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ABSTRACT

The two dimensional lattice gs;!'«yith'rcpuhive first and second neighbour inte,raétiqns

has been studied on a triangular lam'ce To facilitate this study, the lattice gas has been

7 mapped onto the a@ropﬂate lnm; Humltomu and all calculatwns were carned out. for dns”;: -

Ising model. The study employed Monte Carlo and Monte Carlo renormalization ~"group

tcchmques in order to determine the phase dla.gram order of the phase transitions and cnn-_
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zation group calcnl;uons.
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CHAPTER 1

Introduction

1.1. Model

Two-dimensional models have often been used as a stepping stone towards under-

standing physically meaningful three-dimensional analogs. Generally the two-dimensional .

models tend to be more tractable than their three-dimensional counterparts. Hence some

-

exact two-dimensional solutions exist for situations in which the three-dimensional prob- .

lem remains unsolved.

Recently many two-dimensional models have become physically i‘nterest,ing on their
, own meri;s as experimental systems are found which exhibit two-dimensional or quasi two-
dimensional behaviour [1,13]. Most experimental work has been on monolayers of atoms
or mo}ecu]es éither adsorbed on s.u;faces or intercalated between layers of crystals. Two
‘é)éaxnples' are helium or other rare gases adsorded on Grafoil or intercalation compounds of
‘noble or alkali metals and host materials such as graphite or transition metal dichal-

cogenides.

7

For such systems there exists a substrate potential creating a triangular lattice of -

highly preferred sites. Therefore ‘a reasonable model for such systems is the triangular lat-

' tice gas. The lattice gas Hamiltonjan is

H=EUUR;'§]‘+U*¥"; ’ ’ - . (111)

where, n,=1(0) if site ¢ is occupied(unoccupied); U,; is the interaction energy between

atoms on sites i and jand uris the pseiurdb chemical poteﬁaru* includes the perfect lat-

tice chemical potential u plus an additional term to account for thermal vibratio of the
atoms about the lattice site. For imperfect lattice gases u*=u+kTIn()\7; ,‘),

¥

where, .



=

A3=%2/(27 mkT) and V, is the area of the primitive cell of the substratc arawurf_acerl 23:52}

In the laltice gas model, the néa&st neighbour interaction U,, would be fepulsive for

.both the rare gas systems on graphite and for intercalation compounds, such as Ag, TiS,, .

which we henceforth take as our prototype intercalation 'compound. -For the rare gases the

van der Waals potential is the interaction between atoms. This potcnti'a.l‘is repu'lsive for

nearest neighbour distances of the graphite sites and hence results in a nearest ngigbbour )

repulsion U,, . For silver a likely intcractioh is a screened Coulcmb potential and one
also expects nearest neighbour repulsion. Both the van der Wa.als and screened Coulomb

potentials fall off quickly and to a first approximation the helium and silver systems can be

modeled by a nearest neighbour lattice gas with repulsive interactions. Sq;vkra—madgiﬁh:i‘ :

bits an ordered phase with a (v3xv3)R30° structures which would not be present if U,,

was attractive [52]. Experimentally such a phase is found for both the rare gas and silver
b|

systems supporting the idea of repulsive U,, [29,47,57]. The natural extension lsto con-

sider a next nearest neighbour interaction U/,,,. For rare gases, in particular Helium, the

r - :

van der Waals potential is attractive at the nearest neighbour distances with a magnitude

approximately 0.1 of the nearest neighbour repulsion [55]. However for silver, the. -

screened Coulomb potential is also rcpulsii'é at the next nearest neighbour distance.

Interactions mediated by host lattice strains tend to be attractive and will reduce the effect

of the Coulomb repulsion. We have not attempted to calculate either the electrostatic or

elastic contributions dirLctly. We simply assume that both first and second neighbour
interactions are repulsive.

From the above discussion we see that models with either second neighbor repulsion

< 1

of attraction may be physically interesting. The model with ’U;;’q},i'@f]’,&h studied and is 1 N

?

well undersfoodf32,52,56r The model with second neighbour attraction has also been stu-

died by a number of techniques|[31,43]-

\‘\*



-

neighbour repulsion. To ennumerate these cases let a=U,,,/U,,. The possible ’gggs are.

s

1. Upn=0 or 8 =00
2. 1<a
3. d=—“_lr . . 4 o »
4, 0.2<a<1 ’ , - g
5. 8=0.2
6. 0<ax<02. /
¥

To the best of the author’s knowledge, cases one, four, and five, have not been stu-
died.. Howéier, cases two and three have been sﬁldied using Monte Carlo, renorm;liza.tion
‘ g;;;;p, and r'ﬁe:m field theory [49,50,63]. (iase six is physically the most inter;sti,ng since
the next nearest neighbour in&mct.ion is sufficiently small ‘to ens'ureitha-t th;a experimentally
ﬂobserve'd V3xV/3 oraered phase is _not. suppr;essed. | |

- Walker and Schick ﬁave studied some of the features of this cas,e"(using, a ﬁnirtefclus,-r

ter renormalization group [63]. It is the purpbse of this paper to perform a cor;lprehénsive

study of the phase diagram for fixed a in this r;mge. Because of computing time con-

straints artypical value of a=0.1 will be chosen in the hope that this will exhibit the qualita- _ '/

tive features of the case a€(0,0.2).
sThe lattice gas will not be studied directly but its equivalence to the Ising model
enables us to study the corresponding magnetic problem. The lattice gas equivalence to the

Ising Model with Hamiltonian

H=EJ, 3,8 +h28,+NC 1.1.2
L lneth LG g

is seen by making the following identifications;

By examining the possible ground states one finds 8ix 'ihtereétinigrcrzase; of ﬁ;k't nearrcrzrsr;'



. ’ : n,-——il!—(a,-(—l), k=%-§U,l+u¢/2,
) 7 1%y o

Jy=gU, , C=g- LU, +usf2

Yy ]
C 1#) 2,

where N is the total number of sites and the sums on i7; are ‘forqﬁxed i [23,52].

The goals of this study are to find the phase boundaries, order of transitions and criti-
: )
cal indices of the antiferrom'agnétic nearest neighbour and next nearest neighbour triangular

Ising model with a=0.1. ' o

1.2. Universality

Few models exhibiting a phase. transition are exactly solvable. During the 1960’s it
became clear, from the series expansion calculations of a large number of workers, that the

critical properties of many seemingly quite different systems were determined only 'rby the

>

symmetry of the Hamiltonian and the spatial dimensionality of the system. This notion

became known as the universality hypothesis. The renormalization group theory of Wilson
put this ‘hypothesis on a firm theoretical foundation - a single fixed point in a large Hamil-
tonian space can attract an infinity of different systems crossing the same critical surface.

All these systems will thus display the same critical behaviour [65,66].

The most straight forward way of identifying the universality class of ;*S}'stem is to
construct the Landau theory for the system. One'writes down an expansion of the free
‘energy in powers ofrthc érder parameters allowing all terms which are invariant under the
symmetry group of the system. These expansions can then generally be related to the Lan-

dau free energies of certain canonical models (eg. the Ising ferromagnet, the Heisenberg

femngnet, and the g-state Potts model), which are ‘thought to be well understood. Tn

three dimensions this classification scheme has proven to be very successful when com-

bined with a renormalization group treatment of the aforementioned canonical models.

In two dimensions the situation is much more complicated. Many of the "simple”

models such as the g-state Potts model have competing fixed points on their critical surface



[42,60]. Thus one needs to know not only what the symmetry of the model is, but which-

fixed point o:;’ the Eﬁﬁcal rsﬁrrfarce't.‘he reno’mrltaliizerd H;niltonian:; fattracted to. It is gen-
erally; not possible to predict this from an examination of  the microscopic interaction
parameters. Nevertheless, we shall summa}izé below the fésults of Landau theory and ﬁe

predictions of the univefsality hypothesis. x
Before stating the results of Lmd@ theory the nature of the ground state of this
model will be discussed. For A >0 there exists six possible gronnd state éonﬁgﬁraﬁons
[33]. ‘These are shown in Fig.1.2.1a-f. There also exisé six other ground state
conﬁgurat.ioﬁs for h <0. However, the free energy is an even function of A and it suffices
to study the h >0 case to u‘ﬁders_tand the model forall . s _e
A point that should be lflizde,here E that the 3xl‘rsu'ucture of Fig.gl.2.le and tkeléx3

strutture of Fig 1.2,1f are thermodynamically equivalent since there exists a one to one

mapping between sites of the two structures which are energetically identical.

By comparing the energy of the six structures, one can determine the zero tempera-

ture phase djagram as shown iquig.l.2r.2. In ﬂlis diaé;am ‘clﬁﬁging h rb} ﬁxe;i .Ir,,.r and J,,,,,

and hence fixed a results in moving along a line of sl.ope s which terminates at the origin.
The two special cases ¢=0.2 and a=1 are represented on Fig.lt2.2 by the two solid lines.
From this we see why the six cases mentioned in section 1.1 are qualitatively different and

=

hence interesting to study.

As mentioned, the case to be studied in this investigation was the small s and repul-

sive J,, and J,,, model. For this case there exists four ground state configuration and from

<,

Fig.1.2.2 we can find the critical fields for the zérq te?l;perarﬁrlreht}énsitions. These are

&

displayed in Fig.l.2.3 along with 'spécul'atirire'ﬁliiﬁt; teimiperaturei ﬁhase boundaries. These .

boundaries have been drawn in only to facilitate a discussion of phase transitions.



Figure 1.2.1a-f
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This now bnngs us back to the orlgmal ducuuron of clmlﬂcanon of phm tranntlons

Much work has been done by Schick and his collaborators to clmsrfy order-dmorder t.ransr-

tions using Landau theory [14,15,51]. Below, the results of their analysis are summanzed.

The 2x1 order-disorder trolisition'is found to be in the universality class of the -
| Heisenberg rnodel with face cenﬁe oubic anisohopy The work of Mourirsen Berlinsky,
;Bak and Knak-Jensen [35,36] indicates that this Hersenberg model has a first order tra.nsr-
7 tion in ﬂrree dlmonsmns It i is generally belleved drat the transmon wnll a.lso be ﬁrst order

i two dimensions and we thus expect the 2x1 order—disorder transition to be first order.

The \/5)(\/3' order-drsorder transition is found to belong to th'g same umversahty clms

as the three state Potts model and Baxtcr s hard hqxagon rnodel These models have a con-
tinuous transition. Monte -Carlo renormalua.uon group studies of the three state Potts

model and Baxter's exact solution of the hard hexagon model indicate that the critical

exponents for systems in this class will be a==-;— and ﬁ==—;— {2,48].

The final order-disorder wansition is o the 2x2 ordered phase. This transition is in
the same class as that of the four state Potts and Baxter-Wu model. Again Monte Carlo

renormalization group studies of the four state Potts model and the exact solution of the

3

Baxter-Wu model indicate that the critical exponents for this class are a% and ﬁ==ri!é—
[3,48,60]. | : | . -
Other possible transitions are between the 2x1 and V3XV3 phases or 2x2 and ﬁxﬁ

" phase. The symmetry of the 2x1 or 2x2 phmevis not a subgroup of the \/fxﬁ symmeh'y.

. Neither i5 the converse true. Thwse transitions are therefore expected to be ﬁ order.




A7

l“if.l. Renormalisation Group

Often group theory is used to study the nature of the ;;ermrbaﬁon'proble’m whose

'Hamiltonian has the form

H=,+H,,

where H,is a small perturbation of H, “and has a lofer iYﬁiTﬁéﬁ‘y’.’f"ﬁiTéE of the success in
applying thls approach depends on finding an H, with the highest possible symmetry that -
.sﬁll ensures that H, is a small perturbation. Some of the —symmetries that often occur in

;;hysical problemis are continuvus translation or rotations as well as their discrete counter-

parts as defined on lattices. 2 ' T

Howevér, in critical phenomena a new symmetry operation must%e%orlmd'toﬂplo'rtw

the ideas of .group theory'in critical systems. To ﬁnd th'm' symmetry the physics of the

problem will be conmdered Expenment.ally, |t. is found that the correlation Iengtb of t.he'

system dlverges as it a.pproaches crmcahty If the assertion is made, now called the scaling

hypothesis, t.l:at the only relevant length governing the smgular behaviour near the cntacal

point (7;) is tlle correlatlon length (€), we find the system depends little on mlcroscoplc |

detail and is therefore independent of the length scale chosen. This follows because the

~ which implies {/é—0 for all finite {.

Now with an invariance -discovered, 3 group operation which exploits this invariance

-

-
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4 O RS

- 1. "Average over a set of mmroscoplc degrees of freedom and mngn an effective degree

of freedom to this set.

2. ThenA "rescale” all lengths in the new problem of effective deg{ees of freedom to make

it isomdrphie to theoriginal problem.

Since the critical system is sssumed i;:&lependﬂt of microscopic detail and length
scales, t]ns operation should be an invariant symmetry operation. These ideas, which form
the bams ot the renormahzatlon group (R.G.), are due to Kadanoff [24]. Wllsoa formal-

=

ized these ideas lnto the modern theory of renormalization group [65 66] Nlemeuer and

van Leeuwen apphed the theory of Wllson to spm systems [16 38 39] The approach of t.he o

latter authors is used below to precnsely define the operations of the R G for Ising spin sys-

tems. .

Imagine a lattice of Ising Spins (¢) with Hamiltonian H(s). Subdivide this system

into blocks of spins and choose an "averaging rule” to assign an elective Ising spin to each

block; based on the spin configuration of the block. This wnll be called the block spin (s ')

Next rescale the lengt.hs of t.he blocked system to match those of the spin system Thls ‘

defines the block Hamiltonian H'(s’) that governs the action of the block spins. Though

Kadanoff was unable to construct the relationship between H and H', he was able to

develop a scaling theory with these intuitive operations and the notion of scale invariance. |

Scaling theory will not be dlscussed here though it wnl! be shown io follow naturally froni

the renormalization group. The next step in R.G.‘ theory is-to denve the relanonslup'

between H and I:V'. However, to do this we must be able to characterize these Hamiltoni-

ans by a set of parameters. “Tnstead of H, the dimensionless Hamiltonian H =-H [kT will

‘be used in the remaining analysis. To characterize this Hamilionian, some definitions are
ﬁ; needed. Let s, be the spin at site i of a d-dimensional lattice (@) of N points. Then let a

be a subset of @ and A={a | for oll subseis aEQT Let S, =[] 2. Then the most generaT
tEa ’

Ising Hamiltonian has the form;
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| E(8)=EK¢Sa ’ ,,‘. i _' : | (211) ]

. - - L — e — ﬂ#ﬁ [
where s={s, | for all i€ Q} and K, is a set of parameters.

In this paper only homogéli'ec{us Hamiltonians will be considered. A homogeneous”
* Hamiltonian is defined as : If 6,bCQ and if there exists a symmetry operation R of thé ‘
lattice space group such that s =Rbd= K,=¥, then the ‘Hamiltonian is homogeneou; and

can be written as;

Ii(s)=2K;ZS., : , | (2.1.2)

weB aEw
where w is the cliss of all subsets such that a,b Cw if and only if there exists a lattice

transformation R such that a=Rb with, K,=K,=K, ma@jmmm classes }. If. . - -

H(s) is written out explicitly it has a more familiar form;

Ii(s)#(,,,Z}s,+K',,,.§8,3]+KA};.§,813k+ cee L ' (‘2_1_3)
From the 'at;ove we see that all that is needed to describe the Hamiltonian is the set of coﬁ4 _
pling constants K,. Tﬁerefore, each Ising-like Ha_xniltoniﬁ can be represented by a a point
in seme infinite dimensional space. 'Ifhis space is called the Hamiltonian or —pnameter space. -

Initially, it was the relationship between ﬁ(s) and H'(#') which was sought. However, if

we write
H=Y K. X5, | (2.1.4)
weB eEW . K
and - ‘
- H()=L K/ S, ' O (215)
: vER s€EwW i ,

this translates into finding the functions R,(K) such that K,'=R, (K).

To calculate R the "iverage rule” must be clearly

delinfd Thf average rule can be
t.h'o‘ught of m.a conditional probability P(s,’,%), which is the probability that the bloc‘k spin
" of the i* blockhaa the value s, given that t.he coﬁﬂ?umﬁon of spins in th.eri“‘ bquk isr 7.
- This now defines the conditional Probability P(s';s) between the block spin configuration s’

and spin configuration & as,
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with

P(":¢’)=1A1F,P(’.'£)>°- (2.1.6a)

Z&J:P(S';é)*l, (2.1.6b)

_where N' is the number of blocks. Therefore the Probability P/(s') of a block spin

configuration &', is

PU=EP(5)Ps), g
~ where P(3) is the probability of t.he spm conﬁgu'rat»ion given by )
P(s)=exp{il ()} Texp(f(n)}). . (218)

[

By aha.logy to 2.1.8 we seek H'(s’) such that

P'(s")=exp{H'(s") }/Sljiﬁ'( )}, o (2.1.9)

By combining 2.1.7, 2.1.8a, 2.1.9a and defining a function G(K) as;

exp{G(K) }=2exp{ﬁ( e) }/Zexp{ﬂ‘( s)},

we find that

exp{c(k)+1?'(a')#ZP(s‘;s)e__xp{ﬁ(a)}- © (2.1.10) _

This relationship between H and H'in principle determines the function K,'=R,(K)
More generally it follows that |

KW=R(K*~Y)=R(R..R(K) - - - )=R(K) (2.1.12)

where K(* is the coupling constant of the system which has been blocked n times. Notice

that equation 2.1.12 can be thought of as a recursion relation. From this point of view the

topology of the flows, deﬁned by R, in the Hamiltonian space becomes interesting. In light

of the assertion th;t a cﬁtical system be 7irnviairiiaht;7|71ntii;r d;;enor;:ahzaﬁon group trangfor-
mation (ie.K'=K=¥") the fixed points of R (i.e. K’=R(K ")) are particularly interesting
and correspond to sinks or sources of the flow of coupling ;:onstants through Hamiltonian

S ™~

L™
space.



relationship betﬁeen: fixed points of R )

A number of questions can be asked about the

and criticality of a system.

A3

1 Do all fixed points corresponci to a critical system?
2, Is a critical system a fixed point of R(K)?
To answer th;ase qﬁestions the effect of the topology of the ﬂowsjfijéle ngighﬁour- |
hoéd of the fixed point ,K. on the free energy must be studied. The effect of the ,ﬂ,@,“@ on
the free en1ergy is most easily seen if a recursion relation between the free energies of the

block and épin systems F'(K') and F(K) respectively, is derived. The derivation is as fol-

lows. ’ ) . - e . e S

-

It 2.1.10 is summed over s’ on both sides and the sums s and s' of the right'hand
side are interchanged then

] Z;exp{G(K)+ﬁ'(s')}=2{’(3’;s)exp{ﬁ(s)} X

,
However by 2.1.6b this reduces to -

exp{G+F/(K') }=exp{F(K)}
or '
G(K)+F(K")=F(K) .
Now let N=number of particles of spin system, N'=number of particles of block
system, and N//N=3{"¢. We expect G,F, and F’, to be extensive quantities. Therefore, as

N—oo, G(K)—Ng(K), F(K)-Nf(K) and F'(K’)—»N'f(VK’). The relationship

J(K)=(K)+I"*f(K) (2.1.14)
is found. Using this relationship the free energy can be expressed as a sum of terms:
. : Y ® )
T m‘—fl* i "’*’f"fd T T, TTTTTTTT T
F(K)=Y I g(K") 4= 1 (K™) . (2.1.153)
- ud ke

~

This finite sum may be extended to infinity if

.

lim "™ f (K™)=0 . " (2.1.15b)
R~+00 ]



15

©

~

A word of caution should be introduced here. In the remaining analysis we assume -

 that g(K) and R(K) are analytic functions of their arguments. This imposes further res-

trictions on P(#';5). One of the restrictions is that if g is the ground state configuration of

the spin system with symmet.iy w then the ground state configuration of the block system .

8, must have the same symmetry w. It should be noted that this is only a necessary condi-
tion and not a sufficient condition for analyticity. The analyticity assumption is of no small

" concern and has been one of the weak points of the R.G. arguments [22].
Now consider the recursion relations R in the neighbourhood of a fixed point K’ Let

3K,

| | . :bTIK;:K; (2116)
then for small K;- K,
K,'- K:=ETa’b(Kb“Kb') . (2.1.17)
b - . N
Let X, be the eigenvalues with associated left eigenvectors V; of T/, such that
Y VeTh=2V;
a —-
Then define the functions u, and u,’ as:
©u=) VoK.~ KJ) | (2.1.182)
. A
\
v =) Vi(Ka'- K5 © (2.1.18b)
a

The u, and u,’ are called the first order scaling fields of the fixed point K’. From the

above definitions it is easy to see that

\
¥

u" =EV;(K<:’— K:) =EV:: d'b(Kb_Kb') =)‘$EV£(K5_K;) =X,
a 1] ]
Therefore

u(K")=7 u,(K) (2.1.19)
The scaling fields can be generalized such that equation 2.1.19 is true not omly for
infinitesimal ‘u, but also for al} finite u, {16]. If |\, |>1 the scaling field u, is called

relevant, if |\ |<1,u, is called irrelevant and if X,=1, u, is called marginal. These

Pias



definitions become more meaningful in what follows.

Consider g and f as functions of the scaling fields u,. Since g is an analytic funétion

of K,, and hence of u,, it can be exbahded as a power series in u, .

2
o

n fl -
gluy,uy - - —-Ey,ulluz < (2.1.20)
where n={(n;n,, - ). We now perform the above sum in two parts. The first part,

2 which represents the sum over all n such that )\1"1)\2"2 - -+ <l and the other part E

¥ Jesser s‘ greater
which represents the sum over all n such that A\, 25 - >4 Therefore we can write g

as:

n n
9(“1:“2, : )—E qul “2 R o E 93“11“22

lesser greater

By substituting this in equation 2.1.15a and a.ssuming‘2.1.15b‘ we finid that

f(ul,U2, R —Zl-”dg(xlul,X2U2, "').
n=0

_Y‘ "y 9n()‘1 uy) A7 "2) "2

n:O_‘ lesser
Zl_nd 3 g.n()‘lul) l()‘zl‘z)"2 e (2.1.21)
greater . .
In the first term of the above equation ), 1)\2 -+ - <% which ensures that the sum is uni-

formly convergent allowing the sums over n and n to be fnterchanged. However such is
) : :

not the case for the second term. We define the function g,,,, to be:

n,on -
Grem{un Uiz, = )=3] gyuytu® - - (2.1.22)
greater

Making use of the discussion and the above definition one may rewrite equation 2.1.21 in

,\ . {

the form:

n n
(9“111‘22""") 00"l .
fupu,, )= — — + Mg (MU N Uy, 0 ) (2.1.23)
lesser (1_ l‘d)(1 1)‘22 S ) n=0 i

i

y Next notice that
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El— ”dgrm()‘;ul!k'2”u2’ e )= E r u‘grem()‘l"uh)‘;u'zr U )
n=0 - =0 :
) ‘
< - nd ‘ n n,
- E r* >01m(klul’)‘2u2’ ' ' . )
» ”=- 00
and also if we write g,., out explicitly that s
e i, s d " I
= X g (M u up, )= 3 MY 90 (M) (A fug)
= 00 : ‘ A= 00 greater ’
If we assume that )\:1)\;2 SR l“‘#l then the above series is uniformly convergent for all
u, and the order of summation can be interchanged such that it can be written as:
S (gaurtug® - ) M1- )
greater
Therefore _ ' }
' a, n h .
m(g ullu22 ....... ) 00 . _— . .
f(uyug, -2 )= ~= I + E«l dﬂrem(xl'll,)\z“z, o) (2.1.24)
2=0 (1- 1\, ,2%2--+) r=o ,
or
f(ulyu21 e )#rcg(ubum U )+fsmg(ulyu2y Tt ) (2125)
& (gn“:lugz """ ) :
A reg(up, g, - - - )=, 22— (2.1.26)
2=0 (1= 200 )
om0y, - - )= Z ™ grem(Mu, N gug, - -7 ) (2.1.27) -
n=- O

from equation 2.1.27 we can see that

[s o]
fsmg()‘lul’)‘ZuZ’ T )= Z . ”dgrm(kx"ﬂul,)\z;‘ﬂljz; o )

1= QO

00
=‘d E l'("“)dg,,,,()\l”“ul,)\z"“uz, . )

1= 00

by making the index shift, n4+1—n, in the above sum we find that

00
fmg(‘)u“h)\zl:.n e )=“ E l_ "dgrem{)‘lﬂul;)‘ZnuZ: o )

1= 00

bence \

Sang(M1uphoug, - - )=“fsmg(ulru2: ce) (2.1.28)
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This form of thie singular part of the free energy is called a sc’alii.lg form. It was pos-

tulated some years befqre the discovery of the R.G. W‘hit; has been '81i6'Wn here is thatit
follows paturally from the flows in Hamiltonian space of a system near a fixed point. This

singular piece is analyzed in more detail below and it is shown that the relation 2.1.28

®

implies that at a critical point thermodynamic qua;n'tit.ies will have power-law singularities.

~ To analyse the singular part of the free energy it is useful to defiie a function A as:

[

- o™
A(ervaﬁ Tt ;ul)=|ul| i Z I—“gfm(xl’ul)x;uZlul'Iyz/yl)x;vaIul|y3/yll e )

R=- 00

where u;=v,-|ul|!""/yl with A\,={"' and u, is assumed to be a relevant scaling field. It is easy’

to show that

. A(vgvg, - MU }=A(vy,vs, - - juy)
hence A is a periodic function of In |u, | with period la),. This enables us to expand A in

i
a Fourier series as:

o0
A(vg,vq, - su)= Y Afexp{2rinin|u,|/ln),}.

”n=- O

— i A:: lul'{zrnﬂnxl}

= 0
The + signs are introduced to distinguish the two cases u>0 and u<0. The Fourier

coefficients A, can be ‘written as;

; .
kg d v

— £271m /) "N
[ (i juy ) fu, [ &0y 1 x
0

A=
" lnkl

By making the substitution t=3§1"|u1| in the n* term we find, after performing the sum,

1= O

that

00 .
1 dt - X
A: f ‘1+d/y‘ g'm(i tyuztyZ/ylrutilyslylr T )t frim/m) -

T EA

The common assumption made here is that A ¥ =0 for all n7£0. This implies that

e
Fa
e

A(UZ’USJ tee ;ul)—.._'A&t ‘Ug,va,,..) .
or that

a0
E - ”dgym()\l""l,)\znvzlulIyz/yl.)\anvalullyajy-l, T

)
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[

.;‘3
fmg(“huz; Tt )=|ul|,l‘4g:(

- uz -
. 7 ' ' ][uTlr!'z/h ! ’m—l""/" ’ e

Physically this assumption seems reasonable because if it were not true the singular part of
Y

the free energy would have oscillatory terms superimposed on the |u,}** behaviour. For
more discussion on this point r;ee the article by Th.—Niemeijer and and J M. J van‘
Leeuwen in reference [16]. !

‘Next consider the eﬁeets of \t.he ;ealevb.nt and ir‘relevant. fields. To do so consider
equation 2.1.29 where labels for the scaling fields have i)ee'ﬁ chosen. such that u, for
ISi'Sk ere relevant fields and all other u, are irrelevant. Notice werhave excluded the
case of marginal fields. }n‘; fact, this assumption was implicitly made when we assumed

) )\:')\;2 ce 7£l‘. For a discussion of this case, again see the article mentioned above.

_ Notice that ¥./v:1<0, for all i> k. Therefore a8 |u,|—0, 0 for all {>£ and hence

u,
ul Iyl/ 1

4

- v g Y2 . e
,fsmy(“n“z: )""ull AO ( ' Iyz/ylr ' Iully‘/yljo,o, )

Therefore to, leading order, f,,, is mdependent of the melevant fields. This is the reason

for the distinction between relevant and melevant fields.

This brings us to the idea of universality. Previous to the deve]opment of the renor-
malization group it was found that many systems displayed the same critical behavnour
Classification of th'ese groups of systems into classes become known as the universality scal-
ing hypothesis. In the above analysis we were initially concerned with tl;e critical behaviou;
in the neighbourhood of the fixed point. However, we see that t.here exists a hypersurface
defined by setting all the relevant fields :to zero. In the neighbourhood ol"thirs surﬁce the

singular behaviour of the free energy is universal, to leading order. Therefore in terms of

renormalization group theory, a universality class consists of all systems described by a

point on this hypersurface. Because of 1t5 critical properties the hypersurface is called the

surface of criticality. We define this hypersurface to be the domain of attraction of the
s .



fixed point. This means t.hat all systeiné inﬂﬂlis doma.ih willrbe mapped tow;rdstheﬁxed -

point under renorma.hzatlon group tmsl‘ormation Unlvergd;{yg therefore a natural

consequence of the repormahzat.lon group.

Widom's [64] static scaling hypothesis is usually written as;
Sang (X777, X "h)%cfm,(f k) .
This can be related to equation 2.1.30 1f we assume that t.here are only two relevant vari-
ables u; and u, which are temperature-like and field-like respectively and then invoke the
universality of the critical surface to apply the scaling analysis at an arbitrary point on the

critical surface.

In summary renormalization group theory has provided the mathematical tools and

3 a4 _ . '
»“’mcepts that enable us to understand these conjectures of early workers in critical

phenomena. The renormalization group also provides calculational tools useful in deter-

~ mining the singular behaviour of specific systems.

2.2. The Monte Carlo Method :
In classical equilibrium Statistical Meéhanics one is often interested in the calculation
of the expectation of a function of random variables. In the canonical ensemble the expec

tation of A is written as

@ <A>_f dm(z)exp{ H(z)/kT} (o2

fexp{— H(;)/kT}

“for functions of continuous random variables and as A

YA(z)exp{- H(z)/kT}

v A>T S el H (D FT)

for function of discrete random variables.

For (,heﬂpurpose of this paper, only functions of spin -;— variables be considered;

therefore, equation (2.2.2) reduces to



Y, - - Y, Afey, ... ,ay)exp{—jH(tl; Sy e} T} - IR

s$1=1 Sy=t1 .
1 al (2.2.3) ' B

$1=& 1 Sy=k 1 : a

for a N particle system.

R %Y
Though the formalism of Monte Caflo will be developed for spin —;-systems it can be

easily generalized to systems of other degrees of freedom.

-

In the evaluatioil of (2.2.3),7 2¥*! terms must be calculated and summed togeihe‘r.
Even for smaﬂ systems this can be a d‘iﬂibcult task. For ‘exa‘xmple, to evaluate (2.2.3) for a
2-dimensional 5X5 particle system, appl;oximately 10® terms mustrbe evaluated. Therefore,
in the thermodynamic limit as N—oo the straight forward apprbach:pf summing the séxies
d_irectly becomes hopeless. Apart froni a few special Hamiltonians, <A > can o’g{ly«be

Approximated.

One of the simplest approximations is called Monte Carlo importance sampling [4]. It
_is based on the result of probability theory that the arithmetic mean of an infinite sequence
of independent random variables having a common distrii)ution converges to the expecta.-',

tion. Therefore to approximate <A>, a long sequence \pf independent random spih

configurations is generated from the distribution P(s) . 3
P(s)= exp{- H(s)[kT} ‘ '
Y - Y exp{-H(sy, ...,83)/kT} (2.2.4)
s;I=t1 sy=t 1 ,
from which <A > i§ approximated as
~_1:, - V |
<A>~mEAU) _ (2.2.5)

v=l
where 8%, is the v® spin configuration of the sequence and m -is- the number of —

configurations in the sequedce. : o , o _

This method proves to be much more efficient than trying to sum the series (2.2.3)
directly. The reason for this is that there tends to be only a small subset of the 2V possible

spin configurations that occurs with any appreciable probability. So for m of the order of
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‘the number of elements of this subset, the ’rapptoiimaﬁon f(?.if:&)"ﬂ'is'*generaﬂy gr.roﬂ* S

independent random variables is not a sﬁaightforward task since the calcalation of the dis-

tribut.ion,A(2.2‘.4) is nearly as difficult as trying to evaluate <A > by summing the series
.(2.2.3). However, the theory of Markov ';ha.ins provides a method for generating variables" '
of a given dis.tribution&, Markov thebry consists of the study of a special stochastic chain obf
events where the outcome of the n® even3t of the chain depends only on the (n- 1)* event
, ofi the chain. Moreover, the transition probability is independent of step n. To define the
Markov Chain one defines the conditional probability

P, =Prob(X*M=j X" =) — B
which reads as the probabi]ify that event n+1 has value ”j” given that ther event n had
value ”i”. This matrix is called the one step transition probability nﬁtrix. Next the m step |
" transition matrix is defined as ” |

P{™ =Prob (X" =5 |X" =) .
From these definitions it is easy to-see that

Pi¥= 3 PPy, P,
S Lk .

If the conditions

) P,>0 for all i,j (2.2.6)
are imposed and if there exist some numbers x ,>0 such that \
1
Yr,= (2.2.7a) ~
] . )
and 7
=Y .P,. , (2.2.7b)
H

then the limit of P{™) as m—co exii;t.s,iand is such that

\ Jim Py, - | T (228)
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The above statement (2.2.8) can also be interpreted as sayin'g‘t.hat"t.’he”long run distri-

7 butaon of states of the Markov pr;cééi gindependent of initial state and is eq\ialitb T, ‘
Therefore, to génerate ‘any particular sequence of random variables whose distribution is. 7,

we merely must find a P, such that .

lim P,s“)=1r ;
m-—+00

What is sought; therefore, is a matrix P,; such that « , is the Boltzmann distribution
(2.2.4) of the states j. With this P, the long run distribution of states of the Markov ‘
% . C

chain will have the desired Boltzmann distribution. Therefore, to approximate <A > one

merely averages A(¢) over the states generated by the Markov Process.

The task now is to find P,, with the desired properties

P,,>0 - (2.2.9a)
exp{—H(s)/kT}QZﬁ,;,exp{-H(s‘)/kT} o (2.2.9b)
If the detailed balance condition - |
Pyexpl H(s)/kT)=Py expl- H{e)[kT} (2.2.10)

is imposed, both of the above conditions are satisfied. From (2.2.10) we have
(Py[P.s)=exp{-(H(s)- H(+)) [kT}
=exp{- 6H,JkT}>O0 for all ¢',2
where §H,,=(H(s)- H(s')), hence P,,;>0 which is which is condition (2.2.9a). Alsé from

(2.2.10) it can be seen that by summing over s’ on both sides of the eﬁuation

et H(FTIDP=EPsexpt Hs)

i

but, EP”J=I, therefore it is easy to see that condition 2.2',.95 18 also satisﬂéyd o
s/ / . R - - : '

Even at this point there is some arbitrariness in the choice of Ps:s. Some of the com-

mon choices are {4,11};

P,,;= {1-tanh(6H,,[2kT)} ' (2.2-1.13)
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In this work we have consistently used formula 2.2.11a

We now con‘si'der how the Monte Cé.rlo scheme is réalized in practice. The first step is
to choose some ﬁiﬁd configuration . The cl_lo‘ice,of this conﬁgurgtion is’in general arbl-
trary. I‘Ioweve‘r, to decrease the number of samples needed for convergence of (2.2.5) one
may bias the selection. Then one selects, either s&stzmatically or randomly; one or more of
the spins of the current configuration and c:lculites the lrenergy chan;é 0H which v?ould.
" occur if these spms were ﬂxpped This energy chan;e determines t.he probablhty of sucha -
transition. This probabxhty is compared to a random number (usually a psendo-randomr
number generated on a computer), and the new configuration is either rejected, in which |
case 3 remains; unchanged, or accepted, in which case ¢ will change by the ﬂippi.ng of these
spins. The process is repeated ¢ times where ¢ is sufficiently l:ngg that all states are possi-

ble. This then is what is called one Markov step.

For a sequence of such conlrigﬁrati'oﬂrs‘{a”rlvd,?ﬁz h <A> isrcarlcrulra.tedrés:v

o

1¢ ' ,
<A >~TEA(a"”’) ; S (2219
1=1 . M .
“where m=wt and w is chosen typically between 2 and 10 to enhance the independence of

the set of configuration A is averaged over.

Having described the basics of Monte Carlo importance sampling, we now discuss the

difficulties of the technique.

The first problem to ;*éﬁsider"is th?it"bf"ﬁn'it}é ’Sfié.'ﬁe’ﬂéﬁll)’" 6ﬁé'-i§'iﬁfé’résﬁd*hﬂhe
performed on finite systems. This 1s not t;i);be a prﬁblem for noncritical systems. Howe\;er,
as a phase transition is approached, difficulties are encountered. At a phase transition, ome

is interested in the singular behaviour of various ’thermodynamic functions, but for finite .
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systems the free enmergy is analytic and thcée singularities are not préseiit. To overcome

this proslfm, Mpnte'(;}ai;lo cﬂ;:niaﬁois are performed f;,l,l:;h‘h’b" of systems of increming'
size to see 7if the analytic functions 6[ the finite system tend 'to a sfn;dlar limit as NA‘
incr;:ases. In this way the Montz Carlo results may be exﬁipola&ed to the thermodynamié
limit. |

I;Ie);t, the influence of the starting ;onﬂguraﬁon on the convergence rate of the sum
(2.2.12) will be' considered. In the limit 28 m—oo the initial configuration 'isv()f Do conse-
"quence. However, ohe is unible.to perform an infinite number of Montz_Carlo sieps, 80

the initial conﬁg\:_rhﬁon does’ play a role. Ideally, one would like to start ‘wit.h a typical

configuration. In general though, one does not have this information. A technique called

thermalization can be used to attempt to generate one of th‘ese typical configurations. The
techﬁique simply dlbws the Monte Carlo process to iterate many times before averaging,
allowing the Markov pl"ocess to dl_'ivhg the spin conﬁgnraﬁoh towards a typical state. Again
this wm;ks well for noncritical sysﬁms; however, forva second order transftion‘ the relax’;- '

tion time to thermalize the system diverges. For finite systems the relaxation time remains

finite which helps somewhat, but it still can be very large.

Statistical errors alsor will play their usual role in the evaluation of <AC> and to a
large extent are handled by "eyeballing” the data although more sophisticated techniques do
exist . Other'problems also exist such as the generation of pﬁeudo—ran;jom number and the
choice (\>f boundary conditions. For a discussion of these se; the article by Binder in Monte

Carlo Methods in Statistical Physics (ref. [4]).
2.3. Monte Qﬂo Renormalization Group
In the renormalization group theory the expression of interest is the recursion rela-

tionship K,'=R,(K) and in particular
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Py a-’K‘V’V| ) - - .
oK, M. -

(231)

where K’ is a fixed point of the recursion relationship. It was not mentioned in the discus-

sion of the general the,;:ry that for most models one is unable to derive exact expressions -

for these functions. The main stambling block in the calculation is the fact that K is an

infinite dimensional vector.

o

Prior to the development of Monte Carlo renormalization group, one would attempt
to calculate R, ,by;a.ssuming that onlj a'oiﬂy'a finite number of coupling constantb K,

affected the critical behaviour of the system.

Two different finite lattice methods have been commonly used in closed-form renor-

malization group approximation. The first is called the cumulant approximation “The

essence of 'this approximation is to find a Hamiltonian H. for which the recursion relation.; :

are’known ahd such that the original Hamiltonian H can i)e expressed as, H=H +V where
V is a small perturbation. | Then the recnrsion- relationships ‘of H are truncated ny only
keeping terms to some desired order in. V. This technique has produced reasonable va.lues
for c;itical exponents in two dilmensiohal systems but becomes unwieldy for three dimevn-

sional systems or systems with interactions of gréater range than nearest neighbour.

The next method is the finite cluster @proxhﬂﬁon. To make this approximation one
begins by blocking a sufficiently small lattice such that the ability dis\tribution of states
of the blocked and unblocked system can be calculated exactly. From these distributionﬁ
one obtaixis’ k,. This R, is assumed to mimic the beﬁavhur of the corresponding R, for
the infinite systems. This method has produced good results for a number of two dimen-

sional systems.

To overcome the effects of truncation of the dimension of the recursion relation,

A

Swendsen, in 1979, propo;;ed a method combining Monte Carlo simulation and renormali-
zation group called Monte Carlo renormalization group (MCRG) [10,58-61]. MCRG theory

makes use of the fact that the matrix
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, . ‘ ] -
Recall from equations 2.1.1 and 2.1.10 that the Hamiltonian, after n renormalization
_ group transformations, can be written as
=3 kst  (esy
a€CA o
where the relationship between the n® and (n-1)® Hamiltonian is given by
exp{G(K(" V)+H(" =3 P(s(;sl* Vyexp{d* Y} (2;éb) : :

PLED S

We begin the derivation by considering a relationship that follows from the chain rule

a<S*> a<si®> oK™

=y ,— 3.4)
3 K™Y % GK( oKD (23.4)
Notice that
ZS(”)exp{H(')}
a<siN> 5 G
OK(" oK™  Yexp{H™}
‘l
=<5"s{M>-<sV><5(M> (2.3.5)

and by using (2.3.3b) -

T sMp(sl; s V)exp{H (" V- G}

0<SM> 8 e
K™Y T gk~ Y P(s!™;s(* V)exp{H(* V- G}
smgn-1

Y SIS UP(et DjexplH ") T sMexp{HM} Y S+ Vexp{H ")

g1

y Sexp(d= ) © Tep{ld"x Sexp{ )

5® PLED W

s* 7 .8

Note that the fact that
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" therefore
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CUYP(sa )=

Sl

was used in the above calculation. Next notice that

s® o

is the conditional expectation of S{*S{* V) given s(™ 1 | since P(s(";5(~ 1) is the condi-
tional probability of 8" given ("~ 1. Hence,

a<siM>

(D SMSY>_<sW><stY>  (236)

Combining (2.3.2), (2.3.4), (2.3.5), and (2.3.6) we obtain the relationship

<SS D>_ <5M> <S> =N < 58" >- <S§")>}S}")> Tw - (23.7)
) ’ e o . N
This can be put into matrix notation by defining matrixes

(5™ =< S{Msf™M>_ <5M><sf™>
( f(f’)) ab=Ta(6”)

Hence, equation (2.3.7) reads as;

>§(n,n- l)%"-(u,n)i(n) ,

f(n)=(§(n,n))-ls'§(n;n\—l) .

In general $™" is an 'mﬁnite.dimensionﬂ matrix which might be difficult to invert,
rlet alone to calculate by Monte Carlo. However, since it is only the largest few eig;anvalues
of T{" that are sought, only a small part of S{** has to be inverted to find these eigen- N
values with a gc;od degree of accuracy. This is, of course, an assumption, but using MCRG

one can add more and more coupling constants with relatively little effort.

What is of most interest are the eigenvalues at the fixed point K*. We can find these

by making use of the fact that for a set of parameters K° on the critical surface K"K

and hence T{M— T/, as n—oo.



29

To find T,;, one merely performs Monte Carlo simulation on a critical systeﬁl\and
perforrhs the renormalization group transformation a number of tin’ieé on each
c;pﬁguration thus generatink a sequence of configurations of the blogked system. The dis- -
tribution of these block configurations will be the same as if an exact renormalization group

had been applied to the original Hamiltonian. Therefore, the Monte Carlo simulation will

approximate the correlation functions 5'("’“' D §(»") determined Yrom exact renormaliza-
tion group transformation. The sequence {§{™™ 1 §(*"|n—g o -+ -} generated will
tend towards the fixed point value of this function for increasing n this way T,, can be

approximated.

We nbw mention some of the limitations of this method and some consistency
requirements. ’Apa.rt from the standard problem of finite s_ize statistics, as found in all
Monte Carlo simulations, a number of new difficulties appear. ’I‘h; problem associated with
only calculating a finite number of elements of the matrixes S{"* 1 S*" has already
been mentioned. In principle, this is a problem: In practice, however, it is easy to test if
~ enough elements have been calculated by varying the number of interactions used in the
calculation of the eigenvalues of T,;. Convergence a3 a fqnction of this number has been
found to be quite rapid. \ ‘

The next difficulty arises from™the use of finite lattices. Because of this, only a finite
number of iterations of the renormalization group transformation can be performed. So the
question arises: is Kt sufficiently close to K’ ? There tend to be, in many ‘ca'sez.s, a large
region about K’ in which the ﬂo‘ws are linear; thefefore, all that is needed is for K(™ to be
in the linear region. This condition can be checked by see'nllg if the eigenvalues are station-
ary for the last couple of iterations.

“The last point to be made on the limitations, is the question concerning accur;we loca-

tion of a point on the critical surface so that the renormalization group tramsformation

drives the Hamiltonian to the critical fixed point. This process is nonﬁa.lly done in two
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stages. The first stage is to examine the flows of the expectations < 5{M>, which tends to
flow to the ground state or infinite temperature ﬁ;(ed poilt values very Euickly for points
not too close to the critical surface. By looking for the bifurcation of these flows one is
‘able to determine th,phaée boundary normally to about one percent. The second stage is
to sample it,his one ;“u;-rcent; tolerance region such that the variation of the eigenvilpes is

minimized under renormalization group transformation.

In summary, Monte Carlo Renormalization group provides a very general scheme for

perfomfing exact renormalization group transformations with several self consistency

checks.

g



" CHAPTER 3
Calculation
A

It is the purpose of this investigation to examine the effects of the addition of a small
(repulsive) next nearest neighbour interaction to the triangular nearest neighbour Ising

antiferromagnet. The resulting Hamiltonian for this model is |

H=J,%88+J,, 28,8J+h28, , .
AR $3.1.1 )

where nn and nnn represents nearest and next nearest neighbour pair respectively. In par-

ticular, the case to be studied is J,, >0 and .},,, >0 with the ratio a=/,,,//,,=0.1.
The study has three objectives: |

1 To &eterminelhe phase boundaries in the T-h plane for fixed a =0.1.

2 To determine the o'rder:of the transition along these boundaries.

3 To detenn‘inc the critical in'dices of the phase transitions. ?

Objectives one and three will be realized by MCRG Techniques and objective two will
be obtained by Monte Carlo sampling of the energy, order parameter and free energy func-

tional F(¥). F(y) will be defined and discussed below.

Before any RG calculation can be performcd\thc\ground state configurations must be
identified. Next a RG Transformation must be found such that the ground state symmetry

is preserved under this operation.

For this model {i.e. a=0.1) the ground state phase diagram is in shown in Fig. 1.2.2 .
? Ideally, one would seei 3 RG Transformation that would preserve the symmetry of all four
phases simultaneously. However, il; the attempt to do so, the only such transformation
found produced a blocked Hamiltonian with very anisotropic coupling constants. In order
to keep the blocked Hamiltonian (approximately) isotropic, the idea of a single RG

R
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Transformation for the entire phase diagram was abandoned and two separate RG Tra.nsfor-\

4

!

mations were used. ~
A four spin block was used to study the V3XV3 phase as shown in Fig. 3.1 with pro-
jection matrix defined as '
P(s'8)={] P(2/ 2,878 8%)
1 it (a'+82+8Y) /s >0
P( 81’;8|l’8l2’813’814)= Y .
‘ 0 otherwise
For the 21 and 2X2 phase a common three spin block was used as shown in Fig. 3.2

with projection matrix defined as

P(se)={] P(2,;5] 8% ¢})
1 if (s'+8+87%)/fs! >0 e
P( 311;311’312v3x3)= |
0 otherwige

The use of two different blocking schemes is a cause for concern only near a transi-
tion between 2x1 and V3 XV3 phases or 22 ahd V3xv3 phméa. We expect these transi-
tions to be first order and we can use other Monte Carlo methods to find the coexistence

curves.

The first part of the study is to locate the phase boundaries by using the above block-
ings in a MCRG scheme. Under successive RG Transformation, the Hamiltonian initially
in a given phase will ilgw such that the block spin conﬂ;ur?.ﬁon will tend towards the

ground state configuration of that phase. Then

lim < S{Y>=<5!>

»—0C

where <S/> is the average of S, evaluated over the ground state configurations. So, by
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R.G. blocking scheme for the

| ( R.G. blocking scheme for the
2x2 and 2x1 phases
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looking for the bifurcation of the sequence <S{"> the phase transition canrlrnrlo'cated. In
practice, the finite lattice used can only be iterated a limited pumber of times. "I'hereférre,”
this restricts the accuracy to w_hich the phase boundary can be located. Howevér, even [01[

relatively small lattices (30x30) the unéerta.inty in many cases is less than 2%.

In this study relatively small latticeg were ﬁsed to find the phase boundaries. For tile
7 V3 X%V/3 phase a 32x48 spin lattice was most freque:;dy usgd whereas for\the>,2xl and 2‘)(2
phase we generally perfor}r:ned the calculations on a 36 x36 lattice. ﬁé initial :conﬂguration
was thermalized 2000-20,000 MQS[Spip btlafore sa.mpling, and the averages evaluated ovel;
every fifth MCS/Spin of runs 5,060—30,000 MC’S/Sp'm. .Close to the phase boundary a
numbér of different runs were madev to check for metastability. These numbers may seem
small when compared to other MCRG studies. Most of @gse studies are concerned with -
the determination of the of the critical indices which reqhire the accurate evdﬁaﬁon of the
correlation functions <S,("’S,("”>——<S.(')><S.("”> on the phase boundaries. How-’
ever, to determine the phase boundaries only the expecta.tio;m < 5, > are sought for points
near the phase boundaries but not nécessarily on these boundaries. Therefore, convergence
in the determination of the phase boundaries is much fast/eri than the calculation of the crit-
ical indices. | |
We attempted to estimate the effect of the finite lattice size by carrying out the calcu-‘ |
lations on larger lattices for a few select points along the phase boundaties. For the V3 xV/3
phasé the larger lattice slizes were 64x48 and 64x96 and for the 2x1 and 2x2, 36x54 and
72x54. In all cases the changes were found to be less than 2%. To détq'mine the nature
of the phase transition we have evaluated the Landau-like free energy F{¥) for points alg“,

the phase bounda{ies by Monte Carlo simula;jbn.n More explicitly we evaluated the func-

tion

F(¥)- F.=-ln{Prob([¥- v, 1<6/2)},
where the right hand side reads a8 the negative logarithm of the probability that the magni-

o
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i

tude of the order parameter y, is within a 6/2'ne:‘?§>\urhood»of the number d:F,fnsthe ,
total free energy of the system. The order parame ' definition depends on which phase is
being sampled. For the 2x1 and the 2X2 ph&es a three compdhe_nt order parameter

(¢1f¢z,¢3) is defined for the systém as:

Vo=V +03 493

. .

¢1—_(N M -Mg-Mc+Mp) =
1., . 3

%ﬁ(MA—MB'ch- Mp)

1 ,
t/’s-‘-‘N(MA'*MB— Mc-Mp)

where ‘M, is the total magnetization on the a sublattice ( see figure 32 a= AB,CD )

ax;d. N is the total number of lattice sites. For the v3XV3 a two component order parame-

“i

ter is def{héd as:
Vo= ¥it+y;

3 1,
¢1=2—N{M.—- ;‘(Mri-M;)}

3V3,
¢2='_—1M5-'M5l R
4N B
where M ,is the total magnetization o‘-d:e a sublattice ( see figure 3.1 a = A,B,C ) and

N is the total number of lattice sites.

The classification of the order of the transition is based on the shape of this function.
‘For example Fig 3.3a would be called a first order tnnsiiion because of the dual absolute
minimum that F(v) manifests. On the other hand, Fig 3.3b would repi-esent a second br
higher order transition because of the flatness of the curve. It is surprising that this tech-
nique is not more .widely used in this type of pﬁdy since many of the techniques previously
u.sed in the classification of the ordeir of ~plms!: transitions can be explained in terms of this
function. One of the main advantages d?ri\(ed from the use of this function, is that finite

size roundil;g has po eﬂeyc’:At in the classification scheme, though other finite size eflects may
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play a role. One drawback to the technique is that it requires very long running times.

This is compensated though, Aby the fact that the fuhcﬁoi-a need only be evaluated at one

‘temperature to determine the order of the transition if T, is known accurately. Micﬁlly, A

T, is not known to sufﬁcient'acrcuracy and the funcﬁon F(#:) must be calcnlate'd for a small
number of parameter values. However, the number of points for which F(y) is evaluated

i85 normally much smaller than the number of points that must be sampled in other Monte

Carlo bechniques to determine the order of the transition. For example, in this study, by

using T. as determined by the bifurcation of the Monte Carlo renormalization group flows
a2 a starting point, we are able to determine the order of the transition by evaluating F(y)

for two to four values of the tempieratnrel.

In. the calculation of F(y) the bulk of the siniuiation was done on a 3636 lattice

when considering the 2x1 and 2x2 ordgr-disorder transitions and 32x48 lattice for the

2
V3 %XV3 order-disorder transitions.

Finite size effects on F(y) were checked on a 36151! ‘lalttiAcz for‘the 2x1 and 2x2
phases, and a 64x48 lattice for the V3 Xv3 lattice. If the results were éﬁibigu.ou; after these
runs then further,Acalculgtion were carried out on a 72x54 lattice for the 2x1 and 2x2 and
' 64x96 for the V3xv3. All runs w;n'iniziany run for 90-180,000 MCS/Spin after 20,000

MCS/Spin were deleted for thermalization. The runs were broken up into 1-0,000—30,000

MSC/Spin segments so that the thermalization and co'nvergci'ncc could be checked, and

extra steps deleted or added if necessary. The increment 5 was chosen to be 1/100.

The scaling of the functional with size was not as clear 38 we originally expected. It

was iﬁ,itially thought that a I;ump in the free enérgy functional, which we are using s the

~signature of a Brst order transition, would increase with Tattice size, but such was not the

case. Because of this, we décided to compare the funcﬁonal method with -more*onventional

methods of determination of Hrst order transition. The first method chosen tests for hys-.

teresis of various thermodynamical quantities (i.e internal energy, order panmete‘r, etc.) as



" the time se]'ies‘ of a coarse grain average ¢;; of the order parameter at a few points, how-
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a signature of a first order transition|4]. Following a suggestion by Mouritsen, we looked at

ever the hysteresis 7calculat.‘ion iras the more extensive stady. We chose to compare the
hysénsi‘s calculation results with those based on the free energy ‘fupction.z.ll, along the 2x2
boundary becaxia;e it appears to exhil‘)it} a weakening first order u-bax_x»siﬁon with increasin;
field that may evehtually be driven second 'o;der. K

, We began at a point on the boundary which we felt was strongly ﬂrstﬂordei- using a

36x36 lattice. The possibility of hystefesis was explored by varying the temperature at fixed

*>field. . This was repeated for successively larger values of the field. As the field was

increased the system appeared to become more critical cauﬁjng the system to jamp back and
forth between the ordered and disordered phases. To suppress this oscillation the lattice

size was increased to 72x54 for all points tested with H /J,,>4.75 The internal energy and

otder parameter were calculated on each .sweep by sampling every MCS/Spin for a total of

3000 MCS/Spin. The system was allowed to thermalize for 1000 MCS/Spin between suc-

cessive points of the sweeps.



CHAPTER 4

L

‘Resnl‘h

4.1. Phase Diagrams

The resulﬁ; of the MCRG study of the phase diagram are summarized by Fig. 4.1.1a
The errors in che locatiop of the boundary, which are of the size of of the plotted data
.points, are due to the indeterminacy of the MCRG Flows. Frqm the sever;al points that we ;
checked for finite size effects no qualitative changes to ﬁilase bounda.ries were-found with
increasing lattice size, though transition temperatures seem to decrease slightly.

The two most interesting features of Fig. 4. l' 1a are the apparent depression of the
transition temperation to zero at h/J,, =12a=1 2 and the existence of a ﬁnlte temperature
| phase transition between the v/3xv3 and 2)(:2 ordered phases. The depressnon of the tran-
sition to zero temperature is conjectured since Monte Carlo work becomes extremely

aiﬂicult at low temperatures. ’Metastability problems tend to become more severe as the
temperature is decreased. | |

Hov;'ever even with very iong Monte Carlo rﬁns of 90,000 MCS/spin afier‘ -20,000
MCS/s;;in thermalization the qualiﬁtive features ef the phase diagram remained |
unch:;nged, The plot of’ﬁmgnetizaﬁon versus temperature f(;r h/.l,,,-——i.’Q (see fig. 4.1.2)
seems to be a smooth function indicating that for ET/.I,,, as low as 0.25 thersystem is still
paramagnetic. |

It was heped that the apparent depression of T, to zero at |h |/J,,=123 could be pro-
ven analytically. In our attempts, we were unable to produce a rigorous proof of this, how—
ever we did find some properties of the ground state, suggest that both t.he 2x1 and \/'x\/_

are unstable at finite &empenmue at |b |{J.a=128. A discussion of this, alohg .

39
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with suggestions how one might proceed to prove the result rigorously is found in the’

appendix A.
r

The second feature, the transition between the /3Xv3 phase and 2X2 phase can Ibe
seen by MCRG despite our initial reservation. When the B;ocking of Fig. 3.1a is-used on a
2X2 structure, the 2 X2 structure is mapped onto a paramagnetic phase. Similarly, when the
blockiﬁg of Fig. 3.1b is used on a V3 XV3 structure, the V3 X3 structure is mapped onto a
paramagnetic phase. Because of this, the bifurcation of the flows can still be seen, though
they are not useful for the calculation of exponents. This transition can also be seen in reg-
ular Monte Carlo sampling by ob;erving the discontinuity in the magnetization. One last

point that should be mentioned about the T— A phase diagram is that the MCRG results are

consistent with the ground state phase diagram.

We also show, in figure 4.1.1b a crude phase diagram in the T-M plane. This was cal-
culatefl by computing the magnetization at the transition point in the 7- A plane. Since the
calculatiion was not initially designed for accurate eva}uation of the magnetization at the
" transition the results are somewhat spéculative. The features to note on figure 4.1.1b are
the coexistence regions; 2X1 + paramagnetic , 2X2 + paramagnetic, and 2X2+v3XV3, as
well as the gap between M ~=-0.14 and M =>-0.26. In this region the paramagnetic state

seems to persists to zero temperature.

4.2, Order of the Phase Transitions

In this section we discuss the results of the calculation of the free energy functional
F(y) as defined in chapter 3. In particular we try to infer the order of the transition by
examining the structure of F(¢). In tire following section the conclusions drawn from this

section will be compared for consistency with more traditional method using hysteresis and

time series analysis to determine the order of the phase transition.

We first discuss the transition from the 2X1 to the paramagnetic phase. From the

sequeﬁce of figures 4.2.3a-c we can see the evolution of F{y) as the temperature is
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increased through the transition temperature. The feature to notice in the graphs is that
the bump in the free energy persists through the transition temperature ( T,~0.581). The
persistence .of this bump and the equal depth of t‘he associated wells at T, isi a signal that
the free energy of distinct phases of order }ﬁd disorder are becoming equal. They are dis-
tinct in that one can make a definite association of a phase with either the low or high order
parameter well.* The above description is that of a first order transition and we conclude

that this transition is first, order,

Since we are dealing with a finite system the effect of lattice size needs to be con-
sidered. To check for finite size effects, F(y) was calculated on one smaller lattice (24 x18)

and one larger lattice {36 X54). o

J&From figures 4.2.2-4.2.4 we notice that the transition temperature decreases with
increasing lattice size though the change is less than 1% The most intersting feature to
consider is how the size of the bump scales with lattice size. From the 24 X18 lattice to the
36 x36 lattice the bump increas;es'by over a factor of two. From the 36 X36 to the 36Xx54
lattice the results are not completely clear. They are partly obscured since figure 4.2.4 does
not show F(w) quite at the transition temperature, therefore making direct comparison |

difficult. With increasing size the structure of F(3) near the transition temperature

becomes very sensitive to temperature changes. making it difficult to obtain a plot

representive of F(¢) at T.. From insight gained by watching the evolution of F(v) with

temperature for smaller systems one can make a qualitative extrapolation of figure 4.2.4 and
conciude that the bump in F(y) at the transition would for the 36 X54 system be about the
same size (perhaps slightly larger} as that of the 36 X36 lam'ce‘. An even larger lattice
(72%54) was used to calculated F(+v). The results are not presented because the increased
sensitivity with size made it very difficult to calculate the free energy functional sufficiently
close’ to T. to madifest the equal depths of the wells at T However there was some indi-

cation that the bump would be slightly smaller at the transition.
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From ‘thc above diséussion,, we see th:u.r what st.art?d out as a presumably clear Signal
<;f a first ‘;rder‘u:a-nsiﬁbnA' hés' became somewhat dubious when finite size eflects are con-
asidéred. Tﬁough this result is somewhat disconcerting a plausible ’expla'nation which 1s con-
sistent vﬁth an ‘interpretation that the transition is first order can be found by exming the
spin configuration of the system at steps along the Monte Carlo ruﬁ. It was fouqd:thﬂ the
system had a greater propensity to break up ix‘ito regions of coexistence between various
ordered and disordered phases as the size wm> increased. In a smaller s_vs‘lemb the coex- |
istence .was suppressed and the global order paramﬂetcr was a good indicaﬁbnrkof th'e‘degree
of order of a given phase. However the presence of coexistence between different ordered
phases {as found in larger systems) made the global order parameter a poor indicator of the
order in t‘he system. For example the system may be broken up into two regions of-
different ordered phases with the magnitude oi tﬁe order parameter nearly the same but™
- with different signs. As a result the global order parameter would be verv small though the
svstem i5 completely orderedl. It is this type of cancellatjon"‘between coexisting ordered
phases that we believe is responsible for the size of the bump diminishing for very large lat-

tices.
K

The way around this problem would be to calculate a lqcal order parameter over
several regions of various size and check how these scgled with total size of the system.
This.was not done in this caleulation because of time constraints but could prove to be an
interesting investigation.

The above caleulation was only for A=0 ;nd we conclude that the transition i1s first
order at least at A=0 in agreement with the conje,cmr? stated in section 1.2. However from
figures 4.1.1b and 4.3.1 we see that the coexistence regLidn exists forenon;cro fields indicat-
ing that the 2Xx! order-disorder transition is first ord?r even for nonzero fields. We con-

clude that the entire 2 X1 boundary is first order.
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We now discuss the free energy functional for the V3XxV3 ordcr-dnsorder t:ansmon
We begin by considering F(¥) near the maximum transmon temperature (T) which occursr
m’h/!,,:S.OO.ﬂ The sequence of figures 4.2.6a-¢ for the 32x48 shows that there is no
bump in Fly) ztt T.. The extreme ﬂatqess of the curv.é near its minimum is a good indica-
tion of a divergent susceptibility at T.. The same results were found for the 64 X48 and

6496 lattices. We therefore conclude that the order-disorder transition at k/J,,=3.00 is

continuous.

At this pomt one is somewha.t besitant to conclude that the entire boundanr 1s second
order particularly since one end of the boundary is either a triple point, a crltlcﬂ‘éndb0|nt .
ot a multicriticagl point {see ﬁg-%.i,.ta}. By éarmpﬁng Flvy for b jJ,, =42 we see that the
arder-disorder;‘transition is still continuous (see fig4.2.7} very near this point. Ncarv the
other end of the boundary no thorough investigation was made. However in a casual study
0o indication that the transition would be first order was found. We @ereforc feel

confident that the entire V3IXV3 order-disorder transition is second order. .

Finally we discuss v:hc 2X2 to paramagnetic transition. This._b.oundary ha; the most
structure and for this reason we use it to compare the various methods of détermining the
order of a phase transition. Before doing so we descnbe the nature of the free energ) func-
tional F{y) when evaluated on this boundary. F(v) was calculated along the 2 X2 boundary
at h/J,, =475 55 60 Ath/J =475 F(y) for the 36 X36 lattice (Figure 4.2.9) shows a
distinct bump. Vhen the lattice was increased to 36 X54 the bump clearly decreased (figure
4.2.10) in magnitude. Such behaviour ﬁas been observed with model that are known to
undergo a contimuous Uansiﬁ;)n (ie. Blume—éapel and Ba:’(ter hard hexagons n]édelsj
[20.28]. Associated with the dix;}inishing bump in these systms is a decrease in the separa-
tion of the minima of F(v¢). Such is not the case with this model. From figures 4.2.9-10 we

notice that the minima are stationary with respect to changes in the systems size.



LANDAU F REE ENERGY FUNCTIONAL
| FORkT/Jnn—OBZO h/Jm‘—SO
"AND a=0.1 L

114

free energy F(y) — F,

° °
9
8 b
. .
oo 30,000 mcs/spin
7] o sumpled svery 5 mcs/spin
R\ thermalized 20,000 mcs/spin
P tattice s:zc 32 x 48 o
S : °
6 ‘e .
. o~
)
‘s Y
] -t -

5 OM\ %o ‘- B

| R .

“a °
4 .. ®
, e .
-
=7

3 T | —— T : 1

0 0.2 0.4 0.6 0.8 1

order parameter ¥

Figure 4.2.6a



* free energy F(y) — Fo

LANDAU FREE ENERGY FUNCTIONAL
FORK T / Joy = 0825 h / Joy = 3.0

- AND a=0.1

11
10
3
. 9-
°
5 .
o " e
30,000 mcs/spin
7 sampled every 5 mcs/spin
thermalized 20,000 mcs/spin
lattice size 32 x 48
° o hd
67 woMye
[ 1Y ®
'y 2 ®
L ]
5- y | *
K ° ° 0,0
s @ ‘#.. Q\‘. : *
o Jve ° o
. .v. ®
4 - 0". -
3 T T T T !
0 0.2 0.4 0.6 0.8 1

Figure 4.2.6b



- free energy F(y) — F,

54

' LANDAU FREE ENERGY FUNCTIONAL
FOR Kk T / Jon = 0.831 h / Jon = 3.0
- | AND a=0.1 .

114

°
10 4
LY
9- *
8- .
180,000 mcs/spin
7 dq sampled every 5 mcs/spin e
thermalized 20,000 mcs/spin
Y lattice size 32 x 48
o °
64 ¥ ¢
“ °
\ .
S %o ' y
o
& : . o
4 - - | ‘ A »
3 T T . T R ¥ A
0 0.2 0.4 0.6 0.8 b

order parameter ¥

Figure 4.2.6¢



55

LANDAU FREE ENERGY FUNCTIONAL
FORkT/Jm—OBZ)S h/ =30
AND @=0.1

15

104
®
9_
_;w»'\
o]
Lo
[ 8- ®
TN
G ® ®
hreg 30,000 mcs/spin
>~ 7- sqmpled every 5 mcs/spin
o) thermalized 20,000 mcs/spm ®
o ® lattice size 32 x 48 -
5 . R
o —
e *%
y °
°
5 e v
. °
° . .U~
e .\‘
) Voo J.\W\\P:\
3 : T T — T ; 1
0 0.2 0.4 0.6 0.8 1

order parameter ¥

Figure 4.2.6d



free energy F(y) — F,,

- 96

LANDAU FREE ENERGY FUNCTIONAL
FORkT/%_oazLo h/J =30

114

“AND a=0.1

10
.
g -
-
8 -
o
30,000 mcs/spm ®
7 sumpled every 5 mcs/spin
thermalized 20,000 mcs/spm
lattice size 32 x 48 LS
°
®g0 .
s—r oo :
° -o» s
¢ p’& 'ﬁ. |
57 e ° X °
- we
- we
: o™
4 w '
i L
3 T T T T 1
0 0.2 0.4 0.6 0.8 1

order parameter ¥

Figure 4.2.6e



free energy F(y) — F,,

57

LANDAU FREE ENERGY FUNCTIONAL =
FOR Kk T / Jon = 0.567 h / Jon =42
| AND a=0.1 -

M5
°
10 ]
= ®
9
.
8_4
180,000 mes/spin -
7 sampied every 5 mcs/spjn
thermalized 20,000 mcs/spin .
* lattice size 32 x 48 ’
° .
6 - ' : .
% ,
o. , o
5+ \ ' . e
o e )
N\\v"‘" -y
4 / _
3 T ‘ T T T B
0 0.2 0.4 0.6 0.8 ) 1

order parameter ¥

Figure 4.2.7



S S Y S

We t.herebj :Lppea.l to the cocx'}stcnce uguﬁéii to explain the decrease and conclude that
thertransition is first ord;r. The coexisténce alluded to above was actaally found in typical

configurations of the Mosnte Carlo runs.

At h[J,.=55 figures 4.2.11a-b indicate a small bump in F(v) for the 2418 lattice.

For the same value of A [/as OB the 36 X36 lattice there was a marked increase in the size of

-

1

the ma.xim‘um but ¥ was only 60 of the height of the bump on the same size l'at'xticcr for
h{Js=4.75. When the lattice was further increased to 36 X54 the maximum nearly disap-
peared (fig 4.2.13a-b). For A /J,,=6.0 on the 36 X36 lattice thve bump is zpprdximately I/(}l

of the bump for‘vh/J,,,=5~-5 {see fig 4‘2.14).7 On 3‘1‘367)(54 lattice the results are obscure;i: -

>

since F{v) 1s not calculated sufficiently close to the transition. howevcr there ;ppears to be
no signiﬁcant change in the s.ize!of the maximum. [t appears. therefore, that the entire
2x2 order-disqrder transition is an example of a first order wansition which is’ weakgned or |
" driven second order with increasing field. The conclusion is som;rwhat quesu'onabl_e in light
of the finite si{ze effects discnsscd'. Therefore nkcmrmcm&yrrwfemﬁmrcmfh&iﬁns” S
drawn from the free energy functiouair F{v) with more wraditional methods and we do this

.
3

in the next section.
E-3

We conclude this section with a discussion of one additional transition 'namely.the
22 to V3xV3 transition. There is little question that this tramsition will be anything but
first order. Altho‘u‘gh no data is presented here it was found that wsociated with the transi-
tion was a large degree of hvsteresis. In fact this hystcresis made accurate location of tﬁe
transition difficult.- The presence of the hysteresis is a signal of Hrttxpectettirstvrdtr T o

nature of the transition. . . ‘ ' ) R
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4.3. Hysteresls and Time Series Study : $ L,‘.,,,, ,,,4,,';,;,“7)7

We be.gin with discussing the results of the hysteresis calculation. Figures 4.3.2-6
show plots of energy and order puaﬁ:ete; versus temperature for a sequénce of increasing
field values along the 2x2 order-dﬁorder transition boundary. Figureé 4.3.2-4 show a clear
’disconu'nuity i} Eoth. the internal energy and the order parameter indicating ﬂ:a& the transi-
_ tion is first order for 4.375<h /J,, _<_;4'.6‘25. One may n;;tice a slight increasé ix; the scatter
of the data a5 the field is increasg& from h[J,,=4375 0 k/[J,,=4625 This scatter

becomes excessive when the field is"(nrther,incremed'to 4.75. We believe that'the'::a;son

for this excessive scatter is that the system is undergoing su(ﬁcignﬁtﬁ,@m@mnﬁ to cause the

2

the system to jump back and forth between the ordered and disordered phases during the
sampling period . In an infinite system metastability would prevent such an oscillation.
“Therefore to mimic the infinite system more glosely we increased the lattice size suﬂicicnﬂy
to suppress these oscillations. Figures 4.3.5-6 show plots for fields h/j,,,,=4.75 and

k{J,,=5.5 obtained from a calculation on 3 72x54 lattice. From the ﬁgurcs 4.3.2-6 we see

that there is significant hysteresxs for 4. 375<h/J <4 75 Therc appears to still be a hys—
teresis loop for. h [J,a=5.5 but this is not entirely clear. This indicates that the transition at
the 2x2 boundary is first order but is becoming closer to a contin,nous transition as the field
is increased. The increased scatter of the data with iBcreasing field also suggests this con-
‘Vci_hlsion.

Figure 4.3.7 i1s a plot of the width (AT} of the hysteresis.lgop and t;he magnitude
{AE) of the discontinuity of the internal ene}gy versus field (4 /J,,). Notice that both the

gap’'s width and height of the gap decrease with field and appears to vanish at A /J,,~6

demonstrating the weakening of the first order tramsition. These conclusions are entirely

consistent with the conclusions based on the functional F(y) thus providing a check of this

new method for the determination of the order of a transition.



Also consistent with all the above results are the time series calculations—In such cal: —

culations one plots coarse grained averages (i.e averages computed over a small segmentof -

-

£

the total run) of the order parameter or internal energy as a function of “time” in the Mar-
kov chain. These calculations were initially suggested by Mouritsen, in a private conversa-
tion, as a good indication of a first order transition if one could sample sufficiently long to

witness the sharp switching of the sjrsl;em from an ordered to a disordered phase or vice

RN

versa. Such switching was found for both the 2x1 and 2x2 transitions (see Fig4.3.8 and o

- Fig4.3.10 ) from which we infer that at these point on the phase boundaries the transitions ER

are first order . It is interesting to contrast the plots of figures 4.3.8 and 4.3.10 to a similar
plot (figure 4.3.9) made for a point on the V3 Xv3 boundary at which we believe the tran-
sition is continuous. The dramatic difference leads one to believe that the respective transi-

tions must be qualitatively different.

°

In summary wve conclude that the 2x2 transition is first order on the small field side of

the curve and is weakened as the field is increased. However it is not clear if the transition

remains first order for all vra.lues of thé rﬁrerld. rlt may 7c|;orssmrr¢:-rrto second order transition at
sufficiently large values of the field. It appears that if the transition i)ecomes continuous it
will do go for h/.[,,,ZS.S. It should bementioned that this result contradicts the universality
auguments of Schick et al. based on a Landau Vt.heory.. They predicterd that this transitiop

wil\always be 5econd order for all values of the field.
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4.4. Critical Exponents

Monte Carlo renormalization group calculation of critical exponents were performed
for points on each of the three order to disorder transition boundaries. We will first discuss
the calcylation made at the maximum of the 2X1 boundary (A /J,,=0). Then we will con-
- tinue with a discussion of the results of the calculation near the maximum of the V3IXV/3
bounda.r}r (A /J,a=8.00). Finally we present an extensive discussion of the critical exponent
calculations carried out at three different points on the 2Xx2 boundary
(h]J., =4.75, 5.5, and 6.0). Typically all runs were allowed to thermalize for 20,000
MCS/spin before sampH:ng every 5 MCS/spin along runs of various lengths that ranged

from 60,000 MCS/spin to 1,800,0000 MCS/spin.

Alt,hough the 60,000 MCS/spin runs are too short to yield well converged values of
the exponents do they allow one to obeerve trends in the results. The run of 1,800,000
MCS/spin is far longer than runs typically carried out by othér workers and serves as a
check on the results obta.ined from the shorter r;ms. \;/e now discuss the specific calcula-
tions. ’

for the. calculation c;n the 2X1 and 2X2 boundaries, we used the blocking scheme of
figure 3.2 and kept four coupling constaéts, 1.e. four correlation functions. Theﬁe were; the
single spin term o, the nearest neighbour spin-spin term o= , the next nearest neighbour
spin-spin termee8and the nearest neighbour four spin’ term u .

For the 2Xx1 boqndary we do not present the expone‘nts but only some qualitative

observations. For both lattices used (24 x18, kT./J,,=0.585 and 36 X54 kT,/J,,=0.578) we

found that the exponents did not seem to converge or tend to any fixed point values.

The results of the calculation on the v3xv3 boundary are summarized in Table 4.4.1.
In this calculation we used the blocking scheme of ﬁgure 3.2 with four coupling terms.
They were; the single spin term o , the nearest neighbour spin-spin term oo , the next

nearest neighbour spin-spin term®*® and the nearest neighbour three spin term A, . It
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was found that the'singié spiR n& nearest neighbour spm-spin term were mosi IW

The addition of the mext nearest neighbour C?“PHW'W*tm'd'w'lﬁ%'if*ww

exponents determined from the first set coupling constants.

The discrepancy decreased with successive iterations of the renormaﬁzaﬁion transfor-
mation. When the nearest neighbour three spin term was added changes of about 2.3%
resulted in the first two iterations, hut again the differences decreased with successive Ycra—

tions. Additional terms were added (i.e. longer range spin-spin, longer range three spin,

and nearest neighbour four spin) but all produced changes of less than 1%

Table 4.4.1
Critical Exponents of 3 X3 Order to Disorder Transition Boundary at 4 /J,,=8.00
L attice Size 32 X48 64 X96
TE —— 0.824 0.822
Iteration # 1 -1 1.9195+ 0.0004 1.9215+ 0.0008
2 1.893 + 0.001 1.898 + 0.002
yi 3 1.876 £ 0.003 1.888 + 0.002
4 1.864 + 0.007 1.877 + 0.004
5 1.86 +£0.01°
Conjectured Value 1.86666 -
[teration # 1 1.183 £+ 0.003 1.190 + 0.006
2 1.339 £ 0.003 1.332 + 0.006
H 3 1.268 + 0.004 1.23 £0.01
4 1.32 +£0.02 1.13 £0.02
5 Not Converged
Conjectured Value 1.200 __ .
- Iteration # 1 -1.93 +0.04 -2.02 £0.03
2 =0.009 £0.03 <004 +0.02
V2 3 -0.169 £ 0.005 -0.02 £0.02
4 =000 +0068 =} -002 large
. 5 Not Converged
Length of Run 180,000 MCS/spin T 60,000 MCS /spin
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From Table 4.4.1 we see that the l'ugesﬂtiddrd expdheni vi seems to be convergmg

slowly to its conjectured value of 28/7175 . The slow convergence is”;c;i;i:sit;;?;im ‘the

existence of a marg(inal direction indicated by y; being nearly zero. A near m‘arginai *era-
tor inhibits flow to the fixed point. Therefore, convergeace of the exponents to their fixed
point value is no; a useful criterion for determinatibn of>the transition 'temperature in this
model. We found that the flow of thcr near neighbour three spin correlation function was
the most sensitive sighal of T.. The largest even exponent y; seems to be als*é converging'
to its comjectured value of 1.2. The discrepancy between the calculated exponent and the
conjectured value is much greater for y; than for y;. |
The above conclusions woﬁld be made it;ore convincing with inéreﬁéci runmngume
for the 64>96 lattice. Also, one might try to find a parameter d:at‘couples strongly to the
marginal direction, as Swendsen et al. [60] did with the four state Potts model. By varying
this parameter one might be able u) minimiie the eflects of the marginal direction. Our
results for the direction of the flows are not sufficiently unambiguous to allow ug to identify

ihe appropriate interaction.
S
We now begin the discussion of the 2X2 boundary by examining the critical exponent

for the point on the boundary at 4 //,,=5.5. The results for three different lattice sizes are

given in table 4.4.2b. The géneral feature to notice is ‘that the largest odd exponent yi is

not iterating towards its conjectured value of 1.875 but to some larger value (i.e. y;>1.92). N

At this point we conjecture that it is lowing towards a first order fixed point commonly

called a discontinuity fixed point (i.e. y] = 2)[19,41]. This conjecture is supported by the

calculation at h/J,,,ﬁ.75 on the 22 phase boundary which is summarized in Table 4.2.2a

This calculation was carried out only for a relatively small lattice (24x18) and should be
compared with the corresponding column in Table 4.4.2b. The interesting feature is that y;
is substantially larger than for h [J.a=5.5 but has the same generﬂ behaviour. It first

iterates away from y; =2 and then turns around to head towards it. It appears that by
.@

P



Length of Run

Table 4.4.2a
Critical Exponents of 2X2 Order to Disorder Transition Boundary at & /J,, =4.75
L attice Size ' 24x18
Iteration # 1 1.9716 + 0.0001
'H 2 1.9697 % 0.0003
3 1.9846 + 0.0007
‘Conjectured Value 1.8750 ' ]
Iteration # 1 1.78 £0.01
v 2 1.52 £0.04
3 1.56 +0.03
Iteration # 1 -3.50 +0.08
Vi 2 -008 +0.03
» 3 003 £0.02
_Conjectured Valwe 0000 -

855,000 MCS /spin

—

- varying the field we in some sense move closer to the first order fixed point. The above

results should be contrasted with the results of the calculation made on the boundary at

h[J..=6.0 which are presented in Table 4.4.2c. Notice now that y{ seems to be converging -

to the conjectured value of 1.875 though it drops slightly on the last iteration. We believe

that this drop is due to the fact that kT /J,,=0.385 is slightly larger than the appropriate T,.

Finite sizédeffects may also play a role. When the calculation was carried out on a smaller

lattice we obtained basically the same results. The values of y{ are not very close to the

o«

799quc@§ggyialue of 1.5 but do seem to iterate toward this value. Other workers have also

been unable to determine y{ accurately [30,37,44,61].

In summary; we conclude that the 232 -order-disorder - transition- for A <55 is - — —

governed by a first-ofder fixed point and for A>6.0 by a second order fixed point. This

'S

second order fixed point appears to be the same fixed point which governs the four state
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Table 4.4.2b

Critical Exponents of 2 X2 Order to Disorder Transition Boundary at A /J,,=5.5
L attice Size ’ 24 x18 3654 72 X654
Iteration # 1.92459+ 0.00002 1.916 +0.002 . 1.91344 0.0001
1.91840+ 0.00006 1.907 +0.003 1.90334 0.0003
v 1.937494 0.00007 1.923 3 0.003 1.913 £ 0.001
o - '1.930 £ 0.007 1.917 £0.001
IFQon'pct;ured ¥ah:c1__ 1.8750 : . , ‘
Iteration # 1 1.379 + 0.004 1.317 £0.005 " 1.334 +0.004
2 1.31 +002 132 £0.02 1.27 £001
Vi S 3 1380 +0.008 Fo=b A2 BB - F - b4 OO0 e
4 i Not Converged 1.43 +0.07
Coug' ctured Value 1.50 i
Iteration # 1 -5.49 +0.04 -4.94 +£002 -5.5 +£0.2
2 -0.33 +0.06 -0.16 +0.01 -0.62 £0.02
'H 3 -002 +0.08 0.10 £0.01 -0.253 +£0.06
4 Not Converged -0.61 Large
Conjectured Value _ 0.000 |
Length of Run 1,800,000 MCS /spin l 60,000 MCS /spin | 205,000 MCS/spin




Table 4.4.2¢

Critical Exponents of 2X2 Order to Disorder Transition Boundary at & /J,, =6.00

Length of Run

l' 200,000 M CS /spin

Lattice Size 36 X54
Iteration # 1 1.8728 + 0.0002
2 1.8757 % 0.0005
v 3 ~ 1.8767 + 0.002
o 4 1.8653 + 0.002
Conjectured Value 1.8750
Iteration # 1 1.059 =+ 0.004
2 1.16 £0.01
o 3 122 002 1
- ) 4 109 2003
Conjectured Valug 1.50

=

’

Potts and Baxter-Wu Models. From the above we expect a tricritical or multicritical point

between A /J,,=5.5 and A [J,;=6.0 on the 2>2 boundary at which H:e.vZansition ‘crosses

over from first order to second order. These conclusions are co_nsistent with those o_bt.ained

from the free energy functional, hysteresis and time series calculations reported in sections

4.2 and 4.3.




In this section we wish to summarize the results for each portion of the phase diagram

and compare with previous work. Also, possible additional work will be outlined.

The 2X1 order — disorder transition was found to be first order for the entire range
of field & for which the 2X1 phase is stable. This is consistent with the work of Nienhuis -
et al. [40] who suggested that such a transition will always be fluctaation induced first order

[25]. It also appeared that the tamsition temperature was depressed to rero as

K [1e =128 .2 This point will be discussed Iater. LT e e

The V3XV3 order — disorder transition was found to be continucus over its entire
boundary, in agreement with the work of Schick et al. [51]. Schicks’ work predicts that this
model is in the same u.nivers:lity class as the three-state Potts and Baxter’s hard hexagon
models, for which the leading odd'exponeat y1 =28/15 ~=1.867 and leading even exponent
¥i =6/5=1.2[2]. From the MCRG calculation on this model we found a y] which agreed
extremely well with the conjectured value (28/15). A y{ was also found a that that was
within 5% of its conjectured value {6/5). The exponent yi seemed not to have converged
completely to its ixed point value. The slow convergence might be due to a marginal direc- -
ton imdicated by y; =~0. Like the 2X1— disorder tramsition, this transition is also

depressed to zero a8 A /J,, — 12a=1. 2.

The 2X2 — disorder transition appeared to have a crossover from discontinuous to

continuous as the fickd (k) was incressed. The crossover took place between h~55 and

A=6.0, indicating the existence of a maulticritical point in this range. In the region

4.28<A<5.5 the leading odd expoment y; seemed to flow to a discontinnity value of 2.

The value of y;i had not converged to its fixe!! poiat value. In the region where the
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transition appeared to be continmous yj iterated towards its comjectured four-state Potts

value of 1.875, but y{ was quite Tar from its corresponding value of 1.5 [3]. This could be
cansed by the marginal direction associated with this universality class which has hampered

similar calculations on the four-state Potts model [48].

We also see that there exists a finite temperature transition between the V3xv3 and
22 phases, which is first order as expected. This transition boundary, as well the boun-
daries for the V3xXvV3 and 2X2 order to disorder transitions all terminate on a common

point at kT/J,, =0.513 and & /J,, =4.28 , which appears to be a critical end point.

The last feature of the phase diagram to be discussed is the sbsence of a transition - -

between the 2X1 and the V3 X3 phases. From the Monte Carlo data it appears that transi-
tion temperatures for both phases are deprcssed'to zero as h/l,.r—vl.2. we conjecture that
the paramagnetic phase is stable down to T=0 at this field value; however, there is the pos-
sibility that the pz_\;amagnetic'phac might give way to a sequence of modﬁlated phases
[21,54] as the temperature is decreased. The presence of such phases is hard to detect by -

Monte Carlo methods. . .
Additional work which may be done includes the following:

1) an analytic anﬂysis of the nature of the phase diagram in the neighbourhood of the

point T=0 and A /J,, =124.

2)  accurate location of the crossover point on the 2X2 boundary 28 well as determination

of its exact nature.

3) introduction of vacancy-like fields [40,42] to improve convergence of exponents on

the continuous portion of the 22 phase boundary.

4) inusﬁ;;te the finite size scaling of the local Landau-like free energy and its useful-

ness in determining the order of a transition.

3



APPENDIX A
Degeneracy of Ground State at |4 |//,.=126

y

Within this appendix we wish to consider the nature of the phase &igram of the
Hamiltonian 3.1 in.the vicinity of the point T=0 and 4 /J,,=i2s. From the Monte Carlo
calculation it appeared that no direct transition exists between the 21 aad V3 Xx/3 at finite
temperature. We were unable to demonstrate this rigorously. We did however, find a set
of transformations that involved flipping columns of spins that cost no energy at 7=0 and
h/Js=12a. These transformations were sufficient to show that the surface tension between
-the various ordered states vanishes at this point, suggesting that the 2X1 and V3 XV3 are
unstable for T>0 at & /J,,=12a4. If this is the case, there is no direct tran-sition between
these two phases. . b

N ,

To begin this discussio;i,”rcca.l! from section 1.2 that the 2x1 and the V3XV3 phases
are degenerate at |h |/J,=12a, however the degeneracy is greater that just this. To see the
degeneracy of the ground state consider the Hamiltonian defined on a 2m Xoo lattice with -
periodic boundary conditions in the m direction (i.e. m+1“ row is the same as the 1* row).
In figure A2 the syst;m is shown in a pure V3XV3 phase. ‘On this drawing notice the
shaded triangles each containing three spins. Imagine that thé triangles which point up
| extend infinitely to the right and the ones thch point down extend infinitely to the !:ft.

Notice, only triangles in a given column will interact with each other since our model is res-

tricted to 19 and 2*° neighbour interactions between spins.

It will be of some interest to conmsider the interaction that srpinsﬁbfr a givén'&iiraﬁgile

‘have with their neighbouring spins. To facilitate this we have shown in figure Al the
bonds that these spins make with their neighbours. The bonds have been categorized into

three types (a,b and c). The z'type bonds mrbre.t)veélrsl;ihis of a givén mang}e éﬁd thelr
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first and second neighbour that are also in a triangle. The b type bonds are between spins

S

of the given triangle and their first neighbour not in any triangle.
The c type bonds are between the spins of the given and their second neighbours th;t are
also ,not in any triangle.
Now consider the energy change if the spins of a given column of triangles are all
flipped. It is clear that the energy of the a type bonds are unchanged.

" The net energy change of the b type is also unchanged because there are the same number

of favourable and unfavourable b type bonds. The change of the ¢ type bonds produce a

decrease of energy of 2>X3x4mJ, The only remaining contribution to the energy change is -

due to the field which produces a increase of the energy of 2Xmh. Hence the total energy
change is;

AE=2m(h-12/J,,)
but h /J,,=12, therefore AE=0.

1
In summary there is no energy cost to flip a column of triangles. In fact all orienta-
tions of these columns are degenerate with each other since there is no interaction between
them.
Now consider the configuration produced if all columns of upward pointing triangles
of figure A2 are flipped. The result is shown in figure A3. Notice the right hand side of
the lattice is now in a pure 2X1 phase and the left and side is in a pure VI3 phase.

Since this configuration was produced by a series of zero energy flipe of columns, this coex-

isting state will be degenerate with the pure V3%V3 or the pure 2X1 phase. .

Now ﬁip all the reimiunmgid;v/vnwud poi:lting 7tx7iangles. The result is shown in figure
A4 This is a coexisting state between a two different 21 phﬁses. By construction, it too
must be degenerate with both the pure 2X1 and V3 XV3 phases by the same reasoning as

above.
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3 r
Now we wish w construct Va coexisting state betweenwtwo aiﬁerent \/3—x7\7/§77pl’r:ree.
‘Begir) wirt,h a system in a pure 2)&1 pﬁ:&se as shown m figure A5.7 ’i‘lren iip ail trz:irangles”
{they extend infinitely to the right and left). The result is shown in figure :&6 and is a state
of coexistence between two ﬂiﬂe‘rent V3xV3 phases} “Si’nce onl& flipping of the the special
’columns was involved in going from the 2X1 to this coexistence state, the state must be

degenerate with the pure 2X1 phases and hence the pure v3X/3 phase.

Wevconclude this discussion of the degeneracy by summarizing the results. ,We found
thai the ground state of the pure 2X1, pure V3 XxV3, coexmhng‘s?)(l and v3xV3 phases,

coexrsung 2X1 phases, and coexistihg \/_X\/_ 3 phases are all degenerate at |A }/J,,=12a

Now we return to our surface temsion discussion. At T=0 the only contzibution to
the free energy comes from the internal energy. Therefore the surface tension at zero tem-
perature is merely the energy difference between a state of coexistence and the pure phaseis.
Thus, from the above discussion w;e» conclude that the surface temsions ¢, 5.,

O /5 /3vaxs and 0‘/—)(\/-2)0 all vanish at |8 |/J,a=124a and T=0. This is highly suggestive
that these surface tensions vanish at finite temperature at this field. If this were true both
the 2x1 and V3 XV3 phases would be unstable at |h|/J,, =124 for all finite temperatures,

>
from which we could conclude that there does not exirst any finite temperature transition
between these two phases. The natare of the conjectured intermediate phase is not known.
We speculate that it would be paramagnetic to zero temperature. However one might find ’

that for low temperature the paramagnetic phase gives way to a sequence of modulated

phases of the form found by Fisher and Selke while rnvesﬁgaﬁn; the ANNNI model [36]

To clarify the exact nature of the phase diagram in the vicinity of the point T=0and =

| |/Jix=125, more work will have to be done. One might try to proceed as Fisher and
Selke [21] did with the ANNNI model by conswycting a low temperature expansion. This
approach, however might be hampered by convergence problem for d=2. A more likely

method, might be a domain wall transfer matrix approach [37,44,62].
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