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Abstract

Broadcasting is the process of transmitting information from an originating node
(processor) in a network to all other nodes in the network. A local broadcasting
scheme only allows a node to send information along single communication links
to adjacent nodes, while a line broadcasting scheme allows nodes to use paths of
several communication links to call distant nodes. Local broadcasting is not in general
sufficient to allow broadcasting to be completed in [log n] phases, the minimum time
possible for broadcasting in a network of n nodes when no node is involved in more
than one communication at any given time; line broadcasting is always sufficent. An
optimal line broadcasting scheme is a minimum time scheme that uses the smallest
possible total number of coinmunication links. In this thesis, we investigate line
broadcasting in cycles and toruses. We give a complete characterization of optimal
line broadcasting schemes in cycles, determine the exact cost of line broadcasting
in cycles, and develop efficient methods for constructing optimal line broadcasting
schemes 1n cycles and toruses. We conjecture that our torus schemes are optimal.
If minimum-time broadcasting using n — 1 local calls is possible from any originator
in a network, then the network is a minimum broadcast graph. We define minimum
line broadcast graphs, a generalization of minimum broadcast graphs in which we can
complete minimum-time broadcasting using some fixed total extra length. We find
minimum line broadcast graphs for small n, and find several important families of

minimum line broadcast graphs.

i



Acknowledgements

This research was supported by Postgraduate Scholarships awarded by the Natural
Sciences and Engineering Research Council of Canada.

I would like to thank Simon Fraser University and the School of Computing Science
at Simon Fraser University for the first rank education they have given me, first as
an undergraduate and then as a graduate student. Special thanks go to my seunior
supervisor, Joseph Peters, for his unwavering support and voluminous help. | wish
to thank him for his patience and cooperation during the final two years of my M.Sc.
program as I worked full time on completing undergraduate Physics in preparation
for my Ph.D. Thank you to my supervisor Arthur Liestman for his assistance and
encouragement, and for his help while Joe Peters was on sabbatical. [ would also
like to thank Arthur Farley for having laid the groundwork in the fascinating arca of
my research, for his early help, and for agreeing to be my external examiner. Thank
you to Thomas Shermer and the entire examining committee for their lively and
interested examination and for quickly giving me their suggested corrections. Thank
you to Kersti Jaager for her masterful handling of the administrative end of the
thesis submission and the graduation procedures, and for her daily help as Graduate
Secretary in Computing Science.

Finally, I would like to thank my family for their encouragement and lor the way

they have supported my decisions.

This thesis is dedicated to the memory of Reynard Olav Kane (1940-1988.)

v



Contents

Abstract

Acknowledgements

1 Introduction
1.1 Overview. . . . . v v i v i
1.2 Definitions . . . . . . . . . . . ... ...
1.3 The Cost Model . . . . . ... ... ...
1.4 OQutline of the Thesis . . ... ... ...

Line Broadcast Schemes in the Cycle

21 Overview. . .. .. ... .. .. .....
2.2 Properties and Examples . . . . . . ...

2.3 Nestedness, Flatness, and Fullness . . . .
2.3.1 Nestedness. . .. ... ......
232 KFatness .. ............
233 Fullness .. ............

................

................

................

................

2.3.4 Sufliciency of Nestedness, Flatness and Fullness . . ... ...

2.4 Construction and Analysis of Optimal Cycle Schemes . . . . .. . ..

2.4.1  Analysis of Optimal 2%-cycle Schemes . . . .. .. ... ...

2.4.2 Alternate Procedure for Creating Cycle Schemes . . . . . . . .

24.3 The Elimination Method for Cycles
2.4.4 Embedding Conjecture . . . . . .

...............

i

v

0O CT s = e



3 Line Broadcast Schemes in the Torus 36

3.1 Overview . . . . . . . e e e e e e 36
3.2 The Product Method . . . . . . .. .. ... ... ... ... .. ... 33
3.2.1 Description of the Product Method . . . . . .. .. ... ... 38

3.2.2 Analysis of the Product Method . . . . . .. .. .. ... ... 40

3.2.3 Other Uses of the Product Method . . . . ... .. ... ... 41

3.2.4 The Elimination Method for Toruses . . . . .. .. ... ... 47

3.2.5 Other Methods for Producing Torus Schemes . . . ... ... 54

4 Minimum Line Broadcast Graphs 57
41 OVEIVIEW . « « v i i e i i e i e e e e e e e e e 57
4.2 Minimum Line Broadcast Graphs . . . . . ... ... ... ... ... 58
43 Vartantson MLBGs. . . . . . . . . . . . L oo 65

5 Further Work 67
5.1 Ordering of Call Lengths . . . . . . . ... ... ... ... ...... 67
5.2 (Qeneralizations of the Cycle Properties . . . . . . ... .. ... ... 69
5.3 Lower Boundsinthe Torus. . . ... ... ... ... .......... 69
Bibliography 70

vi



List of Figures

1.1 Partial ordering of call length sets . . . . .. .. .. ... .......
21 Cycleschemes . . . . .. ... ... e
2.2 Layers of the 32-cycle scheme . . . . .. ... ... ... ... ...,
23 Nestedness . . . . . . . . . o i e e
24 Crossedcalls. . .. ... ... ...

2.5 Directionsof topcalls. . . . . ... ... oo oo
2.6 Contiguous bottom schemes . . . . . . ... ... ... ... ... ..
2.7 A recursive construction of optimal cycle schemes . . . .. . ... ..
2.8 Labelled recursive constructions . . . . .. ... ... .. . L.

2.9 Gray code labels and indices for 16-cycle scheme . . . . . . . . .. ..

3.1 5 x5 and 6 x 6 local broadcast schemes . . . . ... ... ... ...
3.2 The product method for the4d x4 torus . . .. ... ... ... ...
3.3 The product method for the 8 x 8 torus . . . . . . . ... ... ...
3.4 Line broadcast scheme froin product method for the 8 x 8 torus . .

3.5 Adapting the product method for the 7T x 6 torus . . . . . . .. . ..
3.6 Adapting the product method for the 4 x 8 torus . . . . . ... ...

3.7 Why the optimal 5 x 5 scheme must wrap around . . . .. ... ...

.8 A naive plan for the 5 x5torus . . . . .. ... ..o oL
3.9 Tilingthe 10 x 10 torus . . . . .. ... .. . . oo
Fny=0forn<3 ... . ... .

2 OFA)=1 . . e e

vil



4.3
4.4
4.5
4.6

3.1

F(8) <3 . . o 62
ES(n,L),3<n <80 L<3 L0 6:1
Schemes for a memberof x(8,1) . . . . ... ... ... 61
Linecallordering . . . . . . . . .. . ... ... 63

viii



Chapter 1

Introduction

1.1 Overview

In broadcasting, information known by one informed processor, the originator, is
transmitied to all other nodes (processors) in a communication network. In local
broadcasting, an informed node may use one of its communication links to call an
adjacent node during any given time unit, or phase. In line broadcasting, an informed
node may call any other node; the communication path used by the call contains all
of the communication links on some simple path between the two nodes, and no link
is used in more than one call in a given phase.

When no node is involved in more than one communication at any given phase,
the minimum number of phases in which broadcasting can be completed in a network
of n nodes is [logn]! phases, since there is one originator and the number of informed
nodes can at most double at each phase. It is not possible, in general, to inform
all nodes in a network in minimum time using local broadcasting, but Farley [9] has
shown that there is a minimum-time line broadcasting scheme for any originator in
any connected network. The question that we address in this thesis is how much
line broadcasting is needed to complete a minimum-time broadcast from an arbitrary

originator in a given graph?

LAll logarithms in this thesis are base 2.
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A broadcasting scheme for a network of n nodes requires n —1 calls. Furthermore,
n — 1 calls are sufficient because each node only needs to receive the information
once. We can therefore refer to the broadcast tree of a broadcasting scheme; the
originator is the root of the tree. If minimum-time broadcasting using n — 1 local
calls is possible from any originator in a network, then the network is a broadcast
graph. During the last 15 years, considerable effort has been devoted to the discovery
of minimum broadcast graphs (broadcast graphs with the fewest possible links) and to
the construction of sparse broadcast graphs. (See [1] for a comprehensivestudy of this
subject.) Unfortunately, situations in which a network can be designed to be optimal
for a particular communication pattern such as broadcasting are rare. Usually, the
tdpology ol the network is determined by other factors and the task is to use the
network as ‘cfficiently’ as possible. '

One approach to designing broadcast schemes in fixed networks is to use only local
calls and then try to minimize time (e.g., the number of phases) or some other measure
- of cost. If the network uses store-and-forward routing, then thisis the only possible:
approach since all communications are local. (See [12] for a recent survey of I'ésczar(:l'x
in this area.) If the network supports some form of civ‘cuit-szuiiclze(l routing, tlﬁen a
second possible approach is to insist that one of the parameters, such-as the number
of phases, is optimized, and then try to minimize some other measure of cost. Usuall ¥,
this other measure is total time to complete the broadcast taking into account other
factors such as switching time at intermediate nodes and transmission rates of links.
(A recent example of this approach is {17].) | ‘

In this thesis, we will take the somewhat different approach of minimizing the total
amount of ‘equipment’ used to accomplish minimum-time broadcasting. In particular,
we will minimize the total number of communication links used (i.e., the sum over
all phases of the number of links used in each phase). A simple example whcré this
approach could be useful is the distribution of electronic news on the Internet. At
one time, most of the network used telephone lines and most sites were only willing
to devote one modem to the net-news. The cost of distributing news depended on the
amount of data and on the distance that it was sent. The elapsed time of a phene call

to send a particular piece of news is essentially independent of distance travelled, so it
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makes sense to talk about phases of a broadcast. Assuming that network news readers
want their news as quickly as possible, the cost of providing news over a telephone
network depends on the total amount of equipment used. In other words, it depends
on the long distance telephone charges and these are proportional to the total distance
travelled. While the current technology of the Internet involving high-speed trunks
and dedicated lines is much more sophisticated, the model still has validity.

We are aware of only three papers on the subject of line broadcasting: the original
paper by Farley [9], an unpublished manuscript by Almstrom [3], and [11]. The main
result in Farley’s paper is a constructive proof that minimum-time line broadcasting is
possible in any tree (and hence any connected network). Farley analyzes his construc-
tion and shows that an upper bound on minimum total length (total number of links
used) for broadcasting in minimum time in any network with n nodes is (n—1){log n].
In this paper, we show that for the cycle with n = 2* nodes, the optimal total length is
asymptotically 1/3 of Farley’s upper bound. The bound also holds for 2*~! < n < 2*;
however we describe exact costs for such intermediate values of n. Farley notes that
no tree with n > 3 nodes can be a minimum broadcast graph. He discusses finding
trees with » nodes which allows the least maximum total length (over all originators,)
and discusses MBTs (minimum broadcasl trees), trees in which at least two nodes
can originate a minimum time local broadcast, to find an upper bound on the least
maximum total length. In path broadcasting, calls in a given phase must be link and
node disjoint. Farley describes path broadcasting in linear networks, which are cycles
with one link removed. In this thesis we show that optimal line broadcasting in cycles
is actually path broadcasting. Almstrom studied a restricted type of line broadcast-
ing on networks that consist of a single path of processors (i.e., a one-dimensional
grid). Almstrom’s restriction is a constant upper bound on the length of line calls.
Farley’s results are also mentioned in [11] in a discussion of broadcast, accumulation,
and gossip.

A problem closely related to ours, embedding, has received considerable attention.
(See [16] for a survey.) Our problem is to find a constrained embedding of a broadcast
tree into a graph representing the interconnections of a network. The vertices of the

broadcast tree are mapped to network nodes one-to-one and edges of the broadcast
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tree are mapped to paths in the network. The reason our problem is a ‘constrained’
embedding is because the calls in any phase must use edge-disjoint paths. There is
no published literature on this type of embedding problem. Furthermore, broadcast
trees are subtrees of binomial trees and we are not aware of any relevant literature
on embeddings of binomial trees. An embedding of a tree into a cycle can also be
described as a numbering of the vertices of the tree. We mention a paper on numbering
by Tordanskil [15] in the chapter of this thesis on line broadcasting in cycles.

In this thesis, we investigate line broadcasting in networks using a model in which
broadcasting must be completed in [logn] phases and the optimization measure {or
cost) is the total number cf links used during the broadcast. We first determine the
exact cost of minimum-time line broadcasting in cycles, give a complete characteri-
zation of optimal line broadcasting schemes in cycles, and develop efficient methods
for constructing optimal line broadcasting schemes. We then use these results to
construct what we believe are optimal minimum-time line broadcasting schemes for
toruses. Finally, we investigate minimum line broadcast graphs, graphs with n nodes
in which a minimum-time broadcast can be completed from any originator, and which
use the fewest possible total number of communication links for a given exztra length.

The succeeding sections of this introduction contain definitions and a discussion of
our choice of cost model. The discussion of line broadcasting in cycles is in Chapter 2,
the discussion of toruses is in Chapter 3, and the discussion of MLBGs is in Chapter
4. Chapter 5 contains various shorter results of relevance to further work in line

broadcasting, and suggests possible directions for further work.

1.2 Definitions

In this thesis we will model communication networks as graphs in which nodes rep-
resent processors and edges represent communication links. We will use a mixture
of standard graph theoretic terminology and network terminology when discussing
broadcast trees, broadcast schemes, and networks. A broadeast tree describes the set
of calls made in a broadcast. Any broadcast tree that describes a minimum-time

broadcast with n nodes, 257! < n < 2%, has as a subgraph the directed binomial tree
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with 2%-! nodes and is a subgraph of the directed binomial tree with 2* nodes; the
broadcast tree and the two binomial trees have the same root, the originator. Each
level of a broadcast tree corresponds to a phase of a broadcast. The phase of the
root of a broadcast tree is 0 and the deepest phase is [logn]. A broadcast scheme
is an embeddiné of a broadcast tree with n nodes into a network with n processors.
Since the mapping of the nodes of a broadcast tree to the processors of a network
By a broadcast scheme is one-to-one, we will often find it convenient to use node to
refer to processors. Since the correspondence between edges of a broadcast tree and
communication links of a network is not one-to-one in all broadcast schemes, we will
use link when referring to physical links in a network and edge or call when referring
to broadcast trees.

A broadcast scheme always uses a total of at least n — 1 links since each of its
n — 1 calls uses at least one link. In line broadcasting, some of the n —1 calls may be
local calls which use one link. In this thesis, scheme will always mean line broadcast
scheme. Calls which use A > 1 links are line calls. A line call contributes extra length
A —1 to the total length of a broadcast scheme. Thus, the total length of a scheme is
always total extra length plus n —1. A minimum-time broadcasting scheme is a scheme

that has [logn| phases.

1.3 The Cost Model

We can answer the question “how ‘much’ line broadcasting is needed?” in several
ways. We can give the minimum total length or minimum total extra length needed.
We could also find a scheme that uses the fewest number of line calls, or a scheme in
which the longest line call is the shortest possible among all schemes. We could also
give a set of solutions. For example, for some originator in some graph with n nodes

it may be that the following two solutions work:

1. 3 calls of length 2 and n — 4 local calls.

2. 2 calls of length 3 and n — 3 local calls.

Given the above solutions, we would not consider the following a solution:
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3. 3 calls of length 3 and n — 4 local calls.

Let us imagine an example graph with 9 nodes; 8§ calls are required in any broadcast
scheme for the graph. Let us say that the call length set of a broadcast scheme is the
multiset of all call lengths in the broadcast scheme. In the following discussion, We
will refer to a broadcast scheme by its call length set; for the moment we are not
concerned with the order in which calls are made or with the source and destination

of each call. We can write the call length set of a scheme of 8 local calls as follows:
{1,1,1,1,1,1,1,1}

Let us assume that local broadcasting does not suffice, that we need at least some

line calls, and that possible solutions are as follows:
1. {3,3,1,1,1,1,1,1}
2. {2,2,2,1,1,1,1,1}

By what criteria is either solution ‘better?’ Solution 1 uses fewer line calls than
does Solution 2. The longest line call in Solution 2 (length 2) is shorter than the
longest line call in Solution 1 (length 3). The total length of all line calls is 6 in hoth
cases. The total extra length is different between the two solutions, however, which

we quickly see if we split up each call into a local call and an extra length:

1. {1,1,1,1,1,1,1,1}
{2,2}

2. {1,1,1,1,1,1,1,1}
{1,1,1}

The total extralength in Solution 1 is 4 while in Solution 1 it is 3.

There are solutions which we would not accept, such as:
3. {3,3,3,1,1,1,1,1}

4, {3,2,2,1,1,1,1,1}
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By any reasonable evaluation scheme, Solution 3 is worse than either Solution 1
or Solution 2. Solution 4 is clearly worse than Solution 2, although it is not neces-
sarily worse or better than Solution 1. So, there is at least a partial ordering among
solutions; depicting the ordering among Solutions 1-4 above as a digraph on their call

length sets, in which an arrow points to a worse solution, gives figure 1.1.

(1. {3,3,1,1,1,1,1,1}) 2. {2,2,2,1,1,1,1,1})

A

Y
(3. {3,3,3,1,1,1,1,1}H4. {3,2,2,1,1,1,1,1})

Figure 1.1: Partial ordering of call length sets

The most complete sel of ‘best’ solutions would include every set of calls that
has no predecessor in the ordering. The ordering could be described by a partial
relation as follows: given two call length sets A and B, place the elements of A
into a non-increasing sequence < dn_1,an—2,8n-3, ... a3, a2, a1 > and the elements of
B into a non-increasing sequence < b,_1,b,_3,b,_3,... b3,b2,b) >. Then A < B iff
bj—a;>20,7=1... n—1,and b; > q; for some j, j=1... n —1.

We may chc;ose a particular cost model for line broadcast schemes because of
some practical consideration, such as the cost associated with a line call in an actual
application. For example, if we are interested in finding minimum broadcast schemes
for networks in which all local calls have more or less the same fixed cost and in which
all line calls have more or less the same fixed cost, greater than the cost of a local call,
we may prefer schemes which use the fewest line calls. Or, it may be the case in our
network of interest that the cost of a line call increases rapidly with the extra length,
in which case we may prefer schemes which use as many ‘short calls’ as possible.

A simple assumption that is perhaps often reasonable in practical terms is that

all units of extra length have the same associated cost. Qur cost model is then total
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extra length or total length of the line broadcast scheme; we would prefer line broad-
cast schemes which minimize the total extra length. As a problem in combinatorial
mathematics and graph theory, this cost model is compelling and elegant, and fiud-
ing lower bound in various networks may require ingenious use of results from graph
embeddings, topology, combinatorics and other disciplines. This choice of cost maodel
also allows a complete solution to the line broadcasting problem in the cycle. In our
investigations, we will concern ourselves mainly with the metric total extra length.
We will say that an optimal line broadcasting scheme for a particular originator is
a minimum-time scheme rooted at the originator with minimum total extra length.
We will say that a particular graph requires, or that a graph and originator require, or
that an originator in a given graph requires a certain total extra length to mean that
any minimum broadcast scheme for the graph or for the graph and the originator or
for the originator in the given graph must have at least that total extra length. We
may also write simply ‘extra length’ to mean ‘total extra length’; our meaning will

always be clear from the context.

1.4 Outline of the Thesis

In Chapter 2 we discuss line broadcasting in cycles. We give a complete characteriza-
tion of optimal line broadcasting schemes in cycles, determine the exact cost of line
broadcasting in cycles, and develop efficient methods for constructing optimal line
broadcasting schemes in cycles. The results in this chapter are the most complete of
any in the thesis and are the most significant contributions made in this thesis. The
proof of the optimality of our cycle schemes is very interesting because despite the
fact that the cycle schemes in Figure 2.1 look as though they should be optimal, the
proof is subtle and the order of its arguments is critical - first nestedness, then flat-
ness and the unused link, and only then contiguity and fullness. The discovery of the
nestedness propérty was initially unexpected and whether the properties of optimal
cycle schemes generalize in a useful way to other graphs is an interesting open prob-
lem. The main open problem after the present research on cycles is whether and how

general results on embeddings into linear networks simplify or relate to the present
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results.

Chapter 3 contains the discussion of line broadcasting in toruses. We develop
efficient methods for constructing optimal line broadcasting schemes in toruses. One
method is the product method; it produces schemes for toruses whose numbers of
rows and columns are powers of 2. We conjecture that torus schemes produced by
the product method are optimal. Another method is the elimination method for
toruses; it produces schemes for certain toruses whose numbers of rows and columns
are not powers of 2. A third method produces schemes for certain other toruses; this
third method tiles a torus with another, possibly ad hoc, scheme. Finding a tight
lower bound on total extra length required in the torus is the main open problem in
toruses after the present research. It is apparently a tough problem and all the more
interesting becausé the product method schemes seem so obviously optimal. We have
suggested various ways of tackling this problem; our suggestions are in Chapter 3 and
in Chapter 5.

In Chapter 4 we discuss minimum line broadcast graphs (MLBGs.) If minimum-
time broadcasting using n — 1 local calls is possible from any originator in a network,

‘then the network is a minimum broadcast graph. An MLBG is a generalization of
~ a minimum broadcast graph in which we can complete minimum-time broadcasting
using some fixed total extra length. We find MLBGs for small n, and find several im-
portant families of MLBGs. This chapter outlines problems to be solved and presents
some preliminary results. One problem to be solved is to find and characterize other
families of MLBGs. Another problem is to find the minimum total extra length L, for
each number 7 of nodes in the graph, at which any graph with n nodes is an MLBG,
given L. There are probably many new failies that can be found without much
work, and the search for still others may challenge the researcher to use a variety
of mathematical methods. Still another problem is posed in our conjecture that a
minimum broadcast iree (MBT) is a ‘best’ tree to use to minimize total extra length
needed by any originator.

Chapter 5 contains various shorter results of relevance to further work in line

broadcasting, and suggests possible directions for further work.



Chapter 2

Line Broadcast Schemes in the

Cycle

2.1 Overview

In this chapter, we investigate line broadcasting in cycles. We determine the exact
cost of minimum-time line broadcasting in cycles, give a complete characterization
of optimal line broadcasting schemes in cycles, and develop efficient methods for
constructing optimal line broadcasting schemes. The basis of our results is a set of
three properties of broadcast schemes - nestedness, flatness, and fullness. We prove
that these three properties are both necessary and sufficient for optimality.

Sufficiency is established by showing that all flat, nested, full schemes with n
nodes have the same cost. The cost is found by analyzing one particular method for
creating flat, nested, and full schemes for cycles with 2* nodes, k¥ > 0, and then usiug
the fullness property to adapt these schemes to other cycles. The proofs of necessity
and sufficiency appear in Section 3 of this chapter. The cost analysis and methods
for constructing optimal schemes are in Section 4. In Section 2, we discuss several
examples of optimal schemes to introduce terminology and to give an informal and
intuitive overview of the proofs in Sections 3 and 4.

We mentioned in the introduction that an embedding of a tree into a graph can be

described as a numbering of the vertices of the tree. In particular, an embedding of a

10
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tree into a linear network or a cycle can be viewed as one-to-one and onto mapping of
the integers in [1, n] into the n vertices of the tree. The total length of the embedding
is the sum over each edge in the tree of the difference of the labels of the endpoints of
the edge. An optimal embedding corresponds to a minimal or min-sum numbering.
Tordanskii [15] investigates the maximum min-sum among all trees with a fixed degree
bound. He appears to use a concept similar to one which we develop in this chapter,
the concept of layers. He also seems to have a concept similar to our concept of
contiguity and concepts similar to consequences of our concept of nestedness. His
results are less restrictive than ours, because they do not involve our constraint that
the embeddings of calls in a given level of the tree are edge-disjoint. His results appear
te be correct, but {15] contains little in the way of proofs or detailed discussion, and

we have not been able to find proofs or detailed discussion of his results elsewhere.

2.2 Properties and Examples

We will refer to a scheme as a triple S(G,T,®). G(V,E) is the target graph of the
embedding. T(V,C,u) is the broadcast tree, where C is the set of calls (edges) of T,
and u is the root of T'. @ is the embedding. It maps each call in C to a simple path in
G. It is understood that ¢ maps the endpoints of calls consistently with the structure
of T. When we write about a subscheme S'(G',T",®') of S(G,T,®), we will mean
that G’ is a subgraph of GG, T is a subtree of T', and ®’ is a subset of ®. When we use
the term subtree without modification, we will inean that paths in the subtree extend
out to include leaves of 7. We will sometimes refer to phases, nodes, calls, paths or
subtrees of S; we will always actually be referring to T'.

When P is a path in T, we will write P® to mean the connected path induced in
G by the embedding of P. P?® is not necessarily simple; it may fold on itself, and
it may ‘wrap around’ the cycle and overlap itself, although in an optimal scheme no
such overlap can occur, as we will see later on. There is a connected, undirected,
path o in the cycle which contains all the nodes on P® and exactly all the links on
P?_ ¢ is exactly the cycle if P® wraps around the cycle. In an optimal scheme, o

will be simple. We wiil refer to o as the segment of P or of P®. Since ® preserves
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the connectedness of T', any subtree 7' of T must also have a corresponding segment
(extending the term in the obvious manner.) When S’ is a subscheme of S, we can
write about the ‘segment of S’ with obvious meaning. We will say that S’ is contiguous
if its segment contains only nodes of S’.

Figure 2.1 shows several schemes on cycles. Parts (a), (b), (¢), (d), and (f) of the
figure show schemes for 4, 8,16, 32- and 64-cycles, respectively. Parts (e) and (g) show
schemes for 22- and 55-cycles. Nodes are shown as black dots, and calls as arrows
or short lines. Links of the cycle are not shown. In particular, the link connecting
the leftmost and rightmost node in each part is not shown; that link is not used
by any call in any of the schemes shown (although nothing in the definition of line
schemes prohibits the use of that link.) The number under a node is the phase at
which the node is informed; the originator is informed at phase 0. An arrowhead on
a call, if present, shows the direction of the call. This is not really necessary since the
receiver of the call is always informed later than the sender. The 4-cycle scheme in
part (a) appears repeatedly in the other schemes as a subscheme, and when it does,
the arrowheads are omitted to reduce clutter.

Each scheme is shown in two ways; the first shows the nodes all on one line, and the
second shows one path in the scheme laid out flat and the rest of the scheme hanging
below that path. The phases and positions of nodes on the cycle are the same in the
two representations. The total extra length of any call shown is exactly the number
of nodes which is under the call (this is best scen in the first representations.)

The schemes in Figure 2.1 are all minimum-time schemes, which can be verified by
examining the phases at which nodes are informed. They are also all opti.nal, as we
will prove in later sections. We will introduce the proof informally here by pointing
out some features of the schemes which optimal schemes would intuitively seem to
require. The most basic of these features are three independent properties which we
call nestedness, flatness, and fullness. Nestedness and flatness are properties of the
embedding; fullness is a property of the broadcast tree. The proof of optimality is
based on a demonstration that the three properties are necessary and sufficient for
optimality.

The first representation suggests one accounting method for total cost. Each link
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Figure 2.1: Cycle schemes
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¢ of the cycle is used by some number y(f) of calls in the scheme, where y(£) is the
congestion of £, The sum of the congestions of all links is the total length of the
scheme. We will develop and use a less obvious accounting method, one which allows
us to prove the necessity of fullness. From the same schemes, we note that calls are
nested; later calls are shorter and stay under earlier calls, and calls never cross. Thus,
for any pair of calls, either one of the calls is completely under the other, or the calls
don’t share any links. (We will also talk of nodes and links being under a call with
obvious meaning.) It seems that a scheme that is not nested would have unnecessary
congestion. One consequence of nestedness is that there must be one link of the cycle
that is not used by any call. Intuitively, this unused link makes sense; if there is no
unused link, then the broadcast tree must be embedded in such a way that it wraps
around the cycle and overlaps itself. We will prove that a shorter scheme without
wrap-around is always possible.

In the second representations, we see that a top path of calls has been laid out
flat. It can be seen that every link of the cycle but the unused link is on the top
path, and that the rest of the scheme is completely under the top path. Turther
examination reveals that removal of the top path leaves a set of subschemes, which
we call bottom schemes, and that each bottom scheme has a flat top path. Removal
of these top paths from bottom schemes gives sub-subschemes, and so on. (Examine
the subscheme structure of the originator in parts (f) and (g) for example.) Thus,
it appears that we can decompose a scheme into layers by repeatedly removing the
flat top paths of subschemes. The top path of the entire scheme forms layer 0 of the
scheme, the set of top paths of the subschemes that remain after layer 0 is removed
constitute layer 1, and so on. Figure 2.2 shows the layers of the 32-cycle scheme.
We give the name flatness to the property of a scheme that its layers are embedded
flat into the cycle. This property is reasonable, because the less a scheme is Holded
up’ on itself, the less congested it is. The layer structure turns out to be a precise
property of the broadcast tree. We also notice that at each layer, the bottom schemes
are contiguous in the cycle; paths in different bottom schemes do not cross. This
property is a consequence of nestedr.ess and allows us to show that there is a recursive

optimality to any optimal cycle scheme.
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(a) n =32
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(c) layer 1
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Figure 2.2: Layers of the 32-cycle scheme



CHAPTER 2. LINE BROADCAST SCHEMES IN THE CYCLI 16

It certainly appears that we want the shallower layers of a scheme to be as full as
possible (i.e., there are as many calls as possible at layer 0, then layer 1 is filled, and
so on). If the shaliow layers are not full, then there may be another scheme in which
shallower layers are full, so that in place of a call in the former scheme which was
under, and so, ‘stretched out’, p other calls, there is in the new scheme a call which
is under fewer than p calls. We use the term fullness to refer to this third desirable
situation in which shallower layers contain as many calls as possible.

Further examination of the first representation in parts (a), (b), (¢}, (d) and ()
reveals that an optimal scheme for a 2¥+!-cycle can be produced from a 2f-cycle
scheme by placing two mirror image 2*-cycle schemes beside each other and joining
their originators with a line call. Studying these parts of the figure again, we notice
a second recursive method for creating the schemes; a scheme for a 2*-cycle can be
described as a modified scheme for a 2! cycle, in which two new nodes have been
added to the center of the top path, and each of those two new nodes made the root of
a bottom scheme which looks exactly like an optimal 2¥=% cycle scheme. We use this
second recursive method to find the total extra length of all optimal schemes with 2%
nodes, and also to determine the maximum possible number of calls in each layer of
a scheme with n nodes, 21 < n < 2%,

The 22-cycle scheme shown in part (e) is an adaptation of the 32-cycle scheme, with
the deepest layer entirely removed and some of the calls in the next layer removed.
The nodes which those calls informed in the 32-cycle are also removed from the cycle,
thus shortening some calls (examine, in the first representations, how the number
of nodes under some calls changes from the 32-cycle scheme to the 22-cycle scheme.
These calls are deliberately drawn the same way in the two schemes to emphasize the
obvious correspondence between a node, call or phase in the 22-cycle scheme with
the node, call or phase directly above it in the 32-cycle schemne. Similarly, the 55-
cycle scheme shown in part (g) is an adaptation of the 64-cycle scheme with some
of the deepest layer calls removed. Qur proof that this elimination method produces
optimal schemes when the number of nodes is not a power of 2 is based on the fullness
property of optimal schemes, and the analysis of the method is based on our knowledge

of the maximum possible number of calls in each layer. We note that to produce, for
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example, an optimal 13-cycle scheme, we couldn’t just continue eliminating deeper
layer calls from the 32-cycle scheme, because the top path would then be too long.
A minimum-time scheme for a 15-cycle uses 4 phases whereas the top path of the

32-cycle scheme in part (d) requires 5 phases.

2.3 Nestedness, Flatness, and Fullness

In the first three subsections of this section, we prove that nestedness, flatness, and
fullness are necessary properties of optimal line broadcasting schemes on cycles. In

the fourth subsection, we show that these three properties are sufficient for optimality.

2.3.1 Nestedness
Definition 1 (Nested) A broadcast scheme S is nested if no call of S passes through
an informed node.

Lemma 1 Fvery optimal cycle scheme is nested.

Proof: Assume S is an optimal scheme that is not nested. Then some call cin S goes
through an informed node w, as shown in Fig. 2.3, part (a). (In the figure, dashed

lines indicate paths of one or more links.) Since every link between u and v is used by

Figure 2.3: Nestedness

¢, w cannot originate a call while ¢ is being made. A cheaper scheme is possible by
letting w, instead of u, inform v, as shown in Fig. 2.3, part (b). Thus, a non-nested
scheme cannot be an optimal scheme. a

We note that nestedness is a property of the embedding.
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Definition 2 (Under) Let ¢ and d be two calls in a scheme for a cycle with ¢ # d.
Then d is under c if every link which is used by d is also used by c. Also, a node v
s under ¢ if v is not the sender or receiver of ¢ but ¢ goes through v, and a link € is

under ¢ if ¢ uses £.

It follows immediately that a node is under a call only if the call has total length
greater than 1 and, in a nested scheme, only if the node is informed after the sender
and recelver of the call. In a nested scheme, the calls ¢ and d in Definition 2 can
never cross; either ¢ and d use disjoint sets of links (but may share one node if it is
the sender of both calls) or one call is under the other. The only other possibility is

that each call uses a link which the other does not, as shown in Fig. 2.4. Since ¢ and

Figure 2.4: Crossed calls

d share an edge, they cannot occur in the same phase. Furthermore, an endpoint of
d, = in the figure, is under ¢, and an endpoint of ¢, v in the figure, is under d. If d
occurs first, then z is informed before ¢ occurs and nestedness prohibits ¢. Similarly,
if ¢ occurs first, then nestedness prohibits d. One consequence of this result is that
optimal line broadcasting in the cycle is actually path broadcasting; calls in the same
phase cannot share any links and cannot share either sender or receiver. Thus, they
must be link and node disjoint.

Nestedness implies some other useful properties. Assume S is a nested cycle
scheme. Let P,, be the directed path in S from node u to node v, and let o,, be the
segment of P,,. Note that u is the first informed node on P,,, so by nestedness, no
call on P,, either informs u or goes through u. It follows that one of the links incident

on u is not on o,,; this establishes the following property:

Property 1 The segment of a directed path in a nested cycle scheme is stmple.
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Furthermore, each node on o, 1s either u or a descendant of u in S. To see this,
suppose that node z is neither v nor a descendant of w in 5. Then, u cannot be
the originator # of S. Also, 0 is under no call of 5, by nestedness. Thus if z is on
Ouyy then the path from # to z, which contains no node on P,,, must contain a call ¢
whose sender is on neither o,, nor P,,, which goes through a node on P,,, and whose
receiver 1s on o, but is not on P,,. The receiver must be under a call d on P,,; ie.,
¢ and d cross.

Assume that z has an ancestor w in 5. Let P, be the path in S from w to z, and
let o, be the segment of P,,. Assume that w is not a descendant of u (but allow
that w may be u.) Then no node on P,, is a descendant of u; It follows that no link
ON Oy 1S O Oy Oyy and oy, have in common at most their mutual endpoint u (in
case T is u.)

Now arbitrarily assign the directions ‘left’ ancd right’ in the cycle. If P is a simple
path in S that begins at 8, and o is the segment of P, then by the above discussion,
6 is an endpoint of o. Thus we can unambiguously say that o is to the left or to the
right of 8. Let X, (¥g) be the set of all such segments which are to the left (right) of
0. Let o1, (oRr) be the longest (ie., in links) path in ¥y (£g). Then every link used by
S is under either o, or or. By the above discussion, # is the one and only node shared
by or and o, aud o, and og share no links. It follows that some link £ on the cycle
is under neither path, so there is a link in the cycle which S does not use. However,
¢ is the only such link; otherwise, since o, and og together form a connected path in
the cycle, there would be some node which S does not inform. Thus there is ezactly
one unused link. Also, the term between is unambiguous in S; its reference frame is

the segment of 5.

Property 2 Let S be a nested scheme on a cycle. Assume u roots a subscheme S,
of S, w roots a subscheme S, of S, u is not in Sy, and w is not in S,. Then the

segments of S, and S, share no links in the cycle.

To see this, let v be a node in S, and = be a node in S,,, and assume that both v and
x are between u and w. Let 0y, (0wz) be the segment of Py, (P,.). By the above

discussion, oy, and o,, share no links, and since each is connected, v is between u



CHAPTER 2. LINE BROADCAST SCHEMES IN THE CYCLE 20

and z, which proves that P,, and P, do not cross. Note that w may be a descendant

of u in S or vice-versa.

2.3.2 Flatness

Let T(V,C,u) be a broadcast tree with n nodes. We will say that ¢ € C is a top call
or layer 0 call of T if it is the first or second call made by w« or if it is the first call
made by a node which was itself informed by a top call. The node u, and any node
informed by a top call of T, are top nodes of T. The top path or layer 0 path of T is
the simple path in T" whose edges are the top calls of T'. The set of top calls of 1" is
layer 0 of T. The node u is the root of the top path of T'. If ¢ € C' is not a top call of
T, then c is a bottom call of T'. Let B be the set of subtrees we obtain by removing
layer 0 of T' (no nodes, just calls, are removed.) B is the set of layer 1 or bottom trees
of T. All the above definitions apply Lo any layer 1 tree 7' of T', since T” is also a
broadcast tree. 'The top path of T is a layer [ path of T. Any call on T' is a layer
1 call of T. The set of all calls on all layer 1 paths of T' is layer 1 of T. When we
remove layers 1 and 2 of T, we obtain another set of subtrees of 1", the layer 2 trees
of T. Continuing, we see that each call in ¢ belongs to exactly one layer, say p, of
T, and is a layer p call. The definitions of layer p tree, layer p path, layer p call, and
layer p all follow by the obvious extensions.

We will agree to say that layer p is in T only if there is at least one layer p call in
T. If layer p is not in 7', then there are no layer p + 1 trees and so, no deeper layers.
Thus, the layers of T are exactly all layers from 0 to ¢ ~ 1 for some ¢, the number of
layers of T'. We will say that P is a layer path of T if it is a layer p path of T" for some
p, 0 < p < ¢— 1. We also note that an end node of a layer path is either the root of
the path or a leaf of T'. So, if there are calls on a layer p path, then there is at least
one leaf node of T on the path; we call the leaf a layer p leaf. Thus, there are layer p
calls in a scheme only if there are layer p leaf nodes in the scheme.

A layer structure is a property of a broadcast tree. When we write about the
layers of a scheme, we will actually be referring to the layers of its broadcast tree.

We will use the term bottom scheme to refer to a subscheme whose broadcast tree is
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exactly some bottomn tree of the broadcast tree.

The next property, flatness, is a property of an embedding.

Definition 3 (Flat) Let S be a cycle scheme. Let P be a simple path in S. P is
embedded flat when

o if a node on P makes two calls on P, then the two calls are embedded in opposite

directions into the cycle.

® if a node on P makes a call on P and receives a call on P, then the two calls

are embedded in the same direction into the cycle.

S s flat if each layer path of S is embedded flat.
Lemma 2 The top path of an optimal cycle scheme is embedded flat.

Proof: Let S be the scheme. First, let u be the root of the top path; u is the
originator of the S. Referring to Fig. 2.5, part (a), assume that u calls v at phase 1
and that the next call by u is at phase ¢ > 1 to w, such that w is under the call from
u to v. As illustrated in part (b), we can obtain a cheaper scheme by making w the
originator and having w call v at phase 1 and then u at phase ¢ (note that nestedness
prohibits the sort of situation shown in part (c).)

Next, assume that u is not the root. Referring to Fig. 2.5, part (d), assume that
v calls v at phase t, that u’s first call ¢, at phase s, say, is to w, and that w is under
the call from v to u (note that by nestedness, u cannot call through v.) As shown in
part (e), we can obtain a cheaper scheme by having v call w at phase ¢ and having w
call u at phase s.

In each of the cheaper schemes, each of u,v,w can make the same set of calls,
other than the ones shown, that it did in S it is informed no later, and is sending or

receiving calls at no other phases, than it was in S. a

Lemma 3 If S is a nested scheme on a cycle, and S’ is a bottom scheme of S, then

S’ is contiguous.

Before proving the lemma we first establish a property of all schemes.
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Figure 2.5: Directions of top calls

Property 3 If S is a scheme, u is a top node of S,and S’ is the bottom scheme of u
in S, then u has two neighbors on the top path of S if there are calls in 5.

To see this, first assume that u is the root of the top path. Then only w’s third and
later calls are bottom calls. Otherwise, u is informed by a top call and only u’s second
and higher calls are bottom calls. If u makes no bottom calls, then u is the only node
in S’ and S’ contains no calls.

Proof of Lemma: By Property 3, if u is the root of S’ = S, (G, Tu(Vi, Cu, v), ®u),
then u has a neighbor v and a neighbor w on the top path of S. Either u calls
v and w, or v (say) calls u and u calls w. Consider the first case, in which u
calls both v and w; wu is the originator of S. Referring to Fig. 2.6, part (a), let
Su(Gy, Ty(Vy, Cyyv), ®,) be the total scheme of v (the largest subscheme of S which
v roots,) and S, (Gy, Tw(Va, Cuw, w), ®,) be the total scheme of w. Then u & V,,V,,
and v,w ¢ V,. By Property 2, no node or call in S, or S, is closer to u than any
node or call in S,. Since the three subschemes account for all nodes and calls in S,
S, must be contiguous. The other case is similar. We define S, and S, as before, but
now v is either the originator of S or is between the originator and u on the top path

of S. In either subcase, S, is S without the call from v to u and without the total
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Figure 2.6: Contiguous bottom schemes

scheme of u. Fig. 2.6, part (b) shows the subcase where v is not the originator. In
either subcase v € V,,,V,,, and v,w € V,,, and we can apply Property 2 as before. M

The previous lemma leads to two more results. Let S(G, T, ®) be a nested scheme
whose top path P is embedded flat. By Lemma 2 and Property 1, the induced path
P? is simple. Let u be any top node of S and let S, be the bottom scheme of u in
S. By Property 3, there are calls in S, only if u has two top node neighbors. These
neighbors, and u, are informed before any descendant of u in S, so by nestedness, no

call in S, goes through u or those neighbors. This discusssion establishes the following

property:

Property 4 If S is a nested scheme and the top path of S is embedded flat, then no
top call of S is under any other call of S and each bottom call of S is under exactly
one top call of S.

We can now see that if S = (G,T(V,C,u),®) is an optimal scheme, then every
bottom scheme S'(G', T'(V',C',u’), ®') of S is itself usable as an optimal scheme on
a |V'|-cycle. By Property 4 each bottom call of S is under exactly one top call of
S. Since S uses every link of the cycle except for the unused link, its segment is
|V| — 1 links long, regardless of any other detail of the scheme, including any details
of the bottom schemes. But the total cost of S includes the total cost of each bottom
scheme. Now, each bottom scheme is contiguous, so no detail of one bottom scheme

affects the cost of any other bottom scheme. Therefore, each bottom scheme must
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‘look like’ an optimal cycle scheme; in particular, its top path must be embedded flat.
Repeating the argument recursively, we see that S will have to satisfy Definition 3.

So, we have proved the following lemma.
Lemma 4 Every optimal cycle scheme is flat.

Flatness and nestedness are completely independent properties, despite the fact
that proof of Lemma 2 involves the nestedness of an optunal scheme. A top path
can fold on itself (ie., not be embedded flat) and yet still obey nesting. On the other
hand, two bettom schemes in a flat scheme can cross and thus violate nesting.

We can use any broadcast tree T' to create a flat, nested cycle scheme S(G, T, ®).
First, we lay out the top path P of T' flat and without overlap into a cycle which has as
many nodes as there are top nodes. Next, we replace each node by a contiguous eni-
bedding of the bottom tree rooted by that node; we thus creates the bottom schemes
of S. In the process, we stretch out the initial induced path P? by inserting nodes in
the cycle to the left and right of nodes on P®. The details of the bottom schemes do
not affect the total number of links on the segment of the stretched P?. To determine
the details of the bottom schemes, we simply repeat the entire procedure recursively
for each bottom tree, stopping the recursion when we reach subtrees which contain

no calls.

2.3.3 Fullness

Let S(G,T, ®) be a flat, nested cycle scheme. By Property 4, each bottom call of 5 is
under exactly one top call of S. Now, remove the top path of 5. The bottom (layer
1) schemes are contiguous, by Lemma 3, so no call in one bottom scheme is under
any call in any other bottom scheme. Also, no layer 1 call is under any other call in
the bottom scheme of which it is a top call. Each bottom scheme is flat and nested.
If follows that each bottom call of each layer 2 scheme is under exactly one layer 0
call, one layer 1 call, and no other calls. Continuing, we can see that a layer p call is
under exactly one layer r call, 0 < r < p — 1 and under no other calls. Let ¢ — 1 be
the deepest layer of S. A layer p — 1 call has no calls under it since such calls would

be in a deeper layer than g — 1. Tt follows that layer ¢ — 1 calls are all local calls.



CHAPTER 2. LINE BROADCAST SCHEMES IN THE CYCLE 25

These observations lead to an accounting method for total extra length which
immediately allows us to prove that an optimal cycle scheme has as many calls as
possible at lower layers. Consider removing a layer ¢ — 1 leaf u. More precisely,
remove from T the call ¢ which informs u, and then remove u from the cycle by
merging the links incident on u. We know that ¢ was a local call; removing it from T
saves no extra length. We know that u was under ¢ — 1 calls in T, all of which went
through u and which had extra length > 1. When we remove u from the cycle, we
shorten each of those ¢ — 1 calls by one link. Thus, we have a new cycle scheme with
n — 1 nodes and with exactly ¢ — 1 less extra length. If the original scheme was flat
and nested, then so too is the new scheme; no call that obeyed nesting in the original
scheme now goes through any new, let alone informed, node, and the only change we
have made, if any, to a layer path which was embedded flat in the original scheme is
to shorten it by one call.

Since the new scheme is flat and nested, we can repeat the procedure, performing
it once for each call in the scheme. As we do so, we charge each unit of extra length
exactly once, to one call in the scheme. Thus, we have a method for finding the total
extra length of any flat, nested cycle scheme.

As we have seen, any broadcast tree can produce a flat, nested scheme. Let the
capacity M(n,p) be the maximum size of layer p in some set of broadcast trees on n
nodes. It follows from the preceding discussion that the least expensive schemes in
the set are the ones in which layers are filled in order, with a layer partly full only if

there are no higher layer calls.

Definition 4 (Full) Assume that we have a capacity M(n,p) which is the mazimum
size of each layer p in a set of broadcast trees with n nodes and q layers, 0,...,q—1.
A scheme in the set is full with respect to M if layer r of the scheme, 0 <r < q¢—1
has M(n,r) calls and layer ¢ — 1 has < M(n,q— 1) calls.

We have proved the following lemma.

Lemma 5 Every optimal cycle scheme is full.
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Note that the trivial capacity allows n — 1 calls in layer 0. Any local broadcast
scheme for the cycle is full with respect to the trivial capacity; the scheme has just a
top path and no bottom calls. So, optimality requires extra length only if there is a

nontrivial capacity.

2.3.4 Sufficiency of Nestedness, Flatness and Fullness

Assume that the n-cycle scheme S has ¢ layers numbered 0,...,¢ — 1, and w(n) calls
in layer g — 1. If S is flat, nested and full, then it follows that the total extra length
of S is just

g—2

en) = 3 Mn,p)-p+wn)-(g-1) (2.1)

p=0

Since all nested, flat and full n-cycle schemes have this same cost, they are all optimal;
we have proved that nestedness, flatness and fullness are sufficient conditions for

optimality. Therefore we have proved the following theorem.

Theorem 1 A cycle scheme is optimal iff it is flat, nested and full.

2.4 Construction and Analysis of Optimal Cycle

Schemes

In this section, we completely analyze optimal cycle schemes with n = 2% nodes,
k =0,1,2,..., in the process obtaining enough information to describe the cost of
optimal cycle schemes for all other values of n. We discuss two recursive procedures
for constructing optimal 2F-cycle schemes, and how to use any optimal scheme for a

2%_cycle to create an optimal scheme for an n-cycle, 28 — 1 < n < 2.

2.4.1 Analysis of Optimal 2F-cycle Schemes

Because there is only one minimum time broadcast tree with 2% nodes (the directed

binomial tree with 2% nodes,) to find the total extra length of an optimal cycle scheme
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with 2% nodes, we could simply determine the number of layers A(k), and the size
M(k, p), of each layer p, p = 0,...,A(k) — 1, in the broadcast tree with 2F nodes.
Since, as we saw in Section 2.3.3, we can charge extra length p to a layer p call in a
flat nested scheme, the total extra length is just Zﬁiﬁ)_l M(k,p) - p.

As our notation in the previous paragraph implied, M (%, p) is in fact the capacity
of the set of minimum time broadcast trees with £ phases. This follows from the fact
that a broadcast tree with & phases is simply the broadcast tree with 2* nodes but
with some subtrees removed. If follows that an optimal cycle scheme on n nodes,
2F-1 < n < 2%, is full with respect to the capacity M(k,p) described in the previous
paragraph. We can write M(k, p) instead of M(n,p) since the two are the same if
k=1 < p < 2F, We can determine M (k, p) by arecursive description of broadcast trees
on 2 nodes; the description leads to a recurrence relation which we will solve. We
will not attempt a closed form formula for e(n), the total extra length of an optimal
cycle on n nodes, n > 0. However, once we have M(k, p), e(n) is easily found for any
n via Equation (2.1), using M(k,p) in place of M(n,p). A complete analysis of extra
length is also easier for cycles with 2* nodes, using the same recursive description just
mentioned.

We now determine A(k), €(2¥) and M(k,p) for k& > 0. The trivial cases are k =0
and & = 1, since optimal schemes in these cases are just local broadcast schemes with
1 layer. We determine A(k) in general as follows: the originator makes its first two
calls on layer 0, its next two on layer 1, and so on. Since the originator makes a call
in each phase, there are at least [k/2] layers. Every call in the broadcast tree has a
layer found by removing layers; removing each layer we descend 2 phases further into
the tree, to a maximum of k phases. Thus, there are no more than [k/2] layers, ie.
there are exactly [k/2] layers.

At this point, we take a shortcut to determine ¢(2*); instead of first finding M(k, p),
we directly use the same recursive construction which we will use to find M(k, p). For
brevity, call an optimal scheme on an n-cycle an n-scheme. It is easy to describe the
bottom schemes of a 2¥-scheme. We will say that the originator of a cycle scheme is
a I-node. We will say that any other top node of a cycle scheme is a j-node if it is

informed at phase 7. The originator calls the other 1-node. Each 1-node then calls
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b
o

a 2-node, and next, begins a 2% ?-scheme. The k-nodes make no calls (they are the
ends of the top path.)

In an optimal scheme, each bottom scheme is flat, nested and full. It follows that,
given an optimal 2~ !-scheme, to construct an optimal 2*-scheme we simply lengthen
the top path of the 2*~*-scheme by adding two new nodes to the center of the top
path, and then make each of the two new nodes the root of a 2¥~%-scheme, such that
each of those 25~2-schemes is contiguous. We demonstrate this procedure for & = 4

in Figure 2.7. Following the labelling of the dashed boxes, we see that boxes 1 and

Figure 2.7: A recursive construction of optimal cycle schemes

2 together contribute extra length €(257!), while boxes 3 and 4 each contribute extra
length €(2¥-2) + 252 — 1. The addend 2% — 1 is due to the number of new calls
under the top path. Therefore,

€2F) = @) 422 42— 2k > 1

e2°) = 0

e2') = 0
The solution to the recurrence relation is

€(2F) = %[2"(3&: —8) — (=1)f]1 + 1, (2.2)

which is easily verified by direct substitution. The total length of an optimal scheme
on 2* nodes is then (k) +(2¥—1), which is 1[2%(3k+1) — (—1)*], or just 1[n(3[logn] +
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1) — (—1)Me1]. Farley’s upper bound for total length in any network on n nodes was
(n — 1)[log n]; asymptotically in n, our result is 1/3 of Farley’s upper bound.
Finally, we determine M (k,p). Referring again to Figure 2.7, and arguing much

the same as we just did for €(2*%), we can easily derive the following recurrence relation:

M(0,p) = 0,p2>0

M(1,0) = 1

M(,p) = 0,p>0

M(k,0) = 2k—1,k>0

Mk,p) = M(k—1,p)+2-M(E—-2p—1),p> 0,k >0

The solution to this recurrence relation is

[ k—p-—1 k—p—1
k = 2.2 2.3
e Y o B L | IS

oy (kP k—p—1
:2-_2-(13?)—1]-( ) ) (2.4)

which can be confirmed by substitution.

2.4.2 Alternate Procedure for Creating Cycle Schemes

Next, we give an alternate procedure for creating optimal schemes for the 2*-cycle,
analyze the scheme using a binary reflected Gray code labeling naturally induced by
the procedure, and find that the result of the analysis agrees with equation (2.2). Our
motivation in developing this analysis was the search for a tight lower bound on total
extra length required by the torus. Our hope was to extend the Gray code labelling
which we use here to a 2-part or concatenated labelling of nodes in the cycle, where
the concatenated label is formed from the labels which the node has in the two factor
cycles of the torus (see Chapter 3.) We note that a different and more transparent
determination of the cost of the first line call in a scheme produced by this alternate

procedure appears in Chapter 3 in the analysis of the product method for toruses.
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We begin the procedure by embedding the minimum time broadcast tree with 2*
nodes into the cycle. We find such an embedding in a recursive manner; the embedding
for the 2*-cycle is found directly from the embedding for the 2¥=!.cycle. Figure 2.8
shows the embedding for the 4-cycle and how we use it to produce an embedding for
the 8-cycle. In the figure, we omit the links in the cycle; we assume that there is an
link in the cycle between nodes which are adjacent in each picture, and betweeu the

leftmost and rightmost nodes.

11 «—00— 10— 01

Gray code labelling of 4-cycle scheme

11 «+—10<+—00—01 01 <—00—10—11

Mirror image 4-cycle labellings

e —x
011 <010 <000 —001 101 <100 —~110 —~111

Gray code labelling of 8-cycle scheme
Figure 2.8: Labelled recursive constructions

For the 4-cycle, we first label the nodes as shown, where the node labelled (00)
is the originator. For this discussion, we will use the shorthand “(00) calls (10)” to
mean, for example, that the node labelled (00) calls the node labelled (10). In the
scheme for the 4-cycle, (00) calls (10) at time 1, and then at time 2, (10) calls (11)
while (00) calls (01). Given a scheme for the 2¢7!-cycle, we find a scheme for the
2*_cycle as follows: we first place two 2%~ !-cycles side by side, with the labellings of
the cycle on the right being a mirror image of the labellings of the cycle on the left,
and with the nodes labelled (0...0) as close together as possible. Our description is
somewhat informal here, but Fig. 2.8 makes clear by example what we have in mind.
Note that in the third picture in the figure, if we transposed the two 4-cycles, the
two nodes labelled (00) would be further apart. We make a 2%-cycle from the two
2%~1_cycles, in the obvious manner, assuming that any pair of adjacent nodes share

a link and that the rightmost and leftmost nodes share a link. We then relabel all
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nodes, prefixing the labellings of nodes which we took from one of the 2¥~!-cycles
with 1 and the labellings of the remaining nodes with 0. We produce a line broadcast
scheme for the 2*-cycle by having (0...0) call (10...0) in the first time unit of the
scheme, and then having each of those two nodes begin the scheme for the 2¥~1-cycle.

The procedure described above produces a scheme on k phases for the 2* cycle,
since the first phase of the scheme uses one call to begin two subschemes on £ — 1
phases. If we show that the procedure described above produces a flat, nested, full
scheme, then by Theorem 1 we will show that the scheme is optimal, and, since it is
on k phases, that it is an op*irual minimum-time scheme. However, we will analyze
the extra cost of the scheme in a different way, arrive at exactly the extra cost given
by equation (2.2), and thus prove that the scheme is optimal. The labelling of the
nodes in the cycle is exactly a binary reflected Gray code as described in [7], p. 173.
We can explain a node’s label (g ... 1) as follows: for each node, there is a ‘chain’ of
calls leading from the originator (labelled (0...0)) of the scheme to the node. The bit
91,1 <t <k, isalif and only if some call in that chain was made at phase k —¢+1
of the scheme. For example, the originator is labelled (0...0) because its chain is
empty, while the most far-flung node is labelled (1...1) because its chain contains a
call made in every phase of the scheme. We will use this observation later.

Obviously, with the Gray code labelling, the length of a call from the node labelled
G(r) to the node labelled G(s) is |r — s|. From [7], p. 176, we have that if G(b) is
(gk.-.g1), and b is (be—_1 ... bg)z2, then

by = i gm (mod 2),0 <t <k (2.5)
m=t+1

Now, sender and receiver are always Hamming distance 1 apart. In fact, it follows

by a simple inductive argument that if a node is first informed at phase #,0 < ¢ < k,
then bits g; to gi—; in the label (gi...g;) of the node are all 0’s, and that ‘the node
complements’ each of those 0 bits, one at a time, in order from left to right, to ‘get
the label’ of the node to call next. For example, if n = 4, the node labelled (1000) is
informed at phase 1, and it then calls (1100) at phase 2, (1010) at phase 3 and (1001)
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at phase 4. So, we have

G(S) = (gk o Gi410gic1 - 1)
G(r) = (9. -gix1lgiz1 ... q0)

Now, referring to Equation {2.5), we have b; being the same for G(r) and G/(s),t > 1.
Since G(r) and G(s) differ in only in cne bit, if follows from (2.5) that the b’s avc
complements, for ¢ < 7. To illustrate this, Fig. 2.9 shows a detailed example for 16
nodes (k = 4,) which shows the portions of the binary representations of s and r

which are complements of each other (by enclosing those portions in [ ].)

phase | G(s) —=G(r) | s —r § —T
(dec.) (binary)
)| 0000 1000 | 10 —05 | [1010] —[0101]
) | 0000 —0100 | 10 —13 | 1[010] —1[101]
1000 —1100 | 05 —02 | 0[101] —0[010]
3) | 0000 —0010 | 10 —09 | 10[10] —10[01]
1000 —1010 | 05 —06 | 01[01] —01[10]
0100 —0110 | 13 —14 | 11{01] —11[10]
1100 —1110 | 02 —01 | 00[10] —00[01]
4) | 0000 0001 | 10 —11 | 101[0] —101[1]
1000 —1001 | 05 —04 | 010[1] —010[0]
0100 —0101 | 13 —12 | 101[1] —101[0]
|
]
|
|
]

1100 —1101 | 02 —03 | 001[0] —001[1]
0010 —0011 | 09 —08 | 100{1] —1000]
1010 —1011 | 06 —07 | 011[0] —011[1]
0110 —0111 | 14 —15 | 111[0] —111[1]
1110 —1111 | 01 —00 | 000[1] —000[0]

Figure 2.9: Gray code labels and indices for 16-cycle scheme

If we let B(t) be the length of the calls made in phase k — 1, or equivalently, the
length of the longest call in the scheme for the 2!-cycle, then we have A(t) = |r — s|, if
the call is between nodes with labels G(r) and G(s). Clearly, f(0) = 0, and examining
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the example of Fig. 2.9, we see that

p) = (1)2—(0)2 = ()
/3(2) = (10)2 —(01)2 = (01)2
B(3) = (101);—(010), = (011),
A(4) = (1010); — (0101); = (0101),

Consider the label of the first sender, G(s) = (gk...¢1) = (0...0). From (2.5),

by = 0
k
bk—l = Z y.;; (mod 2) =1
m=k
k
bi—z = Y. Tm (mod2)=0
m=k—1
and by induction,
0, teven
by = ’ 2.6
. {1, ¢ odd (2:6)

Thus, s is of the form (1010...101) if k£ is even and (1010...10) if k is odd; r is of the
form (0101...0) if £ is even and (0101...1) if & is odd. So the length of the first call is

given by the binary number

(01)%/2, k even
k) = 2.7
Ak) { (01)*-D/21 " k odd, (27

the exponents meaning string concatenation. In general, 4(0) = 0 and
Ak) = Bk~ 1) + (-1)* (2.8)
The solution to this recurrence relation is
B(k) = [2* -~ (-1)"]/3. (2.9)

I we let a(k) be the extra length of the first call made in the scheme for the 2*-cycle,
then «(0) = 0, and
alk) =12 - (=DF|/3=1,k>0 : (2.10)
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Then, the total extra length €'(£) for the scheme for the 2*-cycle is given recursively

by
(k) = 0 k=0 (2.11)
2-€(k=1)+a(k), k>0.

The solution to this recurrence relation is equation (2.2), ¢(2¥). So, the cycle schemes

produced by this alternate procedure are optimal.

2.4.3 The Elimination Method for Cycles

In Section 2.3.2, we described creating a cycle scheme on n nodes by creating a top
path and then creating the bottom schemes. We can use this method to create optimal
minimum time schemes on n nodes, 2°°! < n < 2¥ making sure that the broadcast
tree is the rooted binomial tree on 2% nodes, with some subtrees removed. An alternate
method is to simply create an optimal scheme on 2F nodes, using, for example, one
of the recursive procedures described in the previous section, and then eliminate the
most expensive calls in the scheme until we have n —1 calls left; we call this procedure
the elimination method. We begin with a flat, nested, full scheme with 2* nodes and
k phases and remove, in the manner discussed in Section 2.3.3, a deepest layer leaf
node. We continue removing leaf nodes until we have removed a total of 2¥ —n nodes.
As argued in Section 2.3.3, removing the leaf nodes preserves nestedness and flatness,
and the resulting scheme is automatically full, so by Theorem 1, the scheme is an
optimal minimum time scheme. The cost of the scheme is easily obtained by using
Equations (2.1) and (2.3) and noting that there are [k/2] layers in the flat, nested

and full scheme with 2% nodes.

2.4.4 Embedding Conjecture

We feel, partly on the basis of the apparent similarity of some of lordanskii’s results
to ours, that the conjecture we present in this section is correct. We first discuss
the difference between unconstrained embeddings of tree into linear networks and the
embeddings used in our cycle schemes (a linear network is a cycle or a path.) In an

unconstrained embedding, an undirected, unordered tree is embedded. In creating
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our cycle schemes, we embed a broadcast tree into the cycle. The tree is directed
and has a level-ordering; each node in the tree has a level which is the phase, of the
scheme, at which the node is informed. Each edge in the tree, which represents a call
in the scheme, can also be assigned a level, which is the level of the node which the
call informs. Given this assignment, we can describe a constraint on our embeddings
* which 1s imposed by the edge-disjointedness feature of the line broadcasting model; no
pair of calls at the same level can be embedded into the cycle so that their embeddings

share a link.

Conjecture 1 An optimal cycle scheme S(G,T,®) with n nodes has the same total
length as the optimal unconstrained embedding of the undirected version of the broad-
cast tree T into the cycle with n nodes or into a linear network with at least n nodes,

where the unconstrained embedding maps nodes of the tree one-to-one.



Chapter 3

Line Broadcast Schemes in the

Torus

3.1 Overview

We now look at a constructive approach to finding upper bounds on total extra length
required by the torus. We do not have a good lower bound. A torus is like a grid -
graph, in which each node is connected to its neighbors to the north, south, east, and
west, except that the torus ‘wraps around’ north-south and east-west. Note that the
torus is vertex-transitive. We will refer to a torus as an m X n torus to mean that it
has m rows and n columns. An m x n torus can also be described a a product of an
m-cycle and an n-cycle. We will sometimes refer to a torus scheme as a product of
two cycle schemes, with an obvious meaning.

It is straightforward to complete local broadcasting in minimum time in small
toruses. Figure 3.1 shows minimum local broadcast schemes for the 5 x 5 torus, in
part (a), and the 6 x 6 torus, in part (b). When showing an m x n torus scheme in
a figure, we will show a node by a number indicating the phase at which the node
is informed, or sometimes, by a 2-part Gray code labelling. Arrows will point from
source nodes to destination nodes (the arrowheads are redundant since the sender is
alway informed before the receiver.) We will generally omit the edges between nodes

to keep figures simpler, with the understanding that each node is connected to its

36
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neighbors to the north, south, east, and west, and that the torus wraps around north-
south and east-west. Note that both the 5 x 5 and the 6 x 6 torus schemes are local
broadcast schemes. Also note that the 5 x 5 scheme wraps around one dimension of
the torus; by this we mean that the scheme could not be drawn within a 5 x 5 grid.
We prove in Section 3.2.4, there is no local scheme for the 5 x 5 torus which does not

wrap around the torus.

6 6 T T 6 6
L4 5 5 5 5"—| b+ 14 4 4 4— 5

P RN
— 3 4 3—*= 4 b fe—3+— (Q—> |—>3—>5

4
T T Y Y

2+— 1+— (—>4—> 5 b4+— 3+ 2 2—*=3— 5

1 Y l l Y Y l
4 3 2—* 4—* 5 b+ 4 4 4 4— 5
b N
5 4 3—> 45 6 6 5 5 6 6

(a) (b)

Figure 3.1: 5 x 5 and 6 x 6 local broadcast schemes

We now show a weak lower bound and an upper bound for total extra length
required by an m X n torus. To set a lower bound, first observe that the diameter of
an m X n torus is {m/2| 4+ |n/2]. In both a 4 x 4 and a 5 x 5 torus, the diameter
is 4. So, the shortest path from the originator to the most distant point in the
torus is |m/2| 4+ |n/2| edges long. Since we have [log(mn)] phases in which to
complete broadcasting, we require at least |m /2| + |n/2] — [log(mn)] extra edges to
reach that most distant node, when |m/2| + |n/2] > [log(mn)]. In a 9 x 9 torus,
lm/2] + [n/2] = 8. [log(mn)] = [log(9-9)] = 7. So, the 9 x 9 torus requires extra
length of at least 1.

To show an upper bound, we present the product method, which produces schemes
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for the 2¢ x 2* torus from the scheme for the 2*-cycle.

3.2 The Product Method

3.2.1 Description of the Product Method

Figure 3.2 shows how we use the product method to produce a line broadcast scheme
for the 4 x 4 torus. Part (a) shows a 4-cycle scheme labelled with the Gray code
labelling described in Section 2.4.2. We begin with the labelling because we feel that
it may suggest a lower bound analysis in future work. Part (b) shows the 4 x 4 torus
as the product of two labelled 4-cycles. In the figure, we show each cycle with its line
broadcast scheme. The labelling of each node is the concatenation of the node’s label
in one cycle of the product with its label in the other cycle of the product (we show
the two components of each label offset.) Second, we choose a subset of the calls in
the schemes. The originator is the node whose label is all 0s. We begin by choosing
the first call from the scheme for one of the component cycles of the product; in the
figure, we choose the call from 0000 to 0001. At each subsequent step, we choose,
for each informed node, the next call from the scheme for the alternate cycle. For
example, the second choice is the two calls 0000 to 0100 and 0001 to 0101. Part
(c) shows the resulting line broadcast scheme for the 4 x 4 torus, with phases shown
instead of labellings.

In the generalization of the method to the 2¥ x 2* torus, we produce the product of
two 2*-cycles and select calls from the line broadcast schemes for the two component,
cycles. The originator is the node whose label is all 0s. The first call we choose 1s the
first call from the scheme for one of the component cycles. At step p =0,2,4..., we
make, for each informed node, the call which that node would make at step p/2 in the
line broadcast scheme for the one component cycle, while at step p = 1,3,5,..., we
make for each informed node the call which that node would make at step (p — 1)/2
in the line broadcast scheme for the other component cycle. In the 2F x 2¥ {orus, the
product method amounts to alternating at each step between the two dimensions of

the torus (with the choice of call determined by the line broadcast scheme for the
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11 +—01<+—00—10

(a)
11 11 11 11
11 ~— 01 =— 00 — 10 4 4
f f f f ] ‘
01 01 01 01
11 <+— 01 =<+— 00 —/ 10 3 — 9
f f f f ‘
00 00 00 00
11 <— 01 =— 00 — 10 3 - 1 ~
} } ! ! 1
10 10 10 10 \
11 <-— 01 -<— 00 — 10 4 4
(b) (c)

Figure 3.2: The product method for the 4 x 4 torus
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2¢_cycle.)

Figures 3.3 and 3.4 illustrates the production of an 8 x 8 torus scheme by the
product method. Figure 3.3 part (a) shows the labelled 8-cycle scheme, and part (b)
shows the 8 x 8 torus as a product of two 8-cycles, along with the line broadcast
schemes for each cycle. Figure 3.4 shows the line broadcast scheme for the 8 x 8 torus

which results froin choosing calls as described above.

3.2.2 Analysis of the Product Method

The extra length used by the product method is given as follows:
Claim 1 For the 2% x 2F torus, k > 2, the product method uses total extra length
1
£(2F) = 5[4k + (=11 =28 41, (3.1)

Proof: For the 4 x 4 torus, £ = 2, and the total extra length is 0 (see Fig. 3.2);
setting k£ to 2 in Equation (3.1), we obtain

l[4’“+(—1)k‘1]—2‘°+1 = %[42+(-—1)2*1]—22+1

5
= —;—[16—1]—4—}-1
— 3_441
)

So, the formula is correct for ¥ = 2. Assume that the formula is correct for k, and
define D(j) as the total extra length of the first three calls in the scheme for the 2/ x 2/
torus. Then, £(28+!) = 4.£(2¥)4 D(k+1). The first call in the scheme for the 2% x 2*
torus is the first call in the scheme for the 2*-cycle; the second and third calls are also
the first call in the scheme for the 2*-cycle, though in the torus they are made in the
other dimension than the one in which the first call was made. The formula for D(k)
is 28 — 3 + (—1)*"!, which we show as follows: the extra length p(k) of each of the
first three calls for the 2% x 2* torus is given by p(k) = (2% — 3 4 (=1)¥"1)/3, as we

show in a moment. Then, 3 times p(k) is D(k) as given. To show thal the formula
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Figure 3.3: The product method for the 8 x 8 torus



CHAPTER 3. LINE BROADCAST SCHEMES IN THE TORUS

I
T T
fETT o
LLLE_,Z j_j_j,#:
b |
EEEEEEN

Figure 3.4: Line broadcast scheme from product method for the 8 x 8 torus
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for p(k) is correct, we define x(k) as the number of cycle edges between the originator

and nearest end node of the 2*-cycle scheme. It is easy to see that

z(0) = 0

(1) = 0

z(2) = 1

2(3) = 22T ~2(3-1)-1
= 4-1-1

{l
N

z(4) = 2¥ 124 -1)—1

= 2—2(3)-1
= 8-2-1
= 5,

and that in general,

The solution to this recurrence relation is z(k) = (2¥*1 — 3 + (—=1)%)/6.

It is also easy to see that

p(0) = 0

p(l) =0

p(2) = 0

p3) = 2-z(3-1)
= 2-2(2)
= 2.1
= 2

p(4) = 2-z(4-1)
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and that in general,

p(k) = 2-2k-1)
= (2" =3+ (=13

As expected, this result agrees with the Gray code analysis of the length of the first

call in a 2%-cycle, as given in Section 2.4.2. Thus,

EM) = 4. £+ Dk +1)
— 4(%[4k+(~_])l.—1]_2k+ 1)+2k+1 __3+(_1)(k+1)vl

= %[4"+1 — 4 (1] =22 g 2R g (1)

1 . . :
1

— ~[4(k+]) + (__1)(k+1)-—1] __ 2(k+1) + 1

5 1
and the result is proved by induction. O
For the 2¥ x 2* torus, then, the total length is £(2%) + (2% — 1), which is 1[4* +
(=1)¥71, or simply i[n + (—1)M°e"17!], since the number of nodes n is 2% - 2¢ =
4*. Farley’s upper bound for total length is (n — 1)[logn], so our upper bound is

asymptotically 5[log n] times smaller than Farley’s upper bound.

3.2.3 Other Uses of the Product Method

We can use the schemes produced by the product methed to generate schemes for
‘odd-sized’ toruses, by rounding up the dimensions of the torus to a powrr of 2 and
using the result for that power of 2. For example, suppose that we have a ¥ x 6 torus.
We have an upper bound for an 8 x 8 torus from the product method, and since a 7x6

torus ‘fits’ into an 8 x 8 torus for the purposes of the product method, we can simply
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Figure 3.5: Adapting the product method for the 7 x 6 torus

Figure 3.6: Adapting the product method for the 4 x 8 torus
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use the scheme used for the 8 x 8 torus but without making calls that the 7 x 6 torus
doesn’t ‘require’; see figure 3.5. Figure 3.6 shows a scheme for 4 x 8 torus. Results
for m x 2m toruses can be used as upper bounds for m x n toruses where n < 2m.

We can let k = [log max(m,n)| and use the product method. So, we can establish
an upper bound for any m and n. We can easily improve this bound in several ways.
First of all, we can discount some extra edges when m is not a power of 2. If we refer
to figure 3.5, and imagine that the torus were actually of size 7-4* x 6. 4% &k > 0,
then the outlined area in the figure would actually contain line calls which the 7 x 6
scheme would not include and which we could discount. There are, however, better
ways to choose the calls to ‘ignore’, as discussed in the next section.

We can also use the product method to directly generate schemes for 2% x 2!
toruses; we find the schemes for the 2*-cycle and 2/-cycle and in selecting calls, we
first broadcast only in one dimension until we have a set of ‘square’ toruses in which
to complete broadcasting. Assuming j > k, we first complete a 2/~*-cycle scheme and
then do (j — k) copies of the 2F x 2* torus scheme in parallel.

We can also consider other graphs which can be described as products; in produc-
ing schemes for such graphs, we begin by finding schemes for each component of the
product. We are not restricted to binary products; if a graph is a product of é factors,
we begin by finding a scheme for each of the é factors. For example, we can easily
find schemes for all é-dimensional cycles (where a torus is a 2-dimensional cycle.)

Our experience with the product method leads us to make the following conjecture.

Conjecture 2 The product method (with its extensions as just described) produces
optimal schemes for all é-dimensional cycles, 6 > 1, where the number of nodes in

each factor cycle is a power of 2.

The hunch behind the conjecture might be described as an intuition about the
‘orthogonality’ of a product. The conjecture is true for 6 = 1; in that case we
have cycles, and will reproduce our optimal cycle schemes of Chapter 2. 1t might
be instructive to try to find optimal schemes for 2% x m toruses, for 1 < m < 6.
The product method schemes in these cases use exactly the extra length used by

an optimal 2*-cycle scheme, because a local broadcast scheme suffices for the second
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(‘m’) dimension when 1 < m < 6. It seems compellingly obvious that the addition of
the second dimension in these cases does not allow us to use less extra length than we
used in the 2*-cycle; perhaps the proof of this restricted result could be generalized to
allow m to also take on the values 8,16,32,.. ., as in the conjecture. If the conjecture
is correct, then it probably generalizes to m X n toruses for less restricted values of
‘m and n. However, it cannot be true for unrestricted m and n, as we discuss in the

next section.

3.2.4 The Elimination Method for Toruses

In Section 2.4.3 we described an elimination method for cycles. The method involved
removing the costliest calls from an optimal 2*-cycle scheme to produce an optimal
scheme for any other value of n, 2¥=! < n < 2. In this section, we describe an
elimination method for toruses. This method involves removing the costliest rows
and columns of calls to leaf nodes from a 2% x 2* torus to produce a scheme for an
m X n torus, where m,n < 2. The method can be generalized to 2% x 27 toruses,
but for simplicity we will deal only with 2* x 2* toruses. The present aim is not to
produce optimal schemes for general m x n toruses, as we produced optimal schemes
for general n-cycles. We should not expect to do so, since we have not proved the
optimality of the 2¥ x 2* torus schemes. We will instead systematically describe the
construction of m X n torus schemes for some values of m and n, discuss for what
values of m and n the constructions are valid, and present some results which could
lead to an analysis of the cost of schemes produced by the method.

An example of this method is producing the 6 x 6 scheme from the 8 x 8 scheme.
Comparing Figé. 3.3 and 3.1, we see that if we remove the middle two columns and
middle two rows of the 8 x 8 scheme, we remove all extra length from the scheme
and produce exactly the 6 x 6 scheme. However, we now argue that there is no way
to produce an optimal 5 x 5 scheme by eliminating rows and columns from a larger
product method scheme. Every optimal 5 x 5 scheme wraps around the torus in one
dimension. But no ‘wrap-around’ can involve all leaf nodes in one row or column,

or else the wrap-around is not actually a wrap-around, just a ‘shift’ of the entire
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scheme by one column. A shift does not change the scheme, since the torus is vertex-
transitive. But no product method scheme wraps around, so producing from such a
scheme another scheme which wraps around would require removing only part of a
row or column and leaving the rest; the elimination method does not do this.

To show that every optimal 5 x 5 scheme wraps around, we try to construct a local
broadcast scheme which does not wrap around. Finding such a scheme is equivalent
to finding a suitable originator in a 5 x 5 grid graph and then finding a local broadcast
scheme for the graph and for that originator. There is no such originator, however.
If we examine the grid graph in Fig. 3.7, part (a), we note that only the 5 candidate
originators in the cross-shaped are within 5 links of each of the four circled nodes in
the corners of the grid. Thus, only those 5 originators could possibly reach each of

the corner nodes in the 5 available phases using only local calls. Up to isomorphism,
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Figure 3.7: Why the optimal 5 x 5 scheme must wrap around

there are only two distinct originators in the cross-shaped area; we examine these two
originators in parts (b) and (c). A local scheme beginning at the originator shown
in part (b) cannot inform both of the labelled corner nodes in 5 phases. Fach corner
node is 5 links from the originator; the path of local calls which informs either node
must be 5 links long, and no node on the path can ‘delay’ before making its call on
the path. However, a single such path cannot inform both nodes; there must be two
such paths (although the two paths may share some links.) If we select one of the

two nodes to inform by such a path, then at some node on that path, a ‘delay’ of one
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phase must occur before the second path is started; the delay may occur as ‘early’ as
at the originator, in which case the two paths share no links. Thus the node which
we did not select cannot be informed by phase 5. A ‘failed’ example subscheme is
shown. A local scheme beginning at the originator in part (c) cannot inform all four
of the corner nodes in 5 phases. Each corner node is 4 links from the originator and
cannot be informed before phase 4. The first call by the originator informs a node
that is closer than the originator to only two of the corner nodes, in adjacent corners
of the graph. Thus the other two corner nodes are ‘delayed’ by one phase; neither of
those latter two nodes can be informed before phase 5. At some phase after a call
is made that is closer than the originator to one of those two latter nodes, a further
call must be made that again delays one of those two latter nodes; that twice-delayed
- node cannot be informed by phase 5. Again, a ‘failed’ example subscheme is shown.

There is another limitation on the use of the product method, which we illustrate
with the 8 x 8, 6 x 6 and 5 x 5 schemes. The number of nodes in the 8 x 8 torus is
64, which is 26. Therefore, the broadcast tree of a (minimum time) scheme for the
8 x 8 torus has 6 phases. The 6 x 6 torus has 36 nodes, while the 5 x 5 torus has
25 nodes. Now, 2° < 36 < 25, so the 6 x 6 broadcast tree has 6 phases. However
25 <25, so the 5 x 5 tree has only 5 phases. This fact does away with a naive plan,
illustrated in Fig. 3.8, to produce an optimal scheme for the 5 x 5 torus. In part (a),
we create an optimal 8-cycle scheme, in part (b) we use the elimination method for
cycles to produce an optimal 5-cycle scheme, and then in part (c) we produce a 5 x 5
torus scheme as the product of these two 5-cycle schemes. The resulting scheme has
6 phases, which is too many. At any rate, the scheme does not wrap around, and as
we have seen, no such 5 x 5 scheme is optimal.

In general, the plan takes an optimal m-cycle scheme and an optimal n-cycle
scheme and produces a scheme for the m x n torus as the product of the two cycle
schemes. The plan works in many cases. For example, if we examine the 8-cycle
scheme in Fig. 3.8 again, we can see that by eliminating the leaf nodes under the
long call, we obtain an optimal 6-cycle scheme. If we then examine the 6 x 6 scheme
in Fig. 3.1 again, we can see that it actually is the product of two 6-cycle schemes.

The plan will not work when [log(m - n)] is less than [logm] + [logn], as is the case
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Figure 3.8: A naive plan for the 5 X 5 torus

when m and n are both 5. The problem in such cases is that all [logm] phases are
retained in one dimension and all [logn] phases in the other dimension, whereas one
phase must be lost in the torus because the total number of nodes has dropped below
Im-n.

So, we will restrict ourselves to values of m and n where

[log(m - n)] = [logm]| + [log n] (3.2)

We note, however, that we could eliminate two more rows and two more columns from
the 6 x 6 scheme and arrive at the 4 x 4 scheme; we would first eliminate the two outer
rows of leaf nodes and then the two outer columns of leaf nodes left after eliminating
the rows. However, this exercise is not particularly revealing; to satisfy (3.2), we have
had to eliminate all leaf nodes from the scheme with which we began, because all of
those leaf nodes were informed in the last (and now ‘illegal’) phase.

Our results on the cost of schemes produced by the elimination method are pre-
liminary. We restrict ourselves to the case where we only eliminate some rows of leaf
nodes. We draw a distinction between rows and columns of a scheme. If we examine
the 4 x 4 scheme in Fig. 3.2 and the 8 x 8 scheme in Fig. 3.4, we note that the

first call in the scheme is in one dimension of the torus, and that the next two are
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in the other dimension. With the way we have chosen to select calls from the factor
cycle schemes, we can see that this distinction between the two dimensions continues
recursively; the four 4 x 4 subschemes in the 8 x 8 scheme all have the same feature,
and the dimension in which the single call occurs is the same at all levels. We will
define the rows of the scheme as the factor cycles which cross the double calls. That
way, when we eliminate a row, we will shorten more calls than if we were to eliminate
a column, which always only goes through the single calls.

The reason we have chosen to restrict ourselves to row eliminations is that elim-
inating both rows and columns complicates the analysis. For example, assume that
we first eliminate some rows. What this does is to shorten some columns. This means
‘that we cannot independently analyze the cost of eliminating the columns as though
they had been removed first.

The elimination method for toruses is similar to the elimination method for cycles
in one respect. We described the elimination method for cycles as repeated removal
of leaf nodes from a cycle scheme. We will describe the elimination method for the
torus as removal of rows of leaf nodes from a torus scheme. For example, consider
producing a 6 x 8 scheme from the 8 x 8 scheme shown in Figure 3.3; we eliminate the
middle two rows of leaf nodes. We could eliminate the outer two rows of leaf nodes,
but we would not save any extra length that way, so the resulting scheme could not
be optimal. We also note that in the 4 x 4 scheme in Fig. 3.2, 2 out of the 4 rows
are rows of leaf nodes. Since the 4 x 4 scheme is the ‘building block’ of all 2% x 27
schemes, it follows that exactly half of all the rows in any such scheme are rows of leaf
nodes. A similar feature holds for cycle schemes, and can be seen to account for the
feature in the torus; exactly half of all leaf nodes in a 2%-cycle scheme are leaf nodes,
since the number of informed nodes doubles in the last phase and all nodes informed
in the last phase must be leaves of the broadcast tree. The reason this feature of
the cycle accounts for the feature in the torus is that the rows of leaf nodes in the
torus correspond to the leaf nodes of the ‘second’ dimension of the cycle (the direction
chosen second as calls are selected from the factor schemes.)

Our investigation is an attempt to determine the cost distribution of the rows of

leaf nodes. When we eliminate a leaf node, we shorten all the calls which that leaf is
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under. As in Section 2.3.3 on cycles, this suggests an accounting method for the cost
of calls in a torus scheme. In particular, we are trying to find an accounting method
for the cost of local calls which are parallel to columns of the scheme. We note that not
all calls informing the leaf nodes of a row have the same cost. For example, consider
Fig. 3.4. Only two of the calls informing leaf nodes in a middle row are under the
long calls of the scheme; it is the elimination of these two calls thal saves extra length.
The situation becomes more complicated for larger toruses. Two calls will be under
the ‘topmost’ long calls; four will under the long calls at the next step of recursion,
and so on, where a step of recursion is defined as the first three calls, ie. the splitting
of a grid of the torus into four subgrids. Out of those latter four calls, only fwo will
be under the long calls at both of the first two steps of recursion.

There should be a recursive description of the situation, analogous to the recursive
description used to find €(2¥) and M(k,p) for cycles in Section 2.4.1. We have not
developed this description yet. However, it should provide a distribution, a set of total
costs of rows and the frequency of occurence of each cost. In principal, this distribution
tells us the cost of the cheapest scheme we could produce by the elimination of rows
of leaf nodes; we simply eliminate as many of the costliest rows as we can, then as
many of the next costliest, etc. It is also possible that a description of this sequence
could lead to insights regarding a lower bound on cost for the 2% x 2* torus,

What we have done is to find by ‘brute force programming’ the total extra length
of each row of leaves in the 2% x 2* torus and looked for patterns. The patterns appear
to be generalized Fibonnaci sequences. The number of cost values is F(k), the kth
Fibonnaci number. For k = 4, the rows of leaves come in three possible total extra
lengths: 0,2, and 4 (F(4) = 3.) For k = 5, the total extra lengths are 0,2,4,8,10
(F(5) =5.)
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For any value of k, the possible extra lengths are simply each of the first F(%)

values of the folowing sequence, multiplied by 2:

0,1,2,4,5,8,9,10,16,17,18,19,20,21,32,33, 34,36,37,40,
41,42,64,65,66,68,69,72,73,74,80,81,82,84,85,128, ...

This series is actually composed of successively longer pieces, where piece 0 has length
I, and piece 7 has length F(r), r > 0. Piece 0 is (0); piece 1 is (1), piece 2 is (2);
to get piece r, v > 2,

1. take piece r — 1 and add 272 to each member.
2. Then, take piece r — 2 and add 27! to each member.

Appending the second piece to the first gives piece r. Note that piece r — 1 has length
F(r—1) and piece 7 —2 has length F(r —2), so piece r has length F(r — 1) +F(r—2),

which is F(r) as desired. Here is the sequence again, with the pieces bracketted:

piece 3
I
(0),(1),(2),(4,5),(8,9,10),(16,17,18,20,21),
(32,33,34,36,37,40,41,42) ,
(64,65,66,68,69,72,73,74,80,81,82,84,85), (128, ...
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Now, each cost occurs a certain number of times. eg., for & = 4, the possible
costs are 0,2,4; 0 occurs 2 times, 2 occurs 2 times, and 4 occurs 4 times (total of all
occurrences is 8, which makes sense since there are 8 rows of leaf nodes in the 2% x 2!
torus.) The occurences are described by another series, which looks like this (already
bracketted:)

(2) s (2) 3 (4) L] (4,4) 2 (4!4’8) 2 (4,4,8’818) 2
(4,4,8,8,8,8,8,16),...

The length pattern is the same as in the previous sequence; piece r has length F(r).
To obtain piece r,r > 2, we take piece 7 — 1 and append to it piece r — 2 with all
elements of piece r — 2 multiplied by 2. There is no other factor dependent on & for
this series; we just take the first F(k) elements for the 2 x 2* torus. Element r of
this sequence is the number of occurrences of the rth cost in the cost sequence.

We have not developed a formula which generates the rth element of either se-
quence. We have made a further observation, however. We described a cost sequence
for the 2% x 2¥ torus as 287! added to the first F(k) elements of the ‘base’ sequence

0,1,2,4,5,8,9,10,..., (%)

which is composed of the pieces (0),(1),(2),(4,5),(8,9,10),..... We note that
the rth piece of the base sequence, r > 0, is 27! added to the first F(r) elements of

the base sequence, the zeroth piece being (0).

3.2.5 Other Methods for Producing Torus Schemes

The product and elimination methods cannot produce optimal schemes for all toruses.
The first example we noted was the 5 x 5 torus. Qur optimal 5 x 5 scheme can itself
be used to produce larger schemes. We can simply use it to tile a larger torus, and

then connect the originators of the tiles by line calls. For example, we can produce
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a scheme for the 10 x 10 torus. A tiling of that torus is shown in Fig. 3.9. The
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Figure 3.9: Tiling the 10 x 10 torus

wrap-around is now flattened out in each tile; it is easy to see that the left and right
sides of the entire tiling will fit properly. It is also easy to see that it will take 3
calls of extra length 4 to join the 4 originators of the tiles. The tiles contribute no
extra length, so the total extra length of the resulting 10 x 10 scheme will be 12. We
note that [log(10- 10)] < [log10] + [log 10], so we would not attempt to use the
elimination method on the 16 x 16 torus to produce a scheme for the 10 x 10 torus.

We could use any suitable scheme to tile a torus; we could use the 10 x 10 scheme

itself as a tile. We might also use an optimal scheme for say, the 7 x 7 or 7 x 11 torus,
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which could perhaps not be produced by the product and elimination methods, to tile
another torus. We note that we should not ‘have to’ use the 6 x 6 scheme to tile the
12 x 12 scheme, since [log(12 - 12)] = [log12] + [log 12]; we can use the elimination
method on the 16 x 16 torus to produce a scheme for the 12 x 12 torus. Similarly,
[log(24 - 24)] = [log 24| + [log24], so elimination on the 32 x 32 torus produces a
scheme for the 24 x 24 torus. However, [log(20 - 20)] < [log32] + [log32] so the
10 x 10 scheme could tile the 20 x 20 torus while the elimination method would not
work.

Finally, we note that the generalization of the restriction in Equation (3.2) becomes
more severe for é-dimensional cycles as § increases. That is so because §-dimensional
‘volume’ changes quickly as a function of factor ‘length’. That is, eliminating only a
small fraction of the ‘rows’ in each dimension can reduce the total number of nodes

by more than 3.



Chapter 4

Minimum Line Broadcast Graphs

4.1 Overview

In this section we discuss an approach, inspired by the idea of minimum broadcast
graphs (MBGs) (see [2], [20],) to investigating what we can do with a given extra
length. A minimum broadcast graph is a graph with n vertices in which we can com-
plete local broadcast from any originator in [logn] time units, and which has the
minimum possible number of edges. In general, it seems to be extremely difficult to
find an MBG for an arbitrary n, while for some values of n, the result is straightfor-
ward; for example, any k-cube is an MBG with 2* vertices. If we allow line calls, we
may be able to complete broadcast in minimum time in a graph with n nodes which
has fewer edges than an MBG with n nodes. Of course, if the MBG with n nodes is a
tree, then no graph with n nodes in which we can complete any broadcast has fewer
edges than the MBG. Morever, we already know from Farley’s result, mentioned in
section 1, that given enough extra length, we can always complete line broadcasting
in minimum time in a tree with n» nodes. What we may ask is: how few edges we
can have in a graph with n nodes, and still be able to complete line broadcasting in

minimum time using only some given extra length?
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4.2 Minimum Line Broadcast Graphs

Definition 5 (Minimum line broadcast graph) A minimum line broadcast
graph (MLBG) with n nodes and total extra length L is a graph G = (V. E) with
[V| = n, in which we can complete line broadcasting in G from any v € V in [logn]
time units using < L total extra length, and such that there is no graph A = (V, Ey)
with |B,| < |E| in which we can complete line broadcasting from any v € V in [logn]

time units using < L total extra length.

For a given n and total extra length L, there may be a set of MLBGs; let us vefer
here to the set as p(n,L). We already have a member p(n,0) for some values of n;
that member is the known MBG with n nodes. For any n and for large enough L,
Farley’s result gives us a member of u(n, L); that member can be P, the path with n
nodes, or any tree with n nodes. In fact, for any n, there are only a finite. number of

values of I, which are of interest, starting at 0 and going up to a value large enough f(il'

' ; Fa.rley’s result to apply. If we refer to the value of L at which Fa,rléy’s result applies

- for a graph with n nodes as £'(n), then u(n, L), L > F(n), contains only trees with
n nodes. It seems reasonably obvious that if extra length L suffices for an end (leafl)
node of P,, then L will suffice for any tree with n nodes. The proof should involve
a simple exchange argument. We state with confidence then that F'(r) is Simply the
total extra length of an optimal scheme for an end node of F,. -

F(n) = 0 for » < 3, as we can see in Figure 4.1, which shows MLBGs for n <
3 and minimum time local broadcast schemes for all distinct (up to isomorphism)
originators. It is known already that any MBG with 4 nodes contains 4 edges; the
2-cube is an MBG for n = 4, as shown if Figure 4.2, part (a). So ['(4) > 0, and p(4,0)
contains the 4-cube. F(4) is, 1 fact, 1; figure 4.2 part (b) shows that P, € u(4,1)
by showing schemes for all originators (up to isomorphism.) Farley has shown in [9]
that for n > 3, no tree with n nodes is a minimuin time local broadcast graph, so
F(n)> 0 for all » > 3.

It is easy to show that F(5) = 1 by drawing a scheme for the end node of Py that
uses only L = 1, and noting that L = 0 will not suffice, since Ps is a tree with more

than 3 nodes. For n = 2*_ we can easily suggest what is probably an optimal scheme
y sugg P
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Figure 4.1: F(n) =0for n <3
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for the end node of P,. The total extra length of the scheme clearly serves as an upper
bound on F(n) for 257! < n < 2*. Since we will not prove that the scheme is optimal,
we will call the total extra length of the scheme F, (k) to indicate that it is technically
only an upper bound on F(n), and that it is a function of &, not n directly. When
k=1 (n =2), we require no extra length. For £ = 2, we can use extra length 1; the
end node calls the node 2 edges away, and effectively splits the path into two paths
of length 2. We generalize this scheme for k > 2 in the obvious fashion. In general, if

our upper bound for k is F,(k), then

Fu(k) = 0, k=1
: /2 142 F(k—1), k>1

The solution to this recurrence relation is
F (k)y=2""(k—-2)+1. (4.1)

We may also want to know what value of L is just large enough that some tree
with » nodes is in p(n, L); let us call that value f(n). We know that f(6) > 0 since
6 > 3. If follows from Figure 4.3, then, that f(6) = 1; that figure shows that a
minimum broadcast tree (MBT) with 6 nodes is in £(6,1). A minimum broadcast trec
is a broadcast tree in which one or two nodes in the tree can originate a minimum
time local broadcast; those one or two nodes form the (local) broadcast center of the
tree. If there are two nodes in the broadcast center then they are neighbors in the
tree. Binomial broadcast trees are MBTs; a binomial broadcast tree with 2! nodes
can be split into two identical MBTs (also binomial broadcast trees) with 2% nodes by
removing the edge joining the two nodes in the broadcast center. Similarly, we can
show that f(7) = 1. We can also conclude that f(8) < 3; Figure 4.4 shows that the
MBT with 8 nodes is in u(8, 3).

In [9], Farley proposed a scheme for broadcasting from any node in an MBT. We
illustrate the procedure by describing a scheme for the worst-situated leaf of an MBT
with 2% nodes, which is simply the familiar binomial tree with 2¥ nodes. In an MBT
there are exactly two nodes capable of originating a minimum-time local broadcast;

they are neighbors in the tree and by removing the edge between them we obtain two
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Figure 4.3: F(6) =1

MBTs with 2¥~! nodes. The leaf simply calls the more distant of those two nodes;
that more distant node then originates a minimum-time local broadcast in its subtree
with 2¥~! nodes, while the leaf repeats the entire procedure recursively in the other
subtree; it is also the worst-situated leaf in that subtree. It is easy to show that the
total extra length of this scheme is an upper bound on the total extra length for any

node in any MBT with n nodes, 2¥~! < n < 2%, Farley gives the upper bound as

m(k) = =k(k — 1). (4.2)

|~

Comparing this result to (4.1), we can see that m(k) is asymptotically much smaller
than F,(k).

We may wonder if there is a better choice of tree than the MBT, perhaps one of
much lower diameter. The lowest diameter tree is STAR,,, the star with n nodes; it
has one central node and n — 1 isomorphic leaves and is of diameter 2. We consider
the scheme for any leaf of STAR(k), which we define as the star with 2% nodes. It
is fairly obvious that the leaf should call the central node so that the central node

may make k& — 1 local calls. All calls are either of length 1 or length 2, so using the
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Figure 4.4: F(8) <3
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maximum number of local calls decreases the total extra length as much as possible.
All calls of length 2 will be between leaf nodes and go through the central node; note
that it is actually impossible to specify a scheme which violates edge-disjointedness
since an edge could only be used twice if one node were involved in 2 calls at once.
The analysis is easy, then. There are & — 1 calls of length 1 and (2¥ — 1) — (k ~ 1)
calls of length 2. So the extra length required by STAR(k) is

s(ky=2F—% (4.3)

Comparing this result to (4.2) we see that s(k) is asymptotically much worse than
m(k). On the basis of what we have described, and after further investigation, we are

led to the following conjecture:

Conjecture 3 Let f(n) be that value of extra length L which is just large enough that
there exists a tree with n nodes in p(n,L). Forn=2%, f(n) = 1k(k—1) and the tree
is the MBT with 2* nodes.

As we have said, we have a member of y(n,0) for many values of n (the MBG with
n nodes.) We have also a member of u(n, F(n)) (ie., P,) and we know that F'(n) > 1
for n > 3. It may also be of interest to find members of u(n, L), for 0 < L < F(n),
because, given a graph G = (V, F) and graph G,, = (V, E,,) € u(|V],L), we know
that if |[E| < |E,,| then there is no line broadcast scheme for G which uses < L extra
length. Let n = |V|. If we define ES(n,L) as |Ey| for G = (V, E,) € p(n, L)
then we could think of this investigation as a matter of filling in a table of values
of ES(n,L) in which the rows are labelled with values of n and the columns are
labelled with values of L; perhaps we might represent an entry for some ES(n, L) by
an example member of u(n, L). Figure 4.5 shows part of the table, including some of
the entries we have described so far. A blank entry in row n, column L means that
the L > F(n), and T, means any tree with n nodes, P, for example. MBT, means
an MBT with » nodes.

Figure 4.6 shows the schemes for both originators (up to isomorphism) for the
representative of u(8,1) shown in the table.

We appear to have systematic descriptions of three parts of the table already:
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Figure 4.6: Schemes for a member of u(8,1)
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1. The first column.

2. the ‘path’ in the table formed by the last entry of interest in each row.
3. The path formed by the MBT entries.

We can also add another path of interest, the path formed by the cycle entries. We see
that u(4,0), 1(5,0), u(6,0) and p(8,2) contain cycles. Because we know the optimal
total extra length ¢(n) (from Section 2.4) of an n-cycle scheme, we know that the
column for L = €(n) is the first column (starting from L = 0) which contains a cycle.

We are likely to observe a property of £S5(n, L) which is similar to one we observe
of B(n), the analogous function for local broadcasting, described in [2] and [20]. The
property might be called the ‘slack’ property of the function, and it results from the
‘I in ‘[logn]’, the formula describing the minimum number of time units required
to complete broadcast in a graph with n nodes. When = is slightly larger than some
2% we make only a few calls, relative to the number of informed nodes, in the last
time unit; we would expect it to be easier to find graphs in which we can complete
the broadcast in minimum time, now that we have an entire extra time unit and only
a few more nodes to inform in that time unit. We might, then, expect F(2*) to be
more than F(n) for n slightly more than 2*, and we might expect F(n) to rise as n
increases from 2* to 25+, The portion of the table shown in Figure 4.5 is too small

to illustrate this expected property.

4.3 Variants on MLBGs

We may wish to define restricted variants of MLBGs. In [19), it is pointed out that a
practical restriction on broadcast graphs is that of bounding the degree of vertices in
the graph; the paper discusses finding ‘sparse graphs’ of bounded degree in which local
broadcast may be completed ‘quickly’, if not in minimum time. We may also wish to
examine this restriction in the context of line broadcasting; we may look for degree-
bounded graphs with n nodes which have the fewest possible edges and in which we

may complete line broadcasting from any originator in minimum time using less than
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L extra length. Restricting our search to graphs with n nodes with a given degree
bound may make 1t impossible to complete local broadcast in the graph in minimum
time. When we may make line calls, we can still always complete the broadcast in
minimum time, but we may need to use more extra length than we would have had
to without the degree bound.

An examination of Figures 4.3 and 4.4 suggests a further restriction we may wish to
make in the case of line broadcasting, one which is not applicable to local broadcasting.
We note in those figures that only some of the possible originators require the total
extra length L available. (In fact, in these examples, only some of the originators
require any extra length at all; that is to be expected for at least one originator since
the MLBGs shown are MBTs.) We may wish to find those MLBGs for which the
average extra length required is minimimized. By ‘average’ we might mean the sum
over all originators, ignoring isomorphism, of the extra length required, divided by n,
the number of possible originators; such a definition would lead to an expected total
extra length of completing a minimum time line broadcast if all nodes are cqually
likely to be the originator. For the MLBG with 6 nodes shown in Iigure 4.3, the

average required extra length is

2(1) + 2(0) + 1(0) + 1(1) 2404041

6 6
1

27

compared to L, which was 1. Similarly, for the MLBG with 8 nodes shown in Figure

3

4.4, the average required extra length is 12 = 2, compared to L, which was 3.
ge 1eq ) 8 2 I



Chapter 5

Further Work

5.1 Ordering of Call Lengths

For this section, we recall the definition of call length set given in Section 1.3. Finding
optimal line solutions in a graph of interest would perhaps be simpler if we knew the

following property to hold for the graph:

Definition 6 Given a graph G = (V, E) and an originator v € V, we say that G and
v have the line call ordering property if for every minimum broadcast scheme A on
G and v in which some call made in some time unit is lenger than some call made
in some earlier time unit, there is another broadcast scheme which has the same call
length set as A and in which no call made in any time unit is longer than any call
made in any earlier time unit. We also say that G has the line call ordering property

if the property holds for G and anyv € V.

If this property holds for the graph of interest, then in doing the analysis, we
would have the possible advantage of considering only those schemes in which calls
are made in order of length, with each longer call being made either in an earlier
time unit than or in the same time unit as any shorter call. In fact, it is easy to
find graphs which do not have the line call ordering property. Consider the graph in
Figure 5.1. In the left picture in the figure, the originator (labelled ‘0’) must begin by

making a local call, and then the originator must make a line call of length 2 if the

67
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broadcast is to be completed in minimum time. In the right picture, we see a scheme
which uses 1 line call of length 2, and 2 local calls; its call length set is {1,1,2}. The
scheme begins with a local call and the call of length 2 is made in the next phase. No
minimum time schemes featuring the given originator in the right picture and haviug
that call length set can avoid beginning with a local call. In fact, no scheme for either
originator which has the call length set {1,1,2} can avoid beginning with a local call.

If either originator begins a scheme which has the call length set {1,2,2}, then the

Figure 5.1: Line call ordering

scheme could begin with a line call, but we would presumably not want to consider
such schemes, given the partial relation on call length sets described in Section 1.3.
The graph shown in the figure is an example of a star graph, and in a star graph, the
‘central’ node can only make local calls, while the outer nodes can only make calls of
length 2, and may have to do so if the broadcast is to be completed in minimum time.

We may speculate on what properties a graph must have to make the line call
ordering property hold. One possibility is that the connectedness of the graph deter-
mines whether or not the line call ordering property holds. Also, we note that our
example graphs for which the property does not hold are not vertex-transitive. Our
experience in working with cycles and toruses, both of which are vertex-transitive,

leads us to conjecture the following:
Conjecture 4 Any vertez-transitive graph has the line call ordering property.

If this conjecture is correct, it could simplify the scarch for a lower bound on total

length required in the torus.
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5.2 (Generalizations of the Cycle Properties

In general graphs, there are no simple analogs of nestedness, flatness and fullness,
although weak generalizations of these properties exist and can be shown to be nec-
essary for optimality. In the cycle, optimal line broadcasting turned out to be path
broadcasting; in higher-degree graphs the fact that one node can switch-throngh mul-
tiple calls deprives us of this simplification. A generalization of nestedness is that
an informed node should always be making a call if calls are going through it; oth-
erwise, it should be the sender of one of those calls, thus making that call shorter.
One interesting line of further work might be line broadcasting in degree-3-regular or
degree-3-bounded graphs. At a degree 3 node, at most one call can be going through

the node, but the node may be originating a call at that time.

5.3 Lower Bounds in the Torus

We have had little success in finding a tight lower bound for the torus, despite Con-
jecture (2). We have searched the literature for generalizations of Iordanskii’s work.
A pairunse numbering of the vertices in a tree would correspond to an embedding of
the tree into an infinite grid graph. The total length of the embedding is the sum
over each edge in the tree of the ‘cost’ of the edge. The cost of an edge is the dif-
ference in the first components of the labels of the endpoints of the edge, added to
the difference of the second components. Obvious generalizations exist for general
é-dimensional cycles. A geometric approach is another possibility; we could simply
try to find the optimal connection into a broadcast tree of n nodes having integer
and y coordinates in the plane, using straight lines. The closest reference we could
find to such work is [8], although the vast literature on topological embeddings might
provide better leads.

Another approach might simply involve trying to find a proof similar in nature
to the cycle proof. We would try to find a set of important properties of oplimal
schemes, or, of optimal embeddings. We might find exchange arguments which allow

us to narrow our search to a more easily studied subset of all possible schemes. For
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example, it might be possible to prove that {or every schieme which uses ‘bent’ (with
the obvious meaning) calls, there is another scheme which is no more expensive and
which uses only ‘straight’ calls. In conjunction with Conjecture (1), we obtaiu a
subset of all possible schemes of which subset the product method schemes seem to
be significant members.

Finally, a brute force approach is simply to try to minimize the total length of the
embedding of a binomial tree into an infinite grid graph. We have no insight into how

difficult this task might be, although we suspect that it is very hard.
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