
EXTENDING AND REFINING

AN ABSTRACT OPERATIONAL SEMANTICS OF

THE WEB SERVICES ARCHITECTURE FOR

THE BUSINESS PROCESS EXECUTION LANGUAGE

Roozbeh Farahbod

B.Sc., Sharif University of Technology, 2001

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F T H E REQUIREMENTS F O R THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Roozbeh Farahbod 2004

SIMON FRASER UNIVERSITY

July 2004

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Name:

Degree:

Title of thesis:

APPROVAL

Roozbeh Farahbod

Master of Science

Extending and Refining an Abstract Operational Semantics

of the Web Services Architecture for the Business Process

Execution Language

Examining Committee: Dr. Anoop Sarkar

Chair

Date Approved:

- -

Dr. Uwe Glasser, Senior Supervisor

Dr. David Mitchell, Supervisor

Dr. Eugenia Ternovska, SFU Examiner

Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has

granted to Simon Fraser University the right to lend this thesis, project or

extended essay to users of the Simon Fraser University Library, and to

make partial or single copies only for such users or in response to a

request from the library of any other university, or other educational

institution, on its own behalf or for one of its users.

The author has further agreed that permission for multiple copying of this

work for scholarly purposes may be granted by either the author or the

Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain

shall not be allowed without the author's written permission.

The original Partial Copyright Licence attesting to these terms, and signed

by this author, may be found in the original bound copy of this work,

retained in the Simon Fraser University Archive.

Bennett Library
Simon Fraser University

Burnaby, BC, Canada

Abstract

The Business Process Execution Language for Web Services (BPEL) is a forthcoming in-

dustrial standard for automated business processes, proposed by the OASIS' Web Services

BPEL Technical Committee. BPEL is a service orchestration language which extends the

underlying Web services interaction model and enables Web services to support long running

business transactions.

We formally define an abstract operational semantics for BPEL based on the abstract

state machine (ASM) paradigm. Specifically, we model the dynamic properties of the key

language constructs through the construction of a BPEL Abstract Machine in terms of

partially ordered runs of distributed real-time ASMs. The goal of our work is to provide a

well defined semantic foundation for establishing the key language attributes by eliminating

deficiencies hidden in the informal language definition.

This work combines two well-defined ASM refinement techniques to complement our

previous efforts on the core model of the BPEL Abstract Machine. First, we elaborate the

core model with regard to structural and behavioural aspects to make it more robust and

flexible for further refinements. Specifically, we formalize the process execution model of

BPEL and its decomposition into execution lifecycles of BPEL activities. We also introduce

an agent interaction model to facilitate the interaction between different Distributed Ab-

stract State Machine (DASM) agents of the BPEL Abstract Machine. We then extend the

core model through two consecutive refinement steps to include data handling and one of the

most controversial issues in BPEL, fault and compensation handling. The resulting abstract

machine model provides a comprehensive formalization of the BPEL dynamic semantics and

the underlying Web services architecture.

'Organization for the Advancement of Structured Information Standards

...
111

To my dear grandma Sareh,

for her utter love and her inspiring vision.

To Ozra and Nemat,

for their unconditional love and support.

"A fundamental new rule for business is that the Internet changes everything."

- BILL GATES

Acknowledgements

I am mostly grateful to my senior supervisor Dr. Uwe Glasser for his enthusiasm, friendship,

and generous support and supervision throughout this work.

I would like to thank Mona, my beloved partner in life and a wonderful colleague, for her

invaluable support and presence in every step of the way. I am also grateful specially to my

parents and to my parents in law for their true love and continuous support and motivation.

I would also like to thank Dr. Eugenia Ternovska and Dr. David Mitchell for their

valuable comments and suggestions for improvements of this thesis.

I would like to acknowledge the people in the School of Computing Science, the admin-

istrative and the technical support staff, and the Network Support Group at the Centre for

Systems Science who together made this school a wonderful environment for research and

graduate studies.

Contents

Approval

Abstract

Dedication

ii

iii

iv

Quotation v

Acknowledgements vi

Contents vii

List of Tables xi

List of Figures xii

List of Specs xiii

Abbreviations and Acronyms xv

1 Introduction 1

1.1 Motivation . 1

. 1.2 Objectives 3

1.3 Related Work . 4

. 1.4 Significance of the Thesis 5

. 1.5 Thesis Organization 5

1.6 Notational Convention . 6

vii

2 Web Services and Business Processes 7

2.1 Web Services Architecture . 7

2.1.1 Web Services Specifications . 10

2.2 Web Services Composition . 11

2.3 Overview of BPEL . 13

2.3.1 BPEL Activities . 14

2.3.2 Travel Agency: an Application Example 15

2.3.3 Data Handling . 18

2.3.4 Correlation . 18

2.3.5 Long Running Business Transactions 19

3 The Core of the BPEL Abstract Machine 20

3.1 Distributed Abstract State Machines . 20

3.1.1 Concurrency and reactivity . 21

3.1.2 Real time behaviour . 21

3.1.3 Programs and rules . 22

3.1.4 Notational Conventions . 24

3.2 Overall Architecture . 24

3.3 The Formal Model . 27

3.3.1 Inbox Manager . 28

3.3.2 Outbox Manager . 28

3.3.3 Process . 30

3.3.4 Activity Agents . 31

3.4 Open Issues . 34

4 Elaborating the Core 36

4.1 Refinement Notions . 37

4.1.1 The ASM Refinement Method . 37

4.1.2 Refinement Patterns and ASMs . 41

4.1.3 A Two Dimensional Refinement Approach 43

4.2 Revising the Core . 45

. 4.2.1 Process Execution Model 45

4.2.2 Agent Interaction Model . 48

4.2.3 Requirements Lists . 51

viii

4.2.4 Input/Output Descriptors . 54

4.2.5 Outbound Communication . 55

4.3 Extensions to the Core . 58

5 The Web Services Architecture of BPEL 60

5.1 Data Handling Extension . 60

5.1.1 Data Handling in BPEL . 61

5.1.2 Requirements . 62

5.1.3 Initial Definitions . 64 .

5.1.4 Variables in Inbound/Outbound Communication 65

5.1.5 The Assign Activity . 71

5.1.6 The Scope Construct . 72

5.2 Fault and Compensation Extension . 73

5.2.1 Fault and Compensation Handling in BPEL 73

5.2.2 Requirements . 77

5.2.3 Process Execution Model: Fault Handling 77

5.2.4 Throwing Faults . 83

5.2.5 Scope Agent: Refined . 84

5.2.6 Fault Handling . 88

5.2.7 Compensation Behaviour . 90

6 Conclusion 100

6.1 Validation . 102

6.1.1 Termination Due to a Fault . 102

6.1.2 Clarification on Activity Termination 103

6.1.3 Faults and the Compensate Activity 103

6.1.4 Invoking Compensation Handlers . 104

6.1.5 Rethrowing a Fault . 105

A Requirements Lists 106

A . l Receive-RL . 106

A.2 Reply-RL . 108

A.3 Data-RL . 109

A.4 FC-RL . 111

B The Revised Core 122

B. 1 Initial Definitions . 122

B.2 Programs . 133

C Data Handling Extension 147

C. 1 Initial Definitions . 147

C.2 Programs . 149

D Fault and Compensate Extension 152

D. 1 Initial Definitions . 152

D.2 Programs . 157

E Signaling 170

E. l Introduction . 170

F A Draft Proposal for Synchronized Request-Respond 172

Index 182

List of Tables

5.1 Requirement groups of fault and compensation handling in BPEL 78

List of Figures

. 2.1 Web services specifications 9

2.2 An example of a BPEL process: a travel agency 17

. 3.1 The composition of the BPEL service model and the network model 25

3.2 Sharpening informal requirements into executable specifications 26

3.3 High-level structure of the BPEL Abstract Machine 27

3.4 Control structure defined on DASM activity agents 32

4.1 The ASM Refinement Scheme . 39

4.2 A two-dimensional refinement approach .
. 4.3 Behavioural decomposition using incremental extensions

4.4 The process execution tree .
4.5 Execution lifecycle of kernel agents: core .

5.1 A compensate activity invokes the compensation activity of an enclosed scope

. 5.2 A compensation module cancels flight and room reservations

. 5.3 Activity execution lifecycle: extended by fault handling

5.4 Compensation handlers are invoked in their reverse order of completion . . .

xii

List of Specs

3.1 The original inbox manager program . 29

3.2 The original process program of the core . 30

3.3 Behavioural specification of the receive activity 32

3.4 The original program of flow agents . 34

4.1 The original Sequenceprogram of the core . 51

4.2 The revised version of the SequenceProgram of the core 52

. 4.3 Outbound communication behaviour in the original core model 56

. 4.4 Revised Outbound Communication Behaviour 57

5.1 Behaviour of the receive activity . 66

5.2 Inbound communication behaviour: Revised 67

5.3 Extending inbound communication behaviour with data handling 68

5.4 DeliverMessage in the core . 69

5.5 Extending outbound communication behaviour with data handling 70

5.6 The behavioural definition of the assign activity 71

5.7 Behavioural specification of the scope activity in data handling extension . . 72

5.8 Sequence program: extended by fault and compensation behaviour 83

5.9 Extended specification of the scope activity in fault and compensation handling 88

5.10 Program of fault handler agents . 91

5.11 Program of compensate agents . 94

5.12 The ChooseNextCM rule is performed by compensate agents 95

5.13 The behaviour of compensate agents in the Running mode 96

5.14 The program of compensation handler agents 99

F.l Format of a synchreceive activity . 173

F.2 An example of using the synchreceive activity 174

...
Xlll

F.3 The sequence activity equivalent to the synchreceive example 175

xiv

Abbreviations and Acronyms

ASM

BPEL

BPEL4WS

BPML

DAML

DARPA

DASM

DRL

FCRL

HTTP

HTTPS

IDL

IT

ITU-T

LRM

SDL

SMTP

SOAP

OASIS

TC

UDDI

URL

Abstract State Machine

Business Process Execution Language for Web Services

Business Process Execution Language for Web Services

Business Process Modelling Language

DARPA Agent Markup Language

Defense Advanced Research Projects Agency

Distributed Abstract State Machine

Data handling Requirements List

Fault and Compensation handling Requirements List

Hyper Text Transfer Protocol

Hyper Text Transfer Protocol Secure sockets (or Secure HTTP)

Interface Definition Language

Information Technology

International Telecommunication Union -

Telecommunication Standardization Sector

Language Reference Manual

Specification and Description Language

Simple Mail Transfer Protocol

Simple Object Access Protocol

Organization for the Advancement of Structured Information Standards

Technical Commit tee

Universal Description Discovery Interface

Uniform Resource Locater (world wide web address)

VHDL

W3C

WSBPEL

WSCI

WSFL

WSDL

XML

XSD

VHSIC (Very High Speed Integrated Circuit) Hardware Description

Language

World Wide Web Consortium

Web Services Business Process Execution Language

Web Service Choreography Interface

Web Services Flow Language

Web Services Description Language

extensible Markup Language

XML Schema Definition

xvi

Chapter 1

Introduction

This thesis presents an abstract operational semantics for the Business Process Execution

Language for Web Services (BPEL4WS), also called BPEL [4], based on the abstract state

machine (ASM) paradigm [24]. We formally define a BPEL Abstract Machine in the form

of a distributed real-time ASM (DASM) by modelling the dynamic properties of the key

language constructs in terms of partially ordered machine runs.

BPEL is an XML based specification language for automated business processes. It pro-

vides expressive means for the process interface descriptions required for business protocols

and executable process models. Version 1.1 of the BPEL language definition [4], henceforth

called the LRM (language reference manual), is a forthcoming e-business standard proposed

by OASIS1. As such, the language builds on other existing standards for the Internet and

World Wide Web and, in particular, is defined on top of the service interaction model of

W3C's Web Services Description Language, or WSDL [51]. A BPEL business process or-

chestrates the interaction between a collection of Web services exchanging messages over a

communication network.

1.1 Motivation

IT organizations need the agility to respond to market changes, customer needs, and strate-

gic requirements. In order to gain this agility, they need to streamline the information

flow between different IT entities that perform the underlying business operations toward

'See the OASIS Web Services Business Process Execution Language Technical Committee (WSBPEL
TC) web page at http://www.oasis-open.org.

CHAPTER 1. INTRODUCTION 2

obtaining an automated business process. This includes integrating both the organization's

internal entities and those of its partners. Until recently, the price of integrating the IT en-

tities of business partners with an organization's own entities has been very high. This was

mainly due to the diversity of organization's proprietary interfaces and data structures [36].

Web services technology changed this situation by providing a platform-independent in-

terface for application integration within an enterprise and between different enterprises.

While Web services standards (like SOAP and W S D L ~) facilitates simple integrations, busi-

ness process specifications are required to specify various critical information of business

processes, such as workflow, security requirements, and transaction management [36]. BPEL

is proposed in this area to provide a language for formal specification of business processes

and business interaction protocols [4].

To support an efficient integration of critical business processes, it is important to have

standard business process specifications. To define such a standard for a business process lan-

guage like BPEL, we need a precise specification of the language. While the LRM provides

a comprehensive specification of this language, due to its natural language description, it is

not void of ambiguities and inconsistencies. Our formal semantics is meant to complement

the informal language description of the LRM by sharpening 'loosely defined' requirements

into precise specifications. In this role, it serves as a robust mathematical framework for

establishing the key attributes of BPEL in a well defined way; that is, by eliminating defi-

ciencies - such as ambiguities, loose ends, and inconsistencies - that often remain hidden in

the informal language definition (Issue #42, OASIS WSBPEL TC [35]):

There is a need for formalism. It will allow us to not only reason about the cur-

rent specification and related issues, but also uncover issues that would otherwise

go unnoticed. Empirical deduction is not suf ic ient .

The abstract state machine (ASM) paradigm has been extensively used for formal spec-

ification of programming languages (e.g., Java [42], Prolog [6, 71) and system modelling

languages (e.g., SDL [39, 16, 221, VHDL [8, 91, SystemC [41]). The ASM formalism sup-

ports the integration of high-level modelling and analysis in the development cycle [ll] which

enables it to serve as a modelling basis in industrial standardization (e.g., ITU-T SDL-2000)

[28]. Our work on BPEL builds on extensive experience from semantic modelling of various

other industrial standards, including the IEEE language VHDL [9] and the ITU-T language

'See Section 2.1 for more details.

CHAPTER 1. INTRODUCTION 3

SDL [22]. The resulting SDL formal definition is part of the current ITU-T standard for

SDL [28]. An important observation from this work is that the use of formal software mod-

els for practical purposes such as standardization demands for a gradual formalization of

abstract requirements with a degree of detail and precision as needed [23]. To avoid a gap

between the informal language definition and the formal semantics, the ability to model the

language definition as is, without making any compromises, is often crucial. Practicability

of the formalization approach further demands for flexibility and robustness as required for

dealing with a moving target as standardization is a potentially open-ended activity.

1.2 Objectives

The goal of our work is to build from requirements elicitation and clarification a ground

model ASM for BPEL. Intuitively, a ground model is an accurate yet abstract description

which is [ll, 51,

0 precise at an appropriate level of abstraction,

0 flexible for future changes and modifications,

0 understandable b y both domain experts and system designers,

0 complete in the sense that every semantically relevant feature of the language is

present,

operational for validation through simulation and testing, and

has a precise semantic foundation.

From such a ground model ASM, a hierarchy of intermediate models can be obtained through

stepwise refinement which can eventually lead to an executable implementation of the lan-

guage.

This work combines two well-defined ASM refinement techniques to complement our

previous efforts on the core model of the BPEL Abstract Machine [18, 20, 19, 431. First,

we elaborate the core model with regard to structural and behavioural aspects to make

it more robust and flexible for further refinements. Specifically, we formalize the process

execution model of BPEL and its decomposition into execution lifecycles of BPEL activities.

We also introduce an agent interaction model to facilitate the interaction between different

CHAPTER 1. INTRODUCTION 4

DASM agents of the BPEL Abstract Machine. We then extend the core model through

two consecutive refinement steps to include data handling and one of the most controversial

issues in BPEL, fault and compensation handling. Business processes normally involve long

duration transactions which are based on asynchronous message communication that leads to

a number of local updates at business partners. Handling faults and cancelling transactions

in business processes often involve undoing partial work that is done in collaboration with

different partners. BPEL provides its own method of handling faults and dealing with

compensating activities, which is captured in the BPEL Abstract Machine by the fault and

compensation extension.

Finally, the resulting abstract machine model provides a comprehensive formalization of

the BPEL dynamic semantics and the underlying Web services architecture.

1.3 Related Work

There are various research activities applying formal methods to define, analyze, and verify

the Web services composition languages. Closely related to our work is an approach of

a group at Humboldt University in Berlin. This group is working on formalizations of

BPEL for analysis, graphics and semantics using various modelling techniques. In [17], Dirk

Fahland outlines an ASM model of the dynamic semantics of BPEL which is very similar

to our view; however, their formalization just sketches this ASM model in terms of only

two BPEL activities (reply and sequence). Alternatively, this group also proposed Petri-net

models of Web services to analyze essential properties like usability [30, 321 and to address

the composition problem of Web services [46].

Formal verification of Web services is addressed in [31] and 1291. The approach in [31]

is based on Petri nets, while [29] uses a process algebra approach to derive a structural

operational semantics of BPEL as a formal basis for building a tool to verify properties of

the specification.

Narayanan and McIlraith provide a model-theoric semantics (based on situation calculus)

and a distributed operational semantics (based on Petri nets) for the DAML-S language [2],

a DAML-based Web service ontology language, which facilitates simulation, composition,

testing, and verifying compositions of Web services [34].

Various research have been done to evaluate the capabilities and limitations of different

languages proposed for Web services composition. Notably, van der Aalst et al. presented

CHAPTER 1. INTRODUCTION 5

a pattern-based analysis of BPEL [45], and BPML and WSCI [44] based on a collection of

workflow and communication patterns which allows comparing the capabilities and limita-

tion of these languages.

All these attempts either focus on approaches that are completely different from our

approach, or provide models that are by far not as comprehensive as our model. Many of

them are applying other formal methods pursuing different goals (e.g., pure verification)

[31, 29, 451 or are not specifically focused on BPEL [31, 341. To the best of our knowledge

and based on existing publications, our work is the most comprehensive formal definition of

BPEL semantics.

1.4 Significance of the Thesis

There is substantial industrial interest in the development, standardization, and implemen-

tation of BPEL. Hence, it is important to have a precise and reliable underlying semantic

definition for the language. In this thesis, we present the most comprehensive formal se-

mantics specification of BPEL based on a practical formal method that has a history of

successful applications in industrial standardization [42, 6, 7, 39, 16, 22, 8, 9, 41, 281. We

address a number of inconsistencies, loose ends, and ambiguities in the informal definition

of the language, as examples of how such a formal specification can support validation of

the language definition in a way that effectively reveals weaknesses. Furthermore, this for-

mal specification forms a basis for deriving an abstract executable semantics for BPEL that

facilitates experimental validation through simulation and testing.

1.5 Thesis Organization

The thesis starts by introducing the Web services architecture, and provides an overview of

BPEL in Chapter 2. Our original work on the core model of BPEL is briefly presented in

Chapter 3 followed by a list of open issues. Chapter 4 substantially improves the core model

to build a more robust and flexible foundation for further refinements. Chapter 5 extends

the core model to build a comprehensive model of BPEL through two refinement steps by

presenting the data handling extension and the fault and compensation extension. Chapter

6 concludes the thesis and provides a critical analysis of BPEL by addressing a number of

weak points (loose ends, inconsistencies, etc.) in the LRM.

CHAPTER 1. INTRODUCTION

1.6 Notational Convention

As we frequently refer to parts of the LRM (specially in the requirements lists in chapters

4 and 5), we use the $ sign followed by a section number to refer to a section of the LRM

[4]. For instance, '[$14.2]' refers to section 14.2 of the LRM.

Chapter 2

When he [was] tired of official reports

and memoranda and minutes, he would

plug his foolscap-size Newspad into the

ship's information circuit and scan the

latest reports from Earth. One by one

he would conjure up the world's major

electronic papers. . .
Arthur C. Clarke, 1968

Web Services and Business

Processes

The World Wide Web, or the Web for short, has been serving us for more than a decade since

1993 when it started to become popular. As a human-to-machine interface of a computer-

based network of information, it has provided a platform to share a variety of information

in multimedia formats. Recently, efforts have been made to use the Web as a machine-to-

machine interface through the notion of Web services.

This chapter starts with an overview of the Web services architecture, various specifica-

tions, and standard protocols that are designed and published by major IT vendors (Sec-

tion 2.1). Section 2.2 introduces the notions of orchestration and choreography of Web

services. The rest of this chapter then provides an overview of the Business Process Execu-

tion Language for Web Services (BPEL).

2.1 Web Services Architecture

What is a Web service? In a white paper published by IONA ~echnologies', a world leader

in high performance integration solutions for IT environments, a Web service is defined as

follows [40] :

'IONA Technologies PLC, http://www.iona.com

7

CHAPTER 2. W E B SERVICES AND BUSINESS PROCESSES

Simply put, a Web service is a software construct that exposes business function-

ality over the Internet. I n the context of a Web service, "expose" means:

0 Identifying valuable business processes within the enterprise.

Defining loosely-coupled, service-oriented interfaces to those processes.

Describing those interfaces i n a Web-based, industry-standard format.

For more than a decade, the Web has been providing us with a way to share and distribute

information, and it well served as a human-to-application (machine) interface. Today, with

the development of electronic marketplaces and automated business-to-business transac-

tions, the Web is also used as an application-to-application interface. In this new domain

with large heterogeneous systems, interoperability becomes one of the most critical problems

that software developers and business partners should deal with [13, 211. Interoperability

is generally defined as the ability of a system to use the parts or equipment of another

system2. In the IT environment, interoperability is mostly about the ability of exchanging

information with other systems. Web services, like many other distributed systems, are

built upon the following two fundamental building blocks:

interoperability at the data exchange level, which is provided by means of a simple,

standard, and platform independent data exchange protocol, and

a unified functional representation of applications, which can be achieved by an inter-

face definition language (IDL) .

Curbera et al. emphasize three key aspects in defining Web services: interoperability,'

common representation, and heavy reliance o n standards, where the first two address the

two fundamental building blocks mentioned above. Based on these aspects, they provide

the following definition for a Web service [13]:

A Web service i s a networked application that is able to interact using standard

application-to-application Web protocols over well defined interfaces, and which

i s described using a standard functional description language.

As a distributed computing platform to integrate a heterogeneous mix of platforms

and programming models, it is important for Web services to converge to a small set of

'Merriam-Webster dictionary

CHAPTER 2. W E B SERVICES AND BUSINESS PROCESSES

BPEL4WS WSCI 1

I XML I I SOAP I Addressing]

Figure 2.1: Web services specifications

well defined standards but not to become a common programming model. Considering

the standards, the Web Services Architecture Working Group at the World Wide Web

Consortium3 gives a more specific definition of a Web service for the purpose of their working

group and their proposed architecture 1541:

A W e b service i s a software sys tem designed to support interoperable machine-to-

machine interaction over a network. It has a n interface described in a machine-

processable format (specifically W S D L) . Other sys tems interact with the W e b

service in a m a n n e r prescribed by i t s description using S O A P messages, typically

conveyed using H T T P with a n XML serialization in conjunction wi th other Web-

related standards.

In the following section we explore some of the pervasive standards and specifications

related to the Web services architecture.

CHAPTER 2. W E B SERVICES AND BUSINESS PROCESSES

2.1.1 Web Services Specificat ions

Figure 2.14 presents a number of Web services specifications that have been published by

Microsoft, IBM, and others. The layering structure presented in this figure does not impose

an a priori order on these specifications and it is more for the purpose of functional grouping.

The specifications in the transports group provide the core communication mechanism

to transfer raw data between communication endpoints. HTTP (Hyper Text Transfer Pro-

tocol), HTTPS (Secure HTTP) and SMTP (Simple Mail Transfer Protocol) are the most

popular standards in this group.

Web services need standard methods to encode messages into blocks of bytes so that

they can be transfered using transport specifications. The specifications in the messaging

group provide interoperable mechanisms to convert messages to bytes and vice versa. XML

(extensible Markup Language) [52] and XML Schema Definition (X S D) [48] are used to

abstractly define message structures. SOAP (Simple Object Access Protocol) [50] provides a

standard mechanism to encode XML messages into bytes that can be transfered by transport

protocols.

Web Services Addressing (WS-Addressing) [3] provides an interoperable, transport in-

dependent mechanism to identify sender and receiver of messages. Today, most systems are

using the same addressing mechanism that browsers and HTTP-servers are using over the

HTTP transport. The sender specifies the destination of its message by placing a URL in

the HTTP transport. The receiver finds the address of the sender by the return transport

address. In this method the address information of the sender and receiver are not part of

the message, which can cause communication problems (e.g., this information can be lost

due to a timeout). WS-Addressing separates the address information from the underlying

transport protocol by placing this information in the message without altering the message

information. With this method, addressing information is not limited by the transport

protocol. For example, when using HTTP without WS-Addressing, a response always goes

back to the sender and a different destination cannot be specified. With WS-Addressing,

however, one can specify that a response to a message should be sent to a communication

endpoint different from the sender [3, 211.

3W3C, http://www.w3c.org

4 ~ h e original idea of this figure is taken from [21].

CHAPTER 2. W E B SERVICES AND BUSINESS PROCESSES 11

The specifications mentioned so far support communication of Web services using mes-

sages. Nevertheless, before Web services can communicate using messages, they need to

know what these messages are. A well-defined standard method is required for a Web ser-

vice to document the structure. of messages and describe the message-exchange patterns of

the Web service (i.e., the interface to the Web service). The specifications in the Description

group (Figure 2.1) enable a Web service to document and describe its service capabilities

and its interface to the outside world.

XSD enables Web services to define XML data types which can be used in defining

message structures. Web Services Description Language (WSDL) supports documenting

and describing message structures (using XSD) and basic message interaction patterns of

Web services. WSDL provides the following message interaction patterns [51]:

input-only (receiving a message),

input-output (receiving a message and sending a correlated message),

output-input (sending a message and receiving a correlated message), and

output-only (sending a message).

WSDL supports describing the interface of a service, but how do potential partners find

this information? Currently there are two methods available. A potential user can either

access a Web service and get all the required information about the service using

WS-MetadataExchange, or

use a UDDI (Universal Description Discovery Interface) service.

The UDDI specification defines a meta-data aggregation service that enables organiza-

tions to publish the services they provide and describe the interface to their services for

potential users. Potential users then can query the UDDI service at design time or even at

runtime to find services that fulfil their requirements.

2.2 Web Services Composition

While the Web becomes a widespread platform for automated application-to-application

interactions and integration of business-partner applications, Web services composition be-

comes an important issue. System integration is much more than just a series of stateless

CHAPTER 2. W E B SERVICES AND BUSINESS PROCESSES 12

transactions. While transport standards, messaging standards and service description lan-

guages provide the underlying platform for automated application-to-application (service-

to-service) interactions, composition protocols are required to enable integration of services

within and across organization boundaries [4]. In today's fast growing electronic market,

IT organizations need the agility to adapt to market changes and customer requirements.

While the existing business process languages are not suitable for Web services, these or-

ganizations may define their own proprietary protocols for Web services composition which

conceptually contradicts one of the key aspects of the Web services architecture, namely in-

teroperability. When organizations build their own orchestration protocols and languages,

integration of services from different organizations requires creation of new protocols or

adaptation of organizations to their partners' proprietary protocols [38].

Leading companies in IT have been putting substantial effort into specifying standard

protocols for Web services composition. Sun Microsystems, SAP and others proposed the

Web Services Choreography Interface (WSCI), an XML-based interface description language

that describes the message exchange of a Web service that participates in a collaborative

interaction with other Web services [49]. IBM, Microsoft, BEA and others are proposing

the Business Process Execution Language for Web Services (BPEL4WS), an XML-based

business process language that provides a grammar to coordinate Web services interacting

in a business process flow5 [4].

There are two basically different types of Web services composition: orchestration and

Choreography. Orchestration describes how Web services interact with each other through

a message exchange flow. In orchestration, the overall process control is centred within

one business partner. BPEL4WS is an example of an orchestration language. In contrast,

choreography is more collaborative in nature. While there is no centric control over the

entire process, each business partner in a choreography composition knows its part in the

business interaction and message exchange flow. WSCI is an example of a choreography

language [38, 4, 491.

As this work is focused on BPEL, the rest of this chapter provides an overview of this

language and describes an example of a Web services composition using BPEL.

50ther Web services composition languages are also available which are not addressed here.

2.3 Overview of BPEL

The Business Process Execution Language for Web Services (BPEL) introduces a stateful

interaction model that allows Web services to exchange sequences of messages between

business partners. A BPEL process and its partners are defined as abstract WSDL services

using abstract messages as defined by the WSDL model for message interaction. The major

parts of a BPEL process definition consist of (I) partners of the business process (Web

services that this process interacts with), (2) a set of variables that keep the state of the

process, and (3) an activity defining the logic behind the interactions between the process and

its partners. Activities that can be performed by a business process are categorized into basic

activities, structured activities and scope-related activities. Basic activities perform simple

operations like receive, reply, invoke and others. Structured activities impose an execution

order on a collection of activities and can be nested. Scope-related activities enable defining

logical units of work and delineating the reversible behaviour of each unit.

Business processes in BPEL can be described in two ways: executable business processes

and business protocols. Executable processes model actual behaviour of a participant in a

business interaction. Business protocols, however, do not describe the internal behaviour of

business partners and only specify the visible message exchange behaviour between them.

The process descriptions for business protocols are called abstract processes.

In April 2003, members of OASIS6, including IBM and Microsoft among other leading

companies in the e-business market, formed a Technical Committee in order to continue

work on BPEL version 1.1 with the yocus o n specifying the common concepts for a business

process execution language which form the necessary technical foundation for multiple usage

patterns including both the process interface descriptions required for business protocols and

executable process m o d e k n 7

In the following sections, we provide a brief overview of the BPEL activities and describe

a simple application example. We then introduce the BPEL notions of fault handling

and compensation behaviour which are of fundamental importance for the business process

execution model.

'Organization for the Advancement of Structured Information Standards

7~~~~~~ TC at OASIS, http://www.oasis-open.org

CHAPTER 2. WEB SERVICES AND BUSINESS PROCESSES

2.3.1 BPEL Activities

Basic activities perform simple Web services operations, including receive, reply, invoke, as-

sign, throw, terminate, wait, and empty. Structured activities include sequence, switch, Bow,

pick and while. Scope-Related activities include scope and compensate. A short overview on

each of these activities is presented in the following:

Receive The receive activity has an important role in the lifecycle of a business

process. It provides both a fundamental Web services operation (which

is receiving a message from a partner) and triggers the creation of new

instances a of business process. If the createInstance attribute of a receive

activity is set to 'yes', the receive activity is regarded as a start activity;

i.e., whenever a message arrives for such a receive activity, a new instance

of the business process must be created and the message must be assigned

to the new instance.

Reply A reply activity must be defined in connection with a receive activity

identifying a synchronous request-response interaction between two busi-

ness processes. Thus, a reply activity sends a message to a partner in

response to a request from this partner which was previously received by

the associated receive activity.

Invoke A business process can access services provided by its partners by in-

voking an operation on such a service. An invoke activity can be used

for invoking both synchronous and asynchronous operations of other Web

services.

Wait The wait activity is used to introduce a delay in the business process

execution. A wait activity identifies that a business process has to wait

either for a period of time or until a certain deadline is reached.

Empty An empty activity does nothing. It is usually used in cases when a fault

needs to be caught and suppressed without a reaction.

Assign An assign activity allows updating the state of a business process by

copying data from one variable to another. It also allows performing simple

computations assigning the value of an expression to a variable. The assign

activity is part of the data handling mechanism provided by BPEL (see

Section 2.3.3 for further details).

CHAPTER 2. W E B SERVICES AND BUSINESS PROCESSES

Throw A throw activity is used by a business process to generate an internal

fault explicitly. A fault is identified by a globally unique name. An optional

fault variable can also be defined. This variable contains further information

on the fault and can be used by the fault handler to analyze the fault.

Sequence A sequence activity is a structured activity that enforces a sequential

execution order on a collection of activities.

Switch A switch provides the ability to choose among a collection of activities.

An ordered list of conditional branches (case elements) followed by an op-

tional otherwise branch are defined in a switch activity. The first branch

whose condition holds is chosen and its associated activity is executed. The

otherwise branch is taken only if none of the conditional cases are true.

While A while activity iterates an activity while a certain condition holds.

Flow A flow activity enables concurrent execution of a set of activities. The

concurrent execution is controlled by synchronization dependencies between

the activities. Such dependencies are identified by execution links between

activities.

Pick A pick activity awaits the occurrence of one event from a set of events

and executes the associated activity to that event. If more than one event

occurs then the pick activity will choose the first one that has occurred.

As soon as an event is chosen, the pick activity no longer accepts any of

the other events. Basically, there are two types of events on which pick

activities can wait: onMessage events and onAlarm events. The semantics

of an onMessage event is very similar to a receive activity. An onMessage

event occurs as soon as its corresponding message is received. OnAlarm

events are very similar to timers. They are triggered after a period of time

or when a certain time deadline is reached.

2.3.2 Travel Agency: an Application Example

We provide here a simple example to illustrate the basic structures and some fundamental

concepts of BPEL.

Suppose an online travel agency system (a Web service) that facilitates trip planning.

For the sake of simplicity this travel agency has only three business partners: an airline

CHAPTER 2. W E B SERVICES AND BUSINESS PROCESSES 16

company, a hotel, and a credit card company. The process is simple: a client connects to

the travel agency Web service and provides a suggested trip plan. The travel agency then

books a round-trip flight based on the suggested dates and also reserves a hotel room for

the period of the stay. It then sends a draft itinerary to the client. To purchase the tickets

and finalize the the sale, the client then sends credit card information to the travel agency.

The travel agency charges the credit card and returns a final itinerary back to the client8

From the client point of view there is only one Web service that provides the trip planning

service. This Web service, however, is a composition of a number of Web services: the

airline, the hotel, the credit card company, and the travel agency itself as the orchestrator.

Figure 2.2 illustrates an abstract schema of the business process of this travel agency. The

business process consists of seven basic activities, two of which being executed concurrently

(as indicated by identical order numbers annotating these two activities). For each client

the process execution is as follows:

1. The process starts with receiving a suggested schedule from the client using a receive

activity.

2. The schedule is sent simultaneously to the airline Web service and the hotel Web

service using two invoke activities. The simultaneous invocation is made by means of

a flow activity that surrounds the invoke activities. The parallel execution path in the

figure represents the flow activity.

3. Based on the responses received from the airline and the hotel, a draft itinerary is

returned to the client using a reply activity.

4. Upon receiving a confirmation from the client together with its credit card information,

this information is sent to the credit card company. After the card is successfully

charged, the final itinerary is sent to the client.

Later we will get back to this example to discuss other aspects of BPEL like fault

handling and compensation behaviour.

'A real-life business process for a travel agency Web service is certainly more complicated and it involves
a number of back and forth interactions with the client and its business partners.

CHAPTER 2. W E B SERVICES AND BUSINESS PROCESSES

Travel Agency Business Process

...................................

Client

......
......

-

Hotel

Figure 2.2: An example of a BPEL process: a travel agency

CHAPTER 2. W E B SERVICES AND BUSINESS PROCESSES

2.3.3 Data Handling

One of the main challenges in integrating Web services, and specifically business processes,

is to deal with stateful interactions. Thus, it is necessary for any orchestration language

to provide the required means for dealing with the state of a business process instance.

The concept of data handling in BPEL includes maintaining the state of a business process

instance (using state variables), controlling the behaviour of a business process by extracting

the data from the state (using data expressions), and updating the state of a business process

by assigning new values to the variables (using assignments). Data handling features of

BPEL are discussed in more detail in Section 5.1.1.

2.3.4 Correlation

Business processes normally act according to a history of external interactions. The data

handling features of BPEL facilitate dealing with stateful interactions by providing the abil-

ity to keep track of the internal state of each business process instance. Furthermore, a Web

service consists of a number of business process instances, thus the messages arriving at a

specific port must be delivered to the correct instance according to the internal state of such

business process instance. To ensure global interoperability and avoid implementation de-

pendencies, BPEL introduces a generic mechanism for such a dynamic binding of messages,

called correlation.

The travel agency Web service in our example (Section 2.3.2) interacts with three other

Web services. When a client connects to this Web service, a new process instance is created

to handle the trip planning service for that client. This process instance then invokes the

airline Web service and waits for a response (the invoke activity sends a request and waits

for a response). The airline Web service creates a business process instance of its own to

handle this request. At the same time, there may be a number of other business process

instances in the travel agency Web service (serving other clients), some of them waiting for

a response from the airline Web service. In order to continue the conversation, these two

business process instances (one in the Travel agency Web service and the other in the airline

Web service) need to know each other; i.e., when a response comes from a business process

instance in the airline Web service to the travel agency, it must be delivered to the correct

business process instance within the travel agency Web service. The mechanism supported

by BPEL is to carry business tokens in all the messages belonging to a conversation so that

CHAPTER 2. WEB SERVICES AND BUSINESS PROCESSES 19

the destination of the messages can be recognized by the value of these business tokens.

BPEL allows a business process to define a set of business tokens (correlation tokens). This

set is called a correlation set. Once a correlation set is initiated for a conversation, all the

messages in the conversation must carry the same correlation token values. In this way,

an application-level conversation between business process instances is established. In our

example, the name of the client along with the request time could be used as correlation

tokens in message interactions. The travel agency Web service, upon receiving messages

from its partners, will assign the messages to their corresponding process instances within

the Web service based on the values of the these correlation tokens.

2.3.5 Long Running Business Transactions

Business processes normally involve long running transactions with non-negligible duration

which are based on asynchronous message communication. Such transactions lead to a

number of local updates at business partners. Consequently, when an error occurs, it may

be required to reverse the effects of some or even all of the previous activities. This is

known as compensation. The ability to compensate the effects of previous activities in

case of an exception enables business processes to have so-called Long-Running (Business)

Transactions (LRTs) .
In BPEL, compensation and fault handling is performed using the scope activity. A

scope activity defines a logical unit of work for which a compensation handler or a set of

fault handlers can be defined. A compensation handler defines the compensating behaviour

of a logical unit in case of an error. A fault handler defines the reaction of a logical unit to an

error. The fault handling mechanism and compensation behaviour of BPEL are discussed

in detail in Section 5.2.

Chapter 3

The Core of the BPEL Abstract

Machine

This chapter presents our previous work [18, 20, 19, 431 on modelling the Business Process

Execution Language for Web Services, in which we built the core model of the BPEL

Abstract Machine. Focusing on the key aspects of the core concepts of the language, we

formally define an abstract operational semantics based on the Distributed Abstract State

Machine (DASM) paradigm in [18, 20, 191. A comprehensive presentation of this work along

with the complete formal model of the core is provided in [43]. The core model is extensively

refined and extended in Chapters 4 and 5 to build a comprehensive semantic model that

captures all different aspects of the language.

Section 3.1 provides a brief introduction to DASMs. The overall structure of the core

model is then presented in Section 3.2. A brief overview of the complete formal model is

presented in Section 3.3. Major open issues and possible further developments are then

discussed in Section 3.4.

3.1 Distributed Abstract State Machines

This section briefly recalls the concept of distributed real-time ASM at an intuitive level of

understanding and in a rather informal style. For a rigorous mathematical definition, we

refer to the existing literature on the theory of ASMs [24, 251 and their applications [23, 111.

A DASM M is defined over a given vocabulary V by its program PM and a non-empty

CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHINE 21

set IM of initial states. V consists of some finite collection of function symbols and predicate

symbols, each of a fixed arity. States of M are variants of many-sorted structures that express

predicates in terms of their characteristic functions. Initial states yield valid interpretations

of V.

M has a finite set AGENT of autonomously operating agents. The set of agents changes

dynamically over runs of M as required to model varying computational resources. The

behaviour of an agent a in a given state S of M is defined by its program programs(a).

To introduce a new agent a in state S, a valid program has to be assigned to programs(a).

To terminate a , programs(a) is reset to the distinguished value undef (not representing a

valid program). In any state S reachable from an initial state of M , the set of agents is well

defined as

AGENTS - {x E S : programs(x) # undef).

The statically defined collection of all the programs that agents of M potentially can

execute forms the distributed program PM.

3.1.1 Concurrency and reactivity

Intuitively, agents of M model the concurrent control threads in an execution of PM. They

interact with each other by reading and writing shared locations of global machine states,

where the underlying semantic model regulates such interactions so that potential conflicts

are resolved according to the definition of partially ordered runs [24].

Interactions between M and its operational environment are restricted to actions and

events as observable at well identified interfaces. The environment affects computations of

M through externally controlled or monitored functions. Such functions change their values

dynamically over runs of M , even though they cannot be updated by agents of M .

3.1.2 Real time behaviour

Real time behaviour imposes additional constraints on DASM runs ensuring that the agents

react instantaneously [26]. Timing aspects are modelled based on an abstract notion of

global system time. In a given state S of M , the time (as measured by some global clock)

is given by a monitored unary function nows taking values in a linearly ordered domain

TIME. Time values are represented as positive real numbers. One can assume the values of

now to increase monotonically over runs of M .

CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHINE

3.1.3 Programs and rules

A program is defined through a parallel composition of state transition rules. The canonical

rule consists of a basic update instruction of the form f (tl, t2, ..., t,) := to where f is an

n-ary function symbol and the ti's (0 5 i < n) are terms. Complex rules are inductively

formed by means of rule constructors. Two conventional rule constructors are the block

constructor and the conditional constructor.

The block constructor is a collection of ASM rules R1. . . R,. To fire a block constructor,

all the rules R1 . . . R, are fired simultaneously. This construct has the following form:

The conditional constructor has the form

if e then

R1
else

Rz

where e is a Boolean term and R1 and R2 are ASM rules. If e is evaluated to true then R1

is fired, otherwise R2 is fired.

Non-determinism is often useful to abstract away from describing details of algorithms.

Non-determinism is introduced in ASMs by the choose constructor in the following form:

choose u E U with cp

R(u)

The meaning of this constructor is to fire rule R with an arbitrary u chosen from U satisfying

cp. If there is no such u, nothing is done [24, 111.

When sequential execution is not required, parallelism (simultaneous execution of a

rule) is a useful tool to abstract from sequentiality. The forall constructor in ASM provides

simultaneous execution of a rule R for each u in U that satisfies a given condition cp. This

CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHINE

constructor has the following form:
- -

forall u E U with cp

R(u)

In describing an algorithm, it is often required to dynamically allocate additional re-

sources by introducing new elements. In ASMs, the import constructor, operating on a

potentially infinite reserve set, provides allocation of new elements. The import constructor

of the form

chooses an element u from the reserve set, removes it from the reverse set and fires rule

R. The reverse set of a state cannot directly be updated by an ASM rule but is updated

automatically through execution of an import constructor. The elements of the reserve set

of a state are not allowed to be in the domain or range of any basic function of the state [Ill.

To extend a domain with a new element, we use the following notation:

extend U with u

R(u)

which imports a new element, binds the variable u to the newly imported element, adds u

to the domain U , and fires rule R(u) .

To facilitate creation and termination of a given agent a of domain A, we introduce the

two abbreviations new and stop in the following form:

stop a

The new operation creates a new agent a of domain A and sets program(a). It also adds

agent a to the associated domain of agents. The stop operation removes agent a from the

associated domain of agents and resets program(a) to undef.

CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHINE 24

To allow for partial updates of sets [27], the following operations are used to insert an

element a into or remove a from a given set A.

add a to A

remove a from A

Finally, the reserved function symbol self has a special role: in a program (or rule) it

refers to the agent executing the program (or rule).

3.1.4 Notational Conventions

The ASM specifications presented in this document use the following notational conventions

for improved readability.

Agent program names and ASM rule names start with a capital letter. The individual

words also start with capital letters and there is no separator between individual words

(e.g., ProgramName).

0 The first time a program or a rule is defined, its name appears in boldface (e.g.,

ProgramName).

Function names start with a lowercase letter. The individual words start with capital

letters and the rest of the letters are written in lowercase (e.g., functionName).

ASM keywords are written in lowercase using bold font (e.g., else).

Domains are written in all capital letters and the individual words are separated by

underscore '-' (e.g., DOMAINNAME).

ASM specifications in the text are separated from the enclosing text by two horizontal

lines: a thick line (-) indicating the start of the specification and a thin line

(-) indicating its end.

3.2 Overall Architecture

This section introduces the overall architecture of the core model of the BPEL Abstract

Machine in terms of a distributed real-time ASM. Logically, the BPEL Abstract Machine

CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHINE

Network Abstract
Machine Model

Figure 3.1: The composition of the BPEL service model and the network model

splits into a service abstract machine and a network abstract machine, so that the behaviour

of the communication network is clearly delineated from that of the BPEL processes residing

at the communication endpoints.

We focus on the service abstract machine model which captures the behaviour of ser-

vices residing at communication endpoints while an executable ASM model of the network

abstract machine is defined in [23]. Any interaction between these two models occurs at

well-defined interfaces facilitating the composition of two models into the BPEL Abstract

Machine (see Figure 3.1). Henceforth, we use the term BPEL Abstract Machine to refer to

the service abstract machine.

The core model formalizes the key functional attributes of the BPEL Web services

architecture based on the asynchronous computation model of distributed ASMs [24]. The

primary focus is on dynamic process creation/termination, Web services communication

primitives, message correlation, concurrent control structures, and core BPEL activities

including receive, reply, invoke, wait, empty, terminate, sequence, switch, while, pick and

%ow. This model does not deal with data handling issues, faults or compensation behaviour,

so does not include assign, throw, scope, and compensate.

The BPEL Abstract Machine architecture is organized into three layers of abstraction,

called the abstract model, intermediate model and executable model, as illustrated in Figure

3.2. The abstract model formally sketches the behaviour of the key BPEL constructs. The

intermediate model is the result of the first refinement step and provides a complete formal

model of the key BPEL constructs. Finally, the executable model provides an abstract

executable semantics of BPEL implemented in AsmL [33]. A graphical user interface (GUI)

facilitates experimental validation through simulation and animation of abstract machine

runs. Thus, the BPEL Abstract Machine forms a hierarchically defined ground model DASM

CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHlNE

BPEL Formal Model

I Overview 1
Formal Docurncntation

/ ,

I . ,?

Abstract Model
v h ' 1 ' , , 1 1 1 I 0 "

I , ~ ' , , , , , ,

Intermediate Model 1
Executable Model

Figure 3.2: Sharpening informal requirements into executable specifications

[ll, 51 obtained as the result of stepwise refinements of the abstract model.

Figure 3.3 shows an abstract view of the Web services interaction model underlying the

BPEL Abstract Machine. A BPEL document abstractly defines a Web service consisting

of a collection of business process instances. Each such instance interacts with the external

world (i.e., the communication network) through two interface components, called inbox

manager and outbox manager.

The inbox manager handles all the messages that arrive at the Web service. If a message

matches a request from a process instance waiting for that message, the message is forwarded

to the process instance. The inbox manager is also responsible for the new process instance

creation which is further elaborated in Section 3.3. The outbox manager, on the other hand,

forwards outbound messages from process instances to the network. The inbox manager, the

outbox manager, and the process instances are modeled by three different types of DASM

agents. While the inbox manager agent and the outbox manager agent deal with message

exchange, each process agent models a single process instance. The major role of a process

agent is to execute the main activity of a process; i.e., the activity that specifies the business

logic behind process interactions.

Section 3 .3 provides an overview of the formal model of the core of the BPEL Abstract

Machine.

CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHINE

r----- l I BPEL (

Manager

Web Service

a collection of
business process

instances

Manager -
Figure 3.3: High-level structure of the BPEL Abstract Machine

3.3 The Formal Model

There are three major types of agents defined in the BPEL Abstract Machine, namely: inbox

manager, outbox manager, and process instances. In addition to these agent types, another

type of DASM agent called activity agent is introduced. Activity agents assist process agents

in executing BPEL activities. Each process agent is responsible for executing a single process

instance, and it uses dynamically created activity agents for executing complex (structured)

activities.

AGENT = INBOX-MANAGER U OUTBOXNANAGER U PROCESS

U ACTIVITYAGENT

In the initial DASM state, there are only three DASM agents: the inbox manager, the

outbox manager and a dummy process that facilitates creation of new process instances. In

the following sections, we provide a brief overview on the behaviour of the inbox and outbox

managers, process instances, and activity agents (see [43] for more details).

Modelling the behaviour of a BPEL process requires certain information that is specific

for the given business process to be derived from the underlying BPEL document. We

assume that the relevant information is generated automatically in a pre-processing step

through static analysis of the underlying BPEL document using standard compiler tech-

niques and formalized by a set of statically defined functions as part of the definition of the

initial state of the DASM [43].

CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHINE

3.3.1 Inbox Manager

The inbox manager operates on the inbox space, a possibly empty set of inbound messages.

In each computation step, it attempts to assign a message to a matching process instance.

To wait for an incoming message to arrive, a process instance informs the inbox manager

by adding an input descriptor to a set called, waitingForMessage. An input descriptor con-

tains information on the waiting input operation and the waiting agent. The predicate

match(p, op, m) holds if message m can be assigned to operation op running in the pro-

cess instance p according to the information specified by the input descriptor. The inbox

manager uses this predicate to find an appropriate message that matches a waiting process

instance. If the matching is successful, the message is assigned to the process instance using

the AssignMessage rule which is comprehensively defined in [18, 431'.

The inbox manager creates a new process instance whenever a matching message arrives

for a start activity. Modelling process instance creation is simplified by introducing a nullary

function dummy indicating a dummy process instance. The dummy process instance is not

different from other process instances in its nature. However, there is always one and only

one such process instance waiting on its start activity. By receiving the first matching

message, the dummy process instance becomes a normal running process instance and a

new dummy process instance will be created automatically by the inbox manager.

In [43], the intermediate model introduces an additional responsibility for the inbox

manager which is captured by the PickActivityCleara nce. According to the LRM, whenever

one of the expected messages is received by a pick activity, the business process must not

accept any of the other messages (previously expected by the pick activity). Thus, once

a message is assigned to a pick activity, the inbox manager is responsible for updating

the waiting set such that no further message is assigned to that pick activity. The formal

specification of the behaviour of the inbox manager and PickActivityClearance, as defined in

[43], are recalled in Spec 3.1. The behaviour is, however, revised in Chapter 4 where the

core model is elaborated.

3.3.2 Outbox Manager

The outbox manager operates on the outbox space, a possibly empty set of output descrip-

tors. Each output descriptor represents an outgoing message to be generated and sent to

'A revised version of the AssignMessage is also presented in Appendix B

CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHINE

1 InboxManagerProgram E
if inboxSpace(se1f) # 0 then

choose p E PROCESS, m E inboxSpace(self),
(agent , op) E waitingForMessage(p) with match(p, op, m)

AssignMessage(p, agent , op, m)
PickActivityClearance
// pro(CSI: inst ;tnw CI cat ion
if p = dummyProcess then

new newDummy : PROCESS
dummyProcess := newDummy

PickActivityClearance (p : PROCESS, a : RUNNINGAGENT, op : IN-OPERATION) E
if a E PICKNESSAGEAGENT then

forall (a , op) E waitingForMessage(p) with op # op
remove (a , op) from waitingForMes~age(p)

Spec 3.1: The original inbox manager program

the outside environment (the network). An output descriptor encapsulates the information

on the message and its destination. In each step, the outbox manager chooses a single out-

put descriptor and generates the corresponding message to be sent via the communication

network. The following DASM program presents the behaviour of the outbox manager as

defined in [43].

OutboxManagerProgram =
if outboxSpace(seZf) # 0 then

choose od E outboxSpace(self)

Send(od) // E i f (~ t i ~ c l sent t optxu ion

However, the above mentioned behaviour of the outbox manager was defined considering

the fact that the reply activity (or any other output operation) was regarded as a non-

blocking activity. Although the LRM is not specific about the non-blocking behaviour of

output operations, as our understanding of output operations in BPEL has improved, the

behaviour of the outbox manager has been fully revised. This issue, along with a revised

version of the outbox manager, is discussed in more detail in Chapter 4.

CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHINE

ProcessProgram r
if ~busy(se1f) then

if istartedExecution(se1f) then
startedExecution(se1f) := true
busy(se1f) := true

else
stop self

else
ExecuteActivity (activity(se1f))

Spec 3.2: The original process program of the core

3.3.3 Process

Process agents model the behaviour of business process instances as defined by the under-

lying BPEL document. The major role of a process agent is to execute the main activity

of a process. Once the execution of the activity is completed, the process agent terminates.

The program of process agents is presented in Spec 3.2 [43]:

The startedExecution predicate specifies whether the execution of the main activity is

started or not. When the process execution is started (startedExecution(se1f) = true) , the

process agent becomes busy (by setting the predicate busy to true) and remains busy during

the execution. The ExecuteActivity rule takes care of the activity execution and is thoroughly

defined in the intermediate model2 [43]. The behaviour of each basic activity is modelled

by a single ASM rule. To cope with the complexity of the execution of structured activities,

the behaviour of structured activities are modelled by dynamically created activity agents

which are further described in the next section.

Once the execution of a process is completed, the busy predicate is reset to false either

by the process agent itself or by its child agent which is responsible for executing the main

activity. This leads to the termination of the process agent in the next DASM step.

Here, we present the formal definition of the behaviour of the receive activity as an

example of a BPEL basic activity. The behaviour of the flow activity, as an example of a

structured activity, is then presented in the next section.

2See Appendix B for a revised version of this rule.

CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHINE

The Receive Activity

The receive activity is one of the most important activities in BPEL. It is used both as an

input activity to receive a message from a partner and as an start activity to create new

process instances. In the BPEL Abstract Machine, the creation of new processes is captured

by the inbox manager as discussed in Section 3.3.1. The receive activity then only needs to

inform the inbox manager of the expected message and wait for the message to arrive. The

behaviour of this activity is captured by an ASM rule called ExecuteReceive.

Executing a receive activity in the BPEL Abstract Machine consists of two main tasks:

(I) informing the inbox manger that a message is expected, and (2) waiting for the message

to be received. Thus, ExecuteReceive works in two different modes, namely initialization

mode and waiting mode, distinguished by a predicate receiueMode. In the initialization

mode, the agent that is responsible for executing a receive activity (which can be either the

process agent or one of its subordinate agents) informs the inbox manager that it is waiting

for a message. This is done by adding an input descriptor to the waitingForMessage set of the

root process. An input descriptor specifies the information on the expected message and the

agent that is waiting for that message. In each step, the inbox manager inspects this set and

checks whether any of the desired messages is received, and, if so, assigns it to the matching

process instance. The agent then switches to the waiting mode (receiveMode(se1f) := true)

and waits until the inbox manager assigns a message to it. Once a message is assigned to

the agent, the inbox manager removes the corresponding input descriptor from the waiting

set informing the agent that the assignment is performed.

The formalization of the behaviour of the receive activity is presented in Spec 3.3. The

Synchronization rule addressed here fulfils the synchronization dependency requirements as

specified in the LRM and is further elaborated in [43]. It is also worth pointing out that once

the message is received and the execution of the receive activity is completed, the (busy)

predicate is reset back to false.

3.3.4 Activity Agents

The execution of each structured activity inside a process instance is modelled by a single

DASM agent of the type activity agent which is dynamically created by the process agent.

CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHINE 3 2

ExecuteReceive(activity : RECEIVE) E
let inputDescriptor = (se l f , activity) in

if ~receiveMode(self) then
receiveMode(se1f) := true
/ / I'hv I u11rii11g agent waits l o rcwivc ;t r~lc~s;~,g,v
add inputDescriptor to waitingset

else
if inputDescriptor 4 waitingset then

receiveMode(se1f) := false
busy(se1f) := false
Synchronization(activity)

where
waitingset E waitingF~rMessage(rootProcess(self))

Spec 3.3: Behavioural specification of the receive activity

Process Instance

I

I
Sequence While Pick Switch Flow

I I

Figure 3.4: Control structure defined on DASM activity agents

Each activity agent can dynamically create other activity agents for executing nested struc-

tured activities. Moreover, to deal with concurrent control threads (like in f low and

the responsible activity agent creates a number of auxiliary activity agents. For instance,

to concurrently execute a set of activities, a flow agent assigns each enclosed activity to a

separate f low thread agent [20]. Thus, at any time during the execution of a process instance,

we may have a tree of DASM agents running under control of the corresponding process

agent. Figure 3.4 shows the control structure of DASM activity agents, as presented in [43],

where one can associate one branch from the root to a leaf with each single process instance.

A revision of the execution tree will be presented in Chapter 4.

For maintaining the hierarchical relations between activity agents, we define a function

30ne may argue that pick is not a concurrent control construct, but as discussed in [43], it can naturally
be viewed as such.

CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHINE 3 3

parentAgent for linking a subordinate agent to its parent agent. For each activity agent,

a derived dynamic function rootProcess is inductively defined for indicating the root of the

execution tree. These functions are formally defined as follows:
- - - - ---

R U N N I N G A G E N T = PROCESS U A C T I V I T Y A G E N T

parentAgent : R U N N I N G A G E N T -+ R U N N I N G A G E N T

rootProcess : R U N N I N G A G E N T -+ PROCESS

rootProcess(a) E
if a E PROCESS;

rootProcess(parentAgent(a)) , otherwise.

Flow Activity

The notion of concurrency in BPEL is provided by the flow activity and it is modelled by

DASM agents in the core model of the BPEL Abstract Machine based on the principle of

partially ordered runs [43]. A flow activity concurrently executes a set of activities and is

completed when all the activities in the flow have completed their execution.

As for other structured activities, a flow activity is handled by an activity agent called

a flow agent. A flow agent is responsible for executing a flow activity. To concurrently

execute the activities declared inside the flow activity, the flow agent creates a set of flow

thread agents and assigns each activity to one of these agents. The flow agent keeps track

of its thread agents using a set called JowAgentSet. When created, the flow thread agents

are added to this set. Once the execution of the activity assigned to one of the threads is

completed, the thread removes itself from this set. Thus, whenever the fEowAgentSet becomes

empty, the execution of all concurrent activities is completed, and the flow agent releases its

parent and terminates. Note that the operation of releasing the parent agent is performed

by re-setting the busy predicate of the parent agent to false.

The behaviour of the flow agent is formally defined in Spec 3.4. For a complete list of all

the function definitions, rules and agent programs of the original core of the BPEL Abstract

Machine see [43].

CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHINE

FlowProgram
if -busy(self) then

// C'roi~t ('3 t l ~ (~ i ~ t 3 . j t tt c-ollmrrcnl l j t w ~ . u t (> at.1 ivit it)$ g~o~ipc t l imitlv t hv ifow.
forall activity E jlowActivitySet(se1f)

new fThread : FLOW-THREADAGENT
Initialize(fThread, activity)
add fThread to jlowAgentSet(se1f)

busy(se1f) := true
else

if jlowAgentSet(self) = 0 then
/ / .ill t l n c ~ ~ t l ~ art. tlorrc.. Hex ;\(.I ivit ; i < t ornpl(~tct1.
busy(parentAgent(se1f)) := false
stop self
Synchronization(baseActivity(se1f))

Spec 3.4: The original program of flow agents

3.4 Open Issues

The core of the BPEL Abstract Machine provides a high-level specification of the core

concepts of BPEL, including concurrent control structures, communication primitives, mes-

sage correlation, event handling mechanisms, and dynamic creation of services (process

instances). To build a comprehensive model of BPEL around the core which includes all

the fundamental aspects of the language, there are yet a number of open issues that need

to be considered, such as

1. making the model more flexible for future refinements,

2. resolving ambiguities on outbound communication,

3, capturing data handling and state variables,

4. modelling fault handling, and

5. nod el ling the compensation behaviour of BPEL.

Chapter 4 elaborates the core of the BPEL Abstract Machine with regard to structural

and behavioural aspects to resolve Issues #1 and #2. Resolving the first issue facilitates fu-

ture refinements of the core toward a comprehensive high-level specification of the language.

The second issue addresses the ambiguity of the LRM regarding outbound communication

CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHINE 35

of BPEL. Chapter 5 then extends and refines the core model to capture data handling, fault

handling, and compensation behaviour of BPEL.

If there is to be any clarity at all,

it demands a certain assiduity.
Jason Dewinetz

Chapter 4

Elaborating the Core

Chapter 3 introduced the core model of the BPEL Abstract Machine and addressed some

open issues in that model. This chapter substantially improves the core model with regard

to structural and behavioural aspects, making it more robust and flexible for stepwise re-

finement. This chapter also resolves the open issues addressed in Chapter 3 by introducing:

(1) a well-defined Process Execution Model; (2) a simple and efficient coordination platform

for ASM agents; and (3) the notion of requirements lists which extract the key language

requirements from the LRM to make these requirements accessible and to facilitate finding

inconsistencies and ambiguities in the LRM. The outbound communication behaviour is

also totally revised and a comprehensive specification is provided.

This chapter starts by an overview on commonly used refinement notions in software

engineering and more specifically in Abstract State Machines (Sections 4.1.1 and 4.1.2).

A two dimensional refinement approach to extend the core model of the BPEL Abstract

Machine is then provided in Section 4.1.3. Various improvements on the core are presented

in Section 4.2. Section 4.3 briefly presents the refinement of the core model using what is

called horizontal extensions. The refinement is then discussed in detail in Chapter 5 .

CHAPTER 4. ELABORATING THE CORE

4.1 Refinement Notions

Word~et ' , a lexical database for English language at Princeton University, provides the

following definitions for refinement:

1. a highly developed state of perfection; having a flawless or impeccable quality;

2. the result of improving something; 3. the process of removing impurities; 4. a

subtle difference in meaning or opinion or attitude; 5. the quality of excellence

in thought and manners and taste;

In software engineering, refinement can be defined more precisely as the process of im-

proving an abstract model of a software system to a more concrete model, generally by

reducing nondeterminism or uncertainty, which may eventually lead to a suitable imple-

mentation of the system.

In his well-known book, The B-Book: Assigning Programs to Meanings, Abrial informally

defines refinement as a technique to transform an abstract mathematical model of a system

to another mathematical model which is more concrete in the sense that it provides an

'implementation' of the abstract machine [I]. Woodcock and Davies, in their book on

Using 2: Specification, Refinement, and Proof [53], provide a simple technical definition of

refinement based on total relations: '(If R and S are total relations, then R refines S exactly

when R S." Relation R can reduce the degree of freedom in S by omitting one or more

tuples of the form (x, yi) in S, where x E Dom(S) and each yi is a distinct element of the

set Range(S) .
In this section, we specifically focus on the ASM refinement method and address some

of its frequently used forms.

4.1.1 The ASM Refinement Method

In this section, we recall some fundamental principles of ASM refinement techniques adopted

from [12]. Most refinement notions in software engineering are based on a priori principles,

like the Principle of Substitutivity which is described in [14] as:

P r i n c i p l e of subs t i t u t i v i t y : i t is acceptable to replace one program by another,

provided i t i s impossible for a user of the program to observe that the substitution

has taken place.

CHAPTER 4. ELABORATING THE CORE 38

As an example one can refer to the concept of refinement in the B-method. In an informal

approach to the refinement of generalized substitutions, we have: '(Roughly speaking, a

substitution S (working within the context of a certain abstract machine M) is said to be

refined by a substitution T , if T can be used in place of S without the 'user' of the machine

noticing it. " [I, Section 11.11.

These refinement notions are restricted in various ways by their ground principles. Re-

striction to certain forms of programming is one example. As a consequence of restricting to

sequential programming, refined programs are even structurally equivalent to their abstract

versions; i.e., corresponding operations are occurring in the same order which almost pre-

vents applying other forms of control structures such as parallelism. Restriction to certain

pairs of input/output values or structures is another example, in which the possibility of

refining abstract forms of input/output is ruled out.

The ASM refinement method is not based on any a priori defined refinement principle;

i.e., the notion of refinement can be defined without restricting to a given model of com-

paring program runs in different levels of a system. The freedom of abstraction in ASMs ,
defined as '(the availability of ASMs of arbitrary structures to reflect the underlying notion

of state" [12], provides the necessary means to fine tune the mapping of an abstract ma-

chine to a more concrete one, in such a way that the intended equivalence between runs of

these two machines becomes observable [12, 421. Instead of focusing on a generic notion of

refinement which can be proved to work in every context (and for instance can only effect

the program in a way that remains hidden from the user), the focus is to support a disci-

plined use of refinement which can correctly document and reveal intended design decisions

by adding more details to an abstract description. It can be anything from improving a

program by additional features, restricting a program through some boundary conditions

to prevent undesired behaviour, or making an abstract program executable.

Utilizing the freedom of abstraction frees us from a predefined notion of state, program,

run, equivalence or any particular method to establish correctness of a refinement. In fact,

with ASMs, any feasible accurate method can be used to show that the refined model is

loyal to the original design assumptions and its runs correctly translate the effects of the

runs of the abstract one.

In particular, the ASM refinement method (by being appropriately instantiated) can

capture various more restricted refinement notions in the literature. This means, it can

provide a uniform framework to reflect various refinement notions available in the literature.

CHAPTER 4. ELABORATING THE CORE 3 9

Machine M

Machine M*

Figure 4.1: The ASM Refinement Scheme

Figure 4.1 illustrates the general scheme for an ASM refinement step. To refine an ASM

M to an ASM M * one has the freedom to define the following notions:

refined state

states of interest and the correspondence between them

The states of interest are states of machine M and machine M* that are related

through the refinement process and are of particular interest. State S and its corre-

sponding state S* in Figure 4.1 are two states of interest of machines M and M*.

computation segments

Computation segments of the form 71,. . . ,T, between two sates of interest in M

and corresponding refined segments of the form 01,. . . , a, between the corresponding

states of interest in M * can be defined, where each 7-i and a3 represent a single M-

step and a single M*-step respectively. Figure 4.1 illustrates a computation segment

of machine M and its corresponding computation segment in M*. The resulting

diagrams are called (m, n)-diagrams and the corresponding refinement is called (m, n)-

refinement, where m steps of an abstract machine is refined to n steps of its refined

machine.

locations of interest

A notion of locations of interest (in M-states) and corresponding locations (in M*-

states) can be defined, where locations represent abstract containers of data in states

of M and M*. The pairs of these locations (in M) and their corresponding locations

CHAPTER 4. ELABORATING THE CORE 40

(in M*) are then used to define the notion of equivalence of corresponding states of

interest.

equivalence of data

A notion of equivalence (G) of data in the locations of interest can be defined, which

is then used (along with the notion of locations of interest) to define the notion of

equivalence of corresponding states of interest.

The scheme shows that an ASM refinement can combine a change of signature (defining

states of interest, corresponding states, locations of interest and their corresponding loca-

tions, and equivalence of data in those locations) with a change of control (computation

segments and their corresponding segments), which are kept separated in many notations of

refinement in the literature, like data refinement (e.g., in Z [53]) and operation refinement

(e.g., in B [I]).

Once the notion of states and their equivalence are defined, M * can be considered as a

correct refinement of M if and only if every refined run simulates an abstract run with the

equivalent corresponding states, according to the following definition [12]:

Definition 1. Fix any notions - of equivalence of states and of initial and final states.

An ASM M* is called a correct refinement of an ASM M if and only if for each M*-run

S*o, S*l , . . . there is an M-run So, S1,. . . and sequences io < i l < . . ., jo < jl < . . . such

that io = jo = 0 and Sik E S*jk for each k and either

both runs terminate and their final states are the last pair of equivalent states; or

both runs and both sequences io < il < . . ., jo < jl < . . . are infinite.

Now a complete refinement is defined as:

Definition 2. M * is called a complete refinement of M if and only if M is a correct

refinement of M*.

Note that when M * is a correct refinement of M , there can be an M-run that has no

corresponding M*-run; i.e., M* does not need to have an equivalence run for every run of

M to be a correct refinement of M . On the other hand, when M * is a correct refinement of

M , for every M*-run there is a corresponding M-run, so M is a complete refinement of M.

The pairs of initial and possibly final states are considered to be corresponding states;

so, refinement correctness and completeness imply, for terminating runs, the equivalence of

input/output behaviour of the abstract and the refined machine.

CHAPTER 4. ELABORATING THE CORE

4.1.2 Refinement Patterns and ASMs

This section briefly presents conservative refinement, data refinement, and procedural refine-

ment (also known as operational refinement), three widespread refinement patterns in the

literature that are applied in practical system design and analysis.

Conservative Refinement

Conservative refinement, which is also called conservative extension or horizontal refine-

ment, is a purely incremental refinement method which is suitable for introducing new

behaviour in a modular approach. As an elegant example of applying this method, one can

refer to the various extensions in the refinement of the Java machine in [42]. In order to

define a conservative extension of an 'old' machine, the following steps should be performed:

1. Define the 'new' condition, in which the 'new' machine should be executed and the

'old' machine either has no defined behaviour or should not be executed. For instance,

for adding fault handling to the BPEL Abstract Machine, this condition could be the

execution mode of the machine being in Fault-Handling mode.

2. Define the 'new' machine, which defines the appropriate behaviour in case of the 'new'

condition. In our example, it would be the fault and compensation extension which

takes care of the fault handling behaviour.

3. Guard the behaviour of the 'old' machine using the negation of the 'new' condition, to

prevent its execution when the new condition holds.

Data Refinement

Data refinement is mostly a (1, 1)-refinement, where the effect of the refined operations on

refined data types are the same as the effect of the abstract operations on abstract data

types. Woodcock and Davies in [53] provide a nice definition for refinement of abstract

data types. They define a data type X in a global state G to be a tuple of the form

(X, xi, x f , {xoili E I)), where

0 X is the space of values;

0 xi: G -+ X , is an initialization;

CHAPTER 4. ELABORATING THE CORE

x f: X 4 G, is a finalization;

{xoili E I } is an indexed collection of operations, such that xoi : X 4 X

0 xi and x f are total functions but each xoi may be partial.

A program P : G -+ G is then defined as a composition of operations over data types that

start with an initialization and ends with a finalization. This definition allows programs

to be parameterized by data types. Any two abstract data types .A and 23 that use the

same index set of operations will support the same set of programs. According to this, the

notion of refinement of abstract data types can be defined as follows: if data types .A and

(5' share the same indexing set, then .A is refined by (5' if and only if for each program P(.A),

P((5') c P(A) [5312.

In ASMs, a frequently used form of data refinement which uses the generalization of

'operation' to 'ASM rule' is through instantiation, where the ASM rules remain unchanged

and only the abstract functions and predicates occurring in the rules are specified in more

detail [12]. An example of data refinement in the core of the BPEL Abstract Machine is

the refinement of an abstract function message-is-received in the description of the receive

activity to the following definition [43]:
- - - --

message-is-received (activity : ACTIVITY) r

(s e l f , activity) $ waitingForMessage(rootProcess(se1f))

'Strictly speaking, the condition is ~ (6) ~ (2) in which the 2 is a totalised version of A. See [53] for
more details.

3 ~ e e [15] for definition of an ASM submachine.

Procedural Refinement

In a given machine, replacing a rule (or a submachine3) by another rule (or another machine)

is called procedural refinement or submachine refinement. This form of refinement in most

cases is either a (1, n)-refinement (in compiler verification replacing one line of source code

by a chunk of target code) or an (m, n)-refinement where m is usually less than n (replacing

an abstract machinelrule by a more concrete one).

A distinctive example is the refinement of the Prolog ASM in [lo] in which an abstract

function unify is refined to a submachine which implements a unification procedure. Another

CHAPTER 4. ELABORATING THE CORE 43

Abstract

Intermediate

Executable

Model

Model

Model
-

1 Core Data Fault and
Handling Compensation

Figure 4.2: A two-dimensional refinement approach

example is the refinement of the abstract rule ExecuteActivity in the ProcessProgram of the

abstract model of the core of the BPEL Abstract Machine into a complex rule in the next

level (i.e., the intermediate model) which implements activity execution in BPEL.

Procedural refinement is more general than the principle of substitutivity mentioned

above. A submachine which is refined in this way, can capture new features that are not

included in the behaviour of the abstract machine (though they are related to the behaviour

of the abstract machine).

We combine the refinement methods addressed here for constructing a two dimensional

refinement approach to elaborate the core of the BPEL Abstract Machine and extend it to

capture other aspects of BPEL. Section 4.1.3 introduces this refinement approach. The rest

of this chapter applies this refinement method to elaborate the core and then Chapter 5

extends the core toward a comprehensive formal model of BPEL.

4.1.3 A Two Dimensional Refinement Approach

To deal with the complexity of the BPEL Abstract Machine and the required expansions

to cover data handling and fault and compensation handling behaviour, we introduce a two

dimensional refinement approach:

0 vertical refinement which provides step by step elucidation using a combination of

data refinement and procedural refinement in a three layered structure, and

0 horizontal refinement which facilitates behavioural decomposition using conserva-

tive (incremental) extensions.

CHAPTER 4. ELABORATING THE CORE 44

The core of the
BPEL Abstract Machine

Fault/Compensation Data Handling
extension extension

Figure 4.3: Behavioural decomposition using incremental extensions

Figure 4.2 illustrates the structure of the enhanced BPEL Abstract Machine. Based on

this approach, the BPEL Abstract Machine comprises three basic building blocks reflect-

ing its horizontal organization: core, data handling extension, and fault and compensation

extension. The core, which is the revised version of the original core model, focuses on:

dynamic process creation/termination,

0 Web services communication primitives,

0 message correlation,

concurrent control structures,

0 and core BPEL activities as addressed in Chapter 3.

The core does not deal with data handling issues, faults or compensation behaviour. The

data handling extension adds BPEL variables and data handling behaviour to the core and

replaces abstract message values with actual values received from the environment thus

enables business processes to create and manipulate message values. The fault and com-

pensation extension complements the model by providing fault handling and compensation

behaviour. These extensions are fully discussed in Chapter 5.

Vertically, the architecture is organized into three layers of abstraction, called abstract

model, intermediate model and executable model, as illustrated in Figure 3.2. The vertical

refinement of the core model is described in more detail in Chapter 3.

CHAPTER 4. ELABORATING THE CORE

4.2 Revising the Core

Before applying the horizontal extension method to refine the core of the BPEL Abstract

Machine, the core must be partly revised to be extensible. A well-defined, flexible and

extensible process execution model is required to handle extended forms of execution, in

particular fault handling. Outbound and inbound communication of BPEL processes in the

model needs to be revised to ensure that the notions of communication, data handling, and

fault handling are well separated so that the latter two can be added as extensions to the

first one. As more aspects of BPEL are captured by the model and the number of agents

involved in the execution of a business process increases, a well-defined interaction framework

is required to be defined to avoid complexity and ambiguity of interactions between agents.

4.2.1 Process Execution Model

In the original core model, activity agents go through at least two different phases dur-

ing their execution. For modelling the required state transition behaviour, we define the

predicate busy to distinguish between two general states of an activity agent:

b-usy(agent) being true indicates that the agent is executing an activity;

0 busy (agent) being false indicates that the agent is either in the initialization mode, or

is finished executing an activity. The agent can again start executing an activity (in

case of a sequence or a while agent) and thus may become busy again.

While this was a good choice to start with, after incorporating more activities into the

model, we found that we need a better structure to deal with state transitions of activity

agents. The busy predicate could cause ambiguity in some cases. The interpretation of this

predicate being false was not completely consistent in the model; the corresponding agent

could be either in the initialization phase or in the termination phase. For some activity

agents, like switch, careful consideration was required to separate these two phases. It was

also the responsibility of child activity agents to reset the value of the busy function of their

parent activity agents back to false, indicating that they (the child activity agents) finished

their execution. This would restrict the behaviour of parent agents and in some cases make

the model ambiguous. Furthermore, this two-phase model was not flexible enough for future

extensions of the model, for example to incorporate fault handling behaviour.

CHAPTER 4. ELABORATING THE CORE 46

', Root Process

Subprocess

Figure 4.4: The process execution tree

Parent Agent ', r

To enhance the state transition model of the activity agents and to cope with the com-

.

plexity of the process execution model, we introduce the notions of process execution tree

Subprocess
Agent

and execution lifecycles.

At any time during the execution of a process instance we may have a tree of DASM

agents running under control of the enclosing process agent (Figure 4.4). Each of these

sub-agents monitors the execution of its child agents (if any) and notifies its parent agent

in case of normal completion or fault. This structure provides a general framework for

the execution of BPEL activities. The DASM agents that model BPEL process execution

are called kernel agents. They include process agents and subprocess agents. In the core,

however, we define subprocess agents to be identical to activity agents. Figure 4.4 sketches

the process execution tree.

KERNELAGENT E PROCESS U SUBPROCESSAGENT

CHAPTER 4. ELABORATING THE CORE

There is nothing to
be executed

Completed Started

\ There is more to
Execution is be executed 1
completed \
I -

Activity
Completed ~ ' ~ 7 b x e c u t i n g

activity

Execution of the
enclosed activity

w
is completed

Figure 4.5: Execution lifecycle of kernel agents: core

For maintaining the hierarchical relations between kernel agents, we use the function

parentAgent for linking a subordinate agent to its parent agent. For each kernel agent, a

derived dynamic function rootProcess indicates the root of the execution tree, similar to the

one that was defined over running agents in the original core model.

rootProcess : K E R N E L A G E N T -+ PROCESS

We decompose the execution of a process instance into a collection of execution lifecycles

for the individual BPEL activities. The state diagram in Figure 4.5 illustrates the normal

execution lifecycle of kernel agents in the core. When created, a kernel agent is in the Started

mode. After initialization, the kernel agent starts executing its assigned task by going into

the Running mode. When the execution is completed, the agent goes to the ActivityCompleted

mode, where it can decide (based on the nature of the assigned task) to either go back to the

Running mode or finalize the execution and switch to Completed. Activity agents that may

execute more than one activity (like sequence) or execute one activity more than once (like

while) can go back and forth between the ActivityCompleted mode and the Running mode.

CHAPTER 4. ELABORATING THE CORE

4.2.2 Agent Interaction Model

To avoid changing the state of an agent by its child agent(s), and to make the model flexible

for future changes and extensions, we provide a simple yet elegant framework for agents to

communicate with each other.

Communication between agents is provided by signals. Every kernel agent can send a

signal to another agent using the following operation:

trigger s : SIGNALDOMAIN, agent

Rul el

A kernel agent can respond to a received signal using the following operation:

onsignal s : SIGNALDOMAIN

Rulel

otherwise

Rulea

Trigger and onsignal are the only interfaces of kernel agents' communication frame-

work. To each process, we assign a set of signals which acts as a container for the signals

coming to any kernel agent under control of the process. This set is addressed by the

function signalset defined on PROCESS. We define SIGNAL to be the set of all defined signal

domains. In the core however, SIGNAL is defined as follows:

domain AGENT-COMPLETED

SIGNAL E AGENT-COMPLETED

For every signal, signalSource and signalTarget are defined to indicate the source and the

target agents of that signal.

signalSource : SIGNAL -+ KERNELAGENT

signalTarget : SIGNAL + KERNELAGENT

When an agent triggers a signal for another agent, a new element of the specified signal

domain is created, its source and target agents are assigned, and the signal is added to the

signal space of the target agent (which is the signal space of its root process). The following

CHAPTER 4. ELABORATING THE CORE

syntactical transformation provides this behaviour:

trigger s : SIGNALDOMAIN, agent

Rule
- - -
extend SIGNALDOMAIN with s

signalSource(s) := self

signal Target(s) := agent

add s to signalSet(rootProcess(se1f))

Rule

To respond to a signal, the target agent looks for an element of that signal in its corre-

sponding signal space, removes that element from the signal space and performs the intended

operat ions.

onsignal s : SIGNALDOMAIN

Rulel

otherwise

Rule2
- - -

if 3s(s E signalSet(rootProcess(se1f)) A

signalSource(s) = self A s E SIGNALDOMAIN)

choose s E signalSet(rootProcess(se1f)) with

s E SIGNALDOMAIN A signalSource(s) = self

remove s from signalSet(rootProcess(se1f))

Rulel

else

Rule2

The complete definition of the related rules and agent programs is provided in Ap-

pendix B.

Sequence Program: An Example

Kernel agent programs of the original core model are revised with regard to the process

execution model and the agent interaction model discussed earlier. We present here, as

an example, the original version and the revised version of the sequence agent program

CHAPTER 4. ELABORATING THE CORE 50

(respectively referred as the Seq~enceProgram,,~~~~,~ and the Sequenceprogram).

A sequence activity is a structured activity that enforces a sequential execution order

on a collection of activities. The Seq~enceProgram, , ,~~ has three phases: (1) fetching

the next activity for execution, (2) executing the activity, and (3) going back to phase (1)

if there is more activity for execution, otherwise finalizing the execution of the sequence.

Spec 4.1 presents the original version of the sequence program. The three phases mentioned

here are distinguished in the program by a combination of the busy predicate and the value

of the currentActivity. When busy(self) does not hold, the agent gets the next activity for

execution and switches busy(se1f) to true. When busy(se1f) holds, the agent either executes

the current activity or finalize its execution. These two cases are distinguished by checking

the value of currentActivity(self). If this value is undefined (undef), it indicates that there is

no more activity for execution and the agent must finalize its execution (i.e., the execution

of the sequence). Otherwise, the agent executes the current activity. The interpretation of

i;he busy predicate and the separation of different execution phases in the program, in spite

of being precise and concise, is not easy to follow.

The revised version of the sequence program is presented in Spec 4.2. Different execution

modes of the agent (see Figure 4.5) are distinguished by the execMode function which is

defined as follows:

EXECUTIONMODE = {emstarted, emRunning, emActivityCompleted, emCompleted)

execMode : KERNELAGENT -+ EXECUTIONMODE

// initial ~ x l u t ~ crt6Sfartt:d

The sequence program starts in the Started mode, assigns the first activity to the cur-

rentActivity function and switches to the Running mode to execute the activity. If the execut-

ing activity is a basic activity, when the execution is completed, the ExecuteActivity rule will

change the execution mode of the agent to the Activity-Completed. If the executing activity

is a structured activity, when its execution is completed, its associated activity agent will

send an agent-completed signal to the sequence agent. Upon receiving the agent-completed

signal, the sequence agent switches to the Activity-Completed mode.

In the Activity-Completed mode, the sequence agent fetches the next activity to be exe-

cuted. If the value of this activity is undef (i.e., there is no more activity to be executed), the

sequence agent finalizes its execution using the Fi na IizeKernel Agent rule, which also switches

CHAPTER 4. ELABORATING THE CORE

- S e q u e n ~ e P r o g r a m , , ~ ~ ~ ~ ~ ~ =
if ~busy (se1 f) then

currentActivity(self) := sequenceCounter(baseActiuity(self))
busy(se1f) := true

else
if currentActivity(self) # undef then

ExecuteActivity(currentActivity(self))
else

stop self
busy(parentAgent(self)) := false
Synchronization(baseActiuity(se1f))

--

Spec 4.1: The original Sequenceprogram of the core

the execution mode to Completed. The FinalizeKernelAgent rule switches the execution mode

of the agent to the Completed mode, sends an agent-completed signal to its parent agent,

and uses the Synchronization rule to handle synchronization issues4. The sequence agent

then, like all other kernel agents, terminates in the Completed mode. The formal definition

of the FinalizeKernelAgent rule is presented below:

FinalizeKernelAgent E

execMode(se1f) := emcompleted

trigger s : AGENT-COMPLETED, parentAgent(se1f)

Synchronizat ion(baseActiui ty(self))

4.2.3 Requirements Lists

The original core model is built upon version 1.1 of the LRM, where the requirements are

scattered over nearly 140 pages, making it hard to analyze semantic aspects of the language

and to extract key language properties. We built the original core model by frequently

referring to the LRM to make sure that all the required aspects are considered faithfully.

Despite our careful conformance to the LRM, there were some ambiguities in the LRM that

we missed to address in the original core model. Blocking behaviour of the reply activity is

an example which is further discussed in Section 4.2.5. s Before starting to build the revised

4 ~ e e [43] for more detail on synchronization of activities.

CHAPTER 4. ELABORATING THE CORE

SequenceProgram =
case execMode(se1f) of

emstarted -+
currentActivity(se1f) := sequenceCounter(se1f)
execMode(se1f) := emRunning

emRunning +
if normalExecution(self) then

onsignal s : AGENT-COMPLETED
execMode(se1f) := emActivityCompleted

otherwise
ExecuteActivity (currentActivity(se1f))

emActivityCompleted -+
currentActivity(se1f) := sequenceCounter(self)
if currentActivity(se1f) = undef then

FinalizeKernelAgent
else

execMode(se1f) := emRunning

emcompleted --+ stop self

Spec 4.2: The revised version of the SequenceProgram of the core

CHAPTER 4. ELABORATING THE CORE 53

version of the model, and in order to make it easier to further extend the model, we decided

to extract lists of requirements related to the core aspects of BPEL. These lists are called

Requirements Lists, covering major requirement elements related to different aspects of the

language. These requirement elements are all extracted from the LRM and are all referenced

precisely to the corresponding sections in the LRM. Requirements lists have been revised

many times during the refinement process, to be as comprehensive and concise as possible.

As an example, we present here the requirements list of the reply activity (Reply-LR):

1. "The <rep ly> construct allows the business process to send a message in reply to a

message that was received through a <receive>. The combination of a <rece ive>

and a <rep ly> forms a request-response operation on the WSDL portType for the

process." [$6.2] "A reply activity is used to send a response to a request previously ac-

cepted through a receive activity. Such responses are only meaningful for synchronous

interactions." [$11.4]

2. "The correlation between a request and the corresponding reply is based on the con-

straint that more than one outstanding synchronous request from a specific partner

link for a particular portType, operation and correlation set(s) MUST NOT be out-

standing simultaneously." [$11.4]

3. "For the purposes of this constraint [Reply-RL-31, an onMessage clause in a pick is

equivalent to a receive (see 12.4. Pick)." [$11.4]

4. "Moreover, a reply activity must always be preceded by a receive activity for the same

partner link, portType and (request/response) operation, such that no reply has been

sent for that receive activity." [$11.4]

5. "Note that the <rep ly> activity corresponding to a given request has two potential

forms. If the response to the request is normal, the faultName attribute is not used and

the variable attribute, when present, will indicate a variable of the normal response

message type. If, on the other hand, the response indicates a fault, the faultName

attribute is used and the variable attribute, when present, will indicate a variable of

the message type for the corresponding fault." [$11.4]

6. A reply activity MAY specify a variable that contains the message data to be sent

[$11.4].

CHAPTER 4. ELABORATING THE CORE 54

7. "Variables associated with message types can be specified as input or output variables

for invoke, receive, and reply activities (see 11.3. Invoking Web Service Operations

and 11.4. Providing Web Service Operations)." [$9.2]

8. "If the variable reference is omitted for an outgoing message, then any properties of

the message are considered to have been initialized through opaque assignment.. . "
[$15.1]

9. "If a reply activity is being carried out during the execution of a business process

instance and no synchronous request is outstanding for the specified partnerlink,

portType, operation and correlation set(s), then the standard fault bpws:invalidReply

MUST be thrown by a compliant implementation." [$14.5]

10. "correlation Violation is thrown when the contents of the messages that are processed

in an invoke, receive, or reply activity do not match specified correlation information."

p20.11

11. "invalidReply is thrown when a reply is sent on a partner link, portType and operation

for which the corresponding receive with the same correlation has not been carried

out." (similar to #9) [$20.1]

12. "In case of activity termination, the activities wait, reply and invoke are added to

receive as being instantly terminated rather than being allowed to finish." [$4.3]

The complete collection of requirements lists is presented in Appendix A.

4.2.4 Input/Output Descriptors

In the original core model, agents use tuples of two or more elements as descriptors to

indicate that they are waiting for an incoming message or they have a message that needs

to be sent out. Inbox and outbox managers look for these tuples and provide the required

service to the corresponding agents.

There were two problems with using tuples as descr.iptors:

1. Every module (agent program or ASM rule) that deals with a descriptor should be

aware of the exact structure of that tuple, even if only one component of that tuple is

of interest. This reduces the flexibility of the model for future refinements; while if all

CHAPTER 4. ELABORATING THE CORE 55

modules could only see the parts of the descriptor that they require, future refinements

of some modules could simply extend the structure of the descriptor without affecting

other modules.

2. This approach is not a good choice for future changes and improvement. Once the

structure of the tuple representing the descriptor is fixed, this structure is hard-coded

in all the modules dealing with that tuple. Future changes thus would require all the

involved modules to be changed even if they are not directly affected by the change.

For example, adding variable references to a descriptor requires all the modules using

that descriptor to be changed even if they don't deal with variable references.

To prepare the model for future extensions, descriptors are defined as abstract data

types with associated functions that represent their intended data structure. For example,

for input descriptors (which inform the inbox manager that an 'agent' is waiting for a

message on a specific 'operation') we provide the following definition:

domain INPUTDESCRIPTOR

dscAgent : INPUTDESCRIPTOR -+ KERNELAGENT

/ / :2wigr1s l o cnctr tlcsc'rtpl ox. <r r rrrrning agorlt t Irat c.1 mi cd t hat cbst r ~ptor .
dscoperation : INPUTDESCRIPTOR -+ INOUT-OPERATION
// 'l'lm c is i u ~ 111put/Olitput opc:i.jl ion tllat is hound to cvcw input chwiiptor.

With this structure, additional information can be flexibly attached to a descriptor

without changing those modules that are not affected by the new property. For example, to

add a time tag to descriptors indicating the completion time of the operation, the following

function is defined:

dscCompletedTzme : INPUTDESCRIPTOR -+ TIME

4.2.5 Out bound Communication

The LRM states that " T h e <receive> construct allows the business process to do a blocking

wait for a matching message to arrive" [4, Section 6.21. While the LRM explicitly states that

the receive activity is a blocking activity, for the reply activity it leaves this aspect unclear by

declaring that "the <reply> construct allows the business process to send a message in reply

CHAPTER 4. ELABORATING THE CORE

/ / Ii'cpl\ 4c-t ivit y
E~ecuteReply ,~ ,~ ,~ ,~ (activity : REPLY)

AddOutputDescriptorTo0utboxSpace(activity)
busy(se1f) := false

AddOutputDescriptorToOutboxSpaceoTiginal (activity : ACTIVITY) r
add outputDescrzptor to outspace

where outputDescriptor = (se l f , activity),
outspace = outboxSpace(outboxManager(rootProcess(se1f)))

/ / 0 ~ t b m 1lariagc.r
- O u t b o x M a n a g e r P r ~ g r a r n ~ ~ ~ ~ ~ ~ ~ ~ =

if outboxSpace(se1f) # 0 then
choose od E outboxSpace(se1f)

Send(od)// E-f-Fwt i\ sc:i~tl opc'i~~t ion

t

Spec 4.3: Outbound communication behaviour in the original core model

t o a message that was received through a <receive>" [4, Section 6.21 without mentioning

any blocking or non-blocking behaviour for reply.

In the original core model the reply activity was considered to be a non-blocking activity.

The behaviour of a reply activity was only modelled by adding the outgoing message to a

set of messages which are supposed to be sent out, and the continuing the execution of the

process. Spec 4.3 provides the ExecuteReply rule and the outbox manager program of the

abstract layer of the original core model.

However, an in-depth analysis of the LRM revealed that the reply activity, like its coun-

terpart, should be a blocking activity. In Section 4.3 of the LRM, "Feature Changes", it

is stated that "In case of activity terminat ion, the activities w a i t , reply and invoke are

added t o receive as being instantly terminated rather than being allowed to finish." This

declaration indicates that the authors assume that the reply activity, like wait and receive,

is in fact a blocking activity. Indeed, the lack of a formal and precise definition of these

constructs of the language is the main reason behind the ambiguity in the semantics of reply.

According to this view, we model the behaviour of a reply activity in two phases: first,

creating an appropriate output descriptor and adding it to the waitingSetFor0utput; and

second, waiting to receive a successful sent confirmation from the outbox manager. Spec 4.4

provides the revised version of the ExecuteReply and the oubox manager program.

To execute a reply activity, the request-response condition addressed by Requirement

CHAPTER 4. ELABORATING THE CORE

/ / - - - . q t l v Aicti-c.it-c --

ExecuteReply(activity : REPLY) I
if requestResponseConditionSatis f ied(activity) then

if l replyMode(se1f) then
replyMode(se1f) := true
GenerateOutputDescriptor(activity)

if reply Mode(se1f) then
choose descriptor E completedOutOperations(self) with

dscAgent(descript0r) = self A dscOperation(descriptor) = activity
reply Mode := false
FinalizeActivity(activity)

GenerateOutputDescriptor(operation : OUTPUT-OPERATION) E
extend OUTPUTDESCRIPTOR with descriptor

SetlnOutDescriptor(operation, descriptor)
add descriptor to waitingSetForOutput(rootProcess(self))

SetlnOutDescriptor(operation : OUTPUT-OPERATION, dsc : INOUTDESCRIPTOR) E
dscAgent(dsc) := self
dscOperation(dsc) := operation

/ / - 0 r r t I t o . u Mariagm --
OutboxManagerProgram E

choose p E PROCESS, descriptor E waitingSetForOutput(p)
DeliverMessage(p, descriptor)

DeliverMessage(p : PROCESS, descriptor : OUTPUTDESCRIPTOR) E
if variable(opr) = undef then

add opaqueMessage(opr) to outboxSpace(se1f)
if initiateCorrelation(opr) then

InitiateCorrelation(p, descriptor, opaqueMessage(opr))
dscCompletedTime(descrzptor) := now
add descriptor to completedInOperations(p)
remove descriptor from waitingSetForOutput(p)

where
opr E dscOperation(descriptor)

Spec 4.4: Revised Outbound Communication Behaviour

CHAPTER 4. ELABORATING THE CORE 58

#4 of D R L ~ must be satisfied. The two phases of the execution of a reply activity are

distinguished by replyMode, a predicate defined on KERNELAGENTs. When replyMode(se1f)

is false, an output descriptor is created from the corresponding reply activity and is added

to the set of output descriptors waiting to be sent out (waitingSetForOutput). This behaviour

is formulated in the GenerateOutputDescriptor. At the same time, replyMode(self) becomes

true.

When replyMode(self) is true, the agent is basically waiting for the outbox manager

to send out the message and move the output descriptor to the set of completed output

descriptors (completedOutOperations). Thus, once added to the completedOutOperations set,

the agent removes the descriptor, resets replyMode(self) back to false, (for future reply

activities) and finalizes its execution using the FinalizeActivity rule.

The outbox manager on the other hand, looks for output descriptors from running

processes and employs the DeliverMessage rule to send out the message to the network.

In the original core model, the behaviour of delivering a message is only defined when

there is no variable defined for the outgoing activity. In this case, the DeliverMessage rule

puts an appropriate opaque message into the outboxSpace(se1f) set. An opaque message

is a message with non-deterministic property values. The opaque message is provided by

an abstract function opaqueMessage defined on output operations (i.e., reply and invoke),

which should satisfy Requirements 13 to 16 of DRL6. DeliverMessage then adds a completion

time tag to the output descriptor, removes it from the set of waiting output descriptors,

and adds it to the completedOutOperations set.

A complete definition of all the corresponding functions, rules and programs are provided

in Appendix B.

4.3 Extensions to the Core

It is mentioned in Section 3.4 that data handling, fault handling, and compensation be-

haviour of BPEL is not covered by the core model of the BPEL Abstract Machine. This

chapter substantially revised the core model making it more robust and flexible for future

refinements that ultimately form a comprehensive model of the Web Services Architecture

of BPEL.

'See Appendix A.3.

"ee Appendix A.3.

CHAPTER 4. ELABORATING THE CORE 59

A two-dimensional refinement approach is presented in Section 4.1.3 which facilitates

further refinements of the core toward capturing new aspects of BPEL using the notion of

incremental extensions, and enables step by step elucidation of the extensions through a

combination of data refinement and procedural refinement approaches.

In addition, appropriate requirements lists are extracted from the L R M ~ facilitating

precise modelling of the language. For a clear separation of concerns, the aspects of data

handling, fault handling, compensation behaviour, and the core of the language are carefully

separated from each other. This is mostly visible in the concise definition of the data handling

extension.

An in-depth discussion of the extensions of the core requires a whole chapter of its own.

Thus, Chapter 5 introduces these extensions and explores them in detail.

7See Appendix A for a complete list of these requirements.

How obvious - how necessary - was

that mathematical ratio of its sides, the

quadratic sequence 1 : 4 : 9! And how

naive to have imagined that the series

ended a t this point, in only three

dimensions!
Arthur C. Clarke

Chapter 5

The Web Services Architecture of

BPEL

Chapter 4 elaborates on the core of the BPEL Abstract Machine making it more robust and

flexible for further refinements. The core of the BPEL Abstract Machine abstracts from

data handling, fault handling, and compensation behaviour and mainly focuses on modelling

BPEL abstract processes (business protocols). This chapter completes the mathematical

definition of our BPEL Abstract Machine by presenting the data handling extension and

the fault and compensation extension as two horizontal refinements of the core of the BPEL

Abstract Machine. The resulting model provides a comprehensive high-level specification

of the Web services architecture of BPEL.

5.1 Data Handling Extension

The data handling extension is a horizontal refinement of the core of the BPEL Abstract

Machine which supplements the core with data handling behaviour and the notions of

variable and scope. This section starts with an overview of the notion of data handling in

BPEL, provides a requirements list on data handling extracted from the LRM, and then

refines the core of the BPEL Abstract Machine by presenting the data handling extension.

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL

5.1.1 Data Handling in BPEL

Web services orchestration languages, like BPEL, provide stateful interactions over a state-

less communication platform like the one defined by WSDL (Chapter 2). To maintain the

state of a business process, BPEL uses state variables, simply called variables. To process

and manipulate the data collected in variables, BPEL provides data expressions. Further-

more, a notion of assignment is required to update the state of a business process, which is

available in BPEL through its <assign> activity. Thus, data handling in BPEL is delivered

through concepts of variables, expressions, and assignments.

Variables

In BPEL, variables are mainly used as message containers. Messages from other partners

are stored in variables for further processing and manipulation. In this case, variables are

defined as WSDL message types [51]. Variables can also hold other forms of data which is

not used for communication with partners, using an XML Schema simple type or an XML

Schema element [4].

Each variable is defined by a name and a type. The type of a variable is defined using

one of the three available tags: messageType (for WSDL message type), type (for XML

Schema simple type), or element (for XML Schema elements). Variables can be defined in

the <variables> area of a BPEL document. These variables are called global variables and

are valid in the entire process program unless redefined locally (see Scopes).

In BPEL variables are mainly used as message containers by input and output opera-

tions (activities) like receive, reply, and invoke. A variable reference in a receive activity,

indicates that a copy of the incoming message must be stored in the referenced variable.

A variable reference in a reply activity, refers to the variable that contains the outgoing

message. Respectively, invoke and pick can also reference to variables. The use of variables

in input/output activities is optional in an abstract process.

Scopes

Scopes in BPEL provide the behaviour context for activities. A Scope is a special form

of a structured activity which can have its own variable definitions, correlation sets and

fault and compensation handling behaviour (see Section 5.2). Each scope has a primary

activity which defines the normal behaviour of the scope. This activity can be any basic or

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL 62

structured activity. BPEL allows scopes to be nested arbitrarily.

Variables defined in a scope are called local variables. Local variables are only valid in

the scope in which they are defined. If a local variable is defined with the same name and

same type as a variable in an enclosing scope, the local variable will hide the variable of the

enclosing scope within the local scope and all its enclosed scopes.

Expressions

Expressions in BPEL are either boolean-valued, deadline-valued, duration-valued, or a gen-

eral expression based on an expression language which is referenced at the beginning of a

BPEL document. In the current version of BPEL (version 1.1) general expressions must

conform to the XPath (XML Path Language) 1.0 Expr production [47] where the evaluation

of the expression results in an XPath value type (string, number, or Boolean) [4].

Assignment

The assign activity is introduced in BPEL to enable business processes to assign values to

variables. It can be used to copy the value of a variable or some part of it to another variable,

or to evaluate and assign the value of an expression to a variable. The assign activity is

a set of copy elements. Each copy element has one pair of from and to elements. A from

element refers to a variable (or just one part of a structured variable), an expression or a

literal value. A to element refers to a variable1 (or just one part of a structured variable).

The LRM does not indicate any execution order on copy elements of an assign activity.

5.1.2 Requirements

Like other issues in the LRM, data handling behaviour of BPEL is addressed at least in four

different sections. Thus, to start modelling the data handling behaviour of BPEL, a complete

list of related requirements were extracted from the LRM. Some of these requirements

to which we referred later in this section are presented below, while the complete list is

presented in Appendix A.3. We further refer to this data handling requirements list as

DRL. The numbering of these requirement elements presented here are kept consistent to

the complete list in the appendix.

' ~ 0 t h from and to elements can also address a BPEL partnerLink which is related to the dynamic partner
bounding behaviour of BPEL and is out of the scope of this work.

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL

Partial List of Data Handling Requirements in BPEL

1. "The type of each variable may be a WSDL message type, an XML Schema simple

type or an XML Schema element." [$9.2]

2. "The name of a variable should be unique within its own scope." [$9.2]

3. "If a local variable has the same name and same messageType/type/element as a vari-

able defined in an enclosing scope, the local variable will be used in local assignments

and/or get VariableProperty functions." [$9.2]

4. "It is not permitted to have variables with [the] same name but different messageTypel

typelelement within an enclosing scope hierarchy. The behavior of such variables is

not defined." [$9.2]

5. "Variables associated with message types can be specified as input or output variables

for invoke, receive, and reply activities." [$9.2]

6. "When an invoke operation returns a fault message, this causes a fault in the current

scope. The fault variable in the corresponding fault handler is initialized with the

fault message received." [$9.2]

7. "Each variable is visible only in the scope in which it is defined and in all scopes nested

within the scope it belongs to." [$9.2]

8. "A global variable is in an uninitialized state at the beginning of a process. A local

variable is in an uninitialized state at the start of the scope it belongs to." [$9.2]

13. ". . . i t is permissible, in abstract processes, to omit the variable reference attributes

from the <invoke/>, <receive/>, and <reply/> activities. The meaning of such an

omission must be stated clearly." [$IS. 11

14. "lf no variable is specified for an incoming message, then the abstract process may

not refer subsequently to the message or its properties (if any)." [$15.1]

15. "lf the variable reference is omitted for an outgoing message, then any properties of

the message are considered to have been initialized through opaque assignment.. . "

[$15.1]

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL 64

5.1.3 Initial Definitions

In the BPEL Abstract Machine, for a clear separation of concerns, we abstract from data

types (types of variables) and data values by introducing a well-defined interface between

the behavioural model and the data model, so that future changes in the data model will not

result in changes of the behavioural model, and the behavioural model will be re-usable for

other similar architectures. Thus, three domains are defined in this extension representing

three types of variables2. A static function varType holds the relation between a variable

and its type.

domain VARIABLE

domain MESSAGE-TYPE

domain XML-TYPE

domain XMLELEMENT

varType : VARIABLE + MESSAGE-TYPE U XML-TYPE U XMLELEMENT

To satisfy Requirement 3 of DRL, we assume that all the variable names are unique in the

entire process program (which helps us not to deal with scopes of variables). Assuming that

all local variable names are unique within their scope3, we provide the following procedure

to be performed in the pre-processing phase. All local variable names are prefixed with

their corresponding scope names (which are unique according to the LRM [4, Section 131)

to make them unique in the entire process. Local variable definitions can then be moved to

the global variable definition.

Unique variable names and a single global set of variable definitions help us to have a one-

to-one matching of variable names and their representations in our model, and eliminates

the need to define a separate domain for variable names.

We define a dynamic function varValue that holds the value of a variable in a specific

process. Data values are abstracted by introducing domain VALUE that contains all the

possible data values. Similarly, data expressions are generally represented by a domain

EXPRESSION, where an external function exp Value represents the result of the evaluation

of an expression in the global state of a specific process. A derived function value is then

'See Requirement #1 in Appendix A.3.

3See Requirement 2 of DRL, Appendix A.3.

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL 65

defined based on these two functions (varValue and expvalue), to provide the value of both

variables and expressions.

domain VALUE

domain EXPRESSION

varvalue : VARIABLE x PROCESS -+ VALUE

expvalue : EXPRESSION x PROCESS + VALUE

value : (EXPRESSION U VARIABLE) x PROCESS -+ VALUE

varValue(x,p), if x E VARIABLE;
value(x,p) r

expValue(x,p), if x E EXPRESSION.

The complete list of initial definitions is presented in Appendix C.

5.1.4 Variables in Inbound/Outbound Communication

In this section, we present how the data handling extension enables the BPEL Abstract

Machine to use variables in input/output operations. The ultimate purpose of having vari-

ables in an orchestration language like BPEL is to used them in input/output operations.

Messages coming from business partners must be stored to allow further processing of each

message. To interactively communicate with business partners, BPEL processes need to

perform computations on inbound messages (requests) and store the results so that they

can further be used to generate outbound messages (response). Thus, an output opera-

tion must be able to retrieve the outbound message from a stored location in the process

instance.

The core of the BPEL Abstract Machine abstracts from BPEL variables. It is valid

to have BPEL process definitions that do not deal with variables. The LRM calls such

processes, an abstract process or a business protocol [4, Section 11. Data handling extension

supplements the BPEL Abstract Machine with variables and data handling. Careful atten-

tion has been made to clearly separate the outbound communication behaviour of BPEL

from its data handling behaviour in the BPEL Abstract Machine, so that there are only

three ASM rules that need to be refined in this extension.

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL

ExecuteReceive(activitlJ : RECEIVE) -
if ireceiveMode(se1f) A ~outs tandingReceiveCon f lict(activrty) then

receiveMode(se1f) := t rue/ / 'Tlrcl r u r i r l i t t g agtwt i i wait ill!; T O I t w i t (' 12 Iru+++y
GeneratelnputDescriptor(activity)

if receiveMode(se1f) then
choose descriptor E completedInOperations(se1f)

with dscAgent(descriptor) = self A dscOperation(descriptor) = activity
receiveMode(se1f) := false
FinalizeActivity(activity)

GeneratelnputDescriptor(operation : INPUT-OPERATION)
extend INPUTDESCRIPTOR with descriptor
SetlnOutDescriptor(operation, descriptor)
add descriptor to waitingSetForInput(rootProcess(self))

SetlnOutDescriptor(operation : OUTPUT-OPERATION, dsc : INOUTDESCRIPTOR) z
dscAgent(dsc) := self
dscOperation(dsc) := operation

Spec 5.1: Behaviour of the receive activity

Input Operations

Input operations, like receive, perform a blocking wait for an inbound message to arrive.

Their behaviour is modelled in the core using two consecutive phases, which are distin-

guished by receiveMode, a predicate defined on KERNELAGENTs. In the first phase, they

create an i npu t descrzptor and add it to the waitingSetForInput of their corresponding pro-

cess. In the second phase, they are basically waiting for the inbox manager to receive an

appropriate message and move the input descriptor to the set of completed input descriptors

(completedInputOperations). The corresponding ASM rules are presented in Spec 5.1. Other

input operations (activities) in BPEL practically follow the same approach. The complete

specification of these activities is provided in Appendix B.

Spec 5.2 presents the inbound communication behaviour of the core, in particular the

behaviour of the inbox manager which serves input operations that are waiting for inbound

messages. At each run, if there is any arrived message in the inboxSpace(self) , the inbox

manager picks a matching set of a process, a message and an input descriptor, and employs

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL

// " - --- .- r ohox 1I;ui;lgct 1'1 ogmrxl .- --

InboxManagerProgram =
if znboxSpace(se1f) # 0 then

choose p E PROCESS, m E inboxSpace(self),
descriptor E wait ingSetForInput(p) with
waitingOnIO(dscAgent(descriptor), p) A match(p , operation, m)

AssignMessage(p, descriptor, m)
if p = dummyProcess then

new n e w D u m m y : PROCESS
d u m m y Process := n e w D u m m y

where
operation = dscOperation(descriptor)

/ / - - - -- Ils4glr ll(asq,c - - - - - -

AssignMessage(p : PROCESS, descriptor : INPUTDESCRIPTOR, m : MESSAGE) r
if znitiateCorrelation(op) then

InitiateCorrelation(p, descriptor, m)
dscCompletedTime(descriptor) := now
add descriptor to completedInOperations(p)
remove m from inboxSpace(se1f)
remove descriptor from wait ingSetForInput(p)

where
op r= dscOperation(descriptor) ,
agent dscAgent(descriptor)

Spec 5.2: Inbound communication behaviour: Revised

the AssignMessage rule to assign the message to the waiting operation. A detailed speci-

fication of the AssignMessage is provided in Spec 5.2. Assign Message basically checks for

correlation requirements, removes the input descriptor from the waitingSetForInput, assigns

a receive time (operation completion time) to the descriptor and adds it to the set of com-

pletedIn0perations. An in-depth description of this rule is provided in [43, Section 5.11. As

the core does not deal with BPEL variables, the arrived message is not stored anywhere.

To extend the inbound specification of the core with data handling behaviour, there

is only one rule that needs to be extended: AssignMessage.AssignMessaged,,, is defined

to assign the message to the variable which is referenced in the input operation. Spec 5.3

presents this definition. The static function variable refers to the variable of an input/output

operation:

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL

/ / -- -- - - . - - - t s i i g r i l l t ~ \ ~ : t ~ (f<:x[(>xl(l~tl - -- - - - - ---

AssignMessage(p, descriptor, m)
AssignMessage,,,,(p, descriptor, m)
Assign Messagedata (p, descriptor, m)

AssignMessageda,,(p : PROCESS, descriptor : INPUTDESCRIPTOR, m : MESSAGE)
if variable(dscOperation(descriptor)) # undef then
value(variable(dscOperation(descriptor)),p) := m

- - -- - - - -

Spec 5.3: Extending inbound communication behaviour with data handling

variable : INOUT-OPERATION + VARIABLE

AssignMessage is then extended to execute AssignMessagedat, in parallel to AssignMessage

rule of the core (which is now called AssignMessage,,,,). Message assignment is performed

only when the variable reference of the input operation is not undefined, which preserve the

behaviour of the core when there is no variable reference for the input operation.

Output Operations

Outbound communication is discussed in Section 4.2.5. To extend outbound communication

behaviour with data handling behaviour, there are only two rules that need to be extended:

SetInOutDescriptor and Deliver Message.

To send out a message, it is important that outbox manager uses the exact value of the

output variable at the time of the execution of the output operation. Parallel structures in

BPEL (using the flow activity) makes it possible for the value of the variable referenced by

the output operation to be changed before the outbox manager actually sends the corre-

sponding message out. Thus, the value of the variable (the outbound message) should also

be attached to the output descriptor.

The idea of using descriptors, which is discussed in Section 4.2.4, enables us to simply

attach a new property to descriptors that holds the value of the variable that is referenced

by the input/output operation. This is handled by the dscVariableValue function defined

below:

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL

DeliverMessage,,,,(p : PROCESS, descriptor : OUTPUTDESCRIPTOR) r=
if variable(opr) = undef then

add opaqueMessage(opr) to outboxSpace(se1f)
if initiateCorrelation(opr) then

InitiateCorrelation(p, descriptor, opaqueMessage(opr))
dscCompletedTime(descriptor) := now
add descriptor to completedInOperations(p)
remove descriptor from waiting Set For Output (p)

where
opr K dscOperation(descriptor)

Spec 5.4: DeliverMessage in the core

- -

dsc Variable Value : INOUTDESCRIPTOR 4 VALUE

In the core of the BPEL Abstract Machine, Set lnOutDescr iptor is responsible to initialize

input and output descriptors before they are actually added to the waiting sets. In the data

handling extension, this rule should be refined to assign the actual value of the output

operation to its corresponding descriptor. The extended Set lnOutDescr iptor is presented in

Spec 5.5.

Since variables are not considered in the core of the BPEL Abstract Machine, there is

no actual message to be sent out. Thus, after checking that there is no variable reference

in the output operation4, DeliverMessage sends out an opaque message (abstract message).

The definition of DeliverMessageco,, is presented in Spec 5.4.

When there is a variable reference defined for the output operation, Deliverblessagedata

should send out the message that is stored in the referenced variable. This rule first checks

that correlation requirements (by checking the correlationSatisfied predicate) and then adds

the message value of the variable into the outboxspace. DeliverMessage is re-defined to execute

DeliverMessageco,, and DeliverMessagedat, together.

4 ~ h i s is a guard condition that enables future extensions of the rule (see Section 4.1.2).

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL 70

/ / *- . -.- - - - Stlt InOur I k - T I iptor f ' s t r > ~ i d d
SetlnOutDescriptor(descriptor, operation, agent) r

SetlnOut Descriptor,,,, (descriptor, operation, agent)
SetInOutDescriptordata(descriptor, operation, agent)

Set~nO~tDescriptor~~,~(descriptor : INOUTDESCRIPTOR,
operation : INOUT-OPERATION, agent : KERNELAGENT)

if operation E IN-OPERATION A variable(operation) # undef then
dscVariableValue(descriptor) := value(variable(operation), rootProcess(se1 f))

/ / - ---- 13clvicr l I (~w~:;cl T h c ~ l t l (~ i - - - -

DeliverMessage(p, descriptor) i
DeliverMessage,,,,(p, descriptor)
DeliverMessageda,,(p, descriptor)

DeliverMessaged,,,(p : PROCESS, descriptor : OUTPUTDESCRIPTOR) =
if variable(operation) # undef then // riuiahlv .jhoi~ltl twnt aitl il rn<'sqiig<'

if correlationSatis f ied(descriptor) then
add messageValue(dscVariableValue(descriptor)) to outboxSpace(se1 f)

where
operation = dscOperation(descriptor)

Spec 5.5: Extending outbound communication behaviour with data handling

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL

ExecuteAssign(activity : ASSIGN)
forall c in copyElements(activity)

Executecopy(f romSpec(c), toSpec(c))
FinalizeActivity(activity)

Spec 5.6: The behavioural definition of the assign activity

5.1.5 The Assign Activity

The assign activity in BPEL is a set of copy elements. Each copy element is a pair of a from-

spec and a to-spec element corresponding to the from and to elements of a copy element in

BPEL (see Section 5.1.1). The semantics of a copy element is to copy the value of from-spec

to the to-spec. This activity is discussed in more details in Section 5.1.1.

We define the following domains for copy elements, from-spec, and to-spec elements:

domain COPYELEMENT

domain FROMELEMENT

domain TOELEMENT

The set of all the copy elements of an assign activity is represented by unary function

copyElements. For each copy element, fromSpec, and toSpec refer to its from-spec and to-spec.

copyElements : ASSIGN + COPYELEMENT-set

fromspec : COPYELEMENT -+ FROMELEMENT

tospec : COPYELEMENT + TOELEMENT

The behaviour of the assign activity, specified by the ExecuteAssign rule, is presented

in Spec 5.6. Since we abstract from the data model, we define an abstract rule called

ExecuteCopy to copy the value of a from-spec to a to-spec. FinalizeActivity, which is defined

in the core of the BPEL Abstract Machine, will set the execution mode to Activity-Completed

and deals with synchronization issues [43].

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL

ScopeProgram =.
case execMode(se1f) of

emstarted -+
execMode(se1f) := emRunning
l nitializeLocalVaria bles(baseActivity(se1f))

emRunning +
if normalExecution(self) then

onsignal s : AGENT-COMPLETED
execMode(se1f) := emActivity Completed

otherwise
ExecuteActivity (inner Activity (baseActivity (se l f)))

emCompleted -+ stop self

Spec 5.7: Behavioural specification of the scope activity in data handling extension

5.1.6 The Scope Construct

We introduced scope in Section 5.1.1. A scope in BPEL is just a wrapper around an activity

to provide a local context for the execution of the activity. This section presents a for-

mal specification for the behaviour of scope excluding its fault and compensation handling

behaviour. Since scopes are one of the fundamental constructs of fault and compensation

handling in BPEL, we will get back to scopes in Section 5.2.

Without focusing on fault and compensation handling behaviour, the behaviour of scope

will be reduced to a simple wrapper around its main activity. Similar to structured activities,

we define a new type of agents called scope agents, to handle the execution of scope activities.

Spec 5.7 presents the ScopeProgram.

Considering that we converted local variables to global variables (see Section 5.1.3), to

satisfy Requirement 8 of FCRL~, scope agents have to set the value of local variables to

an uninitialized value in the Started mode. This is performed by the InitializeLocalVaria bles

rule. This rule is formally defined in Appendix C.

In the Running mode, the behaviour of scope is only defined when the normalExecution

predicate is true, which is the case in the core model and the data handling extension. When

'See Appendix A.3.

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL 73

a scope agent is in the Running mode, receiving an agent-completed signal means thak the

child agent of this scope (there can only be one child agent) has completed its execution.

The scope agent should then go to the Activity-Completed mode. Otherwise, the agent keeps

executing its main activity.

Like many other activity agents, scope agents finalize their activity using the Fi nalizeAc-

tivity rule, which takes them to the Completed mode, where the agent stops its execution.

The complete ASM specification of the data handling extension of the BPEL Abstract

Machine is provided in Appendix C.

5.2 Fault and Compensation Extension

The fault and compensation extension supplements the core of the BPEL Abstract Machine

with compensation and fault handling behaviour. This is a fairly complex issue in the

definition of BPEL. An in-depth analysis in fact shows that the semantics of fault and

compensation handling, even when ignoring all the syntactical issues, is related to more

than 40 individual requirements spread out all over the LRM. These requirements (some

of them comprise up to 10 sub-items) address a variety of separate issues related to the

core semantics, general constraints, and various special cases. This section provides an

overview of the fault handling and compensation behaviour in BPEL (Section 5.2.1) and

presents a list of the requirements on fault handling and compensation behaviour extracted

from the LRM (Section 5.2.2). The process execution model underlying the BPEL Abstract

Machine is extended in Section 5.2.3 to include fault handling and compensation behaviour of

BPEL processes. We then provide a comprehensive definition of the fault and compensation

extension of the BPEL Abstract Machine.

5.2.1 Fault and Compensation Handling in BPEL

Business processes typically perform durative transactions through asynchronous communi-

cation between partners. Such transactions normally cause local updates at the interacting

partners. Consequently, when an error occurs, it may be required to reverse the effects of

some or even all of the previous activities. This concept is known as compensation. The abil-

ity to compensate exceptions in an application-specific manner enables business processes

to have so-called Long-Running (Business) Transactions (LRTs).

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL 7 4

In BPEL, compensation and fault handling is performed using the scope activity. Scope

provides a logical unit for which a compensation handler and a set of fault handlers can be

defined. A compensation handler defines the compensating behaviour of a logical unit in

case of an error. A fault handler defines the reaction of a logical unit to an error.

Compensation Handlers

A compensation handler is defined within a scope and forms a wrapper around an activity

that is considered to be the compensation activity of that scope. Compensation handlers

enable business process designers to define compensating behaviour for a scope in case of

an error. The compensation activity can be any BPEL activity, including another scope.

A scope can only be compensated after its successful completion. When a scope finishes

successfully, the compensation handler of that scope is said to be installed for possible future

invocations.

Compensation handlers can be invoked by means of the compensate activity. A corn-

pensate activity requires the name of the scope to be compensated and can only be called

from a fault handler or a compensation handler "of the scope that immediately encloses the

scope for which compensation is t o be perforrned."[4, Section 13.3.21 Figure 5.1 illustrates

this concept using an example of two scopes, A and B, where scope B is enclosed by scope

A.

The semantics of the compensate activity is somewhat complex. At the time of pro-

ducing this document, there were still ongoing debates among the OASIS WSBPEL-TC

committee members on the semantics of this activity. Requirements B-1 to B-7 of the fault

and compensation handling requirements list provided in Appendix A.4 address some of the

issues regarding the behavioural semantics of the compensate activity.

Basically, the behaviour of a compensate activity with a reference to scope S is defined

as executing the compensation handler (compensation activity) of scope S. Nevertheless,

there are a number of cases to be considered, such as:

If scope S does not have a compensation handler, a default compensation behaviour

should invoke the compensation handlers for the immediately enclosed scopes in the

reverse order of the completion of those scopes6.

'See Requirement B6 of the fault and compensation requirements in Appendix A.4

CHAPTER 5. T'HE W E B SERVICES ARCHITECTURE OF BPEL

compensation activity
of scope 'B'

Scope Body

compensate activities ----.'.. Fault Handler /

Figure 5.1: A compensate activity invokes the compensation activity of an enclosed scope

If scope S was nested in a loop, the instances of the compensation handlers in the

successive iterations are invoked in reverse order.

0 If scope S was not successfully completed, invoking its compensation handler is equiv-

alence to the empty activity.

For a better overview and understanding, we have extracted from the LRM individual

issues that are related to requirements of compensation behaviour. A complete list of these

issues is provided in Appendix A.4.

Fault Handlers

Fault handlers provide a way to define how scopes should react to an error. This reaction

is meant to undo (i.e., reverse) the work of a successfully completed scope. A fault handler

consists of a number of optional catch clauses for handling specific types of faults and

one optional catchall clause to deal with all other faults. Each catch or catchall clause

wraps around one BPEL activity that defines the response of that clause to related faults.

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL 76

Requirement C8 of the fault and compensation requirements (see Appendix A.4) specifies

how catch clauses are selected in a fault handler.

The completion of a scope in which a fault is thrown is never considered successful,

even when the fault handler successfully handles the fault. Thus, a compensation handler

for such a scope will not be installed and the scope cannot be compensated in the future.

Such a scope is considered to be exited, rather than completed. If the scope has no suitable

fault handler that can handle the fault, or if the fault handler in turn encounters a fault

that cannot be handled, the fault is thrown to the next enclosing scope and the scope is

considered to be faulted7.

The LRM indicates that a fault handler starts its execution by implicitly terminating

all those activities that are currently active and directly enclosed within the scope of the

fault handler [4]. Thus, occurrence of a fault in a scope immediately (prior to any reaction)

leads to termination of the execution of the scope8. When there is no suitable fault handler

available for a fault, the fault will invoke a default fault handler. A default fault handler of

a scope will run all available compensation handlers for immediately enclosed scopes in the

reverse order of completion of the scopes, and then rethrows the fault to the next (higher)

enclosing scopeg.

To explicitly signal an internal fault, BPEL introduces the throw activity. A throw

activity gets a fault name and an optional fault variable (a variable that contains extra

information about the fault) and throws a fault at the time of its executionlo.

Travel Agency: an Example of Compensation Behaviour

The description of the travel agency business process presented in Section 2.3.2 can be

extended with a compensation module (see Figure 5.2). A fault may occur when a process

instance in the travel agency Web service is waiting to receive a confirmation from its client

along with the required credit card information. This fault could be a cancel response from

the client, an incorrect piece of information or a communication problem. Due to such a

fault, the normal execution of the process instance is cancelled and a compensation module

' ~ e ~ u i r e m e n t B11 of the fault and compensation requirements list provided in Appendix A.4 explores
this aspect in more detail.

'See Requirement B16 in Appendix A.4.

'See Requirement B8 in Appendix A.4.

''See Requirement B10 in Appendix A.4.

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL

Client

Travel Agency Business Process

Figure 5.2: A compensation module cancels flight and room reservations

is invoked. In this example, the compensation module cancels flight and room reservations

and sends a notification to the client.

5.2.2 Requirements

The semantics of fault and compensation handling, even when ignoring all the syntactical

issues, is specified by more than 40 individual requirements scattered out over the LRM

in 6 different chapters. A complete list of these requirements, classified in 6 different cate-

gories (syntactical, core semantics, details and constraints, special cases, interpretation, and

extensibility), is presented in Appendix A.4. Table 5.1 presents some examples of these

requirements. Henceforth, we use the term FCRL to refer to this list. This section presents

a number of these requirements that are further discussed in this chapter.

5.2.3 Process Execution Model: Fault Handling

Section 4.2.1 introduces a process execution model for kernel agents based on the underlying

normal execution model of BPEL. This section extends that model to capture the fault

handling execution model of BPEL.

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL

Requirement Group Example

A: Syntactical "In BPEL4WS, all faults, whether inter-
nal or resulting from a service invocation,
are identified by a qualified name." [$6.1]

B: Core Semantics "If no catch or catchall is selected, the
fault is not caught by the current scope
and is rethrown to the immediately enclos-
ing scope." [$13.4]

C: Details and Constraints "The fault variable [of a catch clause]
is optional because a fault might not
have additional data associated with it."
[$13.4]

D: Special Cases "The semantics of a process in which an
installed compensation handler is invoked
more than once is undefined." [$13.3.2]

E: Interpretation "Fault handling in a business process can
be thought of as a mode switch from the
normal processing in a scope." [$13.4]

F: Extensibility "In the future, BPEL4WS will add input
and output parameters to compensation
handlers. . . " [$l3.3.l]

Table 5.1: Requirement groups of fault and compensation handling in BPEL

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL 79

Fault handling in BPEL can be thought of as a mode switch from the normal execution

of the process11. When a fault occurs in the execution of an activity, the fault is thrown

up to the innermost enclosing scope. If the scope handles the fault successfully, it sends an

exi ted signal to its parent scope and ends gracefully, but if the fault is re-thrown from the

fault handler, or a new fault is occurred during the fault handling procedure, the scope sends

a faul ted signal along with the thrown fault to its parent scope. The fault is thrown up from

scopes to parent scopes until a scope handles it successfully. A successful fault handling

switches the execution mode back to normal. If a fault reaches the global scope, the process

execution terminates. The Coordination Protocol presented in Requirement B11 of FCRL

explores this behaviour in more detail (see Appendix A.4).

The normal execution lifecycle of the process execution model presented in Chapter 4

(Figure 4.5) needs to be extended to comprise the fault handling mode of BPEL processes.

The occurrence of a fault causes the kernel agent (be it an activity agent or the main

process) to leave its normal execution lifecycle and enter a fault handling lifecycle. Figure

5.3 illustrates the extended execution lifecycle of BPEL activities.

When a kernel agent encounters a fault, it leaves its normal execution by switching

to the E x e c u t i o n - F a u l t mode. If the kernel agent is neither a scope agent nor a process

agent, it should also notify its parent agent of the fault. This transition is performed by the

Tra nsitionToExecution Fau It rule. For every kernel agent, the dynamic function fault Thrown

(defined on kernel agents) keeps the current fault which is thrown in the execution of the

agent. The default value of faultThrown is u n d e f .

fault : (AGENTYAULTED U F O R C E D ~ T E R M I N A T I O N) t FAULT

faultThrown : K E R N E L A G E N T + FAULT

TransitionToExecutionFault(fau1t : FAULT) =
execMode(se1f) := emExecutionFault

faultThrown(se1f) := fault

if self $ (SCOPE-AGENT U PROCESS) then

trigger s : A G E N T J A U L T E D , parentAgent(se1f)

faul t (s) := fault
- -

From the E x e c u t i o n - F a u l t mode, the execution path of scope agents (and process agents)

"See Requiremet; E2 in Appendix A.4.

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL

\ A fault occurs

/ It is a scope agent /

Fault handler It is not
a scope agent /
Notify parent

agent.

Figure 5.3: Activity execution lifecycle: extended by fault handling

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL 81

becomes different from other kernel agents. In the Execution-Fault mode, any kernel agent

which is not a scope or a process, waits to receive a forced termination signal from its parent

agent12. The predicate forcedTerminationAgent defined on kernel agents is used to indicate if

the agent is in the Execution-Fault due to a forced termination signal (which is considered

to be a special form of fault) from its parent. This is a derived predicate which is true when

the faultThrown of an agent is bpwsForcedTermination. A kernel agent goes to the Faulted

mode after receiving a forced termination signal in the Execution-Fault mode. If the forced

termination signal is received when the agent is in its normal execution mode, the signal is

considered as a fault, the agent goes to the Execution-Fault mode and propagates the signal

to its child agents13. The execution of kernel agents is terminated in Faulted mode. Along

with changing the mode to Faulted, by executing the TerminateBasicActivity, the agent also

ensures that if the execution of a basic activity was interrupted, that activity is finalized

properly14. The behaviour of kernel agents (except scope agents) in the Execution-Fault

mode is formalized by the WaitForTermination rule.

forcedTerminationAgent : KERNELAGENT + BOOLEAN

forcedTerminationAgent(a) r (faultThrown(a) = bpwsForcedTermination)

WaitForTermination =
if forcedTerminationAgent(se1f) then

execMode(self) := emFaulted

TerminateBasicActivity(seZf)

else

onsignal s : FORCED-TERMINATION

faultThrown(self) := fault(s)

execMode(se1f) := emFaulted

TerminateBasicActivity(se1f)

forall child in childAgents(se1f)

trigger s' : FORCED-TERMINATION, child

fault(sl) := fault(s)

As mentioned earlier, scope agents (and process agents as global scopes) have a different

1 2 ~ h i s is to comply with Requirement B16 of FCRL.

1 3 ~ h i s complies with the Requirements B16 and B11 (vi and vii) of FCRL in Appendix A.4.

14see Requirement B16 of FCRL.

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL 82

behaviour in the Execution-Fault mode. A scope agent in this mode should switch to the

Fault-Handling mode, trying to handle the fault by executing its fault handler. If the

fault handles throws a fault (or rethrows the original fault) the scope agent switches to the

Faulted mode and terminates. If the fault handling procedure is successful, the scope agent

terminates in the Exited mode. Section 5.2.5 explains this behaviour in more details.

The extended program of sequence agents is presented in Spec 5.8 as an example on how

kernel agents (except scope agents) are extended to observe fault handling requirements.

The core version of the sequence program is presented in Section 4.2.2. The sequence

program of the core, henceforth referred to as SequenceProgramcor,, is extended without

changing its original behaviour. The SequencePr~gram,~~, is guarded in the Running mode

by the normalExecution predicate which was equal to true in the core. In this extension

a new predicate, faultExtensionSigna1, is defined to be true if the agent receives a signal

that is related to the fault and compensation extension. The predicate normalExecution

is then refined to be the negation of faultExtensionSigna1 which prevents the execution of

SequenceProgramCor, when the agent has to deal with faults.

faultExtensionSignal : KERNELAGENT -+ BOOLEAN

faultExtensionSigna1 E

3s(s E signalSet(rootProcess(se1f)) A signalSource(s) = self A

s E (AGENT-EXITED U AGENT-FAULTED U FORCED-TERMINATION)

normalExecution(a : KERNELAGENT) E +mltExtensionSignaI(a)

An agent-exited signal from a child agent indicates an unsuccessful completion of the

child agent. But according to Requirement Bll-ii-B of FCRL (see Appendix A.4), this is

not considered a faulted completion. Thus, a sequence agent goes to the Activity-Completed

mode upon receiving an agent-exited signal. An agent-faulted signal from a child agent

indicates that the child agent finished in Faulted mode. The parent agent then switches

to the Execution-Fault mode using the TransitionToExecutionFault rule, after receiving an

agent-faulted signal. A forced-termination signal sent from a parent agent to a child agent

indicates that the execution of the child agent must be terminated. This signal is also

treated as a fault by the recipient agent which changes the execution mode of the agent to

the Execution-Fault mode. The agent then propagates the forced-termination signal to its

child agents in order to terminate all its enclosed activities.

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL

Sequenceprogram E

SequencePrograrn,,,,
case execMode(se1f) of

emRunning -+ HandleExeceptionsln RunningMode
emExecutionFault -+ WaitForTermination
emFaulted -+ stop self

HandleExceptionslnRunningMode z
if faultExtensionSignal(se1f) then

onsignal s : AGENTEXITED
execMode(self) := emActiuityCompleted

otherwise
onsignal s : AGENTEAULTED

TransitionToExecutionFault(fault(s))
otherwise

onsignal s : FORCED-TERMINATION
faultThrown(se1f) := fault(s)
forall child in childAgents(se1f)

trigger s1 : FORCED-TERMINATION, child
fault(sl) := fault(s)

execMode(self) := emExecutionFault

Spec 5.8: Sequence program: extended by fault and compensation behaviour

Although the presented program in this section is a sequence program, the fault and

compensation handling extension is designed in such a way that all other kernel agents,

except scopes and processes, share the same extended behaviour in the Running mode,

using the Hand IeExceptionsl n Ru n ni ngMode rule. The complete formalization including the

initial state, rules and programs is provided in Appendix D.

5.2.4 Throwing Faults

A business process in BPEL can throw a fault internally using the throw activity. The throw

activity gets a fault name and an optional fault variable that holds additional information

about the fault, and throws an internal fault at its execution point.

In the BPEL Abstract Machine, the semantics of throw is captured by the ExecuteThrow

rule, which basically uses the TransitionToExecutionFault rule, the same rule that other

activities use when they encounter a fault in their execution. The TransitionToExecution Fault

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL 84

rule (see Section 5.2.3) takes care of the transition of the kernel agent to the Execution-

Fault mode. The ExecuteThrow rule also uses the Synchronization rule to handle activity

synchronization issues [43].

5.2.5 Scope Agent: Refined

Scopes in BPEL are the core of fault and compensation handling behaviour. Fault handlers

and compensation handlers are both defined for local scopes and the main process which is

considered a global scope. In this section, the behaviour of scope presented in Section 5.1.6

is extended to cover fault and compensation handling.

The Running Mode

The scope program is refined using the same approach as the refinement of the sequence

program (see Section 5.2.3). In the Running mode, receiving an agent-exited signal indicates

that the execution of the child agent is completed (with a fault which is handled and is not

thrown upwards). So, upon receiving such a signal, the scope agent goes to the Activity-

Completed mode which will eventually lead to a successful completion of the execution of

the agent (complies to the protocol presented in Bl1 of FCRL).

A scope agent behaves differently from other activity agents in the sense that it al-

ways tries to handle a fault thrown in its scope of execution. The scope agent treats

agent-faulted signals and forced-termination signals in the same way, changing its execution

mode to Execution-Fault and set faultThrown(se1f) to the fault that is associated with the

signal15. This extended behaviour of the scope in the Running mode is guarded by the fad-

tExtensionSigna1 which is described in Section 5.2.3. The ScopeAgentRunningExtended rule

is presented below:

151n case of a forced-termination signal, this fault is always equal to the distinguished value of
bpwsForcedTermination.

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL 85

ScopeAgentRunningExtended =
if faultExtensionSignal(self) then

onsignal s : AGENTEXITED
execMode(se1f) := emActivityCompleted

otherwise

onsignal s : AGENTPAULTED
execMode(se1f) := emExecutionFault

faultThrown(se1f) := fault(s)

otherwise

onsignal s : FORCED-TERMINATION
execMode(se1f) := emExecutionFault

faultThrown(se1f) := fault(s)

/ / 'I'lic sropr\ itg(lI\l se+ntts t l r t l fix ~ 1 1 t c w r r i m t i o l r higi1i~1

/ / in it (WCIII i o ~ ~ - f a ~ i l t I H O ~ P .

The Execution-fault Mode

To comply with Requirements B12 and B16 of FCRL (see Appendix A.4), two tasks must

be accomplished by a scope agent in the Execution-Fault mode: (1) terminating all activities

directly enclosed within the scope, and (2) executing the fault handler rule and changing

the execution mode to Fault-Handling. TerminateBasicActivity ensures that if the enclosed

activity of the scope is a basic activity, it is terminated properly without leaving any trace

(e.g., no input descriptor is left waiting for a message). A forced-termination signal is also

sent to any child activity agent if the enclosing activity of the scope is a structured activity.

Meanwhile, an instance of the fault handler agent is created and is initialized with proper

properties to handle the thrown fault. The ScopeAgentExecutionFault rule presented below,

specifies the behaviour of scope agents in their Execution-Fault mode:

CHAPTER 5 . THE WEB SERVICES ARCHITECTURE OF BPEL

- ---

handlerscope : FAULTHANDLERAGENT + SCOPE

ScopeAgentExecutionFault E

TerminateBasicActivity(se1f)

forall child in chi ldAgents(sel f)

trigger s : FORCED-TERMINATION, child

faul t (s) := bpwsForcedTermination

new handler : FAULTHANDLERAGENT

parentAgent(hand1er) := self

handlerScope(hand1er) := baseActivity(se1f)

faultThrown(hand1er) := faul tThrown(se1f)

execMode(se1f) := emFaultHandl ing

It is optional for scopes to have fault handlers16, but there is always a default fault

handling procedure that is performed when there is no fault handler defined for a scope.

This default fault-handling procedure is documented in Requirement B8 as follows [4]:

1. Run all available compensation handlers for immediately enclosed scopes in the reverse

order of completion of the corresponding scopes.

2. Rethrow the fault to the next enclosing scope.

To provide this default fault handling, we assume that in the pre-processing phase (see

Section 3.3), a fault handler is attached to all the scopes without a fault handler, with a

catchall clause that includes two activities: <compensate/> and <rethrow/>. According to

the Requirement B7 of FCRL'~, the <compensate/> activity can be used to perform the

first task. The rethrow activity is not defined in the LRM and is introduced later in BPEL

(see Section 6.1.5) to rethrow the fault which is caught in a catchall clause.

The Fault-handling Mode

The fault-handling mode for a scope agent is basically a waiting mode. When a scope is in

fault-handling mode, it is basically waiting for its fault handler to complete its execution.

There are three possible signals that can be received by scope in this mode:

16See Requirement B12 of FCRL, Appendix A.4.
I7See Appendix A.4.

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL 87

An agent-completed signal in this mode indicates that the fault handler completed

its execution successfully. This will result in completion of the scope program in an

Exited mode (see Requirement B 11).

An agent-faulted signal indicates that the fault handler encountered an internal fault

and abnormally terminated. The scope agent also terminates by switching to the

Faulted mode and throwing the fault thrown by the fault handler to its parent agent18.

Upon receiving of a forced-termination signal, the scope agent propagates the signal

to its child agent(s) and terminates its execution by going to the Faulted mode. The

response of a fault handler to a forced-termination signal is discussed in Section 5.2.6.

The behaviour of scope agents in the fault handling mode is presented here:
- -- - - --

ScopeAgentFaultHandling =
onsignal s : AGENT-COMPLETED

execMode(se1f) := emExited

trigger s' : AGENTEXITED, parentAgent(self)

otherwise

onsignal s : AGENTYAULTED

fault Thrown(se1f) := fault(s)

trigger s1 : AGENTEAULTED, parentAgent(se1f)

fault(sl) := fault(s)

otherwise

onsignal s : FORCED-TERMINATION

execMode(se1f) := emFaulted

faultThrown(se1f) := fault(s)

forall child in childAgents(se1f)

trigger s' : FORCED-TERMINATION, child

fault(sl) := fault(s)

The program of scope agents is presented in Spec 5.9. The behaviour of scope agents in

the Activity-Completed mode is extended by the lnstallCompensationHandler rule which in-

stalls a compensation handler for the scope at the time of completion. This rule is described

in detail in Section 5.2.7. For the complete list of definitions, rules and programs related to

lasee Requirement B11 of FCRL, Appendix A.4.

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL

ScopeProgram i
ScopeProgramdata
case execMode(self) of

emRunning -+ ScopeAgent RunningExtended

emActivityCompleted -+ InstallCompensationHandler

emExecutionFault -+ ScopeAgentExecutionFauIt

emFaultHandling -+ ScopeAgent Fault Handling

emExited -+ stop self

emFaulted -+ stop self

Spec 5.9: Extended specification of the scope activity in fault and compensation handling

scope agents, see Appendix D.

5.2.6 Fault Handling

The normal behaviour of a fault handler starts with selecting a catch clause that matches the

fault that is being handled. The function faultHandlerCatchSet is defined to provide the set

of catch clauses in the fault handler of a scope activity. The abstract predicate matchingcatch

defined on catch clauses is used to find the matching catch clause of a fault. The chosen

catch clause is then stored in executingCatch for further processing.

domain CATCH-CLAUSE

faultHandlerCatchSet : SCOPE -+ CATCH-CLAUSEset

executingCatch : FAULTHANDLERAGENT 3 CATCH-CLAUSE

matchingCatch : CATCH-CLAUSE x FAULT 3 BOOLEAN

FaultHandlerStarted

execMode(se1f) := emRunning

choose c E faultHandlerCatchSet(handlerScope(self))

with matchingCatch(c, faultThrown(se1f))

executingCatch(self) := c

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL 89

To model the main behaviour of fault handlers (fault handler agents in the Running

mode), analogous to structured activities in BPEL, we can separate their behaviour into

two parts: normal execution and fault-handling extended execution. The normal behaviour

of a fault handler in the Running mode is similar to other structured activities (see scope

in Section 5.1.6). If it receives an agent-completed signal, it goes to the Activity-Completed

mode and finishes its execution; otherwise, it executes the selected catch clause. However,

according to Requirement B13 of FCRL", if no catch clause is selected, the fault is rethrown.

This is done by executing a pre-defined catch clause, called rethrowCatchClause.

FaultHandlerRunningNormal =
if normalExecution(se1f) then

onsignal s : AGENT-COMPLETED

execMode(se1f) := emActiuityCompleted

otherwise

if executingCatch(self) = undef then

executingCatch(se1f) := rethrowCatchClause

else

ExecuteActivity(catchActivity(executingCatch(se1f)))

When it comes to process fault handling signals, fault handler agents only listen to two

signals: agent-faulted and agent-completed. According to the LRM20, "if the scope has

already experienced an internal fault and invoked a fault handler, then [. . .] the forced

termination has no effect." Thus, fault handler agents do not process forced-termination

signals while they are in the Running mode.

There are some ambiguities in the LRM regarding the forced termination signal and the

behaviour of scopes and fault handlers, which are discussed in Section 6.1.1.

lgsee Appendix A.4.
'Osee Requirement B15 of FCRL, Appendix A.4.

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL 90

- -

FaultHandlerRunningExtended r

if faultExtensionSignal(se1f) then

onsignal s : AGENTEXITED

execMode(se1f) := emActivityCompleted

otherwise

onsignal s : AGENTTAULTED

TransitionToExecutionFault(fault(s))

Occurrence of an internal fault in the execution of a fault handler changes the execution

mode of the fault handler to Execution-Fault. In this mode, according to the Requirement

B17 of FCRL, the fault handler must terminate its execution prematurely. The Fault-

HandlerExecution Fa ult, presented below, models this behaviour by finalizing the execution

of the basic activity (if any), changing the execution mode to Faulted, and propagating a

forced-termination signal to its subordinate agent(s).

FaultHandlerExecutionFault =
TerminateBasicActivity(se1f)

execMode(se1f) := emFaulted

forall child in childAgents(se1f)

trigger s' : FORCED-TERMINATION, child

faul t(sr) := bpwsForcedTermination

The program of fault handler agents is presented in Spec 5.10. The complete specification

of fault handler agents is provided in Appendix D.

5.2.7 Compensation Behaviour

Compensation behaviour is a fairly complex issue in BPEL. Originally, there were many open

issues on compensation on the issue list of the OASIS WSBPEL Technical Committee [35].

Many of them are now resolved, but there are still a number of open issues yet to be resolved.

Some of these issues deal with fundamental topics of compensation behaviour, like the Issue

#3 of the WSBPEL Issue List which is about the "current statc influence in compensation

handlers". This issue changes the way a compensation handler interacts with the current

state of its enclosing process as is reflected in Requirement B l of FCRL (See Appendix A.4).

CHAPTER 5 . THE W E B SERVICES ARCHITECTURE OF BPEL

FaultHandlerProgram E
case execMode(se1f) of

emstarted -+ FaultHandlerStarted

emRunning +
FaultHandlerRunningNorrnal
FaultHandlerRunningExtended

emActivityCompleted + FinalizeKernelAgent

emcompleted -+ stop self

emExecutionFault -+ FaultHandlerExecutionFault

emFaulted + stop self

Spec 5.10: Program of fault handler agents

This issue will be discussed in more detail below.

The Compensate Activity

The compensate activity can be used in two forms: (1) compensating a specific scope, and

(2) default-order invocation of compensation handlers for completed scopes directly nested

within the scope for which the fault or compensation handler is being executed2'.

There are several issues to be taken into account for compensating a scope activity. In

this section we specifically focus on two major issues:

1. compensating scopes that are completed more than once, and

2. dealing with the local state view of compensation handlers.

Whenever a scope is completed successfully, a compensation handler is installed for that

scope. If a scope is completed more than once, the compensation of that scope involves

executing all the installed compensation handlers of that scope in their reverse order of

completion; i.e., the last completion of the scope is compensated first22. Figure 5.4 illustrates

this reverse invocation of compensation handlers.

"See Requirements A2 and B7 of FCRL in Appendix A.4.

"See Requirement B4 of FCRL, Appendix 11.4.

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL 9 2

Compensation Handlers Installed for Scope "A"

Figure 5.4: compensation handlers are invoked in their reverse order of completion

A compensation handler for a scope defines how the work of the scope can be reversed.

To accomplish this task, the compensation handler needs to see a snapshot of the local state

of the scope exactly as it was when the scope was completed; all local variables should have

the same value as they had at the time of completion of the scope23.

The notion of installing a compensation handler for every successfully completed scope

provides the required means to deal with the reverse invocation behaviour of the compen-

sate activity and the local state view of compensation handlers. To model this notion,

we define compensation modules representing the installed compensation handlers. Each

compensation module identifies the following information:

the scope for which the compensation handler is installed,

a snapshot of the local state of the corresponding scope at the time of completion,

the completion time of the scope, which helps in ordering the execution of compensa-

t ion handlers.

While the behaviour of the compensation handler of scope S is unique for all instances

of scope S, a compensation module basically represents a frozen local state of one instance

of a complete execution of scope S, which can later be used to reverse the work of that scope

23See Requirement B1 of FCRL, Appendix A.4.

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL 9 3

instance. This model perfectly fits the notion of installing compensation handlers provided

by the LRM [4, Section 13.31.

The function cmSet is defined on scope names and refers to the set of all installed

compensation modules for all the scopes that are directly enclosed inside a specific scope.

For each compensation module, its corresponding scope is presented by the cmScope function.

To this date, there is still a debate on how compensation handlers should be ordered in non-

trivial cases 1351. In the BPEL Abstract Machine, an abstract representation of this order is

provided by the abstract function cmOrder defined on compensation modules. This function

assigns an element of the ordered domain PRIORITY to each compensation module (PRIORITY

is defined in the core of the BPEL Abstract Machine). The topCM0rder predicate is then

defined on compensation modules, based on cmorder, to be true if the the compensation

module has the highest order to be executed.

domain COMPENSATIONNODULE

cmset : SCOPENAME + COMPENSATIONNODULE-set

cmscope : COMPENSATIONNODULE += SCOPE

cmOrder : COMPENSATION-MODULE t ORDER

cmScopeName : COMPENSATION-MODULE t SCOPENAME

cmScopeName(cm) := scopeName(cmScope(cm))

topCMOrder : COMPENSATION-MODULE += BOOLEAN

topCMOrder(cm)

vcrnl(cml E COMPENSATIONNODULE A

(cmScopeName(cml) = cmScopeName(cm)) -+ (cmOrder(cml) 5 cmOrder(cm))

The behaviour of the compensate activity is abstractly modelled as follows:

a. If there is at least one installed compensation module that matches the

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL

CompensateProgram =
case execMode(se1f) of

emstarted -+ ChooseNextCM

emRunning -+ CompensateAgent Running

I emActivityCompleted -+ ChooseNextCM

I emCompleted -+ stop self

emExecutionFault -+ Wait ForTermination

I emFaulted -+ stop self

Spec 5.11: Program of compensate agents

specified scope, then:

0 choose one matching compensation module,

0 remove the module from the set, and

0 execute the module.

b. Terminate if there is no more matching module left or if there is a fault.

c. Repeat a.

A new kernel agent, COMPENSATEAGENT, is introduced to model the behaviour of the

compensate activity. The program of compensate agents is provided in Spec 5.11. To choose

a compensation module, the compensate agent uses the ChooseNextCM rule defined in Spec

5.12.

If there is a matching module available (a module that belongs to the specified scope and

has the highest execution order among other modules), ChooseNextCM chooses that module,

assigns it as the value of chosenCM(sel f) for future execution, removes it from the set of

installed modules, and changes the execution mode to Running so that the agent executes

the chosen module. To find a matching compensation module, the predicate matchingCM is

defined for a compensation module and holds if,

the scope of the compensation module matches the scope specified in the compensate

activity or there is no such scope specified for the compensate activity,

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL

ChooseNextCM =
if thereIsAtLeastOneModule then

choose cm in cmSet(parentScopeName(se1j)) with mathingCM(cm)
chosenCM(se1j) := cm
execMode(se1j) := emRunning
remove cm from cmSet(parentScopeName(se1j))

else
FinalizeKernelAgent

where
thereIsAtLeastOneModule

3x(x E cmSet(parentScopeName(se1j)) A matchingCM(x))

matchingCM(cm) z
[targetScope(baseActivity(selj)) = undej

V cmScopeName(cm) = targetScope(baseActivity(selj))]
A topCMOrder(cm)

Spec 5.12: The ChooseNextCM rule is performed by compensate agents

and the compensation module is the first compensation module of the set which should

be executed (this is modelled by the abstract predicate topCM0rder).

In the Running mode, if there is no fault signal, a compensate agent executes the selected

compensation module that is stored in the chosenCM(se1f). The response of compensate

agents to agent-faulted signals and forced-compensation signals is similar to other structured

activities. If there is an agent-faulted signal, the agent switches to the Execution-Fault mode

by executing the TransitionToExecutionFauIt. If there is a forced-termination signal, it is

propagated to the child agents and the compensate agents switches to the Execution-Fault

mode. Spec 5.13 presents the CompensateAgentRunning rule.

The ExecuteCM defines how compensate agents execute a compensation module. As we

will see later, the behaviour of compensation handlers is modelled by agents of type COM-

PENSATIO N-HAN DLER. A compensation module is assigned to each compensation handler

agent. The compensation handler agent, when executed, will use the assigned compensation

module to set back values of local variables to what they were at the time of completion of

the scope. The compensation activity of a scope (the activity inside the compensation han-

dler of a scope) is specified by the compensationActivity function. If there is no compensation

handler defined for a scope, this function refers to a <compensate/> activity which has the

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL

CompensateAgentRunning =
if normalExecution(self) then

onsignal s : AGENT-COMPLETED
execMode(se1f) := emActiuityCompleted

otherwise
ExecuteCM(chosenCM(self))

if faultExtensionSignal(self) then
onsignal s : AGENTTAULTED

TransitionToExecutionFault(fault(s))
otherwise

onsignal s : FORCED-TERMINATION
faultThrown(se1f) := fault(s)
forall child in childAgents(se1f)

trigger s' : FORCED-TERMINATION, child
fault(sl) := fault(s)

execMode(se1f) := emExecutionFault

ExecuteCM(cm : COMPENSATIONMODULE)
if 1 cmExecuted(cm) then

new cma : COMPENSATIONHANDLERAGENT
Initialize(cma, compensationActiuity(cmScope(cm)))
cmExecuted(cm) := true
compHandlerModule(cma) := c m

Spec 5.13: The behaviour of compensate agents in the Running mode

same behaviour as the default compensation handler24.

Installing Compensation Modules

The scope agent program presented in Spec 5.9 uses the rule lnstallCompensationHandler to

install a compensation handler; i.e., to create an appropriate compensation module and add

it to the cmSet of its parent scope. As mentioned earlier, a compensation module identifies

three properties:

the corresponding scope for which the compensation handler is installed (identified by

24See Requirement B7 of FCRL, Appendix A.4.

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL

functions cmScope and cmScopeName) ,

a snapshot of the local state of the corresponding scope at the time of completion

(identified by 1ocalSnapshot) ,

and the completion time of the scope (identified by scopeCompletion~ime)

The lnstallCompensationHandler rule creates a compensation module, sets the associated

values, and adds the compensation module to the cmSet of its parent scope. This rule is

defined as follows:

lnstallCompensationHandler =:

extend COMPENSATIONMODULE with cm

scopeCompletionTime(cm) := now
cmScope(cm) := baseActivity(se1f)

RegisterLocalSnapshot(cm, baseActivity(self))

add cm to cmSet(parentScopeName(se1f))

To model a snapshot of local state variables, local snapshots are introduced by defining

the domain LOCAL-SNAPSHOT. The function snapshot Variable Value(s, v) is defined to hold the

value of variable v according to the snapshot s. The set of all the variables of a snapshot s is

identified by the function snapshotVariableSet. A snapshot of local state variables assigned to

a compensation module em is identified by the localSnapshot(cm) function. The signatures

of these functions are presented below:
--

snapshotVariableValue : LOCALSNAPSHOT x VARIABLE -+ VALUE

snapshotVariableSet : LOCALSNAPSHOT -+ VARIABLE-set

1ocalSnapshot : COMPENSATIONXODULE 4 LOCAL-SNAPSHOT

For a specific scope, the RegisterLocalSnapshot rule creates a new local snapshot and

for every local variable of the scope (addressed by the set scopevariables) adds a pair of

variable-value to the snapshotVariableSet of the local snapshot. It then assigns this snapshot

to the specified compensation module. This rule is presented below.

CHAPTER 5. THE W E B SERVICES ARCHITECTURE OF BPEL

RegisterLocalSnapshot(cm : COMPENSATIONMODULE, scope : SCOPE) =
extend LOCALSNAPSHOT with snapshot

forall v in scope Variables(scope)

snapshot Variable Value(snapshot, v) := variable Value(v, rootProcess(self))

add v to snapshotVariableSet(snapshot)

localSnapshot(cm) := snapshot

Compensation Handlers

The behaviour of a compensation handler is modelled by an agent of the domain COM-

PENSATION-HAN DLER. A compensation handler agent starts by restoring the values of local

variables using the local snapshot assigned to its compensation modules. This is performed

by the RestoreLocalVariables. It then goes to the Running mode, to execute its enclosed ac-

tivity, identified by innerActivity(baseActivity(se1f)). In the Running more, this agent uses

the previously mentioned rule HandleExceptionlnRunningMode which defines its behaviour

in case of receiving a fault handling signal. When the execution of its enclosed activity is

completed, a compensation handler agent finalizes its execution using the FinalizeKernelA-

gent (in the Activity-Completed mode). The behaviour of this agent in the Completed mode,

the Execution-Fault mode, and the Faulted mode is similar to the sequence agent presented

in Section 5.2.3. The compensation handler program is presented in Spec 5.14.

CHAPTER 5. THE WEB SERVICES ARCHITECTURE OF BPEL

CompensationHandlerProgram =
case execMode(se1f) of

emStarted -+
RestoreLocalVaria bles
execMode(se1f) := emRunning

emRunning --+
if normalExecution(self) then

onsignal s : AGENT-COMPLETED
execMode(se1f) := emActivityCompleted

otherwise
ExecuteActivity(baseActivity(se1f))

HandleExceptionlnRunningMode

emcompleted -+ stop self

emExecutionFault --+ WaitForTermination

emFaulted --+ stop self

RestoreLocalVariables r
let snapshot = localSnapshot(compensationModule(self))

forall v in snapshotVariableSet(snapshot)
value(v , rootProcess(self)) := snapshot Variable Value(snapshot, v)

Spec 5.14: The program of compensation handler agents

Chapter 6

Conclusion

This thesis presents the most comprehensive formal semantics model for the Business Pro-

cess Execution Language for Web Services known so far. Our model provides a robust

mathematical framework in the form of a distributed real-time ASM as a well defined tech-

nical foundation for establishing the key language attributes of BPEL. More specifically, this

model, in combination with the LRM, is meant to serve as precise documentation providing

a reliable basis for implementations and enhancing further development of the language.

To avoid a gap between the informal language definition and the formal semantics, we

model the language definition as is without making any compromises. Furthermore, the

dynamic nature of industrial standardization also demands flexibility and robustness of the

formalization approach. To this end, we feel that the ASM modelling paradigm offers a good

compromise between practical relevance and mathematical elegance (which has already been

approved in other standardization contexts [22]).

Clearly, BPEL is a fairly complex and inherently complicated language. This is partly

due to the fact that this language originates from merging two other Web services composi-

tion languages, namely XLANG and WSFL, and includes artifacts from both languages [37].

Considering the goal of the BPEL, i.e., providing "a language for the formal specification

of business processes and business interaction protocols" [4], it would be appealing to sys-

tematically validate and verify the key properties of the language. However, a well-defined

specification is a prerequisite for verification; otherwise, one would have to face a gap be-

tween the vagueness of the natural language used in the informal documentation and the

mathematically precise language that is ultimately required for verification. On the other

hand, depending on the verification method one chooses, a transformation of our model to

CHAPTER 6. CONCLUSION 101

another formal language in the verification domain may be required. This transformation,

however, then is a transformation from one formal (mathematical) language to another

formal language, which does not suffer from the ambiguities and vagueness of a natural

language description.

Apparently, there is no simple way to prove that the resulting formalization provides

a faithful model of the language. However, constructing a ground model - an abstract,

complete, precise and yet understandable mathematical model - by carefully analyzing

and eliciting requirements indeed seems to be the best one can do in the overall attempt

toward making the semantic model as sound and complete as possible [ll, 51. To achieve

a high degree of reliability in establishing the requirements, we make our model as close as

possible to the informal documentation. This is attained by

choosing a natural level of abstraction that reflects how the LRM views the language,

providing a mathematical image of the language semantics defined by the LRM through

a direct mapping from the constructs of the language, their properties, and their re-

lations to the elements of our model, and

a adopting the terminology that is used in the LRM.

This leads to a direct and concise representation of the informal documentation, which allows

conceptual justification of the model and also provides a basis for experimental validation

of the design through simulation and testing.

Constructing such a formal specification demonstrates the practicability of the formal-

ization approach. Although this formal model does not yet address some minor aspects of

the language definition, it provides a comprehensive semantic framework, and clearly those

aspects that are not yet captured do not introduce any new challenges in modelling. As far

as a comprehensive semantics specification is concerned, to the best of our knowledge, the

result of our work can be considered the frontier of semantic modelling of BPEL.

In the application domain of e-Business, it is highly desirable to build on sufficiently

reliable standards. An important conclusion that we draw from the work presented here

is that in order to establish and maintain a reliable standard for BPEL, we need a proper

formalization of the fundamental semantic issues. The presented approach will allow us to

"reason about the current specijication and related issues" and to "uncover issues that would

otherwise go unnoticed' [35, Issue #40]. There are unclear details in the specification of

CHAPTER 6. CONCLUSION 1.02

fundamental aspects of BPEL (see Section 6.1 and the issues listed in [35]) that need to be

clarified and cannot be left to the language implementations.

The following section provides some examples on how a formal specification can support

validation of the language definition effectively revealing inconsistencies, loose ends, and

ambiguities.

6.1 Validation

The OASIS WSBPEL Technical Committee has been working on the LRM since April 2003,

basically to eliminate weak points in the language definition and to continue the work on

specifying the common concepts for a business process execution language. To this date,

this committee has listed 130 issues of which 81 are considered to be resolved [35].

As a result of building this ground model for BPEL, we actually have discovered a number

of weak points in the LRM which will be exemplified in this section. We also proposed a

new activity for BPEL to provide synchronous request-respond services to business partners

which is currently handled in the language through two separate activities (i.e., receive and

reply). Having two separate activities to provide a single synchronized service has caused

a number of difficulties and ambiguities to the language (see Issues #26, #49, #50, #120,

and #123'). This proposal is discussed in Appendix F.

6.1.1 Termination Due to a Fault

The LRM does not specify exactly how activity termination (due to a fault) takes place. It

states that when a fault occurs in a scope, the fault handler begins by implicitly terminating

all activities inside the scope. Further, in Section 20.1 on standard faults, the LRM states

that forcedTermination is used by a scope to terminate its enclosing activities. However, it

is not clear how the forcedTermination fault is used to terminate enclosing activities. The

LRM does not state whether the faulted activities should wait for the force Termination

fault when they encounter a fault, or they should terminate automatically.

For instance, assume that there is a flow activity inside a scope S that has two concurrent

scope branches A and B. If a fault occurs in branch B (scope B) that cannot be handled,

should this branch terminate before receiving a forcedTermination fault from scope S? If

'At the time of producing this document, Issues #26, #120, and #I23 are still open.

CHAPTER 6. CONCLUSION 103

branch B terminates without waiting for a forcedTermination fault, then should the flow

also terminate (which means A should also terminate)? If that is the case, then why should

scope S send a forcedTermination fault at all?

There are also ambiguities on how fault handlers deal with a forcedTermination fault.

According to the L R M ~ , if a forcedTermination fault comes for a scope that is already in

fault handling mode, the fault handler is not interrupted and it is allowed to finish. It is not

clear what happens if the fault handler in this situation encounters an internal fault. Given

that the handler had already received a forcedTermination fault, should it wait for another

forced termination fault to propagate it to its enclosing activities?

6.1.2 Clarification on Activity Termination

About terminating the assign activity, the LRM indicates that

1. When a fault occurs in the execution of an assignment activity (assign), the destination

variables are left unchanged as they were at the start of the execution of the activity

(Requirement C12 of FCRL) .

2. In response to a forcedTermination fault, which is by the LRM considered an inter-

nal fault, the assign activities are allowed to complete rather than being interrupted

(Requirement B16 of FCRL) .

Although the second requirement is reasonable, it conceptually contradicts the first

requirement. To resolve this issue, the first requirement should be restricted to all faults

except the forcedTermination fault.

6.1.3 Faults and the Compensate Activity

The LRM is not specific about what happens when a compensation handler encounters a

fault. The LRM indicates that if a compensation handler encounters a fault and the fault

is not handled in a scope inside the compensation handler, "it is rethrown to the parent

scopen3. There are two issues regarding this statement:

1. There is no precise definition of a parent scope in the LRM. From the context where this

term is used, one can assume that it has the same meaning as the terms immediately

2 ~ e e Requirement B15 of FCRL in Appendix A.4.

3 ~ t e m (v) of Requirement B11 of FCRL in Appendix A.4

CHAPTER 6. CONCLUSION 104

enclosing scope or enclosing scope of an activity which are used widely in the LRM.

On the other hand, a compensation handler of a scope is invoked (indirectly) either

by a compensate activity or through a default fault handler or a compensation handler

of a higher-level enclosing scope. Thus, the parent scope of a compensation handler is

not always the immediately enclosing scope of that handler (a compensation handler

may be invoked through a hierarchy of higher-level compensation handlers). To this

end, the parent scope of a compensation handler needs a precise definition.

2. A compensate activity may invoke a number of compensation handlers installed for a

specific scope. The LRM is not precise about the behaviour of a compensate activity

in which one of the installed compensation handlers encounters a fault. One could

assume that the compensate activity should terminate prematurely, but this aspect is

not specified precisely in the LRM.

6.1.4 Invoking Compensation Handlers

In [4, Sections 13.3.2 and 14.21, on invoking compensation handlers, the LRM specifies that

1. "Invoking a compensation handler that has not been installed is equivalent to the

empty activity (it is a no-op4)-this ensures that fault handlers do not have to rely on

state to determine which nested scopes have completed successfully.~~5

2. "If an installed compensation handler is invoked more than once during the execu-

tion of a process instance, a compliant implementation MUST throw the standard

bpws:repeatedCompensation f a ~ l t . " ~

It seems that the LRM tries to explicitly separate the compensation behaviour of two

types of scopes: (1) scopes that are not completed yet, and (2) scopes that have been

compensated before but have not been completed again to be compensated for the second

time. There are two consideration regarding this case:

1. A BPEL program does not actually invoke an installed compensation handler of a

scope. Instead, the general compensation handler of a scope is invoked, which then

4A 'no-op' operation is an operation that does nothing.

5See Requirement B3 of FCRL in Appendix A.

'See Requirement C16 of FCRL in Appendix A.

CHAPTER 6. CONCLUSION 105

leads to invocation of its corresponding installed compensation handlers (e.g., invok-

ing compensation handler of scope A through <compensate scope=' A ' >) . Thus,

the wording of the second requirement needs to be changed to something like: "If

the compensation handler of a scope is invoked, for which all the previously in-

stalled compensation handlers are already invoked before and there is no new in-

stalled compensation handler, a compliant implementation MUST throw the standard

bpws:repeatedCompensation fault."

2. Even considering a revised version of the second requirement, when all the previ-

ously installed compensation handlers of a scope are already invoked and there is no

new installed compensation handler for that scope, in accordance with the first case,

compensating that scope should be equivalent to an empty activity.

6.1.5 Rethrowing a Fault

A fault handler may include a number of catch clauses along with at most one catchall

clause. While for a catch clause at least a fault name or a fault variable must be specified,

a catchall clause has no parameters; i.e., a catchall clause has no information about the

original fault that is thrown and is caught by this clause. This prevents a catchall clause to

rethrow a fault to the parent scope. We encountered this problem while we were modelling

the default fault handling behaviour of scopes. We identified the need for a special activity

to allow a catchall clause to rethrow its original fault to the parent scope. At the same time,

this issue was addressed by the OASIS WSBPEL Technical Committee and was resolved

using a similar approach by introducing a <rethrow/> construct that rethrows the original

fault in a catch or catchall clause7.

'see Requirement A7 of FCRL in Appendix A.4.

Appendix A

Requirements Lists

Requirements list of the receive activity:

1. "The <receive> construct allows the business process to do a blocking wait for a

matching message to arrive." [$6.2]

2. Receive activity is one of the start activities that can cause process instantiation. "This

is done by setting the createInstance attribute of such an activity to 'yes'. When a

message is received by such an activity, an instance of the business process is created

if it does not already exist (see 11.4. Providing Web Service Operations and 12.4.

Pick)." [$6.4]

3. "The combination of a <receive> and a <reply> forms a request-response operation

on the WSDL portType for the process." [$6.2]

4. "If more than one start activity is enabled concurrently, then all such activities must

use at least one correlation set and must use the same correlation sets (see 10. Corre-

lation and the 16.3. Multiple Start Activities example). If exactly one start activity is

expected to instantiate the process, the use of correlation sets is unconstrained. This

includes a pick with multiple onMessage branches; each such branch can use different

correlation sets or no correlation sets." [$6.4] (also in Correlation-RL-2)

5. "Variables associated with message types can be specified as input or output variables

APPENDIX A. REQUIREMENTS LISTS 107

for invoke, receive, and reply activities (see 11.3. Invoking Web Service Operations

and 11.4. Providing Web Service Operations) ." [$9.2]

6. "In addition, it [receive activity] may specify a variable that is to be used to receive

the message data received. However, this attribute is syntactically optional since it is

absolutely required only in executable processes." [$11.4]

7. "A receive activity annotated in this way [with createInstance=yes] MUST be an

initial activity in the process, that is, the only other basic activities may potentially

be performed prior to or simultaneously with such a receive activity MUST be similarly

annotated receive activities." [$11.4]

8. "It is permissible to have the createInstance attribute set to 'yes' for a set of concurrent

initial activities." but "All such receive activities MUST use the same correlation sets

(see 10. Correlation) ." [$11.4]

9. "Compliant implementations MUST ensure that only one of the inbound messages

carrying the same correlation set tokens actually instantiates the business process

(usually the first one to arrive, but this is implementation dependent)." [$11.4]

10. "A business process instance MUST NOT simultaneously enable two or more receive

activities for the same partnerlink, portType, operation and correlation set(s). ...

For the purposes of this constraint, an onMessage clause in a pick and an onMessage

event handler are equivalent to a receive (see 12.4. Pick and 13.5.1. Message Events) ."

[$11.4]

11. "If during the execution of a business process instance, two or more receive activities

for the same partner link, portType, operation and correlation set(s) are in fact simul-

taneously enabled, then the standard fault bpws:conj?ictingReceive MUST be thrown

by a compliant implementat ion." [$14.5]

12. " confEictingReceive is thrown when more than one receive activity or equivalent (cur-

rently, onMessage branch in a pick activity) are enabled simultaneously for the same

partner link, port type, operation and correlation set(s)." (similar to the #11) [$20.1]

13. "correlation Violation is thrown when the contents of the messages that are processed

in an invoke, receive, or reply activity do not match specified correlation information."

[$20.1]

APPENDIX A. REQUIREMENTS LISTS 108

14. In case of termination, each "wait , receive, reply and invoke activity is interrupted and

terminated prematurely." [$13.4.2]

Requirements list of the reply activity:

1. "The <reply> construct allows the business process to send a message in reply to a

message that was received through a <receive>. The combination of a <receive>

and a <reply> forms a request-response operation on the WSDL portType for the

process." [$6.2] "A reply activity is used to send a response to a request previously ac-

cepted through a receive activity. Such responses are only meaningful for synchronous

interactions." [$11.4]

2. "The correlation between a request and the corresponding reply is based on the con-

straint that more than one outstanding synchronous request from a specific partner

link for a particular portType, operation and correlation set(s) MUST NOT be out-

standing simultaneously." [$11.4]

3. "For the purposes of this constraint [Reply-RL-31, an onMessage clause in a pick is

equivalent to a receive (see 12.4. Pick)." [$11.4]

4. "Moreover, a reply activity must always be preceded by a receive activity for the same

partner link, portType and (request/response) operation, such that no reply has been

sent for that receive activity." [$11.4]

5. "Note that the <reply> activity corresponding to a given request has two potential

forms. If the response to the request is normal, the faultName attribute is not used and

the variable attribute, when present, will indicate a variable of the normal response

message type. If, on the other hand, the response indicates a fault, the faultName

attribute is used and the variable attribute, when present, will indicate a variable of

the message type for the corresponding fault ." [$11.4]

6. A reply activity MAY specify a variable that contains the message data to be sent

[$11.4].

APPENDIX A. REQUIREMENTS LISTS 109

7. "Variables associated with message types can be specified as input or output variables

for invoke, receive, and reply activities (see 11.3. Invoking Web Service Operations

and 11.4. Providing Web Service Operations)." [$9.2]

8. "If the variable reference is omitted for an outgoing message, then any properties of

the message are considered to have been initialized through opaque assignment ..."
[$15.1]

9. "If a reply activity is being carried out during the execution of a business process

instance and no synchronous request is outstanding for the specified partnerlink,

portType, operation and correlation set(s), then the standard fault bpws:invalidReply

MUST be thrown by a compliant implementation." [$14.5]

10. "correlation Violation is thrown when the contents of the messages that are processed

in an invoke, receive, or reply activity do not match specified correlation information."

[$20.1]

11. "invalidReply is thrown when a reply is sent on a partner link, portType and operation

for which the corresponding receive with the same correlation has not been carried

out." (similar to #9) [$20.1]

12. "In case of activity termination, the activities wait, reply and invoke are added to

receive as being instantly terminated rather than being allowed to finish." [$4.3]

Requirements list of the variables and data handling in BPEL:

1. "The type of each variable may be a WSDL message type, an XML Schema simple

type or an XML Schema element." [$9.2]

2. "The name of a variable should be unique within its own scope." [$9.2]

3. "If a local variable has the same name and same messageType/type/element as a vari-

able defined in an enclosing scope, the local variable will be used in local assignments

and/or get VariableProperty functions." [$9.2]

APPENDIX A. REQUIREMENTS LISTS 110

4. "It is not permitted to have variables with same name but different messageTypel

typelelement within an enclosing scope hierarchy. The behavior of such variables is

not defined." [$9.2]

5. "Variables associated with message types can be specified as input or output variables

for invoke, receive, and reply activities." [$9.2]

6. "When an invoke operation returns a fault message, this causes a fault in the current

scope. The fault variable in the corresponding fault handler is initialized with the

fault message received." [$9.2]

"Each variable is visible only in the scope in which it is defined and in all scopes nested

within the scope it belongs to." [$9.2]

"A global variable is in an uninitialized state at the beginning of a process. A local

variable is in an uninitialized state at the start of the scope it belongs to." [$9.2]

In Executable Processes, "An attempt during process execution to use any part of a

variable before it is initialized MUST result in the standard bpws:uninitialixed Variable

fault." [$14.2]

In Executable Processes, "the inputVariable attribute for invoke and the variable at-

tribute for receive and reply activities are not optional in executable processes. In

addition, the outputVariable] attribute is not optional for invoke when the operation

concerned is a request/response operation." [$14.5]

In Executable Processes, "the inputVariable attribute for omMessage handlers is not

optional in executable processes. In addition, the outputVariable attribute is not

optional for invoke when the operation concerned is a request/response operation."

[$14.8]

12. "Unlike executable processes, variables in abstract processes do not need to be fully

initialized before being used since some computation is left implicit in abstract pro-

cesses. However, since message properties are meant to represent 'transparent', i.e.,

protocol relevant data, BPEL4WS requires that all message properties in a message

must be initialized before the message can be used, for example before the variable

of the message is used as the inputvariable in a Web Service operation invocation."

[$15.1]

APPENDIX A. REQUIREMENTS LISTS 111

13. ". . . it is permissible, in abstract processes, to omit the variable reference attributes

from the <invoke/>, <receive/>, and <reply/> activities. The meaning of such an

omission must be stated clearly." [$IS. 11

14. "If no variable is specified for an incoming message, then the abstract process may

not refer subsequently to the message or its properties (if any)." [$15.1]

15. "If the variable reference is omitted for an outgoing message, then any properties of

the message are considered to have been initialized through opaque assignment.. . "
[$15.1]

16. When variable references are omitted, correlation set references may be interpreted as

follows:

(a) "For an incoming message which initializes a correlation set (initiator case), the

correlation set is deemed to be initialized." [$15.1]

(b) "For an outgoing message which initializes a correlation set (initiator case), the

correlation tokens (which are message properties) are initialized through implicit

opaque assignment. . . " [$15.1]

(c) "For an outgoing message which references but does not initialize a correlation

set (follower case), the proper initialization of the message properties is implicit.

In this case, the already initialized correlation set itself provides the token values

for the outgoing message." [$IS. 11

17. L'uninitializedVariable is thrown when there is an attempt to access the value of an

uninitialized part in a message variable." [$20.1]

18. "If a correlation set is initialized by rule 1 or 2 above [16a and 16b], then outgoing

messages in the same correlated exchange must also refrain from referencing a message

variable. This restriction applies because it is not possible to initialize the properties

of the outgoing messages from the correlation set alone." [$15.1]

A.4 FC-RL

Requirements list of Fault and Compensation Handling in BPEL:

APPENDIX A. REQUIREMENTS LISTS

Group A: Syntactical

1. A scope can provide fault handlers and one compensation handler. [$I31

2. "The compensation handler can be invoked by using the compensate activity,

which names the scope for which the compensation is to be performed, that

is, the scope whose compensation handler is to be invoked." [$13.3.2]

3. "This activity [compensate] can be used only in the following parts of a

business process:

In a fault handler of the scope that immediately encloses the scope for

which compensation is to be performed.

In the compensation handler of the scope that immediately encloses the

scope for which compensation is to be performed. " [$13.3.2]

4. "Note that in case an invoke activity has a compensation handler defined

inline, the name of the activity is the name of the scope to be used in the

compensate activity." [$l3.3.2]

5. "In BPEL4WS, all faults, whether internal or resulting from a service invoca-

tion, are identified by a qualified name." [$6.1]

6. "BPEL4WS does not require fault names to be defined prior to their use in a

throw element ." [$11.6]

7. All custom fault handlers can rethrow the original fault with the syntax

<rethrow/> that has no attributes. [35, Issue #95]

Group B: Core Semantics

1. Revised by OASIS: "Compensation handlers always interact with the cur-

rent state of the process, specifically the state of variables declared in their

associated scope and all enclosing scopes. [. . .] The current state of the pro-

cess consists of the current local state of all scopes that have been started. This

includes scopes that have completed but for which the associated compensa-

tion handler has not been invoked. For completed uncompensated scopes their

current local state is the state as it was at the time of completion." [OASIS

Issue #3]

APPENDIX A. REQUIREMENTS LISTS

Original: "BPEL4WS semantics state that the compensation han-

dler, if invoked, will see a frozen snapshot of all variables, as they

were when the scope being compensated was completed." [$l3.3.l]

2. ". . . compensation handlers cannot update live data in the variables that the

business process is using." "A compensation handler, once installed, can be

thought of as a completely self-contained action that is not affected by, and

does not affect, the global state of the business process instance. It can only

affect external entities." [$13.3.1]

3. "A compensation handler for a scope is available for invocation only when the

scope completes normally. Invoking a compensation handler that has not been

installed is equivalent to the empty activity (it is a no-op)-this ensures that

fault handlers do not have to rely on state to determine which nested scopes

have completed successfully." [$l3.3.2]

4. "If a scope being compensated by name was nested in a loop, the instances of

the compensation handlers in the successive iterations are invoked in reverse

order." [$13.3.2]

5. "It is no longer possible to have other than depth first order of control-flow-

dictated completion since we ban circular dependencies via links between re-

versible scopes." [Reversible and Permeable Scopes, in resolution to OASIS

issue #lo]

6. "If the compensation handler for a scope is absent, the default compensa-

tion handler invokes the compensation handlers for the immediately enclosed

scopes in the reverse order of the completion of those scopes." [$13.3.2]

7. "Note that the <compensate/> activity in a fault or compensation handler

attached to scope S causes the default-order invocation of compensation han-

dlers for completed scopes directly nested within S. The use of this activity

can be mixed with any other user-specified behaviour except the explicit invo-

cation of <compensate scope='SxJ/> for scope Sx nested directly within S.

Explicit invocation of compensation for such a scope nested within S disables

the availability of default-order compensation, as expected." [$13.3.2]

8. In Section 13.4.1, the LRM indicates that: "Whenever a fault handler (for

any fault) or the compensation handler is missing for any given scope, they

APPENDIX A. REQUIREMENTS LISTS

are implicitly created with the following behavior:

Fault handler:

Run all available compensation handlers for immediately enclosed

scopes in the reverse order of completion of the corresponding

scopes.

Rethrow the fault to the next enclosing scope.

Compensation handler:

Run all available compensation handlers for immediately enclosed

scopes in the reverse order of completion of the corresponding

scopes.''

9. "A business process instance is terminated . . . When a fault reaches the process

scope, and is either handled or not handled. In this case the termination is

considered abnormal even if the fault is handled and the fault handler does

not rethrow any fault. A compensation handler is never installed for a scope

that terminates abnormally." [$6.4]

10. "The throw activity can be used when a business process needs to signal an

internal fault explicitly. Every fault is required to have a globally unique

QName. The throw activity is required to provide such a name for the fault

and can optionally provide a variable of data that provides further information

about the fault. A fault handler can use such data to analyze and handle the

fault and also to populate any fault messages that need to be sent to other

services." [$11.6]

11. Quoted from [$20.3.1]: Coordination Protocol for BPEL4WS Scope

i. "A nested scope may complete successfully. In this case a compensation

handler is installed for the nested scope. This is modeled with a Com-

pleted signal from the nested scope to its parent scope.

ii. A nested scope may encounter a fault internally. In this case the scope

always terminates unsuccessfully.

A. If the fault handler rethrows a fault to its enclosing scope, this is

modeled as a Faulted signal from the nested scope to its parent scope.

B. If the fault is handled and not rethrown, the scope exits gracefully

APPENDIX A. REQUIREMENTS LISTS 115

from the work of its parent scope. This is modeled as an Exited

signal from the nested scope to its parent scope.

iii. After a nested scope has completed, (a fault or compensation handler for)

the parent scope may ask it to compensate itself by invoking its compen-

sation handler. The compensate action is modeled with a Compensate

signal from the parent scope to the nested scope.

iv. Upon successful completion of the compensation, the nested scope sends

the Compensated signal to its parent scope.

v. The compensation handler may itself fault internally. In this case

A. If the fault is not handled by a scope within the compensation handler,

it is rethrown to the parent scope. This is modeled as a Faulted signal

from the nested scope to its parent scope.

B. If the fault is handled and not rethrown, we assume that the compen-

sation was able to complete successfully. In this case the nested scope

sends the Compensated signal to its parent scope.

vi. If there is a fault in the parent scope independent of the work of the nested

scope, the parent scope will ask the nested scope to prematurely abandon

its work by sending a Cancel signal.

vii. The nested scope, upon receiving the cancel signal, will interrupt and

terminate its behavior (as though there were an internal fault), and return

a Canceled signal to the parent.

viii. Finally, when a parent scope decides that the compensation for a com-

pleted nested scope is not needed any more it sends a Close signal to the

nested scope. After discarding the compensation handler the nested scope

responds with a Closed signal.

ix. In case there is a race between the Completed signal from the nested scope

and the Cancel signal from the parent scope, the Completed signal wins,

i.e., the nested scope is deemed to have completed and the Cancel signal

is ignored.

x. In case a Cancel signal is sent to a nested scope that has already faulted

internally, the Cancel signal is ignored and the scope will eventually send

either a Faulted or an Exited signal to the parent."

APPENDIX A. REQUIREMENTS LISTS 116

12. "The optional fault handlers attached to a scope provide a way to define a set of

custom fault-handling activities, syntactically defined as catch activities. . . If
the fault name is missing, then the catch will intercept all faults with the right

type of fault data. . . . A catchAll clause can be added to catch any fault not

caught by a more specific catch handler." [$13.4]

13. "If no catch or catchall is selected, the fault is not caught by the current scope

and is rethrown to the immediately enclosing scope." [$13.4]

14. "If the fault occurs in (or is rethrown to) the global process scope, and there

is no matching fault handler for the fault at the global level, the process

terminates abnormally, as though a terminate activity had been performed."

[$13.4](see B9)

15. "Scopes provide the ability to control the semantics of forced termination

to some degree. When the activity being terminated is in fact a scope, the

behavior of the scope is interrupted and the fault handler for the standard

bpws:forcedTermination fault is run. Note that this applies only if the scope is

in normal processing mode. If the scope has already experienced an internal

fault and invoked a fault handler, then as stated above, all other fault han-

dlers including the handler for bpws:forcedTermination are uninstalled, and the

forced termination has no effect. The already active fault handler is allowed

to complete." [$13.4.2]

16. In [$13.4.2] it says, the behaviour of a normal fault handler "begins by implic-

itly (recursively) terminating all activities directly enclosed within its associ-

ated scope that are currently active.

The assign activities are sufficiently short-lived that they are allowed to

complete rather than being interrupted when termination is forced. The

evaluation of expressions when already started is also allowed to complete.

Each wait, receive, reply and invoke activity is interrupted and terminated

prematurely. When a synchronous invoke activity (corresponding to a

requestlreply operation) is interrupted and terminated prematurely, the

response (if received) for such a terminated activity is silently discarded.

The notion of termination does not apply to empty, terminate, and throw.

All structured activity behavior is interrupted. The iteration of while is

APPENDIX A. REQUIREMENTS LISTS 117

interrupted and termination is applied to the loop body activity. If switch

has selected a branch, then the termination is applied to the activity of

the selected branch. The same applies to pick. If either of these activities

has not yet selected a branch, then the switch and the pick are terminated

immediately. The sequence and flow constructs are terminated by termi-

nating their behavior and applying termination to all nested activities

currently active within them."

17. "If a fault occurs in a fault handler E for a scope C, the fault can be caught

through the use of a scope within E. If the fault is not caught by a scope

within E, it is immediately thrown to the parent scope of C and the behavior

of E terminates prematurely. In effect, no distinction is made between faults

that E rethrows deliberately and faults that occur as undesired faults in E."

[$13.4.2]

Group C: Details and Constraints

1. "If a compensation handler is specified for the business process as a whole (see

13.3. Compensation Handlers), a business process instance can be compen-

sated after normal completion by platform-specific means. This functionality

is enabled by setting the enableInstanceCompensation attribute of the process

to 'yes'." [$6.4]

2. L'The variable provided as the value of the faultvariable attribute in a catch

handler to hold fault data is now scoped to the fault handler itself rather than

being inherited from the associated scope." [$4.3]

3. "This attribute [suppressJoinFailure, in Process] determines whether the join-

Failure fault will be suppressed for all activities in the process. The effect

of the attribute at the process level can be overridden by an activity using a

different value for the attribute. The default for this attribute is 'no'." [$6.2]

4. "When an invoke operation returns a fault message, this causes a fault in

the current scope. The fault variable in the corresponding fault handler is

initialized with the fault message received (see 13. Scopes and 13.4. Fault

Handlers) ." [$9.2]

5. "Semantically, [for the invoke activity] the specification of local fault and/or

APPENDIX A. REQUIREMENTS LISTS 118

compensation handlers is equivalent to the presence of an implicit scope im-

mediately enclosing the activity [invoke] and providing those handlers. The

name of such an implicit scope is always the same as the name of the activity

it encloses." [$11.2]

6. "If, on the other hand, the response indicates a fault, the faultName attribute

is used and the variable attribute, when present, will indicate a variable of the

message type for the corresponding fault ." [$11.4]

7. "The fault variable [of a catch clause] is optional because a fault might not

have additional data associated with it." [$13.4]

8. "The following rules are used to select the catch activity that will process a

fault:

i. If the fault has no associated fault data, a catch activity that specifies

a matching faultName value will be selected if present. Otherwise, the

default catchAll handler is selected if present.

ii. If the fault has associated fault data, a catch activity specifying a matching

faultName value and a faultvariable whose type (WSDL message type)

matches the type of the fault's data will be selected if present. Otherwise,

a catch activity with no specified faultName and with a faultvariable

whose type matches the type of the fault data will be selected if present.

Otherwise, the default catchAll handler is selected if present ." [$13.4]

9. "When a fault handler for scope S handles a fault that occurred in S without

rethrowing, links that have S as the source will be subject to regular evaluation

of status after the fault has been handled, because processing in the enclosing

scope is meant to be continued." [$13.4]

10. "The fault handler for the bpws:forced Termination fault is designed like other

fault handlers, but this fault handler cannot rethrow any fault. Even if an

uncaught fault occurs during its behavior, it is not rethrown to the next en-

closing scope. This is because the enclosing scope has already faulted, which

is what is causing the forced termination of the nested scope." [$13.4.2]

11. "The use of error handling features in a serializable scope is governed by the

following rules:

APPENDIX A. REQUIREMENTS LISTS 119

i. The fault handlers for a serializable scope share the serializability domain

of the associated scope, that is, in case a fault occurs in a serializable

scope, the behavior of the fault handler is considered part of the serial-

izable behavior (in commonly used implementation terms, locks are not

released when making the transition to the fault handler). This is because

the repair of the fault needs a shared isolation environment to provide pre-

dictable behavior.

ii. The compensation handler for a serializable scope does not share the se-

rializability domain of the associated scope.

iii. For a serializable scope with a compensation handler, the creation of the

state snapshot for compensation is part of the serializable behavior. In

other words, it is always possible to reorder behavior steps as if the scope

had sufficiently exclusive access to the shared variables all the way to

completion, including the creation of the snapshot ." [$13.6]

12. "If there is any fault during the execution of an assignment activity, the desti-

nation variables are left unchanged as they were at the start of the activity."

[$14.3]

13. "After a correlation set is initiated, the values of the properties for a cor-

relation set must be identical for all the messages in all the operations that

carry the correlation set and occur within the corresponding scope until its

completion. If at execution time this constraint is violated, the standard fault

bpws:correlationViolation MUST be thrown by a compliant implementation.

The same fault MUST be thrown if an activity with the initiate attribute set

to no attempts to use a correlation set that has not been previously initiated."

[$14.4]

14. "If during the execution of a business process instance, two or more receive

activities for the same partner link, portType, operation and correlation set(s)

are in fact simultaneously enabled, then the standard fault bpws:confEicting-

Receive MUST be thrown by a compliant implementation." [$14.5]

15. "If more than one outstanding synchronous request on a specific partner link

for a particular portType, operation and correlation set(s) is outstanding si-

multaneously during the execution of a business process instance, then the

APPENDIX A. REQUIREMENTS LISTS 120

standard fault bpws:confiictingRequest MUST be thrown by a compliant imple-

mentation. Note that this is semantically different from the bpws:confiicting-

Receive, because it is possible to create the conflictingRequest by consecutively

receiving the same request on a specific partner link for a particular portType,

operation and correlation set(s). If a reply activity is being carried out during

the execution of a business process instance and no synchronous request is

outstanding for the specified partnerlink, portType, operation and correla-

tion set(s), then the standard fault bpws:invalidReply MUST be thrown by a

compliant implementation." [$14.5]

16. "If an installed compensation handler is invoked more than once during the

execution of a process instance, a compliant implementation MUST throw the

standard bpws:repeatedCompensation fault." [$14.7]

17. Standard Faults [$20.1] (the complete list is presented in Appendix A

bpws:conflictingReceive Thrown when more than one receive activity or

equivalent (currently, onMessage branch in a pick activity) are enabled

simultaneously for the same partner link, port type, operation and corre-

lation set (s) .
bpws:conflictingRequest Thrown when more than one synchronous inbound

request on the same partner link for a particular port type, operation and

correlation set(s) are active.

bpws:forcedTermination Thrown as the result of a fault in an enclosing

scope.

bpws:correlationViolation Thrown when the contents of the messages that

are processed in an invoke, receive, or reply activity do not match specified

correlation information.

bpws:repeatedCompensation Thrown when an installed compensation han-

dler is invoked more than once.

bpws:invalidReply Thrown when a reply is sent on a partner link, port-

Type and operation for which the corresponding receive with the same

correlation has not been carried out.

Group D: Special Cases

APPENDIX A. RE& UIREMENTS LISTS 121

1. "The semantics of a process in which an installed compensation handler is

invoked more than once is undefined." [$13.3.2]

2. "The first extension [for Executable Processes] defines a standard fault for

errorneous use of the XPath 1.0 function defined for extracting global property

values from variables." [$Id. 11

3. "An attempt during process execution to use any part of a variable before it

is initialized MUST result in the standard bpws:uninitializedVariable fault."

[$14.2]

4. "The second extension defines a standard fault for violation of type matching

constraints. If any of the matching constraints defined in the section 9.3.1.

Type Compatibility in Assignment is violated during execution, the standard

fault bpws:mismatchedAssignrnentFailure MUST be thrown by a compliant

implementation." [$14.3]

Group E: Interpretation

1. ". . . it is important to note that BPEL4WS uses two standard internal faults

for its core control semantics, namely, bpws:forceTermination and bpws:join-

Failure. These are the only two standard faults that play a role in the core

concepts of BPEL4WS." [$5]

2. "Fault handling in a business process can be thought of as a mode switch from

the normal processing in a scope." [$13.4]

Group F: Extensibility

1. "In the future, BPEL4WS will add input and output parameters to compen-

sation handlers.. . " [$13.3.1]

Appendix B

The Revised Core

B. 1 Initial Definitions

/ / !lgwt s

domain PROCESS

domain INBOXMANAGER

domain OUTBOX-MANAGER

/ / .let i\.iiv .lp,c~rkt>

domain SEQUENCEAGENT

domain WHILEAGENT

domain FLOWAGENT

domain FLOW-THREADAGENT// su i t agcrit 5 oi' n flon. <~gvrif

domain PICKAGENT

domain PICK-ALARMAGENT

domain PICK-MESSAGEAGENT

domain SWITCHAGENT

APPENDIX B. THE RE VISED CORE 123

ACTIVITYAGENT =
SEQUENCEAGENT

U WHILEAGENT

U FLOWAGENT

U PICKAGENT

U SWITCHAGENT

U FLOW-THREADAGENT

U PICKALARMAGENT

U PICKXESSAGEAGENT

KERNELAGENT z PROCESS U SUBPROCESSAGENT

AGENT = KERNELAGENT U INBOX-MANAGER U OUTBOX-MANAGER

EVENT = ONMESSAGE U ONALARM

APPENDIX B. THE REVISED CORE 124

/ / !\(.ti) i i iw

domain REPLY

d o m a i n RECEIVE

d o m a i n INVOKE

d o m a i n WAIT

d o m a i n TERMINATE

domain EMPTY

domain SEQUENCE

d o m a i n WHILE

d o m a i n SWITCH

d o m a i n PICK

d o m a i n FLOW

ACTIVITY REPLY U RECEIVE U SEQUENCE U INVOKE

U WHILE U SWITCH U PICK U FLOW

U WAIT U TERMINATE U EMPTY U ASSIGN

U SCOPE U COMPENSATE

IN-OPERATION RECEIVE U INVOKE U ONMESSAGE

OUT-OPERATION % REPLY U INVOKE

INOUT-OPERATION IN-OPERATION U OUT-OPERATION

/ / I I I -OII~ DPSCI iptor,

d o m a i n OUTPUTDESCRIPTOR

d o m a i n INPUTDESCRIPTOR

INOUTDESCRIPTOR = INPUTDESCRIPTOR U OUTPUTDESCRIPTOR

APPENDIX B. THE REVISED CORE

/ / nifhwut L X ~ Y I L ~ ion llodos of I t ~ ~ r l r l i ~ l : ; ,Zgc>~it i

EXECUTIONNODE =
{emstarted, emRunning, emActivityCompleted, emCompleted)

rootProcess (a) = if a E PROCESS;

rootProcess(parentAgent(a)) , otherwise.

receiveMode : KERNELAGENT + BOOELAN

// inii ial v:>Itw : F:ilsc\

eventoccured : KERNELAGENT + BOOLEAN

eventOccured(a : KERNELAGENT) =
3e(e E occuredEvents(parentAgent(a)))

A parentAgent(a) E PICK-AGENT

normalExecution : KERNELAGENT -+ BOOLEAN

normalExecution(a) true

APPENDIX B. THE REVISED CORE

wai t ingForInput : PROCESS -+ BOOLEAN

wai t ingForInput(p : PROCESS) (wai t ingSetForInput(p) # 0)
/ / i11(1i(<it cs i (I,lw 111 oww is wxitirq< fo r ~ U Y r r 1 o w l g v or l io i

waitingForOutput : PROCESS -+ BOOLEAN

waitingForOutput(p : PROCESS) (wai t ingSetForOutput(p) # 0)
// i r ~ c J i m ~ m if' 111c prows. i - vcli t ir~g l o r ~ I Y ~ ~ w s w g c to iw +ill. o r lot

completedInOperations : PROCESS -+ INPUTDESCRIPTOR-set

completedOutOperations : PROCESS + OUTPUTDESCRIPTOR-set

subordinateAgentSet : PROCESS -+ SUBPROCESSAGENT-set

// ~<Ct l l 1114 th(' 8f't Of ~ l l h / f l O ~ ~ % ;Ig('Illi thitt Il;lT.(' /l('C'll ~ t (' i l t t>d

/ / arltl nork untlc~ c o n t i 0 1 of tlii:: ptocws

subordinateAgentSet(p : PROCESS) z

{ a I a E ACTIVITYAGENT A rootProcess(a) = p)

APPENDIX B. THE REVISED CORE

wai t i ngOnInpu t : (SUBPROCESSAGENT x PROCESS) + BOOLEAN

w a i t i n g O n I n p u t (a , p)

3d(d E wai t i ngSe tFor Inpu t (p) A dscAgent (d) = a)

A Vdl(d' E completedInOperations(p) + dscAgent (d l) # a)

APPENDIX B. THE REVISED CORE 128

sourceLinkSet : ACTIVITY -+ LINK-set

// . h r ac.r.i\-it!. t:;111 i)r t h e so~irct! of :I set of links: r ~ t , t l i . ~ ~ ~ this S C ~

targe t l inkse t : ACTIVITY + LINK-set

/ / 111 act i\.ity c:111 tw I Iw l a1 g ~ i o f :I s ~ 1 of' links: rt5t twrls I hi:: w t

APPENDIX B. THE REVISED CORE 129

APPENDIX B. THE REVISED CORE 130

APPENDIX B. THE REVISED CORE 131

APPENDIX B. THE REVISED CORE

APPENDIX B. THE REVISED CORE 133

B.2 Programs

// .- -- - -- - - --- -- I r h o x ~ I ; L I I , ~ ~ C I - - - -

InboxManagerProgram G

if inboxSpace(se1f) # 0 then

choose p E PROCESS, m E inboxSpace(self) ,

descriptor E wait ingSetForInput(p) with

waitingOnIO(dscAgent(descriptor),p) A match(p , operation, m)

AssignMessage(p, descriptor, m)

if p = dummyProcess then

new n e w D u m m y : PROCESS

dummyProcess := n e w D u m m y

where

operation - dscOperation(descriptor)

AssignMessage(p : PROCESS, descriptor : INPUTDESCRIPTOR, m : MESSAGE) Z

if initiateCorrelation(op) then

InitiateCorrelation(p, descriptor, m)

dscCompletedTime(descriptor) := now

add descriptor to completedInOperations(p)

remove m from inboxSpace(se1f)

remove descriptor from wait ingSetForInput(p)

where

op dscOperation(descriptor),

agent =I dscAgent(descriptor)

/ / ~ i i l h o x - ~ h ~ r i l g ~ ~ r -

OutboxManagerProgram

choose p E PROCESS, descriptor E wait ingSetForOutput(p)

DeliverMessage(p, descriptor)

APPENDIX B. THE REVISED CORE

DeliverMessage(p : PROCESS, descriptor : OUTPUTDESCRIPTOR) r

if variable(opr) = undef then

add opaqueMessage(opr) to outboxSpace(se1f)

if initiateCorrelation(opr) then

InitiateCorrelation(p, descriptor, opaqueMessage(opr))

dscCompletedTime(descriptor) := now

add descriptor to completedInOperations(p)

remove descriptor from wait ingSetForOutput(p)

where

opr r dscOperation(descriptor)

/ / L'l.()(.(\h< -- --

ProcessProgram 5

case execMode(se1f) of

emstarted + execMode(se1f) := emRunning

emRunning +
if normalExecution(self) then

onsignal s : AGENT-COMPLETED

execMode(se1f) := emActiuityCompleted

otherwise

ExecuteActivi ty (mainAct iv i ty (se l f))

emActiuityCompleted -+ execMode(se1f) := emcompleted

emcompleted + stop self

, , / / I----.- licl~'t'1 i2lliW - - --

FinalizeActivity(activzty : ACTIVITY) 5

execMode(se1f) :=

emdc t i v i t y Completed

Synchronization(activzty)

FinalizeKernelAgent

execMode(se1f) := emcompleted

trigger s : AGENT-COMPLETED, parentAgent(se1f)

Synchronization(baseActivity(self))

APPENDIX B. THE REVISED CORE 135

GeneratelnputDescriptor(operation : INPUT-OPERATION) E

extend INPUTDESCRIPTOR with descriptor

SetInOutDescriptor(operation, descriptor)

add descriptor to waitingSetForInput(rootProcess(se1f))

GenerateOutputDescriptor(operation : OUTPUT-OPERATION) --
extend OUTPUTDESCRIPTOR with descriptor

SetlnOutDescriptor(operation, descriptor)

add descriptor to waitingSetFor0utput(rootProcess(self))

SetlnOutDescriptor(operation : OUTPUT-OPERATION, dsc : INOUTDESCRIPTOR) --
dscAgent(dsc) := self

dscOperation(dsc) := operation

Synchronization(activit?/ : ACTIVITY) E

forall l ink E sourceLinkSet(activi ty)

if linkTransitionCondition(1ink) then

l inkStatus(1ink) := lsPositive

else

l inkStatus(1ink) := 1sNegative

ExecuteActivity(activitiy : ACTIVITY)

if V x (x E targetLinkSet(acti2rity) A (l inkS ta tus (x) # IsNotDefined)) then

if activi ty JoinCondit ion(activi ty) then

ExecuteBasicActivity(activity)

ExecuteStructuredActivity (activi ty)

APPENDIX B. THE REVISED CORE

ExecuteBasicActivity(activity : ACTIVITY) -
if activity E RECEIVE then

ExecuteReceive(activity)

if activity E REPLY then

ExecuteReply(activity)

if activity E INVOKE then

Executelnvoke(activity)

if activity E WAIT then

ExecuteWait(activity)

if activity E EMPTY then

ExecuteEm pty (activity)

ExecuteStructuredActivity(activity : ACTIVITY) r

if assignedAgent(activity) = undef then

if activity E SEQUENCE then

new s : SEQUENCEAGENT

Initialize(s, activity)

if activity E WHILE then

new w : WHILEAGENT

Initialize(w, activity)

if activity E SWITCH then

new sw : SWITCHAGENT

Initialize(sw, activity)

if activity E PICK then

new p : PICKAGENT

Initialize(p, activity)

if activity E FLOW then

new f : FLOWAGENT

Initialize(f, activity)

Initialize(agent : ACTIVITYAGENT, activity : ACTIVITY) 5

assignedAgent(activity) := agent

parentAgent(agent) := self

baseActivity(agent) := activity

APPENDIX B. THE REVISED CORE

/ / I.'.ic.c.t,tr> 2 , pi\.{> - - ----- --

ExecuteReceive(activity : RECEIVE) 5

if lreceiveMode(se1f) A 1outstandingReceiveCon f lict(activity) then

receiveMode(se1f) := true// 'Tl1tl runrimg ;igcut xitit - to ior<cLilv1 A 1 1 1 1 ~ d g ~

GeneratelnputDescriptor(activity)

if receiveMode(se1f) then

choose descriptor E completedInOperations(se1f)

with dscAgent(descriptor) = self A dscOperation(descriptor) = activity

receiveMode(se1f) := false

FinalizeActivity(activity)

// --- - - -- 1 :xcw t t' I$cplv -

ExecuteReply(activity : REPLY) =
if requestResponseConditionSatis f ied(activty) then

if ~replyMode(se1f) then

replyMode(self) := true

GenerateOutputDescriptor(activity)

if reply Mode(se1f) then

choose descriptor E completedOutOperations(self) with

dscAgent(descriptor) = self A dscOperation(descriptor) = activity

replyMode :=false

FinalizeActivity(activity)

/ / it-I IPI c r c~rj?trsiRr.,sport~s~~f~"oriif i l~otiSe~ r s f ~ o t i (ar t 1 ~ t l y) t h ~ ls wirh

/ / Itrquir.c:~ncrits +2. #3. ant1 $ 1 of t l i v rcyuirt~rxicmt~ l ist of t l i c r r ~ p l ~ aclii- IT.

APPENDIX B. THE REVISED CORE 138

/ / Ky-,(.,,t(, I1,yc,k(,

Executelnvoke(activity : INVOKE) E

if lreplyMode(se1f) A lrecevieMode(se1f) then / / i (I ~t i t i-, the. lir-,i q t t y

replyMode(se1f) := true

GenerateOutputDescriptor(activity)

if replyMode(se1f) A -v-eceiveMode(self) then

choose descriptor E completedOutOperations(self)

with dscAgent(descriptor) = self A dscOperation(descriptor) = activity

replyMode(se1f) := false

if synchronous(activity) then

/ / 'I 'br~ t.l~nni>ig ,igc\rlt wails lo r av ivc~ il Il1c.isagt:

receiveMode(se1f) := true

GeneratelnputDescriptor(activity)

else

FinalizeActivity(activity)

if -veplyMode(self) A receiveMode(se1f) then

choose descriptor E completedInOperations(se1f)

with dscAgent(descriptor) = self A dscOperation(descriptor) = activity

receiveMode(se1f) := false

FinalizeActivity(activity)

// - - - 1'; accuIti\\ail . , . - - - -

ExecuteWait(activity : WAIT) E

if startTime(se1f) = undef then

startTime(se1f) := now

else

if completionTime(activit.y, startTime) = now then

startTime(se1f) := undef

FinalizeActivity(activity)

APPENDIX B. THE REVISED CORE

/ / ------ 1: ..itY~ul (X ttlmpt). - - -- - -

ExecuteEmpty(activity : EMPTY) E

FinalizeActivity(activity)

,/,! -- 'jcc~~1''nc'c' .\g"rlt

SequenceProgram =
case execMode(se1f) of

emstarted +
currentActivit~ (self) := sequenceCounter(self)

execMode(se1f) := emRunning

emRunning -+
if normalExecution(se1f) then

onsignal s : AGENT-COMPLETED

execMode(se1f) := emActivityCompleted

otherwise

ExecuteActivity (currentActivity (self))

emActivityCompleted -t

currentActivity (self) := sequenceCounter(self)

if currentActivity (self) = undef then

FinalizeKernelAgent

else

execMode(se1f) := emRunning

emCompleted -+ stop self

APPENDIX B. THE REVISED CORE

/ / --- tr.1 2,\c ,\gt't,t - ---- - -

Whileprogram

case execMode(se1f) of

emstarted +
if waCondition(baseActivity(se1f)) then

execMode(se1f) := emRunnzng

else

FinalizeKernelAgent

emRunning -+
if normalExecution(se1f) then

onsignal s : AGENT-COMPLETED

execMode(se1f) := emActivityCompleted

otherwise

ExecuteActivity(innerActivity (baseActivity(se1f)))

emActivityCompleted -+
if ~aCondition(baseActivit~(se1f)) then

execMode(se1f) := emRunning

else

FinalizeKernelAgent

emcompleted + stop self

APPENDIX 33. THE REVISED CORE 141

/ / SLVi(c.ll .4,gc,xlt -- ---- --
I

Switchprogram

case execMode(se1f) of

emstarted +
let caseset = swCaseSet(baseActivity(se1f)) in

choose c E caseset with

swCaseCondition(c) = true A

(V x (x E caseset A swCaseCondition(x) = true) +
(swprior i ty (c) = swPriority (x)))

// (%oo\ing tho tir5t [n-i\-ith higlit'd i ~ i o r ~ t ~] I ~ n n t ~ l t n l th ,I t ~ c c.olitiitiori

/ / C ~ O O W i~ i t l \ ~ < > \ , ~ ~ \ i < (~ > \ \ i ' ~ l . I><Y AIM> \ytL h < i ~ t ? A (kfi~i111 O ' ~ ' ~ K l 3 I V I S ~ ~

f oundBranch(se1j) := swCaseActivity (c)

execMode(se1f) := emRunning

emRunning +
if normalExecution(self) then

onsignal s : AGENT-COMPLETED

execMode(se1f) := emActiuityCompleted

otherwise

ExecuteActivity(f oundaranch(se1f))

emCompleted + stop self

APPENDIX B. THE REVISED CORE 142

/ / --- 1 <>(.Ill - -- - - 'ick .I,
Pickprogram E

case execMode(se1 f) of

emstarted +
new a : PICKALARMAGENT

Initialize(a, activity(se1f))

new m : PICKNESSAGE-AGENT

Initialize(m, activity (se l f))

execMode(se1f) := emRunning

emRunning +
if normalExecution(self) then

onsignal s : AGENT-COMPLETED

execMode(se1f) := emActivityCompleted

otherwise

if chosenAct(se1f) = undef then

choose dsc E occurredEvents(se1f) with MinTime(dsc)

chosenAct(se1f) := onEventAct(edscEvent(dsc))

else

ExecuteActivity(chosenAct(se1f)))

emcompleted + stop self

where

MinTime(dsc) = Vd(d E occurredEvents(se1f) + edscTime(dsc) < edscTime(d))

/ / -- - -- Pick 3 I ~ ~ ~ n ~ ; t : -tocqrt ----- -
0

PickMessageProgram E

case execMode(se1f) of

emstarted + PickMessageAgentStarted

emRunning -+ PickMessageAgentRunning

emActivityCompleted +
FinalizePickMessageAgent

execMode(se1f) := emCompleted

emCompleted + stop self

APPENDIX B. THE REVISED CORE

PickMessageAgentStarted =
if eventOccured(se1f) then

execMode(self) := emCompleted

else

execMode(se1f) := emRunnzng

forall event E onMessageEventSet(activity(se1f))

GeneratelnputDescriptor(event)

/ / crcnlci thr input clfwripior Sc ; \(id% it to the n-,lit IKIP, > c 3 1

PickMessageAgentRunning

if normalExecution(se1f) then

if eventOccured(se1f) then

execMode(self) := emActivityCompleted

else

choose d E completedMsgEvents

GenerateEventDescriptor(dscOpr(d), dscTime(d))

// (r(! i \ t (Y 1 1 ~ ~ ~ r i t dewriptor ck a h l s i? to o(mi?w'E(*t ?if 5

execMode(se1f) := emActivityCompleted

where

completedMsgEvcnts

{d I d E completedInOprs(rootProcess(self))

A dscOpr(d) E onMessageEventSet(activity(se1f)))

FinalizePickMessageAgent z

forall dscr E waitingset with dscAgent(dscr) = self

remove dscr from waitingset

where

waitingset -- v~aitingSetForInput(rootProcess(self))

APPENDIX B. THE REVISED CORE

/ / - 1'
I i t k . \ l n l r n ,\or:~il r, - - - -

PickAlarmProgram =
case execMode(se1f) of

emstarted +
if eventOccured(se1f) then

execMode(se1f) := emCompleted

else

startTime(se1f) := now

execMode(se1f) := emRunning

emRunning -+ PickAlarmAgentRunning

ernActiuityCornpleted + execMode(se1f) := ernCompleted

emCompleted stop self

PickAlarmAgentRunning E

if normalExecution(self) then

if eventOccured(se1f) then

ezecMode(se1f) := emActivityCompleted

else

forall e E triggeredillarms

GenerateEventNotification(e, t r iggerTime(e , startTime(se1f)))

/ / v r w i (IS t l ~ m C I I ~ d ~ w r i p ~ 01 A- i~(lds it i (3 I , J ~ u r d P , ' w r ~ t . ~

execMode(se1 f) := emActivityCompleted

where

triggeredA1arm.s E

{ e 1 e E onAlarmEventSet(activity(se1f))

A t r iggerTime(e , startTime(se1f)) 5 now)

APPENDIX B. TNE REVISED CORE

/ / -- 1'1 ow *lgcr1l -- - --- -

FlowProgram r

case execMode(self) of

emstarted +
execMode(se1f) := emRunnzng

// ~ r c ~ l t c:, t l ~ ~ t ' r i d \ ? T O (~ 1 1 1 1 1 ~ 1 O ~ I I 17 (> X C (' U ~ C CTI(1 0 ~ d i l < I I \ 11 IOL\

forall activity E flowActivitySet(se1f)

new fThread : FLOW-THREADAGENT

Initialize(fThread, actzvity)

add fThread to flowAgentSet(se1f)

emRunning -+
if normalExecution(se1f) then

onsignal s : AGENT-COMPLETED

remove signalSource(s) from fZowAgentSet(se1f)

if flowAgentSet(se1f) = 0 then

// . i l l 1hm1~ <ire (IOIW. [low { I \ 1 7) i~ (o t r i p l c i ~ \ (l .

execMode(se1f) := emActivityCompleted

emCompleted + stop self

APPENDIX B. THE REVISED CORE

/ / - -- -- .- --- - f'lotv '1 11r t ~ t i tgttrrt - --

FlowThread Program

case execMode(se1f) of

emstarted + execMode(se1f) := emRunnzng

emRunning +
if normalExecution(self) then

onsignal s : AGENT-COMPLETED

execMode(se1f) := emActivityCompleted

otherwise

ExecuteActivity (baseActivity(se1f))

emcompleted -+ stop self

Appendix C

Data Handling Extension

C . l Initial Definitions

domain EXPRESSION

domain VALUE

domain VARIABLE

domain MESSAGE-TYPE

domain XML-TYPE

domain XMLELEMENT

domain MESSAGE

domain FROMELEMENT

domain TO-ELEMENT

domain ASSIGN

domain SCOPE

domain SCOPE-AGENT

ACTIVITY =I ACTIVITYcore U SCOPE U ASSIGN

ACTIVITYAGENT ACTIVITYAGENTcore U SCOPEAGENT

APPENDIX C. DATA HANDLING EXTENSION

/ / - - --- --- - . - 'I'Yl'(,\ i'nluc,, ----- - - - - - -

varType : VARIABLE + MESSAGE-TYPE U XML-TYPE U XMLELEMENT

varValue : VARIABLE x PROCESS -+ VALUE

expValue : EXPRESSION x PROCESS -+ VALUE

value : (EXPRESSION U VARIABLE) x PROCESS + VALUE

varValue(x, p), if x E VARIABLE;
value(x,p) z

expValue(x,p), if x E EXPRESSION.

APPENDIX C. DATA HANDLING EXTENSION

C.2 Programs

/ / - - - - -- .- - In hox l'r , i tn : Ass~gnMessage Ilxt m\ t lcd - - - . -- - .-

AssignMessage(p : PROCESS,

descriptor : INPUTDESCRIPTOR, m : MESSAGE)

AssignMessage,,,, C p , descriptor, m)

Assign Messageda,, (p , descriptor, m)

AssignMessagedata(p : PROCESS,

descriptor : INPUTDESCRIPTOR, m : MESSAGE) -
if variable(dscOperation(descriptor)) # undef then

AssignMessageVaIueToVariabIe(p, descriptor, m)

AssignMessageValueToVariable(p : PROCESS,

descriptor : INPUTDESCRIPTOR, m : MESSAGE) -
value(variable(dscOperatian(descriptor)), p) := m

/ I' ' - -- -- - Out h i Z'r-ograrii . DelvierM~ssage t:ut c w t t c ~ l - - -- -- -

DeliverMessageCp : PROCESS, descriptor : OUTPUTDESCRIPTOR) -
DeliverMessage,,,, (p , descriptor)

DeliverMessagedata(p, descriptor)

DeliverMessaged,,,(p : PROCESS, descriptor : OUTPUTDESCRIPTOR) =
if variable(operation) # undef then // xwi;\hl<> ~h0111d t \ <) i l i ~ \ i r l i i niowigv

AssignValueToMessage(descriptor)

where

operation = dscOperation(descriptor)

AssignValueToMessage(descriptor : OUTPUTDESCRIPTOR) =
if correlationSatis f ied(descriptor) then

add messageValue(dscVariableValue(descriptor)) to outboxSpace(se1 f)

APPENDIX C. DATA HANDLING EXTENSION

/ / -.- - .-- SetlnOutDescriptor I+:xt(~ltlctl - - - - - -- - - -

SetlnOutDescriptor(descriptor : INOUTDESCRIPTOR,

operation : INOUT-OPERATION, agent : KERNELAGENT) E

Set1 nOut Descriptorcore (descriptor, operation, agent)

SetlnOutDescriptordata(descriptor, operation, agent)

Se t lnO~tDescr ip tor~~(descr ip tor : INOUTDESCRIPTOR,

operation : INOUT-OPERATION, agent : KERNELAGENT) E

if operation E IN-OPERATION A variable(operation) # undef then

SetDescriptorValue(descriptor)

where

operation = dscOperation(descriptor)

SetDescriptorValue(descriptor : INOUTDESCRIPTOR)

dscVariableValue(descriptor) :=

value(variable(dscOperation(descriptor)), rootProcess(se1 f))

/ / ---- - lit(> *js$jlg - - - - "- - --

ExecuteAssign(activity : ASSIGN) 5

forall c in copyElements(aclivity)

ExecuteCopy(f romSpec(c), toSpec(c))

FinalizeActivity(activity)

/ / - ExecuteRasicActiv~ty. I:utc.;rtlctl - -

ExecuteBasicActivity(activity : ACTIVITY) E

ExecuteBasicActivity,,,, (activity)

if actzvity E ASSIGN then

ExecuteAssign (activity)

APPENDIX C. DATA HANDLING EXTENSION 151

/ / "; , (q'(' 'iR(',,t - -- - - ,
ScopeProgram E

case execMode(se1f) of

emstarted +
execMode(se1f) := emRunnzng

lnitializeLocalVariables(baseActzvzty(se1f))

emRunning +
if normalExecution(self) then

onsignal s : AGENT-COMPLETED

execMode(se1f) := emActivityCompleted

otherwise

ExecuteActivity (innerActivity(baseActivity(se1f)))

emCompleted + stop self

lnitializeLocalVariables(scope : SCOPE) E

forall v in scopeVariables(scope)

variable Value(v, rootProcess(se1f)) := uninitialized Variable Value

/ / --- , , Exec~~teStruct~~redAclivity: Cxtcwtic~l - -

ExecuteStructuredActivity(activity) -
ExecuteStructuredActivity,,,, (activity)

if assignedAgent(activity) = undef then

if activity E SCOPE then

new s : SCOPEAGENT

Initialize(s, activity)

Appendix D

Fault and Compensate Extension

D. 1 Initial Definitions

domain SCOPE

domain COMPENSATE

domain THROW

ACTIVITY G ACTIVITYduta U SCOPE U COMPENSATE U THROW

domain COMPENSATEAGENT

domain COMPENSATIONHANDLERAGENT

domain FAULTHANDLERAGENT

ACTIVITYAGENT ACTIVITYAGENTdatU U COMPENSATE-AGENT

HANDLERAGENT G

COMPENSATIONHANDLERAGENT U FAULTHANDLERAGENT

SUBPROCESSAGENT G SUBPROCESSAGENT,,,, U HANDLERAGENT

EXECUTIONMODE = EXECUTION-MODE,,,, U

{emExecutionFault, emFaulted, emFaultHandling, emExited)

APPENDIX D. FAULT AND COMPENSATE EXTENSION

domain FAULT

domain SCOPENAME

domain COMPENSATIONMODULE

domain LOCAL-SNAPSHOT

domain CATCH-CLAUSE

domain AGENTJAULTED

domain AGENTEXITED

domain FORCED-TERMINATION

SIGNAL = SIGNAL,,,, U

AGENTJAULTED U AGENTEXITED U FORCED-TERMINATION

// FIM~I Ilxi c~iisior~ Signid

faultExtensionSigna1: KERNELAGENT -+ BOOLEAN

faultExtensionSigna1

3s(s E signalSet(rootProcess(se1f)) A signalSource(s) = self A

s E (AGENT-EXITED u AGENTJAULTED u FORCED-TERMINATION)

baseActivity,,,, (a) , if a E ACTIVITYAGENT;
baseActivity(a) 2

glo balscope, if a E PROCESS.

APPENDIX D. FAULT AND COMPENSATE EXTENSION

f aul tvar iable : FAULT -+ VARIABLE

fault : (A G E N T M L T E D U FORCED-TERMINATION) + FAULT

faultThrown : KERNELAGENT -+ FAULT

forcedTerminationAgent : KERNELAGENT + BOOLEAN

forcedTerminationAgent(a) (faultThrown(a) = bpwsForcedTermination)

handlerScope : FAULTHANDLERAGENT -+ SCOPE

f aultHandlerCatchSet : SCOPE -+ CATCH-CLAUSE-set

cmSet : (SCOPENAME) + COMPENSATIONMODULE-set

cmscope : COMPENSATION-MODULE -+ SCOPE

cmScopeName : COMPENSATIONMODULE -+ SCOPENAME

cmScopeName(cm) := scopeName(cmScope(cm))

APPENDIX D. FAULT AND COMPENSATE EXTENSION

compHandlerModule : COMPENSATIONHANDLER + COMPENSATIONXODULE

cmExecuted : COMPENSATION-MODULE t BOOLEAN

scopeCompletionTime : COMPENSATIONNODULE + TIME

ZocalSnapshot : COMPENSATIONNODULE t LOCALSNAPSHOT

snapshotVariableSet : LOCALSNAPSHOT -+ VARIABLE-set

snapshotVariableValue : (LOCALSNAPSHOT x VARIABLE) + VALUE

chosenCM : COMPENSATEAGENT + COMPENSATION-MODULE

parentScopeName : KERNELAGENT + SCOPENAME

parentScopeName(a) =
cmScopeName(compHandlerModule(a)), if a E COMPENSATIONHANDLER;

scopeName(baseActivity(parentAgent(a))), if parentAgent(a) E SCOPE-AGENT;

undef, if a E PROCESS

V parentAgent(a) E PROCESS;

parentScopeName(parentAgent(a)) , otherwise.

APPENDIX D. FAULT AND COMPENSATE EXTENSION

/ / Nttn. l) r \ r r w t l X ~ i ~ l c t i o r ~

activity : KERNELAGENT -+ ACTIVITY

activity(a)

I currentActivity(a), if a E SEQUENCEAGENT;

chosenActivity(a) , if a E PICK-AGENT;

foundBranch(a), if a E SWITCHAGENT;

innerActivity(a) , if a E WHILEAGENT U SCOPEAGENT;

catchActivzty(executingCatch(a)), if a E FAULTHANDLER;

baseActzvity(a), otherwise.

APPENDIX D. FAULT AND COMPENSATE EXTENSION

D.2 Programs

/; - -- -. - ' l ' t ~ o - c ~ 1c.tivity -- -

ExecuteThrow(activi ty : THROW) --
TransitionToExecutionFault(activityFault(activity))

Synchronization(activity)

TransitionToExecutionFault(f ault : FAULT)

execMode(se1f) := emExecutionFault

faultThrown(se1f) := faul t

lnformFaultToParent(f aul t)

InformFaultToParent(f ault : FAULT) =
if self 4 (SCOPE-AGENT U PROCESS) then

trigger s : AGENT-FAULTED, parentAgent(se1f)

fault(s) :=fault

/ / - -- - - SCtil,(' ----- - - - - -- -

ScopeProgram z

ScopeProgramdata

case execMode(self) of

emRunning + ScopeAgentRunningExtended

emExited + stop self

emFaulted + stop self

APPENDIX D. FAULT AND COMPENSATE EXTENSION

lnstallCompensationHandler E

extend C O M P E N S A T I O N X O D U L E with c m

scopeComplet ionTime(cm) := now

cmScope(cm) := baseActivity(se1f)

RegisterLocalSnapshot(cm, baseActivity(se1f))

add c m to cmSet(parentScopeName(se1f))

RegisterLocalSnapshot(cm : COMPENSATION-MODULE, scope : SCOPE) E

extend L O C A L S N A P S H O T with snapshot

forall v in scopeVariables(scope)

snapshot Variable Value(snapshot , v) := variable Value(v, rootProcess(se1f))

add v to snapshotVariableSet(snapshot)

localSnapshot(cm) := snapshot

ScopeAgentRunningExtended i

if faultExtensionSignal(se1f) then

onsignal s : A G E N T E X I T E D

execMode(se1f) := emActivityCompleted

otherwise

onsignal s : A G E N T E A U L T E D

execMode(se1f) := emExecutionFault

faultThrown(se1f) := fault(s)

otherwise

onsignal s : FORCED-TERMINATION

execMode(se1f) := emExecutionFault

faultThrown(se1f) := fault(s)

// 'f'lit: \ t *o l) t ' itgc'~it ~ ~ c w n t i ~ t hcl 1 0 1 wtl 1 cwrtiri;~l i o i l iigr~al

/ / i n it 5 c w m t i o i i - h 1 1 1 t i x r o t k .

APPENDIX D. FAULT AND COMPENSATE EXTENSION

InitiateForcedTermination E

forall child in childAgents(se1f)

trigger s : FORCED-TERMINATION, child

f aul t (s) := bpwsForcedTermination

CreateFaultHandler

new handler : FAULTHANDLERAGENT

parentAgent(hand1er) := self

handlerScope(hand1er) := baseActiuity(self)

faultThrown(hand1er) := faultThrown(self)

ScopeAgentFaultHandling =
onsignal s : AGENT-COMPLETED

execMode(se1f) := emExited

PassExitedToParent

otherwise

onsignal s : AGENTEAULTED

f aultThrown(self) := fault(s)

PassFaultedToParent(fault(s))

otherwise

onsignal s : FORCED-TERMINATION

execMode(se1f) := emFaulted

faultThrown(se1f) := fault(s)

PassForcedTerminationToChildren(fault(s))

PassExitedToParent =
trigger s f : AGENTEXITED, parentAgent(se1f)

PassFaultedToParent(f ault : FAULT) =
trigger s' : AGENT_FAULTED,parentAgent(self)

f aul t (s l) := fault

PassForcedTerminationToChildren(f ault : FAULT) =
forall child in childAgents(se1f)

trigger s' : FORCED-TERMINATION, child

fault(sl) := fault

APPENDIX D. FAULT AND COMPENSATE EXTENSION

TerminateBasicActivity(agent : KERNELAGENT) E

let activity = activity(agent)

case activity of

RECEIVE +
RemoveDscrFromlnputWaitingSet(agent, activity)

REPLY 4

RemoveDscrFromOutputWaitingSet(agent, activity)

INVOKE +
RemoveDscrFromlnputWaitingSet(agent, activity)

RemoveDscrFromOutputWaitingSet(agent, activity)

RemoveDscrFromlnputWaitingSet(agent : KERNELAGENT,

activity : ACTIVITY) s

choose d in waitingSetForInput with

dscAgent(d) = agent A dscOperation(d) = activity

remove d from waitingSetForInput

where

waitingSetForInput = waitingSetForInput(rootProcess(agent))

RemoveDscrFromOutputWaitingSet(agent : KERNELAGENT,

activity : ACTIVITY) =
choose d in waitingSetForOutput with

dscAgent(d) = agent A dscOperation(d) = activity

remove d from waitingSetForOutput

where

waitingSetForOutput waitingSetForOutput(rootProcess(agent))

APPENDIX D. FAULT AND COMPENSATE EXTENSION

/ / . r4 ',mlt . f-lnrlcllc~ - -- - - -

FaultHandlerProgram

case execMode(se1f) of

emstarted -+ FaultHandlerStarted

emRunning +
FaultHandlerRunningNormal

FaultHandlerRunningExtended

emcompleted + stop self

emFaulted + stop self

ChooseMatchingCatchClause =
choose c E faultHandlerCatchSet(handlerScope(se1f))

with matchingCatch(c, f aultThrown(se1f))

executingCatch(se1f) := c

FaultHandlerRunningNormal E

if normalExecution(se1f) then

onsignal s : AGENTXOMPLETED

execMode(se1f) := emActivityCompleted

otherwise

if executingCatch(se1f) = undef then

PickRethtowCatchClause

else

Executecatch Activity

APPENDIX D. FAULT AND COMPENSATE EXTENSION

ExecuteCatchActivity

ExecuteActivity(catchActivity(executingCatch(self)))

FaultHandlerRunningExtended =
if faultExtensionSignal(self) then

onsignal s : AGENTEXITED

execMode(se1f) := emActivityCompleted

otherwise

onsignal s : AGENTJAULTED

TransitionToExecutionFault(f a d t (s))

/ / - cO1lll)(>ll\Elt(> - .. - -

CompensateProgram 5

case execMode(self) of

emstarted -+ ChooseNextCM

emRunning + CompensateAgentRunning

emActivityCompleted -+ ChooseNextCM

emCompleted + stop self

emExecutionFault -+ Wait ForTermination

emFaulted + stop self

APPENDIX D. FAULT AND COMPENSATE EXTENSION

ChooseNextCM E

if thereIsAtLeast0neModule then

ChooseMatchingCompensationModule

execMode(se1f) := emRunning

else

FinalizeKernelAgent

ChooseMatchingCompensationModule =
choose c m in cMSet(parentScopeName(se1f)) with mathingCM(cm)

chosenCM(se1f) := c m

remove c m from cmSet(parentScopeName(se1f))

matchingCM(cm)

[targetScope(baseActivity(self)) = undef

V cMScopeName(cm) = targetScope(baseActivity(self))]

A topCMOrder(cm)

CompensateAgentRunning =
if normalExecution(self) then

onsignal s : AGENT-COMPLETED

execMode(se1f) := emActivityCompleted

otherwise

ExecuteChosenCompensationModule

if faultExtensionSignal(self) then

onsignal s : AGENTTAULTED

TransitionToExecutionFault(fa2llt(s))

otherwise

onsignal s : FORCED-TERMINATION

faultThrown(se1f) := fault(s)

PassForcedTerminationToChildren(fault(s))

execMode(se1f) := emExecutionFault

APPENDIX D. FAULT AND COMPENSATE EXTENSION

ExecuteChosenCompensationModule E

let c m = chosenCM(se1f)

if ~cmExecu ted(cm) then

CreateCornpensationHandler(cm)

CreateCompensationHandler(cm : COMPENSATION~/IODULE) =
new cma : COMPENSATIONHANDLERAGENT

Initialize(cma, compensationActivity(cmScope(cm)))

cmExecuted(cm) := true

compHandlerModule(cma) := c m

/ / - - -- - (' O I I I J) < ~ I ~ S ~ ~ P ~ O I I f f n r ~ (I l t . ~ - --- - - - - - --

CompensationHandlerProgram z

case execMode(se1f) of

emstarted -+
RestoreLocalVariables

execMode(self) := emRunnzng

emRunning ?r

if normalExecution(se1f) then

onsignal s : AGENT-COMPLETED

execMode(self) := emActivityCompleted

otherwise

ExecuteActivity (baseActivity(se1f))

HandleExceptionlnRunningMode

emCompleted + stop self

emExecutionFault -+ WaitForTerrnination

emFaulted + stop self

APPENDIX D. FAULT AND COMPENSATE EXTENSION

RestoreLocalVariables -.
let snapshot = local Snapshot(cornpensationModule(se2f)

forall v in snapshotVariableSet(snapshot)

vaZue(v, rootProcess(se1f)) := snapshot Variable Value(snapshot, v)

emExecutionFault -+ ScopeAgentExecutionFault

emExited -+ stop self

emFaulted -+ stop self

ProcessAgentRunningExtended E

if faultExtensionSignal(self) then

onsignal s : AGENTEXITED

execMode(se1f) := emActivityCompleted

otherwise

onsignal s : AGENTTAULTED

execMode(se1f) := emExecutionFault

faultThrown(se1f) := fault(s)

// So fortctl tcm~illation signd

APPENDIX D. FAULT AND COMPENSATE EXTENSION

/ / - - -- Sct j i~c~it ' r : 'igo1l1 ---- -

SequenceProgram r

SequenceProgram,,,,

case execMode(se1f) of

emRunning 4 HandleExeceptionslnRunningMode

emExecutionFault + WaitForTermination

emFaulted -+ stop self

HandleExceptionslnRunningMode E

if faultExtensionSignul(self) then

onsignal s : AGENTEXITED

execMode(se1f) := emActivityCompleted

otherwise

onsignal s : AGENTJAULTED

TransitionToExecutionFauIt(f ault(s))

otherwise

onsignal s : FORCED-TERMINATION

faultThrown(se1f) := fault(s)

PassForcedTerminationToChildren(fault(s))

execMode(se1f) := emExecutionFault

APPENDIX D. FAULT AND COMPENSATE EXTENSION

WaitForTermination 5

if forcedTerminationAgent(se1f) then

execMode(se1f) := emFaulted

TerminateBasicActivity(se1f)

else

onsignal s : FORCED-TERMINATION

faultThrown(se1f) := fault(s)

execMode(se1f) := emFaulted

TerrninateBasicActivity(se1f)

PassForcedTerminationToChildren(fault(s))

/ / t\'i11lc . l i j y r1 t

Whileprogram

WhileProgramCoT,

case execMode(se1f) of

emRunning -+ HandleExeceptionslnRunningMode

emExecutionFault -+ Wait ForTermination

emFaulted -+ stop self

/ / ----- S x ~ i t (:I1 . tgr~r~t --
Switchprogram E

Swit~hProgram,~~,

case execMode(se1f) of

emRunning -+ HandleExeceptionslnRunningMode

emExecutionFault + WaitForTermination

emFaulted -+ stop self

/ / - -- 1 ' i (k .igont - -

Pickprogram

PickProgramcoT,

case execMode(se1f) of

emRunning -+ HandleExeceptionslnRunningMode

emExecutionFault + WaitForTermination

emFaulted -+ stop self

APPENDIX D. FAULT AND COMPENSATE EXTENSION

/ / {'it k llps.;;lg(~ .jgpn1 --- --- --

PickMessageProgram

Pi~kMessagePrograrn~,,,

case execMode(se1f) of

emRunning +
if faultExtensionSignal(se1f) then

onsignal s : FORCED-TERMINATION

faultThrown(self) := fault(s)

execMode(se1f) := emExecutionFault

emFaulted + stop self

/ / - -- - -. -- X ' i c k .\1;11 rrj -1gc5111 - - - - - - -

PickAlarmProgram z

Pi~kAlarrnProgram~,,,

case execMode(se1f) of

emRunning +
if faultExtensionSignal(self) then

onsignal s : FORCED-TERMINATION

faultThrown(self) := fault(s)

execMode(se1f) := emExecutionFault

emFaulted + stop self

APPENDIX D. FAULT AND COMPENSATE EXTENSION

/ / - -- . - --- 1.1 clcr]f . --- O\V A,

FlowPrograrn E

FlowPrograrn,,,,

case execMode(se1f) of

emRunning + HandleFlowExeceptionslnRunningMode

emExecutionFault -+ WaitForTerrnination

emFaulted -+ stop self

HandleFlowExceptionslnRunningMode G

if faultExtensionSignal(self) then

onsignal s : AGENTXXITED

UpdateFlowAgentSet(s)

otherwise

onsignal s : AGENTJAULTED

TransitionToExecutionFauIt(f ault(s))

otherwise

onsignal s : FORCED-TERMINATION

faultThrown(se1f) := fault(s)

PassForcedTerrninationToParent(fault(s))

execMode(se1f) := emExecutionFault

UpdateFlowAgentSet(s : SIGNAL)

remove sourceSignal(s) from flowAgentSet(se1f)

/ / Flo~v Tllrrtwl Agt:nt

FlowThreadProgram

case execMode(self) of

emRunning + HandleExeceptionslnRunningMode

emExecutionFault + WaitForTermination

emFaulted -+ stop self

Appendix E

Signaling

E.l Introduction

domain AGENT-COMPLETED

domain AGENTEAULTED

domain AGENTXXITED

d o m a i n FAULTHANDLER-COMPLETED

domain FAULTHANDLER-FAULTED

domain FORCED-TERMINATION

SIGNAL r

AGENTXOMPLETED

U AGENTEAULTED

U AGENTEXITED

U FAULTHANDLER-COMPLETED

U FAULTHANDLER-FAULTED

U FORCED-TERMINATION

signalSource : SIGNAL + KERNELAGENT

signalTarget : SIGNAL -+ KERNELAGENT

signalset : PROCESS + SIGNAL-set

APPENDIX E. SIGNALING

/ / - -- . Sciv I i r y w v ~ cl\ -- - -

trigger s : SIGNALDOMAIN, agent

Rule
- - -

extend SIGNALDOMAIN with s

signalSource(s) := self

signalTarget(s) := agent

add s to signalSet(rootProcess(se1f))

Rule

onsignal s : SIGNALDOMAIN

Rulel

otherwise

Rule2
- - -

if 3s(s E szgnalSet(rootProcess(self)) A

szgnalSource(s) = self A s E SIGNALDOMAIN)

choose s E signalSet(rootProcess(self)) with

s E SIGNALDOMAIN A szgnalSource(s) = self

remove s from signalSet(rootProcess(se1f))

Rulel

else

Rulez

Appendix F

A Draft Proposal for Synchronized

Request-Respond

The reply activity in BPEL is different from other activities as it cannot be used indepen-

dently. A reply activity should always follow a previous receive activity1. The LRM states

that ". . . a reply activity m u s t always be preceded by a receive activity for the same partner

l ink, portType and (request/response) operation, such that n o reply has been sent for that

receive activity" [$11.4]. This means that all the P P 0 2 and correlation parameters of a reply

activity are redundant3; i.e., they should have the same values as those of the corresponding

receive activity. The reason for these limitations is that reply is introduced in BPEL to

provide synchronous input/output (request/response) behaviour.

Assigning a reply activity to its corresponding receive activity seems to be a challenge

about which the WSBPEL TC has a number open issues [35].

The invoke activity in BPEL handles synchronous output/input operations. As a busi-

ness process is not supposed to perform any task between a pair of synchronous output and

input operations, one activity can handle this task. Furthermore, as all the PPO parame-

ters for the output and input operations in a synchronous communication is identical, this

activity identifies only one set of PPO parameters. Hence, there is no further complication

'See Requirement #4 of the reply in Appendix A.2.

2 ~ a r t n e r ~ i n k , PortType, and Operation
3 LL The correlation between a request and the corresponding reply is based on the constraint that more

than one outstanding synchronous request from a specific partner link for a particular portType, operation
and correlation set(s) MUST NOT be outstanding simultaneously." [$11.4]

APPENDIX F. A DRAFT PROPOSAL FOR SYNCHRONIZED REQUEST-RESPOND173

csynchreceive partnerLink="ncnamel' portType="qnameU operation="ncname"
inp~tvar iable= '~ncname"? outputvariable="ncname"?
createInstance="yes (no"? f aultName="qname"?
standard-attributes>

<in-std-elements>?
standard-elements

din-std-elements,

<out-std-elements>?
standard-element s

</out-sd-elements>

<correlations>?
<correlation set="ncname" initiate="yes 1 no1'?

pattern=I1in l out 1 out-inu/>+
</correlations>

activity

Spec F.l: Format of a synchreceive activity

regarding the assignment of the input and output operations.

Given the advantages of using an invoke actiivity for synchronous output/input opera-

tions, we propose here a new activity to be defined for synchronous receivelreply as described

in Spec F.1. The behaviour of this activity is exactly equivalent to the behaviour of a se-

quence starting with a receive and ending with a synchronous reply, performing the main

activity of synchreceive in between. To be more precise, the synchreceive activity presented

in Spec F.2 is equivalent to the sequence activity presented in Spec F.3.

In addition, to further elaborate the semantics of synchreceive, we address the following

issues:

1. standard-attributes are divided into two sets, one for the receive part, and the other

for the reply part;

APPENDIX F. A DRAFT PROPOSAL FOR SYNCHRONIZED REQ UEST-RESPOND174

csynchreceive partnerLink="pllll portType="ptln operation="opl"
inputvariable="vi" outputvariable="vo"
createInstance="civaluel~ f aultName="fnI1
f a~ltvariable="fv~~
standard-attributes>

ccorrelat ions>
(correlation ~et='~csetl" initiate="yesll

pattern="inl'/>
(correlation ~et="cset2~' initiate="noM

pattern="out"/>
<correlation ~et="cset3~' initiate="noU

pattern="in-out 'I/>
</correlations>
activity

</synchreceive>

Spec F.2: An example of using the synchreceive activity

2. a new variable parameter faultVariable is also introduced to enable sending a fault

reply. When a synchreceive activity finishes executing its main activity, the decision

on sending a fault or a normal message will be made based on the values of this

variable. If the variable is not undefined, it indicates that a fault should be sent out

as the reply.

APPENDIX F. A DRAFT PROPOSAL FOR SYNCHRONIZED REQUEST-RESPOND175

<sequence>
<receive partnerLink="pll" portType="pt 1" operation="opln

variable="vol' createInstance="~ivalue~~
st andard-attribut es>

<correlations>
<correlation set="csetltl initiate=I1yes">
<correlation set="cset3" initiate="no">

</correlations>
</receive>

activity

<reply partnerLink="plll' portType="pt 1" operat ion=" opl"
variable="vi" faultName="fnl' faultvariable="fv"
standard-attributes>

<correlations>
<correlation set="cset2" initiate="not'>
<correlation set="cset3' initiate="noU>

</correlations>
</reply>

</sequence>

Spec F.3: The sequence activity equivalent to the synchreceive example

Bibliography

[I] J.R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University

Press, 1996.

[2] BBN Technologies, Carnegie-Mellon University, Nokia, Stanford University, SRI In-

ternational, and Yale University. DAML-S Specification Version 0.9, May 2003.

www.daml.org/services/daml-s.

[3] BEA Systems Inc., IBM Corp., and Microsoft Corp. Web Services Addressing (WS-

Addressing), March 2004. Last cited May 2004,

ftp://www6.software.ibm.com/software/developer/library/ws-add2OO403.pdf.

[4] BEA Systems, International Business Machines Corporation, Microsoft Cor-

poration, SAP AG, Siebel Systems. Business Process Execution Lan-

guage for Web Services Version 1.1, May 2003. Last cited July 2004,

h t t p : //www-106. ibm. com/developerworks/webservices/library/ws-bpel.

[5] A. Benczur, U. Glasser, and T. Lukovszki. Formal Description of a Distributed Location

Service for Ad Hoc Mobile Networks. In E. Borger, A. Gargantini, and E. Riccobene,

editors, Abstract State Machines 2003 - Advances in Theory and Practice, volume 2589,

pages 204-217. Springer, 2003.

[6] E. Borger. A Logical Operational Semantics for F'u11 Prolog. Part I: Selection Core and

Control. In E. Borger, H. Kleine Biining, M. M. Richter, and W. Schonfeld, editors,

CSL'89. 3rd Workshop on Computer Science Logic, volume 440 of LNCS, pages 36-64.

Springer, 1990.

BIBLIOGRAPHY 177

[7] E. Borger. A Logical Operational Semantics of Full Prolog. Part 11: Built-in Predi-

cates for Database Manipulation. In B. Rovan, editor, Mathematical Foundations of

Computer Science, volume 452 .of LNCS, pages 1-14. Springer, 1990.

[8] E. Borger, U. Glasser, and W. Muller. The Semantics of Behavioral VHDL'93 De-

scriptions. In EURO-DAC'94. European Design Automation Conference with EURO-

VHDL'94, pages 500-505, Los Alamitos, California, 1994. IEEE CS Press.

[9] E. Borger, U. Glasser, and W. Muller. Formal Definition of an Abstract VHDL'93

Simulator by EA-Machines. In C. Delgado Kloos and P. T. Breuer, editors, Formal

Semantics for VHDL, pages 107-139. Kluwer Academic Publishers, 1995.

[lo] E. Borger and D. Rosenzweig. The WAM - Definition and Compiler Correctness. In

C. Beierle and L. Plumer, editors, Logic Programming: Formal Methods and Practical

Applications, Studies in Computer Science and Artificial Intelligence, chapter 2, pages

20-90. North-Holland, 1994.

[ll] E. Borger and R. Stark. Abstract State Machines: A Method for High-Level System

Design and Analysis. Springer-Verlag, 2003.

[12] Egon Borger. The ASM Refinement Method. Formal Aspects of Computing, pages

237-257, 2003.

[13] Francisco Curbera, William A. Nagy, and Sanjiba Weerawarana.

Web Services: Why and how, 2001. cited April 2004,

http://researchweb.watson.ibm.com/people/b/bth/OOWS2OOl/nagy.pdf.

[14] John Derrick and Eerke Boiten. Refinement in 2 and Object-2: Foundations and Ad-

vanced Applications. Formal Approaches to Computing and Information Technology.

Springer, May 2001.

[15] E. Borger and J. Schmid. Composition and Submachine Concepts for Sequential ASMs.

In P. Clote and H. Schwichtenberg, editors, Computer Science Logic (Proceedings of

CSL 2000), volume 1862 of LNCS, pages 41-60. Springer-Verlag, 2000.

[16] R. Eschbach, U. Gksser, R. Gotzhein, and A. Prinz. On the Formal Semantics of SDL-

2000: A Compilation Approach Based on an Abstract SDL Machine. In Y. Gurevich

BIBLIOGRAPHY 178

and P. Kutter and M. Odersky and L. Thiele, editor, Abstract State Machines: Theory

and Applications, volume 1912 of LNCS, pages 242-265. Springer-Verlag, 2000.

[17] Dirk Fahland. Ein Ansatz einer formalen Semantik der Business Process Execution

Language for Web Services mit Abstract State Machines. Technical report, Humboldt-

Universitat zu Berlin, June 2004.

[18] R. Farahbod, U. Glasser, and M. Vajihollahi. Specification and Validation of the Busi-

ness Process Execution Language for Web Services. Technical Report SFU-CMPT-TR-

2003-06, Simon Fraser University, September 2003.

[19] R. Farahbod, U. Glasser, and M. Vajihollahi. Abstract Operational Semantics of the

Business Process Execution Language for Web Services. Technical Report SFU-CMPT-

TR-2004-03, Simon Fraser University, April 2004.

[20] R. Farahbod, U. Glasser, and M. Vajihollahi. Specification and Validation of the Busi-

ness Process Execution Language for Web Services. In Proc. of the 11th International

Workshop on Abstract State Machines (ASM72004). Springer-Verlag, 2004.

[21] D. F. Ferguson, B. Lovering, T. Storey, and J . Shewchuk. Secure, Reliable, Trans-

acted Web Services: Architecture and Composition. Technical report, MSDN Library,

September 2003.

[22] U. Glasser, R. Gotzhein, and A. Prinz. The formal semantics of sdl-2000: status and

perspectives. Comput. Networks, 42(3):343-358, 2003.

[23] U. Glasser, Y. Gurevich, and M. Veanes. An Abstract Communication Architecture

for Modeling Distributed Systems. To appear in IEEE Transactions on Software En-

gineering, 2004.

[24] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Bijrger, editor, Specification

and Validation Methods, pages 9-36. Oxford University Press, 1995.

[25] Y. Gurevich. Sequential Abstract State Machines Capture Sequential Algorithms. A CM

Transactions on Computational Logic, 1 (1):77-111, July 2000.

[26] Y. Gurevich and J. Huggins. The Railroad Crossing Problem: An Experiment with

Instantaneous Actions and Immediate Reactions. In Proceedings of CSL'95 (Computer

Science Logic), volume 1092 of LNCS, pages 266-290. Springer, 1996.

BIBLIOGRAPHY 179

[27] Y. Gurevich and N. Tillmann. Partial Updates: Exploration. Journal of Universal

Computer Science, 7(11):917-951, 2001.

[28] ITU-T Recommendation 2.100 Annex F (11/00). SDL Formal Semantics Definition.

International Telecommunication Union, 2001.

[29] M. Koshkina and F. van Breugel. Verification of Business Processes for Web Services.

Technical Report CS-2003-11, York University, October 2003.

[30] A. Martens. On usability of web services. 1st Web Services Quality Workshop (WQ W

2003), 2003.

[31] A. Martens. Verteilte Geschftsprozesse - Modellierung und Verifikation mit Hilfe von

Web Services. PhD thesis, Humboldt University of Berlin, Berlin, Germany, 2003.

[32] A. Martens. Analysis and re-engineering of web services. To appear in 6th International

Conference on Enterprise Information Systems (ICEIS'04), 2004.

[33] Microsoft FSE Group. The Abstract State Machine Language. cited June 2003,

http://research.microsoft.com/fse/asml/.

[34] Srini Narayanan and Sheila A. McIlraith. Simulation, verification and automated com-

position of web services. In Proceedings of the eleventh international conference on

World Wide Web, pages 77-88. ACM Press, 2002.

[35] Organization for the Advancement of Structured Information Standards (OASIS). WS

BPEL issues list, April 2004. http: //www . oasis-open. org.

[36] David O'Riordan. Business Process Standards for Web Ser-

vices. Technical report, Tect, April 2002. Available from

http://www.webservicesarchitect.com/content/articles/oriordanOl.asp.

[37] C. Peltz. Web services orchestration and choreography. Web Services Journal, 2004.

http://www.sys-con.com/webservices/.

[38] Chris Peltz. Web services orchestration and choreography. Web Services Journal, 3,

july 2003.

BIBLIOGRAPHY

[39] R. Eschbach and U. Glasser and R. Gotzhein and M. von Lowis and A. Prinz. Formal

Definition of SDL-2000: Compiling and Running SDL Specifications as ASM Models.

Journal of Universal Computer Science, 7(11):1024-1049, 2001.

[40] Mike Rosen and John Parodi. Architecting Web Services. Technical report, IONA

Technologies PLC, December 2001.

1411 J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, W. Rosenstiehl, and W. Mueller. The sim-

ulation semantics of systemc. In Proceedings of the conference on Design, automation

and test in Europe, pages 64-70. IEEE Press, 2001.

[42] R. Stark, J. Schmid, and E. Borger. Java and the Java Virtual Machine: Definition,

Verification, Validation. Springer-Verlag, 2001.

[43] M. Vajihollahi. High level specification and validation of the business process execution

language for web services. Master's thesis, Simon Fraser University, Burnaby, Canada,

April 2004.

[44] W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and P. Wohed. Pattern-

Based Analysis of BPML (and WSCI). Technical Report FIT-TR-2002-05, Queensland

University of Technology, 2002.

[45] W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and P. Wohed. Analysis of

web services composition languages: The case of bpel4ws. 1st Web Services Quality

Workshop (WQ W 2003), 2003.

[46] J.M. Vidal, P. Buhler, and C. Stahl. Multiagent systems with workflows. IEEE Internet

Computing, 8(1) :76-82, JanuaryIFebruary 2004.

[47] W3C. XML Path Language (XPath) Version 1.0, November 1999. Last cited June

2004, http: //www .w3 .org/TR/1999/REC-xpath-19991116.

[48] W3C. XML Schema: Formal Description, September 2001. Last cited July 2004,

http://www.w3.org/TR/xmlschema-formal/.

[49] W3C. Web Service Choreography Interface (WSCI) 1.0, August 2002. Last cited May

2004,http://www.w3.org/TR/2002/NOTE-wsci-2OO2O8O8.

BIBLIOGRAPHY 181

[50] W3C. SOAP Version 1.2 Part 0: Primer, June 2003. Last cited April 2004,

http : //www . w3. org/~~/2003/REC-soapl2-part0-20030624/.

[51] W3C. Web Services Description Language (WSDL) Version 1.2 Part 1: Core Language,

June 2003. Last cited May 2004, http : //www. w3. org/TR/2003/WD-wsdll2-20030303.

[52] W3C. Extensible Markup Language (XML) 1.0 (Third Edition), February 2004. Last

cited July 2004, http : //www . w3. org/TR/2004/REC-xml-20040204.

[53] Jim Woodcock and Jim Davies. Using 2: Specification, refinement, and proof. Prentice

Hall Europe, 1996.

[54] World Wide Web Consortium. Web Services Architecture, February 2004. Last cited

May 2004, http : //www. w3. org/TR/ws-arch/.

Index

abstract model, 25, 26
abstract process, 13, 61, 65
abstract state machine, see ASM

distributed, see DASM
activity, 13

assign, 14, 61, 62
empty, 14
flow, 15, 33
invoke, 14
pick, 15
receive, 14, 31
reply, 14
scope, 19, 61, 72
sequence, 15
switch, 15
throw, 15
wait, 14
while, 15

activity agent, 31
definition, 27

choreography, 12
compensate

activity, 74
agent, 94

compensation
definition, 19
handler, 19, 74
module, 92

conditional constructor, 22
conservative extension, 41
correlation

definition, 18
correlation set, 19
correlation token, 19

DASM, 20
DASM agents, 21
data expressions, 61
DRL, 62
dummy process, 27, 28

agent faulted, 95
executable business process, 13

agent interaction model, 3, 48, 49
execution lifecycle, 46, 47

agent-exited signal, 82
extended, 79

agent-faulted signal, 82, 95
ASM, 1, 2

normal, 47, 79
exited signal, 79

basic activity, 13
block constructor, 22
BPEL, 1, 12, 13

extension
data handling, 60, 65, 69
fault and compensation, 73, 82, 83

BPEL Abstract Machine, 1, 20, 24, 25 fault handler, 19, 74, 75, 82
BPEL4WS, see BPEL faulted signal, 79
business protocol, 13, 65 flow agent, 33
business token, 19 flow thread agent, 32, 33

choose constructor, 22 forall constructor, 22
forced-termination signal, 82, 95

INDEX

Freedom of Abstraction, 38

global variables, 61
ground model, 3, 101

horizontal extensions, 36
HTTP, 10
HTTPS, 10

IDL, 8
import constructor, 23
inbox manager, 27, 28, 31
input descriptor, 66
instantiation, 42
interoperability, 8, 12

local snapshot, 97
local variables, 62
Long Running Transactions, 19, 73
LRM, 1, 51
LRT, see Long Running Transactions

network abstract machine, 25

OASIS, 1, 13
opaque message, 58
Orchestration, 12
outbox manager, 27, 28
output descriptor, 28

process agent, 30

data handling, 62
requirements lists, 53, 106
reverse set, 23

scope, see activity, scope
service abstract machine, 25
SMTP, 10
SOAP, 2, 10
structured activity, 13
substitutivity

principle of, 37

throw, 76

UDDI, 11

variables, 61

Web, 7, 8
Web services, 10, 11

architecture, 7
composition, 11, 12
definition, 7-9

World Wide Web, 1
WS-Addressing, 10
WS-MetadataExchange, 11
WSCI, 12
WSDL, 1, 2, 11

XML, 10
XPath. 62

process execution model, 3, 36, 45, 46, 49, 79 XSD, iO, 11
process execution tree, 46
process instance,

refinement
complete, 40
conservative,
correct, 40
data, 41
horizontal, 41, 43
procedural, 42
submachine, 42
vertical, 43

requirements list, 36, 51, 60

