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ABSTRACT

In this thesis we discuss theorems about ccnnectivity and
cycles in graph thecry.

The first three chapters are concerned with connectivity.
Menger's Theorem and Perfect's Theorem are given as well as
several theorems abcout reductions which preserve 3-connectivity.

The last two chapters use the ccannectivity results to prove
theorems about cycles. Chapter 4 gives existence theorems feor
cycles of given parity through specified edges 1n 3-connected
graphs. Chapter 5 examines cycles through specified vertices 1in

rlanar, 3-connected graphs.
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PREFACE

This thesis follows the notation and terminology of J.A,
Bondy and U,S.R. Murty [3]. Addifional notation and terminology
are also needed,

let X and Y be sets of vertices, An (X,Y)-path 1is a path
with origin in X, terminus in Y, and no internal vertices in
xVY, If u andl v are vertices, a ({u},{v})-path will be called a
(u,v)-path, |

A set of paths is openly disjoint if the paths have a
common origin and no other common vertices,

lLet S, {u}, and {v} be disjoint subsets of the vertex set
of graph G, Then S separates u and v i€ every (u,v)-path in G
contains a vertex in S,

Let G be a graph, V be a set of vertices, and E be a set of
edges, Then G-V is the induced subgraph of G with vertex set
V(G)-V, G+V is the graph with vertex set V(G)UV and edge set
E(G), G-E is the graph with vertex set V(G) and edge set E(G)-E,
and G+E is the graph with vertex set V(G) and edge set E(G)UE,

If B and C are graphs then BAC is the graph with vertex set
V(B)UV(C) and edge set E(B)AE(C).

Let F be a subset of the edge set of graph G, A cycle C of
G is even (odd) with respect to F if CNF contains an even (o0dd)
number of edges,

An edge e is a chord of a cycle C if both ends of e are in

Y(C) and e is not in E(C).
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A’branchvertex is a vertex of degree greater than tvo,

A colour class of a bipartite graph is a set of vertices
with the same colour 1in a ©proper 2-vertex-colouring of the
graph.

A graph G is critically n-connected if for every edge e,
G-{e} is not n-connected,

let e=x, x, be an edge of graph G, Then G-e%® is G~-{e} unless
the degree of some x; in G-{e} is two, i€{1,2)}, in which case
G-e* is obtained from G-{e}) by replacing each such x; and the
twvo edges incident with it by a single edge,

If e is an edge in a graph G then the graph obtained by

contracting e will be denoted by G9%e,
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I. Chapter 1

The fundamrental theorem on connectivity in grarhs was

discovered by K. Menger [9]. The rroof given here is due to the

author.

Theorem 1.1, If no set c¢f fewer than n vertices separates

nonadjacent vertices u amd v 1in a grapk G, then there are n

internally disjoint (u,v)-paths.

Proof. The proof uses induction on n. The theorem is trivial for
n=1. Sufppose u and v are not separated by any set having less
than n+1 vertices (n21). By the induction hypothesis there are n
internally disjoint (u,v)-paths F,,...,Pp - 5Since the set of
second vertices of Pl jeee,Pp, does not separate u and v, there is
a (u,v)-path P whose initial edge is rot on By, i=1,...,0. Let x
be the first vertex after u which is both on P and on some P;,
1<i<n. Let Py, be the (a,x)-section of p. Suppose
P| yeeesPp +Ppy| have been chosen so that the distance in G- {u}
betvween x and v is the minimum. If x=v we are done, SO assune
not.

In G-{x} there are n 1internally disjoint (u,v)-paths
Qy seeesQp -« again by the induction hypothesis. Choose
Q)s---40p using the minimum number of edges in B=E(G)-;l:J:E(Pi ).

Let H be the graph consisting of the vertices and arcs of




0, vees eQp together with the vertex x. Choose some Py, 1€k <n+ 1,
vhose initial edge is not in E(H). Let y be the first vertex
after u which 1is on Py and in V(H). If y=v we are done, =0
assume not.

If vy=x then let R be the shortest (x,v)-path in G-{u}. Llet
2z be the first vertex of R cn scne ij 1€j<n. Then the distance
in G- {u} Lbetween z and v is less than the distance between x and
v. This contradicts our choice Of P| seeesPp,Pp4+| -

If y is on some (i, 1<ic<n, then the (u,y)-section of Q has
an edge in B. Ctherwvise, twc raths an [Py seeesPpsPpspl intersect
at a vertex other than u, v, or Xx. Now if we replace the
{(u,y) -section of Ci by the (u,y)-section of P, we get n
internally disjoint (u,v)-paths in G- {x} using less edges in B

than Qp eeeeesQpe This is a contradiction.

Menger's theoren has the following tvo standard

corcllaries.

Corollary 1.1. If ({x} and ¥Y={y; ,.-.,¥y} are disjoint sets of

vertices in an n-connected graph G, then there are n openly
disjoint {{x},Y)-paths in G.

Proof. Let H=G+{z} +{yjz}i=1,...,n}, where z is not a vertex of
G. Since G 1is nbn-connected, no set of fewer than n vertices

separates x and z. In addition, x and z are nonadjacent, so by

Theorem 1.1 H bas n intermnally disjoint {x,z)-paths Pj secesPpe.




Fach vertex 1in Y nust necessarily be on exactly one such path,

so Pj-{z}, i=1,...,I, are the required paths in G.

Corcllary 1.2. If X and Y are disjcint sets of vertices 1in art

n-connected graph G such that both have at least n vertices,

then there are n disjoint (X,Y)-raths.

Proof. Let H=G+{v,z}+{wx|x€X} +{zy]y€Y}, vhere w and 2z are not
vertices of G. ©Novw w amnd 2z are nonadjacent edges 1in an
n-ccnnected graph H, so there are n internally disjoint
{v,z)-paths, P,,;..,Pn, in E. We can assume P; ccntains only one
vertex in each of X and Y, i=1,...,n. Then Pj-{w,2}, 1i=1,...,m,

are the required paths in G.




II. Chapter 2

H. Perfect [10] rroved the fcllowing theoren.

Thecrem 2.1. For a graph G, let {x} and S be disjoint subsets of

V(G). Suppose P;,...,P, are orenly disjoint ({x},S)-paths witk
termini Y| se=-s¥ns respectively, and CleeeesQpy are openly
disjoint ({x},S)—-paths. Then thkere are nt+1 openly disjoint

({x},S)-paths with termini y;,...,¥yn,v, for some v in S.

The following proof was discovered independently by the

author but it can alsc be fcand in L. Lovasz [8-p.Uu].

Proof. Let E({P)= O E(p ) and E(Q)= Tj'E(Q ). Choose n openly
disjoint ({x],;;ipaths, R,,...,ézi with termini
Y, see- s¥peLespectively, using cnly edges in E(P)UE {Q) and using
a pinimum pumber of edges in E (P)-E(Q). Choose some Qj, 1<i<n+1,
baving an 1initial edge different from the initial edges of BR;,
j=1,...,0.

If Q4 does not intersect sone Rj, j=1,.-..,0, at a vertex
other than x, then we are done. If not, then let z be the first
vertex after x which is cn Qij and on some Rj, 1<€j<n. Then the
(x,z)-section of Rj has an edgé in E(P)-E(Q). Otherwvise, two
paths in {QirecesrOps ] intersect at a vertex other than x. Now

by replacing the {x,z)-section of Bj by the (x,z)-section of



Q; ve get n openly disjoint ({x},S)-paths with termini
Yi seo-s¥n using only e€dges in E(P)UE (Q) and using less edges in

E(P)-E(Q) than R,,...,Rp. This is a contradiction.




I1I. Chapter 3

D.W. Barnette and B. Grunbaum [1] and V.K. Titov [13]

independently proved the following theorem.

Theorem 3.1. If G is a 3-connected graph of crder at least five,

then G contains an e€edge e such that G-e* is 3-connected.

C. Thomassen [ 12] proved the following result.

Theoremr 3.2. If G is a 3-connected graph of order at least five,

then G contains an edge e such that G%e is 3-connected.

In the chapter we present variations of these theorens.

Thecrem 3.3 Let e=x,x, be an edge 1in a 3-connected graph G.

Suppose there exist y and =z in V(G)-{x, ,x } such that
G-{e}-{y,z} bhas components H; and H,, where xj is in V (Hi ),
i=1,2. If H; and H; each have at least two vertices, then G%e is

3-connected.

Procf. If G%e is not 3-connected, then {x,,x5} is ccntained in a
3-vertex cut of G. Thus, it suffices to showv that G-{x;,x;,u} is
connected for any u in V(G)-{x,,x;}. There are essentially two

cases,



Suppose u=y. We nowx show that every vertex v in
V{G)-{x, ,x9 ,u} 1s in the same component as z. Without loss of
generality, let v be in V(H;)-({x;}. By Corollary 1.1 there are
three openly disjoint ({v},{x, ,¥,2})~-paths in G. Since any
(x; ,v)-path includes a vertex in {x; ,Y,Z}, X, is not on the
(v,z)-path.

Suppose u is in V(H;)-{x;}. let w, be in V(H;)-{x;, ,u} and
¥, be in V{H; )-{x5 }. Since there are three openly disjoint
({v23,{x2,¥,2})-paths in G, the vertices w;, y, and z are in the
same component of 'Gf{xl +X9 ,U}. Since there are three openly
disjoint ({w;},{x;,¥Y,2})-paths in G, there is a (w;,y)-path or a
(vy ,z)-path in G- {x;,Xx;,u}. Because the choice cf w; and w; was

artitrary, G-{x;,x;,u} is cocnnected.

The following theorem is found in F.J. Slater [11].

Theorem 3.4. Every vertex x of degree three in a 3-connected

graph G of order at least five 1s incident with an edge e such

that G%°e is 3-connected.

Proof.Let x be incident with edges ej=xyi, i=1,2,3. Suppose
G-{x,ys ,2z} 1is disconnected for some z in V(G). Let yj be in Hj ,
i=1,2, where B, and H; are the components of G-{x,y3,z}. If
V{B,) has at least tvo vertices, then the components of
G-{e, }-{y3 »,2z}, H, and H; +{x}+{ey }, both have at least two

vertices, so Theorer 3.3 implies G%e,;, 1is 3-connected.
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Figure 3.1. G% is 3-connected for each dashed edge e.

Similarly, 1if V(H, ) has at least two vertices,then G%e |is

3-ccnnected. If V{H,) and V(Hi;) both have one vertex, then G has
order 5. It is easy to show that the result holds for the three

3-connected graphs cf crder five (figure 3.1.).

The following theorem is also in L. Lovisz [8-p.U6].

Theorem 3.5. If e is an edge with both ends cf degree at least

four in a critically 3-connected graph G of order at least five,

then GP%e is 3-connected.

Proof. G is critically 3-ccnnected, so there are vertices x and

Yy in V{G) such that G- fe}-{x,y} is disconnected. Since both ends



of € have degree at least four, neither component of G- {e}- (x,y}
has just one vertex. Thus, Theorem 3.3 1implies GPe is

3-connected.

Theorem 3.6. For any edge e=x;X, in a 3-comnnected graph G ctf

order at least five, G%e or G-€* 1is 3-connected.

Proof. The result 1is easily checked when G has order five, so
assure G has order at least 6.

Suppose G-e* 1s not 3-connected. Since |V (G-e*) |24, there
are vertices w; and w; in V(G-e*) which are in different
components of (G-e*)-{y,z}, where ({y,z} 1is a 2-vertex cut.
Therefore, G6-{e}-{y,z} bhas twc components, 4, and H; , where
xi and w4 are in V({Hj), i=1,2.

Now Hj has at least two vertices, i=1,2. If xj#vj, vve are
done. If xj=wj, ther xj must have degree at least four in G to

be a vertex in G-e*. Therefcre, xj is adjacent to some other

vertex in Hj. Hence, G°e is 3-connpected by Theorem 3.3.



IVv. Chapter &

In this <chapter ve examine the question of when two edges
in a 3-connected graph lie cn a common even cycle and when they
lie on a common odd cycle.

First we give some related theorems.

Theorem 4.1. {G.A. TCirac [{4]) Any two edges and any k-2 vertices

in a k-connected graph lie on a common cycle.

Theorem 4.2. (R. Haggkvist and C. Thomassen [5]) Any k-1

pairvise nonadjacent edges in a k-connected graph 1lie omn a

common cycle.

Theorem 4.3. (J.A. Bondy and L. Lovasz [2]) In a k-connected
graph any k-1 vertices lie on a common odd cycle if the grarh is

not bipartite, and any k vertices lie on a common even cycle.

To prove the main theorem vwe need a lemma.

Lemma 4.1, If X is a set of four vertices in a 3-connected graph

G of order at least six, then there is an edge e with at most

one end in X such that G%e is 3-connected.

Proof. We may assume G is critically 3-connected. The result

10



holds for the three critically 3-connected graphs of order six
(figure 4.1), so suppose G has order at least seven.

Suppose e=yz does not have an end in X. If y and z both
have degree at least four, then Theorem 3.5 implies G%e is
3-connected. If y or z has degree three, then Theorem 3.4
implies there is ap edge f incident with y or z such that GOf is
3-connected.

Suppose every edge of G has at least one end in X. If some
vertex in V{5)-X has degree three, then we apply Theorem 3.4. If
all vertices im V(G)-X have degree tour, them every vertex in X
is adjacent to at least three vertices ir V(G)-X. If x in X has
degree three then we apply Theorem 3.4, and if x in ¥ has degree

at least four then we apply Theorem 3.5.

Figure 4.1. G% is 3-connected for every dashed edge e.
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Theorem 4.4. Let G be a simple 3-connected graph. Suppose f=wx

and g=yz are nonadjacent edges and F is a subset of E(G). Then
G- {f,q) contains an odd cycle with resrect to F if and only if
there are even and odd cycles with respect to F containing both

f and g.

Proof. The theorem 1is proven by induction on |V{G)]. The theoren
ic easily verified wvhen G has order four or five.

Suppose G has order at least six. Then by Lerma 4.1 there
is an edge e=uv such that e has at mcst one erd in ([v,x,y,2z} and
G%e is 3-connected. Suppose G- {f,g} contains an odd cycle C vwith
respect to F. There are three cases.

In the first case we assume that e is pnot in F and that
there is no cycle of length three whose edges consist of an edge
in {f,g}, an edge h on C, and the edge e.

If e is in E(C), then C%e is an odd cycle with respect to F
in (G%°e)-{f,g}. 1If e is a chord of C, then (G%e)-{f,q} contain§
an even and an odd cycle with respect to F with one common
vertex. If u or v is nct in V{C), then C is an odd cycle with
respect to P in (G%e)-{f,g}. Thus, (G%e)- {f,g} contains an oéd
cycle C' with respect to F.

Suppose |V{C*')123. Then we remove an edge from each double
edge in G°%e so as not tc destroy C'. Let G' be the resulting
grarh. Since e has at most one e€nd in common with f and g, £ and
g are nonadjacent in G'. Now we apply the induction hyfpothesis

to G' to ottain an odd and an even cycle wvwith respect to P vwhich

12



Figure 4,2,

both contain f and g. These cycles correspond to cycles in G
with the same parities with respect to F as in G' because e is
not in F.

Suppose |V ([C*') =2 and C'=v,e,v1e2v,. I1f v, and v, are omr a
cycle in (G%e)-{f,g} of 1length at 1least three, then we can
remove an edge from each double edge to obtain a simple graph G&°*
suitable for applying the induction hypothesis. If v, and v, are
not on a cycle in (G°e)-{f,g} of length at least three, then
vV, v, disconnects (G%°e)-{f,g}. Hence, {f,g9,v, v} is an edge cut
of G% . Thus, G has the form sLkown in figure 4.2, vwhere vwe
assume e is in ¥ and e is not. Since G-{v;} is 2-connected,

Theorem 4.1 implies it contains a cycle B with e and f in E(B).

13



Figure 4.3.

The cycle B nust necessarily also contain g. Now we are done
since B and (B-{e})+{v,}+{e;,e,} have opposite parities witk
respect to F.

In the second case we assume that e is not in F and that
there 1is a cycle»of length three whose edges consist of an edge
in {f,g}, an edge h in E(C), and the edge e (figure 4.3). .

If there is an odd cycle with respect to P in G-{f,qg,h,}
then we have the first case. Therefore, we can assume that in
G- {f,g} all odd cycles with respect to F include h.

G- {X} ié-2—connected, so Corollary 1.2 implies it contains
tvo disjoint ({y,2} ,{¥%,v})-paths P and Q. Let

D, = (PUQ) + {x} ¢+ (h,f,9} . Since G-{v} is 2-connected, Theorem 4.1

14



implies it has a cycle D; containing f and g.

DjAD, 1is the union of edge-disjoint cycles in G-({f,g}, and
one of these cycles contains h. Thus, D/AD, consists of one
cycle which 1is odd with respect to F and possibly other cycles
vhica are all even with respect to F. Therefore, D) and D, have
opposite parities with respect to F, so they are the required
cycles.

In the third case we assume e is in F. Let E' be the set of
edges incident wvith u. Then each cycle in G has the same parity
with respect to F and FAE!'. Now w2 have ore of the first two
cases, Ssince e is not in FAE!'.

Conversely, suppose C and D are even and odd cycles with
respect to P which both contain f and g. Then C4D is the union
of edge-disjoint cycles 1in G-{f,g}. Since E(CAD) and F have a
odd nunber of edges in common, one of the cycles of CAD 1is odd

vith respect to F.

Theorem 4.5. Let G be a simple 3-connected graph. Suppose e=Xy

and f=xz are adjacent edges and F is a subset of E (G). Then
G- {x} contaims an odd cycle C with respect to F if and only 2f
there are even and odd cycles in G with respect to P containing

both e and f.
Proof. Suppose G- {x} contains an odd cycle C with respect to F.
Since G-{x} is 2-connected, Corollary 1.2 implies it contains

tvo disjoint ({y,z},V(C))-paths P and Q. If y or z is on C then

15



P or ¢ has zerc 1length. Llet B and D be the cycles in the
subgraph (PUQUC) ¢+{e,f} which ccntain e and f. Since C 1is odd
with resrect to F, B and D have opposite parity with respect to
F.

The converse is proven as in Theorem 4.4.

Corcllary 4.1. Let G be a simple 3-connected graph. Suppose e

and f are nonadjacent edges, and g and h are adjacent edges with
ccoeon end x. Then G- {e,f} contains an odd cycle if and only if
there are even and odd cycles containing both e arnd £, and G- {x}
contains an odd cycle if and only if there are even and odd

cycles containing both g and h.

Proof. Let F=E(G) and aprly Theorems 4.4 and 4.5.

1. Lovasz has conjectured that for any set L of k pairvise
nonadjacent edges in a k-connected graph G, wvhere G-L is
connected if k is odd, there is a cycle containing all the edges
of L. He has verified the conjecture for k=3 and the author has
verified the conjecture for k=4. Theorem 4.4 allows an ealy

proof when k=3.
orollary 4.2. If {e,f,qg} is a set of pairvise nonadjacent edges

in a 3-connected graph G, where G-{e,f,gq} 1is connected, then

there is a cycle containing e, £, and g.

16



Proof. Let F={g}. The subgraph G-{e,f} contains a cycle C
through g, since otherwise G-{e,f,yg} is disconrected. The <cycle
C 1is odd with respect to F, so by Theorem 4.4 G contains an odd
cycle B with respect to F which contains both e and f. Since E

is odd with respect to F it must necessarily contain g.

17



V. Chapter 5

G.A. Dirac {4 ) proved the following result.

Theorer 5.1. There is a cycle containing any n vertices 1in an

n-connected graph.

This is the Lkest possible, since Kn,nﬂ is n-connected

while the n+1 vertices in the larger cclour class do not lie on

a cocmmon cycle.

If we restrict ourselves to planar graphs, we can make

icprcvements.

Theorem 5.2. (W.1. Tutte [14]) Any planar 4-connected grarh is

hariltonian.

Kel'mans and Lcmonoscv [6] have announced the following

result.

Theorem 5.3. Let G be a plarnar 3-connected graph. Then:

{i) Any five vertices in V(G) lie on a comrmon cyclg.

(ii) If vy, V2, V3, V4, Vs ,and v¢ are in V(G) and do not lie on
a common cycle, thenm G contains a subdivision of the Herschel
graph in which vy, v, V3, V%, V5,and v are the branchvertices

corresponding to tbhe larger colour class (figure 5.1).

18



Figure 5.1, The Herschel graph.

We present a proof of Theorem 5.3 due to the author which

uses the following theoren.

Theorem 5.4. (K« Kuratowski [7]) A graph is planar if and only

if it does not contain a subdivision of K33 or Kg.

Proof of Theorem 5.3.(i). Suppose G 1is a counterexample of

mininmum order, wvhere W={v, ,v; ,V3 ,V4,V5} is a set of vertices not
on a common cycle. We may assume G is critically 3-connected.

We first prove that vy, v, 3, and v, are on a comrmon
cycle. By Theorem 5.1, v,, v;, and v; are on a common cycle B.

If vy is not on B, then Corocllary 1.1 implies there are three

19
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Figure 5.2

openly disjoint ({v;},V(B))-fpaths. Then we obtain the subgraph
G, shown in figure S5.2.a or a cycle containing Vie V2. V3 o and
V¢ . Let G, be the maximal 2-connected subgraph of G;-{v;}. Since
G is 3-connected, Theorem 2.1 inplies there are three openly
disjoint ({v;},V(G,))-paths where x and y are the termini of two
of these paths. Then we obtain the subgraph 63 shown in figute
5.2.b or a cycle containing v, v3, V3, and Vy. Let Gy be the
raximal 2-connected subgraph of G3-{v;}. Now we apply Theorenm
2.1 to wvw and Cq . Considering all cases, ve either get a
subdivision of K33 which ccntradicts the planarity of G, or vwe

get a cycle containing v;, v, v3, and vy.

20



v, V.

9 bl 0

Figure 5.3.

Suppose two vertices in W are adjacent. We may assune
vy Vs is in E{G). Thus, we have the subgraph in figure 5.3.a. Now
ve apply Theorem 2.1 three times as shown in figure 5.3. In the
application to the subgraph G', we apply Theorem 2.1 to the
empty vertex vj and the maximal 2-connected subgraph of G'-{vi}.
The subgraph to the right of any G' is the only case which doés
not immediately result imn a contradiction, that is, a
subdivision of K3# or a cycle containing v,, v3, v3, v4, and
v¢ . The last application (figure 5.3.c) results in a
contradiction in all cases. Thus, ¥ is an independent set.

Suppose some e im E{G) does not have an end in W. By

Theorem 3.6, G-e* or G% is 3-connected. Then G%e or G-e¥*
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Figure 5.4.

contains a cycle through v, v, v, v,, and vg because G is a
counterexample of winimum order. But this implies there is a
cycle through v, , v, v3, v, and vy in G.

Thus, G 1is a bipartite graph with colour class ¥. It is
easy to shov that G is then one of the graphs in figure 5.4. But
in all these graphs there is a cycle containing v;, v,, V3, Vy,

and vg, so we have a contradiction.

Proof f Theorem 5.3.{ii). Surpose G is a counterexample of

minipum order, where W={v, ,v; ,v3 ,Vy4,V5,V} is a set of vertices
wvhich are not on a common cycle, and are not the branchvertices

corresponding to the larger colcur class in a subdivisicn of the
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Herschel graph. We may assume G is critically 3-connected.
Suppose VgVe 1is in E(G). By Theorem 5.3.i there is a cycle
C containing v, Vo V3. V4o and vg. By our assumption on G,
Ve is nct on C. On applying Theorem 2.1 to vg and C we get the
three cases in figures 5.5.a, 5.6.a, and 5.7.a. He now apply
Theorem 2.1 several times as showr in fiqures 5.5, 5.6, and 5.7.
Each time Theorem 2.1 is applied to the empty vertex w of G*' and
the maximal 2—-connected subgraph of G'- (v} ¥we attempt to avoid a
subdivision of Ks,3 and a cycle containing v, V5, V3, Ver Vg oo
and vg . In addition, for the case in figure 5.6 we attempt to
avoid the subgraph in figure 5.5.a, and for the case in figure
5.7 we attempt to avoid the subgraphs in figures 5.5.a and
5.6.a. Since all cases eventually lead to a contradiction, ¥ is

an indefrendent set.

(@)

Figure 5.5.
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Suppose some € 1in E(G) does not have an end in W. By
Theorem 3.6, G-e* or GO%e is 3-connected. If G-e* or G°e¢ has a
cycle containing v, , vy, V3, V4, Vg, and vg, then so does G.
Thus, G-e* or G% contains a subdivision H' of the Herschel
graph imr which v, %, %, W, V5, and vg are the branchvertices
correspcnding to the larger cclour class, since G is a
counterexample of minimum order. Then G alsoc has such a subgrarpk
unless H' <correspcnds to a subgraph H of G which is a
subdivision of one of the graprhs shown in figure 5.3. But K
Vs V3, V4, Vg, and vg are on a common cycle in H, and hence in
G.

Thus, & is a Lbipartite gragh with colour class W. It is
easy to show that G is then one of the graphs in figure 5.9. But

in all cases v, , V¢ Y34 V4, V5, and Vg are on a common cycle.

Figure 5.8.
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