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Abstract 

Broadcasting is the process of transmitting information from an originating node 

(proccssor) in a network to all other nodes in the network. A local broadcasting 

scheme only allows a node to send information along single communication links 

to adjaccnt nodes, while a line broadcasting scheme allavs nodes to use pa.ths of 

several communication links to call distant nodes. Local broadcasting is not in general 

sufficient to allow broadcasting to be completed in [log nl phases, the minimum time 

possible for broadcasting in a network of n nodes when no node is involved in more 

than one communication at any given time; line broadcasting is always sufficent. An 

optimal line broadcasting scheme is a minimum time scheme that uses the smallest 

possible total number of colnmunication links. In this thesis, we investigate line 

broadcasting in cycles and toruses. We give a cornplcte characterization of optimal 

line broadcasting schemes in cycles, determine the exact cost of line broadcasting 

in cycles, and develop efficient methods for constructing optimal line broadcasting 

schemes in cycles and toruses. We conjecture that our torus schemes are optimal. 

If minimum-time broadcasting using n - 1 local calls is possible from any originator 

in a network, then the network is a minimum broadcast graph. We define minimum 

line broadcast gmphs, a generalization of minimum broadcast graphs in which we can 

complete minimum-time broadcasting using some fixed total extra length. We find 

minimum line broadcast graphs for small n,  and find several important families of 

~ninimuin liue broadcast graphs. 
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Chapter 1 

Introduction 

1.1 Overview 

In broa~lcast~ing, information known by one informed processor, the originator, is 

transmitted to all other nodes (processors) in a communication network. In local 

broadcasting, an informed node may use one of its cominunication links to call an 

adjacent node during any given time unit, or phase. In line broadcasting, an informed 

node may call any other node; the communication path used by the call contains all 

of the conlmunication links on some simple path between the two nodes, and no link 

is used in more than one call in a given phase. 

When no node is involved in more than one communicatio~i at any given phase, 

t h e  ~ninimum nurnber 01 phases in which broadcasting can he completed in a network 

of 7t nodes is rlog t a l l  phases, since there is one originator and the number of informed 

nodes can at rnost double at each phase. It is not possible, in general, to inform 

all nodes in a network in minimum time using local broadcasting, but Farley [9] has 

shown that there is a nzingrnum-finze line broadcasting scheme for any originator in 

any con~wcted netxork. The question that we address in this thesis is how much 

line broadcasting is needed t.o complete a minimum-time broadcast from an arbitrary 

originator in a given graph? 

'All logarithms in this thesis are base 2. 



A broadcasting scheme for a network of n nodes requires n - 1 calls. t;i~rt hrrn~orc., 

n - 1 calls are sufficient because each node only needs to receivc tJtt. inforn~. t '   on 

once. ?Ve can therefore refer to the broadcast tree of a broadcast,ing scllct~.; t,hc 

originator is the root of the tree. If mininmm-time broarlcasti~ig ~tsir~g n - 1 lo td  

calls is possible from an? originator in a network, then t.hc neinork is a b~~oadrcrst 

graph, During the last 15 years, co~lsiderable effort has beell devoted to the tliscovc~sy 

of minimum broadcast graphs (broadcast graphs with the fewest possiblc links) and to 

the construction of sparse broadcast graphs. (See [l] •’01 a compref ierzsive study of this 

subject.) Unfortunately, situations in which a network can be desigriecl to h r ~  opti~nal 

for a particular communication pattern such as broaclcastiug are rare. lJsually, the 

topology of the network is determined by other factors and the tar& is to use the 

network as 'efficiently' as possible. 

One approach to designing broadcast schemes in fixed networks is to use only locd 

calls and then try to minimize time (e.g., the number of phases) or some other nicas1ir.c. 

of cost. If the network uses sfore-and-forwurl routing, then this is t,he only possil)l(~ 

approach since all communications are local. (See [12] for a recent survey of rcscarch 

in this area.) If the network supports some form of circuit-switched routing, then a 

second possible approach is to insist that one of the paxanzeters, such as the nurrll~cr 

of phases, is optimized, and then try to minimize some other measure of cost. IJsually, 

this other measure is total time to complete the broadcast taking into accou~~t othcr 

factors such as switching time at intermediate nodes and transmivsion rates of linlis. 

(A recent example of this approach is 1171.) 

In this thesis, we  will take the somewhat different approach of minimizing the total 

amount of 'equipment' used to acconlplish minimum-time broadcasting. In particular, 

we will minimize the total number of communication links used (i.e., tfie su111 ovcr 

$U phases of the number of links used in each phase). A simple example whcre this 

approach could be useful is the distribution of electronic news on the Intentet. A l  

one time, most of the network used telephone lines and most sites were only will i rrg 

to devote one modem to the net-news. The cost of distributing news depertded on the 

amount of data and on the distance that" it was sent. The elapsed time of a phone call 

to send a particular piece of news is essentially independent of distance travelled, so it 



makes sense to talk about phases of a broadcast. Assuming that network news readers 

want their news as quickly as possible, the cost of providing news over a telephone 

network depend's on the total amount of equipment used. In other words, it depends 

on the long distance telephone charges and these are proportional to the total distance 

travelled. While the current technology of the Internet involving high-speed trunks 

and dedicated lines is much more sophisticated, the model still has validity. 

We are aware of only three papers on t.he subject of line broadcasting: the original 

paper by Farley 191, an unpublished manuscript by Almstrom [sf, and [ll]. The main 

result in Farley's paper is a constructive proof that minimum-time line broadcasting is 

possible in any tree (and hence any connected network). Farley analyzes his construc- 

tion and shows that an upper bound on minimum total length (total number of links 

used) for brcladcasting in minimum time in any network with n nodes is (n - 1) [log nl . 

In this pqxr ,  we show that for the cycle with n = 2k nodes, the optimal total length is 

asymptotically 113 of Farleyfs upper bound. The bound also holds for 2'"-' < n < zk; 
however we describe exact costs for such intermediate values of n. Farley notes that 

no tree with n > 3 nodes can be a minimum broadcast graph. He discusses finding 

trees with n nodes which allo\vs the least maximum total length (over all originators,) 

and discusses MBTs (minimam broadcast trees), trees in which at least two nodes 

can originate a minimum time local broadcast, to find an upper bound on the least 

maximum total length. In path broadcasfing, calls in a given phase must be link and 

node disjoint. Farley describes path broadcasting in linear networks, which are cycles 

with one link removed. In this thesis me show that optimal line broadcasting in cycles 

is actually path broadcasting. Xlmstrom studied a restricted type of line broadcast- 

ing on networks that consist. of a single path of processors (i.e., a one-dimensional 

grid). Xlrnstrom's restriction is a constant upper bound on the length of line calls. 

Farley's results are also mentioned in 1111 in a discussion of broadcast, accumulation, 

and gassip. 

A problem closel~ related t.o ours, embedding, has received considerable attention. 

(See [16] for a survey.) Our problem is to  find a constrained embedding of a broadcast 

tree into a gaph  representing the interco~ections of a network. The vertices of the 

broadcast tree are mapped to network nodes one-to-one and edges of the broadcast 



tree are mapped to paths in the networli. Thc reason our problc~n is a 'constraii~ecl' 

embedding is because the calls in any phase must use edge-disjoint paths. ' . l ' l ~ t ~  is 

no published literature on this type of embedding probleni. Furthermore, broadcast 

trees are subtrees of binomial trees and we are not aware of any relevant literature 

on embeddings of binomial trees. An embedding of a tree into a cycle can also bc 

described as a numbering of the vertices of the tree. We mention a paper on r~ inbc r i i~g  

by ~ordanskil [15] in the chapter of this thesis on line broadcasting in cycles. 

In this thesis, we investigate line broadcasting in networks using a model i n  which 

broadcasting must be completed in [log nl phases and the optimizatiori meastire (or 

cost) is the total number cf links used during the broadcast. We first deterrniiic the 

exact cost of minimum-time line broadcasting in cycles, give a complete ctmrnct,eri- 

zation of optimal line broadcasting schemes in cycles, and develop eficient methocls 

for constructing optimal line broadcasting schemes. We then use these results to 

construct what we believe are optimal minimum-time line broadcasti~lg sck~emcs for 

toruses. Finally, we investigate mininaum line broadcast gruplzs, graphs with n noclcs 

in which a minimum-time broadcast can be completed from any originator, m d  wl~icll 

use the fewest possible total number of communication links for a given exl7.c~ lel~gth. 

The succeeding sections of this introduction contain definitions and a discussion of 

our choice of cost model. The discussion of line broadcasting in cycles is in C%apter 2, 

the discussion of toruses is in Chapter 3, and the discussion of MLBGs is in Chapt,er 

4. Chapter 5 contains various shorter results of relevance to further work ill linc 

broadcasting, and suggests possible directions for further work, 

1.2 Definitions 

In this thesis we will model 

resent processors and edges 

of standard graph theoretic 

communication networks as graphs in which nodes rep- 

represent communication links. We will use a mixture 

terminology and network terminology when discussing 

broadcast trees, broadcast schemes, and netulorks. A broadcast tree tlescribes the set 

of calls made in a broadcast. Any broadcast tree that describes a minimum-tirnc 

broadcast with n nodes, Zk-l < n 5 2" has as a subgraph the directed binomial tree 



with 2k-' nodes and is a subgraph of the directed binomial tree with 2k nodes; the 

broadcast tree and the two binomial trees have the same root, the originator. Each 

level of a broadcast tree corresponds to a phase of a broadcast. The phase of the 

root of a broadcast tree is 0 and the deepest phase is [lognl. A broadcast scheme 

is an embedding of a broadcast tree with n nodes into a network with n processors. 

Since the mapping of the nodes of a broadcast tree to the processors of a network 

by a broadcast scheme is one-to-one, we will often find it convenient to use node to 

refer to processors. Since the correspondence between edges of a broadcast tree and 

communication links of a network is not one-to-one in all broadcast schemes, we will 

use link when referring to physical links in a network and edge or call when referring 

to broadcast trees. 

A broadcast scheme always uses a total of at least n - 1 links since each of its 

n - 1 calls uses at least one link. In line broadcasting, some of the n - 1 calls may be 

local calls which use one link. In this thesis, scheme will always mean line broadcast 

scheme. Calls which use X > 1 links are line calls. A line call contributes extra length 

X - 1 to the total length of a broadcast scheme. Thus, the total length of a scheme is 

always total eztra length plus n - 1. A minimum-time broadcasting scheme is a scheme 

that has [log n] phases. 

The Cost Model 

We can answer the question "how 'much' line broadcasting is needed?" in several 

ways. We can give the minimum total length or minimum total extra length needed. 

We could also find a scheme that uses the fewest number of line calls, or a scheme in 

which the longest line call is the shortest possible among all schemes. We could also 

give a set of solutions. For example, for some originator in some graph with n nodes 

it may Ee that the following two solutions work: 

1. 3 calls of length 2 and n - 4 local calls. 

2. 2 calls of length 3 and n - 3 local calls. 

Given the above solutions, we would not consider the following a solution: 
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3. 3 calls of !ength 3 and 12 - 4 local calk. 

Let us imagine an esample graph with 9 nodes: S cdlls are required in any broadcast3 

scheme for the graph. Let us say that the call length se t  of a broaclcast s c h c ~ n ~  is tllc 

multiset of all call lengths in the broadcast scheme. In the following discussiorl, \i\'t~ 

will refer to a broadcast scheme by its call lerigth sct; for the moment wc arc not, 

concerned with the order in which calls are made or with thc source and dest,inatmr~ 

of each call. We can write the call length set of a scheme of 8 local calls as ~ c h w s :  

Let us assume that local broadcasting does not suffice, that we need at least sonw 

linc calls, and that possible solutioi~s are as follows: 

1. {3,3,1>1,1,111,1} 

By what criteria is either solution 'better?' Solution I uses fewer line calls t lmr  

does Solution 2. The longest line call in Solution 2 (length 2) is shorter t J ~ a n  the 

longest line call in Solution 1 (length 3) .  The total length of all line calls is 6 in hoth 

cases. The total extra length is different between the two solutions, however, whjcll 

we quickly see if we split up each call into a local call and an extra length: 

The total extralength in Solution 1 is 4 while in Solution 1 it is 3. 

There are solutions which we would not accept, such as: 
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By any reasonable evaluation scheme, Solution 3 is worse than either Solution 1 

or Solution 2. Solution 4 is clearly worse than Solution 2, although it is not neces- 

sarily worse or better than Solution 1. So, there is at least a partial ordering ammg 

solutions; depicting the ordering among Solutions 1-4 above as a digraph on their call 

length sets, in which an arrow points to a worse solution, gives figure 1.1. 

Figure 1.1: Partial ordering of call length sets 

The most comp1et.e set of 'best' solutions would include every set of calls that 

has no predecessor in the ordering. The ordering could be described by a partial 

relation as follows: given two call length sets A and B, place the elements of A 

into a non-increasing sequence < an-l, an-z, a,-3, . . . as, az, a1 > and the elements of 

B into a non-increasing sequence < b,-l, bn-2, bnP3, . . . b3, b2, bl >. Then A < B iff 

b j - a j > O , j = l  ... n - l , a n d b j > a j f o r s o m e j , j = l  ... n-1 .  

We may choose a particular cost model for line broadcast schemes because of 

some practical consideration, such as the cost associated with a line call in an actual 

application. For example, if we are interested in finding minimum broadcast schemes 

for networks in which all local calls have more or less the same fixed cost and in which 

all line calls have more or less the same fixed cost, greater than the cost of a local call, 

we may prefer schemes which use the fewest line calls. Or, it may be the case in our 

network of interest that the cost of a line call increases rapidly with the extra length, 

in which case we may prefer schemes which use as many 'short calls' as possible. 

A simple assumption that is perhaps often reasonable in practical terms is that 

all units of extra length have the same associated cost. Our cost model is then total 
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extra length or total length of the iine broadcast scheme; we would prefer linr broatl- 

cast schemes which minimize the total extra length. As a problem i n  conlbinatolial 

mathematics and graph theory, this cost model is compelling and elegant, a1lr1 fiutl 

ing lower bound in various networks may require ingenious use of results from graph 

embeddings, topology, combinatorics and other disciplines. This choice of cosi nlocl~1 

also allows a complete solution to the line broadcasting problem in the ryclc. 11) our 

investigations, we will concern ourselves mainly with the metric total extra Icngth. 

We will say that an optimal line broadcnstzng scheme for a particular origjrtator is 

a minimum-time scheme rooted at the originator with minimum total extra length. 

We will say that a particular graph requires, or that a graph and originator T C ~ ~ L I ~ C ,  01. 

that an originator in a given graph requires a certain total extra length to mean tll&t 

any minimum broadcast scheme for the graph or for the graph and the originator or 

for the originator in the given graph must have at least that total extra length. We 

may also write simply 'extra length' to mean 'total extra length'; our i n e a ~ i ~ g  will 

always be clear from the context. 

1.4 Outline of the Thesis 

In Chapter 2 we discuss line broadcasting in cycles. We give a complete characterixrz- 

tion of optimal line broadcasting schemes in cycles, cleterminc thc exact cost of l i w  

broadcasting in cycles, and develop efficient methods for constructing optimal liue 

broadcasting schemes in cycles. The results in this chapter are the most complete of 

any in the thesis and are the most significant contributions made in this thesis. 'rhc 

proof of the optimality of our cycle scheines is very interesting because despite the: 

fact that the cycle schemes in Figure 2.1 look as though they should be optimal, thc 

proof is subtle and the order of its arguments is critical - first nesterlrtess, then t la t -  

ness and the unused link, and only then contiguity and fullness. The discovery of the 

nestedness property was initially unexpected and whether the properties of optimal 

cycle schemes generalize in a useful way to other graphs is an interesting open prob- 

lem. The main open problem after the present research on cycles is whether and how 

general results on embeddings into linear networks simplify or relate to the present 



results. 

Chapter 3 contains the discussion of line broadcasting in toruses. We develop 

efficient methods for constructing optimal line broadcasting schemes in toruses. One 

method is the product method; it produces schemes for toruses whose numbers of 

rows and columns are powers of 2. We conjecture that torus schemes produced by 

the product mcthod are optimal. Another method is the elimination method for 

toruses; it produces schemes for certain toruses whose numbers of rows and columns 

are not powers of 2. A third method produces schemes for certain other toruses; this 

third method tiles a torus with another, possibly ad hoc, scheme. Finding a, tight 

lower bound on total extra length required in the torus is the main open problem in 

toruses after the present research. It is apparently a tough problem and all the more 

interesting because th+rdd& method schemes seem so obviously optimal. We have 

suggested various ways of tackling this problem; our suggestions are in Chapter 3 and 

in Chapter 5.  

In Chapter 4 we discuss m i n i m u m  line broadcast graphs (MLBGs.) If minimum- 

time broadcasting using n. - 1 local calls is possible from any originator in a network, 

then the network is a minimum broadcast graph. An MLBG is a generalization of 

a minimum broadcast graph in which we can complete minimum-time broadcasting 

using some fixed total extra length. We find MLBGs for small n, and find several im- 

portant families of MLBGs. This chapter outlines problems to be solved and presents 

some prelimina~y results. One problem to be solved is to find and characterize other 

families of MLBGs. Another problem is to find the minimum total extra length L, for 

each number n of nodes in the graph, at  which any graph with n nodes is an MLBG, 

given L. There are probably many new families that can be found without much 

work, and the search for still others may challenge the researcher to use a variety 

of mathematical methods. Still another problem is posed in our conjecture that a 

minimum broadcast tree ( M B T )  is a 'best' tree to use to minimize total extra length 

needed by any originator. 

Chapter 5 contains various shorter results of relevance to further work in line 

broadcasting, and suggests possible directions for further work. 



Chapter 2 

Line Broadcast Schemes in the 

Cycle 

2.1 Overview 

In this chapter, we investigate line broadcasting in cycles. We determine the exact, 

cost of minimum-time line broadcashg in cycles, give a complete characterization 

of optimal line broadcasting schemes in cycles, and develop efficient rnethods for 

constructing optimal line broadcasting schemes. The basis of our results is a set, of 

three properties of broadcast schemes - nestedness, flu tness, and fullness. Wc prove 

that these three properties are both necessary and sufficient for optimality. 

Sufficiency is established by showing that all flat, nested, full schemes with 71, 

nodes have the same cost. The cost is found by analyzing one particular method for 

creating flat, nested, and full schemes for cycles with 2k nodes, k 2 0, and then using 

the fullness property to adapt these schemes to other cycles. The proofs of necessit,~ 

and sufficiency appear in Section 3 of this chapter. The cost analysis and rriethorls 

for constructing optimal schemes are in Section 4. In Section 2, we discuss several 

examples of optimal schemes to introduce terminology arid to give an inforrnal and 

intuitive overview of the proofs in Sections 3 and 4. 

We mentioned in the introduction that an embedding of a tree into a graph can he 

described as a numbering of the vertices of the tree. In particular, an embedding of a 
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tree into a h e a r  network or a cycle can be viewed as one-to-one and onto mapping of 

the integers in [I, n] into the n vertices of the tree. The total length of the embedding 

is the sum over each edge in the tree of the difference of the labels of the endpoints of 

the edge. An optimal embedding corresponds to a minimal or min-sum numbering. 

1ordanski~[15] investigates the maximum min-sum among all trees with a fixed degree 

bound. He appears to use a concept similar to one which we develop in this chapter, 

the concept of layers. He also seems to have a concept similar to our concept of 

mntiguitg and concepts similar to consequences of our concept of nestedness. His 

results are less iestrictive than ours, because they do not involve our constraint that 

the embeddings of calls in a given level of the trcc arc edge-disjoint. His results appear 

to be correct, but [15] contains little in the way of proofs or detailed discussion, and 

we have not been able to find proofs or detailed discussion of his results elsewhere. 

2.2 Properties and Examples 

We will refer to a scheme as a triple S(G, T, a). G(V, E) is the target graph of the 

embedding. T(V, C,  11)  is the broadcast tree, where C is the set of calls (edges) of T ,  

and u is the root of T. Q, is the embedding. It maps each call in C to a simple path in 

G. It is understood that <P maps the endpoints of calls consistently with the structure 

of T. When we write about a subscheme Si(G', Ti, @') of S(G, T, cP), we will mean 

that G' is a subgraph of G, T' is a subtree of T, and iP' is a subset of iP. When we use 

the term subtree without modification, we will mean that paths in the subtree extend 

out to include leaves of T. We will sometimes refer to  phases, nodes, calls, paths or 

subtrees of S; we will always actually be referring to 7'. 

When P is a path in T, we will write P@ to mean the connected path induced in 

G by the embedding of P. P' is not necessarily simple; it may fold on itself, and 

it may 'wrap around' the cycle and overlap itself, although in an optimal scheme no 

such overlap can occur, as we will see later on. There is a connected, undirected, 

path a in the cycle which contains all the nodes on P@ and exactly all the links on 

P@. a is exactly the cycle if P@ wraps around the cycle. In an optimal scheme, a 

will be simple. W e  will refer to o as the segment of P or of P@. Since Q, preserves 
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the connectedness of T, any subtrec T' of 1' must also have a correspouding segrne~lt, 

(extending the term in the obvious manner.) When S' is a subschei~w of , wc c m  

write about the segment of S' with obvious meaning. We will say that S' is cotttiguorcs 

if its segment contains only nodes of S'. 

Figure 2.1 shows several schemes on cycles. Parts (a), (b), (c)? (cl) ,  and (t') of C11r 

figure show schemes for 4,S, 16,32- and 64-cycles, respectively. Parts (e) a n d  (g) slww 

schemes for 22- and 55-cycles. Nodes are shown as black clots, and cillls as arrows 

or short lines. Links of the cycle are not shown. In particular, the link conuccting 

the leftmost and rightmost node in each part is not shown; that link is not rtsccl 

by any call in any of the schemes s11ow11 (although nothing in the defitlitiou of line 

schemes prohibits the use of that link.) The number uilder a node is the phase a 1, 

which the node is informed; the originator is informed at phase 0. An arrowhead on 

a call, if present, shows the direction of the call. This is not really rlccessary since the 

receiver of the call is always informed later than the sender. The 4-cycle scllen~v i l l  

part (a) appears repeatedly in the other schemes as a subscheme, and when it docs, 

the arrowheads are omitted to reduce clutter. 

Each scheme is shown in two ways; the first shows the nodes all on one line, and 1 bc 

second shows one path in the scheme laid out flat and the rest of the scheme hanging 

below that path. The phases and positions of nodes on the cycle are the s m l e  in the 

two representations. The total extra length of any call shown is exactly the ~ lu~nber  

of nodes which is under the call (this is best scen in the first representat~io~~s.) 

The schemes in Figure 2.1 are all minimum- time schemes, which can he vcrified by 

examining the phases at which nodes are informed. They are also all opti.na1, as wc 

will prove in later sections. We will introduce the proof informally here by pointilrg 

out some features of the schemes which optimal schemes: would intuitively seem to 

require. The most basic of these features are three independent properties which we 

call nestedness, flatness, and fullness. Nestedness and flatness are properties of the 

embedding; fullness is a property of the broadcast tree. The proof of optirnality is 

based on a demonstration that the three properties are necessary and sufficient for 

optimality. 

The first representation suggests one accounting method for total cost. Each link 
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(a) n = 4 (b) n = 8 - .-+LGL- 
2 0 1 2  3 2 0 3 3 1 2 3  4 3 2 4 4 0 3 4 4 3 1 4 4 2 3 4  

( e )  n = 22 

.+-&AL 5 4 3 5 5 2 4 5  -\i.elGh-- 0  3 4 5  
1 4 5  4 2 5 5 3 4 5  - - 

JL d--  

Figure 2.1: Cycle schemes 
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l of the cycle is used by some number 3 ( P )  of calls in the scheme, wliere ?(t )  is lllc 

congestion of !. The sum of the congest~ions of all links is the total length of the 

scheme. We will develop and use a less obvious accounting method, one which allows 

us to prove the necessity of fullness. From the same schemes, we note that calls anx 

nested; later calk are shorter and stay under earlier calls, and calls never cro,+s. 'I'hus, 

for any pair of calls, either one of the calls is completely under the other, or tlie cdlls 

don't share any links. (We will also talk of nodes and links being under a call wit11 

obvious meaning.) It seems that a scheme that is not nested would have unncccssary 

congestion. One consequence of rzestedness is that there must be one link of' thc c yclr 

that is not used by any call. Intuitively, this unused link makes serise; if thcrc is I IO 

unused link, then the broadcast tree must be embedded in such a way that it. wraps 

around the cycle and overlaps itself. We will prove that a shorter schenle wibhout 

wrap-around is always possible. 

In the second representations, we see that a top path of calls has been laid out 

flat. It can be seen that every link of the cycle but the unused link is oil the top  

path, and that the rest of the scheme is ~omplet~ely under the top path. Vurtlle~ 

examination reveals that removal of the top path leaves a set of subschernes, wllicll 

we call bottom schemes, and that each bottom scheme has a flat top path. Ilcmoval 

of these top paths from bottom schemes gives sub-subsche~nes, and so on. (fCxi~rtiirtc~ 

the subscheme structure of the originator in parts (f) and (g) for example.) 'I'hus, 

it appears that we can decompose a scheme into layers by repeatedly rernovi~lg thc 

fiat top paths of subschemes. The top path of the entire scheme forms luyer 0 of thc 

scheme, the set of top paths of the subsche~nes that remain after layer 0 is removtsd 

constitute layer 1: and so on. Figure 2.2 shows the layers of the 32-cycle scheme. 

We give the name flatness to the property of a scheme that its layers are crnhcddcd 

Bat into the cycle. This property is reasonable, because the less a schernc is 'Mded 

up' on itself, the less congested it is. The layer structure turns out to hc a precisc 

property of the broadcast tree. We also notice that at  each layer, the bottom schemes 

are contiguous in the cycle paths in different bottom schemes do not cross. This 

property is a consequence of nestedcess and allows us to show that there is a recursive 

optimality to any optimal cycle scheme. 
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(a) n = 32 

(b) layer 0 

( c )  layer 1 

(d) layer 2 

Figure 2.2: Layers of the 32-cycle scheme 



Tt certainly appearsthat. we want the shallowe1 lagers of a schellle t o  be as f i l l /  as 

possible (i.e., there are as many calls as possible at layer 0, ther~ l q t ~  1 is tillcrl, and 

so on). If the shallow layers are not. full, then there may be anothcbr schernc i l l  wliic.11 

shallower layers are full. so that in place of a call i n  the fonnes sclleuic whicll was 

under, and so, 'stretched out.', p other calls, tjllerc is in the new schemt. a, call wl1ic.h 

is under fewer than p calls. We use the term fullness to sefer to t l i i s  tltiril clcsirablc 

situation in which shallower layers contain as many calls as possible. 

Further examination of the first representation in parls (a), (b),  (c),  (cl) and (T) 

reveals that an optimal scheme for a 2"'-cycle can be produced from n 2 " ~ ~ c . l ~  

scheme by placing two mirror image 2k-cycle schcmcs beside each ot, hes a n d  joirli ng 

their originators with a line call. St.udying these parts of the figure agaiu, \vc1  tot ice* 

a second recursive method for creating the schemes; a scheme for a 2k-cyclr c.iltl be 

described as a modified schcme for a 2k-' cycle, in which two new noclcs haw bcc~ I 

added to  the center of the top path, and each of hose  two new nocles rnatle tlic root of 

a bottom scheme which looks exactly like an optimal 2"' cycle schenie. Wc i lsca this 

second recursive method to find the total extra !ength of all optimal xlmtlev with ' L ~  

nodes, and also to determine the maximum possible number of' calls in c ;~cl~ la,ycr of' 

a scheme with n nodes, 2k-1 < n 5 2'. 
The 22-cycle scheme shown in part (e) is an adaptation of the 32-cycle schernc., wj tll 

the deepest layer entirely removed and some of the calls in the next layer rel-rlovcd. 

The nodes which those calls informed in the 32-cycle are also removed from the cycl(., 

thus shortening some calls (examine, in the first rcprcsentations, how the ~lul~lbcs 

of nodes under some calls changes from the 32-cycle schenie to the 22-cyclc schcrrtcl. 

These calls are deliberately drawn the same way in the two schernes to c~nphasize t11c 

obvious correspondence between a node, call or phase in the 22-cycle schcrnc. with 

the node, call or phase directly above it in the 32-cycle scherne. Similarly, the: 55- 

cycle scheme shown in part ( g )  is an adaptation of the 64-cycle scheme wi th  some 

of the deepest layer calls removed. Our proof that this diminntion method procluccx 

optimal schemes when the number of nodes is not a power of 2 is based on thc fullness 

property of optimal schemes, and the analysis of the method is based on our kwwledge 

of the maximum possible number of calls in each layer. We note that to produce, for 



example, an optimal 15-cycle scheme, we couldn't just continue eliminating deeper 

layer calls from the 42-cycle scheme, because the top path would then be too long. 

A minimum-time scheme for a 15-cycle uses 4 phases whereas the top path of the 

32-cycle scheme in part (dj  requires 5 phases. 

2.3 Nestedness, Flatness, and Fullness 

Jn the first three subsections of this section, we prove that nestedness, flatness, and 

fullness are necessary properties of optimal line broadcasting schemes on cycles. In 

the fourth subsection, we show that these three properties are sufficient for optimality. 

2.3.1 Nestedness 

Definition 1 (Nested) A broadcast scheme S is nested zf no call ofS passes through 

an informed node. 

Lemma 1 Every optimal cycle scheme is nested. 

Proof: Assume S is an optimal scheme that is not nested. Then some call c in S goes 

through an informed node to, as shown in Fig. 2.3, part (a). (In the figure, dashed 

lines indicate paths of one or more links.) Since every link between u and v is used by 

Figure 2.3: Nestedness 

c, w cannot originate a cdl  while c is being made. A cheaper scheme is possible by 

let,ting w, instead of u, inform u, as  shown in Fig. 2.3, part (b). Thus, a non-nested 

sctre~ne cannot be an optima.1 scheme. 

?Ire note that nestedness is a property of the embedding. 



Definition 2 (Under) Let c and d be two calls in n scheme for* a cycle with c. # d .  

Then d is under c if every link u1hzclt zs used b y  d is also used by c. Also, a nocir l1 

is under c if v is  not the sender or receiuer o f c  but c goes through v, a i d  a link P 1.q 

under c if c uses E .  

It follows immediately that a node is under a call only if the call has total lcngtll 

greater than 1 and. in a nested scheme, only if the node is infor~ned after the se~zdcr 

and receiver of the call. In a nested scheme, thc calls c and cl in Definition 2 can 

never cross; either c and d use disjoint sets of links (but may share one node if i t  is 

the sender of both calls) or one call is under the other. The only other possibility is 

that each call uses a link which the other does not, as shown in Fig. 2.4. Sinco c and 

Figure 2.4: Crossed calls 

d share an edge, they cannot occur in the same phase. Furthermore, an el~dpoint d' 

d, x in the figure, is under c, and an endpoint of c, v in the figure, is under d. If d 

occurs first, then z is informed before c occurs and nestedness prohibits c. Similarly, 

if c occurs first, then nestedness prohibits d. One consequence of this result, is that 

optimal line broadcasting in the cycle is actually path broadcasting; calls i n  tlie satno 

phase cannot share any links and cannot share either sender or receiver. rl'lius, they 

must be link and node disjoint. 

Nestedness implies some other useful properties. Assume ,S is a nested cycle 

scheme. Let P,, he the directed path in S from node u to node v,  and let a,, he the 

segment of P,,. Note that u is the first informed node on P,,, so by nestedness, no 

call on P,, either informs u or goes through u. It follows that one of the links incident 

on u is not on o,,; this establishes the following property: 

Property 1 The segment of a directed path i n  a nested cycle scheme iu si7nple. 
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Further~nore, each node on a,, is either u or a descendant of u in S .  To see this, 

suppose that node x is neither u nor a descendant of u in S. Then, u cannot be 

the originator 0 of 5'. Also, Q is under no call of S, by nestedness. Thus if x is on 

a,,, then the path from Q to x, which contains no node on P,,, must contain a call c 

whose sender is on neither a,, nor P,,, which goes through a node on P,,, and whose 

receiver is on a,, but is not on P,,. The receiver must be under a call d on P,,; ie., 

c and d cross. 

Assume that x has an ancestor w in S.  Let P,, be the path in S from w to x, and 

let a,, be the segment of P,,. Assume that w is not a descendant of u (but allow 

that w may be u.) Then no node on P,, is a descendant of u; It follows that no link 

on a,, is on a,,; a,, and a,, have in common at most their mutual endpoint u (in 

case x is u.) 

Now arbitrarily assign the directions 'left' ant  right' in the cycle. If P is a simple 

path in S that begins at 8, and a is the segment of P, then by the above discussion, 

f? is an endpoint of a. Thus we can unambiguously say that o is to the left or to the 

right of 8. Let CL ( C R )  be the set of all such segments which are to the left (right) of 

8. Let a~ (aR) be the longest (ie., in links) path in CL ( C R ) .  Then every link used by 

S is under either a~ or OR. By the above discussion, 0 is the one and only node shared 

by ar, and a ~ ,  and aL and aR share no links. It follows that some link .e on the cycle 

is under neither path, so there is a link in the cycle which S does not use. However, 

t? is the only such link; otherwise, since a~ and OR together form a connected path in 

the cycle, there would be some node which S does not inform. Thus there is exactly 

one unused link. Also, the term between is unambiguous in S ;  its reference frame is 

the segment of S.  

Property 2 Let S be a nested schem.e on a cycle. Assume u roots a subscheme S, 

of S, w roots a subscheme S, of S ,  u is not in S,, and w is not in  S,. Then the 

segments of S, and Sw share no links in the cycle. 

To see this, let v be a node in S, and x be a node in S,, and assume that both v and 

a are between u and w. Let a,, (a,,) be the segment of P,, (P,,). By the above 

discussion, a,, and a, share no links, and since each is connected, v is between u 
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and x, which proves that P,, and P,, do not cross. Note that tc ma3 l>c n dcsccl~dal~t, 

of u in S or vice-versa. 

2.3.2 Flatness 

Let T(V, C,  u)  be a broadcast tree with 12 nodes. We will say that c E (' is a toy cclll 

or layer 0 call of T if it is the first or second call niacle by u or i f  it is the first (.i l l1 

made by a node which was itself informed by a top call. The nodc 11, m c l  cu~y  11odtb 

informed by a top call of T, are top nodes of T .  The fop path or layer 0 path of 'T' is 

the simple path in T whose edges are the top calls of T .  The set of top calls of 7'  1s 

layer 0 of T .  The node u is the root of the top path of T. If c E C is not a top call of 

T ,  then c is a bottom call of T. Let B be the set of subtrees we obt,ain by removing 

layer 0 of T (no nodes, just calls, are removed.) B is the set of layer 1 or boltom trecs 

of T .  All the above definitions apply to any layer 1 tree T' of T, sincc 7'' is also a 

broadcast tree. .The top path of T' is a laycr 1 path of T. Any call on T' is a la,ije~- 

1 call of T.  The set of all calls on all layer 1 paths of T is layer 1 of T .  Whcr~ we 

remove layers 1 and 2 of T ,  we obtain another set of subtrees of 7', thc layer 2 t,rl.ccs 

of T. Continuing, we see that each call in C belongs to exactly one laycr, say y ,  of 

T ,  and is a layer p call. The definitions of layer p tree, layer p path, lager. p call, and 

layer p all follow by the obvious extensions. 

We will agree to say that layer 11 is in T only if there is at least, one Iaycr 11 call i n  

T. If layer p is not in T, then there are no layer p + 1 trees and so, no dccpcr layers. 

Thus, the layers of T are exactly all layers from 0 to q - 1 for some q ,  the I I U J I I ~ X : ~  of' 

layers of T. We will say that P is a layer path of T if it is a laycr p path of T for solnc 

p, 0 5 p < q - 1. We also note that an end node of a layer path is either the root of 

the path or a leaf of T. So, if there are calls on a layer p path, the11 there is at leasl, 

one leaf node of T on the path; we call the leaf a layer p leaf. T h u s ,  there arcb layer p 

calls in a scheme only if there are layer p leaf nodes in the scheme. 

A layer structure is a property of a broadcast tree. When we write about the 

layers of a scheme, we will actually be referring to the layers of its broadcast trce. 

We will use the term bot tom scheme to refer to a subscheme whose broadcast, trct:  is 
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exactly some bottorri tree of the broadcast tree. 

The next property, flatness, is a property of an embedding. 

L3efinition 3 (Flat)  Let S be a cycle scheme. Let P be a simple path in  S .  P is 

embedded flat when 

i f a  node on P .makes two calls on P ,  then the two calls are embedded in opposite 

directions into the cycle. 

i f  a node on P makes a call on P and receives a call on Y ,  then the two calls 

are embedded in the same direction into the cycle. 

S is flat if each layer path of S is embedded flat. 

Lemma 2 The top path of an optimal cycle scheme is embedded flat. 

Proof: Let S be the scheme. First, let u be the root of the top path; u is the 

originator of the S. Referring to Fig. 2.5, part (a), assume that u calls v at phase 1 

and that the next call by u is at phase t > 1 to w, such that w is under the call from 

u to v. As illustrated in part (b), we can obtain a cheaper scheme by making the 

originator and having w call v at phase 1 and then u at phase 1 (note that nestedness 

prohibits the sort of situation shown in part (c).) 

Next, assume that u is n,ot the root. Referring to Fig. 2.5, part (d), assume that 

v calls u at phase t,  that ZL'S first call c, at phase s ,  say, is to w, and that w is under 

the call from v to  u (note that by nestedness, u cannot call through v.) As shown in 

part ( e ) ,  we can obtain a cheaper scheme by having v call w at phase t and having w 

call u at  phase s. 

In each of the cheaper schemes, each of u, v, w can make the same set of calls, 

other than the ones shown, that it did in S; it is informed no later, and is sending or 

receiving calls at no other phases, than it was in S. 

Lemma 3 I f S  is a ?tested scheme on a cpcle, and S' is a bottom scheme of S ,  then 

St is contiguous. 

Before proving the lemma we first establish a property of all schemes. 
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u w v node v PU 

t 0 1 phase t s phasc 

u w v node 
0 1 t phase 

Figure 2.5: Directions of top calls 

P rope r ty  3 If S is a scheme, u is a top node of S,a?zd ,St is the boi.tom scheme oj'u 

in S ,  then u has two neighbors on the top path of S if there are culls in S'. 

To see this, first assume that u is the root of the top path. Then only u's third i~11cl 

later calls are bottom calls. Otherwise, u is informed by a top call and only u's second 

and higher calls are bottom calls. If u makes no bottom calls, then u is the only ~oclc 

in S' and St contains no calls. 

Proof of Lemma: By Property 3, if u is the root of St = S,,(C',, ?',(V,, Cu, u ) ,  Q,),  

then u has a neighbor v and a neighbor w on the top path of S .  Either u calls 

v and w, or v (say) calls u and w calls w. Consider the first case, in  which u 

calls both v and w ;  u is the originator of S. Referring to Fig. 2.6, part (a), let 

S,(Gv,Tv(V,,Cv,v), (P,) be the total scheme of v (the largest subscheme of ,5' which 

v roots,) and Sw(G,, Tw(Vw, Cw, w) ,  a,) be the total scheme of w.  Then 11 6 V,, K,, 
and v,  w # V,. By Property 2, no node or call in Sw or ,S, is closer to u t,halr any 

node or call in S,. Since the three subschemes account for all nodes and calls in  S ,  

S, must be contiguous. The other case is similar. We define S, and S,, as hnforc, hu t  

now v is either the originator of S or is between the originator and u on the top path 

of S .  In either subcase, S, is S without the call from v to u and without the total 
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Figure 2.6: Contiguous bottom schemes 

scheme of u. Fig. 2.6, part (b) shows the subcase where v is not the originator. In 

either siihcase u pl Vv, V,, and v, w @ V,, and we can apply Property 2 as before. 

The previous lemma leads to two more results. Let S(G,  T, @) be a nested scheme 

whose top path P is embedded flat. By Lemma. 2 and Property 1, the induced path 

P' is simple. Let u be any top node of S and let S, be the bottom scheme of u in 

S. By Property 3, there are calls in S, only if u has two top node neighbors. These 

neighbors, and u, are iniosmed before any descendant of u in S,, so by nestedness, no 

call in S, goes through u or those neighbors. This discusssion establishes the following 

property: 

P rope r ty  4 If S is a nested scheme and the top path of S is embedded %at, then no 

top  call o f S  is under any other call of S and euch bottom call of S is under exactly 

one top call of S .  

TVe can now see that if S = (G, T(V, C, u), @) is an optimal scheme, then every 

bottom scheme S'(G1, Ti(V', C', u'), Qi')  of S is itself usable as an optimal scheme on 

a IV'l-cycle. By Property 4 each bottom call of S is under exactly one top call of 

S. Since S uses every link of the cycle except for the unused link, its segment is 

11;1 - 1 links long, regardless of any other detail of the scheme, including any details 

of the bottom schemes. But the total cost of S includes the total cost of each bottom 

scheme. Now, each bottom scheme is contiguous, so no detail of one bottom scheme 

affects the cost of any other bottom scheme. Therefore, each bottom scheme must 



'look like' an optimal cycle scheme; in particular, its top path must be enlbedded flat. 

Repeating the argument recursively, we see that S will have to satisfy Definition 3. 

So, we have proved the following lemma. 

Lemma 4 Every  optkmai cycle scheme is f lat. 

Flatness and nestedness are completely independent properties, despite the fact 

that proof of Lemma 2 involves the nestedness of an optimal schenle. A lop pat11 

can fold on itself (ie., not be embedded flat) and yet still obey riesting. On t l ~ e  ot,her 

hand, two bcttom schemes in a flat scheme can cross and thus violate nesting. 

We can use any broadcast tree T to create a flat, nested cycle scheme S(G,  7', 4r). 

First, we lay out the top path P of T flat and wit,hout overlap into a cycle which has as 

many nodes as there are top nodes. Next, we replace each node by a corit,iguous m i -  

bedding of the bottom tree rooted by that node; we thus creates the bottom sctmncs 

of S.  In the process, we stretch out the initial induced path PQ by inserting nodes i n  

the cycle to the left and right of nodes on Pa. The details of the bottom schenics do 

not affect the total number of links on the segment of the stretched P@. To de t eminc  

the details of the bottom schemes, we simply repeat the entire procedure recuruivcly 

for each bottom tree, stopping the recursion when we reach subtrees which coiltnin 

no calls. 

2.3.3 Fullness 

Let S(G, T, @) be a flat, nested cycle scheme. By Property 4, each bottom call of ,5' is 

under exactly one top call of S. Now, remove the top path of 5'. Thc bottom (layer 

1) schemes are contiguous, by Lemma 3, so no call in one bottom scheme is uritlcr 

any call in any other bottom scheme. Also, no layer 1 call is under any other call in 

the bottom scheme of which it is a top call. Each bottom scheme is flat and nes td .  

If follows that each bottom call of each layer 2 scheme is under exactly one layer 0 

call, one layer 1 call, and no other calls. Continuing, we can see that a layer p call is 

under exactly one layer r call, 0 5 T 5 p - 1 and under no other calls. Let q - 1 be 

the deepest layer of S. A layer p - 1 call has no calls under it since such calls would 

be in a deeper layer than q - 1. It follows that layer q - 1 calls are all local calls. 
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These observations lead to an accounting method for total extra length which 

immediately allows us to prove that an optimal cycle scheme has as many calls as 

possible at lower layers. Consider removing a layer q - 1 leaf u. Xore precisely, 

remove from T the call c which informs u, and then remove u from the cycle by 

merging the links incident on u. We know that c was a local call; removing it from T 

saves no extra length. We know that u was under q - 1 calls in T, all of which went 

through u and which had extra length > 1. When we remove u from the cycle, we 

shorten each of those q - 1 calls by one link. Thus, we have a new cycle scheme with 

n - 1 nodes and with exactly q - 1 less extra length. If the original scheme was flat 

and nested, then so too is the new scheme; no call that obeyed nesting in the original 

scheme now goes through any new, let alone informed, node, and the only change we 

have made, if any, to a layer path which was embedded flat in the original scheme is 

to shorten it by one call. 

Since the new scheme is flat and nested, we can repeat the procedure, performing 

it once for each call in the scheme. As we do so, we charge each unit of extra length 

exactly once, to one call in the scheme. Thus, we have a method for finding the total 

extra length of any flat, nested cycle scheme. 

As we have seen, any broadcast tree can produce a flat, nested scheme. Let the 

capmity M (n, p) be the maximum size of layer p in some set of broadcast trees on n 

nodes. It follows from the preceding discussion that the least expensive schemes in 

the set are the ones in which layers are filled in order, with a layer partly full only if 

there are no higher layer calls. 

Definition 4 (Full) Assume that we have a capacity M(n ,p )  which is the maximum 

size of each layer p in  a set of broadcast trees with n nodes and q layers, 0,. . . , q - 1. 

A scheme i n  the set is full with respect to  M if layer r of the scheme, 0 _< r < q - 1 

has M(n ,  r )  calls and layer g - 1 has 5 M ( n ,  q - 1) calls. 

We have proved the following lemma. 

Lemma 5 E u e q  optimal cycle scheme is full. 
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Note that the trivial capacity allows 11. - 1 calls in layer 0. Any local broadvast 

scheme for the cycle is lull with respect to the trivial capacity; the scheme has just a 

top path and no bottom calls. So, optimality requires extra length only if thmc is a 

nontrivial capacity. 

2.3.4 Sufficiency of Nestedness, Flatness and Fullness 

Assume that the n-cycle scheme S 11a.s q layers numbered 0 , .  . . , q - 1, and w(9b) calls 

in layer q - 1. If S is flat, nested and full, then it follows that the total extra length 

of S is just 

Since all nested, flat and full n-cycle schemes have lhis same cost, they are all optiinad; 

we have proved that nestedness, flatness and fullness are sufficicnt conclitions for 

optimality. Therefore we have proved the following theorem. 

Theorem 1 A cycle scheme is optimal iff it is Jut,  nested und full. 

2.4 Construction and Analysis of Optimal Cycle 

Schemes 

In this section, we completely analyze optimal cycle schemes with n = 2%odes, 

k = 0,1,2,. . ., in the process obtaining enough information to describe thc cost of 

optimal cycle schemes for all other values of n. We discus two recursive proccd1ire.r 

for constructing optimal 2"cycle schemes, and how to use any optimal scheme for ii 

2k-cycle to  create an optimal scheme for an n-cycle, 2k - 1 < n n 2k. 

2.4.1 Analysis of Optimal 2"cycle Schemes 

Because there is only one minimum time broadcast tree with 2 b o d e s  (the dirccted 

binomial tree with 2k nodes,) to find the total extra length of an optimal cycle scheme 
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with 2/" nodes? we could simply determine the number of layers A(k), and the size 

M ( k ,  pf, of each layer p, p = 0,. . . , A ( k )  - 1, in the broadcast tree with 2"odes. 

Since, as we saw in Section 2.3.3, we can charge extra length p to a layer p call in a 

M(k, p )  - p. flat nested scheme, the total extra length is just CpZO 
As our notation in the previous paragraph implied, M(k,p) is in fact the capacity 

of the set of minimum time broadcast trees with k phases. This follows from the fact 

that a broadcast tree with E phases is simply the broadcast tree with 2k nodes but 

with some subtrees removed. If follows that an optimal cycle scheme on n nodes, 

2"-' < n 5 2" is full with respect to the capacity M(k,p) described in the previous 

paragraph. We can write M(k, p) instead of M (n, p) since the two are the same if 

2"l < n 5 2k. We can determine M(k, p) by a recursive description of broadcast trees 

on zk nodes; the description leads to a recurrence relation which we will solve. We 

will not attempt a closed form formula for ~ ( n ) ,  the total extra length of an optimal 

cycle on n nodes, n > 0. However, once we have M(k,p), ~ ( n )  is easily found for any 

n via Equation (2.1), using M(E,p) in place of M(n,p).  A complete analysis of extra 

length is also easier for cycles with Zk nodes, using the same recursive description just 

mentioned. 

We now determine A(k), ~ ( 2 ~ )  and M(k,p) for k 2 0. The trivial cases are k = 0 

and rl: = 1, since optimal schemes in these cases are just local broadcast schemes with 

1 layer. We determine A(E) in general as follows: the originator makes its first two 

calls on layer 0, its next two on layer 1, and so on. Since the originator makes a call 

in each phase, there are at least rk/2] layers. Every call in the broadcast tree has a 

layer found by removing layers; removing each layer we descend 2 phases further into 

the tree, to a maximum of E phases. Thus, there are no more than [k/2] layers, ie. 

there are exactly rk.121 layers. 

At this point, we take a shortcut to determine ~ ( 2 9 ;  instead of first finding M(k,p), 

we directly use the same recursive construction which we will use to find M(li,p).  For 

brevity, call an optimal scheme on an n-cycle an n-scheme. It is easy to describe the 

bottom schemes of a 2k-scheme. We will say that the originator of a cycle scheme is 

a 1-node. We will say that any other top node of a cycle scheme is a j-node if it is 

informed at phase j. The originator calls the other 1-node. Each 1-node then calls 



a 2-node, and next, begins a 2"2-schen~e. The k-nodes make no calls (they arc t lw 

ends of the top path.) 

In an optimal scheme, each bottom scheme is flat, nested and full. It follows that,. 

given an optimal 2&-'-scheme, to construct an optimal 2X-scliet~~c we simply 1engtlrt.n 

the top path of the 2"l-schen1e by adding Iwo new nodes to the center of the top 

path, and then make each of the two new nodcs thc root of a, 2"2-sclwrne, st~cll that, 

each of those 2k-2-schemes is contiguous. We demonstrate this procedure fix- k = 4 

in Figure 2.7. Following the labelling of the dashed boxes, we see that boxt~s 1 and 

Figure 2.7: A recursive construction of optimal cycle sckerrw 

2 together contribute extra length 42"'), while boxes 3  and 4 each contril>ut,c cxtsa 

length ~ ( 2 ~ - ~ )  + 2k-2 - 1. The addend 2k-2 - 1 is due to the ~iulnber of new ca,llx 

under the top path. Therefore, 

The solution to the recurrence relation is 

which is easily verified by direct substitution. The total length of an optirrlal scherne 

on 2* nodes is then ~ ( k ) + ( 2 ~ - 1 ) ,  which is i [ 2 k ( 3 k + l ) - ( - l ) k ] ,  or just $[n(3[logn] + 
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1) - (-l)r 'u~nl] .  Farley's upper bound for total length in any network on n nodes was 

( n  - 1) Flog nl;  asymptotically in n, our result is 113 of Farley's upper bound. 

Finally, we determine M(E,p) .  Referring again to Figure 2.7, and arguing much 

the same as we just did for t(27),  we can easily derive the following recurrence relation: 

The  solution to this recurrence relation is 

which can be confirmed by substitution. 

2.4.2 Alternate Procedure for Creating Cycle Schemes 

Next, we give an alter~lat~e procedure for creating optimal schemes for the 2k-cycle, 

analyze the scheme using a binary reflected Gray code labeling naturally induced by 

the procedure, and find that the result of the analysis agrees with equation (2.2). Our 

motivation in developing this analysis was the search for a tight lower bound on total 

extra length required by the torus. Our hope was to extend the Gray code labelling 

which we use here to a ?-part or concatenated labelling of nodes in the cycle, where 

the concatenated label is formed from the labels which the node Las in the two factor 

cycles of the torus (see Chapter 3.) We note that a different and more transparent 

determination of the cost of the first line call in a scheme produced by this alternate 

procedure appears in Chapter 3 in the analysis of the product method for toruses. 



We begin the procedure by embedding the minimum t ilne broadcast t rcc wi t , l ~  2" 

nodes into the cycle. We find such an embedding in a recursive n1allnc.r; tzlic eli~bc~l~litig 

for the 2"cycle is found directly from the embedding for the 2X-'-cyc-lr. 1"igurv 2.8 

shows the embedding for the 4-cycle and how we use it to protlucc an enlhcdcling 1'01. 

the 8-cycle. In the figure, we omit. the links in the cycle; we assume that tlicrcs is all 

link in the cycle between nodes which are adjacent in each picture, a n d  I>t%wc~11 t l ~ v  

leftmost and rightmost nodes. 

11-00- 10-01 

Gray code la.belling of 4-cycle schenle 

11-10-00-01 01 -00-10-11 

Mirror image 4-cycle labellings 

Gray code labelling of S-cycle scheme 

Figure 2.8: Labelled recursive constructions 

For the Qcycle, we first label the nodes as shown, where the node labelled (00) 

is the originator. For this discussion, we will use the shorthand "(00) calls (10)" to 

mean, for example, that the node labelled (00) calls the node labellecl (10). 11) tlw 

scheme for the $-cycle, (00) calls (10) at time 1, and then at time 2,  (10) calls ( I  I )  

while (00) calls (01). Given a scheme for the 2"1-cycle, we find a schernr for 1,11t. 

2"cycle as follows: we first place two 2'.'-'-cycles side by side, with t tlc 1al)cllings o f  

the cycle on the right being a mirror image of the iahellings of the cycle on thc I & ,  

and with the nodes labelled (0. .  . O )  as close together as possible. Our dcscr~iption is 

somewhat informal here, hut Fig. 2.8 makes clear by example what we have in nlintl. 

Note that in the third picture in the figure, if we transposed the two 4-cyclcs, the 

two nodes labelled (00) would be further apart. We make a 2k-cycle from the t w o  

2k-1-cycles, in t.he obvious rnarmer3 assuming that any pair of acljace~lt norles sharc: 

a link and that the rightmost and leftmost nodes share a link. We the11 relabtzl all 
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nodes, prefixing the labellings of nodes which we took from one of the 2"'-cycles 

with 1 and the labellings of the remaining nodes with 0. We produce a line broadcast 

scheme for the 2"cycle by having (0 . .  . O )  call (10.. . O )  in the first time unit of the 

scheme, and then having each of those two nodes begin the scheme for the 2k-1-cycle. 

The procedure described above produces a scheme on k phases for the 2%ycle, 

since the first phase of the scheme uses one call to begin two subschemes on k - 1 

phases. If we show that the procedure described above produces a flat, nested, full 

scheme, then by Theorem 1 we will show that the scheme is optimal, and, since it is 

on k phases, that it is an op'irllal minimum-time scheme. However, we will analyze 

the extra cost of the scheme in a different way, arrive at exactly the extra cost given 

by equation (2.2), and thus prove that the scheme is optimal. The labelling of the 

nodes in the cycle is exactly a binary reflected Gray code as described in [7], p. 173. 

We can explain a node's label (gk . . . gl) as follows: for each node, there is a 'chain' of 

calls leading from the originator (labelled (0.  . .0)) of the scheme to the node. The bit 

y t ,  1 < t < k, is a 1 if and only if some call in that chain was made at  phase k - t + 1 

of the scheme. For example, the originator is labelled (0 . .  .O) because its chain is 

empty, while the most far-flung node is labelled (1 . . . l )  because its chain contains a 

call made in every phase of the scheme. We will use this observation later. 

Obviously, with the Gray code labelling, the length of a. call from the node labelled 

G(r) to the node labelled G(s) is jr - sl. From [7], p. 176, we have that if G(6) is 

(gk . . .gl): and b is (bn--l . . . boIz, then 

Nowt sender and receiver are always Hamming distance 1 apart. In fact, it follows 

by a simple inductive argument that if a node is first informed at phase t ,  0 < t < k, 

then bits gl to gk- t  in the label (gk . . .gl)  of the node are all O's, and that 'the node 

complements' each of those 0 bits, one at a time, in order from left to right, to 'get 

the label' of the node to call next. For example: if 12 = 4, the node labelled (1000) is 

informed at  phase I, and it then calls (1100) at  phase 2, (1010) at phase 3 and (1001) 
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at phase 4. So, we have 

G(s) = (gk . . -g i+~Ogi -~ .  - . y ~ )  

G(r) = (yk . . g i + ~  lgi-I . - .  g ~ )  

Now, referring to Equation (2.5), we have bt being the same for G(T) a d  G'(s), t > i. 
Since G(r) and G(s)  differ: in only in m e  bit, if follows f ~ o m  (2.5) that the b 1 ' s iuc 

complements, for t < i. To illustrate this, Fig. 2.9 shows a detailed esa~liplc for 16 

nodes ( k  = 4,) which shows the portions of the binary representat,ions of s a d  1, 

which are complements o 

phase 

1) 
2) 

3 

each other (by enclosing those portions in [ ] .) 

s t r  
(dec.) 

10 +05 
10 -13 
05 +02 
10 4 0 9  
05 +06 
13 4 1 4  
02 -01 
10 +ll 
05 +04 
13 +12 
02 t 0 3  
09 t o 8  
06 -07 
14 -15 
01 +oo 

s --+r 
(binary) 

polo]  -[0101] 
1[010] +1[101] 
0[101] -+0[010] 
10[10] -+10[01] 
01[01] +01[10] 
11[01] +11[10] 
00[10] -+00[01] 
101[0] +101[1] 
010[1] -+010[0] 
101[1] -+101[0] 
o01[0] t O O l [ l ]  
100[1] t100[0]  
011[0] +011[l] 
l l l [ O ]  -+111[1] 
000[1] -+OOO[O] 

Figure 2.9: Gray code labels and indices for 16-cycle scheme 

If we let P(i) be the length of the calls made in phase k - 1 ,  or equivalcritly, the 

length of the longest call in the scheme for the 2t-cycle, then we have P ( t )  = Jr. - '51, if 

the call is between nodes with labels G(T) and G(.s). Clearly, @(O) = 0, and examining 
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the example of Fig. 2.9, we see that 

Consider the label of the first sender, G(s )  = (gk . . . gl) = (0 . . .0). From (2.5), 

k 

bk-I  = (mod 2) = 1 

and by induction, 
even 

bb-t = 
1, t odd 

Thus, s is of the form (1010 ... 101) if b is even and (1010 ... 10) if k is odd; r is of the 

form (0101 ... 0) if I; is even and (0101 ... 1) if k is odd. So the length of the first call is 

given by the binary number 

(01)u2, k even 
'(') = { ( )  I. odd, 

the exponents meaning string concatenation. In general, P(0) = 0 and 

The solution to this recurrence relation is 

( b )  = [2k - (-l)k]/3. (2.9) 

If we let a(k) be the extra length of the first call made in the scheme for the 2"cycle, 

then a(0) = 0, and 

c~(k)=[2" ( -1 )~] /3 - l ,k>O - (2.10) 
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Then, the total extra length d ( k )  for the scheme for the 2"cycle is giveu rcc~~rsivcly 

The solution to this recurrence relation is equation (2.2), ~(29). So, t,he cycle schemes 

produced by this alternahe procedure are optimal. 

2.4.3 The Elimination Method for Cycles 

In Section 2.3.2, we described creating a cycle scheme on n nodes Ly creating a t q  

path and then creating the bottom schemes. We ca,n use this method to create opti~nal 

minimum time schemes on n nodes, 2k-1 < n < 2k, making s t  re t h t  the l~rnadci~st, 

tree is the rooted binomial tree on 2%odes, with sorue suhlrees rernoved. ,411 altcsnatc 

method is to simply create an optimal schcine on 2%odes, using, for emmplc, o m  

of the recursive procedures described in the previous section, and then eliminate 1,hc 

most expensive calls in the scheme until we have n - 1 calls left; we call this procecluro 

the elimination method. We begin with a flat, nested, full scheme with 2k rroclcs aticl 

k phases and remove, in the manner discussed in Section 2.3.3, a deepest layer Icnf 

node. We continue removing leaf nodes until we have removed a total of 2k - 77 r m h .  

As argued in Section 2.3.3, removing the leaf nodes preserves nesteilness a d  fldl,rlcss, 

and the resulting scheme is automatically full, so by Theorcm 1, the schcrne is am 

optimal minimum time scheme. The cost of the scheme is easily obtained by using 

Equations (2.1) and (2.3) and noting that there are rk/21 layers in the flat, nested 

and full scheme with 2k nodes. 

2.4.4 Embedding Conjecture 

We feel, partly on the basis of the apparent similarity of some of 1ordanski~'s ~~csults  

to ours, that the conjecture we present in this section is correct. Wc first ~ ~ S C I L H , Y  

the difference between unconstrained em beddings of tree into linear net works and the 

embeddings used in our cycle schemes (a linear network is a cycle or a path.) In an 

unconstrained embedding, an undirected, unordered tree is embedded. In creating 
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our cycle schemes, we embed a broadcast tree into the cycle. The tree is directed 

and has a level-ordering; each node in the tree has a level which is the phase, of the 

scheme, at which the node is informed. Each edge in the tree, which represents a call 

in the scheme, can also be assigned a level, which is the level of the node which the 

call informs. Given this assignment, we can describe a constraint on our embeddings 

which is imposed by the edge-disjointedness feature of the line broadcasting model; no 

pair of calls at the same level can be embedded into the cycle so that their embeddings 

share a link. 

Conjecture 1 An optimal cycle scheme S(G,T, @) with n nodes has the same total 

length as the optimal unconstrained embedding of the undirected version of the broad- 

cast tree T into the cycle with n nodes or into a linear network with at least n nodes, 

uhere the unconstrained embedding maps nodes of the tree one-to-one. 



Chapter 3 

Line Broadcast Schemes in the 

Torus 

3.1 Overview 

We now look at a constructive approach to finding upper bounds on total extra length 

required by the torus. We do not have a good lower bound. A torus is like a grid 

graph, in which each node is connected to its neighbors to the north, south, east, and 

west, except that the torus 'wraps around' north-south and east-west. Note that the 

torus is vertex-transitive. We will refer to a torus as an m x n torus to mean that it 

has m rows and n columns. An m x n torus can also be described a a produel of an 

m-cycle and an n-cycle. We will sometimes refer to a torus scheme as a product of 

two cycle schemes, with an obvious meaning. 

It is straightforward to complete local broadcasting in minimum time in small 

toruses. Figure 3.1 shows minimum local broadcast schemes for the 5 x 5 torus, in 

part (a), and the 6 x 6 torus, in part (b). When showing an m x rb torus schcme j r ~  

a figure, we will show a node by a number indicating the phase at which the node 

is informed, or sometimes, by a Zpart Gray code labelling. Arrows will point From 

source nodes to destination nodes (the arrowheads are redundant since the sender is 

alway informed before the receiver.) We will generally omit the edges between nodes 

to keep figures simpler, with the understanding that each node is connected to its 
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neighbors to the north, south? east, and west, and that the torus wraps around north- 

south and east-west. Note that both the 5 x 5 and the 6 x 6 torus schemes are local 

broadcat schemes. Also note that the 5 x 5 scheme wraps around one dimension of 

the torus; by this we mean that the scheme could not be drawn within a 5 x 5 grid. 

We prove in Section 3.2.4, there is no local scheme for the 5 x 5 torus which does not 

wrap around the torus. 

t t t  

Figure 3.1: 5 x 5 and 6 x 6 local broadcast schemes 

We now show a weak lower bound and an upper bound for total extra length 

required by an m x .tz torus. To set a lower bound, first observe that the diameter of 

an m x 11. torus is Lm/2J + Ln/2j. In both a 4 x 4 and a 5 x 5 torus, the diameter 

is 4. So, the shortest path from the originator to the most distant point in the 

torus is lm/2J + ln/2] edges long. Since we have rlog(mn)l phases in which to 

complete broadcasting, we require at least Lm/2J + Ln/2] - [log(mn)l extra edges to 

reach that most distant node, when Lm./2] + ln/2J > [log(mn)l. In a 9 x 9 torus, 

17n/3,) + ln/2] = 8. [log(mn)l = rlog(9 - 9)l = 7. So, the 9 x 9 torus requires extra 

length of at least 1. 

To show an upper bound, we present the product method, which produces schemes 
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for the 2% 2' torus from the scheme for the 2"cycle. 

The Product Method 

3.2.1 Description of the Product Method 

Figure 3.2 shows how we use the product method to produce a line broadcmt schenle 

for the 4 x 4 torus. Part (a) shows a 4-cycle scheme labelled with the Gray c d e  

labelling described in Scction 2.4.2. We begin with the labelling because we feel that 

it may suggest a lower bound analysis in Suture work. Part (b) shows the 4 x 4 torus 

as the product of two labelled $-cycles. In the figure, we show each cycle with its l i w  

broadcast scheme. The labelling of each node is the concatenation of thc node's labcl 

in one cycle of the product with its label in the other cycle of the product. (wc sl~ocv 

the two components of each label offset.) Second, we choose a subset of the calls i l l  

the schemes. The originator is the node whose label is all 0s. We begin by cltoosil~g 

the first call from the scheme for one of the component cycles of the product; in thc 

figure, we choose the call from 0000 to 0001. At each subsecperat step, w e  choosi*, 

for each informed node, the next call from the scheme for the alternate cycle. h r  

example, the second choice is the two calls 0000 to 0100 and 0001 to 0101. Part 

(c) shows the resulting line broadcast scheme for the 4 x 4 torus, with phascs shows 

instead of labellings. 

In the generalization of the method to the 2' x 2k torus, we produce the product of 

two 2k-cycles and select calls from the line broadcast schemes for the two caniporlc~~t 

cycles. The originator is the node whose label is all 0s. The first call wc choose is thc: 

first call from the scheme for one of the component cycles. At step p = 0,2 ,4 . .  ., wc 

make, for each informed node, the call which that node would make at step p/2 in i h c  

line broadcast scheme for the one component cycle, while at step p = 1,3,5,. . ., wc 

make for each informed node the call which that node would make at step jp - 1)/2 

in the line broadcast scheme for the other component cycle. 111 the 2k x Zk torus, the 

product method amounts to alternating at each step between the two dirnension~ of 

the torus (with the choice of call determined by the line broadcast scheme for the 
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Figure 3.2: The product method for the 4 x 4 torus 
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2"cycle.) 

Figures 3.3 and 3.4 illustrates the production of an S x 8 torus scheme by blit: 

praduct method. Figure 3.3 part (a) shows the labelled 8-cycle schcuie, and part jb) 

shows the 8 x 8 torus as a product of two 8-cycles, along with the line broadcast, 

schemes for each cycle. Figure 3.4 shows the line broadcast. scheme-. for the 8 x S torlts 

which results from choosing calls as described above. 

3.2.2 Analysis sf  the Product Method 

The extra length used by the product method is given as follows: 

Claim 1 For the 2k x 2' torus, X: 2 2, the product meth,od uses t o i d  estrct l o ~ g l h  

Proof: For the 4 x 4 torus, k = 2, and the total extra length is 0 (see Fig. 3.2); 

setting Ic to 2 in Equation (3.1), we obtain 

So, the formula is correct for k = 2. Assume that the formula is correct for k ,  arid 

define D ( j )  as the total extra length of the first three calls in the scheme far the 2 j  x 2" 

torus. Then, E(2k+1) = 4-E(2k) + D ( k +  1 ) .  The first call in the scheme for the 2k x 2' 

torus is the first call in the scheme for the zk-cycle; the second and third calls are also 

the first call in the scheme for the 2k-cycle, though in the torus they are msc!a irr the 

other dimension than the one in which the first call was made. The formula for D ( k )  

is 2k - 3 + (-lIk-l, which we show as follows: the extra length p(k )  of each of t,hc 

first three calls for the 2% xk torus is given by p ( k )  = (2k - 3 + (-ljk-')/3, as wc 

show in a moment. Then, 3 times p ( k )  is D(k) as given. To show that, thc formula. 
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(b) 

Figure 3.3: The product method for the 8 x 8 torus 



CHAPTER 3. LINE BROADCAST SCNEAlES IN THE TOR IrS 

Figure 3.4: Line broadcast scheme from product method for the 8 x 8 torus 
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for p ( k )  is correct, we define x(k) as the number of cycle edges between the originator 

and nearest end node of the 2k-cycle scheme. It is easy to see that 

and that in generaj, 

The solution to this recurrence relation is z ( k )  = (2"' - 3 + (-l)k)/6. 

It is also easy to  see that 



and that in genera.1, 

As expected, this result agrees with the Gray code analysis of the 1mgtjh of the first, 

call in a 2k-cycle, as given in Section 2.4.2. Thus, 

and the result is proved by induction. 0 

For the 2k x zk torus, then, the total length is E(2" + (2" 11, which is 

(-I)'-'], or simply ;[a + ( - l ) ~ ' 0 ~ ~ 1 - ~ ] ,  since the number of nodes 7~ is 2' - 2" 

4k. Farley's upper bound for total lellgth is (n - I )  [log 7 1 1 ,  so our u p j m  bou~-td is 

asymptotically 5 rlog nl times smaller than Farley's upper hound. 

3.2.3 Other Uses of the Product Method 

We can use the schemes produced by the product method to gcneratt: sc!ierncs for 

'odd-sized' toruses, by rounding up the dimensions of the t,orils to a pow i. of 2 ard 

using the result for that power of 2. For example, suppose that we have a 'i x 6 torus. 

We have an upper b o n d  for an 8 x 8 torus from the product method, and since a 7 x 6 

toms 'fitsf into an 8 x 8 torus for the purposes of the product method, we cart sirrlply 
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Figure 3.5: Adapting the product method for the 7 x 6 torus 

Figure 3.6: Adapting the product method for the 4 x 8 torus 
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use the scheme used for the 8 x 8 torus but without making calls that the 7 s G torus 

doesn't 'require'; see figure 3.5. Figure 3.6 show a scheme for -1 x 8 torus. Results 

for m x 2m toruses can be used as upper bounds for n2 x n toruses where n < 31,. 

We can let k = flog nmx(m, n)1 and use the product metl~od. So, we can establisll 

an upper bound for any m and n. We can easily improve this bound in several ways. 

First of all, we can discount some extra edges when m is not a power of 2. If wcb rcfcs 

to figure 3.5, and imagine that the torus were actually of size 7 - 4% 6 .kk, k > 0, 

then the outlined area in the figure would actually contain line calls which the 7 x 6 

scheme would not include and which we could discount. There are, however, bcl,t,c~ 

ways to choose the calls to 'ignore', as discussed in the next section. 

We can also use the product method to directly generate schemes for zk x 2-' 

toruses; we find the schemes for the 2"cycle and 2'-cycle and in selecting calls, wcJ 

first broadcast only in one dimension until we have a set of 'scjuare' to]-uscs ~ I I  which 

to complete broadcasting. Assuming j > k, we first complete a 2~-~-cycle  scheme a d  

then do ( j  - L) copies of the 2% xk torus scheme in parallel. 

We can also consider other graphs which can be described as products; in produc- 

ing schemes for such graphs, we begin by finding schemes for each component, of 1h 

product. We are not restricted to binary products; if a graph is a product, of 6 factors, 

we begin by finding a scheme for each of the S factors. For example, wc can easily 

find schemes for all 6-dimensional cycles (where a torus is a 2-dimensional cycle.) 

Our experience with the product method leads us to make the following corijcct,tlse. 

Conjecture 2 The product method (with its extensions as just described) proclvce,~ 

optimal schemes for add S-di.mensional cycles, 6 2 1 ,  where the rzv~mber of lrorles in 

each factor cycle is a power of 2. 

The hunch behind the conjecture might be described as an intuition about the 

'orthogonality' of a product. The conjecture is true for 6 = 1; in that case we 

have cycles, and will reproduce our optimal cycle schemes of Chapter 2. I t  might 

be instructive to  try to find optimal schemes for 2k x x toruses, for 1 < mn 5 6. 

The product method schemes in these cases use exactly the extra length used by 

an optimal 2k-cycle scheme, because a local broadcast scheme suffices for thc ~econd 
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('m') dimension when 1 < m 5 6. It seems compellingly obvious that the addition of 

the second dimension in these cases does not allow us to use less extra length than we 

used in the ' ~ ~ - c ~ c l e ;  perhaps the proof of this restricted result could be generalized to 

allow m to also take on the values 8,16,32,. . ., as in the conjecture. If the conjecture 

is correct, then it probably generalizes to m x n toruses for less restricted values of 

m and n. However, it cannot be true for unrestricted m and n,  as we discuss in the 

next section. 

3.2.4 The Elimination Method for Toruses 

In Section 2.4.3 we described an elimination method for cycles. The method involved 

removing the costliest calls from an optimal 2k-cycle scheme to produce an optimal 

scheme for any other value of n, 2"' < n < 2" In this section, we describe an 

elimination method for toruses. This method involves removing the costliest rows 

and columns of calls to leaf nodes from a 2k x 2k torus to produce a scheme for an 

m x n torus, where m , n  5 2" The method can be generalized to 2k x 2j toruses, 

but for simplicity we will deal only with 2k x 2k toruses. The present aim is not to 

produce optimal schemes for general m x n toruses, as we produced optimal schemes 

for general 12-cycles. We should not expect to do so, since we have not proved the 

optimality of the 2k x 2"orus schemes. We will instead systematically describe the 

construction of m x n torus schemes for some values of m and n, discuss for what 

values of m and n the constructions are valid, and present some results which could 

lead to an analysis of the cost of schemes produced by the method. 

A n  example of this method is producing the 6 x 6 scheme from the 8 x 8 scheme. 

Comparing Figs. 3.3 and 3.1, we see that if we remove the middle two columns and 

middle two rows of the 8 x 8 scheme, we remove all extra length from the scheme 

and produce exactly the 6 x 6 scheme. However, we now argue that there is no way 

to produce an optimal 5 x 5 scheme by eliminating rows and columns from a larger 

product method scheme. Every optimal 5 x 5 scheme wraps around the torus in one 

dimension. But no 'wrap-around' can involve all leaf nodes in one row or column, 

or else the wrap-around is not actually a wrap-around, just a 'shift' of the entire 



scheme by one column. A shift does not change the scheme, since the torus is vertcs- 

transitive. But no product method scheme wraps around, so producing front such a 

scheme another scheme which wraps around would require removing only parst of a 

row or column and leaving the rest; the elimination method does not, do this. 

To show that every opttimal 5 x 5 scheme wraps around, we t ry  to constxurt, a local 

broadcast scheme which does not wrap around. Finding such a scheme is equivalent 

to finding a suitable originator in a 5 x 5 grid graph and then finding a local broadcasts 

scheme for the graph and for that originator. There is no such originator, howcver. 

If we examine the grid graph in Fig. 3.7, part (a), we note that only the 5 can~licla~te 

originators in the cross-sha>ped are within 5 links of each of the four circled nodev in 

the corners of the grid. Thus, only those 5 originators could possibly reach each of 

the corner nodes in the 5 available phases using only local calls. Up to isomorpllism, 

Figure 3.7: Why the optimal 5 x 5 scheme must wrap arouncl 

there are only two distinct originators in the cross-shaped area; we examine these two 

originators in parts (b) and (c ) .  A local scheme beginning at the originator slriowrt 

in part (b) cannot inform both of the labelled corner nodes in 5 phases. Each corner 

node is 5 links from the originator; the path of local calls which informs either node 

must be 5 links long, and no node on the path can 'delay' before making its call or) 

the path. However, a single such path cannot inform both nodes; there must be two 

such paths (although the two paths may share some links.) If we select onc of thc 

two nodes to inform by such a path, then at some node on that path, a 'delay' of one 
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phase must occur before the second path is started; the delay may occur as 'early' as 

at the originator, in which case the two paths share no links. Thus the node which 

we did not select cannot be informed by phase 5. A 'failed' example subscheme is 

shown. A local scheme beginning at the originator in part (c) cannot inform all four 

of the corner nodes in 5 phases. Each corner node is 4 links from the originator and 

cannot be informed before phase 4. The first call by the originator informs a node 

that is closer than the originator to only two of the corner nodes, in adjacent corners 

of the graph. Thus the other two corner nodes are 'delayed' by one phase; neither of 

those latter two nodes can be informed before phase 5. At some phase after a call 

is made that is closer than the originator to one of those two latter nodes, a further 

call must be made that again delays one of those two latter nodes; that twice-delayed 

node cannot be informed by phase 5 .  Again, a 'failed' example subscheme is shown. 

There is another limitation on the use of the product method, which we illustrate 

with the 8 x 8, 6 x 6 and 5 x 5 schemes. The number of nodes in the 8 x 8 torus is 

64, which is 26. Therefore, the broadcast tree of a (minimum time) scheme for the 

8 x 8 torus has 6 phases. The 6 x 6 torus has 36 nodes, while the 5 x 5 torus has 

25 nodes. Now, Z5 < 36 < 26, so the 6 x 6 broadcast tree has 6 phases. However 

25 < 2', so the 5 x 5 tree has only 5 phases. This fact does away with a naive plan, 

illustrated in Fig. 3.8, to produce an optimal scheme for the 5 x 5 torus. In part (a), 

we create an optimal 8-cycle scheme, in part (b) we use the elimination method for 

cycles to produce an optimal 5-cycle scheme, and then in part (c) we produce a 5 x 5 

torus scheme as the product of these two 5-cycle schemes. The resulting scheme has 

6 phases, which is too many. At any rate, the scheme does not wrap around, and as 

we have seen, no such 5 x 5 scheme is optimal. 

In general, the plan takes an optimal m-cycle scheme and an optimal n-cycle 

scheme and produces a scheme for the rn x n torus as the product of the two cycle 

schemes. The plan works in many cases. For example, if we examine the &cycle 

scheme in Fig. 3.8 again, we can see that by eliminating the leaf nodes under the 

long call, we obtain an optimal 6-cycle scheme. If we then examine the 6 x 6 scheme 

in Fig. 3.1 again, we can see that it actually is the product of two 6-cycle schemes. 

The plan will not work when [log(rn - n)l is less than [log ml + [log nl, as is the case 
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Figure 3.8: A naive plan for the 5 x 5 torus 

when m and n are both 5. The problem in such cases is that all [log m,l phases are 

retained in one dimension and all [log n] pliases in the other dimension, whereas one 

phase must be lost in the torus because the total number of nodes has dropped below 

+ t e n .  

So, we will restrict ourselves to values of m and n where 

[log nl 

We note, however, that we could eliminate two more rows and two more colurrms from 

the 6 x 6 scheme and arrive at the 4 x 4 scheme; we would first eliminate the two outer 

rows of leaf nodes and then the two outer columns of leaf nodes left after eliminating 

the rows. However, this exercise is not particularly revealing; to satisfy (3.2), we have 

had to eliminate all leaf nodes from the scheme with which we began, becausc all of 

those leaf nodes were informed in the last (and now 'illegal') phase. 

Our results on the cost of schemes produced by the  elinination method are prc- 

liminary. We restrict ourselves to the case where we only eliminate some rows of leaf 

nodes. We draw a distinction between rows and columns of a scheme. If we examine 

the 4 x 4 scheme in Fig. 3.2 and the 8 x 8 scheme in Fig. 3.4, we note that the 

first call in the scheme is in one dimension of the torus, and that the next two are 
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in the other dimension. With the way we have chosen to select calls from the factor 

cycle schemes, we can see that this distinction between the two dimensions continues 

recursively; the four 4 x 4 subschemes in the 8 x 8 scheme all have the same feature, 

and the dimension in which the single call occurs is the same at all levels. We will 

define the rows of the scheme as the factor cycles which cross the double calls. That 

way, when we eliminate a row, we will shorten more calls than if we were to eliminate 

a column, which always only goes through the single calls. 

The reason we have chosen to restrict ourselves to row eliminations is that elim- 

inating both rows and columns complicates the analysis. For example, assume that 

we first eliminate some rows. What this does is to shorten some columns. This means 

that we cannot independently ana(lyze the cost of eliminating the columns as though 

they had been removed first. 

The elimination method for toruses is similar to the elimination method for cycles 

in one respect. We described the elimination method for cycles as repeated removal 

of leaf nodes from a cycle scheme. We will describe the elimination method for the 

torus as removal of rows of leaf nodes from a torus scheme. For example, consider 

producing a 6 x 8 scheme from the 8 x 8 scheme shown in Figure 3.3; we eliminate the 

middle two rows of leaf nodes. We could eliminate the outer two rows of leaf nodes, 

but we would not save any extra length that way, so the resulting scheme could not 

be optimal. We also note that in the 4 x 4 scheme in Fig. 3.2, 2 out of the 4 rows 

are rows of leaf nodes. Since the 4 x 4 scheme is the 'building block' of all zk x 2j 

schemes, it follows that exactly half of all the rows in any such scheme are rows of leaf 

nodes. A similar feature holds for cycle schemes, and can be seen to account for the 

feature in the torus; exactly half of all leaf nodes in a 2k-cycle scheme are leaf nodes, 

since the number of informed nodes doubles in the last phase and all nodes informed 

in the last phase must be leaves of the broadcast tree. The reason this feature of 

the cycle accounts for the feature in the torus is that the rows of leaf nodes in the 

torus correspond to the leaf nodes of the 'second' dimension of the cycle (the direction 

chosen second as calls are selected from the factor schemes.) 

Our investigation is an attempt to determine the cost distribution of the rows of 

leaf nodes. When we eliminate a leaf node, we shorten all the calls which that leaf is 
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under. As in Section 2.3.3 on cycles, this suggests an accounting method for the cost 

of calls in a torus scheme. In particular, we are trying to find an accounting ~nrt,t.tod 

for the cost of local calls which are parallel to columns of the scheme. We note that not 

all calls informing the leaf nodes of a row have the same cost. For example, cousitler 

Fig. 3.4. Only two of the calls informing leaf nodes in a middle row are under t h  

long calls of the scheme; it is the elimination of these two calls that saves extra, length. 

The situation becomes more complicated for larger toruses. Two calls will be tmclcr 

the 'topmost' long calls; four will under the long calls at  the next step of recursiol~, 

and so on, where a step of recursion is defined as the first three calls, ie. the splitting 

of a grid of the torus into four subgrids. Out of those latter four calls, anly two will 

be under the long calls at both of the first two steps of recursion. 

There should be a recursive description of the situation, analogous to the rccursivc 

description used to find ~ ( 2 ~ )  and A l ( k , p )  for cycles in Section 2.4.1. We haw I I O ~ ,  

developed this description yet. However, it should provide a distribution, a set of lotitl 

costs of rows and the frequency of occurence of each cost. In principal, this distribution 

tells us the cost of the cheapest scheme we could produce by the elimination of rows 

of leaf nodes; we simply eliminate as many of the costliest rows as we can, thcn as 

many of the next costliest, etc. It is also possible that a description of this scyuc~ico 

could lead to insights regarding a lower bound on cost for the 2% Z k  torus. 

What we have done is to find by 'brute force programming' the total extra Ierrgi,h 

of each row of leaves in the 2k x 2' torus and looked for patterns. The pat1,erns appcns 

to be generalized Fibonnaci sequences. The number of cost values is F(k.), the lcth 

Fibonnaci number. For k = 4, the rows of leaves come in three possible total extra 

lengths: 0,2, and 4  ( F ( 4 )  = 3 . )  For k  = 5, the total extra lengths are 0,2,4,8,10 

(575) = 5.) 
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For any value of k ,  the possible extra lengths are simply each of the first F ( k )  

values of the folowing sequence, multiplied by 2: 

This series is actually composed of successively longer pieces, where piece 0 has length 

1, and piece r has length F ( r ) ,  r  > 0. Picce 0 is (0) ; piece 1 is (1)) piece 2 is (2) ; 

to get piece r ,  r > 2 ,  

1. take piece r - 1 and add 2T-2 to each member. 

2. Then, take piece r - 2 and add 2'-' to each member. 

Appending the second piece to the first gives piece r. Note that piece r - 1 has length 

F ( r  - 1) and piece r - 2 has length F ( r  - 2), so piece r has length F ( r  - 1) + F ( r  - 2 ) ,  

which is F(r)  as desired. Here is the sequence again, with the pieces bracketted: 

piece 3 

I 
(01, (I> ,(2>, (4,5> ,(8,9,10), (16J17J18,20J21)> 

(32,33,34,36,37,4O ,4l,42) , 
(64,65,66,68,69,72,73,74,80,81,82,84,85),(128,... 



Now, each cost occurs a certain number of times. eg., for k = 4 ,  the possible 

costs are 0,2,4; 0 occurs 2 times, 2 occurs 2 times, and -1 occurs 4 times (total oC all 

occurrences is 8, which makes sense since there are S rows of leaf nodes ill t . 1 ~  T i  x 2' 

torus.) The occurences are described by another series, which looks likc this (nlrcaily 

bracketted:) 

The length pattern is the same as in the previous sequence; piece r has le~lgth F(1,). 
To obtain piece r, r > 2, we take piece r - 1 and appcnd to it picce r - 2 with all  

elements of piece r - 2 multiplied by 2. There is no other factor dependent 011 X: for 

this series; we just take the first F(b)  elements for the 2% 2' ~OIIIS .  I 3 l m ~ ~ 1 1 ,  v -  O S  

this sequence is the number of occurrences of the r th cost in the cost secluencc. 

We have not developed a formula which generates the rth element, of eitl~cr. se- 

quence. We have made a further observation, however. We dcscribcti a cost sccpenw 

for the 2' x 2' torus as 2k-1 added to the first F(k)  elements of the 'base' srqucilcc 

which is composed of the pieces (0)  , (1) , (2), (4,5), (8,9, l o ) ,  . . . . . Wc note that? 

the r th  piece of the base sequence, r > 0, is 2'-' added to the first 3 ( r )  clerncnts of 

the base sequence, the zeroth piece being (0). 

3.2.5 Other Methods for Producing Torus Schemes 

The product and elimination methods cannot produce optimal schemes for all torufccs, 

The first example we noted was the 5 x 5 torus. Our optimal Fj x Fj scheme can itself 

be used to produce larger schemes. We can simply use it to t i le  a larger torua, a d  

then connect the originators of the tiles by line calls. For exarnplc, we can produce 
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a scheme for the 10 x 10 torus, A tiling of that torus is shown in Fig. 3.9. 

Figure 3.9: Tiling the 10 x 10 torus 

5-4  t i i i  

55 

The 

5-4 

wrap-around is now flattened out in each tile; it is easy to see that the left and right 

sides of the entire tiling will fit properly. It is also easy to see that it will take 3 

calls of extra length 4 to join the 4 originators of the tiles. The tiles contribute no 

extra length, so the total extra length of the resulting 10 x 10 scheme will be 12. We 

note that [log(lO - 10)l < [log 101 + [log 101, so we would not attempt to use the 

elimination method on t,he 16 x 16 torus to produce a scheme for the 10 x 10 torus. 

We could use any suitable scheme to tile a torus; we could use the 10 x 10 scheme 

itself as a tile. We might also use an optimal scheme for say, the 7 x 7 or 7 x 11 torus, 

5-3 t i i 1 1  
-~ t i i-'- 5- 3 

2- 1- 0- 4- 5 
t i i-' 
2- I- 0- 4-* 5 

I 1 1  
4 1 1 1  
1 i i-4-5 4 

5 4 3 -4 -5  5 4 3-4-5 
1 i iWqv5 
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which could perhaps not be produced by the product and elimination iuethods, to kilt. 

another torus. We note that we should not 'have to' use the 6 x 6 scheme to tile t lw 

12 x 12 scheme, since [log(l2 . 12)l = [log 121 + [log 121 ; we can use thc eliuuin. CL t 1011 ' 

method on the 16 x 16 torus to produce a scheme for thc 12 x I% torus. Similarly, 

rlog(24 24)l = [log241 + [log 241, so eliinillation on the 32 x 32 torus prodi~ct~s a 

scheme for the 24 x 24 torus. However, rlog(20 20)l < Fog 321 + [log 321 so t'tw 

10 x 10 scheme could tile the 20 x 20 torus while the elimination methocl would n o t  

work. 

Finally, we note that the generalization of t'he restriction in Equation (3.2) hccorncs 

more severe for 6-dimensional cycles as 6 increases. That is so becausc 6-dirue~~sior~d 

'volume' changes quickly as a function of factor 'length'. That is, eliniinatiug only a, 

small fraction of the 'rows' in each dimension can reduce the total nr~rnbcr of nodes 

by more than t. 



Chapter 4 

Minimum Line Broadcast Graphs 

4.1 Overview 

In this section we discuss an approach, inspired by the idea of minimum broadcast 

graphs (MBGs) (see [2], [20] ,) to investigating what we can do with a given extra 

length. A minimum broadcast graph is a graph with n vertices in which we can com- 

plete local broadcast from any originator in pog nl time units, and which has the 

minimum possible number of edges. In general, it seems to be extremely difficult to 

find an MBG for an arbitrary n, while for some values of n, the result is straightfor- 

ward; for example, any kcube is an MBG with 2hertices. If we allow line calls, we 

may be able to complete broadcast in minimum time in a graph with n nodes which 

has fewer edges than an MBG with n nodes. Of course, if the MBG with n nodes is a 

tree, then no graph with n* nodes in which we can complete any broadcast has fewer 

edges than the MBG. Morever, we already know from Farley's result, mentioned in 

sectiou 1, that given enough extra length, we can always complete line broadcasting 

in minimum time in a tree wit.h n nodes. What we may ask is: how few edges we 

can have in a graph with n nodes, and still be able to complete line broadcasting in 

minimum time using only some given extra length? 
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4.2 Minimum Line Broadcast Graphs 

Definition 5 (Minimum line broadcast graph) A minimun? lirie broadmd 

graph (MLBG) with 77 rzodes a d  total exf7.a length L is a graph (: = (1,: Ef uidh 

)V1 = n, in which we can complete line broadcastirlg ZIL G frow m y  u E \ '  i r r  peg??] 

time units using 5 L total extra l eq th ,  and such that there is ao grcrph A = (& E2) 
with )E2i < IEl in which we can complete line broadcasting from (112 y 1 1  E 1' irt [log I , ]  

time units using < L total extra length. 

For a given T Z  and total extra length L, there may be a set of MLBGs; let u s  i.cfcr 

here to the set as p(n, L).  We already have a member p(n, 0) for sane values of 71; 

that member is the known MBG with rL nodes. For any 72 and for large e~iough I,, 

Farley's result gives us a member of p(n, L);  that member can be I>,, the path wit 1 1  T r  

nodes, or any tree with n nodes. In fact, for any n,  there are on1 y a finite n ~ ~ ~ n b c r  of 

values of L which are of interest, starting at 0 and going up to a value large enough for 

Farley's result to apply. If we refer to the value of L at which Farley's result applics 

for a graph with n nodes as E'(n), theil p(n, L) ,  L > F(n) ,  contains orily lrccs with 

n nodes. It seems reasonably obvious that if extra length L suffices for an cnti (leal') 

node of P,, then L will suffice for any tree with rz nodes. The proof should involve 

a simple exchange argument. We state with confidence then that F ( n )  is silnply t l ~ c  

total extra length of an optimal scheme for an end node of P,. 

F ( n )  = 0 for n 3, as we can see in Figure 4.1, which shows MLRCh for < 
3 and minimum time local broadcast schemes for all distinct (up to isoit~orptlistl~) 

originators. It is known already that any MBG with 4 nodes contains 4 edges; t h c  

k u b e  is an MBG for n = 4% as shown if Figure 4.2, part (a), So P(4) > 0, and p(4, I)) 

contains the Ccube. F(4)  is, in fact, 1; figure 4.2 part ( b )  shows that P4 E p ( 4 , l )  

by showing schemes for all originators (up to isomorphism.) Farley has shown in [9] 

that for n > 3, no tree with n nodes is a minimum time local broadcast graph, so 

F(n) > 0 for all n > 3. 

It is easy to show that F(5) = 1 by drawing a scheme for the end node of f2. that 

uses only L = 1, and noting that L = 0 will not suffice, since F5 is a tree with more 

than 3 nodes. For n = 2k, we can easily suggest what is probably an optirnal sdterne 
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Figure 4.1: F ( n )  = 0 for n < 3 



for the end node of P,. The total estra length of the scheme clearly serves as a11 uppcr 

bound on F(n)  for 2"' < n < zk. Since we will not prove that the schenic is optinlal, 

we will call the total extra length of the scheme F,,(I;) to indicate that i t  is tcclinically 

only an upper bound on F ( n ) ,  and that it is a function of k, not, ? I  dirr~tly. IVIICY~ 

k = 1 (12 = 21, we require no estra length. For 1; = 2, we can use estra length 1; tllc 

end node calls the node 2 edges away, and effectively splits the path into two paths 

of length 2. We generalize this scheme for k > 2 in the obvious fashion. In general, iT 

our upper bound for k is h',(k), then 

The solution to this recurrence relation is 

We may also want to know what value of L is just large enough that somr tree 

with n nodes is in p(n, L); let us call that value f (n). We know that f (6) > 0 sincc 

6 > 3. If follows from Figure 4.3, then, that f (6) = 1; that figure shows tliat i-1 

minim.um broadcast tree (MBT) with 6 nodes is in p(6,l).  A minimum broadcast trec 

is a broadcast tree in which one or two nodes in the tree can originate a nii l i irnurr~ 

time local broadcast; those one or two nodes form the (local) broadcast cenler. ol the 

tree. If there are two nodes in the broadcast center then they are neighbors in the 

tree. Binomial broadcast trees are MBTs; a binomial broadcast tree wi th  2'+' nodcs 

can be split into two identical MBTs (also binomial broadcast trees) with 2'; ~ ~ o d c s  by 

removing the edge joining the two nodes in the broadcast center. Similarly, we can 

show that f (7) = 1. We can also conclude that f (8) 5 3; Figure 4.4 shows tllat the 

MBT with 8 nodes is in p(8, 3). 

In [9], Farley proposed a scheme for broadcasting from any node in an M B7'. Vde 

illustrate the procedure by describing a scheme for the worst-situat~d leaf of an MA7' 

with 2k nodes, which is simply the familiar binomial tree with 2k nodes. In an MR'I' 
there are exactly two nodes capable of originating a minimum-time local broadcast3; 

they are neighbors in the tree and by removing the edge between them we obtain two 
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Figure 4.3: F ( 6 )  = 1 

MBTs with 2"l nodes. The leaf simply calls the more distant of those two nodes; 

that more distant node then originates a minimum-time local broadcast in its subtree 

with 2"' nodes, while the leaf repeats the entire procedure recursively in the other 

subtree; it is also the worst-situated leaf in that subtree. It is easy to show that the 

total extra length of this scheme is an upper bound on the total extra length for any 

node in any MBT with n nodes, 2k-1 < n 5 2k. Parley gives the upper bound as 

Comparing this result to (4.1), we can see that m(b) is asymptotically much smaller 

than F,(k). 

We may wonder if there is a better choice of tree than the MBT, perhaps one of 

much lower diameter. The lowest diameter tree is STAF,,, the star with n nodes; it 

has one central node and n - 1 isomorphic leaves and is of diameter 2. We consider 

the scheme for any leaf of STAR(k), which we define as the star with 2k nodes. It 

is faixly obvious that the leaf should call the central node so that the central node 

may make k - 1 local calls. All calls are either of length 1 or length 2, so using the 



Figure 4.4: F ( 8 )  < 3 
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maximum number of local calls decreases the total extra length as much as possible. 

All calls of length 2 will be between leaf nodes and go through the central node; note 

that it is actually impossible to specify a scheme which violates edge-disjointedness 

since an edge could only be used twice if one node were involved in 2 calls at once. 

The analysis is easy, then. There are k - 1 calls of length 1 and (2k - 1) - (k - 1) 

calls of length 2. So the extra length required by STAR(k) is 

Comparing this result to (4.2) we see that s(k) is asymptotically much worse than 

m(k). On the basis of what we have described, and after further investigation, we are 

led to the following conjecture: 

Conjecture 3 Let f (n) be that value of extra length L which is just large enough that 

there ezists a tree with n nodes in p ( n ,  L)-  f i r  n = 2k, f (n) = ik(k - 1) and the tree 

is the MBT with 2' nodes. 

As we have said, we have a member of p(n, 0) for many values of n (the MBG with 

n nodes.) We have also a member of p(n, F ( n ) )  (ie., P,) and we know that F ( n )  > 1 

for n > 3. It may also be of interest to find members of p(n, L) ,  for 0 < L < F (n), 

because, given a graph G = (If, E )  and graph G, = (V, Em) f p(IV1, L), we know 

that if /El < IE,,,I t h m  there is no line broadcast scheme for G which uses 5 L extra 

length. Let n = IVI. If we define ES(n,L) as IE,I for G, = (V,E,) E p(n,L) 

then we could think of this investigation as a matter of filling in a table of values 

of ES(n, L) in which the rows are labelled with values of n and the columns are 

labelled with values of L; perhaps we might represent an entry for some ES(n, L) by 

an example member of p ( n ,  L). Figure 4.5 shows part of the table, including some of 

t,he entries we have described so far. A blank entry in row n, column L means that 

the L > F(n) ,  and T, means any tree with n nodes, P, for example. MBT, means 

an h4BT with n nodes. 

Figure 4.6 shows the schemes for both originators (up to isomorphism) for the 

representat~ive of p(8,i) shown in the table. 

M."e appear to have systematic descriptions of three parts of the table already: 
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Figure 4.5: ES(n, L ) ,  3 < I?, 5 8, 0 _< L 5 3 

Figure 4.6: Schemes for a member of p(8,l) 
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1. The first column. 

2. the 'path' in the t,able formed by the last entry of interest in each row. 

3. Thc path formed by the MBT entries. 

We can also add another path of interest, the path formed by the cycle entries. We see 

that 1.44, O ) ,  p(5,  0 ) ,  p(6,O) and p(8,2) contain cycles. Because we know the optimal 

total extra length ~ ( n )  (from Section 2.4) of an n-cycle scheme, we know that the 

column for L = ~ ( n )  is the first column (starting from L = 0) which contains a cycle. 

We are likely to observe a property of ES(n, L) which is similar to one we observe 

of B(n), the analogous function for local broadcasting, described in [2] and [20]. The 

property might be called the 'slack' property of the function, and it results from the 

' 1 1 ' in ' [log nl ', the formula describing the minimum number of time units required 

to complete broadcast in a graph with n nodes. When n is slightly larger than some 

2" we make only a few calls, relative to the number of informed nodes, in the last 

time unit; we aould expect it to he easier to find graphs in which we can complete 

the broadcast in minimum time, now that we have an entire extra time unit and only 

a few more nodes to inform in that time unit. We might, then, expect F(2k) to be 

more than F(n) for n. slightly more than 2" and we might expect F(n)  to rise as n 

increases from 2-0 2"'. The portion of the table shown in Figure 4.5 is too small 

to illustrate this expected property. 

4.3 Variants on MLBGs 

We may wish to define restricted variants of MLBGs. In [19], it is pointed out that a 

practical restriction on broadcast graphs is that of bounding the degree of vertices in 

the graph; the paper discusses finding 'sparse graphs' of bounded degree in which local 

broadcast may be completed 'quickly" if not in minimum time. We may also wish to 

examine this restriction in the context of line broadcasting; we may look for degree- 

bounded graphs with n nodes which have the fewest possible edges and in which we 

may complete line broadcasting from any originator in minimum time using less than 



L extra length. Restricting our search to graphs wit11 n nodes wil,ll a. given degrw 

bound may make it impossible to complete local broadcast in the graph in rnininlunl 

time. When we may make line calls, we can still a.1wa.y~ complete the broadcast in 

minimum time, but we may need to use more extra length than we would llitvc hi~d 

to without the degree bound. 

An examination of Figures 4.3 and 4.4 suggests a further restriction we n ~ a y  wisli to 

make in the case of line broadcasting, one which is not applicable to local broadcast,ilig. 

We note in those figures that only some of the possible originatms r.ecjui1.e the t,ot,al 

extra length L available. (In fact, in these examples, only some of the originators 

require any extra length at all; that is to be expected for at least one origina,lor sincc 

the MLBGs shown are MBTs.) We may wish to find those MLI3Cs for whicll l , l r t b  

average extra length required is minintirnized. By 'average' we might mean tlic sturl 

over all originators, ignoring isomorphism, of the extra length required, divided by la, 

the number of possible originators; such a definition would lead to a n  expcctd  total 

extra length of completing a minimum time line broadcast if all nodes we aquslly 

likely to be the originator. For the MLBG with 6 nodes show11 in Figure 4.3, (,IN-1 

average required extra length is 

compared to L, which was 1. Similarly, for the MLBG with 8 nodes shown i n  Figure 

4.4, the average required extra length is = z ,  compared to L, which was 3. 
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Further Work 

5.1 Ordering of Call Lengths 

For this section, we recall the definition of call length set given in Section 1.3. Finding 

optimal line solutions in a graph of interest would perhaps be simpler if we knew the 

following property to hold for the graph: 

Definition 6 Given n g.i-ay1~ C: = (V, E )  and an originator v E V, we say that G and 

v have the line call ordering property i f f o r  every minimum, broadcast scheme A on 

G and v in which some call made in some time unit is l ~ ~ g e r  than some call made 

in  some earlier time unit, there is another broadcast scheme wh,ich has the same call 

length set as A and in which no call made in any time unit is longer than any call 

.made In mxy earlier time m i t .  H7e also say that G has the line call ordering property 

if the property holds for G and any v E V .  

If this property holds for the graph of interest, then in doing the analysis, we 

would have the possible advantage of considering only those schemes in which calls 

itre made in order of length, with each longer call being made either in an earlier 

time unit than or in the same time unit as any shorter call. In fact, it is easy to 

find graphs which do not have the line call ordering property. Consider the graph in 

Figure 5.1. In the left picture in t,he figure, the originator (labelled '0') must begin by 

making a local call, and then the originator must make a line call of length 2 if the 
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broadcast is to be conlpleted in sninimunl time. In the right picture. wt. sce a sc.11cnw 

which uses 1 line call of length 2, and 2 local calls; its call length set is {1,1,2). 'l'ho 

scheme begins with a local call and the call of length 2 is made in t l ~ c  ilest plmsc. N o  

minimum time schemes featuring the given originator in t,he right picturc aatl Iiavil~g 

that call length set can avoid beginning with a local call. Ill fact, uo S C ~ I C I ~ ~ C  for eith(,r 

originator which has the call length set {1,1,2) can a-void Iscginniilg w i th  a. local cidl.  

If either originator begins a scheme which has the call length set. {1,2,2}, t h t ~ l  i 110 

Fig~lre 5.1 : Line call ordering 

scheme could begin with a line call, but we would presumably not want to considc:~. 

such schemes, given the partial relation on call length sets described in Sect,ion 1.3, 

The graph shown in the figure is an example of a star graph, and in a star graph, t l ~  

'central' node can only make local calls, while the outer nodes can only nldie calls of 

length 2, and may have to do so if the broadcast is to be completed in  rrlirtitr~ulrl the. 

We may speculate on what properties a graph must have to make the line call 

ordering property hold. One possibility is that the connectedness of' the graph tlcter- 

mines whether or not the line call ordering property holds. Also, we note thah our 

example graphs for which the property does not hold are not vertex-transitive. Our 

experience in working with cycles and toruses, both of which are vertex-tsarir;itivt:, 

leads us to conjecture the following: 

Conjecture 4 Any vertex-transitive graph has l l ~ e  line call orderiny p ~ v p e r t y .  

If this conjecture is correct, it could simplify the search for s lower bound on t,ol,al 

length required in the torus. 
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5.2 Generalizations of the Cycle Properties 

In general graphs, there are no sirnplc analogs of nestcdness, flatness and fullness, 

although weak generalizations of these properties exist and can be shown to be nec- 

essary for optimality. In the cycle, optimal line broadcasting turned out to be path 

broadcasting; in higher-degree graphs the fact that one node can switch-through mul- 

tiple calls deprives US of this simplification. A generalization of nestedness is that 

an informed node should always be making a call if calls are going through it; oth- 

erwise, it should be the sender of one of those calls, thus making that call shorter. 

One interesting line of further work might be line broadcasting in degree-3-regular or 

degree-3-bounded graphs. At a degree 3 node, at most one call can be going through 

the node, but the node may be originating a call at that time. 

Lower Bounds in the Torus 

We have had little success in finding a tight lower bound for the torus, despite Con- 

jecture (2). We have searched the literature for generalizations of 1ordanski~'s work. 

A pairwise numbering of the vertices in a tree would correspond to an embedding of 

the tree into an infinite grid graph. The total length of the embedding is the sum 

over each edge in the tree of the 'cost' of the edge. The cost of an edge is the dif- 

ference in the first components of the labels of the endpoints of the edge, added to 

the difference of the second components. Obvious generalizations exist for general 

6-dimensional cycles. A geometric approach is another possibility; we could simply 

try to find the optimal connection into a broadcast tree of n nodes having integer x 

and y coordinates in the plane, using straight lines. The closest reference we could 

find to such work is [8], although the vast literature on topological embeddings might 

provide better leads. 

Another approach might simply involve trying to find a proof similar in nature 

to the cycle proof. We would try to find a set of important properties of optimal 

schemes, or. of optimal embeddings. I& might find exchange arguments which allow 

us to narrow our search to a more easily studied subset of all possible schemes. For 
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example, it might be possible to prove that for every sclle~i~e which uses 'bent' (with 

the obvious meaning) calls, there is another scheme which is no inore cspcnsi\v and 

which uses only 'straight' calls. In coiljunction with Colljecture (4), we obtait~ a 

subset of all possible schemes of which subset the product method schcnlcs seem to 

be significant members. 

Finally, a brute force approach is simply to try to minililize the Lola1 I~1lgl.11 of t,lw 

embedding of a binomial tree into an infinite grid graph. We have no iilsigllt into l iow 

difficult this task might be, although we suspect that it is very hard. 
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