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ABSTRACT 

Over the last decades, Open Source Software (OSS) has become increasingly popular and 

moved into the mainstream software industry. Our project's goal is to investigate the need for an 

Open Source Institute (OSI) within Simon Fraser University (SFU). We performed a literature 

review and interviewed IT specialists from various local companies. We identified some barriers 

to the adoption of OSS, including lack of working knowledge of OSS, lack of multi-tier technical 

support, and legal concerns. Our analysis confirmed the need for this institute to promote OSS. 

We recommend that the SFU-OSI should broker technical support for OSS, to increase 

the level of awareness by organizing events and incubator-type initiatives, to offer various levels 

of training, to create standards and frameworks for user-friendly and well-documented OSS, to 

mine the undocumented innovations embedded in mature OSS, and to work with governments to 

leverage OSS for the betterment of society. 
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GLOSSARY 

ANSI 

Backend 
software 

CAD 

CAM 

Client I 
Server 

Client or 
Desktop 

CRM 

ERP 

Freeware 

GUI 

HTML 

IEEE 

IETF 

OSS 

POSIX 

Public 
domain 
software 

R&D 

American National Standards lnstitute 

Any software performing either the final stage in a process, or a task 
not apparent to the user. 

Computer-Aided Design 

Computer-Aided Machining 

The relationship between two computer programs in which one 
program, the client, makes a service request from other program, the 
server, which fulfils the request. 

(Used interchangeable in the paper) a computer or program that can 
download files for manipulation, run applications, or request 
application-based services from a server. Usually it runs on small 
computers, with limited processing power. 

Customer Relationship Management 

Enterprise Resource Planning 

Software that is available for free, usually over the Internet 

Graphical User Interface 

Hyper Text Mark-up Language 

Institute of Electrical and Electronics Engineers 

Internet Engineering Task Force 

Open Source Software 

Portable Operating System Interface 

Software that is not protected under patent or copyright. 

Research and Development 

viii 



Server A program (loosely a computer) that is integrated in a network and that 
fulfils service requests from other components of the network. Usually, 
it runs on powerful computers and/or mainframes, with redundancy and 
increased reliability. 

Shareware Copyrighted software that is available free of charge on a trial basis, 
usually with the condition that users pay a fee for continued use and 
support. 

W3C 

XML 

World Wide Web Consortium 

Extensible Mark-up Language 



1 INTRODUCTION 

The goals of this project are to ascertain the current level of awareness and understanding 

of Open Source Software (OSS) in the business community in the Greater Vancouver area, 

identify the gaps between this community's needs and its knowledge of OSS (e.g., perceived risks 

and bamers to adoption of OSS), and recommend strategies that will enable a proposed Open 

Source Institute at Simon Fraser University (SFU) to contribute to the community by promoting 

effective and efficient use of OSS. 

OSS, defined as software for which the source code is freely available for viewing, 

modifying, redistribution, and derivative work, is a growing area of research, and one that 

presents many challenges that contradict current economic, technical and motivation models. 

Thousands of programmers worldwide are contributing for free to the development of complex 

software products based on millions of lines of code. Why are they willingly disclosing code? 

How were they able to organize themselves, and coordinate complex projects based on the 

contribution of so many volunteer programmers around the world? Could one build a business 

model based on OSS, and if so, would this contradict the underlying principles of the OSS 

movement? Are there any prospects for future developments and widespread adoption? What 

could be learned from the developing model of OSS? 

To answer some of these questions, Dr. Robert Cameron, a professor from Simon Fraser 

University's Faculty of Computing Science, came up with the idea of creating an Institute for 

OSS studies within SFU. The envisioned goal of this Institute would be to create a framework 

that enables research and other academic activities around OSS (teaching, conferences, etc.), to 

the benefit of industry, students, and other stakeholders. 



In the following chapters, we use ideas and frameworks from OSS-focused literature, as 

well as the results of our own empirical research, to validate our recommendations for this 

potential institute. Our approach is based on interviews with senior IT specialists from the 

industry. After introduction, the paper will continue with a literature review in which we define 

the concepts and frameworks required for a better understanding of OSS. A presentation of the 

methodology and the results of the interviews will also follow. The analysis chapter will explain 

the findings and will be followed by recommendations and conclusions. 

1.1 Identifying the gaps 

We began our research by trying to find answers to a broad question: What can the 

Institute for OSS at Simon Fraser University do to reduce the gap between what is currently 

supplied in the industry and the industry's current and future needs regarding OSS? More 

specifically, we were interested in learning: 

What is the current level of awareness in the IT community regarding the OSS 

phenomenon? 

What are the perceived risks of running OSS in organizations, compared with 

running proprietary software? 

What are the perceived barriers to adoption of OSS? 

What are the differences between the adoption of server-side solutions, compared 

with desktop-side solutions (see glossary section for definitions)? 

What are the perceived prospects of OSS? How does the IT community see the 

infrastructure OSS applications (Apache, Linux, MySQL, etc.) in the following 

years? Will desktop OSS applications take off any time soon? 

What could the Open Source Institute do to promote the use of OSS? What is 

needed in the industry? 

To answer these questions, we conducted an extensive review of OSS-related literature, 

as well as interviews with senior Information Technology (IT) professionals working in a wide 



array of organizations, from leading software companies to telecommunications companies and 

educational institutions. Our results are presented in the next few chapters in detail. 

The starting point of our research is the identification of the current status of the OSS 

movement. This is presented in the literature review section and is corroborated throughout our 

discussions with the interviewees. The following step is to identify how the Open Source Institute 

can respond to industry needs. This step is based on the interviews conducted with managers and 

senior IT personnel from a variety of organizations. Our analysis involved both server-side 

applications and desktop-side applications. The next chapter deals with diffusion of OSS issues, 

as well as the role of government with respect to OSS. In the end we present our findings and 

recommendations. 



2 LITERATURE REVIEW 

2.1 What is Open Source Software? 

During recent years we have witnessed unprecedented press coverage of open source 

software. Examples of recent press coverage include articles related to Microsoft's Shared Source 

Initiative (Microsoft, 2004), and the legal dispute between the SCO Group and IBM, in which 

SCO alleged that IBM contributed SCO's intellectual property to the code of the Linux operating 

system without authorization. In contrast to proprietary or closed source software, open source 

software has its source code freely available for programmers to view, modify, redistribute, and 

use to create derivative work. The nature of software as a product and the unique characteristics 

of OSS create economic policy issues that will be presented later. 

It is important to note that OSS is quite distinct from "shareware", "freeware," and 

"public domain software" (see glossary). Shareware is usually distributed in binary format, and 

users cannot access the source code. Open source software is also different from freeware and 

public domain software because open source is in fact copyrighted to ensure the source code 

remains available to the users (Bretthauer, 2002, p. 3). In other words, an open source license 

gives the user the right to use, modify, and redistribute the software on condition that the licensee 

grants the same kind of rights when the derivative work is redistributed. This concept is also 

h o w n  as copy-left (Mustonen, 2002, p. 101). 

2.2 History of OSS 

Open source software or, more precisely, the idea of shared source code, is not a recent 

phenomenon. During the 1960s and 1970s, academic institutions and some corporate research 

centres collaborated on various software initiatives. The UNIX operating system and C 



programming language were originally developed in the AT&T Bell Labs and were shared at 

virtually no charge with other research institutions that contributed to their further development. 

Cooperation in developing software was commonplace, encouraged by a culture of sharing in 

which software was considered secondary to hardware. But, in the early 1980s, AT&T started to 

enforce its intellectual property rights related to UNIX. This move disrupted the community of 

developers, some of which started to think of means of continuing cooperative development by 

mitigating the threat of litigation from the enforcers of intellectual property rights (Lerner & 

Tirole, 2002, p. 200-201). 

One landmark in the development of the OSS movement was the establishment of the 

Free Software Foundation by Richard Stallman in the early 1980s. A pioneer of the open source 

software movement, Stallman worked until the early '80s for the Massachusetts Institute of 

Technology Artificial Intelligence (AI) Laboratory, where sharing source code was common. Due 

to changes in the legal environment of collaborative software development and after being 

refused the source code of a faulty printer driver by Xerox, Stallman decided to develop a free 

UNIX-compatible operating system, which he called GNU'. He resigned from the MIT A1 Lab 

and devoted his time to developing and distributing GNU one piece at a time. The Free Software 

Foundation (FSF), the non-profit organization started by Stallman, charged a small fee to copy 

and mail out its software to those interested. The proceeds were then used to hire programmers to 

develop and debug the rest of the GNU operating system. By 1991, FSF had most pieces of the 

GNU operating system, including the C libraries, but it had not developed an operating system 

kernel. The kernel came from another open source movement advocate, Linus Towalds, who had 

released the kernel of his UNIX-like operating system, "Linux". The Linux kernel and all the 

accompanying GNU software were then put together to create the most widely known open 

source software, "GNU/Linux7' operating system (Bretthauer, 2002, p. 5). 

1 GNU = "GNU'S Not Unix" it is a recursive acronym created by the Free Software Foundation to 
emphasize the work of creating a freely distributable replacement for UNIX. 



Stallman developed a licensing agreement, called GNU General Public License (GNU 

GPL), to ensure users access the source code as it evolves. During the 1980s, GPL was the most 

widely used open source licensing agreement. The license requires all software that is distributed 

with open source software to have the same distribution terms and therefore is considered one of 

the most stingent open source licenses (Johnson, 2002, p. 639). However, the GPL licensing 

model contained a major issue that precluded many companies from using OSS and their 

proprietary software in the same product: all the proprietary software bundled with OSS 

components had to have the same licensing model as GPL software - the so-called "viral 

infection" (Lerner & Tirole, 2002, p. 203). Because it was very restrictive, a number of 

individuals and organizations started to develop other licensing agreements, to encourage more 

participation and contribution to the open source movement. Some of these agreements allowed 

bundling open source software with closed source software. One such agreement was developed 

by Debian, a company that distributes Linux operating system (Lerner & Tirole, 2002, p. 202). 

The Open Source Initiative (OSI), a non-profit organization dedicated to the promotion of open 

source software, used the "Debian Free Software Guidelines" to define what constitutes open 

source software. OSI explicitly states that: 

"The license must not place restrictions on other software that is distributed along 
with the licensed software. For example, the license must not insist that all other 
programs distributed on the same medium must be open-source software" (Open 
Source Initiative, 2004). 



Table 1 compares the classic GPL license and the new Open Source Definition as defined 

by the Open Source Initiative. 

Table 1 - Comparison between Open Source Licensing ~ o d e l s '  

Characteristic 

Free redistribution 

Source code 

Derived work 

Restrictions on other 
software 

General Public License 
(Free Software Foundation) 

Software can be copied and given 
away (charge only for physical 
distribution) 

Should be distributed freely. 

Derived work is allowed and has 
to be distributed within the same 
licensing terms. 

Restrictive licensing model. 
Any software built or derived 
from using a part or the entire 
GPL licensed code has to be 
distributed as a whole under the 
GPL terms. Exception: the 
independent components that 
were not developed or derived 
from GPL licensed software. 

Open Source License 

- -- 

Software can be sold or given 
away without paying royalties 
or other fees. 

Must be freely available with 
the compiled form or from 
other sources. 

Derived work is allowed and 
has to be distributed within the 
same licensing terms. 

More permissive licensing 
model. Other software 
bundled with OSS can use 
open or closed source 
licensing models. 

The ability to view, collaborate, modify, and redistribute source code has allowed 

thousands of developers to contribute to the development of OSS. The contributions of this mass 

of talent have immensely improved the quality of open source software to the point that some 

open source software matches and even exceeds popular closed source software in terms of 

stability, reliability, inter-operability, and security. The combination of technical merits of some 

open source software and low acquisition costs has made certain open source software extremely 

popular. Sendmail (Mail Transfer Agent), Linux, Per1 (Scripting language), Apache (Web server) 

and BIND (Berkeley Internet Name Daemon - a domain name server) are all examples of open 

Adapted from Free Software Foundation (1991) and Open Source Definition (2004) 



source server software with significant success compared to closed source software. For instance, 

according to an October 2004 survey from Intemet watchdog Netcraft.com (a survey of more 

than 55 million sites worldwide), the Apache web server dominates the web server market with 

almost 68 per cent of the global market, followed by closed source software such as Microsoft's 

Internet Information Services (11s) with about 21 per cent and Sun's software with 3 per cent 

(Netcraft, 2004). Lerner and Tirole estimate that Sendmail handled about 75 per cent of all 

Internet traffic in 2000 (Lemer & Tirole, 2002, p. 212). On desktop applications, Openoffice 

(Office productivity suit) and Mozilla-based web browsers are becoming increasingly more 

popular (Wheeler, 2004). 

Figure 1 - Apache Web Server   om in at ion^ 

Market Share for Top Servers Across All Domains August 1995 - November 
2004 

- Apache - H i c r o s o f t  

Sun 

NCSA 

- Other  

3 O Netcraft, 2004 -by permission for fair use. 



2.3 Comparison between Open and Closed Source Software 

To better understand the following chapters, a comparison between open and closed 

source software is required. The OSS licensing model (freedom of use, allowing for 

modifications and redistributions) is in obvious contrast to closed source software (restricting the 

use to licensed users and forbidding modifications and redistributions). The following attributes 

are also different: 

Control: In the case of OSS, consumers and developers have equal access, 

although there is usually a core group that centralizes, maintains and creates new 

releases. The leaders of the Open Source projects emerge informally and are 

recognized by the OSS community (Lerner & Tirole, 2002, p. 221). The average 

user is not usually in a position to influence the direction of future developments, 

but users can contribute code, participate in discussions and customize the 

software to fit their needs. In the case of proprietary software, the developing 

companies are in control. They create new versions and receive royalties and 

fees. The customers, depending upon their size and relative power, are sometimes 

able to influence the direction of software development, but in most cases do not. 

For instance, when an important customer requires some particular software 

features, it can use contractual leverage to determine the vendor to supply the 

additional features. 

Development model: OSS is developed by heterogeneous groups of unpaid or 

paid developers who act within decentralized networks and benefit from the 

variety and diversity of members' backgrounds and ideas. The informal 

characteristic of the network is instrumental in organically allocating the best 

resources to solve the relevant issues. Members volunteer to solve those issues 

they think they can solve, and the best solution is usually chosen through a 

defined mechanism. However, less-than-interesting features (such as help menus, 

documentation, etc.) are usually left behind. Proprietary software is developed 

within the organization by a limited number of programmers, organized in groups 

and with specific goals to attain. They benefit from standard market research and 

are told what features the software should have. Most of the features important 

for users (help menus, documentation, etc.) are planned and then developed. 



Management is formal and the programmers receive some form of compensation 

(money, dividends, stock). The software companies are interested in conserving 

the revenue model and preserving their competitive advantage. 

3. Innovation: In the case of OSS, large groups of developers create and test 

software simultaneously. Because of the large number of programmers, the odds 

of finding better, more innovative solutions are higher. The innovation is 

"distributed" (Kogut & Metiu, 2001, p. 248). In the case of proprietary software, 

the innovative process is usually driven by R&D (see glossary) departments. 

Enforcing property rights helps obtaining sufficient resources to fund R&D 

activities. The innovative capacity is limited to smaller groups of programmers 

inside or outside companies. 

4. Acquisition and expansion costs: In the case of OSS, there are low or no initial 

costs, as well as no additional costs for additional users (e-Cology, 2003, p. 7). 

Upfront licensing costs could be very high for proprietary software, and the 

licensing model is usually linked with the number of users or connections. 

5 .  Total cost of ownership (TCO): It is difficult to compare total cost of 

ownership for OSS and proprietary software. There are examples of contextual 

advantages on both sides. More research is needed in this area, for conclusive 

results. 

6. Longevity: OSS exists as long as it serves a useful purpose (R-smart group, 

2004, p. 4). However, there is a non-negligible risk of the OSS project being 

abandoned, in which case the consumer is stuck with an obsolete andlor 

unsupported solution. This risk is considerably smaller for mature projects. 

Proprietary software is viable as long as the developer exists and does not 

discontinue its products. If the developer goes out of business or is acquired by 

other company, the customer is left with unsupported software for which the 

source code is unavailable. 

2.4 Benefits of OSS 

OSS is controversial and most studies have been conducted by stakeholders with 

conflicting interests. However, there are two comprehensive government-funded empirical 

studies on usage, benefits, the current and the future state of OSS. The first study was funded by 



the European Commission and was conducted by researchers from the University of Maastricht in 

The Netherlands. This study is called "FreeILibre and Open Source Software" and its results were 

published as the "FLOSS Report". The FLOSS report is based on extensive interviews with IT 

decision makers in 1,452 organizations (each employing over 100 people), in Germany, UK and 

Sweden. 395 of these companies used Open Source Software in one form or another (Wichmann, 

2002, p. 11). The second study was funded by the government of Canada and was conducted by 

the e-Cology Corporation of Toronto, Ontario. This report is known as "Open Source Software in 

Canada" or the "canFLOSS" report. CanFLOSS is based on 180 questionnaires, 19 in-depth 

interviews, an industry review, and an extensive literature review (e-Cology, 2003, p. 10). As we 

will see in the next two sub-sections the results of these reports are congruent. 

2.4.1 Social Benefits 

OSS offers an alternative to proprietary solutions, therefore creating competition and 

stimulating innovation. As a result, society benefits from better solutions and reduced costs (e- 

cology, 2003, p. 21), increasing the social welfare. Using OSS in the public sector prevents lock- 

in situations, in which the organization has to increase spending to be able to continue to use the 

proprietary software from certain developers (mandatory upgrades, discontinued support for older 

versions, etc.). In the canFLOSS study, 88 per cent of respondents strongly agreed and 9 per cent 

agreed that the government procurement policy should include the option of open source 

solutions. OSS could be seen as "a form of market correction" (e-Cology, 2003, p. 65). 

For developing countries, the use of OSS is a means of obtaining good value by 

overcoming legal and economic barriers of proprietary software (e-Cology, 2003, p. 44). Local 

solutions based on OSS architecture could be developed and used to the benefit of their societies. 

This translates into strategic benefits for those countries. 



2.4.2 Technical and Monetary Benefits 

Monetary benefits are believed to be the key business drivers for the adoption of OSS. 

The European FLOSS report found "Independence from pricing and licensing policies of big 

software companies" to be the strongest reason for using OSS (Wichmann, 2002, p. 29). This 

finding is consistent with the Canadian FLOSS project, which reported "cost reduction and 

vendor independence" as the major business drivers for using OSS in Canada (e-Cology, 2003, p. 

21). 

The primary benefits of using OSS are a combination of monetary and technical merits. 

The majority (over 90 per cent) of respondents in the Canadian FLOSS study expressed 

"agreement" or "strong agreement" that OSS is a good fit for the current IT infrastructure (e- 

cology, 2003, p. 21). The survey found "Greater security" to be the third greatest benefit. 

CanFLOSS found "Cost reduction" and "Greater flexibility" to be the main benefits of using OSS 

in Canada, followed by "Greater security", "Improved productivity," and "Improved 

competitiveness" (e-Cology, 2003, p. 22). The European FLOSS report found "Higher stability 

and access protection" to be the top benefit of using OSS, followed by "Direct cost savings", 

"Indirect cost savings," and "Open and modifiable source code" (Wichmann, 2002, p. 47). 

2.5 Community Motivation 

There are a number of ways to explain what motivates a considerable number of 

individuals scattered all over the world to collaborate and develop open source software. The 

phenomenon is not fully understood, but a number of attempts have been made to clarify the 

motivational factors. 

First, it is recognized that in the proprietary software industry, as in any economic 

domain, the main motivator is profit maximization, which is usually achieved by securing 

intellectual property rights (Mustonen, 2002, p. 103). So, what are the motivators for the OSS 



developer? Researchers and analysts have found that open source developers derive at least two 

benefits from their work. First, they improve their long-term career prospects by signalling their 

skills, networking with their peers and raising their profile in the software development arena. 

Second, it is believed they enjoy some ego-gratification4 as a result of the peer recognition they 

receive (Lerner & Tirole, 2002, p. 2 13). 

A second insight into community motivation comes from examining the types of 

applications that the open source community tends to develop. It is important to note that 

although the open source community has built industrial-strength complex backend software (see 

glossary), it has failed to develop desktop applications of similar quality. For instance, 

Openoffice, the OSS competitor of MS Office, is still in its infancy, though according to the 

0penOffice.org Web site about 16 million downloads were recorded from their site. There is 

evidence that open source developers are motivated to develop what is useful in their work 

(Johnson, 2002, p. 639). Hence the success of Sendmail, Apache, Linux, CVS, Perl, and similar 

open source software that is widely used by system administrators, web-masters, and 

programmers, mainly in infrastructure applications. 

A third source of community motivation is offered by the proponents of open source who 

claim altruistic values drive the open source movement. Due to its nature, OSS is equally and 

freely accessible by all people, poor as well as rich, small companies and multi-nationals, third 

world countries and industrialized nations. Politics and economic sanctions cannot stop less 

favoured nations from using open source software. Furthermore, provisions five and six of the 

official open source definition explicitly prohibit discrimination against any people, group or field 

of endeavour (Open Source Initiative, 2004). However, Lerner and Tirole discount altruism as a 

4 The term "ego-gratification" refers to the fact that people want to be perceived by their peers as being 
knowledgeable, influential, and prominent. Within large communities of developers, the ability to resolve 
software issues confers people this central role. 



driver of open source movement. They argue that while OSS is accessible by the poor, many 

beneficiaries of OSS are rich people or Fortune 500 companies (Lemer & Tirole, 2002, p. 198). 

2.6 Various Economic Perspectives on OSS 

Many economic researchers have studied the IT industry extensively in the last decade, 

giving particular attention to its software development component. Names such as Lemer, Tirole, 

Fichman, Kemerer, Chnstensen, are only a few from a large group of academics that have closely 

studied software development and OSS. Open Source Software poses a different set of issues 

with respect to business models than proprietary software, because of the different characteristics 

(such as licensing models, modular architecture, etc.) and development models. In this chapter we 

present some general economic issues around the IT industry, with the purpose of preparing the 

foundation of the following analysis. 

2.6.1 The Provision of Public Goods and OSS 

In economic theory, a good is said to be a "public good" if it is "non-rival" and "non- 

excludable". "Non-rival" means that consumption of the good by one party does not preclude 

another party from using it, so the amount of good available for consumption does not vary with 

the number of consumers of it (Baye, 2002, p. 5 13). Since the marginal cost of duplicating 

software is almost zero and running a particular application on one machine does not stop others 

from running a separate copy of it on a different machine, software (both proprietary and open 

source) is by nature a non-rival good. "Non-excludable" means that no one is precluded from 

using that good, so anyone can consume it once it is available. Here, a clear distinction between 

proprietary and open source software is apparent. Traditionally, closed source software 

companies have tried to make software an excludable good by enforcing intellectual property 

rights. These copyright agreements have been designed to allow licensees to access a binary copy 

of the program and prohibit anyone except the copyright holder from accessing the source code. 



Conversely, the licensing schemes used in open source software have been designed to ensure 

that the public can freely access the source code. 

It is common knowledge in the economist community that the market provides public 

goods in inefficient quantities. People have few incentives to purchase a public good because it is 

freely supplied, so they prefer others to pay for the goods (or to produce them) - the so-called 

"free riding" problem (Baye, 2002, p. 5 13). Thus, public goods tend to be undersupplied because 

too few want to produce them. This is known as "market failure". When instances of market 

failure arise, governments often intervene to correct the market. The role of governments will be 

detailed later. 

The proposed Open Source Institute within SFU could have a major role in correcting 

these instances of market failure for the public good that is OSS. As a component of a public 

institution, together with the governments (local and federal), the institute may fill in the gaps left 

by the market. Our null hypothesis is that there are instances of market failure in the OSS space 

that could be addressed by the Institute. Through our research, we intend to determine whether 

market failure really exists and, if it does, whether there is a potential role for a university- 

affiliated Institute to fill the gaps. 

2.6.2 Risks of Investments in Information Systems 

One of the initial objectives of the research is to identify the perceived risks involved in 

running OSS. Our interests are twofold: to identify specific risks and to compare them with the 

risks of running new proprietary software in general. Before presenting the findings from our 

research, it is proper to review the current understanding regarding the risks involved in IT 

projects. 

Generally, the main risks involved in managing information systems are (Clemons, 1991, 

p. 31): 



Financial risk: the risk of not affording a suitable technical solution because of a 

failed cost-benefit analysis; 

Technical risk: the technology cannot be properly managed and used because it 

is simply not available, or the knowledge and support system are missing; 

Project risk: the company cannot do it because of the complexity, lack and 

technical or human resources, lack of skills or the organizational culture; 

Functionality risk: even if the project is completed, the functionality of the 

system does not satisfy users' requirements, so the benefits are lower than 

expected; 

Systemic risk: the environment is so dynamic that the system, even if 

implemented successfully, becomes obsolete because of change in the external 

medium. 

The software-specific risks could be included in one of the above broad categories of 

risks. In the following sections, we present an analysis of the perceived risks of OSS compared 

with proprietary software. 

2.6.3 Standards and Competitive Strategies 

The development of standards was one of the key factors that contributed to the success 

of the industrial revolution and the comrnoditization of many goods and services. Without 

standards, automobiles would not be affordable for so many people, only a select few would be 

able to afford the cost of an airplane ticket, and household appliances would be out of the reach of 

the majority of people. In the software industry, standards are vital to ensure not only 

compatibility between diverse solutions andlor components, but also to the economic success or 

failure of the company. Many of the OSS solutions that are currently mature and widespread were 

developed around open standards (as presented in chapter 2.2). Before discussing the research 

subjects' perceptions regarding standards and how they think OSS could be leveraged into 

competitive strategies, a presentation of current ideas around standards and business strategies in 

the IT industry is necessary. In the following paragraphs, we present three types of approaches 



with respect to creating strategies around standards: promotingproprietary standards to the 

industry standard level, adopting established strategies (in the case of companies unable to 

impose their own standards), and developing strategies around OSS. 

Firstly, a company wishes for its technology to become the industry standard. This would 

allow the company to extract rents5 and become a leader of the industry. This is the case of 

Microsoft and Intel - the so-called "Wintel" standard (Hill, 1997, p. 8), whose technologies, 

Windows operating system based on Intel microprocessors, define industry standards. In the case 

of Wintel, a virtuous cycle was created when a larger installed base led to greater software 

availability over time, which in turn created increased value for the hardware. This was a self- 

reinforcing cycle that eventually created customer lock-in in the market, and the technology 

became a "de facto" standard. The economists framed this phenomenon as "increasing returns" 

(Hill, 1997, p. 9). Other companies, such as IBM with its PC architecture, were able to promote 

their technology to the industry standard level, but were unable to appropriate the benefits. 

To attain this privileged position the following strategies are instrumental (Hill, 1997, p. 

1. Aggressive initial licensing for a wide initial distribution and building the market 

expectation; 

2. Strategic alliances, especially with complementary product vendors, but also 

competitors. Again, bear in mind Microsoft's aggressive strategy of increasing 

the value of its operating system by creating partnerships with other software 

developers and increasing the degree of software integration; 

3. Product differentiation by increasing the supply of complementary products. An 

example is Adobe's strategy of giving away its "PDF (Portable Document 

Format)" file format reader, with a view to attaining the critical mass necessary 

to become the industry standard (in Adobe's case, the goal was to be able to 

obtain rents from its "PDF" writer); 

5 Supernormal profits 



4. Aggressive positioning using penetration prices and wide distribution for an 

initially accelerated adoption. For instance, educational licenses at discounted 

prices are instrumental in accelerating adoption. 

The key factors that impact the above strategies are raising the barriers to imitation 

through patent and copynght protection and availability of the complementary products (Hill, 

1997, p. 19-21). Some commercial software companies, such as Microsoft, Adobe, and Oracle, 

were able to actively pursue the above-presented strategies and enforce copyright protection, and 

obtain market domination. In the OSS domain, however, the so-called "copyleft licensing" model 

cannot create barriers to imitation. Thus, other strategies have to be used to create a viable 

business model for companies. 

Secondly, other companies in the industry, which were not able to promote their 

technology to the level of industry standards, use copyright protection to maintain a competitive 

advantage for their products. By excluding users from using their product unless they pay for the 

license and forbidding the modification and redistribution, they control the customers and could 

be competitive. Their best competitive stance is based on customer solutions (creating a wide 

variety of products and services that satisfy most of the customers' needs) or lower costs1 

differentiated products - having the cheapest solutions with a lower level of features or having 

high featured products for which higher prices could be charged (Hax & Wilde, 1999, p. 12). 

Thirdly, some recently emerged strategies built around OSS allow companies to compete 

in the industry. Even if the founders of most OSS projects did not think about immediate 

monetary profits and building business models, some companies have recently embraced business 

models built around OSS. The OSS strategies are (Konig, 2004): 

1. Optimisation: Because of the modularised design, one layer of the software 

stack6 is "comformable" (i.e. Linux), allowing other modules to be optimised. 

6 Software is made up of components with diverse roles. Those components have basic roles (for instance 
the operating system, drivers etc) or specialized roles (for instance a spreadsheet application). In computer 
jargon, the components are seen as a hierarchy, often called stack. 



The business model exploits the optimised modules. (Christensen, Anthony & 

Roth, 2004, p. 19); 

2. Dual Licensing: A strategy in which a company offers free use of its software 

with some limitations (under a GPL-like license) and at the same time a 

commercial distribution with a bigger set of features. The company benefits from 

the advantages of OSS, such as better development and bug fixes, faster 

adoption, as well as the advantages of commercial software (licensing fees). For 

instance, MySQL AB's business model of offering its database core module free 

under a GPL-type license and also supplying a commercial version with 

improved tools and with documentation and support. The commercial version is 

bought by important customers such as Sabre (the first airline ticketing system in 

the world, whose over 100 servers run MySQL, with plans for another 200 in the 

following years), Nokia, Siemens, etc.; 

3.  Consulting: Consulting for implementation and other IT services; 

4. Subscription: Business model embraced by many OSS companies: assuring 

support and maintenance as well as updates. (Red Hat, SuSE distributors); 

5.  Patronage: It is a competitive strategy in which a company contributes to an 

OSS project to drive a standard to widespread adoption, to crack existing 

markets, to increase the selling of complementary products or to commoditize an 

existing layer of the software stack. (i.e., IBM supports Linux for 

complementarity reasons, to increase hardware sales, and also as a means of 

competing with Microsoft's and Sun's server operating systems); 

6. Hosted: Renting a software application instead of buying it. The trend is towards 

hosted applications, benefiting from the expansion of the Internet infrastructure 

and grid networks; 

7. Embedded: OSS is increasingly used in devices and appliances such as TiVO; 

the main advantage is that it is free and can be customized by the company to fit 

its purpose. 



2.6.4 Adoption and Paradigm Shift 

Tim O'Reilly, a well-known advocate of open source software, sees the OSS movement 

as the expression of three long-term trends (O'Reilly, 2004): 

1. Commoditization of software, being pushed by standards and Internet and 

communication systems; 

2. Network-enabled collaboration: the explosion of the Internet in the last decade 

has made collaboration in OSS development easier; 

3. Software customisability and software as a service: users rent software 

customized for their particular needs. 

The software industry has had to adapt and respond to the ever-increasing competition 

from mature OSS solutions available at far cheaper prices than proprietary sofhvare. There are 

areas where commercial software companies cannot charge their usual prices anymore because of 

mature OSS alternatives: Apache web server versus proprietary software, Linux as an alternative 

to Unix and Windows systems are examples. O'Reilly calls this phenomenon commoditization of 

software (e-Cology, 2003, p. 6). He has compared this commoditization trend with the era when 

IBM introduced the standardized architecture of the PC (198 1) and allowed others to use the 

design, a major shift in the industry's practice that opened up the era of computer clones and 

cheap affordable home computers. 

Network-enabled collaboration has further fostered the initial development of OSS. 

Virtual Internet communities that collaborate on OSS projects are increasingly numerous: 

SourceForge.com recently counted about 63,000 ongoing OSS projects (SourceForge.com, 2004). 

Sites such as SourceForge.com act as portals for OSS virtual communities, whose members 

exchange opinions, files, and software components, and use different mechanisms to choose, 

from a variety of solutions, those solutions that will be inserted in the core code. 

The current trend of outsourcing IT capabilities to hosting companies or renting software 

applications from software service suppliers is encouraged by the explosion of web-based OSS 



solutions such as Linux, Apache, etc., dynamic languages such as Perl, Python, or PHP, and 

multi-tier architectures. Vendors like IBM or HP refer to this trend as "computing on demand" or 

"pervasive computing" (O'Reilly, 2004). 

O'Reilly frames the trends as a "Paradigm Shift", and he predicts that these changes are 

happening and will continue to happen in the near future. As radical changes occur in science and 

technology, it is not uncommon for OSS to represent a major impetus behind a new paradigm 

shift. O'Reilly suggests that a new field of scientific and economic inquiry is created, that 

deserves to be pursued. 

2.6.5 Diffusion of New Technologies 

Diffusion of new technologies is a major area of study for many researchers. We use the 

framework to comment later about OSS prospects. According to Rogers (Rogers, 1983), five 

attributes of innovation influence the rate of adoption of new technologies, and these are: 

Relative advantage: technical superiority against the old technology (in terms of 

costs, functionality, image etc.); 

Compatibility: the extent to which the new technology is compatible with the 

current systems, norms and values; 

Complexity: the difficulty of learning the new solution; 

Trialability: the easiness of trying the new solution; 

Observability: whether the results can easily be communicated to other 

interested parties. 

While these attributes partially explain the diffusion of technology, for the software 

industry they are insufficient. They do not explain the increasing return to adoption phenomenon 

that is the characteristic of industries with network effects, where the benefits of adoption are 

increasing with the size of the community of adopters. For the software industry, economists have 

identified three factors that explain the increasing returns to adoption: learning by using, positive 



network externalities, and technological interrelatedness (Fichman & Kemerer, 1993, p. 10). 

Learning by using means that the community of adopters is expanding as the users and vendors 

learn and accumulate experience regarding the software. Technological interrelatedness means 

that a technology becomes worthwhile as a whole when there is a large base of comparable 

products, while positive network externalities appears when the value of a product is increasing 

as the number of users increase. 

Fichman and Kemerer identified another four economic factors that are affecting the 

adoption of technology: prior technology drag, the irreversibility of investments, sponsorship, 

and expectations. A large and mature installed base could create fewer incentives to adopt a new 

technology, and also, adoption requires investments that are irreversible and that can generate 

resistance to change. The existence of clear and powerful sponsors is helping the adoption speed 

while high expectations could act as a catalyst of the adoption process (Fichman & Kemerer, 

1993, p. 11). 

Fichman and Kemerer have identified some diffusion factors that influence the new 

technologies' speed of adoption in general. Do these factors apply to OSS? What else could 

influence the diffusion? In the following chapters the results of investigation and interviews will 

give a better perspective about the hture of OSS. 

2.6.6 Resistance to Change 

The rapid pace of scientific and economic evolution has made change a constant of 

modem life. Resistance to change is a major problem in many organizations and is manifested at 

every level within organizations. The implementation of new software systems and solutions is 

almost always confi-onted with resistance to change, and OSS is not different fi-om proprietary 

software in this regard. 



At the organizational level the factors that contribute to resistance to change are power 

and politics, differences in departmental orientation, "mechanistic structures" (tall, centralized 

organizational structures7) and the organizational culture (George & Jones, 2002, p. 650). 

Because change involves benefits for some people, functions or departments at the expense of 

others, it is likely that those that do not benefit will resist it and will engage in political actions. 

Moreover, differences in the opinions and interests of various departments could create 

organizational inertia because time and effort have to be spent to convince reluctant departments 

to align to change. Tall, centralized organizational structures that emphasize standardisation of 

behaviours also have difficulties adapting to change because they are not flexible enough. Finally, 

organizational culture plays a heavy role in accepting change, especially when change disrupts 

widely accepted values and norms. 

There are factors that could contribute to resistance to change at the group level, such as 

group norms, cohesiveness, and groupthink (George & Jones, 2002, p. 65 1). A high level of 

group cohesiveness and the attractiveness of the group to its members could create resistance if 

change threatens to disturb the group as a whole. Groupthink, a faulty decision malung pattern in 

excessively cohesive groups (George & Jones, 2002, p. 65 l),  is also regarded as a potential 

factor. 

At the individual level, uncertainty and insecurity, selective perception and retention, and 

habit are factors identified as responsible for resistance to change (George & Jones, 2002, p. 652). 

Learning new skills and the prospect of lay-offs could create powerful organizational inertia, 

turnover, and absenteeism that could sometimes thwart the change process. Habit, the preference 

for familiar actions and events, is another common factor responsible for the fight against change. 

Tall, centralized organizational structures are organizational structures with many management layers, in 
which decisions are made at the top and are sent to lower hierarchical levels for execution. 



OSS implementations have to overcome these common problems of change. Aside from 

the common themes around the resistance-to-change phenomenon, OSS has to overcome the 

competitive forces of the commercial software companies, which see their business model 

attacked in its fundamentals. We have also included the adoption theme in our research questions 

about the prospects of OSS, since academic research around adoption issues can provide valuable 

information for the proposed institute. 



3 METHODOLOGY 

The first pillar of our approach is in-depth study of OSS-related literature, as well as a 

comprehensive review of broader IT issues. Our research included books, Internet sites, as well as 

scholarly articles from recognized academic journals. Our sources ranged from Canadian-based to 

global sources, mainly fiom the United States and the European Union. A second pillar included 

qualitative interviews in the Greater Vancouver area. 

In order to achieve the goals of our research, we designed an interview guide based on 

open-ended questions. These questions provided us with a wealth of information by allowing the 

interviewees to elaborate on the topic and encouraging them to offer full-fledged analyses. We 

targeted senior IT professionals from a variety of companies, fiom proprietary software vendors 

to distributors of open source software, as well as companies that use IT as an enabler for their 

activities. We were interested in discussing with advocates as well as detractors of OSS, to obtain 

as complete and accurate an understanding of the phenomenon as possible. 

For consistency, we used the same interview guide throughout the entire series of 

interviews, making only small changes andlor asking supplementary questions depending upon 

particular situations. From an initial list of 24 global and local companies, we were able to 

interview 12 people. 

The main goals we sought to accomplish during the interviews were: 

1. To assess the general level of awareness regarding Open Source Software within 

the Greater Vancouver business community; 

2. To obtain expert opinion about the perceived level of support and expertise in the 

industry regarding Open Source Software; 



3 .  To obtain qualitative information about the perceived risks involved in adopting 

Open Source Software and the perceived barriers to adoption. 

4. To see how these specialists see the future of OSS; 

5 .  To get the interviewees' opinions regarding the prospective Institute for Open 

Source Software: what do they think about the initiative, how do they see the 

relationship between this prospective unit and the local business community; 

6. To obtain comparisons between open and closed source software in terms of 

quality of support, reliability, security, inter-operability, and features and 

functionality. 

The interviews were conducted during the month of October 2004. The interview guide is 

available in the Appendix. The following table depicts the interviewees' profiles and the 

companies that employ them. 

Table 2 - List of Interviewees 

2. / IT Manager 

Interviewee 

1 Sophos 

Chief Technologist, more than 12 
years OSS experience, board 
member of Python Software 
Foundation, close relationships 
with Apache and Mozilla 
foundations 

Profile 

4. 1 Director, IT Products 1 Business Objects 

Company 

President - North America Sophos 

Company Domain 

Software contracts 
with Business 
Objects, IT Global 
Company 

IT, Open Source, 
Global Company 

IT, Open Source, 
Global Company 

IT, Global Company 

IT, Open Source, 
Global Company 



Interviewee 

6. 

Profile Company 

Senior IT Developer 

Chief Information Officer 

Senior IT Developer, (Perl), 
Release manager for Perl versions 
5.005 and 5.6 

IT Manager 

Senior System Administrator 

Owner 

Operations Manager 

Sophos 

Sophos 

UBC, Faculty of 
Graduate Studies 

UBC, IT 
Services 

ADA Computers 

Telus 

Company Domain 

IT, Open Source, 
Global Company 

Biotechnology, 
Global Company 

IT, Open Source, 
Global Company 

Education 

Education 

IT, small local 
company 

Information and 
Communication 
Technology 

The above interviewees fill senior positions in their respective companies. They are 

seasoned IT professionals with at least 7 years' IT experience and various degrees of expertise 

regarding OSS. They cover a wide spectrum, from novice users of OSS and good proprietary 

software expertise to expert developers of OSS applications and tools, with more than a decade of 

experience. 



ANALYSIS OF INTERVIEWS 

In this chapter we analyze our interviews in search for ideas as to what is needed to 

promote the use of Open Source Software in the local business community. In particular we 

synthesize our interviews from two different perspectives. First, we look into the Local business 

community's knowledge of OSS. Next, we analyze the Risks and Barriers to adoption of OSS. 

Finally, we look into the Prospects of OSS and the Recommendations the interviewees made for 

the Open Source Institute at SFU (OSI). 

4.1 Local Business Community's Knowledge of OSS 

We interviewed a number of IT professionals from different companies to understand 

how they perceive OSS. As we expected the awareness of OSS movement is high. However, the 

level of understanding of OSS as a technology, as a software development process, as a social 

movement and as a business opportunity varies significantly from one individual to another. 

Specifically we observed that three kinds of knowledge are required to make an educated decision 

regarding the use of OSS: Technical Knowledge, Legal Knowledge, and Strategic IT Knowledge. 

4.1.1 Technical Knowledge 

Significant technical knowledge is required in order to effectively implement and support 

any software in a business environment. But implementing OSS needs deeper technical 

knowledge compared to proprietary software. OSS usually requires technical experts to learn to 

use command line utilities, the location of various configuration files (which is slightly different 

on every UNWLinux distribution), location of run time libraries, environment variables, and 

much more. What makes this process more challenging is that OSS documentation is usually 



written by technically sawy programmers who are not trained to produce easy to read and follow 

documents for the less technically sophisticated audience. Furthermore, there is no single 

authoritative source for documentation of most OSS. 

OSS tends to be less user-friendly than proprietary software. For example, to install an 

OSS such as Apache, system administrators have to use various command line utilities to 

configure the environment and the configuration files, compile the source code, install the binary, 

and set up the installed package for operation. Simply searching the Internet can be a very time 

consuming and expensive task. All of the above make the learning curve for OSS much steeper. 

Installing and supporting proprietary software, on the other hand, tends to require less 

technical sophistication and better documentation makes the learning process easier. Proprietary 

software is much better written, and it has better designed user interfaces and professionally 

written documentation. For example, a novice system administrator can easily click through the 

installation process of Microsoft IIS web server to install it and then use its graphical 

management interface to set up a site, with almost no need to learn about the underlying operating 

system. 

The need for a second type of technical knowledge stems from the opportunities that OSS 

provides for young companies. Free access to the source code of Open Source Software, some of 

which is distributed under relaxed licensing agreements, creates a wonderful opportunity for 

small start-up companies. An interviewee noted during the interview that she sees big 

opportunities for small software companies to benefit from the distribution and derivative work of 

OSS. These firms do not have the resources to develop multi-million line applications from 

scratch; however, if they have a sufficient understanding of OSS, they can easily create their own 

derivative work. Considering that under some licensing agreements derivative work can 

successfully be turned into some form of protected intellectual property, the potential for early 



stage firms and entrepreneurs alike is significant. According to a manager from a company that 

has been very successful with this approach, 

"[His company], which now provides 160 -170 jobs in BC, wouldn't be here 
today if it wasn't for OSS. We wouldn't have built [our product] if we weren't 
good at consuming open source components and including them in proprietary 
software," 

However, in-depth understanding of programming languages, as well as open source software 

development practices, open source culture, and dedication to the study of a particular open 

source project is required before such an opportunity can be seized. Unfortunately, the above 

efforts create a substantial barrier to entry for the individual programmers. Therefore, the number 

of these highly skilled experts is very limited, compared to the potential that it creates for the 

local economy. A senior IT developer from a software company said during the interview that he 

had a hard time finding expert developers of OSS in Vancouver. He ascertained that good 

developers, who understand multiple OSS and also how to integrate it, are very rare. More 

training should definitely help increase the programmer base. 

4.1.2 Legal Knowledge 

Businesses do not operate in a vacuum. Any decision they make, whether regarding 

licensing an intellectual property or building their own intellectual property, impacts and is 

monitored by other players in the industry. Inevitably, executives need to be alert so that their 

firms do not infringe the IP rights of other firms while making sure that they capitalize on the IP 

created by their own company. 

When it comes to Open Source Software, we discovered that the abundance of open 

source licensing schemes, the incomprehensibility of legal jargon to the average IT executive, and 

the ambiguities of owning derivative work has created substantial confusion for executives and 

technical experts. One interviewee, referring to the risks of running OSS and the viral infection 

issue - see chapter 2.2, said: 



"I see two risks from a business perspective. One is that some OSS has a certain 
type of license [...I that if you put inside your software you can lose the IP 
ownership of your software, so you have to understand your license model. 
Second, [. . .] if your business model depends on your software being proprietary 
and close, then you have to be careful how you use OSS. [. . .] How you integrate 
the pieces of proprietary and open software to build a business model around it 
[and at the same time] use it [the software] under the term of the license is a 
challenge." 

Another CIO from a biotechnology company went even further: 

"In general, OSS has to pass the test of intellectual property and patent infringing 
lawsuits. [. . .] Companies (public or private) do not want to be held accountable 
if a programmer inserts some intellectual property code of another company into 
an OS software package they are using. Instead, companies want to be able to 
point the finger at another legal entity that supplied them the software to prevent 
possible legal repercussions. A primary example of this is the patent infringement 
lawsuits made by SCO against IBM, Red Hat and Novell, and the outbreak of 
OSS users being sued. Until OSS sees more software companies coding under 
the OSS label, which one would hope has a proper software development life 
cycle, then there will be a perceived risk of using OSS over proprietary 
software." 

In other words, firms look for two things. First, that they do not infringe IP rights of others by 

consuming OSS or by creating derivative work from existing OSS. Second, they fear that, due to 

the intricacies of open source licensing schemes, the interdependence of some open source and 

closed software (most notably, Linux and commercial UNIX) or because of a viral license, they 

may lose the ownership of the intellectual property that they create. 

4.1.3 Strategic IT Knowledge 

Tim O'Reilly explains the open source movement as a "Paradigm Shift", one that creates 

new opportunities and poses new challenges for all business (O'Reilly, 2004). For some 

organizations to survive and excel in the new paradigm it is crucial that their executives 

understand how OSS can be leveraged to give them a competitive advantage. Specifically, Open 

Source Software can create three advantages. First, by implementing various OSS based on open 

standards, firms can avoid vendor lock-in. Second, as mentioned in section 2.4.2, cost cutting is 

one of the most important reasons for using OSS - indeed, it is the top reason in Canada and the 



second top reason according to the European FLOSS report. Therefore, cutting the cost of IT 

infrastructure can create a cost advantage for the companies. Third and perhaps most important as 

demonstrated in section 2.2, given that there are a number of well-established OSS with 

substantial market share, technology companies can quickly build proprietary solutions either 

based on or around OSS for an already developed market. Oracle9i Real Application Cluster 

(RAC) for Linux clusters is an example of porting commercial software to a platform with 

significant market share in the server market. Another example is ActiveState/Sophos's 

PureMessage, which uses SparnAssassin, an OSS SPAM filter, to enable SPAM filtering on 

Sendmail Mail Transfer Agents. 

After interviewing a number of individuals from the local business community, we feel 

that most senior IT personnel and executives do not fully appreciate the opportunities and the 

threats of this new paradigm. This is consistent with the findings of the federally funded "Open 

Source Software in Canada" study which concluded that senior management need to be educated 

to appreciate that open source is strategic not just for Information and Communication 

Technology (ICT) industry but also for others (e-Cology, 2003, p. 65). 

4.2 Risks and Barriers to Adoption of OSS 

Since we believe that the primary mission of the prospective SFU Open Source Institute 

is to promote the use of Open Source Software in the local business community, our primary goal 

in the interviews was to find out what is stopping businesses from using OSS. Although many 

reasons were given as the barriers to the adoption of OSS, we can split these reasons into three 

broad categories, Technical Reasons, Nature of Open Source Software, and Business Reasons. 

4.2.1 Technical Reasons 

As explained in section 4.1 . I ,  implementing and supporting open source solutions 

requires a high level of technical competence. A novice system administrator who may not be 



comfortable using the typical text-based download-configure-build-install process of installing or 

upgrading an open source application such as Apache web server can easily step through a 

Graphical User Interface (GUI) and install or upgrade Microsoft 11s. Therefore, we cannot expect 

more system administrators to promote open source in their organizations unless they are 

reasonably comfortable with the installation, configuration, and maintenance process of open 

source software. As we will see in the next few pages, beside plain technical skills, there are a 

number of other technical barriers to wide scale adoption of OSS. 

4.2.1.1 Lack of Social Skills in Dealing with Online Communities 

Programmers and system administrators need a broader skill set when working with OSS. 

For programmers, contributing to an open source project involves more than producing well- 

written code. Since the software development process is highly dynamic and transparent in the 

open source community, developers need to have a broad set of social skills as well as technical 

skills. Referring to this, an experienced Chief Technologist said: 

"Some developers find [OSS communities] a very threatening world. In the open 
source world nobody knows how senior you are supposed to be: [. . .I  you are 
looking to your fellows and you are looking to your contributions and your 
abilities to communicate to be a social animal, as opposed to being just a 
developer. So open source is as much about socio-dynamics as it is about code. If 
you can't convince people that you have the right approach, your code will not be 
inserted. It is a very different way of interacting with peers than having a senior 
developer or a manager to tell you what to do." 

For system administrators, maintaining an open source application is not limited to 

making sure that it runs smoothly on a machine. Superior social and decision-making skills, such 

as effectively monitoring the status of open source projects, knowing which online resources to 

use to stay updated, knowing how to network with other open source users and what can 

reasonably be expected from the community, and knowing how and what to contribute to the 

community, deciding when to upgrade to a new version, when to apply a bug fix, and how to 

proactively maintain the installed application to make sure it performs at its best, are required to 



effectively and efficiently maintain open source solutions. The lack of technical and social slulls 

makes in-house support of OSS more challenging. 

4.2.1.2 Inadequate Support 

Inadequate support was perhaps the most cited bamer to adoption of open source 

software in our interviews. Analysis of our interviews reveals three reasons for this perceived 

lack of support. First, as explained earlier, there seems to be a shortage of people with the right 

combination of technical and social skills to provide in-house maintenance for open source 

products. Second, once set-up, mature OSS run smoothly and require minimal effort for daily 

operations -therefore, most firms choose to reduce their IT personnel costs by having fewer 

system administrators on payroll. Because they have fewer people onboard, occasionally they 

need to hire external consultants and they prefer to have a bigger pool of consultants when 

negotiating deals. Third, and perhaps most importantly, firms who are not in the business of 

supporting a particular application prefer to pay another company that is highly specialized in it 

instead of supporting it in-house. For example, a firm such as Unilever, which is not in the 

business of developing, distributing, or maintaining Linux, would pay a company such as IBM 

for high-end support of their Linux systems (Weiss, 2003). 

Historically, proprietary technology companies have provided a multi-tier support 

channel including: 

1. Limited free support for basic installation and maintenance 

2. Support through Value Added Resellers (VAR) for more complex installations 

3. Around-the-clock support contracts with the technology company for mission- 

critical systems. 

Depending on their needs, user companies have used these free or paid services to 

maintain their systems. So even though most IT managers have no doubts regarding the maturity 

of much open source software, and they are well aware of free support by the open source 



community, they still need a multi-tier support channel to meet their requirements and budget 

before they can implement OSS with peace of mind. For example, their need is more than Red 

Hat Linux support through Red Hat: they need well-respected local companies which act as 

"VARs" and "Solution Providers" to fill in the gap between free community support and Red 

Hat's high-end support. One interviewee commented: 

"As soon as you go away from these mainstream things [mainstream OSS 
applications such as Red Hat Linux or Apache], [...I, even if you do have access 
to the source and in theory you can get one of your staff to start working around 
source code, I think that it is a huge waste of time for any IT organization to start 
doing it; you could pull out a few exceptions such as Google that has the 
customisation, but in your average IT organization you don't want people to 
really spend time trying to fix issues [. . .] and it takes a lot of effort to learn what 
is going on inside those packages.. ." 

4.2.1.3 Previous Technology Drag 

Another barrier to the adoption of OSS is the existence of legacy applications built on 

proprietary platforms. This is one of the factors that influence the diffusion of innovation 

according to Fichman & Kemerer (see section 2.6.5). The presence of proprietary systems slows 

down or even stops altogether the adoption of open source, in four ways. 

First, many firms have invested in in-house applications built on proprietary platforms, or 

written in proprietary languages. Rewriting these applications from scratch for the sake of using 

open source platforms makes little economic sense. Second, most proprietary software is bundled 

so that it paves the way for more proprietary software from the same vendor. For example, if an 

organization running Sendmail as its Mail Transfer Agent (MTA) needs a calendaring and 

collaboration tool, it may adopt Microsoft Exchange. By adopting Microsoft Exchange, which is 

also an MTA, a new question is raised: shall we continue to run Sendmail as our MTA? 

Furthermore, the best client to access E-mail, Calendar, and Public Folders on an Exchange 

server is MS Outlook. Interestingly enough, MS Outlook itself is bundled with the MS Office 

productivity suite, which runs best on an MS Windows operating system, and so on.. . It is easy to 



see how adopting one proprietary solution leads to a single vendor's domination of servers and 

desktops. Third, unlike open source software, which is by and large based on open standards, 

proprietary systems usually either use proprietary protocols or modified open standards. Given 

the omnipresence of certain proprietary systems, this lack of adherence to open standards makes 

it difficult to integrate open source systems into existing proprietary systems. A fourth and 

perhaps related barrier to the adoption of OSS is the network effect of existing proprietary 

software. For example, Microsoft Word and Adobe Acrobat formats are the most widely used 

formats for exchanging text documents across the Internet. To be able to effectively communicate 

with the rest of the world, one needs to use software that can read documents in these formats and 

produce documents that can be opened by this proprietary software. In many cases, it follows that 

nothing works better than software produced by these vendors, hence they become increasingly 

more popular. 

4.2.1.4 Lack of Viable Open Source Applications for Certain Domains 

Businesses use software to automate tasks, solve complex problems, increase 

productivity, cut costs, and facilitate communication. To achieve these goals, they use a wide 

variety of applications. Unless most of these applications are available either in the form of an 

open source product or at least can run on an open source platform, OSS will not be widely 

adopted. 

Our interviews confirmed the availability of OSS for IT infrastructure as explained in 

section 2.2. But, with the exception of some Mozilla-based web browsers and of the Openoffice 

productivity suite, there is a limited supply of viable open source desktop applications. This 

shortage is even greater in highly specialized areas other than IT, such as business applications 

(ERP, CRM', etc.), financial modelling, accounting, and CAD/CAM~. Some such applications 

8 See Glossary. 
9 See Glossary. 



can run on open source platforms such as Linux or interact with other open source software such 

as MySQL, Apache, etc., but their number is very limited. An experienced Chief Technologist 

commented about the lack of applications in very specialized domains: 

"The more non-technical [IT related] or more vertical a domain, the harder it will 
be to come up with viable OSS applications. Something that is vertical but very 
technical is e-commerce. Lots and lots of people do on-line sales. There are 
viable open source e-commerce systems. [...I As soon as you get into legal 
domains, [. . .] the risks involving picking up an open source accounting package 
is pretty high. You might save some money, but it could not be fiscally prudent 
to take that risk. [. . .] It depends on who else in the world needs to do that sort of 
task, how much of a community they are [. ..I, how technical they are." 

4.2.2 Nature of Open Source Software 

Open source software is different from proprietary software in one fundamental way: 

there is usually no legal entity that owns, manages, and takes responsibility for them. Most OSS 

is developed by a group of geographically dispersed programmers without the financial and legal 

support of any legal entity. The lack of ownership by a legal entity creates a few barriers for the 

adoption of OSS. 

4.2.2.1 Lack of Accountability 

Where would you go if a particular application failed? Or whom would you hold liable if 

a malfunction occurred? The answers to these questions are straightforward if you are dealing 

with proprietary software. The legal ownership of the software by a firm provides a clear and 

centralized accountability for the firm behind the software. In theory, you can expect the software 

vendor to rectify the problem in a reasonable time at no or little cost. Should the software vendor 

fail to make the best effort in a reasonable time frame to support the software, you have the 

option to take legal action against the vendor. Referring to accountability, one interviewee has 

pointed out: 

"Take into consideration our Spam prevention. We'd checked out some Open 
Source solutions but elected to go with a commercial vendor. This isn't 
necessarily because the other solutions, including home-grown and Open Source 



didn't suit our needs. The constant pressure is to move in the direction of 
commercial software - apparently under the guise that if they don't deliver we can 
hold them accountable/responsible - but the latter part has yet to occur that I'm 
familiar with." 

When you are dealing with OSS, the answers to the above questions are a lot more 

ambiguous. The absence of legal ownership of OSS leads to a lack of accountability, or at best to 

a decentralized accountability without clear distribution. No single entity is completely 

responsible for the software: some of the responsibility is shifted to the system administrators and 

IT managers and the rest lies with the open source community, which cannot be held liable, 

coerced, or even expected to support the software. They will only do so, if they perceive it as 

important. If the issue is seen as important and if there are enough people affected by the 

problem, the motivation to fix the problem is higher, but there is no intrinsic guarantee. 

Consider for example the following scenario: a security bug is found in a particular 

proprietary software and a similar bug is found in a competing Open Source Software, for 

example a web server. The administrator of the proprietary software is not expected to do much 

until the software vendor officially releases a patch. Once the patch is released, all that needs to 

be done is to use GUI to go through the installation step by step. Whether the patch is quality 

assured is up to the software vendor. Furthermore, in case the installation fails there is one 

authoritative source to go to or to blame it on. However, the administrator of the OSS faces far 

more responsibility. First, given that (s)he has access to the source code, (s)he might be expected 

by colleagues or management to fix the bug, a capability that the average system administrator 

lacks. Second, it is likely that some independent open source programmers release a bug fix 

before the "Core Project Developers" formally approve one of them or release their own bug fix. 

The decision to apply an unapproved patch or to wait for an official patch lies on the shoulders of 

the technical expert. Third, regardless of which one he chooses, no outside legal entity can be 

held liable, either for the bug or for a faulty patch. Fourth, if the installation, which usually 

requires sufficient technical competence, fails, the system administrator is at the mercy of the 



open source community, however helpful. Referring to the cooperativeness of the OSS 

communities, one of our interviewees said: 

"A good example is SNORT: it is a open source product that's been out there [for 
which] there is a lot of support [. . .] I used a source called Internet Security Gum 
[. . .] I have some issues, I email the group and, generally, in 4-6 hours I have an 
email back." 

4.2.2.2 Inability to Influence Direction of Projects 

The lack of ownership gives rise to another problem. Governments and large corporations 

often need specific features and functionality. When dealing with commercial enterprises, these 

large institutions have considerable financial and contractual leverage that they can use to shape 

the future direction of the software they choose to implement. But, since open source software is 

usually developed and maintained by a community of volunteers who usually have motives other 

than short-term monetary gains, it is hard for large institutions to influence the direction of the 

projects. These organizations see this as a downside of open source software and stay away from 

OSS. One interviewee commented: 

"They perceive they have less influence on open source project as users than they 
might have as customers of a company because they don't have financial 
leverage on the project." 

4.2.2.3 Risk of Abandoned Projects 

The lack of legal ownership by a single entity makes adopting OSS more risky than 

proprietary software. Some of the interviewees mentioned that corporations fear that an open 

source project, regardless of how promising it is, may be abandoned by its leader or core group. 

One interviewee explained: 

"There is an inherent risk of OSS projects regarding their stability; the risk is 
bigger for small OSS projects which can disappear while companies are left with 
unsupported software." 

Another interviewee confirmed the above concern, but in his opinion the risk of project 

abandonment is affected by the size of the community and the length of the history of the project: 



"As a rule, it [abandonment] doesn't happen for high-profile projects. It only 
happens on projects that got started by one person or a small group of people that 
then lose interest and go on to do other things.. . . If the software has been around 
long enough for people to have come to depend on it, there will always be 
someone to keep it alive, perhaps not in active development, but at least just in 
maintenance mode. 

4.2.3 Business Reasons 

More often than not, businesses choose a particular technology for reasons other than its 

technical merits. As we will see in subsequent sections, the business model, the key people in the 

organization, the partnerships with other vendors, and many other non-technical concerns drive 

the corporate decision making around information technology. 

4.2.3.1 Legal Concerns 

As explained in section 4.1.2, most IT executives are seemingly perplexed by the 

legalities of open source software. This lack of understanding leads to a fear of the unknown. And 

this fear is heightened by some of the existing legal battles such as the infamous "SCO vs. IBM" 

lawsuit, which was cited by three of the interviewees. 

Another legal concern arises from the business model and the strategic partnerships that 

some corporations have with other software vendors. A business that builds software in 

collaboration with another proprietary software vendor is less likely to use open source software 

or to contribute to the open source community for two reasons. First, using open source software, 

which competes with the other vendor's software, may jeopardize the relationship with the other 

vendor, because it is as if the firm is giving business to or trusting a competitor. Second, our 

interviewees mentioned that some firms fear that they may be sued by the other vendors in case 

any of the other proprietary software vendor's intellectual property is revealed to the open source 

community. However, as one of the interviewee said, 

"As more and more large companies use it [OSS], I think that people will be 
more comfortable to use it because they perceive less legal risks." 



4.2.3.2 Human Resource Challenges 

Most of the barriers to the adoption of OSS or of any other technology can be explained 

in terms of human resources challenges. As we saw in section 2.6.6, resistance to change is 

manifest at three levels: organizational level, group level, and individual level. 

During the course of our interviews, we realized that young, flat, and entrepreneurial 

companies are more likely to adopt open source software than old and established companies. 

Small and privately held companies are more concerned with efficiency and innovation. These 

small companies tend to empower employees to choose the technology they use. Large and 

publicly traded companies, however, tend to have stronger inertia to any kind of change including 

adopting new technology. This observation was confirmed by one of our interviewees, a Director 

of IT Products in a global software company: 

"When I think of open source I think of a more cutting edge and innovative 
company, whereas the larger the organization, to be honest, the less innovative 
you are [...I You are less flexible, you have these processes, you are 
bureaucratic.. ." 

Additionally, replacing proprietary software with OSS is likely to shift the power in the 

organization from people who have vested interests in using proprietary software to those who 

will benefit from OSS implementation, including potential new comers. We also need to 

recognize that businesses face numerous challenges. As explained in section 4.1.3, except for IT- 

intensive companies and technology companies who wish to commercialize OSS, most other 

organizations have higher priorities than deciding what type of software to use. For example, for 

most organizations the highest priority is financial sustainability, and other issues such as 

choosing technology have far less priority. Furthermore, even when choosing technology is a 

priority, the department of "business development" in most cases prefers a partnership with a 

software giant and oppose "IT or Engineering" department's proposal to choose open source 

software based on its technical merits. One of the interviewees has mentioned that their internal 



policy has always been to make partnerships with large software companies, even if some other 

solutions could be better technically. Regardless of which is a better solution, this difference in 

the orientation of the departments is a source of friction and resistance to change. 

At the group level, when the group is homogenously composed of people with 

insufficient understanding of OSS, groupthink and other faulty decision-making patterns may 

prevent the group from evaluating all options in search of the best solution. Also, implementing 

OSS may require the changing of the team or the hiring of new members. This poses a challenge 

in highly cohesive teams whose team members resist change. While this problem may be seen as 

a technology drag, it is essentially a "Human Resource" issue. 

At the individual level, OSS can be very threatening to some people. It may require 

learning new skills, restructuring, lay offs, etc., which causes most people to feel insecure and 

anxious about their future. This is particularly challenging for individuals who have made their 

careers in proprietary software. As explained in section 4.2.1 . l ,  competence in OSS requires a 

broader skill set. Programmers in proprietary software companies are not used to having their 

code and software architecture audited and scrutinized by numerous and sometimes anonymous 

individuals. They may also lack some social skills such as persuasion and negotiation skills, 

which are needed to effectively work in flat non-hierarchical environments such as the open 

source community, as explained in section 4.2.1.1 and confirmed by a senior OSS developer in 

the same section. 

Furthermore, individuals tend to selectively filter information and "see what they want to 

see", which makes them less capable of expanding their horizons and embracing new ideas. One 

interviewee referred to this tendency he observed at many people: 

"You will find certain individuals who are more biased than others. If there is a 
bias, it tends to be very strong. [. . .] At either level. People who do have a bias, I 
found that to be a very strong bias, one way or the other. Everything must be 
Microsoft or everything must be Open Source." 



At last, there is plain preference to continue doing what is familiar and resist new ways of 

doing things. 

4.2.3.3 Corporate Policy 

Some companies have corporate policies against using OSS, whether explicit or implied. 

From our observations, there are three main reasons for these policies: partnerships with other 

software vendors, regulatory requirements, and conflict of interest. 

First, a company which works closely with other proprietary software vendors may adopt 

a policy against using OSS to minimize the risk of future litigations and avoid jeopardizing its 

partnerships. One of the interviewees acknowledged: 

"[Our company] is a loyal partner of Microsoft and other proprietary software 
vendors; thus, the internal policy does not favour OSS products or products from 
small vendors, even if they could be better technically". 

Second, there are cases where companies are not free to choose technologies based solely 

on technical merits or financial benefits. Companies in certain industries such as biotechnology 

and the pharmaceutical industry need to meet strict regulatory mandates when choosing 

technologies. Therefore they may not implement OSS, simply because it is not approved by 

regulatory bodies. One CIO from a biotechnology company said: 

"We operate in a highly regulated environment (FDA, Health Canada, etc.) The 
limit we face is that OSS does not yet have a high level of acceptability with the 
regulators. It is often more work to validate an open source piece of software 
than it is to validate a comparable traditional closed source software package. 
This validation cost can easily eat up the savings of using OSS." 

Third, for some companies using OSS would create a clear conflict of interest. These 

companies will ban OSS for any number of legal, technical, marketing, or public relations 

reasons. 



4.2.3.4 Financial Justifications 

It is often argued that companies can save money by adopting open source. In our 

findings, some companies have access to cheap proprietary software, and therefore cost savings is 

not a strong proposition. Large corporations and organizations receive large discounts because of 

their purchasing power. In other cases, some technology companies are able to access proprietary 

software for small or no fees through cross-licensing: they offer licences of their software in 

exchange for licenses of software from another vendor. And finally, some companies use pirated 

software. According to World Bank Data on software piracy in 2001, 38 per cent of the 14 

million PCs in Canada and 25 per cent of the 178 million PCs in the U.S. used pirated copies of 

Windows and Office XP (Ghosh, 2003). Whichever method companies employ to acquire 

software, proprietary software costs less than its retail price. 

Another financial barrier to the adoption of OSS is the cost of user training. Corporations 

have already incurred significant costs to train users to use ubiquitous proprietary software. This 

is a sunk cost, and a substantial portion of it cannot be recouped if they switch to open source 

software. Hence, they will tend to resist incurring yet another sunk cost in training employees to 

use the new software. 

4.3 The Prospects of OSS 

We have asked the interviewees about the prospects of the OSS, from the point of view 

of both server-side and desktop-side applications. Server-side applications (operating systems, 

databases, infrastructure applications) will grow in the future -this was the opinion of the 

majority of the interviewees. This opinion is supported by the government-sponsored study 

canFLOSS, where 98 per cent of the respondents believed that OSS would be used more in the 

future, especially for backend applications, networking, and in embedded systems (e-Cology, 

2003, p. 23). While one senior IT developer thought that 



"In the next five years [. . .] it will continue pretty much as it has so far," 

another IT manager acknowledged that: 

"OSS is at a point where it can no longer be ignored. Its popularity will increase 
to the point of competing with current vendors." 

Another IT manager said that he sees a promising future in the data centre area, infrastructure 

servers such as DNS, firewalls, DCHP servers, web servers, and even database servers, but he has 

doubts regarding major developments in the desktop applications area. He predicts that technical 

users will continue to embrace open source desktop applications, and call centres, which only 

require dumb terminals, may also start using OSS. Open source desktop applications will have 

difficulties gaining widespread adoption because of the incumbents' significant advantages. In the 

area of customized and particularized application, OSS will probably never take off because of 

the inherent difficulties that come from the OSS development model: it needs a large community 

of interested developers to come together around a common project, and to attain critical mass for 

a project to become important and viable, which is not the case for very particularized 

applications (such as power plant software, financial modelling software, etc.). 

4.4 Interviewees' Opinions Regarding the Open Source Institute 

The central subject of the interview process was the interviewees' perspective about the 

Open Source Institute initiative at SFU. The main ideas that came across were: 

4.4.1 Increase Awareness Around OSS 

The institute should increase awareness around OSS projects and products, by organizing 

conferences on OSS-related topics and acting like an incubator for promising projects, or by 

making governments more aware of the potential of OSS. One senior IT developer thought that 

this institute: 



". . . should make the Government more aware about OSS. I am sure that there are 
pockets in Government where people are aware of the technology [OSS]. There 
is no policy in the Government around open source. For instance, the 
Government could create policies regarding the acquisition of software for 
government projects." 

4.4.2 Training 

Training was another issue identified by many interviewees. The need for multi-tier 

training was widely expressed and many of the interviewees have mentioned that the institute 

should have a role in assuring it. First level of the multi-tier training is represented by technical 

skills for students, programmers, and IT managers and administrators. One of the interviewees 

commented: 

" I think there is little momentum inside universities about OSS; training is 
lacking, people have to learn OSS by themselves, they can't go and take training, 
[. . .] they have to be very self-driven. [. . .] Such an institute could train people 
who know how to leverage OSS." 

The second level of training mentioned by interviewees is represented by social and management 

skills for managers, focused especially on dealing with decentralized, widespread networks of 

specialists, informally grouped around certain OSS projects. The third level of training addresses 

strategic issues: how to leverage OSS for business benefits (for executives), how to build new 

products and technologies using OSS and proprietary software, how to mitigate and understand 

the legal issues around OSS licensing models. One interviewee acknowledged the need 

"to train the legal and business people to understand how they could build [. . .] 
software based on open source technology. I think we are experts at that. [He is 
referring to his company, which succeeded in building proprietary software 
around OSS] The legal aspects are interesting because it could confer a 
competitive advantage [in building software]." 

4.4.3 Brokering between Businesses and OSS Communities 

The institute could act as an intermediary between the diverse OSS communities and the 

small to medium-sized businesses, by recommending good technical solutions, helping in 

stabilizing the diverse distributions, and creating guidance for the average IT administrator to 



help them in dealing with change. Referring to this intermediary role, one of the interviewees has 

commented: 

"[The Institute] could work with companies [involved in OSS] to establish proxy 
support organizations for OSS. [...I Small companies don't have time and 
resources to track the fast world of OSS products. [Our company] was to be this 
proxy between small companies and fast moving open source world." 

At the same time, some end-users requirements could be centralized and the most frequent of 

them sent to the project communities for continuing development. 

4.4.4 Research 

An interesting idea came from a senior OSS developer, who has more than ten years of 

experience in developing and actively participating in many OSS projects. He explained that, 

even if the source code is free and, at least theoretically, everybody can learn from the way the 

issues were solved, there are numerous issues that will never be documented for the sake of 

increasing the knowledge base. Thus, the developer thinks the institute could play a role in 

documenting some sound solutions embedded in the written code, estimating that there is a 

"potential for research worth a number of PhD theses." 



5 THE DIFUSSION OF OSS AND THE ROLE OF 
GOVERNMENTS 

To replace proprietary software with open source is a huge undertaking for most 

companies. It is simply not possible to fully understand the technical, human resources, strategic, 

legal, and financial impacts of migrating from proprietary systems to open source software. Only 

organizations with substantial resources can afford to perform these studies and even then the 

results will be controversial. In October 2004, AT&T unveiled its plans to compare a few 

operating systems including Linux as future choices for its tens of thousands of desktop 

computers. This study will cover security, reliability, and total cost of ownership and is expected 

to be finished by late 2005 or early 2006 (La Monica, 2004). Furthermore, frameworks and 

studies used by one company may not work for another. For example, a particular security 

solution, which may be adequate for a company, may not be acceptable by a financial institution 

because of what is at stake. 

The actual migration from proprietary systems to OSS is orders of magnitude more 

challenging than feasibility studies. For many years companies have invested in proprietary 

software. They have incurred all kinds of costs, have developed organizational norms and 

cultures, and have formed businesses around proprietary solutions, none of which can be easily 

changed. Therefore we have to recognize that open source software will never be adopted by 

some businesses. 

5.1 The Stance of OSS from the Diffusion of Innovation Standpoint 

In section 2.6.5 we presented some of the factors that influence the adoption speed of a 

new technology. Based on the results of the interviews and research we conducted, we can 



comment about the potential of OSS in the future. The following sections show our current 

understanding. 

5.1.1 Relative advantage 

Most mainstream OSS applications are built around open standards and have a 

modularised architecture. This confers a relative advantage compared to proprietary software, 

which is less modularised and built around proprietary standards. The majority of intewiewees as 

well as government-sponsored studies have asserted that OSS has fewer bugs and security issues. 

Additionally, the same government-funded studies confirm that OSS has lower acquisition costs 

compared to proprietary software. On the negative side, OSS is generally less user-friendly, and, 

except for technically savvy users, others find most OSS hard to use. Overall, the perceived 

relative advantage depends on the application, and for the average user OSS offers no substantial 

advantage. Many IT specialists are waiting to see what the future will bring. 

5.1.2 Compatibility 

IETF, W3C, ANSI, IEEE, and similar standardization organizations aim to increase 

compatibility and interoperability of systems. It is through the efforts of these organizations that 

standards such as TCPIIP protocol, Electronic Data Interchange (EDI), HTML, XML, and POSIX 

have emerged and increased system compatibility for OSS and closed-source software alike. With 

respect to adherence to open standards, the OSS movement favours and strives to implement 

systems based on well-established open standards. Therefore, OSS is usually compatible and 

interoperable with other systems that implement open standards. The problem of incompatibility 

arises when OSS or its user has to deal with another system that uses a proprietary standard. In 

other words, the extent to which closed-source software uses proprietary protocols and the size of 

the installed base of closed-source software influences the advantage that OSS offers in terms of 

compatibility. In backend systems, applications are relatively small in number (compared to 



desktop applications), systems are modularised, and there is a substantial presence of OSS, 

therefore closed-source software vendors are forced to use open standards. Although sometimes 

they modify these standards slightly, they have to make sure that their systems interoperate with 

the critical mass of open source systems. On the desktop side, however, applications are 

numerous and dominated by technology compatible with Microsoft and Apple Macintosh. The 

applications tend to be less modularised and deeply integrated with the underlying operating 

system; therefore, it is harder for open source software to achieve a high level of compatibility 

with existing systems. Although standards such as XML and HTML have certainly increased the 

compatibility for desktop applications, they are still far away compared to backend systems. 

5.1.3 Complexity 

From the users' point of view, many OSS applications have far more difficult GUIs (if 

any) and users perceive them as more complex that current proprietary software. A senior OSS 

developer acknowledged: "OSS is not so well polished, [. . .] it still lacks commercial software 

interface." Furthermore, OSS documentation, help and user manuals are written by programmers 

instead of technical writers, which makes them harder to understand and learn. 

5.1.4 Trialability 

OSS is easy to try and freely available, though technical knowledge is usually required to 

make it work. Most applications run on proprietary as well as open source platforms. But some 

OSS, such as operating systems, either has to run on separate machines or more technical 

knowledge is required to make them co-exist on the same hardware as another operating system, 

which makes them less trialable. 



5.1.5 Observability 

IT professionals have long been aware of OSS, and awareness continues to grow for 

backend systems. However, for the large segment of population that uses desktop applications, 

observability is low, as many interviewees have asserted. 

5.1.6 Prior technology drag 

The installed base of proprietary software is a big challenge for OSS applications. In 

desktop computing, about 90 per cent of the world's computers run on Microsoft 0s. This is a 

huge factor that will negatively influence the speed of adoption. On the server side, OSS becomes 

increasingly more popular because prior installed base is more expensive and OSS has reached 

maturity. The savings of running OSS are larger on the server side. 

5.1.7 Irreversibility of investments 

The risk of investing in OSS is lower than that of investing in proprietary software, for 

two reasons. First, investing in OSS is usually less expensive than investing in proprietary 

software (see section 2.4.2). Second, in the case of open source software, even if the investment is 

stopped, the source code (which is readily available) can often be reused in other applications. 

This versatility is a plus of OSS for technically sawy companies, but not for the average user. 

5.1.8 Sponsorship 

In the last years, a number of large IT companies have massively invested in the 

development of OSS (IBM, Sun, HP, etc.) This commitment to the development and promotion 

of OSS creates trust and helps the adoption. 



5.1.9 Expectations 

There are relatively high expectations and optimism regarding the future of OSS, 

especially for the server-side applications and operating systems. However, pending patent 

infringement lawsuits cause some specialists to be cautious. 

5.1.10 Summary 

The above factors show mixed signals from the diffusion of OSS perspective. On the 

server side the prospects are better, a fact expressed by many interviewees. There are many 

mature products that are leader in the market and lor have real potential. Factors such as 

expectations, sponsorship, trialability, compatibility, and relative advantage (including price) 

favour server-side OSS applications while others, such as complexity, are mitigated by the fact 

that the users of server side applications are usually IT specialists. For the desktop side 

applications the future is unclear. Prior technological drag is huge, there is a big installed base 

and users perceive OSS applications as more complex. We conclude that there is no apparent 

compelling advantage at this time, and no possibility to predict what will happen in the future. 

5.2 The Role of Governments regarding OSS 

As we acknowledged in section 2.6.1, OSS satisfies the definition of a public good. It is a 

non-rival and non-excludable good. The economic literature has treated the aspects of public 

goods provisions in sufficient depth, so we can extrapolate the theory to the case of OSS. 

As discussed in section 2.6.1, the public goods are undersupplied because too few want to 

produce them. In the case of OSS, widespread groups of programmers develop software, which is 

available to everybody. The free riding problem is manifested in the following way: programmers 

have their motivations in participating in the OSS projects, but they choose what components to 

write and the projects develop somehow organically. There is little incentive to write helps, GUIs, 

or documentation for OSS, as well as to write OSS applications for very narrow, specialized 



domains (Johnson, 2002, p. 639). Thus, OSS as a public good is undersupplied: it has less 

documentation, it is less user friendly, and it lacks some of the functionalities proprietary 

software has, such as the "accessibility options" for impaired users, as one senior IT developer 

mentioned in the interview. Therefore, there may be an opportunity for government intervention, 

as an institution concerned with social welfare, to support the provision of OSS as a public good. 

They should support those OSS applications and components that are not efficiently supplied by 

the market. The problem with governments' intervention is that they cannot substitute the market 

- as people usually misrepresent the quantities of public goods they need (believing that the 

personal cost of public goods is zero), governments tend in many cases to overestimate the 

demand for public goods and therefore oversupply them (Baye, 2002, p. 5 16). Governments have 

difficulties finding the efficient level of supply that makes society better. The aforementioned 

senior IT developer sees a role for the Open Source Institute in making governments more aware 

of OSS and its potential: 

"OSS is a reusable public asset that could be leveraged using taxpayers' money 
to increase public welfare." 

By encouraging OSS and open standards, governments encourage competition and innovation in 

the software industry, with benefits for the entire society (the same senior IT developer said). 

The Government of Canada, the largest user of IT in the country, has an ambitious 

program to increase the efficient use of IT solutions in all Government agencies. The program is 

called "Federated Architecture Program" and is a "government-wide approach to planning, 

designing and implementing the Government's strategic IM/IT (Information management / 

Information technology) infrastructure" (Treasury Board of Canada Secretariat, 2004). The 

program is being phased in through a number of "iterations." OSS is specifically part of this 

strategy, a number of strategic principles from iteration one being directly applicable to OSS: 

1. Reduced integration complexity; 



2. Security, confidentiality, privacy and protection of information; 

3. Proven Standards and technologies; 

4. Total Cost of Ownership (Treasury Board of Canada Secretariat, 2004). 

This is good evidence that the Government of Canada considers OSS technologes an 

alternative worth considering. However, the Government of Canada neither prevents nor 

encourages the use of OSS (e-Cology, 2003, p. 5). The Open Source Institute should have an 

important role in promoting OSS at the government level, both provincially and federally. 



6 FINDINGS AND RECOMMENDATIONS 

This chapter reports the findings of our research and based on the findings we make 

recommendations for the SFU Open Source Institute (SFU-OSI). 

6.1 Findings 

In this section we synthesize what we found to be IT industry's needs, gaps between what 

is currently available on the market and what specialists perceive is needed, as well as issues that 

came across the research we conducted. Our recommendations that will come in section 6.2 are 

based on the following findings. 

6.1.1 Insufficient Technical Support for OSS 

Insufficient technical support for OSS was a leitmotiv during our research. Almost all 

interviewees mentioned that inadequate support is an issue, a risk, or a barrier to adoption of 

OSS. This is because of many issues such as the fact that OSS is less user-friendly, so the need 

for support is higher, the community of developers tends not to develop features they are not 

interested in (such as help menus, documentation, etc.), there is confusion among IT managers 

regarding various distributions of the same product (which one best fits their needs and has the 

required level of support?). Other studies sponsored by Governments (canFLOSS in Canada and 

FLOSS in European Union) have confirmed our finding. 

6.1.2 Insufficient Awareness 

Many of the interviewees said that the level of awareness within the IT community is 

good. Even if people hadn't actually used OSS applications, they were aware of OSS and the 

controversy surrounding it. However, even if they have heard about OSS, a good part of the IT 



community does not see the benefits of running OSS applications (see section 2.4). This is not to 

say that they should abandon proprietary software they are currently using, but a balanced, hybrid 

approach could improve their performance. There are software companies that have successfully 

built hybrid business models. For the non-specialist user, who is generally using desktop 

applications, things are different. The awareness is very low, because they are currently using 

mature and market dominant proprietary software. Most interviewees did not see significant 

growth in desktop-side OSS applications in the near future. 

6.1.3 Chasm between Proponents of OSS and Closed Source Software 

During the research process we found that there is a chasm between proponents of OSS 

and those who prefer closed source software. This is not something we had not anticipated. We 

interviewed a group of IT specialists from the Greater Vancouver area, about half of them being 

proponents of OSS, while the other half non-users or detractors. What surprised us were the 

intransigent partisan positions, either for or against OSS that these interviewees held or had 

encountered in their organizations. These attitudes could be explained by political, inertial, 

business factors. 

6.1.4 Skills Gap 

Many of the interviewees perceived a need for supplementary training in dealing with 

OSS. In the last years, a number of large companies started to provide training for mainstream 

OSS applications. However, this is not sufficient, for two reasons: first, because the developing 

communities of most viable OSS applications do not provide training, and second, because there 

are still very few third-party providers of OSS training. In this respect, OSS differs greatly from 

proprietary software, where third parties provide much of the training. As a result, more academic 

technical training in this area is necessary, as some specialists pointed out. 



Another area of training identified as necessary for creating good developers is social 

skills: how to behave in widespread communities of peer developers where there is no manager to 

tell programmers what to do and every solution has to be accepted and recognized by peer 

developers; how to observe these OSS communities and interact with them to obtain information 

and support for one's own OSS applications. Another skills gap is around business models. We 

presented in section 2.6.3 the current competitive strategies in the industry. Many interviewees 

showed that they need more knowledge on how to build products around OSS, how to 

commercialise them, and how to deal with competition and legal issues. There is uncertainty and 

many people are afraid of legal consequences (such as patent infringements, lawsuits, etc.). 

6.1.5 Little Government Involvement 

In our research we found that the Government of Canada does not have a clear policy 

around OSS. However, a strategic program that started in 2000 and is currently underway, the 

"Federated Architecture Program," tries to develop a balanced policy regarding acquisition of 

software, both proprietary and OSS. The program is still in the initial stages and promises to 

create a necessary policy regarding the use of OSS for public institutions in a period of 3-5 years. 

Some IT specialists complained about this lack of policy and asserted that federal 

involvement in OSS and more generally, in open standards, could increase competition in the IT 

industry with benefits to consumers and social welfare in general. Governments, as major 

consumers of IT products, are better off if they reduce their dependence on certain expensive 

vendors, while increasing the standardisation of their infrastructure. 

6.1.6 OSS Is Perceived as Not User Friendly 

During our research we confirmed what other studies had ascertained about the perceived 

lower user friendliness of OSS. This is a major barrier to adoption. We would like to emphasize 



this finding because more involvement should exist in creating user-friendlier features, and the 

proposed institute could definitely play a role in this area. 

6.1.7 Undocumented Innovation 

Even if by freely distributing open source code, at least theoretically, a certain level of 

transparency is assured, there are many innovations embedded in mature OSS that are not 

documented and others cannot benefit from them. Students and young programmers could benefit 

from the exposure to these technical solutions used to solve certain problems during years of 

development of OSS. Researching those somewhat hidden innovations and documenting, creating 

a repository of them, would definitely help teaching technical skills. 

6.2 Recommendations 

6.2.1 Brokering Support for OSS 

As explained in section 4.2.1.2, lack of multi-tier support is one of the major barriers to 

the adoption of OSS. There are a number of initiatives that the SFU-OSI can undertake to help 

create multi-tier support for OSS. For example, small companies often do not have the time, 

money, and expertise to perform market research to find companies that can provide support for 

their IT needs. Similarly, small OSS support companies have difficulties in generating leads and 

closing support contracts with user companies. To assist both groups, the SFU-OSI can create a 

portal-like system to match the need for OSS support with the best local providers. This would 

help small OSS support companies and will make OSS a more viable option for more companies. 

As mentioned in section 4.2.2.2, some companies do not adopt OSS because they cannot 

influence the direction of the projects. This inability stems from the fact that they don't have the 

financial and contractual means that they usually use to influence companies. There is nothing 

that the SFU-OSI can do to create these financial and contractual means. The nature of open 

source software, as explained in section 4.2.2, does not lend itself to these traditional influence 



instruments. But, instead, the institute can act as an intermediary between local businesses and the 

open source community. The portal-like system can collect requirements from various businesses, 

prioritise them, and communicate them to the OSS communities. 

6.2.2 Raising the Level of Awareness of OSS 

Most OSS does not have the financial backing of large profitable enterprises to actively 

market them. However, it is crucial for them to be accepted, tried, and trusted by users. The SFU- 

OSI will never have the multi-billion dollar advertising and training budgets of large 

corporations, and such investments do no fit within SFU's mission as a public university - 

however, that should not prevent the University from raising the awareness and knowledge of 

OSS. The SFU-OSI can sponsor conferences, seminars, users groups, and networking events to 

bring users and non-users of OSS together to share their experience. This would encourage trial 

and word of mouth, which is the next best option in the absence of active marketing. 

A solid step towards spurring new jobs is to allow young entrepreneurs to turn their ideas 

into commercial entities. As explained in section 4.1.1, open source software can be used by new 

ventures to build viable solutions with less effort than building everything from scratch. The 

SFU-OSI can create an "Incubator"-like initiative, which will allow new businesses to emerge, 

based on OSS. While the SFU-OSI may not have the financial resources to fund new ventures, all 

that is needed to start the dialogue and the flow of ideas among the above groups are resources 

such as computer labs to test demo software and rooms for brainstorming. 

6.2.3 Closing the Chasm 

The SFU-OSI cannot reconcile the disagreement between OSS advocates and proponents 

of proprietary software in the short term. Some of this disagreement is due to conflict of interest 

and there is not much that can be done about it. However, part of the disagreement is largely due 



to misunderstanding. Hosting various events as explained in section 6.2.2 will start a dialogue 

between the two camps and hopefully reduce the misunderstanding over time. 

6.2.4 Reducing Skills Gap 

As explained in section 4.2.1.1, effectively implementing, contributing, and leveraging 

OSS requires deeper knowledge and a broader skill set. The SFU-OSI can work with the School 

of Computing Science and the Faculty of Business Administration to provide a wide rage of 

workshops for students, IT professionals, and entrepreneurs. These workshops should cover areas 

shown in Table 3: 

Table 3 - Proposed Training 

Training 

Social Skills and 
Open Source Culture 

Management Skills 

Legal Knowledge 

Entrepreneurial 
Knowledge 

Audience 

Technology Enthusiasts 

Programmers and 
Project Managers 

Senior programmers, IT 
managers, Project 
managers, and MIS 
Students 
- -- - 

IT managers, CEOs, 
CTOs, CFOs, and CIOs 

Young entrepreneurs 

Goal 

Enable them to make sense of OSS and to 
contribute to it. 
- - 

To enable them to effectively work in the 
open source community 

To enable them to strategically evaluate Open 
Source and Proprietary solutions, lead teams, 
and implement solutions 

To enable them to make more educated 
decisions regarding the use of OSS 

To enable them to successfully commercialize 
any kind of technology including OSS. 

6.2.5 Working with Governments 

The federal government has acknowledged that OSS provides significant opportunities 

for governments. It has taken several OSS-related initiatives, including one to create a level 

playing field for OSS (Chief Information Officer Branch, 2004). It is equally important for the 

OSS community to understand the role and the needs of the governments. The SFU-OSI can 

actively work with the government to conduct research on its behalf on the usage of OSS; this 



will benefit both the government and the OSS businesses. The SFU-OSI can also actively solicit 

the opinion of decision makers and regulators within the government and share the results with 

the OSS community in order to make sure OSS continues to meet governments' needs. 

6.2.6 Making OSS User-Friendly 

One of the highly cited reasons for not adopting OSS is that it tends to be less user- 

friendly than proprietary software. This is because, historically, only programmers have been 

involved in open source projects and they were not interested in features other than those that 

solved their immediate needs. Proprietary software companies hire other experts, such as graphic 

designers, technical writers, and behavioural scientists to make software user-friendly. We 

believe that the SFU-OSI can undertake several similar initiatives to make OSS user-friendlier. 

First, the Institute can develop guidelines, standards, and templates for making user interfaces and 

writing how-to documents. This would enable independent contributors to follow guidelines and 

create a consistent look and feel for open source applications and documents. Second, the SFU- 

OSI can start an initiative similar to the " ~ ~ e n ~ a w ' ~ "  initiative by Harvard Law School to attract 

some of these non-programmer experts to brainstorm and contribute to making open source 

software more user-friendly. For example, the SFU-OSI can create a portal similar to 

wikipedial', but dedicated to user-friendly documentation of open source software. This would 

allow programmers as well as non-programmer experts to document various OSS in a peer- 

reviewed environment with a consistent look and feel. 

6.2.7 Documenting Innovation 

The SFU-OSI, in collaboration with faculties of computing science, business 

administration, and social sciences, can research open source software in a few different ways. 

10 Berkrnan Center for Internet and Society, 2004. "OpenLaw" is an open forum for crafting legal 
arguments available to all Internet users, lawyers and non-lawyers. 
'I Wikipedia, 2004. Wikipedia is an Internet free encyclopedia. 



For example, it is believed that substantial amounts of technical knowledge and innovation are 

embedded in many mature open source applications. By mining these projects for knowledge, the 

SFU-OSI can document and perhaps reuse innovations that otherwise may be forgotten. This can 

lead to new businesses and improved products. 

6.2.8 Other Possible Roles for the Open Source Institute 

The SFU-OSI can also study some of the managerial issues of open source software 

development and create new knowledge for successful execution of open source projects. On a 

purely social level, the SFU-OSI can study the open source movement, including software 

development, reputation systems, power and influence mechanisms, etc., to help prepare new 

generations of developers that will be better equipped to interact with both the open source and 

the proprietary software communities. 



APPENDIX- INTERVIEW QUESTIONS 

1. How would you describe your organization's level of awareness of OSS? 

2. Do you think there are enough Open Source Software developers and supporters 

(in your company and in the market) to make OSS a viable alternative to closed 

source? 

3. Are there any viable OSS applications for your industry? 

4. How do you perceive the risks of running OSS in your company? 

a) How do you compare them with the risks of running proprietary 

software? 

5. What are the barriers to the adoption of OSS in your organization? 

6. How do you see the prospects of OSS? 

7. Have you ever made a case for or against the use of OSS? 

8. What can THE SFU Open Source Institute do to promote the use of Open Source 

in the local business community? 
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