly sealed microchamber and monitored by video phase contrast mi- 

croscopy. Because of the slightly higher density of the interior sucrose solution with respect 

to the exterior glucose solution, vesicles sink to the bottom cover glass, thus locating them 

conveniently for the optical system. In addition, resting (gently) against the floor of the ex- 

~er imental  cell effectively restricts angular diffusion. For example, a prolate vesicle will have 

its principal axis effectively restricted close to a horizontal plane, as shown schematically in 

Fig. 3.2, thus permitting continuous monitoring of the shape with the "mean" symmetry 

axis4 always in or near to  the focal plane. This restriction of rotational diffusion will play an 

important role in the shape analysis of Chapters 5 and 6. Of course, if the density difference 

is too large, significant gravitational deformations of the free shape may occur. This point 

is discussed in Sec. (6.6.2). 

At this point, the material visible in the microscope focal plane a t  the bottom of the 

chamber is typically highly diverse, including topologically complex and multilamellar ma- 

terial, small vesicles included within larger ones, vesicles with visually obvious defects, 

partial adhesions, etc. In selecting a particular vesicle for detailed observation, we tried to  

identify a vesicle which was topologically spherical, unilamellar, and free of visible defects. 

The final percentage of usable vesicles is small - well below one percent. Furthermore, we 

monitored the fluctuations of each selected vesicle for some time prior to data acquisition. 

In this way, vesicles with "abnormal" behavior (e.g., those exhibiting sudden changes in 

excess area or obviously irregular shapes) could be rejected. Therefore, in order to  ensure 

high quality of the data, analysis has been restricted to a small number of vesicles only. In 

this thesis, we present quantitative results obtained from three different vesicles. The total 

amount of data gathered consists of over 100 hours of video tape containing information on 

numerous vesicles. However, the trajectories of most of these vesicles, unfortunately, were 

not in the (budding) part of the phase diagram which is of interest in this work. In addition, 

it is an extremely elaborate process to record a high quality budding trajectory consisting 

of several data points. On the one hand, one has to measure long enough to obtain good 

4The meaning of the expression "mean symmetry axis" wiU be discussed in detail in Sec. 4.3.2. 
5Structures which have length scales below optical resolution or those which, for other reasons, do not 

result in a diffraction pattern cannot be detected visually, unless for some reason they have a strong effect 
on the local membrane curvature. 
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Figure 3.1: Flow Diagram of Experimental Setup. Details of the micro chamber can be 
found in Fig. (3.3). 



statistics for each point. On the other hand, too long a measurement time for the whole 

trajectory leads to corruption of the data by degradation effects. Out of these reasons, 

only a small number of vesicles were selected for detailed analysis. However, the qualitative 

behaviour encountered in those vesicles not selected is consistent with the picture to be 

presented here. 

To sample a "shape trajectory," data must be gathered at  several different tempera- 

tures. Typically, the recording time for each temperature was about 20 minutes. Water 

bath temperature was adjusted in order to obtain the desired temperature reading from 

the thermocouple within the observation chamber. The chamber was allowed to equilibrate 

for at  least 5 minutes after temperature changes. The precision of constant temperature 

control and temperature determination is f 0.1 OC . Changing the temperature by 1 Kelvin 

corresponds to a change in reduced volume v of only 0.004. Thus, temperature is an ex- 

tremely sensitive control parameter for the reduced volume (compare the typical scale in v 

of different vesicle phases in Fig. (2.1)). 

Time sequences of vesicle contours were recorded by performing image analysis on frames 

captured (Matrox) from the video camera. Each frame analysis was fully completed before 

grabbing the next one. Digitized vesicle contours were stored in computer memory and 

swapped to  disk at  the end of each sequence. Preliminary analysis was performed after each 

sequence, and data were checked for consistency. Data aquisition was normally aborted 

when unusual behaviour was detected. The whole video sequence was backed up to  tape 

(U-Matic, Sony) to allow reobservation after measurements were performed. 



Figure 3.2: A prolate vesicle rests gently under gravity against the floor of the experimental 
cell, because of a slight density mismatch between interior and exterior sugar solutions. 
Gravity inhibits excursions of the vesicle's principal symmetry axis away from the horizontal 
plane. Translational and rotational diffusional motion in which the axis remains horizontal 
are unrestricted and do, in fact, occur. 



3.4.2 Chamber 

The special chamber shown in Figure 3.3 was utilized to monitor vesicles a t  fixed tempera- 

ture. The steel frame (SF) and the two steel plates (SP) containing the water in- and outlets 

are built out of stainless steel and mounted on a glass microscope slide (GS). These parts 

and one cover glass (CG) are permanently glued together with silicone adhesive. Water 

from the temperature bath flows steadily through the water compartment (WC) and keeps 

the observation chamber (OC), which is filled with vesicle solution, a t  the desired temper- 

ature. The observation chamber, separated from the water compartment by a thin cover 

glass (0.17 mm), is cut from a teflon spacer (TS) (0.3 mm) and closed by another cover glass 

(0.17 mm). The teflon spacer and the cover glasses (Fisher Premium) are held together with 

vacuum grease (Dow Corning). The temperature is measured with a thermocouple (TC) 

placed between the two cover glasses. In this way differences between the measured and the 

actual temperature of the vesicle under investigation are minimized. The sandwich struc- 

ture (glass-water-glass) of an aqueous solution with a high thermal conduction coefficient 

between insulating glass plates reduces thermal gradients within the vesicle solution. 

Initially, the thin cover glass between the observation chamber and the water compart- 

ment resulted in transduction of pressure fluctuations caused by the water pump of the 

heat bath. This coupling was completely eliminated by routing the water flow through a 

damping tank. 

6~ simple calculation shows that for such a structure gradients appear almost exclusively within the insu- 
lating material. Thus, there are only minor temperature gradients within the vesicle suspension. Gradients 
are well below the precision of temperature control of f 0.1 OC . In addition, the measurement is only affected 
when these gradients change with temperature. 



Figure 3.3: Design of observation chamber : 
CG cover glasses, GS glass slide, TS teflon spacer, WC water compartment, WI water 
inlet, WO water outlet, OC observation chamber, CF steel frame, CP steel plates, TC 
thermocouple. 



3.4.3 Video Phase Contrast Microscopy 

The optical system used was a standard inverted Leitz microscope equipped with phase 

contrast capable of an overall magnification of 500 times. The light source was a Hg 

arclamp powered by an Orion high-voltage transformer. A permanent green filter and 

various grey filters were used to minimize degradation of the lipids. The video camera was 

positioned above the eye piece in such a way as to gain a resolution of 86 nm per pixel in a 

480x480 frame. A typical picture of a fluctuating vesicle obtained with this setup is shown 

in Figure 3.4. The distinct halo inherent to the phase contrast technique is clearly visible. 

Figure 3.4: Snapshot of a fluctuating vesicle at the bottom of the chamber. The overlay 
shows several contour profiles plotted with respect to the local background across the mem- 
brane. A contour profile is characterized by its width 212, and the extension of the steep 
slope 2n,. 

A typical profile across the vesicle boundary (see Fig. 3.4) exhibits a pronounced maximum 

and a minimum. These extrema are well separated by a steep slope which falls off towards 

the vesicle interior. Inspection of Figure 3.4 reveals that, a t  least to  visual accuracy, the 

slope crosses the local background at its steepest point. 

It is necessary to  have a protocol for selecting from this halo profile the nominal position 

of the membrane. We have chosen this to be the crossing point of the slope with the local 

background, which is identical in practice to the point of maximum slope. It is not clear 

that this convention corresponds exactly to the position of the membrane; however, there is 

some theoretical justification for this choice. Wilson and Sheppard [65] calculated the form 

of the profile expected for a straight-edge object, assuming a circular phase disk [65]. They, 

indeed, find that the slope of the profile is maximum at the position of the edge. In principle, 

this calculation should be redone for the specific parameters of our optical system10 and for 

70bjective Leitz Phaco 4010.65, Condenser 0.7/L4. 
8Corion P10-546 - F-1 340. 
'The local grey value of the background is obtained by averaging the profile over 2n, pixels. 

''The phase-contrast system used in this work has the usual annular illumination and a phase ring. 



the curved geometry of the typical vesicle contour. This has not been done; however, we 

anticipate that deviations from the crossing rule are too small to affect our data appreciably. 

Another point of concern is the effect of the three-dimensional structure of the vesicle on 

the two-dimensional image. The "general wisdom" seems to be that what is seen in phase 

contrast microscopy is a cut through the vesicle in the focal plane [43, 44, 45, 46, 47, 481. 

However, this is probably an oversimplification. Phase contrast is particularly sensitive to 

edges, so that vesicle boundaries which "overhang" the focal plane (relative to the optical 

axis) may contribute to  the image, to a greater or lesser extent depending on the focal depth 

and the amplitude of the edge contrast. Following the literature, we shall ignore such effects 

in what follows. We wish only to  point out that there is in principal a question which should 

be addressed in future work. 

3.4.4 Contour Algorithm and Time Series 

For efficient shape analysis, we have implemented "real-time" digitization of the two-dimen- 

sional vesicle-shape contours directly from the grabbed frames coming from the video camera 

(see Fig. (3.5)). To follow the vesicle dynamics, it is necessary to  take relatively small time 

Figure 3.5: Example of a digitized vesicle contour obtained with the algorithm described in 
the text. Note that the fuzziness of the contour is a result of limited printing resolution. In 
fact, the accuracy with which the contour is determined is better than a pixel. 

intervals between frames. On the other hand, to implement the digitization in real time, 

the interval between grabbed frames must be long enough to  allow operation of the contour 

algorithm . 



The algorithm described below needs between 0.4 and 0.6 s to find a contour, 'l de- 

pending on vesicle size. This is relatively slow compared to processing times on the order 

of 0.1 s, which have been reported in the literature [47, 481. However, in contrast to the 

fast procedures used elsewhere, our algorithm has a better-than-pixel accuracy in finding 

the contour. [66, 671 This increased resolution turns out to be critical to the success of our 

experiments, since the later analysis requires detection of shape changes which are small. 

At the same time, an interval of 0.6 s between successive contours is sufficiently short to 

capture the dynamics of the slow fluctuation modes of a typical vesicle, provided that the 

vesicle radius is not too small. In particular, we are interested in the slow dynamics asso- 

ciated with the approach to the spinodal line of the budding transition, where, as we will 

see later, the relevant time scales are well above one second. Thus, we did not optimize our 

algorithm for speed. 

Once the vesicle profile is located at a particular point, the algorithm must extract the 

membrane position at that point and then proceed sequentially to follow the membrane 

around until the contour closes. This is a local procedure. The program must then take the 

next grabbed frame and find a starting point for the next contour. This step is nonlocal, 

both because the vesicle may have moved appreciably (on the scale of pixels) between one 

timeframe and the next and/or because the target vesicle has gone temporarily out of focus 

or has been obscured by another (typically smaller) vesicle drifting nearby. The next few 

paragraphs discuss how our implementation solves these problems. 

As discussed in the preceding Section, a vesicle-edge contour, as observed by phase 

contrast microscopy, is quite well approximated as a line orthogonal to the steepest gradient 

along the halo. To find this line, one should in principle determine the direction of steepest 

descent by probing the gray-scale values of the video pixels in a two-dimensional region 

around the point of interest. However, such a procedure is very time consuming and not 

practical, if one wants to  obtain reasonable sampling times. Instead, we have adopted a 

simplified procedure, described in the following paragraphs, in which gradients are taken 

only along the x- or y-directions: 

The search is always started on the left side of a vesicle, and it proceeds initially in 

the positive y-direction. We label the pixel grid by integers (n,, n,). For each vesicle the 

first point in the initial frame of a sequence is found by selecting a whole video line n,, 

utilizing a cursor which is overlayed on the video picture. The profile g(x) of this line is 

then searched for the pixel position n, where the slope m, is maximally negative, as averaged 

"Thus, for a video frequency of 30 frame/s, we are processing only every 15th frame. In this sense, we 
perform only a "dilute" real-time image analysis. 



over 2n, + 1 pixels. The vesicle contour (x, y) (measured in pixel units) thus passes near the 

point x = n,, y = n,. We may refine this estimate, however, by interpolation of the x value 

between the integer pixel coordinates. To do this, we first determine a local background 

level g, by averaging over the 2na + 1 nearby points, according to 

We then determine a smoothed linear approximation g(x) = xm, +t, to g(x) in the vicinity 

of x = n, by making a linear least-square fit over an interval extending n, pixels to  the left 

and right of n,, 

where < > denotes the average over 2n, + 1 pixels. Solving for the intersection, g(x) = g,, 
locates our estimate for the contour edge position at (x, n,), where 

1 
2 = -($, - t,). 

mx 

In this way, we obtain a resolution which is better than the one defined by the pixel grid. 

Of course, noise limits the accuracy which can be obtained. This is discussed in Sec. (4.1.1). 

Once the first contour point (x, y) is found, the y-coordinate of the next point is set to  

y = n, + 1 and the procedure to  determine the next x-coordinate is repeated, where now 

n, is set to  the integer part of the previous "exact" x-coordinate. 

This repetition eventually would run into problems at the north pole of the vesicle, 

where there is no gradient along the x-axis, and the direction of the contour search along 

the y-axis would have to be reversed. Practically, the advancement along the y-axis breaks 

down much earlier, since on average the slope along the x-axis becomes smaller (and, thus, 

the intersection, less well defined) the closer one is to  the north pole or to  any other local 

turning point of the contour. The search routine must, therefore, be generalized to  handle 

these events: For each point (x, y) of the contour, the slopes m, and my are calculated. If 

my has been larger than m, for n,,it,h times, the search mode is switched and the next 

x-coordinate is found by setting x = n, + d,, where d, = hl,  depending on the average 

direction of the contour along the x-axis over the last n,,,,,,, pixels. Then, n, is set to the 

integer part of the previous y-coordinate, and the next y-coordinate is calculated to  be 



Table 3.1: Parameters used in the contour search algorithm described in the text. 

where g,, my, and t ,  are given by replacing x with y in Eqs. (3.1) - (3.3). Similarly, if m, 

has been larger than my for n,,,tch times, the next point is determined by y = n, + d, and 

Eq. (3.4). Again, d, = f 1, depending now on the average direction of the contour along 

the y-axis over the last nave,,,, pixels. 

Since the contour is calculated from a still picture by Eqs. (3.4) and (3.5), it closes in 

on itself exactly. The contour search for one particular frame is stopped when the last point 

found is within one pixel of the contour starting point. 

The search parameters which have been used are collected in Table 3.1. Choosing the 

parameter n,,;th appreciably greater than unity ensures that the search direction is not 

needlessly switched back and forth many times in regions where the difference m, - my 

fluctuates near zero. For a simple convex contour with four turning points the search 

direction is switched exactly four times. Choosing the parameter nave,ge greater than unity 

but not too large allows for an unlimited number of turning points, as may occur for a 

general two-dimensional closed curve. l2 

Finally, the search loop is completed by defining the starting point for the contour search 

for the next grabbed frame. To do this, the final y-value determines the first video line for 

the next frame. This line is scanned for the starting point of the next contour within an 

interval around the previous mean x-value by determining the pixel value n, of the most 

negative slope of the profile. This restricted global search allows for centering the vesicle 

on the screen and readjusting focus without stopping the contour search. Likewise, the 

presence of a few additional vesicles in the field of view does not disrupt the time series. 

Every once and a while, the search algorithm fails and loses the contour. Most of 

these events can be identified by monitoring the contour length and the distance between 

subsequent points on the contour. Such points are discarded, and the next available video 

frame is grabbed for analysis. 

By this protocol, a time series of two-dimensional vesicle contours is obtained. In the 

next Chapter, we discuss the procedures developed to analyze these data. 

12For instance, a dumbbell shape has 8 turing points. 
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Chapter 4 

Shape Reconstruct ion 

This Chapter describes how we parameterize the individual digitized two-dimensional shape 

contours discussed in Sec. 4.1, how we average the shape parameters over a data set which 

provides a thermal ensemble for the room-temperature vesicle, and how we extract infor- 

mation about the average shape of the three-dimensional vesicle. Sec. 4.2 is devoted to the 

discussion of a typical data set for a vesicle of prolate shape and is intended to motivate the 

general procedure of shape reconstruction outlined in Sec. 4.3. 

4.1 Characterization of 2D-Contours 

4.1.1 Contour Smoothing and Resolution 

Experimental contours appear "noisy" and must be smoothed before shape parameters can 

be extracted. The noise reflects a combination of causes, including the intrinsic noise of the 

original optical signal, the statistics of the pixelation, the digitization of the grey scale, and 

other factors. In addition, there is a systematic effect coming from the video electronics: 

Alternate video lines are scanned in each & s interval, so that an entire video frame takes 

& s to update and consists of two superposed images, taken & s apart. If the vesicle were 

stationary in this interval, there would be no effect; but, vesicle motion at a characteristic 

speed of, say, 1 pmls will produce an offset of about 20 nm, which, as we shall see, is clearly 

visible a t  our estimated resolution of roughly 30 nm. Smoothing corrects for these effects. 

The smoothing was done, separately in the x and y coordinates, using a binomial filter 



of width 2n = 20. Implementation of this procedure involves the replacement, 1 

1 
X i  + 4 ( ~ i - 1  2xi + xi+l) 7 (4.1) 

1 
Yi + i ( ~ i - ~  f 2% ?/,+I) , (4.2) 

which is repeated n times, thus resulting in an effective averaging of width 6 N 4.5 

pixels. This smoothing window corresponds to a contour segment which is smaller than 0.5 

p m  (4.5 x 86 nm 2 390 nm). The choice, n = 10, removes spurious spikes in the contour 

and defines a proper physical contour length. At the same time, n is small enough not 

appreciably to affect the vesicle shape on the large length scales which are of interest in this 

thesis. Figure 4.1 shows an example of typical data smoothed by this algorithm. 

. . 
-.** . 

-1. . 
binominal smooth n = 10 . ' -'= ,= . 

- ;  . : : .  
p r .  . 

.I*. ..'+. 
.oO . . . ?* 

.a': 
'c' .... . . 2 . ,a: ' . .** . . . 

..$* :..*.-- 
..c 
I I I I I I 

horizontal pixel number 

Figure 4.1: Typical contour data (points) along with the curve (dashed) generated by bino- 
mial smoothing, as described in the text. Note the difference in the horizontal and vertical 
scales. In this example, the vertical data is integer. The tendency of the data points to  
alternate systematically to  the left and right of the smoothed curve reflects the composite 
property of the video image, as noted in the first paragraph of this Section. 

An estimate of the lateral resolution can be obtained from an analysis of the scatter 

of individual contour points. A histogram of the deviations from the smoothed contour 

is given in Fig. 4.2. As can be read off from the mean square deviation, the local lateral 

'The contour coordinates (Sec. 3.4.4) are always integers in either x or y. Note that the binomial algorithm 
has no effect on the integer coordinate. 



resolution is about 30 nm. This resolution, well below the nominal optical resolution given 

by the wavelength of light, is a result of the delicate line-shape discrimination achievable 

via phase contrast. Note that the typical magnitude of a large scale vesicle motion is one 

micron. Thus, different vesicle configurations can be well discriminated. 

I., 

-0.8 -0.4 0.0 0.4 0.8 

1 unit = 1 pix1 = 86 nm 

Figure 4.2: Cumulative histogram of contour scatter in x or y direction over 5 consecutive 
frames. The total number of points is 3016. The error bars give the uncertainty in counting 
events. The dashed line shows a least square fit to  a Gaussian distribution. The rms 
deviation a of data points from the mean contour position provides an estimate of the 
resolution. 

We turn now to the issue of shape parameterization, i.e., how efficiently to parameterize 

the contour shapes. 

4.1.2 Extraction of Principal Axis 

To start, it is necessary to  establish a frame of reference. A convenient choice is to place 

the origin at  the "center of mass" of the contour (i.e., the point which would be the center 

of mass if the contour were a uniformly weighted line) and then to align the x and y axes 

along the long and short axes, respectively, of the corresponding inertial ellipse. We shall 

discuss further the logic of this choice in Sec. 4.3.2. For now, we restrict attention to the 

implementation, only. 

Because of the square pixel grid, the density of points varies along the contour. Since 



each length element of the contour should enter with the same weight in a calculation of 

the center of "mass" and the "inertia" tensor, we define the weight, 

where N is the number of contour points and the point N + 1 is identified with the first 

point. For the remainder of the paragraph we drop the summation indices whenever sums 

run over all contour points. If the center of "mass," 

is taken as the origin (with orientation still arbitrary), then the inertia tensor is 

The principle axes of the inertia tensor follow from the eigenvectors of I. In particular, the 

slopes of the two axes are given by 

where 

Note that the long axis of the inertial ellipse corresponds to the smaller moment of inertia. 

The angle that this long axis makes with the (vertical) y axis is given by 

arctan k- if C w ; x ; y ;  > 0 

= l o  = 0 (4.9) 

arctan k+ < 0, 

up to  multiples of n. The initial orientation of the vesicle defines an angle la(0)I < n/2 at 

time t = 0. The angle a ( t )  is then followed beyond f n/2 in order to preserve the orientation 

of up/down asymmetric shapes. 

In further analysis, we shall assume that the Cartesian axes have been chosen in such a 

way that the y axis points along the long axis of the inertial ellipse, i.e., that the contour 

has been rotated by -a. 

2 ~ h e  sign of C wxy can be used as a case label. Let x', y' denote the contour coordinates in the principal 
axes system. The sign of C wxy = sin a c o s a ( c  w ' x ' ~  - wryt2) is opposite to the sign of a for an 
axisymmetric prolate oriented along the y' axis. 



4.1.3 Mode Expansion 

It is convenient to  be able to  characterize each contour by a small number of parameters. 

We do this by expanding the contour in terms of a set of shape modes, whose amplitudes 

become the required parameters. We shall assume for simplicity that the shapes we are 

treating are approximately axisymmetric and that it is the y axis which corresponds to  the 

(approximate) symmetry axis. 

The y axis typically divides the contour into two inequivalent halves. We choose to de- 

scribe the two halves separately, each one in an angle ($) versus arclength (s)  representation, 

as shown in Fig. 4.3, 

Let s* denote the overall arclength between the north pole (s = 0) and the south pole 

( s  = s*). It is convenient to employ a trigonometric representation, for each half contour. 

The first (linear) term describes a half circle. Nonzero coefficients a ,  and b, describe 

deviations from the circle. Contours which intersect the y axis at  the poles at  right angles 

obey $ ( O )  = 0 and +(s*) = T, and have b, = 0 for all n. Note that all axisymmetric shapes 

fall into this class. 

Our experiments are conducted mainly in regions of the phase diagram where the average 

or mean shape is axisymmetric. (Of course, at  nonzero temperature thermal fluctuations 

about the mean result in nonaxisymmetric shapes.) Thus, in dealing with mean shapes, we 

may set b, = 0 for all n. Furthermore, for these axisymmetric mean shapes, the represen- 

tation (4.10) distinguishes efficiently between shapes (like the "prolates" of Fig. 4.4) which 

are up/down symmetric and those (like the "pears" in Fig. 4.4) which are not. For up/down 

symmetric shapes, az,+l = 0 for all n. 

We note as an aside that a shape described by Eq. (4.10) with arbitrary coefficients does 

not in general close, i.e., does not achieve radius x = 0 from the symmetry axis at  s = s*. 

By noting that 

it is easy to  show 

d x - = sin $(s) , 
d s 

that the condition for closure is 

S* 

x(s*) = 1 ds sin$(s) = o , 

which places a complicated nonlinear condition on the coefficients a ,  and bn. In practice, 

of course, the data originate in closed contours, so this condition is always satisfied. 

31n practice we shall analyze mainly prolate ellipsoidal and pear shapes. 
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Figure 4.3: The contour is characterized by the tangent angle II, as a function of arclength s. 

The contour amplitudes a, are given by an inversion of Eq. (4.10). The tangent angle 

at each contour point is taken to be 

where the arctangent is defined on its Riemann surface, i-e., $(s) is continuous at the 

equator. The amplitudes are then obtained by a numerical integration using the trapezoidal 

rule 
2 M Si+i Si+i - Si 

a. = (-l),; t C( II,; sin(nrJ') t $;+I sin(ns-) ) s* s* 9 (4.14) 
i=l s* 

where s; is the ardength measured from the north pole to the contour point (xi, y;). The 

summation is over the M points of the half contour. * 
'The first and last point need a. speaal treatment. The integration interval is only taken up to the y axis. 

The tangent angle at these points is determined by using one point beyond the y axis. 



Figure 4.4: Examples of a prolate and a pear shape. 

4.1.4 Effective Area and Volume 

It will prove useful to define an effective area and volume, A, and V,, as the volume and 

area of the shape generated by rotating each half contour about its y axis, i.e., 

and 

In a similar spirit, we introduce an effective reduced volume, 

If the original shape is axisymmetric, as would be true at T = 0 in the axisymmetric 

regions of the phase diagram, then these quantities are, respectively, the true, physical 

area and volume and the corresponding reduced volume. Generally, at T > 0, they are all 

constructs based on a particular half-contour; and, they fluctuate over time, even though 

the true A, V, and v are invariant. However, when thermal fluctuations are small , these 

effective quantities never deviate very much from their physical counterparts. One might 

hope in this situation that, by averaging the fluctuating quantities, one could obtain a 

good approximation to the physical ones. This is, indeed, how we shall in practice infer 

physical parameters from the data. One might naively imagine that, in a regime where 

the fluctuations are still Gaussian, average parameters correspond exactly to  their zero- 

temperature counterparts. Unfortunately, this is not the case, because the presence of 



constraints forces thermal shifts even at the Gaussian level. Nevertheless, by using the 

theory, it is in principle possible to correct for these shifts and to extract effective zero- 

temperature values. 

Before we discuss these issues further, it will be instructive to look at some experimental 

data in the next section. 

4.2 A Typical Data Set 

In this section, we present a representative set of shape data. Typical histograms of the 

amplitudes of the first few Fourier modes (Eq. (4.14)) and of the effective reduced volume 

(Eq. (4.17)) are shown for a prolate vesicle in Fig. 4.5. As long as the reduced volume is suf- 

ficiently smaller then unity, the probability distributions are Gaussian within experimental 

error. The mean values, 
N 

and the standard deviations, 

are collected in Table 4.1. The estimated Gaussian errors ( N  = 1378 ) of the mean values, 

are also given. Differences between the data sets of the left and right half-contour are on 

the order of the statistical errors. One observes that < a2 > is much larger than < a3 > 

Table 4.1: Statistics of observables shown in Fig. 4.5. 

and < a4 >. This is the generic situation for a prolate vesicle not too far from the sphere, 

as we will briefly discuss in the following few paragraphs. 



Figure 4.5: Gaussian distributions (dashed lines) as obtained from estimates of the mean 
values (Eq. (4.18)) and standard deviations (Eq. (4.19)). The error bar of histogram bin i 
is given by 2/m. 



The observation that, for vesicles with reduced volume v near unity, the mean amplitude 

of the fourth mode is distinctively smaller than the mean amplitude of the second mode 

is ~hysically reasonable and expected theoretically on the basis of the ADE model. Since 

a vesicle assumes that shape which minimizes the bending energy of its membrane, the 

"best" shape will have large contributions from modes with few "ripples." Together with 

the geometrical constraints on area and volume, this requirement of minimal bending energy 

leads, correspondingly, in the ADE model to  a hierarchy in the shape amplitudes. In 

Appendix A, this result, which was first noted by Ling Miao [57, 581, is reviewed in the 

context of an expansion of vesicle shape in spherical harmonics about the sphere. By 

relating our parameterization Eq. (4.10) to the spherical harmonic representation, we show 

in Appendix A that 

a2 N O ( ( 1 - v ) ; ) ,  

a4 O( (1 - v)l  ) , (4.21) 

etc. , 

in accordance with our experimental results. This observation is an important result of 

this Thesis work. Being aware of the hierarchy is crucial for comparison of theoretical with 

experimental shapes. We will investigate it further in Chap. 6, where we use < a4 > to map 

experimental mean shapes into the ADE phase diagram. 

As a result of the hierarchy, the numerical values of the mean amplitudes < a, > for 

mode numbers n > 4 and reduced volume v > 0.8 are too small to be measured. 

The amplitudes of the odd modes should average to zero for an up/down symmetric 

prolate vesicle. However, < as > has, typically, always a small - but statistically significant 

- nonzero value. We will come back to this point in Sec. 5.4.2. The mean amplitude ( a l )  

is an even smaller quantity, which cannot be distinguished from zero within experimental 

error. In fact, we don't need to know its value for further analysis. Theoretically, it has to 

be nonzero whenever there is a nonzero < as > amplitude to ensure closure of the contour. 

In the past three paragraphs, we have pointed out some properties of the mean ampli- 

tudes. We turn now to a short discussion of the amplitude fluctuations. 

The mean-square fluctuations, ((a, - (an))2) = a2,, , measure the typical departure of 

the measured amplitudes from their mean. If departures are distributed in a Gaussian man- 

ner, then the error E(a2,,) in calculating the mean-square fluctuation from N observations 

5Although ( a 2 )  is much larger than (a* )  it cannot be used for this mapping, since (az)  is independent of 
A 

the effective area difference at least to order (1 - v )  2 (see Appendix A). 



is given by 

Thus, the relative error in calculating a2,, is, typically, of order ( Y 0.038 ), i.e., 

about 4 %. The dominant fluctuations are, presumably, thermal in origin. When thermal 

fluctuations are small, their contribution to the mean-square amplitudes go as k B T / ~  [68]. 

In principal, the bending modulus K can be determined by analyzing the thermal fluctuation 

spectrum [42]; however, we will not perform such an analysis in this thesis. Nevertheless, 

we will use the mean-square amplitudes in Chap. 5 to  characterize the approach of a vesicle 

to the budding transition. 

The probability distribution of the second mode differs markedly from all other distri- 

butions, see Table 4.1. Whereas the mean amplitude (aa )  is an order of magnitude larger 

than the half-width a,, of its distribution, this feature is reversed for higher mode numbers. 

For the third and fourth mode the mean amplitudes are an order of magnitude smaller than 

the half-widths of their distributions. It requires a careful (statistical) analysis to reliably 

extract these small mean values from the data. Once the mean shape amplitudes are found, 

one has to deduce zero-temperature information from the room-temperature data in order to  

compare experiment with existing theoretical predictions. We will turn now to this central 

issue of shape reconstruction. 

4.3 Estimating the Average 3D Shape at T=O from 

2D Contours with Thermal Fluctuations 

4.3.1 General Approach 

The quantitative output of the shape experiments is an ensemble of data sets for the ther- 

mally fluctuating quantities v, and {a,) for each particular vesicle at each temperature T .  

Using this data, we may form ensemble averages like (a,) and (v,) or correlations like the 

(aman) and so forth, where the brackets indicate an average over the data sets of the ther- 

mal ensemble. The set of these correlation functions (including their higher-order analogs) 

encodes a full description of the experimental data. 

This set of ensemble averages, which we shall denote (nu,), does not, in fact, pro- 

vide a complete description of the physical shape ensemble. The reason for this is that all 

the experimental two-dimensional contours contain (at least, approximately,) the symme- 

try axis, (see Sec. 4.3.2) and, thus, cannot give information about the fluctuations in the 



azimuthal coordinate. More formally, we can imagine describing a general shape in terms 

of a spherical-harmonic expansion about the sphere with amplitudes u1,,. In this repre- 

sentation the thermal shape observables are the set of ensemble averages (lIul,,). There is 

a well defined (nonlinear) relation expressing a,({ul,,)) (see Appendix A for m = 0), so 

it is straightforward to express the a, correlation functions in terms of the ul,, correlation 

functions. A simple counting argument shows that the converse is not generally possible. 

The key point with respect to shape reconstruction is that, for the region of the phase 

diagram which we shall explore in detail, the mean three-dimensional shape is expected 

to be axisymmetric, even though each instantaneous shape - subject, as it is, to thermal 

fluctuations - is not. Thus, all planar cuts through the vesicle which include the symmetry 

axis are equivalent in the sense that averaging the instantaneous two-dimensional contour 

amplitudes {a,) (see Eq. (4.14)) obtained from a particular cut gives the full i~lformation 

about the mean three-dimensional shape at temperature T. 

To make contact with the shape phase diagram, which is defined only at  T = 0, it 

is necessary to  infer the T = 0 shape parameters, a?) = (a,) ( T  = 0), from the mea- 

sured room-temperature shape ensemble. This can only be done in the context of theory, 

which can link T = 0 to  nonzero temperatures. In principle, the procedure would involve 

searching for a set of input variables (A, V, AAo, etc.,) which reproduce all the measured 

room-temperature correlations and, then, calculating the corresponding zero-temperature 

shape. In practice, the problem is considerably simplified by the fact that 6/kBT is small 

at room temperature, so that thermal fluctuations are generally small and can often be 

treated at  the Gaussian level. When this is possible, thermal shifts (a,) - a t )  and ther- 

mal fluctuations ((a, - (a,))(a, - (a,))) are both of order kBT and calculable from the 

theory [68]. Since these corrections are small, one can imagine carrying out a program of 

successive approximations: At zeroth order, one approximates a?) by (a,) (T). One then 

uses theory to  infer from these (approximate) zero-temperature shape parameters the (the- 
- 

oretical) control parameters v and Aao. Using these variables as input, the theory [68] then 

predicts the expected thermal shifts, ((a,(T)) - a?)). These shifts are then used to cor- 

rect measured parameters (a,) (T), i.e., to provide a new estimate of the zero-temperature 
(0) shape parameters a, , and, so on. This procedure may be expected to  be consistent (and 

convergent), whenever the thermal corrections are small. In practice, there are difficulties 

near shape instabilities, where soft modes make corrections large, and for nearly spherical 

shapes, where a large number of modes contribute to the thermal corrections. The latter 

'This expansion is restricted to  shapes without "overhangs." This is a technical issue, which is not 
relevant to  the discussion here. 



points will be further discussed in Sec. 6.6 in connection with the mapping of experimental 

shapes into the phase diagram. 

We shall implement this program mainly at  the zeroth-order level, i.e., neglecting (small) 

thermal corrections. Nevertheless, we shall at several points see the effects of thermal 

corrections, and it will be reassuring to find that they are of the expected magnitude. 

In the next two Sections, we will investigate in more detail some of the issues just 

introduced. First, we discuss our definition of the reference system given in Sec. 4.1.2. 

And, second, we will investigate the effect of thermal corrections on the measurement of the 

reduced volume. 

4.3.2 Defining the Right Reference Frame 

A natural reference frame for the representation of instantaneous contours would be the 

mean symmetry axis of the corresponding vesicle. Thermal averages of contour amplitudes 

should be performed with respect to  this axis. However, the averaging procedure, although 

straightforward in principle, is complicated by the fluctuations of this axis. Ideally, this 

mean axis would remain horizontal (so as always to lie in the focal plane of the microscope) 

and fixed in direction under thermal fluctuations (so as to make analysis easy). In practice, 

neither idealization is strictly true. The axis of a rigid axisymmetric vesicle undergoes 

thermal fluctuations both (a) away from the horizontal and (b) in the horizontal plane. 

Consider first point (a): For "prolate" and "pear" shapes (which we shall concentrate on) 

the same gravitational effect used to make the vesicles sit at  the bottom of the experimental 

cell (see Sec. 3.4.1) serves to  keep the symmetry axis close to the horizontal plane, since 

it is this orientation which lowers the center of mass of the vesicle as much as possible. 

Of course, there is also a trade-off here, since increasing the density difference to improve 

alignment risks producing gravitational shape distortions which would make comparison 

with the theory (which ignores such effects) difficult. However, we believe that, under the 

experimental conditions, the axis may be regarded as horizontal and the gravitationally 

induced shape distortions are small enough to ignore at this level of precision, at least for 

the analysis of vesicle fluctuations. This picture will be further discussed in Sec. 6.6.2. 

Even in the absence of out-of-plane fluctuations, the in-plane fluctuations (b) still present 

a problem. The point is that the coefficients of the contour shape (see Eq. (4.14)) depend 

on the choice of axis. What is needed to compare with the zero-temperature coefficients is 

an average which keeps the mean axis fixed while averaging over thermal shape fluctuations. 

To do this it is necessary to disentangle the rotational diffusion of the mean axis from the 



thermal shape fluctuations. We discuss this issue further in Appendix B, where we argue 

that the principal axis of the contour is a natural estimate of the mean symmetry axis of the 

shape. Further, we find that the systematic error which one makes when using the principal 

axis instead of the mean symmetry axis to expand the contour is within the statistical 

uncertainty of the data. Thus, in subsequent analysis, we use the instantaneous amplitudes 

{a,) with respect to  the principal axes without further corrections. The procedure to  extract 

the principal axis has already been implemented in Sec. 4.1.2. 

4.3.3 Thermal Effects on the Measurement of the Reduced Volume 

In this Section, we discuss the measurement of the mean effective reduced volume (v,), 

defined in Eq. 4.17, and we investigate its relation to  the real reduced volume v of the 

vesicle. The discussion focuses on the case of a prolate vesicle with reduced volume near 

unity, which will be important in the analysis of Chapters 5 and 6. 

We start by expanding the effective reduced volume, which is a function of the contour 

amplitudes, around the sphere, 

where (V,,) is positive definite and the amplitude of the first mode has been eliminated 

by using the closure condition Eq. (4.12). We now rewrite each of the contour amplitudes 

as the sum of its mean value < a, > and a fluctuation, 

a, = (a,) + ban, (4.24) 

and take the average on both sides of Eq. (4.23). We have seen experimentally in Sec. 4.2 

that there is a hierarchy in the numerical values of the mean amplitudes (see Appendix A 

for a theoretical argument). Thus, to first order, we may set all mean amplitudes to zero, 

except the amplitude of the second mode. We find 

We now define the reduced volume of a shape which is constructed from the mean ampli- 

tudes, 

K - ve ({(an))) (4.26) 

'The eigenvalues of (V,,) are positive as a consequence of the fact that the sphere is the geometrical 
object which has the smallest possible area for a given volume. 



TO leading order in (1 - v), the first two terms of Eq. (4.25) are just equal to those of c ,  so 

we have 
00 

(ve) = T e - C v n m  (banbarn) + O( ( I  - v)f ). 

Since (V,,) is positive definite, it follows that, for v ct 1, 

Thus, the mean value of the effective reduced volume (v,) is always smaller than the reduced 

volume of the shape c constructed from the mean amplitudes. 

At T = 0, when no thermal fluctuations are present, v = c. For T > 0 there are 

thermal shifts in the mean amplitudes, so v and K are inequivalent. We give now an 

intuitive argument which shows that 

v < % .  (4.29) 

At zero temperature, 
- 

v =  ve = 1 - V 2 2 ( ~ 2 ) ~  +0( (1 - v); ) , 

so (a2) is effectively determined entirely by the reduced volume v (assuming, as always, that 

(1 - v) is small). Now, at a finite temperature, all amplitudes are thermally excited, as the 

vesicle needs excess area to fluctuate. Therefore, the is increased with respect to  v, i.e., 

the vesicle assumes a more spherical mean shape. This, in turn, implies that (a2) < a?). 

To summarize, there are three different "reduced volumes7'. First, there is the (constant) 

reduced volume v of the vesicle. Second, we can calculate the reduced volume of the "mean 

shape" from the mean amplitudes. And, third, direct evaluation of the vesicle contours gives 

the mean value of the effective reduced volume (v,). These three parameters are in general 

not equal. Only at zero temperature do their numerical values coincide. In Fig. (4.6), a 

typical thermal trajectory of (v,) versus (a2) is compared with a plot of F = 1 - 1/22 (a2)2. 

Note that (v,) < G, as expected. 

Unfortunately, the numerical value of v - (v,) is not so easily accessible. In fact, even 

the sign is not obvious and depends on the relative magnitude of thermal amplitude shifts 

(an) - a?) and the mean-square amplitudes (6an6am). However, since both observables are 

of the same (linear) order in k B T / ~  [68], one expects that the difference v - (v,) is of the 

same order of magnitude as - (v,), or even smaller. From Fig. (4.6), we can read off 

that - (v,) z 0.004, independent of v. In further analysis, we will, thus, set v = (v,). 

The absolute error we make in doing so is relatively small. Furthermore, since v - (v,) is 

approximately constant, the relative error v(Tl) - v(T2) between successive measurements 



Figure 4.6: Experimental and theoretical relationship of the (effective) reduced volume v(,) 
and the amplitude of the second mode a2. Due to thermal shape fluctuations, the effective 

64 reduced volume (v , )  ( ( a 2 ) )  is located always below the reduced volume = 1 - (azj2 of 
the mean shape. The error bars represent the 3 - o intervals for (v , )  and ( a z ) .  

of the reduced volume at  different temperatures, TI, T2, seems to be almost negligible. This 

observation is especially important for the scaling analysis we will perform in Chap. 5. 



Chapter 

Shape Fluctuations near the 
Budding Transit ion 

In this Chapter, we report observations of shape fluctuations near the budding transition. 

In Sec. 5.1, the relevant part of the ADE phase diagram will be recalled. Generically, 

the budding transition can be either first or second-order in the ADE model. From an 

estimate of the elastic parameters, one expects the budding transition to be first-order for 

SOPC/DMPC vesicles in the 1 - 10 pm size range. In either case, the up/down symmetry 

of the prolate vesicle phase is broken at the transition. This scenario is rather general, 

and we will develop a Landau theory for both cases in Sec. 5.2. In Sec. 5.3, experimental 

results on the statics and dynamics of vesicle fluctuations near the budding transition will 

be presented. We will focus on the behaviour of the amplitude as of third shape mode 

which plays the role of an order parameter for the budding transition. In Sec 5.4.1, we will 

discuss our experimental findings within the framework of the proposed Landau theories. 

We conclude from a comparison of our data with the theoretical predictions of the two 

Landau-theory variants that the budding transition is, indeed, first-order. In the first-order 

budding picture, the prolate phase remains locally stable beyond the point at which the 

thermodynamically stable state becomes pear shaped. In this metastable region there are 

two locally stable shapes, one prolate and one pear. The prolate finally becomes unstable at 

a "spinodal" boundary, and the system transforms irreversibly to a budded shape. We will 

assemble evidence favoring this first-order budding scenario. In Sec. 5.4.2, we point out that, 

for reasons not understood, real laboratory vesicles exhibit a weak asymmetry in the prolate 

phase which breaks the up/down symmetry expected from the ADE model. This extrinsic 

asymmetry gets magnified near the spinodal line and complicates interpretation of the data. 



However, we will show that the effect is quite small and does not alter appreciably vesicle 

shapes calculated within the ADE model, except very close to the spinodal instability. In 

Sec. 5.4.3, we discuss previous experiments on the budding transition in the context of our 

results. 

5.1 The Budding Transition in the ADE Phase Diagram 

We will discuss in the following the ADE phase diagram in the region near the budding 

transition [57, 58, 691. Fig. (5.1) shows this region of the calculated phase diagram of 

the ADE model at a = 1.4 [58], the approximate value for SOPC [61, 581. The behavior 

is typical for values of a near unity, although, of course, the locations of all boundaries 

do vary smoothly with the material parameter a. The horizontal axis gives the reduced 

volume v; the vertical axis measures the tendency of the vesicles to curve, as described by 
- 

the effective area difference Aao. The part of the phase diagram which we are interested in 

has, basically, four regions or shape classes. Ordered from smaller to larger values of z, 
these are: the oblates (including discocytes), the prolates (including dumbbells), the pears 

(open necks), and the fully vesiculated shapes, in which the neck between the parent and 

the bud shrinks to microscopic dimensions. The prolate phase includes up/down symmetric 

axisymmetric shapes, including both elliptical shapes (at larger v) and dumbbells (at smaller 

v). It is thermodynamically stable in the region between boundaries Cpear, DPeW with the 

pear phase and the boundary  DO^' with the oblate phase. (Note that the line  DO^' is not 

shown in Fig. (5.1). It is located very close to Mob' at slightly larger values of G).) The 

lines MPear and Mob' are spinodal lines , which mark the limits of local stability of the 

prolate shapes. Between Dpear and Mpear and, again, between  DO^' and Mob', prolate shapes 

remain locally stable, even though they are no longer the global minimum-energy shapes. 

Pear shapes lack up/down symmetry and become more and more necked as one moves away 

from the prolate boundary. The limiting line LpeW denotes the limit of the pear phase at 

which the radius of the neck between the parent and the bud becomes microscopic. All 

shapes on this limiting line are double spheres. The radius of the bud is equal to that of 

the parent at the point E; it decreases at larger v and approaches zero as v -, 1. The form 

v L ( G )  of the limiting line Lpear is given in parametric form by [57] 



Figure 5.1: Region of the budding transition of the ADE phase diagram for cr = 1.4. Two 
common experimental trajectories are depicted by the dashed lines. The vesicles start in 
the quasi-spherical region and gradually become more prolate as the reduced volume is 
decreased. Then, at the line DPem, the trajectories cross the first-order transition to  the 
pear phase. However, due to the energy barrier between the (then) meta-stable prolate state 
and the pear state, the vesicles stay prolate until they become unstable near the spinodal line 
MPew to fully vesiculated shapes. (The meta-stable prolate state decays when the energy 
barrier is on the order of thermal energies.) The neck is fully closed at the instability when 
the spinodal line MPew is located above the limiting LPem which is the locus of two-sphere- 
shapes with gradually smaller radius of the bud. For a full discussion of the phase diagram 
and other possible trajectories, see the text. 



Note that the lines Lpe" and MPe" intersect, so that metastable prolates with reduced 

volume v > 0.87 which become unstable at the spinodal line MPe" may be expected to end 

up as fully vesiculated shapes. 

T h e  ADE model has a tricritical point T. To the left of this special point, along the 

line Cpem, the transition between prolate and pear shapes is second-order, i.e., a vesicle 

changes shape smoothly and continuously from a dumbbell to a pear. To the right of T ,  

along the line Dpem, the transition between prolates and pears is first-order, i.e., the bud 

is expelled abruptly, and the shape changes discontinuously. The location of the tricritical 

point ( v f , m o )  depends on the value of a. As a + 0, the point T moves toward the end 

point E (&I2 - 0.71, a ( 4 a  + 4/a)) of the limiting line, where the shape consists of two 

equal spheres. This limit has not been studied in detail, but already for a = 1.4 one has 

v* = 0.73. It is clear that for this and smaller values of a the thermodynamic transition 

between prolates and pears is first-order for v > 0.73. Note that estimated values for 

phospholipids are in this regime (a,,,, z 1.1, a,,,, x 1.4 [61, 581). For a + oo, the 

tricritical point moves to  the point (1,l). Thus, all budding transitions are continuous for 

large a ,  except for very small buds. One recovers, therefore, the predictions of the SC-model 

( a  = 0, first-order budding ) and of the AA-model ( a  = oo, second-order budding). 
- 

Heating the vesicle sample leads to thermal trajectories (v(T), Aao(T)) in this phase 

diagram. Two generic budding trajectories are shown in Fig. 5.1. The general functional 

dependence of a thermal trajectory will be discussed later in Chapter 6. For now, we consider 

only the simplest case, for which (see Sec. 6.4), 

where the effective differential area Go becomes a hyperbolic function of the reduced volume 

v. The horizontal position of the different trajectories is parameterized by the value, 

Aa i  G Aao(v = 1) of the area difference at the sphere. Thus, a vesicle with a sufficiently 

large Aa; will eventually cross one of the two transition lines, (Cpear or Dpear), when heated. 

Depending on the location of the tricritical point T ,  it will do so either on the left of T, 

across the line CPe", or on the right, across the line Dpe". 

The second-order line Cpe" is, in fact, only accessible from the prolate phase for a very 

narrow range of trajectories, with Aai  6 1.11. On these trajectories, full budding (i.e., 

approach to  Lpe") is never achieved, since the vesicle recrosses CPear almost immediately, 

'This formula is valid for zero spontaneous curvature and equal thermal expansivities of the two 
monolayers. 

'Note that the superscript "sn refers to "sphere" not to "spinodal". 



reentering the prolate phase. 

For Aa; > 1.11, all thermal trajectories cross the first-order line DPe". Provided that 

Aac > 1.23, all these trajectories do eventually reach the limiting line LPe". It does 
not, however, follow that the observed budding will occur at  Dpe". The reason for this is 

that the prolate state remains metastable beyond DPear, all the way to Mpe". Thus, in the 

absence of external perturbations, a prolate vesicle will remain metastable in the prolate 

phase, when it is heated beyond DPe", until the energy barrier for transition out of that 

state becomes comparable to kBT, at which point the prolate state decays via a thermal 

fluctuation over the barrier and into a lower-energy budded state. This instability occurs 

near the spinodal line MPe" (see Fig. 5.1), where the energy barrier goes to  zero. The loss 

of stability of the prolates at  Mpear corresponds to the vanishing of an eigenvalue of the 

second-variation matrix, 

Det ( da,da, ~ 0 ,  

where the { a ; )  are the amplitudes (e.g., in the shape representation Eq. (4.10)) correspond- 

ing to the prolate shape with parameters (v ,nao) .  This provides a definition of the spinodal 

locus MPe". Note that, to  the left of the tricritical point T ,  the spinodal Mpe" merges with 

the regular second-order transition CPe". 

An important feature of the phase diagram is the crossing of the spinodal line Mpear with 
- 

the limiting line LPe" at  the point ML with coordinates (vML, Aa,,). This crossing means 

that for a reduced volume v > VM, the metastable prolate phase extends beyond LPe". 

Therefore, thermal trajectories which cross LPear at v > v,, miss the pear phase entirely, 

and the neck of the budded shapes closes completely at  the instability. This happens for 

trajectories with Go > 1.52. 

5.2 Two Landau Theories of Budding 

In the budding transition the up/down symmetry of the prolate state is broken along some 

path in the general shape space. To be specific, one might think of the shape representation 

Eq. (4.10). This symmetry breaking corresponds to a deviation from zero of the mean 

31n the small parameter regime 1.11 < Aa: < 1.23, the vesicle follows a reentrant trajectory where the 
prolate phase is left across the line DPear and subsequently reentered across the line CPear [49]. In practice, 
the two different kinds of reentrant trajectories will be hardly distinguishable. 

4The position of this point is also dependent on a. For a + m, ML moves to (1,l). 
5We note that the regions in s o  for the different budding scenarios are dependent on a. They have been 

given above for a = 1.4. 



amplitudes of the odd modes, as explained in Sec. (4.1.3). Near the spinodal instability 

of the metastable prolate state, the local minimum of the bending energy functional is 

characterized by a second variation which is small in one direction of shape space and which 

eventually disappears at the instability line MprO. Fluctuations in this shallow minimum 

become more pronounced, as the instability is approached. At the same time, the restoring 

forces diminish, and it takes increasingly long for fluctuations to decay ("spinodal slowing 

down"). This "softening" of the fluctuations will actually be divergent for the symmetry 

breaking normal mode with the lowest energy. One might use the amplitude of this soft mode 

as an order parameter for the (spinodal) budding transition. We shall find experimentally 

in Sec:5.3 that the soft mode has a large component along the direction of the shape mode 

as of our expansion Eq. (4.10). 

We have seen in the last Section that the budding transition can be first or second- 

order. For either of these situations, one can develop a Landau theory, which quite generally 

captures the situation just described. We will do so now. 

5.2.1 First-Order Budding 

Let us begin by assuming a first-order budding transition, as suggested by the ADE model 

and estimates of the elastic parameters. In the following, we are not interested in the first- 

order transition itself, but rather in the behaviour of the vesicle near the spinodal line. If 

a, denotes the amplitude of the dominant unstable (odd) mode, the potential in this a, 

direction can be modeled as 

where g, u > 0 and r is proportional to the second derivative of the bending energy at the 

metastable minimum, which changes sign at the instability. Note that the bending energy 

K sets the overall energy scale, so that the Landau coefficients r ,  g, and u are dimensionless 

and generically of order unity. We denote the spinodal reduced volume as v, and the 

corresponding spinodal temperature as T,. We expect 

'The following Section is based in large parts on notes by Dr. Udo Seifert [72]. 
'The last term of the potential is added only for reasons of stability. I t  is not important for the following 

discussion. For simplicity, we assume ru << g2. 
'1t is important t o  note that  the spinodal volume and the spinodal temperature, a t  which the prolate 

phase becomes unstable, have no absolute meaning. They are defined relative t o  a given thermal trajectory. 
Note that  the budding transition here is not a thermodynamic phase transition but,  rather, an instability. 
Temperature is only used as a control parameter to  dial the reduced volume. 



The constants co and cl (not to  be confused with curvatures) are generically of order unity. 

In principle, co could be calculated from a diagonalization of the second variations of the 

bending-energy functional. The second linear relationship follows from the assumption of a 

constant thermal area expansion coefficient P A .  
When T > 0, the potential (5.4) has a local minimum at a, = 0, which is metastable 

when u is small. Under these circumstances, the metastable state is constrained by an 

energy barrier centered near a: G f of height approximately V(a:) = ~ ~ ~ 1 4 ~ .  The 

mean-square amplitude ( a ; )  of fluctuations about the metastable minimum is given at the 

Gaussian level by equipartition as 

We thus find that the static equal-time fluctuations diverge as v approaches the spinodal 

point v, with an exponent lo (, = -1. 

We turn now to the dynamics of the soft mode. The simplest assumption is that near 

the instability the amplitude a, of the soft-mode obeys a dynamical equation of the form 

which will be further justified below. The kinetic coefficient r has the dimensions of 

l / ( t ime x energy). Since friction is determined by the viscosity 17 of the surrounding liquid 

and the only lengthscale available is the "wave-length" of the unstable mode, i.e, the size R 

of the vesicle, dimensional analysis leads to 

with a numerical factor c2 (generically of order unity) which could in principle be determined 

by a more careful (non-trivial!) analysis of the dynamical eigenmodes. Note that the 

dynamical eigenmodes do not coincide in general with static ones: The static normal modes 

are coupled dynamically, a feature which is neglected in Eq. (5.7). Nevertheless, we can 

gain support for the reasoning just given by reference [70] to  the relaxation equation for the 

amplitude of a planar membrane with wave-vector q, which reads (for q -, 0) 

'One finds cl = gPAvsTs CO. 
''Note that C, is not a critical exponent in the strict thermodynamic sense but rather a "spinodal" 

exponent. Indeed, the "divergence" suggested by Eq.(5.6) cannot, in fact, be reached for T > 0, since the 
metastable state decays before the instability, as soon as the barrier is comparable to ~ B T .  



Thus, for long wavelengths q 1/R, this is the same as (5.7) with (5.8). This equation holds 

for the relaxation of an unstructured incompressible membrane and neglects the dissipation 

caused by inter-monolayer friction. l1 

An estimate of the full time-dependent correlation function can be easily derived from 

Eq. (5.7): 

(aU(t)au(0)) = (a:) e-"'~ , (5.10) 

where the equilibrium fluctuations (a;) are given by (5.6) and the correlation time tc is 

defined by 

tc = I / ( ~ K T )  . (5.11) 

Inserting r from Eq. (5.5), we find that the correlation time diverges on approach to  the 

spinodal with a dynamical exponent Cd, 

which has, in fact, the same numerical value as the static exponent (Cd = (', = -1). Thus, 

the relaxation time of the soft mode is expected to grow near the spinodal in the same way 

as the mean-square amplitude. For the typical values, 77 = 1 0 - ~ e r ~  sec/cm3, R = 10-~cm, 

and K = 10-12erg, one finds 
1 1 

tc z LIO A sec . 
CoC2 v - V ,  

One has to  keep in mind that in deriving the relations (5.6) and (5.12) one makes the 

implicit assumption that the metastable state is not yet decaying thermally. However, the 

prolate vesicle cannot approach the instability closely without being subject to  thermal 

decay over the barrier into the budded state. Thus, the "spinodal exponents," C, which 

describe the divergent behaviour near the spinodal, are not well defined thermodynamic 

quantities but should, rather, be viewed as an effective way of describing the properties of 

the fluctuation spectrum of the vesicle near but not at the spinodal. 

The (finite) mean lifetime tl of the metastable prolate state can be estimated as 

where the exponential factor reflects the static probability of a thermal excitation sufficient 

to overcome the energy barrier and l / t c  plays the role of an attempt frequency. Far away 

"A full analysis [70] which takes into account the bilayer structure and allows for monolayer compress- 
ibility shows that there is a crossover of the slowest mode from a regime dominated by dissipation due to 
hydrodynamic viscosity to a regime where dissipation within the bilayer dominates. This crossover takes 
place on a length scale of about 1 pm. The bilayer aspect is irrelevant as long as the shape changes happen 
on a scale larger than that. This should be the case, at least for the onset of the budding transition. 



from the (spinodal) instability the two time scales t, and tl are well separated. This is 

the region where (5.6) and (5.12) apply. The two timescales become comparable when 

V(a,+) 2 kBT, i.e., for T 2 2 Jm. l2 

For this and smaller values of T, the definitions of the spinodal exponents ( become fuzzy, 

since thermal averages of the metastable state are no longer well defined. Nevertheless, using 

this estimate for T in the definition (5.11) oft,, we obtain 

1 77 R3 1 
t, = - x ---- 50 sec 

~ ~ 2 ~ 1 1 2  ( K  kBT)lI2 c22g1I2 

as a typical timescale of the soft mode near the spinodal. This is much larger than the 

timescale (see Eq. (5.13)) away from the spinodal. Indeed, that is what we will find in 

experiments. 

5.2.2 Second-Order Budding 

For large a or small reduced volume v at  budding, the budding transition becomes contin- 

uous. In this case, there is no metastable state and no spinodal. Within a Landau picture, 

the potential near the transition may now be approximated by 

The relations, 

T x C ~ ( V  - v,) x c1(Tc - T)/Tc 

and 

V"(a, = 0) = KT , 

still hold (with the spinodal subscript s now replaced by c for "critical"). Therefore, the 

fluctuations (in the Gaussian regime) of the symmetric shape behave the same way as a 

function of T for first and second-order transitions, provided one is still above v, (i.e., below 

T,) . In particular, the mean-square amplitude, 

and the relaxation time of the soft mode, 

l2Nonlinearities become important for g ( a t )  2 r, i.e., r 5 4- , which is again the same 
c~iterion. 



still diverge with the ("critical") exponents ( = -1, as the critical reduced volume v, is 

approached from above. 

For reduced volumes below v,, the situation is quite different. For r < 0, the stable 

minimum now is at a; = f J*, representing two degenerate pears related by mirror 

symmetry. The symmetric, "prolate" point, a, = 0, is now at the top of an energy barrier, 

- V ( a i )  = r ; ~ ~ / 4 ~ ,  which separates the two energy degenerate minima. As long as this 

energy barrier is small compared to  kBT, one expects strong fluctuations. Beyond this 

point the shape settles into one of the new asymmetric minima and increases its asymmetry 

according to  a; N (v, - v)'I2. Fluctuations around this shape have mean-square amplitudes 

proportional to V"(a;) = - 1 / ( 2 r ~ )  N l/(v, - v), which is large near the transition but 

become less pronounced. Note the contrast with the spinodal behavior described in the 

previous subsection, where beyond the instability the asymmetry parameter, (a,), jumps to 

a finite value and the fluctuations decrease abruptly to a low, noncritical level in the budded 

configuration. Thus, the two cases are easy to  distinguish experimentally. 



5.3 Experimental Results 

This Section presents experimental results for the fluctuation spectrum of the budding 

transition. We will first look at the static properties in Sec. 5.3.1; then, in Sec. 5.3.2, the 

dynamical behaviour will be explored. 

5.3.1 Statics: Mean Square Amplitudes 

As the budding transition is approached, prolate vesicles show enhanced symmetry-breaking 

fluctuations. In Figs. (5.2) and (5.3), video sequences of a fluctuating vesicle, which we will 

denote. henceforth as vesicle "A," are shown for two different reduced volumes. Several 

snapshots at equal time delays were taken. Far away from the transition, i.e., at a large 

reduced volume, the vesicle fluctuates weakly around a symmetric state (see Fig. (5.2)). 

Figure 5.2: Time sequence of images of a fluctuating vesicle ("A") at v = 0.954. The elapsed 
time between each snapshot is 6.3 seconds. In the figure, the images are ordered in time 
from the upper left to the lower right. The vesicle fluctuates around an axisymmetric prolate 
shape. Each particular contour, however, is non-axisymmetric. The linear dimension of the 
images is approximately 20 pm. 

This changes dramatically as the reduced volume is decreased towards the transition (see 

Fig. (5.3)). There are now frequently quite strong deformations away from the prolate shape. 

This change in the fluctuation spectrum can be nicely seen in Fig. 5.4, where time sequences 

of the as amplitude are compared for the two reduced volumes of vesicle "A" illustrated in 

Figs. 5.2 and 5.3. The strong asymmetric fluctuations which are visible in the video pictures 



Figure 5.3: Time sequence of images of vesicle "A" at v = 0.912. The elapsed time between 
each snapshots is again 6.3 seconds. In the figure, the images are ordered in time from the 
upper left to  the lower right. The vesicle is now more elongated than it was at v = 0.954. 
Strong pear-shape fluctuations are clearly visible. Note, the great variability in the degree 
of asymmetry of the instantaneous shape. 



are reflected in the time series of the a3 amplitude as excursion to large positive or negative 

values. Note for future reference that the amplitudes a3 are characteristically both larger 

in magnitude and slower in time at the lower reduced volume. Vesicle "A" became unstable 

at reduced volume v = 0.878. 
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Figure 5.4: Time series of the as amplitude of vesicle "A" at reduced volumes v = 0.954 
and v = 0.912. The dashed line corresponds to  zero amplitude. The amplitude a3 is 
characteristically both larger in magnitude and slower in time at the lower reduced volume. 



This qualitative picture of the enhancement of symmetry breaking fluctuations near the 

spinodal instability can be analyzed quantitatively by calculating the mean-square amplitude 

fluctuations, i.e., the static part of the amplitude-amplitude correlation function. In Fig. 5.5,  

the mean-square amplitudes ( ( a ,  - ( u , ) ) ~ )  of vesicle "A" are shown as a function of the 

reduced volume v. There is an increase in magnitude of all modes with decreasing volume. 

However, the amplitudes of the first and third mode show a rapid growth as v decreases 

towards the instability point, whereas the amplitudes of the other modes stay approximately 

constant by comparison. 

Another way to look at  the data of Fig. 5.5 is to plot the mean-square amplitudes as 

a function of the mode number n. In Fig. 5.6, the resulting fluctuation spectra are shown. 

As expected theoretically [42], the amplitudes fall off for higher mode numbers. Note that, 

the second mode is strongly suppressed. This is a consequence of the area and volume 

constraints on the vesicle fluctuations [68]. The spectra recorded at  lower reduced volume 

clearly show a strong growth of the third mode. l3 

1 3 ~ h e  growth of a1 is not conveniently visible on the scale of this plot. 
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Figure 5.5: Mean square amplitudes of the first six modes for vesicle "A" at different reduced 
volume. The amplitude fluctuations of the first and third mode apparently diverge. Note, 
the different vertical scales. 6 7 
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Figure 5.6: Fluctuation spectra of vesicle "A" as it approaches the budding transition: 
Mean-square amplitudes as a function of the mode number n at different reduced volume v. 
The amplitude fluctuations peak strongly at the "soft" third mode as the spinodal instability 
is approached. 68 



5.3.2 Dynamics: Relaxation Time 

We now turn to  a description of the observed dynamics near the budding transition. We 

have argued in Sec. 5.2.1 that, as the spinodal line is approached, one expects not only an 

increase in the amplitude of the soft mode but also a corresponding increase in its time scale. 

Indeed, that is what is observed in experiment. A comparison of Figs. 5.2 and 5.3 reveals 

a clear distinction in time scale between pear fluctuations of the prolate shape at large v 

versus small v. Inspection shows that at large v vesicle shapes are essentially uncorrelated 

between the frames shown, whereas at small v there is substantial correlation in the degree 

of "pearness" between subsequent snapshots. Both time sequences were recorded with the 

same time difference (6.3 seconds) between frames. 

This feature is captured in the time-dependent amplitude correlation functions of the 

third mode (a3(0)a3(At)) for different reduced volume v. These functions are depicted in 

Fig. (5.7) for vesicle "A." All correlation functions are calculated directly from the time 

0 5 10 15 20 25 30 35 
t in seconds 

Figure 5.7: Time-dependent amplitude correlation function of the third mode for different 
reduced volumes v. The solid curves are the result of fitting a biexponential (v = 0.912, v = 
0.932) and exponential (v = 0.954) function to  the data. 



series as 

where Atj  = j x 0.2s and N j  is the number of pairs with a time lag Atj. l4  

The time-dependent amplitude correlation functions (5.21) may be expected to be com- 

posed of a sum of contributions from distinct dynamical modes, l5 each decaying exponen- 

tially with some characteristic relaxation time [42]. It is, therefore, common to parameterize 

such functions as a sum of exponentials, 

The dominant relaxation time was extracted for each mode, n = 2,3,4,5, and 6, by least- 

squares fit. In general, the data support only a single-exponential fit. Near the instability 

and for modes n = 3, we used a biexponential fit (see Fig. 5.7). In Table (5.1), the re- 

laxation times of the first six modes are shown as a function of the reduced volume. The 

corresponding temperatures are also given. All relaxation times stay approximately constant 

with reduced volume, except the one for the third mode. The relaxation time of this mode 

shows a strong increase as the budding instability is approached. For the lowest reduced 

volume measured (v = 0.894) before the instability, a fit of the correlation function was not 

attempted, due to the very slow decay and high noise level at large times. Note that the 

correlation times of modes two, and four to  six fall off with increasing mode number, as 

expected theoretically [42] for non-critical thermal fluctuations. 

Table 5.1: Relaxation times of the first six modes for different reduced volume v. 

In the video sequences, the final transition to the budded configuration takes place via 

a giant thermal fluctuation which does not decay. The vesicle remains for some time in a 

'*For the grabbing of frames a t  "equally" distant times t  = t,, we allowed for a small time window with 
0 < ( t  - t , )  < 0.05s. Events were collected in bins centered at  t ,  for calculation of correlation functions. 
This coarse graining procedure does not affect relaxation times but overestimates amplitudes with relaxation 
times r 5 k 0 . 0 5  s. 

15The dynamical eigenmodes are not, in general, the same as the static eigenmodes. 



shape with an "open" neck (see Fig. 5.8); finally, the neck closes down completely, i.e., its 

Figure 5.8: Time sequence of images during budding. The time elapsed between each frame 
is 1.2 seconds. Vesicle "An (Rv = 8.8 pm) diffuses over the barrier of the metastable prolate 
state. The reduced volume is v = 0.878. 

radius shrinks to a value below optical resolution. The resulting shape then becomes two 

fluctuating spheres or a fluctuating prolate ellipse with a quasi-spherical bud. The pear- 

shaped transients, which appear in the first few frames, never reappear a t  later times, where 

only the two-sphere configurations are present. The fluctuation amplitudes of the budded 

shape are strongly reduced with respect to the metastable shape before the transition. Thus, 

there are no visible "critical" fluctuations of the vesicle after the transition, as would be 

expected if the transition were second-order. 

It is important to  note, that the first few pictures of the time sequence in Fig. 5.8 do not 

represent the mean shape of the vesicle right at the instability. This is evident in Fig. 5.9, 

where another time sequence of the same vesicle is shown for a slightly smaller reduced 

volume (Av 2 0.005). In fact, in this regime the notion of a mean shape is not well defined 

as explained at  the end of Sec. (5.2.1). 

The time scale of the escape of the vesicle out of the metasta,ble state depends strongly 

on size. In Fig. 5.10, budding of a smaller vesicle ("B") is shown. This vesicle overcomes 

the barrier much more quickly than does vesicle "A." This is as expected theoretically for 

the diffusion over the saddle point, since fluctuation times scale with the third power of the 

radius of the vesicle (see Eq, (5.15)). 



Figure 5.9: Time sequence of images of vesicle "A" just below the budding instability, a t  
v E 0.883. At this reduced volume, the vesicle is only 0.005 units away from budding 
(compare Fig. (5.8)). Note that the vesicle appears to  be prolate in this sequence. The 
time elapsed between frames is 1.2 seconds. The apparent "bud" in the middle frame of this 
sequence is just an independent small vesicle floating by as is evident from the snapshots 
before. 



Figure 5.10: Time sequence of images during budding for vesicle "B." The time elapsed 
between each frame is 1.2 seconds. This vesicle "B" (Rv = 5.4 pm) diffuses over the barrier 
of the metastable prolate state much quicker than vesicle "A" (Rv = 8.8 pm) in Fig. 5.8. 



5.4 Discussion 

We discuss now the experimental data on the budding transition presented in the previous 

Section and compare them to theory. 

As we have argued in Sec. 5.1, the ADE model predicts a first-order budding transition 

for PC vesicles. In this transition, the up/down symmetry of the prolate shape is broken. 

We may choose - guided by the experimental results - the amplitude a3 of the third mode 

as a suitable measure of this symmetry breaking. l6 The mean value ( a s )  is (approximately) 

zero for a symmetric prolate shape and has a finite value in the budded configuration. 

In Sec. 5.4.1, we collect all the experimental facts which suggest a first-order budding 

transition. First, we investigate the static and dynamic properties of the fluctuations of 

the third mode. We shall find evidence for the existence of a spinodal line. Second, we 

discuss the mean asymmetry parameter. A large spontaneous jump in this quantity at the 

spinodal instability supports the notion of a first-order transition. We conclude from the 

experimental data that there are only two phases, l7 the prolates and the pears, between the 

spherical shape and the limiting line. We identify the first-order transition between these 

two phases as the budding transition of the ADE model. 

The behaviour of the mean amplitude of the third mode will be further investigated in 

Sec. 5.4.2. We find that the third amplitude seems always to  have a small but statistically 

significant non-zero value, which becomes larger as the spinodal line is approached. One has 

to conclude from the experimental data that the up/down symmetry is always broken even 

in the "prolate" phase. Nevertheless, we will show that the effect is, in fact, quite small. 

The principal phases of the ADE model are preserved and the scaling behaviour of the soft 

eigenmode is not changed from what one expects within that model. We believe that the 

origin of small symmetry breaking is extrinsic, as we shall discuss more fully in Sec. (5.4.2). 

In Sec. 5.4.3, we relate our results to  previous experiments on the budding transition. 

161n Sec. 5.2.1, it was shown that the instability of the prolate shape near the spinodal line of the budding 
transition reflects the existence of a soft mode, which breaks the up/down symmetry of the prolate shape. 
Since in our expansion (see Eq. 4.10) it is the odd modes which break this symmetry, and eigenmodes with 
different parity do not mix, the soft eigenmode can only have contributions from odd modes. As we have 
seen experimentally, the strongest contribution comes from the third mode. Therefore, it makes sense to 
choose the third mode a s  a measure of asymmetry. 

1 7  There have been reports of three possible distinct phases in previous experiments {50]. 



5.4.1 Evidence for a First-Order Budding Transition 

Statics and Dynamics of Shape Fluctuations 

The experimental results of the last section show clearly the existence of a soft mode of 

the prolate shape near the spinodal line of the budding transition. The evidence presented 

includes dramatic growth (apparent divergence) of both the static fluctuations ( "spinodal 

fluctuations") and the characteristic decay time ("spinodal slowing down") for the ampli- 

tude of the third shape mode, as. In order to characterize this divergence further, we apply 

the scaling analysis derived in Sect. 5.2 to the amplitude of the third mode. This is legiti- 

mate since we have found experimentally that the projection of the soft mode has a large 

component in the as-direction. l8 

- < = -1 fixed 

- - -  6 = -1/2 fixed 

Figure 5.11: Power-law fits to  the behaviour of the mean-square amplitude of the third mode 
of vesicle "A." Fit results for two different (fixed) exponents are shown. The theoretically 
expected exponent (' = -1 for budding out of a prolate shape gives the better fit. For a 
discussion of the exponent (' = -112 for budding out of a "pear" shape see Sec. 5.4.2. 

''The only other noticeable component is along the a1 direction. However, there is no new information on 
the soft mode in the a1 amplitude. It is basically reflecting the behaviour of a3 in this respect. The reason 
for that is the closure condition Eq. (4.12),  which reads a1 2 112 a2a3 + ... . Noting that the mean value 
of a2 is typically an order of magnitude larger than its fluctuations, i.e., ( a : )  ( a 2 ) 2 ,  and setting ( a l )  and 

( a s )  to zero, we find for the mean square fluctuations of the first mode ( a : )  21 112 (a2j2  ( a : ) .  Thus, the 
mean-square fluctuations of the first and third mode are approximately linear dependent on one another. 



In Fig. 5.11, the result of a power-law fit to the mean-square amplitude, 

is shown. For the position of the apparent singularity, which gives the location of the 

instability, we find  TI:^"^'' = 0.87 f 0.01. The same procedure can be applied to the (long) 

relaxation time of the third mode (see Fig. 5.12) and yields v,dynamic = 0.90 f 0.01. Thus, 

Figure 5.12: Power-law fits to  the growth of the longest correlation time of the third mode. 

we find that the growth in both the static fluctuations and the dynamical relaxation times 

of the third mode is consistent with the theoretical expectation of ( = -1 and, consistently, 

the separate fits give approximately the same location of the instability. 

A third independent estimate of the location of the instability can be obtained by ex- 

trapolating the thermal trajectory (see Fig. 5.13) of the reduced volume to the budding 

temperature. The thermal expansion coefficient P can be read off from the slope of this plot 

of the reduced volume versus temperature by using Eq. (6.24). One finds a thermal expan- 

sion coefficient ,d = (2.9 f 0.2) x The same coefficient has been found by the pipette 

technique [lo]. Using this number, one extrapolates to a volume vihemal = 0.878 f 0.001. 

Note that the latter number is found with a ten-fold higher accuracy than it is possible from 

the power-law fits. 

Thus, reduced volume at which the budding instability occurs can be determined in 

three independent ways, and good agreement is found. The exponents C, and Cd provide 



Figure 5.13: Reduced volume of vesicle "A" as a function of temperature, approaching the 
budding instability from below. The slope of the straight-line fit gives the bilayer thermal 
expansion coefficient (see Sec. (6.4)) and is consistent with other determinations of this 
quantity [lo]. By extrapolating to the observed transition temperature, we can infer a 
precise value for the reduced volume at the instability (see text). 

clear quantitative signatures of the budding instability. On this basis, we may conclude that 

we are observing (first-order) budding close to a spinodal line (metastability limit). 

In principle, a second-order transition could give the same pretransitional scaling be- 

haviour (in the prolate phase) as expected for the approach to  the spinodal for both of the 

mean-square amplitudes and relaxation times of the third mode (see Sec. 5.2.2). However, 

in the case of a second-order transition, one would not see an instability of the shape, i.e., 

the degree of asymmetry would not grow suddenly and spontaneously at the transition. 

Instead, the shape asymmetry would increase continuously and strong fluctuations would 

persist beyond the transition, as long as the energy barrier separating the two degenerate 

asymmetric minima remained small compared to kBT. This is clearly not what is seen 

in experiment. Thus, a second-order transition can be ruled out, and we determine the 

budding transition to be first-order. 



Asymmetry Parameter 

-4s we have seen, the amplitude a3 of the third mode plays the role of an "order" parameter 

of the budding transition. In principle, its numerical mean value is zero in the up/down 

symmetric prolate phase, and nonzero in the pear (or fully vesiculated phase), which has 

lost the up/down symmetry. The orientation of a pear-like vesicle fixes the sign of its a3 

amplitude. Since both possible orientations (and, indeed, a complete rotational family of 

shapes) have equal bending energy and, in fact, correspond to  the same vesicle shape, it 

is advantageous to use the absolute value of (as )  to characterize the degree of symmetry 

breaking. Henceforth, when we use the word "asymmetry (parameter)", we shall mean the 

mean absolute amplitude of the third shape mode, I(as)l. 

For a first-order transition with metastability, one expects a jump in the order parameter 

at  (or close to) the spinodal instability. This is exactly what is seen in the case of the budding 

transition. In Fig. 5.14, experimentally determined values for the asymmetry of the budded 

configuration (and the saddle point) are plotted along with the values in the prolate phase 

for vesicle "A". There is, indeed, a clear jump in the asymmetry by an order of magnitude 

at  the instability of the prolate shape. This is another strong indication of a first-order 

transition. 

5.4.2 Weakly Broken Reflection Symmetry 

of Experimental Vesicle Shapes. 

Although the asymmetry in the "prolate' phase is approxim lately zero, at  least compared to 

its value in the budded phase, nevertheless, it is larger than zero in a statistically significant 

way for all v < 1. The reason for this weakly broken symmetry of the prolate phase is 

not clear. In the following, we investigate the consequences of this weak asymmetry for the 

theoretical interpretation of our data. We will arrive - in several ways - a t  the conclusion 

that the effect is quite small, as is already evident from Fig. 5.14. We believe that, at  this 

point, there is no reason to  doubt the validity of the ADE model. Our interpretation of 

the data is that experimental vesicle shapes are governed mainly by the physics of the ADE 

model. However, all shapes, especially the prolate phase, are slightly altered by a weak 

extrinsic source of asymmetry of unknown origin. 

It is important to realize that our shape experiments are conducted on single vesicles 

and not on some kind of vesicle ensemble. Each vesicle has to be inspected individually to 

avoid obvious artifacts. In a typical experimental chamber, one finds quite often vesicles 



Figure 5.14: Asymmetry parameter ( 1  (a3[)) of vesicle "A" at a sequence of reduced volumes. 
Within the "prolate" phase (i.e., before the jump), the symmetry is only slightly broken 
(see Sec. (5.4.2). At the instability to  the budded configuration the asymmetry jumps by 
an order of magnitude. The two hollow triangles depict the asymmetry of the saddle point 
and of the budded shape, respectively. The asymmetry of the shape on the saddle point is 
estimated from a few vesicle contours, taken during diffusion over the energy barrier. The 
asymmetry of the budded shape is obtained from a measurement of the radii of the two 
spheres. (la3/ can be calculated analytically from the ratio of the radii of the two-sphere 
shape.) 

which have a small but visible "defect" l9 but are otherwise topologically spherical, "nice" 

vesicles. In these observations, there is a correlation between the position of the defect on 

the membrane and the local curvature of the vesicle. In most cases, defects tend to  curve 

the membrane more strongly at the point where they are incorporated into or attached to 

the bilayer. Another potential source of asymmetry are local attachments of the vesicle to  

the substrate. The vesicle can get entangled on a rough spot on the glass slide and thereby 

develop a slightly asymmetric shape. We have to the best of our ability excluded such 

vesicles from the analysis by visually inspecting the membrane and monitoring the (free) 

rotational and translational diffusion of the vesicles. Fortunately or unfortunately, even 

after rejecting such obvious artifacts, some (extrinsic) asymmetry apparently remains. 

We examine now the "size" of this extrinsic asymmetry. In Fig. (5.15), the asymmetry 

''By "defect," we mean, e.g., a small microbud, which does not exchange area with the vesicle, or a small 
piece of junk within the membrane. 



(within the "prolate" phase) of vesicle "A" is shown on a scale larger than that of Fig. 5.14. 

What is plotted are the asymmetry parameters of the left and right side of the contour and 

their average for different reduced volumes. The average asymmetry seems to extrapolate 

I - 
/ - mean lca3>1 , 

\ left I<a,>l 
/ right I<a3>l 

Figure 5.15: Mean absolute amplitude of the third mode, < as >, for vesicle "A." This 
observable is a measure of the asymmetry of the shape. Note the vertical scale. 
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to zero for a spherical vesicle, as it must. It is evident that the asymmetry gets larger as the 

spinodal line is approached. The reason for this enhancement of the extrinsic asymmetry of 

the vesicle is very likely the existence of the soft mode, itself. Near the instability, it costs 

increasingly less (bending) energy (within the ADE model) to  force a change in the soft 

mode amplitude, so as becomes highly "susceptible" to any small additional terms in the 

Hamiltonian. We will come back to  this reasoning below in more detail. 

We emphasize that the dramatic increase in asymmetry (by an order of magnitude), 

visible in Fig. (5.15), is actually quite small on the scale of the asymmetry of the saddle 

point and the fully vesiculated budded shape, as shown in Fig. (5.14). In fact, the asymmetry 

of the mean vesicle shapes corresponding to  the two largest reduced volumes is hardly visible 

by eye. In any case, one would like to have some tool at hand to  estimate the importance of 

the symmetry breaking more quantitatively than just by looking at plots of the asymmetry. 

I I I I I I I~ 

- - - linear extrapolation 
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Within the framework of a Landau theory, a simple method to deal with such an unknown 

source of asymmetry is to  introduce a "magnetic field" h into the Landau functional. Such 

a field breaks the reflection symmetry of the original Landau model and allows one - quite 

generally - to investigate the consequences of a small asymmetry for the prolate phase. 

We start by writing down an appropriate Landau potential for a first-order budding 

transition out of a pear state, 

where a, is, again, the amplitude of the soft mode. One performs now the same kind of 

calculations as outlined in Sec. (5.2.1). After some algebra (see Appendix C), one finds that 

the correlation time and the static mean-square fluctuations in the metastable state obey 

different power-laws (as a function of the distance in reduced volume from the the spinodal 

line) from those of the symmetric case, Eqs. (5.6) and (5.12). We find, in particular, that 

where (a,) is the average asymmetry of the metastable state. Thus, we expect modified 

exponents, CS = (h = -+, for the budding instability. The characteristic power laws for the 

correlation function hold universally, whenever the decaying metastable state is asymmetric, 

irrespectively of the physical origin of the asymmetric term. 

We do not see the exponents (5.25) in the observed fluctuations of the third mode. As 

shown in Fig. (5.11), a scaling exponent, [ = -112, does not give a good fit to the data. 

We might draw the same conclusion from the result of the constrained fits (Fig. (5.12) to 

the correlation times. 

How can this result be understood? Shouldn't we see an exponent [ = -112 instead 

of (' = -1 ? After all, budding takes place out of a shape which is (weakly) asymmetric. 

The answer is, "no," the soft mode should only show the asymmetric exponent in a regime 

where the fluctuations in the asymmetry are much smaller than the mean value, i.e., in 

some "inner critical" regime. In fact, in our measurements, the opposite is the case: the 

fluctuations are always much larger in amplitude than the mean value. Thus, we are still 

in the "outer critical" regime, where the fluctuations do not show the characteristics of 

asymmetric budding. 

To quantify this statement further, let us compare the energy which is stored in the weak 

pear with the energy in the fluctuations around that shape. Setting the Landau parameters 



g and u to  zero (for simplicity) in the Landau functional (5.24), we find for the mean energy 

of the weak pear 
1 2 

EpeW = -- KT < a, > . 
2 

(5.26) 

Since the curvature at the minimum is KT, the mean energy of a thermal fluctuation is 

1 2 
Efluct = - KT < (a,-  < a, >) > . 

2 

Thus, we find for the ratio of the two energies 

We can calculate this ratio from the experimental data by identifying a,  with as. This is 

a good approximation, since the soft mode points almost exclusively along the as direction. 

The ratio is plotted in Fig. (5.16) for vesicle "A." One observes that the energetic contribu- 

Figure 5.16: Ratio of the energy of the mean pear shape to the mean energy of a fluctuation 
along the direction of the soft mode. 

tion of the symmetry breaking term is always small, even in the region where the intrinsic 

asymmetry gets enhanced by the symmetry breaking soft mode. Therefore, the vesicle shape 

is governed largely by the physics of the (symmetric) ADE model and properly exhibits the 

various phases of that model. 

The preceding discussion justifies, a posteriori, the identification of the experimentally 

observed weak pears with the prolate phase of the ADE model. 



5.4.3 Relation to Previous Experiments on the Budding Transition 

We are now in a position to relate our results to previous experiments on the budding 

transition performed by Kas and Sackmann [50]. These authors have reported the following 

sequence of events leading from a quasi-spherical shape to a fully vesiculated (closed-neck) 

budded shape: First, a quasi-spherical vesicle becomes a symmetric prolate. Second, the 

prolate vesicle looses its reflection symmetry in a continuous, second-order transition and 

develops into a strong pear. Finally, third, the pear (with an open neck) becomes unstable 

to  a fully vesiculated shape (with a closed neck) in a discontinuous, first-order transition. 20 

The experimental scenario reported by Kas and Sackmann is in contrast to  our results 

and, in fact, not available within the ADE model. Although the ADE model allows the 

budding transition to be either first- or second-order, depending on the value of a, the 

subsequently reported first-order transition is not present within that model. Podgornik 

et al. [71] proposed to explain this additional transition by introducing into the bending 

energy a term cubic in the area difference. The problem with such an interpretation is 

that, in order to produce the experimentally observed sequence, the authors were forced to 

assume a coefficient of this term which is a factor lo5 higher than the value one expects 

theoretically [58]. Thus, we prefer to  reject this explanation. 

Comparing our results to  these experiments, we find, however, that there is agreement 

on the existence of a first-order transition. The basic quantitative difference here is that 

Kas and Sackmann report this transition from strong pears, whereas we find only a rather 

small mean asymmetry of the vesicles near the instability. A qualitative difference is that 

they report a well defined continuous symmetry-breaking transition at reduced volumes 

v < 1 , which we do not find. In contrast, our vesicles are slightly asymmetric for all 

reduced volumes right up to  the spherical shape (v  = 1). In some sense, this difference 

is also quantitative, since it relies on a measurement of the degree of up/down asymmetry 

( "pearness") of the vesicles. We note that the interpretation of the data in [49, ?] was based 

on a measurement of reduced volumes only. The degree of asymmetry was judged visually 

from dynamically fluctuating vesicles or estimated from snapshots of vesicle shapes. 

In Fig. 5.17, we have juxtaposed hypothetical values of the asymmetry parameter of 

the experimental sequence reported in [SO] with those of our results. The degree of asym- 

metry of the last stable pears is estimated roughly from the pictures published in [50]. 

These pictures are snapshots of fluctuating vesicles but, as implicitly suggested by the au- 

thors, close to the mean shape of the vesicle under consideration. One observes that, for a 

second-order, transition one would have a bifurcation structure in I (a3)  I .  In contrast, the 



scaling behaviour of our I ( a s )  I is qualitatively completely different and not consistent with 

a bifurcation structure. Furthermore, an additional second-order transition, which would 

preempt the symmetry breaking of the first-order budding transition, should also show up 

in the behaviour of the soft mode. It would be expressed as a second apparent divergence 

in addition to the divergence at the spinodal line. Such a signature is also absent in our 

data (see Fig. 5.5). We conclude, therefore, that there is no real second-order transition 

detectable in our data. We also note that we consider it impossible unambiguously to detect 

a second-order transition for vesicle shapes without quantifying the degree of asymmetry 

and performing a scaling analysis. 

We. propose that it was the existence of weak mean pears, which are detectable by 

visual inspection only below a certain reduced volume, in combination with the large pear 

fEuctuations near the spinodal line which led to the proposition of a second-order budding 

transition in [49, 501. Thus, it is probably not so much the experimental results which are 

in contrast to  our findings but rather their interpretation. 

In summary, we note that our interpretation of the sequence of events found in this work 

might also be applicable to the experiments reported in [49, 501. We find that a) budding 

is a first-order transition, b) it is a metastable prolate shape and not a (strong) pear which 

becomes unstable a t  the spinodal line, c) there is no additional second-order transition, and 

d) the reflection symmetry of the prolate phase is weakly broken by an extrinsic, unknown 

source of asymmetry, so the prolate phase of the ADE model appears experimentally as 

consisting of weak pears. 

It is our belief that our interpretation gives a complete and internally consistent picture 

and has the merit of theoretical explanation within the ADE model. Regrettably, we have 

at present no strong evidence as to the origin of the asymmetry. We can only point out that 

visible "defects7' are common, so it does not stretch credibility to suggest that such defects 

continue to  exist a t  length scales below our resolution, where we cannot select against them. 



Figure 5.17: Two different scenarios for the budding transition. Scenario A corresponds 
to the results reported in [49, 501. Scenario B corresponds to our findings. In both cases, 
there is a clear jump of the asymmetry at some finite reduced volume. In scenario B, the 
bifurcation structure corresponding to a second order transition is absent. 



Chapter 6 

Mapping of Prolate Vesicle Shapes 

into the ADE Phase Diagram 

In the previous Chapter, we investigated qualitative signatures of budding behavior, espe- 

cially the way in which the up/down symmetry is broken. In this work the focus was to 

study the static and dynamic vesicle fluctuations just prior to the budding instability leading 

from the prolate phase towards pear or vesiculated shapes, as monitored via the dominant 

asymmetry measure I (as) I. In this Chapter, by contrast, we focus on the finer details of 

the (mean) vesicle shape, as measured via the mean-shape amplitudes, < a, >, within the 

prolate phase. In particular, we shall explore the extent to which these shapes can or cannot 

be accurately predictedldescribed within the context of the ADE model. Thus, the ultimate 

goal is to locate these shapes in the appropriate phase diagram and to see whether observed 

and predicted shapes agree, thereby "mapping" the observed shapes into the ADE phase 

diagram. 

The ADE phase diagram is described (Sec. (2.4)) in terms of three parameters, the ratio 

a of elastic constants, the reduced volume v, and the effective bilayer area difference, Zo, 
defined by 

1 

The first parameter, a, is characteristic of the lipid-solvent system and, thus, should be the 

same for all vesicles in a given (uniform) preparation. a may be measured independently 

of the shape experiments, e.g., from tether pulling experiments [74]. We have already 

discussed in Sec. 4.3.3, how to estimate the reduced volume v from the data. If Aao and 

co were directly measurable, then the analysis would be straightforward: We would use 

'Note that co is, like a, characteristic only of the lipid-solvent system, while Aao is in principle determined 

86 



Eq. (6.1) to compute G o  and then simply compare the measured shape with the shape 

predicted by the ADE model at that point in its phase diagram. Unfortunately, this is not 

possible, because neither Aao nor co can be measured directly. Luckily, it turns out that it 

is possible to infer G o  directly from the shape data. Thus, the significance of Eq.( 6.1 is 

not that it allows calculation of Go but that it provides information about the unknown 

quantities Aao and co. 

Of course, inference of Go from the shape data requires the use of theory, thus risking 

making comparison between experiment and theory circular. We shall find, however, that 

the parameter which fixes Go does not (in principle) exhaust the shape data. Furthermore, 

data from a thermal sequence of points and from the geometry of the eventual budding at 

the end of such a sequence provide additional and nontrivial comparisons between theory 

and experiment. 

Finally, we note that the mapping (shape comparison) is complicated by thermal ef- 

fects (fluctuations and thermal shifts) (see Sec. (6.6.1)), by gravitational deformations (see 

Sec. (6.6.2)), and by the small intrinsic up/down shape asymmetries (see Sec. (6.6.3)). 

The next subsection outlines the theory by which we have extracted Go from the shape 

data. 

- 
6.1 How to Infer the Effective Area difference Quo 

from Shape Data 

The logic for extracting Go from the shape data has two steps: 

Within the context of the ADE model, there is a simple relation between Go and the 

reduced area difference Aa, which is a geometrical quantity (hence, in principle, directly 

measurable). To start, recall the form of the ADE energy functional from Eq. (2.5), 

where we have used square brackets to indicate dependence on the full shape S. Note 

that G[S] = (1/8?r)Jda (cl + c ~ ) ~  (which is just a dimensionless version of Eq. (2.4)) 

is independent of Go. The zero-temperature equilibrium shape minimizes Eq. (6.2) at 

fixed reduced volume v, thus leading to a ground-state energy function E(%o, v). This 

minimization can be carried out sequentially [58]. First, we may imagine minimizing over 

all shapes with a given numerical value of the reduced area difference Aa. The second term 

at vesicle closure and can vary from vesicle to vesicle of the same preparation. 



in Eq. (6.2) does not change in this process. This restricted minimization defines an energy 

function G(Aa, v) which is, in fact, the ground-state energy function of the pure AA-model. 

Subsequent minimization of the full ADE energy over the variable Aa leads to 

where 

If the function G(Aa, v) is known, then Eq. (6.3) determines Go implicitly, as a function 

of v and Aa. Note that, for fixed v, the minimum of G(Aa, v )  corresponds to 20 = 0, so, at 

this point, Go = Aa(v), which is in general nonzero. 

It will be useful to record here for future reference a remark about the general relation 

between the variables Aa and Zo. Note that the definition (6.4) makes Eo the Legendre 

transform conjugate of Aa in the sense that the "potential," 

has E0 as its natural variable and satisfies 

Noting that F (in suitably reduced units) is just the energy of a pure spontaneous curvature 

model with the spontaneous curvature Eo, we conclude that 20 is (in reduced form) just the 

spontaneous curvature which would be required in a pure spontaneous curvature model to 

achieve the (reduced) area difference Aa. 

Now, in principle, inversion of Eq. (6.3) solves the problem of inferring the unknown 

quantity Go from the experimental shape data (Aa). In practice, however, in the region of 

the phase diagram which we study, the shape variable Aa is ineffective, because (for reasons 

we shall make clear below) it has a very narrow effective range and cannot be measured from 

the video images with sufficient precision. It is, therefore, preferable to  infer the conjugate 

variable Zo directly from the experimental data in step one and then to  use the relation (6.3) 

in the form. 

to find Go in step two. This inference is achieved by comparing experimental values of 

the shape coefficient a4 (Eq.(4.14)) with the results of calculations based on the pure SC 

model starting from the energy functional F[S]  = (1/8n)Jda (cl + c2 - Eo)~,  which is 

just a dimensionless version of Eq. (2.3) but with a spontaneous curvature ZO. In such 



Figure 6.1: Dependence of the shape amplitude a4 as a function of the reduced volume v on 
the value of the "spontaneous curvature7' 20. (Although a4 is almost independent of E0 at 
v 21 0.85, there is no common crossing point.) We have used this functional dependence to 
relate experimentally measured shapes (characterized by (v x (v,) , (a4))) to  their theoretical 
counterparts (characterized by (v, lo)). 

a model, the equilibrium values of all physical quantities (like Aa, the shape coefficients 

{ a , ) ,  etc.) depend only on v and Eo, so measurement of any one such variable at fixed v in 

principle determines Eo. In practice, for reasons which we shall explain more fully below, it 

is convenient to use the shape amplitude a4. 

The predicted dependence of a4 on Eo computed for the spontaneous-curvature model is 

displayed in Fig. 6.1. These results show that (except near reduced volume v = 0.85) a4 is 

delicately dependent on Eo. Thus, given measured values of v and a4 from the video images, 

we infer lo (numerically) from the dependence depicted in Fig. (6.1) and then use Eq. (6.3) 

to obtain KO. In fact, for v near unity Aa is a linear function of the reduced volume 1 - v 



and independent of to to leading order, 

Thus, 

which shows that Eq. (6.3), which maps the experimental data, v and co(a4), into the ADE 

variable, X o ,  is approximately linear in this region of the phase diagram. 

Since this mapping depends on the theory (which is in principle being tested), other 

data must be used to test consistency. In principle, the remaining shape coefficients, a2, a6, 

etc., contain independent data. In practice, these coefficients are not useful: a2  effectively 

depends only on v; and, as, as, etc., are too small to be measured with precision. Thus, with 

our current precision, there are no additional data to provide cross-checks of the mapping. 

The only test of the correspondence between theory and experiment which a single, isolated 

data set can provide is whether or not the mapped point lands in a region of the ADE phase 

diagram where the (prolate) shape is predicted to be locally stable (see Sec. (6.5.1)). In 

Sec. (6.5.2), we show how, by using a single vesicle at a sequence of different temperatures, 

a test of the theory can be made. 

6.2 Nearly spherical prolate shapes: The hierarchy 

Before mapping the experimental data, it will be useful to devote a section to  a detailed 

discussion of the shapes in the prolate region of the phase diagram near reduced volume 

v = 1. This discussion will serve to explain the special features of the mapping protocol 

outlined in the preceding section. 

We start with discussion of the SC model based on the energy functional F[S], as 

explained in the last section. The full ADE model is, in turn, related to the SC model via 

the mapping 2.0 -t Go defined by Eq. (6.3). 

For nearly spherical shapes, we may use our representation Eq. (4.10), 

and imagine expanding all important shape functionals, F [ ~ o ,  S], V[S], A[S], and AA[S], in 

the amplitudes {a,), where, in omitting the azimuthal variable (intrinsically absent in our 

representation) and setting b, = 0, we have specifically restricted to axial symmetry. We 



further simplify in what follows to up/down symmetric phases (like the prolate) for which 

the odd coefficients {a2,+1} vanish. 

In the SC model, we are required to minimize F[&; S[s*, {an}]] at fixed values of V[S] 

and A[S]. Note that the functionals have a dependence on the length scale s*. However, it 

is not hard to show [73] that the results can only depend on the reduced variables v and to,  

so t ha t  the length scale s* drops out and the problem reduces to minimization of a function, 

f (&, {a,)), of dimensionless variables at  fixed reduced volume, 

This minimization problem involves an infinite number of degrees of freedom and is, in 

general, very complicated; however, an important simplification takes place near the sphere 

point, v = 1, where the problem lends itself to expansion in the small parameter, 

The form of the result is 

0 2  = i (1 - v )  + {Bizo + B2} (1 - v) 

a4 = {B350 + &} (1 - V) (6.13) 

etc . ,  

where the A; and B; are numerical coefficients given in App. A. Note that the amplitudes 

decrease systematically as az, N (1  - v ) ~ / , ,  producing a "hierarchical" structure, which will 

play an  important role in what follows. The hierarchical structure of the modal expansion 

of an equilibrium vesicle shape near the sphere was first noted by Ling Miao in [57, 581, 

who performed calculations for a prolate vesicle within the spontaneous curvature model 

using a spherical-harmonic expansion of the vesicle shape. In App. A, we recall these earlier 

results and relate our shape representation to that of [58], thus showing that the amplitudes 

(6.13) of our representation inherit the hierarchical structure. 

We are now in a position to  investigate the special features of the mapping procedure 

outlined in the last section. Let us note first that the a2 amplitude is independent of Eo to 

first order in the small quantity (1 - v)'I2, 

Thus, due to the hierarchy, the stationary shape of a nearly spherical prolate vesicle is 

determined to  leading order simply by the reduced volume v. The shape becomes dependent 

2All expansions given in this Section have been obtained with the program Mathernatica @. 
3The only other possible stable shape near the sphere is an oblate 



on Eo only in the next higher order in the reduced volume. This feature is also manifest in 

the expansion of the reduced area difference, 

Taking a2 = I/-+ O( (1 - v)' ) and a4 0( (1 - V ) ~ , E ~ )  , one finds that a 
(linear) dependence on Eo arises only at  second order in (1 - v)'I2 via the dependence on a4 

It is evident from Eqs. (6.14) and (6.16) why a2 and Aa are poor candidates for extracting 

the parameter Eo from the experimental shape data. The dominant part of both these 

variables does not depend on 20. Thus, it is best to use the amplitude a4 to deduce EO, 

because (a) the dependence on Eo appears in leading order and (b) a4 is the largest amplitude 

with this property, since the amplitudes of higher modes are progressively smaller due to  

the hierarchy. 

Eqs. (6.13) demonstrate the hierarchical structure of the ADE mode amplitudes for 

nearly spherical prolate shapes. It turns out numerically that this structure persists, even 

for quite strongly nonspherical, "deflated" shapes. In Fig. 6.2, the first three nonvanishing 

mode amplitudes are shown as a function of the reduced volume v for Eo = 0. These 

amplitudes are obtained by expanding (numerical) solutions to the Euler-Lagrange shape 

equations which express the minimization of the bending energy functional (6.2) [58]. Note 

that the amplitude of mode 2n remains roughly one order of magnitude larger than the 

amplitude of mode 2(n + I ) ,  down to at least v N 0.8. 

One might expect from "order counting" in the hierarchy that the 20 sensitivity of a4 and 

of the second order term, (a2 - Al (1 - v)'I2), in a2 would be comparable. Numerically, this 

turns out not to  be so. Fig. (6.3) illustrates these sensitivities by plotting the differences, 

aan(Eo = +5, v) - azn(Zo = -5, v), for the three lowest nonvanishing mode amplitudes. It 

is remarkable how little the second mode changes with 20. Although the mean amplitude 

of the second mode has the largest numerical value of all amplitudes and can, thus, be 

measured with high accuracy, it contains hardly more experimental information than the 

value of the reduced volume. Therefore, one is forced to extract 20 from measurements of 

the next smaller amplitude, a4. 

4 ~ e  are grateful to  Dr. Udo Seifert for providing the source code of his shape-finding algorithm. 



Figure 6.2: The mode hierarchy. Numerically calculated prolate shape amplitudes 
a2,(Zo = 0, v )  for the SC model. Note the different vertical scales. 

Figure 6.3: Mode amplitude differences for Eo = f 5 for the SC model, illustrating the effect 
on the shape of changing the spontaneous curvature Zo at fixed v. Note that a2 is nearly 
independent of Z o .  



In summary, as a consequence of the amplitude hierarchy which holds for prolate vesicles 

not too far from the sphere, the general connection Eq. (6.7) between the control parameters 
- 
Aao of the ADE model and Eo of the corresponding SC model is 

Thus, the protocol for extracting data from the experiments is to measure the mean shape 

amplitude (a4 )  and the reduced volume v, which we approximate by (v,) (see the discussion 

in Sec. (4.3.3)). We then infer Eo from (a4)  via Fig. (6.1) and use Eq. (6.7) (which is shown 

to  be approximately linear by Eq. (6.17) above) to find Z o .  

6.3 Experimental Resolution 

This section discusses the accuracy and reproducibility with which the phase-diagram pa- 

rameters v and Go can be derived from the experimental data, i.e., the "resolution" of the 

mapping of the experimental shapes into the phase diagram. This resolution will depend in 

detail on what region of the phase diagram is being studied; however, to  get an idea of what 

can be achieved, let us look at  derived values of v  and G o  at two closely spaced reduced 

volumes in the prolate regime. At each volume, three measurements have been done which 

are visible as clusters in Figs. (6.4) and (6.5). For each point, we have averaged N z 500 

contours. After performing the first set of three measurements during which the temper- 

ature had been kept constant, the temperature was raised 2.4 O C  in order to decrease the 

reduced volume by Av = 0.01. 

As can be seen in Fig. (6.4), the resolution in reduced volume is very high. (Note the 

scale!) Since we normally use about N = 1500 contours for each measurement (i.e., more 

than in the figures above), we may expect that the uncertainty in v  is well below 0.001. 

Thus, two vesicle shapes with reduced volumes which are A v  = 0.01 apart can be easily 

distinguished. In the following, we omit error bars for the reduced volume, since they would 

be hardly visible on the scale of the plots we are going to discuss. 

As has been discussed at  length in the last two Sections, the value of the effective area 

difference Zo is derived in a two-step, one-to-one mapping from the average amplitude 

5We can use this equation to find the minimizing shape amplitudes for the ADE model. In this regard, we 
have to express the parameter Eo as a function of KO; to the order the amplitudes aregiven in Eq. (6.13), 
it is sufficient to approximate the differential area with unity to obtain Zo = 2* a ( A a o  - 1) + O(1 - v) . 
Inserting this expression into Eq. (6.13), we get the minimizing shape amplitudes a2 and a4 in terms of the 
parameters of the ADE model. 

'For vesicle shapes which are very close to the sphere, i.e., v > 0.99, the resolution is diminished. This is 
mainly due to the fact that the vesicles undergo prolate-oblate shape fluctuations in this regime. 



Figure 6.4: Repeated measurements of ( ( a4 ) ,  (v,)) under identical conditions. The two 
clusters represent two distinct temperatures, which differ by A T  = 2.4 O C  and correspond 
to a difference Av = 0.01 in reduced volume. The spread in each cluster is indicative of the 
experimental uncertainties (see text). 

(a4). Thus, the resolution in Go is directly dependent on the scatter of (a4), which is on 

the order of f 0.001, as can be deduced from Fig. 6.4. In Fig. 6.5, the derived values of 

F0((a4)) and z o ( F o )  are shown. Although the parameter Fo is obtained numerically from 

the amplitude (a4) (as will be done in all further analysis), as described in Sec. 6.1, we have 

chosen, for the illustration in Fig. 6.5 (only!), to approximate the effective differential area by 

the formula Go z 1 + Eo/(2?r cr ) (see Eq. (6.17). Using this simple scaling relation (which 

is exact in the spherical limit) allows Co and Go to be shown within one plot with two axes 

and, thus, illustrates the order of magnitude relation of both quantities for a = 1.4 . In the 

actual presentation of the data, we will refer to the full Equation (6.7). The scatter in (a4) 

translates into a resolution in fo of approximately f 1. The resolution in zo depends on 

a ,  of course. For large a, the absolute resolution in this quantity becomes very large. This 

just reflects the fact that the region of the phase diagram in which stable prolate shapes 

exist becomes very small [51]. Of course, the relative resolution stays the same. 

71n the limit a - co, the ADE model reduces to  the AA model, where A a  Aao.  Since, t o  linear order 
in (1 - v), the geometrical quantity A a  is independent of to (see Sec. 6.2),  the shapes of vesicles with equal 
reduced volumes v but different spontaneous curvatures 6 do not deviate much from each other. We note 
that  this is a direct consequence of the hierarchy. 



Figure 6.5: Derived values of fo and d o ,  based on the data of Fig. (6.4). The spread in 
each cluster gives a measure of the experimental uncertainties. 

We conclude this Section with a remark on the delicate shape discrimination which is 

necessary in order to  resolve the prolate near-spherical region of the (shape) phase diagram. 

Vesicle shapes change in a very delicate manner as parameters of the models are changed. 

Consider, for example, the overall, pole-to-pole distance d, measured along the symmetry 

axis for a vesicle of fixed volume, characterized by Rv = 10 pm at a reduced volume v = 0.9. 

Within the SC model, this distance may then be regarded as depending on the single control 

parameter fo. Taking as a reference the value of d for 6 = 0, Fig. 6.6 plots the variation 

Ad as fo changes. As can be read off from Fig. 6.6, changing 20 from zero to  one increases 

d by only 22 nm! This number (the smallness of which is a direct consequence of the 

hierarchy) is below the locallateral resolution of the contour (see Sec. 4.1.1). At first sight, 

it seems very astonishing that such a small number can be measured at all reliably. How 

can this be done? First, one has to  realize that one does not measure only a single distance. 

Instead, the amplitudes are calculated globally from an integral over the different contours 

(see Eq. (4.14)), which deviate consistently from a reference shape over the whole length 

of typically about 600 contour points. Second, one is interested in a low mode, which is 

insensitive to local perturbations in the membrane. And, third, the amplitudes are averaged 

over typically 1 - 2 x lo3 contours. This amounts to an effective sampling size on the order 



Figure 6.6: Theoretical differential pole-to-pole distances of a vesicle with Rv = 10pm at 
reduced volume v = 0.9 as a function of 6. The reference distance is taken for Eo = 0. 

of 10'. Thus, shape differences on the 10 nm scale are detectable. 

6.4 Thermal Trajectories in the Phase Diagram 

By measuring the sequence of shapes assumed by the same vesicle as its temperature is 

changed, it is possible to explore systematic effects. As temperature changes, the control 

parameters change toget her in a systematic way, thus tracing a "thermal trajectory" through 

the appropriate phase diagram. The phase diagram is described in terms of the control 

parameters reduced volume v and the reduced effective area difference z o ( v ) .  We recall 

the definitions, 

where RA = (A/47r)lI2 and Rv = ( 3 ~ / 4 n ) ' / ~  are the area- and volume-equivalent radii of 

the vesicle, respectively. D is the thickness of the bilayer, and AAo is the unscaled relaxed 

area difference of the two monolayers of the bilayer, as defined in Sec. (2.1). The intrinsic 



spontaneous curvature Co of the membrane is also given in unscaled form for clarity. 

In writing Eq. (6.18), we have assumed that the ratio of the elastic constants a, and 

the parameters Co and Rv are temperature independent. Although the assumption of 

temperature independence for Co and cw is mostly ad hoc, the temperature independence 

of Rv does have an experimental justification: The volume expansivity of the aqueous 

solution enclosed by the vesicle is much smaller than the membrane area expansivity. Typical 

numbers are Pv(H20) E 3 x 10-4/K and PA,(SOPC) E 3 x ~ o - ~ / K .  Thus, to  a good 

approximation, we may safely ignore volume expansion effects. 

The remaining variables in Eqs. (6.18) and (6.19) are all distances or areas and may be 

characterized in terms of thermal expansivities, 

where X = A r ,  A t ,  Ao, or D. The temperature dependence of Aao is simplified by the fact 

that the bilayer volume D Ri stays effectively constant [57], i.e., the thermal expansivity 

of the bilayer thickness is given by PD N -PAo. If we make the assumption that PA, = 

PAY = PA$, and set co = 0, then we arrive (see below) at a particularly simple form for the 

trajectory, Eq.(5.2), 

- 
which we have already stated in Sec. 5.1. Here, Aai E AaoJv,l = Aaolv,l. In this form, the 

possible trajectories are a one-parameter family of curves determined by the reduced area 

difference of the spherical vesicle Aa& This quantity is initially set at the time of vesicle 

closure, during swelling. An area excess with respect to the sphere on the outer monolayer, 

e.g., leads to a numerical value of Aa; larger than unity. The larger the parameter Aag 

is, the higher up in the phase diagram (Fig. (5.1)) are thermal trajectories shifted and the 

sooner (with respect to  temperature increase) a vesicle will bud. 

This simple form, Eq. (6.21), of the trajectory assumes (a) a vanishing spontaneous 

curvature and (b) equal thermal expansivities for the inner and outer monolayers. The first 

assumption is strictly true only if the leaves of the bilayer and the inner and outer aqueous 

environments are chemically identical. Since we work with a sucrose/glucose solution, it is 

presumably not valid. The second assumption should hold for the pure SOPC membranes 

of our experiments. However, due to the different interaction between the sugar molecules 

'One may argue that thermal effects on Co and cr are negligible in comparison to the thermal area expan- 
sion. However, this is by no means evident. For simplicity, we take Co and cr a s  temperature independent. 

' on  long time scales (e.g, several hours), there is presumably a small amount of lipid flip-flop between 
the monolayers or lipid degradation which may change Aai (see the comment at the end of this section). 



in the inner and outer solution and the lipid headgroups, lo it is possible that there may be 

some small difference between the inner and outer thermal expansivities. This observation 

may be especially important, since it was pointed out by Berndl et al. [49] that the area 

difference AAo is potentially very sensitive to differences in the thermal expansivity of the 

inner and outer monolayers. This sensitivity arises because of the large ratio of the typical 

radius of curvature to  the membrane thickness RAID - lo3; and, it has the result that a 

small amount of additional area has a large effect on the (relaxed) integrated mean curvature 

OAl(2D). Let us, therefore, explore the consequences of different thermal expansivities of 

the outer and inner membrane leaflets. In this connection and following Refs. [49, 511, we 

define an asymmetry parameter y, 

Seifert et al. [51] derived an equation for the behavior of Z@(T) with a nonzero asym- 

metry parameter under the simplifying assumption of constant thermal expansivities and 

Co = 0. Generalizing their treatment to non-zero values of Co, we find 

where the exponents are given by r = (2 - y)/(2 + y) and q = 3/(2 + y). The scaled 

relaxed area difference Aa; and the coefficient b a A?/(& DRA) - f % are evaluated at  

the spherical vesicle shape. Finally, cw = CoRv is the spontaneous curvature scaled by the 

volume-equivalent radius, as is appropriate for a parameter of a thermal trajectory which 

keeps the vesicle volume constant. From the intermediate steps of the derivation only the 

temperature variation of the reduced volume is given here for reference, 

Although the coefficient b 2 500 is a large quantity, the thermal asymmetry y < 0.01 

is expected to  be a small number. Therefore, one can simplify the expression (6.23) by 

expanding in powers of y up to  first order, thus reducing the number of free parameters to 

three. Defining those parameters as 

10 Such an interaction might arise due t o  the different steric structure of the OH-groups of the sugars 
sucrose and glucose [75]. The  dipole moments of the sugar molecules should interact differently with the 
dipole of the choline head. 



we arrive at  the linearly parameterized trajectories, 

The last term vanishes at v = 1, so the sum of the first two parameters ( t l  + t2) measures 

the effective area difference, naolv = 1, of the spherical vesicle. Note that the intrinsic 

spontaneous curvature c, is only determined via t z ,  when a is measured independently. The 

third parameter ts gives a measure of the thermal asymmetry. We will explore in the next 

Section the extent to which this linear model of thermal trajectories is consistent with the 

data. 

The derivation of this temperature trajectory contains an implicit assumption. In all of 

the above arguments, the difference AN in the number of molecules of the inner and outer 

monolayers is assumed to remain constant during experiments. If it does not, the notion of 

a thermal trajectory makes no sense. The area difference, A& = a ; & i d ~ i n  - aout l i p i d  NOut - 

W A N ,  could change (and, in fact, does so slightly over the time course of several hours) 

due to  lipid flip-flop or lipid degradation, in addition, of course, to whatever change it may 

have due to  thermal expansion. Therefore, care has to be taken when using Eq. (6.26) for 

analysis of experimental trajectories which were obtained over an extended time period. 

6.5 Budding Trajectories: 

Experimental Results and Discussion 

In this Section, experimental results on thermal trajectories which lead to budding will be 

presented. As we have seen, the mapping of an experimental mean shape into the ADE 

phase diagram is a two step process. One first determines the parameters (20, v) of the 

shape. This step is independent of a. Then, the shape is mapped into the phase diagram 

for some fixed value of a. Accordingly, experimental data are first given in the (ZO, v) 

diagram in Sec. 6.5.1. Then, in Set. 6.5.2, we discuss trajectories in the full ADE phase 

diagram. 

6.5.1 Trajectories in the (h, v)  diagram 

In this Section, we present the shape data in a form which is independent of a. In 

Fig. 6.7, experimental trajectories for three different vesicles are given in the (Eo, v )  dia- 

gram. Presentation of the data in this way provides two levels of consistency test. First, it 

is obviously possible to find a Co which reproduces the observed a4, i.e., the experimentally 



Figure 6.7: Experimental trajectories in the (20, v) diagram approaching the budding transi- 
tion. With the exception of one point, all experimental prolate shapes are correctly mapped 
into the (meta) stable prolate region of the shape parameters (Zo, v). This region is bounded 
by the two dashed spinodal lines. Above the upper spinodal line (MPear), vesicles are unsta- 
ble-to budded shapes. Below the lower spinodal line (MO~') ,  vesicles are unstable to  oblate 
shapes. Trajectories are depicted for three different vesicles. Note that the trajectories ap- 
proach the spinodal line along paths of increasing EO as expected by theory. The uncertainty 
in reduced volume (f 0.001) is well below the size of the data symbols. The experimental 
error in 2. is much larger and increases for v -. 1. This is because the available shape space 
becomes very small in this quasi-spherical region. 
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experimentally not trivial considering the extremely small shape differences alluded to  in 

Sec. (6.3). After all, we could have found co-values which are completely out of line, e.g., 

co = 100. Second, finding a shape does not guarantee its stability, i.e., there are stationary 

prolate shapes which are unstable. We have included the two spinodals (Mpew, M O ~ ~ )  of 

the prolate phase in Fig. 6.7. l1 Prolate vesicles outside the region between these two lines 

(i.e., those which exist beyond the spinodals) are in principle unstable. They would either 

bud (at the upper spinodal) or transform into an oblate shape (at the lower spinodal). It is 

important to note in this respect that the region of stability of prolate shapes is independent 

"We thank Ling Miao and Marija Nikolic for providing the numerical data for these lines. 



of a.  l2  Thus, prolate mean vesicle shapes observed in experiment should map into the 

theoretical region of (meta) stability of the prolate phase in the (Zo, v) diagram. Indeed, 

except for one point, they are all nicely sandwiched between the upper and lower spinodal 

line, as they should be. Even more so, we have never observed stable shapes with absolute a4 

amplitudes larger than (roughly) 0.02, which would correspond to large positive or negative 

Zo (see Fig. (6.1)). Thus, prolate shapes do, indeed, exist only in a (very) small region in 

the space of all possible shapes, as one would expect from the hierarchical structure of the 

shape amplitudes. The absence of experimental vesicle shapes outside this region is quite a 

stringent - though indirect - test of the ADE model. This is the main experimental result 

of this Chapter. 

The one "bad" point of vesicle "A" deserves further comment. The reduced volume 

vb = 0.878 f 0.001 at which budding took place for this vesicle has been determined in 

Sec. (5.4.1) by extrapolation to  the budding temperature. Thus, assuming the trend in the 

trajectory continues, the last metastable shape of vesicle "A" (which we did not measure) 

is placed even further into the theoretically unstable region. In contrast, vesicle "B" did 

bud near the spinodal with a reduced volume v = 0.942 f 0.002. Vesicle "C" budded from 

the point shown in the figure, which is located quite far away from the spinodal within the 

prolate region. Therefore, we conclude that, although the last (meta)stable shapes measured 

do qualitatively follow the trend of the spinodal line, some of them seem to be quantitatively 

misplaced. l3 It is not clear at present, where this distortion comes from. It cannot result 

from a false mapping between the parameter Eo and the amplitude a4, since this is a one- 

to-one correspondence. However, the assumption (which went into this mapping) that the 

mean experimental shape represents an axisymmetric T = 0 shape, as calculated from the 

ADE model, may be not quite valid. Indeed, both finite-temperature effects, which tend 

to make the vesicles more spherical, and the partial flattening of the vesicles induced by 

gravity were ignored. These points will be further discussed in Sec. 6.6. 

I2An instability to a shape with the same symmetry depends on cr [68]. Since the reflection symmetry of 
the prolate shape is broken along the spinodal lines depicted in Fig. (6.7), these lines do, indeed, form the - 
boundary of the stable prolate region of the ADE model. 

13We note that the region of instability along the spinodal line is fuzzy, as discussed in Sec. (5.2.1). Thus, 
it is, in principle, consistent with theory that vesicle "C" budded from within the prolate region. (In order to 
determine the fuzzy region more quantitatively, i.e., to estimate the mean escape times from the metastable 
states. one would have to know the contour lines of constant activation energy for the decay. Unfortunately, 
we do not yet have this information available.) Of course, a metastable state beyond the spinodal is not 
possible. 



6.5.2 Trajectories in the ADE Phase Diagram 

Let us proceed, nevertheless, to a discussion of a thermal trajectory in the ADE phase dia- 

gram, keeping in mind possible artifacts introduced by the (somewhat naive) interpretation 

of mean experimental shapes as zero- temperature axisymmetric objects. In Fig. 6.8, the 

experimental trajectory of vesicle "A" is shown for a = 1.4, the estimated value for a single 

walled SOPC vesicle. In Fig. 6.9, the same vesicle trajectory is depicted for a = 6.4 = 4 x 1.4, 

which is the minimal value of a for a double-wall vesicle. 

The feature most obvious, when comparing Figs. 6.8 and 6.9, is that the position of 

the experimental trajectory relative to the spinodd line of the budding transition does not 

change with a. The data points (and the spinodd line) are just scaled differently by the 

mapping (6.3). However, the position with respect to the limiting line does change. l4 

This behaviour allows us to set an upper limit for a: For a = 6.4, vesicle "A" should 

have had an open neck right after the budding instability at vb = 0.878 f 0.001, since at 

this reduced volume the spinodal line MPear is located well below the limiting line LPem. 

However, in fact, the neck did close down completely, as one would expect for smaller values 

of a. From Fig. 6.9, we infer, therefore, that a < 6.4. Indeed, noticing that the value of vb 

is numerically almost equal to  the reduced volume of the crossing point of the spinodal line 

with the limiting line for a = 1.4 in Fig. 6.8, we deduce a < 1.4, which is an even better 

estimate. Note that this conclusion is independent of the values of G o .  It relies only on 

measurements of the reduced volume. 

More generally, a comparison of the budded shape to the metastable shape allows in 

principle even a measurement of a . l5 However, the region of the phase digram which 

lies beyond the limiting line is as yet theoretically unexplored, and we refrain from such an 

analysis. 

The lines in Figs. 6.8 and 6.9 are obtained by fitting the trajectories to  various variants 

of the linear model (6.26). In Tab. 6.1, the result of three restricted fits for the two different 

a values explored are shown. One notices that the results of the fit depend on a as expected. 

In addition, the experimental errors become smaller for larger a. This reflects the fact that 

the region of stable prolate shape gets increasingly narrow as a -, oo, as already noted. We 

will concentrate in the detailed discussion which follows on the most "likely" case, a = 1.4, 

which is the one we would expect to apply to vesicle "A" according to the experimental 
14 The crossing point of the upper spinodd line with the limiting line moves toward v = 1 as a -+ ce. This 

property follows from Eqs. (6.3) and (5.1). 
15 At the spinodal line the two shapes have the same value of G. Applying the mapping 6.3 to  both of 

them one finds a = &(,-,pro - ~ k ~ ~ ) / ( ~ a ~ ~ ~  - Aapro). 



Figure 6.8: Trajectory of vesicle "A" for a = 1.4 in the ADE phase diagram. The lines 
MPeaf and LPear depict the spinodal and the limiting line, respectively. The spinodal line 
marks the limit of stability of the (naetu) stable prolate shapes. The limiting line is the 
boundary of (stable) pear or budded shapes with an open neck. Beyond this line, the neck 
of the bud is fully closed. Vesicle "A" budded at a reduced volume v = vb, which is close 
to the crossing point of Mpeaf and LPear. Indeed, we find complete closing of the neck in 
this vesicle. Note that the relative location of the experimental data to  the spinodal line 
in the ( E o ,  v) diagram (see Fig. (6.7)) is preserved in the ADE phase diagram, i.e., data 
above this line stay above, data below stay below. The dotted lines show the results of 
two different constraint fits of the linear model (6.26) to the experimental vesicle trajectory 
(compare Table (6.1)). The simplest possibility (t2 = O,ts = 0), which allows only for a 
simple hyperbola parameterized by the differential area of the vesicle at v = 1 (Aa;), gives 
a poor fit of the data. This is because the experimental trajectory is much steeper than a 
hyperbola. This behavior is reproduced when either t2 c, or t3 y is allowed to be 
different from zero in addition to tl = Aa; . See the text for a critique of these fits. 
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Figure 6.9: Trajectory of vesicle "A" for a = 6.4 in the ADE phase diagram. The results of 
two different constraint fits of the linear model (6.26) to the experimental vesicle trajectory 
is shown (compare Table (6.1)). Note the different location of the crossing point of the lines 
MPe" and LPe" for a = 6.4 as compared to a = 1.4 (see Fig. (6.8)). The dependence of 
this crossing point on a leads to a change in the relative position of the experimental data 
to  the limiting line (LPe") with a (compare Fig. (6.8)). In contrast, the relative location of 
the spinodal line (Mpe") to the experimental data does not depend on a. 

boundary for a found above. (The results for the case a = 6.4 show the same general trends 

and are added to Table (6.1) for completeness (compare also Figs. (6.9).)) 

We start with the simplest possible fit, i.e., we allow only the parameter t l  - Aa; 

(Eq. (6.26)) t o  be different from zero. Such a fit gives the quite reasonable value Aa; = 

l . 5 f  0.1 for the relaxed area difference at  the sphere. Unfortunately, the resulting trajectory 

fits the experimental data rather poorly, as is evident from Fig. 6.8. This is due to the fact 

that the experimental trajectory is much steeper than a simple hyperbola. Allowing, in 

addition, either t2 or t3 to  be different from zero gives a much better fit. These two cases 

are not distinguishable graphically, and the other pointed line in Fig. 6.8 represents both of 

them. Numerically, the numbers are rather different. The assumption of a vanishing thermal 

asymmetry leads to  large parameters t l  and t2  with opposite signs. This would correspond 

to  a critical balance between the two bending energy terms, which seems unlikely. On the 



Table 6.1: Results of different fits of the model (6.26) to the experimental data shown in 
Figs. 6.8 and 6.9. A full fit to  three parameters is ill defined because of the limited number 
of experimental points available. Setting tl = 0 is not physically meaningful since a finite 
area difference is intrinsic to  the bilayer structure. Setting t2 = 0 corresponds to the absence 
of an intrinsic spontaneous curvature. For t3 = 0 there is no thermal asymmetry. Thus, the 
simplest physically sensible restricted fit is just t2 = t3 = 0. 

other hand, allowing for a thermal asymmetry at vanishing spontaneous curvature gives 

quite a reasonable values for the scaled area difference of the sphere, Aa6 = 0.5 f 0.4. The 

thermal asymmetry y is positive and on the order of 0.04 for b N 500. A full fit to  all three 

parameters is ill defined and not elucidating. 

An analysis of vesicle "B" gives the same qualitative results. (As can be seen in Fig. 6.7, 

the trajectory of vesicle "B" has roughly the same slope as the trajectory of vesicle"A".) For 

vesicle "C", there is only one point and we do not have information on a thermal trajectory 

of this vesicle. 

Indeed, it is impossible accurately to map vesicles with reduced volume v too close to 

unity into the ADE diagram. This is not only due to the fact that the experimental error 

becomes larger as v + 1 (which it does!) but there is also a deeper reason. In the spherical 

limit, the energies of the prolate and oblate shape become degenerate, and so does the energy 

of the (nonaxisymmetric) saddle point between these two shapes. Thus, the vesicle samples 

all available phase space and the notion of a phase diagram is not sensible any more, as we 

have already discussed in Chapter 2. In this intermediate regime, thermal corrections to 

the mean vesicle shape become increasingly important. 

What have we learned from these attempts to fit the thermal trajectories? Note, first, 

that allowing the parameter y to be nonzero cannot change the discrepancy we have observed 

with vesicle "A," which became unstable to budding far beyond the spinodal. Furthermore, 

the fits with nonzero values of t2 and t3, although they are cosmetically improved over the 

simplest fit with tn = t3 = 0, seem to involve large values of the parameters and dubious 

cancellations. In sum, then, we are inclined to believe that there is no hard evidence 

for the existence of asymmetric thermal behavior of the monolayers or for large intrinsic 



spontaneous curvature. What,  then, is causing the apparently anomalous steepness of the 

observed trajectories? At this point, we do not know and can only speculate. Perhaps, the 

thermal and gravitational corrections play a role (see Sec. (6.6)). Note, in any case, that, 

even without corrections, all experimental budding trajectories approach the spinodal line 

along paths of increasing Aao. This is exactly what one would expect from the most simple 

model trajectory, Eq. (6.21). 



6.6 Corrections to the Mapping 

In this Section, corrections to  the mapping of experimental shapes into the ADE phase 

diagram are discussed. It was implicitly assumed in the that last few paragraphs that 

vesicle shapes are described by the T = 0 ADE model; however, there are three main effects 

which alter the mean shapes of real vesicles in the laboratory. First, experiments are done 

at finite temperature, whereas the ADE phase diagram is obtained from a zero temperature 

calculation. As was mentioned already in Chapter 2, thermal fluctuations in the presence of 

geometrical constraints leads to  shifts in average mode amplitudes away from T = 0 values, 

even at the Gaussian level. This effect will be described in Sec. 6.6.1. Second, the vesicles 

are assumed to be axisymmetric; but, the gravitational force, which is crucial to orient the 

vesicles in the chamber, tends to  break this symmetry and will have the effect of partially 

flattening the shapes. In Sec. 6.6.2, we will discuss this phenomenon and how it might affect 

our observations. And, third, we have found (see Chapter 5) that vesicles are in general 

slightly asymmetric, even in the theoretically "symmetric" prolate state of the ADE model. 

This point will be briefly discussed in Sec. (6.6.3). 

6.6.1 Finite Temperature Amplitude Shifts 

At a finite temperature, a vesicle is fluctuating around its equilibrium mean shape. These 

thermal fluctuations need excess area which is taken out of the mean shape. This effect, 

which influences both the mean amplitudes of the shape as well as its apparent reduced 

volume v, # v,  l6 is a direct result of the volume and area constraint on the vesicle. 

In general, we may write the mode amplitudes at T > 0 as 

where the mean amplitude is a combination of a zero temperature value a?) and a thermal 

shift A,(T), 

< a, >= a?) + An(T), (6.28) 

and, by definition, < ban >= 0 and An(0) = 0. Note that the amplitude correlation 

functions, 

< aman > - < a, > < a ,  >=< barnha, >, (6.29) 

and their higher-order analogs do not, in general, vanish for T > 0. 

''Thermal fluctuations do not, of course, change the actual area and volume of the vesicle, so its reduced 
volume v is not affected. What is at issue here is the quality of the approximation, v = (v,) ,  which we use. 
As discussed in Sec. (4.3.3),  this procedure has (small) corrections when thermal fluctuations are present. 



To build a T = 0 phase diagram from T > 0 experiments, we need to be able to extract 

v and a r )  from the finite-temperature measurements. In the case of v, we have already 

discussed this point in Sec. (4.3.3). The upshot is that we need to be able to calculate the 

shifts An(T) and correlations < 6amSa, > from the theory. This problem is unsolved, in 

general, but it has been solved at  the Gaussian level. l7 

In a recent publication by U. Seifert [68], a formalism for calculating thermal fluctuations 

at lowest (Gaussian) order in kBT/6 for non-spherical vesicles has been developed. In 

contrast to  all previous calculations on vesicle fluctuations, the volume and area constraints 

are handled exactly within Gaussian approximation. The result is that both the shifts 

&(T) .and correlations < 6am6an > are linear in T, so 

and, for example, 

For our system, the parameter k B T / ~  E 0.04. Note, in particular, that in this regime the 

shifts are always smaller than the rms fluctuations, which are on the order of ( k B ~ / % ) l f 2 .  

Thus, if the Gaussian approximation is applicable, we may conclude that all thermal cor- 

rections are typically smaller than experimental errors and can be neglected, as we have 

done earlier in the text. In particular, as long as the Gaussian approximation is valid, 

thermal corrections may be expected to  contribute at  most small corrections to the thermal 

trajectories. 

Unfortunately, it is not possible to assume that the Gaussian approximation is always 

valid. Indeed, numerical implementation by Marija Nikolic [76] of the formalism developed 

in [68] shows that the thermal shifts diverge both at  the sphere and at  the spinodal line of 

the budding transition. These divergences signal failures of the Gaussian approximation. 

Near the sphere, the effect arises because the strict geometrical constraints on the area and 

volume hinder the thermal fluctuations and force them into higher and higher modes. The 

Gaussian-level divergence occurs because more and more modes are excited at  v --+ 1. Near 

the spinodal line the divergence is caused by the onset of the soft mode, which cannot be 

171t is interesting to  note that  A 2 ( T )  may be obtained directly from experimental da ta  by using the 
amplitude hierarchy. The  thermal shift of the second amplitude is found by comparing the measured value 
( a z )  with the quantity a2 = J g ( l  - v ( T ) )  which may be thermally extrapolated from the "sphere point" 
of the vesicle a t  some temperature Ts .  At the sphere point the reduced volume is known t o  be unity, i.e. 
v(T,) = 1 .  Thus, its value a t  a temperature T > Ts can be obtained from Eq. (6.24) when the thermal 
area expansion coefficient is known. The  a2 amplitude corresponding to the zero temperature shape can 
then be obtained in first order from the equation given above. Thus, the shift is given by the difference 
( a z )  - dm, a t  least t o  first order in ( 1  - v). 



treated perturbatively. In both cases, a new small parameter appears in addition to kgT/rc. 

Near the sphere we have (1 - v)  -+ 0, whereas near spinodal lines (v - v,) + 0. Thus, at  

both limits of the prolate phase, the Gaussian treatment of the fluctuations fails and there 

may be appreciable thermal corrections to the phase mapping data. 

It is possible that these corrections would improve agreement between the calculated 

and measured thermal trajectories. We do not at  this point know whether or not this is 

true. It has not been possible t o  treat the thermal fluctuations beyond the Gaussian level. 

Concern has even been expressed that, to go beyond the Gaussian level, corrections to 

the Liouville factor of the measure would have to be applied [68] .  In this situation is is 

even difficult to estimate with any certainty the precise bounds of the region in which the 

Gaussian approximation is reliable. For these reasons, we have not at  this time attempted 

systematic thermal corrections of our experimental data. However, we expect that a careful 

examination of these points will be possible in the immediate future. 

6.6.2 Gravity 

The effect of gravity can be roughly estimated by considering the ratio of the relevant energy 

scales. The bending energy is independent of length and its order of magnitude is given by 

Ebending N ~ T K .  The gravitational energy of a vesicle sitting at  a wall is roughly 

where Ap is the density difference between the inside and outside solution and g is the 

gravitational constant. The ratio of these two energies is, therefore, 

For G >> 1, gravity will dominate 

depending on their reduced volume. 

and all vesicle will become more or less flat oblates, 

(This is because the minimal distance of the center of 

gravity from the chamber floor is smaller for an oblate than for a prolate vesicle for given 

volume and area.) For G << 1, the bending energy will determine the vesicle shape, and 

the axisymmetry of a prolate vesicle oriented with its axis parallel to the chamber wall will 

be only slightly broken by gravity. G is critically dependent on the vesicle radius R. Very 

large vesicles will almost always be flat oblates, largely independent of the density difference. 

This is, indeed, found in experiment. 

The G values of the vesicles discussed in this chapter are given in Tab. 6.2 for the density 

difference of Ap = 4 g/E employed. It would appear that gravity is not an overwhelming 



I vesicle G S R in um I 

Table 6.2: G and S Values of vesicles discussed in the text. The vesicle radius R is also 
given. 

factor in determining vesicle shapes. However, this naive scaling argument is somewhat 

deceiving, since it is the available changes in shape for a given reduced volume which are 

relevant for the calculation of energy differences. It turns out that vesicles with a high 

reduced volume are more deformed than those with a smaller value of v [77]. 

Note that reducing the vesicle weight diminishes the gravitational effect but leads to  a 

less effective stabilization of the symmetry axis within the focal plane. For our technique, 

this stabilization is crucial for recording time series of vesicle contours. We may estimate 

crudely the degree of stabilization by looking at the ratio of gravitational to  thermal energies, 

Vesicles with a large S > 1 are well stabilized. Vesicle with small S < 1 tend to  rotate their 

symmetry axis out of the focal plane under brownian motion, eventually, for S << 1, rotating 

freely in the observation chamber. The S values of vesicle A,C, and D are given in Tab. 6.2 

along with the vesicle radii. Of course, again, it is really not the total gravitational energy 

which should be compared to  kBT in Eq. (6.34). Instead, it should be the characteristic 

differences of gravitational energy between different vesicle orientations, which could be 

much smaller, especially for vesicles with reduced volumes near unity. 

Overall, the "best" vesicles for contour observation are those which are sufficiently sta- 

bilized without getting deformed too much. These two requirements define an observational 

window given by the radii corresponding to S = 1 and G = 1, respectively. For the param- 

eters given above, we find 

Thus, the optimal vesicle should have a radius of about 7 pm.  We have tried to  select 

vesicles for observation which are close to this value. 

How do these two counteracting effects influence the mapping into the phase diagram? 

An elliptical contour of an initially prolate vesicle, which is seen in the fixed focal plane 



of the microscope, will gradually become circular l8 as G becomes larger. l9 Therefore, 

the absolute values of all amplitudes tend to zero, and the effective reduced volume (v,) 

approaches unity. (For a given G, the amplitudes will be increasingly underestimated as 

the reduced volume gets larger.) Likewise, as S becomes smaller, the vesicle appears more 

spherical in the mean, since an increasing number of vesicle configurations with their sym- 

metry axes out of the focal plane are included in the average. Again, the amplitudes are 

under- and the reduced volume is overestimated. 

The effect of underestimating the amplitude of the fourth mode, which has been used 

to determine Eo and Go, respectively, depends on both shape parameters, Eo and v (see 

Fig. (6.1)). Unfortunately, detailed calculations of the effective shape amplitudes in a suit- 

able cross section of a non-axisymmetric vesicle are not yet available. Thus, at  present, we 

are unable to correct our data reliably. 

6.6.3 Residual Asymmetry 

We have found in Sec. (5.4.2) that "prolate" vesicle shapes have in general a slightly broken 

upldown symmetry. This is expressed in a small admixture of odd modes to  the shape. The 

dominant contribution comes from the third mode. We find (as) < 0.05. Thus, the effective 

reduced volume of a pear shaped vesicle, 

deviates from the value for a prolate vesicle with the same reduced volume v. However, 

typical differences are very small. From the maximal value for (a3) given above, we find 

(27170) (0 .05)~ x Therefore, the effect on the measurement of v is on the order of 

the experimental error and may be neglected. 

It is not so obvious whether (a4) is also not affected. Actually, the numerical values one 

finds for (a4)  and (a3) can be of the same order of magnitude. However, gaining confidence 

from the negligible effect on the reduced volume, we conjecture that there is only a small 

cross-coupling between even and odd modes. Thus, the derived parameters Eo, or Z o ,  

should not be affected much by a small admixture of odd modes to the up/down symmetric 

shape described by (v, Z.0). 

''Note that the cross section of an oblate with its symmetry axis oriented perpendicular to the focal plane 
is circular. 

lgThere is, in fact, a transition of the non-axisymmetric vesicle to an oblate at some finite value of G [77]. 



Chapter 7 

Summary 

In this Thesis, we have developed a new technique for quantitative vesicle shape analysis. 

We have taken video phase contrast images of SOPC vesicles in aqueous solution and car- 

ried out for the first time a fully quantitative shape analysis, comparing the observations 

with the predictions of the area-difference elasticity (ADE) model. In particular, we have 

concentrated on thermal trajectories of shapes which lead to  the budding transition. 

Fluid lipid vesicles have been prepared from 1-Stearoyl-2-Oleoyl-sn-Glycero-3-Phosphat- 

idylcholine (SOPC) in a sucrose/glucose solution. Vesicles were observed in a sealed mi- 

crochamber, which prevented evaporation of the exterior solution, in order to  keep the vesi- 

cle volume constant. Shape changes were induced by heating the vesicle sample, thereby 

increasing the membrane area of the vesicle. The volume-to-area ratio was used as the 

principal control parameter of vesicle shapes. 

The outcome of the observations is a set of video images of vesicle-shape contours. We 

have developed a protocol for digitizing a subset of these shape contours. We have discussed 

in detail the procedures for reconstructing three-dimensional shapes from the digitized two- 

dimensional contours. The shape contours include the effects of thermal fluctuations, and a 

set of such contours at fixed temperature T constitutes a sampling of a thermal ensemble. 

To parameterize each particular image, we have chosen the instantaneous principal axis to 

be the reference frame and we have developed a procedure for describing the shape in terms 

of a set of Fourier amplitudes. The thermal ensemble is then characterized by the set of 

these amplitudes or, more precisely, by the mean amplitudes and the amplitude-amplitude 

correlation functions. We have discussed the relation between these mean amplitudes and 

correlation functions and important physical control parameters like the area and volume 

of the vesicle and the area-difference between its inner and outer monolayer leaves. 



We have studied in detail a small sample (see the comments in Sec. (3.4.1)) of initially 

prolate vesicles. When heated slowly along a "thermal trajectory," these vesicles become 

progressively more elongated and then become suddenly and discontinuously unstable to 

shape transformation called "budding," in which a small child vesicle forms connected to 

the parent vesicle by a narrow neck. We have made a careful study of the precursors to 

this instability. We find, in particular, that the instability is preceded by a dramatic growth 

in both the magnitude of thermal fluctuations and characteristic relaxation time observed 

in the time-dependent amplitude-amplitude correlations. We have shown how both these 

phenomena are quantitatively consistent with interpretation of budding as a "spinodal" 

instability, i.e., the final decay of a metastable state, as it approaches its limit of stability. 

We have showed how this interpretation fits into the ADE model and is consistent with other 

measurements. We conclude that the budding transition of micron-scale SOPC vesicles is 

probably a first-order transition mediated by a spinodal instability. 

The principal unexplained feature of these budding experiments is the systematic ap- 

pearance of a small but detectable up/down asymmetry in the prolate phase, which is in 

principal symmetric. This asymmetry is small but detectable deep in the prolate phase. 

It's effect is apparently magnified near the instability by the "softness" of the mode which 

becomes unstable at the spinodd. We have estimated the magnitude of the asymmetry nec- 

essary to cause this symmetry breaking in the ~ r o l a t e  phase. We find that it is small on the 

scale of other bending-energy contributions. We hypothesize that this symmetry-breaking 

field is an extrinsic effect, most likely due to  a structural or chemical inhomogeneity of the 

vesicle which is on too small a scale to  be visually detectable. 

We have discussed at length the theoretical and practical issues involved in "mapping" 

the observed vesicles and thermal trajectories in the ADE-model phase diagram, in order 

to test for the first time in a quantitative manner the agreement between theory and exper- 

iment. This involved extracting from the data the reduced volume v and effective relaxed 

area difference Zo for each vesicle. We have explained how to deduce these parameters 

from the average mode amplitudes for the near spherical prolate region of the phase dia- 

gram. The method makes extensive use of the fact that the average mode amplitudes in this 

region have a "hierarchical" structure, i.e., the higher Fourier modes have successively less 

weight. Using these simplifications, we have successfully mapped a series of experimental 

trajectories into the ADE phase diagram. The results of the mapping are largely but not 

entirely consistent with the predictions of the ADE model. In particular, the effective spon- 

taneous curvature Eo and the stability of the experimental vesicles is in good agreement with 



the  theory. The observed thermal trajectories are qualitatively consistent with theoretical 

expectations but appreciably steeper than those expected from the ADE model. 

Finally, we have discussed possible reasons for the observed discrepancies. The two 

major candidates are thermal-fluctuation effects and gravitational distortions. Thermal 

fluctuations give generically small corrections to zero-temperature amplitudes because the 

ratio r;/kBT of the bending elastic energy to thermal energies is small. This simple estimate 

is good ~rovided that fluctuation effects may be treated in the Gaussian approximation. The 

Gaussian approximation fails both near the sphere and near the spinodal line, so in these 

regions thermal corrections may become appreciable. Unfortunately, calculations beyond 

the Gaussian level have not yet been carried out, so we cannot say how important these 

corrections may become and over what region. Gravitational corrections may be expected 

t o  occur because the experimental vesicles are prepared to be slightly more dense than the 

surrounding fluid, in order that they should sink to the floor of the experimental cell (for 

easy observation) and (for prolates) to restrict the range of axial orientation to the focal 

plane of observation. Too small a density difference makes observation difficult; but, too 

large a difference causes gravitational distortion of the pure-bending-energy shapes predicted 

by the theory. We believe that these distortions are small but they are not fully controlled 

at  this point and may not be negligible. 

Although it is not possible to make these corrections now, it may become possible in 

the near future [78]. Once the necessary corrections to shape data are performed, we will 

have direct access to the extrinsic elastic parameters, spontaneous curvature Co and effec- 

tive area difference AAo of the membrane. In principle, we have already extracted these 

quantities from the data via a fit of the thermal trajectories. Although we have provided 

proof-of-concept , the numerical values cannot be trusted without corrections. We emphasize 

in closing that the techniques for quantitative shape measurement and analysis that we have 

developed in this Thesis open the door to  the use of vesicle shape as probes of membrane 

solute/solvent interactions. That is, shape changes of vesicles can be used to monitor - via 

measurements of, e.g., the spontaneous curvature - the influence of the membrane environ- 

ment on the elastic properties of the membrane. We expect valuable information from this 

technique. 



Appendix A 

The Hierarchy of Shape 

Amplitudes 

In this Appendix, we recall analytical results in the spherical limit presented by L. Miao in 

[57] for equilibrium vesicle shapes. We will use these results to derive the hierarchy of shape 

amplitudes in our shape representation, Eq. (6.13). 

A . l  The Spherical Limit 

In [57], the shape of a vesicle is represented as a spherical harmonic expansion of the radial 

distance between the shape contour and the origin, 

The shape is assumed to  be axisymmetric, so there are no m # 0 amplitudes. Further, 

Euclidian invariance allows ul to  be set to zero without loss of generality. The area and 

volume of the vesicle are given by 

4n 
A = 4 7 ~ ~ : ( 1 +  A ) ,  V = -R:, 

3 ( A 4  

respectively, where A measures the excess area over the sphere. is used here as a 

small parameter near the spherical limit. The excess area is related to  the reduced volume 

according to A = v-2/3 - 1. Both quantities are equivalent measures of the deviation of the 

volume-to-area ratio from its value for the sphere. The overall radius is given by 



The equilibrium values for the amplitudes ui are found by minimizing the bending-energy 

functional of the spontaneous curvature model via an expansion in the small parameter All2. 

For up/down symmetric prolate vesicles, one finds that all the odd amplitudes u2,+1 are 

zero and the even amplitudes scale according to u2, = O(A:). The first few terms of this 

"hierarchy" in the small parameter Al l2  take the forms, 

We show now that this hierarchy holds also in our shape representation. In this regard, 

we relate the two different representation and, then, use Eq. (A.4). The transformation 

between the two expansions Eq. (6.10) and Eq. (A.l) is non-linear. Thus, we may write 

formally 

am = Inmu, + Inkm~nuk + 0(u3). (A.5) 

As shown in App. A.2, the matrix (Inm) has a triangular form, and its components are zero 

for m > n. It is this property which ensures that the mode hierarchy carries over to our 

representation. To linear order in A,  one gets 

In the equation above, we have explicitly used the fact that 124 = 0, i.e., that the linear 

term in the expansion of a4(u2) is absent. In order to find the coefficients of Eq. (6.13), we 

just have to  convert the expansion in A, Eq. (A.4), into an expansion in (1  - v) and then 

insert the result into Eq. (A.6). With 

we find 
a2 = Al (1 - v)f + {Blto + B2} (1 - v) 

a4 = {BsZo + B4) (1 - V) 
(-4.8) 



where the coefficients are given by 

These are the coefficients of Eq. (6.13). The matrix (I,,) is written down in the next section. 

We have not attempted to  calculate the tensor (Ikmn),  since it is not needed explicitly for 

the mapping, which we perform numerically. 

A.2 Linear Transformation Matrix I for u, -, a,. 

The transformation matrix I has been obtained by Dr. Udo Seifert [79]. We note the result 

of his calculation. The matrix I defined by Eq. (A .5)  is given by 

which is zero for m > n or n - m odd. The Yno are the spherical harmonics for m = 0. 



Appendix B 

Fluctuating Symmetry Axis 

The shape representation described in Sec. 4.1 uses the principal axis of the c~n tou r  as a 

reference system. The problem with such a choice is that this reference system actually 

depends on the contour and is not fixed. The principal axis fluctuates thermally around the 

symmetry axis of the mean shape, which, itself, exhibits rotational diffusion (see Fig B.l). 

The natural reference system would be the symmetry axis of the mean shape. However, the 

Figure B.1: The angle cr of the principal axis with the vertical can be decomposed into 
a sum of the angle a, of the symmetry axis with the vertical and of the angle Acr of the 
symmetry axis with the principal axis. 

instantaneous principal axis of each individual shape is a good estimate for the symmetry 

axis of the mean shape, since both axes are identical for a rotationally symmetric shape and 

since the shape fluctuations, which break the rotational symmetry, are relatively small. It 

is even a "best" estimate in the sense that it is the most symmetric division of the contour 

in two halves: One can show by direct minimization that the slopes k* of the principal axis 



(see Eq. (4.7)) are minima of the functional, 

i=l 

where dk(x;, y;) is the orthogonal distance of the contour point (xi, yi) to the line y = kx 

through the center of "mass." 

If one knew the angle between the symmetry axis and the vertical y axis (see 

Fig. (B.l)), the contours could be aligned independently of their deviation from the mean 

shape. (We assume for simplicity that the symmetry axis is located within the focal plane 

of the microscope. Effects of out-of-plane fluctuations are discussed in Sec. 6.6.2.) The idea 

is that one may obtain the mean symmetry axis by averaging the ("quick") fluctuations 

of the principal axis over short times and, then, expanding the contour with respect to 

this averaged axis. In order better to understand the behavior of the principal axis, we 

formulate now a simple dynamical model for its angle a with the vertical. 

The angle a = a, + A a  is a stochastic variable (under thermal fluctuation) and the 

underlying dynamics may be modeled as a superposition of an overdamped harmonic oscil- 

lation of A a  and the Brownian motion of a,. The longest time scale for the first process 
< qR3 is determined by the relaxation time for the lowest eigenmode of the vesicle, rj N y. 

The second process is characterized approximately by the rotational diffusion constant, 
kT of a sphere with radius R,. Assuming that the stochastic forces on the two DT = - 7  

angles are uncorrelated, we find for the correlation function of a 

The relevant time scale for the rotational diffusion is, therefore, rT = <(Aa)2(o)' .  If the Dr 

ratio. 

were small, "fast" oscillations of the principal axis could be averaged out to obtain the mean 

symmetry axis, without introducing correlations due to  the "slow" rotational diffusion of 

the mean symmetry axis. Taking 2 0.04 and estimating < ( A c x ) ~ ( o )  >= (0.05)~ from a 

running average on a ,  
n 

'One might think that ,  because of the fluctuations of the principal axis around the symmetry axis, the 
averages of the two sets of amplitudes, { a n l a , )  and { a n l a } ,  are equal. However, this is not true, because of 
the shift of the integration interval in Eq. 4.14. 



over a time on the order ~ j ,  one gets the crude estimate, 

Thus, the time scales are not well separated and, unfortunately, it is not possible to extract 

the mean symmetry axis. 

Nevertheless, the differences between the mean amplitudes with respect to the principal 

axis and those with respect to a time-averaged principal axis are within statistical fluctu- 

ations for an average over short times (see Fig. B.2). We conclude, therefore, that it does 

not make any difference at  this level of precision whether the contours are expanded with 

respect to  the instantaneous principal axis or to the mean symmetry axis. 



Figure B.2: Effect of performing running averages of a on the mean shape amplitudes {a,). 
There is no significant effect on the amplitudes for short averaging times. ( n = 2 corresponds 
to  a time window of approximately 2 s.) Long averaging times lead to  correlations due to 
the rotational diffusion of the mean symmetry axis. 



Appendix C 

Landau Theory for an External 

Asymmetry 

In the following, we repeat a calculation performed by U. Seifert [79]. For a transition out 

of an asymmetric shape the Landau potential reads 

With the ansatz a, = fi f ,  one obtains 

where y = h,  and we have ignored the sixth order term which we don't need for the 

decay. The metastable state (a; )  and the saddle point (a:) are given by 

where f f  are the two positive solutions of the relation, 

The instability, i.e., the annihilation of the metastable state against the saddle point, is at 

Y = yc = 2&/9, as can be seen from Fig. C.1. The energies of the minimum and the saddle 

point are given by 

Near the instability, the two solutions are f * N 4 1 3  f const d m .  For the curvature, 

we find 

~ " ( a : )  = K ( T ~ / ~ ~ ) ( I  - 3( f * ) 2 )  * ( y C  - y) lJ2 .  (C.6) 



Figure C.l: The metastable state (f-)  and the saddle point ( f+ )  are given as the two 
positive solutions of f - f 3  = y, where y is proportional to the field h. The instability, 
i.e.,the point where the metastable state disappear, is located a t  (f,, yc) = ( a / 3 , 2 & / 9 ) .  
Near this instability, the two solutions f* scale as f* - f, N f (y, - y)1/2. 

We take (y, - y) (T, - T), as usual. Noting that ((a, - (u , ) )~)  = kBT/ VU(a;) and 

assuming the same simple dynamics as in the symmetric case, i.e., t ,  = 1/ (r V U ( a ; ) ) ,  we 

arrive at  Eq. 5.25. 
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