
SCALABLE USER INTERFACES FOR THE WEB

Arman Danesh
B.A., University of Toronto, 1989

M.S., Boston University, 199 1

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the School
of

Computing Science

O Arman Danesh, 2004

SIMON FRASER UNIVERSITY

September 2004

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPRO VAL

Name:

Degree:

Title of Thesis:

Arman Danesh

Master of Science (Computing Science)

Scalable User Interfaces for the Web

Examining Committee:

Chair: Dr. Jiangchuan Liu
Professor of Computing Science

Dr. Stella Atkins
Senior Supervisor
Professor of Computing Science

Dr. Kori Inkpen
Supervisor
Associate Professor of Computer Science
Dalhousie University

Dr. Eric Schenk
Supervisor
Electronic Arts

Dr. Robert D. Cameron
Examiner
Professor of Computing Science

Date DefendedIApproved: 8, ~ O O ~ L /

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work,
has granted to Simon Fraser University the right to lend this thesis,
project or extended essay to users of the Simon Fraser University Library,
and to make partial or single copies only for such users or in response to
a request from the library of any other university, or other educational
institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to
keep or make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of
this work for scholarly purposes may be granted by either the author or
the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain
shall not be allowed without the author's written permission.

Permission for public performance, or limited permission for private
scholarly use, of any multimedia materials forming part of this work,
may have been granted by the author. This information may be found on
the separately catalogued multimedia material and in the signed Partial
Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and
signed by this author, may be found in the original bound copy of this
work, retained in the Simon Fraser University Archive.

W. A. C. Bennett Library
Simon Fraser University

Burnaby, BC, Canada

ABSTRACT

This thesis describes a new approach to developing and delivering user interfaces

for Web applications. This approach, termed Scalable User Interfaces (SUI), is designed

to allow a developer to create a single user interface definition for a Web application

which can then be consumed, rendered and used by any device on the network. These

devices can range from small displays such as mobile telephones to the full desktop-sized

monitor displays used by personal computers.

The goal of Scalable User Interfaces is to allow a single specification to be

deployed on all devices without the need for the developer to specify any device-specific

vocabularies, transformations, hinting or style sheets such as previous work in automated

rendering for mixed displays and work in platform-independent user interface

specification.

Scalable User Interfaces provides a Flash-based implementation which highlights

the utility of Flash as a tool for user interface design and research. Our work also

illustrates the application of recursive rendering in laying out forms for various-sized

displays.

ACKNOWLEDGEMENTS

I owe a debt of gratitude to my supervisory committee for their patience during

the long process of focussing my research and completing this thesis; Dr. Stella Atkins,

Dr. Kori Inkpen and Dr. Eric Schenk all willingly worked with me through changes of

topics until Scalable User Interfaces finally emerged. All my colleagues in the Edge Lab

at Simon Fraser University also have my thanks for their support and ideas throughout

my degree program. Finally, I thank my wife, Tahirih, for on-going support.

TABLE OF CONTENTS

* * Approval .. 11

... Abstract .. ill
Acknowledgements .. iv

Table of Contents .. v
. . List of Tables and Figures ... v11

Chapter One: The Web as Application Delivery Platform .. 1
1.1 The Architecture of Web Applications ... 3

1.1.1 Connecting Clients and Servers ... 3
1.1.2 Moving to Web Services ... 5

1.2 The Trend to Small Devices ... 9
1.3 Build Once and Deploy Everywhere with Flash ... 10

Chapter Two: The Dilemma of the User Interface ... 16
2.1 Dynamic HTML .. 18
2.2 Java .. 22
2.3 Flash .. 24
2.4 Scalable Vector Graphics ... 28
2.5 Adobe Forms ... 29
2.6 The Shift to Small Devices ... 30
2.7 Approaches to Application Delivery in a Fragmented Client Space 33

2.7.1 Choosing Selected Browsers ... 33
2.7.2 Implementing Multiple Versions ... 34

Chapter Three: Survey of Platform-Independent User Interfaces for Web
... Applications 37

3.1 User Interface Management Systems and Automatic Rendering 37
3.2 Using Markup to Specify User Interfaces ... 44

3.2.1 Using XML to Simplify Application Delivery to Multiple Devices 45
3.2.2 Providing User Interface-Specific Markup with UIML 47
3.2.3 The Mozilla Experience: Using XUL ... 4 9
3.2.4 XForms: A Proposed Standard for Web Forms .. 51
3.2.5 Other Markup Languages .. 52

3.3 Addressing the Problem of Small Screens .. 53
3.3.1 Automatic Transformation of Content ... 53
3.3.2 Displaying and Navigating Large Data Sets on Small Displays 59

Chapter Four: Scalable user interfaces ... 61
4.1 Flash .. 61

4.1.1. Component Architecture ... 62
4.1.2 Built-In XML Parsing ... 63
4.1.3 Cross-Platform Compatibility .. 64

4.1.4 Flash on the Server: Macromedia Flex ... 65
4.2 SUIML: Markup for SUI ... 67

4.2.1 The Tag Set ... 68
... 4.2.2 Required Attributes 73

4.2.3 Tag-specific Attributes .. 73
... 4.2.4 Managing SOAP Services Callbacks 75

4.2.5 Current Implementation ... 78
4.3 Transformation Techniques for SUI ... 78

4.3.1 Rendering Forms ... 79
... 4.3.2 Displaying Result Sets 81

.. 4.4 The SUI Rendering Engine API and Object Model 82
4.4.1 The Main Rendering Engine .. 83
4.4.2 Rendering Model API ... 85
4.4.3 Widget API ... 87
4.4.4 Modularity: Using Multiple Flash Movies ... 88
4.4.5 Flexibility and Configurability .. 90

4.5 Recursion ... 93
. . Chapter Five: Sample Apphcat~ons .. 96
.. 5.1 User Registration Form 96

... 5.2 Store Checkout Form 100

Chapter Six: Discussion .. 107
.. 6.1 Flash as a User Interface Framework 107

... 6.2 Simple vs . Intelligent Algorithms 108
... 6.2.1 Problems with Small Displays 109
... 6.2.2 Problems with Large Displays 110

.. 6.3 Client Performance 112
6.4 The Benefits and Drawbacks of Recursion ... 114

.. 6.5 Standardization and Consistency 117
.. 6.6 Implications for Developer and Designers 117

Chapter Seven: Conclusions and Future Work ... 119
7.1 Using Flash for Cross-Device Form Delivery ... 119

7.1.1 Implications for SVG and Other Platforms .. 120
... 7.2 Automated Form Rendering for Small Displays 120

............................ 7.3 Using Recursion and Simple Algorithms for Form Rendering 121
... 7.3.1 The Importance of Simple Algorithms 121

.. 7.3.2 The Relevance of Recursion 122
.. 7.4 Future Work 122

.. 7.4.1 Test Alternate Rendering Algorithms 122
... 7.4.2 Implement the Complete Widget Set 123

7.4.3 Improve Efficiency of Algorithms for Small, CPU-Limited Devices 123
.. 7.4.4 Conduct User Testing 124

References .. 125

Appendix 1 ... 135

LIST OF TABLES AND FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Figure 14

Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20a
Figure 20b
Figure 20c
Figure 20d

Figure 20e
Figure 2 1 a

Figure 21b

Figure 2 1 c

Figure 2 1 d

............................ Multi-tiered architecture of modern Web applications 4
Typical Web Services Environment ... 8
The three layers of the SUI Architecture .. 11
Developing individual HTML files for each client 36
Typical UIMS Architectures .. 40
Transforming XML with XSLT for each client 46

.................. Using UIML to build platform-independent user interfaces 48
Flash MX 2004's User Interface Components 63
A simple Flash movie containing a form on a handheld device 64
A simple Flash movie containing a form on Linux 65
Container-level elements in SUI ... 70
Widget-level elements in SUI ... 72
The stock application before and after the user enters data and
clicks the button ... 77
The same form using the regular. card and minimal layout styles
(from left to right) .. 80
SUI's Modular Architecture ... 83
A form for controlling settings ... 92
A mixture of regular and minimal layout .. 95
More space leads to regular layout throughout 95
Less space leads to minimal layout throughout 95
A user-registration form in SUIML (640x480 pixels) 98
A user-registration form in SUIML (320x240 pixels) 98

........................... A user-registration form in SUIML (240x320 pixels) 99
A user-registration form in SUIML (1 50x1 50 pixels); here a card-
based layout is used and the e-mail address card is displayed in the

... center 99
A user-registration form in SUIML (90x90 pixels) 99
A Store Checkout form in SUIML (640x480 pixels); image is
scaled to fit on page . All fields fit relatively well and no scrolling
is required .. 104
A Store Checkout form in SUIML (320x240 pixels) . At this size. a
combination of widget styles appear in the different box elements 105
A Store Checkout form in SUIML (240x320 pixels) . All widgets
are rendered in the minimal style .. 105
A Store Checkout form in SUIML (150x150 pixels) . At this size.
minimal widgets are used but scrolling becomes necessary 106

vii

Figure 21e A Store Checkout form in SUIML (90x90 pixels) . At extremely
small sizes. there is no choice but to use minimal widgets 106

Figure 22 The store checkout form on a 90 x 90 pixel display 109
Figure 23 The shopping cart form on a large 1024 x 768 pixel display

(rotated 90 degrees and scaled to 75% of actual size to fit page) 111
Figure 24 The store checkout form at 320 x 240 pixels 115
Figure 25 Operation of a minimal text widget .. 116

.. Table 1 Performance results for test applications 113

...
Vll l

CHAPTER ONE:
THE WEB AS APPLICATION DELIVERY PLATFORM

As originally conceived by Tim Berners-Lee at CERN (Conseil Europden pour la

Recherche Nucldaire) in the late 1980s and early 1990s, the World Wide Web was

intended to be a network of linked, static hypertext documents to provide a more

effective way for users at CERN to navigate complex sets of documents and information

[14] [121].

By the mid-to-late 1990s, the Web had evolved beyond this concept to include

increasing amounts of dynamic content as well as interactivity, generally provided

through the use of CGI-BIN programming in Perl or C. By this time, researchers were

noticing that the Web had applications beyond hypertext document linking into the areas

of database interaction, even providing a platform for the delivery of applications to

users. Aslam [8], for instance, noted in 1998 that one of the prominent uses of the Web at

that time was for querying databases and in 2000, Labrinidis and Roussopoulos, in a

study of CGI-BIN and modqerl programming [57] noted that the Web is in a trend

towards data applications and that dynamic content had become the common

denominator of most content delivery on the World Wide Web.

Recent years have seen the entrenchment of dynamic content on the Web with

most major Web properties being driven by dynamic content through Web applications

written in server-side application development languages such as Perl, PHP, ColdFusion,

Java and ASP. In 2000, for example, it was estimated that more than one million Web

sites were driven by PHP alone [41]. Even where sites are strictly concerned with

delivering content, this content is now typically managed through content management

systems which store content in databases and provide simple tools for content developers

to create, edit and manage the content which eventually is delivered to users dynamically

from the database. Content management systems separate site structure, content and

presentatioddesign into independent, separately managed layers and provide mechanisms

for version control, pre-publication review and sign-off and more; to do this requires

dynamic, data-driven tools rather than simple text-file editors used in manual HTML

production [36] [21]. According to a study by the META Group, in 2002,60 per cent of

Global 2000 organizations owned Web content management systems with the number set

to reach 95 per cent by 2004 [28].

In addition, as the World Wide Web has moved from static content to database

queries to full-blown interactive applications, a parallel development has been the

emergence of the Intranet concept in the mid 1990s and later [40]. In this paradigm,

Internet technology such as HTTP and HTML are used within organizations to provide

cross-department information sharing and provide easy delivery of corporate applications

to users through Web technology [I 1 11.

In fact, the trend towards application delivery through the Web is so striking,

several researchers have argued that the trend to dynamic content on the World Wide

Web which emerged in the second half of the 1990s will ensure that the Web will emerge

as the dominant platform for all application delivery [94] [89] [60]. As early as 1996,

Rice et al. [94] noted that the Web would likely become the future platform for

application delivery to users. They argue that the Web provides the benefit of decreased

costs for distribution of software releases and upgrades as well as providing for

portability across multiple platforms.

More recently, Rees [89] noted that computing was moving towards the use of the

Web as the only user interface delivery platform and Lok et al. [60] pointed out that in

modern computing, the personal computer is largely used as a terminal for running a

client Web browser.

1.1 The Architecture of Web Applications

Currently, the Web client (typically an HTML browser) is used for delivery of the

user interface. The HTML browser conducts transactions via HTTP with a Web server

responsible for receiving and directing requests from multiple browsers. Requests are

routed to an application server where the logic for the application exists and the

application server processes these request against back-end data sources which store the

data (typically databases) [3 11. The result is a multi-tiered architecture for application

delivery shown in Figure 1.

Typically, in a public Web application the developer has control of the technology

deployed in the bottom three tiers but has no guarantees about the nature of the client

software used to access the application. This means the developer needs to make

decisions regarding the clients which will be supported by the application and account for

these clients in the HTML-based user interface sent to the client.

1.1.1 Connecting Clients and Servers

In practical terms, the client of these applications typically provides only two

mechanisms for interacting with the back-end server layers:

Links to request new documents or application pages from the server (the

HTTP GET operation).

Forms to submit data to the server for processing (the HTTP POST

operation).

Until recently, even the most sophisticated Web applications which provide robust,

user-friendly graphical user interface-style environments for users can still be distilled

down to these two types of interactions with the server. If the design of the user interface is

stripped away, the application will remain functional although it may not be terribly usable;

the user can still, in principle, achieve the same results as a fully-designed application.

Figure 1 Multi-tiered architecture of modern Web applications

CLIENT

RESPONSIBLE FOR: USER INTERFACE RENDERING

-

t
CONNECTION I HTP/ 1 y:

REQUEST VIA H T P

WEB SERVER

RESPONSIBLE FOR: REQUEST HANDLING AND
ROUTING

APPLICATION SERVER

RESPONSIBLE FOR: REQUEST PROCESSING I
API

REQUEST

SOURCE LJ

7
I I

CONNECTION
VIA API

HTML
PAGE

1.1.2 Moving to Web Services

More recently, the interactions between the client and server have begun to

change with the advent of XML-based Web services. The concept of XML-based Web

services became a hot topic of discussion and development during 2002 as numerous

Web application platforms, such as Macromedia ColdFusion MX [63] and Microsoft's

.NET framework [75], began to offer integrated support for Web services.

The concept behind Web services is that instead of simply offering Web pages to

client browsers delivered in HTML, Web application servers could also be used to expose

functionality to remote invocation using Internet standards such as HTTP and XML to

facilitate the transaction. Essentially, according to the Web Services Architecture

working draft [26] maintained by the World Wide Web Consortium, Web services are a

software system identified and accessed through a uniform resource indicator (similar to

a URL) which exposes public interfaces and describes those interfaces with XML. The

definitions of these interfaces can be discovered by other systems and interaction with the

service is conducted using XML messages carried over Internet protocols.

In this model, for instance, a news organization which syndicates its headlines can

allow other Web sites to invoke methods on their Web server which return XML-coded

data containing the headlines and these other Web sites can process the data and then

render as needed. Web services have been adopted in business-to-business environments

where business partners can provide access to functionality from their internal systems

through the Internet to remote business partners without being concerned about the

compatibility between the system providing the service or the system consuming the

service; in theory, with XML-based, standards-based Web services, the exact nature of

the two systems involved in the transaction is irrelevant.

In addition, Web services are now being offered by many public Web sites.

Amazon.com, for instance, offers Web services which allow other Web sites to search

and display products from the Amazon.com web site directly in their sites and allow their

visitors to add those items to an Amazon.com shopping cart [6]. Another interesting

example is the DNA Databank of Japan which allows a variety of queries to be

performed against its databases through Web services [34]. In addition, several on-line

catalogues of public Web services have emerged; one prominent catalogue is XMethods

[125]. XMethods currently lists more than 300 publicly accessible Web services

including the Amazon.com and DNA Databank of Japan services; this list doesn't include

internal Web services used within a corporation or only used between partner

organizations.

In practical terms, modern Web services are offered using two XML-based

languages:

SOAP (Simple Object Access Protocol): SOAP is a communication

protocol for sending messages between the client and server, typically

over HTTP. Based on simple XML, it is the primary protocol used for

carrying transactions between clients and servers offering Web services

[90]. In many ways, SOAP is similar to RPC (Remote Procedure Calls)

which is used for objects such as DCOM or CORBA to communicate over

the network or Java-based technologies such as RMI. However, many

other options for remote method invocation suffer from cross-platform

compatibility problems, can suffer security problems and are not effective

in the context of the public Internet where firewalls and proxy servers can

block such traffic. SOAP over HTTP bypasses many of these limitations

providing cross-platform compatibility and bypassing firewall restrictions

which would otherwise make offering remote services on the Internet a

risky proposition.

WSDL (Web Services Description Language): WSDL is an XML-based

language used to describe the functionality of a Web service [9 11.

Publishers of Web services will also offer a WSDL description of the

service, which details the location of the service and the methods the

service exposes, including the necessary parameters which must be passed

to the service and the type of results returned. It is WSDL that allows any

system capable of consuming SOAP Web services to locate, decipher, and

invoke methods from Web services running on any SOAP-capable server.

An important aspect of the Web services paradigm is that it moves Web

application development into a more structured model where application logic is

implemented in a Web service separately from the code which generates the HTML, or

user interface, for the actual front-end of an application.

In this model, it is possible for many different Web front ends to exist which all

use a single Web service which strictly implements application and data logic. This

architecture is illustrated in Figure 2.

Numerous Web server application platforms available today can be used to

develop and deploy SOAPIWSDL-based Web services, including:

Macromedia ColdFusion MX [63]

Microsoft .NET [75]

Apache Axis [7]

BEA WebLogic [12]

Oracle Application Server [83]

WebMethods Application Server [I171

Macromedia JRun [64]

Figure 2 Typical Web Services Environment

CLIENT

(TYPICALLY A WEB BROWSEV

Client requests a
page in an
application I Page is composed

and returned to the
client

WEB APPLIOITICN

(IMPLEMENTS USER INTEFACE, TYPICAILY IN HTML) I
Application server

invokes one or more
methods in one or

moreweb service . Web servie
method@) return
results to application
server

Web service make
necessary queries
against back-end

data 1 Data is returned to
theWeb servie

DATA SOURCE

(SUCH AS WTABASEq

1.2 The Trend to Small Devices

The rapid growth of the World Wide Web has also resulted in a fragmentation of

the client device space. Specifically, small, portable devices in the form of mobile

telephones and personal digital assistants now have capabilities to access the Internet.

Even a brief review of the mobile phone and personal digital assistant spaces shows that

Internet access is becoming a key selling point with leading PDAs offering Internet

browsing capabilities [45] [84] as do leading mobile phones [73] [96].

In fact, there is a growing consensus in the academic and industrial communities

that the future of the Internet will be dominated by a broader diversity of client devices

and that small devices will play a prominent role in this new Internet geography.

According to Cerf [25], writing in 2001, Internet growth trends will likely lead to at least

one billion interacting devices on the Internet by 2006 and most of this new growth will

occur as the result of a notable increase in low-cost Internet devices in several categories:

1. Appliances (which arguably includes future personal digital assistants)

2. Sensors

3. Actuators

4. Communication devices (which includes mobile phones)

Similarly, Samulowitz et al. [98] suggest in their work on wireless and mobile

Internet access that future environments are inevitably set to move towards mobile and

wireless devices playing a more prominent role and Allaire [5] suggests that today's mix

of new devices with new client technologies and Web services lies at the heart of a

paradigm shift for Internet applications. Schilit et al. [loo] also note that future evolution

of the Internet will include a shift towards smaller devices.

These predictions are more than mere speculation. Evidence from Japan, which

often leads the curve when it comes to adoption of new applications of technology, shows

that Internet access through mobile phones has recently emerged as the most popular

form of Internet access there [106].

1.3 Build Once and Deploy Everywhere with Flash

Scalable User Interfaces for the Web will attempt to address several issues which

emerge in a review of the state of current Web applications and several of the lessons

learned in work on user interface management system (UIMS) environments and in

rendering Web content to small displays:

Richness of the widget set available: ideally, Web applications should

have at their disposal rich widget sets.

Fragmentation of the client space: ideally, Web applications should be

deployed to a single runtime environment that is consistent across devices.

Consistency of interface elements: ideally, on a given device, a user's

experience of an interface should be consistent with experiences from

other Web applications.

Separation of interface and application logic: user interface specification

and back-end application logic should be kept cleanly separated.

Abstracting the interface definition: user interfaces for Web applications

should not be specified in a way tied to the physics of desktop displays

and then be transformed by an algorithm for display on small devices as

this leaves small devices as second-class citizens among Web application

client devices.

The goal is a write-once, deploy-everywhere development model for Web

applications that eliminates the problems of cross-browser compatibility including the

code management problem of developing multiple interfaces and the sacrifices in

delivering interfaces to devices lacking browser features, and removes physical

constraints of devices such as screen size and bandwidth limitations as a consideration in

development of user interfaces for applications.

Once implemented, the development and delivery model for an interface using

SUI should look like Figure 3. This architecture includes several important components:

Figure 3 The three layers of the SUI Architecture

RUNTIME CLIENT
(FLASH MOVIE)

I 1 I

WEB SERVICE RENDERING

(APPLICATION)
(MARKUP) COMPONENTS

WEB SERVER/

'.. APPLICATION SERVER
, ', ' . ..

Runtime client: The runtime engine delivers the rendered interface to the

user, handles user interaction and invokes Web service methods as needed.

The engine is implemented as a Flash application that is delivered across

the network and runs in the user's Flash Player. The application was

developed in Flash MX because it offers native XML support, integration

with Web services and a rich library of interface widgets complemented

by a component model for developing additional widgets

programmatically. Flash MX eliminates the browser-compatibility

problems of Dynamic HTML, does not suffer from the scalability

problems common with Java applets and provides a robust rapid

application development environment and object-oriented scripting

language for application development.

Rendering model: the rendering model is a Flash component which

implements a rendering or transformation algorithm for rendering a

platform-independent user interface on a target device accounting for

screen size and other device limitations and capabilities. The runtime

client loads the rendering model component before loading the user

interface specification. By separating the rendering model into a

component, it is possible to experiment with different models by building

alternate components without altering the runtime engine.

User interface speczjkation: the user interface specification consists of a

platform-independent definition of a Web data application's interface

written in an XML-based markup language. The runtime engine loads this

file after the rendering model component is loaded. The rendering model

component processes the user interface specification and the results are

used by the runtime engine to display and manage the user interface

experience.

Web service: The user interface application specification includes

specification of how the user interface interacts with methods in a back-

end Web service. The runtime engine can interact with any standard

SOAPIWSDL Web service implemented in Macromedia ColdFusion MX,

on a Java J2EE server or through Microsoft's .NET framework. For the

purposes of sample applications developed for testing SUI, the Web

services were implemented using ColdFusion MX which provides the

simplest environment for developing and deploying SOAP-based Web

services.

In many ways, this model reflects earlier external control UIMS implementations

in that the interface layer controls the application. In SUI, the runtime client, once it

renders the interface invokes Web service methods as subroutines in much the same way

as was done in external control UIMS environments of the past. However, unlike systems

of the past which were closed environments, SOAPIWSDL provides an open, standard

mechanism for implementing these subroutine-like applications so that the Web service

methods are equally invokable from Web applications deployed using other technologies

including Java, Visual Basic .NET, Visual C# and other popular Web application

development languages. This means that SUI-based applications are not tied to the SUI

environment, because the back-end which handles all the application and data

manipulation logic is implemented using a standard open technology.

Similarly, because an XML-based markup language is used for user interface

specification, if developers later want to migrate applications off of SUI back to

13

traditional Web delivery mechanism or towards future techniques, XSLT can be used to

transform the user interface specifications into any other standard markup for delivery to

non-SUI client browser software.

This project will target the specific domain of Web data applications. That is,

those applications which are common today for obtaining data from the user, processing

that data against a database and returning data to the user for display. Common

applications which fall into this domain are:

Shopping carts and checkout applications

Search Engines

Registration Forms

As most of these applications are moving towards SOAP and WSDL-based Web

services models, Scalable User Interfaces for the Web will implement a generic client

tool for deploying applications which communicate with Web services back end systems.

Scalable User Interfaces extend current work in several areas:

1. Delivery of Web applications to multiple clients: instead of taking an

automatic rendering approach to re-render desktop content for small

displays, Scalable User Interfaces dynamically renders a platform-

independent user interface definition on all displays.

2 . Markup language for user interfaces: SUI implements a derivative of the

XUL markup language for specifying the components of Web application

interfaces. Several key tags are adopted from the XML User Interface

Markup Language (XUL) from the Mozilla and then SUI-specific

attributes have been defined (XUL is discussed in Section 3.2.3). The

14

language developed provides mechanisms for developers to specify how

to respond to user actions and how to tie the interface to a backend Web

service.

3. Transformation techniques: although SUI does not transform desktop

content to small devices, transformation techniques need to be applied to

an interface definition in deciding how to render the interface.

CHAPTER TWO:
THE DILEMMA OF THE USER INTERFACE

Even though some would suggest that the evolution and adoption of the Web as

an application delivery platform argues that the Web browser is destined to be the

dominant user interface tool, the growth of the Web has also been plagued by a range of

challenges which limit its ability to be a truly ubiquitous platform for interactive

application design and delivery.

Historically, the largest problem affecting the Web's utility as an application

delivery platform has been the limited interactive capabilities and widget options of

HTML [97] [44] [60]. HTML-based Web applications have also lacked support for

event-based programming and cannot maintain state [60]. In addition, these applications

suffer from bandwidth and server resource inefficiencies in that each user interaction with

the application requires the complete delivery of a new page with a complete user

interface. This consumes bandwidth to redeliver the user interface and requires the server

to reconstruct the user interface for delivery to the user [44].

Most notably, the Web in its current form as a mix of browsers, plug-ins and

server software has limited the ability of developers to create robust, interactive

applications which function well across the breadth of the fragmented Web client space.

As Rees et al., point out, there is a need for a universal Web browser [89]. However, one

does not exist today.

As the Web has evolved, the limitations of plain HTML-based applications have

been addressed by the use of several technologies: Dynamic HTML, Java Applets, and

ActiveX controls [44]. These have helped to address the problem of limited widgets and,

to a limited degree, the ability to trap user events. However, none of these approaches are

universally favoured nor can they be considered robust and complete. ActiveX Controls

only run in Microsoft Internet Explorer on Windows systems; Dynamic HTML and Java

suffer from their own limitations which will be discussed later in Section 2.1.

The limitations in traditional HTML-based applications along with the lack of a

single, universally-accepted technology for the delivery of interactive applications create

barriers to the delivery of interactive applications through the Web, especially where the

goal is to provide a rich, interactive user experience.

Macromedia has put forward the notion of rich Internet applications [67] [66] [44]

[6 11. The motivation for rich Internet applications is that, historically, Web-based

applications have provided easy delivery of applications and user interfaces to the users

but have been limited in terms of user interactivity, content organization and design, and

flexible data manipulation capabilities [l] [4] [97]. Desktop software, by contrast excels

in these areas but is harder to deliver to users and keep up-to-date [I] [5]. Macromedia

argues that rich Internet applications will offer the best of both worlds: easy delivery to

the user while providing robust user interactivity, content organization and data

manipulation capabilities.

This notion of providing desktop-like functionality and interfaces using the Web

as the delivery mechanism has also been voiced by researchers. Lok et al. [60], for

instance noted that the move to network-centric computing and the browser as a terminal

means that it is necessary to develop new toolkits for the creation and delivery of user

interfaces on the Web. Rees [89], as well, acknowledges that the move to Web-based user

interfaces brings with it new HCI requirements and requires new research and training of

HCI practitioners in developing effective applications for Web delivery.

The Web as it is currently used provides several approaches to delivering rich

Internet applications:

Dynamic HTML: Dynamic HTML is the combination of HTML with an

object model accessible in the client through JavaScript which allows

programmatic manipulation of page elements in the client display.

Creating Dynamic HTML applications requires the use of HTML,

JavaScript and Cascading Style Sheets [59].

Java: Java applets can be embedded in Web pages to provide GUI-style

applications or application elements which are network enabled and can

work with back-end data on the Web server [107].

Flash: Historically, Flash has been viewed as a tool for delivering

multimedia content such as animations for embedding in Web pages. In

reality, though, Flash provides a platform for the creation of application

interfaces or interface widgets for use in larger HTML application

interfaces. At the current time, when Flash is adopted for application

delivery, it is typically limited to individual interface widgets such as

dynamic, interactive menus [62].

2.1 Dynamic HTML

While no hard statistics are available which indicate how many sites choose

Dynamic HTML instead of Java or Flash for interactive user interface development for

Web applications, a quick survey of major Web sites clearly indicates that Dynamic

18

HTML is a widely adopted approach to solving the problem of delivering rich Internet

applications to users.

For example, the home page of traveolcity.com provides an example of a rich

Internet application deployed with Dynamic HTML. The home page provides a small

form for searching for flights, hotel rooms, and car rentals. It provides numerous dynamic

features representative of the types of rich Internet applications currently found on the

Web, including:

A tabbed display which allows users to switch between panels in the client

using CSS and JavaScript.

Dynamic forms which adjust and change based on the user's input. For

instance, if a user chooses the "Flexible Dates" option when searching for

a flight, the form changes from providing specific departure and return

dates to just allowing users to select a range of months.

The largest advantage of Dynamic HTML is its relative simplicity when

compared with Java. Dynamic HTML is an amalgam of HTML, an object model for Web

pages and browsers, JavaScript and Cascading Style Sheets. When combined, these

standards offer the potential for the creation of complete, interactive user interfaces with

a simple development cycle. Building Dynamic HTML applications does not require

complex frameworks or the skills of object-oriented applications developers [5] .

A casual survey of major Web sites shows that the use of Dynamic HTML is the

most common approach to developing rich Internet applications; this has brought to the

fore a critical concern in the present Web environment: browser compatibility. The

support for the HTML, JavaScript, object model and style sheets underlying Dynamic

HTML varies widely across the range of Web browsers currently in use. This includes

internal variation between versions of a single browser as well as variations between

different browsers [114].

This has led to development processes which are not as simple as promised in

theory with Dynamic HTML. Typically, a Web application interface delivered with

Dynamic HTML has to account for multiple browsers and versions with subtle

differences between the implementations and support for Dynamic HTML standards.

In addition, these applications have to account for, and handle, cases where users

are using browsers which don't support Dynamic HTML or support only very small parts

of the Dynamic HTML standard. These browsers include older browsers which are still in

use in some organizations and some parts of the world as well as new browsers emerging

in the wireless space where mobile devices such as personal digital assistants and mobile

phones have the ability to access the Web but often use browsers which are limited in

their support for the complete HTML standard and Dynamic HTML.

The result of this mix of target clients is that a robust Web application which

should be universally accessible typically needs to account for the following cases:

1. Feature-limited HTML clients (such as HTML browsers in handheld -
devices)

2. HTML clients with limited or no Dynamic HTML support (such as older

Web browsers)

3. Dynamic HTML clients; these clients are then further broken down into

sub-cases by browser type and version, including:

a) Microsoft Internet Explorer (versions 4.x, 5.x, 6.x)

b) Netscape Navigator (versions 4.x, 6.x, 7.x)

c) Mozilla (version 1 .x)

d) Opera (version 6.x, 7.x)

Further fragmentation occurs by platform. For instance, Internet Explorer is

available in various versions for Windows, Mac OS and Mac OS X. Even for the same

numerical version of Internet Explorer, implementation and support for Dynamic HTML

varies. For instance, Dynamic HTML support between Internet Explorer 5 for Windows

and Internet Explorer 5 for Mac OS X is different. Similarly, Mozilla is available on

multiple platforms as is Opera.

For example, the Cascading Style Sheets component of Dynamic HTML exhibits

severe browser fragmentation. In the early development of Web browsers, such as the 4.x

versions of Netscape and Internet Explorer, vendors often opted to ignore established

standards for CSS in favour of custom extensions of CSS and non-standard interpretation

and rendering of CSS. More recently, all major browser vendors have moved in the

direction of compliant implementation of CSS specifications but no single browser yet

can claim a perfect, complete implementation of the current CSS specification. The result

is variation in which style attributes are supported and how they are supported across

different browsers. For instance, the white-space attribute which controls the behaviour

of white space in documents, is implemented in Internet Explorer 5 for the Macintosh but

not Internet Explorer 5 for Windows; similarly, the float attribute which allows for the

creation of floating layers, exhibits significant differences in implementation between the

modern versions of Netscape and Internet Explorer for Windows and is not even fully

implemented on Internet Explorer 5 for Windows or earlier versions.

In addition, this list doesn't include newer or less well-known browsers such as

Safari (Apple's attempt to introduce its own browser for Mac OS X) or Konqueror, the

default browser in the KDE desktop environment under Linux and various Unix versions.

This diversity of possible clients may mean that a developer has to manage more

than a dozen versions of the client implementation of a Web application if the goal is

universal application delivery through the Web.

2.2 Java

Java was originally conceived as a true cross-platform application development

language both for developing stand-alone desktop software as well as for developing

applets for embedding in Web applications [107]. Java is supported by major Web

browsers which can run embedded Java applets.

Java applets can provide robust user interfaces using Swing and other user

interface libraries available to Java programmers and, in theory, can run on any platform

identically.

However, Java suffered several drawbacks in its history which have stopped its

uptake as the platform of choice for delivering application interfaces through the Web:

Early implementations of the Java Virtual Machine, especially in

embedded use in Web browsers were slow and unstable; this meant it

wasn't practical to deploy Java applets in production Web applications.

Early anecdotal evidence includes experiences with Web browsers

crashing when loading pages containing Java applets, particularly on non-

Windows operating systems. Even today, anecdotal evidence points to

users complaining that Java applets suffer from poor performance.

The battle between Microsoft and Sun over Java led to a Microsoft

implementation of the Java Virtual Machine which wasn't 100%

compatible with the Java standard maintained by Sun. Through the courts,

Sun has successfully sought a partial resolution of the problem but there

are still numerous users out there with these non-standard Java Virtual

Machines on their systems. The end result of this is that, in theory, it is

possible to build a Java applet which cannot run on every system [109].

Java suffers from some scalability problems. While there are Java virtual

machines for even small footprint devices such as handheld computers and

mobile telephones, the Java Virtual Machines on these smaller devices are

often feature-limited and don't implement the complete Java specification.

This makes it hard to implement a robust, feature-rich, network-capable

Java-based Web application if it is intended to run on any device from

small handhelds to full-scale personal computers. In particular, Sun has

released the Java 2 Micro Edition (J2ME) specification designed for

handheld devices which is not a complete Java 2 Standard Edition (J2SE)

implementation. This means a truly portable application must target only

features common to J2SE and J2ME [lo81

Java suffers from complexity. To develop anything more than the most

simplistic application requires a sound understanding of object-oriented

programming and formal programming training. Dynamic HTML and

Flash, on the other hand, are sufficiently accessible that many non-

programmers master the skills needed to produce quite sophisticated

applications [5] .

2.3 Flash

Historically, Flash has been viewed strictly as an animation tool for presenting

fancy special effects and introductory pages, known as skip intros, on Web sites [71].

While the earliest versions of Flash were limited in this way, as the Flash environment

matured it became a robust tool for application development.

A quick review of the Macromedia Showcase [65], a section of the Macromedia

site highlighting innovative uses of Macromedia technology, provides numerous

examples of applications implemented in Flash, including:

1. Quakeroatmeal.com offers an interactive food planner for children to help

them learn proper nutrition [88].

2. Wizeguides.com offers an interactive map of Boston's transportation

system and attractions 11201.

3. Manchester Airport offers an application for viewing arrivals and

departures information [68].

As a technology, Flash includes several components:

4. The Flash development environment. This is a complete IDE for creating

Flash files, known as movies. This IDE provides a complete graphical

environment for creating user interfaces and application design as well as

a complete, object-oriented language known as Actionscript which is a

variant of ECMAScript (JavaScript is, likewise, a variant of ECMAScript

W1) [41.

5. The Flash binaryjle format. This file format is an open format in that the

specification is available and products other than the Flash development

24

environment from Macromedia are available for creating Flash movie

files. Most of these applications are designed to make it easier for non-

technical users to create attractive presentations and animations in Flash

movies rather than providing robust application development capabilities.

For example, Swish is a product for creating Flash-based animations

without any programming using an interface simpler to learn than the

standard Flash development environment [110].

6. The Flash player. The player is available freely from Macromedia and is

produced for almost every significant end-user computing platform

currently available. The Flash player is available on the following

platforms:

a) Microsoft Windows 95 through XP

b) Mac OS X

c) Mac OS 9

d) Linux

e) Pocket PC

g) Solaris

h) HP-UX

i) SGI Irix

j) Selected mobile phones

The major difference between the Flash player and implementations of the Java

Virtual Machine is that a given version of the Flash player will be functionally equivalent

across all platforms. For instance, Flash Player 7, once implemented on all platforms, will

behave identically when playing a specific Flash movie on all those platforms

(accounting for functional differences in the devices such as screen size and input

devices) [4]. By contrast, Java has multiple platforms such as J2SE and J2ME [107]; in

addition, different vendors implement the Java virtual machine and there have been cases

of implementations being incompatible with the standard as was the case with Microsoft

[log].

This means that Flash succeeds, in some ways, where Java has failed: to provide

an environment in which applications can be built which will genuinely run on any

device. The critical difference is that Java is an open standard; there are open

development tools for Java and while the specification is controlled by Sun the actual

development environment and virtual machine may be implemented by anyone. By

contrast, Flash is a Macromedia product and is tightly controlled by Macromedia. To

some, this is a limiting factor to Flash because it means that if Macromedia were to

choose to stop developing Flash as a product or Macromedia were to cease operation,

Flash could quickly lose its cachet as a popular Internet development tool.

Nonetheless, Flash enjoys a ubiquity currently lacking for almost any other

technology for developing and delivering the client side of Web applications. According

to figures published by Macromedia, the Flash player is installed on the systems of more

than 97% of Web users [44]. That means 97% of users with Web browsers on their

computers have the Flash player installed. This is more pervasive as a target platform for

application development than Dynamic HTML or Java.

While a few more users have Web browsers installed than the Flash player

installed, these browsers represent a diverse mix of versions and no one browser and

version enjoys the penetration of the Flash player [114]. Even Microsoft Internet

Explorer, which collectively enjoys in excess of 90% of the Web browser market, suffers

from notable version fragmentation.

A critical advantage to Flash is that upgrading the Flash player is typically a

simple, automated process which initiates the first time the user attempts to view a Web

site containing a Flash movie requiring a newer version of the player; the process is

generally non-intrusive and fast. Upgrading a Web browser on the other hand typically

requires large file downloads and a complete installation process and possibly a system

reboot. For example, to install the current version of Netscape for Mac OS X requires a

58 MB disk image while the current version of the Flash Player for the same platform is

1.1 MB.

For this reason, users may be less likely to upgrade a browser just to gain access

to a specific Web application than they would be to upgrade the Flash player to the latest

version; current browser use statistics suggest this is the case since as many as 20% of

Web users still use Internet Explorer 4.x or 5.x versions even though 6.x has been

available for more than a year. A March 2004 survey of Flash version use by

Macromedia shows that 93% of Flash users have at least Flash version 6 on their systems.

In the first year after its release, penetration exceeded 86% and 15 months after release

had exceeded 90%. Similar statistics are not yet available for the current version, version

7, as it has not yet been available for a full year.

In addition, newer versions of the Flash player are backwards compatible with

Flash movies built for earlier versions; with Dynamic HTML, there is no guarantee that

code developed for Internet Explorer 5 will behave and render in precisely the same

fashion when viewed with Internet Explorer 6.

Similarly, differences in versions of the Java virtual machine, compounded with

the fact some users do not have Java virtual machines installed on their system, means

that Java enjoys less pervasive use than the Flash player as well. For instance, Microsoft

no longer ships Java in Windows and leaves it up to the user to obtain Java from another

source if they require it [74].

Nonetheless, Flash suffers a problem of perception. For most Web developers and

users, Flash is still perceived as an animation tool and not as a tool for application

development.

2.4 Scalable Vector Graphics

Scalable Vector Graphics (SVG) is an emerging standard developed by the World

Wide Web Consortium (W3C). SVG is designed as a platform two-dimensional vector

graphics, using an XML-based file format and scripting built on ECMAScript with

support for animation [122].

In many ways, SVG promises similar features and capabilities as Flash:

SVG allows for implementations that run on resource-limited devices such

as mobile phones and handheld computers.

SVG provides for consistent visual rendering across platforms.

SVG's support for scripting allows for the creation of interactive user

interfaces and applications.

However, SVG does not presently appear to enjoy the ubiquity of Flash. Although

no statistics are available regarding the installed base of SVG viewers, several factors

suggest SVG is not yet ready to be used as a common application platform:

Informal consideration of a range of Web users shows that users with

Flash installed generally do not have an SVG viewer installed.

There is no single, dominant SVG viewer: instead there are a range of

experimental, development and production viewers for various platforms

[123].

Leading Web development and graphics tools do not all yet support SVG.

In the future, though, it does appear that SVG could grow into a platform for

deploying platform-independent, graphically-rich user interfaces and applications for the

Web but at the present time Flash is a more widely deployed, accepted platform for

achieving these sorts of applications.

2.5 Adobe Forms

The Adobe Form Server is Adobe's solution to the problem of delivery of

interactive forms to users on multiple platforms [126]. An enterprise-scale server

application, the Form Server allows form designers to create a single form definition

using an XML markup language. The server, in turn, can transform the form into a PDF-

based form for delivery to Acrobat Reader, into a full Dynamic HTML application for

delivery to a full-featured desktop Web browser, or into a limited HTML document for

feature-limited devices such as handheld devices. The Form Server handles data

collection and validation and supports back-end communication with Web services.

The strategy used by Form Server is to transform the single specification into

different output based on the feature set of the target client (Adobe PDF, Dynamic

HTML or plain HTML). This is a proprietary platform with the associated licensing fees

required to deploy the technology.

2.6 The Shift to Small Devices

The shift to small devices compounds the user interface and browser

compatibility problems just described.

In terms of user interfaces, developers now face additional limitations. Schilit et

al. [loo], outlines several key limitations of small devices:

Limited input capabilities. For instance, many personal digital assistants

use pen-based input (for example, the Palm Zire [84]) or newer thumb-

based keyboards (or example, the Handspring Treo [45] and the Research

In Motion Blackberry [93]). Mobile phones typically use numeric keypads

for all input.

Lower bandwidth. As an example, GPRS, a popular digital packet service

available for mobile phones, may only offer speeds comparable to a 56

kbps dial-up modem connection in some situations [22].

Slower processors. While the processors in some PDAs have rapidly

improved in performance in recent years (some processors now run in the

range of 400 MHz) [48], this is still far outpaced by the 2 GHz and faster

processors in new personal computers available today. Mobile phones tend

to lag even further behind [86].

Small memories. Many PDAs could provide memory in sizes similar to

average desktops but don't because memory in PDAs is typically flash

memory which is more expensive than conventional random-access

memory [30]. In addition, PDAs and mobile phones often lack any type of

storage alternative comparable to a computer's hard disk which provides

large amounts of additional storage which can be used for swap or

persistent storage of data outside active operating memory (some devices

offer support for memory cards such as Compact Flash but this is not yet

ubiquitous on handheld devices; most notably, mobile phones usually do

not offer this feature usually because of size and voltage requirements

although this is beginning to change with the introduction of smaller Flash

cards [102]).

Small displays: In terms of delivering effective application interfaces to

small mobile devices, this limitation is significant. According to Trevor et

al. [I121 screens are on a trend towards smaller sizes which necessitates

rethinking the delivery of Web content to handheld devices. While some

devices such as the larger Pocket PC PDA devices have screen resolutions

(as much 240 by 320 pixels) which may accommodate simple scaling of

Web content to fit [loo], in most cases screen sizes on mobile device have

only a fraction of that resolution. Schilit et al., provides an overview of

common handheld screen sizes on mobile phones and PDAs in 200 1 with

screen sizes ranging from as little as 96 by 32 pixels up to 160 by 160

pixels on Palm PDA devices. Pocket PC-based PDAs were not included in

this overview as the study was focused strictly on the smallest devices

with the Palm offering the largest display in that category.

This combination of limitations raises fundamental issues about how to deliver

Web application interfaces to small form factors since it is unlikely that the typical Web

page, as currently designed for desktop displays averaging 800 x 600 pixels, will render

easily on devices of less than 100 x 100 pixels.

In addition to the physical limitations of handheld devices, introducing these

mobile units into the client mix for Web applications further accentuates the browser-

compatibility issues described earlier in the context of traditional desktop operating

system Web browsers.

Typically, mobile devices do not provide support for HTML, or if they do, they

offer extremely limited support for HTML. Schilit et al. [loo], noted that Web browsers

for handheld devices, which do implement HTML for their browsers, only implement a

subset of HTML. In addition to HTML, many handheld devices offer browsers based on

other markup languages, including:

HDML (Handheld Device Markup Language) [2]

WML (Wireless Markup Language) [92] [2]: WML is a descendant of

HDML

CHTML (Compact HTML) [54]: CHTML is an older proposed subset of

HTML for phones, PDAs and other small mobile devices.

The modern mobile Internet space is largely dominated by WML with most

phones offering Internet access with integrated WML browsers.

The implication of this is that as mobile devices are increasingly viewed as valid

target clients for Web applications, developers must now not only account for variations

in support for HTML and Dynamic HTML but now must also produce versions of their

applications in WML for the mobile users.

This has serious consequences. Most notably, WML is even more limited than

HTML in its ability to specify and deliver sophisticated user interfaces of any sort [92].

2.7 Approaches to Application Delivery in a Fragmented Client Space

The result of this varied client technology is that developers have two main

choices for addressing browser compatibility in developing their applications:

1. Choose one or a select few browsers and restrict users to these clients. In a

closed corporate environment this is feasible but for applications targeted

at public consumption or for use by an unregulated user population, this

can severely restrict the user base for the application.

2. Make the application accessible to all potential users by creating multiple

variations of the underlying Dynamic HTML code driving the interface.

Typically, this may mean creating code variations for anywhere from a

handful to more than a dozen potential clients or developing a single

monolithic Dynamic HTML application which handles exception cases for

all these clients.

2.7.1 Choosing Selected Browsers

Some Web applications are designed to support selected browsers. Some sites and

applications on the Internet also explicitly indicate they only work with selected clients.

A classic example of this is Microsoft Outlook Web Access [37]; this application is a

33

Web front-end to a Microsoft Exchange server and allows users to access their folders on

the server via the Web in an interface that is considered comfortable for Outlook users.

This Web application requires the use of recent versions of Microsoft Internet Explorer.

In the public Internet space, sites may require a specific browser or a specific

operating system in order to work. This is not a significant problem in the typical Intranet

where an organization's users share a common computing environment. However, on the

Internet, with its diversity of client browsers, devices and operating systems, developers

seeking broad access to their applications cannot choose to exclude browsers [114].

2.7.2 Implementing Multiple Versions

Implementing multiple versions of an application interface to support the possible

range of client devices and software is a daunting task but one that is often adopted. Most

major Web sites take steps to ensure the availability of their content on multiple

browsers, and numerous Dynamic HTML libraries are available to assist developers in

their attempts to develop interactive applications that are functional on a wide range of

browsers [I051 [29].

However, the broader the range of browsers supported, the harder this task

becomes. Inevitably, it evolves to the point where distinct versions of the application's

user interface are implemented for each target browser or group of browsers in order to

account for the individual feature sets of the targets.

The end result, however, is a development challenge and code management

problem. Maintaining multiple versions of the user interface code is fraught with

problems including debugging challenges and the likelihood of increasing divergence in

the behaviour of the various versions of the interface as the application ages. This implies

an application design which looks like Figure 4.

Including handheld devices makes the problem significantly more difficult since

numerous researchers are indicating that the user interface and navigation paradigms for

small screen displays may have to be fundamentally different than on desktop computer

browsers. This would mean not only developing slight variations of an interface for

different HTML-based browsers but also developing fundamentally different user

interface paradigms for handheld devices.

For example, Trevor et al. [I121 posit that small screens mean that the Web

browsing strategy offered to users must be fundamentally different than it is on the

desktop. At the same time, numerous studies suggest that the way in which information is

presented must adopt new metaphors on small screen displays [72] [loo] [70] [23].

Figure 4 Developing individual HTML files for each client

H T W CLIENTA FILE FCFl 1- I
H T W FlLE FCFl

CLIENT B CLIENT B

CHAPTER THREE:
SURVEY OF PLATFORM-INDEPENDENT USER INTERFACES

FOR WEB APPLICATIONS

3.1 User Interface Management Systems and Automatic Rendering

Since the mid-1980s, developers and researchers have been seeking mechanisms

to simplify and automate the development of user interfaces and to generate multiple

interfaces for a single application [47]. This led to the emergence of the field of user

interface management systems (UIMS) which attempted to provide several advantages

over traditional manual development of user interfaces by application developers:

Decreased effort in constructing user interfaces [47]

Reduction in the programming skill threshold required to develop

interfaces [47]

Assurance of consistency across applications [47]

Separate application from its interface [I181

Easy implementation of multiple interfaces to a single application [47]

In many ways, developers of early UIMS platforms were trying to solve the same

problems current developers of Web applications are trying to solve. Web delivery of

applications is designed to provide several advantages which parallel the five advantages

of the UIMS concept stated above:

1. Declarative language such as HTML and WML used to specify Web

interfaces require less effort than procedural languages when specifying

interfaces [I].

Declarative languages are easier to master and use than imperative

languages traditionally used to develop user interfaces and, accordingly,

allow programmers with less skill to develop user interfaces.

HTML provides an assurance of consistency across applications (in other

words, the <SELECT> tag will render the same way for all Web

applications rendered in the same browser).

The current trend towards Web services provides for a clean separation of

presentation and application logic.

The clean separation of applications from their interfaces makes it easier

to deploy multiple interfaces. As discussed later in this document, the

current trend towards the use of XML on the Web allows for the easy

transformation of content into multiple forms using style sheet

transformations.

It is important to note the difference between UIMS approaches and user interface

toolkits. Toolkits provide a set of standard libraries which can be used to implement user

interfaces; by encapsulating the details of user interface widget implementation into

library methods, the developer can be assured of the consistency of behaviour within an

application and can avoid some of the complexities of user interface implementation.

Weicha et al. [118], outline the difference between UIMS systems and toolkits: toolkits

separate style of presentation from the application while UIMS platforms separate the

user interface from the application. The result is that toolkits make it difficult to transfer

an application to another development environment, cannot be used to state global

policies throughout an application, and cannot be used to make global changes to an

interface [87]. In addition, toolkits don't allow the creation of new interaction techniques

without programming and don't help designers decide when to use a specific type of user

interface element or interaction [118]. UIMS environments, on the other hand, allow the

development of multiple interfaces and can be used to assure consistency within and

between applications [118].

In generalized terms, the architecture of a UIMS is easy to understand. This

architecture consists of three main components illustrated in Figure 5 [47]:

1. A user interface: this provides the programmatic interface to the actual UI

experienced by the user. Effectively this is an API allowing the UIMS to

manipulate the user interface delivered to the user.

2. The UIMS Platform: this accesses runtime data and an interface definition

to tie together the user interface and the application interface.

3. An application interface: provides a programmatic interface to the

application logic. This is an API allowing the UIMS to interact with

application logic.

Essentially, the role of the UIMS is to bind together a user interface and an

application. The application exposes a set of standard methods (its interface) which the

UIMS can use; similarly, the UIMS creates and interacts with the UI itself through a set

of standard methods. In order to manage this interaction between the user interface layer

and the application logic layer, the UIMS relies on a specification of the interfaces, or

APIs, for the user interface layer and the application logic.

Figure 5 Typical UIMS Architectures

In practice, there are three types of UIMS implementations according to Hayes et

al. [47]: internal control UIMS architectures, external control architectures and mixed

control implementations.

Internal control architecture UIMS systems are built around the premise that the

application controls the operation. That is, the application, through the UIMS, generates

the interface. Many of the early UIMS systems of the mid- 1980s were of the internal

control variety 1471. While this is the most common form of UIMS [47], it presents a

dilemma in that some of the purported advantages of UIMS design are lost. In particular,

the application is tied into the interface in that the application code must invoke the

necessary objects in the UIMS to generate the interface. This means the application code

no longer stands on its own. At the same time, this integration of user interface logic into

the application logic makes it hard to use an internal control UIMS platform to deploy

40

multiple interfaces for the same application since it would require changes to the

application itself.

External control applications reverse the situation. In this model, the application is

treated as a set of subroutines which are invoked by the user interface. This provided a

true separation of the application from the user interface, one of the main advantages of

the UIMS model. This allows for easier implementation of multiple interfaces and

ensures that applications are truly atomic and do not fall into the trap of performing user

interface generation or management functions.

Of course, this external control approach has a drawback: interface definitions

must address all possible exchanges between the user and the application. This can

become problematic in a large, complex application.

The model of an external control UIMS is quite similar to today's model of Web

services-based Web applications where the Web service is viewed as the set of

subroutines which form the application interface and the user interface is viewed as the

HTML or Dynamic HTML generated by a Web application server invoking the service in

constructing a page. Then it is possible to think of a Web services model of Web

applications as a form of external control UIMS.

Mixed control models are an integration of internal and external control UIMS

architectures. In mixed control implementations, the user interface may invoke methods

in the application as subroutines while at the same time the application may directly

invoke user interface methods or objects.

Most of the research in the field of UIMS strategies is focused in the 1980s and

early 1990s and predates the emergence of the World Wide Web as a popular medium.

Some early commentators questioned the feasibility and desirability of the UIMS concept

of separating user interface design from application design. For example, in 1987, Neches

et al. [go], argued this separation strategy meant that it could limit artificial intelligence

approaches to interfaces. As designers and developers want to put intelligence in the

interface, it becomes desirable for the interface to have access to the specification of the

application but UIMS architectures, in general, separate the specification of interfaces

from the specification of applications. In addition, the interface will need knowledge of

the structure as well as the internal state of the application and not all UIMS

environments provide for this. They argue, ultimately, that intelligent interfaces require

that UIMSs improve the connection between interfaces and applications without

mitigating the benefits of UIMS approaches; the authors also acknowledge that this is no

small task.

Nonetheless, even with detractors pointing out that in some domains UIMS

systems may limit the ability of interface designers to achieve the designs they want,

numerous notable UIMS implementations were presented to the research community in

the late 1980s and early 1990s.

These implementations can share many different features:

A declarative language for speczjjing interfaces. This can take forms

based on programming languages (MIKE and Mickey [82]) to BNF

grammar representations [42] and Augmented Transition Networks [52].

Other UIMS implementations have adopted petri nets (GENIUS [53]).

Application data model-derived user interfaces. Many UIMS platforms

step away from a pure separation of user interface design and application

design choosing an approach which allows the user interface to largely be

derived from the underlying application semantics and data model.

Examples of this include MIKE and Mickey [82], Apogee [50], and User

Interface Design Generator (UIDE) [38]. These UIMS platforms take

different approaches to how much they automate.

Object-oriented approaches. Many UIMS systems adopted an object-

oriented approach including GROW [lo] and GENIUS [53]. GROW, for

instance, provided a hierarchical set of graphical objects with attributes

where the objects could be extended by the designer, thus providing reuse

and flexibility.

Automated user interface generation. Numerous UIMS platforms auto-

generate interfaces which are either used directly by the user or can then

be refined by the designer or developer. These include Mickey [82] which

generates Macintosh-like user interfaces from a Pascal-like specification,

Cousin [47] which uses a value-slot mechanism to share data between the

application and user interface, ITS [5 11 which combines style rules with a

definition of dialog content to generate dialogue boxes, Chisel [I031

which uses hinting to help place dialog box elements, and UIDE [38]

combined with DON [56] which uses a specification and layout rules

together to generate dialogues in line with a set of visual design goals

stored in a knowledge base.

In the area of automatic generation of user interfaces, the approaches taken seems

to cover a spectrum. At one end of the spectrum are systems where user interfaces are

specified by the designer in detail (including widget selection) and generation only

43

involves layout of the widgets; at the other end are systems where user interfaces are

defined functionally by the designer and generation involves selection of user interface

widgets as well as layout of those widgets.

The experience of early UIMS systems which offered automatic generation and

rendering of interfaces was that they were feasible. While no system was automating the

complete design process, individual UIMS systems automated parts of the process and,

according to de Baar et al. [32], writing in 1992, the evidence strongly suggested that

automatic generation of user interfaces was both feasible and desirable because it relieved

the designer of unnecessary work to focus on the design itself. They also noted that

automatic generation of user interfaces could help to ensure consistent application of

style rules.

This does not mean challenges are not present. Some particular challenges which

exist, include:

Losing control of the style of the interface. This problem was described by

Olsen in his work with MIKE.

Limiting user interfaces types. Some UIMS systems are only suited to one

type of interface such as command-style interactions or modeless

interfaces.

3.2 Using Markup to Specza User Interfaces

From its inception, the Web has evolved as an environment in which markup

languages are used to specify user interfaces. Although HTML was never intended as a

language for specifying user interfaces, but rather document structure [58], it quickly

evolved into a tool for creating user interfaces and today serves that purpose on the Web

as a component of the Dynamic HTML framework used by many sites to deliver

interactive user interfaces.

However, as cross-browser compatibility problems have emerged so have serious

productivity and code management concerns and researchers and industry have sought

alternate markup schemes to improve the development and delivery of Web applications.

3.2.1 Using XML to Simplify Application Delivery to Multiple Devices

An increasing trend on the Internet which aims to address the code management

problem is the use of XML-coded documents as the source for pages, documents or

applications [9]. In this model, each document has a single core representation and then

XSLT style transformations are written to transform the document into the various target

HTML and WML formats needed for each client. In this case, the developer now has to

write multiple XSLT transformation definitions instead of multiple HTML and WML

documents. The XSLT language is suited to this purpose which makes the specification

of the transformations easier to develop and maintain than multiple source documents.

The result is an application design which looks like Figure 6.

Figure 6 Transforming XML with XSLT for each client

XSL FlLE FCR
CLIENT A CLIENT A

XSL FlLE FCR
b

-

XSL FlLE FCR

CLIENT B I
CLIENT C I

While this approach provides the advantage of only having to maintain a single

XML source file for each page, document or interface in an application, it still requires

maintaining multiple XSL files to account for each potential client browser; this has the

potential to grow unwieldy if the number of browsers is too large. If a developer must

maintain an application with three distinct interfaces targeted for 10 possible clients, the

following files have to be created and maintained:

3 XML files

1 XSLT file for each client: 10 files

Still, this is a more attractive solution than the previous approach without XML

and XSL in terms of manageability. However, it is not the prefect solution to the problem

in that it requires platform-specific XSL style sheet files.

In addition, considering the fact that the capabilities of clients to render rich

interfaces varies, it may be the case that suitable interface elements for the definitions in

an XML file may not be renderable in a useful way on all devices, regardless of the

XSLT transformation specified for the client. Consider, for example, a control for a

hierarchical tree; in a plain HTML browser there is no way to render this. In Flash,

however, this control is available. There is no possible XSL transformation for a plain

HTML browser to render this control even if it is called for in the source XML file.

3.2.2 Providing User Interface-Specific Markup with UIML

Other attempts to reduce this exponential growth in the number of files needed to

develop and maintain an application using HTMLIWML have also emerged. Most

notably, the User Interface Markup Language (UIML) is an attempt to provide a markup

language which allows for one language to be used to specify an application interface for

an application deployed in multiple programming languages, on multiple devices, using

multiple operating systems [I]. UIML is an XML-like meta-language which allows the

creation of vocabularies for specifying user interface elements for an application. UIML

serves as a generic language for defining vocabularies to allow the creation of interface

definitions for any type of environment [3] [I].

In the UIML model, individual rendering engines are built to handle rendering of

the UIML source code into a form suitable for a target client. Renderers exist for HTML,

WML, Java and other environments.

In theory, UIML not only reduces the number of files in much the same way as

XMLKSLT but also provides a markup language optimized to the user interface

specification task. An application design with UIML looks like Figure 7.

Figure 7 Using UIML to build platform-independent user interfaces

)-=: 1- 1- CLIENT A I
VOCABULARY FOR RENDERER FOR

UIML FILE

VOCABULARY FOR RENDERER FOR

-

In addition, UIML and XML can be used together; in this case, document data is

specified in XML and a single XSLT file is used to transform the XML into a UIML file

which in turn is rendered accordingly for each device.

Still, there are limitations with current uses of UIML, including:

The dilemma of how to handle clients of varying capability remains: it is

possible to specify a user interface which must be crippled to function on

some devices.

There is a degree of platform dependence both in terms of the creation of

vocabularies and in terms of the availability of rendering engines.

It may become necessary to build new rendering engines as the diversity

of target clients increases.

UIML is not a widely supported technology outside the research community

which limits its utility for creating real applications for delivery to users on the Internet

today.

A key aspect of UIML, its developers contend, is that it is not tied to a specific

metaphor, which makes it ideally suited to the process of building multiple interfaces for

an application that must be deployed in different user interface metaphors (desktop,

mobile phone, voice, etc.) [I] . This differs from other attempts at creating markup

languages for user interface specification which are platform and metaphor specific. The

following sections discuss some of these markup languages.

3.2.3 The Mozilla Experience: Using XUL

Another approach to developing markup languages for user-interface specification

can be found in the development of the open-source Mozilla Web browser. Mozilla's user

interface itself is specified in XML using the XML User Interface Language (XUL)

created by the Mozilla development team.

XUL is designed to build portable user interfaces [33] [IS] and provides

mechanisms to specify most of the conventional user interface widgets and components

common to modern graphical user interface applications, including:

Input controls (text fields, check boxes, radio buttons, etc.)

Toolbars

Menu bars and pop-up menus

Tabbed windows

Trees

Tabular data grids [33] [5 11 [8 11

Initially, applications built using XUL, such as the Mozilla browser, embedded a

rendering engine to render the XUL markup into an actual user interface. However, the

project has also initiated an effort to develop the XUL Runtime Environment (XRE) [77].

XRE, once complete, should provide a single rendering engine that would allow the

development of XUL-based applications without needing to build a rendering engine for

each XUL-based application.

In theory, XUL provides a mechanism, when combined with the eventual delivery

of XRE, for achieving an optimal situation in which an application and its interface can

be delivered through the Web with the developer creating a single XUL-based user

interface specification and simply delivering it to users who have the XRE engine

installed.

However, it remains unclear from the current XRE documentation if:

1. The XRE engine will be platform independent or will need to be ported to

different platforms and if it will be possible to port the environment to

small footprint devices such as handheld computers.

2. XRE will account for differences in form factor that might make a user

interface specified for the desktop unworkable on a handheld computer or

other non-standard display sizes.

3. XRE combined with XUL is really only suitable to specifying interfaces

for desktop-style applications or if it is suitable to a broader range of

5 0

applications including Web applications; to date, the examples of XUL-

based applications, such as Mozilla, are all desktop-oriented.

Functionally, XUL is designed specifically to specify user interfaces; it does not

provide mechanisms to define how to link interface elements and actions to behind-the-

scenes operations and services. For instance, to make a Web application function, it is

necessary to be able to specify how each interface element and user interaction with the

interface is linked to HTTP GET or POST operations or to Web service invocations.

Nonetheless, XUL is a clear attempt to define a user interface-specific markup

language (as opposed to UIML which is a meta-language for defining other languages)

which has been shown to be usable for specifying even complex user interfaces (as in the

case of the Mozilla browser itself).

3.2.4 XForms: A Proposed Standard for Web Forms

XForms is a recommendation of the World Wide Web Consortium for the next

generation of Web-based forms [124]. At the core of XForms is the notion of separating

descriptions of what a form does from the way it should appear. This is intended to make

it easier to deploy forms to a range of clients with different capabilities and limitations.

In principle, a form defined using the XML-based XForms model could then be

rendered in HTML for standard Web browsers, in WML for mobile phones, in the

XForms User Interface (a standard set of controls designed to replace today's HTML-

based form controls), and any other client platform.

The XForms standard offers several interesting features:

A focus on form definition around data collection.

Support for workflow auto-fill and pre-fill of forms.

A submission protocol to handle communication with a back-end which

supports suspend and resuming form completion.

At the present time, a public test suite and several implementations of XForms are

available. However, major browsers such as Internet Explorer have no native support for

XForms requiring users to install plug-ins in their browser or developers to transform

XForms into HTML at the server.

Although it is unclear to what extent XForms is being used on the server to

generate HTML forms which are seen in today's Web site, an informal survey of major

Web sites doesn't reveal any sites which presently use XForms at the client to provide a

richer form experience to users.

In addition, XForms does not explicitly address the question of rendering: how to

effectively render a given form on a given display in a way which is functional and

usable.

3.2.5 Other Markup Languages

Other markup languages for user interface specification exist:

WML (Wireless Markup Language) [92] [2]: WML is a language

designed specifically for the creation of user interfaces for mobile devices

such as mobile phones.

HDML (Handheld Device Markup Language) [2]: HDML is a language

for the creation of user interfaces for mobile devices. It is a proprietary

language implemented specifically on browsers from OpenWave.

CHTML (Compact HTML) [54]: Compact HTML is a stripped-down

version of HTML targeting resource-limited devices. It lacks support for

JPEG images, tables, background colours and images, style sheets and

much more.

VoiceXML (Voice Extensible Markup Language) [115]: VoiceXML is an

XML-based markup language for developing speech-enabled applications

for delivery on the Internet.

3.3 Addressing the Problem of Small Screens

Aside from the question of what languages are suited to specifying user interface

definitions and optimizing the process of specifying user interfaces for deployment to

multiple platforms, a second fundamental question emerges in the delivery of Web

applications in a modern environment consisting of varied devices with both full-size and

small displays: how to optimize the display of content and other user interface elements

on different size displays.

To date, most Web content has been developed with desktop computer users in

mind and, accordingly, much of the literature surrounding this question focuses on

techniques for the automatic transformation of content for display on small devices as

well as techniques to make it easy for users to view and navigate large data sets on small

displays.

3.3.1 Automatic Transformation of Content

In the area of mobile Web access, a broad body of research has emerged since the

mid 1990s addressing the question of how to render existing Web content in a manner

suitable for easy access on devices with small screens. Typically, this research looks at

53

mechanisms for automatically transforming existing Web content as it is requested by the

client and is not concerned with the visualization techniques discussed in the previous

section.

Trevor et al. [112], identify four main techniques for presenting Web content on

small devices:

1. Scaling: Existing pages are simply scaled to fit as best possible on smaller

screens. This technique is used by Pocket Internet Explorer on the Pocket

PC operating system from Microsoft. The largest drawback of this

approach identified by Trevor et al., is that it sacrifices readability.

2. Manual Authoring: This approach, outlined earlier in this document, is to

simply produce different implementations of an application interface for

each target client system. This produces good results but is an inefficient

use of human resources for development.

3. Transducing: This approach involves the automatic translation of content

into a form appropriate for the target device. For instance, there are

software packages available which attempt to convert HTML to WML in

real-time as pages are requested [93] [20].

4. Transforming: This approach involves modifying content to transform the

structure, user experience and navigation. Often this will include a

transducing step as well.

The process of transforming content has received attention in numerous studies.

Four approaches to this transformation are outlined below.

3.3.1.1 Power Browser

Power Browser, a project by Buyukkokten et al. [23], is an attempt to address the

delivery of Web content to PDAs by using a transformation model which displays

hierarchical link summaries of Web content. In attempting this, the developers were

trying to address a problem they noted in small screen devices: users are less willing to

follow links with small dev icee in other words, less spontaneous browsing occurs.

Power Browser is a proxy solution which performs Web requests on behalf of

client handheld devices. It downloads the requested document and analyzes the link

structure of the document, preprocesses the document and selects the data to display as a

hierarchical summary of links, including links found on linked pages.

In its preprocessing, Power Browser discards white space, ignores text attributes

and folds tables into text blocks and provides the user the ability to order links following

the original document, in alphabetical order or in a page ranked format.

When a user navigates to a page they are interested in, Power Browser uses a

summarization facility to partition the page into semantic textual units and then, within

each textual unit, attempts to glean a hierarchical structure. Then users can expand and

contract these various units to make a large page navigable on a smaller screen [24].

Especially notable is Power Browser's form summary technique designed to make

Web forms usable on small screens. Power Browser extracts the textual labels that

prompt users for input without displaying the form widgets. These labels are displayed in

a list and the user can selected each label individually to display the prompt and input

information for that widget. Their algorithm reports a 95% success rate in selecting the

appropriate labels for the form elements from the source HTML.

Although Buyukkokten et al. do not report on user studies specifically evaluating

their form summarization technique, visual inspection of sample results shows that the

technique effectively reduce large forms into a format which can be displayed on small

PDA screens; at the same time, though, it is a technique specifically targeted at small

screens and is not aimed at providing general-purpose transformations for a wide range of

client screen dimensions.

3.3.1.2 Digestor

Digestor [15] takes a Web page and splits it into multiple Web pages suited for

smaller displays and adds new navigation links. The developers found that this works

well down to a threshold: as screens get too small, the user interface breaks down and

becomes hard for users to understand, manage and navigate.

3.3.1.3 M-Links

The M-Links project attempts to present Web sites on small screens by

transforming both the document structure and altering the traditional navigational model

of Web browsing [I121 [loo]. M-Links is a proxy server architecture which handles Web

requests on behalf of client handhelds and transforms the incoming content before

sending it back to the browser. These transformations take into account the markup

language supported by the client so that the resulting interface is returned in the

appropriate language chosen from HDML, WML, CHTML and a subset of HTML.

The concept behind M-Links is to separate link structure from content and, in

doing so, delineate the process of navigating and the process of acting on content. Their

technique involves extracting links from a page and presenting them as a list to the user

who can select any link in the list to navigate to that page. Once the user reaches the

desired page they can switch to a mode where they can act on the content of that page.

Actions include, but are not limited to:

Viewing the content

Printing the page

Faxing the page

Bookmarking the page

This differs from traditional browsing where a user is viewing navigational links

mixed in with page content [loo]. Under this model, the navigational process breaks

down to three steps:

1. User requests a link to visit

2. User is presented a list of links and drills down by repeating step 1

3. User chooses destination content and is presented a list of possible

actions

In this process, links are not simply presented as a list in the order they appear in

the original document. Instead links are categorized automatically and grouped in logical

ways based on the structure and content of the original document. In addition, links are

extracted which might not be actual hyperlinks in the document; for instance, phone

numbers and addresses for contact information are automatically detected and turned into

links.

M-Links manages to allow users to use this navigational paradigm with only four

buttons on a handheld device. On larger displays, M-Links provides no options for a

more standard navigational paradigm which forces all users on all clients to use the same

navigational model.

3.3.1.4 WEST

Bjork et al., [I61 propose a model for navigating Web content on PDA devices

which combines text reduction and link extraction techniques, similar to Power Browser,

Digestor and M-Links, and add a focus in context style of visual presentation technique.

The resulting browser was termed WEST (Web Browser for Small Terminals).

The basic algorithm used was implemented on a proxy server. First, an HTML

page was preprocessed in three steps:

1. The page was divided into smaller pages or cards; this is similar to the

Digestor approach of splitting a page into multiple smaller pages. These

cards were then grouped into decks.

2. The content of each card was summarized as a set of keywords.

3. All hyperlinks on each card were extracted.

Users then had the choice of three possible focus-in-context views:

1. Thumbnails of the top cards of all decks were displayed in a grid format.

2. Keywords summaries were presented on each card.

3. Extracted links were presented on each card.

In each view the user could zoom in on a single deck to view fully readable

content while the remaining decks would surround the zoomed deck. This tile-based

visualization and navigation technique is known as flip zooming.

Decks were used to limit the number of cards on the screen at one time to seven to

allow the context objects to be displayed at a reasonable size and to allow ordering to be

retained so that the fourth card in the sequence would always be fourth whether it sat in

the focus position or in a context position.

To test the usability of the technique, Bjork et al., conducted a user study to

compare this technique to a traditional style browser running on a Palm PDA handheld.

Results indicate that users rated WEST higher than the traditional style browser and that

searching through content was easier. At the same time, the flip zooming technique was

not immediately intuitive to users who had some initial learning curve difficulties.

3.3.2 Displaying and Navigating Large Data Sets on Small Displays

A significant dilemma of small screens is how to present and provide for large

content sets. This is not a problem unique to small screens, in fact. The problem also

exists when trying to view extremely large data sets on standard desktop displays as well.

Numerous algorithms exist for attempting to ease the problem of display and

navigation of large data sets. Two main classes of techniques exist:

Fish Eyes and Distortion Techniques: The concept behind fish eye lenses

visualization and navigation is that the greatest level of detail should be

provided for the content of interest, content close to it should have

somewhat less detail and so on; as content is further away from the central

content of interest, less detail should be presented. A generalized

description of this strategy was presented in 1986 by Furnas [39]. Several

subsequent studies have built on Furnas' work with fish eye views. Sarkar

et al. [99], for instance, envisage a rubber sheet metaphor while Roberston

and Mackinlay [95] proposed an alternative to the fish eye model

specifically addressed at document visualization.

2. Zooming and Overview Techniques: In 1995, Kaptelinin [55] compared

four navigation and visualization techniques for navigating large data sets;

these were scroll bars, direct dragging of the data set, alternately switching

between a map and a close-up view, and an extension of the map to

provide context in the map identifying the current close-up view. Baudisch

et al. [l 11, also compared several navigation and visualization techniques

for large data sets including alternating between zoomed and high-level

overview views, overview views with a second window providing detail

of a region of the overview, and focus plus context views using

specialized hardware.

These two classes parallel two of the three category's in Spence's taxonomy of

graphical presentation [104].

Although not specific to small screen displays, these techniques address the

problem of extremely large content sets which are hard to render and navigate on any size

device.

CHAPTER FOUR:
SCALABLE USER INTERFACES

Our Scalable User Interfaces (SUI) has been implemented using the latest

versions of Flash and Flash Player. The current version of the Flash Player is Flash Player

7; development for Flash Player 7 is done using the new Flash MX 2004 and Flash MX

Professional 2004 development tools. As with previous versions of the Flash Player,

Flash Player 7 is backwards compatible and can play Flash movies created with previous

versions of the Flash development tools.

4.1 Flash

As mentioned earlier, the Flash environment is divided into two main

components:

1 . Flash Player: Flash player is a runtime engine which can process and run

compiled Flash movies. The term movie simply refers to a compiled Flash

file which can be run by the Flash Player and is a holdover to the early

days of Flash when Flash was primarily used as an animation tool for the

Web. The Flash Player is implemented by Macromedia as a native binary

executable program on numerous different platforms. The current version

is version 7 and is available as a stand-alone player on major computing

platforms such as Windows, Mac OS X and Linux as well as a plug-in for

Internet Explorer and Mozilla-based browsers as well as in the form of

embedded players for hand-held devices and mobile phones. A compelling

feature of the Flash Player is the feature consistency across platforms of

the player; a given Flash movie should run identically on all platforms

with the same version of the Flash player.

2. Flash: Typically, Flash movies are developed with Flash which is an

integrated development environment providing coding and design-level

tools for building Flash movies, testing them and, finally compiling them

into files which can execute in the Flash Player. The current version of

Flash resembles a traditional integrated development environment such as

Visual Basic with added graphics and animation tools.

Early development of SUI took place using Flash MX and Flash Player 6. In

2003, in the midst of the work on this project, Macromedia released Flash MX 2004 and

Flash Player 7 which offers improved data and widget support. Development of SUI

moved to Flash MX 2004 and Flash Player 7 at that time. (In this thesis, Flash MX 2004,

Flash MX and Flash will be used interchangeably).

The Flash MX 2004 development environment and the Flash Player 7 collectively

offer several features which are essential to making SUI viable to implement in Flash:

A component architecture

Built-in XML Parsing

Cross-Platform Compatibility

4.1.1. Component Architecture

Flash MX and Flash Player 7 provide a component architecture. This allows

developers to create and reuse user interface or application logic components which can

then simply be placed in applications being developed in Flash MX. These components

can be extended and customized by other developers

With the introduction of the component architecture in Flash MX, Flash now

offers a set of pre-existing user interface components which can be integrated into Flash

movies. These components include standard interface components such as text fields,

buttons and selection lists as well as more complex components such as tree controls,

data grids and tabbed panels. Figure 8 provides examples of these components.

Figure 8 Flash MX 2004's User Interface Components

* - -- *-

@ CheckBox l ~ e c : Parent Text Area

* Radio Button

> Choice 1 .
1

f hctrre 2
Chorce 3 .

Data Gr@. entry 1 value

Entry ? 1 20

Text Field

Entry 3 I 30
SUI relies on these components to provide the core functionality for its widget

implementations. The SUI widgets are generally built as a set of functions which

manipulate one of these pre-existing Flash MX user interface components.

4.1.2 Built-In XML Parsing

With Flash MX, Macromedia introduced XML support into the Flash

development environment. Flash MX provides an XML object which can be used to

parse and manipulate XML. Using the object, it is possible to load an XML document

63

and traverse the tree of nodes in the XML document without every having to directly

parse the XML source code.

As SUI will rely on an XML-based markup language, the XML object allows the

SUI rendering engine to easily access and manipulate documents in XML. When XML is

loaded from a file, or XML source code is provided in-line in Actionscript, a node tree is

created with an XML object for each node in the tree. It is possible using properties and

methods of the XML object to traverse and manipulate the tree.

4.1.3 Cross-Platform Compatibility

As mentioned previously, one of Flash's most compelling features in the area of

Web applications tools is its cross-platform compatibility. The Flash Player is available

on a wide range of devices, including:

Desktop computer operating systems (Windows, Mac OS, Unix, Linux)

Handheld PCs

Mobile phones

What is particularly noteworthy about this cross-platform compatibility is the

consistency of appearance of Flash movie files playing on the Flash Player on these various

platforms. Figures 9 and 10 show the same file playing on the Flash Player on a handheld

device and Linux. In both cases, the appearance of the interface elements is consistent.

Figure 9 A simple Flash movie containing a form on a handheld device

Mare : Arman Da

E mad Address i

Figure 10 A simple Flash movie containing a form on Linux

- --
D&c vt Birth:

4.1.4 Flash on the Server: Macromedia Flex

Late in the development of this thesis project, Macromedia publicly announced a

new Flash-related technology named Flex and released the software into limited public

beta testing.

Flex is an initiative to provide for server-based development of Flash movies for

enterprise data applications. Since the release of Flash MX, Macromedia has clearly been

attempting to position Flash as a platform for building interactive interfaces to back-end

data applications deployed on the Web. However, the development environment of Flash

MX is inconsistent with the normal development cycles and processes used in the

development of Web-based enterprise data applications.

In typical Web development processes, the specification of the user interface is

done with HTML and JavaScript and this code is tightly integrated with application logic

code written in ColdFusion, PHP, ASP.NET or similar languages.

However, Flash requires a development paradigm more similar to desktop

application development. With Flash, the client interface of an application is designed

visually and the code necessary to support that interface is added to the client with an

integrated development environment tool. The server-side application logic is written and

deployed separately from this client.

This moves the development of the client interface into the realm of graphical

development typically accomplished in a drag-and-drop environment; no markup

language is used. Once the interface is developed, the application logic is then

implemented in ActionScript and the movies are compiled and deployed to the server for

delivery to the user. Developers must, therefore, possess expertise in the use of the Flash

MX development tool.

Macromedia Flex provides a completely new approach to deploying the

application logic and presentation layers for Flash-based Web data applications.

Macromedia Flex is a server-side application server which allows the creation of Flash

user interfaces using a new markup language, MXML (MX Markup Language), and CSS

while simple ActionScript is used to handle application logic. These MXML files are

deployed as plain-text files on the server and are compiled by Flex at request time. This

makes the development process similar to using HTML, CSS and JavaScript and

provides a development model which is familiar to Web application developers.

This means developers continue to use the same development models they used

with HTML but when the individual files are requested by the user they are compiled into

Flash movies on the fly and delivered to the Flash Player on the client.

For the purposes of SUI and this thesis, Flex is not well suited. The goal of SUI is

to provide a single client application which can render interactive forms specified in a

single markup file without dependence on the server to execute any of the rendering

logic. The key is that the exact same client application runs on any client platform and

uses exactly the same markup to render the form in a manner most suited to the display

real estate available in the client.

With Flex, the layout of the form would be specified in the MXML file and there

would be no straightforward way to account for the size of the client display and adjust

the rendering strategy accordingly.

With Flex, the logic approach would be to shift the rendering algorithms to the

server and build a custom MXML file from a SUI markup file and deliver a custom Flash

to the client for each request. This would allow the rendering algorithms to run on the

server where, typically, much more processing power is available and more sophisticated

rendering algorithms could, therefore, be created.

However, this runs counter to the write once, run anywhere principle. Under SUI,

there are no server platform dependencies. A SUI markup file can be served by any

HTTP server as well as being dynamically generated on any Web application server.

With Flex, the SUI markup files could only be served by Flex-based servers.

Nonetheless, Flex is a critical new component of the Flash environment and may

in the future offer insights into the evolution of the markup language used in SUI.

4.2 SUZML: Markup for SUZ

A markup language for SUI has been created called the SUI Markup Language

(SUIML). SUIML is loosely based on the XUL markup language for specifying

application interfaces in the Mozilla project. Specifically, the set of tags used includes a

subset of tags from XUL plus additional SUI-specific tags. However, at the level of tag

attributes and rules regarding tag embedding, SUI is not based on XUL.

SUIML follows the basic syntax requirements of XML-based languages.

Specifically, all tags must be closed using either of the two standard forms:

<tag attributes ... > ... </tag>
67

<tag a t t r i b u t e s ... />

The following section provides a high-level overview of SUIML and the full

language is specified in Appendix 1.

4.2.1 The Tag Set

The tag set for SUIML can be divided into three main groups:

1. Tags which define containers which hold one or more widget tags.

Examples of these containers are illustrated in Figure 1 1.

box: a generic rectangular box in which a group of widgets can be

placed so that the widgets are treated as a single entity for the

purposes of form layout.

radioGroup: a group of related radio buttons; only one button in

a group of radio buttons can be selected at any given time.

dialog: a dialog box is a group of associated widgets which can

be displayed in a layer above the main form in much the same way

as a floating window.

tabGroup: a group of related tab panels; only one tab panel can

be visible, at the top of the stack of tab panels, at any given time.

tabpane 1: a tab panel contains the set of widgets displayed on

any given page in a tab group.

splitGroup: a group of two related split panels; a slider can be

moved between the panels to control how much of each panel is

visible at any given time.

splitpanel: a split panel contains the set of widgets displayed

in a specific panel in a split group.

Figure 11 Container-level elements in SUI

box

dialog

Radio Button 1

+ Radio Bidton 2

Radii Button 3

A Dialog Box

Spli Pand 1

Spli Panel 3

Tags which define individual widgets. Examples of these widgets are

illustrated in Figure 12.

button: a regular form button

c heckbox: a check box

image: an image

select: a selection list such as the selection list boxes or drop-

down selection lists found in HTML

i t e m : an entry in a selection list

radio: a radio button in a radio group

l a b e l : a text label which cannot be edited or altered by the user

Figure 12 Widget-level elements in SUI

button

checkbox J' CheckBox

image

select
i te

ltem 1

ltem 2

ltem 3

ltem 4

ltem 5

radio Radio Button

label

text

Label

Text field

Item 1 t

3. Tags which define connectivity to back-end Web services.

application: used to specify the back-end Web service a form

will interact with.

It is important to note that recursion is possible in that containers can be

embedded as widgets within other containers creating, in theory, a nesting of containers

to any depth.

4.2.2 Required Attributes

Every tag requires, at a minimum, the following two attributes:

1. name: every widget must be named. This allows for referencing of

specific widgets which is important for handling data returned from

invoking Web service methods.

2. l a b e l : every widget should have a label assigned to it. The label is

displayed to describe the form element. This is handled in different ways.

For instance, for a text field, the label serves as a prompt for the text field

while with a tab panel the label appears on the tab associated with the tab

panel in the tab group.

4.2.3 Tag-specific Attributes

Many tags can take additional attributes other than the two required attributes.

These attributes can affect appearance or provide event handling to respond to user

actions:

b o r d e r : some widgets can have an optional border.

c l i c k M e t h o d : when a widget can be clicked by the user this attribute

specifies a Web service method to invoke upon a click by the user.

v a l u e : when a widget can have a default initial value, this attribute

specifies the value.

s e l e c t M e t h o d : when a widget can be selected by the user this attribute

specifies a Web service method to invoke upon selection by the user.

unselectMethod: when a widget can be selected by the user, this

attribute specifies a Web service method to invoke upon deselection by the

user.

openMethod: when a widget can be opened by the user, this attribute
I

specifies a Web service method to invoke upon opening by the user.

closeMethod: when a widget can be closed by the user, this attribute

specifies a Web service method to invoke when the user closes the widget.

scale: some widgets, such as images, can be scaled; this attributes

specifies the scaling as a percentage of the default widget size.

size: specifies the number of characters which can be displayed in a line

in a text field.

lines: specifies the number of lines to display in a text field.

changeMethod: when the value of a widget can be changed by the user,

this attribute specifies a Web service method to invoke upon such a

change by the user.

It is important to note that optional attributes which control appearance do not

represent absolutes. That is, when sufficient display space is available to render widgets

in their normal form, then these display attributes apply. However, if alternative

rendering methods need to be used, the display attributes may be ignored. For instance, in

a minimal layout form for a small screen display, the size and lines attributes for a

text field may be ignored to make display of the text field possible.

4.2.4 Managing SOAP Sewices Callbacks

For any Web form to be useful, it must be possible to both pass data provided by

the user in the form to a server for processing as well as respond to data returned by the

server to the form for display for the user. This allows a Web form to provide an

interactive experience for the user. For instance, consider a simple example of a form

with three widgets:

1. A text field where the user can enter a stock ticker symbol.

2. A button a user can click to submit the stock ticker symbol.

3. A text field used to display the current value of the stock the user specified

with a ticker symbol.

Use of the form involves the following workflow:

1. The user enters a stock ticker symbol in the first field.

2. The user clicks on the button.

3. The value from the first text field is sent to the server.

4. The server returns the stock's value to the form.

5. The form displays the stock value in the second field.

The key here is steps 3 and 4 where the form must connect to the server and

communicate. Without these steps, the form serves no real purpose because it cannot

connect the client to the server.

The SUI model leverages the emergence of Web services standards and

particularly those based on the SOAP protocol to link the SUI forms to back-end

services. Using Flash, the SUI rendering engine can invoke SOAP-based, XML Web

services running any standard Web application server platform including Java, .NET and

ColdFusion servers. These Web services expose methods which the SUI rendering can

invoke and these methods can be built to return data to the Flash-based rendering engine.

For the purposes of the SUI environment, SOAP will be used in a simple two-way

interaction with these Web service methods. When an event occurs in the form which

triggers a Web service method, an associative array is built containing the widget names

for all widgets in the form as well as any values available for the widgets; it is necessary

to pass all widgets to the Web service as a Web service may require all data in the form

to perform its work. This is passed, along with the name of the form field where the event

occurred, to the Web service method as arguments.

The Web service method, after finishing processing, must then return another

associative array. This array should contain one entry for each form field which must be

changed or updated as a result of the processing. The SUI engine can then update the

form based on this associative array.

It is important to note that Web services technology does not specify the type of

data which must be passed to a Web service nor the type of data structures to use; instead

SOAP allows the specification of what data is being passed in a way that can be used by

the Web service. Each Web service is developed with its own application-specific

requirements regarding the nature of type of data which must be provided to the service.

In the SUI case, the model is not intended to be general-purposes; an SUI form would not

consume any arbitrary Web service but rather Web services would be built specifically to

communicate with SUI forms.

To illustrate this, consider the stock ticker with form fields named:

1. First text field: stockSy-mbol

2 . Button: s t o c k B u t t o n

3 . Second text field: s t o c k v a l u e

If the user enters MACR as the stock symbol in the first text field and then

submits the field, an associative array is built containing the following entries:

stockSy-mbol: MACR

s t o c k B u t t o n : no value

s t o c k v a l u e : no value

This associative array along with the name of the button, which is where the user

triggers the click event, are passed as arguments to the Web service method. After

processing, the method returns an associative array with a single entry. Assuming the

stock's value is $10.50 then that array would contain the following entry:

After receiving the array, the SUI rendering engine will update the s t o c k v a l u e

text field to display 10.50. Figure 13 shows the before and after appearance of the form

rendered with SUI in its full, regular rendering used when sufficient space is available.

Figure 13 The stock application before and after the user enters data and clicks the button

Stock Symbol

4.2.5 Current Implementation

The purpose of this thesis is to provide for experimentation with the rendering

algorithms. Accordingly, the prototype implementation includes a subset of the widgets;

in addition, the callback mechanism is not implemented as it has no direct bearing on

rendering of the forms themselves. The implemented tags include individual widgets and

containers:

box

button

checkbox

image

item

l abe l

radio

t e x t

s e l e c t

4.3 Transformation Techniques for SUI

The domain of this project is limited to Web data applications. These applications

consist of two main components: forms for collecting data from users and forms, tables

and lists for presenting results to users.

Therefore, the transformation technique adopted for the rendering model

component built for SUI must address several key questions:

1. How to render forms as the screen gets smaller?

2. How to display large result sets to the user?

4.3.1 Rendering Forms

SUI needs to account for three possible conditions in all rendering:

1. Cases where the available display can comfortably display the required

content.

2. Cases where the required content does not comfortably fit in the display

but where the display still offers space for sophisticated presentation. For

instance, it might be possible to split a document and offer navigation

tools as well without overwhelming the available display space.

3. Cases where the screen is so small, many techniques break down. For

instance, in the case of Digestor [15], it was found that the technique of

deconstructing a page to multiple pages and adding navigation controls

became unusable when the screen became smaller than a threshold.

For forms, a three-tiered rendering and transformation strategy appears to offer

promise:

1. If a form fits comfortably in the display, render the entire form. In the

current SUI implementation, this is referred to as "regular" rendering.

2. If the display allows it, deconstruct the form into component parts and

display them with a focus-in-context visualization and navigation model

similar to Bjork et al.'s work with WEST [16]. This visualization and

navigation model provides an effective balance between providing usable

form widgets and generating forms which are too large for the screen in

the case of moderately small displays. In the current SUI implementation,

this is referred to as "card" rendering.

3. If the screen is too small for a WEST-style focus-in-context card display,

implement Buyukkokten et al.'s form summarization technique and render

the form as a list of text labels which can individually be expanded into

widgets [24]. In the current SUI implementation, this is referred to as

"minimal" rendering.

The decision of which technique to use is derived fiom a combination of the

actual limitations of screen space on the client and the actual form definition itself. After

all, a single-widget form may display in its entirety on the smallest display but a switch to

two entry widgets will mean the smaller displays will have to shift to one of the two

transformation techniques and as each additional widget is added to the form, the

threshold in terms of screen size at which the two transformation techniques come into

place will be raised. Examples of the three rendering styles are illustrated in Figure 14.

Figure 14 The same form using the regular, card and minimal layout styles (from left to right)

I First Name I

Name Name l r

4.3.2 Displaying Result Sets

Result sets typically are displayed in two different ways: as tables or as lists. Here

result sets refer to tabular results distinct from specific data values being returned to be

displayed in an individual widget in a form. For instance, if a search form is submitted to

query a database for all records matching a given set of criteria, the data returned will be

a result set containing rows and columns reflecting the relevant data from the database.

This data would not be rendered in the original search form but would be displayed in

tabular or list form.

In this type of case, several conditions might exist:

1. If a list or table fits comfortably on the display, just display it without any

transformation.

2. If a table or list fits the display horizontally but requires vertical scrolling,

present a scrolling presentation. Thresholds will need to be established to

limit the number of screens of depth allowed. After all, if a page is three

screens deep it is fairly easy to retain a sense of place and context when

scrolling. By contrast, if a page is 100 screens deep it should get harder to

keep a sense of location and context just as the case with zooming

techniques where a user zoomed into a portion of a data set looses the

context of the entire data set.

3. If a table or list requires horizontal and vertical scrolling or excessive

vertical scrolling alone, implement a focus-in-context browsing strategy

based on WEST [16]: the list can be broken down into groups based on

one of the key data fields and then a focus-in-context view can be

presented.

4. If the display doesn't allow a WEST-style focus-in-context presentation,

implement a summarization technique similar to that user in Power

Browser [24]. Each entry is summarized with identifying data (such as the

first word or two in a text field); these summarized entries are listed

sequentially on the display and users can selectively expand individual

entries to view their full contents and edit them. If these summarized

entries still create too many screens of depth, block-level widgets such as

tab panels or boxes can be used to group entries into a two-level

hierarchical tree in order to reduce screen depth.

4.4 The SUZ Rendering Engine APZ and Object Model

The SUI model is designed to provide a modular framework in which new,

alternative rendering models can be implemented; this will allow future experimentation

with new rendering. In addition, widgets are implemented in a modular fashion which

makes it easy to add new widgets or change the implementation of the widgets.

The result is an architecture which looks like Figure 15.

Figure 15 SUPS Modular Architecture

Configuration RenderingEngine
(FlashApplication)

Rendering

In the figure, each rendering algorithm is implemented as an Actionscript library

M O ~ ~ I A P I

in an external script file which is included in the main Flash movie at the time the

RenderingAlgorifhrn

rendering engine movie is compiled. By contrast, the widgets are implemented as

- 1 I (AdonScriptFile)

individually compiled Flash movies which can be included into a rendered form at

runtime.

The main rendering engine requires that each rendering algorithm or model, as

well as each as each widget movie, expose a set of standard methods which the rendering

engine can use to access these components.

4.4.1 The Main Rendering Engine

The main rendering engine movie fulfils several main tasks; in doing this, it relies

on a configuration file discussed in Section 4.4.5 which specifies available rendering

algorithms, scaling limits and other configuration information needed to execute the

rendering. Rendering proceeds as follows:

1. It must determine the dimensions of the display that is being used to

render the form.

2. It must open the appropriate SUIML file containing the specification of

the form to be rendered.

3. It must parse and traverse the node hierarchy and create containers for

each widget in the form; the appropriate widget files should be loaded into

the containers but the containers should be left hidden and not visible

pending future manipulation of the containers prior to final rendering and

display to the user.

4. It must then invoke the rendering algorithms to determine which to use to

render the form. This step works as follows for each algorithm in turn:

a. Request the algorithm to render the layout of the form and return

the width and height. If the width and height fit in the available

space, stop here and move on to Step 5

b. If the form does not fit, progressively reduce the scaling of the

form up to a configurable scaling threshold to see if it is possible to

fit the form in the space available using the current layout

algorithm. If an acceptable scaling is found, stop here and move on

to Step 5

c. If the layout method does not work, move on to the next available

algorithm and return to Step A

d. If no more algorithms are available, apply the maximum scaling

reduction allowed to the last rendering algorithm used and move

84

on to Step 5. The maximum scaling is configurable in the

configuration file.

5. It must make the widgets visible for the user.

6. Finally, the rendering engine must respond to any events for which event

handlers have been specified in the SUIML code and invoke the necessary

Web service methods.

4.4.2 Rendering Model API

Each rendering algorithm is implemented as an independent ActionScript file. An

ActionScript file is simply a text file containing ActionScript code which can be included

in a Flash movie at compile time. In this way, the ActionScript code is compiled as part

of the movie.

The rendering algorithm API files provide a single required method: l ayou t .

The rendering engine passes this method an array; each entry in the array is an object

containing information about a widget to be included in the layout.

The l a y o u t method must decide how to place the widgets on the page and set

the appropriate rendering style for each widget and then return an object with two

properties: the final height and width of the resulting layout.

The rendering algorithm's ActionScript file can contain other methods which it

uses internally and can even include and reference other ActionScript files if needed for

the modularity and manageability of the code; however, only the l a y o u t method will be

directly invoked by the main rendering engine movie.

A high-level outline of a typical rendering algorithm's layout method would be:

1. Receive a list of widgets as an array.

2. Loop through array and determine placement of the nodes.

3. For each node, obtain a reference to the movie clip for the node and place

the movie clip. A movie clip is an object in a Flash movie which can

contain another Flash movie, including an external Flash movie. As

discussed in the next section, each widget is implemented as its own,

separate Flash movie and these will be loaded into movie clips for

rendering the nodes.

4. Determine the total width and height for the form based on the final

layout.

5. Return the width and height.

Of course, the method by which the correct place for the node in the form is

determined is where each of the possible layout algorithms needs to differ.

Our prototype uses a simple grid strategy as the core layout mechanism:

1. In regular layout, nodes are laid out in a column-based grid with

configurable thresholds being used to limit the distance between elements

vertically and horizontally.

2. In card layout, the nodes are divided into cards using logical groupings

(such as container level elements or adjacent widgets in the XML node

tree) and then the cards are arranged. Inside each card, the regular layout

algorithm is applied (although recursion on container-level elements may

lead to other layout methods appearing inside a card).

3. In minimal layout, a similar vertical grid approach is used as in regular

layout but the minimal forms of the widgets is applied. In our prototype,

widgets have two possible forms: a regular form and a minimal form

designed specifically for the list-style minimal layout.

Figure 14 illustrates these three layout styles.

One of the underlying assumptions of this SUI rendering model implementation is

that the multi-tiered approach to layout rendering using simple layout algorithms suited to

different sized displays may produce effective results without the high CPU demands

which might be exacted by a more complex, processing-intensive, "intelligent" layout

algorithm.

A more processing-intensive algorithm will be problematic to implement in a

small footprint and may not be functional on a small device with limited processing

power. The multi-tiered approach adopted here requires little in the way of processing-

intensive computation; if it produces results which are acceptable on a wide range of

display sizes, this makes it a compelling option for small footprint devices.

Of course, this simpler approach has limitations including less control over the

actual layout and aesthetics of the resulting form.

4.4.3 Widget API

Each widget is implemented as its own Flash movie and is compiled independent

from the main rendering engine movie. Each widget must expose three methods which

can be invoked by the rendering algorithms and the main rendering engine:

initialize: this method takes as an argument the XML node object

for the widget or form element or container being rendered (in the case of

87

a container, the entire tree beneath the node is included). In turn, it formats

the widget in any available format so that sizes can be determined.

g e t S i z e s : this method returns an array containing the width and height

of the widget in each of its possible formats.

r e n d e r : this method takes as an argument which format of widget the

rendering engine wishes to use and in turn displays that form of the

widget.

The particular method by which the widget movie determines its available

formats and sizes can be implemented in any way so long as these three methods are

exposed.

At the present time each widget must implement all available rendering

algorithms which means the addition of a rendering algorithm requires adding support to

the widgets and recompiling them.

4.4.4 Modularity: Using Multiple Flash Movies

As mentioned earlier, the design of SUI makes use of multiple Flash movies: one

for the main rendering engine plus one for each widget. This approach leverages Flash's

ability to include compiled movies at run time. Using the loadMovie method in Flash,

it is possible to load a movie into a container in another movie at runtime and then to

access methods and properties of that movie from the parent movie. In this way the

rendering engine is the parent movie and it creates a container for each widget and then

loads the appropriate widgets' movies into each container based on the SUIML

specification of the form being rendered.

Because each widget exposes the same set of methods to the rendering engine as

described earlier in the discussion of the widget API this makes it possible for the

rendering engine to load these widget movies at runtime and interact with them in a

standard way without regard to the exact specifics of the internals of the widget's

implementation. This also makes it possible for developers to extend or replace the

widget movies while the rendering engine can still operate. In addition, new widgets can

be added to the system. In both cases, the main rendering engine movie does not need to

be recompiled. Essentially, this allows for the extensions of the SUIML language through

the development of new widget movies. The SUI rendering engine relies on a simple

naming convention: widget movies must possess the same name as the tag used to

reference the widget in SUIML. Therefore, the movie which implements the <text

. . . > tag in SUIML should be named text. swf (. swf is the extension used for

compiled Flash movies).

To add a new widget and tag to SUIML is a simple task of choosing a name for

the tag, creating a widget movie which implements the widget API and then using the tag

in SUIML files. Because the main rendering engine and the widgets are compiled as

separate Flash movie files it is not necessary to recompile the main rendering engine to

accommodate a new widget-it simply needs to be added to the configuration file

described in the next section; the main rendering engine uses the tag's name to locate the

relevant widget's Flash movie file.

In addition, the widget movies are stored in the same directory as the rendering

engine which allows the rendering engine movie to reference the widget movies using

simple relative paths. In this way, the SUI rendering engine movie and the associated

widget movies can be placed on any HTTP server or tested from a local directory without

any alteration of the movie files or special configuration required on the server.

4.4.5 Flexibility and Configurability

Our SUI prototype implementation uses a three-tier rendering model with three

different algorithms adopted as appropriate to the display space available. However, SUI

in general is not restricted to three rendering algorithms.

The main rendering engine movie uses an XML-based configuration file to

specify the available rendering algorithms and their order of preference. For instance, for

our prototype implementation, this configuration code looks like:

Here, the order of preference for the rendering algorithms is "regular", "card" and

then "minimal". These names should match the names of the rendering algorithm's

ActionScript files (such as r e g u l a r . as or minimal. as) as well as the algorithm

name which is specified in the code in the ActionScript file.

In addition, the configuration file contains a list of valid widget names. In order to

use a new widget movie in a SUIML file, the widget should be added to the list in the

configuration file:

etc.

Here, the order of widgets does not matter. Each widget has a type specified as

either "container" or "element" which indicates if the widget is a container requiring

recursive layout or if the element is an actual widget to be rendered itself.

Finally, the configuration file contains entries which specify both the maximum

reduction scaling which the rendering engine can apply to a form, as well as the preferred

distance between widgets horizontally and vertically (specified in pixels). these values

are not device specific and will apply to any device; the default values shown here have

been chosen based on informal experimentation with a range of values in varied windows

sizes:

In addition, for testing purposes, the current prototype implementation places the

main rendering engine inside a user interface which provides a simple form for

controlling the dimensions of the display as well as constraints on the space between

9 1

elements (which is used by the regular layout algorithm) and the maximum reduction

scaling percentage; this can allow testing of different configurations without editing

configuration files. This interface is shown in Figure 16.

Changes to the configuration file do not require recompilation of the main Flash

movie. If an algorithm is added, the present implementation requires the recompilation of

individual widget files to add support for the new algorithm to the widgets.

Figure 16 A form for controlling settings

4.5 Recursion

An important feature of the SUI implementation is the use of recursion. When

certain container-level elements such as box or tabpanel are specified in a SUIML

file, SUI implements them by simply including a new instance of the main rendering

algorithm movie and passing the movie the appropriate branch of the XML node tree.

This makes the main rendering algorithm movie a module which can be included in itself

achieving recursion.

This strategy has been adopted to experiment with the results of using different

rendering algorithms inside different container-level elements. When a container-level

element occurs, a new instance of the main rendering algorithm movie is included and

instead of checking the main display size, the parent provides a maximum display space

available to the movie containing the child element.

This may result in layouts such as Figure 17. In Figure 17, the main part of the

form has enough space to layout using a regular layout algorithm. However, this regular

layout leaves insufficient space for the part of the form in the box container. The result is

that it is rendered using a minimal layout algorithm.

If the form had more space, the box container might lay out using a regular layout

algorithm as shown in Figure 18. Similarly, Figure 19 shows what happens when the

display area becomes smaller and the entire movie switches to a minimal rendering style.

The SUIML code which generated this form is:

<text name="firstName" label="First Name" />
<text name="lastNameM label="Last Name" />
<select name="ageU label="AgeU />

<item name="birth to 10" label="O-10" - -
value="OU />

<item name="ll to 15" label="ll-15" value="ll" - -

name="16-to-21" label="16-21" value="16"

name="22-to-26" label="22-26" value="22"

name="27 to-35" label="27-35" value="27" -

name="36 to 45" label="36-45" value="36" - -

name="46 - to-55" label="46-55" value="46"

name="56 - plus" label="56+" value="56" />
</select>
<box name="contactDetails" label="Contact
Details" border="true">

<text name="phoneW label="Phone Numberu>
<text name="emailM label="E-mail Addressu>
<select name="country" label="Country">

<item name="canada" label="Canada"
value="canadan>

<item name="usa" label="United States"
value="usa">

<item name="mexico" label="Mexico"
value="mexico">

<item name="other" label="OtherN
value="other ">

</select>
</box>
<button name="submitM label="Submit">

Figure 17 A mixture of regular and minimal layout

First Name

Arman

Last Pdarne
--

K G .

r Contact Details-

Submit

Figure 18 More space leads to regular layout throughout

7rst Name

4rman

-ast Name

Contad Details -

P h ~ n e Number

Submit

E-mall Address
" -" -

I me@my.domam ,

Countty

Canada

United States

Mexlco
Other

Figure 19 Less space leads to minimal layout throughout

F~rst Name
Wm

last Name
I m.., h

Aye
I ! 7(\ C

CHAPTER FIVE:
SAMPLE APPLICATIONS

To experiment with SUI and the rendering algorithms we have developed, two

test forms have been created:

1. A user registration form: this form is representative of the common task of

user registration on a Web site in which a user registers to create an

account.

2. A store checkout form: this form is representative of tasks where the user

must provide several distinct blocks of information including contact

information, billing information, shipping information and payment

information. This form is, necessarily, larger than a simple user

registration form and can be used to push the layout algorithm further on

small displays.

5.1 User Registration Form

This form tests a common type of form found in Web applications: forms which

require a small, self-contained set of information from the user and typically fits in a

single screen.

The SUIML code used for this form is:

<text name="firstName" label="First Name" />
<text name="lastName" label="Last Name" />
<text name="email" label="^-mail Address" />
<select name="countryW label="CountryM />

<item name="canadaU label="CanadaM value="ca"
/>

<item name="unitedstates" label="United

States" value="usW />
</select>

To test the effects of screen size, the form was rendered on progressively smaller

displays of the following sizes:

640x480 pixels

320x240 pixels

240x320 pixels

150x150 pixels

90x90 pixels

These results are illustrated in Figure 20. Notice that the simplicity of the form

allows it to render even on the smallest size display. In addition, Figure 20d shows the

use of the card-based layout method. Here, there are four cards (for the first name, last

name, e-mail address and country). When the user clicks on a card that card comes to the

front and its contents are displayed; at other times, cards are minimized on the top and

bottom edges of the display.

Figure 20a A user-registration form in SUIML (640x480 pixels)

First Name
~ - --" ** -"--
Arm an

Danesh

E-mail Address

me@my domain

Countty
- - ---
Canada

Unlted States

Figure 20b A user-registration form in SUIML (320x240 pixels)

%st Narne Countty

E-mail Address

Figure 20c A user-registration form in SUIML (240x320 pixels)

I First Name

Last Name
" ""

Danesh

E-mail Address
-
me@my.damain

Countly
"V - -

Canada

Unlted States

Figure 20d A user-registration form in SUIML (150x150 pixels); here a card-based layout is
used and the e-mail address card is displayed in the center

Name Name r
E-mail Address

me@my.domaln

Figure 20e A user-registration form in SUIML (90x90 pixels)

At all sizes, the form has rendered in a manner that keeps the form usable, even at

the smallest size. Almost the entire form is visible which eliminates the need for

scrolling. There are some noticeable limitations, including:

1. On the largest display, the form is anchored to the top-left comer of the

display and large amounts of white space remain. Aesthetically it may be

preferable to centre the form, change the dimensions of individual fields or

otherwise alter the rendering; however, the SUI implementation does not

account for any such aesthetics.

2. The 150 x 150 pixel display shows that the best decision is not always

made. Here, a card layout is used which requires the user to open each

card to access the individual widgets in the form. However, if the

rendering engine had continued down to the minimal algorithm and used it

all four fields would have been visible on the screen at one time.

At the same time, however, the intermediate sizes (240x320 and 320x240) allow

the form to be rendered quite well: the available white space is better used than at

640x480 without excessive white space and all widgets are rendered with the larger, more

legible regular widgets.

5.2 Store Checkout Form

This form is much larger and more complex than the user registration form. It also

invokes a wider range of user interface elements and uses recursive layout through the

use of the box tag to contain each separate set of information being sought from the

user.

The form requires four distinct sets of information from the user:

1. Personal contact information such as phone number, fax number and e-

mail address.

2. Billing address information

100

3. Shipping address information

4. Payment information including credit card data

The SUIML code used for this form is:

<box name="personalM label="Personal Data"
border="trueU>

<text name="firstNamen label="First Name" />
<text name="lastNameU label="Last Name" />
<text name="emailW label="E-mail Address" />

</box>

<box name="billingU label="Billing Address"
border="trueU>

<text name="billingaddress" label="Address"
lines="5" />

<text name="billingcity" label="CityM />
<select name=" billing province"

label="Province">
<item name="billingbcU label="British

Columbia" value="bc" />
<item name="billingabU label="AlbertaU

value="abM />
<item name="billingsk" label="Saskatchewan"

value="skU />
<item name="billingmb" label="ManitobaU

value="mbM />
<item name="billingon" label="Ontario"

value="on" />
<item name="billingqcU label="Quebec"

value="qc" />
<item name="billingnb" label="New

Brunswick" value="nbU />
<item name="billingns" label="Nova Scotia"

value="ns" />
<item name="billingnf" label="Newfoundland"

value="nfU />
<item name="billingpeU label="Prince Edward

Island" value="peU />
<item name="billingnu" label="Nunavut"

value="nu" />
<item name="billingnwW label="Northwest

Territories" value="nw" />
<item name="billingyk" label="Yukon

Territories" value="ykW />
</select>

<text name="postcode" label="Postal Code" />
</box>

<box name="shipping" label="Shipping Address"
border="true">

<text name="shippingaddress" label="Address"
lines="5" />

<text name="shippingcity" label="CityM />
<select name="shippingprovince"

label="Province">
<item name="shippingbc" label="British

Columbia" value="bcU />
<item name="shippingabW label="AlbertaM

value="abM />
<item name="shippingskU

label="Saskatchewan" value="skU />
<item name="shippingmb" label="ManitobaU

value="mbU />
<item name="shippingonU label="Ontariow

value=''on" />
<item name="shippingqcU label="Quebec"

value="qcM />
<item name="shippingnbW label="New

Brunswick" value="nbU />
<item name="shippingns" label="Nova Scotia"

value=''ns" />
<item name="shippingnfU

label="Newfoundland" value="nfn />
<item name="shippingpeW label="Prince

Edward Island" value="peU />
<item name="shippingnu" label="Nunavut"

value="nu" />
<item name="shippingnwW label="Northwest

Territories" value="nwn />
<item name="shippingyk" label="Yukon

Territories" value="ykU />
</select>
<text name="shippingpostcode" label="Postal

Code" />
</box>

<box name="paymentM label="Payment Information"
border="truel'>

<radioGroup name="cardTypeM label="Credit
Cardu>

<radio name="visa" label="VisaW
value="visaN>

<radio name="mastercard8' label="MasterCardU

To test the affects of screen size, the form was rendered on progressively smaller

displays of the following sizes:

640x480 pixels

320x240 pixels

240x320 pixels

150x1 50 pixels

90x90 pixels

These results are illustrated in Figure 21. Notice several interesting results

including the intermediate stage where some of the boxes use a minimal layout while

others use a regular layout. Also notice that at 90 x 90 pixels becomes so small that

limited context information can be made available to the user.

This form illustrates that as forms get more complex, more issues are introduced

in the layout and the algorithms at play have more trouble achieving a clean, simple,

attractive layout of the form than was seen with the previous, simpler form.

Here, at 640 x480, all fields fit relatively well; the form fills most of the available

space in even columns which require no scrolling; all widgets are of the larger, regular

variety.

From 240x320 pixels and smaller, all layout is done with the minimal style. The

card layout is never adopted because in the large sizes, it isn't necessary and the smaller

90x90 pixel display is simply too small to render the cards.

The most problematic size is the 320x240 pixel layout where the rendering engine

sees that the regular layout style can be used for the widgets in the first box but

subsequently, the recursive process leads to a minimal layout for the widgets inside the

other three boxes. The result is a form with two styles of widgets which look different

and behave different.

Figure 21a A Store Checkout form in SUIML (640x480 pixels); image is scaled to fit on page.
All fields fit relatively well and no scrolling is required.

'ehonai Data -

First Name

Last Name

E-mail Address

Birring Addrea -

Address

Province

British Columk *

Alberta

Saskatchewan

Manitoba

Postal Code

me@my.di&ain

htpptng Addrea -

iddress

Brltlsh Columl: *

Alberta

Saskatchewan

Manitoba

'ostal Code

Credit Card

Visa

Mastercard

Card Number

Expiry Date

Figure 21b A Store Checkout form in SUIML (320x240 pixels). At this size, a combination of
widget styles appear in the different box elements.

Personal Data 1 I Billing Address

I I Address

Last Name
Postal Code

F ~ r s t Name

E-mail A,.. I

City

Prov~ncr

Payment Info.. -
Credt Card ,~
$ 4 ~ 2 & -- -
Card Nu..

kpiw Date '

Shipping A...

Address

c lty

Prov~nco

B r , % J i - 3 #

Portal Code

Figure 2 1 c A Store Checkout form in SUIML (240x320 pixels). All widgets are rendered in the
minimal style.

Billing Address

Address

City

Provmce

f3r1tl:tg b
Postal Code

Payment Info .
Cred~t Card
' 3 I z.3 b
Card Number

Expiy Date

ersonal Data

First Name

Lad Name

€.mall Add

- ShWPW a

Address

City

Province

E r & t :- b
Postal Code

Figure 21d A Store Checkout form in SUIML (150x150 pixels). At this size, minimal widgets
are used but scrolling becomes necessary.

Personal Data t *

First Name

. "
Last Name I
.

E.mail Address

I

Billing Address [

Figure 21e A Store Checkout form in SUIML (90x90 pixels). At extremely small sizes, there is
no choice but to use minimal widgets.

F~rs t Name

Last Name

CHAPTER SIX:
DISCUSSION

The implementation and testing of SUI for this thesis highlights several key

points:

Flash provides a robust framework for developing consistent user

interfaces across client platforms.

The simple three-tiered layout model used in the current SUI

implementation is limited. SUI relies on levels of simple algorithms rather

than complex, highly-intelligent algorithms to achieve display-appropriate

form rendering. This led to less-than-ideal results in borderline cases.

Moving the rendering logic out to the client using Flash can impose

performance limitations since not all clients have equal levels of

processing power.

The recursion model created form layouts which may cause confusion in

users because of the varied layout models used in rendering a single form.

Using automatic layout means there is a sacrifice of standardization and

consistency.

6.1 Flash as a User Interface Framework

Regardless of the size of the target client's display, the form widgets displayed

consistently on different platforms; for example, a button rendered in the SUI minimal

style appears the same on any platform as will a text box rendered in the normal style.

Testing across Windows, Linux and the latest incarnation of Microsoft's handheld

107

operating system, Windows Mobile 2003 shows that Flash widgets display consistently

across these platforms.

The critical difference is that release schedules differ on different platforms;

Windows and Macintosh OS X users will receive new versions of the Flash Player before

users on other platforms which means that applications which implement features which

require the newest player will not immediately run on all platforms and must wait for full

cross-platform compatibility for the staged release of the new player on other platforms.

Still, the assurance of consistency of appearance and the ability to run a single compiled

Flash movie file on all platforms combined with user interface components and a

component development model in Flash MX makes Flash a strong candidate for cross-

platform user-interface implementations.

Implementing SUI provided evidence of this utility for user interface

development. No specific consideration had to be given to individual client platforms

during development; to the contrary, the client platform was completely ignored in the

development of the SUI implementation. Still, the application ran consistently in Flash

Player 7 on the platforms for which it was available.

6.2 Simple vs. Intelligent Algorithms

The architecture of SUI as implemented in this work is to use relatively simple

layout algorithms combined through a rendering engine which attempts to use the

algorithms in a defined sequence to find a viable layout. Therefore, instead of relying on

the implementation of a single, complex rendering algorithm, SUI opts to use simple

algorithms but then to provide the rendering engine with several alternative algorithms

with the expectation that this will produce usable results with a simpler, more

manageable implementation.

The results of the sample application presented earlier show that this option

produces layouts for simple and complex forms on various sized-displays which are

functional and can be used. This is done by implementing simplistic layout algorithms

which use a grid and a vertical, column-based strategy to position form elements.

6.2.1 Problems with Small Displays

In border line cases, the simple algorithm strategy has led to less than ideal

results. In particular, at extremely small screen sizes, even small forms render in a format

which may not be entirely usable for all users. Consider Figure 22 where the store

checkout form is rendered on a small 90 x 90 pixel display:

Figure 22 The store checkout form on a 90 x 90 pixel display

While this form is legible, there are some issues to consider:

Personal Data -
First Name

Last Name

E-mail Wd

The fields have been scaled to 90% of their normal size making the type

smaller and harder to read.

Less than 25% of the form is visible at any one time which makes it hard

for a user to keep their context clear in the form as well as to know how

much of the form they have completed.

*
. -

The introduction of the scrollbar itself consumes display space which

could have been used, for instance, for wider text fields or to avoid scaling

of the fields.

6.2.2 Problems with Large Displays

Other problems arise from large forms with lots of fields rendered on reasonably-

sized displays; these will often have several columns of form fields and the ordering and

column breaks used will not reflect the purpose or intent of the form's creator as in Figure

23 showing the shopping cart form on a large 1024 x 768 pixel display.

Figure 23 The shopping cart form on a large 1024 x 768 pixel display (rotated 90 degrees and
scaled to 75% of actual size to fit page)

In this situation, the layout has several issues, including:

Screen space is not well-utilized. Instead of spreading the form more

horizontally across the available width the entire form hugs the left side of

the display.

The form boxes are narrower than they need to be because this is the

default width widgets use when possible.

As a general rule, SUI will automatically render a form but it will not necessarily

deliver an ideal or optimal layout; the resulting layout will work and be usable on the

device in question but it may not be attractive or the easiest layout for user interaction.

6.3 Client Performance

While Flash can provide an assurance of consistency of implementation and

behaviour across platforms, it cannot provide guarantees of performance. The computing

resources available in a device do impact the performance of individual Flash movie files

running on different hardware.

To benchmark this, we utilized an ability of the Flash development environment

to generate tracing output while running a compiled Flash movie within the Flash MX

2004 development environment. This allowed the date stamp to be output as tracing

output when rendering started and when it completed to gain a sense of the time required

to perform rendering on different systems. Because the Flash MX 2004 development tool

cannot run on handheld devices and requires the full Windows operating system, this

tracing was not conducted on a handheld device. However, by using desktop computers

with a range of CPU power, it is possible to plot the approximate performance issues

which arise as the rendering engine is executed on hardware with less resources.

A simple comparison of two systems highlights the fact that hardware does

impact the speed of rendering. The hardware used for testing was:

A 1.2 GHz AMD Duron desktop computer with 1 GB of RAM

A 600 MHz Celeron notebook computer with 256 MB RAM

The results for our two sample applications are as follows:

Table 1 Performance results for test applications

1.2 GHz Desktop

1 GB RAM

User Registration Form

600x480: 0.2 seconds

320x240: 0.3 seconds

Store Checkout Form

640x480: 0.6 seconds

320x240: 0.9 seconds

600 MHZ Notebook

256 MB RAM

640x480: 0.5 seconds

320x240: 0.8 seconds

640x480: 0.8 seconds

320x240: 1.5 seconds

Three main trends are suggested by these rendering-time results:

1. CPU speed and RAM, as the two key hardware resources affecting

performance, do have an impact on rendering time.

2. The complexity of the SUIML form specification impacts the rendering

time. On both platforms, rendering time increased with the more complex

store checkout form.

3. As screen size decreases, rendering time increases; this is most notably

true for the more complex store checkout form. The reason for this is that

as a form must be rendered on increasingly smaller displays, it is

increasingly likely that the rendering engine will have to try more of the

113

rendering algorithms. For instance, on a large display, rendering might

start with the regular rendering algorithm and end there but on a small

display the same form might be rendering first with the regular algorithm,

then with the card-based algorithm and finally with the minimal algorithm

before producing a final, usable layout. This latter process, of course,

requires more time to complete.

These trends suggest that there may be performance issues with more complex

forms on smaller devices. As a device gets smaller, available CPU power and RAM

decreases while the screen size also decreases. This means the most complex rendering

process will be executed on systems with the least resources.

6.4 The Benefits and Drawbacks of Recursion

The recursive nature of the layout model used in our implementation of the SUI

rendering engine appears to offer benefits as well as drawbacks. The primary benefit of

the method is in its ability to provide the standard widgets to the user as often as possible.

The regular rendering algorithm uses standard form widgets which will be familiar to

users with prior experience with graphical user interfaces.

Consider the case of the sample store checkout form; At 320 x 240 pixels, the

layout still retains some regularly-formatted widgets in the "Personal Data" box as

illustrated in Figure 24.

Figure 24

Personal Data

First Name

Last Name

The store checkout form at 320 x 240 pixels

Shlppmg A. .

Address

Province

E.ma11 Addr

Payment Info . 1
Credn Card ,

Without recursion, three options exist:

The "Personal Data" box is rendered with minimal widgets in it.

The entire layout is done with a card-style layout and individual cards are

likely rendered with minimal widgets in them.

Regular widgets are used throughout but are shrunk to 90% of their

original size or possibly even smaller depending on configuration settings.

Informal visual inspection of the various layouts from the sample application

which used recursion highlight a fundamental problem with the recursion as presently

implemented: a lack of consistency. Consider the same store checkout form at 320 x 240

pixels illustrated in Figure 24.

Here we can see three types of layout in use:

1. The personal data box uses regular layout within it.

2. The two address boxes uses minimal layout within them.

3. The payment details box uses minimal layout within it but this is then

scaled to 90% of the standard size and a scroll bar is introduced.

This mixture is visually disconcerting: the various box level elements look

considerably different internally. Plus the same widgets show distinctly different

behaviour. For instance, a regular text field works like familiar text fields from HTML

forms. The user simply places the cursor in the text field and types. In the minimal layout

modality, text fields are designed differently. Minimal text fields work as follows:

1. By default, minimal text fields display a single line of text underneath the

label for the field.

2. When the user clicks in the text field, it expands to a larger box in which

the user can type; this box will cover any widgets which might be below.

3. When the user finishes typing, they can click on the icon in the top right;

th width shrinks back to a single line with the first few words of text

displayed.

These steps are illustrated in Figure 25.

Figure 25 Operation of a minimal text widget

2 3

The minimal text field requires a considerably different user interaction than a

normal text field and raises the question of impact on the user and the usability of the

116

form when recursion leads to mixed widget styles. The problem could become especially

acute if multiple algorithms (more than two), with associated widget styles, are used in

the same form.

6.5 Standardization and Consistency

The current SUI implementation has some implications with respect to

standardization and consistency. Because SUI uses a form of automatic layout there are

no guarantees about the layout and appearance of forms. Not only can the layout of a

form differ widely from device to device but the user cannot assume where buttons, fields

or other form elements will appear each time they access a form.

In addition, it is important to note that the use of Flash means that widget

appearance and behaviour will be consistent across devices but may differ from standard

widget appearance and behaviour on a given device or operating system. Flash's default

widgets are not intended to match the widget appearance and behaviour of a host

operating system's widgets.

6.6 Implications for Developer and Designers

One of the main motivations of SUI is to simplify the job of implementing

interactive forms which work across multiple devices and client platforms. As a result,

SUI has implications for Web application developers who can realize a simpler, more

streamlined development process for these forms because only one set of source code is

required to implement and deploy a given form. However, this simplified development

process comes with a trade-off: it limits the ability of the designer to control the design

and appearance of a form. The automatic layout used by SUI means the designer

effectively has no control of the placement of widgets. In addition, the approach of

multiple rendering algorithms means that widgets have multiple forms so designers also

have no guarantee of which style of widget will be used. This doesn't mean designers

could not exercise any control. The modular nature of SUI means that designers can

develop their own widgets with unique visual appearance and these can easily be

deployed with small changes to the SUI configuration file. In addition, Flash supports

limited use of CSS for styling widget components. Although SUI does not employ this

capability, it would be possible to extend SUI to support this feature. Nonetheless, to use

SUI does mean sacrificing the fine-grained visual control designers are used to with

today's Web applications.

CHAPTER SEVEN:
CONCLUSIONS AND FUTURE WORK

Several contributions emerge from this current work in Scalable User Interfaces

for the Web:

Flash provides a compelling platform for cross-device Web form delivery.

It is possible to support several display form factors, and in particular

smaller displays, from a single specification of a form.

A recursive rendering strategy provides a way to use simple automated

rendering algorithms while allowing a form to scale across a wide range of

display sizes.

7.1 Using Flash for Cross-Device Form Delivery

Previous work in the area of cross-device delivery of Web user interfaces has not

considered the use of Flash as a suitable platform. Since the release of Flash MX, there

has been discussion in the industry, led by Macromedia, of Flash's role in the delivery of

cross-platform interactive content.

However, this industry discussion has not been supported by reports in the

literature. The present implementation of Scalable User Interfaces, which has been

developed using Flash, shows that Flash can successfully be used to delivery single

executable applications and user interfaces to multiple devices and platforms.

This project demonstrates as well that, as Macromedia claims, Flash runs in a

consistent fashion across multiple platforms and devices.

Finally, Flash's integrated XML support made it easy for the Scalable User

Interfaces implementation to work with form specifications written in an XML-based

language; this suggests Flash may be suited to other applications which rely on XML-

based data.

7.1.1 Implications for SVG and Other Platforms

Our success using Flash as a platform for deploying a single executable SUI

rendering engine which runs on all platforms also provides insights which are relevant to

other similar technologies such as SVG. SVG offers several key features in common with

Flash which were important in the implementation of the SUI prototype:

Cross-platform consistency

Scalability to small devices

An ECMAScript scripting environment

Our success using Flash to create a single executable rendering application which

runs on all supported platforms may translate to SVG. Not only is it possible to consider

implementing SUI in SVG, these similarities also indicates that platforms such as SVG

lend themselves to creating these types of executable applications which run on multiple

platforms without porting, adaptation or recompilation.

7.2 Automated Form Rendering for Small Displays

A key feature of the Scaleable User Interfaces is that it provides for automated

form rendering so that forms are not only usable on standard desktop-sized displays but

can similarly be rendering in an automated fashion on a variety of small displays,

particularly in portable, handheld devices.

Scalable User Interfaces is a mechanism which can, in fact, render a single form

specification on multiple displays of different sizes without requiring the form developer

to specify separate form definitions for different displays or to provide hinting to the

rendering engine to handle different target devices.

Qualitative analysis of the results shows that results may not be ideal on every

display size but that the forms are rendered and can be used on most display sizes in

common use today.

7.3 Using Recursion and Simple Algorithms for Form Rendering

Rather than creating a single monolithic rendering algorithm which attempts to

intelligently decide how to render a given form on a specific display, Scalable User

Interfaces adopts a modular, tiered strategy which differs from previous work in the area

of form rendering for small displays.

Scalable User Interfaces shows that the recursive, tiered layering of multiple,

simple, rendering algorithms provides a scalable way to render forms across multiple

display sizes including smaller, hand-held displays. At the same time, recursion has

limitations notably in the area of consistency: a form may be rendered using widgets of

different styles.

7.3.1 The Importance of Simple Algorithms

SUI1s use of a sequence of simple algorithms may have broader implications than

simply for the layout of Web forms. In other cases where a single complex algorithm

attempts to account for a set of different conditions, it may prove easier to develop a set

of simpler algorithms which, used in the correct sequence, provide adequate results

without the more daunting development task of a single, monolithic algorithm.

7.3.2 The Relevance of Recursion

SUI illustrates the applicability of a recursive strategy to the work of rendering

forms. This application of recursion is not limited to SUI or a Flash-based rendering

engine. The lessons learned in SUI about recursion with simple algorithms could be

applied to the layout of standard HTML forms in regular Web browsers, could be

adopted by clients which render XFonns or could be used even more generally in

developing tools for rendering Web pages on small devices.

7.4 Future Work

The work on SUI described in this thesis has provided a proof-of-concept

implementation of the SUI model in Flash and has implemented and informally assessed

the layout of two test applications to assess the mode.

This work, however, suggests several areas of future work:

Testing of alternate rendering algorithms.

Implementation of a complete widget set

Improvements to the efficiency of algorithms

Testing of the system with end users

7.4.1 Test Alternate Rendering Algorithms

The design of SUI allows for the implementation of alternate rendering

algorithms. The present implementation implements three algorithms: a regular

algorithm, a card-based algorithm and a minimal algorithm.

The actual design of these individual algorithms is relatively simple. None of the

algorithms involve complex rules or processes for deciding how to layout widgets but

adopt a simple, vertical-oriented grid approach. Analysis shows that in borderline cases,

the layouts that are produced as less-than-ideal. However, the design of more complex,

more intelligent individual rendering algorithms combined with SUI's tiered rendering

engine with options for recursive layout may produce interesting new results both in

terms of improving the use of screen real estate, improving the viability of the recursive

layout or providing a more consistent, usable user experience.

7.4.2 Implement the Complete Widget Set

The current implementation has implemented a subset of the widget set specified

in SUIML. This limited implementation provides sufficient widgets to implement viable

test applications. However, the SUIML widget set includes more sophisticated widgets

which would offer interesting possibilities for implementing more sophisticated, powerful

user interfaces.

Future work to implement the complete widget set would allow further testing of

the types of layouts produced by SUI, the efficiency of layout and the viability of the

recursive layout used by the SUI rendering engine.

7.4.3 Improve Efficiency of Algorithms for Small, CPU-Limited Devices

Our test results on two different platforms show that there can be noticeable

differences in rendering time on different hardware and that on extremely small,

resource-limited devices the reduced performance may become noticeable by users as the

form complexity increases.

Attention to the efficiency of the rendering algorithms and designing more

efficient algorithms would provide a way to address these possible limitations.

It may also be possible to improve efficiency by adjusting the ordering of the

algorithms. In the current implementation, rendering proceeds by starting with the

algorithm suited to larger displays and moving progressively towards the algorithm

primarily aimed at smaller displays until a suitable layout is found. However, devices

with larger displays tend to have more processing power than smaller, handheld devices.

But, this strategy means that smaller devices will generally have to work through more of

the algorithms to reach a usable layout. By reversing the order in which algorithms are

attempted and starting with the algorithm intended for smaller displays it should be

possible to minimize the number of rendering attempts smaller, resource-limited devices

must make and, thus, improve rendering time on these devices.

7.4.4 Conduct User Testing

Our current work has involved the development of a proof-of-concept

implementation of a SUI system in Flash and informal assessment by the developer with

two test applications. This assessment of the resulting layouts and the effectiveness of the

layouts and, in particular, the recursive nature of the layout, has been conducted on an

informal, qualitative basis.

To better assess the effectiveness of the form layouts and the implications of

recursive rendering, formal user testing should be conducted.

REFERENCES

Abrams, M. Device-Independent Authoring with UIML. W3C Workshop on Web
Device lndependent Authoring, Bristol. October 2000.

Adams, P. Intro to HDML. WebMonkey, 9 May 2001.
http://hotwired.lycos.codwebmonke~l99/48/index3a.html?tw=desi~.

Ali, M. F., and Abrams, M. Simplifying Construction of Multi-Platform User
Interfaces Using UIML. UIML Europe 200 1, March, 200 1.

Allaire, Jeremy. Macromedia Flash MX: A Next-Generation Rich Client. March
2002. ht~://www.macromedia.coddesdev/mx/flash/~hitevaper~/ri~h~1ient.pdf.

Allaire, Jeremy. Macromedia MX: Components and Web Services. April 2002.
http://www.macromedia.coddesdev/mx/coldfusiodwhitepapers/components ws.
p&f.

Amazon.com. Amazon.com Web Services 2.0.
htt~://~~~.amazon.com/webservices.

Apache Axis Development Team. Apache Axis. http://ws.apache.org/axis/.

Aslam, S. WEB-Based Query Processing in a Database Course Project.
Proceedings of the 29" SIGCSE Technical Symposium on Computer Science
Education, Atlanta, 1998, pp. 297-30 1.

Auld, C., Spencer, P., Rafter, J., James, J., Addey, D., Gauti, O., Fudmundsson,
0. G., Kent, A., Schiell, A., and Surguy, 1. Practical XML for the Web, Glasshaus,
October 2002.

Barth, P. S. An Object-Oriented Approach to Graphical Interfaces. ACM
Transactions on Graphics, Volume 5, Number 2, April 1986.

Baudisch, P., Good, N., Bellotti, V., and Schraedley, P. Keeping Things in
Context: A Comparative Evaluation of Focus Plus Context Screens, Overviews,
and Zooming. Proceedings of the 2002 SIGCHI Conference on Human Factors in
Computing Systems, Minneapolis, 2002, pp. 259-266.

BEA Systems, Inc. httu://www.bea.com/.

Bederson, B. B., and Hollan, J. D. Pad++: A Zooming Graphical Interface for
Exploring Alternate lnterface Physics. Proceedings of the 7th Annual ACM
Symposium on User Interface Software and Technology, Marina del Rey, 1994.

Berners-Lee, Tim. Information Management: A Proposal. March 1989, May
1990. http://www.w3 .ordHistory/1989/vroposal.html.

Biclunore, T. W. and Schilit, B. N. Digestor: Device-Independent Access to the
World Wide Web. Selected Papers from the Sixth International Conference on the
World Wide Web, Santa Clara, 1997.

Bjork, S., Holmquist, L. E., Redstrom, J., Bretan, I., Danielsson, R., Karlgren, J.,
and Franzen, K. WEST: A Web Browser for Small Terminals. Proceedings of the
1 2 ' ~ Annual ACM SIGGRAPH Symposium on User Interface Software and
Technology, Asheville, 1999, pp. 187- 196.

Bleser, T., and Foley, J. D. Towards Specifying and Evaluating the Human
Factors of User-Computer Interfaces. Proceedings of the 1" Major Conference on
Human Factors in Computing Systems, Gaithersburg, 1982.

Bojanic, P. The Joy of XUL. February 2002.
httr>://~~~.m~~illa.org/vrojects/xul/iov-of-xul.html.

Brabrand, C., Moller, A., and Schwartzbach, M. I. The <bigwig> Project. ACM
Transactions on Internet Technology, Volume 2, Number 2, May 2002, pp. 79-
114.

Britt, J. On-Request Conversion of HTML to WML. TopXML.
http://www.vbxml.co~AP/html2wap.asp.

Browning, P., and Lowndes, P. JISC Techwatch Report: Content Management
Systems. September 2001. http://www.jisc.ac.uk/uploaded documents/tsw Ol-
02.pdf.

Buckingham, Simon. What is General Packet Radio Service. 2000.
http://www. ~smworld.com/technologv/mrs/intro.shtml.

Buyukkokten, O., Garcia-Molina, H., Paepcke, A., and Winograd. T. Power
Browser: Efficient Web Browsing for PDAs. Proceedings of the SIGCHI
Conference on Human Factors and Computing Systems, The Hague, 2000.

Buyukkokten, O., Kaljuvee, O., Garcia-Molina, H., Paepcke, A., and Winograd,
T. Efficient Web Browsing on Handheld Devices Using Page and Form
Summarization. ACM Transactions on Information Systems, Volume 20, Issue 1,
January 2002, pp. 82- 1 15.

Cerf, Vincent G. The Invisible Internet: Beyond the Post-PC Internet.
Communications of the ACMU, Volume 44, Number 9, September 2001, pp. 34-
40.

Champion, M, Ferris, C., Newcomer, E., and Orchard, D., eds. Web Services
Architecture. W3C Working Draft, 14 November 2002.
http://www.w3 .org/TRlws-arch/.

Coder, L. Dynamic HTML Conversion to WML.
httv:/ihtml2wrnl.sourceforge.net/.

Computerscope, Ltd. META Group: Web Content Management Market to Grow.
August 2002.
http://www.nua.ie/surveys/index.cgi?f=VS&a id=905358280&rel=true.

Crucial Technology. http://www.crucial.com/.

Danesh, Arman. Mastering ColdFusion 5, Sybex, 200 1.

de Baar, D. J. M. J., Foley, J., and Mullet, K. E. Coupling Application Design and
User Interface Design. Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, Monterey, 1992.

Deakin, N. XUL Tutorial. February 2003.
http://www.~~lvlanet.com/tutorials/xultu/.

DNA Data Bank of Japan. XML Central of DDBJ. httv://xml.ni~.ac.~p/index.html.

European Computer Manufacturers Association. ECMAScript Language
Specification. December, 1999. http://ecma-
international.ora/publications/files/ecma-s~Ecma-262.vdf.

Evolt.org. Your Clients Need a Contact Management System. March 2001.
httv://~~~.evolt.ora/article/rating/20/5 1271.

Exchange User Education. Microsoft Outlook Web Access in Microsoft Exchange
Server 2000. Exchange Core Documentation, May 2002.
http://download.microsoft.com/downloadexchplatinumbetde2kowd 1 .O/WIN98
MeXPIEN-US/e2k owa pdf.exe.

Foley, J. Gibbs, C., Kim, W. C., and Kovacevic, S. A Knowledge-Based User
Interface Management System. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, Washington, D.C., 1992.

Furnas, G. W. Generalized Fisheye Views. Proceedings of the SIGCHI
Copnference on Human Factors in Computing Systems, April 1986, pp. 16-23.

Garmo, R., Hagar, B., and Wojtowicz, M. Intranets. July 2001. http://www-
personal.umd.umich.edu/-r~armol. -

41. Gerken, T., and Ratschiller, T. Web Application Development with PHP, New
Riders Publishing, 2000.

Green, Mark. A Survey of Three Dialogue Models. Transactions on Graphics,
Volume 5, Number 3, July 1986.

Grundy, J., Wang, X., and Hosking, J. Building Multi-Device, Component-Based,
Thin-Client Groupware: Issues and Experiences. Third Australian Conference on
User Interfaces, Melbourne, 2002, pp. 71-80.

Guldman, A. Building Rich Internet Applications with Macromedia Flash MX
and ColdFusion MX. May 2002.
http://www.macromedia.com/resourcesibusiness/sam~le apps/customer/customer

apppdf.

Handspring. http://www.handspring..com/.

Harmonia, Inc. The UIML Vision. February 2000.
http://www.harmonia.com/resources/papers/whitepapers/UIMLVisionWhitePaper
V5.pdf.

Hayes, P. J., Szekely, P. A., and Lerner, R. A. Design Alternatives for User
Interface Management Systems Based on Experience with Cousin. Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, San
Francisco, 1985.

Hewlett-Packard Company. http://www.hp.com/.

Holland, J. An Introduction to PHP3. Linux Journal, Volume 2000, Issue 73, May
2000.

Hudson, S. Graphical Specification of Flexible User Interface Displays.
Proceedings of the 2nd Annual ACM SIGGRAPH Symposium on User Interface
Software and Technology, Williamsburg, November, 1989.

Hyatt, D., ed. XML User Interface Language (XUL) 1 .O. 2001.
http://~~~.rn~~illa.org/proiects/xul/xul.html.

Jacob, R. J. K. Using Formal Specifications in the Design of a Human-Computer
Interface. Communications of the ACM, Volume 26, Numbe r4, April 1983.

Janssen, C., Weisbecker, A., and Ziegler, J. Generating User Interfaces from Data
Models and Dialogue Net Specifications. Proceedings of the 1993 SIGCHI
Conference on Human Factors in Computing Systems, Amsterdam, 1993.

Kamada, T. Compact HTML for Small Information Appliances, W3C Note, 9
February 1998. http://www.w3 .org/TRl1998/NOTE-comvactHTML- 199802091.

55. Kaptelinin, V. A Comparison of Four Navigation Techniques in a 2D Browsing
Task. Proceedings of the SIGCHI Conference on Human factors in Computing
Systems, Denver, 1995, pp. 282-283.

Kim, W. C. and Foley, J. D. DON: User Interface Presentation Design Assistant.
Proceedings of the 3rd Annual ACM SIGGRAPH Symposium on User Interface
Software Technology, Snowbird, 1990.

Labrinidis, A., and Roussopoulos, N. Generating Dynamic Content at Database-
Backed Web Servers: cgi-bin vs. modqerl. ACM SIGMOD Record, Volume 29,
Issue 1, March 2000, pp. 26-3 1.

Lemay, L. and Danesh, A. Teach Yourself Web Publishing with HTML 4 in a
Week, Sams.net, 1997.

Livingston, D. Essential CSS and DHTML for Web Professionals, Prentice Hall
PTR, July 200 1.

Lok, S., Feiner, S. K., Chiong, W. M., and Hirsch, Y. J. A Graphical User
Interface Toolkit Approach to Thin-Client Computing. Proceedings of the 1 lth
International Conference on World Wide Web, Honolulu 2002, pp. 7 18-722.

Macromedia. Developing Rich Internet Applications with Macromedia MX. April
2002.
http://www.macromedia.com/desdev/mx/studio/whitepapers/rich internet apps.p
df. -

Macromedia. http://www.macromedia.com/software/flash/.

Macromedia. Macromedia ColdFusion MX.
http://www.macromedia.com/software/coldfusion/.

Macromedia. Macromedia JRun 4. http://www.macromedia.com/software/~irun/.

Macromedia. Macromedia Showcase. http://www.macromedia.com/showcase/.

Macromedia. Rich Internet Applications Development Center.
http://www.macromedia.com/desdev/rial.

Macromedia. Rich Internet Applications Web Site.
http://www.macromedia.com/resources/business/rich internet appd.

Manchester Airport. ArrivaldDepartures Information.
httv://www.manchesterairp~rt.co.uk~content.nsf/ivals Departures!ReadForm.

Marcus, A., and Chen, E. Designing the PDA of the Future. Interactions, January-
February 2002, pp. 34-44.

70. Marcus, A., Ferrante, J. V., Kinnumen, T., Kuutti, K., and Sparre, E. Baby Faces:
User-Interface Design for Small Displays. Proceedings of the 1998 SIGCHI
Conference on Human Factors in Computing Systems, Los Angeles, 1998.

McAlester, D. and Capraro, M. Skip Intro: Flash Usability and Interface Design,
New Riders, April 2002.

Menkhaus, G., and Pree, W. User Interface Tailoring for Multi-Platform Service
Access. Proceedings of the 7th International Conference on Intelligent User
Interfaces, San Francisco, 2002, pp. 208-209.

Microcell Solutions, Inc. http://www.fido.ca~~ortaVhome/homeuage. i sp?lang=en.

Microsoft Corportation. Customer Fact Sheet on Removal of Java from Windows.
February 26, 2003.
http://www.microsoft.com/windowsxp/pro/evaluatiodnews/re.asp.

Microsoft. Microsoft .NET. httu://www .microsoft.com/net/.

Morrison, M., Morrison, J., and Keys, A. Integrating Web Sites and Databases.
Communications of the ACM, Volume 45, Number 9, September 2002, pp. 8 1 -
86.

Mozilla.org. XRE (XUL Runtime Environment). January 2003.
http://www.mozilla.or~/vroiects/xul/xre.html.

Myers, B., McDaniel, R. G., Miller, R. C., Ferrency, A. S., Faulring, A., Kyle, B.
D., Mickish, A., Klimovitski, A., and Doane, P. The Amulet Environment: New
Models for Effective User Interface Software Development. IEEE Transactions
on Software Engineering, Volume 23, Issue 6, June 1997.

Nakajima, T. A Middleware Component Supporting Flexible User Interfaction for
Networked Home Appliances. ACM SIGARCH Computer Architecture News,
Volume 29, Issue 5, December 2001.

Neches, R., Brown, J. S., Sondheimer, N., Malone, T., and Williams, M.
Intelligence in Interfaces. Proceedings of the SIGCHUGI Conference on Human
Factors in Computing Systems and Graphics Interface, Toronto, 1987.

Oeschger, I. XUL Widget Cheatseet. September 2000.
http://www.mozilla.org/docs/xul/xulnotes/xulnote cheatsheet.htm1.

Olsen, D. J. A Programming Language Basis for User Interface Management.
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems: Wings for the Mind, 1989.

Oracle Corporation. httu://www.oracle.com/.

Palm, Inc. http://www.palm.com/us/.

Phelps, T. A., and Wilensky, R. The Multivalent Browser: A Platform for New
Ideas. Proceedings of the 200 1 ACM Symposium on Document Engineering,
Atlanta, 200 1, pp. 58-67.

Pocket PC Magazine. Pocket PC Phone Edition & Windows Powered
Smartphones "At a Glance": A Feature by Feature comparison.
http//www.pocketpcma~.com/bp2003/phones.as~CPU Speed.

Puerta, A., and Szekely, P. Model-Based Interface Development. Proceedings of
the 1994 SIGCHI Conference on Human Factors in Computing Systems, Boston,
1994.

Quaker Oats Company. Kid's Real Life Food Pyramid.
http://www.quakeroatmeal.com/PartnersNutritioP Avv.cfm.

Rees, Michael J. Evolving the Browser Towards a Atandard User Interface
Architecture. Third Australian Conference on User Interfaces, Volume 7,
Melbourne, 2002, pp. 1-7.

Refsnes Data. Introduction to SOAP.
http://www.w3schools.com/soap/soap intro.asp.

Refsnes Data. Introduction to WSDL.
http://www.w3schools.com/wsdl/wsdl intro.asp.

Refsnes Data. WAPIWML Tutorial. http://www.w3schools.com/wap/.

Research In Motion. http://www.rim.com/.

Rice, J., Farquhar, A., Piernot, P., and Gruber, T. Using the Web Instead of a
Window System. Proceedings of the SIGCHI Conference on Human factors in
Computing Systems, Vancovuer, 1996, pp. 103- 1 10.

Robertson, G. G., and Mackinlay, J. D. The Document Lens. Proceedings of the
6th Annual ACM Symposium on User Interface Sofhvare and Technology,
Atlanta, 1993.

Rogers Communications, Inc.
http://www.shopro~ers.com/store/wireless/overview.asp.

Rose, G., Khoo, H., and Straub, D. Current Technological Impediments to
Business-to-Consumer Electronic Commerce. Communications of the Association
for Information Systems, Volume 1, Number 16, June 1999, Article 16.

98. Samulowitz, M., Michahelles, F., and Linnhoff-Popien, C. Adaptive Interaction
for Enabling Pervasive Services. 2nd ACM International Workshop on Data
Engineering for Wireless and Mobile Access, Santa Barbara, 2001, pp. 20-26.

99. Sarkar et al. Stretching the Rubber Sheet: A Metaphor for Viewing Large Layouts
on Small Screens. Proceedings of the 6th Annual ACM Symposium on User
Interface Software and Technology, Atlanta, 1993, p. 8 1-91.

100. Schilit, B. N., Trevor, J., Hilbert, D. M., and Tzu, K. K. m-Links: An
Infrastructure for Very Small Internet Devices. Proceedings of the 7Ih Annual
International conference on Mobile Computing and ~ e & r k i n ~ , Rome, 2001, pp.
122-13 1.

Schuster, J. Defining User Interface/Application Interactions. April 2002.
http://www.harmonia.com/resources/papers/ UI-
App Interactions v02.pdf.

Shim, R. Removable Flash Cards Continue to Shrink. ZD Net Autralia Reviews,
11 December 2002.
http://www.zdnet.com.au/reviews/computers/storage/sto/O,2OOOO23527,202705
99,OO.htm.

Singh, G. and Green, M. Chisel: A System for Creating Highly Interactive Screen
Layouts. Proceedings of the 2nd Annual ACM SIGGRAPH Symposium on User
Interface Software and Technology, Williamsburg, 1989.

Spence, R. A Taxonomy of Graphical Presentation.

Steinman, D. The Dynamic Duo: Cross-Browser Dynamic HTML.
http://www .dansteinman.com/dvnduo/.

Su, N. M., Sakane, Y ., Tsukamoto, M., and Nishio, S. Raj icon: Remote PC GUI
Operations Via Constricted Mobile Interfaces. Proceedings of the 8th Annual
International Conference on Mobile Computing and Networking, Atlanta, 2002.

Sun Microsystems. http://_iava.sun.com/.

Sun Microsystems. Java 2 Platform, Micro Edition.
http://iava.sun.com/i2me/i2me-ds.pdf.

Sun Microsystems. Microsoft Agrees to Settlement that Protects Future Integrity
of the Java Platform. http://java.sun.com/lawsuit/.

Techtarget.com. Definition of "Intranet".
http://searchwebservices. t e c h t a r g e t . c o m / O s i d 2 6 nci2 12377.00.html.

Trevor, J., Hilbert, D. M., Schilit, B. N., and Tzu, IS. IS. From Desktop to
Phonetop: A UI for Web Interaction on Very Small Devices. Proceedings of the
1 4 ~ ~ Annual ACM SIGGRAPH Symposium on User Interface Software and
Technology, Orlando, 200 1.

Turau, V. A Framework for Automatic Generation of Web-based Data Entry
Applications Based on XML. Proceedings of the 2002 ACM Symposium on
Applied Computing, Madrid, 2002, pp. 1 121- 1 126.

Upsdell, C. Browser News. http://www.upsdell.com/BrowserNews/browsers.htm.

VoiceXML Forum. http://www.voicexml.com/.

Vuorimaa, P., Ropponen, T., von Knorring, N., and Honkala, M. A Java Based
XML Browser for Consumer Devices. Proceedings of the 2002 ACM Symposium
on Applied Computing, Madrid, 2002, pp. 1094- 1099.

WebMethods, Inc. http://www.webmethods.com/.

Wiecha, C., and Boies, S. Generating User Interfaces: Principles and Use of Its
Style Rules. Proceedings of the 3rd Annual ACM SIGGRAPH Symposium on
User Interface Software and Technology, Snowbird, 1990.

Wiecha, C., Bennett, W., Boies, S., and Gould, J. Generating Highly Interactive
User Interfaces. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems: Wings for the Mind, 1989.

WizeGuides.com. Interactive subway map of Boston.
http://www.wizeguides.com/wize~uides/.

World Wide Web Consortium. A Little History of the World Wide Web. 1995.
http://www.w3.ordHistorv.html.

World Wide Web Consortium. About SVG: 2d Graphics in XML. 2004.
http://www.w3.ordGravhics/SVG/About.html.

World Wide Web Consortium. SVG Implementations. 2004.
http://www.w3 .ordGravhics/SVG/SVG-Imvlementations.htm8.

World Wide Web Consortium. XForms: The Next Generation of XForms. 2004.
http://www.w3c.orrr/MarkUp/Forms/.

XMethods, Inc. http://www.xmethods.com/.

126. Adobe Systems. Adobe Form Server: Easy Design, Delivery, and Processing of
Electronic Forms. 2004.
http://www.adobe.cod~roducts/server/foserver/pdfs/formseer white paper.^
df. -

APPENDIX 1

SUIML: Scalable User Interfaces Markup Language

Notes

SUIML is XML-based; all tags must be closed either with a closing tag as

i n c t a g a t t r i b u t e s . . .> . . . < / t a g > orwithaclosing slashas

in < t a g a t t r i b u t e s . . . />.

Case is not relevant for tag and attribute names

All tags have two required attributes that are common across all tags:

o name: a unique name referring to the form object - this is later

used if callbacks from Web service method invocations.

o l a b e l : all form objects have a label which are used in different

ways for different objects.

Some tags are implemented in the current version of SUI while others are

left for future implementation:

o Implemented

a p p l i c a t i o n

box

b u t t o n

c h e c k b o x

image

item

label

radio

radioGroup

text

select

o Left for future implementation

dialog

Other tags are under consideration but have not been defined as part of the

SUIML language:

o grid

column

row

o rowEntry

o calendar

o menu

application

This tag needs to be the first tag in a form definition if the form will invoke a

back-end Web service.

Required Attributes

s e r v i c e The URL of the WSDL definition file for
the Web service

Status

Left for future implementation.

box

A grouping of form elements which are laid out as a collective whole; they cannot

be separated in the layout.

Required Attributes

name A unique name referring to the box

l a b e l A label for the box; will be displayed as the
title of the box

--

Optional Attributes

border Indicates if the box should have a border;
default is false. Possible values are true or
false.

Possible Parents

This tag can be contained in the following tags:

box

tabpanel

d ia log

Child Elements

This tag can contain the following tags:

box

t a b

image

button

radioGroup

checkbox

t e x t

l a b e l

s p l i t

d ia log

s e l e c t

Status

Implemented.

button

A button.

Required Attributes

Name

Label

Optional Attributes

A unique name referring to the button

A label for the button; will be displayed as
the text displayed in the button

Web service method to call when the
button is clicked; name of the field will be
passed as an argument to the method.

checkbox

A check box.

Required Attributes

name A unique name referring to the check box

label A label for the check box; will be displayed
as the text for the check box

v a l u e

Optional Attributes

The value associated with the radio button
which is sent as an argument to Web
service methods

Web service method to call when the radio
button is selected; name of the field will be
passed as an argument to the method.

Web service method to call when the radio
button is unselected; name of the field will
be passed as an argument to the method.

Possible Parents

This tag can be contained in the following tags:

box

t abpane l

s p l i t p a n e l

d i a l o g

Child Elements

This tag can contain the following tags: none.

Status

Implemented.

dialog

A dialog box.

Required Attributes

name A unique name referring to the dialog box

l a b e l A label for the dialog box; will be
displayed as the title of the dialog box

Optional Attributes

Web service method to call when the
dialog box is opened; name of the field will
be passed as an argument to the method.

Web service method to call when the
dialog box is closed; name of the field will
be passed as an argument to the method.

Possible Parents

This tag can be contained in the following tags:

box

tabpanel

s p l i t p a n e l

d i a l o g

Child Elements

This tag can contain the following tags:

box

t a b

image

but ton

radioGroup

checkbox

t e x t

l a b e l

s p l i t

d ia log

s e l e c t

Status

Left for future implementation.

image

An image (a static image field).

Required Attributes

n__ A unique name referring to the image field

l a b e l A label for the field; will be displayed as
the caption of the field

Optional Attributes

s c a l e Percentage scaling of the image; default is
100%

Possible Parents

This tag can be contained in the following tags:

box

d ia log

Child Elements

This tag can contain the following tags: none.

Status

Implemented.

item

A item in a selection list.

Required Attributes

l a b e l

name

A label for the item; will be displayed as
the text for the item

A unique name referring to the item

value The value associated with the item which is
sent as an argument to Web service
methods

Optional Attributes

Web service method to call when the item
is unselected; name of the field will be
passed as an argument to the method.

selectMethod

Possible Parents

This tag can be contained in the following tags:

select

Web service method to call when the item
is selected; name of the field will be passed
as an argument to the method.

Child Elements

This tag can contain the following tags: none.

Status

Implemented.

1 abel

A label (a static text field).

Required Attributes

name A unique name referring to the label field

name A unique name referring to the label field

l a b e l A label for the field; will be displayed as
the text of the field

Optional Attributes

s i z e Number of characters per line in which
should be viewable; the default is to allow
the rendering engine to determine this
value.

l i n e s The number of lines to display; the default
is a single-line text field.

Possible Parents

This tag can be contained in the following tags:

box

t a b p a n e l

s p l i t p a n e l

d i a l o g

Child Elements

This tag can contain the following tags: none.

Status

Implemented.

r a d i o

A radio button.

Required Attributes

name A unique name referring to the radio button

label A label for the radio button; will be
displayed as the text for the radio button

value The value associated with the radio button
which is sent as an argument to Web
service methods

Optional Attributes

Web service method to call when the radio
button is selected; name of the field will be
passed as an argument to the method.

Web service method to call when the radio
button is unselected; name of the field will
be passed as an argument to the method.

Possible Parents

This tag can be contained in the following tags:

radioGroup

Child Elements

This tag can contain the following tags: none.

Status

Implemented.

radioGroup

A group of related radio buttons.

Required Attributes

name

label

A unique name referring to the group of
radio buttons

A label for the group of radio buttons; will
be displayed as an overall prompt for the
group

Possible Parents

This tag can be contained in the following tags:

box

tabpanel

splitpanel

dialog

Child Elements

This tag can contain the following tags:

radio

Status

Implemented.

t abGroup

A group of related tab panels.

Required Attributes

name A unique name referring to the group of tab
panels

label A label for the group of tab panels; will be
displayed as an overall title for the group

Possible Parents

This tag can be contained in the following tags:

box

dialog

Child Elements

This tag can contain the following tags:

Status

Left for future implementation.

tabpanel

A tab panel.

Required Attributes

name A unique name referring to the tab panel

l a b e l A label for the tab pabel; will be displayed
as the text in the tab of the tab pane

Optional Attributes

Web service method to call when the tab
panel is selected; name of the field will be
passed as an argument to the method.

Web service method to call when the tab
panel is unselected; name of the field will
be passed as an argument to the method.

Possible Parents

This tag can be contained in the following tags:

tabGroup

Child Elements

This tag can contain the following tags:

box

t a b

image

but ton

radioGroup

checkbox

t e x t

l abe l

s p l i t

d ia log

s e l e c t

Status

Left for future implementation.

text

A text field for entering text.

Required Attributes

r-=--- A unique name referring to the text field

l abe l A label for the text field; will be displayed
as a prompt for the text field

Optional Attributes

s i z e Number of characters per line in which
should be viewable; the default is to allow
the rendering engine to determine this
value.

lines The number of lines to display; the default
is a single-line text field.

Web service method to call when the form
field value changes; name of the field will
be passed as an argument to the method.

Possible Parents

This tag can be contained in the following tags:

box

dia log

Child Elements

This tag can contain the following tags: none.

Status

Implemented.

select

A selection list.

Required Attributes

name

label A label for the list; will be displayed as the
prompt for the list.

Possible Parents

This tag can be contained in the following tags:

box

tabpanel

splitpanel

dialog

Child Elements

This tag can contain the following tags:

item

Status

Implemented.

s p l i t Group

A group of related split panels.

Required Attributes

name A unique name referring to the group of
split panels

label A label for the group of split panels; will be
displayed as an overall title for the group

Possible Parents

This tag can be contained in the following tags:

box

splitpanel

dialog

Child Elements

This tag can contain the following tags:

splitpanel

Status

Left for future implementation.

spli tPane l

A split panel.

Required Attributes

name A unique name referring to the split panel

label A label for the split panel; will be
displayed as the header in the split panel

Optional Attributes

Web service method to call when the split
panel is selected; name of the field will be
passed as an argument to the method.

Possible Parents

unselectMethod

This tag can be contained in the following tags:

Web service method to call when the split
panel is unselected; name of the field will
be passed as an argument to the method.

Child Elements

This tag can contain the following tags:

box

tab

image

button

checkbox

text

label

split

dialog

select

Status

Left for future implementation.

