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Abstract 

In this thesis we will study various aspects of homomorphisms of infinite digraphs 

with emphasis on cores and compactness. We begin by looking at several reasonable 

generalizations of the definition of the core of a digraph. Various equivalent definitions 

of this term have been applied to finite digraphs for some time. However, when these 

definitions are applied to infinite digraphs they are no longer equivalent. We examine 

several properties of infinite digraphs which are possible definitions of the core of 

an infinite digraph. We determine the logical relationships between the different 

properties and answer some natural questions regarding invariance of the properties 

over homomorphic equivalence classes. We argue that a core should be defined to be 

a digraph all of whose endomorphisms are automorphisms. 

We define the property of homomorphic compactness for digraphs in the same 

spirit as the compactness property of formal logic. We subsequently show that our 

notion of homomorphic compactness is also related to topological compactness. We 

prove that homomorphic compactness of a digraph is a sufficient condition for the 

digraph to contain a core. We also examine a weakened compactness condition and 

show that when this condition is assumed compactness is equivalent to containing 

a core. We use this result to prove a bound for the maximum size of the smallest 

certificate of non-compactness for a digraph. Some large classes of digraphs are then 

shown to be compact. 

We determine exactly the cardinality of the set .of homomorphic equivalence classes 

of compact digraphs, and give some results regarding the maximum cardinality of a 

compact digraph. We also define a notion of finite equivalence for digraphs, and 

examine the properties of classes of finitely equivalent digraphs. In particular, we 



determine for a given digraph the size of a maximum collection of pairwise inequivalent 

but finitely equivalent digraphs. 

Finally, we examine the notion of compactness for various types of list-homomor- 

phisms. Characterizations are given of digraphs which are compact with respect to 

certain types of list-assignment s. 

Many of our results apply directly to relational structures in general. Other results 

admit analogous statements applying to structures. In yet other cases we obtain dif- 

ferent and more interesting results when we examine structures. These generalizations 

are informally discussed. 
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Chapter 1 

Introduction 

1 .  Definitions 

In this section we will present the basic definitions that will be used throughout this 

thesis. 

1.1.1 Graph Theory 

We first give the basic definitions for the theory of directed graphs. Refer also to [14]. 

A digraph G is an ordered pair (V(G) ,  E(G))  where V ( G )  is a non-empty, possibly 

infinite, set whose elements are called the vertices of G, and E(G) C V ( G )  x V ( G ) .  

The elements of E(G)  are called the edges of G. We will generally write uv to denote 

the edge (u ,  v) .  Note that we allow edges of the form vv, called loops. If a digraph 

has no edges of this form it is called loopless. A vertex which occurs in no edge of 

G is called an isolated vertex. The in-neighbourhood of a vertex v E V ( G )  is the 

set { u  : uv E E ( G ) )  and is denoted N-(v) .  The out-neighbourhood of v is the set 

N f  ( v )  = { u  : vu f E(G)) .  We define an equivalence relation on the vertex-set of 

a digraph by u E v if and only if N+(u) = N+(v) and N-(u)  = N-(v) .  If S is a 

subset of V ( G )  then N+(u) n S will be referred to as the out-neighbourhood of u in 

S ,  denoted by N i ( u ) .  The in-neighbourhood of u in S is similarly defined. If both 

N-(v )  and N+(v) are finite for each v E V ( G )  then we say that G is locally finite. An 
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independent set S in G is a subset of V(G) such that uv $ E(G) for each u, v E S. 

By convention we will consider the size (or cardinality) of a digraph to be the size 

of its vertex-set, so [GI is defined to be equal to IV(G)I. 

If G and H are digraphs with V(G) 2 V(H) and E(G) C E(H) then G is called 

a subdigraph of H and we write G 2 H.  If G is a digraph and S C V(G), then we 

denote by G[S] the digraph with vertex-set S and edge-set E(G) n(S x S). This is 

referred to as the subdigraph ofG induced by S. 

An oriented walk W of length n in a digraph G is a sequence of n + 1 vertices 

vo, . . . v, in V(G) and n edges eo, . . . enWl in E(G) such that either e; = vivi+l or 

e; = v;+lv; for each i with 0 5 i < n. When vo = v, the walk is said to be closed. If 

all of the v; are distinct then W is an oriented path of length n in G. If all of the edges 

are of the form v;v;+l then W is called a directed walk or directed path, respectively. 

A bidirected path of length n in a digraph G is a sequence of distinct vertices VO, . . . V, 

together with a set of 2n edges consisting of v;v;+l and v;+lv; for 0 5 i < n. 

An oriented cycle C of length n in a digraph G is a sequence vo, . . . , v,-1 of distinct 

vertices together with a set of n edges containing exactly one of either vivi+l or vi+lvi 

for each i between 0 and n - 1, with subscripts reduced modulo n. These will be 

called forward and backward edges of the cycle, respectively. If each edge of C is of 

the form v;v;+l then C is called a directed cycle. The net length of an oriented cycle 

C, denoted net(C), is defined to be the absolute value of the difference between the 

number of forward and backward edges of C. Note that the net length of an oriented 

cycle does not depend on which vertex in the cycle is chosen to be vo or on which 

direction the cycle is traversed. 

A digraph G is said to be connected if for all u,v E V(G) there is an oriented 

path from u to v in G. The digraph G is said to be strongly connected if for all 

u,v E V(G) there is a directed path from u to v. A (strong) component of G is a 

maximal (strongly) connected induced subdigraph of G. Given two vertices u and v 

which are in the same component of a digraph 0, the distance from u to v, denoted 

d(u,v), is defined to be the length of a shortest oriented path from u to v. If u is 

a vertex and S is a set of vertices, all of which are in the same component of G, we 

define the distance d(u, S) to be minVEs d(u, v). 
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Let G and H be digraphs. A homomorphism from G to H is a mapping f : 

V ( G )  + V ( H )  such that uv E E(G) implies f ( u )  f ( v )  E E ( H )  for all u,  v E V(G) .  

We will often use the notation f : G -t H when f is a homomorphism from G to 

H. We write G -+ H to indicate that a homomorphism from G to H exists. We 

denote by f (V (G) )  the set { f ( v )  : v E V ( G ) ) .  The set f (V (G) )  is also called the 

range of f or range(f). We denote by f (G)  the digraph with vertex-set f ( V ( G ) )  

and edge-set { f ( u )  f ( v )  : uv E E(G)) .  We call f (G )  the image of G under f .  A 

homomorphism is said to preserve non-edges if uv # E(G)  implies f ( u )  f ( v )  # E ( H )  

for all u,  v E V ( G ) .  If a homomorphism f is a bijection and preserves non-edges then 

f is called an isomorphism. If G + H and H -+ G then we write G t, H and say that 

G and H are homomorphically equivalent or simply equivalent. Obviously if G + H 

and H -+ K then G + K. If G f ,  H and H f ,  G then G and H are said to be 

incompatible. A collection of digraphs is called mutually incompatible if the digraphs 

in the collection are pairwise incompatible. 

A homomorphism from a digraph G to itself is called an endomorphism of G. 

An endomorphism which is not a surjection is called a proper endomorphism. An 

isomorphism from G to itself is called an automorphism. We use the standard notation 

f Is to indicate the restriction of a function f to a subset S of its domain. If H is a 

subdigraph of G and f : G -, H is a homomorphism such that f l v ( H )  is the identity 

mapping, then f is called a retraction and H is called a retract of G. Observe that in 

this case G[V(H)]  = f (G).  The retract H is a proper retract of G if V ( H )  is a proper 

subset of V(G) .  

Note that since homomorphisms are mappings of vertices, a homomorphism f : 

G -+ H is a surjection when every vertex of H has a pre-image, although there may 

be edges of H without pre-images, i.e. f may be a surjection and yet there may be 

an edge uv E E ( H )  such that uv # f ( r )  f ( s )  for any rs E E(G). If a homomorphism 

f : G -+ H is a surjection and furthermore every edge of H has a pre-image in G we 

will say that f is an edge-surjection. 
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1.1.2 Graphs, Hypergraphs, and Structures 

The edges of a digraph are defined by a single binary relation. A natural way to 

generalize the notion of a digraph is to allow the edges to be defined by several 

different relations of possibly different arities. In this section we will formally define 

the notion of a structure. Refer also to [33]. 

An n-ary relation on a set S is a subset of Sn, that is, a collection of n-tuples over 

S. A relational language L is a non-empty ordered set of relation symbols ( & ) i E I ) ,  

for some index set I, together with their associated arities. A language may contain 

infinitely many different relations. The languages in this thesis will all have finite 

arity and we disallow unary relations. A structure G for L is an ordered (ILI + 1)- 

tuple (V(G), (Ri)iE1) where V(G) is a set called the vertex-set of G, and each R; 

is a relation on V(G) of the appropriate arity. If R is an n-ary relation in L and 

vl, . . . , v, E V(G) then we will write R(vl, . . . , v,) to indicate that (vl, . . . , v,) E R. 

The set {(vl, . . . , v,) : R(vl, . . . , v,)) will be referred to as the set of edges of G of 

type R or simply the set of R-edges of G, and denoted by R(G). If (vl, v2, . . . , v,) is 

an R-edge and v = v2 = . . . = v, then it is called an R-loop. 

As before, ]GI is taken to mean IV(G)I. Also ILI is defined to be the number of 

relation symbols in L. 

A structure G is said to be finitely induced if IV(G) I is finite. If in addition 

CREL IR(G)I is finite then G is called finite. Obviously this distinction is only impor- 

tant when L is infinite. 

Structures generalize many standard graph-theoretic objects. If L consists of a 

single binary relation, then the structures for L are digraphs. If this relation is 

symmetric on a given structure then the structure is a graph. More generally, if L 
contains at  most one n-ary relation for each n > 2, and each of these relations is 

symmetric for a given structure, then the structure is a hypergraph. If L contains a 

single n-ary relation which is symmetric for a given structure, then the structure is an 

n-uniform hypergraph. When G is a graph or digraph we will always use the symbol 

E for the single binary relation on V(G). 

We emphasize here that there is a subtle but important difference between digraphs 
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and graphs, in that the collection of all digraphs is equal to the collection of all 

structures for a certain language. The class of graphs is a subclass of the class of all 

digraphs, and does not equal the class of structures for any relational language. By 

its nature a graph can be regarded as a set of vertices togther with a set of unordered 

pairs of vertices as the edges of the graph. However, we will always take graphs to be 

a special type of digraph. 

A path or cycle in a graph is defined to be a bidirected path or cycle in the 

associated digraph, with the exception that cycles of length two are disallowed. The 

girth of a graph G is the length of a shortest cycle in G. The odd girth of a graph G, 

denoted og(G), is the length of a shortest cycle of odd length in G. 

For any set S, we will denote an n-tuple (vl, . . . , v,), v; E S, by (T). When we use 

this notation the value of n will usually not be given explicitly, but will be assumed 

to be appropriate for the context. If f is a function we will denote (f (q), . . . , f (v,)) 

by (f (T)). The n-tuple obtained by replacing every occurrence of x in (T) by y  will 

be denoted (E),~,. Observe that if u and v are any n-tuples then 51, = %I, if and 

only if for each 1 5 i 5 n we have u; = v;, or u; E {x, y )  and v; E {x, y). 

We now define an equivalence relation - on the vertices of a structure in a manner 

similar to the definition for digraphs. For a structure G and vertices x, y f V(G), 

we say that x = y  if for all relations R E L, all T, and for each E which satisfies 

(E),~, = ( v ) , ~ ~  we have E E R(G) if and only if v E R(G). This condition states that 

in some sense the relation R cannot distinguish between x and y .  Observe that when 

this definition is applied to digraphs it is equivalent to the definition of = given in 

the section on digraphs. 

The definition of a homomorphism generalizes to structures in a natural way. If G 

and H are structures for a relational language L, a homomorphism from G to H is a 

mapping f : V(G) += V(H) such that for all R E L and all (T), R(T) implies R( f (5)). 
All other definitions relating to homomorphisms of digraphs generalize similarly. Note 

particularly that when we say that a homomorphism f : G + H preserves non-edges, 

we mean that for all R E L and all 5, if 4 R(G) then f (T)  i )  R(H). Also, we say 

that a homomorphism between structures f : G + H is an edge-surjection when it is 

a surjection and every edge of H has a pre-image of the same type in G. 
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One class of structures that will prove particularly useful in some of our construc- 

tions are those we obtain by taking L to contain binary relations only. In this case 

our structures are known as edge-coloured digraphs. These are like digraphs, except 

that instead of a single edge-set, such a structure has a different edge-set for each 

binary relation R E L. The edge-set defined for a relation R is also referred to as the 

set of edges of colour R. Note that these relations need not be disjoint, so the same 

pair of vertices may occur as an edge of several different colours. 

1.1.3 Set Theory 

In this section we present various set-t heoretic definitions and related concepts. 

The sets we refer to in this thesis are those of Zermelo-Fraenkel (ZF) set theory 

[56], and so every element of a set is itself a set. By a class we mean any well-defined 

collection of sets [56], e.g. the class of all digraphs. Such a class may or may not be 

a set. A class which is not a set is called a proper class. 

We now present a brief introduction to the theory of ordinals and cardinals. A 

more extensive treatment may be found in [44]. Proofs of the claims we make in this 

section may also be found in [44]. 

A partial ordering (5) on a set S is a binary relation on S which is reflexive, 

antisymmetric, and transitive. A linear ordering on S is a partial ordering in which 

for any x, y E S, either x 5 y or y < x. The relation 5 is a well-ordering on S if 5 is 

a linear ordering and every nonempty subset of S contains a minimum element with 

respect to 5. A strict partial ordering < on a set S is a binary relation on S which 

is antireflexive, antisymmetric, and transitive. If 5 is a partial ordering then there 

is a natural strict partial ordering < corresponding to 5, i.e., x < y if and only if 

x < y and x # y. Similarly, given a strict partial ordering < we may define a partial 

ordering < by x < y if and only if x < y or x = y. Whenever we define a partial 

ordering we will assume the corresponding strict partial ordering to be defined as well, 

and vice versa. We will say that a strict partial ordering is a strict linear ordering 

or a strict well-ordering if the corresponding partial ordering is a linear ordering or 

well-ordering, respectively. 
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We say that a set S is transitive if x E S implies x C S. We say that a set S is an 

ordinal number or ordinal if S is transitive and E defines a strict well-ordering on S. 

We will always use lowercase Greek letters to denote ordinal numbers. 

If a and p are ordinals then we say a < P if a E P. It can be shown that for 

any ordinals a, P, and y exactly one of a < P, a = P, or a > ,8 is true, and that if 

a < p and ,f3 < y then a < y. Furthermore, any class of ordinals contains an element 

which is least with respect to <. Thus, < satisfies the properties of a well-ordering, 

although the class of all ordinals is not a set. 

Two sets are equipotent if there is a bijective mapping from one to the other. An 

ordinal a is called an initial ordinal if there is no ordinal P equipotent to a with 

,f3 < a, i.e. a is the least element of the class of mutually equipotent ordinals which 

contains a. The Axiom of Choice [75] implies that every set S is equipotent with 

some initial ordinal, which we call the cardinal number of S. Initial ordinals will be 

referred to as cardinal numbers or cardinals. 

If a is an ordinal then a = {P : P < a) .  Also, we denote by a + 1 the ordinal 

a U {a) .  The ordinal a + 1 is always the least ordinal larger than a. If a = P + 1 

for some ,B then a is called a successor ordinal. Otherwise a is called a limit ordinal. 

Observe that the empty set is an ordinal, which we will denote as 0. 

If K is a cardinal we will denote the least cardinal larger than K by K + .  

Many of our results will be proved using the following principle [44]. 

Transfinite Induction Principle 

Let P(a)  be a property of ordinals such that 

P(0) holds, 

P (a )  implies P ( a  + 1 )  for all ordinals a, and 

for all limit ordinals a # 0, i f  P(P) holds for all P < a, then P(a)  holds. 

Then P(a)  holds for all ordinals a. 

We will assume the Axiom of Choice [45, 66, 751 to hold throughout this thesis. In 

particular we will make extensive use of the Well-Ordering Theorem due to Zermelo 

[75] which states that any set can be well-ordered, and which is equivalent to the 
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Axiom of Choice. We will also make extensive use of the Tychonoff product theorem 

[70], which states that the product of compact topological spaces is compact. This is 

also equivalent to the axiom of choice [46, 65, 701. 

As stated earlier, every set can be put into a one-to-one correspondence with some 

cardinal. On the other hand, no proper class can be put into a one-to-one correspon- 

dence with any cardinal [56]. This provides a means of distinguishing between sets 

and classes which we will make use of later. 

1.1.4 Colourings 

If G is a digraph and K is a cardinal, a n-colouring of G is a function f : G --+ n. If 

uv E E(G) and f(u)  = f (  v) then the edge uv is said to be monochromatic. If G has 

no monochromatic edges under the action of f then f is a proper n-colouring of G. 

The least n such that G admits a proper n-colouring is the chromatic number of G, 

denoted x(G). 

Observe that if there is a loop vv E E(G) then vv will be a monochromatic edge 

under any colouring of G. In this case the chromatic number of G is undefined. 

We define n-colourings for structures analogously. Let G be a structure and let 

n be a cardinal. A n-colouring of G is a function f : G + n. If (vl , .  . . , v,) is an 

edge of G (of any type) and f (vl) = . . . = f (v,) then the edge (vl, . . . , v,) is called 

monochromatic. A proper n-colouring of G is again defined to be a n-colouring in 

which there is no monochromatic edge. The chromatic number of G is defined to 

be the least n such that G admits a proper n-colouring. In this case the chromatic 

number is undefined if there is a vertex v E V(G) such that (v, v, . . . , v) is an edge of 

G. 

1.2 Background and Overview 

The origins of our current work may ultimately be traced back to the study of the 

computational complexity of certain homomorphism problems. We refer the reader 

to [30] for the relevant definitions. In [54], Maurer et a1 defined the H-colouring 
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problem for digraphs. If H is a fixed digraph, the H-colouring problem is the problem 

of determining whether a finite input digraph admits a homomorphism to H. The 

problem was originally considered only for the case where H is finite digraph or graph. 

For undirected graphs it was determined by Hell and Neietfil in [39] that H-colouring 

has polynomial complexity when H is bipartite, and otherwise is NP-complete. 

The case for finite digraphs has been studied in [5, 6, 7, 34, 39, 40, 41, 42, 52, 541, 

among others, but has not been completely solved. In [54], Maurer et al showed that 

H-colouring is polynomial when H is a directed path, a directed cycle, or a transitive 

tournament. The result for directed paths was improved upon by Gutjahr et a1 in 

[34], where it was shown that H-colouring is polynomial whenever H is an oriented 

path. Those authors also gave an example of an oriented tree T for which T-colouring 

is NP-complete. The complexity of H-colouring for oriented trees was studied further 

by Hell et a1 in [4l, 421. In [6], Bang-Jensen et a1 examined the H-colouring problem 

in the case where H is a semicomplete digraph, i.e. for every u, v E V(H) at least 

one of uv or vu is an edge of H. The result in this case was that H-colouring is 

NP-complete if H contains at least two directed cycles, and is polynomial otherwise. 

A similar result is shown to hold for semicomplete bipartite digraphs by Bang-Jensen 

and Hell in [5]. This paper also contains some results relating to sparse digraphs 

which contain exactly two directed cycles. The authors conjecture that for digraphs 

H without sources or sinks, if each component of the core of H (cf. chapter 3) is a 

directed cycle then H-colouring is polynomial, and otherwise it is NP-complete. 

The case where H is an edge-coloured undirected graph is studied by Brewster 

in [15, 161. In [15] the author defines an edge-coloured undirected graph H to be 

a structure for a language L containing only binary relations, and for which each 

relation is symmetric. The underlying graph G of H is defined by V(G) = V(H) and 

E(G) = uRELR(H). In [15] the author determines the complexity of H-colouring for 

each edge-coloured graph on three vertices with two edge-colours. Some results on 

2-coloured cycles are also given. In [16] he proves that if the underlying graph of H is 

a path, then H-colouring is polynomial, and gives an example of a structure H whose 

underlying graph is a tree, and for which H-colouring is NP-complete. 

In [8, 91, the present author upped the ante somewhat by considering H-colouring 
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problems where H is allowed to be countably infinite, but the input graph is finite. 

Here the main question considered was whether the H-colouring problem is solvable 

for a fixed graph H. It is shown in [8] that there exist recursive graphs H for which 

H-colouring is unsolvable. In [9] it is shown that there exist vertex-transitive graphs 

H for which H-colouring is unsolvable, but that H-colouring is solvable whenever the 

vertex-transitive graph H is recursive and locally finite. 

One might generalize this problem still further by allowing H to be a countably 

infinite digraph and allowing countably infinite digraphs as input. In this case the 

input would have to be in the form of a decision procedure for the edges of the input 

digraph. We will refer to this as the inf-H-colouring problem. If H contains a count- 

able clique the problem is trivial. Unfortunately, for any other H we strongly suspect 

that inf-H-colouring is not recursively enumerable, much less solvable, since to even 

verify that a given mapping from one infinite digraph to another is a homomorphism 

can probably not be performed in finitely many operations. However, we might be 

able to prove that a digraph G does not map to H by examining only a finite portion 

of G. This naturally gives rise to the notion of homomorphic compactness. In this 

thesis we will investigate those digraphs H which have the property that whenever a 

digraph G does not admit a homomorphism to H there exists some finite subdigraph 

of G which does not admit a homomorphism to H. Such a digraph is called compact. 

If a digraph H has the above property with respect to all digraphs G with JGI < K,  

then we will say that H is K-compact. If we have a compact digraph H for which 

H-colouring is solvable, then inf-H-colouring will be co-recursively enumerable. 

The study of compactness as we have defined it is not without precedent. A 

well-known result of de Bruijn and Erdos [17] states that for any finite n, an infinite 

graph is n-colourable if and only if all of its finite subgraphs are n-colourable. This is 

equivalent to the statement that each finite clique K, is homomorphically compact. 

In a similar spirit, it is shown in Hell [37] that an infinite graph G has a retraction 

to a given finite subgraph H if and only if every finite subgraph of G which contains 

H admits a retraction to  H. This turns out to be equivalent to the statement that 

every finite graph is homomorphically compact cf. section 4.4. 

In the study of homomorphic properties of digraphs, the notion of the core of a 
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digraph has historically proven to be very useful. The core of a finite digraph has on 

different occasions been defined in various ways. In 128, 38, 741 a core is defined to be 

a digraph H such that H has no proper endomorphisms, and a core of G is a core H 

such that H is a subdigraph of G and G + H. In [5, 47, 48, 52, 591 a core is defined 

to be a digraph H such that H has no proper retracts, and a core H is said to be 

a core of a digraph G if H is a retract of G. This apparent inconsistency is not a 

problem in finite graph theory, as it is easily shown cf. [38] that these two definitions 

are equivalent for finite digraphs. It is also easy to prove cf. [38] that every finite 

digraph has a core, and that this core is unique up to isomorphism. 

The notion of a core is a useful one because many questions pertaining to ho- 

momorphisms of digraphs can be answered by considering only cores. The core of a 

digraph preserves many of the homomorphic properties of the original digraph, but 

contains none of the extraneous vertices which may have existed in the original di- 

graph. In particular, if H is a core of G then H ct G, and so for any digraph K we 

have K + H if and only if K + G and H -t K if and only if G + K. We therefore 

began our investigations by attempting to generalize this notion to apply to infinite 

digraphs. 

One of our first observations was that the above definitions are not equivalent 

for infinite digraphs. Furthermore, under either of the these definitions an infinite 

digraph may have no core at all, or may have many nonisomorphic cores. 

In Chapter 3 we consider several properties which are potential definitions of 

the core of an infinite digraph, including the two given above. We will examine 

the relationships between these properties, and examine some characteristics of the 

individual properties. Ultimately we will choose to define a core to be a digraph G for 

which any endomorphism of G is an automorphism. This is equivalent to the above 

definitions for finite digraphs. 

An obvious question one might ask is, given a digraph G, is G a core? Or in the 

case where G is infinite, does G have a core? I6 [38], Hell and NeSeti'il show that 

determining whether a finite undirected graph G is a core is NP-hard if x(G) > 2. A 

bipartite graph G is a core if and only if G = K2. It follows that determining whether 

a digraph is a core is NP-hard for digraphs with chromatic number at least three. 
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In the same paper a polynomially verifiable characterization is given for cores with 

independence number at most two. 

In chapter 4 we investigate some partial characterizations of infinite digraphs which 

have cores. Early on in our study of compactness in digraphs, we noticed that non- 

compact digraphs tended not to have cores. Our first major result in this chapter 

states that every compact digraph has a core. On the other hand, we give an example 

of a core which is not compact, and so we obtain a necessary but insufficient condition 

for a digraph to have a core. We subsequently show that if H is a core and H is /HI- 

compact, then H is compact, and so if we restrict our attention to digraphs H which 

are IHI-compact, compactness is a necessary and sufficient condition for a digraph to 

have a core. Another interesting consequence of this result is that if a digraph H is 

I H 1 +-compact then H is compact. 

The remainder of chapter 4 is dedicated to proving the existence of large families 

of compact digraphs. We first use Tychonoff's theorem to prove a very general result 

showing that a certain condition, involving both homomorphic and topological prop- 

erties, is sufficient to guarantee that a digraph is compact. We use this result to show 

that compact metric spaces can be used to generate compact digraphs, providing a 

satisfying connection between homomorphic and topological compactness. We apply 

this technique to show that if D  is the digraph obtained by setting V ( D )  to be the set 

of points in the plane and E(D) to be the set of all pairs of points of unit distance, 

then D  is compact. Furthermore, we show that D  is a core. The graph D  itself 

has been studied extensively in other contexts [20, 351. In particular, the chromatic 

number of D  remains unknown, although it is easily shown to be at least four and no 

greater than seven cf. [35]. 

In chapter 5 we take a more global view. We begin by examining the class of all 

compact digraphs. We show that up to homomorphic equivalence there are exactly 

2 N ~  compact digraphs. In light of the results of chapter three this is the same as saying 

that there are exactly 2N0 compact cores, and so the class of compact cores is a set. 

In fact we show that there are this many compact cores of countable size, and so the 

question naturally arises as to whether there are any compact cores of uncountable 
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cardinality. The digraph D defined in chapter 4 yields an example of a compact core 

with ID1 = 2 N ~ .  This leads us to wonder whether there might be compact cores of 

still greater cardinality. Erdijs e t  a1 show in [24] that every compact metric space 

has cardinality no greater than 2 N ~ ,  and so we cannot use metric spaces to generate 

compact cores of cardinality greater than 2 N ~ .  The determination of the maximum 

cardinality of a compact core remains an open problem. 

The fact that the collection of all compact cores is a set, as opposed to a proper 

class, implies that there is some cardinal K such that all compact cores have size no 

greater than K .  However, in [61], Pultr and Trnkovii show that for every cardinal 

K there is a core of size K. This provides a non-constructive proof that there exist 

non-compact cores. 

We might also ask, in the same vein, how large the chromatic number of a compact 

digraph can be. We can easily construct a compact digraph with a countably infinite 

chromatic number, but at the present time we have no examples of compact digraphs 

with uncountable chromatic numbers. This question is related to a long-standing 

open problem for undirected graphs, posed in Taylor [68]: suppose H is a graph with 

uncountable chromatic number, and K, is any cardinal. Does there exist a K-chromatic 

graph G with the same set of finite subgraphs as H? If H can be chosen to be 

compact, then no such G can exist, since every finite subgraph of G would admit a 

homomorphism to H, and so G would admit a homomorphism to H ,  implying that 

the chromatic number of G is no greater than that of H. 

In [21], Duffus and Sauer examine the class of all digraphs, modulo homomorphic 

equivalence, and show that it satisfies the properties of a distributive lattice. We show 

that the set of all compact cores is also a distributive lattice, with the same meet and 

join operators as in the class of all digraphs. 

In chapter 5 we also define the notion of finite equivalence. Two digraphs are 

said to be finitely equivalent if any finite subdigraph of one admits a homomorphism 

to the other. For a fixed digraph G we define F (G)  to be the class of all digraphs 

finitely equivalent to G, modulo homomorphic equivalence. We find that F (G)  also 

satisfies the properties of a distributive lattice, except that it does not always contain a 

maximum element. In fact, we show that F (G)  contains a maximum element exactly 
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when it contains a compact digraph, and furthermore that this compact digraph is 

the maximum element of F(G) .  We then characterize exactly when F(G)  consists of 

a single element, and show that in most other cases F (G)  is a proper class. It is still 

not known whether there are any digraphs G for which F (G)  is a set with cardinality 

greater than one. However, we know that such a G must be finitely equivalent to 

a compact core in which every infinite component is an acyclic bipartite digraph. 

The case for undirected graphs is somewhat simpler, and we can show that for any 

undirected graph G, either F(G)  has cardinality one or it is a proper class. This last 

result has somewhat the same flavour as the elementary theorem of measure theory 

which states that every a-algebra is either finite or uncountable [64]. 

Our proofs of these last results rely on certain density properties of digraphs. We 

say that collection 9 of digraphs has the density property if whenever G and H are any 

two digraphs in 6 such that G + H and H f ,  G, then there is a digraph K in G such 

that G + K + H and H f ,  K f ,  G. Welzl shows in [74] that the collection of all 

finite graphs of chromatic number at least two has the density property. We will make 

use of a more recent and very elegant proof due to Perles [personal communication], 

which applies to infinite digraphs and structures as well. We show that if F(G) 

contains two inequivalent digraphs and has the density property then it is a proper 

class. We then use the method of Perles to show that in many cases these conditions 

are satisfied. 

In our final chapter we examine compactness properties of list-homomorphisms. 

List-homomorphisms generalize list-colourings in the same way that homomorphisms 

generalize colouring. A proper list-colouring of a graph is a proper vertex-colouring 

of the digraph in which the colour of each vertex must be chosen from a list of 

colours specified for that vertex. A graph H is said to be k-list-colourable or k- 

choosable if a proper list-colouring of H exists for every possible choice of lists of 

size k for the vertices of H. The list-chromatic number of H is the least k such 

that H is k-list-colourable. List-colourings were' defined independently in both of 

[26, 711. In [26] Erdos et a1 show that the list-chromatic number of a graph H cannot 

in general be bounded in terms of the chromatic number of H. In fact, the authors 

give a construction for bipartite graphs with arbitrarily large list-chromatic numbers. 
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Other results in [26] include a characterization of 2-list-chromatic graphs, the exact 

value of the list-chromatic number of the complement of a perfect matching, and 

that determining the list-chromatic number of a graph is NP-hard. The authors also 

conjecture that every planar graph is 5-list-chromatic but that there exist planar 

graphs which are not 4-list-chromatic. The second half of this conjecture is settled 

by Voigt in [73], where the author gives an example of a planar graph which is not 

4-choosable. More recently, Thomassen [69] completed the solution by proving that 

every planar graph is 5-list-chromatic. The general question of determining the list- 

chromatic number of a graph is studied in [2, 3, 41. 

The complexity of the list-colouring problem is studied by Kratochvil and Tuza in 

[50]. The authors show that, given a graph G and a list of colours for each vertex of 

G, it is NP-complete to determine whether a list-colouring of G exists. This remains 

true even when each list has at most three elements, each colour occurs in at most 

three lists, each vertex of G has degree at most three, and G is planar. The authors 

also show that the list-colouring problem has polynomial complexity if each list has 

at most two elements, each colour occurs in at most two lists, or each vertex of G has 

degree at most two. 

A similar notion can be defined for edge-colourings of a graph [71]. A graph G is 

said to be k-edge-list-colourable or, somewhat confusingly, simply k-list-colourable, if 

for every possible assignment of a list of k colours to each edge of G there is a proper 

edge-colouring of G in which the colour of each edge is chosen from its assigned list. 

The list-chromatic-index of G, denoted x{(G), is the least k such that G is k-edge- 

list-colourable. Unlike the situation for vertex-colouring, it is possible to bound the 

list-chromatic index of a graph in terms of the chromatic index X' of the graph. In 

fact, it has been conjectured that the list-chromatic index of a graph is never greater 

than its chromatic index [12]. This problem has been investigated in [12, 19, 29, 491. 

A list-homomorphism from a digraph G to a digraph H is a homomorphism from G 

to H in which the image of each vertex of G must be chosen from a list of vertices of H 

specified for that vertex. In [27] Feder and Hell define the list-homomorphism problem 

for a fixed digraph H to be the problem of determining, for a given input digraph G 

and a given set of lists for the vertices of G, whether there is a list-homomorphism 
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from G to H. The authors restrict their attention to graphs in which every vertex 

has a loop. They prove that for undirected graphs, the list-homomorphism problem 

has polynomial complexity when H is an interval graph cf. [31], and is NP-complete 

otherwise. They also examine the case where the input is restricted so that the list 

assigned to each vertex of G must induce a connected subgraph of H, and show that 

in this case the problem is polynomial when H is a chordal graph cf. [31], and is 

NP-complete otherwise. 

We examine list-homomorphisms from the perspective of homomorphic compact- 

ness. We show that essentially only finite digraphs are compact with respect to list- 

homomorphisms. We obtain some characterizations of richer classes of graphs which 

are compact with respect to list-homomorphisms when the types of lists permitted 

are restricted in various ways. 

Many of our results apply to more general types of relational structures as well. 

For simplicity of exposition we will prove most results for digraphs only. Our proofs 

usually generalize to apply to the case for relational structures with only trivial modi- 

fications. In some cases richer behaviour can be observed in the more general case. At 

the end of each chapter we discuss generalizations of our results to relational structures 

as well as restrictions to graphs. 



Chapter 2 

Tools 

In this chapter we will introduce some of the basic concepts that will be used in 

subsequent chapters. We will also prove some technical lemmas. 

It is well known that homomorphisms are a natural generalization of graph colour- 

ing. If L is a language and K is a cardinal, then we may define a structure KK for L 

as follows: V(K,)  = K and for each R E L, R(vl, . . . , v,) if and only if not all v; are 

equal. If G is a structure for L, then the definition of a homomorphism from G to KK 

is identical to the definition of a proper K-colouring of G in section 1.1.4. This fact 

provides an immediate proof of our first lemma. 

Lemma 1 If G and H are structures and x(G) > x(H) then G f ,  H. 

Proof: Let K = x(H). If G -, H then by transitivity of 4 we have G + KK, which 

contradicts x(G) > K. w 

In subsequent chapters, we will often want to give counterexamples to various 

propositions. We will also wish to generalize our results to apply to structures for an 

arbitrary language. Our first construction will allow us to construct a structure for 

an arbitrary language from a digraph, while preserving many of its properties. 
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Construction A: 

Let G be a digraph. Let L be a language and let R E L be an n-ary relation for 

some n 2 2. We define a structure GR for L as follows: 

wR) = ( ( ~ 1 7  u2, US,. . . v,) : ( ~ 1 7  u2) E w)} 
R ' ( G ~ )  = 0 for all R' E L, R' # R 

This construction is actually a restricted version of a construction found in [61](p. 

57). Note that if n = 2 in the above construction then GR is identical to G. Our next 

two lemmas describe the properties of GR. 

Lemma 2 Let G and H be digraphs without isolated vertices. Let L be a language 

and let R E L be an n-ary relation. Define GR and H~ according to construction A. 

Then any homomorphism f : GR -+ HR has the following properties: 

2. f lV(~) is a homomorphism from G to H, 

3. f preserves non-relations if and only i f f  JV(G) preserves non-relations, 

4. f is a surjection if and only i f f  lV(G) is a surjection, 

5. f is an injection if and only i f f  l v c G 1  is an injection, 

Proof: Let f : GR + HR be a homomorphism. For each i with 3 5 i 5 n,  v; occurs 

only in the ith position of any n-tuple in R ( G ~ ) .  Also, vi occurs in some R-edge of 

GR. Thus, f (v;) must occur in the ith postion of some n-tuple in R ( H ~ ) ,  and so f (v;) 

must equal v;. Similarly, since any u E V(G) occurs in the first two co-ordinates of 

some edge of GR, f (u) must occur in the first two co-ordinates and of some edge of 

HR, and so f (u) E V(H). It now follows immediately from the definitions of R(GR) 

and R(HR) that f lv(~) is a homomorphism from G to H. It is also clear that a 

non-R-edge of GR can only map to an R-edge of HR if the corresponding non-edge in 

G maps to an edge of H. Claims (4) and (5) follow immediately from (1). 

rn 
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Corollary 3 Let L be a language and let R E L. If G  and H  are digraphs then 

GR + H R  if and only if G  -+ H .  Furthermore, a homomorphism f : GR -+ H R  is an 

edge-surjection if  and only i f  the homomorphism f Jv(G) : G -) H  is an edge-surjection. 

Proof: By lemma 2 we know that if f : V ( G R )  -, v ( H ~ )  is a homomorphism then 

flvcG1 is a homomorphism from G  to H .  On the other hand, if f  : G + H  is a 

homomorphism then we may define a mapping g : v ( G R )  -+ V ( H R )  by glvP) = f  

and g(vi) = vi for each 3 5 i 5 n. Clearly g is a homomorphism from G R  to H ~ .  

The second claim is a direct result of our construction. 

In order to apply our results to undirected graphs, we will use the following con- 

struction, which may be found in [61](p. 68). 

Construction B: Let G be a digraph. We define an undirected graph GU by replacing 

each uv E E ( G )  by the undirected graph in figure 2.1, identifying the marked vertices 

with u and v as indicated. 

Figure 2.1 

We will refer to the copy of this graph which replaces the edge uv as the uv- 

superedge of GU,  and to u and v as the endpoints of the superedge. If G and H  are 

digraphs, f  : v(G') -+ v(H') is any mapping, uv E E ( G )  and xy E E ( H )  then we 

say that f  maps the uv-superedge of GU identically onto the xy-superedge of H' i f f  

is the unique isomorphism between the two superedges which satisfies f ( u )  = x and 

f ( u )  = Y .  

Lemma 4 (cf.  [el]) Let G  and H  be digraphs and let GU and H~ be obtained by 

applying construction B to G  and H .  Then f  : V ( G U )  + v(H') is a homomorphism 
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if and only iff lV(q : V ( G )  -' V ( H )  is a homomorphism and for all uv E E ( G )  f 

maps the uv-superedge of GU identically onto the f (u) f (v)-superedge of HU.  

Proof: We will give an outline of the proof: a detailed version may be found in [61]. 

Let f : V ( G U )  + V ( H u )  be a mapping such that f l v (G)  is a homomorphism 

from G to H.  Then f J V ( ~ )  preserves edges, so for each uv E E ( G )  we must have 

f ( u )  f (v) f E ( H ) .  And so if for each uv E E ( G )  it is the case that f maps the 

uv-superedge of GU identically onto the f ( u )  f (v)-superedge of H ,  then clearly f will 

be a homomorphism from GU to HU. 

Now observe that each superedge of GU is a union of three cycles of length seven. 

Any homomorphic image of a 7-cycle must either contain a cycle of length less than 

seven or must be a 7-cycle. However, HU contains no cycles of length less than seven 

and each 7-cycle in HU is contained within a single superedge of HU. Furthermore, if 

two 7-cycles of GU share an edge in common then their images must share an edge in 

common, and so each superedge E of GU must map into a single superedge F of HU. 

Straightforward verification now shows that a homomorphism from the superedge E 

to the superedge F must be an isomorphism, and that each endpoint of E must map 

to the corresponding endpoint of F. The lemma now follows immediately. w 

Corollary 5 If G and H are digraphs then G -+ H i f  and only if GU -, H U .  Fur- 

thermore, a homomorphism f : GU + HU is an edge-surjection i f  and only if the 

homomorphism f l v ( G )  : G + H is an edge-surjection. w 

In many of our results we will want to employ large families of mutually incompat- 

ible structures. Our next few lemmas will demonstrate the existence of such families. 

A straightforward property of oriented cycles which will be used here as well as in later 

chapters is the following. Recall that ne t (C)  denotes the net length of an oriented 

cycle C .  

Lemma 6 Let G and H be oriented cycles. Then G + H only i f  ne t (H)lnet (G) .  If 

H is a directed cycle then G -' H if and only if ne t (H)lnet (G) .  

The proof of this is straightforward cf. [36]. w 
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Lemma 7 Let L be any language. There exists a countably infinite mutually incom- 

patible family of finite structures over L. 

Proof: We will first prove the result for digraphs. Denote by D, a directed cycle 

of length n. By the previous lemma D, -+ Dm if and only if mln. Thus, the set 

P2 = {Dp : p prime) is an infinite mutually incompatible family of digraphs. 

Now let L be an arbitrary language, and let R be an n-ary relation in L for some 

n > 2. Let D," denote the graph obtained by applying construction A to D,. By 

lemma 3 the set P, = {D," : p prime} is an infinite mutually incompatible family of 

structures over L. 

It will also sometimes be helpful to have access to a countable mutually incom- 

patible family of graphs. Such a family can be obtained immediately by applying 

construction B to the family P2. We will construct another such family which is 

particularly useful. 

For each i > 0 we define a graph G; to be any graph such that girth(G;) = 5 + 2i 

and x(G;) = 3 + i. That such graphs exist is proved in [22,51,58]. We define a family 

of graphs 23 by 23 = {G; : i 2 0). 

Lemma 8 The set 23 is an infinite mutually incompatible family of graphs. 

Proof: By lemma 1 we know that if i > j then Gi f ,  Gj. The homomorphic image 

of an odd cycle must contain an odd cycle of lesser or equal size, so if i < j then 

G; f ,  Gj. 

One final construction which we will want to use is given below. This construction 

will allow us to convert edge-coloured digraphs to digraphs while retaining important 

properties. 

Construction C: Let G be an edge-coloured digraph with at most countably many 

edge-colours. Denote the edge-colours of G by {q, ~ 2 , .  . .). We define a digraph GC 

by replacing each edge uv of colour c; in G by the digraph in figure 2.2, where p; is 

the ith odd prime and, as before, D,, is a directed cycle of length pi. We will refer to 

this as the uv-superedge of colour ci of GC . 
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Figure 2.2 

As before, we say that a uv-superedge E maps identically onto some xy-superedge 

F under a mapping f if the restriction of f to E is the unique isomorphism from E 

to F with f ( u )  = x and f ( v )  = y .  

Lemma 9 Let G and H be edge-coloured digraphs with countably many edge-colours 

{e l ,  CZ, . . .) and let GC and HC be obtained by applying construction C to G and H .  

Then f : V ( G C )  + V ( H C )  is a homomorphism i f  and only i f f  l v ( G )  : V ( G )  -t V ( H )  

is a homomorphism and for all uv E E ( G )  the uv-superedge of colour c; of GC maps 

identically onto the f ( u )  f (v)-superedge of colour c; of H C .  

Proof: Clearly if f is a mapping from V ( G C )  to v ( H C )  such that f lV(G)  is a 

homomorphism from G to H and f maps superedges identically onto superedges then 

f is a homomorphism from GC to HC.  

Now suppose that f : V ( G C )  + V ( H C )  is a homomorphism. Let E be a superedge 

of GC of colour c;. Then E contains a directed cycle C of length pi. Under any 

homomorphism from GC to HC the image of C must be a closed directed walk of 

length pi. However, the only closed directed walks in HC are inside the cycles within 

the superedges of H C ,  and traverse such a cycle an integral number of times. Since 

p; is prime, the only closed directed walks of length p; in HC are the directed cycles 

D,, in the superedges of colour c; in HC. Thus, the directed cycle D,, in E must 

map to the directed cycle D,, in some superedge F of colour ci in HC.  It is now 

straightforward to verify that E must map identically onto F ,  and so if E is a uv- 

superedge then F is an f ( u )  f (v)-superedge. It follows immediately that f l v ( G )  is a 

homomorphism from G to H .  
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Corollary 10 If G and H are edge-coloured digraphs with countably many edge col- 

ours then G + H i f  and only if GC + H C .  Furthermore, a homomorphism f : GC + 

HC is an edge-surjection if and only if the homomorphism f l v ( G )  : G + H is an 

edge-surjection. 



Chapter 3 

Core-like Properties of Digraphs 

3.1 Definitions 

The notion of a core has been used in finite graph theory for some time now. Cores 

have appeared under various names, such as unretractive graphs or minimal graphs, 

and with different definitions 16, 28, 38, 47, 57, 59, 741, all of which turn out to be 

equivalent. The two most common of these are: 

0 a core is a digraph such that any endomorphism is a surjection, 

0 a core is a digraph with no proper retracts. 

Other reasonable definitions which are readily seen to be equivalent for finite digraphs 

are: 

0 a core is a digraph such that any endomorphism is an injection, 

0 a core is a digraph such that any endomorphism is an automorphism. 

If G is a finite digraph, then a subdigraph H of G is said to be a core of G if 

G + H and H is a core. Such an H always exists when G is finite, as we may 

take successive proper endomorphisms of G until we obtain a digraph that admits 

no further proper endomorphism. In fact, if G is a finite digraph then all cores of 

G are isomorphic. To see this, observe that any two cores HI and H2 of G must be 
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homomorphically equivalent, and so must have the same number of vertices, since if 

/HI I > IH2 1 then composing a homomorphism from Hl to H2 with a homomorphism 

from H2 to HI would yield a proper endomorphism of H I .  Now it follows by a similar 

argument that any homomorpOism from Hl to H2 must be a bijection. Similarly any 

homomorphism from H2 to HI must also be a bijection. The existence of a bijective 

homomorphism from HI to H2 clearly implies that I E (HI) I 5 I E (H2) 1, and similarly 

we obtain IE(H2)1 5 IE(Hl)I, and so HI and H2 have the same number of edges. 

Now it becomes clear that a bijective homomorphism from HI to Hz must preserve 

non-edges, and so it is an isomorphism. The same argument shows that if G and H 

are homomorphically equivalent then their cores are isomorphic. 

When G is allowed to be infinite, the situation deteriorates. For infinite digraphs 

these definitions are not equivalent. Furthermore, under some definitions G may have 

several (even infinitely many) non-isomorphic cores, and there exist digraphs which 

do not have a core at all under any of these definitions. In addition, under certain of 

these definitions it is possible for digraphs G and H to be homomorphically equivalent, 

yet for G to have a core and for H not to have a core. In this chapter we will examine 

these and other core-like properties of infinite digraphs and determine the relationships 

among them. The last definition, that a core is a digraph all of whose endomorphisms 

are automorphisms, is the one we will ultimately adopt as our definition of a core. 

We will show that this definition has several very nice properties. For example, under 

this definition we will see that homomorphically equivalent cores must be isomorphic, 

which is not true under any of the other definitions we will examine. 

To begin our exploration into these matters we will define some predicates for 

digraphs. Each of the following predicates is a potential definition of what it means 

for G to be a core: 

Definition 11 Let G be a digraph. 

0 I(G) holds i f  every endomorphism of G is an injection. 

0 S(G) holds i f  every endomorphism of G is a surjection. 

0 N(G)  holds i f  every endomorphism of G preserves non-relations. 
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R(G)  holds i f  G has no proper retracts. 

We also define a corresponding collection of predicates relating to the subdigraphs 

of a digraph. Each of these should be thought of as being analogous to the property 

of having a core: 

Definition 12 Let G be a digraph. 

i(G) holds if  G contains a subdigraph H such that G --t H and I(H) holds. 

s(G) holds i f  G contains a subdigraph H such that G -, H and S(H) holds. 

n(G)  holds if G contains a subdigraph H such that G + H and N(H) holds. 

r (G)  holds i f  G contains a retract H such that R(H)  holds. 

We also define combinations of properties I,S and N (or their lowercase versions). 

We will write IS (G)  to assert I(G) and S(G) , and similarly for all of the other 

uppercase combinations. For the lowercase versions, we will use this notation to 

denote the assertion that the same subdigraph of G has the required properties, e.g. 

is(G) indicates that G contains a subdigraph H such that G + H and I(H) and 

S ( H )  hold. We will use p, q, P, and Q to denote arbitrary lowercase and uppercase 

properties or combinations thereof. 

When some lowercase property p holds for a digraph G, we will say that a subdi- 

graph H of G, such that G + H and for which P holds is a certificate of p(G), or 

that H certifies p(G). 

3.2 Relationships Among Properties 

We shall describe the logical relationships among these properties and combinations 

of properties. We first present some infinite digraphs with useful properties. First we 

define the Ray as in figure 3.1. 

Figure 3.1: The Ray 
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Lemma 13 Every endomorphism of the Ray is of the form f(v,) = v,+k, for some 

fixed k > 0. Furthermore, for each k 2 0 the mapping f(v,) = v,+k is an endmor- 

phism of the Ray. 

Proof: Iff (vO) = vk, then clearly f (vl) = vk+l, f (v2) = Vk+2, etc., since the directions 

of arcs must be preserved. Clearly the given mapping is an endomorphism of the Ray 

for each k > 0. 

Corollary 14 The Ray satisfies the properties IN, R, in, and r but not S or s. 

We define the Line similarly: 

Figure 3.2: The Line 

Lemma 15 Every endomorphism of the Line is of the form f(v,) = v,+k, for some 

fixed k E Z .  Also, for each k f Z the mapping f (v,) = v,+k is an endomorphism of 

the Line. 

Proof: Again, the homomorphism is uniquely determined by f (vo). It is also clear 

that any mapping of the given form is an endomorphism. 

Corollary 16 The Line satisfies all of the properties INS, R, isn, and r. 

These two digraphs are particularly useful in constructions since if a digraph G 

contains a Ray (Line) but G contains no directed cycle, then the image of the Ray 

(Line) must be a Ray (Line), although not neccessarily an induced one. Our subse- 

quent examples all exploit this fact. 
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The 5-3-Line is defined in Figure 3.3. 

Figure 3.3: The 5-3-Line 

Let A(v;)  denote the oriented 5-cycle or 3-cycle that contains vi in the 5-3-Line 

shown in figure 3.3. 

Lemma 17 Every endomorphism f of the 5-3-Line has the following properties: 

f (vn) = vn+k, for some fixed k 2 0, 

0 f maps A(v,) onto A( f (v,)). 

Furthermore, for each k 2 0 there exists an endomorphism of the 5-3-Line of this 

form. 

Proof: The 5-3-Line contains exactly one subdigraph isomorphic to the Line and no 

directed cycles. Thus, this copy of the Line must map to itself. However, i f f  (vo) = vk, 

where k < 0, then clearly A(vo) will have no possible image, so k > 0. Since the image 

of an odd oriented cycle must be an odd oriented closed walk, it follows that A(v,) 

must map onto A( f (v,)). 

Corollary 18 The 5-3-Line satisfies the properties S ,  R, s and r ,  but none of I ,  

N ,  i ,  or n. 

We now define the 5-Line as follows: 

Figure 3.4: The 5-line 
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Let A(v;) denote the five-vertex subdigraph of the 5-line containing v;. 

Lemma 19 Any endomorphism f of the 5-line has the following properties: 

f (v,) = v,+k, for some fixed k L 0, 

0 A(v;) maps onto A( f (v ; ) ) .  

Furthermore, for each k > 0 there exists such an endomorphism of the 5-Line. 

Proof: As above, the unique copy of the Line contained in the 5-Line must map to 

itself. However, A(vo) has no possible image if f (vo) = vk for any k < 0. Again it is 

a simple matter to verify that f must map A(v;) onto A( f  (v;)) .  

Corollary 20 The 5-Line satisfies the properties IS ,  R, is and r ,  but not N or n. 

Finally, we define the Onestep Line: 

Figure 3.5: The Onestep Line 
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Let L denote the unique copy of the 5-Line contained in the Onestep Line, and let 

P; denote the directed path on i vertices beginning at u;, together with its associated 

5-vertex subdigraphs. Also if w = v; or w = u; for some i, let A(w) denote the 

5-vertex subdigraph containing w. 

Lemma 21 Any endomorphism f of the Onestep Line has the following properties: 

i f f  (vo) = vo then for each i > 1, f (Pi) Pj for some j > i,  
if f (vo) # vo then f (P;) C L for all i 2 1. 

Also, for each Ic > 0 there is an endomorphism of the Onestep Line satisfying these 

conditions. 

Proof: This digraph also contains a unique Line and no directed cycles, so the Line 

must map to itself. The subdigraphs A(v;) again force vo to map to some v k  with 

k 2 0. Suppose some endomorphism f has f (vo) = vo. Then f l L  must be the identity 

map. The mapping f cannot map the paths P; into the line, since then f (ui) = v-1, 

and so A(u;) would map to A(v-l), which cannot occur. Straightforward verification 

now shows that f cannot map Pi to any Pj where j < i,  so each Pi must map into 

some Pj,j 2 i. 
On the other hand, if f(vo) = vk for some k > 0, then f ( ~ - ~ )  = v j  for some 

> -1. Thus for all i 2 1, f(u;) = ~ j + ~ ,  and so all of the P; are clearly forced to 3 - 
map into L. a 

Corollary 22 The Onestep Line satisfies the property is, but none of I ,  S ,  N ,  R, 

n or T .  a 

We say that a property P implies a property Q if whenever P(G)  holds for 

a digraph G, then Q(G) holds for G as well. Our next theorem describes all the 

relationships that hold among the uppercase properties we have defined. We first 

prove a small but useful lemma. Recall the equivalence relation defined on V(G) 

by u E v whenever N+(u) = N+(v) and N-(u) = N-(v). 
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Lemma 23 Let G be a digraph satisfying N(G),  and let f be an endomorphism of 

G. If f (u )  = f (  v) for some u, v E V(G), then u r v.  

Proof: Suppose u $ v and in particular that N+(u) # N+(v) (the case where 

N- (u) # N-(v) is similar). We may assume without loss of generality that there is 

a vertex w E V(G) such that uw E E(G) but vw 6 E(G). Then f (u) f (w) E E(G) 

since f is a homomorphism, but f (v) f (w) @ E(G) because f preserves non-edges. 

Therefore f (u) # f (v). 

Theorem 24 The following implications, and no others (except those implied by tran- 

sitivity), hold among the properties I, S, N, R and combinations thereof. 

ISN 

Proof: Clearly I S N ( G )  implies SN(G) .  Suppose S N ( G )  holds. Then N(G)  

holds, and so by lemma 23 under any endomorphism f of G, f(u) = f ( v )  implies 

that u v. But if u # v and u E v then we may define an endomorphism g of G by 

g(u) = g(v) = v, and g(w) = w for w # u, v, which is not a surjection. Thus, f must 

be an injection. Therefore, I S N ( G )  holds, and so S N ( G )  also implies I N ( G )  and 

IS (G) .  

Suppose I N ( G )  holds. Clearly I (G)  and N ( G )  hold. However, if G is the Ray 

then I N ( G )  holds but S(G)  is false, and so I N ( G )  implies none of S(G), IS (G) ,  

or S N ( G ) .  

Suppose I S ( G )  holds. Clearly I ( G )  and S(G) hold. However, if G is the 5-Line 

then I S ( G )  holds but N ( G )  is false, and so I S ( G )  implies none of N(G), I N ( G ) ,  

or S N ( G ) .  
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Let G be defined by V(G) = {u, v,  w), E(G) = {uv, uw). Then N(G)holds but 

I (G)  , S(G) , and R(G) do not. Thus, N(G)  implies no other uppercase property. 

Suppose I (G)  holds. If R(G) does not hold then G has a proper retract H. Let 

f : G -+ H be a retraction, and let v be a vertex of G not in V(H), so obviously 

f (v)  # v. But f (v) E V ( H )  and so f (f (v)) = f (v) since f is a retraction. But then f 

is not an injection, contradicting I(G). Thus, R(G) must hold. If G is the Ray, then 

I (G)  holds but S(G) is false. Also, if G is the 5-line, then I (G)  holds but N(G) is 

false, and so I (G)  implies only R(G). 

Suppose S(G)  holds. Then R(G) must hold since a proper retraction is not a 

surjection. If G is the 5-3-line then S(G) holds but I ( G )  is false. If G is the 5-line 

then S(G) holds but N(G)  is false, and so S(G) implies only R(G). 

If G is the 5-3-Line then R(G) holds but I (G)  and N(G)  are false. If G is the Ray 

then R(G) holds but S(G) is false. Thus R(G) implies no other uppercase property. 

Let P and Q be arbitrary uppercase properties other than R, or combinations 

thereof. Let p and q be the corresponding lowercase properties. The following lemma 

will be useful in subsequent proofs. 

Lemma 25 If P(G)  implies q(G) then p(G) implies q(G). 

Proof: If p(G) holds then let H be a certificate of p(G). By assumption q(H) 

holds and so H contains a subdigraph K which certifies q(H). However, K also 

certifies q(G), so q(G) holds. 

Note that since Q(G) trivially implies q(G), this lemma proves that any im- 

plication that holds for uppercase properties other than R must also hold for the 

corresponding lowercase properties. 
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Theorem 26 The following implications, and no others (except those implied by tran- 

sitivity), hold among the properties i, s, n ,  r and combinations thereof. 

Proof: As mentioned above, lemma 25 shows that all implications among prop- 

erties other than R in theorem 24 must also be true for the lowercase versions of 

those properties. We shall first verify that no other implications are true except those 

indicated above, and then we will check the implications involving the property r. 

The Ray shows that in does not imply s, and so in does not imply sn either. 

The 5-line shows that is does not imply n or sn. The 5-3-Line shows that s does not 

imply i or n, or any property involving i or n. The Ray also shows that i does not 

imply s, and the 5-Line shows that i does not imply n, so i implies no combination 

of properties either. The Ray shows that n does not imply s. 

To see that n implies in, we note that by lemma 25 it is sufficient to show that 

N implies in. Suppose N(G)  is true. As in the proof of theorem 24, we use the 

equivalence relation - defined on the vertices of G. Let [w] denote the equivalence 

class of a vertex w, and let v[,] be an fixed representative of [w]. Define a mapping 

f : V(G) -t V(G), by f (u) = vf,]. Straightforward verification shows that this is 

an endomorphism, and clearly f(v[,]) = v[,], so f is a retraction. Also note that the 

retract f (G) has the property that no two vertices of f (G) are equivalent, and that 

N( f (G)) holds. Also, I( f (G)) holds, since any endomorphism that is not an injection 

would map two inequivalent vertices to the sanie image, contradicting lemma 23. 

Clearly f (G) G and G -, f (G), so we conclude that i n (G)  holds. 

Now suppose sn(G)  holds. Then G has a subdigraph H such that G -, H and 

SN(H) holds. By theorem 24 we know that ISN(H) holds as well, and so any 
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endomorphism of H is an automorphism. Thus, if f : G + H is a homomorphism, 

then f l H  is an automorphism of H. If we let g be the inverse of f I N ,  then g o f is a 

homomorphism from G to H and (g  o f )  l H  is the identity map, so g o f is a retraction 

and H is a retract of G. Of course, H has no proper retracts because S(H)holds, and 

so we conclude that r (G) holds. 

If G is the Onestep Line and H is the 5-Line, then H is a subdigraph of G, G 4 H 

and IS(H) holds. Thus is(G) holds. On the other hand, r(G) is false. If G is the 

subdigraph of the Onestep Line obtained by deleting all A(vi) with i < -2, and H is 

the subdigraph of G induced by U;>~A(V;), then G + H and I N  (H) holds. Hence, 

in(G) holds. However, r (G)  is false for the same reason that T is false for the Onestep 

Line. 

If G is the 5-3-Line then T (G) holds but i(G) and n(G) are false. If G is the Ray 

then r(G) holds but s(G) is false, so T implies no other property. 

Theorem 27 The following implications, those implied by transitivity and theorems 

24 and 26, and no others, hold between the uppercase and lowercase properties. 

Proof: We first observe that no lowercase property-can imply any uppercase property, 

for if we define a digraph G by V ( G )  = {u, v, w) and E(G) = {uv), then obviously 

every lowercase property holds for G, but G satisfies no uppercase property. On the 

other hand, any uppercase property trivially implies its lowercase version. Also, if P 
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and Q are arbitrary properties other than R, and p and q are their lowercase versions, 

then lemma 25 implies that if p does not imply q, then P does not imply q. Thus, 

we need only verify that N implies r to complete the proof. 

Recall from the proof of theorem 26 that if N (G) holds, then G has a retract H 

such that no two vertices of H are equivalent under E, and I ( H )  holds. But I(H) 

implies R(H) by theorem 24, and so r(G) holds. 

All of the above results are summarized in the following diagram. 

ISN 

Having established the relationships among the various core-like properties we have 

defined, we will next examine certain characteristics of the individual properties. In 

the study of homomorphisms of digraphs the notion of homomorphic equivalence is 

very natural, and we would hope that digraphs which are homomorphically equivalent 

might share many of the same properties. Our next two theorems demonstrate the ex- 

tent to which the core-like properties we have defined are invariant over homomorphic 

equivalence classes. 
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We say that a lowercase property p is invariant if whenever G and H are homomor- 

phically equivalent digraphs and p(G) holds, then p(H) holds as well. It is a trivial 

observation that no uppercase property is invariant in the corresponding sense, as the 

reader may observe that any uppercase property may be destroyed simply by adding 

an isolated vertex to a digraph. Theorem 28 describes the situation for lowercase 

properties. 

Theorem 28 The properties i ,  n ,  i n ,  i s ,  sn and isn are invariant. The properties 

s and r are not. 

Proof: Let G and H be homomorphically equivalent digraphs, and suppose i(G) 

holds. Let GI be a certificate for i(G). Then GI C G, so GI -+ H. Let f : G' + H be a 

homomorphism. 0 bserve that GI, f (GI), G and H are all homomorphically equivalent. 

So let g : f(Gf) + GI be a homomorphism. Now suppose there is a homomorphism 

h : f (GI) + f (GI) which is not an injection. We claim that (g o h o f )  : G' + G' is 

not an injection. Since h is not an injection, there exist distinct u, v E V(f (GI)) such 

that h(u) = h(v). But V( f (GI)) = range( f ) ,  so u and v have pre-images in G' under 

f .  Thus, there exist distinct x, y E V(G1) such that (h o f)(x) = (h o f)(y), and so 

(9 o h o f )(x) = (g o h o f )(y ). However, this contradicts I(Gf),  and so we conclude 

that I( f (GI)) holds, and so i(H) holds. 

The proof that n is invariant is similar to the above: Let G and H be homo- 

morphically equivalent digraphs, and suppose n(G) holds. Let Gf be a certificate for 

n(G), and let f : GI -, H be a homomorphism. Observe again that GI, f(G1), G 

and H are all homomorphically equivalent, and let g : f(G1) + GI be a homomor- 

phism. Now suppose there is a homomorphism h : f (GI) -, f (GI) which does not 

preserve non-edges. Since h does not preserve non-edges, there exist u, v E V( f (GI)) 

such that uv $ E( f (GI)) but h(u) h(v) E E( f (GI)). But again u and v have pre- 

images in G' under f ,  and so there exist x,y E V(G1) such that xy 4 E(Gf) but 

(h f )(x)(h 0 f )(Y)  E E(f (g1))7 and so (9 0 h 0 f )(x)(g 0 h 0 f )(Y) E E(G1)- This 
contradicts N(G1), and so we conclude that N (  f (GI)) holds, and so n(H) holds. 

The fact that in is invariant follows from the above facts: Let G and H be homo- 

morphically equivalent digraphs, and suppose in(G)  holds. Let Gf be a certificate for 
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i n ( G ) ,  and let f : GI + H be a homomorphism. The digraph G' is a certificate for 

I ( G ) ,  and so I(f (GI)) holds exactly as in the proof of the invariance of i. Further- 

more, GI is a certificate for N ( G ) ,  and so N (  f (GI)) holds exactly as in the proof of 

the invariance of n. Therefore, I N ( f  (GI)) holds, and so i n ( H )  holds. 

Now let G and H be equivalent, and now suppose i s (G)  holds. Let GI be a 

certificate for i s (G) .  Let f : GI + H and g : f(G1) + GI be homomorphisms. Also, 

let h  be any endomorphism of f (GI). Observe that we have defined the domain of g to 

be the range of f ,  so f and g must both be injections, for otherwise the homomorphism 

( g  o f )  : GI + GI would fail to be an injection. Similarly, h  must be an injection, for 

otherwise the homomorphism ( g  o h  o f )  : GI + G1 would not be an injection. 

We claim that h  must be a bijection. If h  is not a surjection, then there is a vertex 

u E f (GI) with no pre-image in f (GI) under h. In other words, u  6 range(h o f ). 
However, the homomorphism g is an injection, so u is the unique pre-image of g(u) in 

f (GI) under g ,  and so g(u) $- range(g o h  o f  )(G1). But now ( g  o h  o f )  : G' -+ GI is not 

a surjection, contradicting IS(G1) .  Thus h  must be a bijection. We may therefore 

conclude that I S ( f  (GI)) holds, and so i s ( H )  holds. 

Recall that sn(G)  and i s n ( G )  are logically equivalent, so to show that both are 

invariant it suffices to show that i s n ( G )  is invariant. 

Let G and H be equivalent, and suppose i sn (G)  holds. Let GI be a certificate for 

i sn (G) .  In particular I S (G1)  and N(G1)  hold. Let f : GI + H and let h  : f (G1) + 

f (GI). As in the proof for i s ,  we must have IS(f  (GI)). Also, we must have N(f  (GI)) 

as in the proof for n. Therefore, I S N ( f  (GI)) holds, so i s n ( H )  holds. 

To see that r  is not invariant, let G be the Onestep Line and let H be the 5-Line. 

Then G and H are homomorphically equivalent but r ( H )  holds and r ( G )  is false. 

The counterexample for s  is more complex. We begin with some definitions. By 

P* we mean all finite strings of non-negative integers, and by Pn all such strings of 

length n. We denote the empty string by e. Thelength of a string a is denoted by 

1a1, and we will always assume a = a o ,  . . . , C Y I , I - ~ .  If la/ = 1 then we will sometimes 

represent a by a numeric variable such as i. By a/3 we mean the concatenation of the 

strings a and p. If cr = /3y for some string y we say that ,4? is a prefix of a .  In this 
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case if y # 6 then ,f3 is a proper prefix of a .  We say that a string cr is lexicographically 

less than a string ,f? and write a < ,f? if either cr is a proper prefix of P ;  or P is not a 

prefix of cr and cri < Pi, where i is the least index such that ai # Pi. 
Let A = { ( i ,  j )  : i ,  j 2 0).  For each cr E P* we define a set S, C A and a sequence 

T, of positive integers as follows: 

T, = (t,(i) : i 2 0) )  where t,(i) = 3 + 2z=, c r j ,  where cr j  is considered to be 

zero for j 2 Icrl. 

We will write T, 5 Tp if t,(i) 5 tp(i) for each i .  

Claim 1 The sets S, have the following properties: 

i f P  is a prefix of cr then S, Sp, 

for any fixed n 2 1, we have UYEPn SOY = S,, 

i f @  isaproperprefiofcr thenSpgS, .  - 

if cr is not a proper prefi of P and a < P,  then Sp 9 S,. 
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Proof of Claim: The first part of the claim is an immediate consequence of the 

definition of S,. It is clear from the definition of S, that U;"=, SOi = S,. Induction on 

n proves the second part of the claim. For the third part, if /3 is a proper prefix of a 

then Ial > 1/31 SO let n = 1/31. Then (n+l,an+l+l) E Sp but ( n ~ l , a ~ + ~ + l )  # S,. To 

prove the last part, observe that if a < /3 and a is not a prefix of /3, then there exists 

an i 2 0 with i < la1 and i < [PI, and a; <pi. Hence, (i,/3;) E Sp but (i,/3,) 4S,. 

Claim 2 The sequences T, have the following properties: 

if /3 is a prefix of a then Tp 5 T,. 

if a < p and /3 # aOn for any n 2 1 then T, 2 Tp. 

Proof of Claim: The first part follows immediately from the definition of T,. Now 

suppose a < /3 and /3 # &On. If a is a proper prefix of /3 then there exists an i 2 0 

such that i > la1 and Pi # 0. Then clearly t,(i) < tp(i) .  If a is not a proper prefix 

of /3 then let i be the least index such that a; # pi, and so a; < pi. Again we have 

t,(i) < tp ( i ) ,  and so T, 2 Tp. 

We will now construct a digraph G such that S ( G )  holds. Our construction will be 

greatly simplified by taking G to be an edge-coloured digraph. We will subsequently 

apply lemma 9 to show that G can be transformed into an uncoloured digraph. 

Our construction will require countably many edge-colours. We will have one 

colour for each element of the set A defined above, another colour for each i 2 0,  and 

a special colour called c.  The colours for the elements ( i ,  j )  E A and the non-negative 

integers i will simply be called ( i ,  j )  and i ,  respectively. 

For each a E P*, we define an edge-coloured digraph Pa. We begin the construc- 

tion of P, with three vertices {x,, y,, 2,). Now for each i 2 0 we add a bidirected 

path of colour i and length t,(i) with endpoints x ,  and y,. Finally, we add an edge 

from y,  to z, of colour ( i ,  j )  for each ( i ,  j )  E S,. 
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Example: P2O1 

Figure 3.6 

Claim 3 For each cr and p we have P, 4 P p  if and only if Sa G S p  and T, > Tp 

Proof of Claim: Suppose there is a homomorphism f : P, 4 Pp. In both P, 

and Pp, the vertices y, and yp are the only vertices which are incident to edges of 

colour i for each i 2 0 and edges of colour (i, j) for some nonempty set of pairs (i, j). 

Therefore, it must be the case that f (y,) = yp. Now the vertex x, is incident with 

edges of each colour i 2 0, but f(x,) # yp because this would force Pp to contain an 

odd-length directed cycle in each colour i with i 2 0, but no such cycle exists. Thus, 

f (x,) = xp, since xp is the only other vertex in Pp which is incident to edges of each 

colour i with i 2 0. Similarly we see that f (2,) = zp. 

Now suppose (i, j) f S,. Then y,z, is an (i, j)-edge of Pa, and so the pair 

f (y,) f (z,), i.e. the pair ypzp, must be an (i, j)-edge of Pp. And so (i, j) E Sp,  and 

therefore S, 2 Sp. 

If t,(i) = k then P, contains a bidirected path of length k and of colour i with 

endpoints x, and y,. The image of this path in Pp must contain a bidirected path of 

colour i and length no greater than k with endpoints xp and yp. But this exists only 

if tp(i) 5 k. Thus, T, 2 Tp. 

On the other hand, if we know that S, 2 S p  and T, 2 Tp, then in light of the 

above arguments there is an obvious homomorphism from P, to Pp, and so our claim 

is proved. 
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It is clear from the above proof that if f : Pa + Pp is a homomorphism then f is 

a surjection, each edge of Pp of any colour i with i 2 0 has a pre-image in P,, and 

each edge of colour (i, j )  of Po has a pre-image in P, exactly when (i, j )  E S,. 

We now define G by taking a Line with vertices v; for i f 2, and where v;v;-1 is 

an edge of color c for each i E 2 .  We adjoin digraphs P, to this Line as follows: 

for each v;, i 5 0 in the Line, add a copy of P, and an edge v;x, of colour c,  

For each vi, i > 0 in the Line, add a copy of each Pa, jar1 = i, and an edge vix, 

of colour c for each P,. 
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Figure 3.7 

Claim 4 The edge-coloured digraph G has the property S(G). Furthermore, any 

endomorphism of G is an edge-surjection. 
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Proof of Claim: The Line of colour c in G must map to itself since it is the only 

Line of colour c in G, so if f is an endomorphism of G then f ( v i )  = v i + k  for all i and 

some fixed k E 2. Furthermore , since each P, is joined to the Line by a single edge 

of colour c , each P, joined to some v; must map into a single Pp joined to v i + k .  

No endomorphism of G can map vo to any v ;  with i > 0, since by claim 1, S, S, 
for any a # E ,  SO by claim 3 we know P, f ,  P, when a # e. 

If vo maps to itself, then each P, must map to a Pp with la1 = IPI. If a # P, 
then assume without loss of generality that a < P lexicographically. Then Sp S, 
by claim 1, and so Pp ft P, by claim 3. Also T, 2 Tp by claim 2, and so P, f ,  Pp by 

claim 3. Thus, each P, must map onto itself, and in fact the endomorphism f must 

be the identity. 

Finally, suppose vo maps to some v - ;  with i > 0. Then each vertex v k  in the Line 

must map to v k - ; .  We now show that f is an edge-surjection. Let k be any integer and 

let P, be any subdigraph joined to v k .  Observe that if some subdigraph Pp is mapped 

into P, by f ,  then each edge of P, of any colour j 2 0 will have a pre-image in Pp 

under f .  This follows immediately from the fact that f must map the endpoints of 

the bidirected path of colour j in Pp to the endpoints of the bidirected path of colour 

j in P,, as shown in the proof of claim 3. Thus, to show that f is an edge-surjection, 

it suffices to show that for each (x, y) E S,, there is a Pp joined to v k + ;  such that f 

maps Pp into Pa and (x, y ) E Sp. Since all of the sets S, are non-empty, the preceding 

statement implies that for each P, there is a Pp which is mapped onto P, by f .  

Let (x, y ) be an element of S,. 

Suppose k 5 0, so a = e. If k + i 5 0 then there is also a copy of P, joined to 

v k + i  which must map onto the copy of P, joined to v k .  By definition (x, y) E S,. If 

k + i > 0 then all of the digraphs Pp joined to v k + i  must map onto the copy of P, 

joined to v k .  By claim 1 we know that U y E P k + i  S, = S f ,  and so there is some Pp joined 

to Vk+i which is mapped to P, by f and which has (x, y)  E Sp. 

Suppose k > 0, so la1 = k. Let ,B be any string of length k + i such that a is a 

prefix of ,f?. Then there is a copy of Pp joined to v k + ; ,  and this copy of Pp must map 

onto some P, joined to v k .  However, Iyl = IaI, SO if y # QI then y is not a prefix of 

p, and so there exists a least i 2 0 with i 5 IPI and i 5 171, and Pi # y;. If pi < y; 
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then ,G' < y, and ,G' is not a prefix of y so by lemma 1 we know S p  9 S,. If y; < pi 
then y < ,G' and ,f3 # yon for any n 2 1 so T, 2 Tp. In either case P p  f ,  P, by claim 

3. Thus f must map P p  onto Pa. 

Now by claim 1 we know that U r E P k + i  Say = Sort and so for any ( i , j )  E S, there 

is a Pp joined to vk+; such that (i, j) E So and Pp is mapped onto P, by f .  

In every possible case f is an edge-surjection, and so our claim is proved. 

We will now define another edge-coloured digraph H which is equivalent to  G, but 

for which s(H) is false. For each a EP* we define an infinite sequence TA = (t',(i) : 

i t 01, defined by TA ',..., a,-l  
- - Tffo...fflal-2. We now construct a digraph PA for each 

a exactly as we constructed Po, except that the the length of the bidirected path of 

colour i in PA is given by t',(i) rather than t,(i). Also, we will rename the vertices 

x,, y,, z, as x',, y:, z:. We now obtain H by replacing each copy of some P, in G by 

a copy of PL. 

Claim 5 The edge-coloured digraph H is equivalent to G, and s(H) is false. 

Proof of Claim: We first observe that, as in claim 3, for any a and ,G' we have 

PA + Pj if and only if S, 2 S p  and TL 2 Tk. Furthermore, PA + P p  if and only if 

S, 2 S p  and TA > Tp, and Pa + Pj if and only if S, C S p  and T, 2 Tj. 

To see that G -+ H, observe that for all a, we have T, > TA by Claim 2. Thus, 

P, + PA for all a, and so to map G to H apply the identity map to the Line in G 
and map each Pa to PA. 

To show that H -, G, recall that for all n 2 0 we have S,, 2 S,, and observe 

that for each n > 0, TA, = Tao = T, for all n 2 0. Thus PA, + P, for all a and all 

n 2 0. Thus, to map H homomorphically to G, we map the vertex v; in the Line in 

H to the vertex v;-1 in the Line in G. We map each subdigraph PAn incident to vlal+l 

to the subdigraph P, incident to vl,l, and for each i 5 0 we map the subdigraph P,' 

incident to vi to the subdigraph PC incident to v,-1. 

We must now demonstrate that s(H) is false. Suppose s(H) holds. Let K be a 

certificate of s(H) and let f : H -+ K be a homomorphism. Then K must contain the 

Line, and to each vertex v; in the Line must be joined a (possibly empty) subdigraph 
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of each PL incident to v; in H. Since every PL with Ial > 0 occurs exactly once in 

H,  we can refer to the subdigraph of such a PL which is present in K as Q, without 

ambiguity. Observe that under any homomorphism g : PL + Pb it must be the case 

that g(x',) = x&, g(yk) = y&, and g(zk) = z;j. Also, the bidirected path of colour i in 

PL must map onto the bidirected path of colour i in Pi. Thus, if f maps PA to Qp, 

then Qp must contain x&, y&, and z&, as well as each of the bidirected paths in Pb. 

And so Qp is identical to Pb except that it may lack some of the edges of Pb given by 

S b  
Consider the vertex vl in K ,  and its pre-image v, in H under f .  Note that in any 

endomorphism of H, as was the case for G, the vertex vo must map to some vk with 

k < 0. Since K C_ H ,  this implies that n 2 1. 

Every P; joined to v, in H must map under f to a Q; incident to vl in K. Let a 

be the smallest index such that f maps some Pi to Q,. By claims 1 and 3 we know 

that no PA with a1 = a + 1 admits a homomorphism to Q,, so f must map each 

such PL to some Qb with b > a. Since f maps Pi to Q,, we know that Dl < a. Let 

,f?' = ( a  + l )Pz. .  . pn7 so Sp 2 Spr. Also, note that T;I = T/ for all i, j 2 0. Thus, for 

any k 2 0, if PiI 4 Qk then Pi + Qk. However, f must map PiI to some Qb with 

b > a, so there must be a homomorphism f' : H + K which maps any Pb to some Qb 

with b > a. Therefore H -t K - Q,, so K -+ K - Q,, and so S ( K )  is false. Hence 

s(H) is false as well. 

To complete the proof of theorem 28, we apply construction C to G and H to 

obtain uncoloured digraphs GC and HC. Since any endomorphism of G is an edge- 

surjection, corollary 10 guarantees that s (GC)  holds and so s(GC) holds. However, 

s(HC) is false. 

The above result is somewhat curious, in that the two properties which fail to 

be invariant, namely s and r ,  are the two most commonly used definitions of a core 

in finite graph theory. This indicates that these may not be the most appropriate 

definitions of the core of an infinite digraph. 

Our final theorem for this chapter also deals with a kind of invariance. Let P be 

an arbitrary uppercase property. We will say that the property P is strongly invariant 
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if whenever G and H are digraphs such that both P(G) and P(H) hold and G and 

H are homomorphically equivalent, then G and H are isomorphic. It is a simple 

observation that no lowercase property is strongly invariant in this sense, and so we 

have restricted our attention to uppercase properties. If a property P is strongly 

invariant, we can readily see that whenever p(G) holds there is, up to isomorphism, 

a unique subdigraph H of G such that G + H and P(H). 

Theorem 29 The properties ISN and SN are strongly invariant. The properties 

I ,  S ,  N ,  IS ,  I N  and R are not. 

Proof: Let G and H be homomorphically equivalent digraphs such that ISN(G) 

and ISN(H)  both hold. Let r : G + H and s : H + G be homomorphisms. If r 

is either not injective or does not preserve non-edges, then s o r is an endomorphism 

of G lacking the same property. If r is not surjective then r o s is a non-surjective 

endomorphism of H .  Hence, r must be an isomorphism. 

Since SN is logically equivalent to I S N  it is also strongly invariant. 

Let G be obtained from the 5-line by replacing Al with a copy of A-1. This shares 

the properties I S  and R with the 5-line and is homomorphically equivalent to it, but 

is not isomorphic. Thus none of the properties R, I, S ,  or IS  are strongly invariant. 

Let GI be the subdigraph of the 5-line induced by the vertices vi, i 2 0 ,  and their 

respective A;. Let G2 be obtained from G1 by replacing A. by the triangle consisting 

of vo and its two neighbors in Ao. These digraphs are homomorphically equivalent 

and share the property I N ,  but are non-isomorphic. Thus neither N nor I N  are 

strongly invariant. 

Recall that earlier we claimed that ISN  was the property with the nicest behavior 

for infinite digraphs. We have shown that the two most common definitions of core 

for finite digraphs, s and T ,  are not invariant over homomorphic equivalence classes. 

The property I S N ,  in addition to being strongly invariant, is also the strongest of 

the properties under discussion, while still being'equivalent to R and S  for finite 

structures. We conclude this section by reiterating our claim that ISN  is the most 

reasonable definition for the core of an infinite structure. We now formally adopt this 

definition. 
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Definition 30 A digraph G is a core if and only if I S N ( G )  holds. A digraph H is 

a core of G if and only if H certifies i sn (G) .  

The following is now a corollary to theorem 29. 

Corollary 31 If a digraph G has a core, then the core of G is unique up to isomor- 

phism. 

3.3 Structures and Graphs 

The major results in this chapter all generalize nicely to arbitrary structures and 

graphs. The definitions of the properties I,S,N, and R, as well as their combinations 

and lowercase versions, may be applied to structures and graphs without modification. 

Recall the generalized definition of = for structures. Lemma 23 can be restated 

for structures and remains true. 

Lemma 23' Let G be a structure satisfying N ( G ) ,  and let f be an endomorphism of 

G. I f f  ( u )  = f ( v )  for some u,  v E V(G) ,  then u v .  

Proof: Suppose N ( G )  holds and let f be any endomorphism of G. Suppose f ( u )  = 

f ( v )  for some u,  v E V(G) .  If u $ v then there must exist a relation R and edges 

ii, a E R(G) such that ii,,/, = a,,/, and ii E R(G) but a # R(G). We know that f is 

an endomorphism, and so ( f  ( z ) )  E R(G). But f ( u )  = f ( v ) ,  so ( f  ( E ) )  = ( f  (E,,~,)) = 

( f  = ( f  (V)) .  Hence we have (f ( V ) )  E R(G),  contradicting N (G).  

We can see that this proof is essentially identical to the proof of lemma 23, except 

that it is restated in the terminology of structures. We will generally not rewrite 

subsequent proofs where this is the case. 

Lemma 23 may also be restated in the obvious way for graphs, and the proof is 

essentially identical. 

Theorems 24, 26, and 27 all have analogues applying to structures. Let P and Q 

be arbitrary uppercase properties, and let L be a language. We say that P implies 

Q in L if whenever G is a structure for L and P ( G )  holds, then Q(G)  holds as well. 

It turns out that the implications between properties are the same for all languages. 
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Theorem 24' Le t  L be a n y  language, and let P and  Q be arbi trary uppercase prop- 

erties.  T h e n  P impl ies  Q in L i f  and only  if  P impl ies  Q for  digraphs. 

We show that a given property implies another using arguments essentially iden- 

tical to those in the proof of theorem 24. To obtain counterexamples to show that 

a given property does not imply another, we apply lemma 2 to the counterexamples 

used in the proof of theorem 24. 

Analogues of theorems 26 and 27 are proved by the same method. 

Analogues to these three theorems also hold for graphs. For example, we have the 

following result. 

Theorem 24" Le t  P a n d  Q be arbitrary uppercase properties. T h e n  P impl ies  Q for  

graphs if  and  only  if  P impl ies  Q for  digraphs. 

Again we may prove that a given property implies another just as in the proof of 

theorem 24. We now show that these are the only implications that hold. Referring 

back to the proof of theorem 24, we observe that all of the counterexamples used in 

that theorem can be transformed into undirected graphs using construction B. The 

constructed graphs will provide counterexamples for the same implications. The only 

exceptions to this are the cases where we used the 5-line as a counterexample, since 

the 5-line has property S, but the graph obtained by applying construction B to the 

5-line does not have property S. We will therefore explicitly construct an undirected 

graph G with the same properties as the 5-line, i.e. I S ( G )  and R(G)  will hold but 

N(G)  will not hold. The graph G is shown in figure 3.8. The directed edges are 

replaced as in construction B, while the undirected edges will remain unaltered. 

Figure 3.8 

We claim that this graph has properties I,S, and R, but not N. Let us first 
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examine the directed graph GI consisting of the vertices and directed edges of G prior 

to applying construction B. Clearly any endomorphism of GI is an automorphism. 

If we apply construction B to GI to obtain G", then any endomorphism of G" must 

also be an automorphism. Now V(GN) = V(G) and E(GN) = E(G) - {eo, el,. . .). 
Observe that none of the edges e; E E(G) are contained in any cycle of G of length 

less than or equal to seven in G. But each edge of G" lies in a 7-cycle. Thus, if f is any 

endomorphism of G and uv E E(G) - {e ;  : i 2 0) then f (u) f (v) E E(G)- {e ;  : i 2 0). 

Thus, f is also an endomorphism of G". Therefore f must be an injection and a 

surjection, and f is not a proper retraction. However, if f(vo) = VI then f does not 

preserve non-edges of G. 

Analogues of theorems 26 and 27 also hold for graphs. In all cases the proofs that 

the implications hold are the same as for directed graphs. In cases not involving the 

property S, undirected counterexamples to implications can be obtained by applying 

construction B to the directed counterexamples. In all other cases counterexamples 

can be constructed by methods similar those used in the above theorem. 

Analogues of theorems 28 and 29 also hold for graphs and structures. In all cases 

the proofs are essentially identical to the proofs for digraphs, and counterexamples 

may be constructed using constructions A and B. 



Chapter 4 

Compactness of Digraphs 

4.1 Definitions 

Let G and H be digraphs. We say that H is compact with respect t o  G if either 

G -t H or there exists a finite subdigraph G' of G such that GI f ,  H. We say that 

H is a-compact if H is compact with respect to G for all G with IV(G)J 5 a. If H 

is compact with respect to every G, then we say that H is compact. Equivalently, 

we might say that H is compact if for every digraph G, we have G -t H if and 

only if G' + H for every finite subdigraph G' of G. If every finite subdigraph of G 

admits a homomorphism to H, but G f ,  H, then we say G is a certificate of non- 

compactness for H .  Observe that If G is a certificate of non-compactness for H then 

some connected component of G is a certificate of non-compactness for H. 

If two digraphs H and H' are homomorphically equivalent and G is any digraph, 

then clearly H is compact with respect to G if and only if HI is compact with respect 

to G. Also note that if H is a-compact and ,f3 < a then H is P-compact. 

Example 32 The  Line i s  compact. 

A digraph G admits a homomorphism to the Line if and only if every cycle in G 

has net length zero. If G has a cycle of non-zero net length, then this cycle is a finite 

subdigraph of G admitting no homomorphism to the Line. That the Line is compact 

also follows from results proved later in this chapter. 

50 
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Example 33 The Ray is not compact. 

The Line is a certificate of non-compactness for the Ray, since every finite subdi- 

graph of the Line admits a homomorphism to the Ray, but clearly the Line admits 

no homomorphism to the Ray. In fact, the Line demonstrates that the Ray is not 

No-compact . 

A very important class of non-compact digraphs are infinite tournaments. A tour- 

nament is a digraph G where for each distinct u,v E V(G) exactly one of uv or vu 

is an edge of G. A tournament is transitive if whenever uv E E(G) and vw E E(G), 

then uw E E(G). Equivalently, we may define a transitive tournament to be any 

digraph G where V(G) is linearly ordered and uv E E(G) if and only if u < v. 

Tournaments are the subject of our first lemma. 

Lemma 34 If T is an infinite tournament and G is a loopless digraph such that 

T 2 G then G is not compact. 

Proof: A frequently-used application of Ramsey's theorem shows that every infinite 

tournament contains an infinite transitive tournament (for example see [53]). Let T' 

be a transitive tournament on [GI+ vertices. Clearly every finite subdigraph of T' 

admits a homomorphism to G. However, as G contains no loops, any homomorphism 

from T' to G must be an injection, which is impossible since IT'I > [GI. 

Example 35 I fT  is an infinite transitive tournament then T is [TI-compact but not 

IT]+-compact. 

Any digraph G with [GI 5 IT1 admits a homomorphism to T if and only if G 

contains no directed cycle. A directed cycle in G is a finite subdigraph of G which 

admits no homomorphism to T, and so T is IT I-compact. As in lemma 34 a transitive 

tournament on IT I +  vertices suffices to show that T is not IT [+-compact. 

In the next section we will show that every compact digraph contains a core. In 

pursuit of this result we will also give some results relating to other core-like digraphs 

necessarily contained in compact digraphs. 
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In section 4.3 we examine digraphs H which are [HI-compact. We prove that if H 

is a /HI-compact core then H is compact. We use this result to prove that a digraph 

H is compact if and only if it is 1 H [+-compact. 

In section 4.4 we will describe some large classes of compact digraphs, and thereby 

also describe classes of infinite digraphs with cores. 

4.2 Compact Digraphs have Cores 

The problem of characterizing cores is a difficult one even in the case of finite digraphs, 

and has been solved only for undirected graphs with independence number at most 

two [38]. In this section we provide a partial result by showing that every compact 

digraph contains a core, which by corollary 31 must be unique up to isomorphism. 

Along the way we will prove uniqueness and existence results for some other core-like 

subdigraphs of compact digraphs. Our first lemma is of a slightly different type, but 

will be useful in proving further results. 

Lemma 36 If H is an /HI-compact digraph then there exists a digraph HI _> H with 

V(H1) = V(H) and such that HI -+ H and N(H1) holds. 

Proof: Suppose that H is I H I-compact but no such HI exists. We define a transfinite 

sequence {Ha) of superdigraphs of H on the same vertex-set V(H). Each of these will 

have the property that Ha + H. Let Ho = N, and if Ha is defined for some ordinal 

a, define Ha+1 as follows. Since Ha + H ,  by assumption there is an endomorphism 

f of Ha which does not preserve non-edges. 

Define Ha+1 by 

V(Ha+l) = V(Ha) 

Clearly f : Ha+1 -+ Ha is a homomorphis~, and so by transitivity we have 

Ha+1 -+ H. Also, since f does not preserve non-edges in Ha, it must be the case that 

E(Ha) is properly contained in E(Ha+l). 
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If X is a limit ordinal and Ha is defined, with V(H,) = V(H), for all a < A, then 

we define HA by 

V(Hx) = V(H) 

E(HA) = (J E(Ha). 
a< A 

To show that HA + H ,  let K be any finite subdigraph of HA. Then K has only 

finitely many edges, so K C Ha for some a < A, and so K -, H. Since lHxl = IHI 

and H is IH(-compact, we have HA + H. 

However, for each a, the cardinality of E (Ha) can be no more than I Ha I = I H I. At 

each step in the above induction we add at least one new edge to and we never 

remove edges once added. Hence for some a < I HI+ we must have an Ha for which 

E(Ha) = {uv : u, v f V(Ha)), i. e. all possible edges are present. But Ha --, H and 

so by assumption there is an endomorphism of Ha which does not preserve non-edges. 

This is clearly impossible as Ha is without non-edges. 

Thus, there must be some superdigraph H' of H such that N(HJ) is true. 

We now apply this lemma to obtain some useful results relating to core-like sub- 

digraphs of compact digraphs. 

Lemma 37 Let H be a digraph which is [HI-compact. If G certifies s(H),  then G is 

a core of H .  

Proof: Suppose G is not a core, i.e., I S N ( G )  is false. Recall that I S N ( G )  holds if 

and only if S N ( G )  holds, and certainly S(G) is true, and so N(G)  must be false. 

We will show that N(H1) is false for every superdigraph H' of H where H' + H 

to obtain a contradiction to lemma 36. 

Let H' be a superdigraph of H which admits a homomorphism to H .  Then s(H1) 

is true, since H' + G and S(G) holds, and so G certifies s(H1). 

Now let h : H' -, G be a homomorphism, and let f be an endomorphism of G 

which does not preserve non-edges. Then there exist u, v E V(G) such that uv $ E(G) 

but f (u) f (v) E E(G). Since G HI, the mapping h must be a surjection, and so 

both u and v have pre-images u' and v' under h in HI. Now u'v' cannot be an edge of 

H' since then h would not be a homomorphism, but (f o h)(u1)(f o h)(v1) is an edge 
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of HI. Thus the composition f o h does not preserve non-edges. Since f o h is an 

endomorphism of HI, we have shown that N(H1) is false. 

Corollary 38 Let H be a digraph which is [HI-compact. If s (H)  holds, then H 

contains exactly one certificate for s(H) (up to isomorphism). 

Proof: Suppose H is [HI-compact, and let G1 and G2 be certificates for s(H).  Lemma 

37 guarantees that both G1 and G2 are cores of H, and theorem 29 implies that G1 

and G2 are isomorphic. 

According to the above lemma, we need only show that a compact digraph H 

satisfies s(H) in order to guarantee that H has a unique core. Our next two lemmas 

will show that a compact digraph does indeed satisfy the property s. 

We will require the following definition. Recall the equivalence relation r defined 

in section 1.1.1. 

Definition 39 Let K be a digraph. Let S be a set containing one vertex from each 

equivalence class of V(K). We define a new digraph KT to be the subdigraph of K 

induced by S .  The digraph KT is called the reduced digraph of K. 

It is a simple matter to verify that KT is a retract of K, and that no two vertices 

of K' are equivalent. We will refer to the retraction which maps every vertex of K 

to the representative of its equivalence class as the canonical retraction from K to 

KT. Note also that it makes no difference which vertex is chosen from an equivalence 

class. 

Lemma 40 Every 1 HI-compact digraph H satisfies in(H). 

Proof: Suppose H is [HI-compact but in(H) is false. As in the previous lemma we 

will show that no superdigraph HI of H which admits a homomorphism to H satisfies 

N(H1) to obtain a contradiction. 

Let HI be a superdigraph of H such that HI -, H, and let f : HI -+ H be 

a homomorphism. Let G = (f(H1))'. By definition f is a surjection from HI to 

f (HI), and the canonical retraction from f (HI) to G is a surjection as well. Thus 
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the compostion of these homomorphisms is a surjection from HI to G. Call this 

composition f'. 

Now G 2 H and H -, G because H 2 HI and HI -, G, so by assumption 

I N ( G )  is false. However, observe that if I (G)  is false then N ( G )  is also false. For 

suppose that g is an endomorphism of G which is not an injection. Then there exist 

u, v E V(G) such that g(u) = g(v). But in G no two vertices are equivalent, and so 

lemma 23 implies that N (G) is false. 

Let g be an endomorphism of G which does not preserve non-edges. Look at the 

composition g o f' : HI + G. This homomorphism does not preserve non-edges since 

g does not preserve non-edges and f' is a surjection. Also, since G C H C HI, g o f' 
is an endomorphism of HI which does not preserve non-edges. Thus, N(H1) is false. 

This lemma is used to prove the following important result. 

Lemma 41 Any I HI+-compact digraph H satisfies s(H).  

Proof: Let H be a [HI+-compact digraph, and suppose s(H) is false. Since H is also 

]HI-compact, by the preceding lemma we know that H contains a subdigraph Ho 

which certifies in(H) .  We will show that Ho also certifies s(H). 

Suppose that S(Ho) is false. Note that Ho is IHol+-compact, since Ho * H and 

I Hal+ 5 I HI+. AS in lemma 36 we will obtain a contradiction by constructing a 

transfinite sequence of digraphs {Ha), for a 5 I Ho IS. For each a > 0 the digraph Ha 

will be a proper superdigraph of Ho. The Ha will all satisfy IN(H,), I Ha I = I Ho 1 ,  and 

each Ha will be isomorphic to a subdigraph of Ho. This last property is somewhat 

counter-intuitive, but is quite possible when dealing with infinite digraphs. In the 

construction we are about to present, unlike that in lemma 36, the vertex-set will not 

remain const ant. 

We have already defined Ho, which satisfies the above conditions by assumption. 

Now suppose H, is defined, I N ( H a )  holds, I Ha I = IHol, and Ha is isomorphic to 

a subdigraph of Ho. We claim that there must exist a non-surjective endomorphism 

of H,. When a = 0 this is true by assumption. If a > 0 then we know that there is 
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a homomorphism h : Hu + Ho because H, is isomorphic to a subdigraph of Ho. But 

Ho is a proper subdigraph of Ha, so h is a non-surjective endomorphism of H,. 

We now define 

Let I = { v  E V(H,)  : h-'(v) = 81, and let I' = {v' : v E I )  be a set of new 

vertices. We will define in two steps. First we define 

Clearly I H,+l 1 = [Ha I = I Hal. Also, since I is nonempty we know that H,+l is 

a proper superdigraph of Ho. We now define a mapping h' : V(H,+l) + V(H,)  by 

h'lV(Hp) = h,  and h'(vt) = v for all v' E It.  We may now define 

It follows immediately from the definition of that h' is a homomorphism 

from H,+l to Ha. 

Since I N ( H , )  holds, the homomorphism h is an injection and preserves non-edges. 

The homomorphism h' is also an injection, since no two vertices in I' get mapped to 

the same vertex, and no vertex in I' is mapped to a vertex that is the image of a 

vertex under h. Also, h' preserves non-edges, by definition of E(H,+l). Furthermore, 

h' is a surjection, since we explicitly added a pre-image of each vertex of H, to 

Thus, h' is an isomorphism between H,+l and Ha, and so is also isomorphic 

to a subdigraph of Ho and IN(H,+l )  holds, since these properties are preserved by 

isomorphism. 

If X 5 IHol+ is a limit ordinal and H, is defined for all a < A, then we define a 

digraph G by 

V ( G )  = U V(H,)  
a<X 

E ( G )  = U E(H,). 
a<X 

Note that {V(H,)),<x is an increasing nested 'sequence of sets, all of cardinality 

lHol, and so IV(G)I 5 lHol+. Thus, Ho is compact with respect to G. Any finite 

subdigraph G' of G must be contained in some H, with a < A, and so G' + Ho. And 

so G +  Ho. 
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We will now show that either G satisfies the conditions of our inductive hypothesis, 

so we may set HA = G, or we will obtain a contradiction, thus completing our proof. 

We first show that I N ( G )  holds. Suppose that f is an endomorphism of G, and 

suppose that either f is not an injection or f does not preserve non-edges. Then 

there exist u, v f V(G) such that f (u) = f ( v) or uv $ E (G) but f (u) f (v) E E (G). 

However, there must exist some Ha with a < X such that u, v E V(H,). 

Now look at f JHa : H, + G. Since u, v E V(H,), f lHa is either not an injection 

or does not preserve non-edges. We also know that there exists a homomorphism 

g : G + Ho, and Ho Ha. Thus, the composition g o f l H a  : Ha -+ Ha is an 

endomorphism of H, which is either not an injection or does not preserve non-edges. 

This contradicts IN(H,), and so f must be an injection and preserve non-edges. 

Thus, I N ( G )  must hold. Furthermore, g is an endomorphism of G, since HO E G, 

and so it is an injection and preserves non-edges. Hence, g(G) is a subdigraph of Ho 

which is isomorphic to G. It follows that [GI = IHol, and so we may define HA = G. 

But at each inductive step in our construction at least one new vertex is added to 

the digraph. Eventually, for some limit ordinal X < IHol+, it must be the case that 

1 HA 1 > I Ho I + .  Thus we obtain a contradiction, and may conclude that s(H) holds. w 

Corollary 42 Let H be a digraph. If H is ]HI+-compact, then H has a core. 

Proof: By lemma 41 H contains a subdigraph G which certifies s (H) .  By lemma 37 

we see that G is a core of H. 

In particular every compact digraph has a core. 

4.3 IGI-compact Digraphs 

One might hope that the converse of the corollary at the end of the preceding section 

might also be true. Unfortunately, this is not the. case. Consider, for example, the 

following digraph. We first define a sequence of finite digraphs Hi, i 2 1. Let p, 

denote the nth odd prime, and C, the directed cycle of length p,. As observed in 

Chapter 2, {Cn : n 2 1) is a mutually incompatible family of digraphs, and in 
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fact each Cn is a core. To construct Hi, begin with V(H;) = {vo, . . . , vi+1) and 

E(H;) = {vovj : 1 5 j 5 i +  1). Now for 1 5  j 5 i, attach a copy of C2j to v j  by 

identifying one of the vertices of the cycle with vj. Finally, attach a copy of C2;+* to 

v;+l in like manner. 

We claim that each Hi is a core and that {Hi : i 2 1) is a mutually incompatible 

family of digraphs. Choose i 2 1 and let v be a vertex of Hi which occurs in a copy 

of some Cn G Hi. Then v has in-degree at least one. However, vo has in-degree 0, so 

no endomorphism of Hi can map v to vo. Hence, any endomorphism of H; must map 

each Cn s Hi into some Cm G Hi, and so Cn must map onto itself. Since i > 1 the 

vertex vo must map to itself, and so Hi is a core. 

Similarly, if f : Hi + Hj is a homomorphism for some i # j ,  then f must map 

each C, H; into some Cm 5 Hj. Again, this is possible if and only if n = m, and 

so H; -, Hj if and only if every Cn contained in Hi is also contained in Hj. However, 

if i # j then Hi contains a copy of C2i+l, but Hj does not, and so Hi and Hj are 

mutually incompatible. 

We now define H to be the disjoint union of the digraphs Hi. Then H is a 

core, since each component of H is a core and there is no homomorphism from any 

component of H to any other. However, H is not compact. Consider the digraph G 

obtained by taking V(G) = {vo, vl, v2,.  . .) and E(G) = {vovi : 1 5 i), and attaching 

a copy of C2; to v; for each i 2 1. Any finite subdigraph G' of G will admit a 

homomorphism to H ,  since it can contain vertices from at most finitely many of the 

cycles in G, and therefore will be a subdigraph of some H;. However, G f ,  H, since 

G is connected and no component of H contains cycles of all lengths p2;. 

Note that in this example the digraph H is not I HI-compact. In fact in this case 

both H and G were countable. The property of being I HI-compact turns out to be 

quite strong, and in this section we will show that several properties of digraphs are 

equivalent for I H I-compact digraphs. 

We begin with some definitions, leading up to a very useful lemma. 

Let G and H be digraphs. Let 1 : V(G) + P(V(H))  be a mapping from V(G) 

to the power set of V(H), called a list-assignment for G (with respect to H).  An 

1-list-homomorphism f : G + H is a homomorphism from G to H such that for 
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each v E V(G) we have f(v)  E l(v). We will often wish to apply the same lists 

to subdigraphs G' of G. By convention we will say that f : G' -, H is an I-list- 

homomorphism if f is an 1 ~v~G~~-list-homomorphism. 

We will say that a list-assignment I : V(G) + P(V(H))  has property R if for 

each v E V(G) either Il(v)l = 1 or I(v) = V(H). We will say that a digraph H is 

a-R-list-compact if for every digraph G with /GI 5 a and every list-assignment 1 for 

G with respect to H for which R holds, either there is an 1-list-homomorphism from 

G to H, or there is a finite subdigraph G' 5 G for which no I-list homomorphism 

exists. If H is a-R-list-compact for every cardinal a then H is R-list-compact. 

An 1-list-homomorphism where I has the property R is more commonly known as 

a precolouring-extension [ll]. However, we will regard them as a special type of list- 

homomorphism. In chapter 6 we will examine list-homomorphisms in much greater 

detail. For our present purposes, the following lemma will be very useful. 

Lemma 43 Let H be a core and a 2 /HI be a cardinal. Then H is a-R-list-compact 

if and only if H is a-compact. 

Proof: If H is a-R-list-compact then H is a-compact, since for any input digraph G 

we may define a list-assignment 1 by l(v) = V(H) for each v E V(G). 

Now suppose H is an a-compact core with a 2 /HI, and let G be any digraph with 

[GI 5 a. Let 1 be any list-assignment for G with respect to H such that R holds for I, 

and let S = {v E V(G) : Il(v)l = 1). Suppose also that every finite subdigraph of G 

maps to H subject to 1. We construct a new digraph G* by taking a copy of G and a 

copy of H, and identifying w E V(H) with all v E V(G) such that I(v) = {w). It will 

be useful to formally define G* as follows. We define a mapping s : V(G) U V(H) + 

V(G) U V(H) by setting s (v )  = I(v) for all v E S, and s(v) = v otherwise. Now we 

define V(G*) = s(V(H) U V(G)) and E(G*) = {s(u)s(v) : uv E E(G) U E(H)}. Note 

that IG*I 5 a .  

We say that a vertex v E V(G*) is a G-vertex if v = s(u) for some u E V(G). We 

say that an edge uv E E(G*) is a G-edge if uv = s(x)s(y) for some xy E E(G). 

We will show that G* + H. Let K be a finite subdigraph of G*. Of course K 

contains only finitely many G-vertices and 6-edges. Thus, there is a finite subset A 
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of V(G) such that every G-edge of K and every G-vertex of K has a pre-image in A 

under s. Let B be the set of all vertices of K which are not G-vertices. Note that 

each v E B is its own unique pre-image under s so V(K) 5 s(AU B). 

Let G' = G[A] U H[B]. By assumption there exists an I-list-homomorphism f : 

G[A] + H, which we can extend to a homomorphism g : G' -+ H by applying the 

identity mapping to all v E B. 

We now use the homomorphism g to define a homomorphism h : K -+ H. Let 

v be a vertex of K. Let v' E AU B be some pre-image of v under s, and define 

h(v) = g(v1). Note that h is independent of the choice of v', since if v E s(S) then 

g(v1) = 1(vt) for all pre-images v' of v, and if v $ s(S) then v has a unique pre-image 

under s. 

If uv is an edge of K then there exist u', v' E V(G1) such that s(u1) = u, s(v1) = v, 

and u'v' E E(G1). We know that h(u) = g(ul) and h(v) = g(vf) by the above 

remark. But g is a homomorphism so g(u')g(v') E E(H), and so h(u) h(v) E E(H) .  

Thus, h : K 4 H is a homomorphism, and so by a-compactness of H we know that 

G* + H. 

Now let f : G' + H be a homomorphism. Since H is a core, f lqH) is an 

automorphism of H. Let g = (f l v ( H ) ) - l .  Then (g o f )  : G' + H is a homomorphism 

and (go f )  I V ( H )  is the identity. It is obvious from the definition of s that s : (G U H) -+ 

G' is a homomorphism and slv(H) is the identity. So (g o f o s)  : (GU H) -+ H is 

a homomorphism from GU H to H.  In particular (g o f o s)lv(G) : G + H. But 

s(v) = l(v) for all v E S, and l(v) E V ( H )  for all v E S, so (g o f)(l(v)) = l(v) for 

all v E S.  Thus, (g o f o s)(v) = l(v) for all v E S, and so (g o f o s)lv(G) is an 

1-list-homomorphism from G to H. I 

We will use this lemma to prove a very interesting sufficient condition for com- 

pactness. First we require a definition. Let G, H ,  and K be digraphs with G 2 H, 

and let g : G + K and h : H -, K be homomorphisms. We say that h is an extension 

of g if hiG = 9. 

Theorem 44 Let H be a core. If H is [HI-compact then H is compact. 
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the least cardinal such that H is not K-compact, and let G be a certificate of non- 

compactness for H with /GI = K. We assume V(G) = {a : a < K), and for each 

ordinal a < n we define G, to be the subdigraph of G induced by { P  : /3 < a). For 

each G, we have /Gal = la1 + 1, and la + 11 < K since K is an initial ordinal. Thus, 

G, has fewer than K vertices, and so each G, admits a homomorphism to H. For 

each ordinal a < n we will construct a homomorphism f, : G, 4 H which will be an 

extension of each fp with p < a. Also, every f, will have the property that for each 

,8 with a 5 p < K,  there exists a homomorphism gp : Gp + H which is an extension 

of fa. 
We will define the f, inductively. Let y be an ordinal smaller than n and suppose 

that we have defined a homomorphism f, satisfying the required properties for each 

a < y. Note that this condition is trivially satisfied when y = 0. We proceed to 

define f,. 

We claim that there exists a vertex vo E V(H) such that for all ,8 with y < ,B < K,  

there exists a homomorphism gp : Gp + H such that gp is an extension of f, for all 

a < y, and gp(7) = vo. 

If no such vertex exists then for all v E V(H) there must exist a /3 with y 5 ,L? < K 

such that there is no homomorphism gp : Gp + H which is an extension of every f, 

with a < y, and for which gp(y) = v. 

We can rephrase this last statement in terms of list-homomorphisms. Let v be an 

arbitrary vertex of H. We will define a list-assignment r, for G with respect to  H. 

Let r,(a) = {fa(&)) for 0 < a < y, rv(y) = {v), and r,(a) = V(H) for each a with 

y < a < n. The above statement is equivalent to the assertion that for some P with 

y < ,B < K there is no rv-list-homomorphism from Gp to H. But H is IPI-compact, so 

by lemma 43 H is IPI-R-list-compact. Also, R holds for r,. Therefore, there must be 

some finite subdigraph G, of Gp such that there is no r,-list-homomorphism from Gv 

to H. Note that y E V(Gu), since for each a < y there is an r,-list-homomorphism 

from G, to H. 

We now define G* = UuEv(H)  G,. We claim that for each a < y there is a homo- 

morphism from G* to H which is an extension of fa. The digraph H is ]HI-compact 
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so by lemma 43 H is I H I-R-list-compact. Clearly IG* 1 5 I HI, and so H is R-list- 

compact with respect to G*. Now if GI is any finite subdigraph of G*, then GI is a 

finite subdigraph of G, and so GI Go for some ,8 < K. For each a < y we define a list 

assignment 1, for G with respect to H by 1,(S) = { f,(S)) for S < a, and l,(S) = V ( H )  

otherwise. By assumption, for each a < y there is an 1,-list-homomorphism from Gp 

to H, and so for each a < y there is an 1,-list-homomorphism from GI to H. Thus, 

since H is /HI-R-list-compact, for each a < y there is an 1,-list-homomorphism from 

G" to H. Clearly such a homomorphism is an extension of f,. 

We claim that in fact there is one homomorphism g : G* -+ H such that g is an 

1,-list-homomorphism for all a < y. Let us define a list-assignment s for G* with 

respect to H by ~ ( a )  = {f,(a)) for a < y and s(a) = V ( H )  otherwise. We will 

show that there is an s-list-homomorphism from G* to H, which clearly will be an 

extension of each f, for a < y. Let GI be a finite subdigraph of G*. We claim there is 

an s-list-homomorphism from GI to H. Since GI is finite, there must be some a < y 

such that for each S E V(G1), either S 5 a or S 2 y. Also, there is some ,8 < K 

such that GI Gp. Thus we may find a homomorphism f : Go -+ H which is an 

extension of f,, and so f lGt is an s-list-homomorphism from GI to H. Thus, by IHI- 

R-list-compactness of H, there is an s-list-homomorphism from G* to H. This is the 

required homomorphism g. 

Now let v = g(y). Then glG, is an r,-list-homomorphism from G, to H,  a con- 

tradiction. Hence, our claim is proven. And so there must be some vo € V(H) such 

that for all ,B with y 5 ,f3 < K, there exists a homomorphism gp : Gp + H such that 

gp is an extension of f, for each a < y, and gp(y) = vo. Thus, we simply define f, 
by fr(a) = fa(a) for each cr < y and f,(y) = vo. 

By this method we contruct the functions f, for each a < K. 
To complete the proof, we define a mapping h : G -+ H by h(a) = f,(a) for 

each a < K. This is clearly a homomorphism, contradicting the choice of G. We may 

therefore conclude that H is compact. rn 

Corollary 45 Let H be a digraph. If H is ]HI+-compact then H is compact. 
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IKI 5 IHI and K t, H so K is /HI+-compact. Also, IKl 5 [HI so K is certainly 

I K 1-compact, and so by theorem 44, K is compact. But H H K so H is also compact. 

w 

These results are somewhat surprising. They implies that if a digraph is not 

compact, then we need only look at digraphs of the next larger cardinality to find 

a certificate of non-compactness. Furthermore, if a core is not compact, then there 

is a certificate of non-compactness of the same cardinality. For digraphs which are 

not cores this is false. For example, a transitive tournament with vertex-set K is 

K-compact but not K+-compact. 

4.4 Families of Compact Digraphs 

By now I'm sure you will all agree that compact digraphs are quite an interesting 

type of object. The problem now is to determine what kinds of digraphs are compact. 

In particular, we would like to construct some broad families of compact digraphs, or 

perhaps give some general sufficient conditions for a digraph to be compact. 

In this section we will first prove a very general and rather unappealing technical 

lemma, which will subsequently prove its worth through a series of elegant corollaries. 

Before we begin we will need some terminology. 

We will first generalize the notion of a list-homomorphism. Let G and H be 

digraphs, and let l : V(G) + P(V(H))  be a list-assignment for G with respect to H. 

An 1-list-mapping is a mapping f : G + H such that f(v) E l(v) for each v E V ( G ) .  

An I-list-homomorphism, then, is an I-list-mapping which is also a homomorphism. 

Suppose G, H, and l are as above. We define S = n,EV(G) l(v), i.e. S is the 

product of the sets I(v). There is an obvious one-to-one correspondence between 1- 

list-mappings and elements of S. We will therefore consider such a mapping to be 

identical to the corresponding element of S. 

We will make use of a classic result in topology; which we state now. 

Theorem 46 (Tychonoff) The product of compact topological spaces i s  compact. 
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The original proof of this may be found in [70], but the reader may prefer [45]. 

The property of compact topological spaces which we use is the following: given any 

collection C of closed sets in a compact topological space, if the intersection of any 

finite subcollection of C is nonempty, then the intersection of all of the sets in C is 

nonempty. We may now state our result. 

Lemma 47 Let G and H be digraphs. Suppose there exists a function I : V(G) + 

P(V(H)) ,  and for each v E V(G) a compact topology I, on l ( v ) ,  such that for every 

finite subdigraph GI C G: 

there exists an I-list-homomorphism f : G' + H, and 

the set {g : g is a mapping from V(G) to V(H) and glGl is an I-list-homo- 

morphism from GI to H) is closed in the product topology 7 = nvEV(~)  I,  on 

S = ~ v , v ( G )  

Then G + H. 

Proof: Suppose that the conditions of the lemma are satisfied. Let 7 be the product 

topology on S. By Tychonoff's theorem I is compact. For each finite subdigraph 

G' G, let FQ 5 S be the set of all mappings h : V(G) + V(H) such that hlGl 

is an I-list-homomorphism from G' to H. Each FG# is a nonempty closed set in the 

topological space (S, 7). We claim that the intersection of the collection {FGl : GI 

is a finite subdigraph of G) is nonempty. Since 7 is compact it suffices to show 

that for any finite collection GI, . . . , G, of finite subdigraphs of G, the intersection 

FG, is nonempty. But given any finite collection GI, . . . , G, of finite subdigraphs 

of G, the digraph G' = ULl G; is a finite subdigraph of G, and so there is an I-list- 

homomorphism f : G' + H. Let g be any mapping from G to H such that glG# = f .  

Then it will be the case that glGt is an I-list-homomorphism for each 1 5 i 5 n. 

Therefore ny=l FG, is non-empty. And so our claim is proved. 

Now any element of the intersection of the collection {FQ : G1is a finite subdigraph 

of G) is an I-list-homomorphism from G to H ,  and so we conclude that G -t H. rn 

Tychonoff's theorem is an extremely useful tool in proving many different types of 

compactness theorems. In fact, the above lemma can be regarded as a generalization 
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of compactness results such as those found in [32, 62, 631. These papers exploit the 

fact that if 1 is a finite set and 7 is the discrete topology on 1, then (I, 7) is compact 

and every subset of 1 is closed. This same property of finite sets will be the basis of 

the proofs of our first two corollaries. 

Corollary 48 Any finite digraph is compact. 

Proof: Suppose H is finite, and let G be any digraph such that all finite subdigraphs 

GI G admit homomorphisms to H. For each v E V(G) let l(v) = V(H) and let I,  
be the discrete topology on l(v). It is a simple matter to verify that the conditions of 

lemma 47 are satisfied. Thus G + H and so H is compact. 

This result is not particularly surprising, and is a generalization of the well known 

compactness theorem for chromatic number [17], which states that a graph (or di- 

graph) is n-colourable if and only if each of its finite subdigraphs is n-colourable. 

It can also be proved using a similar result found in [37], which states that a finite 

subdigraph H of a digraph G is a retract of G if and only if H is a retract of every 

finite subdigraph of G which contains H. Our next result characterizes a large class of 

infinite digraphs which are compact. We denote by Aut(H) the automorphism group 

of H. We say that H is locally finite if for all v E V(H), both N+(v) and N-(v) are 

finite. 

Theorem 49 Let H be a locally finite digraph. If there are only finitely many orbits 

in Aut(H) then H is compact. 

Proof: Let H be a digraph satisfying the conditions above, and let G be any digraph 

such that every finite GI C G admits a homomorphism to H. We may assume without 

loss of generality that G is connected. Define A C V(H) to be a set containing one 

vertex from each orbit of Aut(H), so A is finite. Let vo be some fixed vertex in V(G) 

and define l(vo) = A. Clearly for any subdigraph G' C G (not neccessarily finite), 

there is a homomorphism f : G' -, H if and only-if there is such a homomorphism 

with f(v0) E l(v0). 

We now define a finite set l(u) C V(H) for each u E V(G). Given u E V(G), let 

> l(u) = {y E V(H) : d(y, A) L d(u, vo)). Since H is locally finite, l(u) will be finite. 
i 
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We will show that every finite subdigraph of G admits an 1-list-homomorphism 

to H. Thus, let Gf be a finite subdigraph of G. Let G" be a finite subdigraph of G 

containing GI, and such that for any u, v E V(G1), the distance between u and v in 

G" is the same as their distance in G. Such a digraph is easily constructed by adding 

to Gf a shortest oriented path from u to v in G, for each u, v f V(Gf). Since GI1 is 

finite we have G" -+ H. And so if we choose a homomorphism f : G" -t H such that 

f (vo) E A, then f (u) E l(u) for all u E V(G1). So f lGl will be an 1-list-homomorphism 

from Gf to H. 

If we now assign the discrete topology to each set l(v), we may apply lemma 47 

to conclude G -+ H, and so H is compact. rn 

As we mentioned before, both of these results exploit finitary properties of the 

digraphs in question. In the first case the digraphs are finite, and in the second case 

the digraphs are locally finite. Our next result deals with digraphs that do not possess 

any such finitary property, except of course in the sense that compactness is itself a 

finitary property. 

Before stating the result we note that applying lemma 47 is often simplified by 

the following observation. Let G, H, l(v) and I, be given as usual. Suppose that 

GI is a finite subdigraph of G, and let S1 = nvEv(G,l l(v) and If = nv,V(Gt) '&. It is 

a simple matter to verify that the set { g  : g is a mapping from V(G) to V ( H )  and 

glGl is an 1-list-homomorphism} is closed in ( S , I )  if and only if the set X = { g  : g 

is an 1-list-homomorphism from GI to H )  is closed in (Sf, If). But X is closed if 

and only if its complement XC is open. An open set in (S1,I1) is just a product 

nv,v(Gl) 0, where each 0, is open in (l(v),I,). Thus, it is sufficient to show that if 

f : V(Gf) -+ V(H) is not a homomorphism, then for each v f V(Gf), there is an open 

set Nu in I(v) containing f (v) such that no g E nvEv(Gl) Nu is a homomorphism. 

We use R to denote the set of real numbers. 

Theorem 50 Let  M = ( M ,  d )  be a me t r i c  space,. and  let C be a compact  subset of 

X. Define a digraph H by V(H) = M and  E(H) = {uv : d(u, v) f C}. I f  e i ther 

i) M is compact ,  o r  



CHAPTER 4. COMPACTNESS OF DIGRAPHS 

ii) every closed and bounded subspace of M is compact and Aut(H) has onlyfinitely 

many orbits, 

then H is compact. 

Proof: Let H be a digraph as defined above and let G be any digraph. Assume 

without loss of generality that G is connected. Suppose that every finite subdigraph of 

G admits a homomorphism to H. We will define for each v E V(G) a set I(v) C V(H) 

and a compact topology Tv on l(v) so that every finite subdigraph of G admits an 

I-list-homomorphism to H. 

Case 1: (i) holds. 

For all v E V(G) let l(v) = V(H) and let T, be the metric topology given by M 
on I(v). Every finite subdigraph of G clearly admits an I-list-homomorphism to H .  

Case 2: (ii) holds. 

Let A E V(H) contain exactly one element from each orbit of Aut(G). Choose 

some arbitrary vo E V(G) and define l(vo) = A. Now note that the set C must be 

closed and bounded, so let r = max{x : x E C}. For any v E V(G) - {vo}, let k be the 

length of a shortest oriented path from v to vo in G. Let l(v) = {w : d(w, A) 5 kr}. 

Now for all v E V(G) let I, be the metric topology given by M on I(v). Since 

l(v) is closed and bounded, the topology I, is compact. It is clear that every finite 

subdigraph of G admits an 1-list-homomorphism to H. 

Having defined our lists and topologies in one of the above ways, it remains only 

to show that for any finite Gf C G, the set of mappings f : G + H such that f I G ~  
is an I-list-homomorphsim is a closed subset of S = n,Ev(G) l(v) under the product 

topology 7 = nVEV(G) z. TO do this, we will show that given Gf and a mapping 

f : V(Gf) + V(H) which is not a homomorphism, there exists a neighbourhood 

Nu I(v) of f(v) such that no g E nvEV(Gl) N, is a homomorphism. 

Suppose that f : V(Gf) + V(H) is not a homomorphism. Then there exist 

u, v E V(Gf) such that uv E E(Gf) but f (u) f (v) eaE(H'). Then, recalling that f (u) 

and f (v) are points in the metric space M, we know that d(f (u), f (v)) e C. But C is 

closed, so there exists an > 0 such that for all x E 8, Ix - d( f (u), f (v))] < E implies 

that x $ C. Therefore, for all r, s E M, if d( f (u), r )  < €12 and d( f (v), s )  < €12, it 
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must be the case that Id(r, s) - d( f (u), f (v))  1 < E, applying the triangle inequality. 

So if we let Nu and Nu be the neighbourhoods of radius ~ / 2  around f (u) and f (v), 

respectively, in 7, and I,, then no vertex in Nu is adjacent to any vertex in Nu in 

H. Now define N,,, = I(w) for all w # u, v in V(G'). No g E fl,Ev(Gt) Nw will be a 

homomorphism, since g(u)g(v) $! E(H). It follows that the set { f E S : f /GI  is an 

I-list-homomorphism) is closed in (S, I), and so lemma 47 applies. We conclude that 

G + H. H 

Note that since the distance funtion d is symmetric, all relations in these digraphs 

will be symmetric, and so they may be considered to be graphs. We will continue to 

regard them as digraphs, although for simplicity in our diagrams we will often draw 

pairs of directed edges as a single undirected edge. 

This last result allows us to construct some particularly interesting compact di- 

graphs. Define a digraph D by V(D) = R2, i.e. points in the plane, and E(D) = 

{ {u, v )  : d(u, v) = 11, where d is the usual metric on R2. This digraph has been stud- 

ied extensively in the literature [20, 351, and has several interesting open problems 

associated with it. For example, it is quite simple to show that 4 5 x(D) < 7, but no 

improvement on these bounds is known. The properties of this digraph which are of 

interest to us are given by the following theorem. 

Theorem 51 D is a compact core. 

Proof: That D is compact is a simple corollary of theorem 50, since (1) is a compact 

subset of 8, D is vertex-transitive, and closed bounded sets in X2 are compact. The 

fact that D is a core is more difficult to prove. We will prove the stronger claim that 

any endomorphism of D is a rigid transformation of ?R2. 
For any three vertices {vl, 212, v3) c V(D), the vertices {vl, v2, us) induce a K3 

in D if and only if the corresponding points in sR2 are the vertices of an equilateral 

triangle with side length one. Since the homomorphic image of K3 must be another 

K3, any endomorphism of D must be a rigid transformation of these three points. 

Thus, to prove our claim it suffices to show that any endomorphism of D which fixes 

{vl, 0 2 ,  v3) pointwise must be the identity. 
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Let f be an endomorphism of D which fixes {vl, v2, 03). We will first show that 

D must fix the vertices of the triangular lattice containing {vl, v2,v3} (see figure 4.1). 

Figure 4.1 

We will do this by showing that if any triangle {ul, u2, us) in the lattice is fixed, 

then the lattice point which is the unique common neighbour of u2 and u3 other than 

ul must also be fixed. A moment's reflection is all that is required to see that this 

will force every vertex in the lattice to be fixed. 

Suppose that a triangle {u1, UZ, u3) is fixed by f.  There is a subdigraph of D 

containing {ul, u2, u3) as indicated in figure 4.2. Here u is the common neighbour of 

u2 and ug not equal to ul. Since {ul, UZ, u3) are fixed, f (u) = u or f (u) = ul, so 

either d(ul, f (u)) = f i  or d(ul, f (u)) = 0. 
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Figure 4.2 

The triangles { u l ,  v l ,  v 2 )  and { v ,  vl ,  v2 )  must map to triangles with the edge vlv2 

in common, and so d(ul ,  f ( v ) )  = f i  or d(ul,  f ( v ) )  = 0. SO if f ( u )  = u1 then it must 

be the case that either d ( f ( u ) ,  f ( v ) )  = f i o r  d ( f ( u ) ,  f ( v ) )  = 0. But d ( f ( u ) ,  f ( v ) )  

must be 1. Thus, f ( u )  = u,  and so we may conclude that f fixes the entire lattice. 

We must now show that f fixes every point in the plane. Suppose there is a vertex 

v  such that f ( v )  # v.  We claim that there is a lattice vertex w and an integer k such 

that d(w,  v )  5 k and d(w, f ( v ) )  > k.  To see this, let 1 be a line which is perpendicluar 

to some edge of the triangular lattice, and contains a lattice point. Then 1 contains 

infinitely many lattice points which are spaced at a distance of f i  from each other. 

Furthermore, choose I so that the perpendicluar projections of v  and f ( v )  on 1 are 

distinct (figure 4.3). 
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Figure 4.3 

Let p, and pf(,) be the perpendicular projections of v and f ( v )  onto I .  Let p be 

a point on I midway between p, and pf(,) and let r = d(p,p,). Let W be the set of 

lattice points on I which are outside the interval [p, ,pf(v)] and are on the same side 

of the interval as p, (figure 4.4). 

Figure 4.4 

Every point in W will have distance c + k f i  from p, where c is a positive constant 

and k ranges over the non negative integers. Hereafter we will use (x) to denote the 

fractional part of a real number x ,  i . e .  ( x )  = x - LxJ. Since f i  is irrational, the set 

{ ( c  + k&) }, where k ranges over the non-negative integers, is dense in [ O ,  11. Thus, 

for every e > 0 there exist infinitely many w E W such that ( d ( w , p ) )  < e ,  and so 

there exist such w arbitrarily far from p, p,, and pj(,). For each w E W it is clearly 

true that d(w,p,)  < d ( w ,  v )  and d(w,p f ( , ) )  < d(w ,  f (v)). 

Consider any fixed c > 0. For each w E W which is sufficiently far from p, and 

L- pf(,), we have d ( w ,  v )  - d ( w ,  p,) < E. Thus, there is a w E W such that ( d ( w ,  p ) )  < e ,  
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Id(w, v) - d(w,p,)l < E and Id(w, f (v)) - d(w,pf(,))l < E .  We now take c = r/2, and 

so there exists a w E W such that 

and 

Thus, if we set k = [d(w,p)J we have d(w, v) < k and d(w, f (v)) > k, and so our 

claim is proved. 

Now since d(w, v) < k it is easily seen that there is a directed path of length k 

from w to v in D. Thus, there must be a directed walk of length k from f (w) to f (v) 

in D. But this is impossible, as f (w) = w and d(w, f (v)) > k. 

We conclude that f is the identity mapping, and so any endomorphism of D is a 

rigid transformation of the plane. Obviously a rigid transformation of the plane is an 

automorphism of D, and so D is a core. 

We may construct higher-dimensional analogues of D in a natural way. We simply 

let the vertex-set be Xn, and define the edge-set exactly as we did for D. The proof 

of the preceeding theorem will also generalize to these digraphs, the major difference 

being that the triangles in the graph in figure 4.2 will be replaced by copies of Kn+l. 

In general the digraphs constructed using the theorems in this section need not 

be cores. The preceeding example is particularly interesting because D is a compact 

core with IV(D)I = 2 N ~  (cf. theorem 52). 

4.5 Structures and Graphs 

All of the results from sections 4.2 and 4.3 apply to structures and graphs, and the 

proofs are essentially the same. 

We may prove a result similar to lemma 47 in section 4.4. However, note that 

we have been forced to replace the term 'finite' in the statement of the lemma by 
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'finitely induced' to account for the possibility that our structures may be defined for 

an infinite language. 

Lemma 47' Let G and H be structures. Suppose there exists a function 1 : V(G) + 

P(V(H)),  and a compact topology ';T, on l(v), for each v E V(G), with the following 

properties for every finitely induced substructure G' C G: 

there exists an 1-list-homomorphism f : G' + H, and 

the set of mappings { (g  : G + H )  : glGt is an S-list-homomorphism ) is closed 

in the product topology 7 = nvEv(G) I,  on S = n v E v c ~ ) ( l ( v ) ) -  

Then G -+ H .  

The proof of lemma 47' is now identical to the proof of lemma 47, with the term 

'finite' uniformly replaced by 'finitely induced'. 

The original statement of lemma 47 applies to graphs without modification. 

We may prove a stronger version of corollary 48 for structures. The original 

statement holds for graphs. 

Corollary 48' Any finitely induced structure is compact. 

Proof: If R1 and R2 are two relations defined on a structure G, we will say that R1 

and R2 are equivalent if R1(v) if and only if R2(5) for all 5. We first claim that it is 

sufficient to prove that any finite structure is compact, for if G is a finitely induced 

structure, then only finitely many pairwise inequivalent relations can be defined on 

V(G). If G is not compact, then let H be a certificate of noncompactness for G. We 

will construct a noncompact finite structure G' and a certificate of noncompactness 

HI. Let V(G1) = V(G), V(H') = V(H) and for each equivalence class {R; : i E I) 

of relations on G we select one representative R and define R(G') = R(G), R(H1) = 

UiEI 4 (H) . Now G' is finite, since V(G) is finite and only finitely many relations are 

defined on GI. Also, any finitely induced substructure of H' is finite. Finally, it is clear 

that given any set S V(H) and any mapping f : S -+ V(G), f is a homomorphism 

from H[S] to G if and only if f is a homomorphism from H1[S] to G'. But every finitely 

induced substructure of H admits a homomorphism to G, and so every finitely induced 
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(and therefore finite) substructure of H' admits a homomorphism to GI. However, 

H f ,  G so HI f ,  G', and so the claim is proven. w 

We may also restate theorem 49 for structures. In fact, in this case the theorem 

statement is identical, but we must define what it means for a structures to be locally 

finite. We will say that a structure G is locally finite if for each v E V(G) and each 

R E L, v occurs in only finitely many R-edges of G. Note that if L is infinite then v 

may occur in infinitely many edges of different types. 

The proof of theorem 49 is now easily modified to apply to structures. Again the 

original proof applies directly to graphs. 



Chapter 5 

Classes of Digraphs 

5.1 Definitions 

Up until now we have been examining properties of individual digraphs. We now turn 

our attention to properties of broad classes of digraphs. In the first section of this 

chapter we will examine the class of all compact digraphs. We will determine exactly 

how many compact cores there are, and show that they may be partially ordered in 

a natural way to produce a distributive lattice. 

In all sections of this chapter, we will use + to impose a binary relation on the 

digraphs under discussion, i.e. G is related to H if G -+ H. This relation is reflexive 

and transitive, and so defines a natural partial order on homomorphic equivalence 

classes of digraphs. Many interesting properties of this ordering are examined in [21]. 

One very special digraph which will occur occasionally in this chapter consists of a 

single vertex v with a loop vv. This digraph is named one because it is maximum 

with respect to +, that is, G + one for all digraphs G. This immediately implies 

that one is compact. 

We now define three operations which we will use throughout this chapter. Let G 

and H be digraphs. As usual, we denote by G U H the disjoint union of G and H. We 

denote by G x  H the categorical product of G and H, that is, V(G x H) = V(G) x V(H) 

and E(G x H)  = {(r, u) (s ,  v) : rs E E(G) and uv E E(H)). We denote by H~ 

the digraph defined by V(HG) = { f 1 f is a mapping from V(G) to V(H)} and 
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E ( H ~ )  = {fg : uv E E(G) implies f ( ~ ) ~ ( v )  E E(H)). This digraph has also been 

called the map-graph [36]. 

It is a simple exercise to verify the following facts [21]: 

i f G +  K a n d  H + K  t h e n G U H - K ,  

i f K + G a n d  K - H  t h e n K + G x  H, 

one 4 HG if and only if G -+ H. 

For any digraph G we define [GI to be the class of all digraphs which are homo- 

morphically equivalent to G. It is easy to verify that if [GI] = [Gz] and [HI] = [Hz], 

then [GI +HI] = [Gz +Hz], [GI x HI] = [Gz x Hz], and [G?] = [G?]. Thus, we may 

define U, x ,  and exponentiation for two equivalence classes of digraphs by applying 

the given operation to two arbitrary representatives of the classes. Wherever it is 

appropriate to the context we will take G to mean [GI. 

5.2 The Class of Compact Digraphs 

We define C to be the class of all compact digraphs. Observe that C is always a proper 

class, since for any cardinal K ,  an independent set of size K: is a compact digraph. 

However, we may still hope to reduce C to a more reasonable size by partitioning it 

into homomorphic equivalence classes. We define E to be the class of all homomorphic 

equivalence classes of compact digraphs. Strictly speaking, we define E to be a class 

containing one representative from each homomorphic equivalence class of compact 

digraphs, since a class cannot be an element of a class. Since every compact digraph 

contains a unique core, and the cores of homomorphically equivalent digraphs are 

isomorphic, we know that every homomorphic equivalence class of digraphs contains 

exactly one core. 



CHAPTER 5. CLASSES OF DIGRAPHS 77 

We will denote by S(G) the set of all finite subdigraphs of G, sometimes called 

the age of G [18]. 

Our first result shows that & is a set. 

Theorem 52 The class & is a set and ]El = 2 N ~ .  

Proof: Observe that if G and H are compact digraphs such that S(G) = S ( H ) ,  then 

G H H. In other words, if G p4 H then S(G) # S(H) .  Thus, there can be no more 

equivalence classes of compact digraphs than there are distinct sets of finite digraphs. 

Clearly there are exactly No distinct finite digraphs and so there are no more than 

2N0 equivalence classes of compact digraphs. 

We must now show that there are at least this many distinct equivalence classes. It 

suffices to show that there exists a set of 2 N ~  pairwise inequivalent compact digraphs. 

Let P2 be the infinite incompatible set of digraphs defined in the proof of lemma 7, 

i.e., the set P2 is the set of all directed cycles of prime length. We claim that for 

any nonempty subset 6 c P2,  the digraph Hg = U G E g  G is compact. Let G be any 

digraph and suppose that every finite subdigraph G' G admits a homomorphism 

to Hg. Assume without loss of generality that G is connected. 

Observe that Hg is a disjoint union of directed cycles of distinct prime lengths. 

If G contains no cycle C with net(C) > 0 then it is a simple matter to verify that 

G + D, for any directed cycle D,, and so G + Hg. On the other hand, if G contains 

a cycle C with net(C) = k > 0, then by lemma 6 we know that C + D, if and only if 

nlk. This trivially implies that n 5 k, and so there are only finitely many components 

{D,,, . . . , D,,) of Hg such that C + Dpi. Let D = D,,. Since G is connected 

we know that G + Hg if and only if G + D. But D is finite, and so is compact. 

Furthermore, every finite subdigraph of G admits a homomorphism to D, since every 

finite subdigraph of G is contained in a finite connected subdigraph of G which also 

contains C. Thus, G -+ Hg. 

Lemma 6 also guarantees that if # G2 then H ~ ,  *ft HF,. Since R, is countably 

infinite, it has 2 N ~  nonempty subsets, and so we are done. w 

Corollary 53 There are exactly 2 N ~  compact cores. w 
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Note that in the above proof the 2 N ~  inequivalent digraphs we construct all have 

countable vertex-sets. In other words, cardinality arguments give us no reason to 

believe that compact cores of uncountable size exist. However, the digraph D con- 

structed in theorem 51 demonstrates that such objects do exist. 

Open Problem 54 What is the maximum cardinality of a compact core? 

We now know that E is a set, so if we impose the partial order + on E we obtain a 

partially ordered set. Our next few results, in the spirit of [21], show that the partially 

ordered set (E, +) is in fact a distributive lattice with exponentiation. 

We claim that U and x define join and meet operations, respectively, for (E, -+), 
and so we must show that the class of compact digraphs is closed under U and x .  

Lemma 55 If G and H are compact digraphs then G U H and G x H are compact. 

Proof: Let G and H be compact digraphs. It suffices to show that GU H and G x H 

are compact with respect to every connected digraph. Thus, let K be a connected 

digraph such that all finite subdigraphs Kt C K admit a homomorphism to G U H.  It 

cannot be the case that there exist finite subdigraphs Kt,  K" E K such that K' f ,  G 

and Kt' f ,  H, for then there would be a finite connected subdigraph of K containing 

K' and K". This finite subdigraph of K would admit no homomorphism to G U H.  

Thus it must be the case that every finite subdigraph K' of K admits a homo- 

morphism to G, or every finite subdigraph K' of K admits a homomorphism to H. 

By compactness of G and H we have K 4 G or K + H, so K + G U H, and so we 

conclude that G U H is compact. 

Suppose now that all finite K' K admit a homomorphism to G x H. Then since 

G x H + G and G x H -+ H, all such finite Kt admit homomorphisms to both G 

and H. And so by compactness of G and H there exist homomorphisms f : K -+ G 

and g : K + H .  We now define h : K + G x H by h(v) = (f(v),g(v)). It is 

straightforward to verify that h is a homomorphism. 

At this point it is not difficult to verify that U and x satisfy the properties of the 

join and meet operations in (E, +). It is also a simple matter to show that U and x 

satisfy the distributive laws. 
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We may show that HG defines an exponentiation operation for E. To do so we 

must prove that if G and H are compact then HG is also compact. We will in fact 

prove the following stronger result. 

Lemma 56 A digraph H is compact if and only if HG is compact for every digraph 

Proof: We refer the reader to [21] for proofs of the following facts: If G and H are 

any digraphs, then HG x G + H, and for every digraph K, if K x G + H then 

K -, H ~ .  

Suppose that H is compact and let G and Z be arbitrary digraphs such that 

every finite subdigraph of Z admits a homomorphism to H ~ .  Let W be an arbitrary 

finite subdigraph of Z x G. Then for some finite Z' c Z and G' G we must have 

W 2 Z' x GI. But Z' -t HG and GI -t G so Z' x GI -t HG x G -+ H. Thus, 

every finite subdigraph of Z x G admits a homomorphism to H, and so Z x G + H. 

Therefore Z -t HG. 

Now suppose that H is not compact. Then Hone * H is not compact. It is also 

easy to prove the more interesting fact that if G is a certificate of non-compactness 

for H, then HG is not compact. 

Observe that the lattice (E, +) has a maximum element, namely one, and a min- 

imum element, namely the trivial digraph with a single vertex and no edges. 

5.3 Finite Equivalence 

In the study of compact digraphs, we are interested in studying the connection between 

the existence of homomorphisms of infinite digraphs and the existence of homomor- 

phisms of finite digraphs. Within this context, it may be useful to examine a class of 

digraphs with the property that any finite subdigraph of a digraph in the class admits 

a homomorphism to any other digraph in the class. We say that two digraphs G and 

H are finitely equivalent if for any finite GI G we have G' -t H ,  and vice versa. 

b This is easily seen to be an equivalence relation. 
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Digraphs which are homomorphically equivalent are certainly finitely equivalent, 

but finitely equivalent digraphs may not be equivalent (consider, for example, the 

Ray and the Line). In this section we will examine classes of digraphs which are 

finitely equivalent. Let C(G) be the class of all digraphs which are finitely equivalent 

to G, and let F(G)  be the class of homomorphic equivalence classes of C(G). Again, 

we should strictly consider F (G)  to be a class containing a representative from each 

homomorphic equivalence class of C(G). We partially order F (G)  by +. 
We will discover in this section that F ( G )  can be a proper class. In other words, it 

is possible for there to exist a proper class of pairwise inequivalent digraphs which are 

pairwise finitely equivalent. In fact this will turn out to be true for 'most' digraphs. 

We will also show that (F(G), +) has the properties of a distributive lattice. It is 

not, strictly speaking, a lattice because a lattice must be defined on a set rather than 

a class. However, by slight abuse of terminology we .will call an object a lattice if its 

ordering satisfies the properties of a lattice, even if it is defined over a proper class. 

We again define the join and meet operations by using U and x ,  respectively. 

Theorem 57 For a n y  digraph G, (F(G),  +) i s  a distributive lattice. 

Proof: It suffices to show that C(G) is closed under U and x .  If HI, H2 E C(G), then 

certainly any finite subdigraph of HI admits a homomorphism to Hl U Hz. If K is a 

finite subdigraph of HI U H2, on the other hand, then any component of K must be 

a finite subdigraph of either HI or Hz, and so in either case admits a homomorphism 

to HI. Thus, HI U Hz is finitely equivalent to HI. Note that this argument applies 

equally well to arbitrary unions of digraphs. 

Now, any finite subdigraph of HI admits a homomorphism to both HI and H2, 

and so admits a homomorphism to HI x HZ. Also, any finite subdigraph of HI x H2 

admits a homomorphism to HI, since HI x H2 + HI. Thus, Hl x H2 is finitely 

equivalent to HI, and, by a symmetric argument, to H2. 

Unlike E in the previous section, F ( G )  is not generally closed under exponentia- 

tion. For example, given any digraph G, GG t, one since G + G, but one # F(G) 

unless G contains a loop. 



CHAPTER 5. CLASSES OF DIGRAPHS 8 1 

The class F(G) is also unlike E in that it does not always contain a maximum 

element with respect to +, although it does always have a minimum element. Our 

next theorem proves this and more. We will denote by SG the digraph which is the 

disjoint union of all finite subdigraphs of G. 

Theorem 58 For any G, the lattice (F(G), +) has a maximal element if  and only if 

F ( G )  contains a compact digraph. Furthermore, this compact digraph is the maximum 

element of (F(G), +). The lattice (F(G), -+) always has a minimum element. 

Proof: A moment's reflection should convince the reader that G is compact if and 

only if G is the maximum element of F(G). Formally: if (F(G), +) contains a 

maximal element G, then G must be maximum, since if H f ,  G for some H E F(G) 

then G U H is strictly greater than G. If G is maximum then given any H ,  all of 

whose finite subdigraphs admit homomorphisms to G, the digraph H U SG will be 

finitely equivalent to G, so H U SG + G, and therefore H + G. Thus G is compact. 

If G is compact, then clearly H 4 G for any H finitely equivalent to G. 

The digraph SG is always a minimum element of (F(G) , +) , since each component 

of SG is finite, and so maps to every other element of F(G).  rn 

We mentioned before that F ( G )  may not be a set. Our next series of results deal 

with the possible sizes of F(G). We determine that in most cases F ( G )  is a proper 

class and that in many of the remaining cases it consists of a single element. 

Lemma 59 The class F ( G )  consists of a single homomorphic equivalence class if and 

only if there exists a digraph H such that H t, G, H is compact, and H is a disjoint 

union of finite digraphs. 

Proof: Suppose that IF(G)I = 1. Let H = SG, SO H is a disjoint union of finite 

digraphs. Obviously H is finitely equivalent to G, and so H tt G. Also, H is trivially 

maximum in F(G) ,  and so H is compact. 

Now suppose there exists a compact digraph H-which is a disjoint union of finite 

digraphs and is homomorphically equivalent to G. Clearly H * SH, and so H is 

minimum in F(G). If IF(G)I > 1 then H is not maximum in F(G) ,  and so H is not 

compact, a contradiction. 
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Obviously any finite digraph satisfies the conditions of this lemma. We may also 

construct infinite compact cores which are disjoint unions of finite digraphs. 

Example 60 Let H be the disjoint union of all directed cycles of prime length. Then 

H is a compact core. 

Clearly every component of H is a finite core, and no component of H admits a 

homomorphism to any other component of H ,  so H is a core. Also, in the proof of 

theorem 52 we showed that any disjoint union of directed cycles of prime length is 

compact. 

In the remainder of this section we will prove the rather impressive fact that in 

most cases where (F(G)I # 1, it is a proper class. Our first result treats all cases 

where G is not finitely equivalent to a compact digraph. 

Lemma 61 If F(G)  does not contain a compact digraph, then it is a proper class. 

Proof: Suppose that F (G)  is not a proper class. Then F ( G )  is a set, so we may 

define a new digraph G* by G' = UHEF(G)  H. The digraph G* is finitely equivalent 

to G, and any H E F (G)  will obviously map to G'. Thus G* is a maximum element 

of F(G),  and so is compact. 

This result allows us to restrict our attention to digraphs G which are finitely 

equivalent to some compact digraph H. Since in this case F ( G )  = F(H), it will be 

sufficient for our purposes to restrict our attention to the behavior of F(H) when H 

is a compact digraph. 

Further results rely on the following lemma, in which we show that a certain 

density property is sufficient for F(G)  to be a proper class. 

Lemma 62 Let H be a compact core which has an infinite component C ,  and let HI 

be a digraph finitely equivalent to H such that C is- a component of HI and such that 

C f ,  HI - C. Suppose that for any G E F(H) such that G + HI and H' f ,  G, there 

exists a K such that G + K + HI but HI f ,  K f ,  G. Then I.F(H)I = 1 or F(H) is 

a proper class. 
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Proof: Suppose that F ( H )  has the density property described above, and that F ( H )  

is a set with IF(H)I > 1. Let C and H' be as stated above. Note that C is a core, 

since it is a component of a core. Let U = {G E F(H) : G -+ HI). 

We define a digraph Hc = ugf," K. Observe that this union is nonempty, since 

SH E 24 and C f ,  SH. Since Hc is a union of digraphs which are finitely equivalent 

to HI, the digraph Hc is finitely equivalent to HI. Clearly Hc + HI. Also, since C is 

connected and C does not admit a homomorphism to any component of Hc we know 

that C f ,  Hc , and so H' f ,  Hc . By the density property, there must exist a digraph 

K such that Hc + K -, H'but  H'f, K f ,  Hc. 

Let K be such a digraph. Every finite subdigraph of K admits a homomorphism to 

H', and every finite subdigraph of H' admits a homomorphism to Hc, and therefore 

to K .  Thus K is finitely equivalent to HI, and so K E U .  If C f ,  K then K + Hc 

a contradiction. On the other hand, if C + K then let H" = (HI - C) U Sc, i.e., 

replace C by the union of its finite subdigraphs. We know that C f ,  Sc, since C is an 

infinite core, and C f ,  H' - C, so C f ,  H". But clearly HN E U, and so H" + Hc. 

Hence H" + K.  But H" contains every component of H' except C, and so every 

component of H' other than C admits a homomorphism to K. We have also assumed 

that C + K ,  and so H' -+ K ,  a contradiction. Thus, K cannot exist. 

Corollary 63 Let H be a compact digraph such that 1F(H) I > 1. Suppose that for 

each G E F(H) such that H f ,  G, there exists a K such that G -+ K + H but 

H f ,  K f ,  G. Then F(H) is a proper class. 

Proof: We may assume that H is a core. Since I.F(H)I > 1, we know that H is not a 

disjoint union of finite digraphs by lemma 59. Thus, let C be an infinite component 

of H. Clearly C f ,  H - C, so we may take H' to be H and apply lemma 62. 

It is interesting to note that the key to this lemma and its corollary is the simple 

fact that we may take the union of a set of digraphs, but not of a proper class of 

digraphs. It is also quite surprising that a very simple density condition is sufficient 

to force F ( G )  to be a proper class. 

The following lemma, and its use in proving density results, are due to Perles [60]. 
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Lemma 64 Let G and H be digraphs such that G -+ H but H f ,  G. If there exists a 

digraph K such that H f ,  K u G and K f ,  GH, then there exists a digraph Kt such 

that G -+ Kt -, H and H f ,  Kt f ,  G. 

Proof: Suppose that such a K exists for a given G and H. Since K + GH, we have 

K x H f+  G. Let Kt = (K x H) U G. Then Kt f ,  G and G -+ Kt. Furthermore, 

K x H -+ H so Kt -+ H. The fact that K x H 4 K also implies that Kt  -+ K U G. 

Therefore H f ,  Kt,  since otherwise H + K U G. 

Corollary 65 Let G be a digraph and let H be a connected digraph such that G -t H 

but H f ,  G. If there ezists a digraph K such that H f i  K and K f ,  GH,  then there 

exists a digraph Kt such that G Kt  -+ H and H f ,  Kt f ,  G. 

The conditions of lemma 64 require that H f ,  G, so GH is loopless. The chromatic 

number of GH is therefore always defined, and so we will often choose K to  have a 

higher chromatic number than GH to ensure that K f ,  GH. 

We now begin to apply these results to show that for many digraphs G, the class 

F(G) is a proper class. 

Lemma 66 Let H be a compact core, and suppose H has an infinite component C 

satisfying at least one of the following: 

C contains an oriented odd cycle, 

C contains a directed cycle (including 2-cycles), 

C contains the Line. 

Then either IF(H)I = 1 or F ( H )  is a proper class. 

Proof: Let H be an infinite connected compact core such that IF(H)I > 1, and let 

C be an infinite component of H satisfying one of the above conditions. 

Suppose C contains an oriented odd cycle. Let n be the length of some oriented 

odd cycle in H. Let G be any digraph in F (G)  such that G -+ C and C f ,  G. Let 
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K be a graph with og(K)  > n and x ( K )  > x(GC).  The existence of such is shown in 

[22, 51, 581 when x(GC) is finite and in [23, 251 when X ( G ~ )  is infinite. Let K' be any 

orientation of K. Then C f ,  K' and K' f ,  GC. Applying corollary 65 and lemma 62 

we see that F ( H )  is a proper class. 

Suppose that C contains a directed cycle or the Line. Let G be a digraph in F ( H )  

such that G + C and C f ,  G. Let K = x(GC) and let K be the transitive tournament 

with V ( K )  = {a  : a < K + }  and E ( K )  = {a@ : cr < ,8 < K + } .  Then C f ,  K since 

K contains no Line and no directed cycle, and K f ,  GC since x ( K )  > x(GC). Thus, 

applying corollary 65 and lemma 62 we see that F ( H )  is a proper class. 

Thus, if H is a compact core, we know that IF(H)I = 1 or F ( H )  is a proper class 

unless every infinite component of H is an acyclic bipartite digraph. Furthermore, we 

know that if H is any digraph which is not finitely equivalent to some compact core, 

then F ( H )  is a proper class. 

Open Problem 67 Determine the size of F ( H )  when H is a compact core and every 

infinite component of H is an acyclic bipartite digraph. 

Conjecture 68 For every digraph G either IF(G)I = 1 or F (G)  is a proper class. 

5.4 Structures and Graphs 

The results in this chapter generalize nicely and in some cases nontrivially to structures 

and graphs. We will begin by re-examining theorem 52. 

Given a language L, we define CL to be the class of all compact structures on L, 

and we define EL to be the class of all homomorphic equivalence classes of compact 

structures on L. Our next result will show that for any language L, EL is a set. 

However, if L is large, EL will also be large. 

Theorem 52' Let L be a language. Then EL is a set and /ELI = 2max{N071LI}. 

Proof: As in the proof of theorem 52, we observe that if there are exactly K distinct 

finite structures on L, then there can be no more than 2" equivalence classes of 

compact structures on L. 
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Case 1: ILI 5 No 

In this case there are No distinct finite structures on L and so there are no more 

than 2 N ~  equivalence classes of compact structures on L. 

We must now show that there are at least this many inequivalent compact struc- 

tures on L. Choose some n > 1 such that LC contains an n-ary relation, and let Pn 

be the infinite mutually incompatible family of structures defined in lemma 7. We 

claim that for any nonempty subset G C P,, the structure Hg = UGEP G is compact. 

Let G be any structure and suppose that every finite substructure GI 2 G admits a 

homomorphism to Hg. Assume without loss of generality that G is connected and 

has no isolated vertices. 

If n = 2 then we prove the claim exactly as in theorem 52. Suppose n > 2. If 

G contains a vertex v and edges El, E2 such that v occurs in the ith coordinate of 

El and the jth coordinate of E2 with i # j and i 4 3, then the finite substructure 

of G induced by El, E2 admits no homomorphsim to Hg, a contradiction. Thus, any 

v E V(G) must either always occur in the ith coordinate of edges in which it occurs, or 

it must always appear in one of the first two coordinates of edges in which it occurs. 

The same restrictions apply to any substructure of G with no isolated vertices. Now 

for any substructure GI G, we define a digraph G', by V(Gk) = {v E V(G1) : 

v occurs in the first two coordinates of edges) and (u, v) E E(Gk) if and only if 

(u, v, wg, . . . , w,) E E(G1). We construct H2 from Hg similarly. Now G1 + Hg if and 

only if G', + H2. But H2 is a disjoint union of directed cycles, by construction of Pn7 

and so is compact by the argument given for the case n = 2. Hence, HG is compact. 

By lemma 3, the set {Hg : 6 2 P,) is a pairwise inequivalent family of structures. 

Case 2: 1L1 > No 

In this case there are exactly ILI finite structures on L. Hence there are no more 

than 21"' equivalence classes of compact structures on L. 

To show that there are at least this many equivalence classes, we will first construct 

a specific set G of finite strutures with = Ill.. For each R E L, define a finite 

structure GR consisting of a single R-edge on the appropriate number of vertices. Let 

9 = {GR : R E L). Now given a set X 2 G we define Gx to be the disjoint union 

of all GR, R E X. For any X C 6, Gx will be compact by theorem 49, as it will 
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contain only finitely many edges of each type. Also, distinct subsets X and Y of G 
yield inequivalent structures, since there will be some R E L such that Gx contains 

an R-edge and G y  does not, or vice versa. Thus we obtain 2ILI inequivalent compact 

structures on L. 

Similar arguments show that the number of equivalence classes of compact graphs 

is exactly 2'0. In this case we would use the infinite mutually incompatible family 23 

from lemma 8 in the construction. 

Lemmas 55 and 56 are true for arbitrary structures, and the proofs are identical 

to the proofs for digraphs. 

The notion of finite equivalence generalizes naturally to structures and graphs. 

However, when dealing with the class of structures over an infinite language we must 

take care to recall the distinction between finite structures and finitely induced struc- 

tures. We say that two structures are finitely equivalent when any finite substructure 

of one admits a homomorphism to the other. An analogous notion could be defined 

using finitely induced substructures, but we choose not to do so at this time. 

All of lemmas 57, 58, 59,61,62, 64, and corollaries 63 and 65 are true for structures 

and graphs, and the proofs are identical to those for digraphs. Note, however, that in 

the proof of lemma 63, the infinite component C may be finitely induced. 

If G and H are structures for a language L, and R E L, then it is clear from 

the definition of HG that HG contains an R-loop if and only if there is a mapping 

f : V ( G )  -+ V ( H )  which preserves all R-edges of G. As was the case for digraphs, 

HG o one if and only if G -, H .  

Lemma 66 relates to digraphs only. However, we can prove results in the same 

spirit for structures and graphs. 

Theorem 69 Let L be an infinite language, and let H be a finitely induced structure 

for L, where H has at least one R-edge for each R E L.  Then F ( H )  is a proper class. 

Proof: First observe that H is compact, since H is finitely induced, and so we may 

assume that H is a core. Thus, H is maximum in ( F ( H ) ,  +). We will show that the 

density condition of corollary 63 holds for F ( H ) .  
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We begin by defining a class of structures which will be useful in our proof. If 

R is an n-ary relation and K is a cardinal, we define TE by V(TF) = {a : a < K )  

and R(a l ,  a 2 , .  . . , a,) if and only if al < a 2  < . . . < a,. Such a structure is called a 

transitive k-tournament [lo]. 

Now let G be any structure in F(H) such that H f ,  G. There must be some 

component C of H such that C f i  G. Clearly C must contain edges of infinitely 

many types. We will now examine two cases. 

Case 1: For some R E L there is no R-edge-preserving mapping f : V(C) + V(T;) 

for any cardinal K. 

Let R be such a relation, and let n be the arity of R. Let K = IV(GH)I+. We 

construct a structure K with V(K) = {a : a < K )  as follows. Let R(K)  = R(T?), 

and for R' # R let Rf(K) = {(a, a,. . . , a) : a < K). Clearly C f ,  K because or our 

choice of R, and so H f ,  K U G. 

We claim K f ,  GH. If f : K + GH is a homomorphism, then since 1 K1 > IGH 1 
there must be some v E v(GH) and some infinite collection vl ,  v2,. . . f V(K) such 

that f (v;) = v for all i 2 1. We require only vl , v2, . . . v,. Assume that vl < v2 < 
. . . < v,. Now (v1,v2,. . . v,) is an R-edge of K ,  so v must have an R-loop. But v 

must also have an R'-loop for every R' # R, and so v has an R'-loop for every R' E L. 
But this can only occur if H + G, which is not the case. 

Thus, by lemma 64, there exists a structure K' such that G -, K' -, H and 

H f ,  K' f ,  G. 

Case 2: For every R E L there is an R-edge-preserving mapping f : V(C) + V(T:) 

for some cardinal K. 

In particular this implies that if (vl, v2,. . . , v,) is an R-edge of C, then all v; are 

distinct. Since V(C) is finite and C contains edges of infinitely many types, there 

must exist distinct u, v E V(C) and distinct R, S E L such that u and v both occur 

in some R-edge of C, and both occur in some S-edge of C. 
We now define K exactly as above, with K = IV(GH)I+, V(K) = {a : a < K ) ,  

R(K) = R(T:), and R'(K) = {(a, a,. . . , a) : a < K) for each R' # R. As in case 1 

we see that K f ,  GH. 
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We now claim C f ,  K. Suppose f : C -+ K is a homomorphism. All S-edges 

of K are S-loops, and u and v occur together in an S-edge of C, so we must have 

f (u )  = f ( v ) .  But all vertices are distinct within each R-edge of K ,  and u and v occur 

together in an R-edge of H, so f ( u )  # f ( v ) ,  a contradiction. Thus, H f ,  K U G. 

Again, by lemma 64, there exists a structure IS  such that G + K' H and 

H ft K' f ,  G. 

Thus, by corollary 63, we conclude that in both cases F ( H )  is a proper class. w 

We obtain a particulary nice result for undirected graphs. 

Theorem 70 If G is a graph then I.F(G)I = 1 or F (G)  is a proper class. 

Proof: If G is not finitely equivalent to a compact core, then F(G)  is a proper class, 

so let H be the compact core which is finitely equivalent to G. If x ( H )  I 2 then 

H retracts to a vertex or an edge, and so I.F(G)I = 1. Suppose that x ( H )  2 3 and 

1F(G) 1 > 1. Let G' be any graph in F(G)  such that GI + H but H f ,  GI. Then there 

is a component C of H such that C f ,  GI. Clearly x (C)  2 3, and so C contains an 

odd cycle. Let K be a graph with og(K) > og(C) and x ( K )  > X ( ~ l H ) .  The existence 

of such is shown when x(GrH) is finite in [22, 51, 581 and when x(GtH) is infinite in 

[23, 251. Then C ft K U G', so H + K U GI. Furthermore, K + GIH. By lemma 64 

and corollary 63 we see that 3 ( H )  is a proper class. w 



Chapter 6 

List-Homomorphisms 

Definitions 

In this chapter we will define and examine homomorphisms in which the set of possible 

images of a vertex is subject to various types of constraints. The reader may recall 

that in chapter 4 we defined the notion of an 1-list-homomorphism. We begin this 

chapter by reiterating the definition of a list-homomorphism, along with some new 

related notions. 

Let G and H be digraphs. Let I : V(G) + P(V(H))  be a mapping from V(G) 

to the power set of V(H), called a list-assignment for G (with respect to H).  An 

1-list-homomorphism f : G + H is a homomorphism from G to H such that for 

each v E V(G) we have f (v)  E l(v). We will often wish to apply the same lists 

to subdigraphs G' of G. By convention we will say that f : GI + H is an I-list- 

homomorphism if f is an I~v(G~~-list-homomorphism. We say that a digraph H is 

list-compact with respect to a digraph G if for every list-assignment I for G with 

respect to H, either there exists an I-list-homomorphism f : G -, H or there is a 

finite subdigraph GI 2 G for which no I-list-homomorphism f : GI + H exists. If 

H is list-compact with respect to every G with [GI-< a then H is a-list-compact. If 

H is a-list-compact for every ordinal a then we say H is list-compact. A certificate 

of non-list-compactness for a digraph H is a digraph G and a list assignment 1 for G 
where every finite subdigraph of G admits an 1-list-homomorphism to H but G does 
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not. 

6.2 List-Compactness 

Our first major result in this chapter will show that essentially only finite digraphs 

are list-compact. Later on we will place restrictions on the types of list-assignments 

allowed and obtain richer classes of compact digraphs. 

Recall once again the equivalence relation r defined on the vertices of a digraph by 

u v if and only if u and v have the same in-neighbourhoods and out-neighbourhoods. 

We may simplify our later results by considering only digraphs containing no pair of 

equivalent vertices. Our first lemma shows that this causes no loss of generality. Let 

G and H be digraphs and let 1 be a list-assignment for G with respect to H. We 

define the reduced digraph HT as in definition 39 in chapter 4. Let h be the canonical 

retraction from H to HT, so if w E V(HT) and u, v E V(H) are pre-images of w under 

h, then u r v. We will define a list-assignment I' for G with respect to N'. For each 

v E V(G) let P(v) = {h(w) : w E l(v)). Note that the definition of lT(v) involves only 

l(v) and h, and is independent of the other vertices of G and their lists. So if GI is 

a subdigraph of G, and ll(v) = l(v) for all v E V(G1), then (I1)' = lTlv(~l) .  Thus, we 

can regard 1' as a list-assignment for GI without ambiguity. 

It will be useful for later results to note that when we define 1' as above, then 

lT(v) = V(HT) whenever l(v) = V(H); and lT(v) is finite whenever l(v) is finite. 

Lemma 71 Let G and H be digraphs and let 1 be a list-assignment for G. Then G 

admits an 1-list-homomorphism to H if and only if G admits an 1'-list-homomorphism 

to the reduced digraph HT. 

Proof: If f : G -, H is an 1-list-homomorphism and h is the canonical retraction 

from H to HT, then clearly h o f is an 1'-list-homomorphism from G to N'. 

On the other hand, suppose f : G + HT is an 1'-list-homomorphism. We will 

define a new mapping g : G + H. For each v E V(G) we know f (v) E IT(v), and 

any element w E lT(v) must have some pre-image under h in l(v). Choose g(v) E l(v) 

to be any vertex such that h(g(v)) = f (v). It remains only to show that g is a 
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homomorphism. If uv E E (G), then f (u) f (v )  E E (H'). Since g(u) and g(v) are 

pre-images of f ( u )  and f (v),  respectively, under h, then it must be the case that 

g(u)g(v) E E (H), since g(u) E f (u) and g(v) f (v) by definition of h. w 

Corollary 72 A digraph H is list-compact if and only if its reduced digraph HT is 

list-compact. 

Proof: If HT is not list-compact then let G with list-assignment 1 be a certificate of 

non-list-compactness for HT. Note that 1 is also a list-assignment for G with respect 

to H ,  since HT is an induced subdigraph of H. Clearly G with I is also a certificate 

of non-list-compactness for H. 

If H is not list-compact then let G with list-assignment 1 be a certificate of non- 

list-compactness for H .  We claim that G with list-assignment IT is a certificate of 

non-list-compactness for HT. By lemma 71 there is no IT-list-homomorphism from G 

to HT. However, if GI is a finite subdigraph of G, then there is an 1-list-homomorphism 

from GI to H, and so by lemma 71 there is an IT-list-homomorphism from G' to H. w 

Given any digraph H, the reduced digraph HT contains no pair of equivalent 

vertices, so this corollary shows that for the purposes of characterizing list-compact 

digraphs it is sufficient to consider reduced digraphs. The following set-theoretic 

lemma, due to Aharoni [I], will help us exploit this fact. The symbol C denotes 

proper containment. 

Lemma 73 Let A = {A; : i 2 0) be a collection of countably many distinct sets. 

Then there exists a subcollection of sets {B; : i 2 0) A such that either 

BO C (Bo U B1) C (Bo U B1 U B2) U . .  ., or 

Proof: Let A = Uzo AAi. We may assume without loss of generality that ngo A; = 8, 
since we may ignore any vertices which occur in all of the A;. We may also assume 

that there do not exist any x, y E A such that x E A; if and only if y E A, for all 

i 2 0. If such vertices do exist, then we may define an equivalence relation - on A by 
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x y if x E A; exactly when y E A;. As usual [XI will denote the equivalence class 

containing x. We may now construct a new family of sets A' = {A: : i 2 0) by taking 

A: = ([x] : [x] c A;}. Now clearly a subcollection {B; : i > 0) of A will satisfy one of 

the above nesting properties if and only if the corresponding subcollection {B;' : i 2 0) 

of A' satisfies the same property. And clearly no two distinct equivalence classes [XI 
and [y] will occur in exactly the same sets A:. 

Now let S be any subset of A, and let us first assume that the set {S n A; : i > 0) 
is finite, that is, S n A; takes on only finitely many (say n) distinct values when all 

i > 0 are considered. 

We define an equivalence relation on S by x - y whenever x E S n A; if and only 

if y E S r) A; for all i 2 0. If x and y are distinct elements of S and x - y, then 

x 6 A; if and only if y E A; for all i 2 0, but by assumption this cannot occur. Thus 

x $ y for all distinct x, y E S .  But there are only n distinct values of S n A;, so S 

has at most 2, equivalence classes under -, and so S must be finite. 

Thus, if S is infinite, S n A; must take on infinitely many distinct values. We now 

examine two cases. 

Case 1: There exists an infinite set S C A such that for all i > 0 we have S - ( S n  A;) 

finite or S n A; = 0. 

We know that S n A; takes on infinitely many distinct values, so there must be 

infinitely many i > 0 such that S n A; # 0. In these cases S - (S fl A;) must be 

finite. This implies that IS - ( S  n A;) 1 must take on arbitrarily large finite values. 

Thus, we choose some i > 0 such that S - ( S  n Ai) is finite, and let Bo = A;. Now 

inductively, if we have defined Bo, B1,. . . , B,, we can find some i 2 0 such that 

IS - (S n A;)I > IS - n?==,(S n Aj)l. Let Bn+l = A;. 

Thus, ng0(S n Bi) 3 n:Li(S n B;), and SO n:=oB; 3 n:ri B;. 

Case 2: For every infinite set S C A there exists an i 2 0 such that S - ( S  n A;) is 

infinite and S n A; # 0. 

Let S = A and choose some i 2 0 satisfying the above condition. Let Bo = A;. 

Then A - Bo = A - (A n Bo) = S - ( S  n A;) so A - Bo is infinite. 
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Now suppose we have defined Bo, B1, . . . , B, in such a way that A - UrZ0 B; is 

infinite. Let S = A - U:=oBB;. Then S is an infinite subset of A, so we may find 

an i 2 0 such that S - (S n A;) is infinite and S n A; # 8. Let Bn+l = A;. Then 

A - UZ~B; is infinite since it is equal to S - (S n A;). Also, since B,+l n S # 0 we 

have ur=oBj c u:=+: B;. 

Before proceeding with our first major result we had best explain the conventions 

followed by the diagrams in this chapter. We will often want to specify that certain 

edges are present in a digraph and certain edges are not present, while still other edges 

may or may not be present. When we say that a diagram is a schema for a digraph, 

we mean that wherever there is a solid arrow in the diagram there is an edge present 

in the digraph, wherever there is a dashed arrow in the diagram the corresponding 

edge is absent in the digraph, and if no solid or dashed arrow is present, then the 

corresponding edge may or may not be present in the digraph. Note that an arrow 

indicating the presence or absence of an edge uv has no bearing on the existence of 

the edge vu. 

At this point we will define some digraphs which will appear often in the remainder 

of this chapter. Note that the edge-sets of these digraphs are not completely specified 

in most of the following definitions, so that many non-isomorphic digraphs will satisfy 

each of the definitions. In particular, we do not specify whether any or all of the 

vertices in these digraphs have loops. 

A complete digraph G is one in which uv E E(G) for every distinct u, v E V(G). 

A transitive tournament T is a digraph with a linearly ordered vertex-set where 

for all distinct u, v E V ( T )  we have uv E E(T) if and only if u < v. 

An increasing digraph G is a digraph whose vertices can be partitioned into two 

countably infinite sets U(G) = {ul, ua, . . .) and L(G) = {vl, vz, . . .) such that for each 

i 2 1 we have u;vj E E(G) for all j 5 i ,  but uivj $ E(G) for any j > i. Figure 6.1 is 

a schema for an increasing digraph. 
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Figure 6.1 

A decreasing digraph G is a digraph whose vertices can be partitioned into two 

countably infinite sets U(G) = {ul, u2,. . .) and L(G) = {vl, 02,. . .) such that for each 

i 2 1 we have u;vj f E(G) for all j 2 i, but uivj # E(G) for any j < i. Figure 6.2 is 

a schema for a decreasing digraph. 

Figure 6.2 

A cocktail-party digraph G is a digraph whose vertices can be partitioned into two 

countably infinite sets U(G) = {ul, u2, . . .) and L(G) = {vl, v2, . . .) such that for 

each i 2 1 we have uivj E E(G) if and only if i # j. Figure 6.3 is a schema for a 

cocktail-party digraph. 
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v 2  v3 

Figure 6.3 

A matching digraph G is a digraph whose vertices may be partitioned into two 

countably infinite sets U(G) = {ul, 212,. . .) and L(G) = {vl, up,. . .) so that uivj E 

E(G) if and only if i = j. Figure 6.4 is a schema for a matching digraph. 

'v2 v3 

Figure 6.4 

An independent digraph G is a digraph in which u 

that we still allow loops. 

:v 6 E(G) whenever u # v. Note 

A star digraph is a countably infinite digraph G whose vertices may be labelled 

{vo, vl, . . .) in such a way that either E(G) = {vov; : i 2 1) (an out-directed star) or 

E(G) = {viva : i 1 1) (an in-directed star). The vertex vo is called the center of G. 

Figure 6.5 shows an out-directed star. Note that figure 6.5 is not a schema, i.e., it 

contains only the edges which are marked. 
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Figure 6.5 

Recall that if vv 4 E(G) for all v E V(G) then G is called loopless, and if 

vv E E(G) for all v E V(G) then G is called a digraph with loops. 

Most of the proofs in the remainder of this chapter will work by demonstrating the 

existence of certain induced subdigraphs in a digraph with some specified property. 

Our next lemma gives a list of subdigraphs, at least one of which must occur in 

any infinite reduced digraph. This will allow us to give short proofs of two nice 

characterizations of list-compact digraphs. 

Lemma 74 Let H be an infinite reduced digraph. Then H contains at least one of 

the following as an induced subdigraph: 

a loopless infinite complete digraph, 

an increasing digraph, 

a decreasing digraph, 

a cocktail-party digraph, 

a matching digraph, 

an infinite independent digraph with loops. 

Proof: Let H be an infinite reduced digraph, so no two vertices in V(H) are equiv- 

alent. Let S be any countable subset of V(H), and denote the members of S by 

the positive integers {1,2,3, . . .). We will partition the unordered pairs { i ,  j), where 
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i, j E S and i < j, into four parts, PI, P2, P3, P4, with the intention of applying 

Ramsey's theorem. The parts are defined as follows: 

PI = {{i, j) : i j  E E(H) and j i  E E(H))  

P 2  = {{i, j) : i j  4 E(H) and j i  E E(H)) 

P3 = {{i, j) : i j  E E(H) and j i  4 E(H))  

P4 = {{i, j) : i j  4 E(H) and j i  4 E(H)) .  

By Ramsey's theorem S contains an infinite subset R such that all pairs {i, j) 

with i, j E R and i < j are in the same part Pi. We now consider the four cases. In 

each case we will show that H contains one of the required subdigraphs. In some cases 

we will do so directly, while in other cases we will show that R contains an infinite 

subset Q satisfying the following property: Given any two vertices u, v E Q, we have 

N+(u) - Q # N+ (v) - Q or N-(u) - Q # N- (v) - Q. In other words, every two 

vertices in Q have distinct neighbourhoods in V(H) - Q. We will subsequently show 

that such a set allows us to find one of the required subdigraphs in H. 

Case 1: All pairs of elements of R are in PI (R induces a complete digraph). 

If R contains infinitely many vertices with loops, say al, a2,. . ., then we proceed as 

follows: let Q = {al, a,, . . .). Then N+(ai)nQ = N-(a;) n Q  = Q for all i > 0. But no 

two ai are equivalent, so for all i, j > 0 with i # j, we have N+(ai) - Q # N+(aj) - Q 
or N-(ai) - Q # N-(aj) - Q. 

On the other hand, if R contains infinitely many vertices without loops, then these 

vertices induce a loopless infinite complete digraph. 

Case 2: All pairs of elements of R are in P2 (R induces a transitive tournament). 

Label the elements of R by al, a2, . . ., where for i # j, aiaj E E (H) if and only if 

i < j. A particular a; may or may not have a loop. Let Q = {al, a3, as,. . .). Then 

for all n > 0 we have a2, f N - ( U ~ , - ~ )  but a2, 4 N-(U~,-~) for any m > n. It is easy 

to verify that Q now satisfies the required properties. 

Case 3: All pairs of elements of R are in P3 (R induces a transitive tournament). 
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We define Q exactly as above. Now for all n > 0 we have a2, E N+(a2,_1) but 

az, $! N + ( U ~ , - ~ )  for any m > n. Again Q satisfies the required properties. 

Case 4: All pairs of elements of R  are in P4 ( R  is an independent set). 

If there are infinitely many vertices in R without loops, then let Q = {al, a2,. . .) 
be such a set. Now N+(a;) n Q = N-(a;) n Q = 0 for all i > 0. But no two a; 

are equivalent, so for all i, j > 0 with i # j, we have N+(a;) - Q # N+(aj) - Q or 

N-(ai) - Q # N-(aj) - Q. 

If there are infinitely many vertices in R with loops, then these vertices induce an 

infinite independent digraph with loops. 

We now use the set Q to show that H contains one of the required subdigraphs. 

Recall that every two vertices in Q have distinct in-neighbourhoods or out-neigh- 

bourhoods in V(H) - Q. Clearly there must exist an infinite subset P of Q such that 

N+(u) - Q # NS(v) - Q for all u, v E P, or N-(u) - Q # N-(v) - Q for all u, v f P. 

Let us assume the former case holds, as the latter case is essentially identical. 

For v E P ,  let us define A(v) = N+(v) - P .  The sets N+(v) - Q with v E P are 

distinct, and P Q, so the sets A(v) with v E P are distinct. We may therefore apply 

lemma 73 to obtain a set {uo, ul , . . .) P such that one of the following formulas 

holds: 

We will now define a set of vertices P' = {vl, ~ 2 , .  . .) in one of two ways. Note 

that we have intentionally indexed the u; starting at  0 and the v; at 1. The reason 

for this is that A(uo) may be the empty set in 6.1, or it may contain all of V(H) - P 

in 6.2. In either of these special cases our definition of vo would fail. 

If 6.1 holds then for i 2 1 let v; E V(H) - P be a vertex such that uivi E E(H) 

but for each j < i we have ujv; $! E (H). Formula 6.1 guarantees the existence of such 

a vertex. 
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Figure 6.6 

If 6.1 does not hold, then 6.2 holds. So for i 2 1 let v; E V ( H )  - P be a vertex such 

that uivi # E ( H )  but for each j  < i we have u p ;  E E ( H ) .  Formula 6.2 guarantees 

the existence of such a vertex. 

"2 "3 

Figure 6.7 

We now prepare for another application of Ramsey's theorem. We partition the 

unordered pairs {i, j ) ,  where i and j  are positive integers with i < j, into parts 

PI, P2, P3, P4 according to the following rules: 

PI = {{i, j )  : u;vj E E ( H )  and ujv; E E ( H ) )  

P2 = {{i, j )  : U;Vj @ E ( H )  and ujvi E E ( H ) )  

P3 = {{i, j )  : u;vj E E ( H )  and ujvi $ E ( H ) )  

P* = {{i, j )  : U i V j  $! E ( H )  and.ujv; # E ( H ) ) .  

By Ramsey's theorem, there must be an infinite set T of positive integers such 

that all pairs of elements of T are in the same part P;. We will now examine the 

subdigraph of H  induced by the vertices u; and v;, for i E T. Let us write T as 
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{a l ,  az, . . .) and define x; = uai and y; = vai for each i 2 1. We find ourselves once 

again with four cases. 

Case 1: All pairs of elements of T are in PI. 

Then 6.1 cannot hold: Look at any i ,  j E T with i < j. By definition of the uk 

and vk we have uivj $! E ( H ) .  This contradicts the definition of PI. 

Thus it must be the case that 6.2 holds. Then x;y; $! E ( H )  for all i 2 1 but 

x;yj E E ( H )  whenever i # j and i ,  j 2 1. So the vertices xk and yk, k 2 1, induce a 

cocktail-party digraph. 

Case 2: All pairs of elements of T are in Pz. 
Then 6.2 cannot hold, since in that case x; y j  E E ( H )  whenever i < j, contradicting 

the definition of P2, and so 6.1 must hold. In this case the vertices xk and yk, k 2 1, 

induce an increasing digraph. 

Case 3: All pairs of elements of T are in P3. 

Then 6.1 cannot hold, for then x;yj $! E ( H )  whenever i < j, which contradicts the 

definition of P3. So 6.2 must hold, and the vertices xk, k > 1 and y k ,  k > 2, induce a 

decreasing digraph. 

Case 4: All pairs of elements of T are in P4. 

Once again we see that 6.2 cannot hold, since then x;yj E E ( H )  whenever i < j, 
contradicting the definition of Pq, and so 6.1 must hold. The vertices xk and yk, k 2 1, 

induce a matching digraph in this case. 

Thus, in each case H contains one of the required subdigraphs, and so the lemma 

is proved. 

Observe that we have actually proved the following slightly stronger assertion, 

which will be more useful for later results. 

Corollary 75 Let H be an infinite reduced digraph and let S be a countable subset of 

V ( H ) .  Then H contains at least one of the followfng as an induced subdigraph: 

0 a Eoopless infinite complete digraph G with V ( G )  C S ,  

0 an increasing digraph G with U(G) S or L (G)  C S ,  
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0 a decreasing digraph G with U(G) C_ S or L(G) C_ S,  

0 a cocktail-party digraph G with U(G) C_ S or L(G) c S, 

0 a matching digraph G with U(G) C S or L(G) C_ S, 

0 an infinite independent digraph G with loops and with V(G) C_ S .  

We now use lemma 74 to prove the following characterization of list-compact 

digraphs. 

Theorem 76 Let H be a reduced digraph. Then H is list-compact if and only if H 

is finite. 

Proof: If H is finite, then lemma 47 guarantees that H is list-compact. 

On the other hand, suppose H is not finite. Then H contains a loopless infi- 

nite complete digraph, an increasing digraph, a decreasing digraph, a cocktail-party 

digraph, a matching digraph, or an infinite independent digraph with loops as an 

induced subdigraph. 

Suppose S C V(H) is a countable set of vertices which induces a loopless infi- 

nite complete digraph. Let S = {al, an, . . .), and define a digraph G with V(G) = 

{vo, v ~ , .  . .), and uv E E(G) for all distinct u,v E V(G). Define a list-assignment 1 

for G by l(vo) = {al, a2,. . .) and Z(vi) = a; for all i > 1. Now there can be no Z-list- 

homomorphism f : G + H,  since f (vo) = a; for some i 2 1, but also f (v;) = a;, and 

a;a; $! E (H) so f does not preserve the edge vov;. However, if Gt is a finite subdigraph 

of G, then we may define an 1-list-homomorphism f : Gt + H by f (v;) = a;, for each 

v; E V(Gt) with i 2 1; and if vo E V(Gt) we define f(vo) = a j  for some j such that 

v j  $! V(Gt). Thus G with 1 is a certificate of non-list-compactness for H. 

Suppose H contains an increasing digraph as shown in the schema in figure 6.8 

(a). We define an out-directed star digraph G with V(G) = {wo, wl, w2,. . .) and 

E(G) = {wow; : i 2 1). We define a list-assignment 1 for G by ~ ( w o )  = {xi : i > 1) 
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and l(w;) = y; for each i > 1. The digraph G is shown in figure 6.8 (b). It is a simple 

matter to verify that G with 1 is a certificate of non-list-compactness for H. 

Figure 6.8 

Suppose H contains a decreasing digraph as shown in the schema in figure 6.9 (a). 

We define an in-directed star digraph G (figure 6.9 (b)) with V(G) = {wo, wl, w2,. . .) 
and E(G) = {w;wo : i 2 1). We define a list-assignment 1 for G by l(wo) = {yi : i 2 1) 

and l(w;) = x; for each i > 1. As in the previous case we see that G with 1 is a 

certificate of non-list-compactness for H. 

w1:{+1) w2:{22) w3:{x3) w4:{24) 

... G : 

Y1 Y2 513 wo:{y1, Y2,. . .) 

(4 
Figure 6.9 

('9 

Suppose H contains a cocktail-party digraph as shown in the schema in figure 

6.10 (a). We define an out-directed star digraph G (figure 6.10 (b)) with V(G) = 

{w0, WI, ~ 2 , .  . .) and E(G) = {wow; : i 2 1). We define a list-assignment 1 for G by 

l(wo) = {xi : i > 1) and l(wi) = yi for each i 2 1. Clearly G with 1 is a certificate of 

non-list-compactness for H. 
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Figure 6.10 

Suppose H contains a matching digraph as shown in the schema in figure 6.11 

(a). In this case we define a digraph G (figure 6.1 1 (b)) by V ( G )  = {w17 wg, . . .) and 

E(G) = { w ~ ~ - ~ w ~ ~  : i 2 1) U { w ~ ~ + ~ w ~ ~  : i 2 1). We define a list-assignment 1 for 

G by l(w2;) = {yi7 yi+17.. .) and Z ( W ~ ; - ~ )  = {xi, x;+l,. . .) for each i 2 1. The reader 

may again observe that G with I is a certificate of non-list-compactness for H. 

Figure 6.11 

If there is an infinite independent digraph with loops in H ,  then let S = {al7 a2, . . .) 
induce such a digraph. We define a digraph G by V(G) = {v17 v2,. . .) and E(G) = 

{V;V;+~ : i 2 I) ,  i.e. G is the Ray. We define a list-assignment 1 for G by l(v;) = 

{a;, a;+l, a;+2,. . .). A moments reflection will convince the reader that G with 1 is a 

certificate of non-list-compactness for H. 

We have seen that in all possible cases H is not list-compact, and so our result is 

proved. 

We may restate this result as follows. 
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Corollary 77 A digraph H is list-compact if and only if its reduced digraph HT is 

finite. w 

The astute reader may have observed that all of the certificates of non-list-com- 

pactness in the above proof were countable, so we have in fact proved the stronger 

claim that if HT is not finite then H is not No-list-compact. 

6.3 Restricted Lists 

We may obtain more interesting characterizations by restricting the types of list- 

assignments allowed. Let P be some property that applies to list-assignments. For 

example, if 1 : V(G) -+ P(V(H)) is a list-assignment, we might say that P(1) is true if 

l(v) = V(H) for every v E V(G). We will say that a digraph H is P-list-compact if for 

every digraph G and every list-assignment 1 for G with respect to H where P(1) holds, 

either there is an I-list-homomorphism from G to H, or there is a finite subdigraph 

G' C G for which no such homomorphism exists. 

If P is defined as in the above example, then clearly the class of P-list-compact 

digraphs is exactly the class of compact digraphs. Our next result is straightforward. 

We use the standard notation dom(1) to indicate the domain of the function 1. 

Theorem 78 Let A(1) be the property that l(v) is finite for every v E dom(1). Then 

every digraph H is A-list-compact. 

Proof: Let H be given, and let G be any digraph. Let 1 be any list-assignment for G 

such that l(v) is finite for each v E V(G). Also, assume that every finite subdigraph 

of G admits an I-list-homomorphism to H. Then let I, be the discrete topology on 

I(v). Lemma 47 guarantees the existence of an 1-list-homomorphism from G to H. w 

In a moment we will examine some less trivial types of lists. However, first we will 

prove a useful technical lemma. It shows that for our purposes, any finite list can be 

assumed to be a singleton list. 
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Lemma 79 Let G and H be digraphs, and 1 a list-assignment for G with respect to 

H.  If G with 1 is a certificate of non-compactness for H ,  then there exists a list- 

assignment 1' for G with respect to H such that for all v E V(G) 

if l(v) is finite then ll(v) is a singleton, 

if l(v) is infinite then ll(v) = I(v), 

and such that G with 1' is also a certificate of non-compactness for H .  

Proof: Let G, H ,  and 1 be given. It suffices to show that there exists a list-assignment 

1' such that 1' agrees with 1 when l(v) is infinite, ll(v) is a single element of l(v) when 

l(v) is finite, and for each finite subdigraph G' C G there is an 1'-list-homomorphism 

from G' to H. Clearly in this case there can be no 1'-list-homomorphism from G to 

H,  and so G with 1' will also be a certificate of non-list-compactness for H .  

We will again apply Tychonoff's theorem. Let S = {v E V(G) : I(v) is finite ). 

For each v E S let Tv be the discrete topology on l(v). For each v E S the set l(v) is 

finite, so Tv is a compact topology. Thus, the product topology 7 = nvEs T v ,  defined 

on S = nvEs l(v), is compact. 

There is a natural correspondence between elements of S and mappings f : S + H 

which satisfy f (v) E l(v) for all v E S.  Hence, we will consider each element of S to 

be such a mapping. 

Let G' be a finite subdigraph of G. We define a set C(G1) C S to be the set of all 

mappings f E S such that f can be extended to an I-list-homomorphism from 

G' to H.  

The set C(G1) is non-empty since by assumption there is an 1-list-homomorphism 

g : G' + H, and so any f E S satisfying f l ( G t n S )  = gI(GlnS) will be in C(G1). 

Furthermore, we claim that the set C(G1) is closed. For any v E S, each subset of 

l(v) is closed in the topology I,, since l(v) is finite. Also, the set S n V(G1) is finite, 

so the set { f  lSnV(Gl) : f E C(G1)) is closed in the topology nvEsnv(Gl) T v -  The set 

{ f ~ S - V ( G ~ )  : f E C(G1)} is simply nvEs-v(Gl) l(v). But this is the definition of a closed 

set in the product topology, so our claim is proved. 
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If GI, . . . , G, are finite subdigraphs of G, then we know that C(G1) n . . . n C(G,) is 

nonempty, since clearly GIU.. .UG, is finite and C(G1u.. .uG,) E C(G1)n.. .nC(G,). 

We may therefore conclude, by compactness, that the intersection of C(G1) over all 

finite subdigraphs G' 5 G is nonempty. So choose f E nGlcG - C(G1). Then f has the 

property that given any finite subdigraph G' G, there is an 1-list-homomorphism 

g : GI + H such that f (v) = g(v) for all v E S n G'. 

Thus, we define 1' by lf(v) = {f(v)) for each v E S, and I1(v) = l(v) for v $! S. 

By the above arguments it is clear that every finite subdigraph of G admits an 1'-list- 

homomorphism to H, and so we are done. 

This result will simplify our subsequent proofs, since singleton lists are much easier 

to work with than other finite lists. It also yields another proof of theorem 78, since 

obviously every digraph is list-compact when we require all lists to be singletons. 

Our next result deals with list-assignments where 'almost all' of the lists are finite. 

Specifically, we define a property B for lists where B(1) is true of the list-assignment 

1 if and only if l(v) is finite for all but finitely many of the vertices in dom(l), i. e. 

only finitely many vertices are assigned infinite lists. The reader may observe that 

most of the certificates of non-list-compactness used in the various cases in the proof 

of theorem 76 used list-assignments which did in fact satisfy the property B. In 

particular, we saw that whenever a digraph H contains a loopless complete digraph, 

an increasing digraph, a decreasing digraph or a cocktail-party digraph as an induced 

subdigraph, then there is a digraph G and a list-assignment 1 for G with respect to 

H such that B(1) holds and G with 1 is a certificate of non-list-compactness for H. 

Our next theorem shows that it is exactly when H contains one of these digraphs 

as an induced subdigraph that H fails to be B-list-compact, and so we will obtain a 

forbidden-subdigraph type characterization of B-list-compact digraphs. 

We first prove a lemma which will simplify our proof, and is also of some interest 

itself. 

Lemma 80 If a digraph H is not B-list-compact then there is a certificate of non- 

list-compactness G with list-assignment 1 such that G is a star with center v,  l(v) is 

countably infinite, and l(w) is a singleton for each w # v.  
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Proof: Suppose that H is not B-list-compact. Applying lemma 79 we may obtain 

a certificate of non-list-compactness for H ,  call it G with list-assignment I, where all 

but finitely many of the vertices of G have singleton lists, and the rest have infinite 

lists. Let K = IGI and let n = I{v E V(G) : I(v) is infinite )I. We choose G so that 

K is minimum, and amongst those digraphs G of minimum cardinality we choose G 

and I so that n is minimized. We will refer to the vertices which are assigned infinite 

lists as free vertices, and to those which are assigned singleton lists as fixed vertices. 

We begin by labelling the vertices of G with the ordinals smaller than K,  and we 

require that the first n ordinals be used to label the free vertices. We will denote by 

G, the subdigraph of G induced by (0, 1, . . . , a). Then for each a < K there exists an 

1-list-homomorphism f, : G, + H. Of course if v is a fixed vertex then f,(v) = fp(v) 

for all a ,  ,b < K. However, if v is a free vertex, then v must take on many different 

values. We will formalize this idea now. 

For each a < K,  let F, = {f : f is an 1-list-homomorphism from G, to H). Note 

that if p < a and f E Fa then f l G B  E Fp. Let v be a particular free vertex of 

G. We claim that if I is any collection of ordinals smaller than K with UmEI a = K ,  

then there can be no collection of I-list-homomorphisms { fa),EI where f, E F, and 

f,(v) = fp(v) for all a, p E I. For if such a sequence did exist, then for each a < K 

there would be an I-list-homomorphism g, : G, + H where g,(v) = gp(v) for all 

a, ,b < K. But then by replacing I(v) by {g,(v)) for some a < K,  we would obtain a 

certificate of non-list-compactness for H with fewer free vertices. Hence, for any free 

vertex v E V(G), any a < K and any f, E F,, there exists a ,b < K such that for all 

y with ,b 5 7 < K and all f, E F, we have f,(v) # fa (v). 

Now let a be any ordinal with n 5 a < K (i.e. include all free vertices) and let 

f, be any I-list-homomorphism from G, to H. For each free vertex vi, 0 5 i < n, we 

may find an ordinal a; < K such that for all ordinals y with a; 5 y < K,  there is no 

f-, E F, with f, (v;) = f,(vi). If we let p = u::: a;, then ,G' < K,  and for all ordinals 
y with ,f? 5 7 < K there is no f, E F, such that f,(-v;) = f,(v;) for any i < n. 

Thus, we may find a countable sequence all 0 2 ,  . . . of ordinals with n < a; < K 

and a sequence of I-list-homomorphisms fa, E Fa, such that whenever i < j there is 

no 1-list-homomorphism in Fa, which agrees with fai on any free vertex. 
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Now let i and j be arbitrary positive integers with i < j. We will find spe- 

cific vertices which prevent the f E Fa, from agreeing with hi on the free ver- 

tices of G. There must exist some free vertex v;j and some fixed vertex w;,j E Gaj 

such that vijwij E E(G) (or w;,jv;,j E E(G)), but fai ( ~ ; , j ) f ~ ~ ( ~ i , j )  # E(H).  (or 
fa, (w; ,~)  fai ( ~ i , ~ )  # E(H)).  If there were no such v;,j and w;j then there would be 

a homomorphism g E Fa, such that glGai = fa,. But by definition of fa, no such 

homomorphism exists. 

We will now apply Ramsey7s theorem to find a single free vertex of G which we 

will use to construct a new certificate of non-compactness for H. We will colour 

the unordered pairs of natural numbers {{i, j) : 1 5 i < j) .  For each free vertex 

v E V(G) we will define two colours v+ and v-. Since G contains only finitely many 

free vertices we will obtain only finitely many colours. To colour the pair {i, j), choose 

any free vertex v;,j and any fixed vertex wij  satisfying the conditions given above. If 

vi,jwi,j E V(G) but fai(v;,j)faj(wij) 6 E(H) then {i, j) gets colour v&. Otherwise it 

must be the case that w;$v;,j E E(G), but faj (w;,~) fai(vi,j) # E(H), and we colour 

it with vztj. Now by Ramsey7s theorem there must be a countably infinite set A of 

positive integers such that the colour of {i, j) is the same for all i, j E A. 

Suppose first that for each i, j E A, the colour of {i, j) is v+ for some free vertex 

v of G. 

We define an out-directed star S with V(S) = {so) U isi j  : 1 5 i < j) and 

E(S) = {sos; : i 1 1). We define a list-assignment 1' for S with respect to H by 

ll(so) = { fai(v) : i E A) and lt(s;,j) = {fa,(wij)) for all 1 5 i < j. 
Now given any finite subdigraph S' of S, we may choose some k 2 1 large 

enough so that wi,j E V(Gak) whenever si,j E V(S1). Thus there is a natural 1'-list- 

homomorphism g : St -, H given by g(so) = fak(v) and g(silj) = fak(wij). However, 

for each k 2 1 there exists an i and j with 1 5 i < j such that fmk(v) fak(wi,j) 4 E(H), 

and so there is no k such that fak(v)fa,(wi,j) E E(H) for all 1 5 i < j, and hence 

there is no 1'-list-homomorphism from S to H .  Thus, S with 1' is a certificate of 

non-list-compactness for H. 

In the case where the colour of {i, j )  is v- for each i, j E A, the proof is identical 
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to the previous case except that S will be an in-directed star. rn 

Theorem 81 Let B be as defined above. A digraph H is B-list-compact i f  and only 

if it contains none of the following as an induced subdigraph: 

an infinite loopless complete digraph, 

an increasing digraph, 

a decreasing digraph, 

0 an infinite cocktail-party digraph. 

Proof: Suppose that H contains one of the above as an induced subdigraph. We 

have already seen certificates of non-list-compactness for each of these cases, using 

list-assignments satisfying B, in the proof of theorem 76. Thus H is not B-list- 

compact. 

On the other hand, suppose that H is not B-list-compact. We must show that H 

contains one of the above digraphs as an induced subdigraph. Applying lemma 80 we 

may obtain a certificate of non-list-compactness for H ,  call it G with list-assignment 

I ,  where G is a star and l ( v )  is a singleton for all v E V(G)  except the center of G. 

When l ( v )  is a singleton we will abuse notation and consider l ( v )  to be the vertex 

which is the unique element of l ( v ) .  

Case A: G is an out-directed star. 

We begin by labelling the vertices of G as {so,  s l y . .  .) so that so is the center of 

G.  We denote by Gn the subdigraph of G induced by {so,  s l ,  . . . , s,). 

For each n 2 1, let Fn = { v  E l (so) : there exists an 1-list-homomorphism f : 

G,  -, H with f ( so )  = v ) .  Clearly Fn+l E Fn for all n 2 0,  and n,"==, F, = 0, but 

all Fn are nonempty. Thus, we may find an increasing sequence of positive integers 

a1 , az, . . . such that for each i 2 1 there exists a vertex v; such that v; E Fa, but 

v; Fa, for any j > i. 
Now for each i, j > 1 with i < j ,  there must be a fixed vertex sk with a; < k 5 aj 

such that vil(sk)  4 E ( H )  but v j l ( s k )  E E ( H ) ,  since otherwise v; E Faj. We will 
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denote the vertex s k  as W ; j  and the vertex l(sk) as z;,j. Observe that if i < j then 

vjzk,; E E(H) for any k < i. 
Let X = {v; : i > 1) and Y = {zij : 1 5 i < j). Note that X and Y are not 

necessarily disjoint. We now restrict our attention to the subdigraph Ht of H induced 

by X U Y. Note that the v; all have distinct out-neighbourhoods in Y, and so the 

v; are all distinct. However, the z;,j might not be distinct, and it is also possible for 

some v; to be identical to some zj,k. 

The remainder of our proof is quite similar to the proof of lemma 74. However, the 

set X we have constructed has additional properties not possessed by the arbitrary 

set of vertices with distinct neighbourhoods we examined in the proof of theorem 76. 

These properties will allow us to avoid the cases in the proof of theorem 76 which 

required certificates of non-list-compactness which did not satisfy the property B. 

Our goal in the next section of the proof is to either find a forbidden subdigraph 

in H' directly, or to find an infinite subset Q of X such that for all u, v E Q we have 

N;(u) - Q # N;(v) - Q. In the final section of the proof we will use such a set Q to 

find a forbidden subdigraph of HI. 

If X - Y is infinite, then we simply let Q = X - Y. Since Q includes no vertex of 

Y, we know that &(u) - Q # NF(v) - Q for all U , V  E Q. 

If X - Y is finite, then X n Y must be infinite. We will use Ramsey7s theorem to 

obtain the desired result. We partition the unordered pairs {i, j), where 1 5 i < j, 
into four parts, PI, P 2 ,  P3, P4, defined as follows: 

PI = {{i, j) : vivj E E(H') and vjvi € E(Ht)} 

P2 = {{i, j) : v;vj 4 E(Ht) and vjv; E E(Ht))  

P3 = {{i, j) : v;vj E E(Ht) and vjv; @ E(Ht)) 

P4 = {{i, j) : v;vj @ E(Ht) and vjv; @ E(Ht)). 

By Ramsey's theorem there is an infinite set S of natural numbers such that all 

pairs {i, j) with i, j E S are in the same part Pk. Let Vs = {v; : i E S). Note that 

Vs n Y must be infinite. We now consider the four cases. 
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Case 1: All pairs of elements of S are in P I .  

If there are infinitely many loopless vertices in Vs then these vertices induce an 

infinite loopless complete digraph in HI, and so we are done. 

If there are infinitely many vertices in Vs with loops, then let Q = { a l ,  a2, . . .) be 

an infinite set of vertices with loops in Vs n Y. Then N$(a;) n Q = Q for all i > 1. 

But no two a; have the same out-neighbourhood in Y, so for all i ,  j > 0 with i # j ,  

we have N$ (a; )  - Q # N$ ( a j )  - Q .  

Case 2: All pairs of elements of S are in P2. 

Label the elements of Vs n Y by al ,  a2, . . ., where for i # j ,  aiaj f E ( H )  if and 

only if i > j .  A particular a; may or may not have a loop. Let Q = { a l ,  a3, as, . . .). 
Then for all n > 1 we have a2, @ N $ ( U ~ , - ~ )  but a2, E N$(a2,-1) for all m > n. 

Clearly Q has the required properties. 

Case 3: All pairs of elements of S are in P3. 

We define Q as in the previous case and discover that for all n > 0 we have 

~ 2 ,  f N $ ( U ~ , - ~ )  but ~2~ @ for any rn > n. Again it is clear that Q 
satisfies the required properties. 

Case 4: All pairs of elements of S are in P4. 

We claim that this case cannot occur. Let v be any element of Vs n Y. Then 

v = z;,j for some i ,  j > 1 .  But Vs is an infinite subset of X so it must contain vk 

for arbitrarily large values of k. If we choose some k > i such that v k  E Vs, then 

vkv E E ( H 1 ) ,  contradicting the definition of Pq. 

We must now show that we can find a forbidden subdigraph in HI using the set 

Q . 
We claim that we may find an infinite collection of pairs (q;, T ; )  for i > 1 such that 

all qi and all T ;  are distinct, q; E Q and T ;  E Y - Q for all i > 1, and q ; ~ ;  @ E ( H f ) .  

A simple 'greedy7 algorithm will be sufficient to find such a set. Suppose we have 

chosen (ql ,  T I ) ,  (42, Q ) , .  . . (qn7 T n )  satisfying the above conditions for some n > 0 (if 

n = 0 we have chosen nothing yet). Suppose there is no pair (q,+l, r,+l) which satisfies 

the required properties. Then for all v E Q - {ql , q2, . . . q,) it must be the case that 

v is adjacent to every w E Y - Q - { r l ,  r2 ,  . . . , T , ) .  But this is clearly inconsistent 
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with the fact that the infinitely many vertices in Q have distinct neighbourhoods in 

Y - Q. Thus, such a pair must exist. By continuing this process we obtain our infinite 

collection of pairs. 

We now prepare for another application of Ramsey7s theorem. We partition the 

unordered pairs of natural numbers {i, j), where i < j ,  into parts PI, P2, P3, P4 ac- 

cording to the following rules: 

PI = {{i, j) : q;rj E E(H)  and qjr; E E(H)} 

P2 = {{i, j} : qirj @ E(H) and qjr; E E(H)) 

P3 = {{i, j) : qirj E E(H) and qjr; $ E(H)) 

P4 = {{i, j) : q;rj @ E(H) and qjri 6 E(H)) .  

By Ramsey7s theorem, there must be an infinite subset T of natural numbers such 

that all pairs of elements from T are in the same part Pi. We find ourselves once 

again with four cases. 

Case 1: All pairs of elements of T are in PI. 

In this case the vertices {qi : i > 1) U {r; : i E T) induce an infinite cocktail-party 

digraph in HI. 

Case 2: All pairs of elements of T are in P2. 

The vertices {qi : i 2 2) U {T; : i E T) induce an infinite increasing digraph in HI. 

Case 3: 

Now the vertices {q; : i > 1) U { r ;  : i E T)  induce an infinite decreasing digraph 

in HI. 

Case 4: All pairs of elements of T are in P4. 

This case cannot occur, since for any r;, i E T, r; = zj,k for some 1 5 j < k. But 

there must be some q,, n E T, such that q, = v, with m > j. But then q,r; E E(H1), 

a contradiction. 

This concludes case A. 

Case B: G is an in-directed star. 
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In this case our argument is essentially identical, except that the directions of the 

edges in the subdigraphs we find are reversed. For a given digraph K we define the 

reverse of K ,  denoted K- ,  by V ( K - )  = V ( K )  and E ( K - )  = {vu : uv E E ( K ) .  We 

complete the proof with the following simple observations. 

If K is a loopless complete digraph then K-  is a loopless complete digraph. 

If K is an increasing digraph then K-  is a decreasing digraph. 

If K is an decreasing digraph then K-  is a increasing digraph. 

If K is a cocktail-party digraph then K -  is a cocktail-party digraph. 

Another way of restricting list-assignments, which we have already seen in an 

example, is to require some of the lists to be equal to V ( H ) .  We have already noted 

that if C is the property that every vertex in dom(1) is equal to V ( H )  then a digraph 

is C-list-compact if and only if it is compact. 

We may define another natural property D by saying that a list-assignment 1 has 

property D if l (v)  is either finite or is equal to V ( H )  for every v E dom(1). Recall 

that in chapter 4 we defined a property R for lists by saying that a list-assignment 

1 has property R if l (v)  is a singleton or l (v)  = V ( H )  for every v E dom(1). Using 

lemma 79 we see that a digraph is D-list-compact if and only if it is R-list-compact. 

We immediately obtain the following result. 

Theorem 82 The class of D-list-compact digraphs is a superclass of the class of 

compact cores and a subclass of the class of compact digraphs. 

Proof: In chapter 4 we showed that being a compact core was a sufficient condition 

for a digraph to be R-list-compact. Obviously compactness is a necessary condition 

for R-list-compactness, since we can set l (v)  = V ( H )  for all v f dom(1). 

Unfortunately, it appears to be difficult to say more than this. 

Yet another possible property similar to the above, and in the spirit of theorem 81, 

might be the following. We say that a list-assignment 1 has property E if l (v)  = V ( H )  
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for only finitely many v E dom(l), and I(v) is finite for every other v E dom(1). Since 

E is a strengthening of the property B from theorem 81, we know that every B-list- 

compact digraph is also E-list-compact. Thus, if H contains none of the forbidden 

subdigraphs from theorem 81 then H is E-list-compact. However, the converse is not 

true, as we will soon see. In fact, unlike in our two major results so far, there are 

non-E-list-compact digraphs for which there are no countable certificates of non-list- 

compactness. 

For example, let us define a digraph H by V(H) = {u, : a < N1) U {v, : a < N1) 

and E(H) = {u,vp : ,8 5 a). We may think of H as an uncountable analogue of an in- 

creasing digraph. Certainly H contains an induced increasing subdigraph. The reader 

should have little difficulty convincing himself that there is no countable certificate of 

non-E-list-compactness for H ,  yet there is an obvious uncountable certificate. 

We can also find significant differences between E-list-compactness and B-list- 

compactness within countable digraphs. In particular, it is not sufficient to look only 

at stars as potential certificates of non-list-compactness when our list-assignments 

have property E. 

Let us define a digraph H as follows. Let V(H) = {ul, U2, . . .) U {vl, 0 2 , .  . .) U 

{wl, wg, . . .) U {z), and E(H)  = {uiwj : j 5 i )  U {v;wj : j 5 i)  U {u;vi : i > 1) U {zw; : 

i 2 1). In this case we may think of H as an increasing digraph with the vertices in 

U(H) replaced by edges, and with an extra vertex z which dominates L(H). If G is 

an out-directed star and 1 is a list-assignment for G with respect to H such that E(1) 

holds, it is not difficult to see that G admits an I-list-homomorphism to H whenever 

all of its finite subdigraphs admit such a homomorphism. However, if we replace 

the vertex which is the center of a star G with an edge in the obvious way, there is 

a natural list-assignment for G with respect to H which satisfies E and provides a 

certificate of non-list-compactness for H. 

Our final result is a particularly nice characterization. We define a property F 

for list-assignments as follows: a list-assignment 1 ': V(G) + P ( V ( H ) )  has property 

F if in each component of G there is at least one vertex v such that l(v) is finite. 

In particular if G is connected then 1 has property F if at least one vertex of G is 

assigned a finite list. We obtain the following characterization. 
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Theorem 83 A digraph H is F-list-compact if and only if the reduced digraph HT is 

locally finite. 

Proof: Observe first that if a list-assignment 1 for a digraph G with respect to H 

has property F, then the reduced list-assignment IT for G with respect to HT also has 

property F, and so if H is not F-list-compact then HT is not F-list-compact. If HT is 

not F-list-compact then H is not F-list-compact either (c.f. proof of corollary 72), so 

it suffices to show that a reduced digraph is F-list-compact if and only if it is locally 

finite. 

Let H be a locally finite reduced digraph. Let G be any digraph and 1 be a list- 

assignment for G with respect to H such that F(1) holds. Suppose that every finite 

subdigraph of G admits an 1-list-homomorphism to H. We will use lemma 47 to show 

that G admits an 1-list-homomorphism to H. We will define a new list-assignment 1' 

for G with respect to H such that for each v E V(G), ll(v) is a finite subset of l(v), 

and every finite subdigraph of G admits an 1'-list-homomorphism to H. 

For each component C of G, we define lllv(c) as follows: choose some v E V(C) 

such that l(v) is finite, and let ll(v) = l(v). Now for each w E V(C) we define 

ll(w) = {U E l(w) : d(u,lf(v)) 5 d(w,v)}. As H is locally finite we know that 

l'(w) is finite, and we can see that every finite subdigraph of G admits an If-list- 

homomorphism to H exactly as we did in the proof of theorem 49. 

We now let I, be the discrete topology on lf(v) for each v E V(G). By lemma 47, 

G admits an 1'-list-homomorphism to H ,  but the same homomorphism is an l-list- 

homomorphism from G to H, and so H is F-list-compact. 

Now suppose H is not locally finite. Then there exists some v E V(H) such that 

v has either infinite in-degree or infinite out-degree. Assume that v has infinite out- 

degree, as the other case is essentially identical. The component C of H containing v 

must obviously be infinite. Furthermore, there must be an infinite subset S of N S ( v )  

such that either uv E E(H) for all u E S, or uv 4 E ( H )  for all u E S. Thus, any two 

vertices x, y E S have distinct in-neighbourhoods or distinct out-neighbourhoods in 

C - {v}, and so the reduced digraph ( C  - {v))' is infinite, and S is an infinite subset 

of V((C - {v})'). 
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Now by corollary 75 the digraph (C - {v))' must contain a subdigraph K which 

is one of the following: a loopless infinite complete digraph or an infinite independent 

digraph with loops, where V(K) C S ;  or an increasing digraph, a decreasing digraph, 

a cocktail-party digraph or a matching digraph with U(K) E S or L(K) C S. Of 

course (C - {v))' is an induced subdigraph of H ,  so let K be an induced subdigraph 

of H of one of the above types. 

In the proof of theorem 76 we constructed certificates of non-list-compactness for 

each of the above types of digraph. We will modify those certificates to obtain a 

certificate of non-list-compactness for H.  Recall that the vertex v dominates K .  Our 

modification consists of adding a new vertex u and appropriate edges to a certificate 

from theorem 76. ,In all of our list-assignments we will define l(u) = v, and our 

modified certificates will all be connected, so F(1) will hold. Two examples will 

suffice to make our method clear. 

Case 1: K is a loopless infinite complete digraph with V(K) E S. 
Let V(K) = {al, a2, .  . .), and define a digraph G by V(G) = {u, vo, vl, vz, . . .), 

and E(G) = {v;vj : i, j 2 0) U {uv; : i 2 0). We define a list-assignment 1 for G with 

respect to H by l(vo) = V(K), l(v;) = {a;) for each i 2 1 and l(u) = v. The digraph 

G with list-assignment 1 is easily seen to be a certificate of non-F-list-compactness 

for H. 

Case 2: K is an increasing digraph with U(K) S. 

The schema for the subdigraph of H induced by V(K) U {v) is shown in figure 

6.12 (a). We define a digraph G by V(G) = { u , w o , w ~ , w ~ ,  . . .), and E(G) = {wow; : 

i > 1) U {uwo). We define a list-assignment 1 for G by l(wo) = U(K), l(w;) = y; 

for each i 2 1, and l(u) = v (figure 6.12 (b)). Again it is obvious that G with 1 is a 

certificate of non- F-list-compactness for H.  
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Figure 6.12 

Certificates of non-F-list-compactness for H can be constructed for the remaining 

cases by similar methods. 

6.4 Structures and Graphs 

The results in this section do not easily generalize to structures, and we have not 

attempted to do so. However, all of these results do hold for undirected graphs. 

In the case of theorem 81, the forbidden subgraphs for the undirected case are just 

the underlying undirected graphs of the forbidden subdigraphs for the directed case. 

Observe that this yields only three classes of forbidden subgraphs, as the underlying 

undirected graphs of an increasing digraph and a decreasing digraph are the same. 
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