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Abstract

In this thesis we will study various aspects of homomorphisms of infinite digraphs
with emphasis on cores and compactness. We begin by looking at several reasonable
generalizations of the definition of the core of a digraph. Various equivalent definitions
of this term have been applied to finite digraphs for some time. However, when these
definitions are applied to infinite digraphs they are no longer equivalent. We examine
several properties of infinite digraphs which are possible definitions of the core of
an infinite digraph. We determine the logical relationships between the different
properties and answer some natural questions regarding invariance of the properties
over homomorphic equivalence classes. We argue that a core should be defined to be
a digraph all of whose endomorphisms are automorphisms.

We define the property of homomorphic compactness for digraphs in the same
spirit as the compactness property of formal logic. We subsequently show that our
notion of homomorphic compactness is also related to topological compactness. We
prove that homomorphic compactness of a digraph is a sufficient condition for the
digraph to contain a core. We also examine a weakened compactness condition and
show that when this condition is assumed compactness is equivalent to containing
a core. We use this result to prove a bound for the maximum size of the smallest
certificate of non-compactness for a digraph. Some large classes of digraphs are then
shown to be compact.

We determine exactly the cardinality of the set.of homomorphic equivalence classes
of compact digraphs, and give some results regarding the maximum cardinality of a
compact digraph. We also define a notion of finite equivalence for digraphs, and

examine the properties of classes of finitely equivalent digraphs. In particular, we
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determine for a given digraph the size of a maximum collection of pairwise inequivalent
but finitely equivalent digraphs.

Finally, we examine the notion of compactness for various types of list-homomor-
phisms. Characterizations are given of digraphs which are compact with respect to
certain types of list-assignments.

Many of our results apply directly to relational structures in general. Other results
admit analogous statements applying to structures. In yet other cases we obtain dif-
ferent and more interesting results when we examine structures. These generalizations

are informally discussed.
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Chapter 1

Introduction

1.1 Definitions

In this section we will present the basic definitions that will be used throughout this

thesis.

1.1.1 Graph Theory

We first give the basic definitions for the theory of directed graphs. Refer also to [14].

A digraph G is an ordered pair (V(G), E(G)) where V(G) is a non-empty, possibly
infinite, set whose elements are called the vertices of G, and E(G) C V(G) x V(G).
The elements of E(G) are called the edges of G. We will generally write uv to denote
the edge (u,v). Note that we allow edges of the form vv, called loops. If a digraph
has no edges of this form it is called loopless. A vertex which occurs in no edge of
G is called an isolated vertex. The in-neighbourhood of a vertex v € V(G) is the
set {u : uv € E(G)} and is denoted N~ (v). The out-neighbourhood of v is the set
N*t(v) = {u:vu € E(G)}. We define an equivalence relation = on the vertex-set of
a digraph by 4 = v if and only if N*(u) = N*(v) and N"(u) = N~ (v). If Sis a
subset of V(G) then N*(u) NS will be referred to as the out-neighbourhood of u in
S, denoted by N (u). The in-neighbourhood of u in S is similarly defined. If both
N~(v) and N*(v) are finite for each v € V(G) then we say that G is locally finite. An
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independent set S in G is a subset of V(G) such that uv g E(G) for each u,v € S.

By convention we will consider the size (or cardinality) of a digraph to be the size
of its vertex-set, so |G| is defined to be equal to |[V(G)].

If G and H are digraphs with V(G) C V(H) and E(G) C E(H) then G is called
a subdigraph of H and we write G C H. If G is a digraph and S C V(G), then we
denote by G[S] the digraph with vertex-set S and edge-set E(G)N(S x §). This is
referred to as the subdigraph of G induced by S.

An oriented walk W of length n in a digraph G is a sequence of n + 1 vertices
Vo,...Vn in V(G) and n edges eq,...e,—; in E(G) such that either e; = v;viy; or
e; = v;41v; for each ¢ with 0 < 7 < n. When vo = v, the walk is said to be closed. If
all of the v; are distinct then W is an oriented path of length n in G. If all of the edges
are of the form v;v;4; then W is called a directed walk or directed path, respectively.
A bidirected path of length n in a digraph G is a sequence of distinct vertices vp, ... v,
together with a set of 2n edges consisting of v;v;4; and v v; for 0 <2 < n.

An oriented cycle C of length n in a digraph G is a sequence vy, .. ., v,—1 of distinct
vertices together with a set of n edges containing exactly one of either v;v;4; or vy v;
for each : between 0 and n — 1, with subscripts reduced modulo n. These will be
called forward and backward edges of the cycle, respectively. If each edge of C is of
the form v;v;4; then C is called a directed cycle. The net length of an oriented cycle
C, denoted net(C), is defined to be the absolute value of the difference between the
number of forward and backward edges of C. Note that the net length of an oriented
cycle does not depend on which vertex in the cycle is chosen to be vy or on which
direction the cycle is traversed.

A digraph G is said to be connected if for all u,v € V(G) there is an oriented
path from u to v in G. The digraph G is said to be strongly connected if for all
u,v € V(G) there is a directed path from u to v. A (strong) component of G is a
maximal (strongly) connected induced subdigraph of G. Given two vertices u and v
which are in the same component of a digraph G, the distance from u to v, denoted
d(u,v), is defined to be the length of a shortest oriented path from u to v. If u is
a vertex and S is a set of vertices, all of which are in the same component of G, we

define the distance d(u, S) to be minyes d(u,v).
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Let G and H be digraphs. A homomorphism from G to H is a mapping f :
V(G) — V(H) such that uv € E(G) implies f(u)f(v) € E(H) for all u,v € V(G).
We will often use the notation f : G — H when f is a homomorphism from G to
H. We write G — H to indicate that a homomorphism from G to H exists. We
denote by f(V(G)) the set {f(v) : v € V(G)}. The set f(V(G)) is also called the
range of f or range(f). We denote by f(G) the digraph with vertex-set f(V(G))
and edge-set {f(u)f(v) : wv € E(G)}. We call f(G) the image of G under f. A
homomorphism is said to preserve non-edges if uv ¢ E(G) implies f(u)f(v) ¢ E(H)
for all u,v € V(G). If a homomorphism f is a bijection and preserves non-edges then
f is called an isomorphism. If G — H and H — G then we write G < H and say that
G and H are homomorphically equivalent or simply equivalent. Obviously if G — H
and H — K then G — K. If G 4 H and H + G then G and H are said to be
incompatible. A collection of digraphs is called mutually incompatible if the digraphs
in the collection are pairwise incompatible.

A homomorphism from a digraph G to itself is called an endomorphism of G.
An endomorphism which is not a surjection is called a proper endomorphism. An
isomorphism from G to itself is called an automorphism. We use the standard notation
f|s to indicate the restriction of a function f to a subset S of its domain. If H is a
subdigraph of G and f : G — H is a homomorphism such that f|y (g is the identity
mapping, then f is called a retraction and H is called a retract of G. Observe that in
this case G[V(H)] = f(G). The retract H is a proper retract of G if V(H) is a proper
subset of V(G).

Note that since homomorphisms are mappings of vertices, a homomorphism f :
G — H is a surjection when every vertex of H has a pre-image, although there may
be edges of H without pre-images, i.e. f may be a surjection and yet there may be
an edge uv € E(H) such that uv # f(r)f(s) for any rs € F(G). If a homomorphism
f:G — H is a surjection and furthermore every edge of H has a pre-image in G we

will say that f is an edge-surjection.
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1.1.2 Graphs, Hypergraphs, and Structures

The edges of a digraph are defined by a single binary relation. A natural way to
generalize the notion of a digraph is to allow the edges to be defined by several
different relations of possibly different arities. In this section we will formally define
the notion of a structure. Refer also to [33].

An n-ary relation on a set S is a subset of S™, that is, a collection of n-tuples over
S. A relational language L is a non-empty ordered set of relation symbols (R;)icr),
for some index set I, together with their associated arities. A language may contain
infinitely many different relations. The languages in this thesis will all have finite
arity and we disallow unary relations. A structure G for £ is an ordered (|L]| + 1)-
tuple (V(G), (R;)icr) where V(G) is a set called the vertez-set of G, and each R;
is a relation on V(G) of the appropriate arity. If R is an n-ary relation in £ and
v1,...,9, € V(G) then we will write R(vy,...,v,) to indicate that (vy,...,v,) € R.
The set {(v1,...,vn) : B(v1,...,v,)} will be referred to as the set of edges of G of
type R or simply the set of R-edges of G, and denoted by R(G). If (v1,v2,...,v,) is
an R-edge and v; = v2 = ... = v, then it is called an R-loop.

As before, |G| is taken to mean |V(G)|. Also |L] is defined to be the number of
relation symbols in L.

A structure G is said to be finitely induced if |V(G)| is finite. If in addition
> rec |[R(G)] is finite then G is called finite. Obviously this distinction is only impor-
tant when L is infinite.

Structures generalize many standard graph-theoretic objects. If £ consists of a
single binary relation, then the structures for £ are digraphs. If this relation is
symmetric on a given structure then the structure is a graph. More generally, if £
contains at most one n-ary relation for each n > 2, and each of these relations is
symmetric for a given structure, then the structure is a hypergraph. If £ contains a
single n-ary relation which is symmetric for a given structure, then the structure is an
n-uniform hypergraph. When G is a graph or dig}aph we will always use the symbol
E for the single binary relation on V(G).

We emphasize here that there is a subtle but important difference between digraphs
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and graphs, in that the collection of all digraphs is equal to the collection of all
structures for a certain language. The class of graphs is a subclass of the class of all
digraphs, and does not equal the class of structures for any relational language. By
its nature a graph can be regarded as a set of vertices togther with a set of unordered
pairs of vertices as the edges of the graph. However, we will always take graphs to be
a special type of digraph.

A path or cycle in a graph is defined to be a bidirected path or cycle in the
associated digraph, with the exception that cycles of length two are disallowed. The
girth of a graph G is the length of a shortest cycle in G. The odd girth of a graph G,
denoted 0g(G), is the length of a shortest cycle of odd length in G.

For any set S, we will denote an n-tuple (vs,...,v,),v; € S, by (T). When we use
this notation the value of n will usually not be given explicitly, but will be assumed
to be appropriate for the context. If f is a function we will denote (f(v1),..., f(vn))
by (f(v)). The n-tuple obtained by replacing every occurrence of z in (7) by y will
be denoted (7),/,. Observe that if @ and T are any n-tuples then u,,, = 7/, if and
only if for each 1 < ¢ < n we have u; = v;, or u; € {z,y} and v; € {z,y}.

We now define an equivalence relation = on the vertices of a structure in a manner
similar to the definition for digraphs. For a structure G and vertices z,y € V(G),
we say that £ = y if for all relations R € £, all 7, and for each @ which satisfies
(@)y/x = (U)y/z we have T € R(G) if and only if 7 € R(G). This condition states that
in some sense the relation R cannot distinguish between z and y. Observe that when
this definition is applied to digraphs it is equivalent to the definition of = given in
the section on digraphs.

The definition of a homomorphism generalizes to structures in a natural way. If G
and H are structures for a relational language £, a homomorphism from G to H is a
mapping f : V(G) — V(H) such that for all R € £ and all (v), R(7) implies R(f(7)).
All other definitions relating to homomorphisms of digraphs generalize similarly. Note
particularly that when we say that a homomorphism f : G — H preserves non-edges,
we mean that for all R € £ and all 7, if v € R(G) then f(v) ¢ R(H). Also, we say
that a homomorphism between structures f : G — H is an edge-surjection when it is

a surjection and every edge of H has a pre-image of the same type in G.
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One class of structures that will prove particularly useful in some of our construc-
tions are those we obtain by taking £ to contain binary relations only. In this case
our structures are known as edge-coloured digraphs. These are like digraphs, except
that instead of a single edge-set, such a structure has a different edge-set for each
binary relation R € L. The edge-set defined for a relation R is also referred to as the
set of edges of colour R. Note that these relations need not be disjoint, so the same

pair of vertices may occur as an edge of several different colours.

1.1.3 Set Theory

In this section we present various set-theoretic definitions and related concepts.

The sets we refer to in this thesis are those of Zermelo-Fraenkel (ZF') set theory
[56], and so every element of a set is itself a set. By a class we mean any well-defined
collection of sets [56], e.g. the class of all digraphs. Such a class may or may not be
a set. A class which is not a set is called a proper class.

We now present a brief introduction to the theory of ordinals and cardinals. A
more extensive treatment may be found in [44]. Proofs of the claims we make in this
section may also be found in [44].

A partial ordering (<) on a set S is a binary relation on S which is reflexive,
antisymmetric, and transitive. A linear ordering on S is a partial ordering in which
for any z,y € S, either £ < y or y < z. The relation < is a well-ordering on S if < is
a linear ordering and every nonempty subset of S contains a minimum element with
respect to <. A strict partial ordering < on a set S is a binary relation on S which
is antireflexive, antisymmetric, and transitive. If < is a partial ordering then there
is a natural strict partial ordering < corresponding to <, i.e., ¢ < y if and only if
z <y and z # y. Similarly, given a strict partial ordering < we may define a partial
ordering < by z < y if and only if £ < y or z = y. Whenever we define a partial
ordering we will assume the corresponding strict partial ordering to be defined as well,
and vice versa. We will say that a strict partial ’ordering is a strict linear ordering
or a strict well-ordering if the corresponding partial ordering is a linear ordering or

well-ordering, respectively.
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We say that a set S is transitive if z € S implies ¢ C S. We say that a set S is an
ordinal number or ordinal if S is transitive and € defines a strict well-ordering on S.
We will always use lowercase Greek letters to denote ordinal numbers.

If o and B are ordinals then we say a < 8 if a € 8. It can be shown that for
any ordinals a, 8, and 7 exactly one of @ < 3, a = B, or a@ > f is true, and that if
a < fand B < v then a < . Furthermore, any class of ordinals contains an element
which is least with respect to <. Thus, < satisfies the properties of a well-ordering,
although the class of all ordinals is not a set.

Two sets are equipotent if there is a bijective mapping from one to the other. An
ordinal « is called an initial ordinal if there is no ordinal 8 equipotent to a with
B < a, i.e. a is the least element of the class of mutually equipotent ordinals which
contains a. The Axiom of Choice [75] implies that every set S is equipotent with
some initial ordinal, which we call the cardinal number of S. Initial ordinals will be
referred to as cardinal numbers or cardinals.

If a is an ordinal then @ = {8 : f < a}. Also, we denote by a + 1 the ordinal
a U {a}. The ordinal & + 1 is always the least ordinal larger than a. If a = 8+ 1
for some 3 then « is called a successor ordinal. Otherwise a is called a limit ordinal.
Observe that the empty set is an ordinal, which we will denote as 0.

If k£ is a cardinal we will denote the least cardinal larger than & by «*.

Many of our results will be proved using the following principle [44].

Transfinite Induction Principle

Let P(a) be a property of ordinals such that

e P(0) holds,

e P(a) implies P(a + 1) for all ordinals o, and

e for all limit ordinals a # 0, if P(B) holds for all f < a, then P(a) holds.

Then P(ca) holds for all ordinals .
We will assume the Axiom of Choice [45, 66, 75] to hold throughout this thesis. In
particular we will make extensive use of the Well-Ordering Theorem due to Zermelo

[75] which states that any set can be well-ordered, and which is equivalent to the
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Axiom of Choice. We will also make extensive use of the Tychonoff product theorem
[70], which states that the product of compact topological spaces is compact. This is
also equivalent to the axiom of choice [46, 65, 70].

As stated earlier, every set can be put into a one-to-one correspondence with some
cardinal. On the other hand, no proper class can be put into a one-to-one correspon-
dence with any cardinal [56]. This provides a means of distinguishing between sets

and classes which we will make use of later.

1.1.4 Colourings

If G is a digraph and « is a cardinal, a k-colouring of G is a function f: G — k. If
uv € E(G) and f(u) = f(v) then the edge uv is said to be monochromatic. If G has
no monochromatic edges under the action of f then f is a proper k-colouring of G.
The least & such that G admits a proper x-colouring is the chromatic number of G,
denoted x(G).

Observe that if there is a loop vv € E(G) then vv will be a monochromatic edge
under any colouring of G. In this case the chromatic number of G is undefined.

We define x-colourings for structures analogously. Let G' be a structure and let
k be a cardinal. A k-colouring of G is a function f : G — «. If (v1,...,v,) is an
edge of G (of any type) and f(v;) = --+ = f(v.) then the edge (vq,...,v,) is called
monochromatic. A proper k-colouring of G is again defined to be a k-colouring in
which there is no monochromatic edge. The chromatic number of G is defined to
be the least x such that G admits a proper &-colouring. In this case the chromatic
number is undefined if there is a vertex v € V(G) such that (v,v,...,v) is an edge of

G.

1.2 Background and Overview

The origins of our current work may ultimately be traced back to the study of the
computational complexity of certain homomorphism problems. We refer the reader
to [30] for the relevant definitions. In [54], Maurer et al defined the H-colouring
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problem for digraphs. If H is a fixed digraph, the H-colouring problem is the problem
of determining whether a finite input digraph admits a homomorphism to H. The
problem was originally considered only for the case where H is finite digraph or graph.
For undirected graphs it was determined by Hell and Nesetfil in [39] that H-colouring
has polynomial complexity when H is bipartite, and otherwise is NP-complete.

The case for finite digraphs has been studied in [5, 6, 7, 34, 39, 40, 41, 42, 52, 54],
among others, but has not been completely solved. In [54], Maurer et al showed that
H-colouring is polynomial when H is a directed path, a directed cycle, or a transitive
tournament. The result for directed paths was improved upon by Gutjahr et al in
[34], where it was shown that H-colouring is polynomial whenever H is an oriented
path. Those authors also gave an example of an oriented tree T for which T'-colouring
is NP-complete. The complexity of H-colouring for oriented trees was studied further
by Hell et al in [41, 42]. In [6], Bang-Jensen et al examined the H-colouring problem
in the case where H is a semicomplete digraph, i.e. for every u,v € V(H) at least
one of uv or vu is an edge of H. The result in this case was that H-colouring is
NP-complete if H contains at least two directed cycles, and is polynomial otherwise.
A similar result is shown to hold for semicomplete bipartite digraphs by Bang-Jensen
and Hell in [5]. This paper also contains some results relating to sparse digraphs
which contain exactly two directed cycles. The authors conjecture that for digraphs
H without sources or sinks, if each component of the core of H (¢f. chapter 3) is a
directed cycle then H-colouring is polynomial, and otherwise it is NP-complete.

The case where H is an edge-coloured undirected graph is studied by Brewster
in [15, 16]. In [15] the author defines an edge-coloured undirected graph H to be
a structure for a language £ containing only binary relations, and for which each
relation is symmetric. The underlying graph G of H is defined by V(G) = V(H) and
E(G) = UrecR(H). In [15] the author determines the complexity of H-colouring for
each edge-coloured graph on three vertices with two edge-colours. Some results on
2-coloured cycles are also given. In [16] he proves that if the underlying graph of H is
a path, then H-colouring is polynomial, and gives an example of a structure H whose
underlying graph is a tree, and for which H-colouring is NP-complete.

In [8, 9], the present author upped the ante somewhat by considering H-colouring
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problems where H is allowed to be countably infinite, but the input graph is finite.
Here the main question considered was whether the H-colouring problem is solvable
for a fixed graph H. It is shown in [8] that there exist recursive graphs H for which
H-colouring is unsolvable. In [9] it is shown that there exist vertex-transitive graphs
H for which H-colouring is unsolvable, but that H-colouring is solvable whenever the
vertex-transitive graph H is recursive and locally finite.

One might generalize this problem still further by allowing H to be a countably
infinite digraph and allowing countably infinite digraphs as input. In this case the
input would have to be in the form of a decision procedure for the edges of the input
digraph. We will refer to this as the inf- H-colouring problem. If H contains a count-
able clique the problem is trivial. Unfortunately, for any other H we strongly suspect
that inf- H-colouring is not recursively enumerable, much less solvable, since to even
verify that a given mapping from one infinite digraph to another is a homomorphism
can probably not be performed in finitely many operations. However, we might be
able to prove that a digraph G does not map to H by examining only a finite portion
of G. This naturally gives rise to the notion of homomorphic compactness. In this
thesis we will investigate those digraphs H which have the property that whenever a
digraph G does not admit a homomorphism to H there exists some finite subdigraph
of G which does not admit a homomorphism to H. Such a digraph is called compact.
If a digraph H has the above property with respect to all digraphs G with |G| < &,
then we will say that H is x-compact. If we have a compact digraph H for which
H-colouring is solvable, then inf- H-colouring will be co-recursively enumerable.

The study of compactness as we have defined it is not without precedent. A
well-known result of de Bruijn and Erdos [17] states that for any finite n, an infinite
graph is n-colourable if and only if all of its finite subgraphs are n-colourable. This is
equivalent to the statement that each finite clique K, is homomorphically compact.

In a similar spirit, it is shown in Hell [37] that an infinite graph G has a retraction
to a given finite subgraph H if and only if every finite subgraph of G which contains
H admits a retraction to H. This turns out to be equivalent to the statement that

every finite graph is homomorphically compact ¢f. section 4.4.

In the study of homomorphic properties of digraphs, the notion of the core of a
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digraph has historically proven to be very useful. The core of a finite digraph has on
different occasions been defined in various ways. In [28, 38, 74] a core is defined to be
a digraph H such that H has no proper endomorphisms, and a core of G is a core H
such that H is a subdigraph of G and G — H. In [5, 47, 48, 52, 59] a core is defined
to be a digraph H such that H has no proper retracts, and a core H is said to be
a core of a digraph G if H is a retract of G. This apparent inconsistency is not a
problem in finite graph theory, as it is easily shown cf. [38] that these two definitions
are equivalent for finite digraphs. It is also easy to prove cf. [38] that every finite
digraph has a core, and that this core is unique up to isomorphism.

The notion of a core is a useful one because many questions pertaining to ho-
momorphisms of digraphs can be answered by considering only cores. The core of a
digraph preserves many of the homomorphic properties of the original digraph, but
contains none of the extraneous vertices which may have existed in the original di-
graph. In particular, if H is a core of G then H « @, and so for any digraph K we
have K — H if and only if K — G and H — K if and only if G — K. We therefore
began our investigations by attempting to generalize this notion to apply to infinite
digraphs.

One of our first observations was that the above definitions are not equivalent
for infinite digraphs. Furthermore, under either of the these definitions an infinite
digraph may have no core at all, or may have many nonisomorphic cores.

In Chapter 3 we consider several properties which are potential definitions of
the core of an infinite digraph, including the two given above. We will examine
the relationships between these properties, and examine some characteristics of the
individual properties. Ultimately we will choose to define a core to be a digraph G for
which any endomorphism of G is an automorphism. This is equivalent to the above

definitions for finite digraphs.

An obvious question one might ask is, given a digraph G, is G a core? Or in the
case where G is infinite, does G have a core? In [38], Hell and Nesetiil show that
determining whether a finite undirected graph G is a core is NP-hard if x(G) > 2. A
bipartite graph G is a core if and only if G = K. It follows that determining whether

a digraph is a core is NP-hard for digraphs with chromatic number at least three.
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In the same paper a polynomially verifiable characterization is given for cores with
independence number at most two.

In chapter 4 we investigate some partial characterizations of infinite digraphs which
have cores. Early on in our study of compactness in digraphs, we noticed that non-
compact digraphs tended not to have cores. Our first major result in this chapter
states that every compact digraph has a core. On the other hand, we give an example
of a core which is not compact, and so we obtain a necessary but insufficient condition
for a digraph to have a core. We subsequently show that if H is a core and H is |H|-
compact, then H is compact, and so if we restrict our attention to digraphs H which
are | H|-compact, compactness is a necessary and sufficient condition for a digraph to
have a core. Another interesting consequence of this result is that if a digraph H is

|H|*-compact then H is compact.

The remainder of chapter 4 is dedicated to proving the existence of large families
of compact digraphs. We first use Tychonoff’s theorem to prove a very general result
showing that a certain condition, involving both homomorphic and topological prop-
erties, is sufficient to guarantee that a digraph is compact. We use this result to show
that compact metric spaces can be used to generate compact digraphs, providing a
satisfying connection between homomorphic and topological compactness. We apply
this technique to show that if D is the digraph obtained by setting V(D) to be the set
of points in the plane and E(D) to be the set of all pairs of points of unit distance,
then D is compact. Furthermore, we show that D is a core. The graph D itself
has been studied extensively in other contexts [20, 35]. In particular, the chromatic
number of D remains unknown, although it is easily shown to be at least four and no

greater than seven cf. [35].

In chapter 5 we take a more global view. We begin by examining the class of all
compact digraphs. We show that up to homomorphic equivalence there are exactly
2% compact digraphs. In light of the results of chapter three this is the same as saying
that there are exactly 2% compact cores, and so the class of compact cores is a set.
In fact we show that there are this many compact cores of countable size, and so the

question naturally arises as to whether there are any compact cores of uncountable
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cardinality. The digraph D defined in chapter 4 yields an example of a compact core
with |D] = 2%. This leads us to wonder whether there might be compact cores of
still greater cardinality. Erd6s et al show in [24] that every compact metric space
has cardinality no greater than 2%, and so we cannot use metric spaces to generate
compact cores of cardinality greater than 2%. The determination of the maximum
cardinality of a compact core remains an open problem.

The fact that the collection of all compact cores is a set, as opposed to a proper
class, implies that there is some cardinal & such that all compact cores have size no
greater than «. However, in [61], Pultr and Trnkovd show that for every cardinal
k there is a core of size k. This provides a non-constructive proof that there exist
non-compact cores.

We might also ask, in the same vein, how large the chromatic number of a compact
digraph can be. We can easily construct a compact digraph with a countably infinite
chromatic number, but at the present time we have no examples of compact digraphs
with uncountable chromatic numbers. This question is related to a long-standing
open problem for undirected graphs, posed in Taylor [68]: suppose H is a graph with
uncountable chromatic number, and « is any cardinal. Does there exist a x-chromatic
graph G with the same set of finite subgraphs as H? If H can be chosen to be
compact, then no such G can exist, since every finite subgraph of G would admit a
homomorphism to H, and so G would admit a homomorphism to H, implying that

the chromatic number of G is no greater than that of H.

In [21], Duffus and Sauer examine the class of all digraphs, modulo homomorphic
equivalence, and show that it satisfies the properties of a distributive lattice. We show
that the set of all compact cores is also a distributive lattice, with the same meet and
join operators as in the class of all digraphs.

In chapter 5 we also define the notion of finite equivalence. Two digraphs are
said to be finitely equivalent if any finite subdigraph of one admits a homomorphism
to the other. For a fixed digraph G we define F{G) to be the class of all digraphs
finitely equivalent to G, modulo homomorphic equivalence. We find that F(G) also
satisfies the properties of a distributive lattice, except that it does not always contain a

maximum element. In fact, we show that F(G) contains a maximum element exactly
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when it contains a compact digraph, and furthermore that this compact digraph is
the maximum element of F(G). We then characterize exactly when F(G) consists of
a single element, and show that in most other cases F(G) is a proper class. It is still
not known whether there are any digraphs G for which F(G) is a set with cardinality
greater than one. However, we know that such a G must be finitely equivalent to
a compact core in which every infinite component is an acyclic bipartite digraph.
The case for undirected graphs is somewhat simpler, and we can show that for any
undirected graph G, either F(G) has cardinality one or it is a proper class. This last
result has somewhat the same flavour as the elementary theorem of measure theory
which states that every o-algebra is either finite or uncountable [64].

Our proofs of these last results rely on certain density properties of digraphs. We
say that collection G of digraphs has the density property if whenever G and H are any
two digraphs in G such that G — H and H + G, then there is a digraph K in G such
that G - K — H and H / K + G. Welzl shows in [74] that the collection of all
finite graphs of chromatic number at least two has the density property. We will make
use of a more recent and very elegant proof due to Perles [personal communication],
which applies to infinite digraphs and structures as well. We show that if F(G)
contains two inequivalent digraphs and has the density property then it is a proper
class. We then use the method of Perles to show that in many cases these conditions

are satisfied.

In our final chapter we examine compactness properties of list-homomorphisms.
List-homomorphisms generalize list-colourings in the same way that homomorphisms
generalize colouring. A proper list-colouring of a graph is a proper vertex-colouring
of the digraph in which the colour of each vertex must be chosen from a list of
colours specified for that vertex. A graph H is said to be k-list-colourable or k-
choosable if a proper list-colouring of H exists for every possible choice of lists of
size k for the vertices of H. The list-chromatic number of H is the least k such
that H is k-list-colourable. List-colourings were defined independently in both of
[26, 71]. In [26] Erdds et al show that the list-chromatic number of a graph H cannot
in general be bounded in terms of the chromatic number of H. In fact, the authors

give a construction for bipartite graphs with arbitrarily large list-chromatic numbers.
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Other results in [26] include a characterization of 2-list-chromatic graphs, the exact
value of the list-chromatic number of the complement of a perfect matching, and
that determining the list-chromatic number of a graph is NP-hard. The authors also
conjecture that every planar graph is 5-list-chromatic but that there exist planar
graphs which are not 4-list-chromatic. The second half of this conjecture is settled
by Voigt in [73], where the author gives an example of a planar graph which is not
4-choosable. More recently, Thomassen [69] completed the solution by proving that
every planar graph is 5-list-chromatic. The general question of determining the list-
chromatic number of a graph is studied in [2, 3, 4].

The complexity of the list-colouring problem is studied by Kratochvil and Tuza in
[50]. The authors show that, given a graph G and a list of colours for each vertex of
G, it is NP-complete to determine whether a list-colouring of G exists. This remains
true even when each list has at most three elements, each colour occurs in at most
three lists, each vertex of G has degree at most three, and G is planar. The authors
also show that the list-colouring problem has polynomial complexity if each list has
at most two elements, each colour occurs in at most two lists, or each vertex of G has
degree at most two.

A similar notion can be defined for edge-colourings of a graph [71]. A graph G is
said to be k-edge-list-colourable or, somewhat confusingly, simply k-list-colourable, if
for every possible assignment of a list of k colours to each edge of G there is a proper
edge-colouring of G in which the colour of each edge is chosen from its assigned list.
The list-chromatic-indez of G, denoted x}(G), is the least k such that G is k-edge-
list-colourable. Unlike the situation for vertex-colouring, it is possible to bound the
list-chromatic index of a graph in terms of the chromatic index x’ of the graph. In
fact, it has been conjectured that the list-chromatic index of a graph is never greater
than its chromatic index [12]. This problem has been investigated in [12, 19, 29, 49].

A list-homomorphism from a digraph G to a digraph H is a homomorphism from G
to H in which the image of each vertex of G must be chosen from a list of vertices of H
specified for that vertex. In [27] Feder and Hell define the list-homomorphism problem
for a fixed digraph H to be the problem of determining, for a given input digraph G

and a given set of lists for the vertices of G, whether there is a list-homomorphism
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from G to H. The authors restrict their attention to graphs in which every vertex
has a loop. They prove that for undirected graphs, the list-homomorphism problem
has polynomial complexity when H is an interval graph cf. [31], and is NP-complete
otherwise. They also examine the case where the input is restricted so that the list
assigned to each vertex of G must induce a connected subgraph of H, and show that
in this case the problem is polynomial when H is a chordal graph ¢f. [31], and is
NP-complete otherwise.

We examine list-homomorphisms from the perspective of homomorphic compact-
ness. We show that essentially only finite digraphs are compact with respect to list-
homomorphisms. We obtain some characterizations of richer classes of graphs which
are compact with respect to list-homomorphisms when the types of lists permitted

are restricted in various ways.

Many of our results apply to more general types of relational structures as well.
For simplicity of exposition we will prove most results for digraphs only. Our proofs
usually generalize to apply to the case for relational structures with only trivial modi-
fications. In some cases richer behaviour can be observed in the more general case. At
the end of each chapter we discuss generalizations of our results to relational structures

as well as restrictions to graphs.



Chapter 2

Tools

In this chapter we will introduce some of the basic concepts that will be used in
subsequent chapters. We will also prove some technical lemmas.

It is well known that homomorphisms are a natural generalization of graph colour-
ing. If £ is a language and « is a cardinal, then we may define a structure K, for £
as follows: V(K,) = « and for each R € L, R(v1,...,v,) if and only if not all v; are
equal. If G is a structure for £, then the definition of a homomorphism from G to K,
is identical to the definition of a proper x-colouring of G in section 1.1.4. This fact

provides an immediate proof of our first lemma.
Lemma 1 If G and H are structures and x(G) > x(H) then G /4 H.

Proof: Let k = x(H). If G — H then by transitivity of — we have G — K|, which
contradicts x(G) > «. [

In subsequent chapters, we will often want to give counterexamples to various
propositions. We will also wish to generalize our results to apply to structures for an
arbitrary language. Our first construction will allow us to construct a structure for

an arbitrary language from a digraph, while preserving many of its properties.

17
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Construction A:
Let G be a digraph. Let £ be a language and let R € £ be an n-ary relation for

some n > 2. We define a structure GF for £ as follows:
V(GR) = V(G) U {vs,---,vn}
R(G®) = {(u1,u2,v3,...05) : (u1,u2) € E(G)}
R(G*¥=0 foralRe€L,R+#R
This construction is actually a restricted version of a construction found in [61](p.

57). Note that if » = 2 in the above construction then G is identical to G. Our next

two lemmas describe the properties of G%.

Lemma 2 Let G and H be digraphs without isolated vertices. Let L be a language
and let R € L be an n-ary relation. Define G and H® according to construction A.

Then any homomorphism f : GR — H® has the following properties:
1. f(v;) =v; for3 < i< n.
2. flv(e) is a homomorphism from G to H,
3. f preserves non-relations if and only if f|v () preserves non-relations,
4. f is a surjection if and only if flv () is a surjection,
5. f is an injection if and only if flv(g) is an injection,

Proof: Let f : GR — HE be a homomorphism. For each ¢ with 3 <7 < n, v; occurs
only in the i** position of any n-tuple in R(GF®). Also, v; occurs in some R-edge of
G®. Thus, f(v;) must occur in the i** postion of some n-tuple in R(H®), and so f(v;)
must equal v;. Similarly, since any u € V(G) occurs in the first two co-ordinates of
some edge of G®, f(u) must occur in the first two co-ordinates and of some edge of
HZE and so f(u) € V(H). It now follows immediately from the definitions of R(GF)
and R(H®) that f|v(s) is a homomorphism from G to H. It is also clear that a
non-R-edge of GF can only map to an R-edge of H® if the corresponding non-edge in

G maps to an edge of H. Claims (4) and (5) follow immediately from (1).
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Corollary 3 Let £ be a language and let R € L. If G and H are digraphs then
G® — HE if and only if G — H. Furthermore, a homomorphism f : GR — HE is an
edge-surjection if and only if the homomorphism flv) : G — H is an edge-surjection.

Proof: By lemma 2 we know that if f : V(G®) — V(HF) is a homomorphism then
flve) is a homomorphism from G to H. On the other hand, if f : G — H is a
homomorphism then we may define a mapping g : V(G?) — V(HF) by glve) = f
and g(v;) = v; for each 3 < i < n. Clearly g is a homomorphism from GF to HE.

The second claim is a direct result of our construction. ]

In order to apply our results to undirected graphs, we will use the following con-
struction, which may be found in [61](p. 68).
Construction B: Let G be a digraph. We define an undirected graph GY by replacing
each uv € E(G) by the undirected graph in figure 2.1, identifying the marked vertices

with u and v as indicated.

AN _

[

Figure 2.1
We will refer to the copy of this graph which replaces the edge uv as the wv-
superedge of GV, and to u and v as the endpoints of the superedge. If G and H are
digraphs, f : V(GY) — V(HVY) is any mapping, wv € E(G) and zy € E(H) then we
say that f maps the uv-superedge of GU identically onto the zy-superedge of HY if f

is the unique isomorphism between the two superedges which satisfies f(u) = = and

f(v) =y.

Lemma 4 (¢f. [61]) Let G and H be digraphs and let G¥ and HY be obtained by
applying construction B to G and H. Then f : V(GY) — V(HY) is a homomorphism
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if and only if flvg) : V(G) — V(H) is a homomorphism and for all uv € E(G) f
maps the uv-superedge of GV identically onto the f(u)f(v)-superedge of HY.

Proof: We will give an outline of the proof: a detailed version may be found in [61].

Let f : V(GY) — V(HY) be a mapping such that f|y(g) is a homomorphism
from G to H. Then f|v(s) preserves edges, so for each uv € E(G) we must have
f(u)f(v) € E(H). And so if for each wv € E(G) it is the case that f maps the
uv-superedge of GV identically onto the f(u)f(v)-superedge of H, then clearly f will
be a homomorphism from GY to HY.

Now observe that each superedge of GU is a union of three cycles of length seven.
Any homomorphic image of a 7-cycle must either contain a cycle of length less than
seven or must be a 7-cycle. However, HV contains no cycles of length less than seven
and each 7-cycle in HY is contained within a single superedge of HV. Furthermore, if
two T-cycles of GU share an edge in common then their images must share an edge in
common, and so each superedge E of GY must map into a single superedge F of HY.
Straightforward verification now shows that a homomorphism from the superedge £
to the superedge F' must be an isomorphism, and that each endpoint of £ must map

to the corresponding endpoint of F'. The lemma now follows immediately. ]

Corollary 5 If G and H are digraphs then G — H if and only if GY — HY. Fur-
thermore, a homomorphism f : GY — HU is an edge-surjection if and only if the

homomorphism flv(g) : G — H is an edge-surjection. |

In many of our results we will want to employ large families of mutually incompat-
ible structures. Our next few lemmas will demonstrate the existence of such families.
A straightforward property of oriented cycles which will be used here as well as in later
chapters is the following. Recall that net(C) denotes the net length of an oriented
cycle C.

Lemma 6 Let G and H be oriented cycles. The7; G — H only if net(H)|net(G). If
H is a directed cycle then G — H if and only if net(H)|net(G).

The proof of this is straightforward cf. [36]. [
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Lemma 7 Let £ be any language. There exists a countably infinite mutually incom-

patible family of finite structures over L.

Proof: We will first prove the result for digraphs. Denote by D, a directed cycle
of length n. By the previous lemma D, — D,, if and only if m|n. Thus, the set
P, = {D, : p prime} is an infinite mutually incompatible family of digraphs.

Now let £ be an arbitrary language, and let K be an n-ary relation in £ for some
n > 2. Let D} denote the graph obtained by applying construction A to D,. By
lemma 3 the set P, = {D} : p prime} is an infinite mutually incompatible family of

structures over L. ]

It will also sometimes be helpful to have access to a countable mutually incom-
patible family of graphs. Such a family can be obtained immediately by applying
construction B to the family P,. We will construct another such family which is
particularly useful.

For each ¢ > 0 we define a graph G; to be any graph such that girth(G;) = 5+ 2¢
and x(G;) = 3+1¢. That such graphs exist is proved in [22, 51, 58]. We define a family
of graphs B by B = {G;: ¢ > 0}.

Lemma 8 The set B is an infinite mutually incompatible family of graphs.

Proof: By lemma 1 we know that if : > j then G; /4 G;. The homomorphic image
of an odd cycle must contain an odd cycle of lesser or equal size, so if ¢ < j then

G; 7L* Gj. |

One final construction which we will want to use is given below. This construction
will allow us to convert edge-coloured digraphs to digraphs while retaining important
properties.

Construction C: Let G be an edge-coloured digraph with at most countably many
edge-colours. Denote the edge-colours of G by {¢;,c;,...}. We define a digraph G¢
by replacing each edge uv of colour ¢; in G by the digraph in figure 2.2, where p; is
the 5" odd prime and, as before, D,, is a directed cycle of length p;. We will refer to

this as the uv-superedge of colour ¢; of G°.
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Figure 2.2

As before, we say that a uv-superedge E maps identically onto some zy-superedge
F under a mapping f if the restriction of f to E is the unique isomorphism from E

to F with f(u) =z and f(v) = y.

Lemma 9 Let G and H be edge-coloured digraphs with countably many edge-colours
{c1,¢2,...} and let G¢ and HC be obtained by applying construction C to G and H.
Then f: V(G®) — V(HC) is a homomorphism if and only if flv(c): V(G) — V(H)
is a homomorphism and for all wv € E(G) the uv-superedge of colour ¢; of GY maps
identically onto the f(u)f(v)-superedge of colour ¢; of HC.

Proof: Clearly if f is a mapping from V(G®) to V(H®) such that f|V(G) is a
homomorphism from G to H and f maps superedges identically onto superedges then
f is a homomorphism from G¢ to HC.

Now suppose that f : V(GY) — V(H®) is a homomorphism. Let E be a superedge
of G€ of colour ¢;. Then E contains a directed cycle C of length p;. Under any
homomorphism from G° to H® the image of C must be a closed directed walk of
length p;. However, the only closed directed walks in H® are inside the cycles within
the superedges of H®, and traverse such a cycle an integral number of times. Since
p; is prime, the only closed directed walks of length p; in H are the directed cycles
D,, in the superedges of colour ¢; in H®. Thus, the directed cycle D,, in E must
map to the directed cycle D., in some superedgé F of colour ¢; in H®. It is now
straightforward to verify that £ must map identically onto F', and so if FE is a uv-
superedge then F' is an f(u)f(v)-superedge. It follows immediately that f|v(g) is a

homomorphism from G to H. |
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Corollary 10 If G and H are edge-coloured digraphs with countably many edge col-
ours then G — H if and only if G — HC. Furthermore, a homomorphism f : G —
HE€ is an edge-surjection if and only if the homomorphism flviey : G — H is an

edge-surjection. ]



Chapter 3

Core-like Properties of Digraphs

3.1 Definitions

The notion of a core has been used in finite graph theory for some time now. Cores
have appeared under various names, such as unretractive graphs or minimal graphs,
and with different definitions [6, 28, 38, 47, 57, 59, 74|, all of which turn out to be

equivalent. The two most common of these are:
® a core is a digraph such that any endomorphism is a surjection,
® a core is a digraph with no proper retracts.

Other reasonable definitions which are readily seen to be equivalent for finite digraphs

are:
® a core is a digraph such that any endomorphism is an injection,
® a core is a digraph such that any endomorphism is an automorphism.

If G is a finite digraph, then a subdigraph H of G is said to be a core of G if
G — H and H is a core. Such an H always exists when G is finite, as we may
take successive proper endomorphisms of G until we obtain a digraph that admits
no further proper endomorphism. In fact, if G is a finite digraph then all cores of

G are isomorphic. To see this, observe that any two cores H; and H; of G must be

24
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homomorphically equivalent, and so must have the same number of vertices, since if
|H;| > |H;| then composing a homomorphism from H; to H; with a homomorphism
from H, to H; would yield a proper endomorphism of H,. Now it follows by a similar
argument that any homomorphism from H; to H, must be a bijection. Similarly any
homomorphism from H; to H; must also be a bijection. The existence of a bijective
homomorphism from H; to H, clearly implies that |E(H,)| < |E(H2)|, and similarly
we obtain |E(H,)| < |E(H,)|, and so H; and H, have the same number of edges.
Now it becomes clear that a bijective homomorphism from H; to H; must preserve
non-edges, and so it is an isomorphism. The same argument shows that if G and H
are homomorphically equivalent then their cores are isomorphic.

When G is allowed to be infinite, the situation deteriorates. For infinite digraphs
these definitions are not equivalent. Furthermore, under some definitions G' may have
several (even infinitely many) non-isomorphic cores, and there exist digraphs which
do not have a core at all under any of these definitions. In addition, under certain of
these definitions it is possible for digraphs G and H to be homomorphically equivalent,
yet for G to have a core and for H not to have a core. In this chapter we will examine
these and other core-like properties of infinite digraphs and determine the relationships
among them. The last definition, that a core is a digraph all of whose endomorphisms
are automorphisms, is the one we will ultimately adopt as our definition of a core.
We will show that this definition has several very nice properties. For example, under
this definition we will see that homomorphically equivalent cores must be isomorphic,
which is not true under any of the other definitions we will examine. \

To begin our exploration into these matters we will define some predicates for
digraphs. Each of the following predicates is a potential definition of what it means

for G to be a core:

Definition 11 Let G be a digraph.
o I(G) holds if every endomorphism of G is an injection.
e S(G) holds if every endomorphism of G is a surjection.

e N(G) holds if every endomorphism of G preserves non-relations.
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e R(G) holds if G has no proper retracts.

We also define a corresponding collection of predicates relating to the subdigraphs
of a digraph. Each of these should be thought of as being analogous to the property

of having a core:
Definition 12 Let G be a digraph.
e ¢(G) holds if G contains a subdigraph H such that G — H and I(H) holds.

o 3(G) holds if G contains a subdigraph H such that G — H and S(H) holds.
e n(G) holds if G contains a subdigraph H such that G — H and N (H) holds.

e r(G) holds if G contains a retract H such that R(H) holds.

We also define combinations of properties I,8 and IN (or their lowercase versions).
We will write IS5(G) to assert I(G) and S(G) , and similarly for all of the other
uppercase combinations. For the lowercase versions, we will use this notation to
denote the assertion that the same subdigraph of G has the required properties, e.g.
18(G) indicates that G contains a subdigraph H such that G — H and I(H) and
S(H) hold. We will use p, q, P, and Q to denote arbitrary lowercase and uppercase
properties or combinations thereof.

When some lowercase property p holds for a digraph G, we will say that a subdi-
graph H of G, such that G — H and for which P holds is a certificate of p(G), or
that H certifies p(G).

3.2 Relationships Among Properties

We shall describe the logical relationships among these properties and combinations
of properties. We first present some infinite digraphs with useful properties. First we

define the Ray as in figure 3.1.

Vo (%] V2 U3 V4 Us Ve (%
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Figure 3.1: The Ray
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Lemma 13 Every endomorphism of the Ray is of the form f(vn,) = vnik, for some
fized k > 0. Furthermore, for each k > 0 the mapping f(v,) = Untk is an endmor-
phism of the Ray.

Proof: If f(vo) = v, then clearly f(v1) = vkt1, f(v2) = vkt2, €etc., since the directions
of arcs must be preserved. Clearly the given mapping is an endomorphism of the Ray
for each £ > 0. [

Corollary 14 The Ray satisfies the properties IN, R, in, and r but not S or s. m

We define the Line similarly:

V_2 V2 Vo (%51 V2 V3 V4
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Figure 3.2: The Line

Lemma 15 Every endomorphism of the Line is of the form f(vn) = vnyk, for some
fized k € Z. Also, for each k € Z the mapping f(v,) = Unyk i an endomorphism of
the Line.

Proof: Again, the homomorphism is uniquely determined by f(vo). It is also clear

that any mapping of the given form is an endomorphism. ]

Corollary 16 The Line satisfies all of the properties INS, R, tsn, and r. [ ]

These two digraphs are particularly useful in constructions since if a digraph G
contains a Ray (Line) but G contains no directed cycle, then the image of the Ray
(Line) must be a Ray (Line), although not neccessarily an induced one. Our subse-

quent examples all exploit this fact.
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The 5-3-Line is defined in Figure 3.3.

Figure 3.3: The 5-3-Line

Let A(v;) denote the oriented 5-cycle or 3-cycle that contains v; in the 5-3-Line

shown in figure 3.3.

Lemma 17 Every endomorphism f of the 5-3-Line has the following properties:
o f(vn) = Vnyk, for some fized k > 0,
o [ maps A(v,) onto A(f(v,)).

Furthermore, for each k > 0 there ezxists an endomorphism of the 5-3-Line of this

form.

Proof: The 5-3-Line contains exactly one subdigraph isomorphic to the Line and no
directed cycles. Thus, this copy of the Line must map to itself. However, if f(vp) = vy,
where k < 0, then clearly A(vo) will have no possible image, so k£ > 0. Since the image
of an odd oriented cycle must be an odd oriented closed walk, it follows that A(v,)

must map onto A(f(v,)). ]

Corollary 18 The 5-3-Line satisfies the properties S, R, 8 and v, but none of I,

N, 2, orn. [

We now define the 5-Line as follows:

i i P
V_4 V-3 V-

2 v_1 V0 V1 V2 v3

Figure 3.4: The 5-line
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Let A(v;) denote the five-vertex subdigraph of the 5-line containing v;.
Lemma 19 Any endomorphism f of the 5-line has the following properties:
o f(vn) = Vnyk, for some fized k > 0,
o A(v;) maps onto A(f(v;)).
Furthermore, for each k > 0 there exists such an endomorphism of the 5-Line.

Proof: As above, the unique copy of the Line contained in the 5-Line must map to
itself. However, A(vo) has no possible image if f(vg) = vk for any k < 0. Again it is

a simple matter to verify that f must map A(v;) onto A(f(v:)). |

Corollary 20 The 5-Line satisfies the properties IS, R, 18 and v, but not N ormn.

Finally, we define the Onestep Line:

Vg V-3 V-2 Vo1 ) v1 (] V3

Figure 3.5: The Onestep Line
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Let L denote the unique copy of the 5-Line contained in the Onestep Line, and let
P; denote the directed path on i vertices beginning at u;, together with its associated
5-vertex subdigraphs. Also if w = v; or w = wu; for some ¢, let A(w) denote the

5-vertex subdigraph containing w.

Lemma 21 Any endomorphism f of the Onestep Line has the following properties:
o f(vp) = Vntk, 20,
o if f(vo) = v then for each i > 1, f(P;) C P; for some j > t,
o if f(vo) # vo then f(P) C L foralli>1.

Also, for each k > 0 there is an endomorphism of the Onestep Line satisfying these

conditions.

Proof: This digraph also contains a unique Line and no directed cycles, so the Line
must map to itself. The subdigraphs A(v;) again force vy to map to some v with
k > 0. Suppose some endomorphism f has f(vg) = vo. Then f|; must be the identity
map. The mapping f cannot map the paths P; into the line, since then f(u;) = v_y,
and so A(u;) would map to A(v_1), which cannot occur. Straightforward verification
now shows that f cannot map P; to any P; where j < ¢, so each P; must map into
some P;, 5 > 1.

On the other hand, if f(vg) = vi for some k£ > 0, then f(v_;) = v; for some
J = —1. Thus for all 7 > 1, f(u;) = v;41, and so all of the P; are clearly forced to

map into L. n

Corollary 22 The Onestep Line satisfies the property z8, but none of I, S, N, R,

norr. |

We say that a property P implies a property @ if whenever P(G) holds for
a digraph G, then Q(G) holds for G as well. Our next theorem describes all the
relationships that hold among the uppercase properties we have defined. We first
prove a small but useful lemma. Recall the equivalence relation = defined on V(G)
by u = v whenever N*(u) = N*(v) and N~ (u) = N~ (v).
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Lemma 23 Let G be a digraph satisfying N(G), and let f be an endomorphism of
G. If f(u) = f(v) for some u,v € V(G), then u = v.

Proof: Suppose u # v and in particular that N*(u) # N*t(v) (the case where
N~ (u) # N~(v) is similar). We may assume without loss of generality that there is
a vertex w € V(G) such that uw € E(G) but vw € E(G). Then f(u)f(w) € E(G)
since f is a homomorphism, but f(v)f(w) € E(G) because f preserves non-edges.

Therefore f(u) # f(v). ]

Theorem 24 The following implications, and no others (except those implied by tran-

sitivity), hold among the properties I, S, N, R and combinations thereof.

N
IN
ISN <— SN < I R
IS /
S

Proof: Clearly ISN(G) implies SN(G). Suppose SN(G) holds. Then N(G)
holds, and so by lemma 23 under any endomorphism f of G, f(u) = f(v) implies
that « = v. But if u # v and u = v then we may define an endomorphism g of G by
g(u) = g(v) = v, and g(w) = w for w # u, v, which is not a surjection. Thus, f must
be an injection. Therefore, IS N (G) holds, and so SIN(G) also implies IN(G) and
IS(G).

Suppose TN (G) holds. Clearly I(G) and N(G) hold. However, if G is the Ray
then IN(G) holds but S(G) is false, and so IIN(G) implies none of S(G), IS(G),
or SN(G). .

Suppose IS(G) holds. Clearly I(G) and S(G) hold. However, if G is the 5-Line
then IS(G) holds but IN(G) is false, and so IS(G) implies none of N(G), IN(G),
or SN(G).
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Let G be defined by V(G) = {u,v,w}, E(G) = {uv,uw}. Then IN(G)holds but
I(G) , S(G) , and R(G) do not. Thus, IN(G) implies no other uppercase property.

Suppose I(G) holds. If R(G) does not hold then G has a proper retract H. Let
f : G — H be a retraction, and let v be a vertex of G not in V(H), so obviously
f(v) # v. But f(v) € V(H) and so f(f(v)) = f(v) since f is a retraction. But then f
is not an injection, contradicting J(G). Thus, R(G) must hold. If G is the Ray, then
I(G) holds but S(G) is false. Also, if G is the 5-line, then I(G) holds but N(G) is
false, and so I(G) implies only R(G).

Suppose S(G) holds. Then R(G) must hold since a proper retraction is not a
surjection. If G is the 5-3-line then S(G) holds but I(G) is false. If G is the 5-line
then S(G) holds but IN(G) is false, and so S(G) implies only R(G).

If G is the 5-3-Line then R(G) holds but I(G) and IN(G) are false. If G is the Ray
then R(G) holds but S(G) is false. Thus R(G) implies no other uppercase property.
|

Let P and @ be arbitrary uppercase properties other than R, or combinations
thereof. Let p and g be the corresponding lowercase properties. The following lemma

will be useful in subsequent proofs.
Lemma 25 If P(G) implies q(G) then p(G) implies q(G).

Proof: If p(G) holds then let H be a certificate of p(G). By assumption g(H)
holds and so H contains a subdigraph K which certifies g(H). However, K also
certifies g(G), so g(G) holds. ‘ |

Note that since Q(G) trivially implies g(G), this lemma proves that any im-
plication that holds for uppercase properties other than R must also hold for the

corresponding lowercase properties.
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Theorem 26 The following implications, and no others (except those implied by tran-

sitivity), hold among the properties i, s, m, * and combinations thereof.

1S - S
iS <«—— SN <in$i
r

Proof: As mentioned above, lemma 25 shows that all implications among prop-
erties other than R in theorem 24 must also be true for the lowercase versions of
those properties. We shall first verify that no other implications are true except those
indicated above, and then we will check the implications involving the property 7.

The Ray shows that 2 does not imply s, and so in does not imply sn either.
The 5-line shows that ¢s does not imply 7 or sn. The 5-3-Line shows that s does not
imply ¢ or n, or any property involving ¢ or . The Ray also shows that ¢ does not
imply s, and the 5-Line shows that ¢ does not imply 72, so ¢ implies no combination
of properties either. The Ray shows that 72 does not imply s.

To see that n implies in, we note that by lemma 25 it is sufficient to show that
N implies ¢nn. Suppose IN(G) is true. As in the proof of theorem 24, we use the
equivalence relation = defined on the vertices of G. Let [w] denote the equivalence
class of a vertex w, and let v, be an fixed representative of [w]. Define a mapping
f: V(G) = V(G), by f(u) = vp). Straightforward verification shows that this is
an endomorphism, and clearly f(vp,)) = vp), so f is a retraction. Also note that the
retract f(G) has the property that no two vertices of f(G) are equivalent, and that
N(f(G)) holds. Also, I(f(G)) holds, since any endomorphism that is not an injection
would map two inequivalent vertices to the same image, contradicting lemma 23.
Clearly f(G) C G and G — f(G), so we conclude that ¢n(G) holds.

Now suppose 8n(G) holds. Then G has a subdigraph H such that G — H and
SN (H) holds. By theorem 24 we know that ISIN(H) holds as well, and so any
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endomorphism of H is an automorphism. Thus, if f : G — H is a homomorphism,
then f|g is an automorphism of H. If we let g be the inverse of f|y, then go fis a
homomorphism from G to H and (go f)|g is the identity map, so go f is a retraction
and H is a retract of G. Of course, H has no proper retracts because S(H)holds, and
so we conclude that 7(G) holds.

If G is the Onestep Line and H is the 5-Line, then H is a subdigraph of G, G — H
and IS(H) holds. Thus ¢8(G) holds. On the other hand, 7(G) is false. If G is the
subdigraph of the Onestep Line obtained by deleting all A(v;) with ¢ < —2, and H is
the subdigraph of G induced by U;>0A(v;), then G — H and IIN(H) holds. Hence,

tn(G) holds. However, r(G) is false for the same reason that 7 is false for the Onestep

Line.
If G is the 5-3-Line then 7(G) holds but ¢(G) and n(G) are false. If G is the Ray
then 7(G) holds but 8(G) is false, so  implies no other property. |

Theorem 27 The following implications, those implied by transitivity and theorems

24 and 26, and no others, hold between the uppercase and lowercase properties.
o SN(G) — isn(G),
o IS(G)— is(G),
o S(G)— s(G),
o I(G) — i(G),
o N(G) — in(G),
o NG — 7(G),
o R(G) — r(G),

Proof: We first observe that no lowercase property-can imply any uppercase property,
for if we define a digraph G by V(G) = {u,v,w} and E(G) = {uv}, then obviously
every lowercase property holds for G, but G satisfies no uppercase property. On the

other hand, any uppercase property trivially implies its lowercase version. Also, if P
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and Q are arbitrary properties other than R, and p and q are their lowercase versions,
then lemma 25 implies that if p does not imply g, then P does not imply q. Thus,
we need only verify that IN implies » to complete the proof.

Recall from the proof of theorem 26 that if IN(G) holds, then G has a retract H
such that no two vertices of H are equivalent under =, and I(H) holds. But I(H)
implies R(H) by theorem 24, and so »(G) holds. |

All of the above results are summarized in the following diagram.

N

IN
ISN < SN < I R
IS N

)

J

» 1S
i X\
L—iansn in < n 1.

Having established the relationships among the various core-like properties we have
defined, we will next examine certain characteristics of the individual properties. In
the study of homomorphisms of digraphs the notion of homomorphic equivalence is
very natural, and we would hope that digraphs which are homomorphically equivalent
might share many of the same properties. Our next two theorems demonstrate the ex-

tent to which the core-like properties we have defined are invariant over homomorphic

equivalence classes.



CHAPTER 3. CORE-LIKE PROPERTIES OF DIGRAPHS 36

We say that a lowercase property p is invariant if whenever G and H are homomor-
phically equivalent digraphs and p(G) holds, then p(H) holds as well. It is a trivial
observation that no uppercase property is invariant in the corresponding sense, as the
reader may observe that any uppercase property may be destroyed simply by adding
an isolated vertex to a digraph. Theorem 28 describes the situation for lowercase

properties.

Theorem 28 The properties i, n, in, ts, sn and t8n are invariant. The properties

8 and r are not.

Proof: Let G and H be homomorphically equivalent digraphs, and suppose z(G)
holds. Let G’ be a certificate for 2(G). Then G’ C G,s0 G’ — H. Let f : G’ — Hbea
homomorphism. Observe that G, f(G’), G and H are all homomorphically equivalent.
So let g : f(G') — G’ be a homomorphism. Now suppose there is a homomorphism
h: f(G') = f(G') which is not an injection. We claim that (goko f) : G' — G is
not an injection. Since k is not an injection, there exist distinct u,v € V(f(G’)) such
that h(u) = h(v). But V(f(G’)) = range(f), so u and v have pre-images in G’ under
f. Thus, there exist distinct z,y € V(G’) such that (ko f)(z) = (ko f)(y), and so
(goho f)(z) = (goho f)(y). However, this contradicts I(G’), and so we conclude
that I(f(G")) holds, and so ¢(H) holds.

The proof that m is invariant is similar to the above: Let G and H be homo-
morphically equivalent digraphs, and suppose n(G) holds. Let G’ be a certificate for
1n(G), and let f : G — H be a homomorphism. Observe again that G', f(G'), G
and H are all homomorphically equivalent, and let g : f(G') — G’ be a homomor-
phism. Now suppose there is a homomorphism & : f(G') — f(G’) which does not
preserve non-edges. Since h does not preserve non-edges, there exist u,v € V(f(G"))
such that uv ¢ E(f(G')) but h(u)k(v) € E(f(G")). But again u and v have pre-
images in G’ under f, and so there exist z,y € V(G’) such that zy ¢ E(G’) but
(ko £)@)(h o £)(y) € B(f(g)), and 0 (g0 ko f)(z)(g 0 ho f)(y) € B(G'). This
contradicts IN(G’), and so we conclude that IN(f(G’)) holds, and so n(H) holds.

The fact that 2n is invariant follows from the above facts: Let G and H be homo-

morphically equivalent digraphs, and suppose ¢n(G) holds. Let G’ be a certificate for
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in(G), and let f : G' — H be a homomorphism. The digraph G’ is a certificate for
I(G), and so I(f(G')) holds exactly as in the proof of the invariance of . Further-
more, G’ is a certificate for N(G), and so IN(f(G’)) holds exactly as in the proof of
the invariance of n. Therefore, IN (f(G')) holds, and so ¢n(H) holds.

Now let G and H be equivalent, and now suppose ¢3(G) holds. Let G’ be a
certificate for ¢3(G). Let f : G’ — H and g : f(G') — G’ be homomorphisms. Also,
let & be any endomorphism of f(G'). Observe that we have defined the domain of g to
be the range of f, so f and g must both be injections, for otherwise the homomorphism
(go f) : G = G’ would fail to be an injection. Similarly, A must be an injection, for
otherwise the homomorphism (go ko f) : G' — G’ would not be an injection.

We claim that & must be a bijection. If & is not a surjection, then there is a vertex
u € f(G') with no pre-image in f(G') under h. In other words, u & range(h o f).
However, the homomorphism g is an injection, so u is the unique pre-image of g(u) in
f(G') under g, and so g(u) & range(goho f)(G'). But now (goho f) : G' — G’ is not
a surjection, contradicting IS(G’). Thus h must be a bijection. We may therefore
conclude that IS(f(G")) holds, and so zs(H) holds.

Recall that sn(G) and 2sn(G) are logically equivalent, so to show that both are
invariant it suffices to show that z8n(G) is invariant.

Let G and H be equivalent, and suppose zsn(G) holds. Let G’ be a certificate for
tsn(G). In particular IS(G’) and N(G’) hold. Let f : G’ — H and let h: f(G') —
f(G"). Asin the proof for ¢s, we must have IS(f(G')). Also, we must have N (f(G"))
as in the proof for n. Therefore, ISN(f(G’)) holds, so zsn(H) holds.

To see that » is not invariant, let G be the Onestep Line and let H be the 5-Line.
Then G and H are homomorphically equivalent but #(H) holds and »(G) is false.

The counterexample for s is more complex. We begin with some definitions. By
P* we mean all finite strings of non-negative integers, and by P™ all such strings of
length n. We denote the empty string by e. The length of a string o is denoted by
||, and we will always assume a = ao, ..., |q-1- If |a| =1 then we will sometimes
represent a by a numeric variable such as 7. By a3 we mean the concatenation of the

strings a and 8. If a = B~ for some string 4 we say that 3 is a prefiz of . In this
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case if v # € then 3 is a proper prefiz of . We say that a string « is lezicographically
less than a string  and write a < J if either « is a proper prefix of 3; or 3 is not a
prefix of @ and o; < f;, where 7 is the least index such that a; # £;.

Let A = {(z,5) : ¢,j > 0}. For each o € P* we define a set S, C A and a sequence

Ty of positive integers as follows:
¢ Sa={(5,4):0<i<]a,0<j < ayori >|al,j >0}

o To = (ta(1) : 1 2 0), where t,(i) = 3 + 2%y a;, where a; is considered to be

zero for j > |af.
We will write T,, < T if 1,(2) < tp(7) for each 1.

Example: S2010= { (0,0),(0,1),(0,2),

)
(1,0)
(2,0),(2,1),
)
)

2

(3,0),(3,1),(3,2
(4,0),(4,1),(4,2), (4,3),...

T201 = (7, 7, 9, 9, 9, .o )

Claim 1 The sets S, have the following properties:
o if B is a prefiz of a then S, C S,
o for any fized n > 1, we have U epn Soy = So,
o if B is a proper prefiz of o then Sp Z S,.

o if o is not a proper prefiz of B and a < B, then Sz L S,.
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Proof of Claim: The first part of the claim is an immediate consequence of the
definition of S,. It is clear from the definition of S, that U2y Sai = Sa. Induction on
n proves the second part of the claim. For the third part, if 3 is a proper prefix of «
then |a| > || solet n = |B|. Then (n+1, ans1+1) € Sgbut (n+1,any1+1) € Sa. To
prove the last part, observe that if < # and « is not a prefix of 3, then there exists
an ¢ > 0 with ¢ < |e| and ¢ < |8|, and e; < B;. Hence, (3, 5;) € Sg but (¢, 5;) € So. @

Claim 2 The sequences T, have the following properties:
® if 3 is a prefiz of a then Ty < T,.
®ifa< f and B # a0" for anyn > 1 then T, 2 Tp.

Proof of Claim: The first part follows immediately from the definition of 7,,. Now
suppose a < B and # # a0™. If a is a proper prefix of § then there exists an ¢ > 0
such that : > |a| and B; # 0. Then clearly t,(7) < t5(). If « is not a proper prefix
of 3 then let 7 be the least index such that a; # 3;, and so a; < B;. Again we have
ta(2) < t(7), and so T, 2 Tp. 1n]

We will now construct a digraph G such that S(G) holds. Our construction will be
greatly simplified by taking G to be an edge-coloured digraph. We will subsequently
apply lemma 9 to show that G can be transformed into an uncoloured digraph.

Our construction will require countably many edge-colours. We will have one
colour for each element of the set A defined above, another colour for each : > 0, and
a special colour called ¢. The colours for the elements (¢,j) € A and the non-negative
integers ¢ will simply be called (7, 7) and ¢, respectively.

For each a € P*, we define an edge-coloured digraph P,. We begin the construc-
tion of P, with three vertices {z4,Yu,24}. Now for each : > 0 we add a bidirected
path of colour 7 and length ¢,(z) with endpoints z, and y,. Finally, we add an edge

from y, to z, of colour (z,j) for each (7,7) € S,. .
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Example: P

Figure 3.6

Claim 8 For each o and 8 we have P, — Pj if and only if S C Sp and T, > Tp.

Proof of Claim: Suppose there is a homomorphism f : P, — FPs. In both P,
and Pj, the vertices y, and yp are the only vertices which are incident to edges of
colour 7 for each 7 > 0 and edges of colour (¢, ) for some nonempty set of pairs (¢, 7).
Therefore, it must be the case that f(y.) = ys. Now the vertex z, is incident with
edges of each colour ¢ > 0, but f(z,) # ys because this would force P to contain an
odd-length directed cycle in each colour ¢ with ¢ > 0, but no such cycle exists. Thus,
f(za) = zp, since zz is the only other vertex in Ps which is incident to edges of each
colour ¢ with 7 > 0. Similarly we see that f(z,) = 25.

Now suppose (i,7) € S,. Then y,2, is an (¢,7)-edge of F,, and so the pair
f(Ya)f(24), i.e. the pair ygzp, must be an (i,7)-edge of P3. And so (4,5) € S, and
therefore S, C Sp.

If t,(:) = k then P, contains a bidirected path of length k¥ and of colour ¢ with
endpoints z, and y,. The image of this path in P must contain a bidirected path of
colour ¢ and length no greater than k with endpoints = and yg. But this exists only
if t3(7) < k. Thus, T, > Tj.

On the other hand, if we know that S, C Sp ’and Ts > Tp, then in light of the
above arguments there is an obvious homomorphism from P, to Pg, and so our claim

is proved. a
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It is clear from the above proof that if f : P, — Pg is a homomorphism then f is
a surjection, each edge of Py of any colour ¢ with ¢ > 0 has a pre-image in F,, and

each edge of colour (7,7) of P has a pre-image in P, exactly when (¢,7) € S,.

We now define G by taking a Line with vertices v; for : € Z, and where v,;v;_; is

an edge of color ¢ for each ¢ € Z. We adjoin digraphs P, to this Line as follows:
e for each v;,7 < 0 in the Line, add a copy of P. and an edge v;z, of colour c,

e For each v;,7 > 0 in the Line, add a copy of each P,,|a| = ¢, and an edge vz,

of colour ¢ for each P,.
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Figure 3.7

Claim 4 The edge-coloured digraph G has the property S(G). Furthermore, any

endomorphism of G is an edge-surjection.
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Proof of Claim: The Line of colour ¢ in G must map to itself since it is the only
Line of colour ¢ in G, so if f is an endomorphism of G then f(v;) = vi4x for all 7 and
some fixed k € Z. Furthermore , since each P, is joined to the Line by a single edge
of colour ¢, each P, joined to some v; must map into a single Ps joined to v;yx.

No endomorphism of G can map v to any v; with 7 > 0, since by claim 1, S € S,
for any a # ¢, so by claim 3 we know P, /& P, when a # e.

If vo maps to itself, then each P, must map to a Ps with |a| = |B|. If « # B,
then assume without loss of generality that o < @ lexicographically. Then Sg € S,
by claim 1, and so P3 # P, by claim 3. Also T, 2 T by claim 2, and so P, / Pg by
claim 3. Thus, each P, must map onto itself, and in fact the endomorphism f must
be the identity.

Finally, suppose vg maps to some v_; with ¢ > 0. Then each vertex v in the Line
must map to vk—;. We now show that f is an edge-surjection. Let k be any integer and
let P, be any subdigraph joined to vx. Observe that if some subdigraph Pj is mapped
into P, by f, then each edge of P, of any colour j > 0 will have a pre-image in Py
under f. This follows immediately from the fact that f must map the endpoints of
the bidirected path of colour j in Pj to the endpoints of the bidirected path of colour
j in P,, as shown in the proof of claim 3. Thus, to show that f is an edge-surjection,
it suffices to show that for each (z,y) € S,, there is a Ps joined to vk4; such that f
maps Pj into P, and (z,y) € Ss. Since all of the sets S, are non-empty, the preceding
statement implies that for each P, there is a Py which is mapped onto P, by f.

Let (z,y) be an element of S,.

Suppose k < 0,s0 a = €. If £+ i < 0 then there is also a copy of P. joined to
Vk4+; which must map onto the copy of P. joined to vx. By definition (z,y) € S.. If
k+ ¢ > 0 then all of the digraphs Pj joined to vg4; must map onto the copy of P
joined to vi. By claim 1 we know that U,cpr+: Sy = S, and so there is some Pj joined
to vg4; which is mapped to P, by f and which has (z,y) € Ss.

Suppose k > 0, so |a| = k. Let 8 be any string of length k + ¢ such that a is a
prefix of 5. Then there is a copy of Ps joined to vi4i, and this copy of P must map
onto some P, joined to vi. However, |y| = |af, so if ¥ # « then 7 is not a prefix of
B, and so there exists a least : > 0 with ¢ < |B| and ¢ < |y|, and Bi # 7. If B <y
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then B < ~, and 3 is not a prefix of 4 so by lemma 1 we know Sg € S,. If v; < 53;
then v < § and S # 40" for any n > 1 so T, 2 Tp. In either case P /+ P, by claim
3. Thus f must map Ps onto P,.

Now by claim 1 we know that |,epr+i Say = Sa, and so for any (z,7) € S, there
is a Pp joined to vky; such that (z,7) € Ss and Ps is mapped onto P, by f.

In every possible case f is an edge-surjection, and so our claim is proved. a

We will now define another edge-coloured digraph H which is equivalent to G, but
for which 8(H) is false. For each a € P* we define an infinite sequence T, = (t,(z) :
i > 0), defined by Téro--~a|a|-1 = Tog..ao)—,- We now construct a digraph P, for each
a exactly as we constructed P,, except that the the length of the bidirected path of
colour 7 in P, is given by ¢t/ (i) rather than ¢,(z). Also, we will rename the vertices
Tos Yar Za @S Th, Yh, 2o We now obtain H by replacing each copy of some P, in G by

a copy of Py.
Claim 5 The edge-coloured digraph H is equivalent to G, and s(H) is false.

Proof of Claim: We first observe that, as in claim 3, for any o and 8 we have
P, — P; if and only if S, C Sp and T, > Tj. Furthermore, P, — Pj if and only if
So C Sp and T, > Tp, and P, — P; if and only if Sy € Sp and T, > T.

To see that G — H, observe that for all a, we have T,, > T, by Claim 2. Thus,
P, — P! for all @, and so to map G to H apply the identity map to the Line in G
and map each P, to P..

To show that H — G, recall that for all n > 0 we have S,, C S,, and observe
that for each n > 0, T, = Tyo = T, for all n > 0. Thus P, — P, for all a and all
n > 0. Thus, to map H homomorphically to G, we map the vertex v; in the Line in
H to the vertex v;_1 in the Line in G. We map each subdigraph P, incident to vjs|41
to the subdigraph P, incident to v, and for each i < 0 we map the subdigraph F;
incident to v; to the subdigraph P, incident to v;_;.

We must now demonstrate that s(H) is false. Suppose s(H) holds. Let K be a
certificate of 8(H) and let f : H — K be a homomorphism. Then K must contain the

Line, and to each vertex v; in the Line must be joined a (possibly empty) subdigraph
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of each P, incident to v; in H. Since every P, with |a| > 0 occurs exactly once in
H, we can refer to the subdigraph of such a P, which is present in K as @), without
ambiguity. Observe that under any homomorphism g : P, — Py it must be the case
that g(z,,) = =3, 9(ys) = Y5, and g(2}) = 2. Also, the bidirected path of colour ¢ in
P, must map onto the bidirected path of colour ¢ in Pg. Thus, if f maps P, to @3,
then @ must contain zj, ¥, and 2}, as well as each of the bidirected paths in Fj.
And so Qg is identical to P except that it may lack some of the edges of Py given by
Ss.

Consider the vertex v; in K, and its pre-image v, in H under f. Note that in any
endomorphism of H, as was the case for GG, the vertex vp must map to some v, with
k < 0. Since K C H, this implies that n > 1.

Every P, joined to v, in H must map under f to a @); incident to v; in K. Let a
be the smallest index such that f maps some Pj to Q.. By claims 1 and 3 we know
that no P, with ¢y = a + 1 admits a homomorphism to @,, so f must map each
such P, to some @y with b > a. Since f maps Pj to Q,, we know that 8; < a. Let
B'=(a+1)B;...Bn, s0 S C Spr. Also, note that T; = T for all 2,5 > 0. Thus, for
any k > 0, if Pj, — Qx then P; — Q. However, f must map P to some @)y with
b> a, so there must be a homomorphism f’' : H — K which maps any P to some Q5
with b > a. Therefore H - K ~ @,,so K — K — @Q,, and so S(K) is false. Hence
8(H) is false as well. m]

To complete the proof of theorem 28, we apply construction C to G and H to
obtain uncoloured digraphs G¢ and H®. Since any endomorphism of G is an edge-
surjection, corollary 10 guarantees that S$(G°) holds and so s(G®) holds. However,
s(HC) is false. n

The above result is somewhat curious, in that the two properties which fail to
be invariant, namely 8 and 7, are the two most commonly used definitions of a core
in finite graph theory. This indicates that these may not be the most appropriate
definitions of the core of an infinite digraph.

Our final theorem for this chapter also deals with a kind of invariance. Let P be
an arbitrary uppercase property. We will say that the property P is strongly invariant
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if whenever G and H are digraphs such that both P(G) and P(H) hold and G and
H are homomorphically equivalent, then G and H are isomorphic. It is a simple
observation that no lowercase property is strongly invariant in this sense, and so we
have restricted our attention to uppercase properties. If a property P is strongly
invariant, we can readily see that whenever p(G) holds there is, up to isomorphism,
a unique subdigraph H of G such that G — H and P(H).

Theorem 29 The properties ISN and SIN are strongly invariant. The properties
I, S N, IS, IN and R are not.

Proof: Let G and H be homomorphically equivalent digraphs such that ISIN(G)
and ISN(H) both hold. Let r : G — H and s : H — G be homomorphisms. If r
is either not injective or does not preserve non-edges, then s o r is an endomorphism
of G lacking the same property. If r is not surjective then r o s is a non-surjective
endomorphism of H. Hence, r must be an isomorphism.

Since SN is logically equivalent to IS N it is also strongly invariant.

Let G be obtained from the 5-line by replacing A; with a copy of A_;. This shares
the properties IS and R with the 5-line and is homomorphically equivalent to it, but
is not isomorphic. Thus none of the properties R, I, S, or IS are strongly invariant.

Let G; be the subdigraph of the 5-line induced by the vertices v;,7 > 0, and their
respective A;. Let G2 be obtained from G; by replacing Ay by the triangle consisting
of vy and its two neighbors in A,. These digraphs are homomorphically equivalent
and share the property IN, but are non-isomorphic. Thus neither N nor IN are

strongly invariant. [

Recall that earlier we claimed that IS N was the property with the nicest behavior
for infinite digraphs. We have shown that the two most common definitions of core
for finite digraphs, 8 and 7, are not invariant over homomorphic equivalence classes.
The property IS N, in addition to being strongly invariant, is also the strongest of
the properties under discussion, while still being equivalent to R and S for finite
structures. We conclude this section by reiterating our claim that ISIN is the most
reasonable definition for the core of an infinite structure. We now formally adopt this

definition.
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Definition 30 A digraph G is a core if and only if ISN(G) holds. A digraph H is
a core of G if and only if H certifies t1sn(G).

The following is now a corollary to theorem 29.

Corollary 31 If a digraph G has a core, then the core of G is unique up to isomor-

phism. m

3.3 Structures and Graphs

The major results in this chapter all generalize nicely to arbitrary structures and

graphs. The definitions of the properties I,5,IN, and R, as well as their combinations

and lowercase versions, may be applied to structures and graphs without modification.
Recall the generalized definition of = for structures. Lemma 23 can be restated

for structures and remains true.

Lemma 28’ Let G be a structure satisfying N(G), and let f be an endomorphism of

G. If f(u) = f(v) for some u,v € V(G), then u = v.

Proof: Suppose N (G) holds and let f be any endomorphism of G. Suppose f(u) =
f(v) for some u,v € V(G). If u # v then there must exist a relation R and edges
%,7 € R(G) such that u,/, = 7,/, and @ € R(G) but 7 ¢ R(G). We know that f is
an endomorphism, and so (f(T)) € R(G). But f(u) = f(v), so (f(T)) = (f(Tuyu)) =
(f(u/u)) = (f(7)). Hence we have (f(v)) € R(G), contradicting N (G). =

We can see that this proof is essentially identical to the proof of lemma 23, except
that it is restated in the terminology of structures. We will generally not rewrite
subsequent proofs where this is the case.

Lemma 23 may also be restated in the obvious way for graphs, and the proof is

essentially identical.

Theorems 24, 26, and 27 all have analogues applying to structures. Let P and Q
be arbitrary uppercase properties, and let £ be a language. We say that P implies
Q in L if whenever G is a structure for £ and P(G) holds, then Q(G) holds as well.

It turns out that the implications between properties are the same for all languages.
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Theorem 24’ Let £ be any language, and let P and Q be arbitrary uppercase prop-
erties. Then P implies Q in L if and only if P implies Q for digraphs.

We show that a given property implies another using arguments essentially iden-
tical to those in the proof of theorem 24. To obtain counterexamples to show that
a given property does not imply another, we apply lemma 2 to the counterexamples
used in the proof of theorem 24.

Analogues of theorems 26 and 27 are proved by the same method.

Analogues to these three theorems also hold for graphs. For example, we have the
following result.

Theorem 24" Let P and Q be arbitrary uppercase properties. Then P implies Q for
graphs if and only if P implies Q for digraphs.

Again we may prove that a given property implies another just as in the proof of
theorem 24. We now show that these are the only implications that hold. Referring
back to the proof of theorem 24, we observe that all of the counterexamples used in
that theorem can be transformed into undirected graphs using construction B. The
constructed graphs will provide counterexamples for the same implications. The only
exceptions to this are the cases where we used the 5-line as a counterexample, since
the 5-line has property S, but the graph obtained by applying construction B to the
5-line does not have property S. We will therefore explicitly construct an undirected
graph G with the same properties as the 5-line, i.e. IS(G) and R(G) will hold but
N(G) will not hold. The graph G is shown in figure 3.8. The directed edges are

replaced as in construction B, while the undirected edges will remain unaltered.

V-4 V-3 V.2 v-1 Vo V1 (2] V3

Figure 3.8
We claim that this graph has properties I,S, and R, but not IN. Let us first
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examine the directed graph G’ consisting of the vertices and directed edges of G prior
to applying construction B. Clearly any endomorphism of G’ is an automorphism.
If we apply construction B to G’ to obtain G”, then any endomorphism of G” must
also be an automorphism. Now V(G”) = V(G) and E(G") = E(G) — {eo, €1,...}.
Observe that none of the edges e; € E(G) are contained in any cycle of G of length
less than or equal to seven in G. But each edge of G” lies in a 7-cycle. Thus, if f is any
endomorphism of G and uv € E(G)—{e; : ¢ > 0} then f(u)f(v) € E(G)—{e; : 1 > 0}.
Thus, f is also an endomorphism of G”. Therefore f must be an injection and a
surjection, and f is not a proper retraction. However, if f(vo) = v; then f does not

preserve non-edges of G. n

Analogues of theorems 26 and 27 also hold for graphs. In all cases the proofs that
the implications hold are the same as for directed graphs. In cases not involving the
property S, undirected counterexamples to implications can be obtained by applying
construction B to the directed counterexamples. In all other cases counterexamples

can be constructed by methods similar those used in the above theorem.

Analogues of theorems 28 and 29 also hold for graphs and structures. In all cases
the proofs are essentially identical to the proofs for digraphs, and counterexamples

may be constructed using constructions A and B.



Chapter 4

Compactness of Digraphs

4.1 Definitions

Let G and H be digraphs. We say that H is compact with respect to G if either
G — H or there exists a finite subdigraph G’ of G such that G' /4 H. We say that
H is a-compact if H is compact with respect to G for all G with |V(G)| < a. If H
is compact with respect to every GG, then we say that H is compact. Equivalently,
we might say that H is compact if for every digraph G, we have G — H if and
only if G' — H for every finite subdigraph G’ of G. If every finite subdigraph of G
admits a homomorphism to H, but G /4 H, then we say G is a certificate of non-
compactness for H. Observe that If G is a certificate of non-compactness for H then
some connected component of G is a certificate of non-compactness for H.

If two digraphs H and H' are homomorphically equivalent and G is any digraph,
then clearly H is compact with respect to G if and only if H' is compact with respect

to G. Also note that if H is a-compact and 3 < « then H is S-compact.
Example 32 The Line is compact.

A digraph G admits a homomorphism to the Line if and only if every cycle in G
has net length zero. If G has a cycle of non-zero net length, then this cycle is a finite
subdigraph of G admitting no homomorphism to the Line. That the Line is compact

also follows from results proved later in this chapter.

30
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Example 33 The Ray ts not compact.

The Line is a certificate of non-compactness for the Ray, since every finite subdi-
graph of the Line admits a homomorphism to the Ray, but clearly the Line admits
no homomorphism to the Ray. In fact, the Line demonstrates that the Ray is not

No-compact.

A very important class of non-compact digraphs are infinite tournaments. A tour-
nament is a digraph G where for each distinct u,v € V(G) exactly one of uv or vu
is an edge of G. A tournament is transitive if whenever uv € E(G) and vw € E(G),
then vw € E(G). Equivalently, we may define a transitive tournament to be any
digraph G where V(G) is linearly ordered and uv € F(G) if and only if u < v.

Tournaments are the subject of our first lemma.

Lemma 34 If T is an infinite tournament and G is a loopless digraph such that
T C G then G is not compact.

Proof: A frequently-used application of Ramsey’s theorem shows that every infinite
tournament contains an infinite transitive tournament (for example see [53]). Let T’
be a transitive tournament on |G| vertices. Clearly every finite subdigraph of T’
admits a homomorphism to G. However, as G contains no loops, any homomorphism

from T to G must be an injection, which is impossible since |T| > |G]|. |

Example 35 If T is an infinite transitive tournament then T is |T|-compact but not

|T|*-compact.

Any digraph G with |G| < |T| admits a homomorphism to T if and only if G
contains no directed cycle. A directed cycle in G is a finite subdigraph of G which
admits no homomorphism to T, and so T is |T'|-compact. As in lemma 34 a transitive

tournament on |T'|* vertices suffices to show that T is not |T'|*-compact.

In the next section we will show that every compact digraph contains a core. In
pursuit of this result we will also give some results relating to other core-like digraphs

necessarily contained in compact digraphs.
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In section 4.3 we examine digraphs H which are |H|-compact. We prove that if H
is a |H|-compact core then H is compact. We use this result to prove that a digraph
H is compact if and only if it is |H|*-compact.

In section 4.4 we will describe some large classes of compact digraphs, and thereby

also describe classes of infinite digraphs with cores.

4.2 Compact Digraphs have Cores

The problem of characterizing cores is a difficult one even in the case of finite digraphs,
and has been solved only for undirected graphs with independence number at most
two [38]. In this section we provide a partial result by showing that every compact
digraph contains a core, which by corollary 31 must be unique up to isomorphism.
Along the way we will prove uniqueness and existence results for some other core-like
subdigraphs of compact digraphs. Qur first lemma is of a slightly different type, but

will be useful in proving further results.

Lemma 36 If H is an |H|-compact digraph then there ezists a digraph H' D H with
V(H'") = V(H) and such that H — H and N(H') holds.

Proof: Suppose that H is |H|-compact but no such H’ exists. We define a transfinite
sequence {H,} of superdigraphs of H on the same vertex-set V(H). Each of these will
have the property that H, — H. Let Hy = H, and if H, is defined for some ordinal
a, define H, . as follows. Since H, — H, by assumption there is an endomorphism
f of H, which does not preserve non-edges.
Define H,.; by
V(Ha+1) = V(Ha)

E(Ho1) = {uv: f(u)f(v) € E(Ha)}

Clearly f : Hy41 — H, is a homomorphism, and so by transitivity we have
H,y; — H. Also, since f does not preserve non-edges in H,, it must be the case that

E(H.,) is properly contained in E(Hyq;).
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If X is a limit ordinal and H, is defined, with V(H,) = V(H), for all « < A, then
we define Hy by
V(H,) = V(H)
E(H))= | E(Ha)-

a<A
To show that Hy — H, let K be any finite subdigraph of Hy. Then K has only

finitely many edges, so K C H, for some a < A, and so K — H. Since |H,| = |H|
and H is |H|-compact, we have Hy — H.

However, for each ¢, the cardinality of E(H,) can be no more than |H,| = |H|. At
each step in the above induction we add at least one new edge to H,4;, and we never
remove edges once added. Hence for some o < |H|* we must have an H, for which
E(H,) = {uv : u,v € V(H,)}, i.e. all possible edges are present. But H, — H and
so by assumption there is an endomorphism of H, which does not preserve non-edges.
This is clearly impossible as H, is without non-edges.

Thus, there must be some superdigraph H’ of H such that N(H') is true. [

We now apply this lemma to obtain some useful results relating to core-like sub-

digraphs of compact digraphs.

Lemma 37 Let H be a digraph which is |H|-compact. If G certifies s(H), then G is

a core of H.

Proof: Suppose G is not a core, i.e., ISN(G) is false. Recall that IS N (G) holds if
and only if SIN(G) holds, and certainly S(G) is true, and so N(G) must be false.

We will show that IN(H’) is false for every superdigraph H' of H where H' — H
to obtain a contradiction to lemma 36.

Let H’ be a superdigraph of H which admits a homomorphism to H. Then s(H’)
is true, since H' — G and S(G) holds, and so G certifies s(H’).

Now let h : H — G be a homomorphism, and let f be an endomorphism of G
which does not preserve non-edges. Then there exist u,v € V(G) such that uv ¢ E(G)
but f(u)f(v) € E(G). Since G C H’, the mapping h must be a surjection, and so
both u and v have pre-images «’ and v’ under h in H'. Now u’v’ cannot be an edge of

H' since then h would not be a homomorphism, but (f o 2)(u')(f o h)(v’) is an edge
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of H'. Thus the composition f o h does not preserve non-edges. Since f o h is an

endomorphism of H’, we have shown that IN(H’) is false. |

Corollary 38 Let H be a digraph which is |H|-compact. If 8(H) holds, then H

contains eractly one certificate for s(H) (up to isomorphism).

Proof: Suppose H is |H|-compact, and let G; and G be certificates for 8(H). Lemma
37 guarantees that both G; and G, are cores of H, and theorem 29 implies that G,

and G are isomorphic. [

According to the above lemma, we need only show that a compact digraph H
satisfies 8(H) in order to guarantee that H has a unique core. Qur next two lemmas
will show that a compact digraph does indeed satisfy the property s.

We will require the following definition. Recall the equivalence relation = defined

in section 1.1.1.

Definition 39 Let K be a digraph. Let S be a set containing one vertex from each
equivalence class of V(K). We define a new digraph K™ to be the subdigraph of K
induced by S. The digraph K~ is called the reduced digraph of K.

It 1s a simple matter to verify that K" is a retract of K, and that no two vertices
of K™ are equivalent. We will refer to the retraction which maps every vertex of K
to the representative of its eqﬁivalence class as the canonical retraction from K to
K7. Note also that it makes no difference which vertex is chosen from an equivalence

class.
Lemma 40 Fvery |H|-compact digraph H satisfies in(H).

Proof: Suppose H is |H|-compact but in(H) is false. As in the previous lemma we
will show that no superdigraph H’ of H which admits a homomorphism to H satisfies
N(H’) to obtain a contradiction. ’

Let H' be a superdigraph of H such that H' — H, and let f : H — H be
a homomorphism. Let G = (f(H’))". By definition f is a surjection from H’ to

f(H'), and the canonical retraction from f(H’) to G is a surjection as well. Thus



CHAPTER 4. COMPACTNESS OF DIGRAPHS 59

the compostion of these homomorphisms is a surjection from H' to G. Call this
composition f’.

Now G C H and H — G because H C H' and H' — G, so by assumption
IN(G) is false. However, observe that if I(G) is false then IN(G) is also false. For
suppose that g is an endomorphism of G which is not an injection. Then there exist
u,v € V(G) such that g(u) = g(v). But in G no two vertices are equivalent, and so
lemma 23 implies that IV (G) is false.

Let g be an endomorphism of G which does not preserve non-edges. Look at the
composition g o f' : H' — G. This homomorphism does not preserve non-edges since
g does not preserve non-edges and f’ is a surjection. Also, since GC H C H', go f’
is an endomorphism of H' which does not preserve non-edges. Thus, IN(H’) is false.

This lemma is used to prove the following important result.
Lemma 41 Any |H|"-compact digraph H satisfies s(H ).

Proof: Let H be a |H|*-compact digraph, and suppose s(H) is false. Since H is also
|H|-compact, by the preceeding lemma we know that H contains a subdigraph Hy
which certifies en(H). We will show that Hy also certifies s(H).

Suppose that S(Hy) is false. Note that Hy is |Ho|*-compact, since Hy < H and
|Ho|* < |H|*. As in lemma 36 we will obtain a contradiction by constructing a
transfinite sequence of digraphs {H,}, for @ < |Hp|*. For each o > 0 the digraph H,
will be a proper superdigraph of Hy. The H, will all satisfy IIN(H,), |H«| = |Hol|, and
each H, will be isomorphic to a subdigraph of Hy. This last property is somewhat
counter-intuitive, but is quite possible when dealing with infinite digraphs. In the
construction we are about to present, unlike that in lemma 36, the vertex-set will not
remain constant.

We have already defined Hy, which satisfies the above conditions by assumption.

Now suppose H, is defined, IN(H,) holds, |H,| = |Ho|, and H, is isomorphic to
a subdigraph of Hy. We claim that there must exist a non-surjective endomorphism

of H,. When a = 0 this is true by assumption. If & > 0 then we know that there is
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a homomorphism A : H, — Hy because H, is isomorphic to a subdigraph of H,. But
H, is a proper subdigraph of H,, so h is a non-surjective endomorphism of H,.

We now define H,y;.

Let I = {v € V(Hy) : h71(v) = 0}, and let I’ = {v' : v € I} be a set of new

vertices. We will define H,4 in two steps. First we define
V(Hoy1) = V(Ha)JI'-

Clearly |Ho41| = |Ho| = |Ho|- Also, since I is nonempty we know that H,,; is
a proper superdigraph of Hy. We now define a mapping &' : V(Hgy41) — V(Hy) by
R'|v(#a) = h, and A'(v") = v for all v’ € I'. We may now define

E(Has1) = {uv: A (w)h'(v) € E(Ha)}-

It follows immediately from the definition of H,4+; that A’ is a homomorphism
from Hoq1 to H,.

Since IN(H, ) holds, the homomorphism & is an injection and preserves non-edges.
The homomorphism A’ is also an injection, since no two vertices in I’ get mapped to
the same vertex, and no vertex in I’ is mapped to a vertex that is the image of a
vertex under h. Also, b’ preserves non-edges, by definition of E(H,41). Furthermore,
k' is a surjection, since we explicitly added a pre-image of each vertex of H, to Hyq1.
Thus, A’ is an isomorphism between H,.; and H,, and so H,4; is also isomorphic
to a subdigraph of Hy and IIN(H,41) holds, since these properties are preserved by
isomorphism.

If A < |Ho|* is a limit ordinal and H, is defined for all @ < A, then we define a
digraph G by

V(G) = U V(H.)

ad

E(G) = | E(H.).

a<A
Note that {V(H,)}a<a is an increasing nested sequence of sets, all of cardinality

|Hp|, and so |V(G)| < |Ho|*. Thus, Hy is compact with respect to G. Any finite
subdigraph G’ of G must be contained in some H, with a < A, and so G’ — Hy. And
so G — H,.
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We will now show that either G satisfies the conditions of our inductive hypothesis,
so we may set Hy = G, or we will obtain a contradiction, thus completing our proof.

We first show that IIN(G) holds. Suppose that f is an endomorphism of G, and
suppose that either f is not an injection or f does not preserve non-edges. Then
there exist u,v € V(G) such that f(u) = f(v) or uv & E(G) but f(u)f(v) € E(G).
However, there must exist some H, with o < A such that u,v € V(H,).

Now look at fla, : Hy — G. Since u,v € V(H,), f|u, is either not an injection
or does not preserve non-edges. We also know that there exists a homomorphism
g : G — Hy, and Hy C H,. Thus, the composition g o flg, : Ho — Hs is an
endomorphism of H, which is either not an injection or does not preserve non-edges.
This contradicts IIN(H,), and so f must be an injection and preserve non-edges.
Thus, IN(G) must hold. Furthermore, g is an endomorphism of G, since Hy C G,
and so it is an injection and preserves non-edges. Hence, g(G) is a subdigraph of Hy
which is isomorphic to G. It follows that |G| = |Ho|, and so we may define H) = G.

But at each inductive step in our construction at least one new vertex is added to
the digraph. Eventually, for some limit ordinal A < |Hp|™, it must be the case that
|Hy| > |Ho|™. Thus we obtain a contradiction, and may conclude that s(H) holds. m

Corollary 42 Let H be a digraph. If H is |H|"-compact, then H has a core.
Proof: By lemma 41 H contains a subdigraph G which certifies 8(H). By lemma 37

we see that G is a core of H. »

In particular every compact digraph has a core.

4.3 |G|-compact Digraphs

One might hope that the converse of the corollary at the end of the preceeding section
might also be true. Unfortunately, this is not the case. Consider, for example, the
following digraph. We first define a sequence of finite digraphs H;,z > 1. Let p,
denote the n** odd prime, and C, the directed cycle of length p,. As observed in
Chapter 2, {Cr, : n > 1} is a mutually incompatible family of digraphs, and in
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fact each C, is a core. To construct H;, begin with V(H;) = {vo,...,vit1} and
E(H;) = {vov; : 1 < j <i+1}. Now for 1 < j <1, attach a copy of Cy; to v; by
identifying one of the vertices of the cycle with v;. Finally, attach a copy of Cyi41 to
v;41 in like manner.

We claim that each H; is a core and that {H; : 7 > 1} is a mutually incompatible
family of digraphs. Choose ¢ > 1 and let v be a vertex of H; which occurs in a copy
of some C,, C H;. Then v has in-degree at least one. However, vo has in-degree 0, so
no endomorphism of H; can map v to vo. Hence, any endomorphism of H; must map
each C, C H; into some C,, C H;, and so C,, must map onto itself. Sincez > 1 the
vertex vo must map to itself, and so H; is a core.

Similarly, if f : H; — H; is a homomorphism for some ¢ # 7, then f must map
each C, C H; into some C,, C H;. Again, this is possible if and only if n = m, and
so H; — H; if and only if every C, contained in H; is also contained in H;. However,
if 7 # j then H; contains a copy of Coiyq, but H; does not, and so H; and H; are
mutually incompatible.

We now define H to be the disjoint union of the digraphs H;. Then H is a
core, since each component of H is a core and there is no homomorphism from any
component of H to any other. However, H is not compact. Consider the digraph G
obtained by taking V(G) = {vo,v1,v2,...} and E(G) = {vovi : 1 < ¢}, and attaching
a copy of Cy; to v; for each ¢ > 1. Any finite subdigraph G’ of G will admit a
homomorphism to H, since it can contain vertices from at most finitely many of the
cycles in G, and therefore will be a subdigraph of some H;. However, G / H, since
G is connected and no component of H contains cycles of all lengths p,;.

Note that in this example the digraph H is not |H|-compact. In fact in this case
both H and G were countable. The property of being |H|-compact turns out to be
quite strong, and in this section we will show that several properties of digraphs are
equivalent for |H|-compact digraphs.

We begin with some definitions, leading up to & very useful lemma.

Let G and H be digraphs. Let ! : V(G) — P(V(H)) be a mapping from V(G)
to the power set of V(H), called a list-assignment for G (with respect to H). An

I-list-homomorphism f : G — H is a homomorphism from G to H such that for



CHAPTER 4. COMPACTNESS OF DIGRAPHS 59

each v € V(G) we have f(v) € I(v). We will often wish to apply the same lists
to subdigraphs G’ of G. By convention we will say that f : G' — H is an [-list-
homomorphism if f is an I}y (gr)-list-homomorphism.

We will say that a list-assignment [ : V(G) — P(V(H)) has property R if for
each v € V(G) either |l(v)| = 1 or I(v) = V(H). We will say that a digraph H is
a-R-list-compact if for every digraph G with |G| < « and every list-assignment [ for
G with respect to H for which R holds, either there is an [-list-homomorphism from
G to H, or there is a finite subdigraph G’ C G for which no [l-list homomorphism
exists. If H is a-R-list-compact for every cardinal « then H is R-list-compact.

An [-list-homomorphism where [ has the property R is more commonly known as
a precolouring-extension [11]. However, we will regard them as a special type of list-
homomorphism. In chapter 6 we will examine list-homomorphisms in much greater

detail. For our present purposes, the following lemma will be very useful.

Lemma 43 Let H be a core and o > |H| be a cardinal. Then H is a-R-list-compact
if and only if H is a-compact.

Proof: If H is a-R-list-compact then H is a-compact, since for any input digraph G
we may define a list-assignment ! by I(v) = V(H) for each v € V(G).

Now suppose H is an a-compact core with a > |H|, and let G be any digraph with
|G| € a. Let [ be any list-assignment for G with respect to H such that R holds for [,
and let S = {v € V(G) : |{(v)| = 1}. Suppose also that every finite subdigraph of G
maps to H subject to I. We construct a new digraph G* by taking a copy of G and a
copy of H, and identifying w € V(H) with all v € V(G) such that I(v) = {w}. It will
be useful to formally define G* as follows. We define a mapping s : V(G) UV(H) —
V(G) U V(H) by setting s(v) = I(v) for all v € S, and s(v) = v otherwise. Now we
define V(G*) = s(V(H)UV(G)) and E(G*) = {s(u)s(v) : wv € E(G)U E(H)}. Note
that |G*]| < a.

We say that a vertex v € V(G*) is a G-vertex if v = s(u) for some u € V(G). We
say that an edge uv € E(G*) is a G-edge if uv = s(z)s(y) for some zy € E(G).

We will show that G* — H. Let K be a finite subdigraph of G*. Of course K

contains only finitely many G-vertices and G-edges. Thus, there is a finite subset A
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of V(G) such that every G-edge of K and every G-vertex of K has a pre-image in A
under s. Let B be the set of all vertices of K which are not G-vertices. Note that
each v € B is its own unique pre-image under s so V(K) C s(AUB).

Let G' = G[A]UH[B]. By assumption there exists an [l-list-homomorphism f :
G[A] — H, which we can extend to a homomorphism ¢ : G' — H by applying the
identity mapping to all v € B.

We now use the homomorphism ¢ to define a homomorphism & : K — H. Let
v be a vertex of K. Let v € AU B be some pre-image of v under s, and define
h(v) = g(v'). Note that k is independent of the choice of v', since if v € s(S) then
g(v") = l(v') for all pre-images v’ of v, and if v € $(5) then v has a unique pre-image
under s.

If uv is an edge of K then there exist u’,v’ € V(G’) such that s(u') = u,s(v') = v,
and u'v' € E(G'). We know that h(u) = g(u') and h(v) = g(v') by the above
remark. But g is a homomorphism so g(u’)g(v’) € E(H), and so h(u)k(v) € E(H).
Thus, A : K — H is a homomorphism, and so by a-compactness of H we know that
G* — H.

Now let f : G* — H be a homomorphism. Since H is a core, fly(z) is an
automorphism of H. Let g = (f|lv(m))™'. Then (go f) : G* — H is a homomorphism
and (go f)|v () is the identity. It is obvious from the definition of s that s : (GU H) —
G* is a homomorphism and s|y(g) is the identity. So (9o fos): (GUH) — H is
a homomorphism from GUH to H. In particular (g o f o s)|ly) : G — H. But
s(v) =1l(v)forallv € S, and I(v) € V(H) for all v € S, so (g o f)(I(v)) = I(v) for
all v € S. Thus, (go fos)(v) = I(v) forall v € S, and so (g o f o s)|v(g) is an

[-list-homomorphism from G to H. =

We will use this lemma to prove a very interesting sufficient condition for com-
pactness. First we require a definition. Let G, H, and K be digraphs with G C H,
andletg: G — Kand h: H — K be homomorphlsms We say that A is an extension
of gif hlg = g.

Theorem 44 Let H be a core. If H is |H|-compact then H is compact.

Proof: Suppose that H is a |H|-compact core and H is not compact. Let « be
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the least cardinal such that H is not x-compact, and let G be a certificate of non-
compactness for H with |G| = k. We assume V(G) = {@ : a < &}, and for each
ordinal @ < k we define G, to be the subdigraph of G induced by {f : § < a}. For
each G, we have |G,| = || + 1, and |a + 1| < & since « is an initial ordinal. Thus,
G, has fewer than  vertices, and so each G, admits a homomorphism to H. For
each ordinal o < k we will construct a homomorphism f, : G, — H which will be an
extension of each fz with 8 < a. Also, every f, will have the property that for each
B with a < B < «, there exists a homomorphism g : Gg — H which is an extension
of fa.

We will define the f, inductively. Let v be an ordinal smaller than « and suppose
that we have defined a homomorphism f, satisfying the required properties for each
a < v. Note that this condition is trivially satisfied when v = 0. We proceed to
define f,.

We claim that there exists a vertex vo € V(H) such that for all § with v < 8 < &,
there exists a homomorphism gg : G5 — H such that g is an extension of f, for all
o < 7, and gs() = vo.

If no such vertex exists then for all v € V(H) there must exist a g withy < 8 < &
such that there is no homomorphism g5 : Gg — H which is an extension of every f,
with a < v, and for which gg(y) = v.

We can rephrase this last statement in terms of list-homomorphisms. Let v be an
arbitrary vertex of H. We will define a list-assignment r, for G with respect to H.
Let ry(a) = {fa(@)} for 0 < a < 7, ry(y) = {v}, and r,(a) = V(H) for each o with
v < a < k. The above statement is equivalent to the assertion that for some g with
v < B < & there is no r,-list-homomorphism from G4 to H. But H is ||-compact, so
by lemma 43 H is |B3|-R-list-compact. Also, R holds for r,. Therefore, there must be
some finite subdigraph G, of G such that there is no r,-list-homomorphism from G,
to H. Note that v € V(G,), since for each a < v there is an r,-list-homomorphism
from G, to H.

We now define G* = U,¢v () G»- We claim that for each o < « there is 2 homo-
morphism from G* to H which is an extension of f,. The digraph H is |H|-compact
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so by lemma 43 H is |H|-R-list-compact. Clearly |G*| < |H|, and so H is R-list-
compact with respect to G*. Now if G’ is any finite subdigraph of G*, then G’ is a
finite subdigraph of G, and so G’ C Gy for some 3 < k. For each @ < v we define a list
assignment [, for G with respect to H by I4(§) = {f(6)} for § < @, and [,(6) = V(H)
otherwise. By assumption, for each a < v there is an /,-list-homomorphism from Gg
to H, and so for each a < v there is an [,-list-homomorphism from G’ to H. Thus,
since H is |H|-R-list-compact, for each a < 7 there is an /,-list-homomorphism from
G* to H. Clearly such a homomorphism is an extension of f,.

We claim that in fact there is one homomorphism ¢ : G* — H such that g is an
l4-list-homomorphism for all @ < 7. Let us define a list-assignment s for G* with
respect to H by s(a) = {fa(a)} for a < v and s(e) = V(H) otherwise. We will
show that there is an s-list-homomorphism from G* to H, which clearly will be an
extension of each f, for @ < 7. Let G’ be a finite subdigraph of G*. We claim there is
an s-list-homomorphism from G’ to H. Since G’ is finite, there must be some a < v
such that for each § € V(G'), either § < a or § > 4. Also, there is some 3 < &
such that G’ C Gg. Thus we may find a homomorphism f : Gg — H which is an
extension of f,, and so f|gr is an s-list-homomorphism from G’ to H. Thus, by |H|-
R-list-compactness of H, there is an s-list-homomorphism from G* to H. This is the
required homomorphism g.

Now let v = g(y). Then g|g, is an r,-list-homomorphism from G, to H, a con-
tradiction. Hence, our claim is proven. And so there must be some vy € V(H) such
that for all 8 with v < 8 < «, there exists a homomorphism g : Gg — H such that
gs is an extension of f, for each a < v, and gg(y) = vo. Thus, we simply define f,
by fi(a) = fo(a) for each a < v and f,(7y) = vo.

By this method we contruct the functions f, for each a < .

To complete the proof, we define a mapping h : G — H by h(a) = fu(a) for
each a < . This is clearly a homomorphism, contradicting the choice of G. We may

therefore conclude that H is compact. . u
Corollary 45 Let H be a digraph. If H is |H|t-compact then H is compact.

Proof: Let H be a |H|t-compact digraph. By corollary 42 H has a core K. Clearly
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|K| < |H| and K & H so K is |H|*-compact. Also, |K| < |H| so K is certainly
| K |-compact, and so by theorem 44, K is compact. But H < K so H is also compact.
|

These results are somewhat surprising. They implies that if a digraph is not
compact, then we need only look at digraphs of the next larger cardinality to find
a certificate of non-compactness. Furthermore, if a core is not compact, then there
is a certificate of non-compactness of the same cardinality. For digraphs which are
not cores this is false. For example, a transitive tournament with vertex-set « is

k-compact but not k*-compact.

4.4 Families of Compact Digraphs

By now I'm sure you will all agree that compact digraphs are quite an interesting
type of object. The problem now is to determine what kinds of digraphs are compact.
In particular, we would like to construct some broad families of compact digraphs, or
perhaps give some general sufficient conditions for a digraph to be compact.

In this section we will first prove a very general and rather unappealing technical
lemma, which will subsequently prove its worth through a series of elegant corollaries.
Before we begin we will need some terminology.

We will first generalize the notion of a list-homomorphism. Let G and H be
digraphs, and let [ : V(G) — P(V(H)) be a list-assignment for G with respect to H.
An [-list-mapping is a mapping f : G — H such that f(v) € I(v) for each v € V(G).
An [-list-homomorphism, then, is an [/-list-mapping which is also a homomorphism.

Suppose G, H, and [ are as above. We define S = [l,ev(g)!(v), i.e. S is the
product of the sets [(v). There is an obvious one-to-one correspondence between I-
list-mappings and elements of S. We will therefore consider such a mapping to be
identical to the corresponding element of S.

We will make use of a classic result in topology; which we state now.

Theorem 46 (Tychonoff) The product of compact topological spaces is compact.
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The original proof of this may be found in {70], but the reader may prefer [45].
The property of compact topological spaces which we use is the following: given any
collection C of closed sets in a compact topological space, if the intersection of any
finite subcollection of C is nonempty, then the intersection of all of the sets in C is

nonempty. We may now state our result.

Lemma 47 Let G and H be digraphs. Suppose there ezists a function | : V(G) —
P(V(H)), and for each v € V(G) a compact topology T, on l(v), such that for every
finite subdigraph G' C G:

® there exists an [-list-homomorphism f: G' — H, and

® the set {g : g is a mapping from V(G) to V(H) and g|g is an l-list-homo-
morphism from G' to H} is closed in the product topology T = [l,ev(c) Tv on
S = [lev(g) I(v).
Then G — H.

Proof: Suppose that the conditions of the lemma are satisfied. Let 7 be the product
topology on S. By Tychonoff’s theorem T is compact. For each finite subdigraph
G' C G, let Fgr C S be the set of all mappings h : V(G) — V(H) such that h|e
is an [-list-homomorphism from G’ to H. Each Fgs is a nonempty closed set in the
topological space (S,7). We claim that the intersection of the collection {Fgr : G’
is a finite subdigraph of G} is nonempty. Since 7 is compact it suffices to show
that for any finite collection Gi,..., G, of finite subdigraphs of G, the intersection
M, Fg, is nonempty. But given any finite collection Gj,. .., G, of finite subdigraphs
of G, the digraph G’ = U, G; is a finite subdigraph of G, and so there is an [-list-
homomorphism f : G’ — H. Let g be any mapping from G to H such that g|er = f.
Then it will be the case that g|g, is an [l-list-homomorphism for each 1 < ¢ < n.
Therefore ., Fg,; is non-empty. And so our claim is proved.

Now any element of the intersection of the collection {F¢ : G'is a finite subdigraph

of G} is an l-list-homomorphism from G to H, and so we conclude that G — H. =

Tychonoff’s theorem is an extremely useful tool in proving many different types of

compactness theorems. In fact, the above lemma can be regarded as a generalization
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of compactness results such as those found in [32, 62, 63]. These papers exploit the
fact that if [ is a finite set and 7 is the discrete topology on [, then (I,7) is compact
and every subset of [ is closed. This same property of finite sets will be the basis of

the proofs of our first two corollaries.
Corollary 48 Any finite digraph is compact.

Proof: Suppose H is finite, and let G be any digraph such that all finite subdigraphs
G' C G admit homomorphisms to H. For each v € V(G) let I(v) = V(H) and let 7,
be the discrete topology on I(v). It is a simple matter to verify that the conditions of

lemma 47 are satisfied. Thus G — H and so H is compact. [

This result is not particularly surprising, and is a generalization of the well known
compactness theorem for chromatic number [17], which states that a graph (or di-
graph) is n-colourable if and only if each of its finite subdigraphs is n-colourable.
It can also be proved using a similar result found in [37], which states that a finite
subdigraph H of a digraph G is a retract of G if and only if H is a retract of every
finite subdigraph of G which contains H. Our next result characterizes a large class of
infinite digraphs which are compact. We denote by Aut(H) the automorphism group
of H. We say that H is locally finite if for all v € V(H), both N*(v) and N~(v) are
finite.

Theorem 49 Let H be a locally finite digraph. If there are only finitely many orbits
in Aut(H) then H is compact.

Proof: Let H be a digraph satisfying the conditions above, and let G be any digraph
such that every finite G’ C G admits a homomorphism to H. We may assume without
loss of generality that G is connected. Define A C V(H) to be a set containing one
vertex from each orbit of Aut(H), so A is finite. Let vy be some fixed vertex in V(G)
and define /(vg) = A. Clearly for any subdigraph G’ C G (not neccessarily finite),
there is a homomorphism f : G' — H if and only 'if there is such a homomorphism
with f(vo) € {(vo).

We now define a finite set I(u) C V(H) for each u € V(G). Given u € V(G), let
l(u)={y € V(H) :d(y,A) < d(u,v)}. Since H is locally finite, {(u) will be finite.
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We will show that every finite subdigraph of G admits an [-list-homomorphism
to H. Thus, let G’ be a finite subdigraph of G. Let G” be a finite subdigraph of G
containing G’, and such that for any u,v € V(G'), the distance between u and v in
G” is the same as their distance in G. Such a digraph is easily constructed by adding
to G’ a shortest oriented path from u to v in G, for each u,v € V(G’). Since G” is
finite we have G” — H. And so if we choose a homomorphism f : G” — H such that
f(v) € A, then f(u) € l(u) for all u € V(G'). So f|e will be an [-list-homomorphism
from G’ to H.

If we now assign the discrete topology to each set I(v), we may apply lemma 47

to conclude G — H, and so H is compact. |

As we mentioned before, both of these results exploit finitary properties of the
digraphs in question. In the first case the digraphs are finite, and in the second case
the digraphs are locally finite. Our next result deals with digraphs that do not possess
any such finitary property, except of course in the sense that compactness is itself a
finitary property.

Before stating the result we note that applying lemma 47 is often simplified by
the following observation. Let G, H, I(v) and T, be given as usual. Suppose that
G’ is a finite subdigraph of G, and let 8" = [[,cv(gn l(v) and 7' = [lev(eny To- It is
a simple matter to verify that the set {g : g is a mapping from V(G) to V(H) and
glg' is an l-list-homomorphism} is closed in (S,7) if and only if the set X = {g: g
is an [-list-homomorphism from G’ to H} is closed in (S§',7’). But X is closed if
and only if its complement X° is open. An open set in (&,7") is just a product
[l.ev(g) Ov Where each O, is open in ({(v),7,). Thus, it is sufficient to show that if
f:V(G") — V(H) is not a homomorphism, then for each v € V(G’), there is an open
set N, in l(v) containing f(v) such that no g € [I,ev(gr) Nv is @ homomorphism.

We use R to denote the set of real numbers.

Theorem 50 Let M = (M,d) be a metric space,- and let C be a compact subset of
R. Define a digraph H by V(H) = M and E(H) = {uv: d(u,v) € C}. If either

i) M is compact, or
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i) every closed and bounded subspace of M is compact and Aut(H) has only finitely

many orbits,

then H is compact.

Proof: Let H be a digraph as defined above and let G be any digraph. Assume
without loss of generality that G is connected. Suppose that every finite subdigraph of
G admits a homomorphism to H. We will define for each v € V(G) aset I(v) C V(H)
and a compact topology T, on I(v) so that every finite subdigraph of G' admits an
l-list-homomorphism to H.

Case 1: (i} holds.

For all v € V(G) let I(v) = V(H) and let T, be the metric topology given by M
on /(v). Every finite subdigraph of G clearly admits an [-list-homomorphism to H.
Case 2: (ii) holds.

Let A C V(H) contain exactly one element from each orbit of Aut(G). Choose
some arbitrary vo € V(G) and define I(vg) = A. Now note that the set C must be
closed and bounded, so let r = max{z : ¢ € C}. For any v € V(G) —{vo}, let k be the
length of a shortest oriented path from v to vo in G. Let I(v) = {w : d(w, A) < kr}.
Now for all v € V(G) let 7, be the metric topology given by M on [(v). Since
I(v) is closed and bounded, the topology 7, is compact. It is clear that every finite
subdigraph of G admits an [-list-homomorphism to H.

Having defined our lists and topologies in one of the above ways, it remains only
to show that for any finite G' C G, the set of mappings f : G — H such that f|g
is an I-list-homomorphsim is a closed subset of S = [[,ev(g) /(v) under the product
topology 7 = [l.ev(g)Zo- To do this, we will show that given G’ and a mapping
f : V(G") — V(H) which is not a homomorphism, there exists a neighbourhood
N, C I(v) of f(v) such that no g € [I,ev(g) Nv is 2 homomorphism.

Suppose that f : V(G') — V(H) is not a homomorphism. Then there exist
u,v € V(G') such that uv € E(G’) but f(u)f(v) ¢ E(H’). Then, recalling that f(u)
and f(v) are points in the metric space M, we know that d(f(u), f(v)) € C. But C'is
closed, so there exists an € > 0 such that for all z € R, |z — d(f(u), f(v))| < € implies
that z € C. Therefore, for all r,s € M, if d(f(u),r) < €/2 and d(f(v),s) < €/2, it
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must be the case that |d(r,s) — d(f(u), f(v))| < €, applying the triangle inequality.
So if we let N, and N, be the neighbourhoods of radius €¢/2 around f(u) and f(v),
respectively, in 7, and 7, then no vertex in N, is adjacent to any vertex in N, in
H. Now define N,, = {(w) for all w # u,v in V(G'). No g € [luev(c) Nw Wwill be a
homomorphism, since g(u)g(v) ¢ E(H). It follows that the set {f € S : fle is an
[-list-homomorphism} is closed in (§, 7 ), and so lemma 47 applies. We conclude that
G — H. |

Note that since the distance funtion d is symmetric, all relations in these digraphs
will be symmetric, and so they may be considered to be graphs. We will continue to
regard them as digraphs, although for simplicity in our diagrams we will often draw
pairs of directed edges as a single undirected edge.

This last result allows us to construct some particularly interesting compact di-
graphs. Define a digraph D by V(D) = ®?, i.e. points in the plane, and E(D) =
{{u,v} : d(u,v) = 1}, where d is the usual metric on ®2. This digraph has been stud-
ied extensively in the literature [20, 35], and has several interesting open problems
associated with it. For example, it is quite simple to show that 4 < x(D) < 7, but no
improvement on these bounds is known. The properties of this digraph which are of

interest to us are given by the following theorem.
Theorem 51 D is a compact core.

Proof: That D is compact is a simple corollary of theorem 50, since {1} is a compact
subset of ®, D is vertex-transitive, and closed bounded sets in ®? are compact. The
fact that D is a core is more difficult to prove. We will prove the stronger claim that
any endomorphism of D is a rigid transformation of R2.

For any three vertices {vi,vz,v3} C V(D), the vertices {v1,v2,v3} induce a K3
in D if and only if the corresponding points in ®? are the vertices of an equilateral
triangle with side length one. Since the homomorphic image of K3 must be another
K3, any endomorphism of D must be a rigid transformation of these three points.
Thus, to prove our claim it suffices to show that any endomorphism of D which fixes

{v1,v2,v3} pointwise must be the identity.
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Let f be an endomorphism of D which fixes {v),vs,v3}. We will first show that

D must fix the vertices of the triangular lattice containing {v1, v, v3} (see figure 4.1).

/\
Figure 4.1

We will do this by showing that if any triangle {u;,us,us} in the lattice is fixed,
then the lattice point which is the unique common neighbour of u; and u3 other than
u; must also be fixed. A moment’s reflection is all that is required to see that this
will force every vertex in the lattice to be fixed.

Suppose that a triangle {u;,us,us} is fixed by f. There is a subdigraph of D
containing {u;,uz,us} as indicated in figure 4.2. Here u is the common neighbour of
u; and uz not equal to u;. Since {uj,us,us} are fixed, f(u) = u or f(u) = uy, so

either d(uy, f(u)) = v/3 or d(u;, f(u)) = 0.
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Ug -
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U2 "’ V2
U1
Figure 4.2

The triangles {u1,v1,v;} and {v,v1,v;} must map to triangles with the edge v1v;
in common, and so d(u1, f(v)) = v/3 or d(u1, f(v)) = 0. So if f(u) = u; then it must
be the case that either d(f(u), f(v)) = /3 or d(f(u), f(v)) = 0. But d(f(u), f(v))
must be 1. Thus, f(u) = u, and so we may conclude that f fixes the entire lattice.

We must now show that f fixes every point in the plane. Suppose there is a vertex
v such that f(v) # v. We claim that there is a lattice vertex w and an integer k such
that d(w,v) < k and d(w, f(v)) > k. To see this, let I be a line which is perpendicluar
to some edge of the triangular lattice, and contains a lattice point. Then [ contains
infinitely many lattice points which are spaced at a distance of /3 from each other.
Furthermore, choose [ so that the perpendicluar projections of v and f(v) on [ are
distinct (figure 4.3).
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Figure 4.3

Let p, and py(,) be the perpendicular projections of v and f(v) onto I. Let p be
a point on [ midway between p, and pys(,) and let r = d(p,p,). Let W be the set of
lattice points on [ which are outside the interval [p,, ps(,)] and are on the same side

of the interval as p, (figure 4.4).
v

f(v)

Pfw) P Pv - .
Figure 4.4

Every point in W will have distance c+ k+/3 from p, where c is a positive constant
and k ranges over the non negative integers. Hereafter we will use (z) to denote the
fractional part of a real number z, i.e. (z) = z — |z]. Since /3 is irrational, the set
{{c+ k+/3)}, where k ranges over the non-negative integers, is dense in [0,1]. Thus,
for every € > 0 there exist infinitely many w € W such that (d(w,p)) < ¢, and so
there exist such w arbitrarily far from p, p,, and py(,). For each w € W it is clearly
true that d(w, p,) < d(w,v) and d(w, ps()) < d(w, f(v)).

Consider any fixed € > 0. For each w € W which is sufficiently far from p, and
Pf(v), we have d(w,v) —d(w,p,) < €. Thus, thereis a w € W such that (d(w, p)) <e,
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|d(w,v) — d(w,p,)| < € and |d(w, f(v)) — d(w, ps))| < €. We now take e = r/2, and

so there exists a w € W such that

dlw,v) < d(w,p,)+7r/2=d(w,p)—r1r/2
< d(w,p) — [d(w,p) — |d(w,p)]] = [d(w, p)]

and
d(waf(v)) > d(vaf(v)) > d(w,p) > I_d(w,p)J

Thus, if we set k = |d(w, p)| we have d(w,v) < k and d(w, f(v)) > k, and so our
claim is proved.

Now since d(w,v) < k it is easily seen that there is a directed path of length &
from w to v in D. Thus, there must be a directed walk of length k from f(w) to f(v)
in D. But this is impossible, as f(w) = w and d(w, f(v)) > k.

We conclude that f is the identity mapping, and so any endomorphism of D is a
rigid transformation of the plane. Obviously a rigid transformation of the plane is an

automorphism of D, and so D is a core. [

We may construct higher-dimensional analogues of D in a natural way. We simply
let the vertex-set be R*, and define the edge-set exactly as we did for D. The proof
of the preceeding theorem will also generalize to these digraphs, the major difference
being that the triangles in the graph in figure 4.2 will be replaced by copies of Kp4;.

In general the digraphs constructed using the theorems in this section need not
be cores. The preceeding example is particularly interesting because D is a compact
core with |V(D)| = 2% (¢f. theorem 52).

4.5 Structures and Graphs

All of the results from sections 4.2 and 4.3 apply to structures and graphs, and the
proofs are essentially the same.
We may prove a result similar to lemma 47 in section 4.4. However, note that

we have been forced to replace the term ‘finite’ in the statement of the lemma by
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‘finitely induced’ to account for the possibility that our structures may be defined for

an infinite language.

Lemma 47’ Let G and H be structures. Suppose there ezists a function | : V(G) —
P(V(H)), and a compact topology T, on l(v), for each v € V(G), with the following
properties for every finitely induced substructure G' C G:

o there exists an l-list-homomorphism f : G' — H, and

o the set of mappings {(¢g : G — H) : glg' is an S-list-homomorphism } is closed
in the product topology T = [l,ev(e) T 0n S = [luev(c)(I(v))-

Then G — H.
The proof of lemma 47’ is now identical to the proof of lemma 47, with the term
‘finite’ uniformly replaced by ‘finitely induced’.

The original statement of lemma 47 applies to graphs without modification.

We may prove a stronger version of corollary 48 for structures. The original

statement holds for graphs.
Corollary 48' Any finitely induced structure ts compact.

Proof: If R, and R, are two relations defined on a structure G, we will say that R,
and R, are equivalent if R;(7) if and only if Ry(7) for all . We first claim that it is
sufficient to prove that any finite structure is compact, for if G is a finitely induced
structure, then only finitely many pairwise inequivalent relations can be defined on
V(@). If G is not compact, then let H be a certificate of noncompactness for G. We
will construct a noncompact finite structure G’ and a certificate of noncompactness
H'. Let V(G') = V(G),V(H') = V(H) and for each equivalence class {R; : i € I}
of relations on G we select one representative R and define R(G’) = R(G), R(H') =
Uier R:(H). Now G’ is finite, since V(G) is finite and only finitely many relations are
defined on G’. Also, any finitely induced substructure of H' is finite. Finally, it is clear
that given any set S C V(H) and any mapping f : S — V(G), f is a homomorphism
from H[S] to G if and only if f is a homomorphism from H'[S] to G'. But every finitely

induced substructure of H admits a homomorphism to GG, and so every finitely induced



CHAPTER 4. COMPACTNESS OF DIGRAPHS 74

(and therefore finite) substructure of H’ admits a homomorphism to G’. However,

H 4 G so H 4 @, and so the claim is proven. =

We may also restate theorem 49 for structures. In fact, in this case the theorem
statement is identical, but we must define what it means for a structures to be locally
finite. We will say that a structure G is locally finite if for each v € V(G) and each
R € L, v occurs in only finitely many R-edges of G. Note that if £ is infinite then v
may occur in infinitely many edges of different types.

The proof of theorem 49 is now easily modified to apply to structures. Again the
original proof applies directly to graphs.



Chapter 5

Classes of Digraphs

5.1 Definitions

Up until now we have been examining properties of individual digraphs. We now turn
our attention to properties of broad classes of digraphs. In the first section of this
chapter we will examine the class of all compact digraphs. We will determine exactly
how many compact cores there are, and show that they may be partially ordered in
a natural way to produce a distributive lattice.

In all sections of this chapter, we will use — to impose a binary relation on the
digraphs under discussion, i.e. G is related to H if G — H. This relation is reflexive
and transitive, and so defines a natural partial order on homomorphic equivalence
classes of digraphs. Many interesting properties of this ordering are examined in [21].
One very special digraph which will occur occasionally in this chapter consists of a
single vertex v with a loop vv. This digraph is named one because it is maximum
with respect to —, that is, G — one for all digraphs G. This immediately implies
that one is compact.

We now define three operations which we will use throughout this chapter. Let G
and H be digraphs. As usual, we denote by GU H the disjoint union of G and H. We
denote by G'x H the categorical product of G and H, thatis, V(Gx H) = V(G)xV(H)
and E(G x H) = {(r,u)(s,v) : rs € E(G) and uv € E(H)}. We denote by H®
the digraph defined by V(H®) = {f : f is a mapping from V(G) to V(H)} and

75
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E(H®) = {fg : uwv € E(G) implies f(u)g(v) € E(H)}. This digraph has also been
called the map-graph [36].

It is a simple exercise to verify the following facts [21]:
e G—-GUHand H—- GUH,

e ifG— Kand H— K then GUH — K,

e GxH—-Gand Gx H— H,

e if { 4G and K — H then K - G x H,

e one — HC if and only if G — H.

For any digraph G we define [G] to be the class of all digraphs which are homo-
morphically equivalent to G. It is easy to verify that if [G1] = [G2] and [Hy] = [H.),
then [Gy + Hy] =[Gz + Hs), [Gy x Hy] = [G2 x Hy), and [GF'] = [GE?]. Thus, we may
define U, X, and exponentiation for two equivalence classes of digraphs by applying
the given operation to two arbitrary representatives of the classes. Wherever it is

appropriate to the context we will take G to mean [G].

5.2 The Class of Compact Digraphs

We define C to be the class of all compact digraphs. Observe that C is always a proper
class, since for any cardinal x, an independent set of size x is a compact digraph.
However, we may still hope to reduce C to a more reasonable size by partitioning it
into homomorphic equivalence classes. We define € to be the class of all homomorphic
equivalence classes of compact digraphs. Strictly speaking, we define £ to be a class
containing one representative from each homomorphic equivalence class of compact
digraphs, since a class cannot be an element of a class. Since every compact digraph
contains a unique core, and the cores of homomorphically equivalent digraphs are
isomorphic, we know that every homomorphic equivalence class of digraphs contains

exactly one core.
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We will denote by S(G) the set of all finite subdigraphs of G, sometimes called
the age of G [18].

Qur first result shows that £ is a set.
Theorem 52 The class € is a set and |E| = 2.

Proof: Observe that if G and H are compact digraphs such that S(G) = S(H), then
G « H. In other words, if G » H then S(G) # S(H). Thus, there can be no more
equivalence classes of compact digraphs than there are distinct sets of finite digraphs.

Clearly there are exactly Rq distinct finite digraphs and so there are no more than
2% equivalence classes of compact digraphs.

We must now show that there are at least this many distinct equivalence classes. It
suffices to show that there exists a set of 2%° pairwise inequivalent compact digraphs.
Let P, be the infinite incompatible set of digraphs defined in the proof of lemma 7,
i.e., the set P, is the set of all directed cycles of prime length. We claim that for
any nonempty subset G C P,, the digraph Hg = Ugeg G is compact. Let G be any
digraph and suppose that every finite subdigraph G’ C G admits a homomorphism
to Hg. Assume without loss of generality that G is connected.

Observe that Hg is a disjoint union of directed cycles of distinct prime lengths.
If G contains no cycle C with net(C) > 0 then it is a simple matter to verify that
G — D,, for any directed cycle D,,, and so G — Hg. On the other hand, if G contains
a cycle C with net(C) = k > 0, then by lemma 6 we know that C — D, if and only if
n|k. This trivially implies that n < k, and so there are only finitely many components
{Dp,,..., Dy} of Hg such that C — D,,. Let D = U, D,,. Since G is connected
we know that G — Hg if and only if G — D. But D is finite, and so is compact.
Furthermore, every finite subdigraph of G admits a homomorphism to D, since every
finite subdigraph of G is contained in a finite connected subdigraph of G which also
contains C. Thus, G — Hg.

Lemma 6 also guarantees that if Gy # G, then Hg, + Hg,. Since Py, is countably

infinite, it has 2% nonempty subsets, and so we are done. [ ]

Corollary 53 There are ezxactly 2% compact cores. ]
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Note that in the above proof the 2" inequivalent digraphs we construct all have
countable vertex-sets. In other words, cardinality arguments give us no reason to
believe that compact cores of uncountable size exist. However, the digraph D con-

structed in theorem 51 demonstrates that such objects do exist.
Open Problem 54 What is the mazimum cardinality of a compact core?

We now know that £ is a set, so if we impose the partial order — on £ we obtain a
partially ordered set. Our next few results, in the spirit of [21], show that the partially
ordered set (£,—) is in fact a distributive lattice with exponentiation.

We claim that U and x define join and meet operations, respectively, for (£, —),

and so we must show that the class of compact digraphs is closed under U and x.
Lemma 55 If G and H are compact digraphs then GU H and G x H are compact.

Proof: Let G and H be compact digraphs. It suffices to show that GUH and G x H
are compact with respect to every connected digraph. Thus, let K be a connected
digraph such that all finite subdigraphs K’ C K admit a homomorphism to GU H. It
cannot be the case that there exist finite subdigraphs K', K” C K such that K’ 4 G
and K" 4 H, for then there would be a finite connected subdigraph of K containing
K' and K". This finite subdigraph of K would admit no homomorphism to GU H.

Thus it must be the case that every finite subdigraph K’ of K admits a homo-
morphism to G, or every finite subdigraph K’ of K admits a homomorphism to H.
By compactness of G and H we have K — Gor K — H,so K — G U H, and so we
conclude that G U H is compact.

Suppose now that all finite K’ C K admit a homomorphism to G x H. Then since
G x H — G and G x H — H, all such finite K’ admit homomorphisms to both G
and H. And so by compactness of G and H there exist homomorphisms f : K — G
and g : K — H. We now define h : K — G x H by h(v) = (f(v),g(v)). It is

straightforward to verify that A is a homomorphism. |

At this point it is not difficult to verify that U and X satisfy the properties of the
join and meet operations in (£, —). It is also a simple matter to show that U and X

satisfy the distributive laws.
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We may show that HS defines an exponentiation operation for £. To do so we
must prove that if G and H are compact then HC is also compact. We will in fact

prove the following stronger result.

Lemma 56 A digraph H is compact if and only if HC is compact for every digraph
G.

Proof: We refer the reader to [21] for proofs of the following facts: If G and H are
any digraphs, then H® x G — H, and for every digraph K, if K x G — H then
K — HEC.

Suppose that H is compact and let G and Z be arbitrary digraphs such that
every finite subdigraph of Z admits a homomorphism to H®. Let W be an arbitrary
finite subdigraph of Z x G. Then for some finite Z’ C Z and G’ C G we must have
WCZ xG. Bt Z - HS and @ - Gso Z' x G' - H® x G — H. Thus,
every finite subdigraph of Z x G admits a homomorphism to H, and so Z x G — H.
Therefore Z — HE.

Now suppose that H is not compact. Then H°* « H is not compact. It is also
easy to prove the more interesting fact that if G is a certificate of non-compactness

for H, then HC is not compact. [

Observe that the lattice (£, —) has a maximum element, namely one, and a min-

imum element, namely the trivial digraph with a single vertex and no edges.

5.3 Finite Equivalence

In the study of compact digraphs, we are interested in studying the connection between
the existence of homomorphisms of infinite digraphs and the existence of homomor-
phisms of finite digraphs. Within this context, it may be useful to examine a class of
digraphs with the property that any finite subdigraph of a digraph in the class admits
a homomorphism to any other digraph in the class. We say that two digraphs G' and
H are finitely equivalent if for any finite G' C G we have G' — H, and wvice versa.

This is easily seen to be an equivalence relation.
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Digraphs which are homomorphically equivalent are certainly finitely equivalent,
but finitely equivalent digraphs may not be equivalent (consider, for example, the
Ray and the Line). In this section we will examine classes of digraphs which are
finitely equivalent. Let C(G) be the class of all digraphs which are finitely equivalent
to G, and let F(G) be the class of homomorphic equivalence classes of C(G). Again,
we should strictly consider F(G) to be a class containing a representative from each
homomorphic equivalence class of C(G). We partially order F(G) by —.

We will discover in this section that F(G) can be a proper class. In other words, it
is possible for there to exist a proper class of pairwise inequivalent digraphs which are
pairwise finitely equivalent. In fact this will turn out to be true for ‘most’ digraphs.

We will also show that (F(G),—) has the properties of a distributive lattice. It is
not, strictly speaking, a lattice because a lattice must be defined on a set rather than
a class. However, by slight abuse of terminology we will call an object a lattice if its
ordering satisfies the properties of a lattice, even if it is defined over a proper class.

We again define the join and meet operations by using U and x, respectively.
Theorem 57 For any digraph G, (F(G),—) is a distributive lattice.

Proof: It suffices to show that C(G) is closed under U and x. If Hy, H, € C(G), then
certainly any finite subdigraph of H; admits a homomorphism to H; U H,. If K is a
finite subdigraph of H; U H;, on the other hand, then any component of K must be
a finite subdigraph of either H; or H,, and so in either case admits a homomorphism
to Hy. Thus, Hy, U H; is finitely equivalent to H;. Note that this argument applies
equally well to arbitrary unions of digraphs.

Now, any finite subdigraph of H; admits a homomorphism to both H; and H,,
and so admits a homomorphism to H; x H,. Also, any finite subdigraph of H; x H,
admits a homomorphism to Hi, since H; x Hy, — H;. Thus, H; x H; is finitely

equivalent to H;, and, by a symmetric argument, to H,. |

Unlike £ in the previous section, F(G) is not generally closed under exponentia-
tion. For example, given any digraph G, G¢ « one since G — G, but one &€ F(QG)

unless G contains a loop.
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The class F(G) is also unlike £ in that it does not always contain a maximum
element with respect to —, although it does always have a minimum element. Our
next theorem proves this and more. We will denote by Sg the digraph which is the
disjoint union of all finite subdigraphs of G.

Theorem 58 For any G, the lattice (F(G),—) has a mazimal element if and only if
F(QG) contains a compact digraph. Furthermore, this compact digraph is the mazimum

element of (F(G),—). The lattice (F(G),—) always has a minimum element.

Proof: A moment’s reflection should convince the reader that G is compact if and
only if G is the maximum element of F(G). Formally: if (F(G),—) contains a
maximal element G, then G must be maximum, since if H 4 G for some H € F(G)
then G U H is strictly greater than G. If G is maximum then given any H, all of
whose finite subdigraphs admit homomorphisms to G, the digraph H U Sg will be
finitely equivalent to G, so H U Sg — G, and therefore H — G. Thus G is compact.
If G is compact, then clearly H — G for any H finitely equivalent to G.

The digraph Sg is always a minimum element of (F(G), —), since each component

of Sg is finite, and so maps to every other element of F(G). =

We mentioned before that F(G) may not be a set. Our next series of results deal
with the possible sizes of F(G). We determine that in most cases F(G) is a proper

class and that in many of the remaining cases it consists of a single element.

Lemma 59 The class F(G) consists of a single homomorphic equivalence class if and
only if there exists a digraph H such that H — G, H is compact, and H is a disjoint
union of finite digraphs.

Proof: Suppose that |F(G)| = 1. Let H = Sg, so H is a disjoint union of finite
digraphs. Obviously H is finitely equivalent to G, and so H « G. Also, H is trivially
maximum in F(G), and so H is compact.

Now suppose there exists a compact digraph H which is a disjoint union of finite
digraphs and is homomorphically equivalent to G. Clearly H < Sy, and so H is
minimum in F(G). If |F(G)| > 1 then H is not maximum in F(G), and so H is not

compact, a contradiction. [
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Obviously any finite digraph satisfies the conditions of this lemma. We may also

construct infinite compact cores which are disjoint unions of finite digraphs.

Example 60 Let H be the disjoint union of all directed cycles of prime length. Then

H is a compact core.

Clearly every component of H is a finite core, and no component of H admits a
homomorphism to any other component of H, so H is a core. Also, in the proof of
theorem 52 we showed that any disjoint union of directed cycles of prime length is

compact.

In the remainder of this section we will prove the rather impressive fact that in
most cases where |[F(G)| # 1, it is a proper class. Our first result treats all cases

where G is not finitely equivalent to a compact digraph.
Lemma 61 If 7(G) does not contain a compact digraph, then it is a proper class.

Proof: Suppose that F(G) is not a proper class. Then F(G) is a set, so we may
define a new digraph G* by G* = Uperc) H. The digraph G* is finitely equivalent
to G, and any H € F(G) will obviously map to G*. Thus G* is a maximum element
of F(G), and so is compact. u

This result allows us to restrict our attention to digraphs G which are finitely
equivalent to some compact digraph H. Since in this case F(G) = F(H), it will be
sufficient for our purposes to restrict our attention to the behavior of F(H) when H
is a compact digraph.

Further results rely on the following lemma, in which we show that a certain

density property is sufficient for F(G) to be a proper class.

Lemma 62 Let H be a compact core which has an infinite component C, and let H’
be a digraph finitely equivalent to H such that C is-a component of H' and such that
C /4 H' —C. Suppose that for any G € F(H) such that G — H' and H' /5 G, there
ezists a K such that G - K — H' but H' & K / G. Then |F(H)| =1 or F(H) is

a proper class.
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Proof: Suppose that F(H) has the density property described above, and that F(H)
is a set with |F(H)| > 1. Let C and H’ be as stated above. Note that C is a core,
since it is a component of a core. Let U = {G € F(H): G — H'}.

We define a digraph He = U,Cg;’{f K. Observe that this union is nonempty, since
Sy € U and C - Sy. Since Hg is a union of digraphs which are finitely equivalent
to H', the digraph Hg is finitely equivalent to H’. Clearly Hc — H'. Also, since C is
connected and C does not admit a homomorphism to any component of Hc we know
that C 4 Hg, and so H' / Hc. By the density property, there must exist a digraph
K such that Ho — K — H' but H' /4 K /4 He.

Let K be such a digraph. Every finite subdigraph of K admits a homomorphism to
H', and every finite subdigraph of H' admits a homomorphism to Hc, and therefore
to K. Thus K is finitely equivalent to H’, and so K € Y. If C # K then K — Hc¢
a contradiction. On the other hand, if C — K then let H” = (H' — C) U S¢, t.e.,
replace C by the union of its finite subdigraphs. We know that C' /4 Sc, since C' is an
infinite core, and C /& H' — C, so C + H". But clearly H"” € U, and so H" — Hc.
Hence H” — K. But H” contains every component of H’ except C, and so every
component of H' other than C admits a homomorphism to K. We have also assumed

that C — K, and so H' — K, a contradiction. Thus, K cannot exist. -

Corollary 63 Let H be a compact digraph such that |F(H)| > 1. Suppose that for
each G € F(H) such that H » G, there ezists a K such that G — K — H but
H 4 K 4 G. Then F(H) is a proper class.

Proof: We may assume that H is a core. Since |F(H)| > 1, we know that H is not a
disjoint union of finite digraphs by lemma 59. Thus, let C be an infinite component
of H. Clearly C 4 H — C, so we may take H’ to be H and apply lemma 62. [ ]

It is interesting to note that the key to this lemma and its corollary is the simple
fact that we may take the union of a set of digraphs, but not of a proper class of
digraphs. It is also quite surprising that a very simple density condition is sufficient
to force F(G) to be a proper class.

The following lemma, and its use in proving density results, are due to Perles [60].
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Lemma 64 Let G and H be digraphs such that G — H but H / G. If there ezists a
digraph K such that H / K UG and K 4 GF, then there exists a digraph K' such
that G- K' - H and H 4 K' 5 G.

Proof: Suppose that such a K exists for a given G and H. Since K /4 G¥, we have
KxH#G. Let K' = (K x HYUG. Then K’ /4 G and G — K'. Furthermore,
K x H — H so K' — H. The fact that K x H — K also implies that K’ — K UG.
Therefore H / K', since otherwise H — K U G. [

Corollary 65 Let G be a digraph and let H be a connected digraph such that G — H
but H 4 G. If there erists a digraph K such that H /+ K and K /> G¥, then there
erists a digraph K' such that G - K' — H and H / K' 4 G. |

The conditions of lemma. 64 require that H 4 G, so G¥ is loopless. The chromatic
number of G¥ is therefore always defined, and so we will often choose K to have a
higher chromatic number than G¥ to ensure that K 4 G¥.

We now begin to apply these results to show that for many digraphs G, the class
F(G) is a proper class.

Lemma 66 Let H be a compact core, and suppose H has an infinite component C

satisfying at least one of the following:
o C contains an oriented odd cycle,
e C contains a directed cycle (including 2-cycles),
e C contains the Line.

Then either |F(H)| =1 or F(H) is a proper class.

Proof: Let H be an infinite connected compact core such that |F(H)| > 1, and let
C be an infinite component of H satisfying one of the above conditions.

Suppose C contains an oriented odd cycle. Let n be the length of some oriented

odd cycle in H. Let G be any digraph in F(G) such that G — C and C /4 G. Let
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K be a graph with og(K) > n and x(K) > x(G°). The existence of such is shown in
[22, 51, 58] when x(G©) is finite and in [23, 25] when x(G€) is infinite. Let K’ be any
orientation of K. Then C 4 K’ and K’ 4 G¢. Applying corollary 65 and lemma 62
we see that F(H) is a proper class.

Suppose that C' contains a directed cycle or the Line. Let G be a digraph in F(H)
such that G — C and C /4 G. Let k = x(G®) and let K be the transitive tournament
with V(K) = {a : a < k*} and E(K) = {af : a < f < k*}. Then C / K since
K contains no Line and no directed cycle, and K + G since x(K) > x(G®). Thus,
applying corollary 65 and lemma 62 we see that F(H) is a proper class. [

Thus, if H is a compact core, we know that |[F(H)| =1 or F(H) is a proper class
unless every infinite component of H is an acyclic bipartite digraph. Furthermore, we
know that if H is any digraph which is not finitely equivalent to some compact core,

then F(H) is a proper class.

Open Problem 67 Determine the size of F(H) when H is a compact core and every

infinite component of H is an acyclic bipartite digraph.

Conjecture 68 For every digraph G either |F(G)| =1 or F(G) is a proper class.

5.4 Structures and Graphs

The results in this chapter generalize nicely and in some cases nontrivially to structures
and graphs. We will begin by re-examining theorem 52.

Given a language £, we define C; to be the class of all compact structures on L,
and we define £, to be the class of all homomorphic equivalence classes of compact
structures on £. Our next result will show that for any language £, &; is a set.

However, if L is large, £, will also be large.
Theorem 52 Let L be a language. Then & is a set and |E| = 2ma={Roilfl}

Proof: As in the proof of theorem 52, we observe that if there are exactly « distinct
finite structures on L, then there can be no more than 2* equivalence classes of

compact structures on L.
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Case 1: |[£] < ¥

In this case there are R distinct finite structures on £ and so there are no more
than 2% equivalence classes of compact structures on L.

We must now show that there are at least this many inequivalent compact struc-
tures on L. Choose some n > 1 such that £ contains an n-ary relation, and let P,
be the infinite mutually incompatible family of structures defined in lemma 7. We
claim that for any nonempty subset G C P,,, the structure Hg = Ugeg G is compact.
Let G be any structure and suppose that every finite substructure G’ C G admits a
homomorphism to Hg. Assume without loss of generality that G is connected and
has no isolated vertices.

If n = 2 then we prove the claim exactly as in theorem 52. Suppose n > 2. If
G contains a vertex v and edges E;, E, such that v occurs in the ¢** coordinate of
E, and the j** coordinate of F, with 7 # j and ¢ > 3, then the finite substructure
of G induced by FE;, E, admits no homomorphsim to Hg, a contradiction. Thus, any
v € V(G) must either always occur in the i** coordinate of edges in which it occurs, or
it must always appear in one of the first two coordinates of edges in which it occurs.
The same restrictions apply to any substructure of G with no isolated vertices. Now
for any substructure G’ C G, we define a digraph G, by V(G,) = {v € V(G) :
v occurs in the first two coordinates of edges} and (u,v) € E(G3) if and only if
(u,v,ws,...,ws) € E(G'). We construct H, from Hg similarly. Now G' — Hg if and
only if G}, — H,. But H, is a disjoint union of directed cycles, by construction of P,,
and so is compact by the argument given for the case n = 2. Hence, Hg is compact.

By lemma 3, the set {Hg : G C P, } is a pairwise inequivalent family of structures.
Case 2: |£] > Ro

In this case there are exactly |£| finite structures on £. Hence there are no more
than 2/¢! equivalence classes of compact structures on L.

To show that there are at least this many equivalence classes, we will first construct
a specific set G of finite strutures with |G| = |£|.. For each R € L, define a finite
structure Gp consisting of a single R-edge on the appropriate number of vertices. Let
G ={Gr: R € L}. Now given a set X C G we define Gx to be the disjoint union
of all Gg,R € X. For any X C G,Gx will be compact by theorem 49, as it will
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contain only finitely many edges of each type. Also, distinct subsets X and ¥ of G
yield inequivalent structures, since there will be some R € L such that Gx contains
an R-edge and Gy does not, or vice versa. Thus we obtain 2/¢ inequivalent compact

structures on L. ]

Similar arguments show that the number of equivalence classes of compact graphs
is exactly 2%. In this case we would use the infinite mutually incompatible family B
from lemma 8 in the construction.

Lemmas 55 and 56 are true for arbitrary structures, and the proofs are identical

to the proofs for digraphs.

The notion of finite equivalence generalizes naturally to structures and graphs.
However, when dealing with the class of structures over an infinite language we must
take care to recall the distinction between finite structures and finitely induced struc-
tures. We say that two structures are finitely equivalent when any finite substructure
of one admits a homomorphism to the other. An analogous notion could be defined
using finitely induced substructures, but we choose not to do so at this time.

All of lemmas 57, 58, 59, 61, 62, 64, and corollaries 63 and 65 are true for structures
and graphs, and the proofs are identical to those for digraphs. Note, however, that in
the proof of lemma 63, the infinite component C' may be finitely induced.

If G and H are structures for a language £, and R € L, then it is clear from
the definition of H® that H® contains an R-loop if and only if there is a mapping
f : V(G) — V(H) which preserves all R-edges of G. As was the case for digraphs,
HS « one if and only if G — H.

Lemma 66 relates to digraphs only. However, we can prove results in the same

spirit for structures and graphs.

Theorem 69 Let L be an infinite language, and let H be a finitely induced structure
for L, where H has at least one R-edge for each R € L. Then F(H) is a proper class.

Proof: First observe that H is compact, since H is finitely induced, and so we may
assume that H is a core. Thus, H is maximum in (F(H),—). We will show that the
density condition of corollary 63 holds for F(H).
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We begin by defining a class of structures which will be useful in our proof. If
R is an n-ary relation and « is a cardinal, we define TF by V(TF) = {a: a < &}
and R(ai,az,...,a,) if and only if @; < a2 < ... < a,. Such a structure is called a
transitive k-tournament [10].

Now let G be any structure in F(H) such that H / G. There must be some
component C of H such that C 4 G. Clearly C must contain edges of infinitely
many types. We will now examine two cases.

Case 1: For some R € L there is no R-edge-preserving mapping f : V(C) — V(TF)

for any cardinal «.

Let R be such a relation, and let n be the arity of R. Let x = |V(GH)|t. We
construct a structure K with V(K) = {a : a < &} as follows. Let R(K) = R(TF),
and for R' # R let R'(K) = {(a,0,...,a): a < k}. Clearly C / K because or our
choice of R, and so H 4 K UG.

We claim K /A G¥. If f : K — G¥ is a homomorphism, then since |K| > |G¥|
there must be some v € V(G*) and some infinite collection vy,vs,... € V(K) such
that f(v;) = v for all ¢ > 1. We require only v;,vs,...v,. Assume that v; < v; <
... < Un. Now (vy,v2,...v,) is an R-edge of K, so v must have an R-loop. But v
must also have an R'-loop for every R’ # R, and so v has an R'-loop for every R’ € L.
But this can only occur if H — G, which is not the case.

Thus, by lemma 64, there exists a structure K’ such that G - K’ — H and
HA K AG.

Case 2: For every R € L there is an R-edge-preserving mapping f : V(C) — V(TF)

for some cardinal «.

In particular this implies that if (vq,vs,...,v,) is an R-edge of C, then all v; are
distinct. Since V(C) is finite and C contains edges of infinitely many types, there
must exist distinct u,v € V(C) and distinct R, S € £ such that u and v both occur
in some R-edge of C, and both occur in some S-edge of C.

We now define K exactly as above, with x = |V(G¥)|*, V(K) = {a : a < &},
R(K) = R(TEF), and R(K) = {(,«,...,a) : a < &} for each R’ # R. Asin case 1
we see that K /4 GF.
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We now claim C 4 K. Suppose f : C — K is a homomorphism. All S-edges
of K are S-loops, and u and v occur together in an S-edge of C, so we must have
f(u) = f(v). But all vertices are distinct within each R-edge of K, and u and v occur
together in an R-edge of H, so f(u) # f(v), a contradiction. Thus, H /4 K UG.

Again, by lemma 64, there exists a structure K’ such that G — K’ — H and
HA K 4G.

Thus, by corollary 63, we conclude that in both cases F(H) is a proper class. m

We obtain a particulary nice result for undirected graphs.
Theorem 70 If G is a graph then |F(G)| =1 or F(G) is a proper class.

Proof: If G is not finitely equivalent to a compact core, then F(G) is a proper class,
so let H be the compact core which is finitely equivalent to G. If x(H) < 2 then
H retracts to a vertex or an edge, and so |F(G)| = 1. Suppose that x(H) > 3 and
|F(G)| > 1. Let G’ be any graph in F(G) such that G’ — H but H /4 G’. Then there
is a component C of H such that C 4 G'. Clearly x(C) > 3, and so C contains an
odd cycle. Let K be a graph with og(K) > 0g(C) and x(K) > x(G'®). The existence
of such is shown when x(G'¥) is finite in [22, 51, 58] and when x(G'¥) is infinite in
[23, 25]. Then C 4 K UG', so H 4 K UG'. Furthermore, K 4 G'¥. By lemma 64

and corollary 63 we see that F(H) is a proper class. =



Chapter 6

List-Homomorphisms

6.1 Definitions

In this chapter we will define and examine homomorphisms in which the set of possible
images of a vertex is subject to various types of constraints. The reader may recall
that in chapter 4 we defined the notion of an /-list-homomorphism. We begin this
chapter by reiterating the definition of a list-homomorphism, along with some new
related notions.

Let G and H be digraphs. Let [ : V(G) — P(V(H)) be a mapping from V(G)
to the power set of V(H), called a list-assignment for G (with respect to H). An
[-list-homomorphism f : G — H is a homomorphism from G to H such that for
each v € V(G) we have f(v) € I(v). We will often wish to apply the same lists
to subdigraphs G’ of G. By convention we will say that f : G' — H is an [-list-
homomorphism if f is an {|y(g/)-list-homomorphism. We say that a digraph H is
list-compact with respect to a digraph G if for every list-assignment [ for G with
respect to H, either there exists an [-list-homomorphism f : G — H or there is a
finite subdigraph G’ C G for which no /-list-homomorphism f : G' — H exists. If
H is list-compact with respect to every G with |G| < « then H is a-list-compact. If
H is o-list-compact for every ordinal o then we say H is list-compact. A certificate
of non-list-compactness for a digraph H is a digraph G and a list assignment [ for G

where every finite subdigraph of G admits an [-list-homomorphism to H but G does

90
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not.

6.2 List-Compactness

Our first major result in this chapter will show that essentially only finite digraphs
are list-compact. Later on we will place restrictions on the types of list-assignments
allowed and obtain richer classes of compact digraphs.

Recall once again the equivalence relation = defined on the vertices of a digraph by
u = v if and only if u and v have the same in-neighbourhoods and out-neighbourhoods.
We may simplify our later results by considering only digraphs containing no pair of
equivalent vertices. Qur first lemma shows that this causes no loss of generality. Let
G and H be digraphs and let /! be a list-assignment for G with respect to H. We
define the reduced digraph H" as in definition 39 in chapter 4. Let h be the canonical
retraction from H to H",so ifw € V(H") and u,v € V(H) are pre-images of w under
h, then u = v. We will define a list-assignment /" for G with respect to H". For each
v € V(G) let I"(v) = {h(w) : w € l(v)}. Note that the definition of I"(v) involves only
I(v) and h, and is independent of the other vertices of G and their lists. So if G’ is
a subdigraph of G, and '(v) = I(v) for all v € V(G’), then (I')" = I"|y(gr). Thus, we
can regard !" as a list-assignment for G’ without ambiguity.

It will be useful for later results to note that when we define I" as above, then

I"(v) = V(H") whenever I(v) = V(H); and I"(v) is finite whenever [(v) is finite.

Lemma 71 Let G and H be digraphs and let | be a list-assignment for G. Then G
admits an l-list-homomorphism to H if and only if G admits an I"-list-homomorphism

to the reduced digraph H™.

Proof: If f : G — H is an [l-list-homomorphism and A is the canonical retraction
from H to H', then clearly ko f is an ["-list-homomorphism from G to H".

On the other hand, suppose f : G — H" is an {"-list-homomorphism. We will
define a new mapping g : G — H. For each v € V(G) we know f(v) € I"(v), and
any element w € I"(v) must have some pre-image under A in [(v). Choose g(v) € I(v)

to be any vertex such that h(g(v)) = f(v). It remains only to show that g is a
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homomorphism. If uv € E(G), then f(u)f(v) € E(H"). Since g(u) and g(v) are
pre-images of f(u) and f(v), respectively, under h, then it must be the case that
g(u)g(v) € E(H), since g(u) = f(u) and g(v) = f(v) by definition of h. [

Corollary 72 A digraph H is list-compact if and only if its reduced digraph H™ is

list-compact.

Proof: If H” is not list-compact then let G with list-assignment [ be a certificate of
non-list-compactness for H™. Note that [ is also a list-assignment for G with respect
to H, since H" is an induced subdigraph of H. Clearly G with [ is also a certificate
of non-list-compactness for H.

If H is not list-compact then let G with list-assignment ! be a certificate of non-
list-compactness for H. We claim that G with list-assignment [” is a certificate of
non-list-compactness for H™. By lemma 71 there is no I"-list-homomorphism from G
to H™. However, if G’ is a finite subdigraph of G, then there is an l-list-homomorphism

from G’ to H, and so by lemma 71 there is an {"-list-homomorphism from G’ to H. ®

Given any digraph H, the reduced digraph H™ contains no pair of equivalent
vertices, so this corollary shows that for the purposes of characterizing list-compact
digraphs it is sufficient to consider reduced digraphs. The following set-theoretic
lemma, due to Aharoni [1], will help us exploit this fact. The symbol C denotes

proper containment.

Lemma 73 Let A = {A4; : i > 0} be a collection of countadbly many distinct sets.
Then there exists a subcollection of sets {B; : ¢ > 0} C A such that either

[} Boc(BoUBl)C(BoU31UBz)U..., or
® BoD(BonBl) D(BonBl ﬂBg)ﬂ

Proof: Let A = U2, A;- We may assume without loss of generality that (12, Ai = 0,
since we may ignore any vertices which occur in all of the A;. We may also assume
that there do not exist any z,y € A such that z € A; if and only if y € A; for all

¢ > 0. If such vertices do exist, then we may define an equivalence relation ~ on A by
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r ~ y if z € A; exactly when y € A;. As usual [z] will denote the equivalence class
containing z. We may now construct a new family of sets A’ = {A} : i > 0} by taking
Al = {[z] : [z] C Ai}. Now clearly a subcollection {B; : i > 0} of A will satisfy one of
the above nesting properties if and only if the corresponding subcollection {B; : : > 0}
of A’ satisfies the same property. And clearly no two distinct equivalence classes [z]
and [y] will occur in exactly the same sets A].

Now let S be any subset of A, and let us first assume that the set {SNA;:7 >0}
is finite, that is, S N A; takes on only finitely many (say n) distinct values when all
¢ > 0 are considered.

We define an equivalence relation on S by ¢ ~ y whenever z € S N A; if and only
ify € SNA; foralli > 0. If z and y are distinct elements of S and z ~ y, then
z € A; if and only if y € A; for all ¢ > 0, but by assumption this cannot occur. Thus
z +# y for all distinct z,y € S. But there are only n distinct values of SN A;, so §
has at most 2" equivalence classes under ~, and so S must be finite.

Thus, if S is infinite, S N A; must take on infinitely many distinct values. We now

examine two cases.

Case 1: There exists an infinite set § C A such that for all ¢ > 0 we have S — (SN A;)
finite or SN A; = 0.

We know that SN A; takes on infinitely many distinct values, so there must be
infinitely many 7 > 0 such that SN A; # 0. In these cases S — (S N A;) must be
finite. This implies that |S — (S N A;)| must take on arbitrarily large finite values.
Thus, we choose some ¢ > 0 such that S — (5N A;) is finite, and let By = A;. Now
inductively, if we have defined By, By,...,B,, we can find some ¢ > 0 such that
IS~ (SN A > |S—N7_o(SNA;j)|. Let Bpyy = A

Thus, N%4(S N B;) D NEH(S N B;), and so Ny B; D N} B;.

Case 2: For every infinite set S C A there exists an 7 > 0 such that S~ (SN A;) is
infinite and SN A; # 0.

Let S = A and choose some ¢ > 0 satisfying the above condition. Let By = A;.
Then A— By=A—-(ANBy) =5 — (SN A;) so A— By is infinite.
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Now suppose we have defined By, By,..., B, in such a way that A — U B; is
infinite. Let S = A — U2 ,B;. Then S is an infinite subset of A, so we may find
an ¢ > 0 such that S — (SN A;) is infinite and SN A; # 0. Let B,y1 = A;. Then
A — UM B; is infinite since it is equal to S — (SN A;). Also, since Byy1 NS # 0 we
have U?_,B; C U?:ol B;. |

Before proceeding with our first major result we had best explain the conventions
followed by the diagrams in this chapter. We will often want to specify that certain
edges are present in a digraph and certain edges are not present, while still other edges
may or may not be present. When we say that a diagram is a schema for a digraph,
we mean that wherever there is a solid arrow in the diagram there is an edge present
in the digraph, wherever there is a dashed arrow in the diagram the corresponding
edge is absent in the digraph, and if no solid or dashed arrow is present, then the
corresponding edge may or may not be present in the digraph. Note that an arrow
indicating the presence or absence of an edge uv has no bearing on the existence of
the edge vu.

At this point we will define some digraphs which will appear often in the remainder
of this chapter. Note that the edge-sets of these digraphs are not completely specified
in most of the following definitions, so that many non-isomorphic digraphs will satisfy
each of the definitions. In particular, we do not specify whether any or all of the
vertices in these digraphs have loops.

A complete digraph G is one in which uv € E(G) for every distinct u,v € V(G).

A transitive tournament T is a digraph with a linearly ordered vertex-set where
for all distinct u,v € V(T') we have uv € E(T) if and only if u < v.

An increasing digraph G is a digraph whose vertices can be partitioned into two
countably infinite sets U(G) = {u1,us, ...} and L(G) = {v1,v2, ...} such that for each
¢ > 1 we have u;v; € F(G) for all j < ¢, but u;v; € E(G) for any j >¢. Figure 6.1 is

a schema for an increasing digraph.
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Figure 6.1

A decreasing digraph G is a digraph whose vertices can be partitioned into two
countably infinite sets U(G) = {u1,us,...} and L(G) = {v1,vs,. ..} such that for each
¢ 2 1 we have u;v; € E(G) for all j > ¢, but u;v; € E(G) for any j < ¢. Figure 6.2 is

a schema for a decreasing digraph.

Figure 6.2

A cocktail-party digraph G is a digraph whose vertices can be partitioned into two
countably infinite sets U(G) = {uy,uz,...} and L(G) = {v1,vs,...} such that for
each 7 > 1 we have u;v; € E(G) if and only if ¢ # j. Figure 6.3 is a schema for a
cocktail-party digraph.
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Figure 6.3

A matching digraph G is a digraph whose vertices may be partitioned into two
countably infinite sets U(G) = {u1,us,...} and L(G) = {v1,ve,...} so that wv; €
E(G) if and only if i = j. Figure 6.4 is a schema for a matching digraph.

Flgure 6.4

An independent digraph G is a digraph in which uv € E(G) whenever u # v. Note
that we still allow loops.

A star digraph is a countably infinite digraph G whose vertices may be labelled
{vo,v1,...} in such a way that either E(G) = {vov; : ¢ > 1} (an out-directed star) or
E(G) = {vivo : ¢ > 1} (an in-directed star). The vertex v is called the center of G.
Figure 6.5 shows an out-directed star. Note that figure 6.5 is not a schema, i.e., it

contains only the edges which are marked.
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Vo
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Figure 6.5

Recall that if vo ¢ E(G) for all v € V(G) then G is called loopless, and if
vv € E(G) for all v € V(G) then G is called a digraph with loops.

Most of the proofs in the remainder of this chapter will work by demonstrating the
existence of certain induced subdigraphs in a digraph with some specified property.
Our next lemma gives a list of subdigraphs, at least one of which must occur in
any infinite reduced digraph. This will allow us to give short proofs of two nice

characterizations of list-compact digraphs.

Lemma 74 Let H be an infinite reduced digraph. Then H contains at least one of
the following as an induced subdigraph:

® a loopless infinite complete digraph,

® an increasing digraph,

® a decreasing digraph,

® a cocktail-party digraph,

® a matching digraph,

® an infinite independent digraph with loops.

Proof: Let H be an infinite reduced digraph, so no two vertices in V(H) are equiv-
alent. Let S be any countable subset of V(H), and denote the members of S by
the positive integers {1,2,3,...}. We will partition the unordered pairs {¢, 5}, where
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i,7 € S and ¢ < j, into four parts, Py, P, Ps, P4y, with the intention of applying

Ramsey’s theorem. The parts are defined as follows:
P, ={{i,j}:1ij € E(H) and ji € E(H)}

Py = {{i,s} : ij & E(H) and ji € E(H)}
Py = {{i,j} :ij € E(H) and ji ¢ E(H))
Pa= {{i,s} :ij ¢ E(H) and ji ¢ E(H)}.

By Ramsey’s théorem S contains an infinite subset R such that all pairs {i,5}
with 7,7 € R and 7 < j are in the same part P,. We now consider the four cases. In
each case we will show that H contains one of the required subdigraphs. In some cases
we will do so directly, while in other cases we will show that R contains an infinite
subset @ satisfying the following property: Given any two vertices u,v € (), we have
Nt(u)—Q # N*(v) —Q or N~(u) — @ # N~ (v) — Q. In other words, every two
vertices in @ have distinct neighbourhoods in V(H) — Q. We will subsequently show

that such a set allows us to find one of the required subdigraphs in H.
Case 1: All pairs of elements of R are in P, (R induces a complete digraph).

If R contains infinitely many vertices with loops, say a1, a2, ..., then we proceed as
follows: let @ = {a1,a2,...}. Then N*(a;)NQ = N~ (a;)NQ = @ for all : > 0. But no
two a; are equivalent, so for all ¢, > 0 with i # j, we have N*(a;)—Q # N*(a;)—Q
or N™(a;) — Q # N~ (a;) — Q.

On the other hand, if R contains infinitely many vertices without loops, then these

vertices induce a loopless infinite complete digraph.

Case 2: All pairs of elements of R are in P, (R induces a transitive tournament).
Label the elements of R by ay,ay,..., where for ¢ # j, a;a; € E(H) if and only if

¢ < j. A particular a¢; may or may not have a loop. Let @ = {a;,4as,@s,...}. Then

for all n > 0 we have az, € N~ (azn-1) but azn, € N~ (az2m-1) for any m > n. It is easy

to verify that () now satisfies the required properties.

Case 3: All pairs of elements of R are in P; (R induces a transitive tournament).
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We define @ exactly as above. Now for all n > 0 we have a;, € N *(azn-1) but
azn, & N*(azm-1) for any m > n. Again @ satisfies the required properties.

Case 4: All pairs of elements of R are in P; (R is an independent set).

If there are infinitely many vertices in R without loops, then let Q ={a,a2,...}
be such a set. Now N*(a;)NQ = N~ (a;)N @ = 0 for all : > 0. But no two a;
are equivalent, so for all 7,5 > 0 with 7 # j, we have N*(a;) — Q # N*(a;) — Q or
N~ (a;) = Q # N~ (a;) - Q.

If there are infinitely many vertices in R with loops, then these vertices induce an

infinite independent digraph with loops.

We now use the set @ to show that H contains one of the required subdigraphs.
Recall that every two vertices in @ have distinct in-neighbourhoods or out-neigh-
bourhoods in V(H) — Q. Clearly there must exist an infinite subset P of ¢} such that
N*t(u)—Q # N*t(v)—Qfor all u,v € Pyor N~ (u) —Q # N~ (v)—Q for all u,v € P.
Let us assume the former case holds, as the latter case is essentially identical.

For v € P, let us define A(v) = N*(v) — P. The sets N*(v) — Q with v € P are
distinct, and P C Q, so the sets A(v) with v € P are distinct. We may therefore apply
lemma, 73 to obtain a set {ug,u;,...} C P such that one of the following formulas

holds:

A(Uo) C A(Uo) U A(U]) C A(UO) U A(U]) U A(Ug) cC--- (61)
A(uo) D A(uo) N A(ur) D A(uo) N Aug) N A(uz) D ---. (6.2)

We will now define a set of vertices P’ = {v;,v2,...} in one of two ways. Note
that we have intentionally indexed the u; starting at 0 and the v; at 1. The reason
for this is that A(uo) may be the empty set in 6.1, or it may contain all of V(H) — P
in 6.2. In either of these special cases our definition of vy would fail.

If 6.1 holds then for ¢ > 1 let v; € V(H) — P be a vertex such that w;v; € E(H)
but for each j < 7 we have ujv; ¢ E(H). Formula 6.i guarantees the existence of such

a vertex.
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If 6.1 does not hold, then 6.2 holds. So for 7 > 1 let v; € V(H)— P be a vertex such
that u;v; ¢ E(H) but for each j < ¢ we have u;v; € E(H). Formula 6.2 guarantees

the existence of such a vertex.

Uy ug us Ug
I l |
! l !
v1 Vg v3 V4

Figure 6.7

We now prepare for another application of Ramsey’s theorem. We partition the
unordered pairs {7,j}, where 7 and j are positive integers with ¢ < j, into parts

Py, P,, P3, Py according to the following rules:
P = {{Z,]} DUV € E(H) and U;v; € E(H)}

P, ={{:,7} : uiv; ¢ E(H) and ujv; € E(H)}
P ={{i,5}: wv; € E(H) and ujv; ¢ E(H)}
Py={{4,j}:uiv; ¢ E(H) and.ujv; ¢ E(H)}.

By Ramsey’s theorem, there must be an infinite set T of positive integers such
that all pairs of elements of T are in the same part P,, We will now examine the

subdigraph of H induced by the vertices u; and wv;, for ¢ € T. Let us write T as
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{a1,a2,...} and define z; = u,, and y; = v,, for each 1 > 1. We find ourselves once

again with four cases.

Case 1: All pairs of elements of T are in P,.

Then 6.1 cannot hold: Look at any ¢,7 € T with ¢ < j. By definition of the ug
and v we have u;v; & E(H). This contradicts the definition of P;.

Thus it must be the case that 6.2 holds. Then z;y; ¢ E(H) for all : > 1 but
z;y; € E(H) whenever i # j and i,j > 1. So the vertices zx and yx, £ > 1, induce a
cocktail-party digraph.

Case 2: All pairs of elements of T are in P,.

Then 6.2 cannot hold, since in that case z;y; € E(H) whenever ¢ < j, contradicting

the definition of P,, and so 6.1 must hold. In this case the vertices zx and yi, £ > 1,

induce an increasing digraph.

Case 3: All pairs of elements of T are in P;.

Then 6.1 cannot hold, for then z;y; ¢ E(H) whenever ¢ < j, which contradicts the
definition of P;. So 6.2 must hold, and the vertices zx, k£ > 1 and yx, ¥ > 2, induce a
decreasing digraph.

Case 4: All pairs of elements of T are in Pj.
Once again we see that 6.2 cannot hold, since then z;y; € E(H) whenever i < j,
contradicting the definition of Py, and so 6.1 must hold. The vertices z¢ and y, k > 1,

induce a matching digraph in this case.

Thus, in each case H contains one of the required subdigraphs, and so the lemma

is proved. [

Observe that we have actually proved the following slightly stronger assertion,

which will be more useful for later results.

Corollary 75 Let H be an infinite reduced digraph and let S be a countable subset of
V(H). Then H contains at least one of the following as an induced subdigraph:

e a loopless infinite complete digraph G with V(G) C S,

® an increasing digraph G with U(G) C S or L(G) C 5,
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e a decreasing digraph G with U(G) C S or L(G) C S,

o a cocktail-party digraph G with U(G) C S or L(G) C S,

a matching digraph G with U(G) C S or L(G) C S,

an infinite independent digraph G with loops and with V(G) C S.

We now use lemma 74 to prove the following characterization of list-compact

digraphs.

Theorem 76 Let H be a reduced digraph. Then H is list-compact if and only if H

is finite.

Proof: If H is finite, then lemma 47 guarantees that H is list-compact.

On the other hand, suppose H is not finite. Then H contains a loopless infi-
nite complete digraph, an increasing digraph, a decreasing digraph, a cocktail-party
digraph, a matching digraph, or an infinite independent digraph with loops as an
induced subdigraph.

Suppose S C V(H) is a countable set of vertices which induces a loopless infi-
nite complete digraph. Let S = {ai,a2,...}, and define a digraph G with V(G) =
{vo,v1,...}, and uv € E(QG) for all distinct u,v € V(G). Define a list-assignment [
for G by l(vo) = {a1,a2,...} and {(v;) = a; for all ¢ > 1. Now there can be no I-list-
homomorphism f : G — H, since f(vo) = a; for some ¢ > 1, but also f(vi) = a;, and
a;a; € E(H) so f does not preserve the edge vov;. However, if G’ is a finite subdigraph
of G, then we may define an [-list-homomorphism f : G' — H by f(v;) = a;, for each
v; € V(G') with 7 > 1; and if vo € V(G’) we define f(vo) = a; for some j such that
v; € V(G'). Thus G with [ is a certificate of non-list-compactness for H.

Suppose H contains an increasing digraph as shown in the schema in figure 6.8

(a). We define an out-directed star digraph G with V(G) = {wo, w1, ws,...} and
E(G) = {wow; : i > 1}. We define a list-assignment [ for G by I(wo) = {z; : 1 > 1}
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and I(w;) = y; for each ¢ > 1. The digraph G is shown in figure 6.8 (b). It is a simple

matter to verify that G with [ is a certificate of non-list-compactness for H.

z z9 T3 wo{21, 22,...}
~
N\ G:
N\
~
0 Y2 Y3 wi{y1} wafye} ws{ys} wa{va}
() Figure 6.8 ()

Suppose H contains a decreasing digraph as shown in the schema in figure 6.9 (a).
We define an in-directed star digraph G (figure 6.9 (b)) with V(G) = {wo, w1, ws,...}
and E(G) = {w;wo : > 1}. We define a list-assignment ! for G by l(wo) = {y: : ¢ > 1}
and /(w;) = z; for each 7« > 1. As in the previous case we see that G with [ is a

certificate of non-list-compactness for H.

wi{z1} wo{zo} wa{zs} wa{zs}

w03{y1 s Y2, - '}

(a) Figure 6.9 (&)

Suppose H contains a cocktail-party digraph as shown in the schema in figure
6.10 (a). We define an out-directed star digraph G (figure 6.10 (b)) with V(G) =
{wo, w1, wa,...} and E(G) = {wow; : 1 > 1}. We define a list-assignment [ for G' by
I(wo) = {z; : 1 > 1} and I(w;) = y; for each ¢ > 1. Clearly G with [ is a certificate of

non-list-compactness for H.
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z Z2 z3 woz{xl, o, .. }
| ! . G:
| I
n Y2 y3 wi{y} wa{y2} wa{ys} wa{ya}
a b
(@) Figure 6.10 ()

Suppose H contains a matching digraph as shown in the schema in figure 6.11
(a). In this case we define a digraph G (figure 6.11 (b)) by V(G) = {w,w,,...} and
E(GQ) = {wai1wa; 1 @ > 1} U {waip1wy; : 7 > 1}. We define a list-assignment [ for
G by l(wa:) = {Ys, Yit1,- - -} and (wei—1) = {zi,Zi41,...} for each ¢ > 1. The reader

may again observe that G with [ is a certificate of non-list-compactness for H.

2 Z z3 wy{z1,22,...} waf{zs zs,...} ws{zs, z4,...}
~ -~
N> LX</ G
/N7 SN
-~ ~ v
0 ¥ Y3 wo{y1, y2,- .-} wal{yz, vs, -} welys, vs,- .}

@) Figure 6.11 (b)

If there is an infinite independent digraph with loops in H, then let S = {ay, as,...}
induce such a digraph. We define a digraph G by V(G) = {v1,v2,...} and E(G) =
{viviz1 1 7 > 1}, i.e. G is the Ray. We define a list-assignment [ for G by l(v;) =
{ai,@it1,ai42,...}. A moments reflection will convince the reader that G with [ is a
certificate of non-list-compactness for H.

We have seen that in all possible cases H is not list-compact, and so our result is

proved. [

We may restate this result as follows.
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Corollary 77 A digraph H is list-compact if and only if its reduced digraph H™ is
finite. [ ]

The astute reader may have observed that all of the certificates of non-list-com-
pactness in the above proof were countable, so we have in fact proved the stronger

claim that if H" is not finite then H is not Ro-list-compact.

6.3 Restricted Lists

We may obtain more interesting characterizations by restricting the types of list-
assignments allowed. Let P be some property that applies to list-assignments. For
example, if [ : V(G) — P(V(H)) is a list-assignment, we might say that P([) is true if
{(v) = V(H) for every v € V(G). We will say that a digraph H is P-list-compact if for
every digraph G and every list-assignment [ for G with respect to H where P() holds,
either there is an /-list-homomorphism from G to H, or there is a finite subdigraph
G' C G for which no such homomorphism exists.

If P is defined as in the above example, then clearly the class of P-list-compact
digraphs is exactly the class of compact digraphs. Qur next result is straightforward.

We use the standard notation dom(!) to indicate the domain of the function /.

Theorem 78 Let A(l) be the property that I(v) is finite for every v € dom(l). Then
every digraph H is A-list-compact.

Proof: Let H be given, and let G be any digraph. Let ! be any list-assignment for G
such that [(v) is finite for each v € V(G). Also, assume that every finite subdigraph
of G admits an /-list-homomorphism to H. Then let 7, be the discrete topology on

I(v). Lemma 47 guarantees the existence of an [-list-homomorphism from G to H. m

In a moment we will examine some less trivial types of lists. However, first we will
prove a useful technical lemma. It shows that for our purposes, any finite list can be

assumed to be a singleton list.
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Lemma 79 Let G and H be digraphs, and | a list-assignment for G with respect to
H. If G with | is a certificate of non-compactness for H, then there exists a list-

assignment I' for G with respect to H such that for all v € V(G)
e if [(v) is finite then I'(v) is a singleton,
e if I(v) is infinite then I'(v) = [(v),
and such that G with l' is also a certificate of non-compactness for H.

Proof: Let G, H, and [ be given. It suffices to show that there exists a list-assignment
I’ such that I’ agrees with [ when I(v) is infinite, I'(v) is a single element of [(v) when
I(v) is finite, and for each finite subdigraph G’ C G there is an I'-list-homomorphism
from G’ to H. Clearly in this case there can be no /-list-homomorphism from G to
H, and so G with I’ will also be a certificate of non-list-compactness for H.

We will again apply Tychonoff’s theorem. Let S = {v € V(G) : I(v) is finite }.
For each v € S let T, be the discrete topology on [(v). For each v € S the set l(v) is
finite, so T, is a compact topology. Thus, the product topology 7 = [],es T», defined
on § = [],esl(v), is compact.

There is a natural correspondence between elements of S and mappings f : S — H
which satisfy f(v) € I(v) for all v € S. Hence, we will consider each element of S to
be such a mapping.

Let G’ be a finite subdigraph of G. We define a set C(G’) C S to be the set of all
mappings f € S such that f I(G'nS) can be extended to an [l-list-homomorphism from
G’ to H.

The set C(G’) is non-empty since by assumption there is an [-list-homomorphism
g : G — H, and so any f € § satisfying flgns) = 9lens) Will be in C(G).
Furthermore, we claim that the set C(G') is closed. For any v € S, each subset of
I(v) is closed in the topology 7., since I(v) is finite. Also, the set SN V(G’) is finite,
so the set {flsnv(e) : f € C(G")} is closed in the topology [l,esnv (s I»- The set
{fls—v(ey : f € C(G")} is simply [T,es_v(gn !(v). But this is the definition of a closed

set in the product topology, so our claim is proved.
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If Gy4,...,G, are finite subdigraphs of G, then we know that C(G1)N...NC(G,) is
nonempty, since clearly Gy U. . .UG,, is finite and C(G;U. . .UG,) € C(G1)N.. .NC(Gr).
We may therefore conclude, by compactness, that the intersection of C'(G’) over all
finite subdigraphs G’ C G is nonempty. So choose f € Ngcg C(G’). Then f has the
property that given any finite subdigraph G’ C G, there is an [-list-homomorphism
g : G' — H such that f(v) =g(v) forallve SNG".

Thus, we define ' by I'(v) = {f(v)} for each v € S, and I'(v) = I(v) for v € S.
By the above arguments it is clear that every finite subdigraph of G admits an !’-list-

homomorphism to H, and so we are done. u

This result will simplify our subsequent proofs, since singleton lists are much easier
to work with than other finite lists. It also yields another proof of theorem 78, since
obviously every digraph is list-compact when we require all lists to be singletons.

Our next result deals with list-assignments where ‘almost all’ of the lists are finite.
Specifically, we define a property B for lists where B(l) is true of the list-assignment
! if and only if I(v) is finite for all but finitely many of the vertices in dom(l), i.e.
only finitely many vertices are assigned infinite lists. The reader may observe that
most of the certificates of non-list-compactness used in the various cases in the proof
of theorem 76 used list-assignments which did in fact satisfy the property B. In
particular, we saw that whenever a digraph H contains a loopless complete digraph,
an increasing digraph, a decreasing digraph or a cocktail-party digraph as an induced
subdigraph, then there is a digraph G and a list-assignment ! for G with respect to
H such that B(l) holds and G with [ is a certificate of non-list-compactness for H.
Our next theorem shows that it is exactly when H contains one of these digraphs
as an induced subdigraph that H fails to be B-list-compact, and so we will obtain a
forbidden-subdigraph type characterization of B-list-compact digraphs.

We first prove a lemma which will simplify our proof, and is also of some interest

itself.

Lemma 80 If a digraph H is not B-list-compact then there is a certificate of non-
list-compactness G with list-assignment 1 such that G is a star with center v, l(v) is

countably infinite, and l(w) is a singleton for each w # v.



CHAPTER 6. LIST-HOMOMORPHISMS 108

Proof: Suppose that H is not B-list-compact. Applying lemma 79 we may obtain
a certificate of non-list-compactness for H, call it G with list-assignment [, where all
but finitely many of the vertices of G have singleton lists, and the rest have infinite
lists. Let & = |G| and let n = |[{v € V(G) : {(v) is infinite }|. We choose G so that
& is minimum, and amongst those digraphs G of minimum cardinality we choose G
and [ so that n is minimized. We will refer to the vertices which are assigned infinite
lists as free vertices, and to those which are assigned singleton lists as fized vertices.

We begin by labelling the vertices of G with the ordinals smaller than «, and we
require that the first n ordinals be used to label the free vertices. We will denote by
G4 the subdigraph of G induced by {0,1,...,a}. Then for each o < « there exists an
I-list-homomorphism f, : G, — H. Of course if v is a fixed vertex then f.(v) = fg(v)
for all o, < k. However, if v is a free vertex, then v must take on many different
values. We will formalize this idea now.

For each a < «, let F,, = {f : f is an l-list-homomorphism from G, to H}. Note
that if # < « and f € F, then flg, € Fp. Let v be a particular free vertex of
G. We claim that if I is any collection of ordinals smaller than & with (J,e;a = &,
then there can be no collection of I-list-homomorphisms { fo}ner where fo € F;, and
fo(v) = f5(v) for all @,B € I. For if such a sequence did exist, then for each o < &
there would be an [-list-homomorphism g, : Go — H where go(v) = gg(v) for all
a, B < k. But then by replacing I(v) by {g.(v)} for some o < &, we would obtain a
certificate of non-list-compactness for H with fewer free vertices. Hence, for any free
vertex v € V(G), any a < « and any f, € F,, there exists a 8 < & such that for all
v with 8 < v < £ and all f, € F, we have f,(v) # fa(v).

Now let a be any ordinal with » < a < & (i.e. include all free vertices) and let
f« be any l-list-homomorphism from G, to H. For each free vertex v;,0 <: <n, we
may find an ordinal a; < & such that for all ordinals v with ¢; < v < &, there is no
fy € E, with f,(v;) = fo(v:). If we let 8 = U5y i, then B < &, and for all ordinals
v with 8 < v < & there is no f, € F, such that f,(v;) = fa(vi) for any : < n.

Thus, we may find a countable sequence a;,, ... of ordinals with n < o; < &
and a sequence of l-list-homomorphisms f,, € F,, such that whenever i < j there is

no [-list-homomorphism in Fy, which agrees with f,, on any free vertex.
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Now let z and j be arbitrary positive integers with ¢ < 3. We will find spe-
cific vertices which prevent the f € F,; from agreeing with f,, on the free ver-
tices of G. There must exist some free vertex v;; and some fixed vertex w;; € G,
such that v;jw;; € E(G) (or wijv;; € E(G)), but fu,(vij)fa;(wi;) € E(H). (or
Jo;(wi ;) fa;(vi;) € E(H)). If there were no such v;; and w;; then there would be
a homomorphism g € F,; such that g|s,, = fa- But by definition of f,, no such
homomorphism exists.

We will now apply Ramsey’s theorem to find a single free vertex of G which we
will use to construct a new certificate of non-compactness for H. We will colour
the unordered pairs of natural numbers {{i,j} : 1 < ¢ < j}. For each free vertex
v € V(G) we will define two colours »* and v~. Since G contains only finitely many
free vertices we will obtain only finitely many colours. To colour the pair {z, 5}, choose
any free vertex v; ; and any fixed vertex w;; satisfying the conditions given above. If
vijwi; € V(G) but fo,(vi;)fa,(wi;) € E(H) then {i,;} gets colour v7;. Otherwise it
must be the case that w;;v;; € E(GQ), but fo,(wi;)fa:(vi;) € E(H), and we colour
it with v;;. Now by Ramsey’s theorem there must be a countably infinite set A of

positive integers such that the colour of {i,;} is the same for all ¢,; € A.

Suppose first that for each ¢,j € A, the colour of {i,;} is vt for some free vertex
v of G.

We define an out-directed star § with V(S) = {so} U {s;; : 1 < i < j} and
E(S) = {sosi : 1 > 1}. We define a list-assignment I’ for S with respect to H by
U(so) = {fai(v) : ¢ € A} and I'(s;;) = {fo,(wi;)} forall 1 < i < j.

Now given any finite subdigraph S’ of S, we may choose some k > 1 large
enough so that w;; € V(G,,) whenever s;; € V(S’). Thus there is a natural !'-list-
homomorphism g : S’ — H given by g(so) = fa,(v) and g(s: ;) = fa, (wi ;). However,
for each k£ > 1 there exists an ¢ and j with 1 <7 < j such that f,, (v)fa, (wi;) &€ E(H),
and so there is no k such that fu,(v)fa,(wi;) € E(H) for all 1 <7 < j, and hence
there is no /-list-homomorphism from S to H. Thus, S with ! is a certificate of

non-list-compactness for H.

In the case where the colour of {7,5} is v~ for each i,j € A, the proof is identical
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to the previous case except that S will be an in-directed star. [ ]

Theorem 81 Let B be as defined above. A digraph H is B-list-compact if and only

if it contains none of the following as an induced subdigraph:

e an infinite loopless complete digraph,
e an increasing digraph,

e a decreasing digraph,

e an infinite cocktail-party digraph.

Proof: Suppose that H contains one of the above as an induced subdigraph. We
have already seen certificates of non-list-compactness for each of these cases, using
list-assignments satisfying B, in the proof of theorem 76. Thus H is not B-list-
compact.

On the other hand, suppose that H is not B-list-compact. We must show that H
contains one of the above digraphs as an induced subdigraph. Applying lemma 80 we
may obtain a certificate of non-list-compactness for H, call it G with list-assignment
I, where G is a star and [(v) is a singleton for all v € V(G) except the center of G.
When [(v) is a singleton we will abuse notation and consider /(v) to be the vertex
which is the unique element of [(v).

Case A: (G is an out-directed star.

We begin by labelling the vertices of G as {so,$1,...} so that sq is the center of
G. We denote by G, the subdigraph of G induced by {so, s1,--.,5n}

For each n > 1, let F,, = {v € I(so) : there exists an [-list-homomorphism f :
G, — H with f(so) = v}. Clearly F,y; C F, for all n > 0, and N3, F,, = 0, but
all F), are nonempty. Thus, we may find an increasing sequence of positive integers
ay,as,... such that for each ¢ > 1 there exists a vertex v; such that v; € F;, but
v; & F,; for any j > 1.

Now for each ¢,7 > 1 with ¢ < j, there must be a fixed vertex s; with a; < k < qa;
such that v;l(sx) ¢ E(H) but v;i(sx) € E(H), since otherwise v; € F,,. We will
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denote the vertex s as w;; and the vertex [(sg) as z;;. Observe that if 7 < j then
v;zx; € E(H) for any k < 1.

Let X ={v;:i>1}and Y = {2, :1<: < j}. Note that X and Y are not
necessarily disjoint. We now restrict our attention to the subdigraph H’ of H induced
by X UY. Note that the v; all have distinct out-neighbourhoods in Y, and so the
v; are all distinct. However, the z; ; might not be distinct, and it is also possible for
some v; to be identical to some z; .

The remainder of our proof is quite similar to the proof of lemma 74. However, the
set X we have constructed has additional properties not possessed by the arbitrary
set of vertices with distinct neighbourhoods we examined in the proof of theorem 76.
These properties will allow us to avoid the cases in the proof of theorem 76 which
required certificates of non-list-compactness which did not satisfy the property B.

Our goal in the next section of the proof is to either find a forbidden subdigraph
in H' directly, or to find an infinite subset Q of X such that for all u,v € Q we have
N (u) — Q # Njf(v) — Q. In the final section of the proof we will use such a set Q to
find a forbidden subdigraph of H'.

If X —Y is infinite, then we simply let Q@ = X — Y. Since @ includes no vertex of
Y, we know that Ny (u) — @ # Ny (v) — Q for all u,v € Q.

If X — Y is finite, then X N'Y must be infinite. We will use Ramsey’s theorem to
obtain the desired result. We partition the unordered pairs {¢,5}, where 1 < i < j,
into four parts, Py, Pz, P3, Py, defined as follows:

P, = {{i,5} : viv; € E(H') and vjv; € E(H')}

P, = {{i,5} : viw; € E(H') and vjv; € E(H')}
Py = {{,7} : viv; € E(H') and v;v; ¢ E(H')}
Py = {{3,5} : viv; ¢ E(H") and v;v; ¢ E(H")}.

By Ramsey’s theorem there is an infinite set .S of natural numbers such that all
pairs {¢,7} with ¢,j € S are in the same part P;. Let Vs = {v; : : € S}. Note that

Vs N'Y must be infinite. We now consider the four cases.
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Case 1: All pairs of elements of S are in P;.

If there are infinitely many loopless vertices in Vs then these vertices induce an
infinite loopless complete digraph in H’, and so we are done.

If there are infinitely many vertices in Vs with loops, then let @ = {a1,a2,...} be
an infinite set of vertices with loops in Vs NY. Then Ny (a;) N Q = @ for all z > 1.
But no two a; have the same out-neighbourhood in Y, so for all ¢,7 > 0 with ¢ # j,
we have Ny (a;) — Q # Ny (a;) — Q.
Case 2: All pairs of elements of S are in P;.

Label the elements of Vs N'Y by a;,as,..., where for 7 # j, a;a; € E(H) if and
only if ¢ > j. A particular a; may or may not have a loop. Let @ = {a1,as,as,...}.
Then for all n > 1 we have az, € Ny (azn_1) but az, € Nf(azm-1) for all m > n.

Clearly @) has the required properties.

Case 3: All pairs of elements of S are in Ps.
We define ) as in the previous case and discover that for all » > 0 we have
azn € Ny (agn-1) but az, & Nf(agm-1) for any m > n. Again it is clear that @

satisfies the required properties.

Case 4: All pairs of elements of S are in P;.

We claim that this case cannot occur. Let v be any element of Vs N'Y. Then
v = z;; for some 7,5 > 1. But Vs is an infinite subset of X so it must contain vy
for arbitrarily large values of k. If we choose some k > ¢ such that v; € Vs, then
vgv € E(H'), contradicting the definition of F;.

We must now show that we can find a forbidden subdigraph in H’ using the set
Q-

We claim that we may find an infinite collection of pairs (g;, ;) for ¢ > 1 such that
all g; and all r; are distinct, ¢; € Q and r; € Y — Q for all ¢ > 1, and ¢;r; € E(H').

A simple ‘greedy’ algorithm will be sufficient to find such a set. Suppose we have
chosen (g1,71),(g2,72);- - - (gn,7s) satisfying the above conditions for some n > 0 (if
n = 0 we have chosen nothing yet). Suppose there is no pair (gn+1, 7n+1) Which satisfies
the required properties. Then for all v € Q — {¢1,¢2,--.¢n} it must be the case that

v is adjacent to every w € Y — Q — {r1,72,...,7}. But this is clearly inconsistent
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with the fact that the infinitely many vertices in @ have distinct neighbourhoods in
Y — Q. Thus, such a pair must exist. By continuing this process we obtain our infinite
collection of pairs.

We now prepare for another application of Ramsey’s theorem. We partition the
unordered pairs of natural numbers {i,j}, where 7 < j, into parts Py, P, P3, Py ac-

cording to the following rules:
Py ={{1,7}: grj € E(H) and g;r; € E(H)}
P, ={{i,j}: qr; ¢ E(H) and ¢;r; € E(H)}
Py = {{i,j} : qrj € E(H) and ¢;r: ¢ E(H)}
Py={{1,5} : qir; ¢ E(H) and q;r; € E(H)}.

By Ramsey’s theorem, there must be an infinite subset T of natural numbers such
that all pairs of elements from T are in the same part P;. We find ourselves once

again with four cases.

Case 1: All pairs of elements of T are in P,.

In this case the vertices {¢; : 2 > 1} U {r; : i € T} induce an infinite cocktail-party
digraph in H'.
Case 2: All pairs of elements of T are in Ps.

The vertices {¢; : ¢ > 2} U{r; : ¢ € T} induce an infinite increasing digraph in H'.
Case 3:

Now the vertices {¢; : ¢ > 1} U {r; : i € T} induce an infinite decreasing digraph
in H'.
Case 4: All pairs of elements of T are in P,.

This case cannot occur, since for any r;,¢ € T, r; = z;; for some 1 < j < k. But
there must be some ¢, n € T, such that ¢, = v,, with m > j. But then ¢,r; € E(H'),

a contradiction.
This concludes case A.

Case B: (G is an in-directed star.
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In this case our argument is essentially identical, except that the directions of the
edges in the subdigraphs we find are reversed. For a given digraph K we define the
reverse of K, denoted K=, by V(K~) = V(K) and E(K~) = {vu : uv € E(K). We

complete the proof with the following simple observations.
@ If K is a loopless complete digraph then K~ is a loopless complete digraph.
e If K is an increasing digraph then K~ is a decreasing digraph.
e If K is an decreasing digraph then K~ is a increasing digraph.
e If K is a cocktail-party digraph then K~ is a cocktail-party digraph.

Another way of restricting list-assignments, which we have already seen in an
example, is to require some of the lists to be equal to V(H). We have already noted
that if C is the property that every vertex in dom(l) is equal to V(H) then a digraph
is C-list-compact if and only if it is compact.

We may define another natural property D by saying that a list-assignment [ has
property D if I(v) is either finite or is equal to V(H) for every v € dom(l). Recall
that in chapter 4 we defined a property R for lists by saying that a list-assignment
[ has property R if I(v) is a singleton or I(v) = V(H) for every v € dom(l). Using
lemma 79 we see that a digraph is D-list-compact if and only if it is E-list-compact.

We immediately obtain the following result.

Theorem 82 The class of D-list-compact digraphs is a superclass of the class of

compact cores and a subclass of the class of compact digraphs.

Proof: In chapter 4 we showed that being a compact core was a sufficient condition
for a digraph to be R-list-compact. Obviously compactness is a necessary condition

for R-list-compactness, since we can set {(v) = V(H) for all v € dom(1). "

Unfortunately, it appears to be difficult to say more than this.
Yet another possible property similar to the above, and in the spirit of theorem 81,

might be the following. We say that a list-assignment [ has property F if I(v) = V(H)
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for only finitely many v € dom(l), and I(v) is finite for every other v € dom(I). Since
E is a strengthening of the property B from theorem 81, we know that every B-list-
compact digraph is also E-list-compact. Thus, if H contains none of the forbidden
subdigraphs from theorem 81 then H is E-list-compact. However, the converse is not
true, as we will soon see. In fact, unlike in our two major results so far, there are
non- E-list-compact digraphs for which there are no countable certificates of non-list-
compactness.

For example, let us define a digraph H by V(H) = {us: a < R1} U {vs : a < Ry}
and E(H) = {uavg : B < a}. We may think of H as an uncountable analogue of an in-
creasing digraph. Certainly H contains an induced increasing subdigraph. The reader
should have little difficulty convincing himself that there is no countable certificate of
non-E-list-compactness for H, yet there is an obvious uncountable certificate.

We can also find significant differences between E-list-compactness and B-list-
compactness within countable digraphs. In particular, it is not sufficient to look only
at stars as potential certificates of non-list-compactness when our list-assignments
have property E.

Let us define a digraph H as follows. Let V(H) = {uj,uz,...} U {v1,v2,...} U
{wy,wq,...}U{z},and E(H) = {uw; : j <i}U{vaw; : j < i}U{uw; 11> 1} U{zw; :
i > 1}. In this case we may think of H as an increasing digraph with the vertices in
U(H) replaced by edges, and with an extra vertex z which dominates L(H). If G is
an out-directed star and [ is a list-assignment for G with respect to H such that E(I)
holds, it is not difficult to see that G admits an [-list-homomorphism to H whenever
all of its finite subdigraphs admit such a homomorphism. However, if we replace
the vertex which is the center of a star G with an edge in the obvious way, there is
a natural list-assignment for G with respect to H which satisfies £ and provides a

certificate of non-list-compactness for H.

Our final result is a particularly nice characterization. We define a property F
for list-assignments as follows: a list-assignment [ V(G) — P(V(H)) has property
F if in each component of G there is at least one vertex v such that I(v) is finite.
In particular if G is connected then [ has property F if at least one vertex of G is

assigned a finite list. We obtain the following characterization.
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Theorem 83 A digraph H is F-list-compact if and only if the reduced digraph H' is
locally finite.

Proof: Observe first that if a list-assignment ! for a digraph G with respect to H
has property F', then the reduced list-assignment !” for G with respect to H™ also has
property F', and so if H is not F-list-compact then H" is not F-list-compact. If H" is
not F-list-compact then H is not F-list-compact either (¢.f. proof of corollary 72), so
it suffices to show that a reduced digraph is F-list-compact if and only if it is locally
finite.

Let H be a locally finite reduced digraph. Let G be any digraph and ! be a list-
assignment for G with respect to H such that F(I) holds. Suppose that every finite
subdigraph of G admits an /-list-homomorphism to H. We will use lemma 47 to show
that G admits an I-list-homomorphism to H. We will define a new list-assignment /'
for G with respect to H such that for each v € V(G), I'(v) is a finite subset of I(v),
and every finite subdigraph of G admits an !’-list-homomorphism to H.

For each component C of G, we define |y (¢) as follows: choose some v € V(C)
such that I(v) is finite, and let I'/(v) = I(v). Now for each w € V(C) we define
'w) = {u € l(w) : d(u,(v)) < d(w,v)}. As H is locally finite we know that
I'(w) is finite, and we can see that every finite subdigraph of G' admits an I-list-
homomorphism to H exactly as we did in the proof of theorem 49.

We now let 7, be the discrete topology on !’(v) for each v € V(G). By lemma 47,
G admits an !’-list-homomorphism to H, but the same homomorphism is an [-list-

homomorphism from G to H, and so H is F-list-compact.

Now suppose H is not locally finite. Then there exists some v € V(H) such that
v has either infinite in-degree or infinite out-degree. Assume that v has infinite out-
degree, as the other case is essentially identical. The component C of H containing v
must obviously be infinite. Furthermore, there must be an infinite subset S of N*(v)
such that either uv € E(H) for all u € S, or uv ¢ E(H) for all u € S. Thus, any two
vertices z,y € S have distinct in-neighbourhoods or distinct out-neighbourhoods in
C — {v}, and so the reduced digraph (C — {v})" is infinite, and S is an infinite subset
of V((C — {v})").
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Now by corollary 75 the digraph (C — {v})" must contain a subdigraph K which
is one of the following: a loopless infinite complete digraph or an infinite independent
digraph with loops, where V(K') C S; or an increasing digraph, a decreasing digraph,
a cocktail-party digraph or a matching digraph with U(K) C S or L(K) € S. Of
course (C' — {v})" is an induced subdigraph of H, so let K be an induced subdigraph
of H of one of the above types.

In the proof of theorem 76 we constructed certificates of non-list-compactness for
each of the above types of digraph. We will modify those certificates to obtain a
certificate of non-list-compactness for H. Recall that the vertex v dominates K. Our
modification consists of adding a new vertex u and appropriate edges to a certificate
from theorem 76. .In all of our list-assignments we will define /(v) = v, and our
modified certificates will all be connected, so F(I) will hold. Two examples will

suffice to make our method clear.

Case 1: K is a loopless infinite complete digraph with V(K) C S.

Let V(K) = {aj,as,...}, and define a digraph G by V(G) = {u,vo,v1,v2,...},
and E(G) = {v;vj : 1,7 > 0} U {uv; : ¢ > 0}. We define a list-assignment [ for G with
respect to H by I(vo) = V(K), I(vi) = {a;} for each 7 > 1 and I(u) = v. The digraph
G with list-assignment [ is easily seen to be a certificate of non-F-list-compactness
for H.

Case 2: K is an increasing digraph with U(K) C S.

The schema for the subdigraph of H induced by V(K) U {v} is shown in figure
6.12 (a). We define a digraph G by V(G) = {u,wo, w1, w2, ...}, and E(G) = {wow; :
i > 1} U {uwg}. We define a list-assignment [ for G by l(wo) = U(K), l(w;) = u;
for each ¢ > 1, and I(u) = v (figure 6.12 (b)). Again it is obvious that G with [ is a

certificate of non- F-list-compactness for H.
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Figure 6.12

Certificates of non-F-list-compactness for H can be constructed for the remaining

cases by similar methods.

6.4 Structures and Graphs

The results in this section do not easily generalize to structures, and we have not
attempted to do so. However, all of these results do hold for undirected graphs.
In the case of theorem 81, the forbidden subgraphs for the undirected case are just
the underlying undirected graphs of the forbidden subdigraphs for the directed case.
Observe that this yields only three classes of forbidden subgraphs, as the underlying

undirected graphs of an increasing digraph and a decreasing digraph are the same.
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