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1.1. Model 

Two-dimensional models have often been used as a stepping stone towards under- 

standing physically meaningful three-dimensional andogs. Generally the two-dimensional 

models tend to be more tractable than their three-dimension3 counterparts. Hence some 

exact two-dimensional solutions exist for situations in which the three-dimensional prob- 

lem remains unsolved. 

Recently many two-dimensional models have become physically interesting on their 

own merits as experimental systems are found which exhibit two-dimensional or  quasi two- 

dimensional behaviour [1,13]. Most experimental work has been on monolayers of atoms 

or moleeules either adsorbed on surfaces or intercalated between layers of crystals. Two 

examples are helium or other rare gases adsorded on Grafoil or  intercalation compounds of 

noble or alkali metals and host materials such as graphite or transition metal dichal- 

cogenides. 

For such systems there exists a substrate potefitial creating a triangular lattice of 

highly preferred sites. Therefore a reasonable model Tor such systems is the triauguiar lab 

tice gas. The lattice gas Harniltonian is 

where, n,=l(O) if site i is occ~pied(unoccupied)~ U,, is the interaction energy between 
-- - - - - - - - - - - -- 

atoms on sites i and j and u* is the pseudo chemical potential. u* includes the perfect lab 

tice chernicil potential u plus an additional term to account for thermal vibratio of the a" 
atoms about the lattice site. For imperfect lattice gases u*=u+k?'ln(X&, where, 



I' 

& ,  
- - 

~ $ 4 * / ( 2 7 r  mkT) and V, is the area of the primithe cell of the substrate surface [23,52}. 
pp - -  - - L -  

In the lattice gas model, the nearest neighbour interactios U,, would b+ repulsive for 

both the rare gas systems on graphite and for intercalation compounds, svch as Ag, TS2, 

which we henceforth take as our prototype intercalation compound. For the rare gases the 

van der Wads potential is the interaction between atoms. This potential is repulsive for - 
nearest neighbour distances of the graphite sites and hence results in a nearest ngighbour 

repulsion U,, . For silver a likely interaction is a screened Coelc-rnb potential and one 

also expects nearest neighbour repulsion. Both the van der Waals and sireened Coulomb 

- potentials fall off quickly and to a g r s t  approximation the helium and silver systems can be 

bits an ordered phase with a ( f i x J 5 ) ~ 3 0 "  structures which would not be present if U,, / 

was attractive 1521. Experimentally such a phase is found for both the rare gas and silver 

systems supporting the idea of repulsive U,, [29;47,57]. The naturd extension is to con- 

sider a next nearest neighbour interaction U,,,. For rare gases, in particular Helium, the 
d 

van der Waals poteqtial is attrxtive at the ne'iwest aeighbour distances with a magnitude 

approximately 0.1 of the nearest neighbour repulsion [55]. However for silver, the. . 

screened Coulomb potential is also repulsive at the next nearest neighbour distance. 

Interactions mediated by host lattice strains tend to be attractive and wal' reduce the effect 

of the Coulomb repulsion. We have not attempted to c$cula& either the electrostatic o r  

elastic contributions dir I2 ctly. We simply s s u m e  that both first and secorrd neighbour 

interactions are repulsive. 

From the above discussion we see that models with either second neighbor repulsion 
u I 

- -- - -- 

~?attraction may be physic& interesting. The model with U,,,+ has bcen s t n d r d  and6  
-- 

wen unders tooi$32,52 ,~ .  The moxet WX second neij$iEiGr 5€tfatic o i 2 5 i i a l s o b e e n -  

7 
died by a number of techniques[31,43]: 



/- 
By examining the possible ground states one finds sixbteresting cases of next nearest 

* 
- -b--- -- neighbour repulsion. To ennumerate these cases let a==€J,,/U,,. The possible csses are: . 

g 

To the best of the author's knowledge, cme, f a r ,  a d  Eve, h e  a& Bee&- 

died. However, cases two G d  three have h e n  studied using Monk Carlo, renormalization . 
* =I 

group, and mean field theory [49,50,63]. Case aix is physically the most interesting since , 

the next nearest neighbour interaction is aufBciently small to ensure that the experimentally 

observed f i x &  ordered phase is not suppressed. 

Walker and Schick have studied some of tbe features of this case using a finite clus- 

ter renormalization group [63]. It is the purpose of this paper b perform a comprehensive 
I 

s a d y  of the pharc diagram for fixed a in this ;rage. &cause of computing time con- 

straints a typical value of a 4 . 1  will be chosen in the hope that this will exhibit the q u a l i b  

tive features of the case a €(0,0.2) .  . 

Q h e  Iattice gas will not be studied directly but its eguivdence to the iaing model 

enables u s  to study the corresponding magnetic problem. The lattice gas equivalence b the 

Ising Model with Hamiltonian 

is seen by making the following identi3cations: 



where N is the total number of sites and the sums on i # j  are 

TBe goals of this study are to find the phssc boundaries, 

Ps 

for'lxed i 123,521. 

order of transitions and criti- 
b 

cal indices of the antiferrom'ignetic nearest ne ighbur  and next nearest ne ighbur  triangular 

Ising model with a 4 . 1 .  

1.2. Udverrdi* 

Few models exhibiiing a phase transition are exactly solvable. During the 1960's it 

became clear, from the series expansion calculations of a large number of workers, that the 

critical properties of maby seemingly quite different systems kere determined only .by the 

symmetry of the Hamiltonian and the spatiat dimensionality of the system. This notion 
5 

became rtpown as the universality hypothesis, The renormalization group theory of Wilson 

put this 'hypothesis on a 6rm theoretical foundation - a single 6xed point in a large Hamil- 

tunilur space can attract an idirrity of different q-stema crossing the same criticat surface. 

AU these &stems will thus display the same critical behaviour 165,663. 

'Ibe most straight forward nay  of identifying the universality class of idsystem is to 

construct the Landau theory for the system. One writes down an expansion of the free 

'enetgy in powers of the order parameters dowing  dl terms which are invariast under the 

symmetry group of the system. These expansions can then generally be related to the Lan- 

dau free energies of certain canonical models (eg. the Ising ferromagnet, the Heisenberg 

fernmagnet,  and the g-st* Putts motlet), which are thought to be weft under-03- Tn 
* 

* r t d h m b m * ~ k b ~ * k v e r g - ~ -  

bined with a renormalization group treatment of the aforementioned canonical models. 

In two dimensions the situation is much more complicated. Many of the "simple" 

models such as the q-state Pot& model have competing Bxed points on their critical surface 



142,601. Thus one needs to know not only what the symmetry of the model is, but which- 
-- - - - - 

fixed point on the critical surface the renormalized Hamilbniaa is atbrackd to. I t  is gen- 

erally not possible to predict this from an examination of .  the microscopic interaction 

parameters. Nevertheless,. w e  shall summarite below the results of Landau theory and tbe 

predictions of the universality hypothesis. 

Before stating the results of Landan theory the nature of the ground state of this * 
model will be discussed. F& h > O  &ere exists six possible ground state configwations 

1331. These are shown in F i g . l . 2 . l ~ f .  Tbere alsd exists six otber gmund st& 

configurations tor h <O. However, the free energy is aa even function of h ahd it sufaces 

to study the h >O case to uliderstand the model for all h . 
C 

A point that should be made here is that the 3x1 structure of Fig.l.2.k and the 3x3 

struttare of Fig 1.2,lf are thermodynamically equivalent since there exists s one to ohe 
- 

mapping between sites of the two structures which are energetically identical. 
a 

By comparing the energy of the six stmctnres, one cao determine the zero temper* 

ture p h s e  diagram,as shown in Fig.1.2.2. In this diagram 'changing h tor fixed J ,  and J,,, 
I 

and hence fixed a results in moving al0ng.a h e  of slope a which terminates'at the origin. 

The two special cases 0 4 . 2  & a 4  are represented on ~ i ~ . 1 : 2 . 2  by tbe two solid lines. 

From this we see why tbe six cases mentioned in section 1.1 are qualitatively different and 
= 

hence interesting to study. 

As mentioned, tbe case to bt studied in this investigation was the small a and repul- 

sive J, and I,,, model. For this caw there exists four ground state condlguration and from 
F 

- -- - - - - - - - -- - - -- - - - - - - 

Fig.1.2.2 we can find tbe critical fields for the zero temperature transitions. Tbese are 
- - - - - -- 

displayed in Fig.1.2.3 along with speculative finite temperature phase boundaries. These 
L 

boundaries have been drawn in only to facilitate a discussion of p h s e  transitions. 
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This now brings us back to the original discussion of cllssieclrtion of phase kamitiuas. 
- - -  - - 'ap- 

Much work hui been done by Schick a d  his collaborators to claasiry order-diaorder trausi- 

aions using Landau tbeory [14,15,51]. Befow, the remalts of their analysis are summarized. 

The 2x1 order-disorder trarisition is found to be in the universality class of the 

Heisenberg model with face centre cubic asisotmpy. TBe work of Maaritsen, Berlinsky, 

B* and -at-Lnsen [35,36] indicates that this ~ e k e n b e r g  model has a Brat oderLtrnnsi- 

tion in three dimensions. I t  is gemrally believed Bat abe transition will alao be first order 

 IS two dimensions and we &us expect the 2x1 order-disorder transition to be Brst order. 

The J~x&?' order-disorder transition is found to belong to thy same universality class 
- - - - - -  - -- - - - - -  - - - - - - - - - - -- - -- - - - -- 

s the three stabe Potts model and Baxter's hard hgxagon model. TBese models have a con- 
--- 

tinuous transition. Monte ~ a & -  renormalil'adion group studies of & e  t b n e  state P o t .  

model aad Bprtcr's exact sdatio* of ^Lbe hard hexagon model indicate that the critical 

1 1 exponents for systems in this claao will be a- aud p- [2,48]. 
3 9 

The final order-disorder txansition is to tbe 2x2 ordered phabe. This transition is in - - -  - - - - 

the same class as that of the four state Po- a a d  Baxftr-Wu model. Again Monte Carlo 

rtnorrnatization group studies of the four state Potts model and the exact solution of the 
- 

2 1 Baxter-Wu model indicate that the critical exponents for this class are a- and ,!?- 
3 12 

Other possibk transitions ate betwetn the 2x1 and f l x f i ~ h a s e s  or 2x2 and fi~fi - 

phase. The symmetry of the 2x1 or 2x2 p h s e  is not a subgroup of the 6 ~ f l s y m m c t r y .  

Neiae  r is P e  conve roc -e. 5 h ~ s e ~ ~ s i ~ ~ s ~ B t ~ 6 ~ ~ c b e d ~ ~ o r d e r . ~ ~  



Often group theory is used b atnay the nature 
\ 

of the perturbation probkm whose D 

Hamiltmian has the form 

applying this approzeh depends on finding an 8, with the highest possibk aymmctry that 

still ensures th& H1 is a small pertarbation. Some of the symmetries tbat ofken occur in 

physical problents are continup>us translatioe or rotations as well a3 &eir discrete cotrater- ' 
- 

3 parts as defined on Iathces. d2 

the i d e s  ofsgro~lp theory'in critical systems. To find &ia' syrnmety tbe plrybics of the 

problem will be considered. Ehperimtatally, it is foxlad teat the correlahn length of the 

system diverges as it  approaches criticality. If the assertion is made, now cailed the scaliag 

hypothesis, that the oaly rekvamt length go&miog the sisgalar behavioclr near tBt critical 
C 

point ( T,) is tb't correlation len-gth ( t ) ,  we find the system depends little on microscopic 

detail and is therefore independent of ttie keg* scale chosen. T h i  follows because tbe 

which impliesIftc-+O for dl laitt I .  

Now with an invariaace discovered, a group optption which exploits this invariance 



"Average" over a set  01 microscopic degrees 01 freedom and asaign m elective degree 
- - - - - - - -- -- - - - a - - - - -- 

of freedom to this set. 

Then "rescale" all lengths in the new problem of effective degrees a of freedom to m*e 

i t  isomorphic t~ the original problem. 

Since the critical system is assumed independent of microscopic detail and length 

scales, this operation should be an invariant symmetry operation. These ideas, which form 

#e basis ef tee reeorrndisatioe group (R.G.), are due to Kadaeoli f 241. W i h  formal- 
'& 

ized - these ideas into the modern tbeory of renorm3lization group [65,86]. N i e ~ e i j e r  and 
= "  

van Leeuwen applied the theory of Wilson to spin s p t c ~ s  [16,38,39]. The approach of the 

latter authors is used below to precisely define the operations 

terns. 

Imagine a lattice of Ising Spins ( 8 )  witb Hamilboniaa 

into blocks of spins and choose an "averaging rule" to assign 

- - - - - - - -- 

of the R.G. for Ising spin sys- 

H ( e ) .  Subdivide this system 

as effective Ising spin to each 

block, based on t h t  spin cotrflguratioa of the bloek. This will bt c a k d  tba block spin (8 ' ) .  

Next, rescale the lengths of the bbcked syakm to match &me of the spin system. This 

det3nes the block Harnilbnian H1(e')  that governs the action of the block spins. Though 

Kadanoff was unable to construct the relationship between H and HI, he was able to 

develop a scaling theory with tbese intuitive operations and the notion of.scale invariance. 

Scaling theory will not be diacussed here thoegb it wilt be shown to foUow naftrrainy f r o d  

the renormalization group. The next step in R.G. theory is-Le'derive the reMonship 

&tween H and H'. However, to do this we must be able b char;rterire these Bamittoni- 

needed. Let 8, be the spin at site i of a d-dimensiond lattice ( Q) of N points. Then let e rt 
Ising Hamiltonian bas the form; 



where 8=(8$ f for all iE Q) and K,  is a set of parameters. 

In this paper only homogeneous Hamiltonians will be considered, ,A homogeneous 
- - .  

Hamiltonian is defined as : If a ,  b C Q and if there e7ists a symmetry operation R of tbk 

lattice space group such that a -;Rb * K , J C b ,  then the- Hamilabniau is homogeneou~ and 

can be written as; 

where w is the class of all subsets such that a ,  b C w if and only if there exists a lattice 

From the above we see that all that is needed to describe the Hamiltonian is t h t  set  of con- 

pling censtants K,. Therefore, each Ising-like Hyniltonian can be represented b$ a a point 

in wme iefinite dimeesie~cd space. T B i  s p s e  is called &e Harrrhniaec+r parameter space. - 

Initidiy, it was the relationship between ~ ( s )  and g'(et)  which was sought. However, if 

we write 

this translates into finding tbe functions R, (K)  such that Kal=Aa(K). 

To calcuiate R the "average mk" must be ckarly defined. The average rule can be 
- -  - - - - - - - -- - -- 

thought of ae a condition4 probability P(sI t ,q) ,  which is the probability that the bloek spin 

of the i" block has the value 8,' given that the configuration of spins in the i' block is q. 

This now defines the conditional Probabiiity P(sl ;s)  between the block spin configuration a' 

and spin configuration 8 as, 



with 

where N t  is the number of blocks. Therefore the Probability p1(8') of a block spin 
4 

configuration a', is 

where Pf 8 )  is the probability of the spin configuration kiven by 
> \  - c 

Y 

0- 

By analogy to 2.1.8 we seek ~ ' ( 8 ' )  such that a - 

By combining 2.1.7, 2.1.8a, 2.1.9a and defining a function G ( K )  as; 

This relationship between H and 8' in principle determines the function Ka1=;Ra(K) 

More generally i t  foliows that 

where K(') is the coupling constant of the system which has been blocked n times. Notice 

that equation 2.1.12 can be tbought of as a recursion relation. From this point of view the 
- - -  -- - - 

topology of the flows, &fined by R , in the Hamiltortiad-spwe becomes interesting. In light 
- - - - - - -  - 

of the aaeertion tbat a critical system be invariant under the renormalization group tsaaSCor- 

mation (ie.K1==K=K* ) thtfixed p o i &  of R (i.e. K L & ( K * )  ) are particularly interesting 

and correspond to sinks or  sources oGthe flow of coupling constants through Hamiltonian 
L. \ 

\ 

space. 



A number of questions can be asked about the relationship between fixed points of R 
- - - - -  - - - --------A - < and criticality of a system. 

* 

1 D o  all fixed points correspond to a critical system? 
/ 

2 , Is a critical system a fixed point of R ( K ) ?  

To answer these questions the effect of the topology of the Bows 
I 

hood of the fixed point K*  on the free energy must be studied. The effect of the flows on 

the fre.e energy is most easily seen if a rtfcursion relation between the free energies of the 

block and spin systems F1(K') and F ( K )  respectively, is derived. The derivation is s fol- 

lows. - - - -*=- 

If 2.1.10 is summed over a' on both sides and the sums s and a' of the right hand 

side are interchanged then 

"4 
However by 2.1.6b this reduces to . 

Now let N= number of particles of spin system, N1=number of particles of block 

system, and N ' I N d - d .  We expect G,F,  and F', to be extensive quantities. Therefore, as 

N+m, G(K)+Ng(K) ,  F ( K ) + N f ( K )  and F'(K1)-+N'j(K1). The relationship 

This finite sum may be extendea 60 infinity if 
- - - -  - 



A word of caution shouM be introduced here. In the remaining analysis we assume 

that g ( K )  and R ( K )  are analytic functions of their arguments. This b p o s e s  further res- 

trictions on P(a i ;a ) .  One of the restrictions is that if 8, is the ground state configuration of 
I 

the spin system with symmetry w then the ground state configuration of the block system 

agl  must have the same symmetry w. I t  should be noted that this is pnly a necessary condi- 

tion and not a sufficient condition for analyticity. The analyticity assumption is of no smalP 

concern and has been one of the weak points of the R.G. arguments [22].  

Now consider the recursion relations R in the neighbourhood of a fixed point K * .  Let 

then for small Kb- K{ 

Let A ,  be the eigenvalues with associated left eigenvectors Vi of TA such that 
1 

l%en define the functions u, and ti,' as: 

The u ,  and u,' are called the first order scaling fields of the fixed point K * .  From the 

above definitions it is easy to see that 
\ 

Therefore 

The scaling fields can be generalized such &at equation 2.1.19 is true not only for 

inEinitestmd tt, but dm for a!: finite u, f 161. If fX, I>1 the waling field sr, is called 

relevant, if IX ,  J < l , u ,  is called irrelevant and if X , 4 ,  u, is called marginal. These 



definitions become more meaningful in what follows. 

Consider g and f as functions of the scaling fields u,. Since g is an analytic function 

of K , ,  and hence of u,, i t  can be expanded as a power series in u, 

where rtt n1,n2, . . ). b e  now perform the above sum in t?vo parts. Tbe first part, 

which represents the sum over all r( such that  h;'1l2 - . . < l d  and the other part C 
* lesser Y g r e a t n  

which represents the sum over all such that  h;lh12 .*. . > l d .  Therefore we can write g 

as: 

By substituting this in equation 2.1.15a and assuming 2.1.15b we f%d that 

In the first term of t.he above eqoation h ; ' ~ ; ~  - - < l d  which ensures that the sum is uni- 

formly convergent allowing the sums over n and r( to be interchanged. However such is 
\ 

n o t  the case for t.he second term. We define the function g,,, to be: 

Making use of the discussion and the above definition one may rewrite equation 2.1.21 in 
5 '7 the form: .% I 

I 

3 Next  notice that 



and also if we write grem out explicitly that 

- 1  

-. C I - ~ ~ # ~ ~ * ( X ; I U , , X , ' U , ,  . . - )=- 
(I= w +-oo greater 

If we assume that 1 ; '~ ;~  . . 1- d#l  then the above series is uniformly convergent for nll 

u, and tbe order of summation can be interchanged such that it can be written as: 

Tbcre fore 

from equation 2.1.27 we can see that 

by making the index shift, n + l - + n ,  in the above sum we find that 

bence 



7 

This form of &e singular part of the free energy is called a scaling form. I t  was pos- 

tulated some years Wore the discovery of the R.G. tWhS has h e n  s3iown here is asif 

follows naturally from the flows in Harniltonian space of a system near a fixed point. This 

singular piece is analyzed in more detail below and it is shown that the relation 2.1.28 
rS 

implies that a t  a critical point thermodynamic quantities will have power-law singularities. 

To analyse the singular part of the free energy it is useful to defide a function A as: 

where ui-i l u l  lY'IY1 with ~ ~ = i ~ ~  and u1 h assumed to be a relevant scaling field. I t  is elsy 

to show that 

hence A is a periodic function of In lu, I witb period laXl. Tbh enables u s  tb expand A in 

a ~ o u r i e r  series as: 

I 
The f signs are introduced to distinguish the two cases u>O and u<O. The Fourier 

coefficients A,f can be *written as; 

By making the substitution t=Aflu,  ( in the n' term we find, after performing the sum, 

that 

The common assumption made here is that A,f=O for all n#O. This implies that 



Physically this assumption seems reasonable 'because if it were not  true the singular part of 
1 

d - / 
the free energy would have oscillatory terms superimposed on the lullY1 behaviour. For 

I 

more discussion on this point see the article by Th. Niemeijer and and J. M. J. van 

Leeuwen in reference 1161. i 

Next consider the effects of the relevant and irrelevant fields. To do  so  consider 

equation 2.1.29 where labels for the scaling fields have been chosen such that u, 'for 
- 

15 is k are relevant fields and all other u, are irrelevant. Notice we have excluded the 

A;11;2 - # l d -  For r discussion of this catie, again see the article mentioned above. 

u , 
Notice that y,/y,<O, for all  i> k .  Therefore ae lul l - 4 ,  0 for all i> k and hence j U 1  l ~ h i  ' - 

Therefore to, leading order, j,, is ind;pendent of the irrelevant fields. Tbis is the reason 

for the distinction between relevant and irrelevant fields. 

This brings us to the idea of universality. previous to the development of the renor- 

malization group it was found that many systems displayed the same critical behaviour. 

Classification of these groups of systems into classes become known as the universality scal- 

ing hypothesis. In the above analysis we were initially concerned with the critical behaviour 

in the neighbourhood of the fixed point. However, we see that there exists a hypersurface 

defined by setting all the relevant fields b zero. In the neighbourhood of this surface the 

singular behaviour of the free energy is universal, to leading order. Therefore in terms of 

renormalization group theory, a universality class consists of all systems described by a 

point on this hypersurface. Because of its critical properties the hypersurface is called the 
' 

surface of criticality. We define this hypersurface to be the domain of attraction of the 
a% 



fixed point. This means that 

point u n d e r  renormatizatio: 

all systems in this domain will be mapped towards the @xed 

consequence of the renormalization group. 

Widom's 1641 stabic scaling hypothesis is usually written as; 

This can be related to equation 2.1.30 if we assume that there are only two relevant vari- 

ables u, and u, which are temperature-like and BeId-like respectively and then invoke the 

universality of the critical surface to apply the scaling analysis at an arbitrary point on the 

critical surface. 
0 .  

In summary renormalization group theory has provided the mathematical tools and 

-3 
cepts tbat enable us to understand these conjccturea of early' workers in critical 

phenomena The renormalization group also provides calculakional tools useful in deter- 

mining the singular behaviour of spici lc  systems. 

2.2. The Mmfe Cluto Mcthod 

In classical equilibrium Statistical Mechanics one is often interested in the calculation 

of the expectation of a function of random variabks. In the canonical ensemble the expec- 

tation of A is written as 

for functions of continuous random variables and as 

for function of discrete random variables. 

Foi 

therefore, 

1 
the purpose or this paper, onty functions of spin - variables be considered; 

2 

equation (2.2.2) reduces to 



1 
Tbough the formalism oJ M o n k  Carlo will be developed for spin - systems it can be 

2 

easily generalized to systems of other degrees of freedom. . 
In the evaluation of (2.2.3), 2N+1 terms must be calculated and summed together. 

Even for smdl  systems this can be a fficuft task. For example, to evaluate (2.2.3) for a 

2-dimensional 5 X5 particle system, approximately 10' terms must be evaluated. Therefore, 

in the thermodynamic limit as N+oo the straight forward approach'of summing the series 

directly becomes hopless.  Apart from a few special Hamiltonians, <A > can on&.& 
I I- 

approximated. 

One of the simplest approximations is called Monte Carlo importance sampling 141. It  

-is based on the result of probability theory that the arithmetic mean of an infinite se-quence 

of independent random variables having a common distribution converges to the expecta- 

tion. Therefore to approximate < A > ,  a long sequence bf independent random spin 
.. 

configurations is genera&d from the distribution P(B) . ' 

from which <A > i4 approximated as 

This method proves to be much more efElcient than trying to sum the series (2.2.3) 

cfirectty. The reason for this is that there tenas to be only a small subset of the 2* possible 

spin configurations tbat occurs with any appreciable probability. So for m of the order of 



independent randurn variables is not a straighttorward task since the eakalation of the dis- 

tribution (2.2.4) is nearly as difacolt as trying to evaluate < A >  by summing the series 

(2.2.3). However, the theory of Markov chains provides a metbod for generating variables 

of a given distribution, Markov theory consists of the study of a special stochastic chain of 

events where the outcome of the nU event of the chain depends only on the ( n -  i)' event 

of the chain. Moreover, the transition probability ,is independent of step n. T o  define the 

Markov Chain one defines the conditional probability 

which reads as the probability that event n + l  has value "jw given that the event n had 
I 

value "iW. This matrix is calkd tbe one step transition probability matrix. Next the rn step 
- 

transition matrix is defined s 

~ i * ) = f t o b  (~"+"~.w=i )  . 

From these definitions it is easy to-rrte that 

If the conditions 
4 

P,>O for all i, j (2.2.6) 

are imposed and if there existaorne ;umbers x I > O  such that 
I 

and 

- - ---- - 

then the limit of PA") as m-co exists, and is such &a& 
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- - - - -- - - - - - -- 

The above sb tement  (2.2.8) can abo be interpreted as saying teat the' long m a  dbtri- 
- -  - - - - 

bution of s tdes  of the Markov process is independent of initial ~tap m d  is equal to R , .  

3 Therefore, to generate any particular sequence of random variables who= diskibtrtion is. x ,  

we merely must find a P, such that - 

What is sought; therefore, is a matrix P, such that A ,  is the Boltzrnann distribution 

(2.2.4) of the staes j. With this P, the long run distribution of states of the Markav 

chain will have the desired Boltzmann distaibution. Therefore, to approximate < A >  one 

merely averages A ( @ )  over the states generated by the Markov Process. 
- - - 

- 

The task now is to find P,, with the desired properties 

If the detailed balance condition 

P&xPC W)f~TW~,-++ Hte'VkTj 
is imposed, both of the above conditions are satisfied. From (2.2.10) we have 

\ 

where 6HSr,==( H ( 8 ) -  H(e1)), hence PSI,>O which is which condition (2.2.h) .  Alsi, from 

(2.2.10) it can be seen that by summing over 8' on both sides of the equation 

exp{- H ( a ) / k T ) ~ ~ , ~ = ~ P ~ ~ , e x p { -  H (a') J 
I 

but, xPd=l,  therefore it is easy to see that condition 1.2.9b is also satisfied 

Even at this point there is some arbitrariness in the choke of P,I,. Some of the coril- 



In this work we have consistently used formula 2.2.lla 

We now consider how the Monte Carlo scheme is realized in practice. Tbe first step is 

to choose some initid con0gurabio~ r .  The choice o f  this con8gurrtion i s i n  general arbi- 

trary. However, to decreaee the number of sampks needed for convergence of (2.2.5) one 

may b i a  the selection. Them oei selecb, either systematically o r  randomly, one or more of 

the spins of the current configura$ion aad cdculgtes the energy chahge 6H which would 
I 

occur if these spins were dipped. This entrgy change determines the probability of such a 

transition. This probability is compared to a random number (usually a pseudo-random 

number generated on a computer), and bbe new configuration is either rejected, in which 

case 8 remains unchanged, or accepted, in whkh c;wse 8 will change by the flipping of these 

spins. The process is repeated q times where q is sufficiently large that all states are possi- 

ble. This then is what is cplkd one Markov step. 

For a sequence of such con0gurations (8" Iv=i,m), <A > is calculated s: 

where ;m=wt and w is chosen typically between 2 and 10 to enhance the independence of 

the set  of configuration A is averaged over. 

Having described the basics of Monte carlo' importance sampling, we now discuss the 

difficulties of the technique. 

The BrsC probtem to consider is *& of Snitz sizc. -Genera& one B iii@res?m-in=e 

-timitaer*- Pdyirrllcre~. H H  h 

performed on finite systems. This is n ~ t  t sbe  a problem for noncritical systems. However, 

as a phase transition i s  approacttd, Mik t t t tS tx  me encountered. A t  a phase transition, orre 

is interested in the singular behaviour of various thermodynamic functions, but for finite 



systems the free energy is analytic and these singularitica are not  present. To overcome 
- 

this probkm, Monte Carb e & u ~ a ~  are performed ok a numbtr  of systems of i e r e a i n g  

size to see if the analytic funch l t s  of the finite system bcmd to g singutat limit aiP N 

increases. In this way the Monte Carlo results may be extrapolabed to the thermodynamic 

limit. 

Next, the i n h e n c e  of the starting configuration on the convergence rate of the sum 

(2.2.12) will Econs idered .  In the limit as m+ca the initial conflg\ttation is of no conse- 

quence. However, one is unabk to perform an infinite number of Monte Carb steps, so " 

tbe initial configuration dots  play a rok. Idea&, one would like to start with a typical 

configuration. In general though, one dots  ao t  have this information. A technique e a e d  

thermdizatjon can be used to attempt to generate one of these typical configurations. The 

technique simply allows the Monte Carlo process to iterate many times before averaging, 

allowing the Markov process to dri& the spin configuration towards a typical state. Again 
B 

this works well for noncritical aysterbs; however, for a second order t tansbon tbe r e b  

tisn b e  b thermalize the ayatem diverges- Far B& a p t e m s  the ~ e h a t i o n  time remaina 
T 

finite which helps somewhat, but it still caa be very large. 

Statistical errors also will play their usual roie in the evaluation of <A > and to a 

large extent are handled by "eyeballing" tbe data although more sophisticated techniques do 

exist . Other problems also exist such ;rs the generation of pseudo-random number and the 

choice of boundary conditions. For a discussion of these see the article by Binder in Monte 

Carlo Methods in Statistical Physics (ref. 141 f .  

In the renormalization group theory the expression of interest is the recursion r e b  

tionship K O 1 = R , ( K )  and in particular 



where K *  is a fixed p i n t  of the~recursion relationship. I t  was not  mentioned in the discus- 

sion of the general theory that for most mode4 one m unable to derive exact expressions 

for tbese functions. The main stumbling block in t i e  cakulation is the fact that K is r. . 
infinite dimensional vector. 

0 

Prior to the development of Monte Caalo renormalization group, one would attempt 

to calculate R, by assuming th3 only a only a finite number of coupling constants K, 

afiected the critical behaviour of the system. 

Two different finite lattice methods have been commonly used in closed-form rtnor- 

malization group approximation. The first is called the cumulaat approximation Tbe . 

essence of%his approximation is to Bnd a Hamiltonian H, for which the recursion relations 

are known and such that the original Hamittonian H can be expressed as, H=ff ,+V where 

V is a small perturbation. Then the recursion relationship of H are truncated by only 

keeping terms to some desired order ha V. Tbia techniqut Bas produced reasonable values - 

for critical exponents in two dimerrsiond systems but becomes unwieldy for three dimen- 

sional systems or systems with interactions of @hater range than nearest neighbour 

Tbe next method is tbe finite cluster approximation. To make this approximation one 

begins by blocking a suBcientJy small lattice such that t 
b 

ility distribution of states 

of the blocked and unblocked system can be calculated exactly. From these distributions 

one obtain8 R , .  This R ,  is assumed to mimic the behavwur of the corresponding R ,  for 

the infinite systems. This method has produced good results for a number of two dimen- 

sional systems. 

- - - 

To overcome the effecta of truncation of the dimension of the recursion relation, 

f 
Swendsen, in 1979, proposed a method combining Monte Carlo simulation and renormali- 

r 

aation group called Monte Carlo renormalization group (MCRq [10,58-613. MCRG theory 

- makes use of the fact that the matrix 



can be related to correlation functions which can be calculated approximately by Monte 

Carlo simulation. 
6 

Recall from equations 2.1.1 and 2.1.10 that the Hamiltonian, after n renormalization 
i 3 

group transformations, can be written as 

where the relationship between the na and (n- 1)' Harniltonian is given by 

4 

We begin the'derivation by considering a relationship that follows from the chain rule 

and by using (2.3.3b) - 



was used in the above cdculation. Next notice that 

~s!"),$!'- ')p($( n- I)) 

s" 

is the conditional expectation of s!")s!"-') given s("-'l , since P(6(");8(n-1)) is the condi- 
4 

tional probability of an given a("-'1. Hence, 

b' 
Combining (2.3.2), (2.3.4), (2.3.5), and (2.3.6) we obtain the relationship 

This can be put into matrix notation by defining matrixes 

Hence, equation (2.3.7) reads as; 

In general 9"~") is an infinite.dimeasional matrix which might be difficult to invert, 

let alone to calculate by Monte Carlo. However, since it is only the largest few eigenvalues -. 
of F") that are sought, only a small part of has to be inverted to find these eigen- 

values 'with a good degree of accuracy. This is, of course, an assumption, but  using MCRG 

one can ad& more and more coupling constants with relatively little effort. 

What is of most interest are the eigenvalues a t  the fixed point K*. We can find these 
- - -- -- - - -- 

by making use of the fact that for a set  of parameters KO on the critical surface K(")--*K * 

and hence T,(?)--+T: as n+m. 



To find T,b one merely performs Monte Carlo simulation on a critical system, &d 

performs the renormalization group transformation a number of times on  each 
a. 

configuration thus generating a sequence of configurations of the blocked system. The dis- 
1 

tribution of these block configurations will be the same as if an exact renormalization group 

had been applied to the original Hamiltonian. Therefore, the Monte Carlo simulation will .- 

approximate the correlation functions gi('"-'I, S(nl') determine m exact renormaliza- 

tion group transformation. The sequence {S( ' J " -  '),S(".") In . . . ) generated will 
1 

tend towards the fixed point value of this function for increasi this way TA can b,e 

approximated. 

We now mention some of the limitations of this method and some consistency 

requirements. Apart from the standard problem of finite size statistics, as found in all 

Monte Carlo simulations, a number of new difficulties appear. The problem associated with - 

only calculating a finite nnrnber of elements of the matrixes S(np"-l)l $"*") has already 

1 been mentioaed. In principle, this is a problem. In practice, however, it is easy to test if 

enough elements have been calculated by varying the number of interactions used in the 

calculation of the eigenvalues of T:*. Convergence as ,a function of this number has been 

found to be quite rapid. \ The next difficulty arises from+.the use of finite lattices. Because of this, only a finite 

number of iterations of the renormalization group transformation can be performed. So the 

question arises: is ldn) sufficiently close to K *  ? There tend to be, in many c i e s ,  a large 

region about K' in which the flows are linear; therefore, all that is needed is for K ( " )  to be 

in the h e a r  region. This condition can be checked by seeing if the eigenvalues are station- - for  the t s t  conpie uf i ~ ~ r r s .  

T h e  last point to Ix made on the limitations, is the question concerning accurate loca- 

tion of a point on the critical surface so that the renormalization group transformation 
Y 

r 

drives the Hamiltonian to the critical fixed point. This process is normally done in two 



stages. The first sbge  6 to examine the flows of the expectations <s,(")>, which 4encls to C 

flow to the ground state or infinite temperature fixed poi 1 t values very quickly for points L 

not too close to the critical surface. By looking for the bifurcation of these flows one is 

able to determine thIphase  boundary normally to about one percent. The second stage is 

to sample this one y r c e n t  tolerance region such that the variation of the eigenvalues is 

minimized under renormalization group transformation. 

In summary, Monte Carlo Renormalization group provides a very general scheme for 

perfomAing exact renormalization group transformations with several self consistency 
. , 

checks. - 



It is the purpose of 
I i  

(repulsive) next nearest 

this investigation to examine the effects of the addition of a small 

neighbour interaction to the triangular nearest neighbour Ising 

antiferrornagnet. The resulting Harxiiltoniai for this model is , a 

. H=I,,C8,8]+J,,,C~,~]+hC~I 9 0 

I n  Hln I 

where nn and nnn represents nearest and next nearest neighbour'pair respectively. In par- 

ticular, the case to be studied is J,>O and J,,,>O with the ratio a=J,,,,/Jnn=O.l. 

The study has three objectives: 

1 To determine the phase boundaries ~JI the T-h plane for fixed a d . 1 .  

2 To determine the order of the transition along these boundaries. 

3 To determine &he critical indices of the phase transitions. 

Objectives one and three will be realized by MCRG Techniques 

be obtained by Monte Carlo sampling of the energr, order parameter 

tional F(q5). F ( $ )  will be defined and discussed below. 

a 

and objective two win. 

and free energy func- 

\ Before my RG cakulation can be performed the ground a t a t t  configurations must be 

identified. Next a RG Transformation must be found such that the ground state symmetzy 

is preserved under &is operation. 

For this model (i.e. a d . 1 )  the ground state phase diagram is in shown in Fig. 1.2.2 . 

Ideally, one would seek a RG ~ransformatio; that would preserve the symmetry of all four 

phases simultaneously. However, in tbe attempt to do so, the only such ttansformation 

fqand produced a blocked Hamiltmian with very anisotropic coupling constants. In order 

to keep the blocked Hamiltonian (approximately) isotropic, the idea of a single RG 

%& 
3 1 



Transformation for the entire p h w  diagram was abandoned and two separate RG Transfor. 

mations were used. d \ 
A four spin block was used to study the 6 x 6  phase as shown in Fig. 3.1 with pro- 

jection matrix defined as 

For the 2x1  and 2 x 2  pbaee a common three spin block was used as shown in Fig. 3.2 

with prokction matrix defined as 

The use of two diflerent blocking schemes is a cause for concern only near a transi- 

tion be tween 2 XI and f i x 6  phases or 2 >a and 6 x 6  phaes .  We expect these transi- 

tions to be first order and we can use other Monk  Carlo methods to find the coexistence 

C U N C S .  

The first part of the study is to locate the phase boundaries by using the above black- 

ings in a MCRG scheme. Under successive RG Transfor&n, the Hamiltonkt initdy 
* , . 

in a given phase will flpw auch that the block spin con0guration will k n d  towards tbe 

ground state configuration of that p h s e .  Then 

where < S,9> is the average of S, evaluated over the ground state configurations. So, by 



Figure 3.1 

R.G. blocking scheme for the 
2x2 and 2x1 phases 

Figure 3.2 
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looking for the bifurcation of the sequence <s,(")> the phase transition can be located. In 

practice, the finite lattice used can only be iterated a limited number of times. Therefore, 

this re@,ricts the accuracy to which the phage boundary can be located. However, even for* 

ilelativety small lattices (30x30) the uncertainty in many cases is less than 2% 

In this study relatively small lattices were used to lind the phase boundaries. For the 

f i x 6  phase a 32x48 spin lattice was most frequently used whereas for the 2x1 and 2 x 2  

phase we generally perfo ed the calcu!ations on a 36x36 lattice. Tbe initial con6guration . P 
was thermalized 2000-20,000 MCSfSpin before sampling, and the averages evaluated over 

every fifth MCS/Spin of runs 5,000-30,000 MCSfSpin. Close to the ph&e boundary a 

number of different runs w e n  made to check for metastability. Ttrese numbers may seem 

small when compared to other MCRG studies. Most of these studies are concerned with 

tbe determination of the of the critical indices which require the 5ccuratc evaluation of the 

correlation functions <s!*)s~("- ' )>-  <s,(")><s,("-'I> on tbe phase boundaries. How- 

ever, to determine the phase boundaries only the expecbtioas <S, > are aought for poinb 

c' 

near the phase boundaries but not ntcessarily on these boundaries. Therefore, convergence 

in the determination of the phase boundaries is much faster than the calculation of the crib 

ical indices. 

We attempted to estimate the effect of the Bnik lattice size by carrying out  the calcu- 
3 

lations on larger lattices for a few select pointe along aht phase boundatits. For the 

phase the larger lattice sizes were 64x48 and 64x96 and for the 2x1 and 2x2, 36x54 and 

72x54. In all clues the changes were found to be less than 2% To determine the nature 

of the phase transition we have evaluated the Landau-like free e o t r m  hpoints 

the phase boundaries by Monte Carlo s im~la t jon .~  More explicitJy we evaluated the func- 

tio n 

where the right hand side reads as the negative logarithm of tbe probability that the ma& 



tude of the order parameter $, is within a 6/2 ne ood of the number +. F, is the 

total free energy of the system. Tbe order parame tion depends on wbichpb i i e i s  
3 

being sampled. For the 2x1 and the 2x2 phases a three component order parameter 

(+,'$J, , . $4 is defined for the system ia: . 

where "Ma is the total majpetization on the n sublnttiee ( see Bgure 3.2 a = A,B,c,D / 

& d  N is the total qurnber of 1ai.tiee sites. For the 6 x 6  a two component order parame- 
L 

tcr is defined as: 

wliere M,is the total magnetization o f the  a sublattiee ( see Bgure 3.1 o = A,B,C ) and 
1 

a N is the total number of lattice sites. 

T h e  clssification of the order of the transition is based on the shape of thin function. 

For example Fig 3.3a would be ealkd a first order transition because of the dual absolute 

minimum that F ( $ )  manifestd. On the other haad, Fig 3.3b would represent a second or 

higher order transition because of the flatness of the curve. It  is surprising tbat this tech- 

nique is not  more widely used in this type 01 study since many of the techniques -- -- previously 
- 

used in the classification of the order of phase transitions eaa be explained m terms of &is 

function. One of the main dvurtagts derived from the use of this f u n c h n ,  is that finite 



Figure 3.3a-b . 



play a role. One drawback to the technique is thaL it requires very long running times. 
- - - - - - - - - - - - - 

This is compensahd tboagh, by the fact &at the function need only be evaluated at one 

tempemtare to determine the order of the transition if Tc is known accurately. Typically, 

Tc is not  known to sufficient rmuracy and the function F($) must be calculated for a smatl 

number of parameter values. However, the number of points for which F($) is evaluated 

is normally much smaller than tbe number of  points that must be sampled in other Monte 

Carlo techniques to determine the order of the transition. For example, in &is study, by 

. using Tc as determined by the bifurcation of the Monte Carto renormalization group Bows 

ae a starting point, we are able to determine the order of tbe tramition by evaluating F(+) 

" lor two to four values of the temperature. 

In the calculation of F ( + )  the bulk of the simulabioa was done on a 36x36 tataice 

when considering the 2x1 and 2x2 order-disorder traasitions and 32x48 lattice for the 
B 

6 x 6  order-disorder transitions. 

4 

Finite size effects. on F ( $ )  were checked on  a 36x54 Lattice lor the 2x1 and 2x2 I 

phases, and a 64x48 lattice for tbe f lxf l la t t ice .  If tbe r e s u b  were ambiguou; d t e r  tbese , 

runs then further calculation were carried out  on a 72x54 l&e for the 2 x 1 ~  and 2x2 and 

64x96 for the 'fix&. All runs were inibialb me for 90-180,000 MCSjSpin after 20,CHKl 

MCS/Spin were deleted for thermalization. The runs were broken up into 10,000-30,000 

MSG/- segments so &at the thermalizatio~ aad convergence could be e h t c k d ,  and 

extra steps deleted o r  added if necessary. The increment 6 was chosen to be 1/100. 

The scaling of the functiond witb size was not ss clear m we originally expected. I t  

was initially thought that a bump in the free e n e r a  functiund, which we are using s the 

caae. Because of this, we decided 60 compare tbe functional method witb more%onventjoaaJ 
w .  

methods o l  dttermination o r  Erst order transition. TQe first mtQod chosen tests for b y e .  

tensia of various thermodynamical quaatitits (i.e internal energy, order parameter, etc.) se 



a signature of a first order transition[l]. Following a suggestion by Mouritsca, we looked at 
- -- - - - - -- - - 

the time s e b  of a coarse grain average $., of the order pvmreter  at a few points, how- 

ever the hysteresis cdculation was the more extensive stady. We chose to compare the 

byskresk calculatioa resthb with those based on the free energy functional, dong  the 2x2 

boundary becmee it appears to exhibit a weakening first order transition with increming 

0eM that may eventually be driven second 'order. 

We began st a point on the boundary which we felt wan strongly l r s t  order using a 

36x36 lattice. The possibility of hysteresis w a ~  explored by varying the temperature & fixed 
t 

q e l d .  , This w s  repeated for successively larger values of the Beid. As the Beld was 

increased the system appeared to become more critical causing the system b p m p  back and 

forth between the o d e r e d  and disordered phases. To suppress this osciflation the lattice 

size w;ur incresed to 72x54 for d l  points tested with H/J,,>4.75 The internal energy and 

order parameter were calculated on each sweep by sampling every MCS/Spin for a total of 

3$W0 MCSISpin. The system was allowed to thtrmalize for 1000 MCS/Spin between auc- 

etasive points of t8e sweeps. 



The results of tbe MCRG study of the phase.diagram are summarized by Fig. 4 . l . l a  

The errors in the locatjolt of the boundary, which ape of the size of of the ptotted data 

points, are due to the indeterminacy of the MCRG Fbws. F m  the several points that we 

checked for finite size eKects a o  qualitative changes b phase boundaries were found with 

The two most interesting features of Fig. 4.1.la are the apparent depression of the 
- 

transition tempration b zero at h / J , d 2 a  4 . 2  a d  the existence of a finite tern&;ature 

phase transition between the fix& and 2 >C2 ordered p h s e s .  Tbe depression of the tran- 

sition to zero temperature is conjectured since Monte Carlo work becomes ex'tzemeiy 

difficult at low temperatures. Metastability problems tend to become more severe as t&e 

temperature is d e c r e ~ e d .  

However even with very long Monte Carb runs of 90,000 MCSlspin after .20,000 

MCS/spin thermalization the qualitative features of the phase diagryn remained 

unchanged. The plot of magnetization versus temperature for h/J,,=l.2 (see fig. 4.1.2) 

seems to be a smooth function indicating that for k T / J , ,  as low as 0.25 the system is still 

ever we did find s o k  proprtiea of the ground state, suggest that both the 2 x 1  and f i x 6  

are ilswk?Bk at h j b C  atrrrptmre a2 tft tff,,d2e. A QisettrJbioa of this, &bg . * 
1 





Figure 4 . l . l b  



MAGNETIZATION VS TEMPERATURE 

kT / J," 

Figure 4.1.2 



I 

with suggestions how one might proceed to prove the result rigorously is found in the 

appendix A .  
r 

The second feature, the transition between the 6 x 6  phase and 2 x 2  p h ~ e  can be 

seen by MCRG despite our initial reservation. When the blocking of Fig. 3 . la  is used on a 

2 a  structure, the 2 a  structure is mapped onto a paramagnetic p h z e .  Similarly, when the 

blocking of Fig. 3 . lb  is used on a f lxf i s t rue ture ,  the f l ~ f i s t r u c t u r e  is mapped on'to a . 

paramagnetic phase. Because of this, the bifurcation of the flows can still be seen, though 

they are not useful for the calculation of exponents. This transition can also be seen in reg- 

ular Monte Carlo sampling by observing the discontinuity in the magnetization. One last 
- 

point that should be mentioned h u t  the T- h phase diagram is that the MCRG restttts are 

consistent with the ground state phase diagram. 

We also show, in figure 4.1. lb a crude phase d i a h m  in the T-M plane. This was cal- 

culated by computing the magnetization at the transition point in the T- h plane. Since the 

calculation was not initially designed for accurate evaluation of the magnetization at the 
< 

transition the results are somewhat speculative. The features to note on figure 4.1.lb are L,+ 

the coexistence regions; 2 X l  + paramagnetic , 2 x 2  + paramagnetic, and 2 ~ 2 + 6 ~ f l ,  !xi 

well as the gap between M--0.14 and M = - 0 . 2 6 .  In this region t h e  par.amagnetic state 

seems to persists to zero temperature. 

4.2. C3&r d the Phase lhmitdau 
6 - . :  

, , 

C 

In this section we discuss the results of the 'cdculati6n of the.free energy functional I 

F ( $ )  as defined in chapter 3. In p d c u l a r  we try to infer the order of the transition by 

examining the structure of F ( + ) .  In the following section the conclusions drawn from this 

section will be compared for consistency with more traditional method using hysteresis and 

time series analysis to determine the order of the phase transition. 

IVe k t  discuss the transition from the 2 x 1  to the paramagnetic phase. From the 

sequence of figures 4.2.3ac we can see the evolution of F ( $ )  as the temperature is 



increased through the transition temperature. The feature to notice in the graphs is that 

the bump in the free energy persists through the transition temperahre f TL%0.581). The 
1 

persistence .of this bump and the equal of the associated wells at T, is a signal that 

the free energy of distinct phases of disorder are becoming equal. They are dis- 

tinct in that one can make a definite association of a phase with either the low or high order 

parameter well. The above description is that of a first order transition and we conclude Q 
that this transition is first order. 

Since we are dealing with a finite system the effect of lattice size needs to be con- 

sidered. To check for finite size effects, F ( $ )  was calculated on one smaller lattice (24x18) 

a d  one larger f&tt f 36ZA). 'F 

'From figures 4.2.2-4.2.4 we notice thak the transition temperature decreses  w i d  

incresing lattice size though the change is less than 1% The most intersting feature to 

consider is how the size of the bump scales with lattice size. From the 24x18 lattice to the 

36X36 lattice the bump increases by over a f x t o r  of two. From the 3 6 S 6  to the 36X54 

lattice the results are not completely clear. They are partly obscured since figure 42.4 does 

not show F ( v )  quite at the transition ternperature, therefore making direct comparison 
I 

difficult. %*i& increasing size the structure of F ( p )  near the transition temperature 

becomes very sensitive to temperature changes. making it difficult to obtain a plot 

representive of F(c)  at,'T:. From insight gained by watching the evolution of F ( + )  with 

temperature for s m a d r  systems one can make a qujlitatjve extrapolation of figure 4.2.4 aud 

conclude that the bump in F ( v )  at the transition would for the 3 6 S 4  system be about the 

s v n e  size (perhaps slightly larger) as that of the 36>~36' lattice. An even larger lattice 

( 7 2 x 5 4 )  was used to calculated Ff v)  Tbe results art not presented because the increased 

sensitivity with size mrde it very difficult to cakulak the free energy functjonal sufficiently 

close to T, to manifest the equal depths of the wels at T,.  However there was some indi- 

cation that the bump would be sfightly smaller at tbe transition. 



LANDAU FREE ENERGY FUNCTIONAL 
FOR k T / J = 0.589 h / J = 0.00 nn nnl 
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LANDAU FREE ENERGY FUNCTIONAL 
FOR k T / J,, = 0.580 h / J,, = 0.00 

AND a=0.1 

L 

IBQ,QOQ rncs;kpkr 
sampled every 5 mcsispin 
thermaiized 20,000 mcs/spin 
lattice size 36 x 36 E1 
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LANDAU FREE 
FOR 

ENERGY FUNCTIONAL 
k T /  Jnnz0.581 h /  J,, =.0.0 

AND a=0.1 

-w==fCv+m - - - - 

sampled every 5 rncs/spin 
thannaiizad 20,000 mcs/spin 
iattke size 36 x 36 

A 

order parameter 9 
- 

Figure 4.2.3b 



LAFlDAU FREE ENERGY FUNCTIONAL 

order parameter 9 



FOR k T / J,, = 0.580 h / Jnn = 0.00 
AND a-0.1 Tr 



From the above discussion, we see tb3t what started out  as a presumably clear signal 

of a first order transition hzs became somewhat dubious when finite size e f fesb  are con- 

d e r e d .  Tbough this result is somewbat disconcerting a plausible explanation wbich is con- 

sistent with an interpretation that the transition is first order can be found by examing the 

spin configuration of tbe system at steps akmg the Monte Carlo NO. It  ws foundrthat tbe 

system h d  3 greater propensity to break up  into regions of coexistence between various 

ordered and disordered ph3aes as the size wari increased. in  a smaller system the coex- 

istence .was suppressed and tbe global order parameter was good indication of  the degree 

of order of 3 grveat phase. However the presence of coexistence between different ordered 

I p h s f f e s f a s f ~ ~ d i e L a r g e r s y ~  made ~ ~ ~ ~ & r ~ a ~ r i & ~ s f & e  

order in the  system. For exam pie the system may be broken up  .into two regions of . 

different ordered phases with the mwnitude of the order parameter nearly the same but' 

w l t h  d~ffcrent signs A s  3 resuft the global order parameter would be very small tbough the 

s ~ s t e m  is completely ordered. I t  is th is  type of catrcellztion between coexisting ordered 

phrtc~s  that we believe a responsibk for tbe site of tbe bump diminishing for very Iatge lab 

tires 

The w3y around this problem would be to calculate a local order parameter over 

several rregtoos of various sizc and check how these scded with total size of the system. 

This w s  n o t  done in this calculation because of time constraints but could prove to be an 

interesting investigation. 

The above cdcuiation was only for h 4 and we conclude tb3t the transition is first 

order at ieast at h 4  in agreement with the conp,cturt stated in section 1.1. However from 

figures 4 . l . l b  and 4.3.1 we set that the coexistence region existd for nongero Beids indicatr 

m g  t h a t  tbe  2x1 order-disorder transition is first order even for nonzero fields. We con- 

clude t h a t  the entire 2 X1 boundary is first order. 



5 1 

. . 

We now~discuss tbe free energy functional for tbe &~&f order-disorder transition. 

We begin by considering f l + I  near the maximum transition temperaiure ( T J  which occurs 

as ' h / J . . 3 . 0 0 .  Tbe sequence of figurer 4 . 2 . 6 s ~  for tbe 3 2 ~ 4 a  shows that &ere is no 

bump in Ff y?) at T;. The extreme Batness of the curve neat its minimum is a good indica 
C 

tion of a divergent susceptibility at T,. The same results were found fbr the 64x48 and 

6-1>(96 lattices. IVe therefore conciude that the order-disorder transifion at AIJ,,S.OO is 

continuous. 

4 t  this point one IS somewhd hesitant to conclude &at the entire b o u n d w  is second 

order partrculruly since one end of the boundary is e l d e r  a triple point, 3 critical endpotnt . 

fir a me Wnfitgf p i f f 6  f ~ e e  tg4 t-Is). @ m p t i a g  Ffc) for h /fa,+ P we see that the 
6 

order-disorderstransttion is still continuous (see 6g1.2.7) very near thts point. ?Sex the 

other end  of the boundary no thorough investigation was made. However in 3 c a u d  study 

n o  rndication that the transition would be first order was found. We therefore feel 

confident that the entire f l ~ f l o r d e r - d i s o r d e r  transition IS second order. 

F~ndtv  we discuss the 2= to pxamagnctic transitionA This boundary has the m a t  

structure and for this reason w e  use tt to c o r n w e  the various methods of determining tht 

order of a p h s e  trwsltion- Before doing so we describe the nature of the free e n e r o  func- 

ttond F ( y )  when evdu-d on thts boundary. F ( @ )  was calculated dong the 2>C! boundary 

ai h/J , ,=4 .7 .5 ,  5 . 5 ,  6.0. At k/ f , ,==4.75,  F ( v )  for the 36x36 lattice (Figure 4.2.9) shows a 

d ~ s t m r t  bump. #%en the lattice was increxed to 36x54 the bump clearly decresed (figure 

1 .2 .10)  in magnitude. Such behaviour has been observed witb model thzt ararknown to 

undergo a conGnuous transition (Le .  Bfume-Capel and Baxter bard hexagons models) 

f 3 . 2 8 ) .  Associstod with the diminishing bump in these systms is a decrease in the s e p x a  

tioa bf the rntntma of F(r .1 .  Such is not the caae witb this model From figures 4.2.9-10 we 

notice tbd the minima are stationary witb respect to chmges in the systems size. 



LANDAU FREE ENERGY FUNCTIONAL 
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LANDAU FREE ENERGY FUNCTIONAL 
FOR k T / J,, = 0.825 h / J,, = 3.0 

AND a=0.1 

30,000 mcs/spin 
sampled every 5 mcs/spin 
thermalired 20,000 mcs/spin 
lattice size 32 x 48 

Figure 4.2.6b 



LANDAU FREE ENERGY FUNCONAL 
FOR k T / J,, = 0.831 h / J nn '= 3.0 

AND a~O.1 

180,000 rncs/sph 
sarnplsd ovary 5 rncs/spln 
thermalired 20,000 mcs/spin 
lattice slm 32 x 48 



LANDAU FREE ENERGY F U N C f M t  
FOR k T / J,, = 0.835 h / J,, = 3.0 

AND a=0.1' 

30,000 mcs/spin 
sampled every 5 mcs/spin 
thermalized 20,000 mcs/spin 
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order parameter 11, 

Figure 4.2.6d 
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LANDAU FREE ENERGY FUNCTIONAL 
FOR J = 0.567 h nn 

AND a=0.1 

180,000 mcs/spin , 

sampled every 5 mcs/spfn 
tharmalized 20,000 mcs/spin 
lattice size 32 x 48 
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- - - - - - - 

We thereby appeal b tbe coexistence argument to explva the decreaee and conclude &at 

thetransition is first ordtr. TBe cc~xia t ince  drded to above was actudly foutld ia typical - 

configurations of the Monk Carlo runs. 

A t  h/J,=5.5 fi'gmms 4.2.11sb indicate a smdl bump in F(d1) for tbt 24x18 lattice. 
I 

For the same value of h /I,, OR the 3 6 m  lattice there was a marked incnasc  in the size of 

the maximum but it was onfy 60% of the height of the bump on tht same stze lattice for 
7= 
\ 

h / J , , d . 7 5 .  When the lattice-was further incre3scd to 36X54 the maximum nearly disap- 

peared ( 6 1  4.2.13bb). For h / J m = 6 . 0  on the 36 S 6  la&e the bump is lpproxirnately I/% 

of the bump for h/Js,=5..5 (see fig 4.2.14) .  On a 3 6 6 4  I d t ~ t  tbe results are obscured + 

'L . . 
since F( rl) is not ca~culated suffiiicitady c k c  to tbe tzmsttiaa k o r n e r  b e r e  L p p w  to c 

no significant change in tbc size of tbt maximum. Et w a r s ,  therefore, that the tat& 

2X? order-disorder transition is an exacl~pk of a first ordtr tramition which ts weakened or 

driven second order with increasing field. Tbe conclusioe is somewhat questionabie in Ligbt 

of the finite s u e  effects discussed- T l w s d k e  itkc-acewasy W - e w q x m  qwdusmm 

drawn from the free energv functional F ( @ )  with more traditional methods and we do tbis 

in the next seition. ? - 
e 

M'e conclude th is  section with a ~ ~ X U S S K I Z L  01 one additional tranaltron namely the 

6 n t  order. ~ l t h o i ~ b  no data is presented here it w l a  found &at ssociated' with the t m s i -  

nature of tho transitb~ 
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LANDAU FREE ENERGY FUNCTIONAL 
Jnn = 0.543 h / J ' = 5.50 

? nn 
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LANDAU FREE R\IERGY FUNCTIONAL 
FOR k T / J,, = 0.547 h / J,, = 5.50 

AND a=O.1 

180,000 mcs/spin 
sampled every 5 mcs/spin 
therrnalizod 20,000 mcs/spin 
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Figure 4 ? . l l b  



LANDAU FREE ENERGY FUNCTIONAL 
FOR k T / J,, = 0.531 h / J,, = 5.5 

AND a=0.1 
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, LANDAU FREE ENERGY FUNCTIONAL 
FOR k-T / J,, = 0.5295 h / J = 5.5 nn 
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Figure 4.2.13b 



LANDAU FREE ENERGY FUNCTIONAL 
FOR k T / J,, = 0.390 h / J,, = 6.0 
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Figure 4.2.14 



NDAU FREE ENERGY FUNCTIONAL 
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LANDAU FREE ENERGY FUNCTIONAL 
FOR k T / J,, = 0.385 h / J,, = 6.0 

I AND a=0.1 

160,000 mcs/spln rn sampled ovary 5 rncs/spin 
thsrmalized 20,000 mcs/spin 
lattice size 36 x 54 



We begin with d k ~ s s i a g  the r e s u b  of tbe bysteresl cdcufatioa. Figures 4.3.2-6 

show plots of energy aod order parameter versus temperature for a sequence of increasing 

fcM vdues  &ng the 2x2 order-disorder ttansition boundary. Figures 4.3.2-4 show a cha r  
I 

discontinuity botb & e  internal energy and the order parameter indicating that the transi- 

tioa is Erst order for 4 .375Sh /Js,54.625. One may notice a slight increase in the scat&r 

of the h t a  as the fletd is increased frdm h/Jm=i.375 b h/J,,=4.625. Tbis scatter 

becomes excessive when d e  field is further increased to 4.75. We believe that the reason 
a 

for this excessive scatkt  is that the system is nndergoiag sufficient tluctuafions to cause* 
P 

the system to jump back and lor& bttween tbe ordered and disordered pbaees during the 

sampling period . In an ia6nitt system rnttzratabihty wouM pttvent such an oscilIbtion. 

?r Therefore to mimic the infinite system more cbse!y we increased t8e lattice size sufficiently 

zo suppress these oscillations. Figures 4.3.5-6 show plots lor Eelds h / J , , l t . 7 5  and 

6 /4,=5 5 obtamed from a cak~tfstioa on ? 72x54 lattice. From the figures 4.3.2-6 we see 
- 

that there ts stgnificamt hysttresis for 4.375<h/Jw<4.75.  Tbere wan, to still be a bys- 

teresis loop for. b /I, ,=S.S but this is not entirely ckar. This indicates that the traasition at 

/ the 3 x 2  boundary is first order but is becoming closer to a continuous traesitioa as tbe fiela 

as increased. The increased sca#er of tbe data witb i~creasing field dm suggests this con- 

chsion. 

-e Figure 4.3.7 is a plot of the width ( A T )  of tbe hysteresis loop aad the magnitude 

(S) of the disconbnuity of the iaternal energy versus field ( h / J , , j .  Notice that both tbe 
A 

gap's width .and height of the gap decresrse with field and appears to vanish at h / J , ~ 6 ,  

P dernonstrating_tbe weakening of tbe Erst order tramition. These conclueions arc entirely 

consistent witb the conc le sw~s  baaed oa the fnactiond F ( 9 )  thus providing a cbeck of this 

new metbod for the detzrminafioa of the order of a traasition. 



Also consistent with all k a l x t y e  - i h e t i m p -  

culations one plots coarse grained averages (i-e ayerages computed over a small segment o f  
.. . 

the total run) of the order parameter or internal energy as a function of "time" in the Mar- =i 

kov chain. These calculations were initially suggested by Mouritsen, in a private conversz 

tion, as a good indication of a first order transition if one could sample sufficiently long to 

witness the sharp switching of the system from an ordered to a disordered phase o r  vice 
b 

versa Such switching was found for both the 2x1 and 2x2 transitions (see Fig4.3.8 and 

Fig4.3.10 ) from which we infer that at these point on the phase boundaries the transitions 

are first order . It  is interesting to contrast the plots of figures 4.3.8 and 4.3.10 to - a - similar 
- 

plot (figure 4.3.9) made for a point on the boundary at which we believe the tran- 

sition i s  continuous. The dramatic diflerence l e d s  one to believe that the respective transi- 

tions must be qualitatively diflerent. 
0 

In summary we conclude that the 2x2 transition is first order on the small field side of 

the curve a d  is weakened as the Iiefd is increased. However it is not clear if the transition 
- -  - - - -  - - 

remains iirst order for all vatues of the field. I t  may crossover to second order transition at 

sufficiently large values of the field. It  appears tbat if the transition becomes continuous i t  

will do  so for h / J , , z 5 . 5 .  It should bmnentioned that this result contradicts the universality 

auguments of Schiek e t  al. based on a Landau theory. They predicted that this transition 

wil\always be second order for all values of the field. 
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Order Parameter vs Temperature 
For h/,, = 4.375 
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Energy per particle vs temperature 
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Energy per particle vs temperature 
for h/J,, = 4.625 
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Figure 4.3.4a 



Order Parameter vs Temperature 
For h),, = 4.625 
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Energy per particle vs temperature 
for hl,, =' 4.750. 
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Figure 4.3.5a 



Order Parameter vs -Tem~erciture 
For h),, = 4.750 
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Energy per particle vs temperature * 

for h/,, = 5.500 

3,000 mcs/spin 
sampled every 1 mcs/sph 
thermallzed 1,000 mcs/apln 
lattice size 72 x 54 

Legend 

Figure 4.3.6a 



rarameter lemperature 
For h A n  = 5.500 
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Energy per particle vs temperature 
for h& = 5.500 
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Figure 4'3.7 
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for points on each of the three order to disorder transition bouadaries. W e  wilt Brst discuss 

the cdculation made at the maximum of the 2x1 boundary ( h / J , = 0 ) .  Then we will con- 

- tinue with a discussion of the results of the calculation near the maximum of the f l ~ & f  

boundary ( h / J , , = 3 . 0 0 ) .  Findfy we present aa extensive discussion of the critical exponent 

calcui3tions carried ou t  at tbree different p i n t e  on the 2 boundary 

( h / J , ,  =4.75, 5.5, and 6.0). Typically all runs were allowed to thermalize for 20,000 
c 

SfCS/spin before sarnplfng every 5 MCS/sph d o n i  runs of various lengths that ranged 

f ~ t m  60,000 MCffsfria te l,€UB,€HX% MCS&e. Q 
Although the 60,000 MCSIspin runs are too short to ykM well converged values of 

the exponents do they allow one to observe trends in the results. The run of 1,800,000 

MCS/spin i s  far longer than runs typically carried ou t  by other workers and serves as a 

check on the results obtained from the shorter runs. We now discuss the specific cdculz+ 

tions. 

For the cakulation on the 2 s  snd 2 x 2  boundaries, we used t b t  blocking acbeme of 

b. 
figure 3.2 and kept four coupling constants, 1.e. four correlation functions. These were; the 

U 

single spin term , the nearest neighbour spin-spin term O+ ; the next nearest neighbour 

spin-spin t e r m w a n d  the nearest neighbour four spin. t e rm a . 

For the 2x1 boundary we do  not  present the exponents but only some qualitative 

observations. For both lattices used (24H8, kT,/JS,=4l.585 and 36x54 kTc/J,,=il.578) we 

found that the exponqnte did not  seem b converge or  tend to any fixed point vdues. 
- 

The results of the calculation on the boundary are summarized in Table 4.4.1. 

In tbis calculation we used the bbcking scheme of figure 3.2 with four coupling terms. 

They were; the s ingk  spin term , the nearest n e i g h b u r  spin-spin km a-a , the next  

nearest neighbour spin-spin term-, and the nearest neighbour three spin term A . It 



t x p n e n b  determined from the Bmt a t t  couphg c o n a b b .  

The discrepaacy d e c r e e d  wibb aecctssivt iterations ot the rtnormaiiza n transfor- Y 
mation. When-tBe nearest n e i g h b u r  three spin term wab added changes of h u t  2-3% 

resulted in the first two iterations, hut  again the,differences decreased with successive Yr" 

and neatest neighbour four spin) but  all produced changes of less than 1% 

Table 4.4.1 

Critical Exponents of 6 x 6  orde r  to Disorder Traasition Boandary at h/J , , 43 .00  
Lattice Sire 1 32 X48 1 64 x96 

4 

Conjectured Value 1.86666 - [ 1 
Iteration # 1 f 1.183 f 0.003 I 1.190 A 0 . W  

0.822 
1.9215f 0.0008 
1.898 f 0.002 
1.888 f 0.002 
1.877 f 0.004 
1.86 f 0.01 ' 

T, I 0.824 
I 

Iteration # 1 - 
2 

Y f 3 
4 
5 

2 
~i 3 

4 
5 

, Conjectured Value 1 .200 

1.9195f 0.0004 
1.893 f 0.001 
1.876 f 0.003 
1.864 f 0.007 

1.339 f 0.003 
1.268 f O.Cl04 
1.32 f 0.02 

1.332 f 0.006 
1.23 f 0.01 
1.13 f 0.02 
Not Converged 

Iteration # 1 
2 

p i  3 
4 
5 

Length of Run  f 180,000 MCSjepin f 60,000 MCSjspin 

-2.02 f 0.03 
-0.04 f0.02 - 

-0.02 f 0.02 
- -  & - a 2 2 h r g ~  - - ~~ 

Not  Converged , 

-1.93 f 0.04 
4.009 f 0,03 
-0.169 f 0.005 

- -O.M1 a m  - 

1 ;  

~ 

-- - 



From Table 4.4.1 we see tbat the Ikgest odd exponent yf seems to be .converging 

existence sf a rnargind dinctioa indicated by ~4 k i n g  nearly r e m  A sear marginal wra 
tar inhibits flow tu tb t  Bxed point. Therefore, convtrgeace of the exponents to their $xed 

a; - 

point value is not a useful criterion for deterrni.ation ofitbe transition 'temperature in this 

model. We found that tbe l o w  of the neat neighbour three spie correlation function was 

the most sensitive signd ot  Tc. m e  targest even exponent gf stems to be stso converging 

to its conjectured value of 1.2. Tbc discrepaacy between the cdculatcd exponent and the 

conjectured vdue is much greater lor yf thaa for y; . 

The above conclusioas would be mide more coavincing with inc rcwd running time 

for the 64 ~ 9 6  1aUiee. A h ,  one might try to find a parameter that eoupks etrongly to tee . 

marginal direction, as Swendsen e t  al. f6Of  did with &e.Poar state Pobb model. By varying 

this pammekr one might ke able to minimize tbe effects of the marginal direction. Our 

resutta for the direction of the fiowa are n o t  sufEcicetJy anlmbrguous to dlow us  to identify 

ihe appropriate interaction. 
P 

We now begin the discussion of the 2x2 boundary by examining the critical exponent 

for the point on the boundary at 6 /J,=5.5. The rtsalta for three different lattice sizes are 

given in table 4.4.2b. Tbe gtnerd  feature Lo notjct is 'that the latgeat odd exponent y: is 

not iterating towards its conjectured valae of 1.875 but do some larger value (i.e. y; >1.92). 

A t  this point we conjecture that it is Bowing towards a first order fixed point commonly 

c d k d  a discontinuity fixed point (i.e. y: = 2)[lQ,4l]. This conjecture is supported by the 
- - - -  

calculation at h / J - 3 4 . 7 5  on the 2x2 phase boundary which isasummarized in Table 4.2.2a 

This calculation was carried out  only for a relatively small lattice (24H8) and should be 

compared with the correspndiag column in Table 4.4.2b. The interesting feature is that y,O 
" 

P .  

is substantidly larger (baa for h / l , = 5 . 5  but ha. the same general behariotir. It first 

iterates away from yf =2 and then turns around to head towards it. It appears that by 
%- 



varying tbe field we in some sense move closer to tbe Brat order axed point. The above 

,J rtsufts should be contraakd with the resuha of the cdcufation made on the bou~dary  at 
- 

6 / J ,  4 . 0  which art presented in Tabk 4.4.2~. Notice now that yf seems to be converging 

to the conjectured value of 1.875 though it drops slightly on the last iteration. We believe 

that this drop is due to the fact that k T / J , d . 3 8 5  is slightly larger tban the appropriate T,. 

Finite sizdeffects may ako play a role. When the calculation was carried out  on a smaller 

lattice we obtained basically the same results. Tbe values of y: are not very close to the - - - -  - 

, 

--- 
-conjectured value - - -- of - 1.5 but - -- do - seem to -- iterate -- toward - -- this -- value. Other workers have also 

been unable to determine y f accurately [30,37,44,61]. 

governed by a finrtcoMer fixed point and for h 2 6 . 0  by a second order fixed point. This 

second order fixed point apptars to be the same fixed point which governs the four state 



2 1.31 A0.02 1-32 f 0.02 1.27 f 0.01 
6 3 f*-#.w 4.42 t8.s- - 8.4% *Me - 

= -  

4 Not Corrverged 1.43 f 0.07 
Conkcturd Vdue 1.50 1 1 

1 

iteratioa # 1 -5.49 f 0.04 -4.01 f 0.02 -5.5 f 0.2 
2 -0.33 f 0.06 -0.16 0.01 -0.62 f 0.02 

vZ' 3 -0.02 f 0.08 0.10 f 0.01 -0.253 f 0.06 
4 Not Convergtd -0.61 Large 



Iterrtior # 1 1.872% f 0.0002 
2 1.8757 f: 0.0005 

ni  3 -  1.8767 A 0.002 
4 ,  , , 1.8653 f 0.002 

Conkctared V d s e  1.8750 
Iteration # 1 1.059 f 0.004 

2 1.16 i o . 0 1  
' irl' - - - 3 - r 1.22 l,os -* i -K6-3-- 0.02 -- - 

4 
Conjectured Value 1.50 

Leagtb of Run 200,000 MCS/spin 

Potta and Baxter-Wu Models. From the above we expect a tricritical or multicritical point 

between h f J,,=b.5 and li ff,,z6.0 on the 2 s  h n d a r y  ai w k h  &t & sit& m a s t s  

over born first order to second order. These conclusions are consistent with those obtained 

from the free energy functional, hysteresis and time series cakalations reported in sections 

4.2 and 4.3. 



arid compare with previous wart. Also, possible additional work will be outiined. 

2 X1 order -* disorder traasitiorn r a a  found to be Brst order for the entire range 

The fix& order -+ dibatder msitiom wai  found b be C O U ~ ~ ~ U O U S  over ib entire 

bonndaq, ia agreement with the work of Schick tt  If. fSl ] .  Schicks' work predicts that this 

model is in the same universality c b  ~ L S  tee tbree-state Pot& and Baxter's Bard hexagon 

models, for which the leading odd expoaent 8: 48/15 -1.867 and leading even exponent 

yf =6/5 = 1.2 [2f. From tee MCRG cdcrlstion OR Qis model we round a yf which agreed 

extremely well with tiit c o n j t c t a d  value (28/15). A y: was dso tonnd a &at &aL waq 

within 5% of ib conjectured vaiue f6/5). Tbe exponent yf seemed not to have converged 
---% 

-. 
csompittely to its axed point value. The s b w  tonvtrgtnce might be due to a marginal direc- 

- 

The 2x2 + disorder tmnritior appeand to have a crossover from disconainooos to 
- - -- 

contieilous as tly %chi f A )  nts k p c r s t d .  'fbe crossover took p k t  between 1-5.5 and 

6 ~ 6 . 0 ,  iadicatbg the exbttnee of a mukri t i cd  poiat in &is range. In the region 

4.28sh 5 5 . 5  the kdimg odd e x p a t a t  seemed to #ow ta r dkcoatiartity *due of 2. 
- - - - - - -  - - - - - - -  - - - 

The vdae of g f  Bad aot co~vtrgcd to itn fixelf pobt vdae. In the region where the 



transition appeared - tu be coatiuuous si iterdcd - t o w d s  - -- its majcctrrrcd - - - - - -- four-st& - - - Po& 

value of 1.875, but yi w a  quite 'far from ita comspoodi~g value of 1.5 [3]. Tbiu could be 

caused by the marginal direction associated with this mniversatity class which  ha^ hampered 

similar cakdations on the four-state Pow model [48]. 

We atao see tb* there existe a Bnite temperature transition between the flxfi and 

2 x 2  phaaes, which Ts first order ~ra expected. This transition boundary, aa well the b u n -  

daries for the f i x 6  and 2x2 order to disorder transitions dl terminate on a common 

point at k T / f ,  a.513 and A fJ, =4.28 , which appears to be a critical end point. 

bttweea the 2x1 and tbt flxfi phases. From the Monte Carlo data it appears that traasi- 

tion ternperatarcs for botb phases are depressed' to zero is h /J.. +1.2. we conjectare &at 

tbe paramagnetic phase is stable down to T 4  ot this Beld value; however, there h; the pos- 

sibility tbat the paramagnetic . . phase might give way to a sequence of modulated phases 

{21,54] as the temperature ia decreased, ?he presence of such phms is hard to detect by 

Monte Carlo methods. 

Additional work which may be done inclades the following: 
\ 

1 an analytic analysis of the nature of the phase diagram in the neighburhood of the 

2) accurate bcation of the crossover point on the 2 ~ 2  boundary ae well as determination 

of i b  exact nature. 

the contiaaous portion of tat 2>C2 phast boundary. 

4) Inuzsti.atrc the Paitr! * waling of the Ihc.atLladaa-lib free enera and its u e f &  
r 

atss in determining the order of a tmasitioa. 



APPENDIX A 

Within this appendix we wish b consider the rratnre of the pbaae diagram of the 

Hamiltonian 3.1 in the vicinity of the point T=O and b / 1 , 4 2 s .  From the Monte Carlo 

cdcnlation it appeared that n o  direct h a s i t i o a  txiste between the 2 M  aed fixflat Bnite 

temperature. We were unabk to dernoastzak tam rigorous$- We did howeyer, bnd a set 

of transformations that involved ffipping columns of spins thst cost n o  energy at T=O and 

- h/J,==l2a. These ttansformltions were sufficient to show that the surface tension betweem 

these two phases. 
*\ 
t To begin this discussion, recall from section 1.2 that ibe 2 s  and tbe f i x 6  p h a e s  

are degenerate at Ih 1 / J . = l 2 a ,  bowever the degeneracy is greater that just this. To see tbe 

periodic boundary conditions in tbe m direction (i.e. m+lY row in tbe same a the l d  row). 
- 

Ia figure A 2  thc system is showa in a pure flx&f pbmt. On thb drawing notice the 

sbadtd triangles each containing three spins. Imagine that te; triangles which point up 

Notice, only triangles in a given column will interact with each other since ou r  model is res- 

tricted to 1" and 3'* rreighbur interactions between spins. 

b n d s  that these spins makt witb tlttir neigbboors. The boads Bare been cakgorizcd into 



of tbe given triangk and their ant neighbor not in any triamgk. 

The c type bonds are between the spins of the given and their s e c ~ n d  neighboun that are 

Now consider the energy c h a p  if the spins of a given column of triaades are all * 

lipped. It is ckar tha t  tbe energy of the r type bonds are unchanged. 
'\, 

T h e  net energy change of the b type is also anchanged btcaase &ere are the same number 

of favourable and nnfavourabk b type bonds. The change of the c type bonds product a 

due to the Beid which prodaces s iacfcase of the energy of 2 ~ d .  Htnce the total energy 

change is; 

but 6 / 1 - 4 2 ,  therefore S 4 3 .  
It 

tions of tbeae columns are degenerate witb each other since there is no inttr,action between 

them. 

Now consider the configuration produced if aU columns of upward pointing biangks 

of figure A 2  are Bipptd. TBe resalt is shown ia figure A3. Notice the right hand side of 

tbe lattice is nor in a pure 2x1 p h a e  and the left and side b in a pure f i ~ f i ~ p h a s e .  

Since th is  configuration w;ls produced by a series of zero energy flip of columns, this coex- 

A4 This is a coexisting state between a two diaertnt 2 XI phases. By construction, it too 
v 

mast be degenerate with both the pure 2>a and &~f i  phases by the same reasoning as 

above 



Now we wish to construct a coexisting state between two different &x&f phase. 

Begin with a system in a pure 2 H  phase as shown in figurt A5. Then flip all triangles 
E 

(they extend infinitely to the right and left). The result is shown in figure A6 and is a state 
I 

of  coexistence between two different &~fl phases. Since only flipping of B e  the specid 

columns wza involved in going horn the 2>Ct to this coexistence state, the state must  be 

degenerate with the pure 2 M  phaaes a d  hence the pure 6 x f i p h a s e .  

We conclude this discussion of the degeneracy by summarizing the resulte. We found 

that the ground state of tbe & r e  2x1, pure ~ x G ,  coexistinq2Xl and phases, 

\ 7 coexisting 2x1 phases, and eoexrsthg a ~ f l p h a s e s  are all degenerate at Ih l/Jn,=42a. 

Now we return to our surface tension discussion. A t  T=O the only contribution to 

the free energy comes from the i n k r n d  energy. Therefore the surface tension at zero tem- 

perature is merely tbe energy diflerence between a s t a k  of coexistence and the pure phases. 

Thus, from the above discussion we conclude that the surface tensions Q ~ ~ ~ , ~ ~ ~ ,  

that these surface tensions vanish at finite temperature at  this field. If this were true both 

the 2 s  and f i ~ f i  phases woeld be anstable 3 th [/JR1=&2a for alt finite temperatures, 
% 

from which we could conclude that there does not  exist any finite temperatore transition 

between these two p h s e s .  The natnrt  of the conjectnred intermediate phase is not  known. 

We spccnlak that it would be paramagnetic to zero temperature. However one might find 

that for low temperature the paramagnetic p h s e  gives way to a sequence of modulated 

phases of the form found by Fisher and Sefke while investigating the ANNNI model 1361. 

lh l/J,,=12a, more work will have to be done. One might try to proceed as Fisher and 
w 

approach, however might b hampered by convergence problem for d=2. A more likely 

method, might be adomain wan transfer rnafrix qproach  (37,44,62]. 
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