
A PARALLEL ARCHITECTURE FOR RAY TRACING

by

Severin Gaudet

B. Sc., University of Victoria, 1978

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department

of

Computing Science

@ Severin Gaudet 1985

SIMON FRASER UNIVERSITY

August 1985

All rights reserved. This thesis may not be
reproduced in whole or in part by photocopy

or other means, without the permission of the author

Approval

Name: Severin Gaudet

Degree: Master of Science

Title of Thesis: A Parallel Architecture for Ray Tracing

Examining Committee:
Chairperson Dr. Art Liestman

Dr. Thomas Calvert
Senior Supervisor

I .
I

Dr. Richard Hobson

Roy Hall
Graphics Consultant,
External Examiner (in absentia)

2 4 May 1985
Date approved

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser U n i v e r s i t y the r i g h t t o lend

my thes is , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f the Simon Fraser Un ive rs i t y L ibrary, and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any o ther un ive rs i t y , o r o the r educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users, I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean o f Graduate Studies, I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l ga in s h a l l no t be al lowed

wi thout my w r i t t e n permission.

T it l e o f Thes i s/Project/Extended Essay

A Parallel Architecture for Ray T r a c i n s

Author:

Severin Gaudet

(name 1

1985 August 14

(date)

Abstract

Ray-tracing techniques for image rendering have produced some of the most realistic

images to date. They are also slow because the process of tracing a ray is

computationally intensive and because there are many rays to be traced. However. since

computations for each pixel are independent, ray tracing is amenable t o parallel processing

uslng image space subdivision. The processor per subdivision approach is unattractive

because r d e~ther the large memory requirements per processor or the high communication

oierhead of a shared memory,

We present an architecture that addresses these drawbacks using broadcasting The

architecture is based on. (a) an interconnection of multiple ray tracing engines working

in parallel; (b) 3 disjoint data sets resulting from the use of a modified hierarchical data

structure-based ray tracing algorithm: and (c) 3 broadcast processors each with its own

memory module and broadcast bus. Simulation results show substantial rendering time

improvements over mini-computer timings.

Dedication

To Sandra

Acknowledgements

I thank the following people:

Dr. Tom Calvert. my senior supervisor, for his insight and guidance throughout the course

of my studies.

Dr. Rick Hobson. Dr. Lou Hafer, and Dr. Binay Bhattacharya for their valuable contibutions

and the many hours of discussion.

Pradeep Chilka, my research partner, with whom a joint reasearch project became the

subject of our respective theses

This work was supported by a Natural Science and Engineering Research Council Post-

Graduate Scholarship.

Definition of Terms
Overview
Features
4.3.1. Data Tree
4.3.2. Shell Shape
4.3.3. Simplified Shader

Table of Contents

Approval
Abstract
Dedication
Acknowledgements
Table of Contents
List of Figures
1. RAY TRACING

1.1. The Shading Model
1.2. Ray Tracing
1.3. An Analysis

2. ALGORITHM IMPROVEMENTS
2 1. Reducing Rays
2.2 Reducing Objects

2.2.1. Bounding Volumes -
2.2.2. Hierarchical Data Description
2.2.3. Octree Subdivision
2.2.4. Modeling Space Subvolumes
2.2.5. Light Rays

2.3. Discussion

3. ARCHITECTURAL PERSPECTIVE
3.1. Ullner's Machines

3.1.1. The Ray Tracing Peripheral
3.1.2. The Ray Tracing Pipeline
3.1.3. The Ray Tracing Array

3.2. Dippe's Parallel Architecture
3.3. The LINKS-1 Multimicrocomputer System
3.4. Discussion

4. A 3-TASK RAY TRACING ALGORITHM

4.3.4. No Intersection Tree
4.3.5. Adaptive Tree Depth
4.3.6. Primitives Types
4.3.7. Sorting Leaf Shells

4.4. The 3 Data Sets
4.4.1. Shell Data
4.4.2. Prim Data
4.4.3. Shade Data

4.5. The 3 Tasks
4.5.1. The Shade Task
4.5.2. The Shell Task
4.5.3. The Primitive Task

5. A PARALLEL ARCHITECTURE
5.1. Broadcasting

5.1.1. Description
5.1.2. Adaptive Broadcasting

5.2. The PERT
5.2.1. The SJ16
5.2.2. The Floating Point Unit
5.2.3. The Memory Module

5.3. The Broadcast Processor
5.3.1. The Memory Module
5.3.2. The Processor

5.4. The Bus Interface Controller
5.4.1. ID Registers
5.4.2. The Comparator and Hit Line
5.4.3. The Buffers

5.5. System Organization

6. RESULTS AND CONCLUSION
6.1. Simulation

6 1.1. The Simulator
6.1.2. Tes t Scenes

6.2. Broadcast Performance
6.2.1. Adaptive versus Non-adaptive
6.2.2. Type of Hierarchical Structure
6.2.3. Organization of Shell Data

6.3. Multi-PERT Performance
6.3.1. Analysis
6.3.2. Results

6.4. Discussion
6.5. Conclusion

vii

List of Figures

Figure 1-1:
Figure 1-2:
Figure 1-3:

Figure 1-4:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 4-1:

Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 4-10:
Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 6-1:
Figure 6-2:

Examples of different light interactions 3

The Hall shading model 4
Example of the tracing of a pixel and the building of the 7
intersection tree
Sample scene for analysis 9
Example of a bounding volume 12

Example of a hierarchical data description 15

Examples of voxel sub-division 16
The three major pipeline stages in the ray tracing peripheral 21

Pipeline stages within the Intersection Processor 2 1
The Ray Tracing Pipeline 24
Organization of processors in a 16 processor ray tracing array 26

Fields of a ray message 26

Total time taken for rendering a sample scene using spherical 36
shells and orthogonal box shells
A Zdimensional view of overlapping shells 40
SHELL data structure 42
Illustration of SHELL-ARRAY 42
PRIM data structure 43
Illustration of PRIM-ARRAY 43
SHADE data structure 44
The ShadeTask algorithm 46
Output structure from ShadeTask 46

The ShellTask algorithm 47
Output structure from ShellTask 47
The PrimTask Algorithm 49
Output structure from PrimTask 49

Example to illustrate broadcasting 52
Block diagram of PERT 54
Detailed block diagram of a processor 54

Block diagram of the BP 56

Data organization in memory 58
The BP algorithm 58
The Bus Interface Controller 60
The multi-PERT configuration 62
Characteristics of the test scenes 66

256 primitives (4 per leaf shell) 66

Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:

Figure 6-10:

Figure 6-11:

Figure 6-12:

Figure 6-13:

Figure 6-14:

,

512 primitives (8 per leaf shell)
768 primitives (12 per leaf shell)
1024 primitives (16 per leaf shell)
1280 primitives (20 per leaf shell)
1 jogger with ball
The 3 joggers
Average time per ray (microseconds) Scenes 404. 408. 412. 416.
420 PrimProcessor

Comparison of tree structures Averages times per ray
(microseconds) Scenes 212. 412. 812 ShellProcessor
Comparison of broadcast order of tree Average latency per ray
(microseconds) ShellProcessor
Times faster than VAX/750 based on expected average latency
Scene 412
Times faster than VAX/750 based on expected average latency
Scene 23
Times faster than VAX/750 based on expected average latency
Scene 45

Chapter 1

RAY TRACING

The potential of ray tracing techniques t o produce realistic images has been extolled by

so many that i t is on the verge of becoming a cliche. Nevertheless. the images speak for

themselves images which can be virtually indistinguishable from photographs. These

realistic Images are a product of both good scene descriptions or models which describe

the shape m d position of objects, and good rendering techniques We are concerned with

the l a t t e~ In this chapter we shall discuss what creates the illusion of realism and why

ray tracing techniques are capable of exploiting this.

1.1. The Shading Model
C 0

As stated above, ray tracing techniques have generated some of the most realistic images

t o date T o understand what contributes t o the realism of a synthetic image. one must

first understand the process that occurs naturally in the real world.

It is generally accepted that a colour video camera produces a realistic image. So let us

first consider how the camera records a scene onto the phosphors or pixels of a monitor.

Imagine that for each pixel on the monitor screen, these is a corresponding sensor on the

camera s focal plane behind the lens. The surfaces in the scene visible t o the camera

reflect or transmit light into the lens and onto the sensors that in turn measure the light

and send signals t o their respective display pixels. The colour of each pixel is determined

by the colour of the corresponding area in the scene. The colour of a surface is

2

determined by the properties of the surface and the light falling on the it; this means we

have to know how the light interacts with the surface.

In rendering a scene, it must be possible t o model these light interactions in order t o

simulate the light being reflected or transmitted to the sensors. Examination of the light

falling upon an area of the surface allows i t t o be classified in one of two ways. The

first is light coming directly from emitting sources (eg. the sun. an incandescent bulb, a

flourescent tube), this type of light is referred to as a direct source. The second type is

light being reflected onto the surface from other surfaces: this constitutes an indirect or

global source.

Next, examining the surface with which these two sources of light interact, we can

distinguish three surface characteristics which influence these interactions. The first of

these IS the roughness of the surface at the microscopic level. This determines how light

falling on the surface is scattered by reflection in all directions and thus how good it is as

a diffuse reflector. The second characteristic, the opposite of the first, is the smoothness

at the microscopic level that in turn determines the degree to which the surface can be

characterized as a mirror this property results in a specular reflection. Finally the third

characteristic determines how well a surface transmits light from a light source from

behind.

Combining these characteristics with the types of light sources, a formula can be derived

which models the cumulative effect of the six combinations according t o the physical laws

of optics. This formula is referred to as the shading or illumination model. When

rendering an image, we can now model the interaction of light with a surface by applying

the shading model t o the point being examined. Consequently. it is the completeness of

specular reflection and global source diffuse reflection. Blinn [BLIN77]. Kay [KAY79].

Whitted [WHIT80], and Cook and Torrance [COOK821 have contributed t o making shading

models more physical and less empirical by defining terms for. among other things, global

and direct source transmission, the Fresnel relationship for angle of incidence, and direct

source specular reflection Most of these contributions have been brought together nicely

by Hall [HALL831 in his shading model that is illustrated in Figure 1-2

1

I = k d Z (li7.T) Rdl ,
/=I

direct diffuse

I

f h \ Z (n TI) ' /?, I,
j =I

direct reflected

I

+ k s (ReT1')" Tf I,
J =I

direct transmitted

+ k \ R, < FP'
global reflected

global transmitted

dr = distance of reflected ray travel
dt = distance of refracted ray travel
Fr = trans. per unit length of reflected ray
F , = trans. per unit length of refracted ray
77 = unit reflection mirror-direction vector
TI' = unit trans. mirror-direction vector
I = intensity of point

la = intensity of global ambient light
I . = intensity of j t h direct light source
(= intensity of reflected ray

I , = intensity of refracted ray
j = direct light source index
kd = diffuse reflection coefficient
ks = specular reflection coefficient
1 = number of direct light sources
r = unit light source vector
n = exponent for glossiness
I7 = unit surface normal vector
Rf = Fresnel reflectance curve
Rd = diffuse reflectance curve
Tf = Fresnel transmission curve

global diffuse

Figure 1-2: The Hall shading model

1.2. Ray Tracing

When rendering an image from a 3-dimensional scene model, the following two functions

are executed: a) the visibility of the surfaces is determined with respect to the viewpoint

and b) light interaction with the visible surfaces and the production of colour is

characterized. Most rendering techniques, such as z-buffering, cannot exploit the complex

shading models because they determine visibility by projecting the 3-D modeling space onto

the 2-D image plane and thus lose the third dimension necessary for the simulation of the

light interactions.

Ray tracing, on the other hand. can exploit the shading models because it determines

u~s~bility .lot on the 2-D image plane but in the 3-D modeling space \ The origin of ray
./

trdcing i s found In ray casting that was proposed by Appel [APPE68] and implemented by

Goldbtein dnd Nagle at MAGI IGOLD71J as a visible surface algorithm. However.

Whitted's classic algorithm [WHIT801 brought ray casting and a good shading model

together In the technique now known as ray tracing.

Going back to the example of the colour video camera, ray tracing simulates its operation

in reverse. Instead of than recording the light rays being reflected from the visible

surfaces through the lens and onto the sensors, ray tracing sends out rays originating at

each sensor on the focal plane (image plane) through the lens (focal point) into the

scene (d model described in 3-D). An in i t ia l ray for each pixel of the image plane is

sent out in this manner. Each ray is then intersected with each object in the scene to

find the closest surface that is visible.

Once the nearest intersection point is found, the shading model is used to compute the

colour. This involves spawning the following rays from the intersection point:

1. toward each direct light source in the scene (light rays) t o determine if i t is
visible t o the point and what contribution it makes t o the diffuse, specular and
transmitted components of the shading model;

2. in the mirror reflection direction (ref lected ray) t o determine the light intensity
coming from that direction for calculation of the global source specular
component; and

3. in the refracted ray direction (t ransmit ted ray) t o determine the light intensity
from that direction for calculation of the global transmitted component of the
shading model.

The algotithm s elegance lies in recursion because once spawned, the reflected and

transmitted rays are traced in the same fashion as the initial rays. If these rays intersect

other surf,wr> the shading model is applied and new rays are spawned until the rays leave

the ,cenr or mtersect a non-reflecting surface In this fashion, the intersection tree for

each pixel IS built up The intersection tree has at its root the pixel, interior nodes are

intersected surfaces and leaves are direct light sources or the exterior of the scene. The

branches of the intersection tree are the rays spawned during the tracing of the pixel.

F~gure 1-3 follows the tracing of a ray and the resulting intersection tree. An initial ray

(ir) strlkes object 1 (01). The shading model is applied at the intersection point and

three secondary rays are spawned. Light ray 2 (lr2) is blocked and thus ignored. The

reflected ray (r r l) strikes the semi-transparent object 2 (02). Again, secondary rays are

spawned The reflected ray (rr2) leaves the scene and is ignored The transmitted ray

(t r l) would be traced further.

Once all the rays have been traced for a pixel, the intersection tree will contain all the

light source information in the leaf nodes and all the surface characteristic information in

the interior nodes The tree is traversed in a depth-first order t o calculate the final pixel

colour .

I pixel

ir

Figure 1-3: Example of the tracing of a pixel and the
building of the intersection tree

1.3. An Analysis

As shown, ray tracing is a simple recursive algorithm which exploits a good shading

model. However, the obvious advantages of using ray tracing are almost outweighed by

its princ~pal disadvantage computational cost. As an illustration of how severe this is.

most of the reported times for published images rendered using DEC VAX/780's have been

measured in hours.

Why is the algorithm so computationally intensive?

all computations are executed in floating point.

extensive use is made of the square root function for vector normalization of
rays, normals and dot products.

0 complex intersection computations are required for some classes of objects such
as fractals and 3-D spline surfaces.

0 the number of intersection calculations is large since determination of the closest
surface requires that a ray be tested be tested against all objects in the scene.

0 the number of rays spawned during the ray tracing process is also large.

T o show the sheer number of computations required in ray tracing an image, we shall

use an analysis of the complexity of ray tracing similar t o that found in [DIPP84]. We

shall also use data from the run-time profile of the program used t o generate Figure 1-4

on a DEC VAX/750 with a floating point unit T o do this, we make the following

assumptions:

0 each intersection tree has depth D = 4.

0 the average number of recursive reflected and transmitted rays spawned per
intersection N = 1.1 (100% of the intersections will spawn a reflected ray:
lo%, a transmitted ray).

0 the number of objects in the scene 0 = 1093 (833 spheres and 260 polygons)
which corresponds t o the scene model used to generate Figure 1-4.

the number of direct light sources L = 1.

0 the resolution of the image Ro = 512x384 = 196608 pixels

the average intersection calculation time T , = 0.000429 seconds.

the average ray spawning time Ts = 0.000710 seconds.

The resulting calculations are given below:

.(AID-1)

0 total number of rays traced: Rt = (1+L) = 1824915.

0 total number of intersections: I t = ORt - 2'.

total time: Tt = R,(TS+TiO) Approx 238 hours.

. . , .,.,, 8 +viq.r \ J ' <

Figure 1-4: Sample scene for analysis

Varying the size of the parameters can significantly increase the number of intersection

calculations that must be performed. For example:

0 doubling image resolution Ro t o 1024x768 increases I, by a factor of 4.

0 adding 2 more direct light sources t o the scene doubles I,.

0 doubling the number of objects in the scene also doubles It.

This analysis was based on the standard algorithm whereby all rays are intersected with

all objects. Fortunately, many modifications have been proposed to the algorithm to

increase its performance. These improvements are discussed in the next chapter.

Chapter 2

ALGORITHM IMPROVEMENTS

Whitted [WHIT801 has stated that intersection calculations can account for up t o 95% of

the rendermg time Using the standard recursive algorithm, the work due to intersection

calculat~ons IS expressed as number of rays x number of objects T o reduce the time

t o accornplizh a task one can either work faster or one can work more efficiently.

Working faster means using faster computers, special-purpose processors or specialized

architectures These are issued discussed in the next chapter. Working more efficiently

means reducing the number of intersection calculations by either reducing the number of

rays spawned or by reducing the number of objects that must be intersected. or both. In

this chapter. proposed improvements to the standard algorithm are discussed.

2.1. Reducing Rays

The number of rays spawned during the rendering of an image is dependent on many

factors such as the number of pixels t o be traced, the number of lights, the amount of

empty space in the scene and the density of reflective and transparent surfaces. These

factors are outside the control of the renderer. Where the renderer has control over the

number of rays is in the process of spawning secondary rays

Adaptive tree depth proposed by Hall [HALL831 is aimed at controlling the depth of a

pixel's intersection tree. Before spawning a ray, the maximal contribution that the ray

could potentially make to the final pixel value is calculated. If this contribution is below a

pre-determined threshold, the ray is not spawned. Hall has shown that even in highly

reflective scenes such as a room of mirrors, the average tree depth was 1.71.

Assuming an average tree depth of 1.71 in the analysis discussed in the previous

chapter, both the number of rays traced and the intersection time would be reduced by

62%.

2.2. Reducing Objects

Reducing the number of objects with which a ray must be intersected holds the greater

potential for increasing performance. Rather than doing a blind search through the entire

list of objects techniques have been proposed t o partition the objects or the scene to

permit a more efficient search. The objective is t o determine the subset of objects which

are spatially close to a given ray such that the chances of the ray intersecting any of

these objects is greater. In all techniques discussed below, the data organization particular

t o each is created as a pre-processing step. The time penalty for pre-processing is typical

less than 8% of the new image generation time which is, in turn, significantly less than

the standard algorithm time.

2.2.1. Bounding Volumes

Objects that require complex intersection calculations, such as is needed for fractal or

spline surfaces, can be enclosed in a bounding volume, such as a sphere or a rectangular

parallelepiped, this results in a much simpler intersection calculation that will potentially

save time. If the ray does not intersect the bounding volume, then there is no need t o

execute the test with the complex object. Similarly, if one has built an object from a

collection of objects, for example. the collection o f spheres making up the forearm of the

jogger in Figure 1-4 , this logical collection of spatially related objects can also be enclosed

within a bounding volume to save on intersection calculations.

The concept of bounding volumes. [CLAR76]. [WHIT80], involves enclosing a complex

object or a collection of objects as tightly as possible within a volume which is simple to

intersect. If a ray is tested for intersection against this volume and fails. the result is

that the enclosed object or objects are efficiently eliminated from the intersection

calculation.

Figure 2-1 shows a 2-D view of a collection of spheres bounded by a box. Ray a

intersects the volume and so must be tested against every enclosed sphere: ray b fails the

intersection test with the volume thus avoiding 12 intersection calculations with the

enclosed objects.

Figure 2-1: Example of a bounding volume

The decision on how to group objects and on which bounding volume t o choose is

largely in the hands of the user who models the scene. Weghorst et. al. [WEGH84] have

done some work on the automatic selection of bounding volumes using the criteria of void

area and a total cost of intersection test function. Both of the criteria are ray dependent

and thus scene dependent.

A t this stage we have a collection of bounding volumes. The next step would be t o

have a process whereby only bounding volumes lying along a ray's path are tested for

intersection.

2.2.2. Hierarchical Data Description

From a collection of bounding volumes, a hierarchical data description. [CLAR76].

(WEGH841 can be built using a similar approach as for the definition of bounding volumes.

Collections of bounding volumes that are spatially close can be enclosed by a larger

bounding volume and so on, until the whole scene is enclosed. The result is a tree where

the root node is this volume, the interior nodes are bounding volumes enclosing bounding

volumes and the leaves are bounding volumes enclosing objects Again the choice o f

volume and the grouping of the volumes are largely defined by the user during the

modeling process.

The purpose of the hierarchy is t o rapidly eliminate bounding volumes and objects from

the intersection calculation. When a ray is spawned, it is assumed to always intersect the

root volume. I t is tested against the second level bounding volumes. If a volume is

intersected a recursive descent of the hierarchy begins. The saving occurs because a

bounding volume is tested for intersection if and only if its parent volume has been

intersected by the ray The hierarchy is pruned down t o the leaf level. Figure 2-2 shows

a 2-D representation of a scene with its corresponding hierarchy.

Weghorst et. a1 have shown savings of 12% t o 55% over the use of bounding volumes

only. Our own results have shown that the use of both bounding volumes and a

hierarchical data structure decreases rendering times by up t o 95% over the standard

algorithm.

The efficiency of using bounding volumes with a hierarchical data structure is largely in

the hands of the user. The depth of the data tree, the number of children per node, the

number of objects per bounding volume are critical t o the performance of the algorithm.

This dependence may seem to be a liability but it may also be an advantage for the

following reason. The performance of any ray tracing algorithm is dependent on the scene

model. A user with a good understanding of the use of bounding volumes can thus tailor

these volumes for efficiency.

2.2.3. Octree Subdivision

Glassner [GLAS84] has proposed a technique based on octrees for sub-dividing the

modeling space into a hierarchical structure of subvolumes Octrees allow dynamic

recursive sub-division of the modeling space until each subvolume or voxel satisfies the

termindtion condition. The condition or threshold is designed to t o ensure that each voxel

represents a uniform amount of work. The measure of work here is the number of

objects that are wholly or partially contained in the voxel. The resulting voxel data

organization allows the direct identification of the voxels lying along the ray's path.

The recursive sub-division of voxels begins by defining a cube which completely encloses

the scene. This cube is the root of the hierarchical subvolume structure. The cube is

divided into eight cubes or voxels each of which is tested for the termination condition. If

a voxel fails the test, i t is in turn subdivided and so on until all voxels have no more

than the threshold number of objects. An example of the sub-division is shown in Figure

2-3.

Unlike the hierarchical data description described above, the hierarchy of voxels is in itself

unimportant t o the rendering process. There is no need to traverse a data tree. Only the

22 3 3 18
spheres spheres spheres

Figure 2-2: Example of a hierarchical data description

Figure 2-3: Examples of voxel sub-division

leaf voxels are kept along with their associated object lists. Using this structure, Glassner

has proposed a method of quickly computing the transfer of a ray from one voxel t o

another When a ray is spawned, its first voxel intersection is computed. From there, if

no intersections are found within the voxel, the next voxel along the ray's path is

computed and the intersection test begin with i t 's children. Voxels are examined in same

order that the ray encounters them in the modeling space. If an intersection is found in

the current voxel, the ray need not be traced any further.

Published results using this approach have shown decreases in total rendering time of

70% to 90% compared to the standard algorithm.

This approach to eliminating object intersections is straight forward and elegant. It

allows one t o intersect only those objects associated with the voxels lying along a ray's

path. It also gives the ray access to voxels in order of increasing distance, allowing

termination of the tracing process if an intersection in found in the current voxel.

However. there are potential weaknesses. The first is that the voxel threshold is based on

the number of objects as opposed t o the computational work required to process the voxel.

A complex object could unbalance a voxel. Secondly, an object could span several voxels.

necessitating several ray-object intersections for the same ray and object. Again, with

complex objects, this could be a significant drawback.

2.2.4. Modeling Space Subvolumes

Another approach to reducing the number of ray-object intersections is modeling space

subdivision [ULLN83] and [CLEA83]. Although developed primarily for parallel processor

implementation, the technique itself is presented here within the context of a sequential

algorithm. The concept is similar t o octree subdivision in that the modeling space is

divided into subvolumes where each 'subvolume has a list of objects that it wholly or

partially contains. The difference is that the subvolumes are geometrically uniform

subdivisions in two or three dimensions and are not recursively subdivided. The process of

tracing a ray is similar t o the process used with the octree subdivision technique.

Unfortunately in addition t o having the same weaknesses as octree subdivision, modeling

space subvolumes have an added disadvantage - there is no attempt t o balance the

workload associated with each subvolume. As mentioned, the algorithm's strength lies in

its adaptability t o parallel processing and, as such, it is discussed within that context in

the next chapter.

2.2.5. Light Rays

The last technique discussed here has more to do with how a light ray is processed

than with a more efficient search. The purpose of light rays is t o determine if a direct

light source is visible t o the origin of the ray. If the light ray intersects any surface, the

direct light source for which the ray was spawned does not contribute t o the colour of the

point and can be ignored. The search through the object list can then be stopped on

finding the first intersection. Since light rays can account for 50% or more of the rays

spawned, the potential reduction is significant.

2.3. Discussion

Improvements t o the standard algorithm have been presented. T w o techniques. adaptive

tree depth and light rays. can be incorporated in any algorithm. On the other hand, a

choice has t o be made between octree subdivision or bounding volumes with hierarchical

data structure. Unfortunately, published results do not use the same scene models.

resolutions, shading models, performance measurements, and computers, making absolute

comparisons difficult. Until someone publishes a good comparative study. the choice of

algorithm must be made on different criteria. eg., which one has the least significant

weaknesses.

Chapter 3

ARCHITECTURAL PERSPECTIVE

Ray tracing machines can be loosely classified into 3 classes based on the aspect of

concurrency they exploit. The intelligent pixel machines exploit parallelism by distributing

local intelligence to each pixel (or a group of pixels) This is possible since pixel

computations are independent of each other. In the intelligent object class. processing

power is allocated to each object. Thus, for a given ray, each object computes

intersections in parallel The intelligent volume machines subdivide 3D modeling space into

subregions and allocate processing power to each region, which is now solely responsible

for the objects that lie within its own volume.

In this chapter we shall the examine architectures that have been proposed or built

specifically for ray tracing. We shall conclude with a discussion of the relative merits and

drawbacks of the various architectures proposed.

3.1. Ullner's Machines

Ullner [ULLN83], in his doctoral thesis, proposes three different machine organizations. In

the first approach, the intersection computation itself is massively pipelined t o provide high

throughput. In the second approach, which would fall under the intelligent object

classification suggested above, each object is processed simultaneously. Finally, in the third

approach, objects are separated into disjoint regions, and these regions are processed

independently, thus following the intelligent volume approach.

3.1.1. The Ray Tracing Peripheral

As observed by Whitted and Rubin [WHIT80. RUB1801, most of the time in a ray

tracing algorithm (70-90%) is spent in finding ray surface intersections. Therefore, if these

intersection computations could be cast into hardware, one could significantly reduce the

running time of the ray tracing algorithm

Ullner proposed a ray tracing processor which acts as a peripheral t o a host computer.

The host computer fires rays at the peripheral which in turn returns the closest polygon

intersected along with the intersection information. The ray tracing peripheral has its own

copy of the scene model which besides reducing the load on the host's memory. also

permits the model t o be organized in a way that is suitaGe for intersection computation.
*

A t the topmost level the ray tracing peripheral is organized as a three stage pipeline, see

figure 3-1, each of which may be internally pipelined. The first stage fetches successive

polygons from a scene model memory and passes their representations to a second stage,

which performs the actual intersection. The third stage examines each new intersection and

discards all but the the one closest to the origin of the ray. Note that the ray must be

intersected against each polygon in the scene model before the closest one can be

determined. Since most of the work must be done by the intersection stage, it may

internally be pipelined, as shown in figure 3-2, t o increase its performance. Applying

stepwise refinement we can further internally pipeline each of the stages shown in figure

3-2 until we reach the level of the actual operators implementing the arithmetic.

T w o potential problems need to be addressed at this point. In order t o keep the pipe

full, the polygon parameters used must be accessed in parallel. This is resolved by storing

each of the twenty polygon parameters in one of twenty independent memories so that all

Ray Tracing Peripheral

Fetch . L Intersect D Select

- - - - - -

tay Descriptions

Host
Scene Model 1 1 Intersection Results

Figure 3-1: The three major pipeline stages in the ray tracing peripheral

Figure 3-2: Pipeline stages within the Intersection Processor

-

D Compute u m

D

r

Compute t

Compute v

D

m

Compute p -

22

may be accessed simultaneously. The second point is that an exception, such as in the

divide operation, may be generated within the pipe, since the results may be undefined for

some values of inputs. T o resolve this Ullner associated a validity bit with each

intermediate result flowing through the pipe. By convention, operations in the pipeline will

always produce a result, but will mark that result t o indicate its validity. Although later

stages will accept these invalid values as if they were meaningful, the fact that their own

results are invalid will be reflected in the validity bit of the output. The last stage in the

pipeline takes into account the validity bit in determining the closest intersection.

All of Ullner s machines use floating point number representation which has a far greater

dynamic range than fixed point numbers, freeing the user from having to pay much

attention to scaling. Analysis o f the ray tracing peripheral assumes that all the data

operators in the pipeline are implemented using a parallel multiplier manufactured by TRW

which is capable of producing a 48 bit product from two 24 bit operands in a maximum

of 285 ns. Using the TRW multiplier, and a few "glue chips". a floating point multiplication

takes about a third of a microsecond, but the other floating point operations cannot be

completed so quickly. Each one of these operations may however be pipelined to operate

at the same rate. Thus using this fully pipelined arithmetic the complete peripheral can

produce three results every microsecond.

Using the above metric, we could make some estimates for the time required to generate

a picture using the ray tracing peripheral. Assuming a scene model consisting of a

thousand polygons, it would take a third of a millisecond to intersect a ray with each of

these surfaces. In an image with 512 X 512 pixels of resolution, i t would take a minute

and a half t o trace one ray per pixel. O f course. the number of rays increases if shadows

are t o be modelled and antialiasing is t o be performed. Note that the time is linearly

dependent on the number of polygons in the scene.

3.1.2. The Ray Tracing Pipeline

The ray tracing peripheral described earlier was not very extensible; it could not be easily

enhanced t o accomodate a more complex scene. The ray tracing peripheral has a single but

fast intersection processor, but the intersection process has t o be repeated for each

polygon. Consider the other extreme now. If we had a less complex. and therefore slower.

intersection processor, we could have many more of these processors working in parallel t o

achieve similar performance. The obvious advantage would be extensibility. The greater the

number of these intersection processing units, which could be implemented as custom VLSl

processors, the shorter would be the time for a more complex scene Ideally, every object

in the scene model could be attached t o one of these processors typifying the inte l l igent

ob jec t paradigm

Based on the above principles. Ullner proposed the ray tracing pipeline which comprised

intersection processors strung together t o form the pipeline shown in figure 3-3. Each

processor stores the desyription for a single polygon and it passes the description of rays

through its input and output ports. On receiving a ray description the processors

determine whether that ray intersects its stored polygon, and if so, locates the intersection

point. Each ray is represented by a descriptor which has a field for the identity of the

closest polygon encountered so far, and another for the t value of the polygon. The t

value is initialized to infinity before entering the pipe. As i t flows through the pipeline.

each processor, on finding an intersection compares its t value with current t value in the

descriptor field. If i t is less, then that processor's polygon must be closer, and hence i t

swaps the identity of the polygon and the t value before passing it on through the output
-

port t o the next processor. Finally, when the ray descriptor leaves the pipeline it contains

the identity of the closest polygon and corresponding t value.

.. h

Intersect -m Intersect

?

Figure 3-3: The Ray Tracing Pipeline

f"

Since the ray tracing pipeline assumes the availability of low cost custom designed

intersection processors, it would not be feasible t o devote substantial chip area required to

implement parallel multiplication circuitry t o match the performance of the T R W multiplier

used in the ray tracing peripheral. The alternative is t o use a space effective, but slower,

shift and add multiplier. Ullner estimates such an multiplier would perform a full 32 bit

floating point multiplication in five microseconds, and also shows how other floating point

operations can be implemented in the same area and speed.

Based on the above, we can conclude that the ray tracing pipeline can complete a ray

tracing computation every five microseconds. Since Ullner estimates, for bit serial

communication, the transmission time t o be roughly five microseconds, we are still looking

at a ray being processed every five microseconds. For a machine with a thousand

processors. the latency would be 5 ms.. and a 512 X 512 pixel image could be generated

in 1.3 seconds assuming one ray per pixel.

3.1.3. The Ray Tracing Array

In the ray tracing array, a three dimensional grid is superimposed on the modelling space

t o section off the volume into a collection of subvolumes. each one of which has. at least

in concept, a dedicated processor typifying the intelligent volume approach. Each of these

processors is responsible for maintaining the surface models in its own subvolume, as well

as for computing intersections of these surfaces with the rays passing through the

subvolume. With such an arrangement one would expect a 3 dimensional lattice of

processors. each connected to its six neighbouring processors. However, the cumbersome

nature of wiring entailed by such an organization, acts as a major deterrent. Ullner

overcame this problem by organizing the machine as a 2 dimensional array of processors

/

with the third dimension of the partitioning grid simulated within each processor in the

array. This structure allows each processor t o communicate with its four neigbouring

processors, as shown in figure 3-4. Each processor is also assumed to be a general

purpose computing element since each processor should now be capable of carrying out

shading computations, which in previous architectures were carried out in the host. Each

processor also has some special purpose intersection hardware t o aid in intersection

computation.

The processors communicate with each other through messages. Each processor is

responsible for a block of pixels corresponding t o its position in the array and has an

independent frame buffer used to store the pixel intensities. The different fields of the ray

Figure 3-4: Organization of processors in a 16 processor ray tracing array

k Message type (e.g. vision, shadow, etc.).

(rx) Row and column of pixel for this ray.

ro Origin of this ray.

rd Direction of this ray.

c Color contribution of this ray.

Figure 3-5: Fields of a ray message

message are show in figure 3-5 Processors create initial ray messages for pixels that lie

within their portion of the frame buffer. The processor then computes the closest

subvolume which the ray enters. and then passes the ray message in the direction of the

processor responsible for that subvolume. On reaching the destination processor. the ray is

tested for intersection against all the objects within the subvolume. If no intersection is

found then the processor incrementally computes the next closest subvolume which is

handled by one of the four adjacent processors. and sends the ray message in that

direction. If an intersection is found, a result message, which contributes t o the intensity

of its originating pixel, is passed off t o the processor responsible for that pixel. Any

secondary rays such as reflected, refracted or light rays are passed off t o appropriate

subvolumes for further intersection tests.

-
Cleary, et. al. [CLEA83] also proposed a similar processor array for ray tracing. They

considered both square arrays and cubic arrays, and found that, in general, square arrays

perform better than cubic arrays. A machine based on a 10 x 10 square array is currently

under construction at the University of Calgary.

3.2. Dippe's Parallel Architecture

Mark Dippe & John Swensen [DIPP84], proposed an architecture for ray tracing which is

quite similar t o the ray tracing array proposed by Ullner. thus belonging to the intelligent

volume family. The major difference between the two is that Dippe's parallel architecture

allows for the subdivision of object space to be adaptively controlled. in order t o maintain

a roughly uniform load amongst the different processors. This turns out t o be a serious

drawback in Ullner's ray tracing array where no attempt was made t o address the issues

of uniform load distribution over the subregions. Uneven object distribution amongst

different subregions can lead to load disparities between processors. causing computing

power to be wasted. Therefore the ability to adaptively redistribute over time is crucial

because load distributions are extremely difficult to calculate a prior;, and hence must be

done dynamically during the actual execution of the ray tracing process.

Since the operation of this parallel architecture is very similar to the ray tracing array.

we shall concentrate on the dynamic load distribution aspect of this organization. The three

dimensional space of the scene to be rendered is divided into several subregions which are

initially assigned volumes more or less uniformly, and object descriptions are loaded into

the appropriate subregions. As computational loads are determined, the space is

redistributed among the subregions to maintain uniformity of load. Unlike the

straightforward orthogonal subvolu~es in Ullner's architecture, Dippe considered several

different shapes for subregions. The choice of a subregion shape is influenced by the

following criteria:

I. the complexity of subdividing the problem e.g. intersecting objects or rays with
the boundaries.

2. the ability to subdivide space without splitting objects, and

3. the uniformity of the distributed loads attainable with the shape.

A strong candidate based on the abovementioned criteria would be "general cubes", which

resemble the familiar cube, except they have relaxed constraints on the planarity of faces

and on convexity. General cubes allow the most local control of subregion shape at the

cost of slightly higher complexity of boundary testing.

The load information is shared among the neigbouring subregions, and this allows

relatively more loaded subregions to reduce load by adjusting their boundaries. The load

metric is primarily determined by the product of

I . number of objects and their complexity, and

2. number of rays

Load is transferred by moving corners of a subregion. Once the new position for a corner

of a subregion has been determined, object descriptions and other information are

redistributed to reflect the new subdivision.

Due to the subdivision, a speedup of the order of 0(s2I3) is expected by the authors,

where S is the number of subdivisions of the object space. The parallel architecture is

estimated to be three orders of magnitude faster than the standard algorithm with 125

computers working in parallel.

3.3. The LINKS-1 Multimicrocomputer System

LINKS-1 [NISH81] was an experimental machine which was built and tested at Osaka

University in Japan. The system consists of 64 unit computers which are interconnected i

with a root computer such that a number of unit computers constitute a pipelined

computer and such pipelined computers work in parallel, all controlled by the root

computer. The number and length of each pipeline can be controlled dynamically, although

it is not readily apparent how this dynamic reconfiguration would be useful On the other

hand the organization i s general enough to be used for other image creation applications by

means of more sophisticated parallel processing schemes which utilize different numbers 0.f

pipelines, perhaps with different lengths. Intercomputer programldata transfer is greatly

facilitated by the use of a device called the intercomputer memory swapping unit (IMSU).

LINKS-1 permi'ts neighbouring unit computers to exchange data/programs using IMSU, and

also between each unit computer and the root computer. There also exists a slow serial

link between each unit computer and the root computer

The root computer distributes the programs and data to be executed to the unit

computers and the results are collected by the data collector. Each unit computer

comprises five units:

1. the Control Unit for data transfer and communication control.

2, the Arithmetic Processing Unit for floating point calculations.

3 the 1Mb Memory Unit,

4 the I/O unit to be used as an outlet for debugging and monitoring.

5. the lntercomputer Memory Swapping Unit (IMSU).

The IMSU has two memory areas which are connected to a pair of control units through

a bus exchange switch. Each of the control unit works independently on a memory area,
c'

and upon finishing they send a bus exchange signal which connects them to the other

memory area.The IMSU is used to exchange programldata both between the root computer

and the unit computers and also between two adjacent computers.

3.4. Discussion

Both the ray tracing peripheral and the ray tracing pipeline are, in a way. brute force

approaches to the ray tracing problem, since they attempt to intersect every ray with every

polygon. As noted in earlier chapters, techniques such as object space subdivision and

bounding volumes can be used to significantly minimize the most computationally expensive

operation - the ray surface intersections. The ray tracing peripheral. however, can be

modified to use object space subdivision. The basic idea here is to superimpose a three-

dimensional grid on the object space. The objects are then partitioned into these

subvolumes. An extra stage is added to the pipeline which computes the subvolume which

the ray intersects and passes the descriptor addresses of the polygons residing in the

subvolume onto the next stage. Thus. the subsequent stages only have t o compute

intersections with a small number of polygons. No such arrangement is possible with the

ray tracing pipeline since a separate pipe would be required with each subvolume.

The ray tracing pipeline is ostensibly fast, but on careful observation one quickly realizes

that no general purpose host could keep up with it since it is unreasonable t o expect a

host t o generate ray descriptions at this rate and deal with responses in the same time.

O f course, one can design a special purpose host, sacrificing the flexibility offered by a

general purpose host. It is also impossible for the ray tracing pipeline to process a scene

with more objects than the number of processors in the pipeline. Note that this does not

pose a problem for the peripheral since in the worst case all that needs to be done is t o

increase memory size In case of the ray tracing pipeline, however, i t becomes infeasible
-.

t o increase the number of processors after a certain point.

Ullner's machines assume convex quadrilaterals as the basic modelling primitive. T o

achieve maximum performance. all intersection processors are dedicated t o ray intersections

with polygons. In computer graphics, however, it is often advantageous to model with

alternative surface representations, such as bicubic patches, splines, quadric surfaces etc.

The dedicated intersection processors are incapable of performing these intersections. On

one hand, it appears in order t o accommodate a variety of modelling surfaces. the

intersection processors should be general purpose with fast floating point hadware t o boost

performance. On the other hand, we could tesselate most modeling surfaces into polygons

and continue using dedicated intersection processors. Interestingly enough. there are

devices available, such as the Weitek Transformation Engine [WEIT85a], which perform the

tesselation functions with great speed.

The ray tracing array is probably the most promising approach of the three machines

proposed by Ullner. Its chief drawbacks stem from the straightforward orthogonal

subdivision of object space, which can cause immense disparity in object distribution among

the subvolumes. Dippe's architecture takes care of this problem by using an adaptive

subdivision approach. Also. for some choices. of viewing position, not all processors are

equally busy.

The Links-1 has a topology that allows work to be distributed by the root computer so

that it can be performed independently in parallel, or pipelined from neighbour to neighbour,

or some combination of both. This allows a variety of image creation algorithms to be

used. But, the connection topology is restricted enough that any situation which demands

substantial communication amongst the various unit computers would be almost impractical.

Chapter 4

A 3-TASK RAY TRACING ALGORITHM

In the previous chapters we discussed approaches for improving ray tracing performance

by reducing the amount of computation and by increasing the speed of computation. As

demonstrated in the modeling space subvolume approach, algorithms can be designed that

directly map onto system architectures.

In this chapter we describe our modified ray tracing algorithm which maps directly onto a

pipelined parallel processor architecture. T o reduce the number of intersection calculations.

our algorithm is based on bounding volumes and the hierarchical description of data. This

approach also allows the tracing of a ray to be divided into three balanced tasks that map

onto the pipeline architecture. In addition, the potential for parallelism lies in image space

subdivision, where a pipeline can independently compute the value of a given set of pixels.

4.1. Definition of Terms

The following definitions are for terms used' in this and following chapters. Some of the

terms are similar t o those used in [WEGH84].

contribution factor
factor which determines the contribution made to the pixel by the
intensity found at the end of the ray.

data tree the hierarchical description of the scene; its non-terminal nodes are parent
shells and its terminal nodes, leaf shells.

initial ray a ray originating at the eye and passing through a pixel on the image
plane.

33

leaf shell a shell which encloses primitives; whose children are primitives.

light a geometric entity with an associated set of emittance characteristics.

light ray a ray spawned on intersecting a reflecting surface in the scene; its origin
is the intersection point and its direction is toward a specific light.

object a geometric or procedural entity with an associated set of surface
characteristics reflecting and possibly transmitting light.

parent shell a shell which encloses shells; whose children are shells.

prim processor performs the ray-primitive intersections.

primitive an object or a light.

ray a vector with a specific origin and direction.

reflected ray a ray spawned on intersecting a reflecting surface in the scene; its origin
is the intersection point.

refracted ray a ray spawned on intersecting a transmitting surface in the scene; its
origin is the intersection point.

scene the uppermost parent shell in the hierarchical description; it has no parent
shell.

shade processor spawns initial and secondary rays; also computes the contribution a ray
makes toward the final pixel vahe.

shell a bounding volume.

shell processor performs the ray-shell intersections.

t-value a parametric value that defines a point on a ray where the ray intersects
a surface.

4.2. Overview

Before delving into the details, we present a brief overview of the algorithm. An initial

ray is spawned. This ray is tested for intersection against the nodes of the data tree in

a recursive depth-first descent. If a parent node is intersected by the ray, all its children

are in turn tested; if not, that branch of the tree is ignored. A list of all leaf shells

intersected is generated and sorted in order of increasing I-value. The next step is t o

determine the closest primitive intersected. Beginning with the leaf shell closest t o the

origin of the ray, its child primitives are tested for intersection. If no intersection is

found, the child primitives of the next closest leaf shell is tested and so on.

When an intersection is found, secondary rays are spawned. Using the surface .=
characteristics associated with the intersected surface, the contribution each secondary ray

makes to the final pixel value is computed and tagged onto the ray. Secondary rays are

then processed in the same fashion as the initial ray. When all rays spawned for a pixel

have been traced, the pixel value calculation is complete.

4.3. Features

Several features of our algorithm are important t o . its eventual mapping onto an

architecture.

4.3.1. Data Tree

The data tree has two restrictions. The first of these is that all primitives must be

enclosed within a leaf shell, either individually or within a collection of other primitives.

Secondly, a parent shell can only have shells as children; a leaf shell can only have

primitives as children.

4.3.2. Shell Shape

So far we have talked about shells without making any specific reference to the shape of

the shells. The shape of the shell is an important issue, as discussed in [WEGH84]. We

explored two of the possible alternatives for shells - spheres and orthogonal boxes.

Orthogonal boxes have sides parallel t o the axes of the modeling space coordinate system.

In general. orthogonal boxes serve as better shells than spheres for the following reasons:

0 In general, orthogonal boxes have less void area than spheres: they enclose their
primitives more tightly. This increases the probability that a ray will intersect
an enclosed primitive if it intersects the shell.

The ray-shell intersection test is faster t o compute. Note that if we only needed
t o know whether a ray hits or misses a shell, then spheres would be better
since they require fewer floating point operations. If the exact point of
intersection is also desired, then the intersection of a sphere, which requires
computation of a square root, is slower.

Table 4-1 shows results that support the argument regarding shell shapes. The total

rendering time is tabulated for a sample scene using the two shapes.

I SPHERES I 4162.01 secs. I

Figure 4-1: Total time taken for rendering a sample scene
using spherical shells and orthogonal box shells

ORTHOGONAL BOXES

Another possibility is t o use randomly oriented boxes, which potentially have less void

2727.29 secs.

area than orthogonal boxes. However, more overhead is associated with these boxes. The

ray has t o be transformed into the coordinate system of the random box and more data

(the transformation matrix) must be stored. As we shall see later, in the context of our

proposed architecture, the extra computations and the larger size of the shell data set

could prove t o be costly. Hence, orthogonal boxes represent a compromise between

architectural demands and intersection efficiency.

4.3.3. Simplified Shader

The algorithm used a simplified version of the Hall shading model described in Chapter

1. The current algorithm does not trace rays through transparent surfaces. Fresnel

reflectance and transmission curves and distance factors are also not implemented.

Intensities and reflectance characteristics are represented using RGB triplets (a value for

each of the primary colours - red, green and blue). The same RGB triplet is used for

both specular and diffuse reflections. Using terms defined in Figure 1-2, our model is asL

follows:

Our algorithm and proposed architecture do not limit the complexity of the shading

model. The reason for its simplicity has more t o do with our emphasis on architecture.

4.3.4. No Intersection Tree

Although useful for describing the concept of ray tracing, intersection trees are not

necessary in practice. Secondary rays are spawned t o determine the intensities of various

sources of illumination. The maximum contribution t o the final pixel value that can be

made by the intensity of a source of illumination can be computed. This contribution

factor is calculated from the intersected surface characteristics and the intersecting ray

factor. If a source of illumination does contribute, its intensity is multiplied by the

contribution factor and the result added t o the pixel value. T o keep track o f which ray

belongs to which pixel, each ray is tagged with the pixel coordinates.

The advantage of this approach [ULLN83] is in removing the memory requirements and

computation overhead associated with building and traversing intersection trees. This is

especially important in the context of a VLSl processor pipeline.

4.3.5. Adaptive Tree Depth

Computing the contribution factor of a ray before it is traced enables us to use adaptive

tree depth. If the factor is below a significant threshold, its contribution can be ignored

and thus the ray need not be traced.

4.3.6. Primitives Types

Currently, the types of objects that our algorithm can render is limited to spheres and

polygons. Work is currently underway to add fractals t o the system. The algorithm is

not really limited t o those primitives and could easily be expanded to include other

geometric or procedural primitives such as cylinders, cones, surfaces of revolution, prisms,

and 3-dimensional curved surfaces.

4.3.7. Sorting Leaf Shells

Instead of performing a depth-first descent down t o and including enclosed primitives, the

algorithm initially tests only as far as the leaf shells. The intersected leaf shells are then

sorted in order of increasing t-value (distance from the origin of the ray). In a strategy

similar t o that described for octree subdivision in chapter 2, the primitives enclosed by the

nearest shell are tested for intersection. The closest surface intersected is identified. If

such a surface is found. then the search is stopped; otherwise the primitives enclosed in

the next closest shell are tested. Th is process is repeated unti l either a surface is

intersected or no more leaf shells are left, implying that the ray does not intersect any

primitive.

Unlike octree subdivision, hierarchical data organization may not produce disjoint leaf

shells. i.e., shells whose volumes do not overlap. Fortunately, the above technique can be

modified for use with overlapping shells. The t-value o f an intersected primitive tp is

checked against the t-value o f the next closest leaf shell t,. If tp < t,. then the

primitive is the closest. Otherwise the primitives in the next leaf shell must be checked.

Figure 4-2 illustrates this point. The t w o shells enclose exactly one primitive each

Primitive A belongs t o shell A and primitive B t o shell B. Shell A is closer than shell B

t o the origin o f the ray, i.e.. tslfell-A < tslfell-B. Hence. primitive A would be tested for

intersection f irst. Let us assume that the ray does intersect primitive A at tA. However.

as can be readily observed, primitive A is - not the closest primitive (tA is not less than

t ~ ~ # e ~ ~ - ~) The primitives o f shell B have t o be tested before the closest surface can be

identified. Here, primitive B is the closest primitive, although shell B is farther f rom the

ray's origin than shell A:

This technique permits the identification o f the closest primitive intersected without

necessarily testing all the primitives in all the intersected leaf shells. Test results f rom

rendering the scene in Figure 1-4 show that, on average, a ray tests the contents of only

80% of the sorted leaf shells.

Figure 4-2: A 2-dimensional view of overlapping shells

4.4. The 3 Data Sets

Examining the data required by our algorithm, we can identify three disjoint data sets.

This partitioning of the data also corresponds t o the partitioning of the tasks described in

the next section. The data sets are the shells of the hierarchical data description. the

collections of primitives enclosed by the leaf shells and the different surface characteristics

found in the scene model.

4.4.1. Shell Data

The basic element of the shell data set is the structure SHELL illustrated in Figure 4-3.

The collection of shells making up the hierarchical data description is stored in an array

called SHELL-ARRAY illustrated in Figure 4-4. The organization of data in this array

retains the tree structure of the data tree. An entry in this array is a linked list of

sibling shells, i.e., children of the same parent. The variable leaf indicates whether the

shell is a leaf or parent shell. For a parent shell, the variable child-index is the index t o

its list of children. For a leaf shell. the variable is an index into the PRIM-ARRAY where

the child primitives are stored. By convention, the index t o the children of the scene or

root shell is 0.

4.4.2. Prim Data

The basic element of the primitive dataset is the structure PRIM illustrated in Figure

4-5. The variable type indicates what type of primitive be it a sphere, polygon or

whatever. The variable p is the union structure through which the geometric description

can be accessed. The variable surface-index is an index into the SHADE-ARRAY where

the surface characteristics associated with the particular primitive are stored. The

collection of primitives making up the model description is stored in an array called

PRIM-ARRAY illustrated in Figure 4-6. An entry in this array is a linked list of sibling

primitives, i.e.. children of the same parent.

typedef s t r u c t she1 l 3
i n t l e a f ;
i n t ch i ld - index;
COORD max ;
COORD min;
s t r u c t she1 l * n e x t ;
1 SHELL;

Figure 4-3: SHELL data structure

dower body head
0 1 2 1 0 - 0 1 2 5 v -

2. pelvis
&

right leg
0 0 1 3 2 1 /

,

r, w thigh calf foot

TlTlT 114v

Figure 4-4: Illustration of SHELL-ARRAY

typedef s t ruc t prim
i nt
i n t
i n t
PTYPE
s t ruct prim
$ PRIM;

I
prim-id;
surf ace- i ndex ;
type;
P;
*next ;

Figure 4-5: PR IM data structure

- 4

01
sph 1 2- -

Figure 4-6: Illustration of PRIM-ARRAY

4.4.3. Shade Data

The basic element of the shade data set is the structure SHADE illustrated in Figure

4-7. Unlike the previously described arrays, the array for the shade data set is a simple

array of SHADE structures. The variables reflectance and transmittance are triplets for

red, green and blue values. Although the structure is designed for reflectance

characteristics, emittance data can also be stored in the same structure by interpreting the

reflectance variable as an emittance triplet and setting all other variables t o 0.

typedef s t r u c t shade 1
f l o o t kg;

f l o a t kd ;

i n t n;
RGB r e f l e c t a n c e ;
RGB t ransmi t tance;
$ SHADE[];

Figure 4-7: SHADE data structure

4.5. The 3 Tasks

Our sequential ray tracing algorithm described above can be cleanly divided into the

following tasks:

1. The first task spawns all the initial and secondary rays. I t also computes the
contribution factors that these rays make t o the final pixel values.

2. The next task traverses the hierarchical tree with a given ray and makes up a
sorted list of all the leaf shells intersected by the ray.

3. The third task intersects primitives contained in the leaf shells t o compute the
closest intersecting primitive.

In this section we shall outline each task's basic algorithm and the input and output

data structures used by each.

4.5.1. The Shade Task

The f i rst task, called ShadeTask, spawns rays for a given set o f pixels. For each ray.

an output data structure (illustrated in Figure 4-9) is filled and sent t o the ShellTask

described below. The variable ray-type indicates whether the ray is an initial, reflected or

l ight ray. The coordinates o f the pixel t o which the ray belongs are found in pixel-index

and the ray's contribution in fac to r .

When a ray returns t o the ShadeTask after being traced, the combination o f ray-type

and what it hit, hit-type, determines the action t o be taken. When a ray leaves the

scene or when a light ray is blocked, the ray is ignored. Otherwise, if the ray is a light

ray, the product o f the intensity and f a c t o r is added t o the pixel; if it is another type of

ray, the product o f the ambient intensity and f a c t o r is added t o the pixel and new

secondary rays are spawned. The algorithm is illustrated in Figure 4-8.

4.5.2. The Shell Task

The second task, called ShellTask, is outlined below in Figure 4-10. Receiving the

structure SHADE-TO-SHELL as i ts input, the this task traverses the SHELL-ARRAY

tree wi th the given ray. When a leaf shell is intersected by the ray. the child index and

the t-value which defines the point o f intersection are stored in the LeafShellList o f the

output data structure. When the traversal has been completed, the l ist is sorted on

ascending t-values.

The output o f the ShellTask is a structure similar t o the one shown in Figure 4-11.

.
Funct ion : ShadeTask
Purpose : Spawn rays and compute c o n t r i b u t i o n f a c t o r s accord ing t o t he

shading model.
...

ShadeTask ()

beg in
i f (l i g h t ray)

beg in
i f (s e l f h i t) p i x e l += l i g h t i n t e n s i t y * f a c t o r ;
e l s e ignore ray;
end

e l s e
beg i n
i f (no h i t) ignore ray;
e l s e

beg i n
p i x e l += ambient i n t e n s i t y * f a c t o r ;
spawn secondary rays and compute c o n t r i b u t i o n ;
end

end

i f (p i x e l i s f i n i s h e d) spawn i n i t i a l ray f o r nex t p i x e l ;
end

Figure 4-8: The ShadeTask algorithm

typedef s t r u c t 4
i n t ray-type;
PIXEL p ixe l - index;
RGB f a c t o r ;
RAY EQN ray;
1 SHADE-TO-SHELL;

Figure 4-9: Output structure from ShadeTask

.
Funct ion : She l lTask
Purpose : Produce a l i s t o f c h i l d i n d i c e s and t-values (L e a f S h e l l L i s t)

o f l ea f s h e l l s i n t e r s e c t e d by t h e ray .
.

She1 ITask (i x)

beg i n

/* Let 3 be the se t o f o l l s h e l l s po in ted t o by SHELL-ARRAy[ix] */

f o r each she1 l E S
beg i n
i f (t h e ray i n t e r s e c t s the s h e l l)

beg in

i f (l e a f s h e l l) LeafShel I L i s t + L e a f S h e l l L i s t U #ch i l d - i ndex , t va lue) ;
e l s e She l lTask(ch i ld - index o f s h e l l) ;
end

end

S o r t L e a f S h e l l L i s t on i nc reas ing t-value;
end

Figure 4-10: The SheilTask algorithm

typedef s t r uc t 4
i n t ray-type ;
PIXEL p ixe l - index;
RGB f a c t o r ;
RAY EQN ray;
LSS LeafShel l L i s t [50];
i n t Lea fshe l l coun t ;

SHELL-TO-PRIM;

Figure 4-11: Output structure from ShellTask

4.5.3. The Primitive Task

The third task, which we shall call PrimTask, receives the shell t o prim data structure

as input. This task executes exactly what has been described in the overlapping shell

discussion above. The task proceeds to intersect primitives starting with the primitives

enclosed in the closest leaf shell and stops on finding the closest primitive. It then also

computes the information needed by the first task, the Shader Task, such as the surface

normal at the point of intersection.

The detailed algorithm is show in figure 4-12. Note that in the actual implementation the

algorithm treats different types of rays differently. For example, light rays need not find

the closest intersection but any intersection will do. On the other hand, for initial and

reflected rays. the algorithm goes through all the primitives in the given primitive list.

The output of the PrimTask is a structure similar t o the one shown in Figure 4-13.

The variables filled by the task when an intersection is found are surfaceindex, point

that contains the coordinates of the intersection point and the surface normal at that

point, and hit-type which describes what the ray hit.

.
Func t i on : PrimTask
Purpose : To compute the nearest p r i m i t i v e .
Note : 1. L e a f S h e l l L i s t comes f rom t h e She l lTosk .

2. I n d i c e s i n the se t L e a f S h e l l L i s t a re accessed i n order i . e .
we get the element w i t h t he l eas t t-value f i r s t .

.

beg i n

f o r each index E LeafShel l L i s t
beg i n

/* Let be a l l P r i m i t i v e s po in ted t o by the c u r r e n t index. *.

f i n d the nea res t -p r im i t i ve E 11;
i f (t -value o f nea res t -p r im i t i ve

< t-value o f next index i n L e a f S h e l l L i s t)
beg i n

/* we have found the nearest p r i m i t i v e */

found = TRUE;
break;
end

end

i f (found) compute i n f o (i n t e r s e c t i o n p o i n t , normal, sur face- index);
e l s e repo r t no h i t ;
end

Figure 4-12: The PrimTask Algorithm

typedef s t r u c t 4
i n t ray-type;
i n t h i t-type;
PIXEL p ixe l - index;
RGB f a c t o r ;
RAY EQN ray;
INTER p o i n t ;
i n t surface-index;
I PRIM-TO-SHADE;

Figure 4-13: Output structure from PrimTask

Chapter 5

A PARALLEL ARCHITECTURE

PERT - Pipelined Engine for Ray Tracing - is a pipeline of three processors each of

which executes one of the three tasks described in the previous chapter. PERT can be

used in two different configurations: a) in a single-PERT configuration, where each of

the 3 processors has access to an independent memory module that stores the appropriate

data set. and b) in a multi-PERT configuration that consists of an interconnection of n

PERTs working in parallel.

In the multi-PERT configuration,- the question of access to data sets is not so easily

resolved as with a single-PERT configuration. There are two extreme approaches to this

question. One is t o provide each processor in each PERT with its independent memory

module as with the single-PERT configuration. The disadvantage of this approach is in its

inefficient use of hardware - individual memories for the same processors in each PERT

store exactly the same data set. This results in n duplicate data sets in 3n memories.

The opposite approach is t o have a global memory for each of the data sets that is

shared by all the processors The communication overhead and the memory contention

that would result from this approach is dependent on the number of PERTs in the

system, the more PERTs, the greater the problem. This is not a desired approach when

considering a multi-PERT architecture. What is needed is a way of allowing the P E W S

concurrent access to a global shared memory without the communication overhead.

In this chapter, we describe a parallel architecture for ray tracing using PERTs that

allows the desired concurrent access t o the data sets by cyclically broadcasting these to

each appropriate processor. The basic building blocks of this architecture are PERTs,

broadcast processors (BP) and bus interface controllers (BIC).

5.1. Broadcasting

Broadcasting provides a means of allowing concurrent access by many processors to a

data set. Broadcasting was chosen as a solution for the following reasons:

it avoids the need t o duplicate data sets:

it avoids the need for large independent memory modules for the PERT thus
allowing a PERT to have a reasonably small board size (important in a multi-
PERT configuration).

A one-way data flow on the broadcast bus keeps the communication overhead
low and constant for a given data set.

0 By keeping the communication overhead constant. we could expect a linear
increase in performance with the addition of extra processors.

5.1 .l. Description

T o illustrate the concept of broadcasting, we draw on the following analogy. Assume

we have a read-only disk subsystem and think of the output of the read head as a (single

line) bus t o which several processors are attached as illustrated in figure 5-1. Let us

further assume that our hypothetical disk has only one track and the read head is

permanently positioned over it. Now, what appears on the bus is a bit-stream of data

organized in blocks that is repeated periodically owing to the circular nature of the track

containing the bits of information. Each processor has access to any block in the stream.

but the access is sequential as opposed to being random. Thus. associated with each

block access, is a potential latency delay. We shall herewith refer t o such a periodic

transmission of data over a bus as broadcasting, the bus, which is the broadcast medium

as the broadcast bus. and the time taken t o cycle through the entire set of data as the

broadcast cycle time.

Figure 5-1: Example t o illustrate broadcasting

In reality, the processors in our analogy are PERTs, the, function of the hypothetical disk

is taken over by fast broadcast processors that have access to the global memory and the

data being broadcast is organized in packets. The broadcast processors transmit these

packets at high speeds over their broadcast busses. Speed is a critical issue here, since the

slower the broadcaster, the greater the access latency. Each of the PERTs can now.

irrespective of the others, access a packet off the bus as needed, without any contention

for memory. The penalty is the access delay owing t o the cycle latency.

5.1.2. Adaptive Broadcasting

As data sets get larger, the broadcast cycle time lengthens and the average latency time

increases t o the point where a processor spends most of its time waiting for data. T o

reduce the latency time for a given data set, adaptive broadcasting was developed.

Adaptive broadcasting is a process whereby processors indicate to the broadcast processor

whether a given packet of data is required by any one of them. If no, then the packet is

not broadcast. The result is a variable length broadcast cycle and a much reduced

average latency time. Adaptive broadcasting will be explained in detail in the following

sections.

5.2. The PERT

PERT is a pipeline of three processors connected cyclically as illustrated in figure 5-2.

This architecture is a direct map of the ray tracing algorithm described earlier, with the

three processors performing the three tasks - the ShellProcessor performing the ShellTask.

the PrimProcessor performing the PrimTask and the ShadeProcessor performing the

ShadeTask. The organization deviates from the classical Von-Neumann architecture, since

three instruction streams are concurrently active on three independent data sets, and hence

would be classified as a MlMD organization under Flynn's [FLYN66] taxonomy.

The three processors of PERT are hardware embodiments of the three tasks of the ray

tracing algorithm. Since the operation of the ray tracing algorithm has been covered in

great detail in chapter 4, and the operation of PERT is identical, i t will not be discussed

here. Figure 5-3 shows the internal organization of the processors. We shall now briefly

discuss the various modules comprising each processor. A more detailed explanation o f the

design and performance of the PERT is contained in [CHIL85].

Figure 5-2: Block diagram of PERT

ShadeProcessor

Memory

ShellProcessor D

SJBUS

PrimProcessor

Figure 5-3: Detailed block diagram of a processor

5.2.1. The S916

SJ16 is a 16 bit microprocessor intended for use as a hardware building block for

multiprocessor systems [HOBS81]. SJ16 is fabricated as a single chip VLSl processor and

is currently being tested at Simon Fraser University. It was a natural processor choice: it

is microprogrammable and it has excellent hardware features. Since microcode development

for the various task algorithms was a key issue in the PERT design, another attractive

feature of SJ16 was the microprogramming environment - the Architecture Support

Package (ASP). Details of microcode development for SJ16 can be found in [HOBS82].

5.2.2. The Floating Point Unit

The floating point unit (FPU) is capable of fast execution of floating point operations.

For simulation purposes, this special function unit was modeled around the Weitek

WTLl164/1165 low-latency floating point chip set [WEIT851 capable of executing floating

point operations with speeds above 2.78 Mflops. Recalling the voracious appetite of the ray

tracing algorithm for floating point computation, one can see that the high throughput of

the Weitek chip set makes i t a prudent choice.

5.2.3. The Memory Module

The memory module provides independent storage for each of the three processors. In

the multi-PERT configuration described here, each processor requires a minimal amount of

memory for global variables, stack space, etc. This contrasts with the single-PERT

configuration where the memory module would be large enough to hold an entire data set.

Reads and writes to the memory can be streamed. The memory controller buffers data

words and hence after the first access, memory can be accessed sequentially in a single

cycle.

The ShadeProcessor is a special case. Its memory module could include the part of the

frame buffer corresponding to the image space subdivision assigned to the PERT.

Intensity values from each ray can be added to the appropriate pixel in the frame buffer.

This minimizes communication overhead once the rendering process is initiated.

5.3. The Broadcast Processor

Basing the broadcasting scheme on the adaptive process requires the broadcasting

hardware to decide when to broadcast a packet, to find that packet in memory and to

return to an ID list in memory. What is needed is a processor. Figure 5-4 illustrates the

configuration of the Broadcast Processor (BP). The main components are the processor

itself with an independent memory module and a collection of communication lines, the 32-

bit broadcast bus, the sync line and the hit line.

hit sync
line line

broadcast
bus

Broadcast
Processor

Figure 5-4: Block diagram of the BP

v v

(1

I

Memory
Module

I

Driver
4

(1

5.3.1. The Memory Module

Similar in function to the memory modules of the single-PERT configuration, the module

in the BP stores the complete data set be it the ShadeArray, the ShellArray or the

PrimArray as described in Chapter 4. Also. similar t o memory modules for all PERTs, the

memory controller allows the read operation from the memory t o be streamed.

The way a data set is organized and stored is important t o the process of adaptive

broadcasting. The data is organized in packets each with an ID. Contained within a

packet are all the data associated with an index into the array - the list of sibling shells

or the collection of primitives enclosed by the same volume or the reflectance

characteristics of a surface. The ID that identifies the packet is the index into the

corresponding array

Figure 5-5 illustrates how the data sets are stored. The first structure occupying

successive memory locations is the ID list. With each ID the size and address of its

packet are also stored. The BP broadcasts an ID to determine if any PERTs require the

packet. If yes, the BP needs t o know where the packet is stored and how large i t is.

The contents of each packet are also stored in successive memory locations. The reason

for storing collections of data in this fashion is t o take advantage of the streaming

capability of the memory controller.

5.3.2. The Processor

The processor is modeled on the SJ16 but with a 32-bit internal bus. We assumed a

200 nanosecond processor cycle time and a broadcast rate of twice the cycle time - 400

nanoseconds per word. The broadcast rate is considered to be conservative. However, the

speed of a BIC's comparator and the reasonable delay required for the response on the hit

ID words addr

Figure 5-5:

packets addr

0
0
0

I I I

Data organization in memory

line are ultimately the limiting factors. There is also the problem of the signal propagation

delay associated with a physically long broadcast bus.

The task of the BP is a straight forward one. Once the memory module has been

loaded with the data set and the rendering process initiated, the BP executes the algorithm

detailed in pseudo-microcode in Figure 5-6.

loop@: s e t address r e g i s t e r t o s t a r t o f ID l i s t
l o o p l : f e t c h next ID from l i s t and broadcast

no ope ra t i on
f e t c h packet address and s t o r e i n r e g i s t e r
f e t c h number o f by tes i n packet and load count
i f - h i t l i n e , go to check
s t a r t packet s t ream access

loop2: f e t c h word and broadcast
i f -count, go to loop2

check: i f end o f ID l i s t , go to loop0
go t0 l oop l

Figure 5-6: The BP algorithm

5.4. The Bus lnterface Controller

The processors within a multi-PERT machine are not connected directly t o the broadcast

busses, but are connected through a device called the Bus Interface Controller (BIC)

illustrated in Figure 5-7. The advantages of using the BIC are:

i t serves as an I/O processor for SJ16 by relieving it of data collection chores;

i t operates in parallel with SJ16 to reduce the total processing time;

0 it reduces latency since it has multiple ID-registers and looks for a match with
any one ID contained in the registers and because i t has a double buffer; and

it enables adaptive broadcasting to be used because of the hit line feedback to
the BP that indicates if a packet is required by the PERT.

The 3 major functional components of the BIC are described below.

5.4.1. ID Registers

When the SJ16 needs to process a particular data packet, i t serially searches the ID

registers of the BIC for an available register that is then filled with the ID number of the

desired packet. Each processor in the PERT uses its registers differently. The

ShadeProcessor stores at most one ID per ray processed. The PrimProcessor stores at

most 2 IDS at a time in the BIC until it has processed all the packets required for a

given ray. The ShellProcessor continually stores IDS in the BIC and may potentially

overflow. Therefore, the ShellProcessor needs to be able to stack overflow IDS in its

memory until an ID register becomes available.

When a packet is received into a buffer, the ID register containing the ID is flagged as

being available.

HIT

COMPARATOR

ID Regn w
DUAL { BUFFER

SJBUS

Figure 5-7: The Bus Interface Controller

5.4.2. The Comparator and Hit Line

When an ID is broadcast, the BP sends a pulse on the sync line that causes the word

on the bus t o be copied into the ID latch. The comparator compares the ID with the

contents of all valid ID registers in parallel. If there is a match and a buffer is available.

the hit line is set high to flag the BP t o send the packet. The hit line also sets the

available buffer t o start copying the data from the broadcast bus.

5.4.3. The Buffers

The BIC is equipped with a double buffer that is used in two ways. When a desired

packet is broadcast. i t is copied off the broadcast bus into a buffer. Secondly, the SJ16

uses the buffer as memory when processing the packet. The buffers are FlFOs t o allow

the SJ16 to read their contents in one cycle. The double buffer allows the BIC t o operate

in parallel with the SJ16 when the SJ16 is using one of the buffers as memory.

5.5. System Organization

Figure 5-8 shows the system organization of the multi-PERT configuration. The PERTs

are each connected to each of the three broadcast busses as illustrated. The control

processor shown coordinates the function of the machine. It pre-processes the scene data,

downloads the data sets into each BP's memory, downloads the global variables required

for spawning rays t o each of the ShadeProcessors and initiates the rendering process.

As intensity values for rays and pixels are computed, they must be added t o the frame

buffer. The obvious approach is t o have all the ShadeProcessors communicate these

values t o the control processor which in turn loads them into the frame buffer.

Unfortunately, this is another potential communication bottleneck. One way t o minimize

this overhead is t o have the ShadeProcessors communicate directly with the frame buffer.

Memory contention for the frame buffer is avoided by partitioning i t and providing each

PERT with an independent portion.

The distribution of the workload among PERTs is important t o the efficiency o f the

machine. There are many ways to subdivide the image space among PERTs the best

being allocation based on PERT work load. However, if the direct frame buffer approach

mentioned above is used, the subdivision must be predetermined since each PERT must be

bus

bus

bus

Figure 5-8: The multi-PERT configuration

directly connected t o a part o f the frame buffer. We have chosen t o model the allocation

of sets of scanlines t o each PERT. For n PERTs in a machine, PERT; is assigned the

i t h scanline from the top o f the image plane and then leapfrogs i ts way down the image

plane, processing every nth scanline thereafter.

Chapter 6

RESULTS AND CONCLUSION

Several layers of simulators were designed and implemented to model the key features of

the architecture as described in Chapter 5. A series of scenes were created to test

different parts of the algorithm. The results are presented in two parts - the evaluation

of adaptive broadcasting and the analysis of latency in the multi-PERT configuration. A

discussion of the overall architecture and the conclusion close the chapter.

6.1. Simulation

6.1.1. The Simulator

Several simulators were designed and implemented with two objectives in mind - to

evaluate the performance of adaptive broadcasting and to predict the performance of a

multi-PERT machine. There were three key features of the architecture which had t o be

modeled accurately t o allow for valid results. These were the SJ16 timings, the pipelined

configuration of the PERT and the three broadcast processors.

The SJ16 with FPU was simulated in the ASP environment [CHIL85]. The algorithms

as described in Chapter 4 were in large part microcoded and the operations timed. The

timings were based on a 5 MHz. processor.

The algorithms were also written in C and implemented as separate programs on the

VAX. The timings from the ASP environment were coded into these programs such that

the timings returned were SJ16 timings. The pipeline was simulated using IPC sockets

under UNIX. Times were passed between processors to ensure the proper simulation of

the pipeline. In this way, a single-PERT was modeled.

To simulate broadcasting, an event-driven broadcast module was added to each to the

programs above. The operation of the BPS was based on the following timings:

0 1000 nanoseconds to broadcast an ID.

800 nanoseconds overhead for a packet.

r 400 nanoseconds per packet word.

400 nanoseconds to reset the loop.

Lastly, a renderer also written in C and based on the same algorithms but running

sequentially was implemented and run on a VAX with a floating point unit. No ASP

timings were included in this version This allowed us the compile run time profiles for the

algorithms on the VAX while rendering the same scenes as the simulator.

An important aspect of the simulators running on the VAXs was to actually render

scenes. Timings for any architecture or algorithm performance are highly dependent on the

nature of the scene. One can obtain very good results if the data set is small or if there

is a lot of void space in the scene. By rendering the same scenes in the different

simulators, we could be sure that we were comparing apples to apples.

6.1.2. Test Scenes

T o evaluate adaptive broadcasting, a series of scenes were created and identified with a

number o f the form npp. All these scenes had 64 clusters of randomly placed primitives.

The pp of the number indicates the number of primitives (spheres) in each cluster. The

n indicates the order of the complete hierarchical tree be i t binary (2), quad (4) or oct

(8). For example scene 804 means that there are 4 spheres per cluster and the

hierarchical tree is a complete octree. Also. scenes 204. 404 and 804 look the same

because they share the same primitive data.

T o predict m ulti-PERT performance, more corn plex and realistic scenes were created.

The figures in scenes 23 and 45 are bubble figures generated by the SFU kinematic

simulation system [CALV82]. With their large number of primitives, these scenes would

demonstrate if adaptive broadcasting could cope with the demands of the multi-PERT

machine.

Figure 6-1 details the characteristics of each scene. Pictures of the test scenes are in

figures 6-2 t o 6-8.

6.2. Broadcast Performance

The first step of the simulation was t o evaluate the effectiveness of adaptive

broadcasting. All simulations were run on the single-PERT simulator with broadcasting.

Figure 6-8: The 3 joggers

6.2.1. Adaptive versus Non-adaptive

Adaptive broadcasting was expected to keep latency times low. Figure 6-9 illustrates

this point. As data sets get larger, the non-adaptive latency time increases dramatically

affecting the overall time taken per ray. On the other hand, the adaptive curve increases

slowly. The difference between the adaptive and direct memory curves is the overhead

associated with broadcasting.

6.2.2. Type of Hierarchical Structure

The order of the hierarchical tree was found t o be important t o the efficiency of the

ShellProcessor (Figure 6-10). Although binary tree packets are faster t o process, more

packets have to be retrieved. The saving in processing time is more than negated by the

increase in latency time. The opposite holds true for octree packets. The best

performance was the medium processing time and the medium latency time of the quad

tree packets. Unlike with the single-PERT with direct memory, broadcasting introduces an

important latency factor in the evaluation of the best tree.

6.2.3. Organization of Shell Data

We also questionned whether the order in which the shell packets were broadcast had

any effect on the ShellProcessor performance. Test scenes were rendered using depth-first,

breadth-first and random traversal of the hierarchical data structure. As illustrated in

Figure 6-11, breadth-first broadcasting showed consistently good results. This was

expected since the contents of the packets are processed in breadth-first fashion.

adaptive -
non-adaptive - - - -

direct memory -. - - . - - - .

number of primitives

Figure 6-9: Average time per ray (microseconds)
Scenes 404. 408. 412, 416. 420

PrimProcessor

Figure 6-10: Comparison of tree structures
Averages times per ray (microseconds)

Scenes 212, 412. 812
ShellProcessor

scene 404

Figure 6-11: Comparison of broadcast order of tree
Average latency per ray (microseconds)

ShellProcessor

scene 408

scene 412

scene 416

scene 420

breadth

5.1

4.7

5.0

5.1

4.9

depth

11.4

random

11.4

11.4

12.0

12.1

11.9

11.3

12.0

11.9

11.7

73

6.3. Multi-PERT Performance

Having shown that adaptive broadcasting is effective in a single-PERT system, we then

looked at the effect of going t o a multi-PERT configuration. The rendering time for a

processor in the PERT can be expressed as:

t ime = (processing/ray + Iatencylray + pipel inewait l ray) X rays

totalray s
, processing/ray For n PERTs, the number of rays per PERT is approximately 7.

and pipelinewait/ray remain roughly constant. In the case of non-adaptive broadcasting.

the /atency/ray also remains constant. However, this is not the case with adaptive

broadcast

As PERTs are added to the configuration. more packets will be broadcast per broadcast

cycle This results in longer cycles and thus longer latency times. We needed a method

of determine how latency/ray was affected as a function of n PERTs.

6.3.1. Analysis

T o predict the multi-PERT performance, we chose to do an analysis based on the

PrimProcessor. The reasons for choosing the PrimProcessor are as follows:

the primitive data set is usually the largest, resulting in longer broadcast cycles
and greater latency.

the PrimProcessor puts at most 2 IDS in the BIC at any one time.

the IDS need to be processed in a specific order and not on a first come, first
served order.

e there is less chance of overlapping requests between the PrimProcessors

With the PrimProcessor, the average latency for the first packet potentially accounts for

the largest part of the total latency per ray since there is no parallelism until the first

packet is retrieved. From simulations, for each scene, the predicted average latency for

the first packet can be used t o calculate the expected average latency per ray.

The analysis is for the worst case broadcast cycle. This means that we assume all

PrimProcessors will put their requests for packets t o their respective BlCs simultaneously

and that there are no overlapping requests. Therefore, in one broadcast cycle. the

PrimBroadcaster will broadcast all the IDS and as many packets as there are IDS in the

BICs. If, for example, there is an average 1.45 packets broadcast per ray and n PERTs.

the minimum packets broadcast in cycle would be n and the maximum 2n.

The following terms are used in the analysis:

mct

eal

P (k)
L (k)
Pl

p2
I

total number of packets broadcast
total number of rays processed
number of processors
number of packets broadcast in a cycle
minimum broadcast cycle time
average broadcast time of a packet
expected average latency per packet
probability of k packets broadcast
average latency when k packets broadcast
probability of a processor requiring 1 packet

probability of a processor requiring 2 packets

number of processors requesting 2 packets

The expected average latency for the first packet in a worst case broadcast cycle is

given by:

2 n

eal = P (k) L (k)
k=n

Letting k = n t i :

where

mct + (n+i - 1) apt
L (n+i) =

2
+ apt

and where

2r - p
P, = - P - r

and P, = -
r r

Using this analysis, we can now predict worst case performance of a multi-PERT

adaptive broadcasting architecture.

6.3.2. Results

Graphs illustrating the predicted performance of a multi-PERT machine to render the test

scenes 412. 23 and 45 are shown in Figure 6-12 t o Figure 6-14 Three hnes are plotted

on each graph. The dashed line represents performance with non-adaptive broadcasting.

This is the worst case for broadcasting. The dotted line represents a multi-PERT

configuration where each PERT has its own memory modules for direct memory access to

data. Each PERT has the complete scene stored in its memory. In a sense. this

represents a best case but in reality, as stated previously, this is an inefficient way to

resolve the data contention problem.

The solid line represents predicted results based the analysis described above for adaptive

broadcasting. This is a worst case prediction. Realistically, results should be significantly

better. The shape of the curve is interesting. Whereas the other 2 curves are linear, this

curve approaches the non-adaptive curve as the broadcast cycle becomes increasingly

saturated and latency increases. The sharp dip toward the non-adaptive curve represents

the sharp increase in latency as the probability of saturation becomes greater than 0.0

(P (k) > 0.0 where k = total packets).

6.4. Discussion

These are many advantages t o the multi-PERT architecture, the main one being its high

degree of parallelism Not only are there many PERTs working in parallel, the PERT itself

is a pipeline and the BIC operates in parallel with the SJ16. Also the PERT's modularity

makes it easy t o implement in a parallel architecture.

Another significant advantage is the microcodable microprocessor that allows for a more

flexible PERT which can be tailored t o applications instead of being a fixed hardware

solution The potential for downloading user-defined micro-instructions means that one

could add to the ShellProcessor functions for other bounding volume shapes; t o the

PrimProcessor, functions for other geometric and procedural objects; and t o the

ShadeProcessor, better shading models. This contrasts with other proposed architectural

solutions that are limited to polygons for example.

Adaptive broadcasting allows concurrent access to data while avoiding the communication

bottleneck of a shared memory. I t has been shown to be better than non-adaptive

broadcast up t o the point where the broadcast cycle becomes saturated, i.e., when all

packets are being broadcast in a cycle.

There are two main disadvantages with this architecture. As data sets get larger,

latency increases and performance decreases. However, the PERT's capability t o handle

- adaptive

- - - - - non-adaptive

. direct memory

0 16 32 48 64 80 96 112 128

number of PERTs

Figure 6-12: Times faster than VAX/750
based on expected average latency

Scene 412

/
/ - ' - adaptive

-- - - - non-adaptive

. direct memory

0 16 32 48 64 80 96 112 128

number of PERTs

Figure 6-13: Times faster than VAX/750
based on expected average latency

Scene 23

-

a
r rdO

0

@ar
r r O

r*
.@&

@

.dO

.re

r ~ .
0

0.' - adaptive

-- --- non-adaptive

. direct memory
0

0. . @

0 16 32 48 64 80 96 112 128

number of PERTs

Figure 6-14: Times faster than VAX/750
based on expected average latency

Scene 45

complex surfaces means that scenes which now consist of many polygons or spheres could

potentially be reduced t o fewer but more complex primitives. Therefore the impact of

large data sets could be reduced.

The other main disadvantage is harder t o evaluate. This is the goodness of the

hierarchical data structure; the balancing of the tree depth and order versus the number

and type of primitives enclosed in leaf shells. This issue requires further study. However.

at the present time, the design of the hierarchical data structure is left completely in the

hands of the user.

It is obvious from our results that as the data sets get larger or the number of PERTs

increases, latency becomes significant. But even with latency we have obtained 2 orders

of magnitude with only 8 PERTs. Yet two other issues should be explored. With a high

latency wait and the parallelism of. the BIC. the SJ16 may be able t o do floating point

arithmetic in firmware without any serious performance degradation This would make the

PERT even more attractive in both size and cost. The other issue is whether or not

broadcasting is needed for a small number of PERTs, i.e.. determining at what point

memory contention for a shared memory becomes equal to the latency for adaptive

broadcasting Unfortunately, latency is dependent on the data set and on the number of

PERTs making generalizations of improvements difficult.

6.5. Conclusion

We have presented in these chapters the features of a multiprocessor architecture

designed t o improve the performance of ray tracing image generation techniques. The

architecture was the result of a three-step process. The first step was the modification o f

the standard ray tracing algorithm. The key features of this modification are: a) the

hierarchical data structure, b) the partitioning of the ray tracing algorithm into three

independent tasks, and c) the partitioning of the data into three independent data sets.

These have resulted in significant improvements over the standard algorithm.

The second step was the mapping of the algorithm into the PERT. The key features of

the PERT are: a) the microprogrammable VLSl processors, b) the special floating point

units, and c) the 3 processor pipeline. A single PERT has been shown to run 20 times

faster than a VAX/750 [CHIL85].

The third step was the interconnection of a set of PERTs into a parallel architecture.

The key features of the multi-PERT machine are: a) adaptive broadcasting, b) 3

broadcast busses, and c) BlCs for parallel input. Predicted performance for complex

scenes show improvements of 2 orders of magnitude over the VAX for an 8 PERT

configuration.

Although there are many issues associated with both the algorithms and the hardware

modeled which remain to be studied, our results for the proposed multi-PERT architecture

are very promising.

References

[FLY N66]

[G LA5841

Appel. A.
Some techniques for shading machine renderings of solids.
In AFIPS Spring Joint Conference. pages 37-45. AFIPS. 1968.

Blinn, J.F.
Models of light reflection for computer synthesized pictures.
In Siggraph '77 Conference Proceedings, pages 192-198. ACM. San

Jose, California. 1977.

Calvert, T.W., Chapman, J., and Patla. A.
Aspects of the Kinematic Simulation of Human Movement.
IEEE Computer Graphics and Applications 2(9):41-49. November. 1982.

Chilka. P.
PERT A Pipelined Engine for Ray Tracing Graphics.
Master's thesis. Simon Fraser University, May, 1985.

Clark, J H.
Hierarchical geometric models for visible surface algorithms.
Communications ACM 19(10):547-554. October, 1976.

Cleary, J.G.. Wyvill, B., Birtwistle. G. M.. and Vatti. R.
Multiprocessor ray tracing.
Technical Report 83/128/17, University of Calgary, October. 1983.

Cook. R.L., and Torrance, K.E.
A reflection model for computer graphics.
ACM Transactions on Graphics 1(1):7-24. January. 1982.

Dippe. M., and Swensen, J.
An adaptive subdivision algorithm and parallel architecture for realistic

image synthesis.
In ACM (editor). SIGGRAPH'84 Conference Proceedings. pages

149-157. ACM, New York. 1984.

Flynn. M.J.
Very high-speed computing systems.
In Proceedings of the I E E E , pages 1901-1909. 1966.

Glassner, A.S.
Space subdivision for fast ray tracing.
I E E E Computer Graphics and Applications 4(10):15-22. October. 1984.

[KAY 791

[NISH81]

Goldstein. R.A., and Nagel, R.
3-D visual simulation.
In SIMULATION. pages 25-31. January. 1971.

Hall. R.A.. and Greenberg. D.P.
A testbed for realistic image synthesis.
I E E E Computer Graphics and Applications 3(10):10-20. November. 1983.

Hobson. Richard.
Structured Machine Design: An Ongoing Experiment.
In Proceedings of the 8th Symposium on Computer Architecture.

pages 37-55. SIGARCH, Minneapolis. May. 1981.

Hobson. Richard.
SAMjr Microprogamming guide. Version 2.1.
1983.

Kay. D.S.
Transparency, refraction, and ray-tracing for computer synthesized images.
Master's thesis, Cornell University, January. 1979.

Nishimura. H., Ohno. H., Kawata, T.. Shirakawa. I., and Omura. K .
LINKS-I: A parallel pipelined multimicrocomputer system for image

creation.
In ACM (editor). Proceedings of the 10th Symposium on Computer

Architecture. pages 387-394. ACM. New York. 1981

Phong B-T.
illumination model for computer generated pictures
Communications ACM 18(6). June. 1975.

Rubin. S.M., and Whitted. T.
A 3-dimensional representation for fast rendering of complex scenes.
In ACM (editor). SIGGRAPH'80 Conference Proceedings, pages

110-116. ACM, New York, 1980.

Ullner, M.K.
Parallel machines for computer graphics.
PhD thesis, California Institute of Technology. 1983.

Weghorst. H., Hooper. G.. and Greenberg, D.P.
Improved computational methods for ray tracing.
A C M Transactions on Graphics 3(1):52-69, January, 1984.

Weitek Solids Modeling Engine.
Weitek Corporation Product Literature. 1985.

[W EIT851 WTLl164/1165 Low-Latency @-bit [EEE Floating Point Multiplier/ALU.
Weitek Corporation Product Literature. 1985.

[W H IT801 Whitted, T.
An improved illumination model for shaded display.
Communications ACM 23(6):343-349, June. 1980.

