
DETECTING PEDESTRIANS IN STILL IMAGES

USING LEARNED SHAPE FEATURES

Payam Sabzmeydani

B.Sc., Sharif University of Technology, 2003

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F THE REQUIREMENTS FOR THE DEGREE O F

MASTER OF SCIENCE

in the School

of

Computing Science

@ Payam Sabzmeydani 2006

SIMON FRASER UNIVERSITY

Fall 2006

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author

APPROVAL

Name:

Degree:

Title of thesis:

Examining Committee:

Date Approved:

Payam Sabzmeydani

Master of Science

Detecting Pedestrians in Still Images Using Learned Shape

Features

Dr. Ze-Nian Li

Professor, Computing Science

Simon Fraser University

Chair

Dr. Greg Mori,

Assistant Professor, Computing Science

Simon Fraser University

Senior Supervisor

Dr. Richard Vaughan,

Assistant Professor, Computing Science

Simon Fraser University

Supervisor

Dr. Anoop Sarkar,

Assistant Professor, Computing Science

Simon Fraser University

Examiner

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the "Institutional Repository" link of the SFU Library website
<www.lib.sfu.ca> at: ~http:llir.lib.sfu.calhandlell8921112>) and, without changing
the content, to translate the thesislproject or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2006

Abstract

The problem of detecting pedestrians in images has received much attention from the com-

puter vision community because of its variety of applications. This problem can be consid-

ered as a two-class classification problem by labeling windows cropped from the images as

pedestrians or non-pedestrians. We present two novel methods for detecting pedestrians in

still images. The first method uses coarse shape cues, and is based on a likelihood ratio test.

Likelihoods for shape descriptors on pedestrian and non-pedestrian images are obtained

using kernel density estimation. In the second approach, we introduce a new method for

learning local discriminative features from training examples, and use them for object clas-

sification. This method uses two folds of the AdaBoost classifier, first for feature creation

and second to train the final classifier. The quantitative results show that the performance

of this method is better than the state of the art pedestrian detector.

Acknowledgments

I am mostly grateful to Dr. Greg Mori who has been, and will always be, more than just

a supervisor to me. His constant support has been the biggest encouragement through my

studies.

I would like to thank my dear parents for their unconditional love and endless support,

from near or far, in every day of my life.

And last, but definitely not the least, a very special thanks to my beloved finace, Maryam,

for her constant love and invaluable support in every step I take.

Contents

Approval ii

Abstract iii

Acknowledgments iv

Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 The Problem of Pedestrian Detection . 1

1.2 Pedestrian Detection Applications . 2

1.3 Approach . 3

1.3.1 First Method: Kernel Density Estimation 4

1.3.2 Second Method: AdaBoost . 6

2 Previous Work 9

2.1 Object Representation . 10

2.1.1 Global Features . 10

2.1.2 Local Features . 13

2.2 Classification . 17

3 Detecting Pedestrians Using Coarse Shape Cues 19

3.1 Statistical Representation of Pedestrians . 20

. 3.1.1 Shape Features-Geometric Blurs 22

. 3.1.2 Classification-Kernel Density Estimation 23

. 3.2 Experimental Results 25

. 3.2.1 Different Sampling Designs 27

. 3.2.2 Bandwidth Tuning 28

. 3.2.3 Evaluation 29

. 3.3 Analysis 31

4 Detecting Pedestrians Using Boosted Features 35

. 4.1 Local Discriminative Features via AdaBoost 36

. 4.1.1 An introduction to AdaBoost 38

. 4.1.2 Low-Level Features 40

. 4.1.3 Mid-Level Features 41

. 4.1.4 Final Classifier 44

. 4.2 Experimental Results 46

. 4.2.1 Data Sets 46

. 4.2.2 Parameters and Settings 47

. 4.2.3 Bootstrapping 51

4.2.4 Cascade . 53

. 4.2.5 Normalization 54

. 4.3 Analysis 55

5 Conclusions 59

. 5.1 Comparison and Discussion 59

. 5.2 Future Work 60

Bibliography 63

List of Tables

4.1 AdaBoost . 39

. 4.2 Fixed Parameters 47

. 4.3 Different mid-level feature parameters 49

vii

List of Figures

1.1 Examples of pedestrian and non-pedestrian images. 4

1.2 Examples of pedestrian and non-pedestrian images from our training set and

their intensity gradients in x and y directions. 5

1.3 An overview of our Kernel Density Estimation detector. First graph is the

training process and the second one shows the test process. 6

1.4 Illustration of mid-level features. A mid-level feature is a set of some low-level

edge features that are common in one object class but not in the other class. 7

1.5 An overview of the training phase of our AdaBoost detector 7

1.6 An overview of the testing part of our AdaBoost detector 8

2.1 Dalal and Triggs' feature representation [6]. (a) The average gradient image.

(b) Maximum positive SVM weight for different blocks. (c) Likewise for

negative SVM weights. (d) A test image. (e) It's computed HOG descriptor.

(f,g) HOG descriptors weighted by respectively the positive and the negative

SVM weights. (02005 IEEE, by permission) 15

2.2 Edgelet features used by Wu and Nevatia [51] (02005 IEEE, by permission) 16

3.1 (a) A sparse signal S. (b) The geometric blur of S around the feature point

marked in red. We only sample the geometric blur of a signal at a fixed set

of points {si). (02005 IEEE, by permission [5]) 22

3.2 (a) An example of a pedestrian. (b) The oriented gradient signal in one of

four directions (x axis). (c) Geometric blur descriptor, and sample points at

a single location. (d) Blurs for 4 sample distances. Because the sample points

are fixed around the feature point, these blurs are computed once for each

image . 24

viii

(a) Kernels of some sample points of two classes in 1D (b) Undersmoothed

Kernel density estimation of the two classes (bandwidth = 5). (c) A good

KDE (bandwidth = 50) (d) Oversmoothed KDE (bandwidth = 500) 25

Examples of pedestrian from INRIA (top row) and MIT (bottom row) datasets.

The INRIA dataset is designed to be a hard dataset, by adding examples with

more pose and background variety, and sometimes partial occlusions. 26

Performance of different geometric blur designs on INRIA set 28

Performance of different geometric blur designs on MIT set 29

Results of cross validation test on different bandwidth parameters for the

Gaussian kernel. 30

Final results of our GB-KDE based detector on the INRIA dataset compared

. with the results of HOG-SVM detector of Dalal and Triggs. 31

(a) Final results of geometric blur based detector on the MIT dataset. (b)

Dalal and Triggs' [6] tests using different approaches on the MIT dataset.

(02005 IEEE, by permission) .
Examples of per-pixel likelihood ratios. Top row show input images, likeli-

hood ratios below. Bright values indicate high likelihood of pedestrian, dark

values indicate low values. (a-d) show instances of partial occlusion. Note

that in areas of occlusion, such as the bag in (a), or leg of other person in

(b), low likelihood ratios exist. (e-g) show examples of likelihood ratios for

un-occluded people for comparison.
Examples of errors made by our detector. (a) False negatives with lowest

likelihood ratio. (b) False positives with highest likelihood ratio. False nega-

tives typically consist of people in atypical poses, or substantial clutter. False

positives usually contain strong vertical edges mimicking the torso and leg

boundaries.

Illustration of a hypothetical mid-level feature and the actual learned mid-

level features for that window. The two different feature windows separate

. the different features selected from each of the object classes. 42

Sum of weights of the low-level edge features selected for all the mid-level

features across the detection window. (a) Features that belong to pedestrian

. class, (b) features that belong to non-pedestrian class. 43

Illustration of low level features inside the final classifier. (a) pedestrian class

features, (b) non-pedestrian class features. 45

Performance of the detector using different sets of mid-level feature settings.

Having small, middle, and big features at the same time performs the best. . 48

Comparison results of adding more levels of mid-level feature sizes to the

detector.. 50

Effect of using different initial weight settings in AdaBoost. There is no

. significant advantage on choosing any of the settings. 51

Influence of having different number of mid-level features inside the final

classifier on the performance of the detector. 52

Effect of bootstrapping mid-level features and final classifier on the detector's

performance. 53

Cascade of classifiers introduced by Viola and Jones [47]. (02001 IEEE, by

permission) . 54

Effect of normalizing mid-level features on the detector's performance. 56

Overall Performance of our AdaBoost detector compared to Dalal and Triggs'

HOG detector. 57

Results of running the detector on some of the test images. The multiple

detections are because of multi-scale search, and one pedestrian might be

detected in different scales. Some non-pedestrians are also falsely detected as

pedestrians (false positives) in some of the images. 58

5.1 Comparison results of our two detectors and HOG detector. 61

Chapter 1

Introduction

1.1 The Problem of Pedestrian Detection

Finding and recognizing objects in digital images is one of the main computer vision prob-

lems. The terms Object detection and Object recognition are broadly used in the computer

vision literature, and sometimes interchangeably. In this thesis, we define them as follows:

Object recognition is the task of finding a specific object in an image (e.g. face of a partic-

ular person, or a specific book). Object detection is finding occurrences of a known object

class in an image (e.g. faces, books). In this thesis, we present two new methods for object

detection in still images, with experimental results on the pedestrian detection application.

The object detection problem, in general, is a much harder problem than object recogni-

tion. For object recognition, the target object is fixed and extracting any feature from that

object can be helpful during the recognition task. But in object detection, because of the

intra-class differences between the members of the object class, we cannot use the feature

cues that are common in object recognition (e.g. color cue). Instead, for the detection

task, features that are representative of the intra-class similarities as well as those that are

very different between different classes should be used. Extraction of these features is not a

trivial task and different machine learning techniques are used to achieve this goal.

Beside the usual difficulties of detecting objects, pedestrians in particular are one of

the hardest classes because of their wide range of appearances. Different clothing, different

body shapes from person to person, non-rigidity and high dimensionality of human body

poses are some of the main factors that make the problem of finding pedestrians a harder

problem than detection of many other objects.

CHAPTER 1. INTRODUCTION 2

In our work, like most of the other object detection systems, we assume we have only

two classes: the object class (pedestrians) and the non-object class (background). The goal

is to train a classifier that given an image, it can correctly predict its class; object class or

non-object class.

In this work, we present two new approaches for the pedestrian detection problem, each

employing different training and testing approaches. The performance of our second detector

is better than the current state of the art pedestrian detectors, therefore the main focus of

this thesis will be on that method.

1.2 Pedestrian Detect ion Applications

Robust detection of pedestrians in images is important for many applications, such as surveil-

lance systems, robotics, intelligent vehicles, and image search and retrieval. Some of these

applications, such as intelligent vehicles and robotics, are very sensitive to noise and er-

roneous detections can lead them into disastrous accidents. Therefore to apply automatic

detection systems in these applications we need to have very high accuracy detection sys-

tems, that can minimize the number of detection misses and false alarms at the same time.

Another important factor other than the accuracy, is the running time of the detection

system. Almost all the named applications need a real-time detection system. In the past

few years, new detection approaches with the help of computer hardware improvements,

have achieved this goal and there is a growing use in object detection systems in real life

applications.

Currently, most surveillance systems rely on constant human supervision which is both

costly and error-prone due to operator fatigue. By having a reliable pedestrian detector, less

crowded surveillance scenes can be monitored semi-automatically, with less need of human

supervision and reduced amount of error. A surveillance system can provide us video data,

which contains more information than just a still image. But still by having a better still

image pedestrian detector embedded into a video pedestrian detector, we can improve the

results of the detection system.

Another useful application can be image and video search and retrieval. You might

want to search for some parts of a video or some images from a database, by just entering

some text queries related to existing objects in them. By having reliable object detection

systems, an image database can be annotated and indexed using that systems beforehand.

CHAPTER 1. INTRODUCTION 3

Such system can be useful on wide variety of systems like search on the rapidly growing

video content on the web or summarizing the surveillance video contents.

Pedestrian detection systems are also incorporated into automatic driver-assistance sys-

tems in intelligent vehicles. If the car itself can detect other objects in the road, especially

pedestrians, it can monitor the road and alarm the driver about dangerous conditions, or

in serious cases it can take action by itself to prevent the accident.

1.3 Approach

As mentioned before, pedestrians are one of the most challenging categories for object

detection. But because of the wide range of applications that exist for pedestrian detection,

many researchers have contributed to the problem.

To find pedestrians in an image we use a window-scanning method. We train a fixed

size image classifier (i.e. 64 x 128 pixels in our experiments), that can classify images of

that size as a pedestrian or a non-pedestrian. To search an image bigger than the size of

this detection window, we scan the image exhaustively in all possible locations and scales.

We crop different parts of the image with the classifier size and test them with the classifier.

This way we can find all the pedestrians in the image with different sizes not smaller that

our detection window. Figure 1.1 shows examples of pedestrian and nonpedestrian images

from our training set that are cropped to our classifier size.

In any detection system, we need to train the detector first, and to do so, we need two

sets of training examples, one for each object class (i.e. pedestrian class and non-pedestrian

class). Using these training examples one can try to estimate the distribution of each class

in an arbitrary feature space. Another approach is to build a discriminative classifier of the

two classes in the feature space instead of estimating the whole distribution. In this thesis

we will present two methods, each applying one of these approaches to solve the problem

of pedestrian detection. We will refer the first method as the Kernel Density Estimation

method and the second one as AdaBoost method. Both methods use the same low level

signals (features) to build their models on them. These low level signals are the gradients

of image intensity in different directions. Figure 1.2 shows some examples of pedestrian and

non-pedestrian images and their extracted gradients in two different directions. We will

describe these two methods in detail in Chapter 3 and Chapter 4.

CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of pedestrian and non-pedestrian images.

1.3.1 First Method: Kernel Density Estimation

In the first method, we build statistical likelihood distributions for each pixel. To estimate

class distributions, we use kernel density estimation, using geometric blur descriptors (GBD)

[4] as the feature space in which the kernels are defined. An overview of the algorithm is as

follows:

In the training phase, we take every training image belonging to both classes; and we

extract the low level signals that we use for our geometric blur descriptors. These low

level signals are simple gradients in four different directions. Using the gradient signals,

we compute a geometric blur descriptor a t each pixel for every image. Considering each

pixel location separately, we have a number of GBDs for that pixel (each belonging to one

training image) for both classes. By using each of these descriptors as one kernel in the

descriptor space, we will create Kernel Density Estimation of our GB Descriptors for both

classes at all the pixels.

In the test (detection) phase, for each test image, we will compute the per pixel geometric

blur descriptors the same way we did for training images. At this point by using the kernel

density estimates for both classes, we compute the likelihood of each pixel belonging to

each of the classes (person and non-person). By using a coarse likelihood ratio test, which

includes the likelihood of all the pixels, the detector will decide which class the image belongs

to.

CHAPTER 1. IATRODUCTION

Training
images of
both classes

Test L
image

Extract
DW level signals
(Gradients)

Training
Compute

geometric blur
descriptors

low level signals
Gradients

Compute
,eometric blu

descriptors

For each pixel:
Add its GBD to tl
kernel of its clas

;timate KDf usin{
ID for both class

Kernels for
-) both classes

per pixel

1g
Person /
non-person
classification

Compute
cllhood ratio -

Figure 1.3: An overview of our Kernel Density Estimation detector. First graph is the
training process and the second one shows the test process.

1.3.2 Second Method: AdaBoost

Our second method for pedestrian detection uses AdaBoost to model the boundary of the

two classes. The training part of this approach is consisted of three layers. An overview of

these layers is as follows:

1. Low-level Features; Weak Classifiers: The input to this layer is raw training images.

We extract the gradients responses of each image in different directions, and compute

simple sums of these responses around each pixel. These sums are the low level features

and will be used as the wealc classifiers of the next step.

2. Mid-level Descriptors; Semi-strong Classifiers: We use a boosting algorithm, Ad-

aBoost [9], to select subsets of the weak classifiers from the first layer to construct

some better classifiers in some local regions of the detection window. These boosted

classifiers will act as our mid-level descriptors. We run the AdaBoost for some arbi-

trary small windows in the image, using as its input, only the wealc classifiers falling

in that particular window. The output of this layer are some local discriminative

features in the detection window. Figure 1.4 shows a high level illustration of one

mid-level feature inside the detection window. This feature contains some low-level

features that are usually different in the two pedestrian and non-pedestrian classes.

3. Final Classzfier: The mid-level feature descriptors from previous layer can only act

in a local neighborhood in the image and therefore their overall classification power

CHAPTER 1. INTRODUCTION

Figure 1.4: Illustration of mid-level features. A mid-level feature is a set of some low-level
edge features that are common in one object class but not in the other class.

is still far below an accepted point. By merging them together we can combine the

information from different parts of the image. In order to archive this goal, we use Ad-

aBoost for the second time to combine those information and train our final classifier.

This time we use our mid-level descriptors as its input, and the algorithm will choose

the best subset among them that can separate the two classes as much as possible.

Training
images -7

I nw-level
!atures AdaBoost Final

over Local
indows Features

Figure 1.5: An overview of the training phase of our AdaBoost detector

The main contribution of this thesis is the introduction of the trainable mid-level de-

scriptors. These descriptors are low-dimensional, highly discriminative, and easily scalable.

We will discuss these attributes in more detail and justify them in chapter 4.

CHAPTER 1. INTRODUCTION

I11 the detection phase, We only need to access a subset of low-level features in each

window. This subset contains those low-level features that form the mid-level features

selected by the final classifier. Therefore the detection process is very fast and can be

applied in real-time. Figure 1.5 and Figure 1.6 illustrate the described training and testing

procedures.

Pedestrian/
) non-pedestrian

image classification

Compute mid-level
Features used

by Final classifier

Apply
inal Classifie~

Figure 1.6: An overview of the testing part of our AdaBoost detector

The main difference between this approach and previous approaches to this problem, is

the existence of the middle layer. IVIost other pedestrian detectors use a set of fixed and

pre-defined descriptors and use different machine learning algorithm to train a classifier

using those descriptors. For example Dalal and Triggs [6], use a set of pre-defined set of

histograms of oriented gradients (HOG) or Wu and Nevatia [51] use a set of fixed edgelet

features as their descriptors. These sorts of fixed features can cause two kinds of problems:

First, the defined feature set cannot guarantee that it includes all the possible discriminative

features for the two classes [51]. Second, feature set might contain too many information-less

features that adds too much unwanted noise to the final classifier, and therefore decrease

the detection rate [6].

AdaBoost, is an adaptive boosting algorithm that is widely used in machine learning

applications and more specifically for object detection problems. Viola and Jones [47] use a

cascade version of AdaBoost for fast face detection using Haar-like wavelet features as the

weak classifiers, and in later work Viola et al. [48] use the same AdaBoost configuration for

pedestrian detection. Wu and Nevatia 1511 use a nested AdaBoost for pedestrian detection

with edgelet features as its input.

Chapter 2

Previous Work

The problem of object detection and particularly pedestrian detection has received much

attention from the computer vision community. The attempt for analyzing and modeling

humans and their motion from the video and image data goes back to more than two decades

with the early works of 07Rourke and Badler [31] and Hogg [17]. Another old approach is

the work by Rohr [36], where he finds and tracks pedestrians using a model-based approach.

He represents the human body by a volume model and match the contours of these models

with edges in the test image to extract different body parts. Various employed methods can

be categorized in different ways such as the underlying appearance measures, higher level

features used to bundle the raw measures, and the classifier they adopt.

There are a couple of good surveys about human tracking and motion analysis, for exam-

ple Gavrila7s survey on visual analysis of human movement [12] and Moeslund and Granum's

survey about vision-based human motion capture [25]. There are also some surveys on re-

lated object detecting systems (e.g. Hjelmas and Low survey for face detection [16]), that

explain different approaches for those applications. Unfortunately there is no survey that

solely focus on detecting pedestrians in static images. This chapter presents a brief review of

different approaches for pedestrian detection and categorizes them based on their similarities

and differences.

The problem of pedestrian detection is one of the challenging problems in object detec-

tion. Variability in clothing, pose, and lighting, the presence of background clutter, and

the small number of pixels with which pedestrian detection must be performed, make this

object detection task a difficult one. Because of these difficulties a wide variety of meth-

ods has been used by different researchers during the last decades to solve this problem.

CHAPTER 2. PREVIOUS WORK 10

These different methods, in general, have many similarities and differences. In this chapter

we will categorize these methods from different point of views and point out some of their

advantages and disadvantages.

2.1 Object Representation

For any object detection task, we need to represent the object in a feature space using

the available visual cues. The two main cues of information for detecting objects are their

color and edge-formation (texture can be considered as a higher level combination of these

cues). In some object recognition methods color is being used as the main feature cue [46].

But in most object detection problems, such as pedestrian detection, because of the color

differences between different objects in the same object class, this cue cannot be used in a

straightforward way. As a result, edges are considered as the best feature cue for object

detection and are used widely in a variety of different detectors. Edge information can be

captured and processed in many different ways in different object detection applications. It

can be extracted using simple gradient filters, difference of Gaussian filters, wavelet filters,

or even background subtraction methods. The edge information then might be processed

in different ways to form some descriptors and templates such as histograms (e.g. HOG [6]

and SIFT [22]), sets of edge samples (e.g. geometric blur [5] and edgelet features [51]), or

overall body formation (e.g. distance transforms [14]).

To capture the shape of a human (or any other object), one can focus on local features

and use them for detecting the whole body, or can use a global feature that captures the

whole body shape at once. In the following section we will briefly describe some of the

approaches that use global or local features to detect pedestrians.

2.1.1 Global Features

Methods that use global features for detection try to make a model of the objects shape

as one unit. One popular kind of these features is the silhouette of the object. By using

background subtraction, one can extract the silhouette of the objects and use that as the

object's representation. Using background subtraction has its own problems, and limita-

tions. It is not feasible to use background subtraction for still images, and we need to have

video data. Also the video data should be captured from a stationary camera to make the

background be the same in every frames.

CHAPTER 2. PREVIOUS WORK 11

The extracted foreground information is mostly used in two ways; some only capture the

silhouette boundaries as the object feature, but others use all the edge information inside

this silhouette (foreground) region and use that as their global cue. In both cases edge is

the feature that is being considered, one is the edge between the foreground (object) and

the background, and the other the edges inside the objects. To distinguish them during this

chapter, we will call the former silhouette and the latter edge map.

One way to formalize edge information is to convert them into a distance transform,

which is a common way of matching two edge maps. Gavrila and Philomin [14] design

their object detection method based on distance transforms and template matching. Their

method uses a template hierarchy to capture the variety of object shapes. They use chamfer

matching (introduced by Barrow et al. [3] for image matching) to compare the test image

edge map with the hierarchy templates to find the best match in an efficient way. In a

later work Gavrila et al. [13] integrate an extended version of their previous work with some

additional modules (such as trajectory estimation) into an actual vehicle.

Hausdorff distance was first used as a measure for image comparison by Huttenlocher et

al. [20]. Felzenszwalb [7] uses Hausdorff distance for a human detection system. He trains

a single model by making a probability model from Hausdorff distances of edge maps of the

training examples.

Zhao and Nevatia [53, 541 use human shape models to interpret the foreground in a

Bayesian framework by employing Markov chain Monte Carlo techniques. Their features are

the foreground silhouettes computed by using background subtraction, and their Bayesian

model has the information of various aspects including human shape, human height, camera

model. They use the silhouettes of the moving objects as their detection features. Relying

on background subtraction for object detection has its own advantages and disadvantages.

The main advantage is its simplicity and the small amount of computation needed. But on

the other hand, it will limit the problem to use of temporal (video) data which contains

the motion information necessary for discriminating between foreground and background.

Another constraint for such methods, is that the video data should be captured from an

stationary camera to enforce a fixed background in the whole video. It is also hard to

apply such methods in dynamic environments where objects other than the target object

(pedestrians) move. Distinguishing different objects' silhouettes is not an easy task because

of the little amount of information the silhouette captures from the object. Silhouette

information only contains the boundary between the object and its background and no

CHAPTER 2. PREVIOUS WORK

information about the inside or outside of this boundary.

Leibe et al. [21] use silhouettes as a global feature on top of some local features. Their

detector is based on local features, but as a post-processing step, they use global silhouette

information to segment the target person and reason about occluded people as well. They

use chamfer matching to match their hypotheses with the model silhouette boundaries that

they have. We will describe their approach in more detail in section 2.1.2.

One parallel research trend with the problem of pedestrian detection, is the problem of

human 3D pose estimation. The low-level features that are being used in such approaches

are very similar to those used for detection systems. The reason is that there is always the

need to detect the human before extracting its 3D pose. We will shortly discuss some of the

features that are used in such approaches. Sminchisescu and Triggs [44,45] use a global edge

map combined with the motion boundary information for 3D body tracking. Agarwal and

Triggs [I] capture the human 3D pose by using silhouettes as their features. They encode

the silhouette shape using shape contexts descriptors. For finding the pose from these

descriptors they use relevance vector machine (RVM) regressors. Rosales and Sclaroff [38]

use global silhouettes of humans and extract low-level visual features from it. They find the

best 3D pose match using a maximum likelihood criterion on possible solutions. As a follow

up to their works, Rosales et al. [39] estimate the 3D body pose by using multiple views

of a person. Again, they use the same silhouette based features combined with specialized

mapping architecture(SMA) procedure in their approach. Mori and Malik [27] use the global

edge information to estimate the 3D human body configuration. They first obtain a set of

sample points over the boundary of the joints and extract the shape contexts descriptors

at those points. For pose estimation, they find best matches of these exemplar points to

those from the test image to find 2D joint positions. Then these 2D positions are used to

construct an estimate of the 3D body configuration.

The main problem with global features is that they are not robust with respect to articu-

lation, occlusion, and pose variations. They might also miss some parts of edge information,

depending on the approach they are being used. For example if one is only using the sil-

houette boundary information, he is discarding the edge information of inside and outside

of the silhouette, that might be important for the perfect detection.

CHAPTER 2. PREVIOUS WORK

2.1.2 Local Features

Because of the problems that were mentioned in section 2.1.1 about the global features, most

systems that apply these features, use them in very controlled environments, or as a feature

for a validation step. Local low-level features are used in a wider range of applications

for object detection because of their ability to handle many cases (i.e. articulation, and

occlusion) that global features are not. One big advantage of using local features is their

capability to handle flexible objects that can change their shape (e.g. pedestrians), and

handle small occlusions. When small bits of shape information are used, we can handle

local changes better because the object model is not a one-unit model anymore. One of

the main difficulties in using local features, is defining them. Different approaches apply

different local features for pedestrian detections.

Oren et al. [30] have developed one of the first pedestrian detection techniques that uses

an supervised method to train a detector. Their detection technique is based on the wavelet

templates and defines the shape of an object in terms of a subset of the wavelet coefficients

of the image. They try both template matching and SVM as their classifiers. Papageorgiou

and Poggio [33] extend the same framework and improve the results and the running time.

Schneiderman and Kanade [42] present a method that represents the statistical distribu-

tion of object and non-object classes using a product of histograms. The features that they

use to make the histograms are wavelet coefficients of different sizes and scales. They test

their method to detect faces and cars. They improve their approach in a later work [43] by

introducing localized parts, subsets of their features, into their detector. They train weights

of the features inside each part using AdaBoost.

Viola and Jones [47] use Haar wavelet features as the weak classifiers. They use AdaBoost

to combine many of these weak classifiers together to create a strong classifier. Then they

create a cascade of these strong classifiers to make their system faster by rejecting many of

the possible faces in the early layers of the cascade. They use their system to detect faces.

Their method is much faster than many other approaches as a results of using integral

images for their wavelet computations and also their cascade algorithm. In a later work,

Viola et al. [48] use their system for pedestrian detection. They enhance their system by

adding some temporal Haar-like features to it to capture pedestrian movements as well

as its shapes. Okuma et al. [29] adopt the same work and used it for a human detector.

They introduce a particle filter tracker that uses the detections of an AdaBoost detector to

CHAPTER 2. PREVIOUS WORK

initialize or correct the tracks.

Agarwal and Roth [2] make their object detector based on a sparse, part-based repre-

sentation of objects. They build a vocabulary of parts that can be used to represent objects

in the target class. They make the vocabulary by detecting interest points on the object

classes and storing the intensity image around the points in a clustered database. They

classify objects by finding correspondences between test images and stored parts in their

database.

Mohan, Papageorgiou and Poggio [26] detect pedestrians as a combination of parts.

Their system is structured with four distinct example-based detectors that are trained to

separately find the four components of the human body: the head, legs, left arm, and right

arm. After detecting these separate parts, they use a second example-based classifier to

combines the results of them to classify a pattern as either a person or a non-person. For

each part, an individual Support Vector Machine (SVM) classifier is trained using Haar

wavelet features.

Lowe [22] introduces a method for extracting distinctive invariant features from images.

He uses these features to perform reliable matching between different views of an object to

perform object recognition. These Scale Invariant Feature Transforms (also known as SIFT

features) are robust to scale and rotation. Because of the distinctive nature of these features

a single feature can be matched against a large database of features from many objects. For

the recognition task, he uses a nearest-neighbor algorithm, followed by a Hough transform

to identify clusters belonging to a single object, and verify the object through least-squares

solution for consistent pose parameters. These features are used in many generic object

recognition tasks, including pedestrian detection [21].

Mikolajczyk, Schmid, and Zisserman [24] also use a part based detector to detect humans.

They model humans as assemblies of seven parts. These parts are represented SIFT-like

orientation base features which captures the spatial layout of the parts' appearance. Feature

selection and the part detectors are learned using AdaBoost.

Dalal and Triggs [6] use histograms of oriented gradient descriptors (HOG) as their

features and train a pedestrian detector using SVM classifier. They compare a variety

formations of their HOG features, and SVM settings to tune their detector. They also

analyze the effect of different image and feature normalizations, on the accuracy of their

detector. Figure 2.1 illustrates the features they use for their detector.

Berg and Malik [4] introduce a new feature descriptor called geometric blur. Geometric

CHAPTER 2. PREVIOUS WORK

Figure 2.1: Dalal and Triggs' feature representation [6]. (a) The average gradient image. (b)
Maximum positive SVM weight for different blocks. (c) Likewise for negative SVM weights.
(d) A test image. (e) It's computed HOG descriptor. (f,g) HOG descriptors weighted by
respectively the positive and the negative SVM weights. (02005 IEEE, by permission)

blur descriptor is consisted of blurs of a signal around an interest point with a varying

blur standard deviation relative to the distance from the point. They use these features for

object detection. In a later work Berg, Berg and Malik [5] use the same features for object

class recognition. They find descriptor correspondences between images and minimize a cost

function over their geometric distortion. In one of the approaches proposed in this thesis

we will use these geometric blur descriptors for pedestrian detection.

Wu and Nevatia [51] detect pedestrians with inter-occlusions. They introduce and use

edgelet features, which are short line or curve segments with known direction. Then they

train three part detectors (head-shoulder, torso, and legs) with these features, using a vari-

ation of AdaBoost [19]. They combine the responses of these part detectors to form a joint

likelihood model that can detect inter-occluded pedestrians by using a MAP estimation.

Figure 2.2 illustrates the definition of edgelet features.

Leibe, Seeman and Schiele [21] use local and global cues to detect pedestrians in crowded

scenes. They start with local feature point detection and store histograms of gradients

features, used in [22], in a database. Then they use clustering algorithms for matching

feature point descriptors gathered during training with the descriptors seen in the test

images. A global top-down verification process using silhouette boundary and chamfer

matching is applied at the end. Mikolajczyk, Leibe, and Schiele [23] also refine the same

approach for an object class recognition task. They also evaluate different scale invariant

CHAPTER 2. PREVIOUS WORK

Figure 2.2: Edgelet features used by Wu and Nevatia [51] (02005 IEEE, by permission)

region detectors and descriptors.

Lately, Munder and Gavrila [28] studied the problem of pedestrian classification with

different features and classifiers. They compared PCA coefficients (global feature), Haar

wavelets (nonadaptive local feature), and local receptive fields (adaptive feature) as their

features and showed that local adaptive features such as local receptive fields can do a

better job in representing pedestrians. They also compared different classifiers; support

vector machines, neural networks, AdaBoost, and k-nearest neighbor classifiers, and showed

that SVMs and AdaBoost classifiers outperform the other classifiers tested.

Some of the approaches that were described (e.g. [22] and [21]), rely on extracting

distinctive feature points from the object and match them in detection time. Some other

(e.g. [47], [6] and [51]) make a huge feature set, and use machine learning algorithms,

such as AdaBoost and SVM, to choose a useful combination of them. Other approaches

(e.g. 1421) use simpler features and use a coarse representation of the features on the whole

image. All these approaches are pre-defining the features that they want to use. This can

affect the classification results because of missing information that were not captured with

the defined features. In the second approach proposed in this thesis in chapter 4, we use

AdaBoost to train local features that are good for the classification of our two object classes

(pedestrian and background) and use these features throughout the rest of approach.

CHAPTER 2. PREVIOUS WORK

2.2 Classification

Classification method is another part that differs in different pedestrian detectors. There

are some factors that have influence in choosing the classifier, such as selected feature

descriptors, required type of output, running time, and accuracy.

If the selected features are global features, nearest neighbor methods are mostly a good

choice for the classifier. Gavrila et al. [14] use this approach by matching the distance

transform of the test image with template image in a hierarchical way to find the nearest

neighbor.

Some applications (e.g. segmentation) might need per pixel likelihoods of the target

object after the detection phase. Density estimation approaches can provide these kinds

of outputs by estimating statistical distribution of features for both classes at every pixel.

For this purpose the statistical distribution of each class is estimated using maximum a

posteriori estimation (MAP) over the feature domain. Schneiderman and Kanade [42] use

the same approach to detect faces and cars, and Schiele and Crowley [41] use it for object

recognition.

Boosting, and particularly AdaBoost, is another popular group of classification algo-

rithms. AdaBoost's success is because it does not enforce any structure on features it needs

as the input. It combines any set of non-perfect classifiers to make a strong classifier out

of them. Viola et al. [47, 481 use a cascade of AdaBoost classifiers for face and pedestrian

detection. Wu and Nevatia [51] also use a nested AdaBoost to detect humans.

Support vector machines (SVM) are another set of classifiers that are largely used in

machine learning and computer vision applications (Refer to Webb [50] and Hastie et al. [15]

Books for more detail). Dalal and Triggs [6] use a linear SVM classifier to detect pedestrians.

Ronfard, Schmid, and Triggs [37] build an articulated body detector by using SVM based

classifiers. They find people in static frames using learned models of both the appearance of

body parts (head, limbs, hands), and of the geometry of their assemblies. Their articulated

body detector use a variation of dynamic programming for efficiently assembling candidate

parts into pictorial structures. They train dedicated detectors learned for each body part

using SVM and Relevance Vector Machines (RVM).

Most of these classification methods, classify object classes by constructing an imaginary

decision boundary around them in their feature space. Nearest neighbor classifiers, support

vector machines (SVM), clustering algorithms, boosting approaches, and neural networks

CHAPTER 2. PREVIOUS WORK

all fall into this category.

Freund and Schapire [Ill analyze the relation between two of the most common classifiers

in object detection, SVM and AdaBoost. They point out that although the goal of both

classifiers is to implicitly maximize the minimum margin of training examples they have

several important differences. The most relevant difference, with respect to object detection

applications, is that most of the actual work involved in applying SVM or AdaBoost has

to do with selecting the appropriate kernel function in the one case and weak learning

algorithm in the other. As kernels and weak learning algorithms are very different, the

resulting learning algorithms usually operate in very different spaces and the classifiers that

they generate are extremely different.

Chapter 3

Detecting Pedestrians Using

Coarse Shape Cues

In this thesis, we explore two different approaches for pedestrian detection in still images.

The first approach uses coarse shape cues to make a statistical representation of object

classes. The second method, is based on training the feature set from the training data,

instead of predefining it, to capture all the possible information for the classification process.

In this chapter we will present the first approach. The common aspect of these two detectors

is their underlying low-level features. These low-level features, are gradients of the image

captured in four different directions ((0') 45", 90") 135'1).

The method that will be described in this chapter is based on a likelihood ratio test.

Likelihoods for shape descriptors on pedestrian and background images are obtained using

a kernel density estimation. These kernels are built on geometric blur feature space for each

pixel. For an illustrated overview of the approach refer to Figure 1.3 in the Chapter 1.

The method that we use to find pedestrians in an image is a scan-based method. We

train a classifier that given a fixed size window (i.e. 60 x 100 in our experiments) it can

decide whether it is an image of a pedestrian or not. To search a complete image, we scan

the image exhaustively in different locations and different scales. In other words for every

possible scale, we put our detection window on all the locations and will test that window

by running our classifier to decide about that part of the image. This way we can find all

the pedestrians in the image with different sizes not smaller that our detection window.

CHAPTER 3. DETECTING PEDESTRIANS USING COARSE SHAPE CUES 20

3.1 Stat istical Represent at ion of Pedestrians

We operationalize the notion of coarse shape using the geometric blur descriptors [4]. This

detector falls into the category of likelihood ratio-based detectors. For each pixel, we

build likelihood distributions over geometric blur descriptors for pedestrian and background

classes. These likelihoods are obtained using kernel density estimation. We show that the

geometric blur descriptors can capture this coarse shape information and remain robust

against its variation in pedestrians, and are smooth enough to facilitate the use of kernel

density estimation in spite of their high dimensionality. Moreover, this method, based on

per-pixel likelihood ratios, is inherently a parts-based detector. We provide qualitative evi-

dence that it can handle situations involving partially occluded pedestrians, a situation that

will be challenging for methods which build a single descriptor for an entire window.

This detection method is motivated by the work of Schneiderman and Kanade [42], who

detect faces and cars by building histogram representations of wavelet feature likelihoods

for object classes and a background class. The basis of our approach is different from

theirs in two ways. First, our features are descriptors based on oriented edges which gather

shape information over a larger spatial extent. Second, these features are high-dimensional,

and we cannot use histograms to model the statistical distribution of P(imagelperson)

and P(imagelnonperson). Instead we compute kernel density estimates for both object

(pedestrian) and non-object (background) feature likelihoods and represent class probabili-

ties with them. Therefore P(image1person) and P(image(nonperson) can be modeled by a

set of kernel densities, computed from person and non-person image features. The detection

condition can be shown as:

P(image Iperson)
> X

P(image1nonperson) (3-1)

Where X is the threshold we can choose for different detection accuracies. If the ratio is

greater than A, we say that a pedestrian exists in the query window. This likelihood ratio

is equivalent to maximum a posteriori estimation.

The detection condition in Equation 3.1, should originally contain the likelihood proba-

bilities P(person1image) and P(nonperson1image) . But because we cannot estimate these

two probabilities, we use Maximum a posteriori (MAP) estimation and use the posterior

probabilities P(imagelperson) and P(image(nonperson) instead. We apply the Bayes rule

as follows:

CHAPTER 3. DETECTING PEDESTRIANS USING COARSE SHAPE CUES 21

This way, we can estimate the distributions P(imagelperson) and P(image lnonperson)

instead. As the image variable is still very high dimensional, we break it into smaller domain

variables (features extracted from the image). In order to have a tractable model of the

likelihood, we will assume that the features within an image window are independent. In

our approach, for each class we build n different probability distributions for both person

and nonperson classes P(fi (person), P(fi lnonperson), (i = 1, . . . , n), each one modeling

the distribution of one feature fi. Because of some further advantages we assign one feature

to each pixel in the image. As we will show later, this will help us to have a person-ness
P(image1person) measure for each pixel. We approximate the probability ratio P(image,nonperson) by:

P(image Iperson)
% ne, p(fi I P ~ ~ S O ~)

P(image Inonperson) n,'.=, P(fi1nonperson)

In forming equation 3.3 we implicitly assume that our features are statistically inde

pendent for both classes. However, Schneiderman and Kanade [42] have shown that this

independence assumption can be relaxed because our goal is classification not probabilistic

modeling. As they show, we can consider a classification example based on two random

variables, A and B. If we assume that A is a direct function of B , A = f (B), we will have

P(A = f (B)(B) = 1. The optimal classifier is:

P(A, B lobject) -
-

P(B 1 object)
P(A, B lnonobject)

> X
P (B (nonobject)

and if we falsely apply the independence assumption, our classifier becomes:

P(A, Blobject) - - P(A1object) P (B lobject)
P(A, B Inonobject) P(A1nonobject) P (B Inonobject)

- - P(B1object)
(P(B nonobjeet) > > 7

CHAPTER 3. DETECTING PEDESTRIAhiS USING COARSE SHAPE CUES

This shows that we can achieve the optiinal classification, by choosing y = X~ even

though our features were not independent of each other.

Our features fi are formed using geometric blur descriptors. These features are vectors

in Em, where m is the number of samples that we get from the geometric blur. For each

pixel we create one feature vector fi to represent the shape of our classes at that particular

point of the image.

In the following sections we provide the details of the features used, and the estimation

of the individual likelihoods.

3.1.1 Shape Features-Geometric Blurs

A variety of features based on filter responses have been employed for use in pedestrian

detection. Dalal and Triggs [6] explore the use of oriented gradients, and use histograms

of these gradients in their detector. Haar-like features [48] and features from SIFT-based

descriptors 1211 have also been used for the pedestrian detection application.

In our approach we will be modeling the feature likelihood as a collection of independent

features computed at each pixel. As such, our descriptors will need to be more informative

than the typical small scale filter responses typically used - they must be able to capture

the shape of the pedestrian at each pixel.

Figure 3.1: (a) A sparse signal S. (b) The geometric blur of S around the feature point
marked in red. We only sample the geometric blur of a signal at a fixed set of points {si).
(02005 IEEE, by permission [5])

To this end, in this method we use the subsampled version of the geometric blur de-

scriptor [5] (introduced by Berg and Malik [4]). The geometric blur descriptor is a spatially

varying blurred version of a chosen signal (oriented gradient responses in our work) around

CHAPTER 3. DETECTING PEDESTRIANS USING COARSE SHAPE CUES 23

a feature point. Given a signal S, the geometric blur descriptor around location xo is:

Where Sd = S * Gd is a blurred version of S, as a result of convolving it with a Gaussian

kernel of standard deviation d. a and ,B are constants that determine the amount of blur.

By sampling B,,(x) at a sparse set of points x = si (figure 3.1), we form our final feature

vector as a sampled version of geometric blur descriptor. We choose our samples radially

in a number of angular directions. We will show experiments with different designs of the

sampling method in section 3.2.

One obvious gain of using these descriptors is their robustness to geometric distortion

which is one of the main problems in detecting pedestrians and other objects. In design of

a geometric blur descriptor three parameters influence the resulting feature vector: input

signals, blur-kernels and sub-sampling method.

To incorporate the edge information into the geometric blur descriptor, we use oriented

gradient responses as the input signals of our geometric blur descriptors. We create four

geometric blurs for each image using oriented gradients in four different directions. Fig-

ure 3.2 illustrates one of the signals and its geometric blur for a particular point. The final

descriptor is a vector consisting of a number of samples for each of the four geometrically

blurred gradient response channels. In our experiments we use 3-4 radial samples and 8-12

angular samples in our experiments resulting in a 96-192 dimensional vector.

After computing the feature vector for each location, we use L2-norm to normalize the

vector. This normalization is crucial because gradient strengths vary over a wide range due

to different background, clothing, and illumination changes.

3.1.2 Classificat ion-Kerne Density Estimation

By applying the discussed geometric blur descriptors on any image, we will have a feature

vector fi for every single pixel i. The dimensionality of these vectors are very high in

comparison to the number of training examples. Therefore, describing an object category

in this space is not trivial and commonly used methods such as histograms cannot be

applied. Instead, we use Gaussian kernel density estimators to model our object distribution

in each of these feature spaces. The probability distribution P(filperson) (and similarly

CHAPTER 3. DETECTING PEDESTRIANS USING COARSE SHAPE CUES

Figure 3.2: (a) An example of a pedestrian. (b) The oriented gradient signal in one of four
directions (x axis). (c) Geometric blur descriptor, and sample points at a single location.
(d) Blurs for 4 sample distances. Because the sample points are fixed around the feature
point, these blurs are computed once for each image

P(filnonperson)) can be estimated by using all the feature vectors, observed at location i

of the images in the training set:

1 n - < L (~ , f;)2

p(fi = rclperson) cx - C e 2ha

where n is the number of training images of person category, f: is the observed feature

vector at location i in the k'th training image, and d(., .) is the L2 distance of two vectors

in the feature space. Parameter h, defines the bandwidth of samples used to compute the

density estimate. As we will see in Section 3.2, tuning the parameter h is an essential task,

and detector's accuracy is highly dependent to its value. For more details on kernel density

estimation refer to Wand and Jones [49] and Webb [50].

Figure 3.3 illustrates an example of kernel density estimation of two classes with some

sample points in an one dimensional space. Note how the kernels become smoother as we

increase the bandwidth. With more samples, and in higher dimensions, these KDEs will

become much more complex, and choosing the right bandwidth to represent the two classes

will become a critical task.

A common concern when using kernel density estimation in high dimensional spaces

(e.g. 192-dim geometric blur) is the ability to fill this space with a limited supply of training

CHAPTER 3. DETECTING PEDESTRIANS USING COARSE SHAPE CUES

Figure 3.3: (a) Kernels of some sample points of two classes in 1D (b) Undersmoothed
Kernel density estimation of the two classes (bandwidth = 5). (c) A good KDE (bandwidth
= 50) (d) Oversmoothed KDE (bandwidth = 500)

data. However, the geometric blur descriptors are quite smooth, and the space of naturally

occurring geometric blur descriptors does not cover the entire high dimensional space.

3.2 Experimental Results

We evaluate our method by experimenting on two different datasets. One is the MIT

pedestrian dataset [34], a popular dataset for evaluation of pedestrian detection systems.

Because of the near-perfect results on this dataset, we also did some experiments on a

more challenging dataset, the INRIA dataset [6]. In this dataset, people are mostly in

CHAPTER 3. DETECTING PEDESTRIANS USING COARSE SHAPE CUES

Figure 3.4: Examples of pedestrian from INRIA (top row) and MIT (bottom row) datasets.
The INRIA dataset is designed to be a hard dataset, by adding examples with more pose
and background variety, and sometimes partial occlusions.

standing position, but they cover more diverse body poses and a much varying background

in comparison to MIT set. Figure 3.4 show some examples of these two datasets.

In the pedestrian image sets, for the sake of consistency, we crop both datasets' images

into 60 x 100 images of pedestrians. Our positive MIT set consists of 470 training and 450

test images. The positive INRIA set consists of 511 training and 503 test person images.

For both datasets we added the right-left flips of both training and test datasets to each

set. This will both increase the number of pedestrians in our dataset, and will prevent the

detector from being biased in detecting people facing one direction better than the other.

In all of the experiments, for the negative training and test images, we used the person-

free images of INRIA dataset. We sampled 11000, 60 x 100 windows from them, using 2000

for training, 7000 for testing, and 2000 for cross-validation procedure which we will describe

later.

For the quantification of the results we plot miss rate versus False Positive Per Window

tested (FPPW) curves on a log-log scale, consistent with Dalal and Triggs curves [6]. Miss

rate is defined by ' F N and FPPW is where #FN and # F P are the number of false

negatives and false positives respectively and # P and # N are the number of positive and

negative examples used in the testing phase.

In the following parts of this section, we focus on tuning our detector parameters. First

CHAPTER 3. DETECTING PEDESTRIANS USING COARSE SHAPE CUES 27

we try to find the best geometric blur sampling method among some candidates. Then, a

cross-validation technique is applied to find the best band-width for the Gaussian kernel, to

be used in the kernel density estimation.

3.2.1 Different Sampling Designs

One of the factors that affects the characteristics of the geometric blur descriptors is the

number of samples and their sampling locations from the blur. In our experiments, we

tested three different sampling designs. During the experiments of different geometric blur

designs, Gaussian kernel's bandwidth is the other parameter involved which is not tuned

yet. To make the experiments comparable, we use the variance of L2-distances of training

images' feature vectors of each sampling design as the Gaussian kernel bandwidth of that

design.

The two parameters that we changed in the three experiments are: Number of radial

samples, and number of angular samples per radius. To have the same area of influence for

different designs, we fixed the closest and the furthest radii distances in them.

The first design has 48 samples per signal, which makes the feature a 192(= 4 x 48)

dimensional vector. There are 12 samples at each of 4 sampling distances in this design

(GBD 4 x 12). The second design has 8 samples over 4 distances (GBD 4 x 8), and the third

one, 8 samples over 3 distances (GBD 3 x 8).

The accuracy results for these designs are shown in Figure 3.5 and Figure 3.6. These

figures show the performance of different designs on the two test sets INRIA and MIT. The

performance of all detectors are very close and there is no obvious advantage on choosing

one in either of the datasets. The only small difference, is that when the dimensionality

of feature vectors decreases there is a slight gain in the performance. This can be because

of the fact that when we are computing the kernel density estimates, our fixed number of

training images can represent and fill the space better when we have fewer dimensions. The

other advantage of using a descriptor with fewer dimensions is the speed performance. The

smaller the dimensionality of our geometric blur descriptor, the less computation time we

need, both for training and testing phases. Therefore we use the 3 x 8 design, the smallest

descriptor, for the other experiments.

CHAPTER 3. DETECTING PEDESTRIANS USING COARSE SHAPE CUES

Geometric Blur Designs

false positives per window (FPPW)

-

Figure 3.5: Performance of different geometric blur designs on INRIA set

0 2

a, 0.1
C

!!
U)
U) .-
E 005

3.2.2 Bandwidth Tuning

. 0.560-7 ; d: : : I

.............*........ . . . ! j . . ; . ; . ; . . ; .
. ,
. . . .

, . .

.: .:...:.:: : ..:. - , .
, . . : \ : : : : :

: . a:: , : : - i -
. .

..... 1 . .

Another parameter that can influence the performance of our detector drastically, is the

bandwidth that we use for the Gaussian kernel used in the kernel density estimator. To

find the best bandwidth we use cross-validation. For the negative validation set, we have a

separate set from our training and testing set as described in the beginning of this section.

For the positive set we break our positive training set into 4 separate sets, iterating through

using three as training and one as validation set (Pfold cross-validation).

The results for different bandwidth choices are shown in Figure 3.7. As we narrow the

bandwidth, we get better results, up to some point where the performance does not change

by narrowing the kernel. We choose that particular bandwidth as our tuned Gaussian kernel

bandwidth, and we use it throughout our final experiments on the test set.

0.02-

0.01

.
.

. , ~ ~ ~ ~ & ~ c Blur 3x8 : . . , : , . , ;
- 8 - Geometric Blur 4x8 i i i , . .

Geometric Blur 4x12 : i j : : : j
I

. , I

I o - ~ I o - ~ 1 o - ~ 10-1

CHAPTER 3. DETECTING PEDESTRIANS USING COARSE SHAPE CUES

Figure 3.6: Performance of different geometric blur designs on MIT set

Geometric Blur Designs (MIT set)

3.2.3 Evaluation

0.2

o.os

0)
C

!I
"I 0.02-
"I .-
E

0.01

We have evaluated our tuned detector on both INRIA and MIT datasets. To have a base

for comparison, we used the binary code provided by Dalal [6] which is one of the state of

the art pedestrian detector systems. Due to some incompatibility problems we could not

run their binaries on the MIT set, therefore we provide their original published figure [6] for

comparison.

Figure 3.8 and Figure 3.9 show the quantitative comparisons of our detector and the base

detector. On the MIT set our results are near perfect but slightly worse than HOG detectors.

On INRIA set, which is a much harder set than MIT, our results are not comparable to

that of Dalal and Triggs'. There are two main reasons that has led to these relatively

poor results. One is the use of geometric blur features which are not appropriate to model

the common shapes of each object class, and the other is the inability of kernel density

estimation methods in higher dimensional data, such as our geometric blur features. We

1 o - ~ 1 o - ~ 1 o - ~ lo- '
false positives per window (FPPW)

I I

- w - -,
- B=--xz

8'.
Ir
Q
k. '*;,

%-+atq
: r;y R:3 *,

\>.
W

O a Geometric Blur 3x8 9 7 \.
.

Geometric Blur 4x12 'b-++?
- - Geometric Blur 4x8 1

CHAPTER 3. DETECTING PEDESTRIAIW USING COARSE SHAPE CUES

Kernels with Different Bandwidths

C

S
' .'.

\ .

e 't
'4

Kernel Bandwidth = 0.0005
- II- Kernel Bandw~dth = 0.0025

Kernel Bandw~dth = 0.01
-A- Kernel Bandwidth = 0.05
4- Kernel Bandwidth = 0.25
- b- Kernel Bandwidth = 5.00

\ I '

1 o - ~ 1 o - ~ 1 o - ~ 10-1
false positives per window (FPPW)

Figure 3.7: Results of cross validation test on different bandwidth parameters for the Gaus-
sian kernel.

will further analyze these reasons in section 3.3 and also in chapter 5.

In addition to these quantitative comparisons, Figure 3.10 shows examples of per-pixel

likelihood ratio results for images from our test set. In contrast with methods (e.g.161) which

build a single feature vector for the entire window; our method obtains per-pixel likelihood

ratios. In cases of partial occlusion, likelihood ratios reflect the negative influence of the

occluder. We believe that this per-pixel likelihood ratio is useful for situations involving

multiple pedestrians or other occlusions.

Figure 3.11 gives a qualitative assessment of the mistakes made by our detector, showing

the worst false positives (most person-like backgrounds) and worst false negatives (most

background-like pedestrians) from our detector's point of view.

CHAPTER 3. DETECTING PEDESTRIANS USING COARSE SHAPE CUES

0.01
1 o - ~ 1 o - ~ 1 o - ~ lo-'

false positives per window (FPPW)

Figure 3.8: Final results of our GB-KDE based detector on the INRIA dataset compared
with the results of HOG-SVM detector of Dalal and Triggs.

3.3 Analysis

This pedestrian detection approach, like every other approach, has its own advantages and

disadvantages. One of the main advantages is its ability to compute the likelihood of person-

ness of each pixel separately. This can help especially when we need to reason about occluded

pedestrians. Figure 3.10 shows some examples of semi-occluded people and their likelihood

response masks. These likelihoods can also be used for segmentation of the pedestrians

in a bottom-up manner. One can over-segment the image using any of the common image

segmentation algorithms (such as Felzenszwalb and Huttenlocher's color based segmenter [8]

and Ren and Malik's classification based segmenter [35]), and use the per-pixel pedestrian

likelihoods to reason about the class of each segment. This way the overall segment of the

object can be extracted from its background in the detection window. If solved as a joint

probability problem over all the segments together, occlusions caused by other pedestrians

CHAPTER 3. DETECTING PEDESTRIANS USING COARSE SHAPE CUES

10- I 0-a I o4
false pcsl(rv€u per window (FPPW

DET - dlllerwl desulplors on :dlT dalabase

-m. LIR C-HOG

4. Wavelet
4- PCA-SIFT

-b. Lln G-ShaceC

0.05

false psswes per wndw !FPPW)

Figure 3.9: (a) Final results of geometric blur based detector on the MIT dataset. (b)
Dalal and Triggs' [6] tests using different approaches on the MIT dataset. (02005 IEEE,
by permission)

in the crowded scenes can be resolved as well.

The main disadvantage of this method, is its model complexity and high amount of com-

putation and memory that it needs. The model complexity is due to the high dimensionality

of geometric blur descriptors. We need a huge number of training examples to estimate class

distributions in a high dimensional (e.g. 192) feature space. On the other hand the more

training examples added, the slower the estimation of a test example in that space would

become. The need for high amount of computation and memory arises as a result of per

pixel kernels that we need to keep track of for each training image. To be precise, we should

store a high dimensional feature vector at each pixel for each training image. At the test

time: for each pixel, we need to estimate the distance of the feature vector related to that

pixel with both positive and negative kernels. There are some efficient ways of kernel density

estimation [52], but because of the relatively poor results of this detector we did not explore

using them to make the computations faster.

CHAPTER 3. DETECTING PEDESTRIANS USING COARSE SHAPE CUES

Figure 3.10: Examples of per-pixel likelihood ratios. Top row show input images, likelihood
ratios below. Bright values indicate high likelihood of pedestrian, dark values indicate low
values. (a-d) show instances of partial occlusion. Note that in areas of occlusion, such as
the bag in (a), or leg of other person in (b), low likelihood ratios exist. (e-g) show examples
of likelihood ratios for un-occluded people for comparison.

CHAPTER 3. DETECTING PEDESTRIANS USING COARSE SHAPE CUES

it: I C i

Figure 3.11: Examples of errors made by our detector. (a) False negatives with lowest
likelihood ratio. (b) False positives with highest likelihood ratio. False negatives typically
consist of people in atypical poses, or substantial clutter. False positives usually contain
strong vertical edges mimicking the torso and leg boundaries.

Chapter 4

Detecting Pedestrians Using

Boosted Features

In the Chapter 3, our first approach for pedestrian detection was covered. The main prob-

lem with that approach is how complex it is. This includes computational complexity, that

makes the detector slow in terms of its running time, and difficulty in modelling the distri-

bution over GBDs. Together these lead to poor performance of the detector. In this chapter

we will propose a new approach for pedestrian detection which is fast enough to be run in

real time and its performance is better that the state of the art pedestrian detector [6]. This

method is based on creating a specific feature set by training a set of local discriminative

features using the training data. These trained features will capture more useful informa-

tion, discriminative between our two object classes, than any fixed set of features. This

method uses AdaBoost as its base, and rely on it for both feature creation and classification

phases. For an illustrated overview of the approach refer to Figure 1.5 and Figure 1.6 in

the Chapter 1.

Like the previous detector that we described (in chapter 3), this detector uses a scan-

based method to search for the pedestrians in the image. We train a classifier that given a

fixed size window (i.e. 64 x 128 in our experiments) it can classify the window as a pedestrian

or a non-pedestrian. To search a complete image, we scan the image exhaustively in different

locations and scales by putting the detection window in every location and every scale and

classifying that window using our trained classifier. As we will discuss later, because of the

structure of our detector, there is a very efficient way of doing this thorough search that

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES 36

makes it possible to run this detector in real-time.

In the experiments section, we will test our detector on two different datasets and show

the quantitative results. We will also discuss all the employed parameters and factors and

further explain and test those parameters that affect the performance of the detector.

4.1 Local Discriminative Features via AdaBoost

A major drawback in most object detection algorithms is the fixed set of feature descriptors

that they use. The problem with defining features before training the classifier is that,

there could be some discriminative information that is missed by those features. By training

the feature set, instead of selecting it, we can make sure that we are using all the useful

information of our two object classes in the classification phase.

Viola et al. [47, 481, use AdaBoost for face and pedestrian classification, using Haar-like

wavelet features. Although their features are low-level, they are treating them as their final

set of features and build their final classifier directly from them. As the features are very

low level and sparse, the final classifier will not capture the repetitive information of local

neighborhoods completely. On the other hand, Wu and Nevatia [51] use AdaBoost with a

set of hard coded mid-level features as its weak classifiers, called edgelets. These edgelets

are a set of pre-defined patterns of edges in different locations. AdaBoost will make the final

pedestrian classifier by using a subset of these features. The problem with this approach is

that there is no guarantee that the edgelets can capture all the useful available information

for classification because of their fixed nature.

In our approach, we combine the flexibility of small low-level features and the local

informativeness of mid-level features by training a set of discriminative mid-level features

from the low-level features. This way, we have the advantages of both approaches without

suffering from their shortcomings. In our algorithm, we make a mid-level feature set by

using the low-level features extracted from the training set images. Later, this feature set is

used to train the final classifier. The algorithm that we use for both feature creation, and

also the final classifier training, is AdaBoost.

Dalal and Triggs [6] who use HOG descriptors and SVM for their state of the art pedes-

trian classifier, also have a set of fixed features. Their pre-defined HOG features, which they

tune all of their parameters by testing, are designed in a way to capture all the possible

edge information in the image to feed it into SVM. But still because of this fixed nature

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES 37

they cannot guarantee that all the useful edge information is captured in a useful way for

classification. In other words, the amount of non useful information could be too much that

can affect the final results.

The training part of our approach is consisted of three layers. An overview of these

layers is as follows:

1. Low-level Features as Weak Classifiers: The input to this layer is raw training

images. We extract the gradient responses of each image in four different directions,

and compute the average of these responses around each pixel, and use them as our

low level features. For any feature from this feature set, identified by its location and

gradient direction, we can use it as a weak classifier of the two classes by setting a

threshold in between its responses. Of course this classifier will not be a good one

(which is apparent from its name: weak classifier), and we don't expect it to be. These

weak classifiers will be used to make more sophisticated features.

2. Mid-level Features as Semi-strong Classifiers: For some small windows inside

the detection window, we use AdaBoost to select a subset of the weak classifiers

inside each window to construct better classifiers. By only using the features inside

each window, we force the AdaBoost to extract as much information as possible at

local neighborhoods of the image. This process will provide us several stronger local

classifiers that are highly discriminative regarding our object classes. Each can be

considered as a combination of edges with different orientations at different locations.

3. Final Classifier: The mid-level feature descriptors from previous layer can only act

in a local neighborhood in the image and therefore their overall classification power

is still far below an accepted point. But by merging them together we can combine

the information from different parts of the image. In order to archive this goal, we

use AdaBoost for the second time to combine those information and train our final

classifier. This time we use our semi-strong local classifiers as its input, and the

algorithm will again choose the best subset among them that can separate the two

classes as much as possible.

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES 38

4.1.1 An introduction to AdaBoost

Adaboost was first introduced by Freund and Schapire 110, 91, and after that it has been

widely used in many of the machine learning applications, and specifically to our interest,

in computer vision. The main idea behind AdaBoost (and other boosting algorithms) is to

make a strong learning classifier by using some weak learning classifiers that perform just

slightly better than random P[h(xi) = yi] = 0.5 + E, where h(x) is a weak classifier xi is a

feature vector and yi is its true class label.

AdaBoost's Pseudocode is given in Table 4.1. The algorithm takes as input a training

set {(xl, yl), . . . , (x,, yn)), where each xi is one of the training examples' feature vector,

from a high dimensional space X. Each label yi shows the class label for xi and belongs to

label set y = 0 , l (0 for negative examples and 1 for positive examples). In the algorithm

there is a weight wi associated with each example-label tuple. Initially, all weights are set

equally, but on each round, the weights of incorrectly classified examples are increased so

that the weak learner is forced to focus on the hard examples in the training set.

For us, a weak learner is a function that finds the best classification of the two classes,

recognized by their labels yi, using only the j'th dimension of feature vectors xi. We call

this feature fj. The weak learner should consider the weights associated with examples

when trying to find the best classification.

Weak learner will return a weak classzjier hj : X --t y, which is consisted of a feature

fj, a threshold Bj and a sign dj in the inequality:

1 if djfj < djBj
hj(x) =

otherwise

Threshold Bj, is the threshold between the responses of dimension j of feature vectors.

This threshold classifies the two classes by assigning each side of its value to one of the classes.

The direction of this assignment is defined by dj E {-1,l). Note that Bj can be chosen on

any of the feature vector's dimensions with any value in between its responses. This is the

weak learners' job to choose the hj(x) in a way that it has the minimum classification error.

This error is the sum of weights of misclassified samples and is calculated by:

AdaBoost calls the weak learner algorithm repeatedly in a series of rounds. One goal of

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES 39

For training examples { (x l , Y ~) , . . . , (x,, y,)) with feature set xi and labels
0 , l for non-object and object classes respectively.

wl,i = l l n for all 2.

1. For each feature j, train a weak classifier hj (x) . The output of h j (x)
the format of our labels yi.

2. For each hypothesis classifier h j , calculate the error:

3. Select the classifier ht with the smallest classification error et.

4. Calculate new weights:

where at = i l n (e) and ei = 1 if X i is classified correctly
ei = -1 otherwise.

5. Normalize the weights:

The final classifier is:

T

H(x) =
1 Ct=l atht (x) 2 0
0 otherwise

Table 4.1: AdaBoost

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES 40

the algorithm is to maintain the distribution of weights wi over the training set. On each

round, the weights of incorrectly classified examples are increased so that the weak learner

is forced to focus on the hard examples in the training set. In every iteration, the best hj (x)

is added to the set of selected weak classifiers, and the weights are recalculated according

to the classification results of the selected classifier:

Wt+l,i = Wt,ie (-atIht,j(~i)-~il) (4.3)

Where at = ln(%), and htj(x) is the best weak classifier selected in iteration t.
€3

The final classifier H(x) is a weighted majority vote of the weak hypothesis selected in

the over all T iterations:

1 C ~ I atht (4 2 0
H(x) =

0 otherwise

4.1.2 Low-Level Features

As discussed in chapter 2, most pedestrian detection approaches capture the edge informa-

tion as their lowest level features, each in their own way. Some capture it by computing

image gradients [4, 61, some by computing wavelet coefficients [42], and some by applying

simple rectangular filters [47] or more sophisticated features like edgelets [51]. We also use

edge responses as our lowest level features. We capture this information by computing the

gradient of the image intensity. We use gradient information, that are captured in four

different directions, as our atomic features. The derivative mask that we use is a simple [-I,

0, I] filter.

To reduce the influence of small spatial shifts in the detection window, we locally average

the edge information in each direction. More precisely, we compute the average of gradient

responses around each pixel by convolving the edge responses, for each of the directions, by

a small box filter.

Where, * denotes convolution, I(x) is the intensity image, Gd is the gradient kernel that

we use to get derivatives in direction d E 2) (e.g. [-I, 0,1] or [-I, 0, 1IT) , B is a 2-D box

filter (e.g. a 5 x 5 matrix with all the elements &,) used for average computation, and Sd(x)

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES 41

is our final signal image that captures the amount of edge at every pixel in direction d. D

is the set of possible directions that we are computing the gradients in. In our experiments

we use four directions; 2) = {Oo, 45', 90•‹, 135'). We use the absolute value of the gradients

(in equation 4.5) instead of their real value to compute the edge values. This is because the

information we need is the orientation of the edge not its direction (a person with white

clothes over a dark background should be considered the same as a person with black clothes

over a light background).

At this point, for every pixel x in the image, we have the local average of edge responses

in different directions d. These locally smoothed gradient responses, are considered as our

low level features, and as we will see shortly, we use them as the weak classifiers of AdaBoost

algorithm to build our mid-level feature set.

The information captured about the classes by each of the low level features is very

little. If used as a classifier, each of these low level features Sd(x), can only separate our two

classes (pedestrian and background) slightly better than random classification. To make

our features more meaningful and informative, we would combine them to create some local

mid-level features, using AdaBoost.

4.1.3 Mid-Level Features

Suppose we have k small windows uy E W, i = 1,. . . , k inside our detection window, each

containing a set of neighboring pixels (the window selection process will be explained in

detail in section 4.2). We build one mid-level feature for all of these windows wi. Figure 4.1

illustrates one of these windows over some samples of the two classes and shows the actual

mid-level features trained for that window.

To make mid-level local classifiers (features), for every window wi, we collect all the

features that are inside that window {fd(x) : x E wi, d E D) and use them as potential

weak classifiers of an AdaBoost run. The number of low-level features ni for each wi is the

number of pixels inside that window times the number of gradient directions ID).

In each iteration t of AdaBoost training process, one of the features ft(x) E {fd(x)) is

chosen as the feature of the weak classifier ht(x) to be added to the final classifier. This

weak classifier is in the form of:

h t (4 =
otherwise

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES

Figure 4.1: Illustration of a hypothetical mid-level feature and the actual learned mid-level
features for that window. The two different feature windows separate the different features
selected from each of the object classes.

Where Bt is the threshold of the classifier and dt E {-1,l) defines the direction of the

inequality. BL can have any value in the response range of ft(z), but we discretize it to 100

levels inside that range and use them as potential thresholds instead of searching the whole

continuous range. This will reduce the running time of the training phase, and also reduces

the amount of memory needed for both training and testing phases by letting us store an

integer value instead of a floating point for a big number of features.

After all the T iterations of the algorithm, we get the final classifier Hi(z) for window

wi. This classifier is in the form of:

1 ~ ; f = ~ at hi (z) 2 0
Hi (x) =

0 otherwise

Where a: is the selected weight for classifier hi(x). For more detail about AdaBoost

refer to Section 4.1.1 and Table 4.1. We train a similar classifier for every window wi. These

local classifiers are semi-strong classifiers for pedestrian classification task. They are not as

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES 43

Figure 4.2: Sum of weights of the low-level edge features selected for all the mid-level features
across the detection window. (a) Features that belong to pedestrian class, (b) features that
belong to non-pedestrian class.

weak as the low-level feature classifiers, but not strong enough to be used for pedestrian

detection task separately. In the next section we show how to use these classifiers all together

to classify pedestrians and non-pedestrians. Figure 4.2 shows the sum of all the low-level

features selected during training of mid-level classifiers. The selected low-level features are

separated in two groups according to their selected direction by AdaBoost dt. This direction

shows whether the feature discriminates pedestrian class or non-pedestrian class from the

other.

Viola and Jones [47] use a fixed set of features to train their classifier using the Ad-

aBoost. They introduce a huge set of features, assuming that they contain all the needed

information for the classification task. We eliminate this assumption by training our locally

discriminative features, using the training examples. By training these features over the

lowest level edge features of the image, we guarantee that we have captured the necessary

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES 44

information from every local neighborhood of the images. This way, we don't need to change

the design of the features we want to use for different object detection tasks, we only have

to retrain the mid-level features to adapt them with the new types of object and let them

form in a way so they capture all the information that we need.

4.1.4 Final Classifier

Our final goal is to build a strong classifier that can classify our two classes of objects.

To this end, we have created some local classifiers Hi(%) : X -+ y. The domain of each

classifier is the features inside their effective window wi and their range is the label set y.
But if we take a second look at the classifier form (in equation 4.7), it can be seen that

the weighted sum of weak classifiers is a continuous value that its sign is determining the

estimated class. Let us call this sum si(x) = cF=~ cr:h;(x). A good characteristic about

AdaBoost classifiers is that this si has more information than only specifying the class by

its sign. The further away the value of si from the zero, the more certain we are about the

classification. Therefore this value can be used as a confidence measure of the classification.

Knowing these facts we can define our mid-level features as:

T

si(x) = crf hf (x)
t=l

Where i E {1,2,. . . , k) corresponding to one of the windows wi E W, on which we ran

AdaBoost, and hf (x) and crf are the parameters computed for the classifier Hi(x), associated

with that window. Note that each si(x) is not a classifier, instead it is a local feature that

is trained to distinguish between the two classes.

Now that we have defined our new features si(x), we can use them inside the AdaBoost

to create a final strong classifier from them. Details of creating weak classifiers and re-

weighting the samples is the same as previous layer. The final classifier is in the form

of:

T 1 Ct=l wgt(s> 2
C(s) =

0 otherwise

Where s E {sl (x), s2(x), . . . , sk(x)) is a variable corresponding to one of the mid-level

features, and X is the final classifier's threshold that is originally zero in AdaBoost but we

can change its value to get different detection and false positive rates. Note that this time

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES 45

Figure 4.3: Illustration of low level features inside the final classifier. (a) pedestrian class
features, (b) non-pedestrian class features.

the weak classifiers gt(s) are applied in the new feature domain s instead of the low level

features x, and therefore the final classifier looks like a combination of some weighted mid-

level features. Like before, each gt(s) is consisted of one feature si(x), a threshold &, and a

sign dt.

When the final classifier is trained, one can illustrate all the low level features that are

inside the selected mid-level features. Depending on the direction dt, assigned to each of

the features (classifiers), they classify one of the classes from the other: pedestrian from

non-pedestrian or non-pedestrian from pedestrian. An illustration of both sets of features

are shown in figure 4.3. Note how the feature set that classify pedestrian class from non-

pedestrians contains the features of a person's silhouette.

One might argue that using all the low-level features together in one AdaBoost run,

and training a classifier in one step could result in equivalent performance. There are two

arguments against that approach. First is that inputing all of the low-level features in to

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES 46

AdaBoost will make the training time very slow, if not intractable (we attempted such an

experiment, and were unable to complete it). That is because we are introducing many more

possible weak classifier that AdaBoost should choose from in each iteration. The second, and

the more important reason is the laziness of AdaBoost (like many other machine learning

algorithms). AdaBoost always extracts the minimum amount of information, from the

training data, needed to predict the classes. This can lead to misclassification in the test data

because of the difference in the selected features. We overcome this problem by introducing

mid-level features. We extract more information at local areas of the image, before focusing

on the final classification. Of course this over-harvested information contains more noisy

data, but in overall that extra noisy information will enable us to handle test images better.

Our approach is related to the FeatureBoost algorithm of O'Sullivan et. a1 [32], which

deemphasizes (or removes) individual features in successive AdaBoost-like iterations. While

the motives are related, our work is different in the execution. We explicitly learn features in

sub-windows of the detection window, and then combine them in a subsequent classification

stage.

4.2 Experiment a1 Results

In this section we will describe the data sets we used to test our detector and the parameters

we used for the implementation. We will also study the performance of our detector with

different setups, and compare it to other state of the art approaches.

4.2.1 Data Sets

To evaluate our detector we only use the INRIA dataset. We do not use the MIT set

for our experiments because of the lack of comparison information with other approaches

due to simplicity of that set. Instead the more challenging INRIA dataset [6] gives us the

opportunity to show our detectors capabilities. Our detection window size is 64 x 128 pixels,

and we use cropped images to this size for both the training and testing purposes.

The training set of INRIA dataset is consisted of 1208 cropped pedestrian images with

their left-right flips (2416 person images in total), and 1218 person free images. To train our

detector, we used all the 2416 person images as our positive set, and we cropped samples

from the person-free images to build our negative set.

The test set is consisted of 566 initial pedestrian images, that by adding their left-right

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES 47

reflections we will have a total of 1132 person images as the positive set. For the negative

set, there are 453 person-free images that we will search them exhaustively for the testing

and evaluation.

To search an image exhaustively, we will crop sample windows of 64 x 128 pixels from

the different scales of the image systematically. We build the multi-scale pyramid of the

original image by resizing it, with a scale ratio of 0.8, until the width of the image is less

than 64 or its height is less than 128 pixels. In each scaled image inside the pyramid, we crop

images of size 64 x 128 with strides of 8 pixels between them. This exhaustively sampling

method is used in testing phase as well as the training phase to gather harder examples for

bootstrapping. For comparison compatibility with Dalal and Triggs' work, this sampling

method is exactly the same as their dense sampling method.

4.2.2 Parameters and Settings

We have different sets of parameters for our experimental results. Some of the parameters

are fixed during different tests. You can find a list of fixed parameters in Table 4.2. Most

of these fixed parameters are related to the low-level feature extraction part.

Fixed Parameters
Detection window width 1 64 pixels

Table 4.2: Fixed Parameters

Detection window height
Number of gradient orientations
Gradient filter
Box filter size for computing the average
T (number of mid-level features in the final classifier)

We further explore other parameters that are specific to our proposed approach. One

of the parameters that affect the results of the detector drastically is the mid-level window

selection method. As we described in section 4.1.3, there is a window set W that defines the

area of influence of each of the mid-level features. Our experiments show that restricting

W to just one window size decreases the power of the detector. The reason is that the

information captured from a tiny window only reflects the classification capability of a

small set of features which is not very high. On the other hand, a big window has many low

128 pixels
4 (0•‹, 45", 90•‹, 135")

[-I, 0, 11
5 pixels (5 x 5 box filter)
1000

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES

(I)
(I) .-
E 0.05

Middle size features
Small and big size features
All features

false positives
1 o - ~ 1 o - ~

per window (FPPW)

Figure 4.4: Performance of the detector using different sets of mid-level feature settings.
Having small, middle, and big features at the same time performs the best.

level features inside, that the correlation between neighboring features inside it will not be

reflected in the mid-level features extracted from it. We experimented our detector on three

different window sets Wi. The first set W L is only consisted of some mid-size windows, the

second set W2 contains small-size and large-size windows, and the last set W:] is the union

of the other two sets: W3 = W1 U W2. The detailed parameters and settings used for each

window size is shown in Table 4.3. In Figure 4.4 the classification results of using each of the

three window sets Wi is shown. Note that the results of the set that contains all the three

sizes of windows has the best results among the three. This shows that each features with a

particular size can capture some information from the image which the other feature sizes

are unable of. This observation is another support for our argument about the advantage

of using mid-level features in section 4.1.4.

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES

Different mid-level feature settings -
Small size features

I -
Medium size features

Window size
Number of low-level weak classifiers extracted
Stride between windows

5 x 5 pixels
10
5 pixels

Large size features

Feature window size
Number of low-level weak classifiers extracted
Stride between windows

10 x 10 pixels
30
4 pixels

Table 4.3: Different mid-level feature parameters

Feature window size
Number of low-level weak classifiers extracted
.Stride between windows

Another experiment shows that more levels of window sizes does not improve the results

15 x 15 pixels
35
4 pixels

of the final detector. Figure 4.5, shows the performance curves of the 3-level window size

detector, and a 5-level window size detector. Surprisingly the 3-level detector performs

slightly better than the other one. We wanted these features to contain new information in

addition to our other 3 feature sizes to increase the performance. But as the performance

does not increase it shows that these features contain redundant information.

Assigning initial weights to training examples in AdaBoost is another setting that can

be modified. One can give more weights to positive examples than the negative ones, as

opposed to giving equal weights to all the examples. Both methods have been used in

different approaches that use AdaBoost. It can be argued that because of the domination of

negative examples in the training set, by giving more weights to positive examples we can

make the AdaBoost to focus on positive examples as much as negative ones. We conducted

an experiment using both initial weight settings to observe its effect on the performance of

the final detector. Our experiments showed that these settings will result in almost the same

performance at the end, and there is no significant advantage on choosing any of the settings.

This can be explained by the fading of the initial weights after a few iterations in any

AdaBoost run. In each iteration of AdaBoost, all the samples are reweighted according to

the classification results of the chosen weak classifier at that iteration. Therefore, as long as

the initial weights are not very biased on some of the examples, after a few iterations higher

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES

0.01" I
1 o - ~ 1 o - ~ 1 o - ~ 1 o - ~ 1 o - ~ 10-1

false positives per window (FPPW)

Figure 4.5: Comparison results of adding more levels of mid-level feature sizes to the detec-
tor.

weights will be assigned to harder examples which cannot be classified easily. Performance

results of this experiment are shown in Figure 4.6.

Another parameter in the AdaBoost algorithm is T which is the number of weak classi-

fiers that the final classifier contains. We investigated the influence of this parameter on the

detector's performance. Figure 4.7 shows the miss rate of the detector for three fixed FPPW

values for different number of mid-level features (T) selected in the final classifier. For all

the three FPPW values, the performance improves by increasing the number of mid-level

features in the final classifier. This implies that we are not over-fitting our final classifier by

selecting more mid-level features in it.

CHAPTER 4. DETECTIAJG PEDESTRIANS USING BOOSTED FEATURES

I ' . " . " , . ' " . " " ' ' n ' l l . " ' - ' - ' *

1-8- Higher Initial Weights for Positive Example:
1 -El- Equal Initial weights

J

1 o - ~ 1 o - ~ 1 o - ~ 1 o - ~ lo-* lo-'
False Positive per Window (FFPW)

Figure 4.6: Effect of using different initial weight settings in AdaBoost. There is no signifi-
cant advantage on choosing any of the settings.

4.2.3 Bootstrapping

As mentioned earlier, we use bootstrapping to retrain our classifiers. After training the

mid-level features and the final classifier, we run this classifier on all of the negative training

images. This way we can collect false positive negative images that are being classified

as pedestrians. We use these images in addition to our original set of negative images to

retrain the features and classifier. Bootstrapping will force the features and the classifier to

focus more on the harder (more pedestrian-like) negative examples. There is no argument

that bootstrapping will improve the classifier, but we further explored the effect of boot-

strapping on different parts of our training phase. We used the W1 feature set introduced

in section 4.2.2 for this experiment. We trained three different classifiers. First one is the

CHAPTER 4. DETECTING PEDESTRIAiW USING BOOSTED FEATURES

number of mid-level features

Figure 4.7: Influence of having different number of mid-level features inside the final classifier
on the performance of the detector.

original trained classifier without bootstrapping. Second classifier is trained by bootstrap-

ping only the final classifier and not retraining the mid-level features with the new negative

examples. For the third classifier we retrained both mid-level features and the final classi-

fier. Results are shown in figure 4.8, and as expected retraining both features and the final

classifier will increase the performance by a factor of 10. This improvement by retraining the

mid-level features is another fact, supporting the discriminativeness of mid-level features.

By retraining these features, they capture more important information that are necessary

for classification of pedestrian-like background images from pedestrians.

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES

Figure 4.8: Effect of bootstrapping mid-level features and final classifier on the detector's
performance.

4.2.4 Cascade

Our approach is based on classifying every possible window in the image as pedestrian

or background. This can cause in long detection times for high resolution images. To

overcome this problem we can employ the AdaBoost cascade method used by Viola and

Jones [47] for fast face detection. A notion similar to Viola and Jones cascade is also

used by Rowley et al. [40] for object detection. In Viola and Jones method, instead of

making one final AdaBoost classifier using the low-level features (mid-level features in our

approach), they make a cascade of classifiers. The idea for using a cascade is that the first

few weak classifiers chosen by AdaBoost can classify many of the simple negative background

images from pedestrians. Simpler classifiers are used in the early stages of the cascade to

reject the majority of windows before more complex classifiers are called to classify harder

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES 54

test windows. This way, for easier examples we do not need to compute all the mid-level

features, and just by applying those in the first classifier stages we can reject most of them

and continue only with harder examples. An illustration of the cascade process is shown in

Figure 4.9.

/

All Sub- windows

Further
, P rocesstng,

C C
- -

C
- -

,
\

Reject Sub- wmdow

- -

Figure 4.9: Cascade of classifiers introduced by Viola and Jones [47]. (02001 IEEE, by
permission)

By employing the cascade of classifiers method into our detector, the running time of the

program dropped with a factor of 5 to 10, depending on the test images. The performance

of the detector also dropped slightly. We believe the reason is the separation of more

discriminative features in the early stages from the less discriminative ones in the later

stages. Note that we Bootstrap the negative training set at the end of each cascade stage

and choose examples that are hard for the detector to classify up to that stage. This way

in final stages we might fall into the problem of over-fitting to the training set data, due to

rejection of many background images in the previous stages.

4.2.5 Normalization

Normalization is another factor that is used in many detection systems to overcome the

problem of different intensity and gradient responses over different images. Because of the

color, illumination, and background differences from image to image, gradient responses can

vary drastically. Therefore feature vector normalization is used to overcome the problem of

different gradient magnitudes.

Instead of normalizing the whole image or whole gradients at the beginning, we apply our

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES 55

normalization at the mid-level stage. This way we can handle local illumination changes

much better. We use L2-norm normalization. We normalize the feature vector of every

mid-level feature, by normalizing all the low-level features that fall into the window of that

mid-level feature:

Where fd is the vector of low-level features inside one mid-level feature, k is the number

of those low-level features, and t is a small number set to 1 in our experiments. We normalize

all four direction responses at once to decrease the noise level.

It appears that this normalization can make the computations very slow as we are doing

it for every window. We use the notion of Integral Images, introduced by Viola and Jones [47]

to overcome this problem. Integral Image is a cumulative sum of an image in 2D. At each

pixel of Integral Image, you can find the sum of all the pixels in the original image at left

and top of that pixel.

Where ii is the integral image, and i is the original image.

We compute the Integral Image of a virtual image which is the square of low-level features

summed up in the 4 directions.

Where gi is a 3D image of the low-level features (gradient response in the 4 directions).

Figure 4.10 compares the performance of two detectors with and without normalization.

Applying this normalization method improved our results by 17% at lop6 FPPW.

4.3 Analysis

The pedestrian detection approach that we introduced in this chapter has many advantages

over previous pedestrian detectors. It is fast and reliable. The running time of our detector

is comparable to that of Dalal and Triggs [6]. Our Matlab implementation, exhaustively

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES

1 o - ~ I o - ~ 1 o - ~
false positives per window (FPPW)

\E

'0. '8.&

'0.02, rn
Q,

'0
h

'0. u
'6l

', '9
Q; 9

a,.
'0

'9
8 ', 8

8

a', 9

E? 's.
', 9

Q, b

Figure 4.10: Effect of normalizing mid-level features on the detector's performance.

a Q Normalized AdaBoost
- 8 - AdaBoost

searches a 320 x 240 image in all the possible scales (about 4000 detection windows) in less

than 10 seconds. By introducing the mid-level features, which is the main contribution in this

work, we operationalized the notion of locally trained features. These features capture more

useful information for the classification, than the fixed features, widely used for detection

systems.

The performance of our final detector on INRIA dataset is shown in figure 4.11. We

compare our performance results with that of Dalal and Triggs' HOG detector [6], which is

the state of the art pedestrian detector. Note the higher performance of our detector by a

factor of 10 at false-positive levels of as low as

Figure 4.12 shows the detection results of our detector on some sample images. The

'0
\
I

'. 8

I It. s., 8

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES

INRIA dataset

. %.

0, j
8 0 AdaBoost \ 0
-E-HOG ?.

. I I 1 \

1 o - ~ I o - ~ 1 o - ~
false positives per window (FPPW)

Figure 4.11: Overall Performance of our AdaBoost detector compared to Dalal and Triggs'
HOG detector.

threshold used for these results is set to the one that has false positive rate according

to our experiments. Note the multiple detections in easy images and misses and false

positives in harder ones.

CHAPTER 4. DETECTING PEDESTRIANS USING BOOSTED FEATURES

Figure 4.12: Results of running the detector on some of the test images. The multiple de-
tections are because of multi-scale search, and one pedestrian might be detected in different
scales. Some non-pedestrians are also falsely detected as pedestrians (false positives) in
some of the images.

Chapter 5

Conclusions

We introduced two new methods for the problem of pedestrian detection, with different

auxiliary goals. One aimed to find per-pixel likelihoods while detecting pedestrians, so that

those likelihoods can be used for further tasks after the detection. The focus of the second

method is solely on discriminating between pedestrians and non-pedestrians, accurately and

fast. The main contribution of this work is the introduction of trainable features that are

used for this detector. In this chapter, we give an overall comparison of these two methods

and discuss their possible extensions.

5.1 Comparison and Discussion

Our coarse shape feature detector that uses geometric blurs as the shape descriptors and

kernel density estimates for class distribution estimation, does not perform adequately. The

poor performance of this detector can be the result of two mistakes. First is the use of fixed,

high dimensional feature vectors to describe the local shape; geometric blurs. Geometric

blurs are highly descriptive and discriminative descriptors, and they can be used to match

feature points very accurately. The discriminativeness of these features is one main source

of our problems. To interpret the shape of an object, globally or at a pixel, we need features

that can be blurred over all the training examples. But geometric blur features will differ

between every two examples, and this problem is magnified when we have a non-rigid object

like pedestrians. Because of this problem, training examples will fall into different places

inside the geometric blur feature space. Kernel density estimation could help us to model

these sparse set of features and estimate the overall distribution, but high dimensionality of

CHAPTER 5. CONCLUSIONS 60

the feature space and lack of enough training examples to fill that space, made us unable

to have accurate estimates.

Our second approach, that uses AdaBoost to train features and classifiers, tries to over-

come the problems that led to failure of the first approach. We needed some features that

are trainable and not fixed, and also their dimensionalities are as low as possible. To do

so, we introduced the trainable mid-level features, that describe the shape of the object

locally. These features are very discriminative regarding the two object classes, unlike the

geometric blur features that are generally discriminative. The mid-level features are very

low dimensional because they only contain the dimensions that have useful information for

the classification task. Another change that we made in the design of this detector com-

paring to the previous one, was the use of AdaBoost to create our final classifier instead of

estimating object class likelihoods at each pixel. This way, we only use a subset of features

that can describe our objects. It will prevent repetition of information and decreases the

amount of noise. As a result, the performance of the second detector increased substan-

tially and is even better than the performance of the state of the art pedestrian detectors.

Figure 5.1 illustrates the performance of our two detectors and the state of the art HOG

detector [6].

As mentioned, the main contribution of this thesis is the introduction of trainable

mid-level features. As a direct result of trainability of these features, beside the low-

dimensionality and discriminativeness, is their scalability. These features can be trained

for any object class and there is no need to change the design of the features depending on

the classes that we want to train our detector for. We only need to retrain the mid-level

features and the final classifier for the new object class.

The only advantage of our kernel density estimate detector over the AdaBoost detector,

is the final per-pixel likelihood results that it provides. Those results can be used for other

applications other than only detection, such as segmentation. The AdaBoost detector,

cannot provide such output because of the sparsity of its selected features.

5.2 Future Work

Each of our detectors can be extended in different ways. We mostly focus on the second

one, AdaBoost detector, because of its promising results.

The KDE-based detector can be extended by embedding a segmentation algorithm in it.

CHAPTER 5. CONCLUSIONS

1 o - ~ 1 o - ~ 1 o - ~ 1 o - ~ 1 o - ~ 10-1
false positives per window (FPPW)

Figure 5.1: Comparison results of our two detectors and HOG detector.

We conducted some preliminary tests using color segmentation to over segment the image

and do the detection and segmentation of the pedestrian from background at the same time.

We observed that segmentation during detection can improve the results of both detection

and segmentation task, but as those experiments are out of scope of the focus of this thesis

we did not further explored the experiments.

Our second method, the AdaBoost-based detector, can be extended in different ways,

due to its flexibility and performance:

We can easily use the same structure of the detector for detecting other objects than

only pedestrians. Without changing many parameters, we can train the mid-level

features and the final classifier for another object category.

AdaBoost is not only a two-class classification algorithm. It can be extended easily

to classify more than two classes. As AdaBoost is the main underlying algorithm for

CHAPTER 5. CONCLUSIONS 62

both feature creation and classifier training tasks of our approach, extending our work

to multi-class classifications is a plausible task.

We showed that adding an extra layer of features, by training them using the Ad-

aBoost, can improve the results of object detection task. An interesting further inves-

tigation of this approach is to use a pyramid hierarchy of mid-level features instead of

having only one layer. That way we might be able to describe different object parts

in the hierarchy as well as improving the detection performance.

Hoiem et al. [18] use the context and perspective to search for objects the way humans

do. They show that with probabilistic estimation of surfaces and world coordinates,

one can put objects into perspective and model the scale and location variance in the

image. This way not everywhere and every scale in the image can contain our target

objects. By incorporating this method with our detector, not only we can have a much

faster running time because of the reduced number of possible pedestrian windows,

but also the false positive rate can decrease substantially.

Bibliography

[I] A. Agarwal and B. Triggs. 3d human pose from silhouettes by relevance vector re-
gression. In Proc. IEEE Computer Society Conf. on Computer Vision and Pattern
Recognition., volume 02, pages 882-888, 2004.

[2] S. Agarwal and D. Roth. Learning a sparse representation for object detection. In
Proc. 7th Europ. Conf. Computer Vision, volume 4, pages 113-130, 2002.

[3] H.G. Barrow, J.M. Tenenbaum, R.C. Bolles, and Wolf H.C. Parametric correspondence
and chamfer matching: Two new techniques for image matching. Proc. 5th Int. Joint
Conf. Artificial Intelligence, pages 659-663, 1977.

141 A. Berg and J. Malik. Geometric blur for template matching. In Proc. IEEE Computer
Society Conf. on Computer Vision and Pattern Recognition., pages 607-614, 2001.

[5] A.C. Berg, T.L. Berg, and J. Malik. Shape matching and object recognition using
low distortion correspondences. In Proc. IEEE Computer Society Conf. on Computer
Vision and Pattern Recognition., pages 26-33, 2005.

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc.
IEEE Computer Society Conf. on Computer Vision and Pattern Recognition., 2005.

[7] P.F. Felzenszwalb. Learning Models for Object Recognition. In Proc. IEEE Computer
Society Conf. on Computer Vision and Pattern Recognition., pages 56-62, 2001.

[8] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient Graph-Based Image Segmentation.
International Journal of Computer Vision, 59(2):167-181, 2004.

[9] Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. Machine
Learning: Proceedings of the Thirteenth International Conference, 148:156, 1996.

1101 Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55(1):119-139,
1997.

[ll] Y. Freund and R.E. Schapire. A short introduction'to boosting. Journal of Japanese
Society for Artificial Intelligence, 14(5):771-780, 1999.

BIBLIOGRAPHY 64

[12] D.M. Gavrila. Visual analysis of human movement: A survey. Computer Vision and
Image Understanding, 73(1):82-98, 1999.

[13] D.M. Gavrila, J. Giebel, S. Munder, D.C. Res, and G. Ulm. Vision-based pedestrian
detection: the PROTECTOR system. Intelligent Vehicles Symposium, 2004 IEEE,
pages 13-18, 2004.

[14] D.M. Gavrila and V. Philomin. Real-time object detection for smart vehicles. In Proc.
7th Int. Conf, Computer Vision, volume 1, 1999.

[15] T. Hastie, R. Tibshirani, and J.H. Friedman. The elements of statistical learning: data
mining, inference, and prediction. Springer, 2001.

[16] E. Hjelmas and B.K. Low. Face detection: A survey. Computer Vision and Image
Understanding, 83(3):236-274, 2001.

[17] D. Hogg. Model-based vision: a program to see a walking person. Image and Vision
Computing, 1 (1):5-20, 1983.

[18] D. Hoiem, A.A. Efros, and M. Hebert. Putting objects in perspective. In Proc. IEEE
Computer Society Conf. on Computer Vision and Pattern Recognition., volume 2, pages
2137-2144, 2006.

[19] C. Huang, H. Al, B. Wu, and S. Lao. Boosting nested cascade detector for multi-
view face detection. Pattern Recognition, 2004. Proceedings of the 17th International
Conference on, 2, 2004.

[20] D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. Comparing images using
the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 15(9):850-863, 1993.

[21] B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection in crowded scenes. In
Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition.,
volume 1, 2005.

[22] D.G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91-110, 2004.

[23] K. Mikolajczyk, B. Leibe, and B. Schiele. Local Features for Object Class Recognition.
In Proc. 10th Int. Conf. Computer Vision, volume 2, 2005.

[24] K. Mikolajczyk, C. Schmid, and A. Zisserman. Human detection based on a proba-
bilistic assembly of robust part detectors. In Proc. 8th Europ. Conf. Computer Vision,
volume 1, pages 69-81, 2004.

[25] T.B. Moeslund and E. Granum. A survey of computer vision-based human motion
capture. Computer Vision and Image Understanding, 81(3):231-268, 2001.

BIBLIOGRAPHY 65

[26] A. Mohan, C. Papageorgiou, and T. Poggio. Example-based object detection in images
by components. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(4):349-361, 2001.

[27] G. Mori and J. Malik. Estimating human body configurations using shape context
matching. In Proc. 7th Europ. Conf. Computer Vision, volume 3, pages 666-680.
Springer, 2002.

[28] S. Munder and D.M. Gavrila. An experimental study on pedestrian classification. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(11):1863-1868, 2006.

[29] K. Okuma, A. Taleghani, N. de F'reitas, J.J. Little, and D.G. Lowe. A boosted particle
filter: Multitarget detection and tracking. In Proc. 8th Europ. Conf. Computer Vision,
volume 1, pages 28-39, 2004.

[30] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio. Pedestrian detection
using wavelet templates. In Proc. IEEE Computer Society Conf. on Computer Vision
and Pattern Recognition., pages 193-199, 1997.

[31] J. O'Rourke and N.I. Badler. Model-Based Image Analysis of Human Motion Using
Constraint Propagation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2(6) :522-536, 1980.

1321 J. OISullivan, J. Langford, R. Caruana, and A. Blum. FeatureBoost: A Meta-Learning
Algorithm that Improves Model Robustness. Proceedings of the Seventeenth Interna-
tional Conference on Machine Learning, pages 703-710, 2000.

[33] C. Papageorgiou and T. Poggio. Trainable pedestrian detection. In Proc. 7th Int. Conf.
Computer Vision, volume 4, 1999.

[34] C. Papageorgiou and T. Poggio. A Trainable System for Object Detection. International
Journal of Computer Vision, 38(l): 15-33, 2000.

[35] X. Ren and J. Malik. Learning a Classification Model for Segmentation. In Proc. 9th
Int. Conf. Computer Vision, pages 10-17, 2003.

[36] K. Rohr. Incremental recognition of pedestrians from image sequences. In Proc. IEEE
Computer Society Conf. on Computer Vision and Pattern Recognition., pages 8-13,
1993.

[37] R. Ronfard, C. Schmid, and B. Triggs. Learning to parse pictures of people. In Proc.
7th Europ. Conf. Computer Vision, 2002.

[38] R. Rosales and S. Sclaroff. Inferring body pose without tracking body parts. In
Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition.,
volume 02, page 2721, 2000.

BIBLIOGRAPHY 66

[39] R. Rosales, M. Siddiqui, J . Alon, and S. Sclaroff. Estimating 3D Body Pose using
Uncalibrated Cameras. In Proc. IEEE Computer Society Conf. on Computer Vision
and Pattern Recognition., volume 1, pages 821-827, 2001.

[40] H.A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(1):23-38, 1998.

[41] B. Schiele and J.L. Crowley. Recognition without Correspondence using Multidi-
mensional Receptive Field Histograms. International Journal of Computer Vision,
36(1):31-50, 2000.

[42] H. Schneiderman and T. Kanade. A statistical method for 3d object detection applied
to faces and cars. In Proc. IEEE Computer Society Conf. on Computer Vision and
Pattern Recognition., volume 1, pages 746-751, 2000.

[43] H. Schneiderman and T. Kanade. Object Detection Using the Statistics of Parts.
International Journal of Computer Vision, 56(3):151-177, 2004.

[44] C. Sminchisescu and B. Triggs. Covariance scaled sampling for monocular 3D body
tracking. In Proc. IEEE Computer Society Conf. on Computer Vision and Pattern
Recognition., volume 1, pages 447-454, 2001.

[45] C. Sminchisescu and B. Triggs. Estimating Articulated Human Motion with Covariance
Scaled Sampling. The International Journal of Robotics Research, 22(6):371-391, 2003.

[46] M.J. Swain and D.H. Ballard. Color indexing. International Journal of Computer
Vision, 7(1):11-32, 1991.

[47] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In Proc. IEEE Computer Society Conf. on Computer Vision and Pattern
Recognition., 2001.

[48] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using patterns of motion and
appearance. In Proc. 9th Int. Conf. Computer Vision, pages 734-741, 2003.

[49] M.P. Wand and M.C. Jones. Kernel Smoothing. Chapman & Hall/CRC, 1995.

[50] A. Webb. Statistical Pattern Recognition. Hodder Arnold, 1999.

[51] B. Wu and R. Nevatia. Detection of multiple, partially occluded humans in a single
image by bayesian combination of edgelet part detectors. In Proc. 10th Int. Conf.
Computer Vision, 2005.

[52] C. Yang, R. Duraiswami, N.A. Gumerov, and L. Davis. Improved fast gauss transform
and efficient kernel density estimation. In Proc. 9th Int. Conf. Computer Vision, pages
664-671, 2003.

BIBLIOGRAPHY 67

[53] T . Zhao and R. Nevatia. Bayesian human segmentation in crowded situations. In
Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition.,
volume 2, pages 459-466, 2003.

[54] T . Zhao and R. Nevatia. Tracking multiple humans in crowded environment. In Proc.
IEEE Computer Society Conf. on Computer Vision and Pattern Recognition., volume 2,
2004.

