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Abstract 

The Business Process Execution Language for Web Services (BPEL) is a forthcoming in- 

dustrial standard for automated business processes, proposed by the OASIS' Web Services 

BPEL Technical Committee. BPEL is a service orchestration language which extends the 

underlying Web services interaction model and enables Web services to support long running 

business transactions. 

We formally define an abstract operational semantics for BPEL based on the abstract 

state machine (ASM) paradigm. Specifically, we model the dynamic properties of the key 

language constructs through the construction of a BPEL Abstract Machine in terms of 

partially ordered runs of distributed real-time ASMs. The goal of our work is to provide a 

well defined semantic foundation for establishing the key language attributes by eliminating 

deficiencies hidden in the informal language definition. 

This work combines two well-defined ASM refinement techniques to complement our 

previous efforts on the core model of the BPEL Abstract Machine. First, we elaborate the 

core model with regard to structural and behavioural aspects to make it more robust and 

flexible for further refinements. Specifically, we formalize the process execution model of 

BPEL and its decomposition into execution lifecycles of BPEL activities. We also introduce 

an agent interaction model to facilitate the interaction between different Distributed Ab- 

stract State Machine (DASM) agents of the BPEL Abstract Machine. We then extend the 

core model through two consecutive refinement steps to include data handling and one of the 

most controversial issues in BPEL, fault and compensation handling. The resulting abstract 

machine model provides a comprehensive formalization of the BPEL dynamic semantics and 

the underlying Web services architecture. 

'Organization for the Advancement of Structured Information Standards 
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"A fundamental new rule for business is that the Internet changes everything." 
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Chapter 1 

Introduction 

This thesis presents an abstract operational semantics for the Business Process Execution 

Language for Web Services (BPEL4WS), also called BPEL [4], based on the abstract state 

machine (ASM) paradigm [24]. We formally define a BPEL Abstract Machine in the form 

of a distributed real-time ASM (DASM) by modelling the dynamic properties of the key 

language constructs in terms of partially ordered machine runs. 

BPEL is an XML based specification language for automated business processes. It pro- 

vides expressive means for the process interface descriptions required for business protocols 

and executable process models. Version 1.1 of the BPEL language definition [4], henceforth 

called the LRM (language reference manual), is a forthcoming e-business standard proposed 

by OASIS1. As such, the language builds on other existing standards for the Internet and 

World Wide Web and, in particular, is defined on top of the service interaction model of 

W3C's Web Services Description Language, or WSDL [51]. A BPEL business process or- 

chestrates the interaction between a collection of Web services exchanging messages over a 

communication network. 

1.1 Motivation 

IT organizations need the agility to respond to market changes, customer needs, and strate- 

gic requirements. In order to gain this agility, they need to streamline the information 

flow between different IT entities that perform the underlying business operations toward 

'See the OASIS Web Services Business Process Execution Language Technical Committee (WSBPEL 
TC) web page at http://www.oasis-open.org. 
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obtaining an automated business process. This includes integrating both the organization's 

internal entities and those of its partners. Until recently, the price of integrating the IT en- 

tities of business partners with an organization's own entities has been very high. This was 

mainly due to the diversity of organization's proprietary interfaces and data structures [36]. 

Web services technology changed this situation by providing a platform-independent in- 

terface for application integration within an enterprise and between different enterprises. 

While Web services standards (like SOAP and W S D L ~ )  facilitates simple integrations, busi- 

ness process specifications are required to specify various critical information of business 

processes, such as workflow, security requirements, and transaction management [36]. BPEL 

is proposed in this area to provide a language for formal specification of business processes 

and business interaction protocols [4]. 

To support an efficient integration of critical business processes, it is important to have 

standard business process specifications. To define such a standard for a business process lan- 

guage like BPEL, we need a precise specification of the language. While the LRM provides 

a comprehensive specification of this language, due to its natural language description, it is 

not void of ambiguities and inconsistencies. Our formal semantics is meant to complement 

the informal language description of the LRM by sharpening 'loosely defined' requirements 

into precise specifications. In this role, it serves as a robust mathematical framework for 

establishing the key attributes of BPEL in a well defined way; that is, by eliminating defi- 

ciencies - such as ambiguities, loose ends, and inconsistencies - that often remain hidden in 

the informal language definition (Issue #42, OASIS WSBPEL TC [35]): 

There is  a need for formalism. It will allow us to not only reason about the cur- 

rent specification and related issues, but also uncover issues that would otherwise 

go unnoticed. Empirical deduction is  not suf ic ient .  

The abstract state machine (ASM) paradigm has been extensively used for formal spec- 

ification of programming languages (e.g., Java [42], Prolog [6, 71) and system modelling 

languages (e.g., SDL [39, 16, 221, VHDL [8, 91, SystemC [41]). The ASM formalism sup- 

ports the integration of high-level modelling and analysis in the development cycle [ll] which 

enables it to serve as a modelling basis in industrial standardization (e.g., ITU-T SDL-2000) 

[28]. Our work on BPEL builds on extensive experience from semantic modelling of various 

other industrial standards, including the IEEE language VHDL [9] and the ITU-T language 

'See Section 2.1 for more details. 
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SDL [22]. The resulting SDL formal definition is part of the current ITU-T standard for 

SDL [28]. An important observation from this work is that the use of formal software mod- 

els for practical purposes such as standardization demands for a gradual formalization of 

abstract requirements with a degree of detail and precision as needed [23]. To avoid a gap 

between the informal language definition and the formal semantics, the ability to model the 

language definition as is, without making any compromises, is often crucial. Practicability 

of the formalization approach further demands for flexibility and robustness as required for 

dealing with a moving target as standardization is a potentially open-ended activity. 

1.2 Objectives 

The goal of our work is to build from requirements elicitation and clarification a ground 

model ASM for BPEL. Intuitively, a ground model is an accurate yet abstract description 

which is [ll, 51, 

0 precise at an appropriate level of abstraction, 

0 flexible for future changes and modifications, 

0 understandable b y  both domain experts and system designers, 

0 complete in the sense that every semantically relevant feature of the language is 

present, 

operational for validation through simulation and testing, and 

has a precise semantic foundation. 

From such a ground model ASM, a hierarchy of intermediate models can be obtained through 

stepwise refinement which can eventually lead to an executable implementation of the lan- 

guage. 

This work combines two well-defined ASM refinement techniques to complement our 

previous efforts on the core model of the BPEL Abstract Machine [18, 20, 19, 431. First, 

we elaborate the core model with regard to structural and behavioural aspects to make 

it more robust and flexible for further refinements. Specifically, we formalize the process 

execution model of BPEL and its decomposition into execution lifecycles of BPEL activities. 

We also introduce an agent interaction model to facilitate the interaction between different 



CHAPTER 1. INTRODUCTION 4 

DASM agents of the BPEL Abstract Machine. We then extend the core model through 

two consecutive refinement steps to include data handling and one of the most controversial 

issues in BPEL, fault and compensation handling. Business processes normally involve long 

duration transactions which are based on asynchronous message communication that leads to 

a number of local updates at business partners. Handling faults and cancelling transactions 

in business processes often involve undoing partial work that is done in collaboration with 

different partners. BPEL provides its own method of handling faults and dealing with 

compensating activities, which is captured in the BPEL Abstract Machine by the fault and 

compensation extension. 

Finally, the resulting abstract machine model provides a comprehensive formalization of 

the BPEL dynamic semantics and the underlying Web services architecture. 

1.3 Related Work 

There are various research activities applying formal methods to define, analyze, and verify 

the Web services composition languages. Closely related to our work is an approach of 

a group at Humboldt University in Berlin. This group is working on formalizations of 

BPEL for analysis, graphics and semantics using various modelling techniques. In [17], Dirk 

Fahland outlines an ASM model of the dynamic semantics of BPEL which is very similar 

to our view; however, their formalization just sketches this ASM model in terms of only 

two BPEL activities (reply and sequence). Alternatively, this group also proposed Petri-net 

models of Web services to analyze essential properties like usability [30, 321 and to address 

the composition problem of Web services [46]. 

Formal verification of Web services is addressed in [31] and 1291. The approach in [31] 

is based on Petri nets, while [29] uses a process algebra approach to derive a structural 

operational semantics of BPEL as a formal basis for building a tool to verify properties of 

the specification. 

Narayanan and McIlraith provide a model-theoric semantics (based on situation calculus) 

and a distributed operational semantics (based on Petri nets) for the DAML-S language [2], 

a DAML-based Web service ontology language, which facilitates simulation, composition, 

testing, and verifying compositions of Web services [34]. 

Various research have been done to evaluate the capabilities and limitations of different 

languages proposed for Web services composition. Notably, van der Aalst et al. presented 
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a pattern-based analysis of BPEL [45], and BPML and WSCI [44] based on a collection of 

workflow and communication patterns which allows comparing the capabilities and limita- 

tion of these languages. 

All these attempts either focus on approaches that are completely different from our 

approach, or provide models that are by far not as comprehensive as our model. Many of 

them are applying other formal methods pursuing different goals (e.g., pure verification) 

[31, 29, 451 or are not specifically focused on BPEL [31, 341. To the best of our knowledge 

and based on existing publications, our work is the most comprehensive formal definition of 

BPEL semantics. 

1.4 Significance of the Thesis 

There is substantial industrial interest in the development, standardization, and implemen- 

tation of BPEL. Hence, it is important to have a precise and reliable underlying semantic 

definition for the language. In this thesis, we present the most comprehensive formal se- 

mantics specification of BPEL based on a practical formal method that has a history of 

successful applications in industrial standardization [42, 6, 7, 39, 16, 22, 8, 9, 41, 281. We 

address a number of inconsistencies, loose ends, and ambiguities in the informal definition 

of the language, as examples of how such a formal specification can support validation of 

the language definition in a way that effectively reveals weaknesses. Furthermore, this for- 

mal specification forms a basis for deriving an abstract executable semantics for BPEL that 

facilitates experimental validation through simulation and testing. 

1.5 Thesis Organization 

The thesis starts by introducing the Web services architecture, and provides an overview of 

BPEL in Chapter 2. Our original work on the core model of BPEL is briefly presented in 

Chapter 3 followed by a list of open issues. Chapter 4 substantially improves the core model 

to build a more robust and flexible foundation for further refinements. Chapter 5 extends 

the core model to build a comprehensive model of BPEL through two refinement steps by 

presenting the data handling extension and the fault and compensation extension. Chapter 

6 concludes the thesis and provides a critical analysis of BPEL by addressing a number of 

weak points (loose ends, inconsistencies, etc.) in the LRM. 
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1.6 Notational Convention 

As we frequently refer to parts of the LRM (specially in the requirements lists in chapters 

4 and 5), we use the $ sign followed by a section number to refer to a section of the LRM 

[4]. For instance, '[$14.2]' refers to section 14.2 of the LRM. 



Chapter 2 

When he [was] tired of official reports 

and memoranda and minutes, he would 

plug his foolscap-size Newspad into the 

ship's information circuit and scan the 

latest reports from Earth. One by one 

he would conjure up the world's major 

electronic papers. . . 
Arthur C. Clarke, 1968 

Web Services and Business 

Processes 

The World Wide Web, or the Web for short, has been serving us for more than a decade since 

1993 when it started to become popular. As a human-to-machine interface of a computer- 

based network of information, it has provided a platform to share a variety of information 

in multimedia formats. Recently, efforts have been made to use the Web as a machine-to- 

machine interface through the notion of Web services. 

This chapter starts with an overview of the Web services architecture, various specifica- 

tions, and standard protocols that are designed and published by major IT vendors (Sec- 

tion 2.1). Section 2.2 introduces the notions of orchestration and choreography of Web 

services. The rest of this chapter then provides an overview of the Business Process Execu- 

tion Language for Web Services (BPEL). 

2.1 Web Services Architecture 

What is a Web service? In a white paper published by IONA ~echnologies', a world leader 

in high performance integration solutions for IT environments, a Web service is defined as 

follows [40] : 

'IONA Technologies PLC, http://www.iona.com 

7 
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Simply put, a Web  service is a software construct that exposes business function- 

ality over the Internet. I n  the context of a Web service, "expose" means: 

0 Identifying valuable business processes within the enterprise. 

Defining loosely-coupled, service-oriented interfaces to  those processes. 

Describing those interfaces i n  a Web-based, industry-standard format. 

For more than a decade, the Web has been providing us with a way to share and distribute 

information, and it well served as a human-to-application (machine) interface. Today, with 

the development of electronic marketplaces and automated business-to-business transac- 

tions, the Web is also used as an application-to-application interface. In this new domain 

with large heterogeneous systems, interoperability becomes one of the most critical problems 

that software developers and business partners should deal with [13, 211. Interoperability 

is generally defined as the ability of a system to use the parts or equipment of another 

system2. In the IT environment, interoperability is mostly about the ability of exchanging 

information with other systems. Web services, like many other distributed systems, are 

built upon the following two fundamental building blocks: 

interoperability at the data exchange level, which is provided by means of a simple, 

standard, and platform independent data exchange protocol, and 

a unified functional representation of applications, which can be achieved by an inter- 

face definition language (IDL) . 

Curbera et al. emphasize three key aspects in defining Web services: interoperability,' 

common representation, and heavy reliance o n  standards, where the first two address the 

two fundamental building blocks mentioned above. Based on these aspects, they provide 

the following definition for a Web service [13]: 

A Web service i s  a networked application that is able to  interact using standard 

application-to-application Web protocols over well defined interfaces, and which 

i s  described using a standard functional description language. 

As a distributed computing platform to integrate a heterogeneous mix of platforms 

and programming models, it is important for Web services to converge to a small set of 

'Merriam-Webster dictionary 
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BPEL4WS WSCI 1 

I XML I I SOAP I Addressing ] 

Figure 2.1: Web services specifications 

well defined standards but not to become a common programming model. Considering 

the standards, the Web Services Architecture Working Group at the World Wide Web 

Consortium3 gives a more specific definition of a Web service for the purpose of their working 

group and their proposed architecture 1541: 

A W e b  service i s  a software sys tem designed to  support interoperable machine-to- 

machine interaction over a network.  It has a n  interface described in a machine- 

processable format  (specifically W S D L ) .  Other  sys tems interact with the  W e b  

service in a m a n n e r  prescribed by i t s  description using S O A P  messages, typically 

conveyed using H T T P  with a n  XML serialization in conjunction wi th  other Web-  

related standards. 

In the following section we explore some of the pervasive standards and specifications 

related to the Web services architecture. 
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2.1.1 Web Services Specificat ions 

Figure 2.14 presents a number of Web services specifications that have been published by 

Microsoft, IBM, and others. The layering structure presented in this figure does not impose 

an a priori order on these specifications and it is more for the purpose of functional grouping. 

The specifications in the transports group provide the core communication mechanism 

to transfer raw data between communication endpoints. HTTP (Hyper Text Transfer Pro- 

tocol), HTTPS (Secure HTTP) and SMTP (Simple Mail Transfer Protocol) are the most 

popular standards in this group. 

Web services need standard methods to encode messages into blocks of bytes so that 

they can be transfered using transport specifications. The specifications in the messaging 

group provide interoperable mechanisms to convert messages to bytes and vice versa. XML 

(extensible Markup Language) [52] and XML Schema Definition ( X S D )  [48] are used to 

abstractly define message structures. SOAP (Simple Object Access Protocol) [50] provides a 

standard mechanism to encode XML messages into bytes that can be transfered by transport 

protocols. 

Web Services Addressing (WS-Addressing) [3] provides an interoperable, transport in- 

dependent mechanism to identify sender and receiver of messages. Today, most systems are 

using the same addressing mechanism that browsers and HTTP-servers are using over the 

HTTP transport. The sender specifies the destination of its message by placing a URL in 

the HTTP transport. The receiver finds the address of the sender by the return transport 

address. In this method the address information of the sender and receiver are not part of 

the message, which can cause communication problems (e.g., this information can be lost 

due to a timeout). WS-Addressing separates the address information from the underlying 

transport protocol by placing this information in the message without altering the message 

information. With this method, addressing information is not limited by the transport 

protocol. For example, when using HTTP without WS-Addressing, a response always goes 

back to the sender and a different destination cannot be specified. With WS-Addressing, 

however, one can specify that a response to a message should be sent to a communication 

endpoint different from the sender [3, 211. 

3W3C, http://www.w3c.org 

4 ~ h e  original idea of this figure is taken from [21]. 
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The specifications mentioned so far support communication of Web services using mes- 

sages. Nevertheless, before Web services can communicate using messages, they need to 

know what these messages are. A well-defined standard method is required for a Web ser- 

vice to document the structure. of messages and describe the message-exchange patterns of 

the Web service (i.e., the interface to the Web service). The specifications in the Description 

group (Figure 2.1) enable a Web service to document and describe its service capabilities 

and its interface to the outside world. 

XSD enables Web services to define XML data types which can be used in defining 

message structures. Web Services Description Language ( WSDL) supports documenting 

and describing message structures (using XSD) and basic message interaction patterns of 

Web services. WSDL provides the following message interaction patterns [51]: 

input-only (receiving a message), 

input-output (receiving a message and sending a correlated message), 

output-input (sending a message and receiving a correlated message), and 

output-only (sending a message). 

WSDL supports describing the interface of a service, but how do potential partners find 

this information? Currently there are two methods available. A potential user can either 

access a Web service and get all the required information about the service using 

WS-MetadataExchange, or 

use a UDDI (Universal Description Discovery Interface) service. 

The UDDI specification defines a meta-data aggregation service that enables organiza- 

tions to publish the services they provide and describe the interface to their services for 

potential users. Potential users then can query the UDDI service at design time or even at 

runtime to find services that fulfil their requirements. 

2.2 Web Services Composition 

While the Web becomes a widespread platform for automated application-to-application 

interactions and integration of business-partner applications, Web services composition be- 

comes an important issue. System integration is much more than just a series of stateless 
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transactions. While transport standards, messaging standards and service description lan- 

guages provide the underlying platform for automated application-to-application (service- 

to-service) interactions, composition protocols are required to enable integration of services 

within and across organization boundaries [4]. In today's fast growing electronic market, 

IT organizations need the agility to adapt to market changes and customer requirements. 

While the existing business process languages are not suitable for Web services, these or- 

ganizations may define their own proprietary protocols for Web services composition which 

conceptually contradicts one of the key aspects of the Web services architecture, namely in- 

teroperability. When organizations build their own orchestration protocols and languages, 

integration of services from different organizations requires creation of new protocols or 

adaptation of organizations to their partners' proprietary protocols [38]. 

Leading companies in IT have been putting substantial effort into specifying standard 

protocols for Web services composition. Sun Microsystems, SAP and others proposed the 

Web Services Choreography Interface (WSCI), an XML-based interface description language 

that describes the message exchange of a Web service that participates in a collaborative 

interaction with other Web services [49]. IBM, Microsoft, BEA and others are proposing 

the Business Process Execution Language for Web Services (BPEL4WS), an XML-based 

business process language that provides a grammar to coordinate Web services interacting 

in a business process flow5 [4]. 

There are two basically different types of Web services composition: orchestration and 

Choreography. Orchestration describes how Web services interact with each other through 

a message exchange flow. In orchestration, the overall process control is centred within 

one business partner. BPEL4WS is an example of an orchestration language. In contrast, 

choreography is more collaborative in nature. While there is no centric control over the 

entire process, each business partner in a choreography composition knows its part in the 

business interaction and message exchange flow. WSCI is an example of a choreography 

language [38, 4, 491. 

As this work is focused on BPEL, the rest of this chapter provides an overview of this 

language and describes an example of a Web services composition using BPEL. 

50ther Web services composition languages are also available which are not addressed here. 



2.3 Overview of BPEL 

The Business Process Execution Language for Web Services (BPEL) introduces a stateful 

interaction model that allows Web services to exchange sequences of messages between 

business partners. A BPEL process and its partners are defined as abstract WSDL services 

using abstract messages as defined by the WSDL model for message interaction. The major 

parts of a BPEL process definition consist of ( I)  partners of the business process (Web 

services that this process interacts with), (2) a set of variables that keep the state of the 

process, and (3) an activity defining the logic behind the interactions between the process and 

its partners. Activities that can be performed by a business process are categorized into basic 

activities, structured activities and scope-related activities. Basic activities perform simple 

operations like receive, reply, invoke and others. Structured activities impose an execution 

order on a collection of activities and can be nested. Scope-related activities enable defining 

logical units of work and delineating the reversible behaviour of each unit. 

Business processes in BPEL can be described in two ways: executable business processes 

and business protocols. Executable processes model actual behaviour of a participant in a 

business interaction. Business protocols, however, do not describe the internal behaviour of 

business partners and only specify the visible message exchange behaviour between them. 

The process descriptions for business protocols are called abstract processes. 

In April 2003, members of OASIS6, including IBM and Microsoft among other leading 

companies in the e-business market, formed a Technical Committee in order to continue 

work on BPEL version 1.1 with the yocus o n  specifying the common concepts for a business 

process execution language which form the necessary technical foundation for multiple usage 

patterns including both the process interface descriptions required for business protocols and 

executable process m o d e k n 7  

In the following sections, we provide a brief overview of the BPEL activities and describe 

a simple application example. We then introduce the BPEL notions of fault handling 

and compensation behaviour which are of fundamental importance for the business process 

execution model. 

'Organization for the Advancement of Structured Information Standards 

7~~~~~~ TC at OASIS, http://www.oasis-open.org 
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2.3.1 BPEL Activities 

Basic activities perform simple Web services operations, including receive, reply, invoke, as- 

sign, throw, terminate, wait, and empty. Structured activities include sequence, switch, Bow, 

pick and while. Scope-Related activities include scope and compensate. A short overview on 

each of these activities is presented in the following: 

Receive The receive activity has an important role in the lifecycle of a business 

process. It provides both a fundamental Web services operation (which 

is receiving a message from a partner) and triggers the creation of new 

instances a of business process. If the createInstance attribute of a receive 

activity is set to 'yes', the receive activity is regarded as a start activity; 

i.e., whenever a message arrives for such a receive activity, a new instance 

of the business process must be created and the message must be assigned 

to the new instance. 

Reply A reply activity must be defined in connection with a receive activity 

identifying a synchronous request-response interaction between two busi- 

ness processes. Thus, a reply activity sends a message to a partner in 

response to a request from this partner which was previously received by 

the associated receive activity. 

Invoke A business process can access services provided by its partners by in- 

voking an operation on such a service. An invoke activity can be used 

for invoking both synchronous and asynchronous operations of other Web 

services. 

Wait The wait activity is used to introduce a delay in the business process 

execution. A wait activity identifies that a business process has to wait 

either for a period of time or until a certain deadline is reached. 

Empty An empty activity does nothing. It is usually used in cases when a fault 

needs to be caught and suppressed without a reaction. 

Assign An assign activity allows updating the state of a business process by 

copying data from one variable to another. It also allows performing simple 

computations assigning the value of an expression to a variable. The assign 

activity is part of the data handling mechanism provided by BPEL (see 

Section 2.3.3 for further details). 
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Throw A throw activity is used by a business process to generate an internal 

fault explicitly. A fault is identified by a globally unique name. An optional 

fault variable can also be defined. This variable contains further information 

on the fault and can be used by the fault handler to analyze the fault. 

Sequence A sequence activity is a structured activity that enforces a sequential 

execution order on a collection of activities. 

Switch A switch provides the ability to choose among a collection of activities. 

An ordered list of conditional branches (case elements) followed by an op- 

tional otherwise branch are defined in a switch activity. The first branch 

whose condition holds is chosen and its associated activity is executed. The 

otherwise branch is taken only if none of the conditional cases are true. 

While A while activity iterates an activity while a certain condition holds. 

Flow A flow activity enables concurrent execution of a set of activities. The 

concurrent execution is controlled by synchronization dependencies between 

the activities. Such dependencies are identified by execution links between 

activities. 

Pick A pick activity awaits the occurrence of one event from a set of events 

and executes the associated activity to that event. If more than one event 

occurs then the pick activity will choose the first one that has occurred. 

As soon as an event is chosen, the pick activity no longer accepts any of 

the other events. Basically, there are two types of events on which pick 

activities can wait: onMessage events and onAlarm events. The semantics 

of an onMessage event is very similar to a receive activity. An onMessage 

event occurs as soon as its corresponding message is received. OnAlarm 

events are very similar to timers. They are triggered after a period of time 

or when a certain time deadline is reached. 

2.3.2 Travel Agency: an Application Example 

We provide here a simple example to illustrate the basic structures and some fundamental 

concepts of BPEL. 

Suppose an online travel agency system (a Web service) that facilitates trip planning. 

For the sake of simplicity this travel agency has only three business partners: an airline 
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company, a hotel, and a credit card company. The process is simple: a client connects to 

the travel agency Web service and provides a suggested trip plan. The travel agency then 

books a round-trip flight based on the suggested dates and also reserves a hotel room for 

the period of the stay. It then sends a draft itinerary to the client. To purchase the tickets 

and finalize the the sale, the client then sends credit card information to the travel agency. 

The travel agency charges the credit card and returns a final itinerary back to the client8 

From the client point of view there is only one Web service that provides the trip planning 

service. This Web service, however, is a composition of a number of Web services: the 

airline, the hotel, the credit card company, and the travel agency itself as the orchestrator. 

Figure 2.2 illustrates an abstract schema of the business process of this travel agency. The 

business process consists of seven basic activities, two of which being executed concurrently 

(as indicated by identical order numbers annotating these two activities). For each client 

the process execution is as follows: 

1. The process starts with receiving a suggested schedule from the client using a receive 

activity. 

2. The schedule is sent simultaneously to the airline Web service and the hotel Web 

service using two invoke activities. The simultaneous invocation is made by means of 

a flow activity that surrounds the invoke activities. The parallel execution path in the 

figure represents the flow activity. 

3. Based on the responses received from the airline and the hotel, a draft itinerary is 

returned to the client using a reply activity. 

4. Upon receiving a confirmation from the client together with its credit card information, 

this information is sent to the credit card company. After the card is successfully 

charged, the final itinerary is sent to the client. 

Later we will get back to this example to discuss other aspects of BPEL like fault 

handling and compensation behaviour. 

'A real-life business process for a travel agency Web service is certainly more complicated and it involves 
a number of back and forth interactions with the client and its business partners. 
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Travel Agency Business Process 

................................... .................. ...... 

Client 

...... 
...... 

- 

Hotel 

Figure 2.2: An example of a BPEL process: a travel agency 
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2.3.3 Data Handling 

One of the main challenges in integrating Web services, and specifically business processes, 

is to deal with stateful interactions. Thus, it is necessary for any orchestration language 

to provide the required means for dealing with the state of a business process instance. 

The concept of data handling in BPEL includes maintaining the state of a business process 

instance (using state variables), controlling the behaviour of a business process by extracting 

the data from the state (using data expressions), and updating the state of a business process 

by assigning new values to the variables (using assignments). Data handling features of 

BPEL are discussed in more detail in Section 5.1.1. 

2.3.4 Correlation 

Business processes normally act according to a history of external interactions. The data 

handling features of BPEL facilitate dealing with stateful interactions by providing the abil- 

ity to keep track of the internal state of each business process instance. Furthermore, a Web 

service consists of a number of business process instances, thus the messages arriving at a 

specific port must be delivered to the correct instance according to the internal state of such 

business process instance. To ensure global interoperability and avoid implementation de- 

pendencies, BPEL introduces a generic mechanism for such a dynamic binding of messages, 

called correlation. 

The travel agency Web service in our example (Section 2.3.2) interacts with three other 

Web services. When a client connects to this Web service, a new process instance is created 

to handle the trip planning service for that client. This process instance then invokes the 

airline Web service and waits for a response (the invoke activity sends a request and waits 

for a response). The airline Web service creates a business process instance of its own to 

handle this request. At the same time, there may be a number of other business process 

instances in the travel agency Web service (serving other clients), some of them waiting for 

a response from the airline Web service. In order to continue the conversation, these two 

business process instances (one in the Travel agency Web service and the other in the airline 

Web service) need to know each other; i.e., when a response comes from a business process 

instance in the airline Web service to the travel agency, it must be delivered to the correct 

business process instance within the travel agency Web service. The mechanism supported 

by BPEL is to carry business tokens in all the messages belonging to a conversation so that 
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the destination of the messages can be recognized by the value of these business tokens. 

BPEL allows a business process to define a set of business tokens (correlation tokens).  This 

set is called a correlation set. Once a correlation set is initiated for a conversation, all the 

messages in the conversation must carry the same correlation token values. In this way, 

an application-level conversation between business process instances is established. In our 

example, the name of the client along with the request time could be used as correlation 

tokens in message interactions. The travel agency Web service, upon receiving messages 

from its partners, will assign the messages to their corresponding process instances within 

the Web service based on the values of the these correlation tokens. 

2.3.5 Long Running Business Transactions 

Business processes normally involve long running transactions with non-negligible duration 

which are based on asynchronous message communication. Such transactions lead to a 

number of local updates at business partners. Consequently, when an error occurs, it may 

be required to reverse the effects of some or even all of the previous activities. This is 

known as compensation. The ability to compensate the effects of previous activities in 

case of an exception enables business processes to have so-called Long-Running (Business) 

Transactions (LRTs) . 
In BPEL, compensation and fault handling is performed using the scope activity. A 

scope activity defines a logical unit of work for which a compensation handler or a set of 

fault handlers can be defined. A compensation handler defines the compensating behaviour 

of a logical unit in case of an error. A fault handler defines the reaction of a logical unit to an 

error. The fault handling mechanism and compensation behaviour of BPEL are discussed 

in detail in Section 5.2. 



Chapter 3 

The Core of the BPEL Abstract 

Machine 

This chapter presents our previous work [18, 20, 19, 431 on modelling the Business Process 

Execution Language for Web Services, in which we built the core model of the BPEL 

Abstract Machine. Focusing on the key aspects of the core concepts of the language, we 

formally define an abstract operational semantics based on the Distributed Abstract State 

Machine (DASM) paradigm in [18, 20, 191. A comprehensive presentation of this work along 

with the complete formal model of the core is provided in [43]. The core model is extensively 

refined and extended in Chapters 4 and 5 to build a comprehensive semantic model that 

captures all different aspects of the language. 

Section 3.1 provides a brief introduction to DASMs. The overall structure of the core 

model is then presented in Section 3.2. A brief overview of the complete formal model is 

presented in Section 3.3. Major open issues and possible further developments are then 

discussed in Section 3.4. 

3.1 Distributed Abstract State Machines 

This section briefly recalls the concept of distributed real-time ASM at an intuitive level of 

understanding and in a rather informal style. For a rigorous mathematical definition, we 

refer to the existing literature on the theory of ASMs [24, 251 and their applications [23, 111. 

A DASM M is defined over a given vocabulary V by its program PM and a non-empty 
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set IM of initial states. V consists of some finite collection of function symbols and predicate 

symbols, each of a fixed arity. States of M are variants of many-sorted structures that express 

predicates in terms of their characteristic functions. Initial states yield valid interpretations 

of V. 

M has a finite set AGENT of autonomously operating agents. The set of agents changes 

dynamically over runs of M as required to model varying computational resources. The 

behaviour of an agent a in a given state S of M is defined by its program programs(a). 

To introduce a new agent a in state S, a valid program has to be assigned to programs(a). 

To terminate a ,  programs(a) is reset to the distinguished value undef (not representing a 

valid program). In any state S reachable from an initial state of M ,  the set of agents is well 

defined as 

AGENTS - {x E S : programs(x) # undef). 

The statically defined collection of all the programs that agents of M potentially can 

execute forms the distributed program PM. 

3.1.1 Concurrency and reactivity 

Intuitively, agents of M model the concurrent control threads in an execution of PM. They 

interact with each other by reading and writing shared locations of global machine states, 

where the underlying semantic model regulates such interactions so that potential conflicts 

are resolved according to the definition of partially ordered runs [24]. 

Interactions between M and its operational environment are restricted to actions and 

events as observable at well identified interfaces. The environment affects computations of 

M through externally controlled or monitored functions. Such functions change their values 

dynamically over runs of M ,  even though they cannot be updated by agents of M .  

3.1.2 Real time behaviour 

Real time behaviour imposes additional constraints on DASM runs ensuring that the agents 

react instantaneously [26]. Timing aspects are modelled based on an abstract notion of 

global system time. In a given state S of M ,  the time (as measured by some global clock) 

is given by a monitored unary function nows taking values in a linearly ordered domain 

TIME. Time values are represented as positive real numbers. One can assume the values of 

now to increase monotonically over runs of M .  
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3.1.3 Programs and rules 

A program is defined through a parallel composition of state transition rules. The canonical 

rule consists of a basic update instruction of the form f (tl, t2,  ..., t,) := to where f is an 

n-ary function symbol and the ti's (0 5 i < n) are terms. Complex rules are inductively 

formed by means of rule constructors. Two conventional rule constructors are the block 

constructor and the conditional constructor. 

The block constructor is a collection of ASM rules R1. . . R,. To fire a block constructor, 

all the rules R1 . . . R, are fired simultaneously. This construct has the following form: 

The conditional constructor has the form 

if e then 

R1 
else 

Rz 

where e is a Boolean term and R1 and R2 are ASM rules. If e is evaluated to true then R1 

is fired, otherwise R2 is fired. 

Non-determinism is often useful to abstract away from describing details of algorithms. 

Non-determinism is introduced in ASMs by the choose constructor in the following form: 

choose u E U with cp 

R(u) 

The meaning of this constructor is to fire rule R with an arbitrary u chosen from U satisfying 

cp. If there is no such u, nothing is done [24, 111. 

When sequential execution is not required, parallelism (simultaneous execution of a 

rule) is a useful tool to abstract from sequentiality. The forall constructor in ASM provides 

simultaneous execution of a rule R for each u in U that satisfies a given condition cp. This 
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constructor has the following form: 
- - 

forall u E U with cp 

R(u) 

In describing an algorithm, it is often required to dynamically allocate additional re- 

sources by introducing new elements. In ASMs, the import constructor, operating on a 

potentially infinite reserve set, provides allocation of new elements. The import constructor 

of the form 

chooses an element u from the reserve set, removes it from the reverse set and fires rule 

R. The reverse set of a state cannot directly be updated by an ASM rule but is updated 

automatically through execution of an import constructor. The elements of the reserve set 

of a state are not allowed to be in the domain or range of any basic function of the state [Ill. 

To extend a domain with a new element, we use the following notation: 

extend U with u 

R(u) 

which imports a new element, binds the variable u to the newly imported element, adds u 

to the domain U ,  and fires rule R(u) .  

To facilitate creation and termination of a given agent a of domain A, we introduce the 

two abbreviations new and stop in the following form: 

stop a 

The new operation creates a new agent a of domain A and sets program(a). It also adds 

agent a to the associated domain of agents. The stop operation removes agent a from the 

associated domain of agents and resets program(a) to undef. 
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To allow for partial updates of sets [27], the following operations are used to insert an 

element a into or remove a from a given set A. 

add a to A 

remove a from A 

Finally, the reserved function symbol self has a special role: in a program (or rule) it 

refers to the agent executing the program (or rule). 

3.1.4 Notational Conventions 

The ASM specifications presented in this document use the following notational conventions 

for improved readability. 

Agent program names and ASM rule names start with a capital letter. The individual 

words also start with capital letters and there is no separator between individual words 

(e.g., ProgramName). 

0 The first time a program or a rule is defined, its name appears in boldface (e.g., 

ProgramName). 

Function names start with a lowercase letter. The individual words start with capital 

letters and the rest of the letters are written in lowercase (e.g., functionName). 

ASM keywords are written in lowercase using bold font (e.g., else ). 

Domains are written in all capital letters and the individual words are separated by 

underscore '-' (e.g., DOMAINNAME). 

ASM specifications in the text are separated from the enclosing text by two horizontal 

lines: a thick line (-) indicating the start of the specification and a thin line 

(-) indicating its end. 

3.2 Overall Architecture 

This section introduces the overall architecture of the core model of the BPEL Abstract 

Machine in terms of a distributed real-time ASM. Logically, the BPEL Abstract Machine 
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Network Abstract 
Machine Model 

Figure 3.1: The composition of the BPEL service model and the network model 

splits into a service abstract machine and a network abstract machine, so that the behaviour 

of the communication network is clearly delineated from that of the BPEL processes residing 

at the communication endpoints. 

We focus on the service abstract machine model which captures the behaviour of ser- 

vices residing at communication endpoints while an executable ASM model of the network 

abstract machine is defined in [23]. Any interaction between these two models occurs at 

well-defined interfaces facilitating the composition of two models into the BPEL Abstract 

Machine (see Figure 3.1). Henceforth, we use the term BPEL Abstract Machine to refer to 

the service abstract machine. 

The core model formalizes the key functional attributes of the BPEL Web services 

architecture based on the asynchronous computation model of distributed ASMs [24]. The 

primary focus is on dynamic process creation/termination, Web services communication 

primitives, message correlation, concurrent control structures, and core BPEL activities 

including receive, reply, invoke, wait, empty, terminate, sequence, switch, while, pick and 

%ow. This model does not deal with data handling issues, faults or compensation behaviour, 

so does not include assign, throw, scope, and compensate. 

The BPEL Abstract Machine architecture is organized into three layers of abstraction, 

called the abstract model, intermediate model and executable model, as illustrated in Figure 

3.2. The abstract model formally sketches the behaviour of the key BPEL constructs. The 

intermediate model is the result of the first refinement step and provides a complete formal 

model of the key BPEL constructs. Finally, the executable model provides an abstract 

executable semantics of BPEL implemented in AsmL [33]. A graphical user interface (GUI) 

facilitates experimental validation through simulation and animation of abstract machine 

runs. Thus, the BPEL Abstract Machine forms a hierarchically defined ground model DASM 
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Figure 3.2: Sharpening informal requirements into executable specifications 

[ll, 51 obtained as the result of stepwise refinements of the abstract model. 

Figure 3.3 shows an abstract view of the Web services interaction model underlying the 

BPEL Abstract Machine. A BPEL document abstractly defines a Web service consisting 

of a collection of business process instances. Each such instance interacts with the external 

world (i.e., the communication network) through two interface components, called inbox 

manager and outbox manager. 

The inbox manager handles all the messages that arrive at the Web service. If a message 

matches a request from a process instance waiting for that message, the message is forwarded 

to the process instance. The inbox manager is also responsible for the new process instance 

creation which is further elaborated in Section 3.3.  The outbox manager, on the other hand, 

forwards outbound messages from process instances to the network. The inbox manager, the 

outbox manager, and the process instances are modeled by three different types of DASM 

agents. While the inbox manager agent and the outbox manager agent deal with message 

exchange, each process agent models a single process instance. The major role of a process 

agent is to execute the main activity of a process; i.e., the activity that specifies the business 

logic behind process interactions. 

Section 3 .3  provides an overview of the formal model of the core of the BPEL Abstract 

Machine. 
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Figure 3.3: High-level structure of the BPEL Abstract Machine 

3.3 The Formal Model 

There are three major types of agents defined in the BPEL Abstract Machine, namely: inbox 

manager, outbox manager, and process instances. In addition to these agent types, another 

type of DASM agent called activity agent is introduced. Activity agents assist process agents 

in executing BPEL activities. Each process agent is responsible for executing a single process 

instance, and it uses dynamically created activity agents for executing complex (structured) 

activities. 

AGENT = INBOX-MANAGER U OUTBOXNANAGER U PROCESS 

U ACTIVITYAGENT 

In the initial DASM state, there are only three DASM agents: the inbox manager, the 

outbox manager and a dummy process that facilitates creation of new process instances. In 

the following sections, we provide a brief overview on the behaviour of the inbox and outbox 

managers, process instances, and activity agents (see [43] for more details). 

Modelling the behaviour of a BPEL process requires certain information that is specific 

for the given business process to be derived from the underlying BPEL document. We 

assume that the relevant information is generated automatically in a pre-processing step 

through static analysis of the underlying BPEL document using standard compiler tech- 

niques and formalized by a set of statically defined functions as part of the definition of the 

initial state of the DASM [43]. 
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3.3.1 Inbox Manager 

The inbox manager operates on the inbox space, a possibly empty set of inbound messages. 

In each computation step, it attempts to assign a message to a matching process instance. 

To wait for an incoming message to arrive, a process instance informs the inbox manager 

by adding an input descriptor to a set called, waitingForMessage. An input descriptor con- 

tains information on the waiting input operation and the waiting agent. The predicate 

match(p, op, m) holds if message m can be assigned to operation op running in the pro- 

cess instance p according to the information specified by the input descriptor. The inbox 

manager uses this predicate to find an appropriate message that matches a waiting process 

instance. If the matching is successful, the message is assigned to the process instance using 

the AssignMessage rule which is comprehensively defined in [18, 431'. 

The inbox manager creates a new process instance whenever a matching message arrives 

for a start activity. Modelling process instance creation is simplified by introducing a nullary 

function dummy indicating a dummy process instance. The dummy process instance is not 

different from other process instances in its nature. However, there is always one and only 

one such process instance waiting on its start activity. By receiving the first matching 

message, the dummy process instance becomes a normal running process instance and a 

new dummy process instance will be created automatically by the inbox manager. 

In [43], the intermediate model introduces an additional responsibility for the inbox 

manager which is captured by the PickActivityCleara nce. According to the LRM, whenever 

one of the expected messages is received by a pick activity, the business process must not 

accept any of the other messages (previously expected by the pick activity). Thus, once 

a message is assigned to a pick activity, the inbox manager is responsible for updating 

the waiting set such that no further message is assigned to that pick activity. The formal 

specification of the behaviour of the inbox manager and PickActivityClearance, as defined in 

[43], are recalled in Spec 3.1. The behaviour is, however, revised in Chapter 4 where the 

core model is elaborated. 

3.3.2 Outbox Manager 

The outbox manager operates on the outbox space, a possibly empty set of output descrip- 

tors. Each output descriptor represents an outgoing message to be generated and sent to 

'A revised version of the AssignMessage is also presented in Appendix B 



CHAPTER 3. THE CORE OF THE BPEL ABSTRACT MACHINE 

1 InboxManagerProgram E 
if inboxSpace(se1f) # 0 then 

choose p E PROCESS, m E inboxSpace(self), 
(agent ,  op) E waitingForMessage(p) with match(p, op, m) 

AssignMessage(p, agent ,  op, m) 
PickActivityClearance 
// pro( CSI: inst ;tnw CI cat ion 
if p = dummyProcess then 

new newDummy : PROCESS 
dummyProcess := newDummy 

PickActivityClearance ( p  : PROCESS, a : RUNNINGAGENT,  op : IN-OPERATION) E 
if a E PICKNESSAGEAGENT then 

forall (a ,  op) E waitingForMessage(p) with op # op 
remove ( a ,  op) from waitingForMes~age(p) 

Spec 3.1: The original inbox manager program 

the outside environment (the network). An output descriptor encapsulates the information 

on the message and its destination. In each step, the outbox manager chooses a single out- 

put descriptor and generates the corresponding message to be sent via the communication 

network. The following DASM program presents the behaviour of the outbox manager as 

defined in [43]. 

OutboxManagerProgram = 
if outboxSpace(seZf) # 0 then 

choose od E outboxSpace(self) 

Send(od) // E i f ( ~ t  i ~ c l  sent t optxu ion 

However, the above mentioned behaviour of the outbox manager was defined considering 

the fact that the reply activity (or any other output operation) was regarded as a non- 

blocking activity. Although the LRM is not specific about the non-blocking behaviour of 

output operations, as our understanding of output operations in BPEL has improved, the 

behaviour of the outbox manager has been fully revised. This issue, along with a revised 

version of the outbox manager, is discussed in more detail in Chapter 4. 
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ProcessProgram r 
if ~busy(se1f) then 

if istartedExecution(se1f) then 
startedExecution(se1f) := true 
busy(se1f) := true 

else 
stop self 

else 
ExecuteActivity (activity(se1f)) 

Spec 3.2: The original process program of the core 

3.3.3 Process 

Process agents model the behaviour of business process instances as defined by the under- 

lying BPEL document. The major role of a process agent is to execute the main activity 

of a process. Once the execution of the activity is completed, the process agent terminates. 

The program of process agents is presented in Spec 3.2 [43]: 

The startedExecution predicate specifies whether the execution of the main activity is 

started or not. When the process execution is started (startedExecution(se1f) = true) ,  the 

process agent becomes busy (by setting the predicate busy to true) and remains busy during 

the execution. The ExecuteActivity rule takes care of the activity execution and is thoroughly 

defined in the intermediate model2 [43]. The behaviour of each basic activity is modelled 

by a single ASM rule. To cope with the complexity of the execution of structured activities, 

the behaviour of structured activities are modelled by dynamically created activity agents 

which are further described in the next section. 

Once the execution of a process is completed, the busy predicate is reset to false either 

by the process agent itself or by its child agent which is responsible for executing the main 

activity. This leads to the termination of the process agent in the next DASM step. 

Here, we present the formal definition of the behaviour of the receive activity as an 

example of a BPEL basic activity. The behaviour of the flow activity, as an example of a 

structured activity, is then presented in the next section. 

2See Appendix B for a revised version of this rule. 
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The Receive Activity 

The receive activity is one of the most important activities in BPEL. It is used both as an 

input activity to receive a message from a partner and as an start activity to create new 

process instances. In the BPEL Abstract Machine, the creation of new processes is captured 

by the inbox manager as discussed in Section 3.3.1. The receive activity then only needs to 

inform the inbox manager of the expected message and wait for the message to arrive. The 

behaviour of this activity is captured by an ASM rule called ExecuteReceive. 

Executing a receive activity in the BPEL Abstract Machine consists of two main tasks: 

( I )  informing the inbox manger that a message is expected, and (2) waiting for the message 

to be received. Thus, ExecuteReceive works in two different modes, namely initialization 

mode and waiting mode, distinguished by a predicate receiueMode. In the initialization 

mode, the agent that is responsible for executing a receive activity (which can be either the 

process agent or one of its subordinate agents) informs the inbox manager that it is waiting 

for a message. This is done by adding an input descriptor to the waitingForMessage set of the 

root process. An input descriptor specifies the information on the expected message and the 

agent that is waiting for that message. In each step, the inbox manager inspects this set and 

checks whether any of the desired messages is received, and, if so, assigns it to the matching 

process instance. The agent then switches to the waiting mode (receiveMode(se1f) := true) 

and waits until the inbox manager assigns a message to it. Once a message is assigned to 

the agent, the inbox manager removes the corresponding input descriptor from the waiting 

set informing the agent that the assignment is performed. 

The formalization of the behaviour of the receive activity is presented in Spec 3.3. The 

Synchronization rule addressed here fulfils the synchronization dependency requirements as 

specified in the LRM and is further elaborated in [43]. It is also worth pointing out that once 

the message is received and the execution of the receive activity is completed, the (busy) 

predicate is reset back to false. 

3.3.4 Activity Agents 

The execution of each structured activity inside a process instance is modelled by a single 

DASM agent of the type activity agent which is dynamically created by the process agent. 
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ExecuteReceive(activity : RECEIVE) E 
let inputDescriptor = (se l f ,  activity) in 

if ~receiveMode(self)  then 
receiveMode(se1f) := true 
/ /  I'hv I u11rii11g agent waits l o  rcwivc ;t r~lc~s;~,g,v 
add inputDescriptor to  waitingset 

else 
if inputDescriptor 4 waitingset then 

receiveMode(se1f) := false 
busy(se1f) := false 
Synchronization(activity) 

where 
waitingset E waitingF~rMessage(rootProcess(self)) 

Spec 3.3: Behavioural specification of the receive activity 

Process Instance 

I 

I 
Sequence While Pick Switch Flow 

I I 

Figure 3.4: Control structure defined on DASM activity agents 

Each activity agent can dynamically create other activity agents for executing nested struc- 

tured activities. Moreover, to deal with concurrent control threads (like in f low and 

the responsible activity agent creates a number of auxiliary activity agents. For instance, 

to concurrently execute a set of activities, a flow agent assigns each enclosed activity to a 

separate f low thread agent  [20]. Thus, at any time during the execution of a process instance, 

we may have a tree of DASM agents running under control of the corresponding process 

agent. Figure 3.4 shows the control structure of DASM activity agents, as presented in [43], 

where one can associate one branch from the root to a leaf with each single process instance. 

A revision of the execution tree will be presented in Chapter 4. 

For maintaining the hierarchical relations between activity agents, we define a function 

30ne may argue that pick is not a concurrent control construct, but as discussed in [43], it can naturally 
be viewed as such. 
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parentAgent for linking a subordinate agent to its parent agent. For each activity agent, 

a derived dynamic function rootProcess is inductively defined for indicating the root of the 

execution tree. These functions are formally defined as follows: 
- - - - --- 

R U N N I N G A G E N T  = PROCESS U A C T I V I T Y A G E N T  

parentAgent : R U N N I N G A G E N T  -+ R U N N I N G A G E N T  

rootProcess : R U N N I N G A G E N T  -+ PROCESS 

rootProcess(a) E 
if a E PROCESS;  

rootProcess(parentAgent(a)) , otherwise. 

Flow Activity 

The notion of concurrency in BPEL is provided by the flow activity and it is modelled by 

DASM agents in the core model of the BPEL Abstract Machine based on the principle of 

partially ordered runs [43]. A flow activity concurrently executes a set of activities and is 

completed when all the activities in the flow have completed their execution. 

As for other structured activities, a flow activity is handled by an activity agent called 

a flow agent. A flow agent is responsible for executing a flow activity. To concurrently 

execute the activities declared inside the flow activity, the flow agent creates a set of flow 

thread agents and assigns each activity to one of these agents. The flow agent keeps track 

of its thread agents using a set called JowAgentSet. When created, the flow thread agents 

are added to this set. Once the execution of the activity assigned to one of the threads is 

completed, the thread removes itself from this set. Thus, whenever the fEowAgentSet becomes 

empty, the execution of all concurrent activities is completed, and the flow agent releases its 

parent and terminates. Note that the operation of releasing the parent agent is performed 

by re-setting the busy predicate of the parent agent to false. 

The behaviour of the flow agent is formally defined in Spec 3.4. For a complete list of all 

the function definitions, rules and agent programs of the original core of the BPEL Abstract 

Machine see [43]. 
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FlowProgram 
if -busy(self) then 

// C'roi~t ('3 t l ~ ( ~ i ~ t 3 . j  t tt c-ollmrrcnl l j  t w ~ . u t  (> at.1 ivit it)$ g~o~ipc t l  imitlv t hv ifow. 
forall activity E jlowActivitySet(se1f) 

new fThread : FLOW-THREADAGENT 
Initialize(fThread, activity) 
add fThread to jlowAgentSet(se1f) 

busy(se1f) := true 
else 

if jlowAgentSet(self) = 0 then 
/ /  .ill t l n c ~ ~ t l ~  art. tlorrc.. Hex ;\(.I ivit ; i <  t ornpl(~tct1. 
busy(parentAgent(se1f)) := false 
stop self 
Synchronization(baseActivity(se1f)) 

Spec 3.4: The original program of flow agents 

3.4 Open Issues 

The core of the BPEL Abstract Machine provides a high-level specification of the core 

concepts of BPEL, including concurrent control structures, communication primitives, mes- 

sage correlation, event handling mechanisms, and dynamic creation of services (process 

instances). To build a comprehensive model of BPEL around the core which includes all 

the fundamental aspects of the language, there are yet a number of open issues that need 

to be considered, such as 

1. making the model more flexible for future refinements, 

2. resolving ambiguities on outbound communication, 

3, capturing data handling and state variables, 

4. modelling fault handling, and 

5.   nod el ling the compensation behaviour of BPEL. 

Chapter 4 elaborates the core of the BPEL Abstract Machine with regard to structural 

and behavioural aspects to resolve Issues #1 and #2. Resolving the first issue facilitates fu- 

ture refinements of the core toward a comprehensive high-level specification of the language. 

The second issue addresses the ambiguity of the LRM regarding outbound communication 
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of BPEL. Chapter 5 then extends and refines the core model to capture data handling, fault 

handling, and compensation behaviour of BPEL. 



If there is to be any clarity at all, 

it demands a certain assiduity. 
Jason Dewinetz 

Chapter 4 

Elaborating the Core 

Chapter 3 introduced the core model of the BPEL Abstract Machine and addressed some 

open issues in that model. This chapter substantially improves the core model with regard 

to structural and behavioural aspects, making it more robust and flexible for stepwise re- 

finement. This chapter also resolves the open issues addressed in Chapter 3 by introducing: 

(1) a well-defined Process Execution Model; ( 2 )  a simple and efficient coordination platform 

for ASM agents; and (3) the notion of requirements lists which extract the key language 

requirements from the LRM to make these requirements accessible and to facilitate finding 

inconsistencies and ambiguities in the LRM. The outbound communication behaviour is 

also totally revised and a comprehensive specification is provided. 

This chapter starts by an overview on commonly used refinement notions in software 

engineering and more specifically in Abstract State Machines (Sections 4.1.1 and 4.1.2). 

A two dimensional refinement approach to extend the core model of the BPEL Abstract 

Machine is then provided in Section 4.1.3. Various improvements on the core are presented 

in Section 4.2. Section 4.3 briefly presents the refinement of the core model using what is 

called horizontal extensions. The refinement is then discussed in detail in Chapter 5 .  
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4.1 Refinement Notions 

Word~et ' ,  a lexical database for English language at Princeton University, provides the 

following definitions for refinement: 

1. a highly developed state of perfection; having a flawless or impeccable quality; 

2. the result of improving something; 3. the process of removing impurities; 4. a 

subtle difference in meaning or opinion or attitude; 5. the quality of excellence 

in thought and manners and taste; 

In software engineering, refinement can be defined more precisely as the process of im- 

proving an abstract model of a software system to a more concrete model, generally by 

reducing nondeterminism or uncertainty, which may eventually lead to a suitable imple- 

mentation of the system. 

In his well-known book, The B-Book: Assigning Programs to Meanings, Abrial informally 

defines refinement as a technique to transform an abstract mathematical model of a system 

to another mathematical model which is more concrete in the sense that it provides an 

'implementation' of the abstract machine [I]. Woodcock and Davies, in their book on 

Using 2: Specification, Refinement, and Proof [53], provide a simple technical definition of 

refinement based on total relations: '(If R and S are total relations, then R refines S exactly 

when R S." Relation R can reduce the degree of freedom in S by omitting one or more 

tuples of the form (x, yi) in S, where x E Dom(S) and each yi is a distinct element of the 

set Range(S) . 
In this section, we specifically focus on the ASM refinement method and address some 

of its frequently used forms. 

4.1.1 The ASM Refinement Method 

In this section, we recall some fundamental principles of ASM refinement techniques adopted 

from [12]. Most refinement notions in software engineering are based on a priori principles, 

like the Principle of Substitutivity which is described in [14] as: 

P r i n c i p l e  of subs t i t u t i v i t y :  i t  is acceptable to  replace one program by another, 

provided i t  i s  impossible for a user of the program to observe that the substitution 

has taken place. 
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As an example one can refer to the concept of refinement in the B-method. In an informal 

approach to the refinement of generalized substitutions, we have: '(Roughly speaking, a 

substitution S (working within the context of a certain abstract machine M )  is said to be 

refined by  a substitution T ,  if T can be used in place of S without the 'user' of the machine 

noticing it. " [I, Section 11.11. 

These refinement notions are restricted in various ways by their ground principles. Re- 

striction to certain forms of programming is one example. As a consequence of restricting to 

sequential programming, refined programs are even structurally equivalent to their abstract 

versions; i.e., corresponding operations are occurring in the same order which almost pre- 

vents applying other forms of control structures such as parallelism. Restriction to certain 

pairs of input/output values or structures is another example, in which the possibility of 

refining abstract forms of input/output is ruled out. 

The ASM refinement method is not based on any a priori defined refinement principle; 

i.e., the notion of refinement can be defined without restricting to a given model of com- 

paring program runs in different levels of a system. The freedom of abstraction in ASMs , 
defined as '(the availability of ASMs of arbitrary structures to reflect the underlying notion 

of state" [12], provides the necessary means to fine tune the mapping of an abstract ma- 

chine to a more concrete one, in such a way that the intended equivalence between runs of 

these two machines becomes observable [12, 421. Instead of focusing on a generic notion of 

refinement which can be proved to work in every context (and for instance can only effect 

the program in a way that remains hidden from the user), the focus is to support a disci- 

plined use of refinement which can correctly document and reveal intended design decisions 

by adding more details to an abstract description. It can be anything from improving a 

program by additional features, restricting a program through some boundary conditions 

to prevent undesired behaviour, or making an abstract program executable. 

Utilizing the freedom of abstraction frees us from a predefined notion of state, program, 

run, equivalence or any particular method to establish correctness of a refinement. In fact, 

with ASMs, any feasible accurate method can be used to show that the refined model is 

loyal to the original design assumptions and its runs correctly translate the effects of the 

runs of the abstract one. 

In particular, the ASM refinement method (by being appropriately instantiated) can 

capture various more restricted refinement notions in the literature. This means, it can 

provide a uniform framework to reflect various refinement notions available in the literature. 
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Machine M 

Machine M* 

Figure 4.1: The ASM Refinement Scheme 

Figure 4.1 illustrates the general scheme for an ASM refinement step. To refine an ASM 

M to an ASM M *  one has the freedom to define the following notions: 

refined state 

states of interest and the correspondence between them 

The states of interest are states of machine M and machine M* that are related 

through the refinement process and are of particular interest. State S and its corre- 

sponding state S* in Figure 4.1 are two states of interest of machines M and M*. 

computation segments 

Computation segments of the form 71,. . . ,T, between two sates of interest in M 

and corresponding refined segments of the form 01,. . . , a, between the corresponding 

states of interest in M *  can be defined, where each 7-i and a3 represent a single M- 

step and a single M*-step respectively. Figure 4.1 illustrates a computation segment 

of machine M and its corresponding computation segment in M*. The resulting 

diagrams are called (m, n)-diagrams and the corresponding refinement is called (m, n)- 

refinement, where m steps of an abstract machine is refined to n steps of its refined 

machine. 

locations of interest 

A notion of locations of interest (in M-states) and corresponding locations (in M*- 

states) can be defined, where locations represent abstract containers of data in states 

of M and M*.  The pairs of these locations (in M )  and their corresponding locations 
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(in M*) are then used to define the notion of equivalence of corresponding states of 

interest. 

equivalence of data 

A notion of equivalence (G) of data in the locations of interest can be defined, which 

is then used (along with the notion of locations of interest) to define the notion of 

equivalence of corresponding states of interest. 

The scheme shows that an ASM refinement can combine a change of signature (defining 

states of interest, corresponding states, locations of interest and their corresponding loca- 

tions, and equivalence of data in those locations) with a change of control (computation 

segments and their corresponding segments), which are kept separated in many notations of 

refinement in the literature, like data refinement (e.g., in Z [53]) and operation refinement 

(e.g., in B [I]). 

Once the notion of states and their equivalence are defined, M *  can be considered as a 

correct refinement of M if and only if every refined run simulates an abstract run with the 

equivalent corresponding states, according to the following definition [12]: 

Definition 1. Fix any notions - of equivalence of states and of initial and final states. 

An ASM M* is called a correct refinement of an ASM M if and only if for each M*-run 

S*o, S*l , .  . . there is an M-run So, S1,. . . and sequences io < i l  < . . ., jo < jl < . . . such 

that io = jo = 0 and Sik E S*jk for each k and either 

both runs terminate and their final states are the last pair of equivalent states; or 

both runs and both sequences io < il < . . ., jo < jl < . . . are infinite. 

Now a complete refinement is defined as: 

Definition 2. M *  is called a complete refinement of M if and only if M is a correct 

refinement of M*. 

Note that when M *  is a correct refinement of M ,  there can be an M-run that has no 

corresponding M*-run; i.e., M* does not need to have an equivalence run for every run of 

M to be a correct refinement of M .  On the other hand, when M *  is a correct refinement of 

M ,  for every M*-run there is a corresponding M-run, so M is a complete refinement of M.  

The pairs of initial and possibly final states are considered to be corresponding states; 

so, refinement correctness and completeness imply, for terminating runs, the equivalence of 

input/output behaviour of the abstract and the refined machine. 
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4.1.2 Refinement Patterns and ASMs 

This section briefly presents conservative refinement, data refinement, and procedural refine- 

ment (also known as operational refinement), three widespread refinement patterns in the 

literature that are applied in practical system design and analysis. 

Conservative Refinement 

Conservative refinement, which is also called conservative extension or horizontal refine- 

ment, is a purely incremental refinement method which is suitable for introducing new 

behaviour in a modular approach. As an elegant example of applying this method, one can 

refer to the various extensions in the refinement of the Java machine in [42]. In order to 

define a conservative extension of an 'old' machine, the following steps should be performed: 

1. Define the 'new' condition, in which the 'new' machine should be executed and the 

'old' machine either has no defined behaviour or should not be executed. For instance, 

for adding fault handling to the BPEL Abstract Machine, this condition could be the 

execution mode of the machine being in Fault-Handling mode. 

2. Define the 'new' machine, which defines the appropriate behaviour in case of the 'new' 

condition. In our example, it would be the fault and compensation extension which 

takes care of the fault handling behaviour. 

3. Guard the behaviour of the 'old' machine using the negation of the 'new' condition, to 

prevent its execution when the new condition holds. 

Data Refinement 

Data refinement is mostly a (1, 1)-refinement, where the effect of the refined operations on 

refined data types are the same as the effect of the abstract operations on abstract data 

types. Woodcock and Davies in [53] provide a nice definition for refinement of abstract 

data types. They define a data type X in a global state G to be a tuple of the form 

(X, xi, x f ,  {xoili E I)), where 

0 X is the space of values; 

0 xi: G -+ X ,  is an initialization; 
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x f: X 4 G, is a finalization; 

{xoili E I }  is an indexed collection of operations, such that xoi : X 4 X 

0 xi and x f are total functions but each xoi may be partial. 

A program P : G -+ G is then defined as a composition of operations over data types that 

start with an initialization and ends with a finalization. This definition allows programs 

to be parameterized by data types. Any two abstract data types .A and 23 that use the 

same index set of operations will support the same set of programs. According to this, the 

notion of refinement of abstract data types can be defined as follows: if data types .A and 

(5' share the same indexing set, then .A is refined by (5' if and only if for each program P(.A), 

P((5') c P(A) [5312. 

In ASMs, a frequently used form of data refinement which uses the generalization of 

'operation' to 'ASM rule' is through instantiation, where the ASM rules remain unchanged 

and only the abstract functions and predicates occurring in the rules are specified in more 

detail [12]. An example of data refinement in the core of the BPEL Abstract Machine is 

the refinement of an abstract function message-is-received in the description of the receive 

activity to the following definition [43]: 
- - - -- 

message-is-received (activity : ACTIVITY) r 

( s e l f ,  activity) $ waitingForMessage(rootProcess(se1f)) 

'Strictly speaking, the condition is ~ ( 6 )  ~ ( 2 )  in which the 2 is a totalised version of A. See [53] for 
more details. 

3 ~ e e  [15] for definition of an ASM submachine. 

Procedural Refinement 

In a given machine, replacing a rule (or a submachine3) by another rule (or another machine) 

is called procedural refinement or submachine refinement. This form of refinement in most 

cases is either a (1, n)-refinement (in compiler verification replacing one line of source code 

by a chunk of target code) or an (m, n)-refinement where m is usually less than n (replacing 

an abstract machinelrule by a more concrete one). 

A distinctive example is the refinement of the Prolog ASM in [lo] in which an abstract 

function unify is refined to a submachine which implements a unification procedure. Another 
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Figure 4.2: A two-dimensional refinement approach 

example is the refinement of the abstract rule ExecuteActivity in the ProcessProgram of the 

abstract model of the core of the BPEL Abstract Machine into a complex rule in the next 

level (i.e., the intermediate model) which implements activity execution in BPEL. 

Procedural refinement is more general than the principle of substitutivity mentioned 

above. A submachine which is refined in this way, can capture new features that are not 

included in the behaviour of the abstract machine (though they are related to the behaviour 

of the abstract machine). 

We combine the refinement methods addressed here for constructing a two dimensional 

refinement approach to elaborate the core of the BPEL Abstract Machine and extend it to 

capture other aspects of BPEL. Section 4.1.3 introduces this refinement approach. The rest 

of this chapter applies this refinement method to elaborate the core and then Chapter 5 

extends the core toward a comprehensive formal model of BPEL. 

4.1.3 A Two Dimensional Refinement Approach 

To deal with the complexity of the BPEL Abstract Machine and the required expansions 

to cover data handling and fault and compensation handling behaviour, we introduce a two 

dimensional refinement approach: 

0 vertical refinement which provides step by step elucidation using a combination of 

data refinement and procedural refinement in a three layered structure, and 

0 horizontal refinement which facilitates behavioural decomposition using conserva- 

tive (incremental) extensions. 
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Figure 4.3: Behavioural decomposition using incremental extensions 

Figure 4.2 illustrates the structure of the enhanced BPEL Abstract Machine. Based on 

this approach, the BPEL Abstract Machine comprises three basic building blocks reflect- 

ing its horizontal organization: core, data handling extension, and fault and compensation 

extension. The core, which is the revised version of the original core model, focuses on: 

dynamic process creation/termination, 

0 Web services communication primitives, 

0 message correlation, 

concurrent control structures, 

0 and core BPEL activities as addressed in Chapter 3. 

The core does not deal with data handling issues, faults or compensation behaviour. The 

data handling extension adds BPEL variables and data handling behaviour to the core and 

replaces abstract message values with actual values received from the environment thus 

enables business processes to create and manipulate message values. The fault and com- 

pensation extension complements the model by providing fault handling and compensation 

behaviour. These extensions are fully discussed in Chapter 5. 

Vertically, the architecture is organized into three layers of abstraction, called abstract 

model, intermediate model and executable model, as illustrated in Figure 3.2. The vertical 

refinement of the core model is described in more detail in Chapter 3. 
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4.2 Revising the Core 

Before applying the horizontal extension method to refine the core of the BPEL Abstract 

Machine, the core must be partly revised to be extensible. A well-defined, flexible and 

extensible process execution model is required to handle extended forms of execution, in 

particular fault handling. Outbound and inbound communication of BPEL processes in the 

model needs to be revised to ensure that the notions of communication, data handling, and 

fault handling are well separated so that the latter two can be added as extensions to the 

first one. As more aspects of BPEL are captured by the model and the number of agents 

involved in the execution of a business process increases, a well-defined interaction framework 

is required to be defined to avoid complexity and ambiguity of interactions between agents. 

4.2.1 Process Execution Model 

In the original core model, activity agents go through at least two different phases dur- 

ing their execution. For modelling the required state transition behaviour, we define the 

predicate busy to distinguish between two general states of an activity agent: 

b-usy(agent) being true indicates that the agent is executing an activity; 

0 busy (agent) being false indicates that the agent is either in the initialization mode, or 

is finished executing an activity. The agent can again start executing an activity (in 

case of a sequence or a while agent) and thus may become busy again. 

While this was a good choice to start with, after incorporating more activities into the 

model, we found that we need a better structure to deal with state transitions of activity 

agents. The busy predicate could cause ambiguity in some cases. The interpretation of this 

predicate being false was not completely consistent in the model; the corresponding agent 

could be either in the initialization phase or in the termination phase. For some activity 

agents, like switch, careful consideration was required to separate these two phases. It was 

also the responsibility of child activity agents to reset the value of the busy function of their 

parent activity agents back to false, indicating that they (the child activity agents) finished 

their execution. This would restrict the behaviour of parent agents and in some cases make 

the model ambiguous. Furthermore, this two-phase model was not flexible enough for future 

extensions of the model, for example to incorporate fault handling behaviour. 
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Figure 4.4: The process execution tree 

Parent Agent ', r 

To enhance the state transition model of the activity agents and to cope with the com- 

. 

plexity of the process execution model, we introduce the notions of process execution tree 

Subprocess 
Agent 

and execution lifecycles. 

At any time during the execution of a process instance we may have a tree of DASM 

agents running under control of the enclosing process agent (Figure 4.4). Each of these 

sub-agents monitors the execution of its child agents (if any) and notifies its parent agent 

in case of normal completion or fault. This structure provides a general framework for 

the execution of BPEL activities. The DASM agents that model BPEL process execution 

are called kernel agents. They include process agents and subprocess agents. In the core, 

however, we define subprocess agents to be identical to activity agents. Figure 4.4 sketches 

the process execution tree. 

KERNELAGENT E PROCESS U SUBPROCESSAGENT 
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Figure 4.5: Execution lifecycle of kernel agents: core 

For maintaining the hierarchical relations between kernel agents, we use the function 

parentAgent for linking a subordinate agent to its parent agent. For each kernel agent, a 

derived dynamic function rootProcess indicates the root of the execution tree, similar to the 

one that was defined over running agents in the original core model. 

rootProcess : K E R N E L A G E N T  -+ PROCESS 

We decompose the execution of a process instance into a collection of execution lifecycles 

for the individual BPEL activities. The state diagram in Figure 4.5 illustrates the normal 

execution lifecycle of kernel agents in the core. When created, a kernel agent is in the Started 

mode. After initialization, the kernel agent starts executing its assigned task by going into 

the Running mode. When the execution is completed, the agent goes to the ActivityCompleted 

mode, where it can decide (based on the nature of the assigned task) to either go back to the 

Running mode or finalize the execution and switch to Completed. Activity agents that may 

execute more than one activity (like sequence) or execute one activity more than once (like 

while) can go back and forth between the ActivityCompleted mode and the Running mode. 
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4.2.2 Agent Interaction Model 

To avoid changing the state of an agent by its child agent(s), and to make the model flexible 

for future changes and extensions, we provide a simple yet elegant framework for agents to 

communicate with each other. 

Communication between agents is provided by signals. Every kernel agent can send a 

signal to another agent using the following operation: 

trigger s : SIGNALDOMAIN, agent 

Rul el 

A kernel agent can respond to a received signal using the following operation: 

onsignal s : SIGNALDOMAIN 

Rulel 

otherwise 

Rulea 

Trigger and onsignal are the only interfaces of kernel agents' communication frame- 

work. To each process, we assign a set of signals which acts as a container for the signals 

coming to any kernel agent under control of the process. This set is addressed by the 

function signalset defined on PROCESS. We define SIGNAL to be the set of all defined signal 

domains. In the core however, SIGNAL is defined as follows: 

domain AGENT-COMPLETED 

SIGNAL E AGENT-COMPLETED 

For every signal, signalSource and signalTarget are defined to indicate the source and the 

target agents of that signal. 

signalSource : SIGNAL -+ KERNELAGENT 

signalTarget : SIGNAL + KERNELAGENT 

When an agent triggers a signal for another agent, a new element of the specified signal 

domain is created, its source and target agents are assigned, and the signal is added to the 

signal space of the target agent (which is the signal space of its root process). The following 



CHAPTER 4. ELABORATING THE CORE 

syntactical transformation provides this behaviour: 

trigger s : SIGNALDOMAIN, agent 

Rule 
- - - 
extend SIGNALDOMAIN with s 

signalSource(s) := self 

signal Target(s) := agent 

add s to signalSet(rootProcess(se1f)) 

Rule 

To respond to a signal, the target agent looks for an element of that signal in its corre- 

sponding signal space, removes that element from the signal space and performs the intended 

operat ions. 

onsignal s : SIGNALDOMAIN 

Rulel 

otherwise 

Rule2 
- - - 

if 3s(s  E signalSet(rootProcess(se1f)) A 

signalSource(s) = self A s E SIGNALDOMAIN) 

choose s E signalSet(rootProcess(se1f)) with 

s E SIGNALDOMAIN A signalSource(s) = self 

remove s from signalSet(rootProcess(se1f)) 

Rulel 

else 

Rule2 

The complete definition of the related rules and agent programs is provided in Ap- 

pendix B. 

Sequence Program: An Example 

Kernel agent programs of the original core model are revised with regard to the process 

execution model and the agent interaction model discussed earlier. We present here, as 

an example, the original version and the revised version of the sequence agent program 
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(respectively referred as the Seq~enceProgram,,~~~~,~ and the Sequenceprogram). 

A sequence activity is a structured activity that enforces a sequential execution order 

on a collection of activities. The Seq~enceProgram, , ,~~  has three phases: (1) fetching 

the next activity for execution, (2) executing the activity, and (3) going back to phase (1) 

if there is more activity for execution, otherwise finalizing the execution of the sequence. 

Spec 4.1 presents the original version of the sequence program. The three phases mentioned 

here are distinguished in the program by a combination of the busy predicate and the value 

of the currentActivity. When busy(self) does not hold, the agent gets the next activity for 

execution and switches busy(se1f) to true. When busy(se1f) holds, the agent either executes 

the current activity or finalize its execution. These two cases are distinguished by checking 

the value of currentActivity(self). If this value is undefined (undef), it indicates that there is 

no more activity for execution and the agent must finalize its execution (i.e., the execution 

of the sequence). Otherwise, the agent executes the current activity. The interpretation of 

i;he busy predicate and the separation of different execution phases in the program, in spite 

of being precise and concise, is not easy to follow. 

The revised version of the sequence program is presented in Spec 4.2. Different execution 

modes of the agent (see Figure 4.5) are distinguished by the execMode function which is 

defined as follows: 

EXECUTIONMODE = {emstarted, emRunning, emActivityCompleted, emCompleted) 

execMode : KERNELAGENT -+ EXECUTIONMODE 

// initial ~ x l u t ~  crt6Sfartt:d 

The sequence program starts in the Started mode, assigns the first activity to the cur- 

rentActivity function and switches to the Running mode to execute the activity. If the execut- 

ing activity is a basic activity, when the execution is completed, the ExecuteActivity rule will 

change the execution mode of the agent to the Activity-Completed. If the executing activity 

is a structured activity, when its execution is completed, its associated activity agent will 

send an agent-completed signal to the sequence agent. Upon receiving the agent-completed 

signal, the sequence agent switches to the Activity-Completed mode. 

In the Activity-Completed mode, the sequence agent fetches the next activity to be exe- 

cuted. If the value of this activity is undef (i.e., there is no more activity to be executed), the 

sequence agent finalizes its execution using the Fi na IizeKernel Agent rule, which also switches 
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- S e q u e n ~ e P r o g r a m , , ~ ~ ~ ~ ~ ~  = 
if ~busy ( se1 f )  then 

currentActivity(self) := sequenceCounter(baseActiuity(self)) 
busy(se1f) := true 

else 
if currentActivity(self) # undef then 

ExecuteActivity(currentActivity(self)) 
else 

stop self 
busy(parentAgent(self)) := false 
Synchronization(baseActiuity(se1f)) 

-- 

Spec 4.1: The original Sequenceprogram of the core 

the execution mode to Completed.  The FinalizeKernelAgent rule switches the execution mode 

of the agent to the Completed mode, sends an agent-completed signal to its parent agent, 

and uses the Synchronization rule to handle synchronization issues4. The sequence agent 

then, like all other kernel agents, terminates in the Completed mode. The formal definition 

of the FinalizeKernelAgent rule is presented below: 

FinalizeKernelAgent E 

execMode(se1f) := emcompleted 

trigger s : AGENT-COMPLETED, parentAgent(se1f) 

Synchronizat ion(baseActiui ty(self))  

4.2.3 Requirements Lists 

The original core model is built upon version 1.1 of the LRM, where the requirements are 

scattered over nearly 140 pages, making it hard to analyze semantic aspects of the language 

and to extract key language properties. We built the original core model by frequently 

referring to the LRM to make sure that all the required aspects are considered faithfully. 

Despite our careful conformance to the LRM, there were some ambiguities in the LRM that 

we missed to address in the original core model. Blocking behaviour of the reply activity is 

an example which is further discussed in Section 4.2.5. s Before starting to build the revised 

4 ~ e e  [43] for more detail on synchronization of activities. 
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SequenceProgram = 
case execMode(se1f) of 

emstarted -+ 
currentActivity(se1f) := sequenceCounter(se1f) 
execMode(se1f) := emRunning 

emRunning + 
if normalExecution(self) then 

onsignal s : AGENT-COMPLETED 
execMode(se1f) := emActivityCompleted 

otherwise 
ExecuteActivity (currentActivity(se1f)) 

emActivityCompleted -+ 
currentActivity(se1f) := sequenceCounter(self) 
if currentActivity(se1f) = undef then 

FinalizeKernelAgent 
else 

execMode(se1f) := emRunning 

emcompleted --+ stop self 

Spec 4.2: The revised version of the SequenceProgram of the core 
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version of the model, and in order to make it easier to further extend the model, we decided 

to extract lists of requirements related to the core aspects of BPEL. These lists are called 

Requirements Lists, covering major requirement elements related to different aspects of the 

language. These requirement elements are all extracted from the LRM and are all referenced 

precisely to the corresponding sections in the LRM. Requirements lists have been revised 

many times during the refinement process, to be as comprehensive and concise as possible. 

As an example, we present here the requirements list of the reply activity (Reply-LR): 

1. "The <rep ly>  construct allows the business process to send a message in reply to a 

message that was received through a <receive>.  The combination of a <rece ive>  

and a <rep ly>  forms a request-response operation on the WSDL portType for the 

process." [$6.2] "A reply activity is used to send a response to a request previously ac- 

cepted through a receive activity. Such responses are only meaningful for synchronous 

interactions." [$11.4] 

2. "The correlation between a request and the corresponding reply is based on the con- 

straint that more than one outstanding synchronous request from a specific partner 

link for a particular portType, operation and correlation set(s) MUST NOT be out- 

standing simultaneously." [$11.4] 

3. "For the purposes of this constraint [Reply-RL-31, an onMessage clause in a pick is 

equivalent to a receive (see 12.4. Pick)." [$11.4] 

4. "Moreover, a reply activity must always be preceded by a receive activity for the same 

partner link, portType and (request/response) operation, such that no reply has been 

sent for that receive activity." [$11.4] 

5. "Note that the <rep ly>  activity corresponding to a given request has two potential 

forms. If the response to the request is normal, the faultName attribute is not used and 

the variable attribute, when present, will indicate a variable of the normal response 

message type. If, on the other hand, the response indicates a fault, the faultName 

attribute is used and the variable attribute, when present, will indicate a variable of 

the message type for the corresponding fault." [$11.4] 

6. A reply activity MAY specify a variable that contains the message data to be sent 

[$11.4]. 
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7. "Variables associated with message types can be specified as input or output variables 

for invoke, receive, and reply activities (see 11.3. Invoking Web Service Operations 

and 11.4. Providing Web Service Operations)." [$9.2] 

8. "If the variable reference is omitted for an outgoing message, then any properties of 

the message are considered to have been initialized through opaque assignment.. . " 
[$15.1] 

9. "If a reply activity is being carried out during the execution of a business process 

instance and no synchronous request is outstanding for the specified partnerlink, 

portType, operation and correlation set(s), then the standard fault bpws:invalidReply 

MUST be thrown by a compliant implementation." [$14.5] 

10. "correlation Violation is thrown when the contents of the messages that are processed 

in an invoke, receive, or reply activity do not match specified correlation information." 

p20.11 

11. "invalidReply is thrown when a reply is sent on a partner link, portType and operation 

for which the corresponding receive with the same correlation has not been carried 

out." (similar to #9) [$20.1] 

12. "In case of activity termination, the activities wait, reply and invoke are added to 

receive as being instantly terminated rather than being allowed to finish." [$4.3] 

The complete collection of requirements lists is presented in Appendix A. 

4.2.4 Input/Output Descriptors 

In the original core model, agents use tuples of two or more elements as descriptors to 

indicate that they are waiting for an incoming message or they have a message that needs 

to be sent out. Inbox and outbox managers look for these tuples and provide the required 

service to the corresponding agents. 

There were two problems with using tuples as descr.iptors: 

1. Every module (agent program or ASM rule) that deals with a descriptor should be 

aware of the exact structure of that tuple, even if only one component of that tuple is 

of interest. This reduces the flexibility of the model for future refinements; while if all 
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modules could only see the parts of the descriptor that they require, future refinements 

of some modules could simply extend the structure of the descriptor without affecting 

other modules. 

2. This approach is not a good choice for future changes and improvement. Once the 

structure of the tuple representing the descriptor is fixed, this structure is hard-coded 

in all the modules dealing with that tuple. Future changes thus would require all the 

involved modules to be changed even if they are not directly affected by the change. 

For example, adding variable references to a descriptor requires all the modules using 

that descriptor to be changed even if they don't deal with variable references. 

To prepare the model for future extensions, descriptors are defined as abstract data 

types with associated functions that represent their intended data structure. For example, 

for input descriptors (which inform the inbox manager that an 'agent' is waiting for a 

message on a specific 'operation') we provide the following definition: 

domain INPUTDESCRIPTOR 

dscAgent : INPUTDESCRIPTOR -+ KERNELAGENT 

/ /  :2wigr1s l o  cnctr tlcsc'rtpl ox. <r r rrrrning agorlt t Irat c.1 mi cd t hat cbst r ~ptor . 
dscoperation : INPUTDESCRIPTOR -+ INOUT-OPERATION 
// 'l'lm c is i u ~  111put/Olitput opc:i.jl ion tllat is hound to cvcw input chwiiptor. 

With this structure, additional information can be flexibly attached to a descriptor 

without changing those modules that are not affected by the new property. For example, to 

add a time tag to descriptors indicating the completion time of the operation, the following 

function is defined: 

dscCompletedTzme : INPUTDESCRIPTOR -+ TIME 

4.2.5 Out bound Communication 

The LRM states that " T h e  <receive> construct allows the business process to  do a blocking 

wait for a matching message to arrive" [4, Section 6.21. While the LRM explicitly states that 

the receive activity is a blocking activity, for the reply activity it leaves this aspect unclear by 

declaring that "the <reply> construct allows the business process to  send a message in reply 
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/ /  Ii'cpl\ 4c-t ivit y 
E~ecuteReply ,~ ,~ ,~ ,~  (activity : REPLY) 

AddOutputDescriptorTo0utboxSpace(activity) 
busy(se1f) := false 

AddOutputDescriptorToOutboxSpaceoTiginal (activity : ACTIVITY) r 
add outputDescrzptor to outspace 

where outputDescriptor = ( se l f ,  activity), 
outspace = outboxSpace(outboxManager(rootProcess(se1f))) 

/ /  0 ~ t  b m  1lariagc.r 
- O u t b o x M a n a g e r P r ~ g r a r n ~ ~ ~ ~ ~ ~ ~ ~  = 

if outboxSpace(se1f) # 0 then 
choose od E outboxSpace(se1f) 

Send(od)//  E-f-Fwt i\ sc:i~tl opc'i~~t ion 

t 

Spec 4.3: Outbound communication behaviour in the original core model 

t o  a message that  was received through a <receive>" [4, Section 6.21 without mentioning 

any blocking or non-blocking behaviour for reply. 

In the original core model the reply activity was considered to be a non-blocking activity. 

The behaviour of a reply activity was only modelled by adding the outgoing message to a 

set of messages which are supposed to be sent out, and the continuing the execution of the 

process. Spec 4.3 provides the ExecuteReply rule and the outbox manager program of the 

abstract layer of the original core model. 

However, an in-depth analysis of the LRM revealed that the reply activity, like its coun- 

terpart, should be a blocking activity. In Section 4.3 of the LRM, "Feature Changes", it 

is stated that "In case of activity terminat ion,  the  activities w a i t ,  reply and invoke are 

added t o  receive as being instantly terminated rather than  being allowed to  finish." This 

declaration indicates that the authors assume that the reply activity, like wait and receive, 

is in fact a blocking activity. Indeed, the lack of a formal and precise definition of these 

constructs of the language is the main reason behind the ambiguity in the semantics of reply. 

According to this view, we model the behaviour of a reply activity in two phases: first, 

creating an appropriate output descriptor and adding it to the waitingSetFor0utput; and 

second, waiting to receive a successful sent confirmation from the outbox manager. Spec 4.4 

provides the revised version of the ExecuteReply and the oubox manager program. 

To execute a reply activity, the request-response condition addressed by Requirement 
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/ / -  - - .  q t l v  Aicti-c.it-c -- 

ExecuteReply(activity : REPLY) I 
if requestResponseConditionSatis f ied(activity) then 

if l replyMode(se1f)  then 
replyMode(se1f) := true 
GenerateOutputDescriptor(activity) 

if reply Mode(se1f) then 
choose descriptor E completedOutOperations(self) with 

dscAgent(descript0r) = self A dscOperation(descriptor) = activity 
reply Mode := false 
FinalizeActivity(activity) 

GenerateOutputDescriptor(operation : OUTPUT-OPERATION) E 
extend OUTPUTDESCRIPTOR with descriptor 

SetlnOutDescriptor(operation, descriptor) 
add descriptor to waitingSetForOutput(rootProcess(self)) 

SetlnOutDescriptor(operation : OUTPUT-OPERATION, dsc : INOUTDESCRIPTOR) E 
dscAgent(dsc) := self 
dscOperation(dsc) := operation 

/ /  - 0 r r t I t o . u  Mariagm -- 
OutboxManagerProgram E 

choose p E PROCESS, descriptor E waitingSetForOutput(p) 
DeliverMessage(p, descriptor) 

DeliverMessage(p : PROCESS, descriptor : OUTPUTDESCRIPTOR) E 
if variable(opr) = undef then 

add opaqueMessage(opr) to outboxSpace(se1f) 
if initiateCorrelation(opr) then 

InitiateCorrelation(p, descriptor, opaqueMessage(opr)) 
dscCompletedTime(descrzptor) := now 
add descriptor to completedInOperations(p) 
remove descriptor from waitingSetForOutput(p) 

where 
opr E dscOperation(descriptor) 

Spec 4.4: Revised Outbound Communication Behaviour 
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#4 of D R L ~  must be satisfied. The two phases of the execution of a reply activity are 

distinguished by replyMode, a predicate defined on KERNELAGENTs. When replyMode(se1f) 

is false, an output descriptor is created from the corresponding reply activity and is added 

to the set of output descriptors waiting to be sent out (waitingSetForOutput). This behaviour 

is formulated in the GenerateOutputDescriptor. At the same time, replyMode(self) becomes 

true. 

When replyMode(self) is true, the agent is basically waiting for the outbox manager 

to send out the message and move the output descriptor to the set of completed output 

descriptors (completedOutOperations). Thus, once added to the completedOutOperations set, 

the agent removes the descriptor, resets replyMode(self) back to false, (for future reply 

activities) and finalizes its execution using the FinalizeActivity rule. 

The outbox manager on the other hand, looks for output descriptors from running 

processes and employs the DeliverMessage rule to send out the message to the network. 

In the original core model, the behaviour of delivering a message is only defined when 

there is no variable defined for the outgoing activity. In this case, the DeliverMessage rule 

puts an appropriate opaque message into the outboxSpace(se1f) set. An opaque message 

is a message with non-deterministic property values. The opaque message is provided by 

an abstract function opaqueMessage defined on output operations (i.e., reply and invoke), 

which should satisfy Requirements 13 to 16 of DRL6. DeliverMessage then adds a completion 

time tag to the output descriptor, removes it from the set of waiting output descriptors, 

and adds it to the completedOutOperations set. 

A complete definition of all the corresponding functions, rules and programs are provided 

in Appendix B. 

4.3 Extensions to  the Core 

It is mentioned in Section 3.4 that data handling, fault handling, and compensation be- 

haviour of BPEL is not covered by the core model of the BPEL Abstract Machine. This 

chapter substantially revised the core model making it more robust and flexible for future 

refinements that ultimately form a comprehensive model of the Web Services Architecture 

of BPEL. 

'See Appendix A.3. 

"ee Appendix A.3. 
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A two-dimensional refinement approach is presented in Section 4.1.3 which facilitates 

further refinements of the core toward capturing new aspects of BPEL using the notion of 

incremental extensions, and enables step by step elucidation of the extensions through a 

combination of data refinement and procedural refinement approaches. 

In addition, appropriate requirements lists are extracted from the L R M ~  facilitating 

precise modelling of the language. For a clear separation of concerns, the aspects of data 

handling, fault handling, compensation behaviour, and the core of the language are carefully 

separated from each other. This is mostly visible in the concise definition of the data handling 

extension. 

An in-depth discussion of the extensions of the core requires a whole chapter of its own. 

Thus, Chapter 5 introduces these extensions and explores them in detail. 

7See Appendix A for a complete list of these requirements. 
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The Web Services Architecture of 

BPEL 

Chapter 4 elaborates on the core of the BPEL Abstract Machine making it more robust and 

flexible for further refinements. The core of the BPEL Abstract Machine abstracts from 

data handling, fault handling, and compensation behaviour and mainly focuses on modelling 

BPEL abstract processes (business protocols). This chapter completes the mathematical 

definition of our BPEL Abstract Machine by presenting the data handling extension and 

the fault and compensation extension as two horizontal refinements of the core of the BPEL 

Abstract Machine. The resulting model provides a comprehensive high-level specification 

of the Web services architecture of BPEL. 

5.1 Data Handling Extension 

The data handling extension is a horizontal refinement of the core of the BPEL Abstract 

Machine which supplements the core with data handling behaviour and the notions of 

variable and scope. This section starts with an overview of the notion of data handling in 

BPEL, provides a requirements list on data handling extracted from the LRM, and then 

refines the core of the BPEL Abstract Machine by presenting the data handling extension. 
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5.1.1 Data Handling in BPEL 

Web services orchestration languages, like BPEL, provide stateful interactions over a state- 

less communication platform like the one defined by WSDL (Chapter 2). To maintain the 

state of a business process, BPEL uses state variables, simply called variables. To process 

and manipulate the data collected in variables, BPEL provides data expressions. Further- 

more, a notion of assignment is required to update the state of a business process, which is 

available in BPEL through its <assign> activity. Thus, data handling in BPEL is delivered 

through concepts of variables, expressions, and assignments. 

Variables 

In BPEL, variables are mainly used as message containers. Messages from other partners 

are stored in variables for further processing and manipulation. In this case, variables are 

defined as WSDL message types [51]. Variables can also hold other forms of data which is 

not used for communication with partners, using an XML Schema simple type or an XML 

Schema element [4]. 

Each variable is defined by a name and a type. The type of a variable is defined using 

one of the three available tags: messageType (for WSDL message type), type (for XML 

Schema simple type), or element (for XML Schema elements). Variables can be defined in 

the <variables> area of a BPEL document. These variables are called global variables and 

are valid in the entire process program unless redefined locally (see Scopes). 

In BPEL variables are mainly used as message containers by input and output opera- 

tions (activities) like receive, reply, and invoke. A variable reference in a receive activity, 

indicates that a copy of the incoming message must be stored in the referenced variable. 

A variable reference in a reply activity, refers to the variable that contains the outgoing 

message. Respectively, invoke and pick can also reference to variables. The use of variables 

in input/output activities is optional in an abstract process. 

Scopes 

Scopes in BPEL provide the behaviour context for activities. A Scope is a special form 

of a structured activity which can have its own variable definitions, correlation sets and 

fault and compensation handling behaviour (see Section 5.2). Each scope has a primary 

activity which defines the normal behaviour of the scope. This activity can be any basic or 
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structured activity. BPEL allows scopes to be nested arbitrarily. 

Variables defined in a scope are called local variables. Local variables are only valid in 

the scope in which they are defined. If a local variable is defined with the same name and 

same type as a variable in an enclosing scope, the local variable will hide the variable of the 

enclosing scope within the local scope and all its enclosed scopes. 

Expressions 

Expressions in BPEL are either boolean-valued, deadline-valued, duration-valued, or a gen- 

eral expression based on an expression language which is referenced at the beginning of a 

BPEL document. In the current version of BPEL (version 1.1) general expressions must 

conform to the XPath (XML Path Language) 1.0 Expr production [47] where the evaluation 

of the expression results in an XPath value type (string, number, or Boolean) [4]. 

Assignment 

The assign activity is introduced in BPEL to enable business processes to assign values to 

variables. It can be used to copy the value of a variable or some part of it to another variable, 

or to evaluate and assign the value of an expression to a variable. The assign activity is 

a set of copy elements. Each copy element has one pair of from and to elements. A from 

element refers to a variable (or just one part of a structured variable), an expression or a 

literal value. A to element refers to a variable1 (or just one part of a structured variable). 

The LRM does not indicate any execution order on copy elements of an assign activity. 

5.1.2 Requirements 

Like other issues in the LRM, data handling behaviour of BPEL is addressed at least in four 

different sections. Thus, to start modelling the data handling behaviour of BPEL, a complete 

list of related requirements were extracted from the LRM. Some of these requirements 

to which we referred later in this section are presented below, while the complete list is 

presented in Appendix A.3. We further refer to this data handling requirements list as 

DRL. The numbering of these requirement elements presented here are kept consistent to 

the complete list in the appendix. 

' ~ 0 t h  from and to elements can also address a BPEL partnerLink which is related to the dynamic partner 
bounding behaviour of BPEL and is out of the scope of this work. 
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Partial List of Data Handling Requirements in BPEL 

1. "The type of each variable may be a WSDL message type, an XML Schema simple 

type or an XML Schema element." [$9.2] 

2. "The name of a variable should be unique within its own scope." [$9.2] 

3. "If a local variable has the same name and same messageType/type/element as a vari- 

able defined in an enclosing scope, the local variable will be used in local assignments 

and/or get VariableProperty functions." [$9.2] 

4. "It is not permitted to have variables with [the] same name but different messageTypel 

typelelement within an enclosing scope hierarchy. The behavior of such variables is 

not defined." [$9.2] 

5. "Variables associated with message types can be specified as input or output variables 

for invoke, receive, and reply activities." [$9.2] 

6. "When an invoke operation returns a fault message, this causes a fault in the current 

scope. The fault variable in the corresponding fault handler is initialized with the 

fault message received." [$9.2] 

7. "Each variable is visible only in the scope in which it is defined and in all scopes nested 

within the scope it belongs to." [$9.2] 

8. "A global variable is in an uninitialized state at the beginning of a process. A local 

variable is in an uninitialized state at the start of the scope it belongs to." [$9.2] 

13. ". . . i t  is permissible, in abstract processes, to omit the variable reference attributes 

from the <invoke/>, <receive/>, and <reply/> activities. The meaning of such an 

omission must be stated clearly." [$IS. 11 

14. "lf no variable is specified for an incoming message, then the abstract process may 

not refer subsequently to the message or its properties (if any)." [$15.1] 

15. "lf the variable reference is omitted for an outgoing message, then any properties of 

the message are considered to have been initialized through opaque assignment.. . "  

[$15.1] 
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5.1.3 Initial Definitions 

In the BPEL Abstract Machine, for a clear separation of concerns, we abstract from data 

types (types of variables) and data values by introducing a well-defined interface between 

the behavioural model and the data model, so that future changes in the data model will not 

result in changes of the behavioural model, and the behavioural model will be re-usable for 

other similar architectures. Thus, three domains are defined in this extension representing 

three types of variables2. A static function varType holds the relation between a variable 

and its type. 

domain VARIABLE 

domain MESSAGE-TYPE 

domain XML-TYPE 

domain XMLELEMENT 

varType : VARIABLE + MESSAGE-TYPE U XML-TYPE U XMLELEMENT 

To satisfy Requirement 3 of DRL, we assume that all the variable names are unique in the 

entire process program (which helps us not to deal with scopes of variables). Assuming that 

all local variable names are unique within their scope3, we provide the following procedure 

to be performed in the pre-processing phase. All local variable names are prefixed with 

their corresponding scope names (which are unique according to the LRM [4, Section 131) 

to make them unique in the entire process. Local variable definitions can then be moved to 

the global variable definition. 

Unique variable names and a single global set of variable definitions help us to have a one- 

to-one matching of variable names and their representations in our model, and eliminates 

the need to define a separate domain for variable names. 

We define a dynamic function varValue that holds the value of a variable in a specific 

process. Data values are abstracted by introducing domain VALUE that contains all the 

possible data values. Similarly, data expressions are generally represented by a domain 

EXPRESSION, where an external function exp Value represents the result of the evaluation 

of an expression in the global state of a specific process. A derived function value is then 

'See Requirement #1 in Appendix A.3. 

3See Requirement 2 of DRL, Appendix A.3. 
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defined based on these two functions (varValue and expvalue), to provide the value of both 

variables and expressions. 

domain VALUE 

domain EXPRESSION 

varvalue : VARIABLE x PROCESS -+ VALUE 

expvalue : EXPRESSION x PROCESS + VALUE 

value : (EXPRESSION U VARIABLE) x PROCESS -+ VALUE 

varValue(x,p),  if x E VARIABLE; 
value(x,p) r 

expValue(x,p), if x E EXPRESSION. 

The complete list of initial definitions is presented in Appendix C. 

5.1.4 Variables in Inbound/Outbound Communication 

In this section, we present how the data handling extension enables the BPEL Abstract 

Machine to use variables in input/output operations. The ultimate purpose of having vari- 

ables in an orchestration language like BPEL is to used them in input/output operations. 

Messages coming from business partners must be stored to allow further processing of each 

message. To interactively communicate with business partners, BPEL processes need to 

perform computations on inbound messages (requests) and store the results so that they 

can further be used to generate outbound messages (response). Thus, an output opera- 

tion must be able to retrieve the outbound message from a stored location in the process 

instance. 

The core of the BPEL Abstract Machine abstracts from BPEL variables. It is valid 

to have BPEL process definitions that do not deal with variables. The LRM calls such 

processes, an abstract process or a business protocol [4, Section 11. Data handling extension 

supplements the BPEL Abstract Machine with variables and data handling. Careful atten- 

tion has been made to clearly separate the outbound communication behaviour of BPEL 

from its data handling behaviour in the BPEL Abstract Machine, so that there are only 

three ASM rules that need to be refined in this extension. 
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ExecuteReceive(activitlJ : RECEIVE) - 
if ireceiveMode(se1f)  A ~outs tandingReceiveCon f lict(activrty) then 

receiveMode(se1f) := t rue/ /  'Tlrcl r u r i r l i t t g  agtwt i i  wait ill!; T O  I t w i t ( '  12 Iru+++y 
GeneratelnputDescriptor(activity) 

if receiveMode(se1f) then 
choose descriptor E completedInOperations(se1f) 

with dscAgent(descriptor) = self A dscOperation(descriptor) = activity 
receiveMode(se1f) := false 
FinalizeActivity(activity) 

GeneratelnputDescriptor(operation : INPUT-OPERATION) 
extend INPUTDESCRIPTOR with descriptor 
SetlnOutDescriptor(operation, descriptor) 
add descriptor to waitingSetForInput(rootProcess(self)) 

SetlnOutDescriptor(operation : OUTPUT-OPERATION, dsc : INOUTDESCRIPTOR) z 
dscAgent(dsc) := self 
dscOperation(dsc) := operation 

Spec 5.1: Behaviour of the receive activity 

Input Operations 

Input operations, like receive, perform a blocking wait for an inbound message to arrive. 

Their behaviour is modelled in the core using two consecutive phases, which are distin- 

guished by receiveMode, a predicate defined on KERNELAGENTs. In the first phase, they 

create an i npu t  descrzptor and add it to the waitingSetForInput of their corresponding pro- 

cess. In the second phase, they are basically waiting for the inbox manager to receive an 

appropriate message and move the input descriptor to the set of completed input descriptors 

(completedInputOperations). The corresponding ASM rules are presented in Spec 5.1. Other 

input operations (activities) in BPEL practically follow the same approach. The complete 

specification of these activities is provided in Appendix B. 

Spec 5.2 presents the inbound communication behaviour of the core, in particular the 

behaviour of the inbox manager which serves input operations that are waiting for inbound 

messages. At each run, if there is any arrived message in the inboxSpace(self) ,  the inbox 

manager picks a matching set of a process, a message and an input descriptor, and employs 
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// " - --- .- r ohox 1I;ui;lgct 1'1 ogmrxl .- -- 

InboxManagerProgram = 
if znboxSpace(se1f) # 0 then 

choose p E PROCESS, m E inboxSpace(self), 
descriptor E wait ingSetForInput(p)  with 
waitingOnIO(dscAgent(descriptor), p) A match(p ,  operation, m)  

AssignMessage(p, descriptor, m) 
if p = dummyProcess  then 

new n e w D u m m y  : PROCESS 
d u m m y  Process := n e w D u m m y  

where 
operation = dscOperation(descriptor) 

/ /  - - - -- Ils4glr ll(asq,c - - - - -  - 

AssignMessage(p : PROCESS, descriptor : INPUTDESCRIPTOR, m : MESSAGE) r 
if znitiateCorrelation(op) then 

InitiateCorrelation(p, descriptor, m) 
dscCompletedTime(descriptor) := now 
add descriptor to completedInOperations(p) 
remove m from inboxSpace(se1f) 
remove descriptor from wait ingSetForInput(p)  

where 
op r= dscOperation(descriptor) , 
agent dscAgent(descriptor) 

Spec 5.2: Inbound communication behaviour: Revised 

the AssignMessage rule to assign the message to the waiting operation. A detailed speci- 

fication of the AssignMessage is provided in Spec 5.2. Assign Message basically checks for 

correlation requirements, removes the input descriptor from the waitingSetForInput, assigns 

a receive time (operation completion time) to the descriptor and adds it to the set of com- 

pletedIn0perations. An in-depth description of this rule is provided in [43, Section 5.11. As 

the core does not deal with BPEL variables, the arrived message is not stored anywhere. 

To extend the inbound specification of the core with data handling behaviour, there 

is only one rule that needs to be extended: AssignMessage.AssignMessaged,,, is defined 

to assign the message to the variable which is referenced in the input operation. Spec 5.3 

presents this definition. The static function variable refers to the variable of an input/output 

operation: 
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/ /  -- -- - - . - - - t s i i g r i l l t ~ \ ~ : t ~ (  f<:x[(>xl(l~tl - -- - - - -  --- 

AssignMessage(p, descriptor, m) 
AssignMessage,,,,(p, descriptor, m) 
Assign Messagedata (p, descriptor, m) 

AssignMessageda,,(p : PROCESS, descriptor : INPUTDESCRIPTOR, m : MESSAGE) 
if variable(dscOperation(descriptor)) # undef then 
value(variable(dscOperation(descriptor)),p) := m 

- - -- - - - - 

Spec 5.3: Extending inbound communication behaviour with data handling 

variable : INOUT-OPERATION + VARIABLE 

AssignMessage is then extended to execute AssignMessagedat, in parallel to AssignMessage 

rule of the core (which is now called AssignMessage,,,,). Message assignment is performed 

only when the variable reference of the input operation is not undefined, which preserve the 

behaviour of the core when there is no variable reference for the input operation. 

Output Operations 

Outbound communication is discussed in Section 4.2.5. To extend outbound communication 

behaviour with data handling behaviour, there are only two rules that need to be extended: 

SetInOutDescriptor and Deliver Message. 

To send out a message, it is important that outbox manager uses the exact value of the 

output variable at the time of the execution of the output operation. Parallel structures in 

BPEL (using the flow activity) makes it possible for the value of the variable referenced by 

the output operation to be changed before the outbox manager actually sends the corre- 

sponding message out. Thus, the value of the variable (the outbound message) should also 

be attached to the output descriptor. 

The idea of using descriptors, which is discussed in Section 4.2.4, enables us to simply 

attach a new property to descriptors that holds the value of the variable that is referenced 

by the input/output operation. This is handled by the dscVariableValue function defined 

below: 
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DeliverMessage,,,,(p : PROCESS, descriptor : OUTPUTDESCRIPTOR) r= 
if variable(opr) = undef then 

add opaqueMessage(opr) to outboxSpace(se1f) 
if initiateCorrelation(opr) then 

InitiateCorrelation(p, descriptor, opaqueMessage(opr)) 
dscCompletedTime(descriptor) := now 
add descriptor to completedInOperations(p) 
remove descriptor from waiting Set For Output (p) 

where 
opr K dscOperation(descriptor) 

Spec 5.4: DeliverMessage in the core 

- - 

dsc Variable Value : INOUTDESCRIPTOR 4 VALUE 

In the core of the BPEL Abstract Machine, Set lnOutDescr iptor  is responsible to initialize 

input and output descriptors before they are actually added to the waiting sets. In the data 

handling extension, this rule should be refined to assign the actual value of the output 

operation to its corresponding descriptor. The extended Set lnOutDescr iptor  is presented in 

Spec 5.5. 

Since variables are not considered in the core of the BPEL Abstract Machine, there is 

no actual message to be sent out. Thus, after checking that there is no variable reference 

in the output operation4, DeliverMessage sends out an opaque message (abstract message). 

The definition of DeliverMessageco,, is presented in Spec 5.4. 

When there is a variable reference defined for the output operation, Deliverblessagedata 

should send out the message that is stored in the referenced variable. This rule first checks 

that correlation requirements (by checking the correlationSatisfied predicate) and then adds 

the message value of the variable into the outboxspace. DeliverMessage is re-defined to execute 

DeliverMessageco,, and DeliverMessagedat, together. 

4 ~ h i s  is a guard condition that enables future extensions of the rule (see Section 4.1.2). 
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/ / *- .  -.- - -  - Stlt InOur I k - T I  iptor f ' s t r > ~ i d d  
SetlnOutDescriptor(descriptor, operation, agent)  r 

SetlnOut Descriptor,,,, (descriptor, operation, agent)  
SetInOutDescriptordata(descriptor, operation, agent)  

Set~nO~tDescriptor~~,~(descriptor  : INOUTDESCRIPTOR, 
operation : INOUT-OPERATION, agent : KERNELAGENT) 

if operation E IN-OPERATION A variable(operation) # undef then 
dscVariableValue(descriptor) := value(variable(operation), rootProcess(se1 f ) )  

/ /  - ---- 13clvicr l I (~w~:;cl  T h  c ~ l t l ( ~ i  - - - - 

DeliverMessage(p, descriptor) i 
DeliverMessage,,,,(p, descriptor) 
DeliverMessageda,,(p, descriptor) 

DeliverMessaged,,,(p : PROCESS, descriptor : OUTPUTDESCRIPTOR) = 
if variable(operation) # undef then // riuiahlv .jhoi~ltl twnt aitl il rn<'sqiig<' 

if correlationSatis f ied(descriptor) then 
add messageValue(dscVariableValue(descriptor)) to outboxSpace(se1 f )  

where 
operation = dscOperation(descriptor) 

Spec 5.5: Extending outbound communication behaviour with data handling 
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ExecuteAssign(activity : ASSIGN) 
forall c in copyElements(activity) 

Executecopy( f romSpec(c), toSpec(c)) 
FinalizeActivity(activity) 

Spec 5.6: The behavioural definition of the assign activity 

5.1.5 The Assign Activity 

The assign activity in BPEL is a set of copy elements. Each copy element is a pair of a from- 

spec and a to-spec element corresponding to the from and to elements of a copy element in 

BPEL (see Section 5.1.1). The semantics of a copy element is to copy the value of from-spec 

to the to-spec. This activity is discussed in more details in Section 5.1.1. 

We define the following domains for copy elements, from-spec, and to-spec elements: 

domain COPYELEMENT 

domain FROMELEMENT 

domain TOELEMENT 

The set of all the copy elements of an assign activity is represented by unary function 

copyElements. For each copy element, fromSpec, and toSpec refer to its from-spec and to-spec. 

copyElements : ASSIGN + COPYELEMENT-set 

fromspec : COPYELEMENT -+ FROMELEMENT 

tospec : COPYELEMENT + TOELEMENT 

The behaviour of the assign activity, specified by the ExecuteAssign rule, is presented 

in Spec 5.6. Since we abstract from the data model, we define an abstract rule called 

ExecuteCopy to copy the value of a from-spec to a to-spec. FinalizeActivity, which is defined 

in the core of the BPEL Abstract Machine, will set the execution mode to Activity-Completed 

and deals with synchronization issues [43]. 
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ScopeProgram =. 
case execMode(se1f) of 

emstarted -+ 
execMode(se1f) := emRunning 
l nitializeLocalVaria bles(baseActivity(se1f)) 

emRunning + 
if normalExecution(self) then 

onsignal s : AGENT-COMPLETED 
execMode(se1f) := emActivity Completed 

otherwise 
ExecuteActivity ( inner  Activity (baseActivity ( se l f ) ) )  

emCompleted -+ stop self 

Spec 5.7: Behavioural specification of the scope activity in data handling extension 

5.1.6 The Scope Construct 

We introduced scope in Section 5.1.1. A scope in BPEL is just a wrapper around an activity 

to provide a local context for the execution of the activity. This section presents a for- 

mal specification for the behaviour of scope excluding its fault and compensation handling 

behaviour. Since scopes are one of the fundamental constructs of fault and compensation 

handling in BPEL, we will get back to scopes in Section 5.2. 

Without focusing on fault and compensation handling behaviour, the behaviour of scope 

will be reduced to a simple wrapper around its main activity. Similar to structured activities, 

we define a new type of agents called scope agents, to handle the execution of scope activities. 

Spec 5.7 presents the ScopeProgram. 

Considering that we converted local variables to global variables (see Section 5.1.3), to 

satisfy Requirement 8 of FCRL~,  scope agents have to set the value of local variables to 

an uninitialized value in the Started mode. This is performed by the InitializeLocalVaria bles 

rule. This rule is formally defined in Appendix C. 

In the Running  mode, the behaviour of scope is only defined when the normalExecution 

predicate is true, which is the case in the core model and the data handling extension. When 

'See Appendix A.3. 
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a scope agent is in the Running mode, receiving an agent-completed signal means thak the 

child agent of this scope (there can only be one child agent) has completed its execution. 

The scope agent should then go to the Activity-Completed mode. Otherwise, the agent keeps 

executing its main activity. 

Like many other activity agents, scope agents finalize their activity using the Fi nalizeAc- 

tivity rule, which takes them to the Completed mode, where the agent stops its execution. 

The complete ASM specification of the data handling extension of the BPEL Abstract 

Machine is provided in Appendix C. 

5.2 Fault and Compensation Extension 

The fault and compensation extension supplements the core of the BPEL Abstract Machine 

with compensation and fault handling behaviour. This is a fairly complex issue in the 

definition of BPEL. An in-depth analysis in fact shows that the semantics of fault and 

compensation handling, even when ignoring all the syntactical issues, is related to more 

than 40 individual requirements spread out all over the LRM. These requirements (some 

of them comprise up to 10 sub-items) address a variety of separate issues related to the 

core semantics, general constraints, and various special cases. This section provides an 

overview of the fault handling and compensation behaviour in BPEL (Section 5.2.1) and 

presents a list of the requirements on fault handling and compensation behaviour extracted 

from the LRM (Section 5.2.2). The process execution model underlying the BPEL Abstract 

Machine is extended in Section 5.2.3 to include fault handling and compensation behaviour of 

BPEL processes. We then provide a comprehensive definition of the fault and compensation 

extension of the BPEL Abstract Machine. 

5.2.1 Fault and Compensation Handling in BPEL 

Business processes typically perform durative transactions through asynchronous communi- 

cation between partners. Such transactions normally cause local updates at the interacting 

partners. Consequently, when an error occurs, it may be required to reverse the effects of 

some or even all of the previous activities. This concept is known as compensation. The abil- 

ity to compensate exceptions in an application-specific manner enables business processes 

to have so-called Long-Running (Business) Transactions (LRTs). 
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In BPEL, compensation and fault handling is performed using the scope activity. Scope 

provides a logical unit for which a compensation handler and a set of fault handlers can be 

defined. A compensation handler defines the compensating behaviour of a logical unit in 

case of an error. A fault handler defines the reaction of a logical unit to an error. 

Compensation Handlers 

A compensation handler is defined within a scope and forms a wrapper around an activity 

that is considered to be the compensation activity of that scope. Compensation handlers 

enable business process designers to define compensating behaviour for a scope in case of 

an error. The compensation activity can be any BPEL activity, including another scope. 

A scope can only be compensated after its successful completion. When a scope finishes 

successfully, the compensation handler of that scope is said to be installed for possible future 

invocations. 

Compensation handlers can be invoked by means of the compensate activity. A corn- 

pensate activity requires the name of the scope to be compensated and can only be called 

from a fault handler or a compensation handler "of the scope that immediately encloses the 

scope for which compensation is  t o  be perforrned."[4, Section 13.3.21 Figure 5.1 illustrates 

this concept using an example of two scopes, A and B, where scope B is enclosed by scope 

A. 

The semantics of the compensate activity is somewhat complex. At the time of pro- 

ducing this document, there were still ongoing debates among the OASIS WSBPEL-TC 

committee members on the semantics of this activity. Requirements B-1 to B-7 of the fault 

and compensation handling requirements list provided in Appendix A.4 address some of the 

issues regarding the behavioural semantics of the compensate activity. 

Basically, the behaviour of a compensate activity with a reference to scope S is defined 

as executing the compensation handler (compensation activity) of scope S. Nevertheless, 

there are a number of cases to be considered, such as: 

If scope S does not have a compensation handler, a default compensation behaviour 

should invoke the compensation handlers for the immediately enclosed scopes in the 

reverse order of the completion of those scopes6. 

'See Requirement B6 of the fault and compensation requirements in Appendix A.4 
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compensation activity 
of scope 'B'  

Scope Body 

compensate activities ----.'.. Fault Handler / 

Figure 5.1: A compensate activity invokes the compensation activity of an enclosed scope 

If scope S was nested in a loop, the instances of the compensation handlers in the 

successive iterations are invoked in reverse order. 

0 If scope S was not successfully completed, invoking its compensation handler is equiv- 

alence to the empty  activity. 

For a better overview and understanding, we have extracted from the LRM individual 

issues that are related to requirements of compensation behaviour. A complete list of these 

issues is provided in Appendix A.4. 

Fault Handlers 

Fault handlers provide a way to define how scopes should react to an error. This reaction 

is meant to undo  (i.e., reverse) the work of a successfully completed scope. A fault handler 

consists of a number of optional catch clauses for handling specific types of faults and 

one optional catchall clause to deal with all other faults. Each catch or catchall clause 

wraps around one BPEL activity that defines the response of that clause to related faults. 
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Requirement C8 of the fault and compensation requirements (see Appendix A.4) specifies 

how catch clauses are selected in a fault handler. 

The completion of a scope in which a fault is thrown is never considered successful, 

even when the fault handler successfully handles the fault. Thus, a compensation handler 

for such a scope will not be installed and the scope cannot be compensated in the future. 

Such a scope is considered to be exited, rather than completed. If the scope has no suitable 

fault handler that can handle the fault, or if the fault handler in turn encounters a fault 

that cannot be handled, the fault is thrown to the next enclosing scope and the scope is 

considered to be faulted7. 

The LRM indicates that a fault handler starts its execution by implicitly terminating 

all those activities that are currently active and directly enclosed within the scope of the 

fault handler [4]. Thus, occurrence of a fault in a scope immediately (prior to any reaction) 

leads to termination of the execution of the scope8. When there is no suitable fault handler 

available for a fault, the fault will invoke a default fault handler. A default fault handler of 

a scope will run all available compensation handlers for immediately enclosed scopes in the 

reverse order of completion of the scopes, and then rethrows the fault to the next (higher) 

enclosing scopeg. 

To explicitly signal an internal fault, BPEL introduces the throw activity. A throw 

activity gets a fault name and an optional fault variable (a variable that contains extra 

information about the fault) and throws a fault at the time of its executionlo. 

Travel Agency: an Example of Compensation Behaviour 

The description of the travel agency business process presented in Section 2.3.2 can be 

extended with a compensation module (see Figure 5.2). A fault may occur when a process 

instance in the travel agency Web service is waiting to receive a confirmation from its client 

along with the required credit card information. This fault could be a cancel response from 

the client, an incorrect piece of information or a communication problem. Due to such a 

fault, the normal execution of the process instance is cancelled and a compensation module 

' ~ e ~ u i r e m e n t  B11 of the fault and compensation requirements list provided in Appendix A.4 explores 
this aspect in more detail. 

'See Requirement B16 in Appendix A.4. 

'See Requirement B8 in Appendix A.4. 

''See Requirement B10 in Appendix A.4. 
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Client 

Travel Agency Business Process 

Figure 5.2: A compensation module cancels flight and room reservations 

is invoked. In this example, the compensation module cancels flight and room reservations 

and sends a notification to the client. 

5.2.2 Requirements 

The semantics of fault and compensation handling, even when ignoring all the syntactical 

issues, is specified by more than 40 individual requirements scattered out over the LRM 

in 6 different chapters. A complete list of these requirements, classified in 6 different cate- 

gories (syntactical, core semantics, details and constraints, special cases, interpretation, and 

extensibility), is presented in Appendix A.4. Table 5.1 presents some examples of these 

requirements. Henceforth, we use the term FCRL to refer to this list. This section presents 

a number of these requirements that are further discussed in this chapter. 

5.2.3 Process Execution Model: Fault Handling 

Section 4.2.1 introduces a process execution model for kernel agents based on the underlying 

normal execution model of BPEL. This section extends that model to capture the fault 

handling execution model of BPEL. 
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Requirement Group Example 

A: Syntactical "In BPEL4WS, all faults, whether inter- 
nal or resulting from a service invocation, 
are identified by a qualified name." [$6.1] 

B: Core Semantics "If no catch or catchall is selected, the 
fault is not caught by the current scope 
and is rethrown to the immediately enclos- 
ing scope." [$13.4] 

C: Details and Constraints "The fault variable [of a catch clause] 
is optional because a fault might not 
have additional data associated with it." 
[$13.4] 

D: Special Cases "The semantics of a process in which an 
installed compensation handler is invoked 
more than once is undefined." [$13.3.2] 

E: Interpretation "Fault handling in a business process can 
be thought of as a mode switch from the 
normal processing in a scope." [$13.4] 

F: Extensibility "In the future, BPEL4WS will add input 
and output parameters to compensation 
handlers. . . " [$l3.3.l] 

Table 5.1: Requirement groups of fault and compensation handling in BPEL 
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Fault handling in BPEL can be thought of as a mode switch from the normal execution 

of the process11. When a fault occurs in the execution of an activity, the fault is thrown 

up to the innermost enclosing scope. If the scope handles the fault successfully, it sends an 

exi ted signal to its parent scope and ends gracefully, but if the fault is re-thrown from the 

fault handler, or a new fault is occurred during the fault handling procedure, the scope sends 

a faul ted signal along with the thrown fault to its parent scope. The fault is thrown up from 

scopes to parent scopes until a scope handles it successfully. A successful fault handling 

switches the execution mode back to normal. If a fault reaches the global scope, the process 

execution terminates. The Coordination Protocol presented in Requirement B11 of FCRL 

explores this behaviour in more detail (see Appendix A.4). 

The normal execution lifecycle of the process execution model presented in Chapter 4 

(Figure 4.5) needs to be extended to comprise the fault handling mode of BPEL processes. 

The occurrence of a fault causes the kernel agent (be it an activity agent or the main 

process) to leave its normal execution lifecycle and enter a fault handling lifecycle. Figure 

5.3  illustrates the extended execution lifecycle of BPEL activities. 

When a kernel agent encounters a fault, it leaves its normal execution by switching 

to the E x e c u t i o n - F a u l t  mode. If the kernel agent is neither a scope agent nor a process 

agent, it should also notify its parent agent of the fault. This transition is performed by the 

Tra nsitionToExecution Fau It rule. For every kernel agent, the dynamic function fault Thrown 

(defined on kernel agents) keeps the current fault which is thrown in the execution of the 

agent. The default value of faultThrown is u n d e f .  

fault : (AGENTYAULTED U F O R C E D ~ T E R M I N A T I O N )  t FAULT 

faultThrown : K E R N E L A G E N T  + FAULT 

TransitionToExecutionFault(fau1t : FAULT) = 
execMode(se1f) := emExecutionFault 

faultThrown(se1f) := fault 

if self $ (SCOPE-AGENT U PROCESS) then 

trigger s : A G E N T J A U L T E D ,  parentAgent(se1f) 

faul t (s)  := fault 
- - 

From the E x e c u t i o n - F a u l t  mode, the execution path of scope agents (and process agents) 

"See Requiremet; E2 in  Appendix A.4. 
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\ A fault occurs 

/ It is a scope agent / 

Fault handler It is not 
a scope agent / 
Notify parent 

agent. 

Figure 5.3: Activity execution lifecycle: extended by fault handling 
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becomes different from other kernel agents. In the Execution-Fault mode, any kernel agent 

which is not a scope or a process, waits to receive a forced termination signal from its parent 

agent12. The predicate forcedTerminationAgent defined on kernel agents is used to indicate if 

the agent is in the Execution-Fault due to a forced termination signal (which is considered 

to be a special form of fault) from its parent. This is a derived predicate which is true when 

the faultThrown of an agent is bpwsForcedTermination. A kernel agent goes to the Faulted 

mode after receiving a forced termination signal in the Execution-Fault mode. If the forced 

termination signal is received when the agent is in its normal execution mode, the signal is 

considered as a fault, the agent goes to the Execution-Fault mode and propagates the signal 

to its child agents13. The execution of kernel agents is terminated in Faulted mode. Along 

with changing the mode to Faulted, by executing the TerminateBasicActivity, the agent also 

ensures that if the execution of a basic activity was interrupted, that activity is finalized 

properly14. The behaviour of kernel agents (except scope agents) in the Execution-Fault 

mode is formalized by the WaitForTermination rule. 

forcedTerminationAgent : KERNELAGENT + BOOLEAN 

forcedTerminationAgent(a) r (faultThrown(a) = bpwsForcedTermination) 

WaitForTermination = 
if forcedTerminationAgent(se1f) then 

execMode(self) := emFaulted 

TerminateBasicActivity(seZf) 

else 

onsignal s : FORCED-TERMINATION 

faultThrown(self) := fault(s) 

execMode(se1f) := emFaulted 

TerminateBasicActivity(se1f) 

forall child in childAgents(se1f) 

trigger s' : FORCED-TERMINATION, child 

fault(sl) := fault(s) 

As mentioned earlier, scope agents (and process agents as global scopes) have a different 

1 2 ~ h i s  is to comply with Requirement B16 of FCRL. 

1 3 ~ h i s  complies with the Requirements B16 and B11 (vi and vii) of FCRL in Appendix A.4. 

14see Requirement B16 of FCRL. 
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behaviour in the Execution-Fault mode. A scope agent in this mode should switch to the 

Fault-Handling mode, trying to handle the fault by executing its fault handler. If the 

fault handles throws a fault (or rethrows the original fault) the scope agent switches to the 

Faulted mode and terminates. If the fault handling procedure is successful, the scope agent 

terminates in the Exited mode. Section 5.2.5 explains this behaviour in more details. 

The extended program of sequence agents is presented in Spec 5.8 as an example on how 

kernel agents (except scope agents) are extended to observe fault handling requirements. 

The core version of the sequence program is presented in Section 4.2.2. The sequence 

program of the core, henceforth referred to as SequenceProgramcor,, is extended without 

changing its original behaviour. The SequencePr~gram,~~, is guarded in the Running mode 

by the normalExecution predicate which was equal to true in the core. In this extension 

a new predicate, faultExtensionSigna1, is defined to be true if the agent receives a signal 

that is related to the fault and compensation extension. The predicate normalExecution 

is then refined to be the negation of faultExtensionSigna1 which prevents the execution of 

SequenceProgramCor, when the agent has to deal with faults. 

faultExtensionSignal : KERNELAGENT -+ BOOLEAN 

faultExtensionSigna1 E 

3s(s E signalSet(rootProcess(se1f)) A signalSource(s) = self A 

s E (AGENT-EXITED U AGENT-FAULTED U FORCED-TERMINATION) 

normalExecution(a : KERNELAGENT) E +mltExtensionSignaI(a) 

An agent-exited signal from a child agent indicates an unsuccessful completion of the 

child agent. But according to Requirement Bll-ii-B of FCRL (see Appendix A.4), this is 

not considered a faulted completion. Thus, a sequence agent goes to the Activity-Completed 

mode upon receiving an agent-exited signal. An agent-faulted signal from a child agent 

indicates that the child agent finished in Faulted mode. The parent agent then switches 

to the Execution-Fault mode using the TransitionToExecutionFault rule, after receiving an 

agent-faulted signal. A forced-termination signal sent from a parent agent to a child agent 

indicates that the execution of the child agent must be terminated. This signal is also 

treated as a fault by the recipient agent which changes the execution mode of the agent to 

the Execution-Fault mode. The agent then propagates the forced-termination signal to its 

child agents in order to terminate all its enclosed activities. 
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Sequenceprogram E 

SequencePrograrn,,,, 
case execMode(se1f) of 

emRunning -+ HandleExeceptionsln RunningMode 
emExecutionFault -+ WaitForTermination 
emFaulted -+ stop self 

HandleExceptionslnRunningMode z 
if faultExtensionSignal(se1f) then 

onsignal s : AGENTEXITED 
execMode(self) := emActiuityCompleted 

otherwise 
onsignal s : AGENTEAULTED 

TransitionToExecutionFault(fault(s)) 
otherwise 

onsignal s : FORCED-TERMINATION 
faultThrown(se1f) := fault(s) 
forall child in childAgents(se1f) 

trigger s1 : FORCED-TERMINATION, child 
fault(sl) := fault(s) 

execMode(self) := emExecutionFault 

Spec 5.8: Sequence program: extended by fault and compensation behaviour 

Although the presented program in this section is a sequence program, the fault and 

compensation handling extension is designed in such a way that all other kernel agents, 

except scopes and processes, share the same extended behaviour in the Running mode, 

using the Hand IeExceptionsl n Ru n ni ngMode rule. The complete formalization including the 

initial state, rules and programs is provided in Appendix D. 

5.2.4 Throwing Faults 

A business process in BPEL can throw a fault internally using the throw activity. The throw 

activity gets a fault name and an optional fault variable that holds additional information 

about the fault, and throws an internal fault at its execution point. 

In the BPEL Abstract Machine, the semantics of throw is captured by the ExecuteThrow 

rule, which basically uses the TransitionToExecutionFault rule, the same rule that other 

activities use when they encounter a fault in their execution. The TransitionToExecution Fault 
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rule (see Section 5.2.3) takes care of the transition of the kernel agent to the Execution- 

Fault mode. The ExecuteThrow rule also uses the Synchronization rule to handle activity 

synchronization issues [43]. 

5.2.5 Scope Agent: Refined 

Scopes in BPEL are the core of fault and compensation handling behaviour. Fault handlers 

and compensation handlers are both defined for local scopes and the main process which is 

considered a global scope. In this section, the behaviour of scope presented in Section 5.1.6 

is extended to cover fault and compensation handling. 

The Running Mode 

The scope program is refined using the same approach as the refinement of the sequence 

program (see Section 5.2.3). In the Running mode, receiving an agent-exited signal indicates 

that the execution of the child agent is completed (with a fault which is handled and is not 

thrown upwards). So, upon receiving such a signal, the scope agent goes to the Activity- 

Completed mode which will eventually lead to a successful completion of the execution of 

the agent (complies to the protocol presented in Bl1  of FCRL). 

A scope agent behaves differently from other activity agents in the sense that it al- 

ways tries to handle a fault thrown in its scope of execution. The scope agent treats 

agent-faulted signals and forced-termination signals in the same way, changing its execution 

mode to Execution-Fault and set faultThrown(se1f) to the fault that is associated with the 

signal15. This extended behaviour of the scope in the Running mode is guarded by the fad- 

tExtensionSigna1 which is described in Section 5.2.3. The ScopeAgentRunningExtended rule 

is presented below: 

151n case of a forced-termination signal, this fault is always equal to the distinguished value of 
bpwsForcedTermination. 
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ScopeAgentRunningExtended = 
if faultExtensionSignal(self) then 

onsignal s : AGENTEXITED 
execMode(se1f) := emActivityCompleted 

otherwise 

onsignal s : AGENTPAULTED 
execMode(se1f) := emExecutionFault 

faultThrown(se1f) := fault(s) 

otherwise 

onsignal s : FORCED-TERMINATION 
execMode(se1f) := emExecutionFault 

faultThrown(se1f) := fault(s) 

/ /  'I'lic sropr\ itg(lI\l se+ntts t l r t l  fix ~ 1 1  t c w r r i m t  i o l r  higi1i~1 

/ /  in it (WCIII i o ~ ~ - f a ~ i l t  I H O ~ P .  

The Execution-fault Mode 

To comply with Requirements B12 and B16 of FCRL (see Appendix A.4), two tasks must 

be accomplished by a scope agent in the Execution-Fault mode: (1) terminating all activities 

directly enclosed within the scope, and (2) executing the fault handler rule and changing 

the execution mode to Fault-Handling. TerminateBasicActivity ensures that if the enclosed 

activity of the scope is a basic activity, it is terminated properly without leaving any trace 

(e.g., no input descriptor is left waiting for a message). A forced-termination signal is also 

sent to any child activity agent if the enclosing activity of the scope is a structured activity. 

Meanwhile, an instance of the fault handler agent is created and is initialized with proper 

properties to handle the thrown fault. The ScopeAgentExecutionFault rule presented below, 

specifies the behaviour of scope agents in their Execution-Fault mode: 
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- --- 

handlerscope : FAULTHANDLERAGENT + SCOPE 

ScopeAgentExecutionFault E 

TerminateBasicActivity(se1f) 

forall child in chi ldAgents(sel f )  

trigger s : FORCED-TERMINATION, child 

faul t (s)  := bpwsForcedTermination 

new handler  : FAULTHANDLERAGENT 

parentAgent(hand1er) := self 

handlerScope(hand1er) := baseActivity(se1f) 

faultThrown(hand1er) := faul tThrown(se1f)  

execMode(se1f) := emFaultHandl ing 

It is optional for scopes to have fault handlers16, but there is always a default fault 

handling procedure that is performed when there is no fault handler defined for a scope. 

This default fault-handling procedure is documented in Requirement B8 as follows [4]: 

1. Run all available compensation handlers for immediately enclosed scopes in the reverse 

order of completion of the corresponding scopes. 

2. Rethrow the fault to the next enclosing scope. 

To provide this default fault handling, we assume that in the pre-processing phase (see 

Section 3.3), a fault handler is attached to all the scopes without a fault handler, with a 

catchall clause that includes two activities: <compensate/> and <rethrow/>. According to 

the Requirement B7 of FCRL'~, the <compensate/> activity can be used to perform the 

first task. The rethrow activity is not defined in the LRM and is introduced later in BPEL 

(see Section 6.1.5) to rethrow the fault which is caught in a catchall clause. 

The Fault-handling Mode 

The fault-handling mode for a scope agent is basically a waiting mode. When a scope is in 

fault-handling mode, it is basically waiting for its fault handler to complete its execution. 

There are three possible signals that can be received by scope in this mode: 

16See Requirement B12 of FCRL, Appendix A.4. 
I7See Appendix A.4. 
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An agent-completed signal in this mode indicates that the fault handler completed 

its execution successfully. This will result in completion of the scope program in an 

Exited mode (see Requirement B 11). 

An agent-faulted signal indicates that the fault handler encountered an internal fault 

and abnormally terminated. The scope agent also terminates by switching to the 

Faulted mode and throwing the fault thrown by the fault handler to its parent agent18. 

Upon receiving of a forced-termination signal, the scope agent propagates the signal 

to its child agent(s) and terminates its execution by going to the Faulted mode. The 

response of a fault handler to a forced-termination signal is discussed in Section 5.2.6. 

The behaviour of scope agents in the fault handling mode is presented here: 
- -- - - -- 

ScopeAgentFaultHandling = 
onsignal s : AGENT-COMPLETED 

execMode(se1f) := emExited 

trigger s' : AGENTEXITED, parentAgent(self) 

otherwise 

onsignal s : AGENTYAULTED 

fault Thrown(se1f) := fault(s) 

trigger s1 : AGENTEAULTED, parentAgent(se1f) 

fault(sl) := fault(s) 

otherwise 

onsignal s : FORCED-TERMINATION 

execMode(se1f) := emFaulted 

faultThrown(se1f) := fault(s) 

forall child in childAgents(se1f) 

trigger s' : FORCED-TERMINATION, child 

fault(sl) := fault(s) 

The program of scope agents is presented in Spec 5.9. The behaviour of scope agents in 

the Activity-Completed mode is extended by the lnstallCompensationHandler rule which in- 

stalls a compensation handler for the scope at the time of completion. This rule is described 

in detail in Section 5.2.7. For the complete list of definitions, rules and programs related to 

lasee Requirement B11 of FCRL, Appendix A.4. 
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ScopeProgram i 
ScopeProgramdata 
case execMode(self) of 

emRunning -+ ScopeAgent RunningExtended 

emActivityCompleted -+ InstallCompensationHandler 

emExecutionFault -+ ScopeAgentExecutionFauIt 

emFaultHandling -+ ScopeAgent Fault Handling 

emExited -+ stop self 

emFaulted -+ stop self 

Spec 5.9: Extended specification of the scope activity in fault and compensation handling 

scope agents, see Appendix D. 

5.2.6 Fault Handling 

The normal behaviour of a fault handler starts with selecting a catch clause that matches the 

fault that is being handled. The function faultHandlerCatchSet is defined to provide the set 

of catch clauses in the fault handler of a scope activity. The abstract predicate matchingcatch 

defined on catch clauses is used to find the matching catch clause of a fault. The chosen 

catch clause is then stored in executingCatch for further processing. 

domain CATCH-CLAUSE 

faultHandlerCatchSet : SCOPE -+ CATCH-CLAUSEset 

executingCatch : FAULTHANDLERAGENT 3 CATCH-CLAUSE 

matchingCatch : CATCH-CLAUSE x FAULT 3 BOOLEAN 

FaultHandlerStarted 

execMode(se1f) := emRunning 

choose c E faultHandlerCatchSet(handlerScope(self)) 

with matchingCatch(c, faultThrown(se1f)) 

executingCatch(self) := c 
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To model the main behaviour of fault handlers (fault handler agents in the Running 

mode), analogous to structured activities in BPEL, we can separate their behaviour into 

two parts: normal execution and fault-handling extended execution. The normal behaviour 

of a fault handler in the Running mode is similar to other structured activities (see scope 

in Section 5.1.6). If it receives an agent-completed signal, it goes to the Activity-Completed 

mode and finishes its execution; otherwise, it executes the selected catch clause. However, 

according to Requirement B13 of FCRL", if no catch clause is selected, the fault is rethrown. 

This is done by executing a pre-defined catch clause, called rethrowCatchClause. 

FaultHandlerRunningNormal = 
if normalExecution(se1f) then 

onsignal s : AGENT-COMPLETED 

execMode(se1f) := emActiuityCompleted 

otherwise 

if executingCatch(self) = undef then 

executingCatch(se1f) := rethrowCatchClause 

else 

ExecuteActivity(catchActivity(executingCatch(se1f))) 

When it comes to process fault handling signals, fault handler agents only listen to two 

signals: agent-faulted and agent-completed. According to the LRM20, "if the scope has 

already experienced an internal fault and invoked a fault handler, then [. . . ]  the forced 

termination has no effect." Thus, fault handler agents do not process forced-termination 

signals while they are in the Running mode. 

There are some ambiguities in the LRM regarding the forced termination signal and the 

behaviour of scopes and fault handlers, which are discussed in Section 6.1.1. 

lgsee Appendix A.4. 
'Osee Requirement B15 of FCRL, Appendix A.4. 
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- - 

FaultHandlerRunningExtended r 

if faultExtensionSignal(se1f) then 

onsignal s : AGENTEXITED 

execMode(se1f) := emActivityCompleted 

otherwise 

onsignal s : AGENTTAULTED 

TransitionToExecutionFault(fault(s)) 

Occurrence of an internal fault in the execution of a fault handler changes the execution 

mode of the fault handler to Execution-Fault. In this mode, according to the Requirement 

B17 of FCRL, the fault handler must terminate its execution prematurely. The Fault- 

HandlerExecution Fa ult, presented below, models this behaviour by finalizing the execution 

of the basic activity (if any), changing the execution mode to Faulted, and propagating a 

forced-termination signal to its subordinate agent(s). 

FaultHandlerExecutionFault = 
TerminateBasicActivity(se1f) 

execMode(se1f) := emFaulted 

forall child in childAgents(se1f) 

trigger s' : FORCED-TERMINATION, child 

faul t(sr)  := bpwsForcedTermination 

The program of fault handler agents is presented in Spec 5.10. The complete specification 

of fault handler agents is provided in Appendix D. 

5.2.7 Compensation Behaviour 

Compensation behaviour is a fairly complex issue in BPEL. Originally, there were many open 

issues on compensation on the issue list of the OASIS WSBPEL Technical Committee [35]. 

Many of them are now resolved, but there are still a number of open issues yet to be resolved. 

Some of these issues deal with fundamental topics of compensation behaviour, like the Issue 

#3 of the WSBPEL Issue List which is about the "current statc influence in compensation 

handlers". This issue changes the way a compensation handler interacts with the current 

state of its enclosing process as is reflected in Requirement B l  of FCRL (See Appendix A.4). 
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FaultHandlerProgram E 
case execMode(se1f) of 

emstarted -+ FaultHandlerStarted 

emRunning + 
FaultHandlerRunningNorrnal 
FaultHandlerRunningExtended 

emActivityCompleted + FinalizeKernelAgent 

emcompleted -+ stop self 

emExecutionFault -+ FaultHandlerExecutionFault 

emFaulted + stop self 

Spec 5.10: Program of fault handler agents 

This issue will be discussed in more detail below. 

The Compensate Activity 

The compensate activity can be used in two forms: (1) compensating a specific scope, and 

(2) default-order invocation of compensation handlers for completed scopes directly nested 

within the scope for which the fault or compensation handler is being executed2'. 

There are several issues to be taken into account for compensating a scope activity. In 

this section we specifically focus on two major issues: 

1. compensating scopes that are completed more than once, and 

2. dealing with the local state view of compensation handlers. 

Whenever a scope is completed successfully, a compensation handler is installed for that 

scope. If a scope is completed more than once, the compensation of that scope involves 

executing all the installed compensation handlers of that scope in their reverse order of 

completion; i.e., the last completion of the scope is compensated first22. Figure 5.4 illustrates 

this reverse invocation of compensation handlers. 

"See Requirements A2 and B7 of FCRL in Appendix A.4. 

"See Requirement B4 of FCRL, Appendix 11.4. 
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Compensation Handlers Installed for Scope "A" 

Figure 5.4: compensation handlers are invoked in their reverse order of completion 

A compensation handler for a scope defines how the work of the scope can be reversed. 

To accomplish this task, the compensation handler needs to see a snapshot of the local state 

of the scope exactly as it was when the scope was completed; all local variables should have 

the same value as they had at the time of completion of the scope23. 

The notion of installing a compensation handler for every successfully completed scope 

provides the required means to deal with the reverse invocation behaviour of the compen- 

sate activity and the local state view of compensation handlers. To model this notion, 

we define compensation modules representing the installed compensation handlers. Each 

compensation module identifies the following information: 

the scope for which the compensation handler is installed, 

a snapshot of the local state of the corresponding scope at the time of completion, 

the completion time of the scope, which helps in ordering the execution of compensa- 

t ion handlers. 

While the behaviour of the compensation handler of scope S is unique for all instances 

of scope S, a compensation module basically represents a frozen local state of one instance 

of a complete execution of scope S, which can later be used to reverse the work of that scope 

23See Requirement B1 of FCRL, Appendix A.4. 
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instance. This model perfectly fits the notion of installing compensation handlers provided 

by the LRM [4, Section 13.31. 

The function cmSet is defined on scope names and refers to the set of all installed 

compensation modules for all the scopes that are directly enclosed inside a specific scope. 

For each compensation module, its corresponding scope is presented by the cmScope function. 

To this date, there is still a debate on how compensation handlers should be ordered in non- 

trivial cases 1351. In the BPEL Abstract Machine, an abstract representation of this order is 

provided by the abstract function cmOrder defined on compensation modules. This function 

assigns an element of the ordered domain PRIORITY to each compensation module (PRIORITY 

is defined in the core of the BPEL Abstract Machine). The topCM0rder predicate is then 

defined on compensation modules, based on cmorder, to be true if the the compensation 

module has the highest order to be executed. 

domain COMPENSATIONNODULE 

cmset : SCOPENAME + COMPENSATIONNODULE-set 

cmscope : COMPENSATIONNODULE += SCOPE 

cmOrder : COMPENSATION-MODULE t ORDER 

cmScopeName : COMPENSATION-MODULE t SCOPENAME 

cmScopeName(cm) := scopeName(cmScope(cm)) 

topCMOrder : COMPENSATION-MODULE += BOOLEAN 

topCMOrder(cm) 

vcrnl(cml E COMPENSATIONNODULE A 

(cmScopeName(cml) = cmScopeName(cm)) -+ (cmOrder(cml) 5 cmOrder(cm)) 

The behaviour of the compensate activity is abstractly modelled as follows: 

a. If there is at least one installed compensation module that matches the 
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CompensateProgram = 
case execMode(se1f) of 

emstarted -+ ChooseNextCM 

emRunning -+ CompensateAgent Running 

I emActivityCompleted -+ ChooseNextCM 

I emCompleted -+ stop self 

emExecutionFault -+ Wait ForTermination 

I emFaulted -+ stop self 

Spec 5.11: Program of compensate agents 

specified scope, then: 

0 choose one matching compensation module, 

0 remove the module from the set, and 

0 execute the module. 

b. Terminate if there is no more matching module left or if there is a fault. 

c. Repeat a. 

A new kernel agent, COMPENSATEAGENT, is introduced to model the behaviour of the 

compensate activity. The program of compensate agents is provided in Spec 5.11. To choose 

a compensation module, the compensate agent uses the ChooseNextCM rule defined in Spec 

5.12. 

If there is a matching module available (a module that belongs to the specified scope and 

has the highest execution order among other modules), ChooseNextCM chooses that module, 

assigns it as the value of chosenCM(sel f )  for future execution, removes it from the set of 

installed modules, and changes the execution mode to Running so that the agent executes 

the chosen module. To find a matching compensation module, the predicate matchingCM is 

defined for a compensation module and holds if, 

the scope of the compensation module matches the scope specified in the compensate 

activity or there is no such scope specified for the compensate activity, 
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ChooseNextCM = 
if thereIsAtLeastOneModule then 

choose cm in cmSet(parentScopeName(se1j)) with mathingCM(cm) 
chosenCM(se1j) := cm 
execMode(se1j) := emRunning 
remove cm from cmSet(parentScopeName(se1j)) 

else 
FinalizeKernelAgent 

where 
thereIsAtLeastOneModule 

3x(x E cmSet(parentScopeName(se1j)) A matchingCM(x)) 

matchingCM(cm) z 
[targetScope(baseActivity(selj)) = undej 

V cmScopeName(cm) = targetScope(baseActivity(selj))] 
A topCMOrder(cm) 

Spec 5.12: The ChooseNextCM rule is performed by compensate agents 

and the compensation module is the first compensation module of the set which should 

be executed (this is modelled by the abstract predicate topCM0rder). 

In the Running mode, if there is no fault signal, a compensate agent executes the selected 

compensation module that is stored in the chosenCM(se1f). The response of compensate 

agents to agent-faulted signals and forced-compensation signals is similar to other structured 

activities. If there is an agent-faulted signal, the agent switches to the Execution-Fault mode 

by executing the TransitionToExecutionFauIt. If there is a forced-termination signal, it is 

propagated to the child agents and the compensate agents switches to the Execution-Fault 

mode. Spec 5.13 presents the CompensateAgentRunning rule. 

The ExecuteCM defines how compensate agents execute a compensation module. As we 

will see later, the behaviour of compensation handlers is modelled by agents of type COM- 

PENSATIO N-HAN DLER. A compensation module is assigned to each compensation handler 

agent. The compensation handler agent, when executed, will use the assigned compensation 

module to set back values of local variables to what they were at the time of completion of 

the scope. The compensation activity of a scope (the activity inside the compensation han- 

dler of a scope) is specified by the compensationActivity function. If there is no compensation 

handler defined for a scope, this function refers to a <compensate/> activity which has the 
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CompensateAgentRunning = 
if normalExecution(self) then 

onsignal s : AGENT-COMPLETED 
execMode(se1f) := emActiuityCompleted 

otherwise 
ExecuteCM(chosenCM(self)) 

if faultExtensionSignal(self) then 
onsignal s : AGENTTAULTED 

TransitionToExecutionFault(fault(s)) 
otherwise 

onsignal s : FORCED-TERMINATION 
faultThrown(se1f) := fault(s) 
forall child in childAgents(se1f) 

trigger s' : FORCED-TERMINATION, child 
fault(sl) := fault(s) 

execMode(se1f) := emExecutionFault 

ExecuteCM(cm : COMPENSATIONMODULE) 
if 1 cmExecuted(cm) then 

new cma : COMPENSATIONHANDLERAGENT 
Initialize(cma, compensationActiuity(cmScope(cm))) 
cmExecuted(cm) := true 
compHandlerModule(cma) := c m  

Spec 5.13: The behaviour of compensate agents in the Running mode 

same behaviour as the default compensation handler24. 

Installing Compensation Modules 

The scope agent program presented in Spec 5.9 uses the rule lnstallCompensationHandler to 

install a compensation handler; i.e., to create an appropriate compensation module and add 

it to the cmSet of its parent scope. As mentioned earlier, a compensation module identifies 

three properties: 

the corresponding scope for which the compensation handler is installed (identified by 

24See Requirement B7 of FCRL, Appendix A.4. 
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functions cmScope and cmScopeName) , 

a snapshot of the local state of the corresponding scope at the time of completion 

(identified by 1ocalSnapshot) , 

and the completion time of the scope (identified by scopeCompletion~ime) 

The lnstallCompensationHandler rule creates a compensation module, sets the associated 

values, and adds the compensation module to the cmSet of its parent scope. This rule is 

defined as follows: 

lnstallCompensationHandler =: 

extend COMPENSATIONMODULE with cm 

scopeCompletionTime(cm) := now 
cmScope(cm) := baseActivity(se1f) 

RegisterLocalSnapshot(cm, baseActivity(self)) 

add cm to cmSet(parentScopeName(se1f)) 

To model a snapshot of local state variables, local snapshots are introduced by defining 

the domain LOCAL-SNAPSHOT. The function snapshot Variable Value(s, v) is defined to hold the 

value of variable v according to the snapshot s. The set of all the variables of a snapshot s is 

identified by the function snapshotVariableSet. A snapshot of local state variables assigned to 

a compensation module em is identified by the localSnapshot(cm) function. The signatures 

of these functions are presented below: 
-- 

snapshotVariableValue : LOCALSNAPSHOT x VARIABLE -+ VALUE 

snapshotVariableSet : LOCALSNAPSHOT -+ VARIABLE-set 

1ocalSnapshot : COMPENSATIONXODULE 4 LOCAL-SNAPSHOT 

For a specific scope, the RegisterLocalSnapshot rule creates a new local snapshot and 

for every local variable of the scope (addressed by the set scopevariables) adds a pair of 

variable-value to the snapshotVariableSet of the local snapshot. It then assigns this snapshot 

to the specified compensation module. This rule is presented below. 
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RegisterLocalSnapshot(cm : COMPENSATIONMODULE, scope : SCOPE) = 
extend LOCALSNAPSHOT with snapshot 

forall v in scope Variables(scope) 

snapshot Variable Value(snapshot, v) := variable Value(v, rootProcess(self)) 

add v to  snapshotVariableSet(snapshot) 

localSnapshot(cm) := snapshot 

Compensation Handlers 

The behaviour of a compensation handler is modelled by an agent of the domain COM- 

PENSATION-HAN DLER. A compensation handler agent starts by restoring the values of local 

variables using the local snapshot assigned to its compensation modules. This is performed 

by the RestoreLocalVariables. It then goes to the Running  mode, to execute its enclosed ac- 

tivity, identified by innerActivity(baseActivity(se1f)). In the Running  more, this agent uses 

the previously mentioned rule HandleExceptionlnRunningMode which defines its behaviour 

in case of receiving a fault handling signal. When the execution of its enclosed activity is 

completed, a compensation handler agent finalizes its execution using the FinalizeKernelA- 

gent (in the Activity-Completed mode). The behaviour of this agent in the Completed mode, 

the Execution-Fault mode, and the Faulted mode is similar to the sequence agent presented 

in Section 5.2.3. The compensation handler program is presented in Spec 5.14. 
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CompensationHandlerProgram = 
case execMode(se1f) of 

emStarted -+ 
RestoreLocalVaria bles 
execMode(se1f) := emRunning 

emRunning --+ 
if normalExecution(self) then 

onsignal s : AGENT-COMPLETED 
execMode(se1f) := emActivityCompleted 

otherwise 
ExecuteActivity(baseActivity(se1f)) 

HandleExceptionlnRunningMode 

emcompleted -+ stop self 

emExecutionFault --+ WaitForTermination 

emFaulted --+ stop self 

RestoreLocalVariables r 
let snapshot = localSnapshot(compensationModule(self )) 

forall v in snapshotVariableSet(snapshot) 
value(v ,  rootProcess(self)) := snapshot Variable Value(snapshot, v )  

Spec 5.14: The program of compensation handler agents 
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Conclusion 

This thesis presents the most comprehensive formal semantics model for the Business Pro- 

cess Execution Language for Web Services known so far. Our model provides a robust 

mathematical framework in the form of a distributed real-time ASM as a well defined tech- 

nical foundation for establishing the key language attributes of BPEL. More specifically, this 

model, in combination with the LRM, is meant to serve as precise documentation providing 

a reliable basis for implementations and enhancing further development of the language. 

To avoid a gap between the informal language definition and the formal semantics, we 

model the language definition as is without making any compromises. Furthermore, the 

dynamic nature of industrial standardization also demands flexibility and robustness of the 

formalization approach. To this end, we feel that the ASM modelling paradigm offers a good 

compromise between practical relevance and mathematical elegance (which has already been 

approved in other standardization contexts [22]). 

Clearly, BPEL is a fairly complex and inherently complicated language. This is partly 

due to the fact that this language originates from merging two other Web services composi- 

tion languages, namely XLANG and WSFL, and includes artifacts from both languages [37]. 

Considering the goal of the BPEL, i.e., providing "a language for the formal specification 

of business processes and business interaction protocols" [4], it would be appealing to sys- 

tematically validate and verify the key properties of the language. However, a well-defined 

specification is a prerequisite for verification; otherwise, one would have to face a gap be- 

tween the vagueness of the natural language used in the informal documentation and the 

mathematically precise language that is ultimately required for verification. On the other 

hand, depending on the verification method one chooses, a transformation of our model to 
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another formal language in the verification domain may be required. This transformation, 

however, then is a transformation from one formal (mathematical) language to another 

formal language, which does not suffer from the ambiguities and vagueness of a natural 

language description. 

Apparently, there is no simple way to prove that the resulting formalization provides 

a faithful model of the language. However, constructing a ground model - an abstract, 

complete, precise and yet understandable mathematical model - by carefully analyzing 

and eliciting requirements indeed seems to be the best one can do in the overall attempt 

toward making the semantic model as sound and complete as possible [ll, 51. To achieve 

a high degree of reliability in establishing the requirements, we make our model as close as 

possible to the informal documentation. This is attained by 

choosing a natural level of abstraction that reflects how the LRM views the language, 

providing a mathematical image of the language semantics defined by the LRM through 

a direct mapping from the constructs of the language, their properties, and their re- 

lations to the elements of our model, and 

a adopting the terminology that is used in the LRM. 

This leads to a direct and concise representation of the informal documentation, which allows 

conceptual justification of the model and also provides a basis for experimental validation 

of the design through simulation and testing. 

Constructing such a formal specification demonstrates the practicability of the formal- 

ization approach. Although this formal model does not yet address some minor aspects of 

the language definition, it provides a comprehensive semantic framework, and clearly those 

aspects that are not yet captured do not introduce any new challenges in modelling. As far 

as a comprehensive semantics specification is concerned, to the best of our knowledge, the 

result of our work can be considered the frontier of semantic modelling of BPEL. 

In the application domain of e-Business, it is highly desirable to build on sufficiently 

reliable standards. An important conclusion that we draw from the work presented here 

is that in order to establish and maintain a reliable standard for BPEL, we need a proper 

formalization of the fundamental semantic issues. The presented approach will allow us to 

"reason about the current specijication and related issues" and to "uncover issues that would 

otherwise go unnoticed' [35, Issue #40]. There are unclear details in the specification of 
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fundamental aspects of BPEL (see Section 6.1 and the issues listed in [35]) that need to be 

clarified and cannot be left to the language implementations. 

The following section provides some examples on how a formal specification can support 

validation of the language definition effectively revealing inconsistencies, loose ends, and 

ambiguities. 

6.1 Validation 

The OASIS WSBPEL Technical Committee has been working on the LRM since April 2003, 

basically to eliminate weak points in the language definition and to continue the work on 

specifying the common concepts for a business process execution language. To this date, 

this committee has listed 130 issues of which 81 are considered to be resolved [35]. 

As a result of building this ground model for BPEL, we actually have discovered a number 

of weak points in the LRM which will be exemplified in this section. We also proposed a 

new activity for BPEL to provide synchronous request-respond services to business partners 

which is currently handled in the language through two separate activities (i.e., receive and 

reply). Having two separate activities to provide a single synchronized service has caused 

a number of difficulties and ambiguities to the language (see Issues #26, #49, #50, #120, 

and #123'). This proposal is discussed in Appendix F. 

6.1.1 Termination Due to a Fault 

The LRM does not specify exactly how activity termination (due to a fault) takes place. It 

states that when a fault occurs in a scope, the fault handler begins by implicitly terminating 

all activities inside the scope. Further, in Section 20.1 on standard faults, the LRM states 

that forcedTermination is used by a scope to terminate its enclosing activities. However, it 

is not clear how the forcedTermination fault is used to terminate enclosing activities. The 

LRM does not state whether the faulted activities should wait for the force Termination 

fault when they encounter a fault, or they should terminate automatically. 

For instance, assume that there is a flow activity inside a scope S that has two concurrent 

scope branches A and B. If a fault occurs in branch B (scope B) that cannot be handled, 

should this branch terminate before receiving a forcedTermination fault from scope S? If 

'At the time of producing this document, Issues #26, #120, and #I23 are still open. 
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branch B terminates without waiting for a forcedTermination fault, then should the flow 

also terminate (which means A should also terminate)? If that is the case, then why should 

scope S send a forcedTermination fault at all? 

There are also ambiguities on how fault handlers deal with a forcedTermination fault. 

According to the L R M ~ ,  if a forcedTermination fault comes for a scope that is already in 

fault handling mode, the fault handler is not interrupted and it is allowed to finish. It is not 

clear what happens if the fault handler in this situation encounters an internal fault. Given 

that the handler had already received a forcedTermination fault, should it wait for another 

forced termination fault to propagate it to its enclosing activities? 

6.1.2 Clarification on Activity Termination 

About terminating the assign activity, the LRM indicates that 

1. When a fault occurs in the execution of an assignment activity (assign), the destination 

variables are left unchanged as they were at the start of the execution of the activity 

(Requirement C12 of FCRL) . 

2. In response to a forcedTermination fault, which is by the LRM considered an inter- 

nal fault, the assign activities are allowed to complete rather than being interrupted 

(Requirement B16 of FCRL) . 

Although the second requirement is reasonable, it conceptually contradicts the first 

requirement. To resolve this issue, the first requirement should be restricted to all faults 

except the forcedTermination fault. 

6.1.3 Faults and the Compensate Activity 

The LRM is not specific about what happens when a compensation handler encounters a 

fault. The LRM indicates that if a compensation handler encounters a fault and the fault 

is not handled in a scope inside the compensation handler, "it is rethrown to the parent 

scopen3. There are two issues regarding this statement: 

1. There is no precise definition of a parent scope in the LRM. From the context where this 

term is used, one can assume that it has the same meaning as the terms immediately 

2 ~ e e  Requirement B15 of FCRL in Appendix A.4. 

3 ~ t e m  (v) of Requirement B11 of FCRL in Appendix A.4 
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enclosing scope or enclosing scope of an activity which are used widely in the LRM. 

On the other hand, a compensation handler of a scope is invoked (indirectly) either 

by a compensate activity or through a default fault handler or a compensation handler 

of a higher-level enclosing scope. Thus, the parent scope of a compensation handler is 

not always the immediately enclosing scope of that handler (a compensation handler 

may be invoked through a hierarchy of higher-level compensation handlers). To this 

end, the parent scope of a compensation handler needs a precise definition. 

2. A compensate activity may invoke a number of compensation handlers installed for a 

specific scope. The LRM is not precise about the behaviour of a compensate activity 

in which one of the installed compensation handlers encounters a fault. One could 

assume that the compensate activity should terminate prematurely, but this aspect is 

not specified precisely in the LRM. 

6.1.4 Invoking Compensation Handlers 

In [4, Sections 13.3.2 and 14.21, on invoking compensation handlers, the LRM specifies that 

1. "Invoking a compensation handler that has not been installed is equivalent to the 

empty activity (it is a no-op4)-this ensures that fault handlers do not have to rely on 

state to determine which nested scopes have completed successfully.~~5 

2. "If an installed compensation handler is invoked more than once during the execu- 

tion of a process instance, a compliant implementation MUST throw the standard 

bpws:repeatedCompensation f a ~ l t . " ~  

It seems that the LRM tries to explicitly separate the compensation behaviour of two 

types of scopes: (1) scopes that are not completed yet, and (2) scopes that have been 

compensated before but have not been completed again to be compensated for the second 

time. There are two consideration regarding this case: 

1. A BPEL program does not actually invoke an installed compensation handler of a 

scope. Instead, the general compensation handler of a scope is invoked, which then 

4A 'no-op' operation is an operation that does nothing. 

5See Requirement B3 of FCRL in Appendix A. 

'See Requirement C16 of FCRL in Appendix A. 
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leads to invocation of its corresponding installed compensation handlers (e.g., invok- 

ing compensation handler of scope A through <compensate scope=' A ' >) . Thus, 

the wording of the second requirement needs to be changed to something like: "If 

the compensation handler of a scope is invoked, for which all the previously in- 

stalled compensation handlers are already invoked before and there is no new in- 

stalled compensation handler, a compliant implementation MUST throw the standard 

bpws:repeatedCompensation fault." 

2. Even considering a revised version of the second requirement, when all the previ- 

ously installed compensation handlers of a scope are already invoked and there is no 

new installed compensation handler for that scope, in accordance with the first case, 

compensating that scope should be equivalent to an empty activity. 

6.1.5 Rethrowing a Fault 

A fault handler may include a number of catch clauses along with at most one catchall 

clause. While for a catch clause at least a fault name or a fault variable must be specified, 

a catchall clause has no parameters; i.e., a catchall clause has no information about the 

original fault that is thrown and is caught by this clause. This prevents a catchall clause to 

rethrow a fault to the parent scope. We encountered this problem while we were modelling 

the default fault handling behaviour of scopes. We identified the need for a special activity 

to allow a catchall clause to rethrow its original fault to the parent scope. At the same time, 

this issue was addressed by the OASIS WSBPEL Technical Committee and was resolved 

using a similar approach by introducing a <rethrow/> construct that rethrows the original 

fault in a catch or catchall clause7. 

'see Requirement A7 of FCRL in Appendix A.4. 
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Requirements Lists 

Requirements list of the receive activity: 

1. "The <receive> construct allows the business process to do a blocking wait for a 

matching message to arrive." [$6.2] 

2. Receive activity is one of the start activities that can cause process instantiation. "This 

is done by setting the createInstance attribute of such an activity to 'yes'. When a 

message is received by such an activity, an instance of the business process is created 

if it does not already exist (see 11.4. Providing Web Service Operations and 12.4. 

Pick)." [$6.4] 

3. "The combination of a <receive> and a <reply> forms a request-response operation 

on the WSDL portType for the process." [$6.2] 

4. "If more than one start activity is enabled concurrently, then all such activities must 

use at least one correlation set and must use the same correlation sets (see 10. Corre- 

lation and the 16.3. Multiple Start Activities example). If exactly one start activity is 

expected to instantiate the process, the use of correlation sets is unconstrained. This 

includes a pick with multiple onMessage branches; each such branch can use different 

correlation sets or no correlation sets." [$6.4] (also in Correlation-RL-2) 

5. "Variables associated with message types can be specified as input or output variables 
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for invoke, receive, and reply activities (see 11.3. Invoking Web Service Operations 

and 11.4. Providing Web Service Operations) ." [$9.2] 

6. "In addition, it [receive activity] may specify a variable that is to be used to receive 

the message data received. However, this attribute is syntactically optional since it is 

absolutely required only in executable processes." [$11.4] 

7. "A receive activity annotated in this way [with createInstance=yes] MUST be an 

initial activity in the process, that is, the only other basic activities may potentially 

be performed prior to or simultaneously with such a receive activity MUST be similarly 

annotated receive activities." [$11.4] 

8. "It is permissible to have the createInstance attribute set to 'yes' for a set of concurrent 

initial activities." but "All such receive activities MUST use the same correlation sets 

(see 10. Correlation) ." [$11.4] 

9. "Compliant implementations MUST ensure that only one of the inbound messages 

carrying the same correlation set tokens actually instantiates the business process 

(usually the first one to arrive, but this is implementation dependent)." [$11.4] 

10. "A business process instance MUST NOT simultaneously enable two or more receive 

activities for the same partnerlink, portType, operation and correlation set(s). ... 

For the purposes of this constraint, an onMessage clause in a pick and an onMessage 

event handler are equivalent to a receive (see 12.4. Pick and 13.5.1. Message Events) ." 

[$11.4] 

11. "If during the execution of a business process instance, two or more receive activities 

for the same partner link, portType, operation and correlation set(s) are in fact simul- 

taneously enabled, then the standard fault bpws:conj?ictingReceive MUST be thrown 

by a compliant implementat ion." [$14.5] 

12. " confEictingReceive is thrown when more than one receive activity or equivalent (cur- 

rently, onMessage branch in a pick activity) are enabled simultaneously for the same 

partner link, port type, operation and correlation set(s)." (similar to the #11) [$20.1] 

13. "correlation Violation is thrown when the contents of the messages that are processed 

in an invoke, receive, or reply activity do not match specified correlation information." 

[$20.1] 
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14. In case of termination, each "wait ,  receive, reply and invoke activity is interrupted and 

terminated prematurely." [$13.4.2] 

Requirements list of the reply activity: 

1. "The <reply> construct allows the business process to send a message in reply to a 

message that was received through a <receive>. The combination of a <receive> 

and a <reply> forms a request-response operation on the WSDL portType for the 

process." [$6.2] "A reply activity is used to send a response to a request previously ac- 

cepted through a receive activity. Such responses are only meaningful for synchronous 

interactions." [$11.4] 

2. "The correlation between a request and the corresponding reply is based on the con- 

straint that more than one outstanding synchronous request from a specific partner 

link for a particular portType, operation and correlation set(s) MUST NOT be out- 

standing simultaneously." [$11.4] 

3. "For the purposes of this constraint [Reply-RL-31, an onMessage clause in a pick is 

equivalent to a receive (see 12.4. Pick)." [$11.4] 

4. "Moreover, a reply activity must always be preceded by a receive activity for the same 

partner link, portType and (request/response) operation, such that no reply has been 

sent for that receive activity." [$11.4] 

5. "Note that the <reply> activity corresponding to a given request has two potential 

forms. If the response to the request is normal, the faultName attribute is not used and 

the variable attribute, when present, will indicate a variable of the normal response 

message type. If, on the other hand, the response indicates a fault, the faultName 

attribute is used and the variable attribute, when present, will indicate a variable of 

the message type for the corresponding fault ." [$11.4] 

6. A reply activity MAY specify a variable that contains the message data to be sent 

[$11.4]. 
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7. "Variables associated with message types can be specified as input or output variables 

for invoke, receive, and reply activities (see 11.3. Invoking Web Service Operations 

and 11.4. Providing Web Service Operations)." [$9.2] 

8. "If the variable reference is omitted for an outgoing message, then any properties of 

the message are considered to have been initialized through opaque assignment ..." 
[$15.1] 

9. "If a reply activity is being carried out during the execution of a business process 

instance and no synchronous request is outstanding for the specified partnerlink, 

portType, operation and correlation set(s), then the standard fault bpws:invalidReply 

MUST be thrown by a compliant implementation." [$14.5] 

10. "correlation Violation is thrown when the contents of the messages that are processed 

in an invoke, receive, or reply activity do not match specified correlation information." 

[$20.1] 

11. "invalidReply is thrown when a reply is sent on a partner link, portType and operation 

for which the corresponding receive with the same correlation has not been carried 

out." (similar to #9) [$20.1] 

12. "In case of activity termination, the activities wait, reply and invoke are added to 

receive as being instantly terminated rather than being allowed to finish." [$4.3] 

Requirements list of the variables and data handling in BPEL: 

1. "The type of each variable may be a WSDL message type, an XML Schema simple 

type or an XML Schema element." [$9.2] 

2. "The name of a variable should be unique within its own scope." [$9.2] 

3. "If a local variable has the same name and same messageType/type/element as a vari- 

able defined in an enclosing scope, the local variable will be used in local assignments 

and/or get VariableProperty functions." [$9.2] 
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4. "It is not permitted to have variables with same name but different messageTypel 

typelelement within an enclosing scope hierarchy. The behavior of such variables is 

not defined." [$9.2] 

5. "Variables associated with message types can be specified as input or output variables 

for invoke, receive, and reply activities." [$9.2] 

6. "When an invoke operation returns a fault message, this causes a fault in the current 

scope. The fault variable in the corresponding fault handler is initialized with the 

fault message received." [$9.2] 

"Each variable is visible only in the scope in which it is defined and in all scopes nested 

within the scope it belongs to." [$9.2] 

"A global variable is in an uninitialized state at the beginning of a process. A local 

variable is in an uninitialized state at the start of the scope it belongs to." [$9.2] 

In Executable Processes, "An attempt during process execution to use any part of a 

variable before it is initialized MUST result in the standard bpws:uninitialixed Variable 

fault." [$14.2] 

In Executable Processes, "the inputVariable attribute for invoke and the variable at- 

tribute for receive and reply activities are not optional in executable processes. In 

addition, the outputVariable] attribute is not optional for invoke when the operation 

concerned is a request/response operation." [$14.5] 

In Executable Processes, "the inputVariable attribute for omMessage handlers is not 

optional in executable processes. In addition, the outputVariable attribute is not 

optional for invoke when the operation concerned is a request/response operation." 

[$14.8] 

12. "Unlike executable processes, variables in abstract processes do not need to be fully 

initialized before being used since some computation is left implicit in abstract pro- 

cesses. However, since message properties are meant to represent 'transparent', i.e., 

protocol relevant data, BPEL4WS requires that all message properties in a message 

must be initialized before the message can be used, for example before the variable 

of the message is used as the inputvariable in a Web Service operation invocation." 

[$15.1] 
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13. ". . . it is permissible, in abstract processes, to omit the variable reference attributes 

from the <invoke/>, <receive/>, and <reply/> activities. The meaning of such an 

omission must be stated clearly." [$IS. 11 

14. "If no variable is specified for an incoming message, then the abstract process may 

not refer subsequently to the message or its properties (if any)." [$15.1] 

15. "If the variable reference is omitted for an outgoing message, then any properties of 

the message are considered to have been initialized through opaque assignment.. . " 
[$15.1] 

16. When variable references are omitted, correlation set references may be interpreted as 

follows: 

(a) "For an incoming message which initializes a correlation set (initiator case), the 

correlation set is deemed to be initialized." [$15.1] 

(b) "For an outgoing message which initializes a correlation set (initiator case), the 

correlation tokens (which are message properties) are initialized through implicit 

opaque assignment. . . " [$15.1] 

(c) "For an outgoing message which references but does not initialize a correlation 

set (follower case), the proper initialization of the message properties is implicit. 

In this case, the already initialized correlation set itself provides the token values 

for the outgoing message." [$IS. 11 

17. L'uninitializedVariable is thrown when there is an attempt to access the value of an 

uninitialized part in a message variable." [$20.1] 

18. "If a correlation set is initialized by rule 1 or 2 above [16a and 16b], then outgoing 

messages in the same correlated exchange must also refrain from referencing a message 

variable. This restriction applies because it is not possible to initialize the properties 

of the outgoing messages from the correlation set alone." [$15.1] 

A.4 FC-RL 

Requirements list of Fault and Compensation Handling in BPEL: 
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Group A: Syntactical 

1. A scope can provide fault handlers and one compensation handler. [$I31 

2. "The compensation handler can be invoked by using the compensate activity, 

which names the scope for which the compensation is to be performed, that 

is, the scope whose compensation handler is to be invoked." [$13.3.2] 

3. "This activity [ compensate ] can be used only in the following parts of a 

business process: 

In a fault handler of the scope that immediately encloses the scope for 

which compensation is to be performed. 

In the compensation handler of the scope that immediately encloses the 

scope for which compensation is to be performed. " [$13.3.2] 

4. "Note that in case an invoke activity has a compensation handler defined 

inline, the name of the activity is the name of the scope to be used in the 

compensate activity." [$l3.3.2] 

5. "In BPEL4WS, all faults, whether internal or resulting from a service invoca- 

tion, are identified by a qualified name." [$6.1] 

6. "BPEL4WS does not require fault names to be defined prior to their use in a 

throw element ." [$11.6] 

7. All custom fault handlers can rethrow the original fault with the syntax 

<rethrow/> that has no attributes. [35, Issue #95] 

Group B: Core Semantics 

1. Revised by OASIS: "Compensation handlers always interact with the cur- 

rent state of the process, specifically the state of variables declared in their 

associated scope and all enclosing scopes. [. . . ]  The current state of the pro- 

cess consists of the current local state of all scopes that have been started. This 

includes scopes that have completed but for which the associated compensa- 

tion handler has not been invoked. For completed uncompensated scopes their 

current local state is the state as it was at the time of completion." [OASIS 

Issue #3] 
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Original: "BPEL4WS semantics state that the compensation han- 

dler, if invoked, will see a frozen snapshot of all variables, as they 

were when the scope being compensated was completed." [$l3.3.l] 

2. ". . . compensation handlers cannot update live data in the variables that the 

business process is using." "A compensation handler, once installed, can be 

thought of as a completely self-contained action that is not affected by, and 

does not affect, the global state of the business process instance. It can only 

affect external entities." [$13.3.1] 

3. "A compensation handler for a scope is available for invocation only when the 

scope completes normally. Invoking a compensation handler that has not been 

installed is equivalent to the empty activity (it is a no-op)-this ensures that 

fault handlers do not have to rely on state to determine which nested scopes 

have completed successfully." [$l3.3.2] 

4. "If a scope being compensated by name was nested in a loop, the instances of 

the compensation handlers in the successive iterations are invoked in reverse 

order." [$13.3.2] 

5. "It is no longer possible to have other than depth first order of control-flow- 

dictated completion since we ban circular dependencies via links between re- 

versible scopes." [Reversible and Permeable Scopes, in resolution to OASIS 

issue #lo] 

6. "If the compensation handler for a scope is absent, the default compensa- 

tion handler invokes the compensation handlers for the immediately enclosed 

scopes in the reverse order of the completion of those scopes." [$13.3.2] 

7. "Note that the <compensate/> activity in a fault or compensation handler 

attached to scope S causes the default-order invocation of compensation han- 

dlers for completed scopes directly nested within S. The use of this activity 

can be mixed with any other user-specified behaviour except the explicit invo- 

cation of <compensate scope='SxJ/> for scope Sx nested directly within S. 

Explicit invocation of compensation for such a scope nested within S disables 

the availability of default-order compensation, as expected." [$13.3.2] 

8. In Section 13.4.1, the LRM indicates that: "Whenever a fault handler (for 

any fault) or the compensation handler is missing for any given scope, they 
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are implicitly created with the following behavior: 

Fault handler: 

Run all available compensation handlers for immediately enclosed 

scopes in the reverse order of completion of the corresponding 

scopes. 

Rethrow the fault to the next enclosing scope. 

Compensation handler: 

Run all available compensation handlers for immediately enclosed 

scopes in the reverse order of completion of the corresponding 

scopes.'' 

9. "A business process instance is terminated . . . When a fault reaches the process 

scope, and is either handled or not handled. In this case the termination is 

considered abnormal even if the fault is handled and the fault handler does 

not rethrow any fault. A compensation handler is never installed for a scope 

that terminates abnormally." [$6.4] 

10. "The throw activity can be used when a business process needs to signal an 

internal fault explicitly. Every fault is required to have a globally unique 

QName. The throw activity is required to provide such a name for the fault 

and can optionally provide a variable of data that provides further information 

about the fault. A fault handler can use such data to analyze and handle the 

fault and also to populate any fault messages that need to be sent to other 

services." [$11.6] 

11. Quoted from [$20.3.1]: Coordination Protocol for BPEL4WS Scope 

i. "A nested scope may complete successfully. In this case a compensation 

handler is installed for the nested scope. This is modeled with a Com- 

pleted signal from the nested scope to its parent scope. 

ii. A nested scope may encounter a fault internally. In this case the scope 

always terminates unsuccessfully. 

A. If the fault handler rethrows a fault to its enclosing scope, this is 

modeled as a Faulted signal from the nested scope to its parent scope. 

B. If the fault is handled and not rethrown, the scope exits gracefully 
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from the work of its parent scope. This is modeled as an Exited 

signal from the nested scope to its parent scope. 

iii. After a nested scope has completed, (a fault or compensation handler for) 

the parent scope may ask it to compensate itself by invoking its compen- 

sation handler. The compensate action is modeled with a Compensate 

signal from the parent scope to the nested scope. 

iv. Upon successful completion of the compensation, the nested scope sends 

the Compensated signal to its parent scope. 

v. The compensation handler may itself fault internally. In this case 

A. If the fault is not handled by a scope within the compensation handler, 

it is rethrown to the parent scope. This is modeled as a Faulted signal 

from the nested scope to its parent scope. 

B. If the fault is handled and not rethrown, we assume that the compen- 

sation was able to complete successfully. In this case the nested scope 

sends the Compensated signal to its parent scope. 

vi. If there is a fault in the parent scope independent of the work of the nested 

scope, the parent scope will ask the nested scope to prematurely abandon 

its work by sending a Cancel signal. 

vii. The nested scope, upon receiving the cancel signal, will interrupt and 

terminate its behavior (as though there were an internal fault), and return 

a Canceled signal to the parent. 

viii. Finally, when a parent scope decides that the compensation for a com- 

pleted nested scope is not needed any more it sends a Close signal to the 

nested scope. After discarding the compensation handler the nested scope 

responds with a Closed signal. 

ix. In case there is a race between the Completed signal from the nested scope 

and the Cancel signal from the parent scope, the Completed signal wins, 

i.e., the nested scope is deemed to have completed and the Cancel signal 

is ignored. 

x. In case a Cancel signal is sent to a nested scope that has already faulted 

internally, the Cancel signal is ignored and the scope will eventually send 

either a Faulted or an Exited signal to the parent." 
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12. "The optional fault handlers attached to a scope provide a way to define a set of 

custom fault-handling activities, syntactically defined as catch activities. . . If 
the fault name is missing, then the catch will intercept all faults with the right 

type of fault data. . . . A catchAll clause can be added to catch any fault not 

caught by a more specific catch handler." [$13.4] 

13. "If no catch or catchall is selected, the fault is not caught by the current scope 

and is rethrown to the immediately enclosing scope." [$13.4] 

14. "If the fault occurs in (or is rethrown to) the global process scope, and there 

is no matching fault handler for the fault at the global level, the process 

terminates abnormally, as though a terminate activity had been performed." 

[$13.4](see B9) 

15. "Scopes provide the ability to control the semantics of forced termination 

to some degree. When the activity being terminated is in fact a scope, the 

behavior of the scope is interrupted and the fault handler for the standard 

bpws:forcedTermination fault is run. Note that this applies only if the scope is 

in normal processing mode. If the scope has already experienced an internal 

fault and invoked a fault handler, then as stated above, all other fault han- 

dlers including the handler for bpws:forcedTermination are uninstalled, and the 

forced termination has no effect. The already active fault handler is allowed 

to complete." [$13.4.2] 

16. In [$13.4.2] it says, the behaviour of a normal fault handler "begins by implic- 

itly (recursively) terminating all activities directly enclosed within its associ- 

ated scope that are currently active. 

The assign activities are sufficiently short-lived that they are allowed to 

complete rather than being interrupted when termination is forced. The 

evaluation of expressions when already started is also allowed to complete. 

Each wait, receive, reply and invoke activity is interrupted and terminated 

prematurely. When a synchronous invoke activity (corresponding to a 

requestlreply operation) is interrupted and terminated prematurely, the 

response (if received) for such a terminated activity is silently discarded. 

The notion of termination does not apply to empty, terminate, and throw. 

All structured activity behavior is interrupted. The iteration of while is 
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interrupted and termination is applied to the loop body activity. If switch 

has selected a branch, then the termination is applied to the activity of 

the selected branch. The same applies to pick. If either of these activities 

has not yet selected a branch, then the switch and the pick are terminated 

immediately. The sequence and flow constructs are terminated by termi- 

nating their behavior and applying termination to all nested activities 

currently active within them." 

17. "If a fault occurs in a fault handler E for a scope C, the fault can be caught 

through the use of a scope within E. If the fault is not caught by a scope 

within E, it is immediately thrown to the parent scope of C and the behavior 

of E terminates prematurely. In effect, no distinction is made between faults 

that E rethrows deliberately and faults that occur as undesired faults in E." 

[$13.4.2] 

Group C: Details and Constraints 

1. "If a compensation handler is specified for the business process as a whole (see 

13.3. Compensation Handlers), a business process instance can be compen- 

sated after normal completion by platform-specific means. This functionality 

is enabled by setting the enableInstanceCompensation attribute of the process 

to 'yes'." [$6.4] 

2. L'The variable provided as the value of the faultvariable attribute in a catch 

handler to hold fault data is now scoped to the fault handler itself rather than 

being inherited from the associated scope." [$4.3] 

3. "This attribute [suppressJoinFailure, in Process] determines whether the join- 

Failure fault will be suppressed for all activities in the process. The effect 

of the attribute at the process level can be overridden by an activity using a 

different value for the attribute. The default for this attribute is 'no'." [$6.2] 

4. "When an invoke operation returns a fault message, this causes a fault in 

the current scope. The fault variable in the corresponding fault handler is 

initialized with the fault message received (see 13. Scopes and 13.4. Fault 

Handlers) ." [$9.2] 

5. "Semantically, [for the invoke activity] the specification of local fault and/or 
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compensation handlers is equivalent to the presence of an implicit scope im- 

mediately enclosing the activity [invoke] and providing those handlers. The 

name of such an implicit scope is always the same as the name of the activity 

it encloses." [$11.2] 

6. "If, on the other hand, the response indicates a fault, the faultName attribute 

is used and the variable attribute, when present, will indicate a variable of the 

message type for the corresponding fault ." [$11.4] 

7. "The fault variable [of a catch clause] is optional because a fault might not 

have additional data associated with it." [$13.4] 

8. "The following rules are used to select the catch activity that will process a 

fault: 

i. If the fault has no associated fault data, a catch activity that specifies 

a matching faultName value will be selected if present. Otherwise, the 

default catchAll handler is selected if present. 

ii. If the fault has associated fault data, a catch activity specifying a matching 

faultName value and a faultvariable whose type (WSDL message type) 

matches the type of the fault's data will be selected if present. Otherwise, 

a catch activity with no specified faultName and with a faultvariable 

whose type matches the type of the fault data will be selected if present. 

Otherwise, the default catchAll handler is selected if present ." [$13.4] 

9. "When a fault handler for scope S handles a fault that occurred in S without 

rethrowing, links that have S as the source will be subject to regular evaluation 

of status after the fault has been handled, because processing in the enclosing 

scope is meant to be continued." [$13.4] 

10. "The fault handler for the bpws:forced Termination fault is designed like other 

fault handlers, but this fault handler cannot rethrow any fault. Even if an 

uncaught fault occurs during its behavior, it is not rethrown to the next en- 

closing scope. This is because the enclosing scope has already faulted, which 

is what is causing the forced termination of the nested scope." [$13.4.2] 

11. "The use of error handling features in a serializable scope is governed by the 

following rules: 
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i. The fault handlers for a serializable scope share the serializability domain 

of the associated scope, that is, in case a fault occurs in a serializable 

scope, the behavior of the fault handler is considered part of the serial- 

izable behavior (in commonly used implementation terms, locks are not 

released when making the transition to the fault handler). This is because 

the repair of the fault needs a shared isolation environment to provide pre- 

dictable behavior. 

ii. The compensation handler for a serializable scope does not share the se- 

rializability domain of the associated scope. 

iii. For a serializable scope with a compensation handler, the creation of the 

state snapshot for compensation is part of the serializable behavior. In 

other words, it is always possible to reorder behavior steps as if the scope 

had sufficiently exclusive access to the shared variables all the way to 

completion, including the creation of the snapshot ." [$13.6] 

12. "If there is any fault during the execution of an assignment activity, the desti- 

nation variables are left unchanged as they were at the start of the activity." 

[$14.3] 

13. "After a correlation set is initiated, the values of the properties for a cor- 

relation set must be identical for all the messages in all the operations that 

carry the correlation set and occur within the corresponding scope until its 

completion. If at execution time this constraint is violated, the standard fault 

bpws:correlationViolation MUST be thrown by a compliant implementation. 

The same fault MUST be thrown if an activity with the initiate attribute set 

to no attempts to use a correlation set that has not been previously initiated." 

[$14.4] 

14. "If during the execution of a business process instance, two or more receive 

activities for the same partner link, portType, operation and correlation set(s) 

are in fact simultaneously enabled, then the standard fault bpws:confEicting- 

Receive MUST be thrown by a compliant implementation." [$14.5] 

15. "If more than one outstanding synchronous request on a specific partner link 

for a particular portType, operation and correlation set(s) is outstanding si- 

multaneously during the execution of a business process instance, then the 
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standard fault bpws:confiictingRequest MUST be thrown by a compliant imple- 

mentation. Note that this is semantically different from the bpws:confiicting- 

Receive, because it is possible to create the conflictingRequest by consecutively 

receiving the same request on a specific partner link for a particular portType, 

operation and correlation set(s). If a reply activity is being carried out during 

the execution of a business process instance and no synchronous request is 

outstanding for the specified partnerlink, portType, operation and correla- 

tion set(s), then the standard fault bpws:invalidReply MUST be thrown by a 

compliant implementation." [$14.5] 

16. "If an installed compensation handler is invoked more than once during the 

execution of a process instance, a compliant implementation MUST throw the 

standard bpws:repeatedCompensation fault." [$14.7] 

17. Standard Faults [$20.1] (the complete list is presented in Appendix A 

bpws:conflictingReceive Thrown when more than one receive activity or 

equivalent (currently, onMessage branch in a pick activity) are enabled 

simultaneously for the same partner link, port type, operation and corre- 

lation set (s) . 
bpws:conflictingRequest Thrown when more than one synchronous inbound 

request on the same partner link for a particular port type, operation and 

correlation set(s) are active. 

bpws:forcedTermination Thrown as the result of a fault in an enclosing 

scope. 

bpws:correlationViolation Thrown when the contents of the messages that 

are processed in an invoke, receive, or reply activity do not match specified 

correlation information. 

bpws:repeatedCompensation Thrown when an installed compensation han- 

dler is invoked more than once. 

bpws:invalidReply Thrown when a reply is sent on a partner link, port- 

Type and operation for which the corresponding receive with the same 

correlation has not been carried out. 

Group D: Special Cases 
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1. "The semantics of a process in which an installed compensation handler is 

invoked more than once is undefined." [$13.3.2] 

2. "The first extension [for Executable Processes] defines a standard fault for 

errorneous use of the XPath 1.0 function defined for extracting global property 

values from variables." [$Id. 11 

3. "An attempt during process execution to use any part of a variable before it 

is initialized MUST result in the standard bpws:uninitializedVariable fault." 

[$14.2] 

4. "The second extension defines a standard fault for violation of type matching 

constraints. If any of the matching constraints defined in the section 9.3.1. 

Type Compatibility in Assignment is violated during execution, the standard 

fault bpws:mismatchedAssignrnentFailure MUST be thrown by a compliant 

implementation." [$14.3] 

Group E: Interpretation 

1. ". . . it is important to note that BPEL4WS uses two standard internal faults 

for its core control semantics, namely, bpws:forceTermination and bpws:join- 

Failure. These are the only two standard faults that play a role in the core 

concepts of BPEL4WS." [$5] 

2. "Fault handling in a business process can be thought of as a mode switch from 

the normal processing in a scope." [$13.4] 

Group F: Extensibility 

1. "In the future, BPEL4WS will add input and output parameters to compen- 

sation handlers.. . "  [$13.3.1] 
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The Revised Core 

B. 1 Initial Definitions 

/ /  !lgwt s 

domain PROCESS 

domain INBOXMANAGER 

domain OUTBOX-MANAGER 

/ /  .let i\.iiv .lp,c~rkt> 

domain SEQUENCEAGENT 

domain WHILEAGENT 

domain FLOWAGENT 

domain FLOW-THREADAGENT// su i t  agcrit 5 oi' n flon. <~gvrif 

domain PICKAGENT 

domain PICK-ALARMAGENT 

domain PICK-MESSAGEAGENT 

domain SWITCHAGENT 
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ACTIVITYAGENT = 
SEQUENCEAGENT 

U WHILEAGENT 

U FLOWAGENT 

U PICKAGENT 

U SWITCHAGENT 

U FLOW-THREADAGENT 

U PICKALARMAGENT 

U PICKXESSAGEAGENT 

KERNELAGENT z PROCESS U SUBPROCESSAGENT 

AGENT = KERNELAGENT U INBOX-MANAGER U OUTBOX-MANAGER 

EVENT = ONMESSAGE U ONALARM 
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/ /  !\(.ti) i i  iw 

domain REPLY 

d o m a i n  RECEIVE 

d o m a i n  INVOKE 

d o m a i n  WAIT 

d o m a i n  TERMINATE 

domain EMPTY 

domain SEQUENCE 

d o m a i n  WHILE 

d o m a i n  SWITCH 

d o m a i n  PICK 

d o m a i n  FLOW 

ACTIVITY REPLY U RECEIVE U SEQUENCE U INVOKE 

U WHILE U SWITCH U PICK U FLOW 

U WAIT U TERMINATE U EMPTY U ASSIGN 

U SCOPE U COMPENSATE 

IN-OPERATION RECEIVE U INVOKE U ONMESSAGE 

OUT-OPERATION % REPLY U INVOKE 

INOUT-OPERATION IN-OPERATION U OUT-OPERATION 

/ /  I I I -OII~  DPSCI iptor, 

d o m a i n  OUTPUTDESCRIPTOR 

d o m a i n  INPUTDESCRIPTOR 

INOUTDESCRIPTOR = INPUTDESCRIPTOR U OUTPUTDESCRIPTOR 



APPENDIX B. THE REVISED CORE 

/ /  nifhwut L X ~ Y I L ~  ion llodos of I t ~ ~ r l r l i ~ l : ;  ,Zgc>~it i 

EXECUTIONNODE = 
{emstarted, emRunning, emActivityCompleted, emCompleted) 

rootProcess (a)  = if a E PROCESS; 

rootProcess(parentAgent(a)) , otherwise. 

receiveMode : KERNELAGENT + BOOELAN 

// inii ial v:>Itw : F:ilsc\ 

eventoccured : KERNELAGENT + BOOLEAN 

eventOccured(a : KERNELAGENT) = 
3e(e E occuredEvents(parentAgent(a))) 

A parentAgent(a) E PICK-AGENT 

normalExecution : KERNELAGENT -+ BOOLEAN 

normalExecution(a) true 
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wai t ingForInput  : PROCESS -+ BOOLEAN 

wai t ingForInput(p  : PROCESS) (wai t ingSetForInput(p)  # 0 )  
/ /  i11(1i( <it cs i (  I,lw 111 oww is wxitirq< fo r  ~ U Y  r r 1 o w l g v  or l io i  

waitingForOutput : PROCESS -+ BOOLEAN 

waitingForOutput(p : PROCESS) (wai t ingSetForOutput(p)  # 0 )  
// i r ~ c J i m ~ m  if' 111c prows. i -  vcli t  ir~g l o r  ~ I Y  ~ ~ w s w g c  to iw +ill. o r   lot 

completedInOperations : PROCESS -+ INPUTDESCRIPTOR-set 

completedOutOperations : PROCESS + OUTPUTDESCRIPTOR-set 

subordinateAgentSet : PROCESS -+ SUBPROCESSAGENT-set 

// ~<Ct l l 1114  th(' 8f't Of ~ l l h / f l O ~ ~ %  ;Ig('Illi thitt Il;lT.(' /l('C'll ~ t ( ' i l t t>d  

/ /  arltl nork  untlc~ c o n t i 0 1  of tlii:: ptocws 

subordinateAgentSet(p : PROCESS) z 

{ a  I a E ACTIVITYAGENT A rootProcess(a) = p )  
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wai t i ngOnInpu t  : (SUBPROCESSAGENT x PROCESS) + BOOLEAN 

w a i t i n g O n I n p u t ( a ,  p)  

3d(d E wai t i ngSe tFor Inpu t (p )  A dscAgent (d)  = a )  

A Vdl(d' E completedInOperations(p) + dscAgent (d l )  # a )  
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sourceLinkSet : ACTIVITY -+ LINK-set 

// . h r  ac.r.i\-it!. t:;111 i)r t h e  so~irct! of :I set of links: r ~ t , t l i . ~ ~ ~  this S C ~  

targe t l inkse t  : ACTIVITY + LINK-set 

/ /  111 act i\.ity c:111 tw I Iw l a1  g ~ i  o f  :I s ~ 1  of' links: rt5t twrls I hi:: w t  
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B.2 Programs 

// .- -- - -- - - --- -- I r h o x  ~ I ; L I I , ~ ~ C I  - - - - 

InboxManagerProgram G 

if inboxSpace(se1f) # 0 then 

choose p E PROCESS, m E inboxSpace(self) ,  

descriptor E wait ingSetForInput(p)  with 

waitingOnIO(dscAgent(descriptor),p) A match(p ,  operation, m) 

AssignMessage(p, descriptor, m) 

if p = dummyProcess  then 

new n e w D u m m y  : PROCESS 

dummyProcess  := n e w D u m m y  

where 

operation - dscOperation(descriptor) 

AssignMessage(p : PROCESS, descriptor : INPUTDESCRIPTOR, m : MESSAGE) Z 

if initiateCorrelation(op) then 

InitiateCorrelation(p, descriptor, m) 

dscCompletedTime(descriptor) := now 

add descriptor to completedInOperations(p) 

remove m from inboxSpace(se1f) 

remove descriptor from wait ingSetForInput(p)  

where 

op dscOperation(descriptor), 

agent =I dscAgent(descriptor) 

/ /  ~ i i l h o x -  ~ h ~ r i l g ~ ~ r  - 

OutboxManagerProgram 

choose p E PROCESS, descriptor E wait ingSetForOutput(p)  

DeliverMessage(p, descriptor) 
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DeliverMessage(p : PROCESS, descriptor : OUTPUTDESCRIPTOR) r 

if variable(opr) = undef then 

add opaqueMessage(opr) to outboxSpace(se1f) 

if initiateCorrelation(opr) then 

InitiateCorrelation(p, descriptor, opaqueMessage(opr)) 

dscCompletedTime(descriptor) := now 

add descriptor to completedInOperations(p) 

remove descriptor from wait ingSetForOutput(p)  

where 

opr r dscOperation(descriptor) 

/ / L'l.()(.(\h< -- -- 

ProcessProgram 5 

case execMode(se1f) of 

emstarted + execMode(se1f) := emRunning 

emRunning + 
if normalExecution(self) then 

onsignal s : AGENT-COMPLETED 

execMode(se1f) := emActiuityCompleted 

otherwise 

ExecuteActivi ty (mainAct iv i ty  ( se l f ) )  

emActiuityCompleted -+ execMode(se1f) := emcompleted 

emcompleted + stop self 

, , / / I----.- licl~'t'1 i2lliW - - -- 

FinalizeActivity(activzty : ACTIVITY) 5 

execMode(se1f) := 

emdc t i v i t y  Completed 

Synchronization(activzty) 

FinalizeKernelAgent 

execMode(se1f) := emcompleted 

trigger s : AGENT-COMPLETED, parentAgent(se1f) 

Synchronization(baseActivity(self)) 
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GeneratelnputDescriptor(operation : INPUT-OPERATION) E 

extend INPUTDESCRIPTOR with descriptor 

SetInOutDescriptor(operation, descriptor) 

add descriptor to waitingSetForInput(rootProcess(se1f)) 

GenerateOutputDescriptor(operation : OUTPUT-OPERATION) -- 
extend OUTPUTDESCRIPTOR with descriptor 

SetlnOutDescriptor(operation, descriptor) 

add descriptor to waitingSetFor0utput(rootProcess(self)) 

SetlnOutDescriptor(operation : OUTPUT-OPERATION, dsc : INOUTDESCRIPTOR) -- 
dscAgent(dsc) := self 

dscOperation(dsc) := operation 

Synchronization(activit?/ : ACTIVITY) E 

forall l ink  E sourceLinkSet(activi ty)  

if linkTransitionCondition(1ink) then 

l inkStatus(1ink)  := lsPositive 

else 

l inkStatus(1ink)  := 1sNegative 

ExecuteActivity(activitiy : ACTIVITY) 

if V x ( x  E targetLinkSet(acti2rity) A ( l inkS ta tus (x )  # IsNotDefined)) then 

if activi ty JoinCondit ion(activi ty)  then 

ExecuteBasicActivity(activity) 

ExecuteStructuredActivity (activi ty)  
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ExecuteBasicActivity(activity : ACTIVITY) - 
if activity E RECEIVE then 

ExecuteReceive(activity) 

if activity E REPLY then 

ExecuteReply(activity) 

if activity E INVOKE then 

Executelnvoke(activity) 

if activity E WAIT then 

ExecuteWait(activity) 

if activity E EMPTY then 

ExecuteEm pty (activity) 

ExecuteStructuredActivity(activity : ACTIVITY) r 

if assignedAgent(activity) = undef then 

if activity E SEQUENCE then 

new s : SEQUENCEAGENT 

Initialize(s, activity) 

if activity E WHILE then 

new w : WHILEAGENT 

Initialize(w, activity) 

if activity E SWITCH then 

new sw : SWITCHAGENT 

Initialize(sw, activity) 

if activity E PICK then 

new p : PICKAGENT 

Initialize(p, activity) 

if activity E FLOW then 

new f : FLOWAGENT 

Initialize( f, activity) 

Initialize(agent : ACTIVITYAGENT, activity : ACTIVITY) 5 

assignedAgent(activity) := agent 

parentAgent(agent)  := self 

baseActivity(agent) := activity 
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/ /  I.'.ic.c.t,tr> 2 ,  pi\.{> - -  ----- -- 

ExecuteReceive(activity : RECEIVE) 5 

if lreceiveMode(se1f) A 1outstandingReceiveCon f lict(activity) then 

receiveMode(se1f) := true//  'Tl1tl runrimg ;igcut xitit - to ior<cLilv1 A 1 1 1 1 ~ d g ~  

GeneratelnputDescriptor(activity) 

if receiveMode(se1f) then 

choose descriptor E completedInOperations(se1f) 

with dscAgent(descriptor) = self A dscOperation(descriptor) = activity 

receiveMode(se1f) := false 

FinalizeActivity(activity) 

// --- - -  -- 1 :xcw t t' I$cplv - 

ExecuteReply(activity : REPLY)  = 
if requestResponseConditionSatis f ied(activty) then 

if ~replyMode(se1f)  then 

replyMode(self) := true 

GenerateOutputDescriptor(activity) 

if reply Mode(se1f) then 

choose descriptor E completedOutOperations(self) with 

dscAgent(descriptor) = self A dscOperation(descriptor) = activity 

replyMode :=false 

FinalizeActivity(activity) 

/ / it-I IPI c r c~rj?trsiRr.,sport~s~~f~"oriif i l~otiSe~ r s f ~ o t i (  ar t 1 ~ t l y )  t h ~  ls wirh 

/ /  Itrquir.c:~ncrits +2. #3.  ant1 $ 1 of t l i v  rcyuirt~rxicmt~ l ist of t l i c  r r ~ p l ~  aclii- IT. 
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/ /  Ky-,(.,,t(, I1,yc,k(, 

Executelnvoke(activity : INVOKE)  E 

if lreplyMode(se1f) A lrecevieMode(se1f) then / /  i ( I  ~t i t  i-, the. lir-,i q t t y  

replyMode(se1f) := true 

GenerateOutputDescriptor(activity) 

if replyMode(se1f) A -v-eceiveMode(self) then 

choose descriptor E completedOutOperations(self) 

with dscAgent(descriptor) = self A dscOperation(descriptor) = activity 

replyMode(se1f) := false 

if synchronous(activity) then 

/ /  'I 'br~ t.l~nni>ig ,igc\rlt wails lo r av ivc~  il Il1c.isagt: 

receiveMode(se1f) := true 

GeneratelnputDescriptor(activity) 

else 

FinalizeActivity(activity) 

if -veplyMode(self) A receiveMode(se1f) then 

choose descriptor E completedInOperations(se1f) 

with dscAgent(descriptor) = self A dscOperation(descriptor) = activity 

receiveMode(se1f) := false 

FinalizeActivity(activity) 

// - - - 1'; accuIti\\ail . , . - - -  - 

ExecuteWait(activity : WAIT) E 

if startTime(se1f) = undef then 

startTime(se1f) := now 

else 

if completionTime(activit.y, startTime) = now then 

startTime(se1f) := undef 

FinalizeActivity(activity) 
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/ /  ------ 1: ..itY~ul (X ttlmpt). - - -- - - 

ExecuteEmpty(activity : EMPTY) E 

FinalizeActivity(activity) 

,/,! -- 'jcc~~1''nc'c' .\g"rlt 

SequenceProgram = 
case execMode(se1f) of 

emstarted + 
currentActivit~ (self) := sequenceCounter(self) 

execMode(se1f) := emRunning 

emRunning -+ 
if normalExecution(se1f) then 

onsignal s : AGENT-COMPLETED 

execMode(se1f) := emActivityCompleted 

otherwise 

ExecuteActivity (currentActivity (self)) 

emActivityCompleted -t 

currentActivity (self) := sequenceCounter(self) 

if currentActivity (self) = undef then 

FinalizeKernelAgent 

else 

execMode(se1f) := emRunning 

emCompleted -+ stop self 
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/ /  --- tr.1 2,\c ,\gt't,t - ---- - - 

Whileprogram 

case execMode(se1f) of 

emstarted + 
if waCondition(baseActivity(se1f)) then 

execMode(se1f) := emRunnzng 

else 

FinalizeKernelAgent 

emRunning -+ 
if normalExecution(se1f) then 

onsignal s : AGENT-COMPLETED 

execMode(se1f) := emActivityCompleted 

otherwise 

ExecuteActivity(innerActivity (baseActivity(se1f))) 

emActivityCompleted -+ 
if ~aCondition(baseActivit~(se1f)) then 

execMode(se1f) := emRunning 

else 

FinalizeKernelAgent 

emcompleted + stop self 
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/ /  SLVi( c.ll .4,gc,xlt -- ----  -- 
I 

Switchprogram 

case execMode(se1f) of 

emstarted + 
let caseset  = swCaseSet(baseActivity(se1f)) in 

choose c E caseset  with 

swCaseCondition(c) = true A 

( V x ( x  E caseset  A swCaseCondition(x) = true) + 
(swprior i ty  ( c )  = swPriority ( x ) ) )  

// (%oo\ing tho tir5t [n-i\-ith higlit'd i ~ i o r ~ t ~ ]  I ~ n n t ~ l t  n l th  ,I t ~ c  c.olitiitiori 

/ /  C ~ O O W  i~ i t l \ ~ < > \ , ~  ~ \ i <  ( ~ > \ \ i ' ~ l .  I><Y AIM> \ytL h < i ~ t ?  A (kfi~i111 O ' ~ ' ~ K l 3 I V I S ~ ~  

f oundBranch(se1j) := swCaseActivity ( c )  

execMode(se1f) := emRunning 

emRunning + 
if normalExecution(self) then 

onsignal s : AGENT-COMPLETED 

execMode(se1f) := emActiuityCompleted 

otherwise 

ExecuteActivity( f oundaranch(se1f))  

emCompleted + stop self 



APPENDIX B. THE REVISED CORE 142 

/ /  --- 1 <>(.Ill - -- - -  'ick .I, 
Pickprogram E 

case execMode(se1 f )  of 

emstarted + 
new a : PICKALARMAGENT 

Initialize(a, activity(se1f)) 

new m : PICKNESSAGE-AGENT 

Initialize(m, activity (se l f ) )  

execMode(se1f) := emRunning 

emRunning + 
if normalExecution(self) then 

onsignal s : AGENT-COMPLETED 

execMode(se1f) := emActivityCompleted 

otherwise 

if chosenAct(se1f) = undef then 

choose dsc E occurredEvents(se1f) with MinTime(dsc )  

chosenAct(se1f) := onEventAct(edscEvent(dsc)) 

else 

ExecuteActivity(chosenAct(se1f))) 

emcompleted + stop self 

where 

MinTime(dsc )  = Vd(d E occurredEvents(se1f) + edscTime(dsc) < edscTime(d))  

/ / -- - -- Pick 3 I ~ ~ ~ n ~ ; t :  -tocqrt ----- - 
0 

PickMessageProgram E 

case execMode(se1f) of 

emstarted + PickMessageAgentStarted 

emRunning -+ PickMessageAgentRunning 

emActivityCompleted + 
FinalizePickMessageAgent 

execMode(se1f) := emCompleted 

emCompleted + stop self 
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PickMessageAgentStarted = 
if eventOccured(se1f) then 

execMode(self) := emCompleted 

else 

execMode(se1f) := emRunnzng 

forall event E onMessageEventSet(activity(se1f)) 

GeneratelnputDescriptor(event) 

/ /  crcnlci thr input clfwripior Sc ; \(id% it to the n-,lit IKIP, > c 3 1  

PickMessageAgentRunning 

if normalExecution(se1f) then 

if eventOccured(se1f) then 

execMode(self) := emActivityCompleted 

else 

choose d E completedMsgEvents 

GenerateEventDescriptor(dscOpr(d), dscTime(d)) 

// (r( ! i \ t  (Y 1 1 ~  ~ ~ r i t  dewriptor ck a h l s  i? to o(mi?w'E(*t ?if 5 

execMode(se1f) := emActivityCompleted 

where 

completedMsgEvcnts 

{d I d E completedInOprs(rootProcess(self)) 

A dscOpr(d) E onMessageEventSet(activity(se1f))) 

FinalizePickMessageAgent z 

forall dscr E waitingset with dscAgent(dscr) = self 

remove dscr from waitingset 

where 

waitingset -- v~aitingSetForInput(rootProcess(self)) 
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/ /  - 1' 
I i t  k . \ l n l r n  ,\or:~il r, - - - -  

PickAlarmProgram = 
case execMode(se1f) of 

emstarted + 
if eventOccured(se1f) then 

execMode(se1f) := emCompleted 

else 

startTime(se1f) := now 

execMode(se1f) := emRunning 

emRunning -+ PickAlarmAgentRunning 

ernActiuityCornpleted + execMode(se1f) := ernCompleted 

emCompleted stop self 

PickAlarmAgentRunning E 

if normalExecution(self) then 

if eventOccured(se1f) then 

ezecMode(se1f) := emActivityCompleted 

else 

forall e E triggeredillarms 

GenerateEventNotification(e, t r iggerTime(e ,  startTime(se1f)))  

/ /  v r w i  (IS t l ~  m C I I ~  d ~ w r i p ~  01 A- i~(lds it i (3 I , J ~  u r d P , ' w r ~ t . ~  

execMode(se1 f )  := emActivityCompleted 

where 

triggeredA1arm.s E 

{ e  1 e E onAlarmEventSet(activity(se1f)) 

A t r iggerTime(e ,  startTime(se1f))  5 now) 



APPENDIX B. TNE REVISED CORE 

/ /  -- 1'1 ow *lgcr1l -- - --- - 

FlowProgram r 

case execMode(self) of 

emstarted + 
execMode(se1f) := emRunnzng 

// ~ r c ~ l t  c:, t l ~ ~ t ' r i d \  ? T O  ( ~ 1 1 1  1 1 ~ 1  O ~ I I  17 ( > X C ( ' U ~ C  CTI( 1 0 ~ d  i l <  I I \  11 IOL\ 

forall activity E flowActivitySet(se1f) 

new fThread : FLOW-THREADAGENT 

Initialize(fThread, actzvity) 

add fThread to flowAgentSet(se1f) 

emRunning -+ 
if normalExecution(se1f) then 

onsignal s : AGENT-COMPLETED 

remove signalSource(s) from fZowAgentSet(se1f) 

if flowAgentSet(se1f) = 0 then 

// . i l l  1hm1~  <ire ( IOIW. [low { I \  1 7 )  i~ ( o t r i p l c i ~ \ ( l .  

execMode(se1f) := emActivityCompleted 

emCompleted + stop self 
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/ /  - -- -- .- --- - f'lotv '1 11r t ~ t i  tgttrrt - -- 

FlowThread Program 

case execMode(se1f) of 

emstarted + execMode(se1f) := emRunnzng 

emRunning + 
if normalExecution(self) then 

onsignal s : AGENT-COMPLETED 

execMode(se1f) := emActivityCompleted 

otherwise 

ExecuteActivity (baseActivity(se1f)) 

emcompleted -+ stop self 
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Data Handling Extension 

C . l  Initial Definitions 

domain EXPRESSION 

domain VALUE 

domain VARIABLE 

domain MESSAGE-TYPE 

domain XML-TYPE 

domain XMLELEMENT 

domain MESSAGE 

domain FROMELEMENT 

domain TO-ELEMENT 

domain ASSIGN 

domain SCOPE 

domain SCOPE-AGENT 

ACTIVITY =I ACTIVITYcore U SCOPE U ASSIGN 

ACTIVITYAGENT ACTIVITYAGENTcore U SCOPEAGENT 
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/ / - - --- --- - . - 'I'Yl'(,\ i'nluc,, ----- - - - - -  - 

varType : VARIABLE + MESSAGE-TYPE U XML-TYPE U XMLELEMENT 

varValue : VARIABLE x PROCESS -+ VALUE 

expValue : EXPRESSION x PROCESS -+ VALUE 

value : (EXPRESSION U VARIABLE) x PROCESS + VALUE 

varValue(x, p), if x E VARIABLE; 
value(x,p) z 

expValue(x,p), if x E EXPRESSION. 
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C.2 Programs 

/ /  - - - - -- .- - In hox l'r , i tn : Ass~gnMessage Ilxt m\ t lcd  - - - . -- - .- 

AssignMessage(p : PROCESS, 

descriptor : INPUTDESCRIPTOR, m : MESSAGE) 

AssignMessage,,,, C p ,  descriptor, m) 

Assign Messageda,, ( p ,  descriptor, m) 

AssignMessagedata(p : PROCESS, 

descriptor : INPUTDESCRIPTOR, m : MESSAGE) - 
if variable(dscOperation(descriptor)) # undef then 

AssignMessageVaIueToVariabIe(p, descriptor, m) 

AssignMessageValueToVariable(p : PROCESS, 

descriptor : INPUTDESCRIPTOR, m : MESSAGE) - 
value(variable(dscOperatian(descriptor)), p) := m 

/ I' ' - -- --  - Out h i  Z'r-ograrii . DelvierM~ssage t:ut c w t t c ~ l  - -  --  -- - 

DeliverMessageCp : PROCESS, descriptor : OUTPUTDESCRIPTOR) - 
DeliverMessage,,,, ( p ,  descriptor) 

DeliverMessagedata(p, descriptor) 

DeliverMessaged,,,(p : PROCESS, descriptor : OUTPUTDESCRIPTOR) = 
if variable(operation) # undef then // xwi;\hl<> ~h0111d t \ < ) i l i ~ \ i r l  i i  niowigv 

AssignValueToMessage(descriptor) 

where 

operation = dscOperation(descriptor) 

AssignValueToMessage(descriptor : OUTPUTDESCRIPTOR) = 
if correlationSatis f ied(descriptor) then 

add messageValue(dscVariableValue(descriptor)) to outboxSpace(se1 f) 
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/ / -.- - .-- SetlnOutDescriptor I+:xt(~ltlctl - - - - - -- - - - 

SetlnOutDescriptor(descriptor : INOUTDESCRIPTOR, 

operation : INOUT-OPERATION, agent : KERNELAGENT) E 

Set1 nOut Descriptorcore (descriptor, operation, agent)  

SetlnOutDescriptordata(descriptor, operation, agent) 

Se t lnO~tDescr ip tor~~(descr ip tor  : INOUTDESCRIPTOR, 

operation : INOUT-OPERATION, agent : KERNELAGENT) E 

if operation E IN-OPERATION A variable(operation) # undef then 

SetDescriptorValue(descriptor) 

where 

operation = dscOperation(descriptor) 

SetDescriptorValue(descriptor : INOUTDESCRIPTOR) 

dscVariableValue(descriptor) := 

value(variable(dscOperation(descriptor)), rootProcess(se1 f ) )  

/ /  ---- - lit(> *js$jlg - - -  - "- - -- 

ExecuteAssign(activity : ASSIGN) 5 

forall c in copyElements(aclivity) 

ExecuteCopy(f romSpec(c), toSpec(c)) 

FinalizeActivity(activity) 

/ / - ExecuteRasicActiv~ty. I:utc.;rtlctl - - 

ExecuteBasicActivity(activity : ACTIVITY) E 

ExecuteBasicActivity,,,, (activity) 

if actzvity E ASSIGN then 

ExecuteAssign (activity) 
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/ /  "; , (q'(' 'iR(',,t - -- - - , 
ScopeProgram E 

case execMode(se1f) of 

emstarted + 
execMode(se1f) := emRunnzng 

lnitializeLocalVariables(baseActzvzty(se1f)) 

emRunning + 
if normalExecution(self) then 

onsignal s : AGENT-COMPLETED 

execMode(se1f) := emActivityCompleted 

otherwise 

ExecuteActivity (innerActivity(baseActivity(se1f))) 

emCompleted + stop self 

lnitializeLocalVariables(scope : SCOPE) E 

forall v in scopeVariables(scope) 

variable Value(v, rootProcess(se1f)) := uninitialized Variable Value 

/ / --- , , Exec~~teStruct~~redAclivity: Cxtcwtic~l - - 

ExecuteStructuredActivity(activity) - 
ExecuteStructuredActivity,,,, (activity)  

if assignedAgent(activity) = undef then 

if activity E SCOPE then 

new s : SCOPEAGENT 

Initialize(s, activity) 
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Fault and Compensate Extension 

D. 1 Initial Definitions 

domain SCOPE 

domain COMPENSATE 

domain THROW 

ACTIVITY G ACTIVITYduta U SCOPE U COMPENSATE U THROW 

domain COMPENSATEAGENT 

domain COMPENSATIONHANDLERAGENT 

domain FAULTHANDLERAGENT 

ACTIVITYAGENT ACTIVITYAGENTdatU U COMPENSATE-AGENT 

HANDLERAGENT G 

COMPENSATIONHANDLERAGENT U FAULTHANDLERAGENT 

SUBPROCESSAGENT G SUBPROCESSAGENT,,,, U HANDLERAGENT 

EXECUTIONMODE = EXECUTION-MODE,,,, U 

{emExecutionFault, emFaulted, emFaultHandling, emExited) 
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domain FAULT 

domain SCOPENAME 

domain COMPENSATIONMODULE 

domain LOCAL-SNAPSHOT 

domain CATCH-CLAUSE 

domain AGENTJAULTED 

domain AGENTEXITED 

domain FORCED-TERMINATION 

SIGNAL = SIGNAL,,,, U 

AGENTJAULTED U AGENTEXITED U FORCED-TERMINATION 

// FIM~I  Ilxi c~iisior~ Signid 

faultExtensionSigna1: KERNELAGENT -+ BOOLEAN 

faultExtensionSigna1 

3s(s  E signalSet(rootProcess(se1f)) A signalSource(s) = self A 

s E (AGENT-EXITED u AGENTJAULTED u FORCED-TERMINATION) 

baseActivity,,,, ( a ) ,  if a E ACTIVITYAGENT; 
baseActivity(a) 2 

glo balscope, if a E PROCESS. 
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f aul tvar iable  : FAULT -+ VARIABLE 

fault : ( A G E N T M L T E D  U FORCED-TERMINATION) + FAULT 

faultThrown : KERNELAGENT -+ FAULT 

forcedTerminationAgent : KERNELAGENT + BOOLEAN 

forcedTerminationAgent(a) (faultThrown(a) = bpwsForcedTermination) 

handlerScope : FAULTHANDLERAGENT -+ SCOPE 

f aultHandlerCatchSet : SCOPE -+ CATCH-CLAUSE-set 

cmSet : (SCOPENAME) + COMPENSATIONMODULE-set 

cmscope : COMPENSATION-MODULE -+ SCOPE 

cmScopeName : COMPENSATIONMODULE -+ SCOPENAME 

cmScopeName(cm) := scopeName(cmScope(cm)) 



APPENDIX D. FAULT AND COMPENSATE EXTENSION 

compHandlerModule : COMPENSATIONHANDLER + COMPENSATIONXODULE 

cmExecuted : COMPENSATION-MODULE t BOOLEAN 

scopeCompletionTime : COMPENSATIONNODULE + TIME 

ZocalSnapshot : COMPENSATIONNODULE t LOCALSNAPSHOT 

snapshotVariableSet : LOCALSNAPSHOT -+ VARIABLE-set 

snapshotVariableValue : (LOCALSNAPSHOT x VARIABLE) + VALUE 

chosenCM : COMPENSATEAGENT + COMPENSATION-MODULE 

parentScopeName : KERNELAGENT + SCOPENAME 

parentScopeName(a) = 
cmScopeName(compHandlerModule(a)), if a E COMPENSATIONHANDLER; 

scopeName(baseActivity(parentAgent(a))), if parentAgent(a) E SCOPE-AGENT; 

undef, if a E PROCESS 

V parentAgent(a) E PROCESS; 

parentScopeName(parentAgent(a)) , otherwise. 
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/ / Nttn. l ) r \ r r w t l  X ~ i ~ l c t i o r ~  

activity : KERNELAGENT -+ ACTIVITY 

activity(a) 

I currentActivity(a), if a E SEQUENCEAGENT; 

chosenActivity(a) , if a E PICK-AGENT; 

foundBranch(a), if a E SWITCHAGENT; 

innerActivity(a) , if a E WHILEAGENT U SCOPEAGENT; 

catchActivzty(executingCatch(a)), if a E FAULTHANDLER; 

baseActzvity(a), otherwise. 
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D.2 Programs 

/; - -- -. - ' l ' t ~ o - c ~  1c.tivity -- - 

ExecuteThrow(activi ty  : THROW)  -- 
TransitionToExecutionFault(activityFault(activity)) 

Synchronization(activity) 

TransitionToExecutionFault(f ault  : FAULT) 

execMode(se1f) := emExecutionFault 

faultThrown(se1f) := faul t  

lnformFaultToParent(f aul t )  

InformFaultToParent(f  ault  : FAULT) = 
if self 4 (SCOPE-AGENT U PROCESS) then 

trigger s : AGENT-FAULTED, parentAgent(se1f) 

fault(s) :=fault 

/ / - -- - - SCtil,(' ----- - - - - -- - 

ScopeProgram z 

ScopeProgramdata 

case execMode(self) of 

emRunning + ScopeAgentRunningExtended 

emExited + stop self 

emFaulted + stop self 
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lnstallCompensationHandler E 

extend C O M P E N S A T I O N X O D U L E  with c m  

scopeComplet ionTime(cm) := now 

cmScope(cm)  := baseActivity(se1f) 

RegisterLocalSnapshot(cm, baseActivity(se1f)) 

add c m  to  cmSet(parentScopeName(se1f)) 

RegisterLocalSnapshot(cm : COMPENSATION-MODULE, scope : SCOPE)  E 

extend L O C A L S N A P S H O T  with snapshot 

forall v in scopeVariables(scope) 

snapshot Variable Value(snapshot ,  v )  := variable Value(v,  rootProcess(se1f)) 

add v to  snapshotVariableSet(snapshot) 

localSnapshot(cm) := snapshot 

ScopeAgentRunningExtended i 

if faultExtensionSignal(se1f) then 

onsignal s : A G E N T E X I T E D  

execMode(se1f) := emActivityCompleted 

otherwise 

onsignal s : A G E N T E A U L T E D  

execMode(se1f) := emExecutionFault 

faultThrown(se1f) := fault(s) 

otherwise 

onsignal s : FORCED-TERMINATION 

execMode(se1f) := emExecutionFault 

faultThrown(se1f) := fault(s) 

// 'f'lit: \ t *o l ) t '  itgc'~it ~ ~ c w n t i ~  t hcl 1 0 1  wtl  1 cwrtiri;~l i o i l  iigr~al 

/ /  i n  it 5 c w m t  i o i i - h 1 1 1 t  i x r o t k .  
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InitiateForcedTermination E 

forall child in childAgents(se1f) 

trigger s : FORCED-TERMINATION, child 

f aul t (s )  := bpwsForcedTermination 

CreateFaultHandler 

new handler : FAULTHANDLERAGENT 

parentAgent(hand1er) := self 

handlerScope(hand1er) := baseActiuity(self) 

faultThrown(hand1er) := faultThrown(self) 

ScopeAgentFaultHandling = 
onsignal s : AGENT-COMPLETED 

execMode(se1f) := emExited 

PassExitedToParent 

otherwise 

onsignal s : AGENTEAULTED 

f aultThrown(self)  := fault(s) 

PassFaultedToParent(fault(s)) 

otherwise 

onsignal s : FORCED-TERMINATION 

execMode(se1f) := emFaulted 

faultThrown(se1f) := fault(s) 

PassForcedTerminationToChildren(fault(s)) 

PassExitedToParent = 
trigger s f  : AGENTEXITED, parentAgent(se1f) 

PassFaultedToParent(f ault : FAULT) = 
trigger s' : AGENT_FAULTED,parentAgent(self) 

f aul t (s l )  := fault  

PassForcedTerminationToChildren( f ault : FAULT) = 
forall child in childAgents(se1f) 

trigger s' : FORCED-TERMINATION, child 

fault(sl) := fault  
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TerminateBasicActivity(agent : KERNELAGENT) E 

let activity = activity(agent) 

case activity of 

RECEIVE + 
RemoveDscrFromlnputWaitingSet(agent, activity) 

REPLY 4 

RemoveDscrFromOutputWaitingSet(agent, activity) 

INVOKE + 
RemoveDscrFromlnputWaitingSet(agent, activity) 

RemoveDscrFromOutputWaitingSet(agent, activity) 

RemoveDscrFromlnputWaitingSet(agent : KERNELAGENT, 

activity : ACTIVITY) s 

choose d in waitingSetForInput with 

dscAgent(d) = agent A dscOperation(d) = activity 

remove d from waitingSetForInput 

where 

waitingSetForInput = waitingSetForInput(rootProcess(agent)) 

RemoveDscrFromOutputWaitingSet(agent : KERNELAGENT, 

activity : ACTIVITY) = 
choose d in waitingSetForOutput with 

dscAgent(d) = agent A dscOperation(d) = activity 

remove d from waitingSetForOutput 

where 

waitingSetForOutput waitingSetForOutput(rootProcess(agent)) 
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/ / . r4 ',mlt . f-lnrlcllc~ - -- - - - 

FaultHandlerProgram 

case execMode(se1f) of 

emstarted -+ FaultHandlerStarted 

emRunning + 
FaultHandlerRunningNormal 

FaultHandlerRunningExtended 

emcompleted + stop self 

emFaulted + stop self 

ChooseMatchingCatchClause = 
choose c E faultHandlerCatchSet(handlerScope(se1f)) 

with matchingCatch(c, f aultThrown(se1f))  

executingCatch(se1f) := c 

FaultHandlerRunningNormal E 

if normalExecution(se1f) then 

onsignal s : AGENTXOMPLETED 

execMode(se1f) := emActivityCompleted 

otherwise 

if executingCatch(se1f) = undef then 

PickRethtowCatchClause 

else 

Executecatch Activity 
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ExecuteCatchActivity 

ExecuteActivity(catchActivity(executingCatch(self))) 

FaultHandlerRunningExtended = 
if faultExtensionSignal(self) then 

onsignal s : AGENTEXITED 

execMode(se1f) := emActivityCompleted 

otherwise 

onsignal s : AGENTJAULTED 

TransitionToExecutionFault(f a d t ( s ) )  

/ / - cO1lll)(>ll\Elt(> - .. - - 

CompensateProgram 5 

case execMode(self) of 

emstarted -+ ChooseNextCM 

emRunning + CompensateAgentRunning 

emActivityCompleted -+ ChooseNextCM 

emCompleted + stop self 

emExecutionFault -+ Wait ForTermination 

emFaulted + stop self 
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ChooseNextCM E 

if thereIsAtLeast0neModule then 

ChooseMatchingCompensationModule 

execMode(se1f) := emRunning 

else 

FinalizeKernelAgent 

ChooseMatchingCompensationModule = 
choose c m  in cMSet(parentScopeName(se1f)) with mathingCM(cm) 

chosenCM(se1f) := c m  

remove c m  from cmSet(parentScopeName(se1f)) 

matchingCM(cm) 

[targetScope(baseActivity(self)) = undef 

V cMScopeName(cm) = targetScope(baseActivity(self))] 

A topCMOrder(cm) 

CompensateAgentRunning = 
if normalExecution(self) then 

onsignal s : AGENT-COMPLETED 

execMode(se1f) := emActivityCompleted 

otherwise 

ExecuteChosenCompensationModule 

if faultExtensionSignal(self) then 

onsignal s : AGENTTAULTED 

TransitionToExecutionFault(fa2llt(s)) 

otherwise 

onsignal s : FORCED-TERMINATION 

faultThrown(se1f) := fault(s) 

PassForcedTerminationToChildren(fault(s)) 

execMode(se1f) := emExecutionFault 
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ExecuteChosenCompensationModule E 

let c m  = chosenCM(se1f) 

if ~cmExecu ted(cm)  then 

CreateCornpensationHandler(cm) 

CreateCompensationHandler(cm : COMPENSATION~/IODULE) = 
new cma : COMPENSATIONHANDLERAGENT 

Initialize(cma, compensationActivity(cmScope(cm))) 

cmExecuted(cm) := true 

compHandlerModule(cma) := c m  

/ / - - -- - ( ' O I I I J ) < ~ I ~ S ~ ~ P ~ O I I  f f n r ~ ( I l t . ~  - --- - - -  - - -- 

CompensationHandlerProgram z 

case execMode(se1f) of 

emstarted -+ 
RestoreLocalVariables 

execMode(self) := emRunnzng 

emRunning ?r 

if normalExecution(se1f) then 

onsignal s : AGENT-COMPLETED 

execMode(self) := emActivityCompleted 

otherwise 

ExecuteActivity (baseActivity(se1f)) 

HandleExceptionlnRunningMode 

emCompleted + stop self 

emExecutionFault -+ WaitForTerrnination 

emFaulted + stop self 
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RestoreLocalVariables -. 
let snapshot = local Snapshot(cornpensationModule(se2f) 

forall v in snapshotVariableSet(snapshot) 

vaZue(v, rootProcess(se1f)) := snapshot Variable Value(snapshot, v )  

emExecutionFault -+ ScopeAgentExecutionFault 

emExited -+ stop self 

emFaulted -+ stop self 

ProcessAgentRunningExtended E 

if faultExtensionSignal(self) then 

onsignal s : AGENTEXITED 

execMode(se1f) := emActivityCompleted 

otherwise 

onsignal s : AGENTTAULTED 

execMode(se1f) := emExecutionFault 

faultThrown(se1f) := fault(s) 

// So fortctl tcm~illation signd 
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/ / - - -- Sct j i~c~it ' r :  'igo1l1 ---- - 

SequenceProgram r 

SequenceProgram,,,, 

case execMode(se1f) of 

emRunning 4 HandleExeceptionslnRunningMode 

emExecutionFault + WaitForTermination 

emFaulted -+ stop self 

HandleExceptionslnRunningMode E 

if faultExtensionSignul(self) then 

onsignal s : AGENTEXITED 

execMode(se1f) := emActivityCompleted 

otherwise 

onsignal s : AGENTJAULTED 

TransitionToExecutionFauIt(f ault(s))  

otherwise 

onsignal s : FORCED-TERMINATION 

faultThrown(se1f) := fault(s) 

PassForcedTerminationToChildren(fault(s)) 

execMode(se1f) := emExecutionFault 
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WaitForTermination 5 

if forcedTerminationAgent(se1f) then 

execMode(se1f) := emFaulted 

TerminateBasicActivity(se1f) 

else 

onsignal s : FORCED-TERMINATION 

faultThrown(se1f) := fault(s) 

execMode(se1f) := emFaulted 

TerrninateBasicActivity(se1f) 

PassForcedTerminationToChildren(fault(s)) 

/ /  t\'i11lc . l i j y r1 t  

Whileprogram 

WhileProgramCoT, 

case execMode(se1f) of 

emRunning -+ HandleExeceptionslnRunningMode 

emExecutionFault  -+ Wait ForTermination 

emFaulted -+ stop self 

/ / ----- S x ~ i t  (:I1 . tgr~r~t -- 
Switchprogram E 

Swit~hProgram,~~, 

case execMode(se1f) of 

emRunning -+ HandleExeceptionslnRunningMode 

emExecutionFault  + WaitForTermination 

emFaulted -+ stop self 

/ /  - -- 1 ' i (k .igont - - 

Pickprogram 

PickProgramcoT, 

case execMode(se1f) of 

emRunning -+ HandleExeceptionslnRunningMode 

emExecutionFault  + WaitForTermination 

emFaulted -+ stop self 
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/ / {'it k llps.;;lg(~ .jgpn1 --- --- -- 

PickMessageProgram 

Pi~kMessagePrograrn~,,, 

case execMode(se1f) of 

emRunning + 
if faultExtensionSignal(se1f) then 

onsignal s : FORCED-TERMINATION 

faultThrown(self) := fault(s) 

execMode(se1f) := emExecutionFault  

emFaulted + stop self 

/ / - -- - -. -- X ' i c  k .\1;11 rrj -1gc5111 - -  - -  - - -  

PickAlarmProgram z 

Pi~kAlarrnProgram~,,, 

case execMode(se1f) of 

emRunning + 
if faultExtensionSignal(self) then 

onsignal s : FORCED-TERMINATION 

faultThrown(self) := fault(s) 

execMode(se1f) := emExecutionFault  

emFaulted + stop self 
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/ /  - -- . - --- 1.1 clcr]f . --- O\V A, 

FlowPrograrn E 

FlowPrograrn,,,, 

case execMode(se1f) of 

emRunning + HandleFlowExeceptionslnRunningMode 

emExecutionFault -+ WaitForTerrnination 

emFaulted -+ stop self 

HandleFlowExceptionslnRunningMode G 

if faultExtensionSignal(self) then 

onsignal s : AGENTXXITED 

UpdateFlowAgentSet(s) 

otherwise 

onsignal s : AGENTJAULTED 

TransitionToExecutionFauIt(f ault(s)) 

otherwise 

onsignal s : FORCED-TERMINATION 

faultThrown(se1f) := fault(s) 

PassForcedTerrninationToParent(fault(s)) 

execMode(se1f) := emExecutionFault 

UpdateFlowAgentSet(s : SIGNAL) 

remove sourceSignal(s) from flowAgentSet(se1f) 

/ /  Flo~v Tllrrtwl Agt:nt 

FlowThreadProgram 

case execMode(self) of 

emRunning + HandleExeceptionslnRunningMode 

emExecutionFault + WaitForTermination 

emFaulted -+ stop self 
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Signaling 

E.l Introduction 

domain AGENT-COMPLETED 

domain AGENTEAULTED 

domain AGENTXXITED 

d o m a i n  FAULTHANDLER-COMPLETED 

domain FAULTHANDLER-FAULTED 

domain FORCED-TERMINATION 

SIGNAL r 

AGENTXOMPLETED 

U AGENTEAULTED 

U AGENTEXITED 

U FAULTHANDLER-COMPLETED 

U FAULTHANDLER-FAULTED 

U FORCED-TERMINATION 

signalSource : SIGNAL + KERNELAGENT 

signalTarget : SIGNAL -+ KERNELAGENT 

signalset : PROCESS + SIGNAL-set 
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/ /  - -- . Sciv I i r y w v ~  cl\ -- - - 

trigger s : SIGNALDOMAIN, agent 

Rule 
- - - 

extend SIGNALDOMAIN with s 

signalSource(s) := self 

signalTarget(s) := agent 

add s to signalSet(rootProcess(se1f)) 

Rule 

onsignal s : SIGNALDOMAIN 

Rulel 

otherwise 

Rule2 
- - - 

if 3s(s  E szgnalSet(rootProcess(self)) A 

szgnalSource(s) = self A s E SIGNALDOMAIN) 

choose s E signalSet(rootProcess(self)) with 

s E SIGNALDOMAIN A szgnalSource(s) = self 

remove s from signalSet(rootProcess(se1f)) 

Rulel 

else 

Rulez 



Appendix F 

A Draft Proposal for Synchronized 

Request-Respond 

The reply activity in BPEL is different from other activities as it cannot be used indepen- 

dently. A reply activity should always follow a previous receive activity1. The LRM states 

that ". . . a reply activity m u s t  always be preceded by a receive activity for the  same  partner 

l ink,  portType and (request/response) operation, such that n o  reply has been sent  for that  

receive activity" [$11.4]. This means that all the P P 0 2  and correlation parameters of a reply 

activity are redundant3; i.e., they should have the same values as those of the corresponding 

receive activity. The reason for these limitations is that reply is introduced in BPEL to 

provide synchronous input/output (request/response) behaviour. 

Assigning a reply activity to its corresponding receive activity seems to be a challenge 

about which the WSBPEL TC has a number open issues [35]. 

The invoke activity in BPEL handles synchronous output/input operations. As a busi- 

ness process is not supposed to perform any task between a pair of synchronous output and 

input operations, one activity can handle this task. Furthermore, as all the PPO parame- 

ters for the output and input operations in a synchronous communication is identical, this 

activity identifies only one set of PPO parameters. Hence, there is no further complication 

'See Requirement #4 of the reply in Appendix A.2. 

2 ~ a r t n e r ~ i n k ,  PortType, and Operation 
3 LL The correlation between a request and the corresponding reply is based on the constraint that more 

than one outstanding synchronous request from a specific partner link for a particular portType, operation 
and correlation set(s) MUST NOT be outstanding simultaneously." [$11.4] 
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csynchreceive partnerLink="ncnamel' portType="qnameU operation="ncname" 
inp~tvar iable= '~ncname"? outputvariable="ncname"? 
createInstance="yes (no"? f aultName="qname"? 
standard-attributes> 

<in-std-elements>? 
standard-elements 

din-std-elements, 

<out-std-elements>? 
standard-element s 

</out-sd-elements> 

<correlations>? 
<correlation set="ncname" initiate="yes 1 no1'? 

pattern=I1in l out 1 out-inu/>+ 
</correlations> 

activity 

Spec F.l:  Format of a synchreceive activity 

regarding the assignment of the input and output operations. 

Given the advantages of using an invoke actiivity for synchronous output/input opera- 

tions, we propose here a new activity to be defined for synchronous receivelreply as described 

in Spec F.1. The behaviour of this activity is exactly equivalent to the behaviour of a se- 

quence starting with a receive and ending with a synchronous reply, performing the main 

activity of synchreceive in between. To be more precise, the synchreceive activity presented 

in Spec F.2 is equivalent to the sequence activity presented in Spec F.3. 

In addition, to further elaborate the semantics of synchreceive, we address the following 

issues: 

1. standard-attributes are divided into two sets, one for the receive part, and the other 

for the reply part; 
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csynchreceive partnerLink="pllll portType="ptln operation="opl" 
inputvariable="vi" outputvariable="vo" 
createInstance="civaluel~ f aultName="fnI1 
f a~ltvariable="fv~~ 
standard-attributes> 

ccorrelat ions> 
(correlation ~et='~csetl" initiate="yesll 

pattern="inl'/> 
(correlation ~et="cset2~' initiate="noM 

pattern="out"/> 
<correlation ~et="cset3~' initiate="noU 

pattern="in-out 'I/> 
</correlations> 
activity 

</synchreceive> 

Spec F.2: An example of using the synchreceive activity 

2. a new variable parameter faultVariable is also introduced to enable sending a fault 

reply. When a synchreceive activity finishes executing its main activity, the decision 

on sending a fault or a normal message will be made based on the values of this 

variable. If the variable is not undefined, it indicates that a fault should be sent out 

as the reply. 
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<sequence> 
<receive partnerLink="pll" portType="pt 1" operation="opln 

variable="vol' createInstance="~ivalue~~ 
st andard-attribut es> 

<correlations> 
<correlation set="csetltl initiate=I1yes"> 
<correlation set="cset3" initiate="no"> 

</correlations> 
</receive> 

activity 

<reply partnerLink="plll' portType="pt 1" operat ion=" opl" 
variable="vi" faultName="fnl' faultvariable="fv" 
standard-attributes> 

<correlations> 
<correlation set="cset2" initiate="not'> 
<correlation set="cset3' initiate="noU> 

</correlations> 
</reply> 

</sequence> 

Spec F.3: The sequence activity equivalent to the synchreceive example 
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