
National Library 144 of,,, 
BiMiothitque nationale 
du Canada 

Acquisitions and Direction des acquisitions et 
Bibliographic Services Branch des services bibliographiques 

NOTICE AVtS 

The quality of this microform is La qualite de cette microforme 
heavily dependent upon the depend grandement de la qualite 
quality of the original thesis de la t h k e  soumise au 
submitted for microfilming. microfilmage. Nous avons tout 
Every effort has been made to fait pour assurer une qualit6 
ensure the highest quality of superieure de reproduction. 
reproduction possible. 

If pages are missing, contact the S'il manque des pages, veuillez 
university which granted the cornmuniquer avec I'universite 
degree. qui a confer6 le grade. 

Some pages may have indistinct La qualite d'impression de 
print especially if the original certaines pages peut laisser a 
pages were typed with a poor desirer, surtout si les pages 
typewriter ribbon or if the originales ont et6 
university sent us an inferior dactylographi6es a I'aide d'un 
photocopy. ruban use ou si I'universit6 nous 

a fait parvenir une photocopie de 
qualit6 infbrieure. 

Reproduction in full or in part of La reproduction, m6me partielle, 
this microform is governed by de cette microforme esf soirmise 
the Canadian Copyright Act, A !a LQI canadienne sur le droif 
R.S.C. 1970, c. C-30, and d'auteur, SRC 1970, c. C-30, et 
subsequent amendments. ses amendements subshquents. 



ALGORITHMIC COMPLEXITY OF SOME CONSTRAINT 
SATISFACTION PROBLEMS 

Daya Ram Gaur 

B. Tech. Computer Science and Engineering 

Institute of Technology, Banaras Hindu Univ. 

Varansi, India. 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 
in the School 

of 
Computing Science 

@ Daya Ram Gaur 1995 

SIMON FRASER UNIVERSITY 

April 1995 

AH rights reserved. Tnis work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



Mational Library 1*1 &Canada 
B i b l i u e  nationale 
du Canada 

Acquisiwtsand Direction des acquisitions et 
BiMEographic Services Branch des s e ~ c e s  bibliraphiques 

THE AUTHOR HAS GRANTED AN 
IRREVOCABLE NON-EXCLUSIVE 
LICENCE ALLOWING THE NA'TIONAL 
LIBRARY OF CANADA TO 
REPRODUCE, LOAN, DISTRIBUTE OR 
SELL COPES OF HIS/HER THESIS BY 
ANY MEANS AND IN ANY FORM OR 
FORMIIT, MAKING THIS THESIS 
AVrnPLBLE TO  RESTED 
PERSONS. 

TEE AL'THOR RETAINS O ' W R S M P  
OF ?*HE COPYRIGHT IN HIS/HER 
THESIS. NEITHER THE THESIS NOR 
SUBSTANTIAL EXTRACTS FROM IT 
MAY BE PRINTED OR OTHERWISE 
REPRODUCED WITHOUT HIS/HER 
PERMISSION. 

L'AUTEUR A ACCORDE UNE LICENCE 
IRREVOCABLE ET NON EXCLUSIVE 
PERMETTANT A LA BIBLIOTHEQUE 
NATIONALE DU CANlhlDA DE 
REPRODUfRE, PRETER, DISTRIBUER 
OU VENDRE DES COPIES DE SA 
THESE DE QUELQE MANERE ET 
SOUS QUELQUE FORME QUE CE SOIT 
POUR METTRE DES EXEMPLAIRES DE 
CETTE THESE A LA DISPOSITION DES 
PERSONNE INTERESSEES. 

L'AUTEUR CONSERVE LA PROPRIETE 
DU DROIT D'AUTEUR QUI PROTEGE 
SA THESE. M LA THESE NI DES 
EXTRAITS SUBSTANTIELS DE CELLE- 
CI NE DOIVENT ETRE IMPRIMES OU 
AUTREMENT REPRODUITS SANS SON 
AUTORISATION. 

ISBN 0-612-06663-0 



APPROVAL 

Name: Daya Ram Gaar 

Degree: Master of Science 

Title of thesis: Algorithmic Complexity ~f some Constraint Satisfa.ction 

Problems 

Examining Committee: Dr. Pavol Hell 

Chair 

Dr. Wi~liam S. Havens 

- 
Dr. Binay Bhattacharya 

Date Approved: 

Dr. Peter Van Beek 



SIMON FRASER UNIVERSITY 

f hereby grant to Simon Fraser University the right to lend my thesis, project 
or extended essay (the title of which is shown below) to users of the Simon 
Fraser University Library, and to make partial or single copies only for such 
users or in response to a request from the library of any other university, or 
other educational institution, on its own behalf or for one of its users. I further 
agree that permission for multiple copying of this work for scholarly purposes 
may be granted by me or the Dean of Graduate Studies. It is understood that 
copying or publication of this work for financial gain shall not be allowed 
without my written permission. 

Title of Thesis/Project/Extendec! Essay 

Akorithmic Corn~lexitv of some Constraint Satisfaction Problems. 

Author: 
(signature? 

Daya Ram Gaur 

(name) 

April 7,1995 



Abstract 

Constraint networks are a simple knowledge representation model, useful for describ- 

ing a large class of problems in planning, scheduling and temporal reasoning. A 

constraint network is called decomposable if any partial solution can be extended to 

a global solution. A constraint network is called minimal if every allowed 2-tuple of 

assignments can be extended to a global solution. 

Much of the existing research in the field has been aimed at identifying restrictions 

on constraint networks such that the resulting network is minimal or decomposable 

or both. In this thesis we will examine issues related to minimal networks. We 

will address the complexity issues related to minimal networks. We will show that 

determining whether a given constraint network is minimal is NP-Complete. We also 

show that given a Ztuple finding a solution which contains this edge is NP-complete 

in a minimal network. 

We show that there exists a greedy algorithm for finding a solution to a subclass 

of minimal network. The recognition problem for this class is of the same complexity 

as the recognition problem for decomposable networks. 

We use a result of Feige and Lovasz to show that there exists another class of 

constraint satisfaction problems for which determining the satisfiability is polynomial. 

The recognition problem for this class is also NP-complete. 

Next we address the weighted constraint satisfaction problem. In the weighted 

constraint satisfaction problem, associated with each assignment is a cost. The goal 

is to find a consistent assignment with minimum cost. We will show that for minimal 

graphs and 011 weights the weighted constraint satisfaction problem is NP-complete. 



For my mother 

Chandrawati Sharma 

and my father 

Pandit Salig Ram 



Acknowledgements 

I would like to thank Bill Havens for introducing me to the field of constraint logic 

programming. Without his continuing support it would have been an impossible task. 

Lou Rafer for all the time he spent reading many drafts of the thesis. Readability of 

this thesis is due to his patience and the valuable suggestions. 

I would also like to thank other members of my committee, Binay Bhattacharya 

and favol Hell for valuable suggestions and for reading and correcting my thesis. I 

would like to thank the faculty and the staff of the school and the members in the 

Intelligent Systems Lab for creating an environment conducive to research. 

Finally I would like to acknowledge the fellow graduate students, Pinaki Mitra, 

Roman Bacik and Sridhar Hannenhalli for the fruitful discussions. I am grateful to 

Bill Havens and the School of Computing Science for the financial support. 



Contents 

Abstract iii 

Acknowledgements v 

1 Introduction 1 

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . .  4 

1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

1.4.1 Resource Allocation Problem . . . . . . . . . . . . . . . . . .  5 

1.4.2 all-different constraint solver . . . . . . . . . . . . . . . . . . .  8 

1.4.3 Minimality related to the Topology of a constraint network . . 10 

1.4.4 hlinimality related to the type of constraints . . . . . . . . . .  11 

1.4.5 Some Graph theoretic problems . . . . . . . . . . . . . . . . .  12 

2 Minimal Networks 14 

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

2.2 MinimalGraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

2.2.1 Complexity of finding a minimal constraint graph . . . . . . .  26 

2.3 Finding a clique in a minimal graph . . . . . . . . . . . . . . . . . . .  27 

. . . . . . . . . . .  2.3.1 Finding a solution containing a given edge 27 

2.3.2 A sub-class of minimal graphs . . . . . . . . . . . . . . . . . .  28 

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 



3 w = x  31 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 Introduction 31 

. . . . . . . . . . . . . . . . . . . . .  3.2 Class of graphs for which w = x 32 

. . . . . . . . . . . . . . . .  3.2.1 Complexity of recognizing w = x 36 

. . . . . . . . . . . . . . . . . . . . . . .  3.3 Weightedrninidnetworks 37 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.4 Conclusions 39 

4 Conclusions 40 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.1 Conciusions 40 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 Open Problems 41 

5 Addendum 42 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 Conjecture 1 42 

Bibliography 47 

vii 



List of Tables 

3.1 Incidence Matrix A of G in Figure 3.2 . . . . . . . . . . . . . . . . .  34 

3.2 Incidence Matrix B of K2 in Figure 3.2 . . . . . . . . . . . . . . . . .  34 

3.3 Matrix C for t.he Figure 3.3 . . . . . . . . . . . . . . . . . . . . . . .  35 

... 
Vlll  



List of Figures 

I.! A schedule fix a simple resource allocation problem . . . . . . . . . .  5 

1.2 Corresponding Graph coloring problem . . . . . . . . . . . . . . . . .  6 

1.3 Bipartite Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

1.4 A monotone relation . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

2.1 CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

2.2 Minimal Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

2.3 3-colorability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

2.4 Row-Convex blations but not Perfect . . . . . . . . . . . . . . . . .  22 

2.5 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

3.1 Examples of ~omomorphic arrd Non-Homornorphic pairs . . . . . . .  33 

3.2 Example for generation of matrix C . . . . . . . . . . . . . . . . . . .  35 

3.3 The Graph Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 



Chapter 1 

Introduction 

1. I Introduction 

Constraint networks are a simple knowledge representation model, useful for describ- 

ing a large class of problems in planning, scheduling, natural language understanding, 

image recognition, scene analysis [Mon74, Wa172, Wa175b, tVa175a], represent ation of 

physical systems [Bob84, J.84, JS841, temporal reasoning fDMP91, VK86], and spec- 

ification of software systems IBa185, BGW82, Luc851, to name a few. A Constraint 

Network can be viewed as a graph consisting of nodes and arcs. The nodes represent 

the variables and the arcs can be viewed as binary relations specifying the mutually 

consistent assignments between the nodes. h solution to such a network is an as- 

sigrment of values to all the nodes which satisfies all the constraints simultaneously. 

The notion is easily extensible to constraint graphs in which the relations between 

the nodes are n - ary. In this thesis, however, we will work with binary constraints. 

Waltz [Wa172, Wa175b, Wal75aj proposed an algorithm for consistent labelling of 

bidimensional scenes. He examined each pair of nodes linked by a line segment and 

eliminated the inconsistent d u e s .  This operation is called arc- consistency [Mac77]. 

Arc consistency is central to many constraint processing algorithms. Montanari first 

introduced the idea of constraint networks {Mon74] and proposed the path consistency 

algorithm. Mackworth Chilac771 improved on the complexity of Montanari's algorithm 

by keeping track of modified constraints to avoid rechecking. In [MF85] Maclrworth 



and Freuder discuss the complexity of some polynomial arc-consistency algorithms. 

Seidel [Sei81] gave an algorithm for constraint satisfaction based on dynamic pro- 

gramming which runs in O(m * Df+'), where m is the number of constraints, D is 

the maximum size of the domains of the variablea and f is an integer whose value 

depends on the structure of the problem. 

As many of the NP-complete problems [GJ79], such as graph coloring, are con- 

straint satisfaction problems, the constraint satisfaction problem is NP-complete. 

Since the constraint satisfaction problem belongs to the class of hard problems it 

is conjectured that it is impossible to find a polynomial time algorithm for it. One 

approach can be to find the subclasses of constraint satisfaction problems which are 

polynomially solvable. A second approach can be to give good approximation algo- 

rithms for the general constraint satisfaction problem. 

1.2 Definitions 

Definition 1 Chromatic number: The chromatic number (x) of a graph is dejned 

as the minimum number of colors required to color the vertices of the graph such that 

no two adjacent vertices get the same color. 

Definition 2 Mazimum Clique: A maximum clique is a complete subgraph of a given 

graph with maximum size. 

We denote the maximum clique size by w. Ii'; represents a complete graph over i 

vertices. 

Definition 3 Perfect Graph -4 graph G is perfect i f  every vertex induced subgraph 

GA has the proper@ that w(GA) = ~ ( G A ) .  

In a perfect graph a maximum clique can be found in polynomial time [GLS88]. 

Definition 4 Constraint Satisfaction Problem (CSP): Let X be the set of variables 

and D be the set of domain values. Relations between variables xi and x j define, 

the rn~rtuallzj consistent values. A solution to a CSP is an instantiation of all the 

~aricibles such that relations between all the pairs of variables are satisfied. 



A CSP can be represented as a 3-tuple (X, D, R) where X is the set of variables, 

D is the set of associated domains and R is the set of binary relations over domains 

specifying the consistent values. 

A CSP can also be visualized as a graph problem. From a given CSP the constraint 

graph can be constructed by introducing a node for each assignment of a domain value 

to a variable. Consistent instantiations are connected by an arc. Finding a solution 

to the CSP amounts to finding a maximum clique in the constraint graph. We will 

refer to the graph generated from the constraint satisfaction problem as the constraint 

graph. 

Definition 5 Path Consistency: A constraint network is path consistent if and only 

if', for every 3-tuple of variables x,, xj, xk, the following holds: for every instantiation 

of x; and xj  that satisfies the relation Rj, there exists an instantiation of 21, such 

that the relations and &.,k are satisfied. 

Definition 6 k-consistent network: A constraint network is k-consistent if and only 

if, given an instantiation of any k - 1 variables satisfying all the direct relations 

between those variables, there exists an instantiation of the kth variable such that the 

k values taken together satisfy all the relations between them. 

Definition 7 Strongly k-consistent: A constraint network is strongly k-consistent, if 

it is consastent for 1 5 2- 5 k. 

Definition 8 Decomposable Network: A constraint network is called decomposable 

i f  a n y  partial solution can be extended to a complete solution. 

Definition 9 Minimal Network: A constraint network is called minimal if any al- 

lowed 2-tuple of assignments can be eztended to a complete solution. 

Let the graph associated with minimal constraint network be called a minimal 

constraint graph. In graph theoretic terms a minimal network can be characterised 

as: every edge in the minimal graph participates in a maximum clique, where a 

maximum clique is a solution to the constraint satisfaction problem. Since this thesis is 



CHAPTER 1 .  INTRODUCTION 

concerned solely with constraint c-.! works and constraint graphs, the word constraint 

will be dropped whenever the meaning is clear from the context. An important 

point to be kept in mind while reading this thesis is that we distinguish constraint 

networks from constraint graphs. The phrase constraint graph is being used in the 

non-traditional sense. Whenever we use the word constraint graph we refer to the 

product graph as described in section 2.1 and figure 2.1. By Constraint Network we 

mean the graph which is defined over variables in the constraint satisfaction problem 

where two variables are linked by an edge if there is a binary constraint over the two 

variables. 

Overview of the thesis 

In chapter 2 we will introduce some definitions and show the reduction of the con- 

straint satisfaction problem to a graph problem. The reduction will show that the 

constraint satisfaction problem can be formulated as finding a maximum clique in a 

graph- 
We study minimal graphs and show that they are not necessarily perfect. We will 

address the complexity of recognizing minimal graphs, finding minimal subgraphs of 

a general graph, and finding a solution to a minimal graph. The notion of minimal 

networks is interesting to study because it is the natural generalization of decornpos- 

able networks, which admit backtrack free solution. The solution to a decomposable 

network can be computed by a greedy algorithm; the structure of the constraints 

guarantees the correctness of the algorithm. 

In chapter 3 we use a result of Fiege and Lovasz to show that there exists a 

class of constraint satisfaction problems for which satisfiability can be determined 

in polynomial time. This is exactly the class of constraint networks for which the 

associated graph has chromatic number )i equal to the size of the maximum clique w. 

This raises the question of recognizing graphs for which the former property is true. 

We show that it is NP-complete to determine whether w = x is true for any graph. 

We then address the weighted constraint satisfaction problem. In the weighted 

constraint satisfaction problem, associated with each assignment is a cost. The goal 



CHAPTER 1 .  INTRODUCTION 5 

Figure 1.1 : A schedule for a simple resource allocation problem 

is to find a consistent assignment with minimum cost. We will show that for minimal 

graphs and 011 weights the weighted constraint satisfaction problem is NP-complete. 

We conclude with a summary of results and open problems in the last chapter. 

1.4 Related Work 

There has been a considerable amount of effort expended on identifying the classes of 

constraint networks which are easily satisfiable. These classes are obtained either by 

restricting the type of constraints or the topology of the network. 

1.4.1 Resource Allocation Problem 

The resource allocation problem is an example where the constraints are of special 

type as well as the network has a special structure. In particular the constraints are 

all disequalities and the network is an interval graph. 

In a resource allocation problem, we have a set of tasks .  Associated with each 

task is a set of allowable resources. The problem is to find an assignment of a resource 

to each task such that no two tasks which overlap share a resource in common. We 

zssume that the execution times for each task have already been set. 

Figure 1.1 shows a resource allocation problem comprising of five tasks TI , .  . . , T5. 
The resources which can be used to perform a task are specified by a set. For example 



CHAPTER 1. INTRODUCTION 6 

Figure 1.2: Corresponding Graph coloring problem 

TI can use any of the resources {a,  b,c,d}. A resource allocation problem can be 

expressed as a graph coloring problem defined as follows: 

Let T be the set of tasks and Vi C; is the set of resources used by task T,. Define 

G=(V,E) tobeagraphsuchtha t  V = T a n d V i # j : T , n T j # O  

implies (Ti, T j )  E E. 

Given G and associated colors with each node (Ci here ) finding a valid coloring 

is equivalent to solving the resource allocation problem, where a valid coloring is an 

assignment of colors to the nodes from the list of permitted colors such that no two 

adjacent nodes have the same color. Figure 1.2 shows the graph coloring problem 

corresponding to the resource allocation problem shown in Figure 1.1. 



CHAPTER 1.  INTRODUCTION 7 

The graph defined by the resource allocation problem is an interval graph [Go180]. 

Coloring of interval graphs when the colors are not uniformly available is known to 

be NP-complete [AS87], whereas the regular coloring of interval graphs (when all the 

colors are available to all the nodes) can be accomplished in linear time [Go180]. 

Choueiry and Faltings in [CF94] describe how the properties of interval graphs 

can be exploited to simplify the problem. They group successive tasks which can be 

executed by the same resource. The VAD - heuristic described in [CF94] performs 

such grouping. The VAD - heuristic delays the assignment of the most constrained 

resource. 

Let G = (V, E) be an interval graph corresponding to some resource allocation 

problem. U c V is called an independent set if no two members of U share an edge. 

A covering of G by independent sets is a collection of sets (Ul, . . . , Urn) I Uzl Ui = V. 

It is well known that a covering of an interval graph can be obtained in linear time 

[Go180]. Furthermore this covering is the smallest possible. Such a covering groups 

tasks into sets which can have the same resource. If all the resources are available to 

every task then such a covering indeed gives a coloring. 

Relationship to k-consist ency 

If the constraint graph is an interval graph then the variables can be grouped 

into maximal cliques such that no two variables get the same color. We can then 

rewrite the coloring problem using higher order constraints. We call the higher order 

operator all-diflerent(List). It takes as an argument a list of domain variables and 

finds an instantiation for each variable in the argument list such that no two variables 

in the List get the same value. 

The all-different formulation for the problem shown in Figure 1.2 is: 

As mentioned previously, if the constraint graph is an interval graph then we can 

find all the maximal cliques in polynomial time [Gol80]. This grants us the liberty of 



CHAPTER I .  INTRODUCTION 

rewriting the problem using higher order constraints. In general we cannot solve the 

conjunction of these higher order constraints efficiently. 

As we will see ahead: a single all-different constraint can be solved efficiently. 

This provides us with a way to define local-consistency stronger than arc-consistency 

for binary networks. By making the network locally-consistent (with respect to the 

higher order constraint) we hope to prune more search space. 

Observation: 

Let n be the maximum cardinality of the argument lists to all-different con- 

straints describing a problem. If we make the network n consistent (in the 

Freuderian sense) then the network is globally consistent. 

Let k be the size of the maximum intersection of these cliques. In [DAGJ95] it is 

shown that if the constraint network is n - ary k + 1 - consistent then there exists 

a backtrack free search. 

1.4.2 all-different constraint solver 

In [Reg941 Regin describes an algorithm for making constraints of difference (all-different 

constraint) consistent. First we define a few terms: 

Definition 10 all-different constraint: is one which has inequality as the constraint 

on every pair of variables in the constraint. 

Definition 11 all-differentCSF: is a constraint satisfaction problem in which all the 

constraints are of the type all-different. 

Definition 12 Consistent-all-different constraint: is an all-diflerent constraint such 

that for every allowed domain value in a variable there exists a globally consistent 

assignmsnt for the other variables. 

Definition 13 Consistentall-differentCSP: is an all-diflerentCSP such that for any 

variable every allowed domain value is consistent with all the all-diflerent constraints 

involving the variable. 



CHAPTER 1 .  INTRODUCTION 9 

Figure 1.3: Bipartite Graph 

Let C be all-diflerent(Xl, X2, X3) where the domain of X I  is {1,2}, the domain 

of XZ is {1,3) and the domain of X3 is {1,2,3}. Let X and D denote the union of 

all the variables and the domains respectively . We define B to be a bipartite graph 

over nodes (X, D). (xi, d j )  is an edge in B if d j  E domain of x;. The bipartite graph 

corresponding to constraint C is shown in Figure 1.3. 

Definition 14 Matching: A subset of edges is called a matching if no two edges share 

a vertex in common. 

A matching with maximum cardinality in a graph is called a maximum matching. 

A solution to a constraint C is a maximum matching in B. Furthermore a max- 

imum matching in B is a solution to C. By definition if C is consistent then every 

edge in B belongs to a maximum matching. Maximum matching in bipartite graphs 

can in computed in ~(n'-~drn/ log n)) [ABMPSI]. 

Given an all-differentCSP we can make it consistent by removing all the values 

which do not belong to a maximum matching in some constraint C. Since each value 

can be removed at most once, the number of calls to the matching subroutine is 

bounded by the number of domain values. 

In general it is hard to find the maximal cliques describing the constraint satisfac- 

tion problem. In the case of resource allocation problems, the underlying constraint 



CHAPTER 1. INTRODUCTION 10 

graph is an interval graph, therefore we can compute all the alLdifferent constraints 

in polynomial time and use higher order consistency to prune more search space. 

1.4.3 Minimality related to the Topology of a constraint 

network 

Next we will discuss the classes which are obtained by restricting the topology. Monta- 

nari [Mon74] showed that if the constraint network is a tree, path consistency ensures 

that the network is minimal. 

Definition 15 Ordered Constraint Network: An ordered constraint network has its 

nodes arranged in a linear order. 

Definition 16 Width at a node in an ordered constraint network is the number of 

links that lead back from that node to previous nodes in the ordering. 

Definition 17 Width of an ordering is the masimum width at the nodes. 

Definition 18 Width of a constraint network is the minimum width over all the 

orderings of the network. 

Freuder [Fre82, Fre85] related the width of a network to the level of local con- 

sistency required to ensure a backtrack free solution. The following theorem is from 

[Fre82]. 

Theorem 1 (Freuder) Given a constraint satisfaction problem: 

( I )  A search order is backtrack-free i f  the leuel of strong consistency is greater 

than the width of the corresponding ordered constraint network. 

(2) There exists a backtrack-free search order for the problem i f  the level of 

strong consistency is greater than width of the constraint network. 



CHAPTER 1.  INTRODUCTION 11 

It can be seen that the width of a tree is 1. Therefore by the previous theorem 

2 - consistency would give us a backtrack-free search in trees. 

Dechter and Pearl [DP88] provide an adaptive scheme where the level of consis- 

tency is adjusted on a node by node basis. Freuder [FreSO] generalizes the previous 

result (Theorem 1) on trees to k - trees. 

1.4.4 Minimality related to the type of constraints 

Let 5 be a partial order on the set Di of values of the variable Xi. Moreover we 

impose a lattice structure with i n  f and sup operations on D;. We treat r 5 s as 

being equivalent to xi, 5 xi,,. A total relation R , j  between the sets D ;  and Dj is 

called monotone if: 

(i) if I&j,TS = 1 and t 2 r then Rjlt, = 1 and conversely 

if RjSrs = 1 and t 5 s then R i j t T t  = 1 

(ii)if &j,p, = 1, = 1 and r = i n  f (p,  q )  then EjVTs = 1 and 

if &j,Tp = l , ~ , , ,  = 1 and s = sup(p,q) then R , j T T s  = 1. 

A monotone relation is shown in Figure 1.4. 

Montanari [Mon74] showed that if the relations are monotone then path consis- 

tency ensures that the network is minimal and decomposable. 

The following theorem from [DecSO] relates the size of the domains of the variables 

and the level of local consistency required to ensure a decomposable network. 

Theorem 2 (Dechter)Any k-valued r-ary constraint network that is strongly (k(r- 

l )+l)  consistent is globally consistent. In particular, any k-valued binary constraint 

network that is strongly (k+l) consistent is globally consistent. 

If we have a bi-valued binary network, ensuring 3-consistency would guarantee 

a globally consistent network, though this might not be the fastest way to solve bi- 

valued binary networks, as bi-valued binary networks are equivalent to 2-Sat which 

can be solved in linear time. 



CHAPTER 1. INTRODUCTION 

Figure 1.4: A monotone relation 

Definition 19 Functional Relation R: A binary relation represented in matrix form 

is functional if and only if there is at most one 1 in each row and in each column of 

R. 

Deville and Van Hentenryck [DVH91] show that if the relations are monotone and 

functional then arc consistency itself guarantees satisfiability. Van Beek in [VB92] 

generalized the previous result to show that if a matrix representation of the relation 

is row-convex then path consistency ensures that the network is both minimal and 

decomposable. 

1.4.5 Some Graph theoretic problems 

For related definitions the reader is referred to section 1.2. 

Zykov [Zyk49] defined a graph G to be Ic - saturated if it does not contain a k + 1 

clique, but every graph obtained from G by adding an edge contains a clique of size 

k + 1. Hajnal [Haj65] studied k - saturated graphs. 

Suppose that the constraint graph is k - saturated and the degree of each vertex 



CHAPTER 1 .  INTRODUCTION 

is 5 n - 2, where n is the number of vertices in the graph. A maximum clique in such 

a constraint graph can be computed as follows: let (a, b )  be a pair of vertices such 

that a is not connected to b. If we add the edge (a, b) to the constraint graph then we 

get a clique of size k + 1, therefore the common neighbours of a and b have to be a 

k - 1 clique. Thus the common neighbours of a and b with either a or b form a clique 

of size k. 

From this it follows that every node in a k - saturated constraint graph belongs '9 

a maximum clique. Clearly, k - saturated graphs are properly contained in minimal 

graphs. Observe that the assumption about the degree of each vertex is natural. We 

assume that the domain of each variable has more than one element, which implies 

that each row in the constraint graph has at least two nodes. As all the nodes in a 

row form an independent set, the degree of each node cannot be equal to the number 

of the vertices. 

Let IC,(i), i = 1 . . . n, be n complete graphs of n vertices. Assume that every two 

of the Kn(i)'s have at most one vertex in common. The following question has been 

posed in [Erd81]: 

Prove that the graph U;="=,l(,(i) has chromatic number n. 

Clearly the above stated class of graphs is a subclass of minimal networks. The 

problem is still open to the best of my knowledge. This shows how hard it is to study 

the structure of the minimal graphs. 



Chapter 2 

Minimal Networks 

2.1 Introduction 

To facilitate the discussion we will reintroduce some of the terms. 

Definition 20 Constraint Satisfaction Problem (CSP): Let X be the set of variables 

and D be the set of domain values. Relations Ri,j between variables xi and xj define, 

the mutually consistent values. A solution to a CSP is an instantiation of all the 

variables such that relations between all the pairs of variables are satisfied. 

A CSP can be represented as a 3-tuple (X, D, R) where X is the set of variables, 

D is the set of associated domains and R is the set of binary relations over domains 

specifying the consistent values. 

A CSP can also be visualized as a graph problem. From a given CSP the constraint 

graph can be constructed by introducing a node for each assignment of a domain value 

to a variable. Consistent instantiations are connected by an arc. Finding a solution 

to the CSP amounts to finding a maximum clique in the constraint graph. We will 

refer to the graph generated from the constraint satisfaction problem as the constraint 

graph. Figure 2.1 is a constraint graph for some constraint satisfaction problem. 

All the xi,j in row i correspond to the values x; can take. For example variable xl 

has four domain values dll , d12, d13, d14. The corresponding assignments are denoted 

by the variables xll, xlz,xl3,xl4. There is an edge connecting two nodes if and only 



CHAPTER 2. MINIMAL NETWORKS 

Figure 2.1: CSP 

if the assignments are mutually compatible. By definition for all j, k, xi,j is not 

connected to x i , k .  If we visualize the nodes of the constraint graph as a matrix of 

rows and columns then the previous statement asserts that are no edges in between 

elements of a row. All the edges are from one row to another. If the CSP is satisfiable, 

then there is a clique of size ( X I in the graph G. If the CSP is not satisfiable then 

there does not exist a clique of size I X 1. Furthermore only one element from each 

row can participate in the formation of the clique. The CSP shown in Figure 2.1 has 

a unique solution ~ 1 1 , 2 2 2 ,  x33. 

The transformation described above can be carried out in polynomial time. 

Definition 21 Path Consistency: A network is path consistent i j  and only i i  for 

every 3-tuple of variables xi, x j ,  xt, the following holds: for every instantiation of x i  

and x j  that satisfies the relation there exists an instantiation o f x k  such that the 

relations R j , k  and are satisfied. 

Definition 22 k-consistent network: A network is k-consistent if and only if, given 

an instantiation of any k - 1 variables satisfying all the direct relations between those 



CHAPTER 2. MINIMAL 8ETf;lrORKS 

variables, there exists an instantiation of the kih variable such that the k values taken 

together satisfy all the relations between them. 

Definition 23 Strong1y k-consistent: A network is strongly k-consistent, i f  it is con- 

sistent for 1 5 i < k. 

Definition 24 Minimd network: A network is called minimal i f  every consistent 

2-tuple of instantiated variables can be eztended to a complete instantiation of the 

mlda bles. 

Definition 25 Decomposable network: A strongly n-consistent network is sadd to 

be decomposable. Decomposable networks can be inst ant iated mithout backtrack. A 

strongly n-consistent network if also minimal. The converse is not tme.  We assume 

that n is the number crf variables in the corresponding CSP.  

Figure 2.2 shows the minimal constraint graph for a CSP which is not decom- 

posable. The partial solution defined over nodes 2 2 2 , ~ 3 1 ~  5 4 1  cannot be extended to a 

clique of size four, whereas each edge participates in a clique of size four. The network 

is 1,2,8consistent, but not *-consistent. 

In this chapter we will exzmine problems related to minimal constraint graphs. 

Recall that by constraint graphs we refer to the graphs which are derived from the 

constraint satisfaction problem as specified in section 2.1 (Figure 2.1 shows an example 

of a constraint graph). 

h the traditionat usage of the tern minimal graph we assume that the size of 

the maximum dique in the constraint graph is equal to the number of variables in 

the corresponding CSP fie, the CSP has a solution), If w denotes the size of the 

maximum clique in a graph and x is its chromatic number then the previous statement 

zsserts thzt fcx miGmi! gaii;& w = X -  W e  iiro'ri!b rdzx this befiniiio~ to take into 

consideration the minimal graphs for which w may not be equal to X. If w # x for a 

minimal graph then the corresponding CSP does not have a solution. If w # x for 

a minimal graph thm the term solution means a maximum clique in the cocstraint 

graph. In the corresponding CSP it would be the maximum consistent set of variables 



CHAPTER 2. MINIMAL NETWORKS 

X42 XI3 

Figure 2.2: Minimal Network 



CHAPTER 2. MlNfMAL NETWORKS 18 

which can be assigned a value I .  In this framework we can talk about unsatisfiable 

CSPs and computing maximally consistent assignment sets to them. 

In the next theorem we will show the equivalence of the two definitions. With 

this equivalence we will able to prove properties of minimal graphs without having to 

worry about the size of the maximum clique. 

Observe that our definition properly contains the minimal graphs for which w = X .  

Let us assume that w # x for the minimal graphs under consideration. 

Theorem 3 If we can find a maximum clique in minimal graph for which w = x then 

we can find a maximum clique in minimal graph for which w f X .  

Proof: Let Gu be the minimal graph under consideration. We can assume that w # x 
for Gu = (Va, E,). From this graph we will construct another minimal graph Gb = 

(K, Eb) such that w = x for Gb. Let the maximum clique size in G, be n. Vertices of Gb 
are defined as two tuples 6 = UVEva (v, i )  i = 1.s. TWO vertices (v*, i ) ,  (v2, j) I i # j 
belonging to Gb are connected if (vl, v2) is an edge in E,. This states that the edges 

of G, give rise to edges in Gb. Observe that if i = j then we are not putting any edges 

in Gb. Gb can again be visualized as comprising of n rows, where each row contains 

I V, I number of vertices. There are no edges in a row. Edges are between rows only. 

Gb SO constructed is minimal because every edge in Gb belongs to a clique of size n 

such that there is a vertex from each row in the clique. As the rows are independent 

sets we can cover Gb by n independent sets therefore the chromatic number of Gb is 

also n. If we can find a maximum clique in Gb we can find a maximum clique in G, . 
This follows from the fact that the first element in the Ztuple defining the vertex in 

Gb is a vertex in G,. For any two edges in the clique in Gb there has to be an edge 

between the corresponding vertices in G, (by construction). 0 

Theorem 3. tells us that finding maximum cliques in minimal graphs with w = x 
is as hard as finding cliques in minimal graphs with w # X. From now on minimal 

graphs may or may not have maximum clique size equal to the chromatic number. 

In this chapter we will address the following problems related to minimal graphs. 

'The reader is cautioned that the solution to a minimal graph with w # x is a maximum consistent 
set of variables which are assigned some value even though the CSP a s  a whole might be unsatisfiable. 



CHAPTER 2. MINIMAL NETWORKS 

Problem 1. 

INSTANCE M: Given a constraint graph. 

QUESTION: Is the constraint graph minimal? 

Problem 2. 

INSTANCE S: Given a minimal constraint graph G and an edge e in G. 

QUESTION: Find a maximum clique in G which contains the given edge e. 

We will show that M is NP-complete: the reduction follows from the problem of 

finding a k - clique. It is interesting that problem S is also NP-Complete. 

Next we define S, to be the problem of finding a maximum clique in the minimal 

graph 2. 

Problem 3. 

INSTANCE Sa : Given a minimal constraint graph G. 

QUESTION: Find a maximum clique in G. 

Let us define P2 as the problem of finding the minimal constraint graph in a graph 

G. This can be restated as : given a constraint graph G, does there exist an edge 

induced subgraph of G such that the induced subgraph is minimal for some clique 

size L. 
Problem 4. 

INSTANCE P2: Constraint Graph G = (V, E) .  

QUESTION: Does there exist El c E such that GI = (V, E - E l )  is minimal and 

has a clique of size k? 

We will show that there exists a sub-class of minimal graphs for which Sa can be 

solved in polynomial time. The recognition problem for this sub-class is of the same 

complexity as the recognition problem for decomposable graphs. The recognition 

problem for decomposable graphs is known to be in Co - NP. Next, we will show 

that the problem P2 is NP-complete. 

Definition 26 Relational Matrices: A binary relation between two variables x; and 

xj can be represented in  a (0,l)  matrix fomz with I D; I rows and I Dj I columns by 

2Note that if w # x for the minimal graph then the corresponding CSP is unsatisfiable. The 
maximum clique in the minimal graph gets mapped onto the maximum consistent set of variables 
which can be assigned a value. 



CHAPTER 2. MINIMAL NETWORKS 20 

imposing a n  ordering o n  the domains of the variables. A 0 in row a and column b 

means that the pair (a ,  b) such  t h a t  { a  E D;, b E D j )  i s  not  permitted. A relational 

matrix describes all the pairs of relations between values of the variables. 

For example, the relational matrix for variables xl and 22 from Figure 2.1 is 

Definition 27 Row-Convex: A 0 / 1  matrix M is said to  be row-convex if all the rows 

have the embedded ones property, i.e. each row of M can be expressed by the regular 

expression O* 1*0*. 

Van Beek [VB92] showed that if the relational matrix of a constraint satisfaction 

problem is row-convex then path consistency guarantees a minimal and decomposable 

network. Before describing his theorem, we will illustrate the relational matrix for a 

complete constraint satisfaction problem. 

Given a graph G = (V, E) and k colors, the coloring problem is to determine a 

unique assignment of colors to the vertices of G such that no two adjacent vertices 

get the same color. 

Consider the %color problem shown in Figure 2.3. There are three vertices in the 

graph. The colors are designated by labels a ,  b, c. The binary relation between the 

two variables $1 and 5 2  can be written as 

a b c  

a 0 1 1  

b l O l  

C l l O  

where the rows correspond to the domain of variable xl and the columns corre- 

spond to the domain of variable 22. Since there is an edge between X I  and x2 they 



CHAPTER 2. MINIMAL NETWORKS 

{ a h c  1 

Figure 2.3: 3-color ability 

cannot have the same colors, hence the diagonal entries are zero. If two vertices are 

not connected then the relational matrix corresponds to a matrix with all ones. 

The relational matrix corresponding to Figure 2.3 is given by the following matrix: 

Theorem 4 (Van Beek) Let L be a set of O , 1  matrices closed under composition, 

intersection, and transposition such that each element of L is row-convex. Let R be 

a binary constraint network with all the relations taken from L. The path consistency 

algorithm will correctly determine the minimal network of R. Further the minimal 

network will be decomposable. 

If the constraint graph is a perfect graph then a maximum clique (and hence a 

solution to the CSP) can be found in polynomial time [GLS88]. Unfortunately, even 

when all relations are row-convex, the constraint graph is not necessarily perfect. Fig- 

ure 2.4 shows a constraint graph for which all the binary relations are row-convex but 



CHAPTER 2. MINIMAL NETWORKS 

All relations are row-convex but not Perfect 
x 1 1-x5 1 form a clique (not shown) 

Figure 2.4: Row-Convex Relations but not Perfect 



CHAPTER 2. MINIMAL NETWORKS 23 

the graph is not perfect, as the subgraph induced over vertices (512,222, x32, x42,~52) 

is an odd cycle, which has w = 2 and x = 3. 

2.2 Minimal Graphs 

Recall that a network is minimal (with w = X) if each pair of values allowed by the 

constraints participates in at least one consistent instantiation. Let (xi, xj) E R,j. If 

the network is minimal (with w = X) then every edge ( x i ,  xj) in the constraint graph 

can be extended to a maximum clique of size n. 

Let G = (xij, E) be a constraint graph, where i = 1 . .  . n and j = 1. .  . m. n is the 

number of variables in the constraint satisfaction problem and m is the size of the 

domain. For simplicity we assume that all the domains have equal size. 

In this section we will assume that w = x for G. Showing that the restriceted 

version of the problem is NP-complete implies the NP-Completeness of the general 

problem (where w may not be equal to x ) .  
We will now show that the problem M (Is G minimal?), is NP-complete. 

Observation 1. G is minimal (in the strong sense)3 if and only if G can be covered 

by maximum cliques of size n. 

The forward direction follows from the definition of minimal networks. The reverse 

implication follows because, if G can be covered by cliques of size n, then each edge 

participates in a clique of size n. Now we know that determining whether a network 

is minimal is equivalent to asking whether G can be covered with maximum cliques 

of size n. Note that covering does not exclude the possibility of nodes being shared 

between the cliques. 

Before we give the proof we will describe Turing reduction. 

Turing Reduction from a search problem Il to a search problem n' is an algorithm 

A that solves II by using a hypothetical subroutine S for solving If such that, if S 

were a polynomial time algorithm for II', then A would be polynomial time algorithm 

for IT. 

3G is minimal in the strong sense if the CSP associated with is satisfiable, this implies that w = x 
for G. 



CHAPTER 2. MINIMAL NETWORKS 

The problem which we use for the reduction is: 

INSTANCE k-clique: Graph G = (V, E). 

QUESTION: Does G have a clique of size k? 

NP-completeness of this problem is explained in the next paragraph. 

Given an arbitrary graph and a number k, finding a clique of size k is NP-complete. 

If this were not the case then we could find the maximum clique by executing an oracle 

for each k in decreasing order and stopping when the output is indeed a clique, thereby 

solving an NP-complete problem. 

Theorem 5 Problem M is NP-Complete. 

Proof: We will give a Turing reduction to show that M is as hard as any NP- 

Complete problem. In particular we will show that M can be used to find the k-clique 

in graph (which is known to be NP-complete). 

The construction for the Turing reduction is: for each edge e in the graph G we 

generate a new graph by covering all the edges in G except e by cliques of size n, 

where n is the number of the vertices in G. This covering is accomplished by adding 

a clique over (n - 2) vertices for each edge (a ,  b) and connecting a and b to all the 

vertices in the clique of size (n - 2). It is to be noted that for each edge we introduce 

a new K,-z. 

Now we ask the question whether all the generated graphs are minimal. If for one 

instance the answer is affirmative it implies that G contains a clique of size n. This 

follows from the fact that the edge which is not covered by the introduced clique is 

covered by a clique in G. If answers to all the instances are no, then we repeat the 

whole operation with cliques of size n - 1. We continue this until we get an affirmative 

answer. 

We will illustrate the process by an example. In Figure 2.5: the first column 

corresponds to the graph for which we are trying to find the k-clique. The second 

and the third columns correspond to generated graphs: for each edge e in the graph 

G we generate a new graph by covering all the edges in G except e by cliques of size 



CHAPTER 2. MINIMAL NETWORKS 

Input Graph G 

covered by cliques of 
size 4 

covered by cliques of 
size 3 

A Yes 

Question: Is the generated graph minimal 

& Yes 

& Yes 

Figure 2.5: Reduction 



CHAPTER 2. MINIMAL NETWORKS 

n, where n is the number of the vertices in G. The loops in Figure 2.5 denote the 

cliques being added to every edge. For each edge e we have a graph such that all the 

edges except e are in a clique of size 4 and 3 respectively. Now for graphs in column 

2 and 3 we ask the question whether they are minimal. If the answer for one of the 

graphs is "yes" then we stop. An affirmative answer means that there is a clique of 

size 3 in the original graph. This follows from the fact that there is an edge which is 

not covered by an introduced maximum clique but the network is minimal therefore 

it has to be covered by a clique in the original graph. 

As shown by the previous example, the number of graphs generated is bounded 

by n * (;). This establishes that M is at least as hard as the k-clique problem. 

Membership in N P  can be verified easily. The input is a set of sets of edges covering 

G. We have to verify that all the edges in G are covered and each set is a clique of 

sizen. 0. 

2.2.1 Complexity of finding a minimal constraint graph 

In this section we look at the problem of finding the minimal constraint graph in 

a given constraint graph G. The problem can be rephrased as: given a constraint 

graph G, is there a subset of edges of G, whose removal from G will result in G being 

minimal. 

INSTANCE P2: Constraint Graph G = (V, E). 

QUESTION: Does there exist El c E such that GI = (V, E - E l )  is minimal and 

has a clique of size k? 

Corollary 1 P 2  is NP-Hard. 

Proof: Let us suppose that we can solve P2  in polynomial time. We will show that 

using the algorithm to solve P2, M can be also be solved in polynomial time, thereby 

showing that P 2  is at least as hard as M. 
For a graph G we find the set of edges whose removal from G makes G minimal. If 

the edge set being removed is empty we say G was minimal otherwise G is not minimal. 

Using P2 we can determine whether a graph is minimal, which is an NP-complete 

problem. Therefore P 2  is NP-Hard. 0 



CHAPTER 2. M M M A L  NETWORKS 

2.3 Finding a clique in a minimal graph 
L 

In this section we would like to show that given a minimal graph and an edge e, 

it is NP-complete to find a solution * which contains e. Showing that a restricted 

version of the problem described above is NP-complete will suffice for our purpose, 

as it implies that the general version of the problem has to be at least as hard as 

the restricted version. The restriction which we will use in our proof is the class of 

constraint satisfaction problems which are satisfiable. This implies that the minimal 

graphs associated with the CSPs have w = X .  We will also show that there exists 

a greedy algorithm to compute a maximum consistent instantiation for a subclass of 

minimal networks. 

In this section we assume that the minimal graphs have w = X .  

Let G = (V, E) be the minimal graph associated with the given constraint satisfac- 

tion problem CSP = (X, D, R). We can assume that all the domains have the same 

cardinality rn. Let the number of variables in the CSP be n. The minimal graph 

corresponding to the CSP is defined by V = {~~=l . . , , j=l . .~xi j ) )  Vi, j ,  k, 1 (xij7 xk,) E 

E implies (dj, dl) E Rk. This follows from Observation 1. 

One interesting observation is that if we delete a row from G, the induced subgraph 

remains minimal. 

Lemma 1 Let Gi be the graph obtained b y  deleting the ith row from G. If G was 

minimal then G; is also minimal '. 

Proof: Let e be an edge in Gi. Since e is in a clique of size n in G, e is also in a 

clique of size n - 1 in G;. This is true for every edge in Gi. Therefore every edge in 

G; is in a clique of size n - 1 and n - 1 is the size of the maximum clique. CI 

2.3.1 Finding a solution containing a given edge 

In this section we will show that given a minimal graph G and an edge belonging to 

G, the problem of finding a maximal clique of size n which contains the given edge is 

4Again the word solution is being used in the sense of maximum consistent solution, the CSP 
does not have to be satisfiable. 

'We assume that w = x for G. 



CHAPTER 2. MINIMAL NETWORKS 

The problem which we use for the reduction is: find a clique of size m in a graph 

G. 

Theorem 6 Given G minimal graph G = (V, E) and a specified edge e E E, finding 

a maximum clique containing e is NP-Complete. 

Proof: Let G, = (V,, E,) be an arbitrary graph. We will show how to construct 

G. We introduce vertices a, b and edge el = (a, b) and connect it to every vertex in 

G,. This is achieved by connecting the vertices a and b of el to every vertex of G,. 

Now on each edge g # el in G constructed so far we put a clique of size m + 2, where 

m was the maximum clique size in G,. This is achieved by introducing a clique of 

size m for each g and connecting the vertices of g to all the vertices of the introduced 

clique. 

G constructed in this fashion is minimal with maximum clique size m + 2. Now 

if we can find a maximum clique containing el in G then we can find the maximum 

clique in G,, because el belongs to all the maximum cliques. We know that finding a 

maximum clique even when the size is given is NP-Complete, therefore the problem 

is NP-Hard. Verification can clearly be done in polynomial time. 0 

2.3.2 A sub-class of minimal graphs 

Definition 28 Maximal clique: Given G and a clique K in G we call K maximal if 

K is not contained in any other clique of bigger size. 

We do not put any restrictions on the size of the maximal clique. Which means 

that size of the maximal clique may be equal to the size of the maximum clique. 

Definition 29 A Sub-Maximum Maximal Clique is a maximal clique with size strictly 

less than the mazimum clique size. 

We define MV as the class of graphs for which there exists an edge e which does 

not belong to any sub-maximum maximal clique. For this class of graphs the greedy 

algorithm will work from the given edge. 



CHAPTER 2. MINIMAL NETWORKS 

Definition 30 nbhd(a): Nbhd(a) of a vertex a in a graph G is the subgraph induced 

by the set of vertices which are adjacent to a. 

Observe that by definition a vertex a is not in the nbhd(a). 

Lemma 2 MV is the class jor which there exists an edge such that the common 

neighbourhood induced subgraph is decomposable. 

Prooj: Suppose that e = (a ,  b)  is the edge which does not belong to any sub- 

maximum maximal clique. Let G = nbhd(a) n nbhd(b) be the neighbourhood induced 

subgraph over a, b. Let us look at the neighbourhood induced subgraph over the 

vertices a, b. We claim that G is decomposable. If this is not the case then there 

exists a sub-maximum maximal clique in G. Since e is contained in every partial 

clique, therefore e would be in a sub-maximum maximal clique also. This leads to a 

contradiction. 

If there is no edge with the desired property, then neighbourhood induced sub- 

graphs over all the edges will not be decomposable. 0 

Discussion 

We conjecture that finding a maximum clique in a constraint network which can be 

covered by maximum cliques is polynomial (problem S,) 6. 

Conjecture 1: Let G be a constraint graph such that each edge of G participates 

in a maximum clique. There exists an edge of G which does not participate in any 

sub-maximum maximal clique. 

Let us describe a greedy algorithm for finding a maximal clique in such graphs. 

We start with a node (corresponding to the assignment of a value to the variable), 

and delete all the nodes not connected to the chosen one. Out of the remaining we 

pick another node. Repeat the delete operation for the new node and continue. By 

induction it follows that at all times the new node being added will be connected to 

all the previous ones. Therefore it will be in a clique. When there are no more nodes 

6For the recent, deveIoprnents look at Chapter 5. 



C m P T E R  2. MINI-MAL NETWORKS 

to be added we cannot extend the clique any more therefore it is maximal. It can be 

seen that the algorithm presented above is polynomial. 

If conjecture 1 is true then the maximum clique can be found by running the greedy 

algorithm for each edge. Assuming the hypothesis the correctness of the algorithm 

is easy to verify. Since the algorithm returns a maximal clique, for one edge it will 

return the maximum clique (because by assumption there is one edge which does not 

participate in any sub-maximum maximal clique). 

It was proposed by VanBeek [VB93] that we should verify conjecture 1 on the n- 

queens problem, as it  is believed that the constraint graph for the n-queens problem 

are minimal for n >= 10. We coded the greedy algorithm to find a solution to the 

n-queens problem. The greedy algorithm was not able to find a solution for n = 16. 

We then tried to verify the minimdity of the constraint graph for n = 16. 

Proposition 1 The constraint graph for the 16-queens problem is not minimal. 

Proof: Let us label the squares on the 16x16 board from 0..255 in the increasing order 

of rows and wlumns. Let us place the first queen on the square numbered 2 and the 

&sixond queen on the quare numbered 16. This placement is mutually consistent 

and if the corresponding constraint graph is minimal then there should be a solution 

containing it. By exhaustive search we found out that there is no solution when the 

queens are p l d  in the above mentioned positions. 0. 



Chapter 3 

3.1 Introduction 

In this chapter we will study the weighted constraint satisfaction problem and the 

constraint satisfaction problem restricted to the class of graphs (w = x ) .  
In chapter 2. we were unable to determine the complexity of finding a clique in a 

given minimal graph. A variant to the original question can be the weighted minimal 

graph satisfiability problem defined as follows: 

INSTANCE PI: Let graph G = (V, E) be minimal with integral weights on the 

vertices and maximum clique size rn. 

QUESTION: Does there exist a clique with cost m. 

We will show that the weighted minima1 graph satisfiability problem is NP-complete. 

A result of Feige and Lovasz [FL92] implies that there exists a class of graphs (w = X )  

for which the satisfiabiliky problem can be solved in polynomiai time. This raises the 

question of recognizing graphs for which the former property is true. We show that 

it is NP-complete to determine whether o = x is true for any graph. 



CHAPTER 3. w = x 

3.2 Class of graphs for which w = x 
Let C be the class of networks for which size of the maximum clique is equal to the 

chromatic number In [FL92] Feige and Lovasz showed the maximum clique problem 

for graphs in C is solvable in polynomial time. 

Let G1 and G2 be two graphs. We write GI -+ G i  if there is a homomorphism of 

G1 into Gz, where a homomorphism is defined to be a mapping of vertices of G1 into 

vertices of G2 such that adjacent nodes are mapped to adjacent nodes. If we choose 

G1 to be a clique over k vertices and G2 be any graph then G1 + G2 if and only if 

G2 has a k-clique. Another example can be: GI is k-colorable, choose G2 as k-clique. 

Figure 3.1 shows two pairs of graphs. In the first pair there exists a homomorphism 

from GI to G2. In the second pair a homomorphism from G3 to G4 does not exist. 

The sets in G2 correspond to the mappings of the vertices of GI. 

Now we play a two prover and one verifier game. The two provers want to convince 

a verifier that G1 and G2 are homomorphic. The protocol is simple: the two provers 

agree on a mapping and the verifier asks each of them the image of a node of GI. 

The nodes are picked by the verifier at random. The criteria for acceptance are: if 

the verifier asks each prover for the image of the same node of G1 then he should 

get the same node of G2; if he asks for adjacent nodes of G1 then he should get 

adjacent nodes in Gz. Observe that if the provers have a deterministic strategy then 

the verifier rejects one of the pairs by a probability of l/n2 if the two graphs are not 

homomorphic. Feige and Lovasz proved that even if the provers use a randomized 

strategy the probability that the verifier would accept the answers will be 1 iff the 

two graphs are homomorphic for certain classes of graphs. If the graphs are not 

homomorphic and there exists a randomized strategy which will convince the verifier 

that the graphs are homorphic then the strategy is called a hoax. 

We will describe the procedure from [FL92] to determine the whether a graph 

belongs to the class C. Since the chromatic number is equal to the size of the maximum 

clique, we have: 

'Perfect graphs belong to this class 



CHAPTER 3. w = x 

Figure 3.1: Examples of Homomorphic and Non-Homomorphic pairs 



CHAPTER 3. w = x 

Table 3.1: Incidence Matrix A of G in Figure 3.2 

Table 3.2: Incidence Matrix B of K2 in Figure 3.2 

where K, is the complete graph on n vertices. Let A be the incidence matrix of 

G and B be the incidence matrix of K,. We generate a matrix C from A and B as 

follows: 

0 Replace all the diagonal entries in A by an identity matrix of size n * n. 

0 A 1 in A is replaced by B and a 0 is replaced by a matrix with all ones except 

on the diagonal. 

It is to be noted that the incidence matrix of a clique has all ones except on the 

diagonal, so in this restricted case a 1 and 0 are replaced by the same matrix. 

We will illustrate the construction of matrix C from A and B by means of an 

example shown in Figure 3.2. 

Table 3.1 shows the incidence matrix A of graph G shown in Figure 3.2. 

Table 3.2 shows the incidence matrix of K, in Figure 3.2. Table 3.3 shows the 

matrix C generated from A and B. 

Let P be another matrix with dimensions equal to C. Blocks of entries of P can be 

indexed by two indices i, j denoting the particular block in C obtained by substitution 

of 1 or 0 in matrix A by a n*n matrix. The entries p,,,t, in the submatrices correspond 

to the probabilities that the provers when given vertices s, t will return vertices u, w. 

Let L be the following program: 

maximize C.P 



CHAPTER 3. w = x 

Table 3.3: Matrix C for the Figure 3.3 

Figure 3.2: Example for generation of matrix C 

P is symmetric positive semi definite 

all the entries of P are positive 

Feige and Lovasz [FL92] show that program L can be solved in polynomial time. 

A hoax is a cheating randomized strategy of provers which cannot be detected by 

tests available to the verifier. In the game defined in the paper [FL92] the tests are: 

the entries of each submatrix should sum up to 1 and the whole makrix is positive 

semi-definite. 

Lemma 3 (Feige and Lovasz) There does not exist a hoaz for Kk -, Kk- l .  



CHAPTER 3. w = x 

Let C be the class of graphs for which w = X .  The previous lemma implies that 

for this class of graphs the value of the objective function maximize C.P will be 1 iff 

the given graph is k - colorable. 

If we assume that the minimal network is also satisfiable then we get w = X .  As 

a corollary to the previous lemma we get: 

Corollary 2 Determining whether a given minimal constraint network is satisfiable 

can be accomplished in polynomial time. 

The corollary is not interesting because we know that the minimal graph is satis- 

fiable. 

We can relax our definition of minimal graphs, assume that every edge participates 

in a clique of some fixed size but the clique size is not maximum. Using this definition 

we will get a class of graphs which are minimal but for which there is no solution to the 

corresponding constraint satisfaction problem. The previous corollary is applicable to 

this class also under the assumption that w = X .  

Suppose that we are doing backtracking. It is possible to use the test given by 

Feige and Lovasz to determine whether we should expand a given assignment. If the 

value of the game is less than 1, then there does not exist a maximum clique. In this 

case we can fathom the node. As the oracle does not lie when it gives a no answer, 

the algorithm would be complete. 

3.2.1 Complexity of recognizing w = x 
In this section we will show that deciding whether a graph G belongs to the class C 

is NP-complete. Recall that C was defined as the class of graphs for which w = X .  

The reduction is from the constraint satisfaction problem. The input will be a 

constraint satisfaction graph Gcsp and we will generate a new graph G from G,,, such 

that for G, w = x iff the CSP is satisfiable. We know that if the CSP is not satisfiable 

then Gap does not contain a clique of size k. We need a construction which will force 

G to  be k - colorable but the maximum clique size should not exceed the maximum 

clique size in Gap. 



CHAPTER 3. w = x 3 7 

Let Kk-3 be a clique over k - 3 vertices. Enclose Kk-3 in a 5-cycle. Connect every 

vertex of Kk-3 to every vertex of the 5-cycle. Let the resulting graph be denoted 

by Go. Go has a maximum clique of size k - 1 and the minimum number of colors 

required to color it is k. An example of Go for k = 6 is shown in Figure 3.3. 

Theorem 7 Given G, determining if  G E C, is NP-complete. 

Proof: We will reduce the constraint satisfaction problem CSP. The CSP is sat- 

isfiable ifF the corresponding constraint graph Gcsp has a clique of size k. Let G be 

defined as the union of Gcsp and Go, where Go is the graph defined previously with 

clique size k - 1 and x = k. 

If CSP is satisfiable then Gcsp has a clique of size k. In this case for G, w = x 
(X = k, by construction). If the CSP is not satisfiable then w f x for G. This follows 

from the fact that Gcsp does not contain a clique of size k whereas the chromatic 

number for G is k. To show the membership in NP we will guess the clique and the 

coloring. Verification can be done in polynomial time. 0 

3.3 Weighted minimal networks 

Given a constraint network G and weights associated with each node, the question is 

to find an instantiation with minimum cost. We will show that even if the weights 

are restricted to integers the problem is NP-complete 

INSTANCE PI: Let graph G = (V, E )  be minimal with integral weights on the 

vertices and maximum clique size m. 

QUESTION: Does there exist a maximum clique with cost k. 

We will reduce k - clique to PI .  

Theorem 8 P1 is NP-complete. 

Proof: We will reduce k - clique to P1. Given an instance Gz = (fi, E2) of 

k - clique, we generate an instance GI = (Vl, El) of PI as follows: For each vertex in 



CHAPTER 3. w = x 

Figure 3.3: The Graph Go 



CHAPTER 3. w = x 39 

G2 we create a complete graph over m vertices in G1 denoted by Km(i). The vertices 

l..m in Km(i),  denoted Km,l(i), . . . , K,,,(i), are assigned weights l..m. For each 

edge (u, v)  E E2, connect vertex Km,l (u) with vertices K m j ( v )  for j = l..m - 1. The 

graph G1 so generated is minimal. Every edge in G1 participates in a clique of size 

m. Now we will show that if G2 has a clique of size m then there exists a clique in 

GI with weight equal to m,  otherwise, the weight of the maximum clique is greater 

than m. 

It can be readily observed that if G2 has a clique of size m, then Kjll( i )  E 

G1 for i = l..m form a clique. This clique has cost m and this is the minimal 

cost. If G2 does not have a clique of size m,  then there does not exist a clique over 

Ki,l(i) for all i. Therefore the miliimum cost is m + 1. U 

It can be seen that even for 0/1 weight assignments the problem is NP-complete. 

3.4 Conclusions 

The weighted minimal network satisfiability problem is NP-complete. We showed that 

a result of Feige and Lovasz [FL92] implies that there exists a class of graphs (w = X )  

for which the satisfiability problem can be solved in polynomial time. This raised the 

question of recognizing graphs for which this property is true. We showed that it is 

NP-complete to determine whether w = x is true for any graph. 



Chapter 4 

Conclusions 

4.1 Conclusions 

In this thesis we studied complexity issues related to minimal graphs. We showed 

that determining whether a given constraint graph is minimal is NP-complete. We 

also showed that given a 2-tuple finding an instantiation which contains this edge is 

NP-complete in a minimal graph. 

We characterized a sub-class M D  of minimal graph for which there exists a greedy 

algorithm for finding an instantiation. The recognition problem for this class is of the 

same complexity as the recognition problem for decomposable graph. The problem 

of aiciding whether a given graph is decomposable is in Co - NP. 

We showed that from a result of Feige and Lovasz it follows that that there ex- 

ists another class (w = X) of constraint satisfaction problems for which determining 

the satisfiability is polynomial. The recognition problem for this class is also NP- 

Complete. 

Next we addressed the weighted constraint satisfaction problem. In the weighted 

constraint satisfaction problem, associated with each assignment was a cost. The goal 

was to find a consistent assignment with minimum cost. We showed that for minimal 

graphs and 0/1 weights the weighted constraint satisfaction problem is NP-complete. 



CHAPTER 4. CONCLUSIONS 

4.2 Open Problems 

There are two major question which remain unanswered in this thesis. 

a Given a graph, what is the complexity of deciding whether it is decomposable. 

a Given a minimal graph, can an instantiation be found in polynomial time. 



Chapter 5 

Addendum 

5.1 Conjecture 1. 

In chapter 2. we had posed a conjecture that in a minimal graph there always exists 

an edge which does not belong to any sub-maximum maximal clique. At the IRIS 

Precarn conference in Toronto (1994), where this work was presented, Jack Snoeyink 

gave the following counter example to the conjecture, thereby refuting it. 

We will give the coverings of the graph by maximal cliques of size 3 and maximum 

cliques of size 4. Let the vertices of the graph be labelled by numbers 1 ..lo. The 

tables below give the coverings of the graph. 



It can be verified that there is no clique of size 5 in the example. As the graph 

is minimal with maximum clique size 4 and every edge belongs to a maximum and a 

sub-maximum maximal clique, conjecture 1. is not true. 

The example shown above can be defined as the union of five cliques of size 4, each 

of chromatic number 4. Whereas the whole graph is not 4 colorable. This construction 

has been generalized in [BGS-IJ answering a question of Erdos IErd8lf. 



Bibliography 

H. Alt, N. Blum, K. Melhorn, and M. Paul. Computing a maximum cardi- 

nality matching in bipartite graph in time o(nl-'Jim/ log n) ) .  Infonat ion 

Processing Ldf em* 37:237-240, l%l. 

E. Arkin and E. Silverberg. Scheduling jobs with fixed start and end 

times. Discrete Applied i2lathematics, 18:1-8, 1987. 

R. Balzer. A 15 year perspective on automatic programming. IEEE Trans- 

action on Soflmare Engineering, 11:1257-1268, 1985. 

Roman Bacik and Daya Ram Gaur. When n-colors are not sufficient. In 

Preparation, 1994- 

R. B h r ,  M. Gddman, and D. Wile. Operational specification as the basis 

for rapid prototyping. ha P m .  Second Software Engineering Synzposiurn: 

Workshop on rapid prototyping, 1982. 

D. G. Bobrow. Qualitative reasoning about physical systems: an intro- 

duction. Adifict-al Inieligence, 24:l-5, 19%. 

B. Y. Choeiry and •’3. Fdtings. Interactive resource allocation by prob- 

lem decomposition and trrmpord abstractions. Tahnicai Repor1 Nu. TR- 

9+&+!&!$ EPFL7 1994 

T. Dakic, J- Adhik;rrvZ f)- R Gaur, and K- W. Jackson. Backtrack free 
search far r m e  allocation problems. CONSTRA INT-95 workhop on 



BIBLIOGRAPHY 45 

constraints in  conjunction with FLAIRS 95, Intelligent Systems Lab, SFU, 

1995. 

[DecgO] R. Dechter. From local to global consistency. In Proc. of the Eight Cana- 

dian Conference on Artificial Intelligence, pages 231-237, 1990. 

[DMP91] R. Dechter, I Meiri, and J. Pearl. Temporal constraint networks. Artificial 

Intelligence, pages 61-95, 1991. 

[DP88] R. Dechter and J. Pearl. Network based heuristics for solving constraint 

satisfaction problems. Artificial Intelligence, 34:l-38, 1988. 

[DVHgl] Y .  Deville and P. Van Hentenryck. An efficient arc consistency algorithm 

for a class of constraint satisfaction problems. In Proc. of the Twelfth 

International Joint Conference on Artificial Intelligence, pages 325-330, 

1991. 

[Erd81] P. Erdos. On the combinatorial problems which i would most like to see 

solved. Combinatorica, 1 :25-42, 1981. 

[FL92] U. Feige and L. Lovasz. Two-prover one-round proof systems: their power 

and their problems. IEEE Annual Symposium on Theory of Computing, 

pages 733-745, 1992. 

[Fre82] E. G. Freuder. A sufficient condition for backtrack-free search. J. A CM, 

29:24-32, 1982. 

[Fret351 E. G. Freuder. A sufficient condition for backtrack- bounded search. J. 

ACM, 32755-761, 1985. 

[FregO] E. G .  Freuder. Complexity of k- tree structured constraint satisfaction 

problems. In Proc. of the Eight National Conference on Artificial Intelli- 

gence, pages 1-4, 1990. 

fGJ'791 M. Garey and D. Johnson. Computers and Intractability. W .  H .  Freeman 

and Company, 1979. 



BIBLIOGRAPHY 46 

[GLS88] M. Grotschel, L. Lovasz, and A. Shrijver. Geometric Algorithms and Com- 

binatorial Optimization. Springer-Verlag, 1988. 

[Go1801 M. C. Golurnbic. Algorithmic Graph theory and Perfect Graphs. Academic 

Press Inc., 1980. 

[Haj65] A. Hajnal. A theorem on k - saturated graphs. Canadian Journal of 

Math, 17: 720-724, 1965. 

[J.84] De Kleer J .  How circuits work. Artificial Intelligence, 24:205-280, 1984. 

[JS84] De Kleer J. and Brown J. S. A qualitative reasoning based on confluences. 

Artificial Intelligence, 24:7-83, 1984. 

[Luc85] Lucas. On the versatility of knowledge representation. In Proc. IFIP 

Working Conference, The role of abstract models in information process- 

ing. North Holland, 1985. 

[Mac771 A. Mackworth. Consistency in the network of relations. Artificical Intel- 

ligence, 8%-118, 1977. 

[MF85] A. Mackworth and E. C. Freuder. The complexity of some polynomial 

network consistency algort hms. Artificial Intelligence, 25(1):65-74, 1985. 

[Mon74] U. Montanari. Networks of constraints: fundamental properties and ap- 

plication to picture processing. Information Science, 7:95-132, 1974. 

[Reg941 Jean-Charles Regin. A filtering algorithm for constraints of difference in 

csp's. Proceedings of the twelfth National Conference on Artificial Intelli- 

gence, 1:362-367, 1994. 

[Sei8l] R. Seide!. A new method for solving constraint satisfaction problems. In 

Proc. IJCAI, pages 338-342, 1981. 

[VB92] P. Van Beek. On the minimality and decomposability of constraint net- 

works. In Proc. of Tenth National Conference on Artificial Intelligence, 

pages 447452, 1992. 



BIBLIOGRAPHY 

[VB93] P. Van Beek. Personal communication. 1993. 

[VK86] M. Vilain and H. Kaut z. Constraint propagat ion algorithms for temporal 

reasoning. In proc. A A AI-86, pages 377-382, 1986. 

[Wa172] D. L. Waltz. Generating semantic descriptions from drawir. gs of scenes 

with shadows. MIT Techincal Report AI271, Nov. 1972. 

[Wa175a] D. L. Waltz. Automata theoritic approach to visual processing. In Applied 

computation theory. Engelwood Cliffs, New York, Prentice Hall, 1975. 

[Wa175b] D. L. Waltz. Understanding line drawings of scenes with shadows. In 

The pyscokogy of computer vision, pages 19-91. Mc Graw-Hill, ;New York, 

1975. 

[Zyk49] A. A. Zykov. On some properties of linear complexes. Mat. Sb., N, S. (in 

Russian), 24: 163-188, 1949. 


