
A STUDY OF THE AVAILABILITY AND SERIALIZABILITY

IN A DISTRIBUTED DATABASE SYSTEM

David Wai-Lok Cheung

B.Sc., Chinese University of Hong Kong, 1971

M.Sc., Simon Fraser University, 1985

A THESIS SUBMI'ITED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHLLOSOPHY ,

in the School

of

Computing Science

0 David Wai-Lok Cheung 1988

SIMON FRASER UNIVERSITY

January 1988

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.
1

APPROVAL

Name: David Wai-Lok Cheung

Degree: Doctor of Philosophy

Title of Thesis: A Study of the Availability and Serializability
in a Distributed Database System

Examining Committee:

Chairperson: Dr. Binay Bhattacharya

Senior Supervisor: Dr. TikoJameda

WJ ru p v

Dr. Arthur Lee Liestman

Dr. Wo-Shun Luk

Dr. Jia-Wei Han

External Examiner: Toshihide Ibaraki
Department of Applied Mathematics and Physics
Kyoto University, Japan

Ba t e Approved: J a n u a r y 1 5, 1988

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Un ive rs i t y the r i g h t t o lend

my thes is , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f the Simon Fraser Un ive rs i t y L ibrary, and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any o ther un ive rs i t y , o r o ther educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r t h e Dean o f Graduate Studies. I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l ga in sha l l not be allowed

wi thout my w r i t t e n permission,

T it l e o f Thes i s/Project/Extended Essay

Author:

(s ignature)

(name

(date)

ABSTRACT

Replication of data objects enhances the reliability and availability of a distributed database

system. However, due to the inherent conflict between serializability and availability, if

serializability is to be guaranteed in a partitioned database system, degradation of availability is

inevitable. We first characterize serializable transaction executions in a partitioned database system,

by means of a graph theoretical method. We then derive an upper bound on the availability of a

database system with two partitions. This upper bound holds for a general class of transaction

distributions that satisfy the "weak uniformity assumption".

Since it is impossible to simultaneously achieve serializability and high availability in a general

database system, we investigate database systems in which constraints are imposed on the readlwrite

activity of the transactions. In particular, we propose a fragmented database system, in which

transactions are classified as either local or global. This model can be used to realize wide-area

distributed database systems, in which messages encounter substantial communication delays. We

argue that a transaction scheduling policy that favors local transactions over global transactions

should be adopted in wide-area distributed database systems. Two schemes are proposed for

concurrency control in this kind of system.

The first scheme, Global Timestamp Order Certification, uses an "active" approach, and sends

out requests for global transactions to be certified by remote sites. The second scheme, Global

Timestamp Order Synchronization, adopts a "passive" approach in which a global transaction is

. made to wait until it is known that the transaction has read consistent data object values from other

sites. In both approaches, no global transaction blocks a local transaction. Moreover, local

transactions are executed as if they were in the single-site environment, in which communication

delays are nkgligible.

ACKNOWLEDGEMENTS

I wish to express special appreciation and gratitude to Professor Tiko Kameda, my senior

supervisor, for his constant guidance, advice, support and availability. Without his support and

supervision which I enjoyed during the last four years of my study at Simon Fraser, the completion

of this thesis would not have been possible. His insistence on precision and clarity in writing has

been immensely helpful in the preparation of this thesis.

I am also indebted to Dr. Wo-shun Luk, Dr. Arthur Liestman and Dr. Jia-wei Han, not only for

their reading and commenting on this thesis, but also for their constant advice and encouragement.

Thanks are also due to Professor Toshihide Ibaraki, the external examiner of this thesis, for his

valuable and stimulating suggestions and comments.

My thanks go also to many of the graduate students in the School of Computing Science at

Simon Fraser, who either read and commented parts of my thesis, or provided me with various kinds

of help when they were most needed: Ada Fu, Steven Yap, Mimi Kao, Frank Tong, Patta

Pattabhiraman, Siu-Cheung Chau, Wuyi Wu and many others.

Finally, this work is dedicated to my wife, Juana. She gave me love and support, and

encouraged my endeavour to study at an age when most men have to work. This thesis is also

dedicated to my parents, brothers and sisters. They have been caring so much about me, my wife and

my children.

TABLE OF CONTENTS

Approval ,
Abstract ,

Acknowledgements
Table of Contents

List of Figures
Chapter One. INTRODUCTION

1.1. Replicated Database Management ...

1.2. Goals of the thesis ..

1.3. Overview of the thesis ...

Chapter Two. CONCURRENCY CONTROL IN DISTRIBUTED DATABASE SYSTEM

2.1. Concurrency Control ...

2.2. Serializability in a Single Site Database System; ..

2.3. Disjoint-Interval Topological Sort

2.4. Serializability in a Distributed Database System
Chapter Three. COPING WITH PARTITION FAILURES

3.1. Partition Failure ...
\

3.2. Pessimistic Approach to Dealing with Partition Failures ..

3.3. Optimistic Approach to Dealing with Partition Failures
1

ii

iii

iv

v

viii

1

1

2

3

3.4. Transaction-Cluster Log ..

3.5. Characterization of Executions Admissible under Partition Failures

Chapter Four . LIMITATION ON AVAILABILITY ..

.. 4.1. Availability in Partitioned Database

4.2. Uniform Transaction Distribution and Availability ..

4.3. A General Upper Bound on Availability ...

Chapter Five . TECHNIQUES FOR ACHIEVING HIGH AVAILABILITY

5.1. Trade-off between Serializability and Availability ...

5.2. A Highly Available Distributed Database System ..

5.3. Fragmented Distributed Database System ...

5.4. Transaction Processing with a Static Read Access Graph ..

Chapter Six . A CONCURRENCY CONTROL SCHEME FOR WIDE-AREA DISTRI-

BUTED DATABASE SYSTEM ..

6.1. A Model for Wide-Area Distributed Database Systems ..

6.2. Architecture for Wide-Area Distributed Database System (WADDS)

6.3. Correctness of Fragmented Executions ...

6.4. An Algorithm to Control Fragmented Execution ..

6.5. Performance Analysis ..

6.6. Partition Failures in a Fragmented Database System ..

Chapter Seven . ANOTHER CONCURRENCY CONTROL SCHEME FOR FRAGMENT-

ED EXECUTION ..

7.1. Another Scheme to Control Fragmented Execution ..

7.2. An Architecture for GTOS ..

.. 7.3. Timestamp and Virtual Clock Management 1 16

7.4. Global Timestamp Ordering Synchronization Algorithm ... 125

7.5. Correctness of GTOS ... 128

7.6. Performance of GTOS ... 130

Conclusion .. 134

References ... 136

LIST OF FIGURES

. ... Figure 2.1.1 Illustration for Example 2.1 1.

... Figure 2.2.1 Transaction Read-from graphs

Figure 2.3.1 TI0 graph and DITS ..

.......................... Figure 2.4.1 Translation of transactions into posets of physical operations

Figure 2.4.2 A rp log ..

... Figure 2.4.3 TI0 graph of a rp log L and DITS

Figure 3.1.1 Rp log L and TIO(L) ..

... Figure 3.2.1 Illustration for Example 3.2.1.

.. Figure 3.3.l(a-d) Illustration for Example 3.3.1.

............................ Figure 3.3.1 (e-f) Illustration for Example 3.3.1. ..-.

Figure 3.4.1 Illustration for Example 3.4.1. ...

Figure 3.4.2 Illustration for Example 3.4.2. ...

Figure 3.5.1 Illustration for Examples 3.5.1 and 3.5.2. ..

Figure 3.5.2 An illustration for the Non-Selective Assumption ...

Figure 4.1.1 Acceptance Ratio ...

Figure 4.2.1 Two PI0 graphs ...

Figure 4.3.1 Two DITS's for PIO(L) ..

Figure 4.3.2 Inclusion relationships ...

Figure 5.2.1 Architecture of SHARD ...
i

Figure 5.3.1 A fragmented database system ...

Figure 5.4.1 Illustration for Example 5.4.1. .. 158

Figure 5.4.2(a.c) Three RAG'S ... 159

Figure 5.4.2(d) A RAG ... 160

Figure 5.4.3 RAG of Example 5.4.3. .. 160

Figure 5.4.4(a.b) Illustration for Example 5.4.4. ..

Figure 5.4.4(c.d) Illustration for Example 5.4.4. ..

Figure 5.4.5 RAG for a fragmented database ..

Figure 6.1.1 Illustration for Example 6.1.1. ...

... Figure 6.1.2 (a-b) Illustration for Example 6.1.2.

Figure 6.1.2 (c-d) Illustration for Example 6.1.2. ...

Figure 6.2.1 An architecture for a single-site database ..

.. Figure 6.2.2 An architecture for GTOC

.. Figure 6.3.1 (a-b) Precedence edge and global-read edge

Figure 6.3.1 (c-d) Two kinds of induced edges ..

.. Figure 6.3.2 A GOS graph

.. Figure 6.4.1 A GOS graph

.. Figure 6.4.2 A GOS graph

Figure 6.4.3 Deadlock ..

Figure 7.2.1 An architecture for GTOS ..

.. Figure 7.2.2 Compatibility among h-locks and l.locks

Figure 7.3.1 Update and timeout messages ..

.. Figure 7.3.2 Deadlock and a remedy
1

Figure 7.3.3 Global-start messages and global-completion messages

Figure 7.4.1 Time Chart of Transaction Execution. ... 179

CHAPTER 1

INTRODUCTION

1.1. Replicated Database Management

Replication of a database in terms of a backup copy has long been used as a means to achieve

higher reliability. The backup copy is not normally used when the master copy is accessible; it is

used only when a disastrous failure has destroyed the master copy.

In a distributed database system, replication provides an additional advantage besides

reliability, i.e., availability. In this thesis, we define availability as 1 minus the fraction of

transactions that cannot be executed due to inaccessibility of 'some data objects, caused by

communication failure. (Availability will be formally defined in Chapter 4.) If there are multiple

copies of a data object located at different sites, this data object can be quickly accessed locally,

though it cannot always be updated.

Unfortunately, replication is not cheap. Primarily, there are two kinds of costs associated with

replication. The first is incurred in maintaining (storage) and updating multiple copies. This cost is

intrinsic and cannot be avoided. The second are delays incurred in the concurrency control of

distributed transaction execution, in other words, in synchronizing read/write operations at different

sites to ensure some kind of correctness.

If the possibility of failure is taken into account, the issue of concurrency control becomes

much more ~omplicated. The worst kind of failure, as far as concurrency control is concerned, is

chapter one section 1.1

network partitioning. When a network partitions, sites in different partitions cannot communicate

with each other. A site in a partition has no knowledge about the activity in the other partitions.

Therefore, it is no longer possible to synchronize the operations at all the sites through

communication. As a result, the activity within a partition must be restricted in order to maintain

global serializability for an execution which consists of operations executed in more than one

partition. This restriction degrades availability.

1.2. Goals of the thesis

The first goal of this thesis is to study the availability of a replicated database under partition

failures. Much work has been done in designing concurrency control schemes that achieve good

availability for distributed database systems which are prone to partitioning failures

[ASC85, AbT86, Dav84, Gifl9, MiW82, SkW841. However, to the best of our knowledge, no work

has been done to characterize transaction executions admissible under a partition failure. In this

thesis, we first attempt a graph theoretical characterization for such executions. Then we will

characterize the executions over a partitioned database system generated by an important class of

protocols, called prevention protocols. We shall also derive a theoretical upper bound on the

availability of a replicated database system under partition failures. It will be demonstrated that the

upper bound is achievable in some cases.

In a replicated database system, availability and serializability appear to be two conflicting

goals. An approach taken by several researchers is to increase availability by abandoning the

correctness criterion of serializability [BGR83, BlK85, GAB 83, LBS86, SBK85, Sar861. However,

this approach introduces a new difficulty. It becomes difficult to specify the correctness of an

execution. Iq some cases, a compensation of incorrect execution necessitates cascading rollbacks.

chapter one section 1.2

Without giving up the generality of the database system model under consideration, it is

unlikely that high availability and serializability can be achieved simultaneously. For this purpose, a

restricted model, the fragmented database system, has been proposed by Garcia-Molina and Kogan

[GaK87]. This model, though not general, is applicable to many real-life situations. The

significance of their work is that it demonstrates a possible way to achieve both high availability and

serializability by restricting the activity allowed in a transaction. They have designed some

concurrency control algorithms which use a fixed "access pattern". In particular, they do not allow

any cycle in the directed graph representing the access pattern. In this thesis, we shall propose

algorithms to solve a more general case where the access pattern can be any directed graph. Also,

the algorithms proposed in this thesis are dynamic in the sense that it is not necessary to fix the

access pattern prior to an execution of the algorithms. These algorithms are particularly useful when

applied to a wide-area distributed database, in which communication delays are significant. (Chapter

5).

1.3. Overview of the thesis

In Chapter 2, we will first illustrate an anomaly in a database system, if concurrency control is

not provided. Then a correctness criterion, serializability, for an execution of transactions in a

single-site database system will be defined. We will show that the serializability of an execution can

be characterized by its transaction I0 graph, which is a directed graph containing information on

the read-from relation among transactions in the execution. We will also generalize this

characterization to a distributed database system.

In Chapter 3, we will study the characteristics of an execution generated in a partitioned

database syshem. We will show that an execution generated by a prevention protocol in a

chapter one section 1.3

partitioned database system can be characterized by its partition I 0 graph, which is a modification

of its transaction I 0 graph.

In Chapter 4, we will formally define the availability for a transaction distribution. Then we

will discuss an upper bound on the availability for a transaction distribution found in [COK86]. The

transaction distributions studied in [COK86] have to satisfy the uniformity assumption. We

propose a more general assumption, the weak uniformity assumption. We will also derive an upper

bound on the availability of transaction distributions which satisfy this assumption. In the derivation

of this upper bound, the characteristics of the partition I 0 graph found in Chapter 3 are used.

Since there is an upper bound on the availability of a transaction distribution, it is not possible

to achieve both serializability and full (100%) availability in a distributed database system which is

susceptible to partition failures. A new approach to solve this dilemma is to restrict the behaviour of

the transactions submitted to a distributed database system. In Chapter 5, a new model, fragmented

database system, will be described along this line. We will discuss two schemes proposed in

[KoG87], which achieve both serializability and high availability in a fragmented database system.

These two schemes adopt fixed "access patterns" which are rather restrictive.

In Chapter 6, we will propose a concurrency control scheme for a fragmented database system,

in which the access pattern can be any directed graph. Since the condition on the access pattern is

relaxed, this scheme is more general then those proposed in [KoG87]. We will show that this

scheme can be applied to wide-area distributed database systems, for which conventional

concurrency control schemes are not feasible because of large communication delays. This

concurrency control scheme is called "Global Timestamp Order Certification". This scheme is an

"active" scheme in the sense that timestamps of data objects read by a transaction at a site are sent to

other sites for certification. It is basically a distributive protocol in which the values read by a
i

transaction are certified by remote sites.

chapter one section 1.3

In Chapter 7, another scheme for concurrency control for a fragmented database is proposed.

This scheme is called "Global Timestamp Order Synchronization". In this scheme, transactions are

serialized by their timestamps. It is a "passive" scheme in the sense that a transaction does not send

out requests to other sites but just waits until it is known that all the values the transaction has read

are "correct".

CHAPTER 2

CONCURRENCY CONTROL IN DISTRIBUTED DATABASE SYSTEMS

2.1. Concurrency Control

Concurrency control is the activity of coordinating concurrent accesses to a database. While

several users access a database concurrently, each should have the illusion that he or she is executing

alone on a dedicated system. The main technical difficulty in attaining this goal is how to prevent

database updates performed by one user from "interfering" with the database retrievals and updates

performed by others.

Let us use an example to illustrate "interference", which happens because concurrent accesses

to a database are not properly controlled.

Example 2.1.1. We consider as an example an on-line electronic funds transfer system.

Suppose that two customers A and B are simultaneously accessing their joint accounts by executing

the following two transactions.

Customer A (who wants to transfer $1000 from the savings account to the checking account) : reads

the balance in the savings account, subtracts one thousand dollars from it, writes the updated balance

back to the savings account, reads the balance in the checking account, adds one thousand dollars to

it, and writes the updated balance back to the checking account.

Customer B (who wants to print the total balance in the savings and checking accounts) : reads the

savings account, reads the checking account, and prints the total of the two readings.

chapter two section 2.1

In the absence of concurrency control, these two transactions could interfere with each other as

shown in Figure 2.1.1. A's transaction reads the savings account balance, subtracts $1000 and writes

the update back into the database. Next, B's transaction reads the balances in the savings and

checking accounts and prints out the total. Then A's transaction finishes the funds transfer by

reading the checking account, adding $1000, and finally storing the update into the database. Even

though the final values in the two accounts are correct, B's transaction prints an incorrect total, which

is $1000 short. This is surely not acceptable. 0

The above example does not exhaust all possible ways in which concurrent users can interfere

with each other. However, it explains why concurrency control is necessary in database

management.

In Section 2.2, a correctness criterion, serializability, for concurrency control in a single-site

database system is introduced. In Section 2.3, a transaction I0 graph (TI0 graph) is used to

characterize the serializability of an execution. It is shown in [I W 7] that the transaction I 0 graph

of a serializable execution must have a disjoint interval topological sort (DITS). In Section 2.4,

the notions of TI0 graph and DITS are extended to distributed database systems and a result similar

to the one in [IKM87] is derived.

2.2. Serializability in a Single Site Database System

Serializability theory deals with the correctness of a set of concurrently executing transactions.

It also provides a guiding principle for designing concurrency control algorithms

[BSW79, BeG81, Cas81, IKM87, Pap791. In this section, we briefly review serializability theory,

based on the work contained in [IKM87].

chapter two section 2.2

A database system consists of a set D of data objects and a set of transactions

T = (TO, TI, Tz, . . . , Tf). TO and Tf are two fictitious transactions called the initial transaction and

the final transaction, respectively. Transaction TO is a write only transaction that "writes" all the

data objects in D before any other transaction starts, and Tf is a read-only transaction which "reads"

all data objects after all the other transactions have completed. A read operation Ri[X] of

transaction Ti returns a value of data object X, and a write operation Wi[X] of transaction Ti updates

the value of X. Sometimes, we use Ri [A I, where A r D , to represent a set of read operations

(Ri[X] I X E A). Similarly, Wi[A] is used to represent a set of write operations (Wi [XI I X E A).

Abbreviations such as Ri [X , Y] for Ri [(X , Y) I and Wi [X , Y] for Wi [(X , Y) I are used in the following.

The execution of a transaction Ti E T is modeled by a totally ordered set Ti = (Xi, q) , where Ci

is the set of read and write operations issued by transaction Ti, and <i is a total otder on Xi,

representing the order in which these operations are executed.

For a set of transactions T = {To, T I , T2, . . . , Tf), where I;: =(Xi, <i), i = 0,1,. . . , f , let C(T)

denote the set of all the read and write operations of the transactions in T. A dbs log (or simply a

log, history or execution) over T represents an execution of To, . . . , Tf. More formally, a log over

T is a totally ordered set L = (Z(T), <), where (1) C(T) = yf , Ci; (2)y[*q r < ; (3) for every

A [XI E &, and every B [Y] E C(T) - &, A [XI < B [Y] holds; and (4) all pairs of conflicting operations

in C(T) are < related. (Two operations on the same data objects are said to conflict, if one of them is

a write operation). In order to represent the total order <, we simply write the operations from left to

right in the order of <. For two operations A and B in C(T), we say that A precedes B in L if A < B .

Let L be a log over T. Transaction Ti reads X from transaction Ti if (1) Wi[X] and R,[X] are

in C(T); (2) Wi[X] < R,[X]; and (3) no Wc[X] falls between these two operations with respect to <.

Two logs L and L' are said to be equivalent, written L = L', if for each data object X and indices i
i

chapter two section 2.2

and j, transaction Ti reads X from transaction Ti in L if and only if Tj reads X from Ti in L'.

A serial log is a log such that for every pair of transactions Ti and Ti, either all of Ti's

operations precede all of Ti's, or vice versa. A log L is serializable, if there exists a serial log L'

such that L = L'. SR denotes the set of all serializable logs. We use [TIT2 - - T,,] to denote the serial

log in which all the operations of transaction Ti are clustered before all the operations of Ti+l, for

i = l , 2 , a * . , n-1.

Example 2.2.1. The following log L 1 is clearly serial.

Consider a non-serial log L 2:

In L2, operation WIIY] is executed after an operation, i.e., R3[X], of T3. However, the delayed

execution of W][Y] in L2 compared with L does not affect the read-from relation between any two

transactions in the log. It is easy to see that the two logs L and L 2 are equivalent and therefore L2 is

serializable.

In order to represent the read-from relation implied by a log, a directed graph is constructed.

Let L = (w), <) be a log over a set T of transactions. The transaction read-from graph (TRF

graph, for short) [IKM87] for L, denoted by TRF(L), has a node set T and an arc set A. If a

transaction Ti reads X from Ti in L , an arc (Ti, Ti) E A labeled by X is introduced. This arc is

denoted by (Ti, Tj)3. There are no other nodes or arcs in TRF(L). If follows immediately from

definition that two logs L and L are equivalent if and only if TRF (L = TRF (L 2).

Example 2.2.2. Consider a serial log L :

chapter two section 2.2

L = Wo[X. Y1Ri[X1Wi[Y1R2[X1R~[Y1W~[Y1Rf[X7 Yl.

Figure 2.2.l(a) shows TRF(L). O

An interval of a TRF graph is a set of all arcs that have the same label and originate from the

same node. For example, the three arcs, (TO, Ti)%, (To, T2):X and (To, Tf):X form an interval in

Figure 2.2.l(a). The arc (T 1, T3):Y by itself is an interval.

In Figure 2.2.l(a), we have intentionally placed the nodes in the serial order implied by L. It is

observed that the intervals in TRF(L) which have the same label do not "overlap". For example, the

interval labeled by X spans from To to Tf, (i.e., the longest arc in this interval goes from TO to Tf),

and it is the only interval labeled by X. There are two intervals labeled by Y. The first one spans

from T1 to T3, the second one spans from T3 to Tf, and these two intervals are disjoint. (Two

intervals are disjoint, if the sets of nodes ordered between the first and the last nodes, inclusively, of

the two intervals contain at most one node in common). It is generally true that the TRF graph of

any serial log, with their nodes ordered according to the order of the transactions in the log, has no

overlapping interval with the same label [IKM87].

However, it is noted that the converse is not true in general. For example, log L3 in the

following example is not serializable, although the nodes in TRF (L3) can be arranged linearly so that

there is no overlapping interval with the same label in the resulting arrangement.

Example 2.2.3. The TRF graph, TRF(L 3), for

L3= Wo[XlR i [X l W ~ [X l W i [X l R ~ l X l W 2 ~ ~ l R ~ [X l ,

- is shown in Figure 2.2.l(b). With the order of the nodes given in Figure 2.2.l(b), it is observed that

no two intervals with the same label overlap. However, from the following observation, it can be

seen that L3 is not serializable. T2 reads X from Ti; therefore, TI must be serialized before T2.

Hence, only h e serial logs [ToT3T 1T2Tf I, [TOT 1T3T2Tf] and [TOT lT2T3Tf] need be considered. It

chapter two section 2.2

can be checked that none of these three logs is equivalent to L 3. Hence L 3 is not serializable.

It turns out that the non-serializability of L3 can be detected if its TRF graph is slightly

modified. In a log, a write operation which creates a value that is never read by any other transaction

is said to be useless. For the useless write W3[X] in Example 2.2.3, if a dummy node Ti and a

dummy arc (T3, T;):X are added to the TRF(L3), then there always exist two overlapping intervals

labeled by X, no matter what serial order is used to arrange the nodes. (See Figure 2.2.l(c)). This

observation is formalized and used in the next section to state a necessary and sufficient condition for

an execution to be serializable.

2.3. Disjoint-Interval Topological Sort

As was explained in the last section, the notion of TRF graph has to be extended in order to

define a necessary and sufficient condition for a log to be serializable.

Definition 2.3.1 [IKM87]. Let L = (qT), <) be a log over a set T of transactions. The

transaction I0 graph (T I 0 graph, for short) for L, denoted by TI0 (L), is an arc-labeled directed

graph with the node set T u T', where T' consists of dummy nodes as defined below, and the arc set

A. If Ti reads X from Ti, there is an arc (Ti, Ti) E A labeled by X. If Wi[Y] is a useless write, then

we introduce a dummy node Ti E T' together with a dummy arc from Ti to Ti labeled by Y. There is

no other node or arc in TI0 (L). 0

Example 2.3.1. Consider log L 2 in Example 2.2.1 again. The TI0 graph of L 2, TI0 (L 2), is

shown in Figure 2.3.l(a). Note that there are three useless writes, W d Y I, W I [Y I and W2[Yl. Because

of these useless writes, three dummy nodes Ti , Ti and Ti have been introduced.

For any two logs L 1 and L 2, TRF (L 1) = TRF (L *) if and only if TI0 (L 1) = TI0 (L 2). Hence, the

equivalence df logs can also be tested by their TI0 graphs.

chapter two section 2.3

Example 2.3.2. The TI0 graph of L2 in Figure 2.3.l(a) can be rearranged as in Figure 2.3.l(b),

in which no two intervals with the same label overlap. In fact, the first interval of X spans from TO to

T2 and the second interval of X spans from T2 to Tf. So, these two intervals do not overlap.

Similarly, the intervals labeled by Y are all disjoint.

The property of disjoint intervals is used below in a characterization of serializable executions.

Definition 2.3.2 [IKM87]. Let L be a log. A total ordered << on the set of nodes of TI0 (L) is a

disjoint-interval topological sort (DITS, for short), if it satisfies the following two conditions:

(1) if Ti << Ti, then there is no path from Tj to Ti in TI0 (L), and

(2) if Th << Tk and there are two arcs labeled by X from Th to Ti and Tj to Tk in TIO(L) (j + h),

then Ti << Ti.

Intuitively, if TI0 (L) has a DITS, then it can be ordered linearly from left to right by the order

<<, so that all the arcs are directed from left to right (condition (I)), and no two intervals labeled with

the same data object overlap (condition (2)). The following theorem characterizes a serializable

execution.

Theorem 2.3.1 [IKM87]. A log L is serializable if and only if TI0 (L) has a DITS which orders

Tofirst and Tf fast. 0

Example 2.3.3. Consider log L2 of Example 2.2.1 again. TIO(L2) has a DITS as shown in

Figure 2.3.1@). Therefore L2 is serializable and the order of the transactions in the serial log implied

by the DITS is To,T1,T2,T3,Tf.

Theorem 2.3.1 characterizes a serializable log in a single-site database system (sometime called

centralized database system). This result will be generalized to the distributed case in the next

section.

I

chapter two section 2.3

2.4. Serializability in a Distributed Database System

In a distributed database system, data objects are often replicated at different sites. The copy of

a data object X at site i is denoted by Xi. A data object and its copies are called logical data object

and physical data objects, respectively. In general, when we use the term "data object", we refer to

a logical data object. When we use the term "copy", we refer to a physical data object. When a

transaction Ti executes, the system uses a translation function zi to translate logical operations into

physical operations, i.e., Wi[X] is translated to Wi[Xa], Wi [&I, . , Wi [XI], where X,, . - . , XI are

some copies of X and Ri[X] is translated into Ri[Xe] for some copy X, of X . (Normally, Wi [X] is

translated to physical write operations on all the copies of X. However, in some cases, only a subset

of all the copies are written. For example, under a partition failure, a write operation Wi[Xl may be

translated to physical write operations on the subset of accessible physical data objects representing

X). Under translation zi, transaction Ti is mapped to a partially order set (poset, for short) of

physical operations in %(Xi), where Z is the set of logical operations in Ti. For a logical operation A

in Z, the operations in zi(A) are said to be associated with each other as well as to A.

Example 2.4.1 In Figure 2.4.l(a), a transaction TI = R ,[X]R IIZ]W~[X] is translated into a poset

of operations executed distributively at three different sites S,, Sb and S,. Similarly, transactions

T 2 = R 2[X]W2[Y] and T3 = R 3[Z] W3[Y] W3[Z] are translated into two posets of operations shown in

Figure 2.4.l(b) and (c), respectively.

The execution of a set of transactions in a distributed database system with replicated data

objects can be modeled by a replicated log [BeG81]. A replicated log (or a r p log, for short) over a

^ set T of transactions {Ti = (Xi, <i)) is a poset L = (qT), <) such that (1) X(T) = uf&i(Xi), where Ti

is the translation function for Ti; (2) for each i and any two operations pi and qi in Xi, if a E ~i@i),

b E zi(qi), Pi <i qi and the physical copies accessed by a and b belong to the same site, then a < b;
+

chapter two section 2.4

(3) all pairs of conflicting physical operations are < related (two physical operations conflict if they

operate on the same physical copy of a data object and at least one of them is a write operation); and

(4) as in a centralized database, T contains two fictitious transactions To and Tf. To is translated to a

set of write operations, one for each copy of each object, and it precedes all other operations on that

copy with respect to <. Similarly, Tf is translated to a set of physical read operations, one for each

logical data object. Such a read operation is preceded by all physical write operations on the copies

of the corresponding logical data object.

We now give intuitive meanings of the above four conditions. Condition (1) states that each

physical operation be a result of translation from a logical operation submitted by a transaction.

Note that in a rp log, q T) represents a set of physical operations, not a set of logical operations as in

the case of a log in a single-site database. Condition (2) states that the rp log preserves the order

among the operations of each transaction. This condition is slightly more general than the condition

used for defining a rp log in [BeG81]. Condition (3) states that the order among conflictixg

operations must be specified. Condition (4) states that each copy read in L should have been given

some value, and that, after the completion of the execution, only one value for each logical data

object updated in L can be read by any subsequent read operation.

Example 2.4.2. Figure 2.4.2 shows a rp log L for the three transactions given in Example

2.4.1. The arcs in the graph indicate the partial order among the operations in the obvious way. Note

that even if A < B for physical operations A and B, if there is a path from A to B, no arc is drawn

from A to B in the figure. 0

A transaction T, reads X from another transaction Ti in a rp log L = (qT), <) if there exists a

copy Xa such that (1) Wi [X,] and Rj[Xa] are operations in C(T); (2) Wi [X,] < Rj[Xa]; and (3) there is

no Wk [Xa] such that Wi [X,] < Wk [X,] < R j [X,]. In the above case, transaction T, is also said to have
'

read a physical data object (or a copy) X, from Ti.

chapter two section 2.4

Serial logs we use in connection with rp logs are over logical operations. Thus in a serial log, it

is as if the transactions were executed in a single-site database, which maintains only one copy of

each data object. For example, Wo[X,Y ZIR l[XZ]W l[X]R2[X]W2[Y]R3[Z]W3[Y Z]Rf [X,Y ,Z] is a

serial log for the transactions in Example 2.4.2. This kind of serial log, in which data objects

accessed by an operation no longer have location indices, is called 1 copy serial log (or 1C serial

log, for short).

A rp log L 1 is equivalent to another log L2, which is either a rp log or a 1C serial log, if both

L 1 and L2 have the same read-from relation. A rp log is serializable if it is equivalent to a 1C serial

log over the same set of transactions. As in the case of a single site database system, in a distributed

database system, we use [TIT2. . . T,] to denote a 1C serial log in which the operations from the

transactions are clustered in the order T1, T2, . , T,.

Note that, a rp log in which transactions are executed serially, as shown in the following

example, may not be equivalent to a 1C serial log.

Example 2.4.3. Consider a rp log

over transactions TI = Rl[X]Wl[Y] and T2= R2[YlW2[Xl. Note that L1 is a rp log in which the

transactions are executed serially. However, it is not equivalent to the 1C serial log [T0TlT2Tf],

because in L 1, transaction T2 reads Y from To instead of TI.

In the above example, L 1 is not equivalent to a serial execution in which each transaction sees

all the changes made by the transactions executed before it. This is why 1C serial log is used in

defining serializability for rp logs.

In order to generalize Theorem 2.3.1 to rp logs, we must distinguish between logical and

physical data objects in defining the transaction I 0 graph in the distributed context. If in a rp log L =

chapter two section 2.4

(qT), <) transaction Ti reads X from Ti, the arc from Ti to Ti in TI0 (L) should be labeled by X, i.e.,

the arc is labeled by a logical data object. In the distributed context, a logical write operation of a

transaction is said to be useless if no physical write operation associated with it writes a value read

by another transaction. With these interpretations, the TI0 graph of a rp log is defined in the same

way as the TI0 graph of a log in a single-site database. The TI0 graph, TIO(L), of rp log L in

Example 2.4.2 is illustrated in Figure 2.4.3(a). The following theorem characterizes a serializable rp

log.

Theorem 2.4.1. A rp log L is serializable if and only if TI0 (L) has a DITS which orders T O

$rst and Tf last.

Proof. Similar to the proof of Theorem 2.3.1 given in [IKM87].

To prove the if part, assume that TI0 (L) has a DITS that orders To first and Tf last. (Assume

that the nodes in the DITS are arranged from left to right.) We have to show that there exists a 1C

serial log L 1 equivalent to L . Let o be the sequence of transactionscorresponding to the DITS, and

let L be the 1C serial log generated from o by removing all the dummy transactions in o. Note that

o has the property that if Ti reads a data object from Ti in L , then Ti is the last transaction preceding

Ti in a that writes X . If this is not the case, then either Ti follows T, in o, or another transaction Tk

which writes X is located between Ti and Tj in o. In the first case, the arc (c,T,):X would be

directed from right to left, which contradicts the definition of DITS. In the second case, there would

be two overlapping intervals starting from Ti and Tk, respectively, which violates a condition of

DITS.

We now show that TI0 (L) = TIO(L Let T, read X from Ti in L . Since Ti is the last

transaction that writes X before Ti in o, Tj also reads X from Ti in L On the other hand, suppose

Tb reads X from T, in L 1. Let Tb reads X from T,,, in L . Then Tb reads X from T,,, in L 1. This

chapter two section 2.4

implies that T, and T, are identical. Hence Tb reads X from T, in L. Therefore, we have

TI0 (L) = TI0 (L

To prove the only-if part, we assume that L is serializable and equivalent to a 1C serial log L 1.

Since L is equivalent to L 1, TI0 (L) = TI0 (L I). It follows from Theorem 2.3.1 that TI0 (L 1) has a

DITS which orders T o first and Tf last. Hence TI0 (L) also has a DITS which orders T O first and Tf

last.

Example 2.4.3. The TI0 graph, TI0 (L), of the rp log L in Example 2.4.2 is illustrated in

Figure 2.4.3(a). TI0 (L) has a DITS as illustrated in Figure 2.4.30>). Hence L is serializable and it is

equivalent to the 1C serial log T oT2T ,T 3Tf .

CHAPTER 3

COPING WITH PARTITION FAILURES

3.1. Partition Failure

In a distributed database system, different kinds of failures can occur. One of them is a site

failure, which can be either fail-stop or a Byzantine failure.

Fail-stop is a "clean" type of failure and is relatively easy to handle. A site or a component just

crashes, losing all the information it had in volatile memory before the crash; thereafter no activity

takes place at the site until it is repaired. In general, fail-stop can be handled by using checkpoints

and a transaction log to recover a consistent state of the database [BeG83, Gra781. A database is in a

consistent state, if the values of all its data objects are the same as the results of serially executing a

set of transactions completely and before starting a new transaction.

As for a Byzantine failure, a site suffering from it may deliberately send incorrect messages to

other sites. It is very costly in terms of the number of messages for the non-faulty sites to come to an

agreement and to take coordinated actions against this kind of malicious activity by failing sites. The

problem of reaching agreement despite Byzantine failures has been well studied and is known as the

Byzantine Generals Problem [Do182, FLP85, PSLSO] .

Besides site failures, we must face partition failures in designing distributed database systems.

This kind of failure results from the breakdown of communication links among sites, causing the

sites in a network to be separated into two or more groups. Sites in each group can still communicate

chapter three section 3.1

with each other, but sites in different groups can no longer talk to each other. The activity in one

group is completely unknown to the sites in the other groups. These groups are called partitions.

A distributed database system that has undergone a partition failure is called a partitioned

database system. Thus the topology of the underlying network changes dynamically. In this

chapter, we discuss the problems associated with transaction processing in a partitioned distributed

database system. In particular, we are interested in the characterization of rp logs generated by an

important class of protocols, called prevention protocols. The property of prevention protocols will

be discussed in Section 3.2. In Sections 3.4 and 3.5, we will show that the PI0 graph of an

execution generated by a prevention protocol in a partitioned database system must have a DITS.

The PI0 graph of an execution in a partitioned database system is a modification of the TI0 graph of

the execution over the partitions. The characteristic of the PI0 graph of an execution will be used in

Chapter 4 in the discussion of an upper bound on the availability of a partitioned distributed database

system.

Example 3.1.1. Suppose a distributed database system consists of two sites S 1 and S2. Both of

these sites have copies of two data objects X and Y. The copies of these objects at site S 1 (S2) are

denoted by X 1 and Y (X2 and Y2), respectively. A transaction T1 submitted at S 1 needs to read X

and write Y, and a transaction T2 submitted at S2 needs to read Y and write X.

Suppose the system is partitioned into two partitions, each containing one site. Since there is

no communication between the two sites, TI can only read X1 and update Y and T2 can only read Y2

and update X2. In Figure 3.1.l(a), a rp log L representing this execution is illustrated. The TI0

graph, TI0 (L), is shown in Figure 3.1,l(b). It is clear that TI0 (L) does not have a DITS and hence L

is not serializable. 0

chapter three section 3.1

Example 3.1.1 indicates clearly a problem which crops up in a partitioned database system; if a

data object is updated in one partition by a transaction and is read by a transaction in another

partition, then the resulting execution may not be serializable.

In a partitioned database system, a set of executions, one for each partition, is called a global

execution. A great deal of work have been done in trying to control the activity allowed in a

transaction when it is executing in a partitioned database system. The goal is to ensure that the

global execution is serializable. In general, there are two different approaches to achieving this

goal: pessimistic approach and optimistic approach.

3.2. Pessimistic Approach to Dealing with Partition Failures

A protocol PT that always generates a serializable execution in any partitioned database system

is said to be a partition-tolerant protocol. The pessimistic approach is based on the assumption

that, if individual partitions exercise concurrency control autonomously, then there is' a high

probability of generating a non-serializable global execution. Therefore, a partition-tolerant protocol

designed with this assumption has to make sure that the global execution consisting of all the

operations granted in individual partitions is serializable, even though it must decide to accept or

reject an operation submitted in a partition, based solely on the inforipation available within the

partition. Partition-tolerant protocols based on this approach are called inconsistency prevention

protocols (prevention protocols, for short) and they are the major objects of investigation in this

thesis. This kind of protocol is also referred to as an on-line protocol in [COK86], because, once an

operation is granted in one partition, it can be committed and will never be rolled back. Hence, it can

be used for on-line processing.

chapter three section 3.2

The general strategy used in this approach is to define a mutually exclusive condition for read

and write operations on the copies of the same logical data object, so that, if a write operation on a

data object is allowed in one partition, then any read or write operation on any other copy of the

same logical data object is not permitted in any other partition.

Alsberg and Day used the notion of "primary site" [AID761 to implement read-write exclusion.

In their primary site model, a single site is designated as the primary site and every readlwrite

access to any data object must first be granted by the scheduler at that site. In the original proposal,

locking was used by the scheduler. However, this scheme is too centralized, causing a bottleneck at

the primary site. Also, a failure of the primary site will jeopardize the whole system. In the case of a

partition failure, only the transactions submitted in the partition which contains the primary site can

be executed.

Stonebraker modified the idea of primary site by "distributing" the primary site. Instead of one

primary site, one copy of each data object is designated as the primary copy [St0791 of that data

object and these primary copies are distributed at more than one site. Any access to a data object

must be preceded by the locking of its primary copy. In this scheme, there are no longer severe

bottlenecks. Moreover, in the case of a partition failure, more than one partition might be able to

execute transactions. However, this scheme also has shortcomings. Firstly, the system has to be

equipped with the ability to detect distributed deadlocks. Secondly, if partitioning has occurred, it is

not clear how to deal with the locks in a partition that were requested (before the failure) by

transactions in other partitions. Thirdly, if the access demand on a primary copy within the partition

in which it resides is relatively low in comparison with that from other partitions, then availability

degrades.

Gifford [Gif79] presents a simple and elegant "voting scheme" to enforce read-write exclusion.

The basic idea is to use a read quorum q, and a write quorum q,. To read a data object, a

-- 21 --

chapter three section 3.2

transaction must be able to access qr copies of that object. In other words, a transaction at a site Si

can execute a read operation on a logical data object X by reading a local copy only if it can be sure

that there are at least qr copies of X located in the partition to which Si belongs. We assume that a

site can determine the set of sites in the partition it belongs to, upon detecting a partition failure.

With the help of a global directory, a site can thus determine whether there are q, copies in its

partition. As for writing, a transaction must be able to access q, copies of a data object before it can

update it. Updating is performed on every copy that is accessible. In order to achieve mutual

exclusion, q, + q, must be larger than n , the total number of copies of the data object, and q, must

be larger than nl2. The first condition ensures that read and write operations on the same data object

are not performed in two different partitions. The second condition guarantees that a write operation

on a data object done in one partition will exclude any write operation on the same logical data

object in other partitions.

Example 3.2.1. In Figure 3.2.1, a database system consisting of five sites, SI, . - , Ss, is

divided into tho partitions P 1 and P 2. Data objects X and Y are partially replicated as shown in the

figure. Let qr(X) and q,(X) denote, respectively, the read and write quorums of data object X.

Suppose q,(X) = q,(X) = 3 and q, (Y) = q,(Y) = 2. Then X can be read and written in P 1 but not

in P2. Similarly, Y can be read and written in P 2 but not in P I .

If qr (X)=2 and q,(X) = 4 , then X is now readable in both P1 and P2, but X is no longer

writable in P1 or P2. CI

An interesting feature of this approach is that the quorums can be altered to change the

accessibility of data objects. Suppose that the quorums of X has been changed in Example 3.2.1

from the first set of quorums to the second set. Before the change, X was accessible only in partition

P 1. After the change, it becomes read-accessible in both P 1 and P 2. The problem with this scheme,

chapter three section 3.2

however, is that there may not exist any partition that has a quorum required for an operation. As a

matter of fact, some work has been done [BGS86, Jaj871, which has tried to ensure that, for any data

object X , at least one partition has a quorum in most cases.

Minoura and Wiederhold [MiW82] have proposed an "extended true-copy token" scheme, in

which primary copies are marked by tokens which can migrate. This scheme allows more than one

partition to execute read operation on the same data object.

Eager and Sevcik [EaS83] have proposed the "missing write algorithm", which is a variant of

Gifford's voting scheme. In this scheme, a transaction considers a read operation as the reading of

any copy and a write operation as the writing to all the copies. However, this is only possible when

there is no partition failure. Once a partition failure is detected, the system goes into the "partition

mode", in which Gifford's scheme of mutually exclusive quorums is used. The advantage of this

scheme is a reduction in the overhead of reading when there is no failure.

Abbadi, Skeen and Christine [ASC85], and later Abbadi 'and Toueg [AbT86], modified

Gifford's scheme to the "virtual partition scheme". They attempt to track changes in the network

topology as closely as possible without being constrained by the need to cope with the changes

instantaneously. A virtual partition is a set of nodes that have agreed that they can communicate

with each other and further that they will not communicate with any other site outside the virtual

partition. A transaction can interpret a read operation as the reading of any accessible copy, as long

as the data object was announced accessible when the virtual partition was formed. A data object is

accessible in a virtual partition, if the partition has a majority of its copies. This scheme permits

cheaper read operations. In return, it must be made sure that all the copies have the most up-to-date

value when a virtual partition is formed. This bookkeeping incurs a lot of overhead, whenever there

is any change in the network's topology.

chapter three section 3.2

In all of the above schemes, no restriction is imposed on the transactions submitted for

execution. Wright and Skeen [SkW84] adopt the notion of transaction class and propose an

interesting scheme to handle partition failures. A class of transactions is defined by its readset and

writeset, so that any transaction in the same class reads and writes the same set of data objects. In

this model, only a predefined set of classes of transactions can be submitted to a site. The complete

information on the classes of transactions that can be submitted to each site is known to every site.

Therefore, a partition can use this information, to find out, with the help of a "class conflict graph, a

possible conflict between its transactions and those in the other partitions that may lead to a

nonserializable execution. This conflict is then resolved by removing some transactions which

contribute to the conflict. In this scheme, it is not clear how to avoid unnecessary removal of

transactions in different partitions. Unnecessary removal will of course degrade the availability.

As can be seen from the above schemes, the key idea used in designing prevention protocols is

to limit the access to data objects in different partitions Indepndently to make sure that the rp log of

the global execution is serializable. Note that these schemes can decide on the fly whether to grant or

to reject a request &or an operation. Once they have granted an operation, they will not rollback the

operation.

3.3. Optimistic Approach to Dealing with Partition Failures

The optimistic approach is based on the assumption that, even if individual partitions exercise

concurrency control autonomously, there is only a small probability that the global execution

generated is non-serializable. A transaction submitted in a partition is allowed to execute so long as

it can be serialized together with other transactions in the same partition. Any non-serializable

global execution is detected when partitions are merged together after the partition failure has been

chapter three section 3.3

repaired. Once nonserializability is detected, some operations in the global execution must be rolled

back to rebuild a serializable global execution. This involves undoing and redoing some

transaction(s). Partition-tolerant protocols using this approach are called nonserializability

detection protocols with rollback (detection protocols, for short).

Example 3.3.1. Assume that two sites S 1 and S2 belong to two different partitions P 1 and P 2 ,

respectively. Suppose two transactions T I = R 1[X 11W l[Z and T 2 = R 2[Z 11W2[Y 11 are executed in P 1

in such a way that the execution is equivalent to the 1C serial log [T I T 2] . Suppose also that a

transaction T3 = R 3[Y2]W3[X2] is executed alone in P 2 . If the two partitions are merged later, then

the rp log L in Figure 3.3.l(a) represents the result of merging. (In this example, Tf reads X from X2

instead of from X I . If Tf had read X from X I , the rp log L would be different from the one in Figure

3.3.l(a). Whether Tf should read from X1 or X 2 depends on the protocol used to control read

operation in the final partition.) By looking at the TI0 graph, TIO(L), in Figure 3.3.l(b), it is clear

that the execution is serializable. Such an execution will be happjly accepted by a scheduler that

uses the optimistic approach.

Suppose now that T 2 is changed to T 2 = R 2[X 1]W2[Y I]. Then the result of merging is the rp log

L 1 shown in Figure 3.3.l(c). It can be seen that TI0 (L 1) , shown in Figure 3.3.l(d), has no DITS and

hence the global execution is nonserializable.

If the scheduler discovers that the global execution is not serializable, it can eliminate the effect

of some of the transactions in order to modify the execution into a serializable one. For example, T 2

can be eliminated from L1 by rolling back its update on Y 1 . Then the rp log now looks like L3 in

Figure 3.3.l(e), and TI0 (L3) has a DITS as shown in Figure 3.3.l(f). Hence the resulting execution

is serializable.

chapter three section 3.3

However, in general, testing whether a rp log is serializable and, if not, selecting the minimum

number of transactions to be rolled back are both NP-complete [Dav84]. Davison [Dav84] has

proposed an "optimistic protocol" in which a "precedence graph is used to represent a global

execution over two partitions. In her model, the transactions are restricted to those whose writesets

are contained in their readsets. She proves that the precedence graph is acyclic if and only if the

execution is serializable. Hence, the serializability of an execution resulting from merging two

partitions can be tested efficiently. However, selecting the minimum number of transactions for

rollback is still very costly. A number of heuristics are suggested to solve this selection problem in

[Dav84].

When a transaction is rolled back, those transactions which have read data written by it must

also be rolled back. This cascading effect could incur a lot of overhead. Finally, all the transactions

that are rolled back in this process have to be redone. In addition, if any rolled back transaction had

an external action (e.g., output money to a user), then a compensating action may have to be carried

out. Because of such limitations, transactions cannot be committed as they are completed. Instead,

they must be committed only after nonserializability detection and resolution have completed.

Therefore, protocols based on the optimistic approach are also referred to as off-line protocols

[COK86], indicating that they are only suitable for off-line processing.

3.4. Transaction-Cluster Log

In this and the next sections, we study the characteristics of global executions which are

realizable in a partitioned distributed database system. In particular, we characterize the rp logs of

executions generated by any prevention protocol. This characterization will form the basis of our

study of an upper bound on the availability of a partitioned database system to be presented in

chapter three section 3.4

chapter 4.

As time goes on, partitions may be reconnected to form a larger partition, or further split into

smaller partitions. If partition A merges with some other partition to form partition B, or if A is split

into a set of partitions including B, we say that A happens before B. With the relation "happens-

before", the set of all the partitions corresponding to a "partition history" is partially ordered. If the

same partition occurs more than once in a "partition history", each instance is considered as a

different partition. We introduce two special partitions Po and Pf, where Po is the initial partition

consisting of all the sites such that TO is executed in it, and Pf is the final partition, again,

consisting of all the sites such that Tf is executed in it. We assume that Po always happens before

every other partition and every partition (except for Pf) happens before Pf .

Given a rp log L = (VT), <) over a set of transactions T, its sublog in a partition Pi is a rp log

Li = (Xi, <), where & consists of those operations in X(T) which belong to the transactions executed

in Pi, and the order among the operations in Xi is inherited from L. Here, we assume that a

transaction can execute in only one partition. A transaction T is said to belong to a partition Pi, if T

is executed in Pi. We use Trans(Pi) to represent the set of all the transactions belonging to a

partition Pi.

We now associate a class of 1C serial logs with a poset of partitions. Each 1C serial log in this

class has the property that all the operations of the transactions belonging to a partition appear

consecutively. More formally, a 1C serial log L = [TI - T,,] is a transaction-cluster 1C serial log

(TC-serial log, for short) with respect to a poset of partitions P = (Po,. . . . P,, Pf), if (1) for every

partition P,,, in P, there exists an interval [i,, j,] c [I, n] such that a transaction Tk E Trans (P,) if

and only if i, I k I j,, (2) all the intervals [i,, j,], m = 0,. . . , f , are disjoint and (3) for any two

transactions Ta E Trans(Pi) and Tb E Trans(Pj), Ta precedes Tb in L if Pi happens before Pi in P.

Intuitively, the transactions in a TC-serial log are grouped into several disjoint clusters such that each

-- 27 --

chapter three section 3.4

cluster contains all the transactions executed in one partition and the order of the clusters is

compatible with the partial order on P. (Thus the sites running the transactions in a cluster can

communicate with each other without disruption.) A rp log L over a poset of partitions P is

transaction-cluster serializable (TC-serializable, for short), if it is equivalent to a TC-serial log.

The set of all TC-serializable rp logs, denoted by TC, is a proper subset of the set of all serializable

rp logs, SR. (See Example 3.4.1 below.)

Example 3.4.1. In Figure 3.4.l(a), a rp log L over two partitions P 1 and P 2 is illustrated. Each

arrow in the figure represents the happens-before relationship between its two end partitions. The

sublog L of L in P is

and the sublog L of L in P is

The TI0 graph of L is illustrated in Figure 3.4.1@), and it has a DITS, TO, Tb, TI, T2, T3, Tj.

Therefore, L is equivalent to the 1C serial log L 1 = [ToT1T2T3TJ]. Since both transactions TI and T2

belonging to P1 are ordered before transaction T3 which belongs to P2 in L1, L1 is a TC-serial log.

Hence, the rp log L is TC-serializable.

Example 3.4.2. In Figure 3.4.2(a), a rp log Lo over two partitions P and P 2 is illustrated. The

sublog L of L ' in P 1 is

and the sublog L 5 of L ' in P 2 is

The TI0 graph of L is illustrated in Figure 3.4.2(b), and it has a DITS. It is clear from the graph that

chapter three section 3.4

To, TI, T 3, T2, Tf is the only DITS for TI0 (L') and [TOT IT 3T2Tf] is not a TC-serial log. Therefore,

L' is serializable, but not TC-serializable.

3.5. Characterization of Executions Admissible under Partition Failures

In this section, we try to characterize the rp logs of executions generated by any prevention

protocol. Here again, the notion of DITS plays a useful role.

Given a rp log L over a poset of partitions P = (PO,. . . , P,, Pf), if the sublog of L in each

partition Pi E P is serializable, then under what condition is L serializable? This question can be

answered by regarding all the operations from the transactions in a partition as coming from one

"super transaction". First of all, we have to clarify the meaning of a "serializable sublog". In Section

2.4, we defined a serializable rp log by adding to it two fictitious transactions To and Tf. In order to

define the serializability of sublog Li in a partition Pi, we introduce two fictitious transactions Tio and

Ts. Transactions in a partition Pi may read the values of different copies of a data object written by

different transactions belonging to a partition or partitions that happen before Pi. However, in a rp

log generated by any prevention protocols defined in Section 3.2, the following two conditions

always hold. The first condition is about the values "imported" by a partition from partitions which

happen before it. Initially, the copies of a data object X in a partition Pi may have different values.

That is, these copies may have been written by different transactions belonging to a partition or

partitions that happen before Pi. However, only one of these values is read by transactions in Pi.

The second condition is about the values "exported" by a partition to partitions which happen after it.

(A partition Pi happens after a partition Pi if Pi happens before Pi.) If Y is a data object written by

some transactions in a partition Pi, the copies of Y in Pi may have different final values. However,

only one of Qese values can be read by transactions in partitions which happen after Pi.

chapter three section 3.5

For partition Pi E P, let PBi = (Pi E P : Pi happens before Pi) and RSi = (X E D : there exists

a transaction in Trans(Pi) that reads X from a transaction in Trans(Pj), Pi E PBi). Let

PAi = (Pi E P : Pj happens after Pi) and WSi = (Y E D : Y is updated by some transaction(s) in

Trans(Pi)}. We now formally state the Unique I 0 Assumption on a rp log L over a poset of

partitions P.

Unique I 0 Assumption

(1) For each X E RSi, every transaction in Trans (Pi) that reads X from some transaction belonging

to a partition in PBi, reads X from the same transaction Tb(X).

(2) For each Y E WSi, there exists a transaction Ta(Y) E Trans(Pi) such that, for any Pj E PAi, if a

transaction Tk E Trans (Pi) reads Y from a transaction in Trans (Pi), Tk reads Y from Ta(Y).

In condition (2) above, even if no transaction belonging to a partition in PAi reads Y, Ta(Y)

must still exist.

Note that a rp log generated by any one of the prevention protocols described in Section 3.2

satisfies the unique I 0 assumption. For example, in the primary copy protocol, if the primary copy

of a data object X is located at a site in a partition Pi, then the last transaction that wrote the primary

copy of X before Pi is formed is Tb(X). Any transaction in Trans (Pi), that reads X from a transaction

belonging to a partition happening before Pi, reads the primary copy of X thus from Tb(X). Also, the

last transaction in Trans(Pi) that writes the primary copy of X is Ta(X). Therefore, the primary copy

protocol satisfies the unique I 0 assumption.

To see that the quorum protocol also satisfies the unique I 0 assumption, suppose that the read

and write quorums of a data object X are q, and q,, respectively. As stated earlier, the sum of q, and

qw is larger $an n and qw > nl2, where n is the total number of copies of X. Every copy of a data

chapter three section 3.5

object has a version number [ASC85, AbT861. When a write operation updates X in a partition pi,

it must be able to write at least q,,, copies of X. Also, it must update the version numbers of all the

copies that its has written to a number larger than all the version numbers that these copies had.

When an operation reads X in Pi, it must be able to access q, copies of X and it reads the copy that

has the highest version number. Suppose X can be read in Pi. The copies of X in Pi may initially

have different values and version numbers. Suppose a copy Xi initially has the highest version

number. Then the transaction that wrote the initial value on Xi is Tb(Y). On the other hand, suppose

X can be written in Pi. Before the copies of X migrate to the partitions that happens after Pi, they

may have different version numbers. If the version number of a copy Xi is the largest among all

these version numbers, then the transaction in Trans(Pi), which wrote this version number, is T,(X).

Since TJX) must have written q, copies of X in Pi, any transaction belonging to a partition

happening after Pi, that reads X from a transaction in Trans(Pi), reads X from T,(X). Hence, quorum

protocols satisfy the unique I 0 assumption. In the following, we assume that the unique I 0

assumption holds for all rp logs generated by a prevention protocol.

For a rp log over a poset P of partitions, let Pi E P, and RSi and WSi be as defined earlier in this

section. For a data object X E RSi, let Copiesi(X) be the set of copies of X in Pi that are read by some

transaction(s) in Trans(Pi). By condition (1) of the unique I 0 assumption, all the copies in

Copiesi(X) can be considered as initially written by the same transaction Tb(X) defined in the

assumption. We thus introduce a fictitious write-only transaction Tio in Pi, which writes the value of

X written by Tb(X) into all the copies in Copiesi(X), for every data object X E RSi. We use R& to

represent the set {Xk E Copiesi(X) : X E RSi), i.e., R S ~ is the set of physical copies written by Tie.

We introduce another fictitious read-only transaction Tif in Pi, which reads Y from TJY)

defined in condition (2) of the unique I 0 assumption for every data object Y E WSi. We use WS~ to

represent the kt of copies, {Yk : Yk is written by TJY), Y E WSi), i.e., WS~ is the set of copies at the

chapter three section 3.5

sites in Pi whose values are written by T,(Y). Therefore if Pi E PAi and a copy Yk E W$ is inherited

by Pi from Pi, then the initial value of Yk is considered to have been written by T,(Y).

Now we can define the serializability of the sublogs of a log L generated by a prevention

protocol over a poset P of partitions. For a sublog Li = (Xi, <) of L in a partition Pi E P, its extension

is a poset (&U&J&, c'), where and nd are the sets of operations in Ti0 and Tif, respectively, and

c' is defined as follows. (1) For any two operations p E Ci and q E &, p c'q if and only if p < q;

(2) p <'q for any two operations p E Ei and q E Ci on the same copy; and (3) p <'q for any two

operations p E Xi and q E ii on the same copy. A sublog Li of L is serializable if its extension L'i

is serializable.

Given a serializable sublog Li in a partition Pi, for every object X updated in Li, the transaction

T,(X) (recall (2) in the unique I 0 assumption) in Li is called the output transaction for X in Li, and

the write operation on X of T,(X) is the external write on X in Li.

Given a rp log L generated by a prevention protocol- over a poset of partitions

P = (Po, . . . , P,,,, Pf), if all its sublogs are serializable, then we can construct a partition I 0 graph

for L. As before, let Li denote the sublog of L in Pi, for i = 0, ..., m , f . The partition I 0 graph for

L, denoted by P I 0 (L), is a arc-labeled directed graph with a node set PN u PN' and an arc set A,

where PN = P. A has an arc from Pi to Pj labeled by X , denoted by (Pi, Pj):X, if Lj has a read

operation which reads a physical copy updated by the external write of X in Li. For any partition Pi

and any data item X, if the external write on X in Li is not read by any transaction in other partitions,

then PN' contains a dummy node P'i and A has an arc (Pi, Pei):X. There is no other nodes or arcs in

PIO(L). Since, for every data object X, transactions in one partition can read the update of X

inherited from only one of the partitions that happens before it (recall condition (2) in the unique 10

assumption), no two incident arcs to a node in PI0 (L) are labeled by the same data object.

chapter three section 3.5

Example 3.5.1. In Figure 3.5.l(a), there is a poset of partitions (PO, P 1, P2, P3, P4, Pf 1. The

execution in each partition is illustrated in an oval. The PI0 graph of the rp log L representing the

global execution is shown in Figure 3.5.l(b). 0

A PI0 graph was defined above with respect to a rp log generated by a prevention protocol over

a poset of partitions. However, it can also be defined for a TC-serial log L over a poset of partitions

P in a similar way. For each partition Pi E P, there is a segment of transactions in L in which all the

transactions are executed in Pi and the last transaction in the segment that writes a data object X is

the output transaction for X. PI0 (L) can be defined in the same way.

Lemma 3.5.1. The PI0 graph of any TC-serial log L over a poset of partitiom

P = {P 0, . . . , P,, Pf} has a DITS which orders P ojirst and Pf last.

Proof. Since L is a TC-serial log, it consists of a set of clusters of transactions, one for each

partition. Let the nodes in PN be ordered from left to right by the order of their corresponding

clusters in L. As for a node P; E PN', insert P'i immediately after'Pi in the above ordering. We

claim that the resulting order is a DITS for PI0 (L) in which P o and Pf are ordered first and last,

respectively. First of all, all the edges in PlO(L) are directed from left to right. Also, since L is

serial, there is no overlapping intekals with the same label, if the nodes of PIO(L) are arranged in

the above order. Since the order of the partitions in P is preserved in the order of the corresponding

clusters in L, P 0 and Pf are ordered first and last, respectively, in the DITS constructed above. 0

Theorem 3.5.1. A rp log L generated by a prevention protocol over a poset {P 0, . . . , P,, Pf}

of partitions is TC-serializable if and only if the sublogs of L in all the partitions are serializable and

PI0 (L) has a DITS which orders PoJirst and Pf last.

Proof. We first prove the if part. Let o = P 0, P',, . - . , P',, Pf be the sequence of nodes,

except for dummy nodes, corresponding to a DITS of PIO(L). For each P'i, let ~s(P ' i) be the 1C

chapter three section 3.5

serial log equivalent to L'i, the sublog of L in P'i. Let L, be the 1C serial log

L,(Po)LS(P'~) - L,(P',,)Ls(Pf), with all the fictitious transactions removed, except for To and T,.

We will show that L is equivalent to L, and hence L is TC-serializable. Suppose T, reads X from Ti

in L. If both Ti and Tj belong to the same partition P'k, Tj reads X from & in both Ltk and LS(Ptk),

and hence in L,. If Ti and Ti belong to two different partitions P'k and P'I, respectively, then there is

an arc (Pnk, PoI):X in PI0 (L). Since o is a DITS for PI0 (L), no node between P i and P'I in o has

an outgoing edge labeled with X. This implies that no transaction executed in the partitions P'k+1 to

P'I-1 writes X. Furthermore, since X and Tj belong to two different partitions, Ti must be the output

transaction in L,(P;) that writes X. Therefore, there is no write operation on X between Ti and Tj in

L,. Hence, Ti reads X from Ti in L,.

On the other hand, assume that Tj reads X from Ti in L,. We want to show that Tj also reads X

from Ti in L . Suppose Tj reads X from Tk in L. This implies that Ti reads X from Tk in L,. Hence

Tk and Ti must be identical. Therefore, Ti reads X from 'l;: in L. It,is now clear that L and L, are

equivalent.

Let us next prove the only if part. Suppose that L is TC-serializable and let L, be a TC-serial

log equivalent to L. For every partition Pi, there is a segment L'i of transactions in L, which is

equivalent to Li. Since L, is a 1C serial log, for any data object X, all the transactions (if any) in L'i

that read X from some transaction(s) ordered before L'i read X from the same transaction T. Since

L, and L are equivalent, for any data object X, all the transactions (if any) in Li that read X from

. some transaction(s) not in Li read X from T. Similarly, for any data object Y, all the transactions (if

- any) in L but not in Li, that read Y from a transaction in Li, read Y from the same transaction. It is

clear that the extension of Li is equivalent to the serial log [Tid'iT~], where [Tid'iTif] is the 1C

serial log beginning with the operations of Tie, followed by all the transactions in L'i, ordered serially

as in L'i, and' ending with the operations of TZ. Hence the sublog Li is serializable. It follows that

chapter three section 3.5

all the sublogs of L are serializable. Because of the equivalence of L and L,, P I 0 (L) is identical to

PIO (L,). Since L, is TC-serial, by Lemma 3.5.1, P I 0 (L,) has a DITS which orders P 0 first and P,

last. Hence, P I 0 (L) also has a DITS which orders P o first and Pf last. 0

Example 3.5.2. The PI0 graph, P I 0 (L), of the rp log L over the partitions (P 1, P 2, P 3, P 4) in

Figure 3.5.l(b) has a DITS illustrated in Figure 3.5.l(c). Hence, L is TC-serializable and the

serialization order is given by

In the following, we will characterize the executions generated by prevention protocols. We

assume that these protocols satisfy the non-selective assumption defined below. Recall the

definitions of R$ and W S ~ given earlier in this section; R& contains all copies read by transactions in

Li, whose values were inherited from some other partitions which happen before Pi, and W S ~

contains those copies whose updated values may be read if they migrate to another partition.

Non-selective Assumption : Let L =(X(T), c) be the rp log of an execution generated by a

prevention protocol PT over a pose? of partitions P. For every partition Pi E P, let Li = (Z, <) be the

sublog of L in Pi. Then PT must grant all the operations of transaction T = R [R$]w[ws~] when it is

submitted alone in P i .

The non-selective assumption holds for almost all the prevention protocols, except for those

which restrict admissible transactions to a fixed set of transaction classes. For example, the "class-

conflict protocol" proposed by Skeen and Wright does not satisfy this assumption [SkW84]. The

following two results give a general characterization for serializable executions generated by any

prevention protocol under partition failures.

chapter three section 3.5

Theorem 35.2 If the non-selective assumption holds for a prevention protocol PT , then all the

rp logs generated by PT are TC-serializable.

Before giving a proof for Theorem 3.5.2, we use an example to illustrate the idea of the proof.

Example 3.5.3. Suppose that PT is a partition-tolerant protocol and that the rp log L in Figure

3.5.2(a) is generated by PT in two partitions P 1 and P2. L is serializable and equivalent to the serial

log [ToT1T3T2Tf]. It is not difficult to see that L is not TC-serializable. With respect to L, we have

R51=(x1,zl], ~3~ = (Y ~ , z ~] , R ~ ~ = (Y ~] , and W S ~ = (X ~] . If PT is a prevention protocol satisfying

the non-selective assumption, then the rp log L illustrated in Figure 3.5.2(b) must also be accepted

by PT. However, Ll is not serializable and this violates the property of PT that it generates only

serializable rp logs. Hence, it is not possible for PT to generate L, which is serializable but not TC-

serializable. This is because PT cannot know what takes place in PI , based on the information

available in Pa. However, a detection protocol is able to do so and can tell that L is, but L 1 is not,

serializable, when the partitions are merged. €I

Proof of Theorem 3.5.2. Suppose that L is a serializable rp log generated by a prevention

protocol PT over a poset of partition {P 0, . . . , P,, Pf), but that L is not TC-serializable. It follows

from Theorem 3.5.1 that PI0 (L) does not have a DITS. For each partition Pi, (i z 0, f), construct a

transaction Ti =Ri[~3j]~i[WSi], where R& and WS~ are two sets of copies defined earlier in this

section. According to the non-selective assumption, PT would also accept the log L' whose sublog

in each partition Pi consisted only of transaction Ti. From the way that Ti's are constructed, it can be

seen that PI0 (L') is the same as PI0 (L). This implies that PI0 (L') does not have a DITS. In L',

there is only one transaction executed in every partition. Therefore, PI0 (L') is identical to TI0 (L '), if

Pi is replaced by Ti for each node Pi in PI0 (L '). Hence TI0 (L ') does not have a DITS, and L' is not

serializable. This contradicts the property of PT that it generates only serializable rp logs.

Therefore, every rp log generated by PT is TC-serializable. 0

chapter three section 3.5

The following theorem follows immediately from Theorem 3.5.2 by replacing "TC-

serializable" with an equivalent condition in Theorem 3.5.1.

Theorem 3.5.3. If the non-selective assumption holds for a prevention protocol PT, then every

rp log L generated by PT over a poset of partitions P = { P O , . . . , P,, P f } have the following two

properties :

(1) Sublog Li of L in each partition Pi is serializable;

(2) P I 0 (L) has a DITS which orders Pofirst and Pf last.

In the following chapter, we will present an application of Theorem 3.5.3, in which an upper

bound on availability will be derived.

CHAPTER 4

LIMITATION ON AVAILABILITY

4.1. Availability in Partitioned Database

Informally, availability is a performance measure of a partition-tolerant protocol. A partition

failure degrades the availability of a distributed database. As mentioned in Sections 3.2 and 3.3,

many protocols for dealing with partition failures have been proposed. However, little work has

been done in investigating the limit on availability. Coan, Oki and Kolodner [COK86] give an upper

bound on availability for the Zpartition case, wherein they assume that the transactions submitted

are uniformly distributed over all sites. In this section, we will -formally define the notion of

availability. In Section 4.2, the work by Coan, Oki and Kolodner will be described in more detail.

In Section 4.3, we will derive an upper bound on availability using a more general model. In this

derivation, the characteristics of the PI0 graph of an execution generated by a prevention protocol

discovered in Section 3.5 are used.

In order to define availability more formally, let us start with an example.

Example 4.1.1. In a distributed database system, suppose four sites S1, S2, S and S

partitioned into two partitions P I and P 2 as shown in Figure 4.1.l(a). There are two data objects X

and Y, and their copies are distributed as shown in the figure. Transaction TI =R I[X]WI[YI is

submitted at S 1, transactions T2 = R 2[X] W2[X

transaction T4 = R 4[Y]W4[Y] is submitted at S 3.

1 and T3=R3[Y]W3[X] are submitted at Sz, and

Let us consider two different executions of this set

chapter four section 4.1

of transactions under a quorum protocol. We use qr(X) and qw(X) to denote, respectively, the read

and write quorums for data object X. The rp log L in Figure 4.1.l(b) represents the first execution,

in which q,(X) = 2, qw(X) = 2, qr(Y) = 1 and qw(Y) = 3. In this execution, both TI and T4 are rejected

because the necessary quorums cannot be obtained in the partitions they belong to. Therefore, only

half of the transactions submitted are executed. We say that the acceptance ratio of the given set of

transactions in L ,, with respect to this set of quorums, Ac (L is 112.

If the quorums used are changed to qr(X) = 2, qw(X) = 2, qr(Y) = 2 and qw(Y) = 2, then the rp log

L2 in Figure 4.1.l(c) represents another execution of the same set of transactions. In this execution,

TI and T3 are rejected, and again Ac (L2) = 112. Since there are three copies of Y, qw(Y) 2 312 must be

satisfied. Therefore, TI can never be granted by any quorum protocol, since P 1 has only one copy of

Y and no write operation on Y can be performed in PI . Only one of Tj and T4 can be granted, since

they have a read-write conflict. Therefore, it can be concluded that 112 is the maximum acceptance

ratio of this set of transactions over all possible sets of quorums. El ,

A set of transactions with the sites of submission specified is called a transaction distribution.

More formally, a transaction distribution is a set of ordered pairs, ((Ti, Si) : Ti is a transaction

submitted at site Si). In Example 4.1.1, {(TI, S]), (T2, Sz), (T3, Sz), (T4, S3)) is the transaction

distribution. In the following, an execution of the transactions listed in a transaction distribution 6, in

which each transaction is submitted to the site specified by an ordered pair in 6, is called an

execution of the transaction distribution. In the execution of a transaction distribution 6, some

transactions may be rejected because of a partition failure. For log L of an execution of a transaction

- distribution 6 over a poset of partitions {PO,. . . , P,,,, Pf), the acceptance ratio, Ac(L), is the ratio

of the number of transactions in L to the total number of transactions in 6.

From this point on, we focus our attention on the executions generated by a prevention protocol

which satisfies the strongly non-selective assumption. This assumption is slightly more restrictive

chapter four section 4.1

than the non-selective assumption given in Section 3.5. Recall ~ i i and ~ % i defined for a rp log L in

Section 3.5.

Strongly Non-selective Assumption : Let L = (C(T), <) be the rp log of an execution generated by a

prevention protocol PT over a poset of partitions P. For each partition Pi E P, let Li = (&, <) be the

sublog of L in Pi. If the readset and writeset of a transaction T are subsets of R S ~ and WS~,

respectively, then PT must grant all the operations of transaction T when it is submitted alone in Pi.

0

For the rest of this chapter, when we refer to a prevention protocol, we assume that it satisfies

the strongly non-selective assumption.

Definition 4.1.1. Let E be the set of all executions of a transaction distribution 6 generated by a

partition-tolerant protocol PT over a poset of partitions P = (P 0, . . . , P,, Pf) The availability,

Av(G,PT,P), for the transaction distribution 6 over P with respect to PT is defined to be

max(Ac(L):L E E). 0.

In Definition 4.1.1, we used the maximum acceptance ratio over all possible executions of 6.

The following lemma shows that the maximum acceptance ratio does not depend on the order of

submission of the transactions in 6. In fact, it depends on the conflicts among the transactions

submitted in different partitions, which will be defined formally in Section 4.3.

Lemma 4.1.1. Given a transaction distribution 6, a prevention protocol PT and a poset of

partitions P = {Po, . . . , P,, Pf}, there exists a set T' of transactions in 6 such that, if L is any

execution of T', in which all the transactions belonging to Pi are executed serially in Pi, for each

i = 0,. . . , m , f , thenAc(L) =Av(&,PT, P).

chapter four section 4.1

Proof Let L 1 be an execution of 6 such that Ac (L = AV (6, P T , P). Then T' is the set of

transactions in L 1. According to the strongly non-selective assumption, if Ti E T' and it is submitted

alone in Pi, then all the operations of Ti are accepted by PT. Hence all the transactions in T' that

belongs to Pi will be granted by PT if they are submitted and executed serially in Pi .

In Example 4.1.1, the maximum availability for the transaction distribution given in the

example, with respect to any quorum protocol, was 112, i.e., the maximum value of

(Av (6, PT, P) : PT is a quorum protocol] is 112. However, if other protocols are used, the availability

for the same distribution may be different.

Example 4.1.2. Let X1 and Y be the primary copies (see Section 3.2) in Example 4.1.1, and

suppose the primary copy protocol is applied to the transaction distribution. Then all the transactions

submitted in P 1 are accepted, and transaction T 4 submitted in P 2 is rejected. Hence, the acceptance

ratio of this execution of the transaction distribution is 314. It can be seen that no other execution can

accept all four transactions, if the primary copy protocol is used. Hence the availability is equal to

314, with respect to the primary copy protocol.

From Examples 4.1.1 and 4.1.2, we can conclude that availability depends not only on the

transaction distribution, but also on the protocol used. It is interesting to see if a general upper bound

on availability for any prevention protocol exists. In the case of a detection protocol, every

transaction submitted to a partition is accepted. Therefore, we would not discuss the limit on the

availability for detection protocols. In the following, we consider only the 2-partition case (not

counting P O and P f) and hence we will not explicitly mention the poset of partitions, and the

availability of a transaction distribution 6 with respect to a protocol PT in the 2-partition case will be

denoted by Av(6, PT). We are interested in finding a general upper bound on the availability for

some classes of transaction distributions having a certain property, with respect to any prevention

protocol. Finding a general upper bound in the case where there are more than two partitions appears

chapter four

rather difficult.

section 4.1

4.2. Uniform Transaction Distribution and Availability

In this section, we review the upper bound on availability in the 2-partitions case, given by

Coan, Oki and Kolodner [COK86]. The database model they use is a fully replicated database and

each transaction has a readset containing its writeset. Also, a transaction always reads a data object

before updating it. A transaction which writes some data objects is called an update transaction.

The class of transaction distributions considered in their model are assumed to satisfy the uniformity

assumption stated below.

Uniformity Assumption. For i = 1,2, . , n , let fi be the fraction of update transactions submitted

at a site Si over all update transactions, and let D be any set of data objects. Among all the update

transactions with writeset D , the fraction of update transactions submitted at Si is also equal to fi.

For a given transaction distribution 6, the partition, Pmj, which has the majority of transactions

is called the majority partition, while the partition, Ph,,, which has the minority of transactions is

called the minority partition. (If the two partitions have the same number of transactions, then

either one can be the majority partition and the other the minority partition). The following are the

parameten used in specifying the upper bound in [COK86].

t = total number of transactions listed in 6

umj = fraction of t that are update transactions and are submitted in Pmj

chapter four

ud,, = fraction of t that are update transactions and are submitted in P,i,

section 4.2

r-j = fraction of t that are read-only transactions and are submitted in Pmj

rd, = fraction of r that are read-only transactions and are submitted in Pd,,

Theorem 4.2.1.[COK86] For any transaction distribution 6 that satisfies the uniformity

assumption and for any prevention protocol PT , we have

Av (6, PT) I umj + rma, + rhn.

Since Theorem 4.2.1 is proved in [COK86], we provide here only an intuitive reasoning for the

theorem. Firstly, for any two update transactions TI and T2, which update the same object, say X, if

they are submitted in Pmj and Pd,,, respectively, then one of them must be rejected. To see this,

suppose that both of them are granted. Then both Pmaj and P ~ , , must have a transaction that reads X

from TO belonging to the initial partition PO, because the value of X must be inherited from TO. Also

, Tf E Pf (the final partition) must read X from a transaction belonging to either Pmj or Ph,,. If Tf

reads X from PMj, then the PI0 graph of the global execution contains the subgraph shown in Figure

4.2.l(a). If Tf reads X from Pdn, then the PI0 graph of the global execution contains the subgraph

in Figure 4.2.l(b). In either case, the PI0 graph does not have a DITS and the corresponding global

execution is not serializable. Hence, it is impossible for both TI and Tp to appear in a serializable

execution.

Secondly, by the uniformity assumption, for any update transaction accepted in the P ~ n , there

are more (or at least as many) update transactions with the same writeset that are rejected in Pmax.

Therefore, the availability is maximized by accepting the update transactions submitted in Pmax and

chapter four section 4.2

rejecting those submitted in Pk,,. All the read-only transactions can be accepted. Thus, it follows

that Av(6, PT) is bounded by umj + rmj + rmin.

4.3. A General Upper Bound on Availability

In this section, we shall derive a general upper bound on the availability for a class of

transaction distributions in the 2-partition case. As before, we use 6 to denote a transaction

distribution and Pi, i = 1 or 2, to denote the two partitions under consideration. For i = 1, 2, let ri

denote the set of transactions in the transaction distribution 6, submitted in Pi. Further, we use

WS(A) and RS(A) to denote the writeset and readset of a set of transactions A , respectively, i.e.,

WS (A) (RS (A)) is the union of the writesets (readsets) of all the transactions in A . Two transactions

T1 E Tranr(P 1) and T2 E Trans(P2) are said to conflict, if WS ((T 1)) n RS ((T2J) or

RS((Tl)) n WS((T2J) is nonempty. (The reason we do not regard TI and Tz as conflicting, when

WS ((TI)) n WS({T2)) is nonempty will be explained at the end of this section.) A transaction T

reads tkom (writes into) a set D of data objects, if the readset (writeset) of T has a nonempty

intersection with D . Note that this condition does not require the readset (writeset) of T to be a

subset of D .

In the following discussion of an upper bound on availability, we adopt the weak uniformity

assumption on transaction distribution 6, defined as follows.

Weak Uniformity Assumption. For any set D of data objects, if the number of transactions in 6

submitted in P (P2), which read from (write into) D , is larger than the number of transaction in 6

submitted in Pz (P which write into (read from) D , then any subset o fD also has this property. 0

chapter four section 4.3

Note that the above assumption is not strictly "weaker" than the uniformity assumption,

because of the condition on the read set. However, if the readset and writeset of a transaction are

always the same, then the uniformity assumption implies the weak uniformity assumption. Because

of the conflict between the transactions in Tl and T2, not all the transactions submitted can be

accepted. Let C 12 denote the set WS (T1)nRS (r2) and C denote the set WS (T2)nRS (TI). In other

words, C12 and C21 are the "source of conflict" between the transactions in T1 and T2. We define the

following parameters for specifying an upper bound on the availability for 6.

pl = the set of all transactions belonging to P1 that write into C 12, i.e., those which conflict with some

transactions belonging to P2 because they have written some data objects which are read by some

transitions in Trans (P 2).

82 = the set of all transactions belonging to P2 that read from C !2, i.e.. those which conflict with some

transactions belonging to P1 because they read some data objects which were written by some

transitions in Trans (P 1).

p2 = the set of all transactions belonging to P 2 that write into C21, i.e., those which conflict with some

transactions belonging P1 because they have written some data objects which are read by some

transitions in Trans (P

81 = the set of all transactions belonging to P that read from Czl, i.e., those which conflict with some

transactions belonging to P2 because they read some data objects which were written by some

transitions in Trans (P 2).

chapter four section 4.3

Theorem 4.3.1. For any transaction distribution 6 that satisfies the weak uniformity

assumption and for any prevention protocol PT, we have

wherem =min(lp~1,1~1,18~1,1021) .

Proof. Suppose L is the rp log of an execution of 6 over (P P 2 } with protocol PT. According

to Theorem 3.5.3, PI0 (L) must have a DITS, which is either P OP IP 2Pf or POP 2P 1Pf.

Let 21 be the set of all the transactions appearing in the sublog of L in P 1 and let 22 be the set of

all the transactions appearing in the sublog of L in P2. Note that .rl E rl and 22 c r2, since some

transactions may be rejected by PT. Suppose that PIO(L) has a DITS given by POP 1P2Pf. As

illustrated in Figure 4.3.l(a), there can be no data object X such that X 1 is written by a transaction in

21 and X2 is read by any transaction in 22, where X I and X2 are two copies of X in P I and P2,

respectively. Otherwise, POP 1P2Pf would not be a DITS of PIG (L,), since PIG (L) would have an

arc (PO, P2):Xr because a transaction in P 2 can read only from T o belonging to P o (i.e., X2 is written

by TO,) but not from any transaction belonging to P1. Hence, W S (T ~) and R S (T ~) must be disjoint.

C 12 contains two disjoint subsets W 12 and R 12, where W 12 = WS (z1)nC 12 and R 12 = RS(r2)nC 12. (The

inclusion relationships among the sets WS (rl), RS (r2), W S (q) , R S (T ~) , C 12, W 1 2 and R 12 are

illustrated in Figure 4.3.2).

Let RJ1= fi - 21, ie., the set consisting of all the transactions submitted in P 1 that are rejected

by PT. In other words, RJ consists of all the transactions submitted in P that write into C 12 - W12.

Also let RJ2= r2 - i.e., the set consisting of all the transactions submitted in P2 that are rejected

by PT. RJ2 thus consists of all the transactions submitted in P 2 that read from C 12 - R 12.

Suppose the number of transactions in P I which write into C12 is larger than the number of

transactions in P 2 which read from C12. It follows from the weak uniformity assumption that

chapter four section 4.3

l RJ 1 2 IAC21, where AC2 is the set of transactions in P 2 which read from R 12. Since 82 is defined

as the set of transactions in P 2 which read from Cl2, it is clear that 82 is the union of AC2 and RJ2.

Hence,

1 ~ ~ 1 + 1221 = lrll - IRJII + IT21 - IRJ21

(Note that AC2 and R J 2 may not be disjoint, and this is why the last inequality in (4.1) is not an

equality). If the number of transactions in P1 which write into Cl2 is smaller than the number of

transactions in P 2 which read from C 12, then l RJzl 2 IAC 1 I, where AC 1 is the set of transactions in

P 1 which write into W]2. Since pl is defined as the set of transactions in P 1 which write into C 12, it is

clear that pl is the union of AC and R J Hence,

On the other hand, if the DITS in PI0 (L) is PoP2P 1Pf, then no data object X written by a

transaction submitted in P 2 can be read by any transaction submitted in P 1, as illustrated in Figure

4.3.l(b). Hence, WS(Q and RS(21) must be disjoint. In this case, the following two inequalities

correspond to (4.1) and (4.2), respectively.

chapter four section 4.3

lzll + 1z21 1 lrll + 1r21- 1p21.

Therefore, we have

1 1 - I m
ry + 1r2l

where m = min (I pl I, l p21, 101 1,l 021). Since this is true for the rp log of any execution of 6 over

(PI , P2}, it follows that

Note that when we considered the DITS PCP *P2Pf in the above proof, only data objects caused

conflicts between the transactions in 21 and 22. We did not consider the data objects in

W S (z l) n W S (22), because, if there exists a data object X E W S (z l) n W S (22), P OP 1P 2Pf will still be a

DITS for PI0 (L) as long as X d RS (z2). This is the reason why we did not consider the intersection

of their writesets when we defined conflict between transactions.

CHAPTER 5

TECHNIQUES FOR ACHIEVING HIGH AVAILABILITY

5.1. Trade-off between Serializability and Availability

In Chapter 4, it was shown that under a partition failure there is a limitation on the availability

of distributed database systems. Serializability and availability are conflicting goals in designing

distributed database systems. It was suggested in [GaK87] that the trade-off between these goals can

be viewed as a linear spectrum of possible solutions. At one end, there is global serializability, and

at the other end, there is 100% availability.

Systems that guarantee serializability, e.g., [AbT86, BeG81 ,'Dav84, DGS85, Gif79, SkW841,

suffer from high communication overheads and low availability. When a transaction updates a data

object, it must also update all, or at least a majority of, the copies of the object at remote sites. In the

worst case, when a communication failure causes partitioning of the network, availability is seriously

degraded. However, such a system has the very desirable feature that global serializability is

maintained.

As for systems at the other end of the spectrum, e.g., [BGR83, GAB83, SBK851, they

emphasize local availability of data objects. All data objects are fully replicated. Read and write

operations are always executed locally. Therefore, the execution of a transaction is guaranteed to be

fast. Even if a communication failure occurs, there is no degradation in execution speed or

availability. The most serious deficiency of these systems is that there is no guarantee of

chapter five section 5.1

serializability. In fact, very little can be said about the correctness of these systems.

In Section 5.2, a system which ignores serializability but provides the maximum availability is

described. Then, in Section 5.3, we will review an approach to achieving both serializability and

high availability by restricting transaction behaviour. For this purpose, we will discuss a model

called tkagmented database system. In Section 5.4, two schemes proposed by Kogan and Garcia-

Molina [KoG87] for a fragmented database system will be discussed. Their schemes adopt fixed

"access patterns", which are rather restrictive, to achieve both serializability and high availability. In

Chapters 6 and 7, we will propose two schemes which are more general than those in [KoG87].

5.2. A Highly Available Distributed Database System

In this section, we describe the system SHARD (System for Highly Available Replicated Data),

developed and implemented at CCA (Computer Corporation of America) [SBK85, Sar861.

The database in this system is fully replicated. The execution of a transaction is completed

locally at the site of its submission and updates are broadcast afterwards. No site or partition failure

can affect the execution of any transaction at an operational site, and updates will eventually arrive at

every operational site, after the partition failure has been repaired. Therefore, availability is

guaranteed to be 100%. The main issues are how to merge the updates from different sites and how

to define correctness for this kind of execution.

Figure 5.2.1 shows the architecture of SHARD at each site. The DB and Update History are

two secondary storages, and a copy of the whole database is stored in the DB. In addition, there are

three modules, called Interactor, Distributor and Checker. Interactor is the interface between the

system and the local users. By reading data from the DB, it generates responses to user requests and

"update actions". Here, we use an example of cash withdrawal in a banking system to illustrate the

chapter five section 5.2

idea of an update action. After money is output to a user, instead of changing the balance

immediately, an update action, which is a transaction in itself that decrements the amount withdrawn

from the balance, is generated. If this update action and the output action are executed together as an

atomic action, the resulting database is always consistent. However, this would require a transaction

to wait for its update actions at all the sites to complete, before the output action can be executed.

This prolongs the response time of the transaction and it will be blocked if a partition failure occurs

in the middle of its execution. In order to achieve the high availability objective, SHARD takes

another approach. Money is output first and an update action is executed afterwards, independently

at different sites.

The update actions generated by Interactor are first stored in Update History. Distributor is

responsible for broadcasting them to all the other sites by using a reliable broadcast protocol, e.g.,

[AwE84,GLB85], which guarantees delivery of messages at every site. (The delivery may suffer

fnom a long delay). When an update action is broadcast, it carries a global timestamp, indicating the

time when the update action was generated.

Checker executes the update actions in Update History in their timestamp order. When

Checker updates the DB, it may miss some update actions from a remote site because of slow

communication or a partition failure. This can be remedied only by undoing and redoing some

update actions once it is discovered. Eventually, the copies at different sites are guaranteed to be

mutually consistent, i.e., the copies of the same logical data object will have the same value.

However, in general, an execution generated in SHARD is not guaranteed to be serializable by

the timestamp order of the transactions involved. This can be explained as follows. Suppose that a

transaction T 1 is executed at a site S with a timestamp t and it reads only a data object X. When T 1

interacts with the Interactor, it retrieves for T 1 a value of X from the DB. The output action and

update action of T1 are generated based on this value. Suppose also that a transaction T 2 with a

chapter five section 5.2

timestamp 12 < t 1 has been executed at another site SZ and the update action of T2, which also writes

X, arrives at S1 after the update action and output action of TI have been generated. In this case, TI

has missed the valueof X written by Tz. If these two transactions are serialized by their timestamps,

T1 should read the value of X updated by TZ. Hence, an execution in SHARD may not be

serializable by the timestamp order of the transactions involved. In other words, the database state in

which an update action is eventually executed is, in general, different from the state in which it was

generated; therefore, serializability is not guaranteed in SHARD, even though mutual consistency

and high availability are achieved [SBK85, Sar861. In [SBK85, Sar861, "compensation action" is

used to remedy inconsistency, once it is discovered.

When Checker tries to merge update actions from different sites, techniques such as data-

patching and log transformation [BGR83, BlK851 may be used.

Another issue in this scheme is the definition of correctness. The correctness of the executions

generated using this scheme depends in many cases on the semantics of the operations involved. It is

very difficult to give a general correctness criterion to these executions. Lynch, Merrit, Siege1

[LBS86] attempt to solve this problem. However, this is an area that requires further research.

5.3. Fragmented Distributed Database System

In Chapter 4, we showed that, if serializability is required, there is a limit on the availability of

a general distributed database system. On the other hand, it is demonstrated in SHARD, described in

Section 5.2, that it is possible to achieve a full (100 percent) availability by ignoring serializability.

In general, the two conflicting goals of serializability and availability must be compromised.

However, there is a third approach which provides both serializability and high availability by

reducing the generality of transactions allowed in a system. In the rest of this thesis, we focus our

chapter five section 5.3

study on this approach.

In the most general case, a transaction submitted at a site can read and write any data object

either at the local site or some remote site. However, in some domains of application, this generality

can be restricted to some extent without affecting the defined goal. In such a case, it is possible to

achieve both serializability and availability by restricting the behaviour of transactions.

For example, in an airline information management system, a flight scheduling system may be

centralized at the airline's headquarters. For the sake of fast accessibility and reliability, the database

of flight schedules may be replicated at many different sites. In this case, it is reasonable to restrict

updating of a flight schedule to be executed only at the headquarters. A site other than the

headquarters can read any flight schedule by accessing its local copy. However, no site except for

the headquarters is allowed to modify any flight schedule for itself. The only way in which a site can

modify a flight schedule is to send a request to the headquarters. On the other hand, it is necessary

for a site other than the headquarters to read flight schedules. For example, the accounting

department needs to read flight schedules to find the total flying time of every pilot to calculate the

payroll. In this example, we are trying to put constraints on data objects that a transaction can read

and write. In the following, this kind of restriction is formalized and a new database model, called

fragmented database, is introduced. A similar model has been independently developed by

Garcia-Molina and Kogan [GaK87]. However, their approach and results have different flavors and

applications from ours.

In a fkagmented database system, data objects are fully replicated at all the participating

sites1. The logical database is partitioned into disjoint pieces called fragments; and each site

manages exactly one fragment. Therefore, there is a one-one correspondence between the fragments

' The assumption of full replication can be relaxed to paltial replication, without affecting the results presented in the following.
This assumption is made to make the description and discussions simple.

-- 53 --

chapter five section 5.3

and the sites. The site which manages a fragment is called its home site. The fragment managed by

a site is called the home fragment of the site. Data objects in a fragment belong to the fragment's

home site. The fragments other than the home fragment of a site are called remote fragments with

respect to that site. Note that each site has not only its home fragment, but also the copies of the

remote fragments.

A transaction is said to belong to the site at which it is issued and this site is called its home

site; we also refer to the home fragment and the remote fragments of a transaction's home site as its

home bagment and remote fragments, respectively. In this model, transactions can update only

data objects in their home fragments. Therefore, updating a data object in a remote fragment must be

done by sending a request to the home site of the remote fragment.

Two kinds of transactions are allowed to run in a fragmented database system. A local

transaction can read and write data objects only in its home fragment. A global transaction can

read from any fragments, but it can write only into its home fragment.

Both local and global transactions execute their read operations by accessing the copies

available at their home sites. (Recall that the database is fully replicated). A transaction is

committed (i.e., its updates are permanently reflected in the database) after all its read and write

operations have completed at its home site. As a result of this, to commit a transaction, the system

never has to wait for replies from other sites confirming the arrival of its updates. No waiting is

necessary to perform distributive commitment. Instead, the updates by a transaction are packaged

- and broadcast asynchronously to all other sites after the transaction has been committed locally.

Therefore, even if there is a partition failure, a transaction can still commit at its home site and let a

broadcast protocol take care of the delivery of its updates afterwards.

chapter five section 5.3

At each site, there is a local scheduler which controls local read/write accesses and remote

updates from other sites, so that the result of their executions is serializable. We require that at each

site the updates of transactions are broadcast to other sites in a serialization order of the transactions.

For example, if the local scheduler is timestamp-based [BeG81], then updates granted by it are

broadcast in their timestamp order. Furthermore, updates from the same site are processed by every

receiver site in the order they are sent. Hence, a transaction always reads all data objects in its

readset from a consistent database state.

Example 5.3.1. In Figure 5.3.1, the sites S 1, S2 and Sg are the home sites of the fragments F 1,

F a and F3, respectively, and F1, and F3 are the replicas of F F2 and F3, respectively. The data

objects X, Y, Z and W belong to fragments as shown in the figure. The subscripts of the data object

copies indicate their sites

A transaction TI submitted at $1, which reads X and writes Y, is a local transaction belonging

to $1. TI is completed locally at S1 before its update is broadcast to S2 and S3 to update Y2 and Y3,

respectively.

A transaction T2 submitted at S1, which reads Z, W and writes X, is a global transaction

belonging to SI. T2 is also completed locally by reading Z1 and W1 before its update is broadcast.

Note that only transactions submitted at S 1 can update data objects in F

In this section, we have introduced the notion of a fragmented database system, in which

transaction behaviour is restricted. In the next section, we shall discuss results in [GaK87, KoG871,

which demonstrate that both high availability and serializability can be achieved in a fragmented

database system.

chapter five section 5.4

5.4. Transaction Processing with a Static Read Access Graph

In a fragmented database system, in general, a transaction submitted at one site can read data

objects belonging to any other site. If the local schedulers located at different sites work

independently of each other, non-serializable executions may be generated. We shall illustrate this

fact by the following example.

Example 5.4.1. Consider a fragmented database system in Figure 5.4.l(a), which consists of

two sites S 1 and S2 with fragments F 1 and F2, respectively. The database contains two data objects

X and Y with copies at the two sites. Suppose that initially the copies of X have a value b, while the

copies of Y have a value vo.

Two local transactions T1 =Rl[X]Wl[X] and T2=R2[Y]W2[Y] are submitted at S1 and S2,

respectively. XI is updated by T1 to a new value hl, while Y2 is updated by T2 to VI at roughly the

same time. After T1 and T2 are committed locally, their updates are sent to the other site. (See

Figure 5.4.l(b)). Suppose that before the arrival of these updates, two read-only global transactions

T3 = R3[X]R3[Y] and T4 = R4[XlR4[Yl are executed at sites S1 and S2, respectively. Since the

updates do not amve in time, the values read by T3 are hl for X and vo for Y. As for T4, the values

read are b for X and vl for Y. Since T3 has read the update from TI but not from T2, T3 must be

serialized after T1 and before T2. On the other hand, T4 has read the update from T2 but not from TI,

Tq must be serialized after T2 and before TI. Therefore, this execution of the four transactions is not

serializable.

From Example 5.4.1, it is clear that the restriction given above on transaction behaviour in a

fragmented database is not sufficient to guarantee global serializability. The approach taken in

[GaK87, KoG871 to ensure global serializability is to further require each transaction's read and write .,

operations to conform to a static access pattern.

chapter five section 5.4

Definition 5.4.1.[GaK87] Given a fragmented database with sites S I , . . . , S, and

corresponding fragments F I , F,,, the read-access graph (RAG, for short) is a directed graph

G=(N, A), where N = (F 1 , ..., F,} and A = ((F i , F i) : i # j and a transaction T with home

fragment Fi can read any data object in Fj).

The RAG is an abstraction of the constraints imposed on the activity of transactions.

Transactions submitted at Si are allowed to read data objects belonging to Fj, only if there is an arc

from Fi to Fj in the RAG. Of course, reading is not done by sending out a remote request to Sj, but

rather by reading the copy of Fj at Si, which is updated when new values from Si arrive at Si. Thus,

if there is no outgoing edge at fragment Fi in a RAG, transactions submitted at Si can read and write

only the data objects in Fi. In other words, no global transaction can be submitted at Si. Since we

assume a one-to-one correspondence between the fragments and the sites, we sometimes refer to the

nodes of a RAG as sites rather than fragments, whenever it is more convenient. A directed graph is

bopless, if it has no undirected cycle in it.

Example 5.4.2. Figure 5.4.2(a) shows a RAG, which is a complete graph, for three fragments

F1, F2 and FJ of a database. This is the most general RAG for three fragments, in which a

transaction submitted at any site is allowed to read data objects from any site.

Figure 5.4.2(b) shows a restricted cyclic RAG for the same set of fragments. Transactions

submitted at one site can read data objects at only one more site.

Figure 5.4.2(c) shows an acyclic RAG, in which transactions submitted at S2 have no

restriction on access. They can read from both F and Fg. AS for the transactions submitted at Sj,

they can read only from S The most severe restriction is imposed on the transactions submitted at

S They can read and write only data objects in its own fragment F

chapter five section 5.4

The restrictions imposed by the RAG in Figure 5.4.2(d) are even stronger than those in Figure

5.4.2(c). Figure 5.4.2(d) shows a loopless RAG. It is not only acyclic, but its nondirected version is

also acyclic. With this RAG, only the transactions submitted at S2 can read data objects from other

fragments. The transactions submitted at S and S can access only their own fragments.

The following theorem states that a fragmented database with a very restrictive static access

pattern can achieve both serializability and high availability.

Theorem 5.4.1.[GaK87] If the RAG imposed on a fragmented database is loopless, any

execution in the database is serializable.

The following example illustrates an application of this theorem.

Example 5.4.3. This example is oversimplified; however, it serves the purpose of

demonstrating a plausible application of Theorem 5.4.1.

In this application, we keep track of sales and inventory stock for a wholesale company. There

are k warehouses at which the merchandise is sold to retailers. At each location, there is a fragment

that contains a record of every sale made, a record of every new merchandise shipment received at

that location, and the quantity in stock of each product. Name these fragments FI, F2, . - . , Fc.

Furthermore, there is a fragment C controlled by the company's central office. In this fragment,

information is recorded which represents decisions concerning future purchases (from

manufacturers). These decisions are arrived at by computations based on the periodic readings of

fragments IFi : i = 1, . . . , k) . This database is characterized by the RAG shown in Figure 5.4.3.

Note that there is a high degree of availability in this database system. For instance, each

warehouse can still enter the sales and shipment information even if there is a communication failure.

On the other hand, global serializability is never violated, even during a partition failure. Of course,

if the system is facing communication failure, the central office has to make decisions relying on

-- 58 --

chapter five section 5.4

stale information. However, this is unavoidable in the case of a partition failure. 0

Theorem 5.4.1 implies that it is possible to have both serializability and high availability;

however, this is achieved at the expense of a restricted read access pattern. With a slight relaxation

on the requirement defined by the RAG, the theorem no longer holds. The following example shows

that an acyclic RAG with a loop may generate a non-serializable execution.

Example 5.4.4. Consider the RAG for three fragments F ,, F2 and F given in Figure 5.4.4(a),

which is an acyclic graph with a loop. The copies of three objects X, Y and Z are located as shown

in Figure 5.4.4(b). F 1, F2, and F 3 are the home fragments of Sl, S2 and S3, respectively, and F1, F2,

and F3 are the replicas of S S and Sf, respectively. Transaction T3 = R 3[Z]W3[Z], submitted at S 3,

changes the value of Z from ho to a new value hl. The value hl is broadcast to S1 and S2.

Transaction T2=R 2[ZlW2[Y], submitted at $2, reads the value hl of Z received from T3. T2 changes

the value of Y from vo to vl, and vl is broadcast to S1 and S3. Transaction TI =R l[Y ,ZIWl[Xl,

submitted at S1, is executed before the arrival of hl and after the arrival of vl. This is possible

because of variable delays on different communication links. Therefore, TI reads the obsolete value

ho of Z and the updated value vl of Y.

This execution can be described by the rp log L illustrated in Figure 5.4.4(c). It is clear from

this execution that T3 has to be serialized before T2, because T2 reads Z from T3. Also, T2 has to be

serialized before T1, because T1 reads Y from T2. However, T1 reads Z from To, i.e., not from T3.

This makes it impossible for the TI0 graph, TI0 (L), of log L to have a DITS. (See Figure 5.4.4(d)).

Hence, this execution is non-serializable.

Even though Theorem 5.4.1 is an interesting result, it can be argued that its condition is too

restrictive. It is not applicable in the case where a RAG is acyclic but has a loop. Kogan and

Garcia-Molina have successfully improved on this result to allow the RAG to contain loops.

chapter five section 5.4

With a close examination of Example 5.4.4, it can be seen that the main source of problem,

which affects the serializability of the execution given in the example, is the disparity in the amval

times of the update of T3 at sites S1 and S2. Because of the late asrival of this update at S1,

transaction TI, submitted at S could read both a stale value of Z and an updated value of Y.

On the other hand, suppose that the update of T3 at S3 is first sent to SZ and then relayed to S1

by SZ. Also let S2 send the update of T3 to S1 before the update of any transaction executed at Sz,

which has read the update of T3. Then the combination of values of Y and Z read by T 1 can be only

one of the following three, because the value hl is sent to S 1 before the value vl : Y = ho and Z = vo;

Y = hl and Z = vo; Y = hl and Z = vl. The execution of these three transactions is serializable in any

one of these three cases. Therefore, if the rule mentioned above for update propagation is adhered to,

then any execution in the fragmented database of Example 5.4.4 will be globally serializable. This

observation has been abstracted and proved formally in [KoG87], as we explain below.

Given a directed graph G = (N, E), a topological sort of G is a total order on N such that if A

and B are two nodes in N and there is a directed path from A to B in E , then A is ordered before B.

Let G be an acyclic RAG of a fragmented database system with fragments (F 1 , . . . , F,,) and sites

{S 1,. . . , S,,). For simplicity, assume that F , , . . . , F,, is a topological sort of G . We define a

propagation order in G by a function Send, where

Send(i) = i - 1, for 1 < i < n.

Note that Send is not defined for i = I, i.e., the first node in the sorted order. The update, U(T), by a

transaction T submitted at Si, which is carried in a packet containing all the updates done by T, is

sent to the site indexed by Send(i), i.e., in this case. Whenever a site Sk (k + 1) receives an

update U(T) of some transaction T, Sk relays it to the site indexed by Send(k), i.e.,

Furthermore, the update U (T) must be sent out by Sk according to the following rule. Let X be a

chapter five section 5.4

data object with an update in U(T). If Tk is a transaction executed at Sk, which has read the value of

X before X is updated by T, then U(T) must be sent out after the update of Tk. If TI is a transaction

executed at Sk, which has read the value of X in U (T), then U (T) must be sent out before the update

of T,. Thus, Send defines a route for the propagation of updates.

For example, F 1, F 2, F 3 is a topological sort for the acyclic RAG in Figure 5.4.4(a). A route

for update propagation can be defined in the reverse order. Therefore, updates done in S are sent to

S2 and then relayed to S 1. Updates done in S2 are sent directly to S 1. The following was proved by

Kogan and Garcia-Molina in [KoG87], which deals with the case in which the RAG is acyclic but

not loopless.

Theorem 5.4.2.[KoG87] Given a fragmented database system with an acyclic RAG, if update

propagation is controlled by the propagation function Send defined above, then any execution is

globalty serializable.

In the following, we present an example which shows an application of Theorem 5.4.2.

Example 5.4.5 [KoG87]. This is an example of an airline reservation system. The database

contains information on flight schedules, customer reservations, and seat assignments. The database

is replicated at different sites, including the airports at which this airline operates.

The RAG for this fragmented database is shown in Figure 5.4.5. Fragment F contains the

flight schedules which are managed by the central office. Only the central office needs and has the

authority to update flight schedules. There are two disjoint fragments for reservation; one for the

west coast (fragment R,), and the other for the east coast (fragment R,). The sites which manage R,

and Re are able to read flight schedules in order to accept clients' reservation orders. However, there

is no need for the central office which handles flight scheduling to access reservation information.

There are three other sites, which are the airlines' offices at three different airports. Fragments A,,

chapter five section 5.4

A b and A,, belonging to these three sites S,, Sb and S,, respectively, contain seat allocation

information. In order to allocate seats, sites S,, Sb and S, have to access flight schedules in F and the

reservation lists in Re and R,. The RAG in this database is acyclic and contains no loop. Therefore,

Theorem 5.4.2 is applicable.

High availability is achieved in this fragmented database system. For example, it is possible to

assign passengers to their seats at the airports even if the computers located at the airports are cut-off

from the rest of the system. Similarly, there is no need for the operators at the airport and those at

the reservation centers to execute schedule changes. Therefore, a temporary cut-off from the rest of

the system would not stop the central office from updating the flight schedule.

There are, however, shortcomings in the application shown in Example 5.4.5. Suppose that the

propagation order used is the reverse of a topological order A,, Ab, A,, R w , Re, F. Any change in

flight schedule would have to be sent from the central office to the site managing Re, then relayed to

the site managing R,, then through S, and Sb, until it arrives at the last site Sa. If a partition failure

puts the sites managing F, A,, Ab and A, in one partition and the others in another partition, then the

update done on F cannot be sent to S,, Sb or S,, even though these three sites are connected to the

central office. Instead, seat allocation at S,, Sb and S, have to use stale data in F that were received

prior to the failure. This problem is unavoidable if a static access pattern is adopted. In the next two

chapters, we will study this issue. In particular, we will investigate the case in which the RAG may

be any directed graph.

CHAPTER 6

A CONCURRENCY CONTROL SCHEME FOR

WIDE-AREA DISTRIBUTED DATABASE SYSTEM

6.1. A Model for Wide-Area Distributed Database Systems

In Chapter 5, we discussed Kogan and Garcia-Molina's scheme for achieving high availability

in a fragmented database system, which requires the RAG (read access graph) to be acyclic. In their

scheme, any transaction, whether it is local or global, is accepted if its read and write operations

satisfy the condition imposed by Lhe RAG. Moreover, no glohd cnncurrency centre! is needed, since

serializability is guaranteed by the RAG. However, the acyclicity requirement on the RAG severely

restricts the applicability of their scheme.

In this chapter, we relax the restriction on access pattern by allowing the RAG to be any

directed graph. It is then no longer possible to achieve serializability without any global concurrency

control as in Kogan and Garcia-Molina's scheme. However, it will be shown that to maintain

serializability global concurrency control is needed only for global transactions. In other words,

local transactions can be managed solely by local schedulers, as if they were running in a single-site

system.

An interesting feature of our scheme is that a global transaction which reads a data object

belonging to a remote site Si never makes the data object inaccessible to a local transaction

submitted at Si. In other words, a local transaction is never rejected because it wants to access a data

chapter six section 6.1

object which is being read by a global transaction submitted at another site. Namely, local

transactions have higher priority than global transactions, if they happen to be competing for the

same data object. Also, in our scheme, even if there is a partition failure, any local transaction

submitted at an operational site can still be accepted. In this way, local transactions enjoy good

response time and high availability. As will become evident in the following, this approach is very

useful for a wide-area distributed database system.

In many distributed database systems, participating sites are spread over a geographically wide

area. This kind of database system is called a wide-area distributed database system (WADDS,

for short). In some cases, these sites may even be located on different continents. Communication

among the sites in a wide-area distributed database system is conducted through a long haul network

and the delay for message transmission across the network might well be on the order of seconds.

(For example, it may take several hops of satellite transmission to reach a receiver). In the remainder

s f this b\esis, we consider only fully replicated wide-area distributed database system. The reason

for replication is reliability and "accessibility".

When a transaction updates a data object in a conventional replicated database system, besides

the local copy, it also must update all affected remote copies before its completion. With

communication delays on the order of seconds, these remote updates will undoubtedly cause delays

that are unacceptable in many applications. This is why the conventional way of transaction

processing is inadequate [NoA83] and new models and schemes for a wide-area distributed database

system are investigated.

The model of fragmented database system solves some of the problems raised in a wide-area

distributed database system. For example, in a fragmented database system, both local and global

transactions complete their executions by accessing local copies available at their home sites;

updates are then broadcast asynchronously afterwards. This eliminates the problem of prolonged

chapter six section 6.1

waiting for the completion of remote updates. Hence, the updating strategy used in a fragmented

database is quite suitable for wide-area distributed database systems.

Besides update propagation, the issue of concurrency control has to be solved in a wide-area

distributed database system. One option is to adopt a conventional scheme like the distributed

locking scheme. Another option is to adopt the scheme proposed by Kogan and Garcia-Molina

which we discussed in Chapter 5. Suppose that we adopt the distributed locking scheme for

concurrency control. If a data object is locked by a global transaction, then all local transactions

accessing the data object must wait until the global transaction is completed. Because of

communication delay, the completion of a global transaction may take a long time. This

significantly degrades the performance of local transactions. Therefore, the first option is not

practical. The scheme proposed by Kogan and Garcia-Molina will work well with a wide-area

distributed database system, except that it requires the underlying RAG to be acyclic, which is too

restrictive for general applicatioi;. In the following, we will propose a new scheme for concumncy

control for a wide-area distributed database system, which is based on the fragmented database

model.

The difference between our scheme and Kogan and Garcia-Molina's scheme (KG'S scheme, for

short) are as follows.

(1) The underlying RAG in KG'S scheme must be acyclic, while the RAG in our scheme can be

any directed graph. In general, in our scheme, we assume that the RAG is a complete graph.

Therefore, a transaction submitted at one site can read the data object from any set of remote

fragments.

(2) We assume that much more local transactions than global transactions are submitted to the

system. In KG'S scheme, there is no explicit assumption on the ratio of local transactions to

chapter six section 6.1

global transactions.

(3) There is no explicit global concurrency control in KG'S scheme except for the constraints

imposed by the RAG. In our scheme, no global concurrency control is needed for local

transactions; however, it is needed for global transactions in order to maintain serializability

among all the transactions. (This will be discussed extensively in Section 6.3).

The difference mentioned in (1) implies that our scheme is more general than KG'S scheme.

We believe that the assumption mentioned in (2) is usually valid in wide-area distributed database

systems. As a matter of fact, it is quite usual that most transactions access only their home

fragments. For example, in a banking database system, it is likely that most of the transactions

submitted at a particular branch access only the accounts opened at that branch. As for (3), KG'S

scheme imposes such a strict constraint that global concurrency control is not needed. Since we

impose no restriction on the RAG in our scheme, we cannot do away with global concurrency

control. However, the merit of our scheme is that global concurrency control needs to be applied

only to global transactions. Therefore, the large number of local transactions can be synchronized

only by the local schedulers at their home sites as if they were running in a single-site database

system. Our scheme also ensures that a local transaction has a higher priority than a global

transaction if they are competing for the same data object. This guarantees that all local transactions

enjoy good response time and high availability.

The following example illustrates a wide-area fragmented distributed database system for

inventory and price control with a complete RAG.

Example 6.1.1. A manufacturing company does business in many districts spread over several

continents. In each district, it has an office and a plant. The plant is responsible for three aspects of

one line of product; manufacturing, inventory control and pricing. The office manages the local sale

chapter six section 6.1

and local inventory of all the products for the district.

In terms of our model, there are n sites S, , . . . , S, and each site Si owns a fragment Fi

(i = 1,. . . , n). In each fragment Fi, there are three sets of data objects. The first set, INVENK, is the

inventory of all the products in the district controlled by Si. The second set, TOTAL,., is the total

inventory over all districts of the line of product manufactured at Si. The third set, PRICE,., is the

price list of the products manufactured at Si.

Data objects are fully replicated according to the fragmented database system model. Each site

Si must read from INVENTj, for j = 1, . . . , n, in order to update TOTAL,.. Then Si uses TOTALi as an

indication of the market demand to adjust PRICEi. Also, each site Si has to read PRICEj,

j = 1,. . . . n to determine the prices of all the products for local sales. Therefore, the RAG for this

system is a complete graph. Figure 6.1.1 shows the RAG of this inventory system, assuming that

there are only three sites.

In the following example, we will explain several cases in which an execution consisting of

local and global transactions may or may not be serialized.

Example 6.1.2. Suppose that there are two sites S1 and S2 in a fragmented database system

and the schedulers at S and Sz are timestamp-based schedulers [BeG81]. Let A 1 and A 2 be the sets

of transactions executed at S1 and S2, respectively. A transaction in A 1 (A2) is represented by Tli

(Tz), where i is its local timestamp. Timestamps are assigned to the transactions in A 1 and A 2

independently, i.e., a transaction in A 1 may have the same timestamp as another one in A2. An

update sent from a site to another site has the timestamp of the transaction by which this update was

written, and this timestamp is stored together with the update in the database at the receiving site.

In case (a), A I = (T]I, T 12, T13), A 2 = IT2], T22, T23) and all the transactions are local

transactions. (See Figure 6.1.2(a).) Since the schedulers are timestamp-based, (Tli)&I is a

chapter six section 6.1

serialization order of the transactions in A l. Similarly, (TZ),& is a serialization order of the

transactions in A 2. Since a local transaction reads and writes only data objects in its home fragment,

any order of the transactions in A luA2, in which the orders (Tli),& and (Tzi)S1 are preserved, is a

serialization order.

In case (b), A 1 is same as in case (a) and A 2 has one more global transaction T% than it has in

case (a). (See Figure 6.1.2(b).) In Figure 6.1.2(b), there is an edge from T12 to T%, indicating that

TW has read a data object from T12. Since Tzl, Tz2, Tu do not update the data objects written by T12,

the order (T11, T12, T21, T22, TBr TWr T13) is a serialization order of the transactions in A l u A 2.

In case (c), A 2 has one more local transaction TS than it has in case (b). A 1 has one more

global transaction T14 than it has in case (b) and T14 has read a data object X from Ts. (See Figure

6.1.2(c).) It can be seen that the order (Tll, T12, T21, Tn, T23, T24, T13, T25, Ti4) is a serialization order

of the transactions in A l u A 2.

In case (d), A 1 and A 2 have the same contains as in case (c); however, T14 reads X from T22, but

not from Tzs. In this case, the transactions in A l u A 2 may not be serializable. When T14 was

executed at S it read the local copy of X; hence the value of X may not be current, i.e., X may have

been updated again at S2. The only information S knows is that the value of X read by T14 is written

by a transaction at S2, whose timestamp is 2. We do not assume S2 records the writesets of the

transactions executed there. Hence after T23 has completed, neither S 1 nor S2 knows that if T23, the

transaction serialized immediately after TZL at S2, has written X. Therefore, in order to serialize T14

with those at S2, it would require Tl4 to be serialized after Tz and before T23. Similarly T% would

be required to be serialized after T l2 and before T13. However, T 12 and T23 are serialized before T 14

and TN, respectively. Therefore, there would be a cycle in the serialization order if we try to

serialize the transactions in this way.

chapter six section 6.1

In the above example, a way to avoid the problem occurred in case (d) is to send the timestamp

of X read by TI4 to S2 for certification. The idea of certification is to ensure that the transactions in

AluA2 can be serialized by knowing only the timestamps of the data objects read by global

transactions from remote sites. In the above example, we have shown only a few cases in which the

read operation of a global transaction has to be certified. It is not yet clear how to perform

certification algorithmically. In Section 6.4, we will explain the details of certification.

In Section 6.2, we will present an architecture for wide-area distributed database systems. In

Section 6.3, we will model an execution generated in a wide-area distributed database system by a

fragmented execution. We will also discuss a sufficient condition for a fragmented execution to be

serializable. In Section 6.4, we will propose a concurrency control, called Global Timestamp

Order Certification (GTOC), for a wide-area distributed database with the properties mentioned

above. In Section 6.5, the performance of GTOC is compared with other conventional schemes. In

Section 5.6, we wi!! discuss partition failures In a fragmented database.

6.2. Architecture for Wide-Area Distributed Database System (WADDS)

A single-site database system, in general, consists of four components : the transaction

manager (TM), the scheduler, the data manager (DM) and the database (DB). Their relationships

are shown in Figure 6.2.1. The TM is an interface between the system and user transactions. The

operations of transactions submitted to the TM are rearranged by the scheduler. The scheduler uses

concurrency control to ensure that the executions generated are serializable. The operations granted

by the scheduler are executed by the DM on the DB. The data values retrieved by the DM are sent

back to a workspace in the TM via the scheduler for processing.

chapter six section 6.2

The architecture proposed for a WADDS is illustrated in Figure 6.2.2, which is a modification

of the architecture in Figure 6.2.1. In the architecture for WADDS, the TM contains two

subcomponents : the local transaction manager (LTM) and the global transaction manager

(GTM). The LTM and the GTM are responsible for managing local and global transactions,

respectively. The DB is divided into two parts : one part contains the data objects belonging to the

home fragment and the other part contains the copies of those belonging to the remote fragments.

The scheduler contains three subcomponents : the home fragment scheduler (HFS), the remote

fragment scheduler (RFS) and the global synchronizer (GS). The HFS and RFS synchronize

operations accessing the home fragment and remote fragments, respectively. The HFS is a

timestamp-based scheduler. The RFS can be any scheduler that maintains serializability, e.g., a

timestamp-based scheduler. Operations granted by the HFS and the RFS are executed by the DM on

the DB. As mentioned in Section 6.1, in our scheme only global transactions have to be

synchronized by global concurrency control, More precisely, only read operations of global

transactions, which access data objects in remote fragments, have to be synchronized by global

concurrency control. The synchronization is done by certifying the readings done by global

transactions, as explained in detail in Section 6.4. The subcomponent GS in the scheduler is

responsible for certification. After a global transaction has finished reading from remote fragments

by accessing local copies in the DB, the values read have to be certified by the GS. The GS has to

ensure that the global transaction can be serialized with the local and global transactions at other

sites. The GS's at all the sites achieve this goal by running a distributed algorithm which will be

discussed in Section 6.4. Besides the four components, i.e. the TM, the scheduler, the DM and the

DB, there are two additional components. The first is the update propagation manager (UPM)

which broadcasts the updates by transactions after their completion. The second is the

communication manager (CM), which is linked to the CM's at all other sites and is responsible for

chapter six section 6.2

sending and receiving messages.

Local transactions are managed by the LTM and their operations are synchronized by the HFS.

The operations granted by the HFS are executed by the DM and the values retrieved from the home

fragment are stored in a workspace in the LTM. When a local transaction commits, its updates are

installed permanently in the home fragment. Up to this point, a local transaction is processed in

exactly the same way as a transaction in a single site database. After a local transaction has

committed its updates at its home site, its updates are then broadcast by the UPM to the UPM's at all

other sites via the CM. The UPM at each site installs the updates received from other sites in the

copies of the remote fragments by submitting them to the RFS.

The read and write operations of a global transaction, which access data objects in its home

fragment, are processed in the same way as an operation of a local transaction. As for the read

operations which access data objects in remote fragments, they are synchronized by the RFS and

executed by the DM on the local copies of the remote fragments. As mentioned above, the results of

these reading operations from remote fragments have to be certified by the GS. If the certification is

successful, the global transaction proceeds to complete its remaining part. Then its updates are

broadcast by the UPM in the same way as a local transaction. If the certification fails, the global

transaction is aborted.

In the following, we describe in detail the processing of a local and a global transaction in the

architecture described above.

A local transaction can request four kinds of operations : LOCAL-BEGIN, READ, WRITE

and END. Each local transaction starts with a LOCAL-BEGIN and ends with an END. In between

these two operations is a sequence of READ and WRITE operations. These operations are

interpreted in the usual way [BeG81]. A global transaction, on the other hand, starts with a

chapter six section 6.2

GLOBAL-BEGIN, followed by a GLOBAL-READ, then a sequence of READ and WRITE

operations, and ends with an END. GLOBAL-READ(X, Y ,) is a request to read data objects

belonging to some remote fragrnent(s). READ and WRITE operations, on the other hand, access

only data objects in the transaction's home fragment.

When a LOCAL-BEGIN operation from a local transaction T arrives at the TM, the LTM

initializes a temporary workspace for T. The first thing that the LTM does is to retrieve a timestamp

from a local clock and assign it to T. Requests from T are sent via the LTM to the HFS with the

timestamp of T. The HFS uses a timestamp-based algorithm to synchronize the requests from the

LTM. Every data object in the home fragment has a read-timestamp and a write-timestamp, which

indicate the timestamps of the transactions which last read and wrote the data object, respectively.

The granted requests are then submitted to the DM. Data retrieved from the DB is sent back to the

TM and stored in T's workspace.

When the END operation arrives at the LTM, it initiates two actions. Firstly, it sends a commit

message to the DM via the HFS to commit the updates in the DB. Secondly, it compiles a remote

update request and sends it to the UPM. The remote update request contains a vector

<x,V,,y,V,, - - . ,r>, w h e r e x , ~ , e m . , arethenamesofdataobjects, V,,V,, -..,aretheirupdated

values, and r is the timestamp of T. The UPM implements a reliable broadcast protocol which

ensures that (1) a remote update request is broadcast to every other site and it will be received

eventually even if the network experiences a temporary failure, and that (2) the remote update

requests from a site are sent and received by each receiver in their timestamp order

[AwE84,GLB85]. The UPM sends out its messages via the CM. Upon receiving a remote update

request from another site, the UPM converts it into an internal update transaction which is then

submitted to the RFS. The RFS can use any algorithm which guarantees serializability and preserves

the timestamp order of the remote updates. When a receiver's RFS installs a remote update request,

chapter six section 6.2

it also attaches the timestamp of the request to all the updated data objects in the DB. At each site Si,

every data object has one or two timestamps. If a data object belongs to Si, it has read and write

timestamps. Otherwise, it is a copy of a data object belonging to a remote fragment, and it has the

timestamp of the last remote update. The timestamps from different sites are completely

independent of each other. This doesn't cause any problem, since data in a fragment can be updated

only by transactions submitted at its home site and they get their timestamps from the same clock.

When the GLOBAL-BEGIN operation of a global transaction T arrives at the TM, the GTM

initializes a workspace for T. The second operation from T must be a GLOBAL-READ(X, Y, - .),
and the GTM interprets this as a read-only transaction which reads the copies named by the

parameters. The GTM initiates two consecutive steps to execute the GLOBAL-READ. Firstly, a

read request for every parameter is sent to the RFS, and in response to it, both the value of the data

object and its timestamp are retrieved by the DM and sent back to the GTM via the scheduler. At

this point, the GTM does not know whether the read operations just performed can be serialized with

the operations at the other sites. Therefore, the second step is to activate the GS to certify these read

operations. The GS first generates a set of certification requests, one for each remote fragment from

which some data objects were read by the GLOBAL-READ operation. Then it sends these

certification requests to the GS's in the home sites of the remote fragments involved. The local GS

and the remote GS's involved use a distributed algorithm to decide whether the values retrieved by

the GLOBAL-READ operation can be certified. (One possible certification algorithm is described in

Section 6.4). If they cannot be certified, then the GTM is informed by the local GS of this fact and

. the transaction is aborted. If they are certified, the execution of the remaining part of the global

transaction is identical to that of a local transaction. The GTM will now request a timestamp from

the local clock and attach it to the remaining READ and WRITE operations of the global transaction

and send them to the HFS. (Note that unlike a local transaction, to which a timestamp is assigned

chapter six section 6.2

before any operation is submitted to the scheduler, a global transaction is assigned a timestamp after

its GLOBAL-READ operation is completed.) When the GTM receives an END, it commits the

transaction's updates in the DB. The GTM then generates a remote update request and sends it to the

UPM in the same way as the LTM handles remote updates for local transactions.

Note that the GS's have no knowledge about the actions taken by the HFS's. The GS's can use

only the information supplied to it in the certification requests to certify GLOBAL-READ'S. The

separation of the GS from the HFS ensures that the GS at one site never interferes with the HFS's at

the other sites. In other words, while a global transaction is executing a GLOBAL-READ on a data

object X, any local transaction submitted at the home site of X can still access X. Therefore, local

transactions will never be blocked by a global transaction. However, it is mandatory for the GS's at

all sites to ensure that the execution generated, which consists of operations from local and global

transactions, is serializable. In Section 6.3, we will derive a sufficient condition for the serializability

of an execution generated in this architecture. In Section 6.4, we will propose an algorithm for the

GS's to use to satisfy the condition.

6.3. Correctness of Fragmented Executions

In this section, we will model the execution of transactions in a fragmented database by a

fragmented execution, and present a sufficient condition for a fragmented execution to be

serializable.

Let 5 be a global execution, i.e., a rp log over a set of global and local transactions, in a

fragmented database over a set of sites S = (Si : i = 1,. . . , n). In the following, we assume that

every global transaction involved in 5 accesses some data object(s) in its home fragment. A global

transaction that accesses only remote fragment(s) can be modified to satisfy this assumption by

chapter six section 6.3

putting a dummy read operation in it to access its home fragment. For each site Si, the subexecution

oft, at Si is a poset which contains all the operations in 6 that are executed at Si. The partial order

among the operations in t,i is inherited from the partial order in E,. Note that ti, in general, contains

operations from both local and global transactions. Let & be the poset containing all the operations

in ti that access Si's home fragment. The partial order among the operations in & is inherited from

&. Note that & contains all the operations executed at Si except for those that access the copies of

remote fragments of Si. We assume that there is a fictitious initial transaction Ti0 which is executed

before any operation at Si and writes all the data objects in the home fragment of Si. Execution 4 is

locally serializable at Si if ti is equivalent to a 1C serial log of all the transactions involved in &.

(Please refer to Section 2.4 for the meaning of equivalence.)

Definition 6.3.1. A global execution 4 = (Z(T), <) over a set of sites S = ISi : i = 1, . . . , n) is a

fragmented execution if (1) E, is locally serializable at Si, for i = 1, . . . , n , and (2) for each site Si,

there is a serialization order q of the transactions in & such that for any two transactions To and I b

in &, if To precedes Tb in & and Wa[X] and Wb[Y] are, respectively, two write operations of Ta and

Tb, then, for each site Sj, j + i , Wa [Xi] and Wb [Yj] E Z(T) and Wa [Xi] < Wb [Yj], where Wa [Xi] and

Wb[Yj] are the execution of Wa[X] and Wb[Y] on the copies at Sj, respectively. The serialization

order ai in (2) is called the broadcast order at Si.

In Definition 6.3.1, (2) has an intuitive meaning. It indicates that the updates of the

transactions in oi are broadcast in their order in oi. If a global execution t, is locally serializable at a

site Si, there may be more than one serialization order for ti. If 4 is a fragmented execution, one of

- these serialization orders is the broadcasting order at Si. Note that a fragmented execution has n

initial transactions, one for each site. This is different from a general rp log.

In defining a fragmented database system in Section 5.3, all transactions submitted at a site are

synchronized by a local scheduler and the updates of these transactions are broadcast in a

chapter six section 6 3

serialization order of these transactions. Hence every execution generated in a fragmented database

system is a fragmented execution. In a WADDS with the architecture given in Section 6.2, the HFS

at a site is a timestamp-based scheduler. Hence, all transactions submitted at a site can be serialized

by their timestamps and their updates are broadcast in this timestamp order. Therefore, any

execution generated in a WADDS is a fragmented execution.

We use an example to illustrate the notion of fragmented execution.

Example 6.3.1. Let S 1 and S2 be two sites of a WADDS which has the architecture given in

Section 6.2. Let (X , Y] and (A , B] be data objects belonging to the home fragments of S 1 and S2,

respectively. Let 5 be an execution over (S S 2] . Suppose that subexecution tl of 5 is

Wlo[Xl , YIIR IIIXIIR 12M ~ I W I I [X I I R 1dXiIR ~ ~ [Y ~ I W ~ ~ [X I I W ~ ~ [Y ~ I .

According to the architecture of WADDS, every transaction has a timestamp assigned by the LTM or

GTM at its home site. In 5, the second index of an operation is the timestamp of the corresponding

transaction. Note that, even though the RFS and HFS are two different subcomponents of the

scheduler at a site, the operations granted by them are submitted to the DM sequentially. Therefore,

the output from the scheduler is a totally ordered set of operations. Among the transactions involved

in 61, T 11, TI3 are local and T 1 2 is global. Suppose that subexecution k2 of 5 granted by the scheduler

at S2 is

- Among the transactions involved in 52, T21, T22 are local, and T23 is global. Assume that the read

- operation R 12[A 1 1 of T12 in 61 reads the value of A written by T21 in c2. In other words, the update of

T21 is sent to S 1 and A 1 is updated accordingly before T reads A Similarly, suppose that the read

operations R d X 2 l and R23CY21 of T23 in 52 read the values of X and Y written by T 1 2 and T13 in cl ,
respectively. (For simplicity, when we listed the operations of t1 in the above, update operations

chapter six section 6.3

from S2 such as W21[A were not shown. Similarly, when we listed the operations of E,z, update

operations from S 1 such as W 12[X2] were not shown.)

Note that

Wio[Xi, YiIR i~[XilWii[X~lR i2[XiIWi2[XilR 131YiIWi3D'11.

As a matter of fact, the above equivalency is guaranteed by the timestamp scheduler HFS at S 1 and

the transactions are ordered by their timestamps in the above serial log. Hence, E, is locally

serializable at S1. Let ol represent the timestamp order of the transactions in 51, i.e.,

ol = (Tlo, Tll, Ti2, Ti3). The updates of the transactions in ol are sent to S2 by their order in ol.

Similarly,

is serializable and a serialization order is given by o 2 = (Tzo, T2,, Tz2, T2& S2 broadcasts the updates

of the transactions in o2 by their order in 02. Hence E, is locally serializable at both S 1 and S 2, and

(al, 02) are the broadcast orders at S1, $2, respectively. Thus E, is a fragmented execution over

{Sl,S21.0.

We shall now investigate under what condition a fragmented execution is (globally)

serializable. Given a set of sequences of transactions (oi =(Tj)yb: i = 1,. . . , n) , let

ID = (i j : i = 1 , . . . , n, j = 0,. . . , ni) be the set of indices of the transactions in oi, i = 1, . . . , n. A

merge of (oi : i = 1, . . . , n) is a sequence of transactions (Th(i))/gl, where m = ni + n and
1= 4

h : (1,. . . , m) + ID is a permutation on ID such that, if Thb) is ordered before TH(q) in oi, then

P <4.

chapter six section 6.3

Definition 6.3.2 A fragmented execution 6 over a set of sites S = (Si : i = 1 , . . . , n) with a set

of broadcast orders BO = (ai = (~ij)!& : i = 1, . . . , n) is said to be serializable if there exists a

merge o= (Th(i)),%l of the sequences (oi : i = 1 , . . . , n) , such that 5 is equivalent to the 1C log

[Th(l) ' ' ' Th(m)l. 0

In Definition 6.3.2, the initial transactions Ti07 i = 1 , . . . , n , are also included in the sequence o,

and they are not necessarily the first n transactions in o.

Example 6.3.2. Consider the fragmented execution 5 in Example 6.3.1. Let BO = (ol, 02),

where ol = (Tlo, T11, T12, T13) and a2 = (Tm, T21, T22, T23). Let o be the sequence

In 4, T12 reads A from Tzl , T u reads X and Y from T I 2 and T13, respectively. Let L be the 1C serial

log [Tlo Tzo T l l Tz l T12 T22 T13 T23] corresponding to a which is a merge of ol and 02. In L , no

transaction is ordered between T21 and Tlz. Therefore, T12 reads A from T2! in L . Since T p can

update only the data objects belonging to S2, therefore T23 reads X and Y from T12 and T13 in L ,

respectively. It follows that 5 is equivalent to the 1C serial log L . Hence E, is serializable.

Given a fragmented execution 6 over a set of sites S = (Si : i = 1,. . . , n) , let

BO = {oi = (Tij),2~ : i = 1, . . . , n) be the set of its broadcast orders. Let us consider if we can merge

(oi : i = 1,. . . , n) into a sequence a = (Th(i)),%l such that 4 is equivalent to the 1C log

[Th(1) - . Th(,,,)]. For a global transaction Ti, in ai and k # i , let RF(Tij, k) = (Tb : Tij reads a data

object from Tkp). Thus, RF(Tij, k) is the set of transactions belonging to site Sk from which Tij reads

. some data object($. In Example 6.3.1, RF(T12, 2) = (T z l) and RF(T23, 1) = (T12, T i3) . (RF(Tij, k)

is empty if Tij does not read any data object from Sk.) Note that the updates of the transactions in o k

are broadcast and received in their order in o k . Suppose that Tkl is the last transaction in o k that

belongs to RF(Tij, k) . If Tij reads X from a transaction Th E RF(Tij, k) , a < 1 , then no transaction

chapter six section 6.3

ordered between Th and Tkl in a k writes X. If T,, a transaction ordered between Th and T ~ I in a,

wrote X , then the update on X written by Th would be received by Si after that of Th and before that

of Tkl. Therefore, if Tij has read the update of Tkl, it would have read the update of X fmm T,, not

from Th. Hence, if Ti, is serialized with the transactions in ak by inserting it after T ~ I and before the

transaction following Tkl in ok, then all the read-from relations between Tij and the transactions in

RF(Tij, k) are preserved. Therefore, to preserve the read-from relationships between Tij and all the

transactions in RF(Tij, k) when Tij is merged into ak, Tkl plays a crucial role. In merging GI and 0 2

in Example 6.3.2, we inserted TI^ after T21, and T23 after T13.

Based on the above observation, we define the global-read relation for a fragmented execution

containing only those "crucial" read-from relationships. Given a fragmented execution 5 over a set

of sites S = (Si : i = 1,. . . , n) and its broadcast orders BO = {q = (T~~);& : i = 1,. . . , n 1, the

global-read relation Gr(E,) in E, is a set of all ordered pairs (T ~ ~ , T ~ ~) , k it i, such that Tij is a global

transaction in oi that reads a data object from a transaction Tkl in o k and

1 = mar { p : Tb E RF(Tij, k)). In other words, (TkI, Tij) belongs to Gr(5), if and only if Tij is a global

transaction and Tkl is the last transaction in ak, from which T~~ has read some data objects. In

Example 6.3.2, Gr(5) = ((T21, T12), (T13, T23)). Even though T = has read X from T12, since T12 is

ordered before TI3 in 01, (TI2, T23) d Gr(E,).

In the following, we will associate a directed graph with a fragmented execution. Let 5 and BO

be defined as above, and consider a transaction Tij in ai. The global transaction preceding Tij is Tij

itself, if it is a global transaction; otherwise it is the last global transaction before Tij in Gi, if any.

The global transaction following Tij is the first global transaction after xj in Oi, if any. If a global

transaction Tij is followed by a global transaction Tik, then Tij and zk are two consecutive global

transactions, and there may be some information flow from Tij to T ~ ~ .

chapter six section 6.3

As mentioned in Section 6.1 we will show that it is possible to achieve serializability in a

fragmented database by synchronizing only global transactions. To this end, we now introduce a

graph to extract the information related to the global transactions. For a fragmented execution 5 over

a set of sites S = (Si : i , . . . , n), let I30 = (oi = (Tij);&: i = 1.. . . , n) be its broadcast orders, Gr(6)

be the global-read relation of 6, GT be the set of global transactions involved in 6, and IT be the set

of initial transactions (Tio : i = 1, . . . , n 1. The global-serialization graph (GOS graph , for short)

for 5, denoted by GOS(5), is a directed graph (N, E), where N contains a node for each transaction

Tij E GT u IT, and E contains the following four sets of edges. (Tij is used to represent both a

transaction and the node representing it in the GOS graph. For intuitive justification of the edges, see

the next paragraph.) (1) There is a precedence edge from each transaction Tij E GT u IT to the

global transaction Tik following it, if any. (Please see Figure 6.3.l(a).) (2) For each Tij E GT and

(Tkl, Ti,) E Gr(5), if Th is the global transaction preceding Tkl, then there is a global-read edge from

Th to Ti,; if no globs! transactim precedes Tki, Lhe~ there is a global-read edge from Tko to Ti,.

(Please see Figure 6.3.l(b).) (3) For each Tij E GT, if (Tu, Ti,) E Gr(6) and Th is the global

transaction following Tkl, then there is an edge from Tij to Ta. (Please see Figure 6.3.l(c).) (4) For

Tij, T,, E GT, if both (Tb, Ti,) and (Tk, Tm) belong to Gr(E,), p < q , and the global transactions

preceding Tb and Tkq is identical, or no global transaction precedes them, then there is an edge from

Tij to T,,,,,. (Please see Figure 6.3.l(d).) The edges introduced by (3) and (4) are called induced

edges.

We now give some intuitive meanings for the four sets of edges introduced above in a GOS

. graph. The first set are precedence edges. In a merge of {oi : i = 1,. . . , n), the relative positions of

an initial transaction and the global transaction following it should not change. This is also true for

two consecutive global transactions; information may flow from a global transaction to the global

transaction following it. Precedence edges are used in a GOS graph to represent these orders.

chapter six section 6.3

Let us consider the set of edges (2) and (3). Suppose (Tkl, Tij) E Gr(Q and Th, Tb are the

global transactions preceding and following Tij, respectively. Note that TU is last transaction in ok

from which Tij has read some data object(s). Since site Si has no control over the local transactions

submitted at Sk, we assume that Si has no knowledge about the writesets of the local transactions that

come after Tkl in ok. In other words, if Tii has read X from Tu, then it is not known to Si whether the

transaction after TkI in o k also writes X. Hence, Tij is serialized after TM and before the transaction

following Tkl in ok. This implies that Tij should follow Tb and precede TCb in a global serialization

order.

As for the set of edges (4), suppose that both (Tb, Ti,) and (Tk, T,,,,,), p < q , belong to Gr(k),

and the global transaction preceding Tb and Tk are identical or no global transaction precedes them.

Let Th be the global transaction preceding Tb and Tb, if any, or Tko, otherwise. There are two

global-read edges directed from Th to Tij and T,,,,,. Following the same line of reasoning as given in

the previous paragraph, Tii should be serialized after Tb and before fie transac~on that comes alter

Tb in ak, and T,,,,, is serialized after Th and before the transaction that comes after Tk in o k . Since

p < q , Tb is ordered before Tkq in o k and thus Tb must be serialized before Tb. Hence Tij is

serialized before Tb. Therefore, Tij should be serialized before T,,,,, in a global serialization order.

Thus the fourth set of edges are introduced. We show below an example of a GOS graph.

Example 6.3.3 Consider a fragmented database with four sites S1, S2, S3 and S4. The set

broadcast orders BO = (ol, 02, 03, o 4) and global-read relation Gr(6) of a fragmented execution 6

over (S 1, S2, S3, S4) are defined as follows.

chapter six section 6.3

Gr@ = ((T25r T17)r (T12, T23)r (T14, T33), (T43, T33), (T19, T45))-

{T17, Tu, T33, T45) and (Tlo, T20, T30r T4) are the set of global transactions and the set of initial

transactions in 5, respectively. Figure 6.3.2 illustrates the GOS graph GOS (5). The precedence edges

between an initial transaction and the global transaction following it are placed horizontally in the

graph. Since there are four sites, there are four such precedence edges in GOS (5). There is no other

precedence edge in GOS(k), because there are no consecutive global transactions in E,. For the

purpose of illustration, for each site Si, i = 1, . . . , 4, the local transactions in 0 i ordered after Ti0 and

before the global transaction following it are placed on the corresponding precedence edge in Figure

6.3.2. For example, the local transactions Tll, T12, T13, T14, T15, T16 are placed on the precedence

edge from Tlo to T17. in the graph, for each element (TkI, Tij) i n Gr(e), the global-read edge

associated with it is labeled by 1 , the second index of the first element. Since (T12, T23) E Gr(E,) and

no global transaction is preceding T12, there is a global-read edge from Tlo to T23 labeled by 2. Since

TKJ is the global transaction following T12, there is an induced edge from Tu to T17. Similarly, there

are global-read edges from T23 to T17 labeled by 5, from Tlo to T33 labeled by 4, from T4 to T33

labeled by 3, and from T17 to T45 labeled by 9. There are induced edges from T33 to T17 and T45.

Also, since both (T12, T23), (T14, T33) E Gr(5) and no global transaction is preceding T12 or T14, there

is an induced edge from T23 to T33.

Theorem 6.3.1. A fragmented execution E, over a set of sites S = {Si : i = 1,. . . , n } is

serializable, if the GOS graph GOS (5) is acyclic.

chapter six section 6 3

Example 63.4. Before giving a proof for Theorem 6.3.1, as an example, we first construct a

1C serial log equivalent to the fragmented execution E, in Example 6.3.3. The GOS graph for E, in

Figure 6.3.2 is acyclic, and Tlo, Tm, T30, T40, Tu, T33, T17r T45 is a topological sort. Now we will

show that the local transactions can be inserted into this sequence to create a sequence a which is a

merge of (ai : i = 1, . . . , 4) such that the 1C serial log corresponding to o is equivalent to the

execution E,. In a merge of (oi : i = 1, . . . , 41, the relative positions of all the transactions in each oi

are preserved. For each site Si, only transactions belonging to Si can update data objects in Fi.

Therefore, for i = 1, . . . , 4, the read-from relations in E, among the transactions in oi are not altered in

a merge of (oi : i = 1, . . . , 4). The remaining question to be addressed is the read-from relations

between global transactions and local transactions at remote sites. For example, (T12, T23) E Gr(5)

implies that T23 should be serialized after T12 and before T13. Since both (T14, T33) and (T43, T33)

belong to Gr@, T33 should be serialized after T14 and T43 and before T15 and T ~ . Similarly, T17

should be. serialized after Tz. Also, 7'45 should be serialized after TI9. I: is not difficult to see that

the serial order

which is a merge of (oi : i = 1,. . . , 4), preserves all the read-from relations in 5. Therefore, the

fragmented execution 5 is serializable.

Proof of Theorem 6.3.1.

Let BO = (ai : oi = (T~~);& i = 1. . . . , n } be the set of broadcast orders of E, and Gr(5) be the

global-read relation in 5. Let GOS (5) be acyclic and t (GOS (5)) be a topological sort of GOS (5). We

assume without loss of generality that the first n transactions in t(GOS(E,)) are the initial transactions

TIO, . . . , T,o. We want to show that the sequences (oi : i = 1,. . . , n) can be merged to form a

sequence o = (Th(i))IEl, where m = ni + n , such that the 1C serial log [Th(l,. . Th(,,,)] is equivalent
I = f i

chapter six section 6.3

to 5. The merging must be done without violating the order given by t (COS (5)).

Initially, o is an empty sequence. In the merging process, let Mi (i = 1,. . . , n) denote the last

transaction in oi that has been merged into o. Initially, Mi is undefined. After the initial transaction

Ti0 of oi is merged into a , Mi is set to Tio.

To construct o, we first apply the following procedure iteratively to all the nodes in t (GOS (5)).

starting with its first node. Let Ti, be the current node under scan in t(COS(5)) and apply one of the

following two operations to Ti,.

(1) If Ti, is an initial transaction, then let o= o Ti,, i.e., append Tia to o.

(2) If Tia is a global transaction, then it has one incident precedence edge and one or more incident

global-read edges. Apply (a) below to every incident global-read edge. Then apply (b) to the

incident precedence edge.

(a) If there is a global-read edge from a node TM to Tia (k #i) , and (Tkl, Tia) E Gr@, then let

Tb . . . Tkl be the segment of transactions in ok between Tb and Tkl, inclusive, where Te is the

transaction following Mk in ok. Let o = o T@ . . . TM and update Mk to TM. (Note that Tkl is

unique; please see the definition of global-read relation defined earlier in this section.)

(b) If there is a precedence edge from Tib to Tias then let o = o T, . - . Ti,, where Tiq is the

transaction following Mi in o; and Ti, . . Ti, is the segment of transactions in oi between Tiq

and Ti,, inclusive. Then update Mi to Ti,.

After the above procedure has completed, for every i = 1,. . . , n, if Mi is not the last

transaction in o;, then let o = o Tjk - . . Til, where Tik is the transaction following Mi in o;, Ti1 is the

last transaction in oi, and Tik . - Til is the segment of transactions in oi between T;k and T;I,

inclusive. The construction of o completes at this point.

chapter six section 6.3

It can be seen that o is a merge of (oi : i = 1,. . . , n). Hence o can be represented by a

sequence (Th&!!l, where h is a permutation on the indices of the transactions and m = ni + n . Let 4 L =

L be the 1C log [Th(l) . . Th(,,,)]. In the above construction of o, for each site Si, the relative positions

of all the transactions in oi are presexved in o. Since only transactions belonging to Si can modify

the data objects in Fi, it follows that the read-from relations among transactions in oi are the same

with respect to t; and L.

Let us now examine the read-from relations across sites. If a global transaction Ti, reads X

from a transaction TU, belonging to another site Sk in 6, then Tu, E RF(Ti,, k) by definition. Let TU

be the last transaction in o k that belongs to RF(Tia, k). Then (Tkl, Ti,) E Gr(6) and there is a global-

read edge from Tb to Ti,, where Tb is either the global transaction preceding Tkl or Tko. We will

show that Ti, is ordered in o after Tkl and before the transaction following Tkl in ok, if one exists.

Besides the global-read edge, there must be a precedence edge from Tim to Ti, in GOS (t), where Ti,,,

is either the global transaction preceding Ti, or Tie. In the construction of a , Tkl is appendkd to a

when the global-read edge from Tb to Ti, is processed. After that, Ti, is appended to o when the

precedence edge fmm Tim to Ti, is processed. The transaction following Tk, in o k is appended to o

after Ti, has been processed. Therefore, Ti, is ordered in o after Tk1 and before the transaction

following TkI in o k . According to an observation made earlier in this section, when the global-read

relation was defined, no transaction in o k after Tu, and before TkI writes X; hence Ti, reads X from

Tu, in L. On the other hand, suppose that Ti, reads X from Tkb in L . By the above argument, if Ti,

reads X from Th in 5, then Ti, reads X from TM in L. Hence TU, and Th must be identical and Ti,

reads X from TU, in 6. Therefore, the read-from relations between a global transaction and a

transaction belonging to a remote site are the same with respect to t; and L . Hence, 6 is equivalent to

L and is serializable.

chapter six section 6.3

6.4. An Algorithm to Control Fragmented Execution

The HFS's in a WADDS with the architecture proposed in Section 6.2 are timestamp-based

schedulers. Therefore, an execution generated in a WADDS is always locally serializable at each

site; the timestamps of the transactions involved provide a serialization order. The updates of the

transactions completed at a site are broadcast in their timestamp order. Hence every execution

generated in it is a fragmented execution. In this section, we present the core of a concurrency

control algorithm for fragmented execution, called Global Timestamp Order Certification

(GTOC), which makes use of Theorem 6.3.1. It runs distributively in the GS's at all sites in a

WADDS having the architecture given in Section 6.2, to certify the values read by a GLOBAL-

READ. The sole function of GTOC is to ensure that, for any fragmented execution generated, its

GOS graph is acyclic, and hence, it is globally serializable.

Let S = (Si : i = 1,. . . , n) be the set of sites in a WADDS, and (Fi : i = 1,. . . , n) be their

corresponding home fragments. In GTOC, we use two sets of timestamps, local timestamps and

global timestamps. Suppose that a transaction Tij is submitted to the TM at Si. If Tij is a local

transaction, before any of its operations are executed, it is assigned a timestamp. This timestamp is

called the local timestamp of Tij. If Tj is global, on the other hand, after its GLOBAL-READ

operation is certified, it is assigned a timestamp, and this timestamp is used for processing the

remaining operations in Tii. This timestamp is also called the local timestamp of global transaction

Tij. We use Lts(Tij) to denote the local timestamp of a transaction Tii, whether it is local or global.

Local timestamps are retrieved from local clocks. (In Section 6.2, the local timestamp of a

- transaction Tii was referred to only as a timestamp. We refer to this timestamp in GTOC as the local

timestamp, because we will later introduce global timestamps.)

As stated before, the operations submitted to the HFS of a site are scheduled by a timestamp-

based scheduler at the HFS. As a matter of fact, the timestamps used by this scheduler are the local

chapter six section 6.4

timestamps of these transactions. Also, the updates of these transactions are broadcast and delivered

in their local timestamp order. For each i , let oi be the sequence of committed transactions at Si

ordered by their local timestamps. Therefore oi is also the broadcast order at Si.

We now introduce the timestamps for data objects, which are used for certification. If a copy

Xi in the DB at a site Si belongs to the home fragment F~ of si, then it has a read and a write

timestamp. (Please refer to the description of the HFS in Section 6.2.) The write timestamp is the

local timestamp of the last transaction that has updated Xi. This write timestamp is called the

timestamp of Xi, denoted by t~(Xi). If Xi is in a remote fragment F ~ , then its value is received from

a remote update of a transaction Tkl executed at a remote site sk. In this case, Xi has just one

timestamp called the timestamp of Xi, which is set to Lts(Tk,), and this timestamp, denoted by ts(Xi),

is attached to Xi in the DB of Si. (Please refer to the description of the RFS in Section 6.2.)

Suppose that a global transaction 'I;:k is submitted at site Si and its GLOBAL-READ operation

has finished the reading of data object copies in remote fragments in the DB. (Refer to the execution

of a global transaction described in Section 6.2.) The major problem we face is how to certify the

values read by the GLOBAL-READ of Tik. Recall that certification consists of testing the GOS

graph of the execution of all committed transactions and T~~ for acyclicity. Unfortunately, testing the

GOS distributively for acyclicity incurs too much communication overhead. Therefore we are forced

to verify only a sufficient condition for acyclicity. For this purpose, we introduce global timestamps

for global transactions. We want to ensure that, if the GLOBAL-READ of Tik is certijied, then the

edges introduced by Tik in the GOS graph, consisting of Tik and all the committed global

transactions, are all directed from a transaction with a smaller global timestamp to another with a

larger global timestamp. Hence, the global timestamps of the transactions give a topological sort of

the graph.

chapter six section 6.4

The above requirement on global timestamps may or may not be satisfied, depending on the

global timestamp assigned to Tik. Unfortunately, we need to assign a global timestamp to Tik before

the certification. If it is found that the above requirement is not satisfied, we consider the

certification as failed even though the GOS graph may be acyclic. Thus we are testing only a

sufficient condition for acyclicity. Let GSi denote the global synchronizer GS at site Si, i = 1, . . . , n .

When GSi starts to certify the values read by the GLOBAL-READ of a global transaction Tik, it

assigns a global timestamp Gt~(Tik) to Tikr before a local timestamp is assigned to Tik. Global

timestamps are retrieved from a system-wide unique global clockc. Lamport's logical clock [Lam781

can be used for this purpose, and the site identity can be appended to make the clock values unique.

In Lamport's logical clock, whenever a site Si receives a message with a timestamp t from another

site, if t is larger than the clock value at Si, it is advanced to a value that is one tick larger than t .

Note that we cannot use the global timestamp of a global transaction Tik as TikSs local

timestamp. If this is done, while Tik is waiting for the certificatioa of irs GLOBALREAD, locd

transactions with timestamps larger than Gts(Tik) cannot be executed until Tik has completed,

because these local transactions may have to read some values written by Tik. This violates our

policy of assigning higher priority to local transactions.

After a global timestamp Gts(Tik) is assigned to Tik, GSi generates a set of certification

requests, {CRj(Tik) : Fj E pik), one for each remote fragment F, in pik, where pik is the "readset" of

Tik in terms of fragments, i.e., pik = IFi : the GLOBAL-READ of Tik reads some data objects from

Fj). For each Fj E pik, GSi can determine tj(Tik) = max {t~(Xi) : Xi is a Copy of X E Fj at Si read by

the GLOBAL-READ of Tik). Clearly, there exists a transaction Tjl at site Sj such that

Lts(Tjl) = tj(Tik). Tjl is in fact the last transaction in oj whose updates were read by the GLOBAL-

READ of Tik. CRj(Tik) contains two timestamps, Gts(Tik) and tj(Tik), which are called the global

timestamp and the data timestamp of the certification request CRi(Tik), respectively. For

chapter six section 6.4

convenience, these two timestamps are denoted by CRj(zk).Gts and CRj(Tik)Dts, respectively.

Certification request CRj(Tik) is sent to the corresponding global synchronizer GSj. As explained

below in more detail, GSj compares the transaction and data timestamps of CRj(Tik) with the

timestamps of the global transactions that have already committed at Sj.

As noted above, there exists a transaction Tjl in CFj such that Lts(T,l) = t,(Tik) = CR,(Tik)Dls.

Suppose Tja and Tjb are consecutive global transactions in aj such that

Gts (Tip) < CRj(Tik).Gts < Gts (Tjb).

then the certification request CRj(Tij) can be granted by GSj as far as all the committed transactions

at Sj are concerned. The reason for this is as follows. Since CRj(Tik)Dts =Lts(Tjl), condition

(6.4.2) implies that Tja and T,b are the global transactions precgding and following T,l in o,,

respectively. Hence, a global-read edge from Tja to Tik, and an induced edge from Tik to Tjb are

introduced in the GOS graph consisting of Tik and all committed transactions. According to (6.4.1),

these three edges are all directed from a node with a smaller global timestamp to a node with a larger

global timestamp. If this is true at each site Sj that receives certification request CRj(Tik), then the

GOS graph consisting of Tik and all the committed global transactions can be topologically sorted by

the global timestamps of the transactions.

According to the above discussion, in certifying CRj(Tik), GSj has to identify Tja and Tjb in

- condition (6.4.1) and compare their local timestamps with CRj(Tik)Dts. If condition (6.4.2) is

satisfied, CR,(Tik) should be certified by GS, as far as the committed transactions are concerned.

Besides considering committed transactions at Sj, GSj also has to compare the timestamps of

CRj(Tik) with that of some waiting global transactions; this will be discussed later in this section.

chapter six section 6.4

Before doing so, we give an example to illustrate what we have just discussed and an additional

requihement of certification.

Example 6.4.1. Consider three sites S1, S2, and S3 in a WADDS, and suppose that a global

transaction Tzz is submitted at S2. Let ol be the sequence of all committed transactions at S 1, ordered

by their local timestamps. Suppose that T12 and Tls are two global transactions committed at S 1 such

that Lts (T 12) = 2, Gts (T 12) = 1, Lts (T = 5, and Gts (T = 4, and that there is no global transaction

between T l2 and T15 in ol. If the GLOBAL-READ of Tz2 has read some data objects belonging to S 1

such that CR 1(T22)Dts = t then there exists a transaction Tlk (1 < k < 5) belonging to S 1 such that

Lts(Tlk) = t and T22 has read a data object from Tlk. When CR 1(T22) arrives at GS1, it is found that

(6.4.1) is satisfied, i.e., Gts(T1Z) c CR 1(T22).Gt~ = Gts(T22) c Gts(T 15). If (6.4.2) holds, i.e., Lts(T 12)

5 t l < Lts(T15), then T12 and Tls are the global transactions preceding and following Tlk,

respectively, and the GOS graph involving T 12, T ~ s and Tz2 has a precedence edge from T 12 to T 15, a

globd-read edge from T12 to T22 and an induced edge from T22 to TLS. This GCS graph is shown in

Figure 6.4.1. Since Gts(T 12) < G ~ s (T ~ ~) < Gts(T IS), these three edges are all directed from a node

with a smaller global timestamp to a node with a larger global timestamp. Therefore the certification

request CR 1(Tz) should be granted if Lts(Tl2) < CR 1(T22)D~ < Lts(T1~).

Now suppose that T22 has committed, and a new global transaction TN is submitted at S3

whose GLOBAL-READ operation reads some data objects belonging to S1 such that

CR l (T~)Dts = t2. When CR 1(T34) arrives at S 1, it is found that Gts(T22) < CR l(T~).Gts = Gts(T34) c

Gts(T1~) at GSl. If CR1(Tz2)Dts = t < t 2 < Lts(T15) holds, then Tzz and TM have the same global

- transaction T preceding them. The GOS graph involving T 12, T 15, T22, and TN is shown in Figure

6.4.2. There is a global-read edge from T12 to T34 and an induced edge from TN to T ~ s . Besides

these two edges, there is an additional induced edge from TZ to TN. (Recall the definition of edge

set (4) of a GOS graph in Section 6.3.) Since Gts(T12) c Gts(TZ) c Gts(TM) c Gts(Tls), the four

chapter six section 6.4

edges mentioned above are all directed from a node with a smaller global timestamp to a node with a

larger global timestamp. Therefore, CR l (T ~) should be certified if CR 1 (T 2 2) 9 t ~ < t 2 < Lts (T IS) .

In the above example, GS1 could certify CR1(T22) using the conditions (6.4.1) and (6.4.2).

However, to certify CR ,(TM), GSl had to compare the timestamps of CR ~ (T M) not only with those of

the global transactions already committed at S 1 but also with that of T22 which has sent a certification

request to GSl and has committed at another site S2. We wish to process both CR 1(Tz2) and CR l(TM)

uniformly.

It follows from the above observation that there are two sets of committed global transactions

to consider when GSi is certifying CRi(Tik). The first set consists of the committed global

transactions belonging to Si, such as T 1 2 and T l s at GSl in the above example. The second set

consists of the committed global transactions belonging to sites other than Sj , which have sent

certification requests to G S j , such as T22 when T34 arrives at GS1 in the above example. In order to

treat all certijcation requests (e.g., CRl(T22) and CR ~ (T M)) unijbrmly, we order the rwo sets of

global transactions together by their global timestamps at S j , and replace Ti, and T,b in (6.4.1) and

(6.4.2) by Tc, and T a , respectively, where Tc, (T a) is dejned as the global transaction with the

largest (smallest) global timestamp less (larger) than CRj(Tik).Gts. TCa and T& may or may not

belong to S j . Hence (6.4.1) is modified to

and (6.4.2) to

where LDts,(T,) = Lts (T,), if Tv belongs to Sj; otherwise, LDtsi(T,) = CRj(T,).Dts , for xy = ca , db .

The second inequality in (6.4.2), 'strictly less than', has been replaced by 'less than or equal to' in

(6.4.4), because CRi (Tik)Dts and LDts, (T a) may be equal if Tdb doesn't belong to Si. If Tdb belongs

chapter six section 6.4

to Sj, i.e., if d = j , then CRj(Tik)Dts f LDtsj(T&); if CRj(Tik)Dts =LDtsj(Ta), Tik would have read

from Ta and we would have Gts(Tik) > Gts(Ta) and (6.4.3) would not hold. Hence testing 'I' in the

second inequality of (6.4.4) is equivalent to testing '<' in this case.

To facilitate the comparisons in (6.4.3) and (6.4.4), at each site Sj, GSj makes use of a data

structure COMMIT,, which is a list of records. Each record in COMMITj represents a transaction T in

one of the above two sets of committed global transactions and has two fields Gts and Its. Gts is the

global timestamp of transaction T. If T is a global transaction in the first set, Its = L~s(T). If T is a

global transaction in the second set, the home site of T must have sent a certification request CRj(T)

to GSj, and Its = CR,(T).Dts. The records in COMMIT, are sorted in the increasing order of their

values in the Gts field.

If there are p fragments in the system, let t 1,. . . , t, be the p smallest global timestamps. For

any site Si, COMMITi is initialized to a list containing only one record corresponding to the initial

transaction Tio. This record has Gts = ti and Its = 0.

Suppose the certification request CR,(Tik) of a global transaction Tik is received by GSj from Si.

GSj checks (6.4.3) and (6.4.4) as follows. Since COMMIT, is sorted by the Gts field, it is easy to

determine TCa and Tdb. An interval [t 1, t 21, where t I (t 2) is the Its value of the record representing T,,

(T ~) , is called the safe interval for CRj(T;k) with respect to COMMIT,. If T& doesn't exist, then

t2=00. If CR,(Tik)Dts E [t1,t2], the certification request CRj(Tik) is said to have passed the

acceptance test against COMMITj, and CRj(Tik) can be granted as far as d l the transactions in

COMMIT) are concerned. If Tik is eventually committed at Si, then a record representing it will be

inserted into COMMIT,, with fields Gts =Gts('l;:k) and Its =CRj(Tik)Dts. It is clear from the

construction of COMMIT, and the acceptance test that the Gts values are monotonically increasing,

while the Its values are monotonically non-decreasing.

chapter six section 6.4

The acceptance test against COMMlTj given above is justified by the following lemma.

Lemma 6.4.1. Let G be the (acyclic) GOS graph representing all committed global

transactions such that the global timestamps of the transaction-s correspond to a topological sort of

G . Let Tic be a new global transaction whose certification requests are to be tested and

Pik = {Fj : the GLOBAL-READ of Tik reads some data objects from Fj} . Consider the GOS graph G'

which is obtained from G by adding Tik and the edges associated with it to G . The global

timestamps of the transactions correspond to a topological sort of G' ifboth (6.4.3) and (6.4.4) hold

for Tik with respect to all site Sj9 Fj E Pit.

Proof. Consider any of the new edge e = (u , v) introduced into G to form G', e can be either a

global-read edge or an induced edge. We want to show that, if (6.4.3) and (6.4.4) hold for Tik, then

the global timestamp of u is larger than that of v . There are three cases to consider. Let Tea and Tdb

be as defined in (6.4.3) and (6.4.4) when CRj(Tik) is tested against COMMITj, F, E pike Note that it is

always true that LDts,(u) 5 LDts,(v) for any (u , v) E G '.

(1) e is a global-read edge (Ti,, Ek).

Tik has read a copy of a data object belonging to F j . Let Xj be such a copy with the largest

timestamp. When the value of Xj was broadcast from S j , Si should have received a global

timestamp at least as large as Gls(Ti,). Hence Gts (Ti,) < Gts (Tik).

(2) e is an induced edge (Tik, Tjh) belonging to edge set (3) in the definition of GOS graph.

Since e is an induced edge, LDtsj(Tik) + Lts(Tjh). As commented earlier, Dlsj(Tik) l Lts(Tjh);

therefore LDtsj(Tik) <Lts(T,h). By definition of T,, and Tdb, it is not possible that

Gts (Tea) < Gts (Tjh) < Gts (Td6). If Gts (Tjh) l Gts (T,,), it follows from the monotonicity of the

records in COMMITj that LDtsj(Tik) < Lts(Tjh) I LDtsj(Tca), which contradicts (6.4.4). Hence

Gts (Tjh) 2 Gts (T a) > G ~ s (Tik).

chapter six section 6.4

(3) e is an induced edge (Tik, Thl) belonging to edge set (4), where h # i , j .
It is not possible that Cts(TC,) < Cts(Thl) < Gts(Tdb). According to the definition of edge set

(4), D(sj(Tik) < LDtsj(Thr). If Gts(Thl) < ct~(T,,), then LDtsj(Tik) < DtSj(Th1) 5 LDtsj(Tc,),

which contradicts (6.4.4). Hence Gts (Thl) 2 Gts (Tdb) > Cts (Tik).

After the certification request C R ~ (T ~ ~) passes the acceptance test against COMMITj, GSj has to

test it against some waiting global transactions. There are two sets of waiting transactions to be
k

considered at Sj. The first set consists of those belonging to Sj that are waiting for the GS's at

remote sites to grant their certification requests. If Tjl is such a transaction, its local timestamp

Lts(Tjl) will not be assigned until its GLOBAL-READ is certified. Hence Lts(Tjl) must be larger

than CRj(Tik)Dts. Therefore, Cts(Tjl) must also be larger than Gts(Tik) in order that CRj(Tk) can be

granted by GSj. The second set consists of the global transactions waiting at sites other than Sj

whose certification requests sent to GSj have been granted. Suppose Thl is such a transaction and its

request CR,(Thl) has been granted by GSj. If CRj(Tik) arrives at GS, after CRj(Th1) has been granted,

it cannot ignore the fact that Thl may be committed and join COMMITj later. Therefore, Tik must be

tested against these two sets of waiting transactions in the same way as it was tested against the

committed transactions in COMMITj. If Tik passes this second test, then even if all the waiting

transactions are committed later and are added to the list COMMITj, Tik will still pass the acceptance

test against this extended COMMIq. If Tik fails this test, the waiting transaction T that caused the

failure is identified and CRj(Tik) will be made waiting at GSj until either T is committed or aborted.

If T is committed, CRj(Ta) is doomed to be rejected; otherwise, it is submitted again to GSj.

In order to keep track of the waiting transactions, GSj maintains a list WAITj, which contains

the records representing the waiting transactions mentioned above. Each record in WAIq has three

fields Gts, Its and retry. Cts is the global timestamp of a waiting transaction T that the record

represents. If T belongs to the first set of waiting transactions, then the Its field is undefined. If T

chapter six section 6.4

belongs to the second set, then CRj(T) has been granted by GSj and Its = CR,(T)Dts . The field retry
h

is a pointer to a retry list of records representing the global transactions which have been rejected

because of T. As with COMMq, the records in WAIq are sorted in the increasing order of their

values in the Gts field. Initially, WAIq contains only one record Wjo such that Gts =ti, (ti is the

timestamp used to initialize COMMW,) Its = 0 and retry = the null pointer. If we ignore the retry

field, each record in WAIG is just like a record in COMMITj. In fact, we could add all records in

WAIG to COMMI? and apply the test based on (6.4.3) and (6.4.4). However, since there is a

possibility that some transactions represented in WAIq may not be committed, we maintain a

separate list WAIq.

CRj(Tik) is tested against WAITj by GSj in the following way. Firstly, we determine a safe

interval [w w2] against WAI~. We compute [w,, w2] as we computed the safe interval of CRj(Tik)

against COMMITi, (list COMMITj should be replaced by WAITj). If CRj(Tik)Dts E [w 1, w 21, CRj(Tik)

passes the acceptance test against W W . Note that w 1 = iD~~j(Tca) .and w 2 =LDt~j(Ta)s w k e ~ Tca

and Ta are defined in (6.4.3) when CRj(Tik) is tested against WAIC. For the convenience of future

discussion, we say that TCa (Th) is the transaction associated with w l (w2) in the acceptance test

against WAITj. If CRj(Tik) passes the acceptance test against WAITj, then it is granted by GSj and a

reply message is sent back to GSi. If CRj(Tik) does not pass the acceptance test against WAq, then

either t 1 I CRj(Tik)Dts < w 1 or wz < CRj(Tik)Dts I t2, since we assume CRj(Tik) has already passed

the acceptance test against COMMITj. In the first case, the acceptance test fails because of the

transaction T,,, and CRj(Tik) is put to wait in list retry of the record representing Tea in WAI?. In the

. second case, the acceptance test fails because of the transaction Ta and CRj(l;.k) is not made to wait

but simply rejected. The reason for rejecting CRj(Tik) in the latter case is to avoid a possible

deadlock among waiting transactions. The policy used is to allow only a transaction with a larger

global timestamp to wait for another one with a smaller global timestamp. (An example of deadlock

chapter six section 6.4

will be shown in Example 6.4.2 below, if Tik is allowed to wait for the transaction associated with

Tdb.) If CRj(Tik) is granted by GSj, a record is inserted into WAITi to represent Tik, of which

Gts = CRj(Tik).Gts , Its = CRj(Tik)Dts, and retry is the null pointer.

The GLOBAL-READ of transaction Tik is granted by GSi if all certification requests

(CRj(Tik) : Fj E pa) are granted; otherwise, Tik is aborted. If Tik is committed at Si eventually, then

a record associated with it is inserted in COMMITi and COMMITj, for each site S, such that F j E pa.

Also, the records associated with Tik in WAITi and WAI?, for each site Sj mentioned above, are

deleted.

Example 6.4.2. Consider a WADDS consisting of four sites S1, S2, S3 and S4, in which two

global transactions T3, and T4b are waiting for GTOC to certify their certification requests. Suppose

that T3a submitted at S3 has sent two certification requests CRl(T3.) and CR2(Tk) to S1 and S2,

respectively, and that T4 submitted at Sq has sent two certification requests CR l(T4b) and CR 2(Ta)

to S 1 and S2, respectively. CR l(Tk) now arrives at S 1 before CR l (T ~ 3 and has been granted by GSl.

WAITl thus contains only two records associated with T3. and the initial transaction Tlo, when

CR l(T46) arrives at GSl. Let CR l(T3.)9ts = w 1 and CR l(Ta)Dts = (4. When CR l(T4b) arrives at

GS1, suppose it passes the acceptance test against COMMITl and the safe interval is [t t2] such that

t 1 < t 4 c w 1 < (2. If Gts(T3.) < Gts(Ta), then the safe interval of Td6 against WAIT is [w -1. This

is illustrated in Figure 6.4.3(a). Since 14 d [w1,-I, the acceptance test of T a against WAITl is

negative. Since t 4 E [t 1, w 11, the failure of T a in the acceptance test is caused by T3.; hence T4b is

put to wait in the retry list associated with T3..

Next, suppose that CR2(T4b) arrives at S2 before CR 2(T3,) and has been granted by GS2. WAIT2

thus contains only two records associated with T a and the initial transaction TZ0, when CR 2(Tk)

arrives at GS2. Let CR 2(TG).Dt~ = w 4 and CR 2(T3,)Dts = t3. When CR 2(T3,) arrives at GS2,

suppose it passes the acceptance test against COMMITz and the safe interval is [t'l, t'd such that

chapter six section 6.4

t'l < wa < 1 3 < 1;. If Gts(Tk) < Gts(T&), the safe interval of T3. against WAITP is [0, w 61. This is

illustrated in Figure 6.4.3(b). Since t 3 d [0, wi], the acceptance test of T k against WAITz is

negative. Since t E [w;, tt2], the failure of Tk in the acceptance test is caused by T&. If we allow

T3. to wait for T46, then a deadlock occurs. This is the reason that this waiting is not allowed in the

algorithm GTOC. 0

In the following, the Global Timestamp Order Certification algorithm is formally presented in

four phases.

Algorithm GTOC

Input : A certification request by global transaction Tik.

Phase One [iniiiaiizaiionj :

(a) GSi assigns a global timestamp Gts (Tik) to Zk.

(b) (CRj(Tik) : Fj E pik] is generated, where pik = IFj : the GLOBAL-READ of Tik reads

some data objects from F,]. Each CRj(Tik) is sent by Si to the corresponding GSj.

(c) A record W is appended to WAITi, where W.Gts = Gts(Tik), W.lts is undefined, and

W.retry is the null pointer.

Phase Two [Acceptance Test against committed transactions] :

(a) When CR,(Tik) arrives at Sj, an acceptance test of CR,(Tik) against COMMITj is

performed by GS j.

(b) If the acceptance test is negative, CRj(Tik) is rejected and a reply message

reject(CRj(Tik)) is sent back to GSi. Otherwise, the algorithm proceeds to its third phase

chapter six section 6.4

Phase Three [Acceptance Test against waiting transactions] :

(a) An acceptance test on CRj(Tik) against WAIq is performed by GSj.

(b) If the acceptance test is positive, a reply message accept(CRj(Tik)) is sent back to GSi

and a record W is inserted between the records associated with wl and w z in WAITj,

where wl, w2 are as defined in the acceptance test against WAI? and W.Gts = Gts(Tik),

W.lts = CRj(Tik).Dts and W.retry is set to the null pointer.

(c) If the acceptance test is negative, let R be a record with two fields such that

R.Gts = Gts(Tik) and R.h = CRj(Tik)D1s. If t 1 I CRj(Tik)Dls < w 1, appends R to the

retry list of the record associated with w l, where t is as defined in the acceptance test

against WAIq. Otherwise, send a reply message reject(CR,(Tik)) to GSi.

Phase Four [Termination] :

(a) If GSi receives a reject(CRa(Tik)) from a site So, then abort Tik and delete the records

representing Tik in WAITi and WAITj, for all Fj E pic. The transaction in the retry list

W.retry is resubmitted to GSi, where W is the record representing Tik in WAITi. For each

Fj E pik, GSj retests the transactions in the retry lists W'.retry, where W' is the record

representing Tk in WAITi.

(b) If GSi receives an accept(CRj(T,k)) from every site Sj, Fj E pik, it delays Tik until no

other transaction with a smaller global timestamp belonging to Si is in WAITi, namely,

until all these waiting transactions have completed their GLOBAL-READ operations.

(This waiting ensures that all the precedence edges between global transactions executed

at Si are directed from one with a smaller (older) global timestamp to another one with a

chapter six section 6.4

larger (newer) global timestamp.)

(c) Once the GLOBAL-READ operation of Tik is completed, a message is sent to every site

Sj (Fi E pik) to delete the record representing Tik in WAITj and to insert into COMMITj a

record representing Tik. At the home site Si of Tik, delete the record representing Tik

from WAITi and insert a new record representing Tik into COMMITi.

Let us examine if the possibility of a deadlock among waiting transactions. In Phase Three (c),

we allow Tik to wait only for the transaction associated with wl, but not the one associated with w2.

This ensures that Tik may wait only for a transaction with a smaller global timestamp. Also in Phase

Four (b), a transaction waiting to complete a GLOBAL-READ operation may wait only for

transactions with smaller global timestamps. Therefore, deadlock is not possible in GTOC.

Theorem 6.4.1. A frasmented execution generated by GTOC in a WADDS is globally

serializable.

Proof. Suppose 5 is a fragmented execution generated by GTOC over a set of sites

(Si : i = 1, . . . , n). Let T be the set of transactions involved in 5. Since a transaction submitted is

eventually either committed or aborted, T contains only committed global transactions. Let oi,

i = 1,. . . , n, be the sequence of transactions belonging to Si ordered by their local timestamps. We

want to show that the edges in GOS(5) are all directed from a global transaction with a smaller global

timestamp to another one with a larger global timestamp, and thus GOS (5) is acyclic.

Let Tik E T. All the certification requests of Tik must have been granted before it commits. It

follows from Lemma 6.4.1 that the new edges introduced in GOS(5) by Tik are all directed from a

global transaction with a smaller global timestamp to another with a larger global timestamp. Hence

all the global-read edges and induced edges in GOS(5) satisfy the required property.

section 6.4 chapter six

Step ~f Phase Four of GTOC ensures that the global transaction preceding Tik in oi has a

global timestamp smaller than that of Tik. Hence the precedence edge introduced by Tik also satisfies

the required property. Hence all edges in GOS(l2,) are directed from a transaction with a smaller

global timestamp to another with a larger global timestamp and GOS(l2,) is acyclic. Therefore 6 is

globally serializable.

In the following, we will discuss some problems related to GTOC. The first problem with

GTOC is the amount of storage occupied by COMMITi and wAITi at each site Si. Records in WAITi

are deleted after the corresponding transactions are committed. Therefore, the space occupied by

WAITi is not a serious problem. What we need is a garbage collection mechanism for the records in

the COMMITi. This can be done by finding out the smallest global timestamp t, among all the

waiting transactions. Periodically, every site Si finds the smallest global timestamp among all the

transactions in W A C . These global timestamps are then broadcast to all the other sites. The

smallest global timestamp s, is then computed. At each site Si, let C b the record in COMMITi with

the largest C.Gts < ts. After C has been identified, the global timestamps of all certification requests

arriving at Si must be larger than C.Gts. Therefore, all the records Ck in COMMITi such that

Ck.Gts < C.Gts are no longer needed for acceptance test. All these records can be deleted from

COMMI Ti .

The second problem concerns aborted global transactions. Suppose a certification request

CRj(Tik) of Tik is rejected by GSj at site Si because Gts(Tik) is too large. Suppose Tik is resubmitted

after being assigned a larger global timestamp. Let RS(Tik) be the readset of Tik. If no data object in

- RS(Tik)nFj is updated since Tik last read it, then CRj(Tik)Dts remains unchanged and CR,(Tik) is

rejected again by GSj . In order to avoid this, GSi can send the name of a data object

X E RS(Tik) n Fj to Sj when it sends CRj(qk) . If Sj finds that CRi(Tik) is rejected by GSi because

Gts(Tik) is too large, then it can broadcast X with a timestamp larger than the time at Sj . In

chapter six section 6.4

this way, CRj(Zk)Dts will be increased every time Tik is submitted again.

If global transactions are rare, then the probability that a global transaction is aborted because

its GLOBAL-READ is rejected by a GS is small. However, it cannot be guaranteed that a global

transaction won't be aborted. In the worst case, the GLOBAL-READ of a global transaction may be

rejected every time the global transaction is submitted or resubmitted. In order to remedy this

"starvation", a site Si can change the status of a global transaction to urgent. We want to ensure that

no certification request of an urgent global transaction will be rejected by the GS at a remote site. To

this end, site Si sends out a timestamp query message q(Tik) which contains the name of a data

object X E RS(Tik) n Fj to each site Sj with Fj E pik on behalf of an urgent global transaction. When

a site Sj receives q(Tik), GSj stops processing certification requests. After all waiting transactions in

WAITj have committed or aborted, GSj sends to Si the largest global timestamp cj among all the

transactions in COMMITj and broadcasts X with a new timestamp larger than the current time at Sj.

After receiving all timestamps (cj : F'j ;;.E pikj, Tic executes it GLOBAL-READ and sends out

certification requests with a global timestamp larger than any timestamp in {cj : F, E pik). For each

Fj E pik, let Cj be the record in COMMITj such that C,.Gts = Cj. Since

CRj(Tik).Gts = Gts(Tik) > C j = C,.Gts, the safe interval for Tik against COMMITj is [Cj.lts, =I. AS

mentioned above, Sj broadcasts a data object in RS(Tik) n Fj with a timestamp larger than Cj.lts

after it has received q(Tik). Therefore, CRj(Tik)Dts > Cj.lts. Hence CRj(Tik) passes the acceptance

test against COMMITj. CRj(Tik) also passes the acceptance test against WAITi, because WAIq

. contains only one record associated with the initial transaction. Since this is true for all Sj with

- Fj E pik, the GLOBAL-READ of Tik won't be rejected. This is achieved by sacrificing the response

time of other global transactions. Since we don't anticipate a frequent occurrence of urgent global

transactions, this strategy is acceptable. A site can issue only one urgent global transaction at a time.

Also, a site can reply positively to only one timestamp query message at a time; timestamp query

chapter six section 6.4

messages arriving later have to wait until the urgent global transaction associated with the first

timestamp query message has completed. In order to avoid deadlock, we allow only the timestamp

query message of a urgent global transaction with a larger timestamp to wait for another with a

smaller global timestamp.

6.5. Performance Analysis

Compared with other conventional schemes for concurrency control, GTOC strongly favors

local transactions. In the following, we compare its performance with the primary copy two-phase

locking scheme (PC, for short). (See Section 3.2 for an explanation of the primary copy locking

scheme.) In a fragmented database, it is natural to regard the copy of a data object at its home site as

the primary copy of the data object.

Let t~ denote the execution time for a local transaction under GTOC. Note that t~ equals local

processing time LG at its home site. If PC is used, the execution time tp of a local transaction

consists of two parts, Lp and tc, where Lp is local processing time and tc is the time spent for

communication. The communication time t, in turn consists of the time to deliver the updates and to

run a commit protocol. Here, we assume that the most primitive 2-phase commit protocol is used.

Therefore, two round trips of communication are needed. In the first round, the home site of the

local transaction sends out update messages to all other sites and acknowledgements of receipt are

returned to the home site. In the second round, commit messages are sent to all these sites to instruct

them to commit the updates, and confirmations are returned to the home site so that the locks on the

updated data objects can be released. We thus have tc = 4 ~ , where ol, is the average time for

sending a message across the network.

chapter six section 6.5

Subtracting t~ from tp, we get

In a wide-area distributed database (WADDS), aa may be as large as a few seconds. In general, it is

much larger than the difference (Lp -LC). This is particularly true for short transactions which can

be processed in microseconds. Hence, in this kind of environment, GTOC performs much better than

PC with regard to the execution time of a local transaction.

Let us consider the average execution time over all transactions, assuming that a fraction r of

all transactions are global transactions. Let ac and up be, respectively, the average execution times

of a transaction under GTOC and PC.

When a global transaction Tic is executed under GTOC, its execution time consists of two parts.

The first part is GG which includes the processing time of Tik at its home site and the processing time

of its certification requests at remote sites. GG also includes the waiting time if a certification request

of Tik has to wait in a retry list at a remote site. The second part is 2% which is the communi~ation

time for sending out certification requests and receiving replys from remote sites. Hence

where LC is the processing time of a local transaction under GTOC as defined above.

Under PC, a global transaction Tik spends 2a, units of time to remotely lock the primary copies

of the data objects in its readset which belong to other sites. It spends 2% units of time to send out

updates and receive replies. Lastly, it has to send out commit messages and wait for reply messages

to release locks. Therefore, the execution time of Tik under PC is Gp + 6%, where Gp is the local

processing time of Tik at its home site. As analysed above, the execution time of a local transaction

under PC is (Lp + 4%). Hence

chapter six section 6.5

up = (1 - r)(Lp + 401,) + r (Gp + 6%), and

As discussed above, the difference (Lp -LC) can be ignored when compared with the term 4%.

Therefore,

In general, GG might be larger than G p . However, if r is sufficiently small, the difference (up - a ~)

is dominated by the term 4%. Therefore, in case r is small, GTOC performs better than PC in terms

of average execution time of a transaction. In fact, the term 2% for sending out updates of a local

transaction cannot be avoided in any conventional concurrency control. Therefore, GTOC is

definitely better than such schemes if fast response to local transaction is crucial. As for the average

execution time, it depends very much on the fraction r of global transactions among all transactions.

Still, if r is small, @TO@ is preferable to other conventiond schemes,

6.6. Partition Failures in a Fragmented Database System

The technique used in Chapter 4 for deriving an upper bound on availability can be applied to

fragmented databases. We will show that the upper bound is achievable given some additional

information about the partitions.

Consider a fragmented database system over n sites {Si : i = 1, . . . ,n) with corresponding

. fragments IFi : i = 1 , . . . , n 1. Suppose the system is divided into two partitions P 1 and P 2. As in

Section 4.3, let 6 be a transaction distribution submitted in P I and P2, and L be any serializable

execution of 6 generated by a prevention protocol. Then PI0 (L) has a DITS. There are only two

possible DITS's, i.e., POP 1P2PJ. and PoP2P

chapter six section 6.6

Consider a DITS given by P oP 1P 2Pf. For every site Si, we assume that many more local

transactions are submitted at Si than global transactions. We further assume that the number of local

update transactions submitted at Si is larger than the total number of global transactions submitted at

all other S j , z i), that read some data objects from Fi .

Let us first introduce a set of notations which will be used in the following.

rl (r2) : the set of transactions submitted at the sites in P 1 (P 2).

LC 1 (LC2) : the set of local transactions submitted at the sites in P 1 (P 2).

G 1 (G 2) : the set of global transactions submitted at the sites in P 1 (P 2).

G1 (c d : the set of global transactions submitted at the sites in P 1 (P2) that read only data objects

belonging to sites in P (P 2 .

LR (LR 2) : the set of local read-only transactions submitted at the sites in P 1 (P 2).

With respect to the execution L , we define the following subsets :

21 (22) consists of all the transactions in rl (r 2) that are executed in L ,-

lc I (lc 2) consists of all the transactions in LC 1 (LC2) that are executed in L ,

g 1 (g 2) consists of all the transactions in C 1 (G 2) that are executed in L ,

lr (lr2) consists of all the transactions in LR (LR 2) that are executed in L , and

gl (g 2) consists of all the transactions in G1 (G2) that are executed in L .

For i = 1,. . . , m , let A l i be the set of local update transactions belonging to Si.

B z : the set of global transactions submitted in P 2 that have read data objects belonging to Si.

ali : consists of all the transactions in A l i that are executed in L .

j 3 ~ : consists of all the transactions in B z that are executed in L .

Note that IA l i l is much larger than IB 2 i l by assumption. For i = 1, . . . , m , we also assume that the

weak uniformity assumption (see Section 4.3) holds for the transaction distribution consisting of all

the transactions in A i i u B U . In this transaction distribution, all the transactions are submitted at their

-- 105 --

chapter six section 6.6

home sites. In this particular case, this assumption means that, for any subset X of Fi (i = 1, . . . , m),

the number of local transactions in A l i that write into X is larger than the number of global

transactions in B 2 that read some data objects from Fi. It follows from the analysis done in the

proof of Theorem 4.3.1 that

A transaction in is either a local update transaction, a local read-only transaction, or a global

transaction. Hence

' 5 2 = 1 c 2 u g 2 u p 2 1 . . . up2,".

Therefore,

(6.3) is an inequality, because some of the pzi9s may have nonernpty intersection.

From (6.2) and (6.3), we have

It follows from (6.1) and (6.4) that

Note that (0 li),!!!l u lr is a subset of LCl. Therefore, it follows from (6.5) that

section 6.6

(6.6)

chapter six

1211 + 1221 $ lLCII + IGII + ILC21 + 1 6 1 2 1 .

On the other hand, if the DITS order in PI0 (L) is P 2P l P f , then

1 ~ ~ 1 + 1221 I ILC21 + IG21 + ILClI + I G ~ I . (6.7)

Let h l = IGII - lG1l and h 2 = IG21- l C 2 l . Notethat h l (h2) is thenumberofglobal transactions

submitted in P that have read some data objects belonging to sites in P2 (P 1). It follows from (6.6)

and (6.7) that

1211 + 1221 1 ILC

= lrl

Hence

and 1- Tin h2? is an upper bound on the availability of 6.
rll + Il-2

Note that even if the sites in both P 1 and P 2 have no knowledge about the sizes of h 1 and h 2,

they can execute the transactions in LC1 u G1 and LC2 u G2 without violating serializability. This

gives availability 1 - I F ' + I , which is near-optimal. That is, the sites in each partition can still
1 1 +

execute all local transactions and global transactions that access only fragments whose home sites are

in the partition. This shows that a fragmented database achieves a high availability.

Furthermore, if there is enough information available so that h 1 and h 2 can be computed by the

sites in the two partitions, then the optimal availability is achievable. For example, if ni, the number

of global transactions submitted at Si, is known to every site, and the likelihood that a fragment Fk is

read by a transaction issued at Si is the same for every k + i , then

chapter six section 6.6

Hence min (h 1, h2) is computable in both of the two partitions. If h2 = min (h 1, h 2), then P I can

execute all the transactions submitted in it, and P 2 has to give up those global transactions in

G 2 - c 2 . If h 1 = min (h 1, h2) , on the other hand, then P 2, instead of P can execute all the transaction

submitted in it, and P 1 has to give up those global transactions in G 1 - GI. In any case, the optimal

availability is achievable.

CHAPTER 7

ANOTHER CONCURRENCY CONTROL SCHEME

FOR FRAGMENTED EXECUTION

7.1. Another Scheme to Control Fragmented Execution

As described in Section 6.4, GTOC sends certification requests to remote sites to certify the

values read by a GLOBAL-READ. After the GLOBAL-READ of a global transaction Ta has

finished its reading from copies in the DB of Ta's home site Si, certification requests are generated

and sent to the global synchronizers (GS's) at the remote sites whose Fragments were read. The

certification request of Ta received by a remote site S, is tested against COMMITj and WAITj. If the

request passes both tests, it is granted by the GS at Sj. Transaction Ta can execute its remaining part

if all the recipient remote GS's reply positively to its certification requests. This scheme is an active

scheme in the sense that the home site takes the initiative to send certification requests.

The second scheme, to be discussed in this section, is termed passive. Unlike GTOC, this

scheme makes use of only global timestamps, which are generated by a system-wide global clock.

(An implementation of the global clock was discussed in Section 6.4.) Every transaction, be it local

. or global, is assigned a timestamp by the global clock. In this scheme, transactions are scheduled

using their timestamps. The updates of transactions, which contain the timestamps of the

transactions, are broadcast to the other sites in their timestamp order. The copy of a data object in

the DB has a timestamp which is the timestamp of the transaction which performed the last update

chapter seven section 7.1

on it. Global concurrency control is needed only for global transactions, i.e., no global concurrency

control is needed for local transactions. As in GTOC, local transactions executed under GTOS are

given higher priority than global transactions. Thus, a local transaction trying to access a data object

X will never be blocked by a global transaction which is accessing X.

The scheduler lets a global transaction T, first read all the data objects in its readset and then

assign a timestamp to T,, denoted by ts(T,). (The method to assign a timestamp to a global

transaction will be explained later in Section 7.2.) We refer to a data object belonging to a remote

fragment as a remote data object. Note that the actual reading of a remote data object takes place

locally from the copy of remote fragment. T, waits until its home site finds out if all the values of

remote data object read by T, are correct with respect to To's timestamp. The correctness of a value

of a remote data object read by a global transaction is defined as follows. Let Xi be the copy of a

remote data object X belonging to Fi. The value of a copy Xi read by T, at its home site Si is

correct for 7'. if (1) the value of Xi was written at S j by a tra~nsaction Tb with a timestamp

ts (Tb) < ts (T.), and (2) no other transaction with a timestamp smaller than ts (T,) and larger than

ts(Tb) has written X at Si. The timestamp ts(Tb) is sent to Si by Si together with an update of Tb on

X. Therefore, when ts(T,) is assigned to T,, rs(T,) can always be set larger than tb. Hence we can

always make condition (1) hold. If the values of all remote data objects that T, has read are correct,

then T, can be committed on completion. (Further details on committing a global transaction are

described in Section 7.2.) In this way, all the execution generated will be serialized; the timestamps

of the transaction provide a serialization order. The only problem is how to find out whether the

. value of a remote data object read by T, is correct. We assume that the messages from the same site

are broadcast and received by other sites in their timestamp order.

Suppose T, has read a copy Xi of a remote data object belonging to I;i with a timestamp

r 1 < ts(T,). If no update of X with a timestamp smaller than ts (T,) and larger than t 1 is received by

chapter seven section 7.1

Si, and an update of some data object belonging to Fj with a timestamp larger than ts (T,) is received

by Si, then Si knows that the value of Xi is correct for T,. If a new copy of X with a timestamp

smaller than ts (T,) and larger than t is received by Si, then Si knows that the value of Xi read earlier

by T, is not correct; in this case, T, replaces the value of X by the new value and goes back to

waiting until Si can determine whether this new value is the correct value for T,. However, if

nothing is received from Sj, then Si cannot know if the value of Xi is correct and hence the

transaction may have to wait forever. Therefore, timeout messages which indicate the time at each

site must be broadcast when needed. If Si receives nothing but a timeout message with a timestamp

larger than ts(T,) from Sj, then it knows that there is no new update of X generated between t l and

ts(T,) at Sj. Hence the value of Xi is correct for T,. The method used in this scheme is called

Global Timestamp Order Synchronization (GTOS).

In Section 7.2, an architecture for a WADDS to implement GTOS is described. In particular,

ilk execution of both local and global transactions under GTOS will 'be described. The mmagemeni

of timestamps and virtual clocks are crucial in GTOS. A virtual clock for a site Sj at another site Si

has the latest time of Sj, which is known to Si by receiving messages from Sj. In Section 7.3, we

will discuss the management of virtual clocks in detail. In Section 7.4, an implementation of GTOS

will be described. The correctness of GTOS will be discussed in Section 7.5. In Section 7.6, we will

discuss some performance issue of GTOS.

7.2. An Architecture for GTOS

In the WADDS architecture in which GTOS is implemented, there are five functional

components at each site : the transaction manager (TM), the scheduler, the database manager

(DM), the update propagation manager (UPM), the timestamp manager (TSM) and the

chapter seven section 7.2

communication manager (CM). The scheduler has two subcomponents, the home tkagment

scheduler (HFS) and the remote fragment scheduler (RFS). The interconnection among these

components is illustrated in Figure 7.2.1. To describe the functions of these components, we will

now explain how GTOS processes local and global transactions.

A local transaction starts with a LOCAL-BEGIN operation, followed by a sequence of READ

and WRITE operations, and ends with an END operation just as in GTOC. For simplicity, we

assume that each global transaction consists of two steps. In Section 7.5, we will show that GTOS,

with a slight modification, is also applicable to more general (non 2-step) transactions. A Zstep

transaction first executes all its read operations and then all its write operations. For a 2-step

transaction T,, we use D, and d, to denote its readset and writeset, respectively. T, can thus be

represented as T, = R [D,]w [&I.

Let us use a 2-phase locking scheduler for the HFS. (We can use some other scheduler, but we

choose a 2-phase locking scheduler for simplicity). In order to give higher priority to local

transactions, GTOS allows a local transaction to preempt a global transaction in case the latter holds

a lock on a data object required by the former transaction. Two types of locks are provided by the

HFS: high priority lock (h-lock) and low priority lock (I-lock). H-locks are used by local

transactions, while 1-locks are used by global transactions. High priority read lock, low priority read

lock, high priority write lock, and low priority write lock are denoted, respectively, by hr-lock, lr-

lock, hw-lock and lw-lock. As usual, read locks are compatible among themselves and incompatible

- with write locks, while write locks are incompatible with each other as well as with read locks. A

local transaction requesting a hw-lock can preempt a lw-lock or lr-lock on a data object held by a

global transaction. This aborts the latter transaction. The compatibility among h-locks and 1-locks is

shown in Figure 7.2.2. Any hr-lock or hw-lock request submitted when there is a queue of lock

requests waiting to lock a data object is always inserted before all the lr-locks and lw-locks in the

chapter seven section 7.2

queue. The RFS is a FIFO queue. Since updates from a remote site are received in their timestamp

order and the RFS is a FIFO queue, these updates are submitted to the DM in their timestamp order.

There is no need to control the read operations of global transactions accessing the remote fragments

in the DB, because a global transaction will be given the correct value if it is not the value it read.

As shown in Figure 7.2.1, at each site Si, there is a timestamp manager, named TSM. The

TSM maintains a local clock Ci and a set of virtual clocks Cij, one for each site Sj # i). Time

t(Ci) retrieved from Ci is the local clock value with the site identity of Si appended to it at the least

significant end to make it globally unique. Whenever the communication manager CM receives a

message from another site, Ci is adjusted to a value that is one tick larger than the timestamp in the

received message, if the received timestamp is larger than t (Ci). With a clock defined in this way,

the timestamps are unique and all timestamped events can be totally ordered [Lam78]. This global

clock is implemented in the same way as the global clock used in GTOC described in Section 6.4.

The time of a virtual clock Cij at a site Si reflects the time of Cj known to Si. More precisely,

site Si knows that the time t(Cj) is at least as large as that of Cii. In fact, two time values are

associated with Cij. In Section 7.3, we will explain how a TSM manages its virtual clocks and how

the virtual clocks are used to determine whether the value of a remote data object read by a global

transaction is correct.

At site Si, when LOCAL-BEGIN of a local transaction Ta arrives, the TM allocates a

workspace for T, and sends hr-lock (hw-lock) requests to the HSF on behalf of T,'s READ (WRITE)

operations. (Note that local transactions are not necessarily 2-step transactions). If a hr-lock is

granted, then the READ operation is executed by the DM. If a hw-lock is granted, updating is done
h

in the workspace. When the END operation of Ta arrives, the TM performs two steps. In the first

step, it obtains t(Ci) and assigns it to T,. (Note that this is the first time that a timestamp is assigned

to a local transaction.) Then it tells the DM to commit the updates and releases all the locks held by

chapter seven section 7.2

T,. In the second step, the TM submits a remote update request to the UPM on behalf of T,. The

request contains the committed values and t (Ci). The UPM broadcasts the request to every other site

through the CM, which is connected to the CM's at all other sites. The UPM uses a reliable

broadcast protocol (e.g., [AwE84, GLB851) to send out remote update requests. (The properties of a

reliable broadcast protocol were mentioned in Section 6.2). The UPM broadcasts remote update

requests in their timestamp order.

When the CM at a site Sj receives a remote update request from Si, the request's timestamp is

sent to Sj's TSM to update the virtual clock Cji. To process the updates in the request, the UPM

issues a write-only transaction to install them in the replica of Fi. The write operations of this

transaction are submitted to the FIFO queue at the RFS. This completes the discussion of a local

transaction.

A global transaction starts with a GLOBAL-BEGIN operation, followed by a set of READ

operations, then a set of WRITE operations, and terminates with an END operation. The execution

of a global transaction T, = R [D,]W [d,] submitted at a site Si consists of the following two phases.

Phase One [Reading and Locking].

When T,'s first operation, GLOBAL-BEGIN, arrives at Si, the TM allocates a workspace for it.

Then the TM submits a lr-lock request to the HFS for all the data objects in DaMi on behalf on Ta.

For each remote fragment Fj, TM submits a read request to the RFS for all the remote data objects in

Damj , if it is not empty. If a Ir-lock submitted to the HFS or a read request submitted to the RFS on

a data object is granted, the READ operation on the data object is executed and the value is retrieved

into the workspace. After all data objects in D, are read, the TM issues Iw-locks for all data objects

in d,. The first phase completes at this point. Even if a lw-lock is granted, T, does not immediately

execute the corresponding WRITE operation. Instead, this is done in the second phase.

chapter seven section 7.2

Phase Two [Waiting and CommitlAbort].

The clock value t(Ci) is now assigned to T, as its timestamp ts(T,). Then T, waits until the

TM can determine that the values of all the remote data objects it has read are correct. If these values

are correct, then all the 1-locks of T, are converted to h-locks and all its WRITE operations are

executed in T,'s workspace. We convert the 1-locks to h-locks to prevent a global transaction from

being preempted by a local transaction after it has been determined that all the remote data objects it

has read are correct. When T, issues an END, T, commits and releases all its locks. Then its

updates are broadcast to all the other sites in the same way as the updates of a local transaction are

broadcast. If Si receives a new copy of a data object X and finds that the old value of X read earlier

by T, is not correct for T,, then the TM replaces the value of X stored in the workspace by the new

value and T, waits again.

Note that if we ignore the read operations of global transactions that access remote fragments,

the HFS is a 2-phase locking scheduler. A timestamp is assigned to a transaction, be it local or

global, after it has locked all the data objects in its readset and writeset that belong to its home

fragment and before it releases these locks. Hence, the timestamp order is a serialization order of all

transactions. In addition, if all values of remote data objects read by every global transaction are

correct, then it is clear that all transactions can be serialized in their timestamp order.

The above description of the execution of a global transaction is not complete. In Section 7.3,

we will discuss the management of virtual clocks. The algorithm used to determine whether the

value of a remote data object read by a global transaction is correct will be described in Section 7.4.

chapter seven section 7 3

7.3. Timestamp and Virtual Clock Management

In the following, a message broadcast by a site which contains the update of a transaction and

its timestamp is called an update message. (In fact, update messages are the remote update requests

discussed in Section 7.2.) If A is the set of updates of a transaction with timestamp t , the update

message broadcast on behalf of the transaction is represented by u (A, t). If A contains only a data

object X , u (X , t) is used to represent u ({X) , t).

How does a site know that a global transaction has read the correct value of a remote data

object? There are three possible cases to be discussed, which are illustrated in Figure 7.3.1. The

time axes in all these figures refer to the global time, i.e., the time given by the clock Ci at site Si. As

before, the timestamp of a transaction T, is denoted by ts (T,).

In Figure 7.3.l(a), an update message u (X, t is broadcast by site S 1 at time t and is received

by site S2 at time t']. More precisely, (1 is the timestamp of the transaction which issues the update

message u (X , t I). Suppose that a global transaction T2 submitted 2 S2, with a timestamp 1'2 > t 'I,

has read the value of X in u (X, t and is waiting to determine if the value read is correct. Later at

time t 2 > tt2, another update message u (Y, t2) on a data object Yis broadcast by S 1 and is received by

S2 at t;. If no other update of X is received between t and S at t i can confirm that the value of

X in u(X, tl) is the latest value of X written by a transaction with a timestamp smaller than

t; = ts(T2). Hence, S2 confirms that the value of X read by T2 is correct.

In the second case shown in Figure 7.3.l(b), a new update message u (X, t2) of X is broadcast

by S1 at 12 < ('2 and received by S2 at t i > 1'2. That is, when T2 is waiting, a newer value of X is

received which has a timestamp less than = ts(T2). At t'3, S2 knows that the value of X in u (X, t

is not the latest copy of X before tt2. Hence, the value of X that T2 has read is not correct. In this

case, T2 replaces the value of X by the new value and goes back to waiting until S2 can determine if

chapter seven section 7 3

the new value is correct for T2.

In the third case (see Figure 7.3.l(c)), after the update message u (X, t is broadcast, no further

update is broadcast from S 1. If this the situation remains, it will cause T2 to wait for a very long

time. To prevent this situation from arising, the timestamp manager TSM at every site Si broadcasts

timeout messages periodically with a fixed period A, called the time tolerance. If the latest update

broadcast by Si has timestamp t and since then, no update has been broadcast by Si for a period of A,

then Si 's TSM broadcasts a timeout message tm (t +A) at time t +A, which carries the timestamp t +A.

When this timeout message arrives at any other site Sj, Sj can be sure that no new update has been

broadcast by Si since t .

In Figure 7.3.l(c), a timeout message tm (t2), t 2 = t 1 + A, is broadcast after a period of A with no

update. When the timeout message arrives at site S2 at time to3, S2 knows that it was correct for T2 to

read the value of X in u (X , t

Timeout messages and update messages are broadcast by a site in their timestamp order. At

any site Si, a timeout message with a timestamp t 2 cannot be broadcast before an update message

with a timestamp t < t 2 , i.e., before a transaction with timestamp t is completed. Otherwise, when

the timeout message with timestamp t 2 arrives at another site Sj before the update message with

timestamp t l , Sj may mistake that no update has happened before t 2 at Si.

The above scheme works correctly in deciding whether a global transaction has read correct

values. However, it can cause a deadlock, which must be remedied. An example of deadlock is

illustrated in Figure 7.3.2(a). An update message u (X , t 1) broadcast at t 1 by site S 1 arrives at site S2

at time ('2, and at roughly the same time t2, an update message u (Y, t'l) broadcast by S2 at t'l anives

at S1. A global transaction TI with ts(T1) = ts, which has read only the value of Y in u(Y, ta1), is

waiting at S 1. Similarly, a global transaction T2 with ts(T2) = t 6, which has read only the value of X

chapter seven section 7 3

in u (X . I l) , is waiting at S 2. No update has been broadcast since t 1 and t '1. Suppose t 4 = t + A > t

and t i = 1'1 + A > 1'3. In this case, only the arrival of the timeout messages tm(t'4) and tm(t4) can

unblock T 1 and T2, respectively. However, these timeout messages cannot be sent out, because, as

mentioned above, tm (t4) can be sent out only after T 1 has completed and its update message has been

broadcast. Otherwise, t m (t 3 would be sent out before the update message of T I , which has

timestamp t 3 < 14. Similarly tm(tb) can only be sent out after T 2 has completed. Hence, T 1 and T 2

wait for events blocked by each other. This is a deadlock and neither of the two transactions can

proceed.

In order to solve the deadlock problem mentioned above, a global transaction To waiting at a

site Si with ts(Ta) = t should let the other sites know that the time at Si is already t . However, this

cannot be achieved by sending out an update message for To, because To has not completed yet. In

order to solve this dilemma, a global-start message gs(t) which carries the timestamp t is broadcast

when t is assigned to T,. The timestamp r in the global-start message is called a global-start

timestamp. In the example illustrated in Figure 7.3.2(b), global-start messages gs(t3) and gs(t'3)

arrive at S z and S1 at times 12 and t s , respectively. By looking at the times in the global-start

messages, S1 (S2) at t~ (1'5) knows that T I (T2) has read the correct values, and T I (T2) can proceed

without waiting. Therefore, the deadlock between T 1 and T 2 is resolved.

We have mentioned above that update messages and timeout messages are sent out in their

timestamp order. After the introduction of global-start message, this must be modified. The purpose

of introducing global-start messages is to allow a global transaction To waiting at site Si to inform

- the other sites of the time ts(Ta). However, the broadcast of the update message of T, is delayed

until To is completed, even though the timestamp of the update message is also ts(T0). Hence, there

is a time lag between the broadcasts of the global-start message and the update message of To. Some

local transactions may be committed with timestamp larger than ts(Ta) before To is completed. In

chapter seven section 7 3

order not to delay the broadcast of the updates of these local transactions and the advance of the

virtual clocks for Si at other sites, some update messages of local transactions, timeout messages and

global-start messages with timestamps larger than ts(T,) may be broadcast before the update

message of T,. Therefore, global-start messages, timeout messages and update messages of local

transactions are broadcast in their timestamp order, but the update message of a global transaction is

broadcast at the time when the transaction is completed. Therefore, some messages with larger

timestamps may be broadcast before it, which violates the rule that messages are sent in their

timestamp order.

The introduction of global-start messages raises another problem. By a global-start message,

time information is sent out prematurely. For a local transaction, its timestamp is broadcast with its

updates. In this case, there is no time lag between the arrival of an update and its timestamp.

However, this does not hold any more once global-start messages are introduced for global

transactions. As mentioned above, here is a time Iag between the-broadcasts of the global-start

message and the update message of a global transaction. This time lag could cause a problem for a

waiting global transaction when it is trying to determine whether a value read by it is correct. This

problem will be illustrated by the following example.

Example 7.3.1. In Figure 7.3.3(a), an update message u(X, t of a data object X is broadcast

at t I by S 1 and is received by S 2 at 1'1. At S 1, a global transaction T 2 is assigned a timestamp t 2 and a

global-start time message gs(t2) is broadcast at t2 and received by S2 at ('2. Assume that T2 has

updated only X and its update message u(X, 12) is broadcast after a waiting period at 14, which

- amves at Sz at t i . Before T Z completes at t4, another global transaction T3 at SI is assigned

timestamp t 3 < (4. Hence, a global-start message gs(t 3) is broadcast by S on behalf of Tg at t 3 and

received by S 2 at t'3. Assume that no update of X is issued by S 1 after t 1 and before t 3.

chapter seven section 7 3

Suppose that there is a global transaction T4 submitted at S2 with a timestamp t such that

t i < t < t ;, and T4 has read the value of X in u (X , t 1). Both global-start messages gs (t 2) and gs (t 3)

carry no information except their timestamps. When the global-start message gs(t 3) is received at t i ,

it would indicate to S2 that the time at S1 is at least t3 > t . Since no update of X has been broadcast

after t 1 at S S2 would mistakenly regard the value of X in u (X , t 1) as the correct value for T4.

However, the correct value of X for T4 should be the value of X in u (X , t 2).

Example 7.3.1 shows that the introduction of global-start message may cause problem in

identifying the correct values for a waiting global transaction. Note that the same problem occurs if

the second global-start message gs(t3) in Figure 7.3.3(a) is replaced by a timeout message or an

update message of a local transaction with the same timestamp t3 .

One way to remedy the above problem would be to stop broadcasting any message after a

global-start message has been broadcast until the update message of the corresponding global

transaction has been broadcast. However, this would delay the broadcast of the updates of all other

local and global transactions. Another remedy is to let a local transaction with a larger timestamp to

preempt a waiting global transaction, even if there is no need to do so because the union of the

readset and writeset of the local transaction has no intersection with the writeset of the global

transaction. However, this would increase significantly the chance of preemption of global

transactions.

We now propose a more efficient way to remedy this problem. Firstly, we modify the global-

start message gs(ta) of a global transaction Ta = R [D,]w [da] to carry not only the timestamp

ta = ts(Ta), but also the writeset da of Ta. We use WS (gs (t,)) to represent the writeset in gs(ta). In

this way, when gs(ta) is received by a site Sj, even though the update of Ta has not yet arrived at Si,

a global transaction Tk with a timestamp larger than ta waiting at Sj can decide whether it should

wait to read the update of Ta by checking if WS (gs (ta))nRS(Tk) = 0, where RS (Tk) is the readset of

chapter seven section 7 3

Tk. Secondly, when a global transaction T, broadcasts its update, a global-completion message

gc (A, t,, t) is broadcast instead of an update message, which carries the set A of updates by T, and

two timestamps t, = ts(T,) and t , where t is the time at which T, commitbed. If A contains only one

data object Y, gc(Y, t,, t) is used to represent gc((Y), t,, t). The timestamp t is called the global-

completion timestamp of T,. Note that the timestamp of the updates in a global-completion

message gc (A, t,, t) is t,, not t . When these updates are stored in the DB of a site, the timestamp t,

are attached to them. Global-completion messages from the same site are broadcast in the order of

their global-completion timestamps.

We now examine how the above affects the execution of global and local transactions.

Suppose T, = R [DJW [d,] and T~ = R [D ~ I W [&I are two global transactions waiting at the same site

Si, where ts (T,) = t, < ts (Tb) = tb. Therefore gs (t,) was broadcast before gs (tb). Suppose Tb

commits earlier than T,. This is possible if d, n (Db u db) = 0. In this case, the global-completion

message of Tb will be broadcast before that of T,, even though ts(T,) < ts(Tb). Note that the earlier

arrival of Tb's updates would not cause any problem for those global transactions waiting to read the

updates of T,, because d , n d b = 0. Therefore, the updates of global transactions may sometimes be

broadcast out of their timestamp order.

Consider another scenario in which a local transaction Tk is submitted at a site Si while a global

transaction T, = R [D,]w[&] is waiting at Si. 1f d, overlaps with either the writeset or readset of Tk,

then T, will be preempted by Tk; otherwise, Tk may be committed earlier than T,. Hence the update

- message of Tk may be broadcast earlier than that of T,, even though ts(Tk) > ts(T,). Based on the

- above examples, we make the following observation : the updates of a transaction with a larger

timestamp may be broadcast earlier than that of a global transaction with a smaller timestamp, if

their writesets do not overlap. However, the updates on a data object X are still broadcast by its

home site in their timestamp order.

chapter seven section 7 3

Since the update message of a global transaction is replaced by a global-completion message,

from now on, update messages are used only for local transactions. For clearness, we rename update

messages as local-update messages. The arrival of a global-completion message indicates the

completion of a global transaction whose timestamp has been announced by a global-start message

broadcast earlier.

Let us see how the inclusion of a writeset in a global-start message and the introduction of

global-completion messages solve the problem raised in Example 7.3.1. The update message

u (X, t 2) in Figure 7.3.3(a) is replaced by a global-completion message gc (X, 12, t 4) in Figure

7.3.3(b). After gs(t3) is received by S2 at t'3, S2 knows that the time of clock C1 at S is at least

t 3 > t . Also, it knows that the smallest global-start timestamp of the global transactions waiting at S

is t 2 < I . At this point, S can determine whether T4 has to wait for the global-completion message

of T2. If WS(gs(t2))nRS(T4) = 0, (this doesn't hold for the example in Figure 7.3.3(b)), then T4 does

not have to wait for the global-completion message of T2 and the value of X in u (X, r I) is correct for

T4. Otherwise, T4 has to wait for gc (X , t 2, t 4). In the latter case, after gc (X , t 2, (4) has arrived, S 2

knows that T2 is no longer a waiting transaction and the smallest global-start timestamp of the global

transactions waiting at S 1 becomes 13 > I. Hence, S2 knows that T4 no longer has to wait for the

update from other global transactions and the value of X in gc (X , t 2, t4) is correct for T4.

According to the above discussion, S2 must keep track of two types of information sent from

$1. The first is the largest timestamp, 11, received so far. S2 can infer that the time at $1 is not

smaller than (1. The second is the list of global-start messages of the global transactions waiting at

- SI. With the writesets in the global-start messages received by S2, S2 can determine whether a

waiting global transaction at S2 has to wait for some global-completion messages from SI. This

observation forms the basis of the virtual clock management which will be discussed below.

chapter seven section 7 3

In the above discussion, four kinds of messages have been discussed : timeout messages,

local-update messages, global-start messages and global-completion messages. The first three kinds

of messages carry only one timestamp. A global-completion message carries two timestamps, and

we refer to its global-completion timestamp as the timestamp of the message. Afier the introduction

of completion timestamp, there is no more violation in the sending order of messages, i.e., all

messages are broadcast and received in their timestamp order.

Corresponding to the four kinds of messages, there are four kinds of timestamps. The

timestamp in a local-update message of a local transaction is called a local-update timestamp. The

timestamp in a timeout message is called a timeout timestamp. We have already defined a global-

start timestamp and a global-completion timestamp.

We are now in a position to discuss the management of virtual clocks. As mentioned in

Section 7.2, at each site Si, a set of virtual clocks Cij, one for each remote site Sj +i), are

maintained. The virtual clock Cij has two virtual times. The upper virtual time ut(Cij) is the

largest timestamp that Si has received from S,. The lower virtual time lt(Cij) is the smallest

global-start timestamp received by Si from Sj such that the corresponding global transaction is still

waiting at Sj. If no such global-start timestamp has been received or no global transaction associated

with the received global-start timestamps is waiting at Sj, then lt(Cij) = ut(Cij). These two virtual

times are used by Si to determine if the values of remote data objects read by a global transaction at

Si are correct. Thus Cij is actually a list of timestamps, which initially contains the smallest

. timestamp which was received in a timeout message. The timestamps in Cij are ordered by their

values. The upper virtual time ut(Cij) is given by the largest timestamp in Cij. The lower virtual

timestamp It (Cij) is given by the smallest timestamp in Cij. Whenever a message with timestamp t

arrives at Si from a site Sj, the TSM of Si uses the following procedure to update the list Cij.

chapter seven section 7 3

Before presenting a formal procedure, we briefly describe the idea behind it. Since local-

update timestamps and timeout timestamps will be handled in the same way, we call them

independent timestamp. Suppose a timestamp t from Sj arrives at Si.

(1) Suppose t is an independent timestamp or a global-start timestamp. Since t is larger than any

timestamp in Cij, ut(Cij) should be advanced to t . If Cij contains a global-start timestamp, it

must be smaller than t and lt(Cij) should remain unchanged. If there is no global-stamp in Cij,

lt(Cij) should be advanced to t . This is done by first deleting all independent timestamps in

Cij, if any, and then appending t to Cij. From the above discussion, it can be seen that if t is an

independent timestamp or a global-start timestamp, then we have only one of the following two

cases after t has been processed. (a) Cij contains nothing but an independent timestamp. (b)

Cij is a list of some global-start timestamps and at most one independent timestamp. In case

(b), the independent timestamp, if any, is always the largest timestamp in Ci,. Note that when a

global-start timestamp t is appended to Cij, the writeset WS (gstt)) of the associated global-start

message gs (t) is stored in TM.

(2) If t is a global-completion timestamp which arrives in a global-completion message gc (A, t', t),

then there must be a global-start timestamp t' in Cij. It follows from the discussion in (1) that

Cij contains a list of global-start timestamps and at most one independent timestamp. The

arrival of the global-completion timestamp t indicates that the global transaction with

timestamp t ' is no longer waiting. Therefore, t ' should be removed from Cij. After the removal

of t', lt(Ci,) is equal to the smallest remaining global-start timestamp in Cij, if any; if no

global-start timestamp remains, then It (Cij) will advance to t . Also, ut (Cij) should be advanced

to t , because it is the largest timestamp received from Sj. This is done by first deleting t' and

the only independent timestamp from Cij, if any, then converting t to an independent

timestamp and appending it to Cij. Since the global transaction with timestamp t' is no longer

chapter seven section 7 3

waiting, the value o f t simply indicates the latest time at Sj. This is why t is converted to an

independent timestamp. When a global-start timestamp is deleted from Cij, the writeset

associated with it is no longer needed and hence is removed from the TM at site Si.

Procedure to maintain a virtual clock Cij at site Si

Initialization : Cij is initialized to a list containing only the smallest independent timestamp = 0.

Input : a message with timestamp t from site Sj

(1) If t is a simple or global-start timestamp, then delete all independent timestamps in Cij, if any,

and append t to Cij.

(2) If t is a global-completion timestamp which arrives in gc(A, t', t), then delete t' and all

independent timestamps from Cii, if any, convert t to an independent timestamp and append it to

Cij. 0

7.4. Global Timestamp Ordering Synchronization Algorithm

In this section, we describe the method used by GTOS for scheduling global and local

transactions. The execution of a local transaction has been described in Section 7.2. The main

concern of GTOS is to ensure that all the values read by a global transaction are correct. The

procedure for executing a global transaction consists of two phases and was briefly described in

Section 7.2. In the following, its second phase, which provides a mechanism to determine if the

values read are correct, will be described in more detail.

Procedure for the execution of a global transaction

Input : a global transaction To = R [D,]w id,] submitted at Si

chapter seven section 7.4

Phase One [Reading and Locking]

As described in Section 7.2.

Phase Two [Waiting and CommitlAbort].

Assign clock value t (Ci) to T, as its timestamp. Broadcast a global-start message containing

T,'s timestamp and writeset. Then execute the following steps.

(1) Make T, wait until either condition C1, C2, or C3 is true, where

C1 : there exists a remote fragment Fj and a data object X G D,Mj such that a new update of

X with a timestamp t I is received by Si at t 2, where t I c IS (T,) c t2,

C2 : for all remote sites Sj (with fragment Fj) such that Finoa # 0 , (i) ut (Cij) > ts(T,), and (ii)

lt (Cij) > ts (T,) or WS (gs(tk))nD, = 0, for all global-start timestamps 4 < ts (T,) in Cij,

where gs (tk) is the global-start message carrying tk,

C3 : T, is preempted by a local transaction.

(2) If C1 is true, then replace the old value of X by the new value in T,'s workspace. Then goto

(1).

(3) If C2 is true, then convert all the 1-locks of T, to h-locks and execute all its WRITE operations

on the data objects in d,. Then commit T,, retrieve a timestamp t , release all the locks held by

T,, and broadcast a global-completion message for T, with t as its global-completion

timestamp. The global-completion message also contains T, 's updates and timestamp.

(4) If C3 is true, then abort T, and broadcast to all other sites a global-completion message, which

contains the timestamp of T, and a global-completion timestamp which is the time of abortion

of T,, but no update.

chapter seven section 7.4

Note that if C1 is true, the value of X that Ta has read is not correct for To. GTOS replaces the

old value of X in F, by the new one and makes Ta wait again.

If C2 is true, condition (i) implies that the times of C, at all these remote sites Sj have passed

ts(Ta). For each of these remote site Sj, if lt(Cij) > ts(Ta), then no waiting global transaction at Sj

has timestamp smaller than ts(Ta). On the other hand, if WS(gs(tk))r\D, = 0 for all global-start

timestamps tk < ts(Ta) in Cq, then Ta does not have to wait for the update of any waiting global

transaction at Sj. In either case, it can be concluded that Ta has read the correct values from Fj.

Hence, Ta can execute its write operations and commit. The reason that we convert the 1-locks to h-

locks is to protect Ta from being preempted by a local transaction at this stage. Since Ta is no longer

waiting for any remote message and is about to commit, there is no need to abort it because of a

competing local transaction.

If C3 is m e , Ta is preempted because it is holding a 1-lock on a data object on which a local

transaction is requesting an incompatible h-lock. In this case, Ta is aborted. When Ta is aborted, a

global-completion message with no update has to be broadcast to delete Ta's global-start timestamp

from the virtual clocks at all remote sites. Otherwise, there will be some dangling global-start

timestamps.

Example 7.4.1. Figure 7.4.1 is a possible time chart of message broadcasts from a site Si. The

upper horizontal axis records the timestamps of the messages. The lower horizontal axis records the

times when the corresponding messages are broadcast. In the beginning, two timeout messages are

sent out separated by a time interval of A. Then two local transactions Ti1 and Ti2 are executed.

Their local-update messages are broadcast at the times when timestamps are assigned to the

transactions. When a timestamp is assigned to a global transaction Ti3, a global-start message is sent

out. After it has finished a waiting period, it executes all its write operations and a global-completion

message is broadcast at the end. In the case of global transaction Ti4, after it has broadcast a global-

chapter seven section 7.4

start message, it is preempted twice by local transactions Tis and Ti6. Eventually, Ti4 is restarted with

a new timestamp and completed after Ti6. 17

7.5. Correctness of GTOS

We first show that GTOS is deadlock-free. A set of sites Q deadlocks, only if there are some

waiting global transactions at Sk E d, and each site Sk is waiting for some message(s) from some

other sites in Q. Without loss of generality assume that all global transactions at the sites in Q are

waiting forever. To see that this is impossible, suppose that Ti, = R [~i,,,]w[d;,] belonging to site Si

has the smallest global-start timestamp ti,,, among all the waiting global transactions. Note that a

global transaction waits only if it is in phase two and none of the three conditions C1, C2, and C3

holds. (See the procedure for executing a global transaction in Section 7.4.) Suppose all global-start

messages have been received. For every remote site Sj (with fragment Fj), such that D imMj # 0, let

tjk be the smallest timestamp of the waiting transactions at Sj. The set consisting of all these

smallest timestamps is represented by ST. Cij does not contain any global-start timestamp smaller

than t jk . Otherwise, t jk would not be the smallest. Therefore, Cij contains only an independent

timestamp. (Refer to the discussion of virtual clock in Section 7.3.) In this case, both ut (Cij) and

lt(Cij) are advanced to tjk ik ti,. (See (1) in the procedure for maintaining virtual clocks, in Section

7.3). After all the global-start timestamps in ST have been received by Si, condition C2 in GTOS

becomes true for Tim and Ti, is unblocked. This shows that GTOS is deadlock-free.

It is relatively easy to see that any execution generated is serializable in timestamp order. No

matter whether a transaction T, is local or global, the timestamp of T, is assigned to it after it has

locked all the data objects in its readset and writeset that belong to its home fragment, and before any

of these locks is released. Since the HFS at each site uses 2-phase locking, the timestamp order of all

chapter seven section 7.5

the transactions belonging to a site is compatible with the order of their lock-points [BSW79].

Hence, a serial execution in their timestamp order of all the transactions belonging to a site preserves

all read-from relations among them. As for a global transaction Tk submitted at Si, if it has read a

copy Xi E Fj written by a transaction TI (belonging to site Si) , then GTOS ensures that the value read

is correct for Tk. In other words, TI is the transaction with the largest timestamp smaller than ts(Tk)

that has written X. Hence, the read-from relation between Tk and TI is maintained in a serial

execution in which all the transactions are ordered by their timestamps. This proves that any

execution generated by GTOS is serializable.

In GTOS, we cannot bound the waiting time of a global transaction because it may be

preempted many times by local transactions. In order to avoid infinite waiting, the system or the user

can assign different modes to a global transaction. We propose two different modes, high priority

mode (hp-mode) or low priority mode (Ip-mode), indicating two levels of priority. A global

transaction Ta =R[D,]W[&] in the hp-mode requests h-locks .for all the data objects in

(D, u d,)nFi, where Fi is its home fragment; if it is in the lp-mode, it requests 1-locks for all these

data objects. Since a hp-mode global transaction holds h-locks on data objects in its readset and

writeset, no local transaction can preempt it. A user can explicitly specify the hp-mode for a global

transaction so that its execution is guaranteed. Alternatively, a TM can convert a global transaction,

whose waiting time has exceeded a predefined limit, from the Ip-mode to hp-mode. Of course, we

have to trade this off with the blocking of some local transactions that are competing with a hp-mode

global transaction for accessing the same data object(s).

As the last remark, we mention that global transactions can be generalized from 2-steps to

multi-steps. A timestamp can be assigned to a global transaction when it commits, i.e., after all the

read and write operations have been executed, instead of before any write operation is executed.

(Updates are recorded only in a workspace and changes are reflected in the database only if the

chapter seven section 7.5

transaction commits). If this is done, read and write operations can interleave and the 2-step

requirement is not necessary. However, step (2) in GTOS has to be modified in this case. If

condition C1 in the procedure for executing a global transaction (see Section 7.4) is true, i.e., a new

copy of a data object read by a waiting global transaction To has arrived at To's home site, To cannot

just read the new copy. To may have to redo its computation, if the computation depends on the

value of this new copy.

7.6. Performance of GTOS

In the following, we will analyse the performance of transaction execution under GTOS.

Under GTOS, a local transaction is never blocked by a waiting global transaction in the lp-mode.

Since we don't assume a frequent occurrence of hp-mode global transactions, the blocking caused by

them will be insignificant. The execution time of a local transaction consists only of local processing

time and no communication time. Hence, there should be no significant difference between the

response time for a local transaction under GTOS and GTOC.

Now we want to estimate the time that a global transaction has to wait under GTOS after it is

assigned a timestamp and before it proceeds to execute its write operations or before it is preempted

by a local transaction. Let E be the maximum difference between the clocks at any pair of sites. We

assume that the fastest local clock remains to be the fastest for some time until the clocks are reset.

(This assumption may not be very practical, but it provides a basis to do the estimation.) We want to

show that E is bounded by a,,, + A, where a,,, is the maximum time required to send a message from

one site to another in the underlying network, measured by the fastest local clock. This is derived as

follows. Let the site with the fastest local clock be Si. Suppose Si broadcasts a message at time t.

When this message is received by another site Sj, the local clock at Sj is advanced to t + 1. At the

chapter seven section 7.6

same time the local clock at Si by our assumption must be larger than t + 1 and is at most t +a,.

Therefore, at any time when S, receives a message from Si, the difference of the clock values at Si

and Sj is bounded by a,. If there is no message to be broadcast, Si sends out timeout messages in

every A units of time. Therefore, during the time when Sj receives no message from Si, the difference

between their local clocks is at most a, + A, i.e., E r am +A.

Let W, be the time that a global transaction has to wait until it can proceed to execute its write

operations or until it is preempted by a local transaction. There are two cases that a global

transaction T, with timestamp t, has to wait. In the first case, it waits for some messages but not for

the global-completion message from a waiting global transaction. In the second case, it is waits for

the global-completion messages of some waiting global transactions as well as other messages. In

the first case, after a waiting period of at most E, the local clocks at all other sites will pass t,. After

waiting for additional A + a, time units, T, will definitely receive all messages it was waiting for. In

other words, within a period of E + A+ a,, T, is either aborted &cause condition C3 in GTOS

becomes true, or T, can start to execute its write operations because condition C2 in GTOS becomes

true. Condition C1 may become true many times during the waiting period and T, goes back to wait

every time it has read a new value. However, this does not affect the bound E + A + a, on the waiting

time. Hence W, is bounded by E + A + a, and the average value of W, is E + A12 + a,, where a, is

average time required to send a message from one site to another site.

In the second case, at any real time t , let WT be the set of all global transactions that are

waiting at t . The size of WT depends on t . Let G = (WT, E) be a directed graph in which the nodes

are the transactions in WT and for any two transactions Ti and Tj in WT, (Ti, Ti) E E if and only if Tj

is waiting for the global-completion message of Ti. The graph G is acyclic; otherwise, there would

be a deadlock among the transactions in WT. Let (TI, T2,. . . . Th) be a longest path in G. We will

show that the waiting time W, of any global transaction in WT is bounded by E + A + ha,. Note that,

chapter seven section 7.6

for i = 2,. . . , h , the timestamp of Ti is larger than that of Ti-1, and Ti is waiting for the global-

completion message(s) of Ti-l and possibly some of the transactions in (TI,. . . , C-1). Since TI is

not waiting for the global-completion message of any global transaction in WT, it follows from the

above discussion that the waiting time of TI is bounded by E + A + a,. In the worst case, the global-

completion message of T1 is sent after TI has waited for E + A + a, units of time. This global-

completion message is received by T2 after T 2 has waited for E + A + 2a,. By induction, the waiting

time for Th is bounded by E + A + ha,. (Note that in the above discussion, we have ignored the time

for processing all its write operations after a global transaction has finished its waiting period,

because this time is insignificant compared with its waiting time.)

In the ideal case, in which global transactions are very rare, a global transaction seldom has to

wait for the global-completion messages of other global transactions. Thus, the waiting time Wg is

E + A/2 + a, on average. In general, A is set much smaller than a, because the smaller A is, the

shorter is the waiting time of a global transaction. Since e 5 a, +A, the average value of Wg is

approximately equal to 2%. Recall that, under GTOC, if all certification requests of a global

transaction are granted by remote GS's (global synchronizers) without much waiting, the time spent

for communication is also 2%. Therefore, if global transactions are very rare, there is no significant

difference between the waiting times for a global transaction under GTOC and GTOS. However, if

the speeds of the clocks at different sites are very close to each other so that E is much smaller than

%, then the waiting time W, under GTOS would be much smaller than 2% and hence GTOS would

perform better than GTOC in this case.

If we compare GTOS with the primary copy locking scheme (PC), the result would be similar

to those in Section 6.5. In particular, the equations (6.5.1) and (6.5.2) still hold when GTOC is

replaced by GTOS. Hence, in a WADDS in which global transactions are rare, GTOS, as well as

GTOC, is definitely better than PC and other conventional concurrency control schemes, in which

chapter seven section 7.6

the updates of a local transaction must be sent out before it can be completed.

When comparing GTOC with GTOS, it can be seen that they have different flavors. However,

it is not clear which is better. Under GTOC, a global transaction may have to wait in a retry list for

other global transactions, when it is waiting for remote sites to grant its certification requests. On the

other hand, under GTOS, a global transaction has to wait for messages from other sites to determine

whether the values it has read are correct. Also, it may be preempted many times before it can be

completed. The control mechanism of GTOS is simpler than that of GTOC. A site under GTOS can

decide by itself if a global transaction should be committed or aborted by simply waiting for

messages. In contrast, a site under GTOC has to run a distributed algorithm to get remote sites to

certify the GLOBAL-READ of a global transaction. Also, at every site Si, GTOC has to consume a

considerable amount of space to store two lists of records, COMMITi and WAITi. As for GTOS, a

drawback is the cost of broadcasting timeout messages. In any case, they both serve the purpose in

that local transactions enjoy good response time and high availability. Moreover, only global

transactions have to be controlled by a global concurrency control.

CONCLUSION

If reliability and availability are adopted as design goals, then replication is indispensable in a

distributed database system, even though replication substantially increases the complexity of the

control algorithm. Unfortunately, in a partitioned database system, degradation of availability is

inevitable.

In this thesis, we have shown that an execution generated by a prevention protocol in a

partitioned database can be characterized by a partition I 0 graph; an execution is serializable if and

only if the partition I 0 graph has a DITS. We have also shown that every execution generated by a

prevention protocol is TC-serializable.

We have derived an upper bound on the availability of any database system with two partitions.

The weak uniformity assumption on the transaction distribution submitted Is more general than the

uniformity assumption used elsewhere [COK86]. We have shown that our upper bound is achievable

in a fragmented database system.

The inherent conflict between serializability and availability in a general database system has

forced us to introduce a model with less generality. We have demonstrated that both serializability

and high availability are achievable in a fragmented database. The activity of transactions in a

fragmented database system is rather restricted. However, this model is applicable in many

situations, particularly in a wide-area distributed database system, in which communication delay is

substantial. We have chosen a policy which favors local transactions over global transactions.

Under this policy, no local transaction will be blocked due to a global transaction.

We have introduced a fragmented execution to model an execution in a fragmented database

system. It was proved that a fragmented execution is serializable if its GOS graph is acyclic. This

conclusion

result shows that global concurrency control is necessary only for global transactions in a fragmented

database.

Two algorithms, Global Timestamp Order Certification (GTOC) and Global Timestamp Order

Synchronization (GTOS), are proposed in this thesis to synchronize a partition execution. The

former is an active scheme which sends out certification requests to remote sites. If all certification

requests are granted by the remote sites, a global transaction can execute and broadcast its update.

The latter is a passive scheme in which a global transaction waits until it is determined whether the

copies from remote sites are correct. We have also shown that these two algorithms perform better

than other conventional schemes such as primary copy locking, if they are applied to a fragmented

database system.

REFERENCES

References

[ASC85] A. E. Abbadi, D. Skeen and F. Cristian, An Efficient, Fault-Tolerant Protocol for

Replicated Data Management, Proc. 4th ACM Symposium on Principles of Database

Systems, Mar 1985,215-229.

[AbT86] A. E. Abbadi and S. Toueg, Availability in Partitioned Replicated Databases, Proc. 5th

ACM Symosium on Principles of Database Systems, Mar 1986,240-251.

[AID761 P. A. Alsberg and J. D. Day, A Principle for Resilient Sharing of Distributed Resources,

Proc. of the 2nd International Conference on Software Engineering, Oct 1976, 562-

570.

[AwE84] B. Awerbuch and S. Even, Efficient and Reliable B~padcast is Achievable in an

Eventually Connected Network, Proc. 3rd ACM Symposium on Principles of Distributed

Computing, 1984,278-281.

[BGS86] D. Barbara, H. Garcia-Molina and A. Spauster, Protocols for Dynamic Vote Assignment,

Proc. 5th ACM Symposium on Principles of Distributed Computing, Aug. 86, 195-205.

[BSW79] P. A. Bemstein, D. W. Shipman and S. W. Wong, Formal Aspects of Serializability in

Database Concurrency Control, IEEE Trans. on Software Eng. SE-5, 3 (May 1979),

203-2 16.

[BeG81] P. A. Bernstein and N. Goodman, Concurrency Control in Distributed Database

Systems, ACM Computing Surveys 13,2 (June 198 I), 185-221.

P. A. Bernstein and N. Goodman, The Failure and Recovery Problem for Replicated

Databases, Proc. 2nd ACM Symposium on Principles of Distributed Computing, Aug.

1983,114-122.

B. T. Blaustein, H. Garcia-Molina, D. R. Ries, R. M. Chilenskas and C. W. Kaufman,

Maintaining Replicated Database Even in the Presence of Partitions, Proc. IEEE

EASCON Conference, 1983.1-8.

B. T. Blaustein and C. W. Kaufman, Updating Replicated Data During Communications

Failures, Proc. of the 11th Intl. Conf. on Very Large Databases, Aug 1985,49-58.

M. A. Casanova, The Concurrency Control problem for Database Systems, in Lecture

Notes in Computer Science 116, Springer Verlag, Berlin, 198 1.

B. A. Coan, B. M. Oki and E. K. Kolodner, Limitations on Database Availability When

Networks Partition, Proc. 5th ACM Symposium on Principles of Distributed Computing,

A u ~ 1986,187-194.

S. B. Davidson, Optimism and Consistency in Partitioned Distributed Database Systems,

ACM Transactions on Database Systems 9 , 3 (Sept 1984), 456-481.

S. B. Davidson, H. Garcia-Molina and D. Skeen, Consistency in partitioned networks,

ACM Computing Surveys 17,3 (September 1985), 341-370.

D. Dolev, The Byzanitine Generals Strike Again, J. of Algorithms 3, (1982), 14-30.

D. Eager and K. C. Sevcik, Achieving Robustness in Distributed Database Systems,

ACM Trans. Database Systems 8 , 3 (Sept, 1983), 354-381.

M. Fischer, N. Lynch and M. Paterson, Impossibility of Distributed Consensus with One

Faulty Process, J. ACM 32,2 (1985), 374-382.

[GLB 851

H. Garcia-Molina, T. Allen, B. Blaustein, R. M. Chilenskas and D. R. Ries, Data-Patch:

Integrating Inconsistent Copies of a Database after a Partition, Proc. 3rd IEEE

Symposium on Reliability of Distributed Software and Database Systems, Oct 1983,

38-46.

H. Garcia-Molina, N. Lynch, B. Blaustein, C. Kaufman, S. Sarin and 0. Shrnueli, Notes

on a Reliable Broadcast Protocol, Tech. Rep. CCA-85-08, Computer Corporation of

America, Dec 1985.

H. Garcia-Molina and B. Kogan, Achieving High Availability in Distributed Databases,

Proc. 3rd International Conf. on Data Engineering, Feb, 1987.

D. K. Gifford, Weighted Voting for Replicated Data, Proc. 7th ACM Symposium on

Operating System Principles, Dec 1979, 150- 162.

J. Gray, Notes on Database Operating Systems. Operating Systems: An Advanced

Course, Lecture Notes in Computer Science 60, springer-verlag, New York, 1978.

T. Ibaraki, T. Kameda and T. Minoura, Serializability with constraints, ACM Trans.

Database Systems 12,3 (Sept 1987), 429-452.

S. Jajodia, Managing Replicated Files in Partitioned Distributed Database Systems,

Proc. 3rd Int. Conf. on Data Eng., Feb. 87,412-418.

B. Kogan and H. Garcia-Molina, Update Propagation in Bakunin Data Networks, Proc.

6th ACM Symposium on Principles of Distributed Computing, Aug 1987, 13-26.

L. Lamport, Time, Clocks and the Ordering of Events in a Distributed Multiprocess

Systems, Comm. ACM 21, (July 1978), 558-564.

N. Lynch, B. Blaustein and M. Siegel, Correctness Conditions for Highly Available

Replicated Databases, Proc. 5th ACM Symposium on Principles of Distributed

Computing, Aug 1986,ll-28.

[MiW82] T. Minoura and G. Wiederhold, Resilient Extended True-Copy Token Scheme for a

Distributed Database System, IEEE Transactions on Software Engineering SE8, May

1982,173-189.

[NoA83] A. D. Norman and M. Anderton, Empact, a distributed database application, Proc.

AFIPS Nat. Computer. Conf.52, (1983), 203-217.

[Pap791 C. H. Papadimitriou, The Serializability of Concurrent Database Updates, J. ACM 26,4

(Oct. 1979), 631-653.

[PSL80] M. Pease, R. Shostak and L. Lamport, Reaching Agreement in the Presence of Faults, J.

ACM 27, (1980), 228-234.

[SBK85] S. K. Sarin, B. T. Blaustein and C. W. Kaufman, System Architecture for Partition-

Tolerant Distributed Databases, IEEE Transactions on Computers C-34, 12 (Dec 1985),

1158-1 163.

[Sar86] S. K. Sarin, Robust Application Design in Highly Available Distributed Databases,

Proc. Fifth Symposium on Reliability in Distributed Software and Database Systems,

Jan 1986,87-94.

[SkW84] D. Skeen and D. D. Wright, Increasing Availability in Partitioned Networks, Proc. 3rd

ACM Symposium on Principles of Database Systems, April 1984,290-299.

[St0791 M. Stonebraker, Concurrency Control and Consistency of Multiple Copies in Distributed

INGRES, IEEE Transaction on Software Engineering SE-3,3 (May, 1979), 188-194.

figure

Execution of
A's transaction

Read Saving / IclsaaI

Execution of
B's transaction

Read Checking / Read Checking

Add $1000

Print Total

Write Checking

C $6000

Figure 2.1.1 Illustration for Example 2.1.1.

figure

Y

(a) TRF(L).

(c) Modified TRF (L3).

Figure 2.2.1 Transaction Read-from graphs.

figure

(b) DITS for TI0 (L).

Figure 2.3.1 TI0 graph and DITS.

figure

Figure 2.4.1 Translation of transactions into posets of physical operations.

figure

Rp log L

Figure 2.4.2 An rp log.

(a) TI0 (L).

(b) DITS of TI0 (L).

Figure 2.4.3 TI0 graph of a rp log L and DITS.

figure

Figure 3.1.1 Rp log L and TI0 (L) .

Figure 3.2.1 Illustration for Example 3.2.1.

figure

(dl TI0 (L 1)

Figure 3.3.1 Illustration for Example 3.3.1.

figure

(f) TI0 (L3)

Figure 3.3.1 Illustration for Example 3.3.1.

figure

Figure 3.4.1 Illustration for Example 3.4.1.

figure

(a) Rp log L '

(b) TI0 (L ')

Figure 3.4.2 Illustration for Example 3.4.2.

figure

(c) DITS of PIO (L)

Figure 3.5.1 Illustration for Examples 3.5.1 and 3.5.2.

-- 150 --

figure

Figure 3.5.2 An illustration for the Non-Selective Assumption.

figure

Figure 4.1.1 Acceptance Ratio.

figure

Figure 4.2.1 Two PI0 graphs.

figure

(a) If P 9 *P2Pf is a DITS
of PIO(L) ,X#Y.

(b) If P .LP 1P is a DITS
of PIO(L) ,X#Y.

Figure 4.3.1 Two DITS's for PI0 (L) .

figure

Figure 4.3.2 Inclusion relationships.

figure

Distributors
Distributor at other

sites

Figure 5.2.1 Architecture of SHARD.

figure

- - - -
F 1 F2 F 3 F 1 F 2 F 3

Figure 5.3.1 A fragmented database system.

figure

T I = Ri[Xl Wi[Xl

(X is updated to hl)

T2 = R 2[Yl WdYI

(Y is updated to vl)

values read by T3 : values read by T4 :

Figure 5.4.1 Illustration for Example 5.4.1.

figure

(a) A complete RAG

(b) A cyclic RAG

F2 F 3

(c) An acyclic RAG

Figure 5.4.2(a-c) Three RAG'S.

figure

F 2 F 3

(d) Loopless RAG

Figure 5.4.2 A RAG.

Figure 5.4.3 RAG of Example 5.4.3.

figure

(a) RAG

(b) An execution in a fragmented database

Figure 5.4.4(a-b) Illustration for Example 5.4.4.

figure

Figure 5.4.4(c-d) Illustration for Example 5.4.4.

figure

Figure 5.4.5 RAG for a fragmented database.

figure

Figure 6.1.1 Illustration for Example 6.1.1.

figure

, local transaction

-0- global transaction

Figure 6.1.2 (a-b) Illustration for Example 6.1.2.

figure

local transaction

-0- global transaction

Figure 6.1.2 (c-d) Illustration for Example 6.1.2.

figure

Transactions

TM

A

Figure 6.2.1 An architecture for a single-site database.

figure

Scheduler s
.

v

UPM CM 4 CM of
) other sites

DM

A

DB
v .

home remote
fragment fragments

\/

Figure 6.2.2 An architecture for GTOC.

figure

(a) Precedence edge.

(b) Global-read edge.

-0- global transaction

,-, local transaction

--------------, precedence edge

...................... global-read edge

Figure 6.3.1 (a-b) Precedence edge and global-read edge.

figure

(c) Induced edge.

(d) Induced edge.

-0- global transaction

,- local transaction

r precedence edge

...................... x- global-read edge

----------* induced edge

Figure 6.3.1 (c-d) Two kinds of induced edges.

-- 170 --

figure

- precedence edged

.+ global-read edge

- - - - - - s induced edge

Figure 6.3.2 A GOS graph.

figure

0-13 -.. t l
0 0 0 - precedence edged

.- global-read edge

- - - - - - 9 induced edge

Figure 6.4.1 GOS graph of T I , , T p and Tls .

- precedence edged
. .;p, global-read edge

- - - - - - -tm induced edge

Figure 6.4.2 GOS graph of T l 2 , T 1 5 , T p and T3.+

figure

[t 1, t 2] -- safe interval of T4b against COMMIT 1.

[W 1 , t2] -- safe interval of T 4 against WAIT 1.

t r) = D t s (C R 1 (T4b)).

[t':, t i] -- safe interval of T k against COMMIT2,
[t ' I , w ;I -- safe interval of T j a against WAIT2.
t 3 = D t ~ (C R 2 (T g ,)) .

Figure 6.4.3 Deadlock.

figure

user
transactions

Scheduler
v TSM d

171 p-1
A

1

I I
UPM CM

remote
fragment fragments U 1

CM's at
other sites

Figure 7.2.1 An architecture for GTOS.

figure

hr-lock

hr-lock

lr-lock I compatible

compatible

hw-lock incompatible

incompatible

lw-lock

incompatible

incompatible

incompatible

incompatible

lr-lock

compatible

preempts

compatible

incompatible

lw-lock

preempts

preempts

incompatible

, incompatible

Figure 7.2.2 Compatibility among h-locks and 1-locks.

figure

t l = t s (T 1) t 2 = ts(T3)
time axis at S 1

1 I . time axis at S 2 I

1 ' 1 t '2 = ts (T 2) t ;

I t 2 = r l + A
I

1 time axis at S 1

I
I
I
I
I
I
I
I
I
I
I
I .

v time axis at S 2

t '1 1 '2 t '3

(c) timeout message with time tolerance A

Figure 7.3.1 Update and timeout messages.

figure

I
I 1 time axis at S 1

I
I time axis at S 2

(a) Deadlock.

time axis at S 1

time axis at S 2

(b) Global-start messages, gs ().

Figure 7.3.2 Deadlock and a remedy.

figure

time axis at S

time axis at S 2

(a) Problem caused by global-start messages.

(b) Remedy.

Figure 7.3.3 Global-start messages and global-completion messages.

figure

timeout timeout timeout
msg msg Ti Tiz 3 Ti.4 Tis Ti.; Ti6 Tiy

msg
timestamp I I I I

I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I l I I

I I I I
I I

I I broadcast I I

time of I I I

the I

messages I
I I I
I ; i r r

H waiting execution

time time
ofTi3 0fTi3

waiting time of Ti4
* m-

execution
time

of Ti4

------ 9 timeout message - local-update message

,-- global-start message

global-completion message

Transactions with a '*' are global transactions.

Transactions with a '**' are global transactions resubmitted with new timestamps.

Figure 7.4.1 Time Chart of Transaction Execution.

