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ABSTRACT

In this thesis we have sought solutions of the nonstatic
spherically symmetric field equations which exhibit non-zero
shear. The Lorentzian warped producf construction is used to
present the spherically symmetric metric tensor in double-null
coordinates. The field equations, kinematical quantities, and
Riemann invariants are computed for a perfect fluid stress-
energy tensor. For a special observer, one of the field
equations reduces to a form which admits wave-like solutions.
Assuming a functional relationship between the metric
coefficients, the remaining field equation becomes a second
order nonlinear differential equation which may be reduced to a
Bernoulli equation. Some special solutions are found which have
shear and satisfy various weak energy conditions.

The double null coordinates are also used to study the
existence of a timelike collineation vector parallel to the
velocity of an anisotropic fluid. The resulting solutions are

reducible spherically symmetric spaces.
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CHAPTER I

MOTIVATION AND HISTORICAL BACKGROUND OF THE PROBLEM

Introduction

In classical general relativity there are several major
unresolved problems. Many of these problems involve the
rhenomena of gravitational collapse. ’Gravitational collapse is
very important, since it simultaneously presents the greatest
prediction of classical general relativity, and poses the most
difficult problems of the theory. The most important unresolv-
ed problem is the cosmic censorship hypothesis which was first
posed by Penrose [1l]. There are several versions of this
‘conjecture [2] but they all essentially assert that "realistic”
gravitational collapse will result in a singular final state in
which the singularity is enclosed in an event horizon. This
conjecture is important for several reasons [3]:

(a) singularities cannot appear at random in spacetime

but are always enclosed in event horizons;

(b) important results in general relativity, such as the
Schoen-Yau Positive Mass Theorem [4,5], the Black
-Hole Area Theorem [6], and several others, assume
the validity of the cosmic censorship hypothesis;

(c) in astrophysics, the final states of stars whose mass

exceeds a certain threshold must be black holes and



not "naked" singularities.

There are many papers in the literature documenting the
attempts to resolve this conjecture. Much of this work has
been in the production of examples which test various aspects
of this problem. A common feature of many of these examples is
that they are physically unrealistic. An example is collapsing,
radiating dust'conjured in a manner so that, as the singularity
forms, the matter becomes evanescent. This approach, which is
entirely mathematical, has few advantages from a physical point
of view. These examples also tend to neglect the effects that
realistic matter might impose on the collapse. Seifert [2,7]
has put forward the idea that the shear of a realistic collaps-
ing fluid, and hence the Yiscosity due to shear-stresses, may
be important for excluding naked singularities. Israel [8,9]
has put forth a weaker conjecture, called the event horizon
conjecture, for which there are no known counter-examples. The
event horizon conjecture asserts that, when gravitational
collapse has proceeded beyond a certain critical point, an
event horizon forms. The nature of the critical point has been
left vague. One could take Thorne’s hoop conjecture [10] as an
indicator of the critical point: "Horizons form when and only
when a mass M gets compacted into a region whose circumference
in every direction is € < Zn(ZGM/cz)." One might also
conjecture that the event hbrizon forms in order to preserve

the generalized second law of black hole thermodynamics. 1In



any case a deeper study of the properties of matter and its
motion during’gravitational collapse will be necessary before
these issues may be resolved. |

Gravitational collapse has been studied in several

contexts:

(a) cosmological studies of gélaxy formation;

(b) astrophysical studies of supernovae;

(c) study of formation of white dwarf stars and neutron
stars; |

(d) study of the possible physical origin of singularities
of solutions of Einstein’s field equations.

C.W. Misner [11] has distinguished three types of gravitational
collapse:

(a) stabilized collapse when matter coagulates to form
well-known astrophysical objects such as planets,
stars, and galaxies;

(b) catastrophic collapse when matter is in near free-fall
with increasing density and remains in this state;

(c) dynamical collapse when a catastrophic collapse is
terminated by the formation of a quasi-static central
mass such as a white dwarf star or a neutron star.

As gravitational collapse is associated with matter, we

should expect that the mathematical properties of the models
which we use for matter shoﬁld appear prominently in the study

of gravitational collapse. It is an unfortunate aspect of the



Einstein field equations that they are so difficult to solve in
general. The specification of realistic models for matter
makes these equations even more intractable. We are forced
into using idealized matter models which lead to solvable
systems of partial differential equations. These simpler
models have their cost however.

Astrophysical objects are usually modelled in general
relativity as perfect fluids. Perfect fluids are fluids whose
internal resistance to flowing is zefo. Realistic models of
astrophysical objects should include viscosity, heat flows, and
electromagnetic fields. For large classes of applications in
astrophysics, static perfect fluid models are adequate, but
recently anisotropic (the pressure is different in different
directions) fluids and nonstatic perfect fluids motions have
become.topics of active research in general relativity. The
objective in these lines of research is to produce models for
the nonstatic interior of stars, compact ultradense objects,
and to study the evolution of radiating spheres and gravita-
tional collapse.

Viscous fluids are a specialization of anisotropic fluids
to the case where the shear tensor of the fluid velocity is
proportional to the anisotropic pressure. These fluids are of
interest since they have been used to model relativistic quasi-
static dissipative processes‘near thermodynamic equilibrium.

Cutler and Lindblom [12] have studied the effect of fluid



viscosity on neutron star oscillations. Some of their inter-
esting conclusions are that neutron star matter becomes more
viscous in the superfluid state and that the dominant enérgy
dissipation mechanism in neutron stars is the shear viscosity.
Exact solutions for viscous fluids are very difficult to
find directly from the Einstein fieid equations. Nonstatic
exact viscous solutions could be used as realistic models of
gravitational collapse and might show some insight into the
problem of cosmic censorship. Some of the technical difficult-~
ies of viscous gravitational collapse have recently been
discussed by Coley and Tupper [13]. The problem we propose to
study is related to, and was partially motivated by, the
problems pointed out by Coley and Tupper. Coley and Tupper
point out that that there are very few known viscous-fluid
solutions of the Einstein field equations and that the problem
of matching these solutions to a portion of the exterior
Schwarzschild solution is not possible in general. Coley and
Tupper also mention the difficulty in the matching problem
related to the choice of interior and exterior coordinate
systems. A problem which was not discussed by Coley and Tupper
is the choice of the thermodynamic theory to be used in these
studies. Usually the Eckart [14] model of relativistic
thermodynamics is used for these studies. However, it suffers
from a serious defect in that‘it is an acausal theory in which

there may be certain signals which propagate with speed larger



than that of light. 1Israel [15], and Hiscock and Lindblom [16]
have extended the Eckart theory in ways that make it causal.
These new theories are much more complicated than that‘of
Eckart. To our knowledge therevhéve been no attempts to use
these new thermodynamical theories to create realistic models
of gravitational collapse.

A large collection of solutions of the viscous Einstein
field equations is desirable so that the effects of viscosity
may be better understood. Any method which may either
reinterpret known metrics or which will help generate new
solutions will be of interest. Through the work of Tupper
[17,18,19] and others [20,21,22], it is well-known that a given
metric tensor does not leqd to a unique physical stress-energy
tensor and thus may have various physical interpretations.
Tupper has given conditions that allow certain perfect fluid
solutions to be reinterpreted as viscous magnetohydrodynamic
fluid with heat conduction. In [18] Tupper shows how under
certain conditions that a perfect fluid spacetime may be re-
interpreted as a magnetohydrodynamic fluid. In [19] Tupper
shows how to find, under appropriate conditions, a viscous
magnetohydrodynamic reinterpretation of a given perfect fluid
solution. Tupper’s method depends on finding the fluid
velocity of the viscous magnetohydrodynamic fluid by equating
the stress-energy tensor ofvthe perfect fluid solution to the

viscous magnetohydrodynamic stress-energy tensor. The



equations needed to find this velocity involve the shear of the
viscous magnetohydrodynamic fluid. The viscosity introduces
some freedom of choice for the viscous magnetohydrodynamic
velocity. Resolution of this prpblem raises interesting
questions about the inheritance of the symmetries of the
perfect fluid solution by the magnétohydrodynamic solution. A
mathematical description of the possible physical situations
that may arise through Tupper’s method can be made using the
Raychaudhuri equation (see Chapter 2). Tupper’s method has
also been applied in studies of various cosmological models
[23,24,25,26]. A large collection of perfect fluid solutions
will be needed for effective use of Tupper’s method in
modelling realistic gravi@ational collapse.

As the collapse of matter is a nonstatic process, we
should try to find nonstatic perfeét fluid solutions. The role
of shear has appeared repeatedly in the previous discussion
hence we will look for nonstatic spherically symmetric perfect
fluids with shear and possibly other nonzero kinematical

quantities.

Statement of Problem

The Einstein field equations inside matter are

(1.1) G = 7T

ab ab’
(we use units with 8nG = ¢ = 1) with reasonable physical side
conditions on the stress-energy-momentum tensor Tab. The



system of equations (1.1) is a quasi-linear second order
coupled system of ten partial differential equations for the
ten unknown functions of the metric tensor g.0° The reésonable
side conditions usually imposed on Tab are that it should
describe macroscopic matter with everywhere non-negative energy
density, nonspacelike momentum floﬁs, and pressures rather than
tensions.

From (1.1) and the differential identity
(1.2) G“";b =0,
we deduce that the stress-energy-momentum tensor must satisfy
the equations
(1.3) T , = 0.

In conjunction with @hese side conditions we may impose
conditions on the admissible matter motions. If we assume the
matter is modelled by a fluid we may insist that the flow of
the fluid has certain specified kinematical properties such as
nonzero shear, acceleration, vorticity, or expansion.

From the preceding section we expect that shear will play
a very important role in the study of realistic gravitational
collapse. It would be useful to extend the collection of non-
static spherically symmetric interior solutions with shear and
other kinematical properties. There are many matter models one
could choose for the interior of matter. We will concentrate

on perfect fluids and latervdiscuss some results of recent work

on anisotropic fluids.



Kramer et al. [27] have reviewed the known (in 1980) non-
static spherically symmetric perfect fluid solutions. Later in
their plenary survey of exact solutions of Einstein’s fiéld
equations Kramer and Stephani [28] note that only a few
radially shearing solutions for perfect fluid interiors are
known. This general class of solutibns should be very large.
Nonstatic perfect solutions can be classified according to
properties possessed by the fluid flow i.e. shear, acceler-
ation, vorticity, and expansion. All solutions in a spheric-
ally symmetric spacetime must have zero vorticity as the
direction of vorticity would select a preferred direction.

We shall consider the problem of finding exact nonstatic
spherically symmetric shearing solutions of the perfect fluid
field equations and of the anisotropic fluid equations. 1In
particular we want solutions that have flows which are shear-
ing, expanding (or contracting), and which are accelerating.
The known classes of these solutions with these properties are
very sparse due to the inordinate difficulty in solving the
field equations. We will not apply the causal thermodynamic

theories to our work.

Methodology

The physical method for finding exact interior solutions
in General Relativity has essentially three steps:

(1) selection of allowable symmetries;



(2) selection of a matter model; and

(3) selection of initial (boundary) conditions.

The selection of allowable symmetries will usually constréin
the mathematical form of the metrig tensor; Often there is
more than one system of coordinates which are "adapted" to the
symmetries, thus a choice of coordinétes may be involved in
this step. The selection of a matter model not only may
include the type of material (dust, radiation, perfect fluid,
viscous fluid, anisotropic matter, etc;), but also may include
an equation of state or a choice of thermodynamical model. We
will neglect the contributions of other physical fields such as
the electromagnetic fields and neutrino fields.

The selection of bouqdary conditions may involve initial
conditions on a spacelike hypersurface, junction conditions on
a timelike hypersurface (this also requires a choice of
"exterior" spacetime model), or asymptotic conditions on the
"boundary" of spacetime. .

Even while employing very special choices in the physical
method we will often encounter intractable systems of partial
differential equations. The literature abounds with variants
of the above strategy employed to overcome the practical
difficulties encountered. In many cases numerical integration
is used to find approximate solutions which yield useful
information about‘the model.

An alternate method is to relax the "imposed" physics and

10



to adopt mathematical stratagems which will simplify the field
equations to the extent that exact solutions may be found. We
will call this strategy the method of mathematical simpliéity.
The physical interpretation of the‘solutions found in this way
depends to a large degree on how much of the matter model has
been retained. Often an explicit equation of state is not
imposed which leads to the necessity of deriving it (if
possible) from the field equations and the twice contracted
Bianchi identities. |

The mathematical conditions imposed usually fall into two
classes:

(a) special forms of the metric tensor, and

(b) invariance of the physical fields under special '

motions or symmetries.

The two classes are not disjoint as special motions or
symmetries will in general constrain the form of the metric
tensor. Often some of the metric tensor components are assumed
to be separable or have special functional forms of the
coordinates. The invariance of the physical fields under
various motions include Killing vector fields, homothetic
motions, conformal Killing vector fields, affine conformal
collineations, and others [29].

Treatment of pérfect fluid models usually involve ad hoc
simplifications to obtain analytical solutions for the metric

coefficients, the pressure, and the density. These models are

11



only approximations of the real situation in nature. The
degree of unrealism in a model is a cost of the modelling
process that is hopefully compensated by simple analytic
solutions. Often the unrealism appears in the form of unusual
equations of state.

A vexing problem in these investigations is that a
solution which has a very simple appearance in a certain
coordinate system may have a very complicated appearance in
another coordinate system. Many times equivalent solutions
have been rediscovered by various researchers who were either
unaware of the other solutions or could not see the equi-
valence. There is an algorithm for determining the equivalence
of metrics but it is extrgmely difficult to carry out with hand
calculations. Recently researchers have claimed that computer
programs exist which can perform this difficult task.

The choice of a Lorentzian manifold as a model in which to
put spacetime physics reflects our desire that spacetime should
be a continuum (at least at the non-quantum level). A very
useful tool, when it can be employed, is the concept of
Lorentzian warped product manifolds. The notion of Lorentzian
warped product manifold seems to have been first studied in
General Relativity by Delsarte {30] in the 1930’s. In the late
i960’s Bishop and O’Niell [31] independently reintroduced the
notion when studying manifolds of negative sectional curvature.

Later O’Nijiell [32] and Beem and Ehrlich [33] published books

12



which have popularized the notion of Lorentzian warped product
manifolds. Lorentzian warped product manifolds are extremely
useful for the study of elementary causality. The Lorentzian
warped producﬁ may be used to represent spherically symmetric
metrics.

An important step in the solution of the field equations
is the choice of coordinates. A suitably chosen system of
coordinates may greatly assist in the‘solution of a difficult
problem. On the other hand, a badly chosen system of coordin-
ates may render the problem completely intractable. We shall
employ double null coordinates for the reason that they make
partial integration of the field equations easier. The idea for
using double null coordingtes comes from their use in the
Kruskal-Szekeres completion of the Schwarzschild solution.
Double null coordinates have been used before in the study of
spherically symmetric interior solutions. Buchdahl [34] uses
double-null coordinates in a gsearch for the interior source of
the Kruskal solution. He is motivated in his work by the
earlier observation made by Synge [35] that by writing the
spherically symmetric metric in double null coordinates, one is
lead directly to the Kruskal solution for a vacuum. These two
papers, particularly that of Synge, have greatly influenced our
choice of double null coordinates for our investigation of
perfect fluids. There may be‘disadvantages for physical inter-

pretation of any solutions that we may find, but as Stephani

13



[36] has noted that there is ho overabundance of exact spher-

ically symmetric perfect fluid solutions.

Survey of Recent Research

A literature survey on exact interior solutions in general
relativity, even when restricted to a'particular form of the
stress-energy-momentum tensor, is a large task. In the survey
which follows we have tried to present as complete as possible
listing of the work in the last 20 yearé which has as its
primary objective the construction of exact nonstatic spher-
ically symmetric perfect fluid solutions. 1In particular we
have concentrated on those papers that have matter flows with
nonzero shear and nonzero pressure. The zero pressure "dust"
solutions are unrealistic in our opinion. Collins [37],
Collins and Wainwright [38], and Ellis [39] have extensively
discussed the role of shear in cosmological and stellar models
in general relativity. We have included some of the more
important studies on shear-free solutions as well. There are
three groupings of papers depending upon whether the shear of
the nonstatic perfect fluid solution has or has not been
analyzed.

First we shall review some of the earlier work on
nonstatic perfect fluid solutions whose flows were
unclassified. Secondly we shali review some of the important

recent work on exact nonstatic perfect fluid solutions with

14



shear-free flows. Finally we shall review the recent work done
on exact nonstatic perfect fluid solutions with shear (and
perhaps other kinematical properties).

There are many nonstatic solutions whose perfect fluid
flows have been unanalyzed. A common technique of finding new
solutions is to place restrictions on the form of the metric.
McVittie [40] has found a clasé of nonstatic spherically sym-
metric perfect fluid solutions. McVittie assumes a particular
form of the spherically symmetric metric tensor which allows
the field equations to be written as a system of three ordinary
second order differential equations. It has become common to
call spherically symmetric metrics with the special form "McV-
metrics". A property of the McV-metrics is that they depend on
only one function of the timelike coordinate. This property is
useful for seeing if a given metric belongs to the McV-metrics.
In a later paper McVittie [41] elaborates on his method and
relates the work of many researchers to his results. Dyer,
McVittie, and Oates [42] have examined the connection between
McVittie’'s method and the hypothesis that the metric tensor
admit a conformal Killing vector. Dyer et al. find conditions
that will force McV-metrics to admit conformal Killing vectoré
but they are not able to resolve the issue of whether this
symmetry followé from the special form of the metric or the
assumption of a similarity variable that McVittie uses in

motivating his form of the metric. The investigations of Dyer
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et al. were motivated by the results of Cahill and Taub [43]
who found that the existence of a homothetic Killing vector
implies the existence of a similarity variable. Cahill and
Taub studied the problem of findiﬁg spherically symmetric
perfect fluid similarity solutions.

Bonnor and Faulkes [44] found a class of nonstatic
spherically symmetric perfect fiuid solutions of uniform
density but nonuniform pressure. McVittie [41] has shown that
the class of solutions found by Bonhor and Faulkes is a special
case of a McV~-metric. The motion of the fluid was unanalyzed.

Thompson and Whitrow [45,46] studied nonstatic spherically
symmetric perfect fluid bodies under the hypothesis that the
density is uniform. Using a simple mathematical condition on
the metric and imposing regularity on the solutions, Thompson
and Whitrow were able to prove a theorem that showed the
perfect fluid motion must be shear-free.

Nariai [47] studied gravitational collapse of a perfect
fluid with a pressure gradient. The sqlutions found by Nariai
are a special case of McV-~solutions [41].

Faulkes [48] investigated nonstatic perfect fluid spheres
with a pressure gradient. Faulkes solutions are special cases
of those of Nariai [47] hence are McV-metrics as well. The
kinematics of thé fluid were unanalyzed.

Eisenstaedt [49] studied applications of perfect fluids to

cosmology under the added hypotheses of a barotropic equation

16



of state and uniform density.

In a long series of recent papers Knutsen [50,51,52,53,54,
55,56,57,58,59] has studied properties of nonstatic peffect
fluid spheres; In most of his work he uses either the McV-form
or a "generalized McV-form" of the spherically symmetric
metric. Knutsen has found nonstatic analytic models of gaseous
spheres (pressure and density are zero on the boundary). The
kinematics of the fluid motion are unanalyzed for the solutions
he finds.

Most of the known perfect fluid solutions have zero shear.
The earliest nonstatic spherically symmetric shear-free perfect
solutions were found by Wyman [60,61] but he did not recognize
them as such [{37]. Many qonstatic spherically symmetric
shear-free perfect fluid solutions have been found by
Kustaanheimo and'Qvist [62,63]. A general class of solutions
which are shear-free but expanding are contained in the class
of Kustaanheimo and Qvist. Many special cases of this general
class have been rediscovered by other researchers [27].
Stephani [36] has found a new class of shear-free perfect fluid
nonstatic solutions. Stephani uses the method of Kustaanheimo
and Qvist to find solutions that were overlooked in the earlier
paper. Banerjee and Banerji [64] have studied perfect fluids
with nonuniform density and pressure distributions under the
assumption of shear-free radial motion. Glass [65] uses the

method of Kustaanheimo and Qvist to study shear-free
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gravitational collapse. Glass studied a particular second

order nonlinear differential equation earlier considered by

Faulkes [48]. Glass finds several shear-free collapging
solutions. McVittie [41] shows that some of the solutions of
Glass may be represented as McV-metrics. Glass [65] does

present solutions which are not McVittie metrics since the
solutions depend on two arbitrary functions of time.

Recently, Sussman [66] has extensively surveyed the
spherically symmetric shear-free perfect fluid solutions (both
electrically neutral and electrically charged). Sussman finds
a large class of "Charged Kustaanheimo-Qvist" solutions
depending on two arbitrary functions and five parameters. The
neutral members df this class with special values of the other
parameters are identical with a class of metrics found by
McVittie [67]. 1In a later paper [68], Sussman continues his
work on spherically symmetric shear-free perfect fluid to
examine the equations of state and singularities of these
solutions.

Srivastava [69] has studied the methods of Kustaanheimo
and Qvist [62,63], McVittie [41], Nariai [47], and Wyman [60]
in an effort to achieve some degree of unification. Srivastava
finds that the McV-metric can be viewed as special case of the
Kustaanheimo and Qvist solution. Srivastava also shows that
the "generalized McV-metrics" used by Nariai [47] and Knutsen

[561] are equivalent to McV-metrics.
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For the case when shear is nonzero there are only a few
solutions known. Recently it has been shown that some of the
previously known solutions with shear that were thought to be
distinct are the same.

Misra and Srivastava [70] has proven a stronger version of
the theorem of Thompson and Whitrow [45,46]. Misra and
Srivastava showed that the mathematical condition of Thompson
and Whitrow may be dropped: All regular, nonstatic, uniform
density, perfect fluid solutions in comoving coordinates are
shear-free.

Some solutions with nonzero shear, but with some of the
other kinematical quantities (expansion, acceleration) equal to
zero, have been found. MqVittie and Wiltshire [71] found a
special class of nonstatic shearing perfect fluid solutions
which exhibit no acceleration. McVittie and Wiltshire study
the use of non-comoving coordinates to find perfect fluid
solutions. There are also solutions of McVittie and Wiltshire
that have nonzero acceleration and expansion. Kramer et al.
[27] assert that Skripkin [72] has found a special class of
solutions with shear but zero expansion and constant density.

Under the hypothesis that the heat flux vanishes and
separability of the metric, Lake [73] found a class of general
fluid solutions ﬁith shear and with vanishing shear-viscosity.
A special case of his solutions reduces to that of Gutman and

Bespal’ko [74]. Shaver and Lake [75] have recently extended
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the study of the solutions of Lake. Subject to the vanishing
of the heat flux they find that all such solutions with shear
and non-vanishing shear viscosity have a scalar polynoﬁial
sihgularity at the origin. They conclude that for their form
of the metric the only fluid solutions of the field equations
with vanishing heat flux which satisfies the energy conditions
and are nonsingular at the origin are the Robertson-Walker
solutions.

In Kramer et al. [27], a clasé of solutions with shear,
acceleration, and expansion were credited to Gutman and
Bespal’ko [74]. (Note that this reference is in Russian and is
difficult to obtain). This class of solutions was found in a
comoving system of coordinates with the condition that one of
the metric functions was separable.

Vaidya [76] found a class of nonstatic solutions for a
perfect fluid whose streamlines are orthogonal to the isobaric
surfaces. These solutions have nonzero shear, acceleration,
and expansion.

Wesson [77] found a class of spherically symmetric
nonstatic solutions with shear with a stiff equation of state.
Kramer et al. [27] assert that Wesson’s solution also has
acceleration and shear.

"Van Den Bergh and Wils [78] have found three new classes
of exact spherically symmetfic perfect solutions with shear and

acceleration and an equation of state. Assuming the ansatz
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that the metric coefficients were separable Van Den Bergh and
Wils also found a generalization of the stiff equation of state
solution of Wesson. This new solution has shear, accelération,
and expansion.

Hajj-Boutros [79] has obtained several classes of non-
static, spherically symmetric perfeét fluid solutions which
exhibit shear, acceleration, and‘expansion. One of the classes
is expressed in terms of Painlevé’s third transcendent
[80,81,82].

Collins and Lang [83] have recently found a class of
spherically symmetric spacetimes which exhibit shear and
acceleration. Collins and Lang imposed the condition of self
similarity on Lorentzian spaces with a perfect fluid. They
discuss the work of Gutman and Bespal’'ko [74], Wesson [77],
Hajj-Boutros [79], Van den Bergh and Wils [78], and Herrera and
Ponce de Leon [84]. Collins and Lang show that the metric of
Gutman and Bespal’ko [74] is the same as that of Wesson [77].
Collins and Lang also show that the met:ics of Van den Bergh
and Wils [78] specialize to those of Wesson {77] and Gutman and
Bespal’ko [74]. Collins and Lang point out that some of the
work of Herrera and Ponce de Leon [84] with conformal Killing
vectors may be specialized to self-similarity and hence arrive

at the metric of Van den Bergh and Wils [78].
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Nonstatic Spherically Symmetric Anisotropic Fluids and

Conformal Symmetries

Spherically symmetric anisotropic fluids admitting
conformal symmetries have recently been studied. The reason
for this interest is that a connection between the existence of
conformal Killing vectors and the.equation of state has been
found [85] by Herrera et al. The metrics considered were
static and had a conformal Killing vector orthogonal to the
fluid velocity. The existence of é conformal Killing vector
was shown to constrain the pressure and density. It was also
found that the orthogonality condition together with a special
conformal Killing vector forced the fluid to have a stiff
equation of state. 1In [85] it is asserted that recent real-
istic studies of stellar models indicate that an anisotropic
fluid model may be more appropriate.

Herrera and Ponce de Ledén [86,87] find families of expand-
ing/contracting fluid anisotropic spheres, and confined non-
static spheres whose total gravitational mass is zero. The
problem of matching these spheres to exterior vacuum metrics is
studied. These results have stimulated work on more general
classes of symmetries such as collineations [29,88,89].

Duggal and Sharma [90] have recently investigated the
similar dynamic restrictions imposed by a special conformal
collineation in a class of‘anisotropic relativistic fluids

without heat flux. In particular they showed that the stiff
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equation of state is no longer singled out when the collinea-
tion vector is orthogonal or parallel to the velocity
vector.

Shortly thereafter Maartens and Mason [89] extehded and
corrected some of the results of Duggal and Sharma. They
showed that the assumption, by Duggal and Sharma, that a
special conformal collineation Qector preserves the fluid flow,
is equivalent to assuming that the velocity vector is an
eigenvector of the conformal collineation tensor (see Chapter 2
for the definition of the collineation tensor). Later Duggal
{91,92] points out that, for fluid spacetimes, conformal
symmetry plays the role of preserving the continuity of the
matter flow at critical points of transition during a change of
state. These ideas may have some use in cosmology. Duggal has
found a connection between the shear of the fluid and the
existence of a timelike conformal collineation vector. Duggal
is able to generalize the theorem of Oliver and Davis [93] on
the existence of timelike conformal Killing vectors to the case
of timelike conformal collineation vectors. In his generaliz-
ation of the Oliver-Davis theorem, Duggal shows that a fluid
spacetime admits a timelike conformal Killing vector parallel
to the fluid velocity if the shear tensor is proportional to
the collineation.tensor.

Duggal’s theorem promises to be an important advance in

the study of shearing fluids. Duggal points out that it is an
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extremely difficult problenm tp characterize the collineation
tensor so that physical examples of conformal collineation
vectors may be found. In Chapter 5 we shall collect soﬁe
partial results concerning thiS‘problem. In Chapter 5 and in
an appendix we shall calculate the field equations in double
null coordinates for an anisotropié fluid admitting various

types of collineation vectors.

Results and Conclusions

In chapter 2 we present a summary of the mathematics
which is used in general relativity. The usefulness of the
Lorentzian warped product construction is noted, particularly
in relation to the proble@ of discussing elementary causality.
A specialized form of spherically symmetric double null
coordinates is introduced. These coordinates have the
advantage that they do not change their causal type when the
metric coefficient change sign. However they do not cover as
much of spacetime as the usual double null coordinates. A
short presentation of the kinematics of an observer concludes
the chapter.

In Chapter 3 we give a brief discussion of the
classification of stress-energy tensors and the energy
conditions which épply to then.

In Chapter 4 we use the‘double null coordinates to look

for solutions of the perfect fluid field equations which
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exhibit shear.

The field equations lead to a "wave-like" equation and the
pressurehisotropy equation. Although the wavelike equation
admits a>first integral, it cannot be completely integrated in
general. The field equations were simplified by assuming a
functional relationship between the metric coefficients. With a
functions relationship of the form f = rc, was used for several
cases. In particular a = -2, -1, -1/2, 0, 1/3 lead to reason-
able solutions which are nonstatic and have shear. Another
case considered was f = e°'. The functional relationship
reduces the field equations to a Bernoulli equation. 1In six of
the cases, the timelike weak energy conditions were satisfied.
The dominant energy condi@ions were verified for four df the
solutions and the strong energy conditions for four of the
solutions. Unfortunately only two of the Bernoulli equations
was integrable in closed form in terms of elementary functions.
This fact greatly hindered analysis, particularly of the
causality, which had been planned. In spite of this, some
useful information was drawn from the mathematical form of the
Bernoulli equations and the energy conditions. The kinematical
quantities were computed when possible. Invariants derived
from the Riemann tensor such as the Ricci scalar and the
Kretschmann scalar wére also computed. For all cases the
acceleration of the fluid is zero. The shear tensor was always

nonzero. An interesting observation about the solutions is
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that they all satisfy the condition of being in a T-region
[27]. There have been very few studies of T-models, until now
only two or three solutions for dust, a stiff fluid, ahd a
radiation solution. Three of our solutions are not amoﬁg these
solutions for the simple reason that they have much more
complicated equations of state than previously known solutions.
We found two solutions which have the equation of state

P = M/3.

In Chapter 5 we present some recent results by Duggal
connecting timelike collineations to the shear of a fluid.
Calculations for timelike collineations in double null
coordinates are presented. We state a theorem showing how a
stress-energy tensor may Pe used to try to find a collineation.
A theorem asserting the existence of a timelike collineation
parallel to the velocity when given a collineation tensor and
the velocity field. The equations for an anisotropic fluid
admitting a timelike collineation vector parallel to the
generalized comoving velocity are written in NN-coordinates.
The condition that the collineation tensor is covariantly
constant is investigated in detail for this case. Two
solutions of the field equations result as a consequence of
this study. Both of the solutions lead to reducible spaces in

accordance with recent results of other researchers.
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CHAPTER II

MANIFOLDS, TENSORS, AND LORENTZIAN WARPED PRODUCTS

Introduction

In this chapter we shall present several sections summar-
izing the mathematical tools and notation used in this work.
This summary is a condensation of the treatments of similar
material found in the texts of Sachs and Wu [94], Hawking and
Ellis [95], Wald [96], Stephani [97], Frankel [98], O’Niell
{32], Hicks [99], and Beem and Ehrlich [33]. Relevant comments
have been added to aid in the assimilation of the large number
of well-known definitions and concepts. More complete and
detailed discussions of these topics may be found in the cited
sources. In some cases there is still some disparity in the
literature on the use of certain terms and definitions and the
notation used to describe them. There is also a recognized
profusion of sign disparities among relativists and differ-
ential geometers in the basic definitions of the classical
tensor calculus. The uncertainty that these disparities impart
leads inexorably to qualitative errors, particularly in
expressions that involve the use of inequalities. We have
tried to eliminate the possibility of such errors by system-
atically classifying the notation systems and conventions used
by various authors. Appendix A is a summary of a system for

translating tensorial expressions from one system of tensor
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calculations to another.

Vector Spaces and Tensor Algebra

Let V denote a vector space over the real field R. We
shall almost always have dimRV = 4 but most of the results are

true as long as dimRV igs finite. The dual space of V is

denoted by v*. The underlying set of v* is the set of all
R-linear functionals on V. V™ is é real vector space and if
dimRV is finite then dimRV* = dimRV. If V and W are finite-
dimensional réal vector spaces then V 9 W denotes their direct
sum. V* ® W' will denote the vector space of R-bilinear maps
V xW —— R, A standard theorem of linear algebra for finite
dimensional vector spaces states

(2.1)  dimp(V* ® W) = (dimpV) (dimpH) .

Since dimRV is always assumed to be finite we have

(2.2) dimgV = dimgV™

XX

dimRV ’

where V** is the dual space of v*. Another well-known theorem
of liﬁear algebra [100] then states that V & v**. This natural
isomorphism is used repeatedly in tensor algebra to eliminate

the unnecessary distinction of V from V**.

Associated with V are its tensor spaces of type (r,s),
T:(V), where (r,s) is a pair of non-negative integers. A
‘tensor of type Lg;gi on V is defined to be a real-valued
.multilinear functional on (V)" x (V)®. A standard theorem of

tensor algebra asserts that dimR(T:(V)) = [dimR(V)]r+s.
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Tensors of type (r,0) are called contravariant tensors, while

tensors of type (0,s) are called covariant tensors. T:(V) may
be viewed as the real vector space of multilinear functionals
on r+s factors, the first r factors being V*, the remaining s
factor being V. The tensor algeBra on V is the direct sum over
all pairs of non-negative integers (r,s) of the tensor spaces
T (V) i.e.

s ® ®

(2.3)  T(V) = ) ) TUV)

r=0ss=0

If V is a vector space over R, then an inner product on V,
g : VxV — R, is a symmetric, bilinear functional. The
inner product is the natural generalization of the dot product
on R". The index of g, Ind(g), is defined to be the maximum
dimension of the subspaceé‘of V on which the restriction of g
is negative definite i.e.
(2.4) Ind(g) = max{dimRW : W is a subspace of V}.
The nullity of g, N(g), is defined to be the dimension of the
subspace N of V on which the restriction of g is identically

zero i.e.

(2.5) N = {XeV: g(X,X) = 0}
and
(2.6) N(g) = dimRN.

The signature of g, sig(g), is defined as
(2.7) sig(g) = dimRV - 2Ind(g) - N(g).

The Lorentzian inner products to be introduced later will have
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signature +2 since dimRV = 4, Ind(g) = 1, and N(g) = 0.

Differential Manifolds and Smooth Maps

Differential manifolds are the setting for the appropriate
generaliéation of calculus on vector spaces. Differential
manifolds provide a setting in which we may have the notions of

limit and derivative. Manifolds may be thought of as the
abstraction of the idea of a sufface in Euclidean space. We
first introduce local objects (charts) on which limits and
differentiation make sense, and then we patch these objects
together in a smooth manner. Differential manifolds should not
be simply viewed as parameterized surfaces since the notion of
a parameterization involves the notion of an enveloping space.

The underlying set of a differential manifold is a

topological manifold. An n-dimensional topological manifold is

defined as a separable Hauédorff topological M space such that
every point in M has an open neigbourhood which is.homeomorphic
to an open subset of R". Note that M is 0g-compact,
paracompact, and has at most a denumerable number of components
{101,102]. The paracompactness of M is essential for the
theory of integration on manifolds. By considering simple
examples such as the sphere Sn, n 21, and the torus T", nz2 2,
in R™?! we quickly see that it is impossible to coordinatize
these objects wifh a single coordinate chart. A similar
situation holds in many of the models of spacetime that we use

in general relativity.
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A n-dimensional coordinate chart on M is a pair (ﬂh,gﬂ

where U is an open subset of M and ¢ is a homeomorphism of U
onto an open subset of R" (« is an arbitrary index in the set
A; see Appendix B on symbols and notation conventions for the

rules which indices obey). For each integer i, 0 £ i< n-1, and

for each coordinate chart (2%,¢a) we define the i-th coordinate
function of P xi, so that
(2.8)  x' s mep : U — R

a a @

where m' is the i-th canonical projection on R".

n
A |
™
T
—_—
oo «‘p v

R" | R

Figure 1 The Coordinate Transition Maps
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Since more that one chart will usually be necessary to
cover M, we must find a suitable compatibility criterion for
the overlap of the chart domains. Two charts (ﬂh,wc) and

(ﬁ},wa) are 8 -compatible (see Figure 1) if the coordinate

transition maps

(2.9) ole = Vo0 o LY, n uB] — @, [U n U]
and
(2.10) Jp ® lpaﬂp: g [U n W] — o [U n U]

are Gr-diffeomorphisms (coordinate diffeomorphisms) between
their domains and ranges in R". (Note that ¢: denotes the
inverse mapping of ¢¢.)

An indexed collection # = {(ﬂh,wa) : a € A} of charts
which cover M and satisfy the Gr-compatibility criterion for
all index pairs («,8) € A x A will be called a 8 -subatlas for

M. Two 8- subatlases # and B of M are equivalent if # U B is

a 8 -subatlas for M. An equivalence class of 8 -subatlases for

M will be called aYGr—differentiable structure for M. Using

inclusion as a partial order on a Gr-differentiable structure
we define a Gr-gglgg of M as the maximal element in the

€' -differentiable structure. It is easily shown using Zorn’s
Lemma that a maximal atlas always exists. We shall always
assume that r =2 3. A 8'-differentiable structure always
contains a GP-structure thus we will simply use the adjective
"smooth" to denote the appropriate degree of differentiability.

Let M be a manifold endowed with a smooth differentiable
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structure characterized by a subatlas « = {(ﬂh,gﬁ : a € A},
For a coordinate chart (ﬂh,gg € ¥ and a function f : M — R,

a coordinate expression for f in (ﬂh,wc), is the function

. - . . n
(2.11) f,= fep : o(U) cR — R.

A function f : M — R is smooth if fc is smooth in the
usual sense for all charts (!%,wc) € 4. We will use F(M) to

denote the commutative ring of smooth functions.

]
_

vR" ¥y R

N

Figure 2 A Smooth Map between Manifolds M and N
Let N be another manifold with a smooth differentiable

structure given by the subatlas 3 = {(Vbn%) : B€B). A
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continuous map F : M — N will be called smooth if for each
index pair («,B) € A x B the map

) - -1

(2.12) aFa = waoFocpa : q)m[‘ll,m nF (l‘e)] e wB[F(‘U,a) n I‘B] |
(see Figure 2) is smooth in the usual sense. én(M;N) will

denote the set of smooth maps from M to N.

N\
A

Figure 3 Curves in a Manifold

An important class of maps is gw(I;M), where I is an open
interval in R. These maps are called curves in M. Let
g € ep(I;M) with 0(0) = p, then, for each a € A such that
P € Ua, there is a local coordinate representation of o,

(2.13) 0,3 90o0 1 (-€,€) ¢ I — @ (U) n RrR"
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and OQ(O) = wc(p) (see Figure 3). Note that in practice we
almost never specify the curve ¢ directly. If a chart.(ﬂh,Qﬂ

is given, we just specify the functions o, directly.

T

v

Figure 4 The Pullback of a Map
Each smooth map F € gm(M;N) determines an algebra homo-
morphism F* . F(N) — F(M) given by F*(f) =z Fof where
f € $(N). The map F* will be called the pullback by F (see

Figure 4).

A diffeomorphism F : M — N is a smooth mapping that has

‘an inverse mapping F* : N — N which is also smooth. The
theory of differentiable manifolds can simply be described as

the study of objects preserved by diffeomorphisms.
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The main step in extending the calculus from vector spaces
to differentiable manifolds is finding a generalization of
directional derivatives. The appropriate concept for a differ-
entiable manifold M is the tangent vector Vp at a point p € M.
There are four different ways of viewing the notion of tangent
vectors on a manifold M [103]. Vectors at p € M may be viewed
as equivalence classes of curves ﬁhrough P, as equivalence
classes of n-tuples of real numbers at p, or as derivations on
germs of functions defined on a neighbourhood of p. We will

adopt the view that tangent vectors are derivations on ¥(M). A

tangent vector of M at p is a linear map Vp : ¥(M) ~—— R such

that
(2.14) Vp[fg] = Vp[f]g(p) + f(P)Vp[Q]
for arbitrary functions f, g in ¥(M). The collection of all

tangent vectors at a point p € M is denoted TpM, the tangent
space to M at p. We can define addition of tangent vectors at
p by

(2.15) (Vp + Wp)[f] = Vp[f] + Wp[f],

and we can define scalar multiplication of tangent vectors at p
by

(2.16) (ch)[f] = ch[f].

It can easily be shown, using the operations above, that TpM is
a real vector spacé and dimm(TpM) = dimm(M). For a given
coordinate chart (1&,¢c) we can find ah induced coordinate

(holonomic) basis for TpM i.e.
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{aﬁ = Q——-i :0<is 3}. For a function f € ¥(M) and a chart
x '
a

containing p, (‘U.a,tpc), we define the action of acilpon f‘€ F(M)

by
(2.17) 3,1 [£] = of(p)
ox _
- 9fa(9 (p))
r3ui

where the u' are coordinates on R*.
For a smooth mapping F : M —— N and for each p € M we
define the map F,,‘p : TPM ——d TF(p)N by
. Vv f of].
(2.18) F*p( p)[ ] = VP[F fl

By choosing holonomic bases for both TPM, TF(p)N associated

with chart (‘U.c,lpc) and ('a,tpa) respectively i.e.

(2.19) 3 s 0sisa3
@i i
ox
[ ]
and
3 .
(2.20) {83, 8 — : 0<1isg 3},
i i
9x
8
we can find a coordinate presentation of F :
i
- [8{x,°F)(p)
(2.21) Bchp(aajlp) - [axj8 asill-'(p).
[ ]

The term in the square brackets in (2.21) is the Jacobian
matrix of BF . If F is injective then F is called an
- axp B axp

immersion. If F is an injective immersion, with N homeomorphic
to F(N), then F is an imbedding of N into M. A submersion

F : M —— N is a smooth mapping onto N such that sF“p is onto

for all p € M. When the charts (‘U.c,tpc) and (Fs,tps) are fixed
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in an argument we will dispense with the more complicated
notation BFc*p and simply write F*p. This same abuse of
notation will hold in other similar notational situations.

A submanifold N of M is a tqpological subspace of M such
that the inclusion map j“ ¢t N——> M is smooth and for each
n € N the induced map ju*n : TnN —_ TnM is injective (one-to-
one). The submanifold N inherits a differentiable structure d“
related in a natural way to that of M. The notions of imbedding
and submanifold are closely related: if N is a submanifold of M
then the inclusion map j“ is an imbedding.

An abstract construction which appears frequently in
theoretical physics and differential geometry is the fibre
bundle [102] construction. Locally fibre bundles are product
manifolds but the submersion [1 may "twist" the product. Let a

smooth submersion I : E — B be given for smooth manifolds E

and B. The map Il has the local product property (see Figure 5)

with respect to a smooth manifold F if there is

(a) an open covering {Uh : ax € A} of B,_and

(b) a family of diffeomorphisms {y, : U4 X F — H-i(ﬂh)}
such that ey (b,f) = b for all be ¥, £ € F. (I is
the usual inverse set function.)
The collection {(ﬂh,QJ : a. € A} is called a local

decomposition of [I. A smooth fibre bundle is a four-tuple

(g,1,B,F), where E is the bhndle manifold, 1 : E —— B is a

smooth submersion, B is the base manifold, F is a smooth
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manifold called the typical fibre.

T (Ua) T {Ug]

LTALVARNIAARRANRARAY
ARAARRRANRARARRRRRRAY

=

W

Figure 5 The Fibre Bundle Construction
There is a large variety of subtypes of the fibre bundle
construction, depending on the type of fibre and its internal
symmetry groups, but the one of interest is the vector bundle

construction. A vector bundle is simply a fibre bundle that
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attaches vector spaces to each point of the base manifold B.
Many of the concepts and objects used in general relativity

have a natural presentation in the setting of vector bundles.

Let TM = {(p,V) : p € M; V~€ TPM}. The tangent bundle on
M, TM, is a special case of the vector bundle construction on M
[102]. TM is a smooth manifold with a smooth surjection
Nm: T™ ——— M defined by
(2.22) M(p,V) = p.
Viewed as a fibre bundle, the base manifold of TM is M and the
fibre manifold at p € M is the vector space TPM. An atlas on M
induces a differentiable structure on TM in a natural way. If
(ﬂh,wc) is a coqrdinate chart on M then there is a natural

induced chart (U.a X R‘, P, X (pc*) on TM such that

(2.23) Oy X 9, (PsV) = (x,(P)4v,),
where

i
(2.24) vo=via,

is the representation of Vp with respect to the holonomic basis
induced on TPM by the coordinate chart (Qﬂ!%). The fibre
H'l(p) is isomorphic to TPM and hence is identified with TPM.
There are several other bundles of interest on M such as the
cotangent, tensor, exterior algebra, and frame bundles [102].
Of these the most important is the tensor bundle, T:M, of type
(r,s8) tensors ovér M.

A vector field V on a smooth map F : N— M is a smooth

mapping V : N —— TM such that [IeV = F, where Il is the
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projection TM — M (see Figure 6). There are three cases of

F that occur repeatedly in general relativity:

(a) F = 0, where 0 : Y € R —> M is a smooth curve in M;

({b) F ju’ where ju + N—=> M is an imbedding of a smooth
submanifold N into M;

(c) F = LH, where LH is the identity map on M.

™
V@

Figure 6 Vector Field over a Mapping

A vector field V over LH on a differentiable manifold M

may also be viewed as a function that assigns to each point
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p € M a tangent vector Vp € TPM. For a smooth function

f € FM), Vf is a function such that

(2.25) (VE)(p) = Vp[f].

The vector field V is smooth if Vf is smooth for all f € ¥F(M).
It can be shown that the set of all smooth vector fields on M,
. ¥(M), is an F(M)-module [32]. The.set of all smooth vector
fields over LH may also be viewed as a vector bundle over LH.

Thus a smooth vector field is a section of a particular vector

bundle. Let T be a tensor field over F. A derivation of

tensor fields over F is an assignment of a tensor field DT over

F such that
(a) DT is the same type of tensor as T;
(b) D(as + BT) = oDS + PDT for all «,B € R, and all tensor
fields S, T over F;
(c) D(S®T) = DS®T + S8DT for all tensor fields S, T over
F.

A connection D over F is an assignment to each vector field X

over F of a derivation Dx of tensor fields over F so that
(a) Dxf = Xf if f is a function over F;
(b) Dfx+gYT = fDxT + gDyT for smooth functions f, g over
F;
(c) Dx commutes with contraction.
IfF : N —— M is a smooth map and D is a connection on M

then F*D is the unique connection over F such that

x.
(2.26) (F D)X(VoF)(p) = D xV(F(p))

x
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for all vectors X € Np and for all V € ¥(M). The connection
F'D is called the induced connection.
The bracket of two vector fields V and W, denoted [V,W], is the
vector field such that for all\p € M and all f € ¥(M) we have
(2.27) [V,W]p[f] = Vp[Wf] - Wp[Vf].

The bracket operation on ¥(M) has the following properties [32]
({a) [aV + bW,X] = a[V,X] + b[W,X] for all a, b € R;
(b) [V,W] = -[W,V];
(c¢) [V,[W,X]] + [W,[X,V]] + [X,[V,W]] = O.
Vector fields are first order operators on functions in ¥(M).
A surprising fact is that the bracket of two vector fields is

not a second order operator but is another vector field.

A smooth curve 0 ! (-€£,€) ¢ I —> M is a local integral
curve of V € Z(M) if o = a*(au) = (Vea)(u) for all values
u € (-€,e) ¢ I. Occasionally the domain of a local integral
curve can be extended to the whole real line. If dom ¢ = R and
0’ = V then we say that V is complete. By considering the
smooth vector field V = (1,-y2) on R® it is easy to see that
not all smooth vector fields are compléte even when dom(V) = M,
This arises since we have only a local existence and uniqueness

theorem for differential equations. For each p € M and

V € ¥(M) there is a unique maximal integral curve in the sense

that the domain of ¢ cannot be extended. For a vector field

V € (M) we define a local flow as a map ¢ : Y x I -—— M such

that ¢(p,t) = ¢p(t) where ¢p(t) is the unique maximal integral
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curve of V through p defined for all p € % and all t € 1I.

If F: M — N is a smooth mapping of manifolds then F induces
an associated mapping between each of the tensor bundleé T:M
and T:N. For type (1,0) we denote this map by TF and for type

(0,1) we denote this map by TF™.

Differential Geometry

The setting for differential geometry is a manifold
endowed with a notion of "inner product"” called a metric. We
wish to study the properties of manifolds and metrics which
remain invariant under a group of diffeomorphisms which
preserve some of the local algebraic properties (signature,
index, nondegeneracy, nul{ity, symmetry) of the metric.
Metrics are usually classified by their signature, nullity, and
index. The most general class of metrics is the class of
semi-riemannian metrics of arbitrary signature. The Riemannian
metrics and the Lorentzian metrics may be viewed as subclasses
of the semi-riemannian metrics.

A smooth assignment of a symmetric, nondegenerate bilinear

form g(p) : TPM X TPM ——— R such that the Ind(g(p)) = 0 and

N(g(p)) = 0 for all p € M is called a Riemannian metric on M.

A manifold (M,g) such that g is a Riemannian metric for each

P €M is called a Riemannian manifold.

Similarly a smooth assignment of a symmetric,

nondegenerate bilinear form g(p) : TPM b TPM —~— R with
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Ind(g(p)) # 0, dimRM for all p € M but constant over M, and

arbitrary nullity is called a semi-riemannian metric on M. A

manifold (M,g) such that g is a semi-riemannian metric for each

P €M is called a semi-riemannian manifold.

As general relativity uses an inner product of index 1 and
nullity 0, we shall restrict our déscription of differential
geometry to this case. A smooth assignment of a symmetric,
nondegenerate bilinear form g(p) : TpM X TpM —3 R with

Ind(g) = 1 at each point in M is called a Lorentzian metric on

M. The pair (TPM, g({p)) is a Lorentzian vector space for each

P € M. The corresponding manifold is called a Lorentzian

manifold.
If (M,g) is a semi-riemannian manifold then there is a

unique connection D over the identity Lh such that for all V,

W, X € Z(M)

(2.28) [V,W] = DW - DV;

(2.29) X[g(V,W)] = g(DxV’W) + g(VerW)o

D is called the Levi~Civita connection of (M,g). The same

properties hold for a Riemannian manifold. These properties
define the interaction of the metric g and the connection D in
such a way as to render D torsionless. Levi-Civita connections
may be characterized by the Koszul formula [33]:
(2.30) ZS(DQW,X) = Vig(w,X)] - g(V,[W,X]) + wig(X,V)]

- £(W,[X,V]) - X[&(V,W)] + g(X,[V,W]).

A vector field V is parallel with respect to D if va = 0 for
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all smooth vector fields X. If V = a*<au) is the tangent
vector field on a curve ¢ and DVV = fV for some smooth function

f, then we say that 0 is a pre-geodesic. If DVV = 0 then ¢ is

a geodesic. The distinction between a pre-~geodesic and a
geodesic lies in their parameterizations. A pre-geodesic may
always be reparameterized to be a gebdesic. The parameter-
ization that makes a pre-geodesic a geodesic is not unique.
Parameters of a geodesic are affinely related to each other.

A smooth mapping F : (M,g) — (N, h) is called an
isometry if F is a diffeomorphism and g = F'h.

A submanifold N of (M,g) is nondegenerate if for each

p € N and nonzero Vp € TpN there is a Wp € TpN so that
j:gwp,wp) # 0, where jig is the pullback of the metric g via
j“ : N — M, If j:g is positive definite then N is a
spacelike submanifold of M; if j:g has index 1 on TpN for all
P € N then N is a timelike submanifold of M; if j:g is
degenerate then N is a null submanifold.

A submanifold N of (M,g) is geodesic at p € N if each
geodesic ¥ of (M,g) with ¥(0) = p and ¥ (0) € TpN is contained

in N for some neighbourhood of P. N is totally geodesic if N

is geodesic for each p € N.

A submanifold.P of (M,g) with dimension dimRP = dimRM -1
has a number of distinguished forms defined on it. These forms
are derived from the unit norhal vector N by the followiﬁg

formulae:
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(2.31) . L(X) = DN,
(2.32) I(X,Y) = g(X,Y),

(2.33) II(X,Y) = g(L(X),Y).

L is called the Weingarten map and is self-adjoint.

Tensor Analysis on Differentiable Manifolds

For any pair of nonnegative integers (r,s) # (0,0) and a
ring K, a K-multilinear function R : (V*)r x V® —— K will be

called a K-tensor of type (r,s) over V. 1In general relativity

there are two cases of interest:

(a) K= Rand V = TpM;

(b) K F(M) and V = ¥(M).

If UcMis an open set in a semi-riemannian manifold
(M,g) and R : U —— T:M is a map such that IR = LU then R is

a.txge (r,s) tensor field on U, A tensor field of type (1,0)

igs called a vector field. A tensor field of type (0,1) is

called a 1-form field. M has a Lorentzian metric g thus there

is an associated isomorphism between T;M and T?M given by

b 1 0
TOM —_— T1M
so that

Vb = (via )b = v i

. (‘)'
e aj ei e

aj

In terms of components with respect to {8 = 2—1 : 0si s 3}

and its dual basis {wi = dxi : 0 £3i £ 3} we have g,,vj = vV ..
a a d.),_] a al

There is also an isomorphism between T:M and T;M given by
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o 1
TM—TM

so that
# i # i
V' = (vaiwa) = vcaﬁ. ,
In terms of components we have g;jvcj = v:. Thus ¥ and ' are

just the usual index raising and index lowering isomorphisms of
classical tensor analysis. We see that the index raising
(lowering) isomorphisms define an equivalence between l-forms

and vector fields. A 1-form ® is metrically equivalent to a

vector field W if w# = W and W' z W,

It is well-known that tensor analysis can be done with
respect to arbitrary bases of TPM and T:M. As all the tensor
analysis that we shall use is done with respect to holonomic
bases, we shall omit the gxtension of our notation to this
case. In many cases there is only one coordinate chart (Uh,q)
in use at one time so we will dispense with the subscript «
indicating which chart we are using. In situations in which
more than one chart is being used we will revert to the more
complex, but mathematically unambiguous, notation.

The Christoffel symbols of the second kind associated with

a metric tensor g and coordinates (ﬂh,wc) are written as

+ g - g ),

k il
(2.34) yy= e /2)tg,, 1k, j ik, 1

where gil is found from the equation
2.35 Hg =8,
( ) g 8, 3

Covariant differentiation in a chart (ﬂaq%) will simply

be denoted by appending a covariant index preceded by a
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semicolon. A Thus the partial covariant derivative of a tensor

i i
T 17... r

.. is
Ji..Js
(2.36)
r
ig,.ip ig..ip rlae mit.ied8iau..ir
T . =T L + rer .
Ji1.. sk Jji1.. s,k ak Ji..Js

am i

]
b ig.d
- r. T i.1lp . R
, z jgk j1..J8-1bigs..Js
8=1

In the formula (2.36) above the ";k" denotes the partial
covariant derivative with respect to q“ and a comma denotes
the partial coordinate derivative with respect to xi.

The failure of partial covariant differentiation to
commute leads to the Ricci identities which may be taken as the

definition of the Riemann tensor:

(2.37) il
. r
ig..ip _ pit.ip - - z pie pli.ietaied.ir
Jt1.Jsskl Ji..Je;ilk akl Ji1..Js
ax1
8
b ig . ip
+ z R T imir . .
Jekl J1..i8-1bigs..Js
B=1

The components of the Riemann tensor with respect to the
coordinate basis and the dual basis of the chart (1%,¢;) may be
written in terms of the Christoffel symbols of the second kind
as:

i i i i n i n
(2.38) R k1 - r ik, 1 T e ¥ Tt jk .Y j1°

The Riemann tensor satisfies the following symmetry properties:

(2.39) (a) R

jikl _Rijkl’
(2.40) (b) Rijk

1 _Rijlk’
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(2.42) (d) R = 0,

ifjkl]

where indices inclosed in brackets indicate normalized anti-
symmetrization. Contracting on the first and third indices
leads us to the expression for the Ricci tensor in the same

coordinates:

a
(2.43) Rij = R taj’

The Einstein tensor is defined by

(2.44) G,, =R, - (R/2)8,,

where R is the curvature scalar given by
(2.45) R = R“a.
The Riemann tensor also obeys the well-known Bianchi

differential identities:

(2.46) Rij“”;m] = 0.

A contraction on the Bianchi identities leads to the first-
contracted Bianchi identities:
(2.47) Rim;i + 2R o= 0.
Another contraction of the Bianchi identities implies the well-
known differential identities for the Einstein tensor:
(2.48) Gij” = 0.

The Weyl conformal curvature tensor is defined by
decomposing the Riemann tensor into products of the metric
tensor, the Ricci tensor, and the curvature scalar. The Weyl

conformal curvature tensor can be characterized by the fact

that it has all the symmetries of the Riemann tensor and is
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traceless with respect to all contractions. Thus

[i
[k

Rj:] + (R/3)g't gd!

_ ij - pii
(2.49) C = R . € 17’

k1 - 2¢

1

and Weyl tensor satisfies the same symmetry properties as the

Riemann tensor. The Weyl tensor also is traceless:

i

(2.50) C = 0.

jil
In terms of the Weyl conformal curvature tensor it can be

shown [39,104] that for a 4-dimensional Lorentzian manifold the

Bianchi differential identities are equivalent to
ijkl
;1

kli;jl - kli

(2.51) C s R (176)g*ir?d7,
The Weyl conformal curvature tensor has a decomposition
for an observer with velocity Ui in terms of its "electric"”

part Eij and its "magnetic" part Hij given by [39]:

- P ;Tq8
(2.52) Cijkl - (niqunklra + giqugklra)U UE
P, Ty, 48
- (niqugklra + gi_ipt:]nl:lrs)U U'H !
where
(2.53) E =sc vyl
* ik fjkl !
rs P;.q
(2.54) Hik a (1/2)r1ip Crsqu u’,
and
(2.55) gijkl = gikgjl EETELETS

The tensors Eij and Hij can be shown to have the following
properties which follow from the symmetries of the Weyl

conformal curvature tensor:

(2.56) Eij = Eji,
Eli =0,
E Uj = 0;
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and

(2.57) H, = H,
i' = o,
b §
H ul = o.
ij

Elementary Causality on Lorentzian Manifolds

A Lorentzian metric g for M is a smooth symmetric tensor

field of type (0,2) on M such that for each p € M, the tensor
g(p) on TPM is a nondegenerate indefinite inner product of
signature (-,+,+,+). It is easily shown that a noncompact
manifold admits a Lorentzian metric. On the other hand for
compact manifolds it can be shown that a Lorentzian metric
exists only if the Euler qharacteristic vanishes i.e. X(M) = 0,
A spacetime (M,g) is a connected, noncompact, smooth
Hausdorff manifold of dimension 4 which has a countable basis,
a Lorentzian metric of signature (-,+,+,+) and a time
orientation. We assume noncompactness in the definition of a
spacetime since it can be shown that a compact spacetime admits
closed timelike curves., We assume that M is connected since
disconnected parts of a spacetime should not be able to

interact. A spacetime (M,g) is time-oriented if M has a

nowhere zero, continuous timelike vector field. There is a
large number of inequivalent definitions of spacetime appearing
in the literature. The definition we have adopted is the

weakest one which is either consistent with or can easily be
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adapted to the definition usedrin our major references
[32,33,94,95]. As Hall [105] points out, there is still some
debate among relativists on the nature of the topology of a
spacetime. The usual manifold topology is a "homogeneous"
topology i.e. for any two points p, q € M there is a
homeomorphism which maps p to q. Thus the usual topology
reflects the locally R* nature of M rather than its Lorentz
metric structure which in most cases imposes a local sense of
time-orientation at each point. G6be1 [106] has studied other
choices of a topology for spacetime which are more compatible
with its Lorentzian metric. As constructed above, the under-

modelled over R4".

lying manifold of spacetime is a manifold
There are more abstract definitions of a manifold which allow
other "model" spaces to be used [103,107]. Perhaps a "model"
space can be found that intrinsically embraces the notfons.

Two spacetimes (M,g) and (M ,g’) are equivalent, written

as (M,g) » (M ,g’), if there is a space-orientation and time-
orientation preserving isometry between them. The spacetime

equivalence class of (M,g) is the set

(2.58) : [(M,g)] = {(M',g") : (M,g") » (M,g)}.

In general relativity it is the classes [(M,g)] that are
of interest. In practical terms it is not a trivial task to
establish that two spacetimes are equivalent. It is much
easier to es£ablish inequivalénce by finding an isometric

invariant that one spacetime has and which the other spacetime
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does not have. For a fixed manifold M the set of all
Lorentzian metrics on M is denoted by Lor(M). We write p « q
if there is a future-directed piecewise smooth timelike cﬁrve
in M from p to q. We write p < q if p = q or there is a
future-directed piecewise smooth nonspacelike curve in M from p
to q. If p € M then the chronologicél future of p is the set
(2.59) I'(p) = (g €M : p «aql}.

If p € M then the chronological past of p is the set

(2.60) I(p) = {qg€M: q«p}.

If p € M then the causal future of p is the set

(2.61) J*'(p) = {q €M : p = q}.

If p € M then the causal past of p is the set

(2.62) J(p) = {qg €M : q < p}.

A nonzero vector V € TpM is called

(2.63) (a) timelike if g(p)(V,V) < 0O
(2.64) (b) spacelike if g(p)(V,V) > 0;
(2.65) (c) null if g(p)(V,V) = 0;

(2.66) (d) nonspacelike if g(p)(V,V) < 0.

The causal classification of vectors provides a partial
classification of curves in spacetime. If V = ¢ = 0*(6u) then

we say that the curve o is

(2.67) (a) timelike if g(o(u))(v,V) ¢ 0 for all u € dom(o);

(2.68) (b) spacelike if g(o(u))(V,V) > 0 for all
.u € dom(o0); |

(2.69) (c) null if g(o(u))(v,V)) = 0 for all u € dom(o);
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(2.70) (d) nonspacelike if g(o(u))(V,V) £ 0 for all

u € dom(o).

The classification is partial since we do not include cufves of
mixed causal nature i.e. a timelike‘curve continuously joined
to a spacelike curve. The partial classification is sufficient
since we do not observe curves which represent physical
particles changing their causal type.

The elementary causality of a spacetime is defined as the
collection of past and future causal sets and the properties

they induce. A spacetime is chronological if it does not

contain any closed timelike curves through p € M so that

p € I+(p). The spacetimes of general relativity are usually
assumed to be chronological on physical grounds. Since compact
spacetimes are not chronological, most of the spacetimes- in
general relativity are non-compact. Note that the term compact
is often abused in general relativity when it is used to refer
to cosmological models whose spatial sections are compact i.e.
Friedmann models.

A spacetime (M,g) is causal if it contains no closed
nonspacelike curves. An open set U c M is called causally
convex if no nonspacelike curve intersects U in a disconnected
set. A spacetime (M,g) with arbitrarily small causally convex

neighbourhoods is called strongly causal. A spacetime (M,g) is

globally hyperbolic if it is étrongly causal and J+(p) nJ (q)

is compact for all p, q € M.
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The next notion that we need is the idea of stability
under perturbation of the metric g on M. In order to discuss
this mathematically we need to topologize Lor(M). Sincé Mis
paracompéct we may find a fixed\countablé open covering of M
by coordinate domains 3 = {Ba : a € I} with the property that
only a finite number of the Ba intérsect an given compact
subset of M. Thus we have a locally finite subatlas of M. Let
8 : M — R’ be a continuous function. Two metrics g and
h € Lor(M) are 8-close in the fine Br—topology if for each
P €M all of the coefficients and all the derivatives up to the
r-th order are 6(p)-close at p when calculated in each of the
coordinate systems (Ba’QJ which contain p. We write

lg - hll_,3 < 8

to denote S-closeness in the fine Br-topology on Lor(M). The
sets
(2.71) N (8) = (h € Lor(M) : |g - h|_ g < 8}

g r,

with g an arbitrary element of Lor(M) and § : M — R* an
arbitrary continuous function form a basis for the fine
Br-topology on Lor(M).

A spadetime (M,g) is stably causal if there is a fine

Go—neighbourhood Ng(5) of g in Lor(M) such that each Lorentzian
metric h € Ng(6) is causal. Beem and Ehrlich [33] have shown
that a Lorentzian manifold (M,g) with M homeomorphic to R? is
stably causal.

The fine Gr-topologies on Lor(M) for r = 0, 1, 2 may be
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interpreted as follows:

(a) r = 0: if h is é~close in the fine Gp-topology'then
all the coefficients of hij are close to gij ih the
fixed covering 3 df M;‘ Thus the lightcones of h and
g are "close".

(b) r = 1: if h is é-close in the fine Gi—topology then
all the coefficients of hij are close to gij and all
the partial derivatives hij,k are close to gij'k in
the fixed covering 3 of M.’ Thus the Levi-Civita
connections of h and g are "close" hence the systems
of geodesics of h and g are "close".

(c) r = 2: if h is é-close in the fine Gz—topology then

all the coefficients of hij are close to g and all

ij
the partial derivatives hij‘k, hij,kl are close to
£ £ respectively in the fixed covering 3 of

ij, k' Tij,x?
M. Thus the curvature tensors of h and g are
"close".

There are many more elementary causal properties [33,108]
such as the causal simplicity, causal continuity, future and
past distinéuishing properties but the preceding ones are
easily related to a global decomposition of the Lorentzian
metric. The causal properties discussed above are suited to
the Lorentzian warped product construction which we shall
present in the next section.‘ A large class of interesting

spacetimes may be written as a Lorentzian warped product.
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The causality relations can be related by a simple

diagram:

Chronological

Causal

Strongly Causal

Stably Causal

Globally Hyperbolic

Figure 7 The Strengths of the Elementary Causality Conditions

Lorentzian Warped Products

Let (M,g2) be a Lorentzian manifold‘of dimension m and
(H,h) be a Riemannian manifold of dimension n. Suppose that

f : M —— R’ be a smooth function. The Lorentzian warped

product of the first type ([33], M X, H is the manifold
(M,g) = (M x H,g & fh).
Ifm : M——> M, and  : M —— H are the projections onto

M and N respectively, then we define the metric g by
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(2.72) . &(v,w) = g(myv,mw) + f(m(p))h(nv,nw),

for v, w € Tpﬁ. In a later section we will summarize the
elementary causality of Lorentzian warped products of the first
type.

The Lorentzian warped product of the second type on M x H

is the manifold‘(ﬁ,g) s (M x H,fg ® h) where f : H — R*. We
define g by

(2.73) g(v,w) = f£(n(p))g(n v,nw) + h(nv,nw)

for all v, w € Tpﬁ. The elementary causality of warped
products of the second type has been studied by Kemp [109].
All of the warped products in our work will be of the first
type. As all spacetimes as we have defined them will be
time~oriented we should find a criterion so that a warped
product of the first type is time-oriented. Beem and Ehrlich
[33] have proven the following fact. The warped product M x. H
of (M,g) and (H,h) may be time oriented if and only if either

(a) dim M > 2 and (M,g) is time-oriented; or

(b) dim M = 1 and g = -dt°.

Let M X, H be a Lorentzian warped product of the first
type. The following is a list (a similar list may be found in
Kemp {109] for warped products of the second type) of useful
properties for warped products of the first type:

(a) For each b € ﬁ, the restriction nln-1(b) : n‘i(b) — M is

an isometry of n ' (b) onto M.

(b) For each m € M, the restriction nln'1(m) : n-i(m) — H is
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a homothetic map of n'l(m) with homothetic factor 1/f(m).
(c) If v € T(M x H), then g(n*v,n*v) < g(v,v).

Thus ot T(M x H) — T"p)M maps nonspacelike vectors

(
to nonspacelike vectors and % maps nonspacelike curves of
M X, H to nonspacelike curves of M.

(d) For each (m,b) € M x H, the submanifolds n-l(m) and n'l(b)
of M X H are nondegenerate ﬁhen given their respective
induced metrics.

(e) If ¢ : H ~—— H is an isometry of H, then the map
¢ = LH x¢ :Mx H— M x H H
defined by

®(m,b) = (m,P(b))

is an isometry of M X, H.

(f) If p : M —— M is an isometry of M such that fo¢ = f then

the map ¥ = y x 4, : M x_ H —— M x_ H defined by
¥(m,b) = (¥(m),b)

is an isometry of M Xf H. If X is a Killing vector field
on M (ng = 0) with X(f] = 0 then the lift of X to M X, H,
X, such that X(p) = (X(n(p),Omw) is a Killing vector
field on M X, H.

(g) For each b € H, the leaf n-l(b) is a totally geodesic sub-

manifold of M xf H.

Note that in (f) we need fop = f so that f is constant on the

orbits of p otherwise the warping factor is changed.
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Elementary Causality of Lorentzian Warped Product Manifolds of

the First Type

Beem and Ehrlich [33] have proven the several propositions
concerning the elementary causality of Lorentzian metrics with
a warped product decomposition of the first type. Let (M,g) be
a spacetime and let (H,h) be a Riemannian manifold. Then
(a) (M X H, g  fh) is chronologiéal if and only if (M,g) is

chronological;

(b) (M X H, g ® fh) is causal if and only if (M,g) is causal;

(c) (M x H, g ® fh) is strongly causal if and only if (M,g) is

f
strongly causal;

(d) (M x H, g @ fh) is stably causal if and only if (M,g) is
stably causal and dimRM z 2;

(e) (M x H, g @ fh) }s globally hyperbolic if and only if

£
(M,g) 1is globally hyperbolic and (H,h) is a complete
Riemannian manifold.
There are several more results available in Beem and Ehrlich
[33]. Since the warped products we shall consider in Chapter 4
have Lorentzian factors which are two dimensional, we present
some facts on two-dimensional Lorentzian manifolds. All these
facts are found in [33].

Let (M,g) be a two dimensional spacetime. Then the
following facts hoid:

(a) IfT M is homeomorphic'to Rz, then (M,g) is stably

causal;
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(b) If M is simply connected, then (M,g) is causal;

(c) If M is simply connected then (M,g) is strongly
causal; |

(d) The universal covering~manifold of (M,g) is
homeomorphic to Rz;

(e) If M = R?

, then (M,g) is chronological.

The causal properties of a Lorentzian warped product of
the first type will enable us to examine the elementary causal-
ity of spherically symmetric spacetimes with very little
difficulty provided we can find adequate topological informa-
tion on the fgctors. This feature of the warped product
representation of metric tensors seems not to be widely
appreciated in the literappre. It should be noted that not all
spherically symmetric spacetimes may be globally written as a
Lorentzian warped product. Clarke [{110] has recently produced
an example of a spherically symmetric manifold which cannot be
written as the direct product of two manifolds of lower
dimension. Since the Lorentzian warped‘product construction

depends on having a direct product decomposition we could not

put a Lorentzian warped product on Clarke’s example.

Spherically Symmetric Lorentzian Warped Product Manifolds of

the First Type

A spacetime is spherically symmetric if its isometry group

contains a subgroup isomorphic to the group SO(3), and the
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orbits of this group are two-dimensional spheres. The group
action of SO(3) on the orbits may be interpreted as a rotation.
A metric tensor which is invariant under rotations is célled
spherically symmetric. A spherically symmetric metric tensor
induces a metric on the orbits which is a multiple of the
metric on a unit sphere. There are several types of coordin-
ates in which it has become customary to represent spherically
symmetric metrics. We will employ the Lorentzian warped
product construction to examine thenm.

There are two subtypes of Lorentzian warped products of
the first type so that the resulting Lorentzian manifold is
four~-dimensional. For dimRM = 1 and dimRH = 3 we find the

class of Friedmann-Robertson-Walker-Lemaitre spacetimes if H is

a space of constant curvature. (The naming of these metrics
depends on whether the stress-energy teﬁsor is that of a
perfect fluid or the special case of "dust"). For dimRM = 2
and dimRH = 2 we find a class of Lorentzian warped product
spacetimes which includes all of the spherically symmetric
metrics (take H = SZ). Let (Sz,h) be the standard Riemannian
differential geometry on the sphere. The coordinates we use on
the sphere will be denoted (9,¢) so that

(2.74) h = d6ed6 + sin’6d¢edé.

- Since (M,g) is a two-dimensional Lorentzian manifold we have

four causally different ways of coordinatizing M. If we use

coordinates (t,r) so that g(at,at) < 0 and é(ar,ar) > 0 then we
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will call these coordinates TS-coordinates (since at and ar are
timelike and spacelike respectively). In TS-coordinates we can
write the metric on M as
(2.75) g = -A%(t,r)dtedt + B*(t,r)dredr.
If we use coordinates (t,u) so that

g(at,at) < 0
and E(a ,a ) = 0)

u u

then we will call these coordinates TN-coordinates ( since 8t

and au are timelike and null respectively). In TN-coordinates
we can write the metric on M as
(2.76) g = -A%(t,u)dtedt + 2B%(t,u)dtedu.
If we use coordinates (u,r) so that
g(au.au) =0

and g(ar,ar) > 0,

then we will call these coordinates NS-coordinates (since au
and ar are null and spacelike respectively). In NS-coordinates
we can write the metric on M as
(2.77) g = 2a%(u,r)dusdr + Bz(u,r)dr®dr.
If we use coordinates (u,v) so that

2(3,,9)

and g<av,av)

0

0,

then we will call these coordinates NN-coordinates (since au

and av are both null). In NN-coordinates we can write the
metric on M as

(2.78) g = -4A%(u,v)duedv.
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Synge [35] has shown that using NN-coordinates to formulate the
vacuum field equations will directly produce the Kruskal-
Szekeres vacuum solution. As the other coordinate systems have
been extensively studied [111,1121 we will confine our
attention to NN-coordinate systems. Thus the metric for the
spacetime which we use can be written in the form

(2.79) Z = -4£%(u,v)duedv + RZ(u,v)[d0ede + sin’6d¢eds],
thus the metric is a type 1 warped product metric.

From a purely formal point of view there is no difference
between the TN and NS types of coordinates. Goenner and Havas
{113] point out that the direct integration of the field
equations using a single type of coordinates and the corres-
ponding form of the metric tensor may not produce the optimal
set of solutions. Any spherically symmetric metric can be
written in the NN-coordinates or the TS-coordinates [114]. A
difficulty in working with different canonical forms of the
spherically symmetric metric tensor lies in the fact that one
must prove the inequivalence of the solutions found. It is
well-known in general relativity that this equivalence problem
is notoriously difficult; often more difficult that the process
of finding the solutions themselves. There are various
classification schemes of solutions by which one may prove
solutions inequivaient. When these methods fail there is not
much one can do in practical terms. For the NN-coordinates

there has been little work so this problem is not so pressing
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there.
- The metric form (2.79) is preserved under coordinate
transformations of the form

(2.80) u f(u'),

g(v').

v
Takeno [114] has shown that the coordinate transformation
(2.80) is the most general thatvpreserves the metric form
(2.79) .

Following Beem and Ehrlich [33]; we set P = ln(Rz), and
let D' and D? denote the Levi-Civita connections over the
identity on (M,g) and (H,h) respectively. For vector fields
Xj, Y1 € ¥(M) and XZ, Y2 € X(H), we may 1lift them to vector
fields X = (Xj,O) + (O,XZ)-and Y = (Y1,0) + (O,Yz) in ¥(M x H).
Writing D for the Levi-Civita connection of g and using the
Koszul formula (2.30) we find the following formula for D:
(2.81) DY = D Y + DI Y, + (1/2)[X,(9)Y,+ Y (P)X,

- &(X,,Y,)grad y.
We use gradgw for the gradient of ¥ on (M,g). We identify the
vector D;inlm € TmM with the vector |
(D;1Y1|m,0h) €T, ,,(M x H. Similar identifications will be
assumed.

Decompose tapgent vectors X € TP(M x H) as X = (X1’Xz) and
define the tensors H' and h' by
(2.82) H (X,) = D;(gradgw),

and
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(2.83) , hv(x1’Y1) a g(Hy(X1)’Y1)

= g(DL}gradgw),Yi).
Define the symbol ”gradgw”z = g(gradgw,gradgw). Let R, R?, and
RZ be the curvature tensors on (M *r H, g & th), (M,g), and
(H,h). For vector fields X, Y, Z € Z(M x H) we have
(2.84) R(X,Y)Z = DD Z - DD Z - Dy yiZ-
Using (2.83) , the decompositions of vector fields, and (2.84)
we find the following formula for the Riemann tensor on the
spherically warped product manifold of type 1:
(2.85)

R(X,Y)Z

1 2
R (Xl,Yi)Z1 + R (XZ’YZ)ZZ + (1/2)[h’(X1,Zi)Y2

- h (Y ,Z )X, + 8(X,,Z )H (Y ) - &(Y,,Z,)H (X )]

+

(1/4)[X,(V)Z (V) + E(X,,2,)|lgrad ¥l[ 1Y,

- 2
(1/4) [Y (WZ, (p) + g(YZ,,ZZ,)||gI‘8.<‘1g’4’||g]X2

+

(1/4) Y (PV&(X,,2,) - X, (P)I&(Y,,Z,) lgrad v.
Similar formulae may be developed for the Ricci tensor [33] and
the Einstein tensor, however these formulae depend explicitly
on the nature of the basis chosen for the tangent spaces
(orthonormal, non-null vectors). For pseudo-orthonormal bases

which include null vectors, one must be careful when writing

the above formulae.

Observers and the Kinematics of their Motion

In this section we formalize the notion of observer and

congruences of observers. We also discuss the well known
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Raychaudhuri decomposition of a timelike congruence of
observers. The presentation we follow is a combination of that
of Ellis [39,115], Frankel [98], Szekeres [116], and Greénberg
[117].

An observer is a time-like curve y : I ¢ R ——— M such
that g(U,U) = -1, where U = 1*(6u) is future-pointing and u is
the parameter of ¥ called proper time. The vector U determines
a (3+1)-decomposition of T M = Rr ® R along y, where we call

7{u)

Rr the rest space of y at y(u). The image y(I) is called the

world line of y. The timelike unit vector U = 7*(6u) is the

4-velocity of . An instantaneous observer is an ordered pair

(p,U) where p € M and U is a future-pointing timelike unit
vector in TPM. One can always find a local observer whose
tangent at p is U,

A reference frame Q on a spacetime (M,g) is a tetrad of

orthonormal vector fields one of which is timelike and whose
integral curves is an observer. A reference frame Q is
geodesic if DTT = 0 where T is the timelike unit
future-pointing vector field in Q. Given an observer Yy, we

call a vector field X over ¥y a relative position vector if

Xoy(u) € Rr for all u € dom Yy and X is invariant under the

(u)

flow induced by y. The relative spatial velocity vector along
Y is the vector

(2.86) V(X)

FhX

i
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where U = 7*(au)~
Let (M,g) be a Lorentzian manifold. For a given open set

% € M, we define a congruence in U as a family of curves such

that for each point p € U thefe~is exactly one curve in the

family which passes through p. Let U be a timelike unit vector

field on (M,g). The acceleration vector of a U-observer is the
spacelike vector field A = DUU i.e, Ai = Ui_jUj. For curves in
the congruence of the U-observer the acceleration vector

represents the non-gravitational forces acting on the observer.

Computing the divergence of A we have

A =zt vy  =u' Ul o+ Ut Ul
;i HB HE HE B! N |
= vl vyl +u vt
;i iz
By the Ricci identities
_ J
Ui;kl - Ui;lk' UjR ikl

and a contraction we find that

(2.87) At = Ul

31 ;

Ul + R U+ U U,
J ij i;j

We can decompose the "acceleration" tensor U, . with respect to

¥

v'and h,, so that [39]

where
k.1
(2.89) Vij = h ih jUk;l
is called the relative velocity tensor. The tensor Vij

represents the relative velocities of particles in the rest
3-space of the observer u*.

We now decompose Vij into symmetric and antisymmetric parts as

69



follows:

(2.90) V‘j = eij + wlj,
where
(2.91) o =V

AEY (ij)’

igs called the strain-rate tensor, and where

(2.92) O UL

is called the vorticity tensor. Since Vij is the result of a

projection into the rest-space of a U-observer we see that

(2.93) e ul = o,
ij

and

(2.94) w__u?' = 0.

ij
The strain-rate tensor Oij can be further decomposed into its

trace and its trace-free parts:

(2.95) eij = oij + (1/3)9hi

j’

where oij, the shear-rate tensor, satisfies

(2.96) . ..= 0 .

and 9, the volume expansion scalar, is given by

(2.97) e =u' .

The vorticity tensor wij may be viewed as taking a sphere
of particles in the rest-space of the U-observer into a rotated
sphere of the saﬁe volume. A vector wi, called the vorticity
vector, may be associated with mij by the equation

ijkl

(2.98) o' = (1/2)n U, -
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From a knowledge of o' we can recover the vorticity tensor by

- k.1
(2.99) wij = nijklm Uu.

The vorticity vector satisfies the following properties:

(2.100) wiUi = 0,
and
(2.101) 0 o = 0.

ij ,
The magnitude of the vorticity is defined by
(2.102) W’ = wiwi
= w”wij
z 0.

The shear tensor may be viewed as taking a sphere of
particles in the rest-space of the U-observer into an ellipsoid
of the same volume. The direction of any principal axis of the
shear tensor is unchanged but all other directions are changed.
The magnitude o of oij igs defined by
(2.103) o’ = (1/2)or”orij

z 0.

The effect of the volume expansion scalar @ is to change a

sphere of particles in the rest-space of the U-observer into a

larger sphere so that the logarithmic derivative of the radius

of the sphere is 6/3.

. . . . \ - j
Using the R;001 identity Ui;kl - Ui;lk- UjR ikl and
multiplying by U* we find
Kk kK o kK _
(2.104) Ui;klU - Ui;lkU R iklUjU = 0.

Using the definition of the relative velocity tensor V‘j and
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e

using the projection hij we find the propagation equation for
Vij along the integral curve of U:

(2.105)

kK .1 k k.1 _ -
- AiAj - h ih jAk;l + Vuv § + R““UU = 0.

k 1 m
h ih ijl;mU

Since (2.105) is a propagation equation for Vij it also

5 We will

not find the propagation equation for wij as we will deal

exclusively with spherically symmetric spaces in which the

contains the propagation equation of 6, oij, and 0,

vorticity tensor wij a Q.

The propagation equation equation for the expansion scalar 6 is
found from (2.105) by contracting on i and j:

(2.106) o - Ai;i + (1/3)6% + 20° + (1/2)(u + 3p) = 0,

where we have used the field equations for a perfect fluid
together with the definitions above. We have used the notation
6 a %% where t is the proper time along the integral curve of
uU.

Equation (2.106) can be written as

(2.107) 8 + (1/3)6° = -20% + Ai;i— (1/2)(u + 3p).

In cosmology it is common practice to define a length scale L
by the equation

{2.108) € = 3(1nL) .

In terms of the length scale L, which we may view as the
distance from ouf fiducial timelike U-trajectory to a

neighbouring U trajectory (L being measured in Rﬂﬂ), we have

(2.109) 3L"/L = -20° + A

- (1/2)(n + 3p).
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From this equation we see that shear induces a contraction of
the flow; the divergence of the acceleration shows the tendency
of pressure gradients to cause expansion; the terms from the
trace of the stress-energy tensor show that pressure causes
contraction.

The symmetric trace-free part of (2.105) is the shear
propagation equation. From Ellié [39] we have (neglecting
terms with vorticity)

m

kK, 1 ‘ K
(2.110) h, hj (okl;mU - A(k;l)) - AiAj HERATA

+ (2/3)60  + hij(-(2/3)02 + (1/3)Ai;i) +E =0,

From this equation we see that the shear is controlled by the
electric part Eij of the Weyl tensor. Since Eij represents the
free gravitational field due to distant matter, these equations
describe the "tidal forces" felt by a congruence of
U-observers.

For spherically symmetric metrics and distributions of
matter we should observe a distortion in the flow of
U-observers as we move toward larger concentrations of matter.
For a spherical fluid element in the rest space of a U-observer

the cross-section of the fluid element orthogonal to the radial

direction should decrease while the radial cross-section should

elongate. The elongation in the radial direction is due to two
effects - the acceleration of the congruence and the tidal
forces.
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Motions on a Lorentzian Spacetime

. The use of symmetries to classify vacuum solutions of the
field equations is well-known in general relativity.
Symmetries may also be used to partially classify interior
solutions. The stress-energy tensor is sometimes assumed to be
invariant under the action of a symmetry i.e, isometric motion.
The problem of how these symmetries effect the individual
matter fields that contribute to the stress-energy tensor is
probably difficult since a given stress-energy tensor may have
several interpretations. We will briefly discuss some of the
symmétries that have been used (a more complete list of
symmetries is in Katzin et al. [29]. In Chapter 5 we will
compute the field equations and other quantities for the case
of nonstatic spherically symmepric anisotropic fluids in
NN-coordinates.

A motion is generated by a Killing vector field X on (M,g)

such that

(2.111) ngij = 0.

A conformal motion is generated by a vector field X (conformal

Killing vector field) such that

(2.112) 28, = 298,

where ¥ is the scalar conformal factor.

A homothetic motion is generated by an vector field X (homo-

thetic Killing vector field) such that

(2.113) fxgij = Zgij-
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A special conformal motion is generated by an conformal

vector field X such that
(2.114) nglj = ngij,
Y,y = 0

where 9 is the scalar conformal factor. A conformal collineat-

ion is generated by an affine conformal vector field X such
that

(2.115) ngij = ngij + Hij’

where the collineation tensor Hij (one could also call Hij a

conformal Killing tensor) satisfies

(2.116) H[ij] = 0,
(2.117) Hij;k =0,
and where § is the scalar conformal factor. It is still a

difficult open problem to characterize the collineation tensor
Hij' Only a few conditions are known which will produce Hij in
such a way as to guarantee the existence of the vector X and
the scalar p. It has proven difficult to find examples of
proper affine conformal vectors (do not‘reduce of conformal
Killing vectors) until recently when Sharma and Duggal [118]
have provided an abstract example.

An affine conformal vector field is a generalization of a
conformal Killing field. An affine conformal vector field
reduces to a conférmal Killing vector field if and only if
Hij = Xgij where A is a constant. We may view the symmetric

tensor Hij as a measure of how much X fails to be a conformal
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Killing vector.

A special conformal collineation is generated by an affine

conformal vector field X such that

(2.118) ngij = Zngj + Hij’
i.e.
(2.119) X . +X =29z .+ H _,

iz Jii ij ij

where 9 is the scalar conformal factor and Hij is the symmetric

parallel tensor associated with X and obeys the following

equations

(2.121) H ., =0,
ij;k

(2.122) ') = 0.

21

The interest in these more general types of motions is a
consequence of the following theorems. The first is due to

Oliver and Davis [93].

Theorem: Let Xi = lUi, UiU_ = -1 and » > 0. A spacetime (M,g)

i
admits a timelike conformal motion with symmetry vector Xi if
and only if

(a) 0., =0,

(b) A = (log7L),i + (6/3)Ui,
where the conformal scalar

P = A6/3

and ¢ 6, and Ai are, respectively, the shear tensor, the

ij’
expansion scalar, and the acceleration vector of the timelike

flow generated by Ui.
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The second theorem is due to Duggal [91].

i

Theorem: Let Xi = AU, UiUi = -1 and A > 0. A spacetime (M,g)
admits a timelike conformal collineation with symmetry vector
x' if and only if

(a) o = (20)"'th* i H - (2/3)6"h 1, and

a k1l kK 1 ij k11’ 8
_ a-1 i ke

(b) Ai = A [l,i + l’jU Ui + ijU h i],

where
X

Y= (N6 - 6)/3,

0" = (1/2)[H', + HijUin],
and aij, 0, and Ai are, respectively, the shear tensor, the
expansion scalar, and the acceleration vector of the timelike
flow generated by Ui.

Duggal’'s theorem is very important for the study of
shearing fluids since it relates the shear of the fluid to a
symmetry i.e. the existence of a timelike affine collineation
vector X and the "affine collineation tensor"” Hij. We conclude
this section with some of the properties of collineations.

An affine conformal vector field is special if and only if
it leaves the curvature tensor Rijklinvariant. A special
affine conformal vector field X is a special case of a Ricci
collineation vector field [29],

(2.123) £R.. = 0.
X ij
The Lie derivative with respect to an affine conformal

vector field X of a non-null unit vector Z is given by {891,

(2.124) zxzi = —(p + (e/Z)ijZjZk)Zi+Yi,
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(2.125) 22z, = (v- (e/2)H 27252 + H 27+ Y,
where Yi is orthogonal to Zi and € is the indicator of Zi.
If p is the flow generated by an affine conformal véctor
field X then [118]
(a) a null vector field N will be transformed by W into a
null vector field if and only if H(N,N) = 0;
(b) a non-null vector field V retains is causal character
under V;
(c) two orthogonal vector fields U, and V, will be
transformed into orthogonal vector fields under y if
and only if H(U,V) = 0.
There are many more properties of collineations which we shall
omit. These generalized symmetries seem sure to play a very
important role in future studies of realistic fluids. In
Chapter 5 we shall compute the field equations with a conformal
collineation in NN-coordinates for an anisotropic stress-energy

tensor.
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CHAPTER III

THE MATHEMATICS OF THE STRESS-ENERGY-MOMENTUM TENSOR

Classification of the Stress-Energy Tensor

In this section we present a brief summary of the
algebraic classification of the stress-energy-momentum tensor.
The techniques used will be applicable to any second order
symmetric tensor. There are several classification séhemes
[27,119,120, 121] which have been developed in the last twenty
years. The simplest of these is the Segré classification which
uses the eigenvalues and eigenvectors of the Rij with respect

to g When working with indefinite metrics one must

ij’
prescribe the field over which the Segré classification takes
place. It is customary to use R, the real field, for the Segré
classification. In general the Segré class of Rij over R

will be different from that over €. From the field equations

(1.1) and the definition of the Einstein tensor we see that any

classification of Rij is also a classification of Tij. In fact
an alternative way of writing the field equations is
(3.1) R =T - (1/2)Tg
ij ij ij
where T = Tii. There is a shift of eigenvalues in passing from

- a classification of-Ri to that of Tij but, as long as it is

J
-kept in mind, it poses no obstacle.
Hall [122,124] has proven that in a spacetime (M,g) if

P €M so that Tij # 0 at p then there always exists a real null

79



tetrad {Li’Ni’Xi’Yi} such that Tij assumes one of the following

canonical forms:

(3.2) Tij = ZPOL(iNj) + pl(LiLj + NiNj) + pzxixj + psYiY;;
(3.3) T, = 20,L N #pLL +pXX +p¥Y;

(3.4) Tij = ZpiL(iNj) + ZL(in) + plxixj + szin;

(3.5) T, = 2oL N +p(LL - NiNj) + XX+ PY Y

where Pyr Pys Py Py € R, and in (3.5) P, # 0. The first form
' (3.2) can be written with respect to a pseudo-orthonormal
tetrad (T ,Z ,X,Y } where y2T' m L' - N', y22' a L' + N’ as
(3.6) T, = -(py - p)T,T, , ;Y Y
The forms (3.1) and (3.5) correspond to Segré type

+ (p0 + pi)ziz + pZXiX
{1;1,1,1} where the numbers inside the braces refer to the
degree of the elementary inisor corresponding to an
eigenvalue. Each elementary divisor corresponds to at least
one eigenvector. If an eigenvalue is algebraically degenerate
(repeated eigenvalue) but the number of eigenvectors equals

the multiplicity of the eigenvalue, then the elementary
divisors for that eigenvalue are of degree 1. The Segré symbol
indicates the algebraic degeneracy by enclosing the degrees of
the elementary divisors corresponding to the degenerate
eigenvalue in parentheses. If the degree of the elementary
divisor exceeds the number of eigenvectors then the degree of
the elementary divisors sum to the multiplicity of the
eigenvalue. In this case at least one of the degrees of the

elementary divisors of the degenerate eigenvalue is greater
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than 1. The degree of the elementary divisor corresponding to
a timelike eigenspace is separated from the other degrées by a
semicolon, the others by a comma.

The form (3.3) correspondé<to Segré class {2;1,1} which
has a unique null eigenvector in.the L' direction. The form
"(3.4) corresponds to Segré class {3;1} which has a unique null
‘eigenvector in the L1 direction. In (3.5) complex eigenvalues
occur and Xi, and Yi are the only real eigenvectors, thus the
Segré class is written {zz;1,1}. For this Tij is
diagonalizable over € but not over R.

We see that Tij always admits at least two eigenvectors.
The Segré class {1;1,1,1} and its algebraic degenerate subcases
is the only class which admits a timelike eigenvector. 1If
there is no timelike eigenvalue degeneracy (timelike eigenvalue
is distinct from the spacelike eigenvalues) then the timelike

eigenvector is unique.

Energy Conditions

The Einstein field equations (1.1) are usually solved
subject to side conditions. These side conditions will reflect
physical properties of the physical situation we are trying to
model. As we are interested in exact interior solutions, the
"energy conditions" will be applied. There are several types of
distinct energy conditions mentioned in the literature [33,95,

96]. Unfortunately not all these energy conditions have
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distinct names [96]. The role of all the energy conditions is
to exclude unrealistic models of macroscopic matter.

There is a general consensus among researchers in general
relativity that the energy density of classical macroscopic
matter as measured by an observer with 4-velocity u' is
nonnegative i.e.,

(3.7) TUU‘Uj 2 0.

Since we do not admit the existence of privileged observers,
this relation must hold for all timeiike vectors U'. These
inequalities are called the timelike weak energy conditions.
Tipler [123] has shown that the timelike weak energy condi-
tions are the weakest energy conditions that can be locally
defined which use the entire set of timelike vectors in TPM.

If we write the stress-energy tensor Tij as

(3.8) Tij = ix(a)e(a)ie(O)j

a=0

where {e(a)} is an orthonormal eigenbasis with e timelike,

(0)
then the timelike weak energy conditions for a stress-energy
tensor of Segré class {1,111}, and its algebraic degeneracies,
are equivalent [94] to the following system of inequalities on
the gigenvalues l(a)r
(3.9) xozo,

xo_+ xi 20, i € {1,2,3}.
The null weak energy condition is
(3.10) T, KK 20

for all_null vectors Ki.

82



The strong energy condition is

(3.11) T, U+ (1/2)T 2 0

for all unit timelike vectors U'. This condition ensures that
thé matter stresses will not become so large that R”UiUj £ 0.
The dominant energy condition assert.that Tij satisfies the the
following conditions for each timelike future pointing vector
u':

(3.12) T,,U'v’ 2 0, and

(3.13) TijUj is nonspacelike.

This energy condition states that the speed of energy flow of
matter is always less that the speed of light. The dominant
energy condition implies the timelike weak energy condition.
The dominant energy condigion excludes stress-energy—momehtum
tensors of Segré types {zz;1,1} or {3;1} and their algebraic
degeneracies. It also severely restricts the possible
eigenvalues of Segré classes {1;1,1,1} and {2;1,1} and their
algebraic degeneracies. In particular for Segré class
{1;1,1,1} we must have the eigenvalues satisfying [124]

(3.14) A, 20, and

(3.15) llil < lo for i € {1,2,3}.

The strong energy condition implies the null weak energy condi-
Ations, but does not imply the timelike weak energy condition
[961.

A stress~energy-momentum tensor is normal at p € M if

Tinj is timelike for all nonspacelike vectors X € TPM {94].
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Tij is normal if it is normal for every p € M. It can be shown
that a normal stress-energy-momentum tensor has a unique unit

future pointing timelike eigenvector [94].

Stress-Energy-Momentum Tensors
The material content of a spacetime is represented by the

stress-energy-momentum tensor Ti which appears on the right-

J
hand side of the field equations (1.1). T, £ depends on the

ij
fields representing the matter, the covariant derivatives of
these fields, and the metric tensor. Note that Tij = 0 on an
open set U in M means that there are no matter fields on U. By
the field equations we see that the twice contracted Bianchi
identities of the Einstein tensor
(3.16) G”;J = 0,
imply that the stress-energy-momentum tensor satisfies a set of
differential identities
(3.17) T”;J = 0.

It has become common practice in general relativity to
call these identities "the conservation equations" or, for the
case of dust, "the equations of motion". As Wald [96] notes,
the notion of (3.17) as conservation equations is only true in
the differential_sense. A better descriptive term for (3.17)
is the "equations of hydrodynamical support”.

For a fluid moving through spacetime with a unit-speed

timelike tangent vector U, the flow lines are the integral
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curves of the vector field U. We say that the fluid is a
perfect fluid if the stress-energy-momentum tensor has the form
(3.18) T, = (MP)UU, + pg, |
where U is the energy density megsured by an observer with
velocity U, p is the pressure common to all 2-planes in the
rest-space of the observer.

A viscous fluid with coefficient of dynamic viscosity
n 20, bulk viscosity € 2 0, flow vector Ui, energy density
U4, isotropic pressure p, shear tensdr aij, expansion scalar 6,

and heat flow vector Qi, has a stress-energy-momentum tensor

given by [125]

(3.19)

Tyy = (P - 80+ mMUU + (p - E9g,, - 2n0,, + 20,9,
where

UiUl = '1)

UiQi = 0)

Jj o_

ijU = 0,
and

O'i = Oc

Hall [119] and Hall and Negm [126] have shown that this
form of the stress-energy-momentum tensor, without any energy
condition imposed, does not restrict the Segré class. By using
the projection ténsor onto the 3-space orthogonal to Ui, i.e.
hij = gij + Uin, we can write the stress~energy-momentum

tensor in thé form:
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(3.20)

1

k1 kl, e kl
+ [T hikhjl - (1/3)(T h, hel)hij] - 2T Ulhk(in).

kl kl, e kl, e
T, = (T"UU, + (1/3)T h h JUU + ((1/3)T 0, h g,

Equation (3.20) has the same form as (3.19) if we set

kl
Qi =T Ulhki

~and

-20, = [T'n b - (1/3)(T"'h °h,

ij ik j1 )h, .1

ij

with other obvious identifications. From (3.19) it is clear

1

that setting Qi = 0 forces Tij to be Segré type {1;1,1,1} or
one of its degeneracies. A stress-energy-momentum tensor for
a viscous fluid without heat flow is easily seen to be normal.

Setting &, n to zero and leaving Qi # 0, we have a
nonviscous fluid with hea? flow. The vector U' is not a
timelike eigenvector in this case. Hall and Negm [126] have
shown that the dominant energy conditions imply that two
physical Segré classes arise from this specialization, namely
{2,(11)} and {1,1(11)}. Only in the last case is the
stress-energy-momentum tensor normal.

Setting the viscosity coefficients &, n and the heat flow
vector Qi to zero leads to the Segré type {1;(1,1,1)} of a
perfect fluid. It is clear that the stress-energy-momentum
tensor of a perfect fluid is normal.

Hall and Negm [124] give several combinations of matter
fields and discuss their algebraic structure. The combinations

include two non-zero interacting radiation fields, a perfect
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fluid and a radiation field, and two noninteracting perfect
fluids. All of these combinations have stress-energy-momentum
tensors of Segré class {1,1(11)} hence are all anisotropic.
For a perfect fluid the timelike weak energy conditions

{96] become
(3.21) uz0,

U+ pz20,
For a perfect fluid the strong energy conditions are
(3.22) u+ 3p 20,

U+ pz220.,
For a perfect fluid the dominant energy conditions are
(3.23) uz|p|l 20,
For anisotropic stress-energy tensors the situation is more
complicated depending on the composition of the stress-energy
tensor. Hall and Negm [124] have written the dominant energy

conditions for several cases.
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CHAPTER IV

SHEARING PERFECT FLUID SOLUTIONS IN SPHERICALLY WARPED PRODUCT

MANIFOLDS OF THE FIRST TYPE

The Field Equations in NN-Coordinates

In this chapter we shall writé the field equations for a
perfect fluid in NN-coordinates and find some special solutions
which exhibit nonzero shear. From Chapter 2 we know that a
spherically symmetric metric may be written in a variety of
ways when represented by a Lorentzian warped product of the
first type. The advantage of using this representationkis that
one can immediately deduce certain aspects of elementary
causality solely from this representation and an analysis of
the causality of the two dimensional Lorentzian factor
manifold.

The metric for the spacetime which we use can be written
in the fofm
(4.1) Z = -4f%(u,v)duedv + r’(u,v)[d6edé + sin’6d¢sde].
This metric is a type 1 warped product metric. The coordinates
u and v are null coordinates. There are few papers in the
literature which use double null coordinates [35,127]. The
papers [35,127] have similar calculations which were used to
cross-check the calculations as far as possible.

The metric form (4.1) is not quite the same as that in

[35,127]1. 1In those papers the metric is presented with the
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term -4f2(u,v)du®dv replaced by -2f(u,v)du®dv. The second
choice allows the possibility that when f changes sign the
coordinates u and v are interchanged.

Beem and Ehrlich [33] have proven the several propoéitions
concerning the elementary causality of Lorentzian metrics with
a warped product decomposition of the first type. Let (M,g) be
a spacetime and let (H,h) be a Riemannian manifold. Then
(a) (M X H, g ® fh) is chronological if and only if (M,g) is

chronological;

{(b) (M X H, 2  fh) is causal if and only if (M,g) is causal;

(c) (M X H, g ® fh) is strongly causal if and only if (M,g) is
strongly causal;

(d) (M X H, g  fh) is stgbly causal if and only if (M,g) is

stably causal and dimRM z 2.

For the metric (4.1) we take M to be some open subset of R?
with metric g = —4f2(u,v)du®dv where (u,v) are the coordinates
on Rz; for H we take SZ, the standard sphere with coordinates
(6,9), with metric h = d6edd + sin®6d¢edd. With these identi-
fications the all four of the propositions hold when the
appropriate conditions hold on the two-dimensional Lorentzian
manifold (M,g). Recall that s? is complete. The elementary
causality of any perfect fluid solution determined from (4.1)
(as far as the pfeceding four propositions are concerned) is
determined by simply examining the properties of the (u,v)

coordinates on an appropriate domain. Since the metrics
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g = —4f2(u,v)du®dv are all conformal to g = -2du®dv on Rz, the

spaces (M,g) have similar causal properties as 2-dimensional

Minkowski space. If global topological identifications‘are

made, then great care must be used in trying to use the

precéding theorems.

Not all spherically symmetric metrics have

these properties since they cannot'all be written as a Lorentz-

ian warped product.

We compute the standard quantities for the metric (4.1)

next. All quantities are computed in the sign conventions of

Chapter 2 (also see Appendix A for notation). The Christoffel

symbols of the second

0
oo

0
33

(4.2) r
r

1
22
2
02
2
33
3

r
r
r
r1.3

2

kind are (with (xo,xi,x ,xs) = (u,v,0,9))

2f /f, r’,, = rr_/(2£%),
r’_,sin®e, r* , =T sin%,
rrvsinze/(Zfz), = rrusinze/(Zfz),
rru/(Zfz), F111 = va/f,

r /r, lez = r /r,
-cos0sinf, F303 = ru/r,

r /r, F323 = cot#.

Applying the Christoffel symbols we find the geodesic equations

to be

(4.3)

rrv(¢')zsin26/(2f2) + rrv(G')z/(Zfz) + 2(u')2fu/f + u”

rru(¢')zsin26/(2f2) + rr“(e’)z/(Zfz) + 2(v’)2fv/f + v

0,

0,

Zrue'u'/r + 2rv6'v'/r —'sinecose((b’)2 + 6 =0,

Zru¢'u'/r + 2rv¢'v'/r + 20°¢'cotl + ¢” = 0,
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where the prime represents differentiation with respect to an
affine parameter. In the paper of Synge [35], the Lagrangian
defined from the metric (4.1) is used to discuss radiallnull
and timelike geodesics for a vacuum in NN-coordinates.

The Killing equations corresponding to the metric (4.1)

are
(4.4) Eo.o - 2f Eo/f = 0,
Eo,i * E1,0= 0, ,
E0,2 * E2,0 - 2r E,/r =0,
E0,3 * E3,0 - 2r &/ = 0,
51,1 - 2f E,/F =0,
E1,2 + Ez,i - 2r E,/r =0,
E1,3 + 53,1~— er g /r = 0,
28, , - rr £ /£° - rr E /% = 0,
52,3 + Ea,z - Zcot9§3 = 0,
2E, - rsin®O(r &, + r E)/f% + sin26€, = 0.

The spherical symmetry implies the existence of at least three

Killing vectors: 5(1) = gE’ E(z) = sin¢g§ + cotfcosd g$, and

g = cos¢%§ - cotfsing 33' Other Killiﬁg vectors may occur

(3)
if special assumptions are made on the metric functions f and
r. In the following section we will see that assumptions that
we make in order tovrender the field equations tractable will

generate an "accidental™ Killing vector.
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The Riemann tensor has components given by

(4.5) Riior = -4ffvu + 4fufv,
R0202 = erufu/f - rr .
Boz12 7 "TT,
Roaoa = ROZOZSinze'
R0313 = R021231n?6’
R1212 = 2rrva/f - Tr
R1313 = RiZiZSinze’
R,453 = rzsinzﬁ(rurv/f2'+ 1).

We will write the tetrad components of the Riemann tensor
for a pseudo-orthonormal tetrad {XAi} chosen as follows:

(4.6) Moy = 81/ (V2E),

i i -
)‘(1) - 6(0)/-(’/2f)'

i i
My = /T

i i .
= 8(3)/(r31n6).

x(3)

Thus giijixBj = nAB where

-

[0 -1 00
-1 000

(4.7) e = |0 o010 |
0 001

The independent tetrad-components of the Riemann tensor are

_ 4
(4.8) R(o101) - R1o1o/(4f )
_ 4
= (—ffvu + fufv)/f ’
R = R._../(2f%r?)

(0202) 1212
= (2r f /f - r )/(2rf?),
v Vv vv
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2 2
(0212) R1202/(Zf r)

= -r  /(2rf"),

R

2 2
(1212) ~ Rozoz/(2f r)

= (2r f /f - r )/(2rf%),

R

4 ., 2
R(zszs) - Rzaza/(r sin’9)

= (r,r /£% + 1)/0%

The Ricci tensor components are

(4.9) R00 = 4rufu/(rf) - Zruu/r,
R,, = -2r_ /r + quf;/fz - 2f  /f,
R11 = 4rva/(rf) - erv/r,
R,, =1+rr /f%+rr /f°
R33 = Rzzsinze.

The tetrad components of the Riceci tensor are

(4.10) R0, = 2r,f,/(rf%) - r /(rf?),
R,,,, = -T,/(rf%) + £ £ /£" - £/,
R(11) = Zrufu/(rfa) - ruu/(rfz),
R.,,, = 1/r2+r /(rf®) + r r /(x°f%),
Ry, = 1/r% + r_ /(rf%) + rr /(r’f).

The Ricci scalar (curvature scalar) is
(4.11) Rz 2rr /(rf%) + ar /(rf?) - 2f ¢ /¢*
u v uv u v
+2f /£2 + 2/,
vu

Other invariants constructed from the Riemann tensor are
(4.12)

ij _ 3, _ 2 3, _ 2
Rin = Z[erfv/(rf ) rvv/(rf )][Zrufu/(rf ) ruu/(rf )]

+ 2[-r J(rf%) + £ £ /£ - ¢ /£%H2
uv u v vu
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+ 2[1/r2 + ¢ J(rf%) + r r /(r?£%)1%,
uv u v
and the Kretschmann scalar
ijkl _ 2 4,4 4,2
(4.13) R, R = 4(r v )%/ (r f‘) + 8r r /(r'f")
2.6 2.5
+ 16rur§fufv/(r f ) - 8rurvvfu/(r f7)
-8 r f /(rzfs) + 4(r )2/(r2f4)
uu v v uav
+4r r /(rifY) + a(f £ )2%/£°
uu Vv u v
-8Ff £ f Jf  + 4(F )2/£% + a/r?
u v vu vu
= 4[2r £ /f-r 1[2r f /f-r 1/(r2th
v v vV u u uu
2 2.4 2.2 4
+ 4(ruv) /{r'f’) + 4[1+rurv/f 1°/r
2 8

+ 4[f £ ~-ff 17/f .
u v vu

The components of the Einstein tensor are

- {4.14) G00 = 4rufu/(rf) -'Zruu/r,
G = 2¢%/r? + 2r r /r% + 2r /r,
01 - u v uv
G11 = 4rva/(rf) - vav/r,
2 2 4 2 3
G22 = —rruv/f + r fufv/f - r fvu/f ’
. 2
G33 = G2231n 6.

We are interested in finding shearing solutions for the
case when the stress-energy tensor is that of a perfect fluid.
Whenever interior solutions are considered one must decide on
the reference frame of the observer. In NN-coordinates we
shall use an observer who is "generalized comoving". This is
a special choice of observer who shares some of the mathematic-
al advantages of.comoving observers in TS-coordinates. From a
mathematical point of view,ythe choice of a comoving observer

does not introduce new unknown functions into whatever problem

94



is being analyzed. This property is shared by the notion of a
"generalized comoving" observer. A generalized comoving
observer has a velocity vector orthogonal to the orbits‘of a
symmetry group. For spherically‘symmetric metrics this means

that the velocity is orthogonal to the two-dimensional orbits

of S0(3). 1In contrast, a comovingbobserver is defined to have
velocity vector orthogonal to a hypersurface. In NN-coordin-

ates for the metric (4.1), the velocity vector of a generalized
comoving observer is given by |

(4.15) Ui = (f,f,0,0).

From now on all the problems to be analyzed will use this
frame. In NN-coordinates an observer who is not comoving in
the generalized sense, bu@ still has velocity orthogonal to the
orbits of S80(3), has velocity given by Ui = (a,b,0,0) where

ab = f£°,

Associated with any velocity vector is a spatial project-
ion tensor hij which completes the (3+1)-decomposition of
spacetime. The components of hij for the generalized comoving
velocity are

-£2, h

1l
Hy

(4.16) h

1]
'—h
]

00 01 11 !

2 2 2
= = in“0.
h22 r, h33 r sin
Kinematical quantities such as the acceleration vector,
shear tensor, and expansion scalar are computed next. The
nonzero components of the acceleration vector of the

generalized comoving velocity are
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(4.17) . A

(£, - £,)/(2f),
(-f + £ )/(2f).

o

A

"

The nonzero components of the shear tensor determined by Ui are

(4.18) o, = f(r, + rv)/(sr) - (£, + £)/3,
%4 = -f(ru + rv)/(3r) + (fu + fv)/3,
o, = flr + 71 )/(3r) - (£ + /3,
6,, = -r(r + T )/(6f) + r (£ + £ )/(6£%),
o, = azzsinze.

The expansion scalar 8 is found to be
(4.19) @ @-~-(r +r )/(xf) - (£ + £ )/(2£%).
u v u v
Using the stress-energy tensor for a perfect fluid with
energy density U and pressure p, Tij = (u+p)UiUj + png’

u+p # 0, we find the independent field equations to be

(4.20) £%(py + p) = 4r £ /(rf) - 2r /r,
u u uu
(4.21) £2(u - p) = 2£%/2% 4+ 2r r /r* + 2r /v,
2
(4.22) f°(p + p) = 4rva/(rf) - 2rvv/r,
(4.23) r?p = -rr /£% + r?¢ £ /£* - £%f /£,
uv u v vu

The conservation equations are written in the following form:

(4.24)

2f2(T0{_+ Tii-) = Zu(ru + rv)/r + 2p(ru + rv)/r

31 R

+ u(fu + fv)/f + p(fu + fv)/f +tu +oH

v

=0,
(4.25)
2£2(t° -1 ) = w(f - £ )/f + p(f - £ )/F + -
;1 ;i - IJ u v p u v pu pv
= 0.
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Notice that the second conservation equation is identically

satisfied if f and r (hence u and p) are functions of u+v.

Solutions of the Field Equations in NN-Coordinates
In this section we seek solutions of the field equations
(4.20) to (4.23) which exhibit shear. We rewrite the equations
(4.20) to (4.23) as follows: to fihd U we add (4.20),
(4.22), and twice (4.21) then divide by 4f° to get
2 2,2 2
(4.26) U= 1/r" + rurv/(r £f7) + ruv/(rf )
3 2
+ (rufu + rva)/(rf ) - (ruu+ rvv)/(er ).
To find p we add (4.20), (4.22), and subtract twice (4.21) then
divide by 4f° to get
_ 2 2,2 2
(4.27) p=-1/r" - rurv/(r f7) - ruv/(rf )
3 2
+ (rufu +_rva)/(rf ) - (ruu+ rvv)/(er ).
Taking the difference of (4.20) and (4.22) leads to
(4.28) f(r -r )=2r f - 2r f .
uu vv u u v Vv
Equation (4.28) can also be written in the form
2, 2
(4.29) (ru/f )u = (rv/f )v.
Taking the difference of (4.23) and (4.27) leads to
4 2,2 2
(4.30) (-fufv + ffuv)/f - rurv/(r £7) - (ruu + rvv)/(2rf )
3 2 _
+ (rufu + rva)/(rf y - 1/r° = 0.
Equation (4.30) is the pressure isotropy equation. The
pressure isotropy equation may be written in the form
(4.31) [In|£}1 /% - [(r /£ + (r /£%) 1/(27)
u u v v
2,2 2
- rurv/(r f7) - 1/ = 0.

Using equation (4.29), equation (4.30) can be written as
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(4.32) o =f f o+ £f /Y - (r /£%) /T - v /(P
- 1/r? = 0.

There are many ways which one may attempt to solve (4.28)
and (4.30) for f and r. Equation (4.29) has a particularly
interesting structure so we shall examine it first. The first
integral of the equation (4.29) is fu/f2 = xv, and rv/f2 = xu,
where X is a Gz—function on a contractible domain. If r is a

2 . .
8"-function then we can write (as a consequence of Tow = rvu)

X, t X,

u v

(4.33) (r. + v )/f2
u v
2
(r, - )/ = =(x, - x,) -
Defining new variables p = u-v, and t = u+v, we find (4.33)

becones

]
»

(4.34) r /£
rp/f2 = =X .

We now make the ad hoc hypothesis that f = F(t). The second of

equations (4.34) can be integrated to find that

(4.35) r(t,p) = g(t) - [F(t)1%(t,p).

Using this in the first of (4.34) and integrating the resulting

linear equation we find

(4.36) r(t,p) = g(t) - F(t)[P(t) + h(p)]

where g and h are arbitrary smooth functions of one variable
t
and P is given by P(t) = (l/Z)I [g'(E)/F(E)]dE. Using the

- definitions of t and p we have

(4.37) r(u,v) = g(u+v) - F(u+v)[P(u+v) + h(u-v)].
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There is a dual case for the ad hoc hypothesis that f = F(p)
which leads to

(4.38) r(u,v) = g(u=-v) - F(u-v)[P(u-v) + h(u+v)].

In both of these cases, use of (4.37) or (4.38) in the
pressure isotropy equation (4.30) leads to an intractable
equation in general. Thus we have to look for another method
of solving (4.28) and (4.30). |

For a vacuum one can show that 2f° = (1 - 2m/7)U" (u)V’ (v)
which leads to Schwarzschild’s solution. By a coordinate
change the dependence on functions of u and v can be removed so
that we have f = F(r) = (1 - 2m/r). This motivates us to
assume that for a class of solutions a functional relationship
exists between the metric_coefficients f and r even in the case
of a perfect fluid.

The method that we shall use to study the field equations
is to find a general solution of equation (4.28) under the
hypothesis that a functional relationship f = F(r) exists
between the metric coefficients f and r. Once we have found a
solution to equation (4.28) we shall use it in the pressure
isotropy equation (4.30) to find a mathematical solution to
the field equations. The mathematical solutions will then be
tested to see that appropriate energy conditions are satisfied,
that the shear tehsor is nonzero, and that the resulting
solution is nonstatic. |

We will define several auxiliary functions which Figure 8
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illustrates. For clarity in Figure 8 we have used distinct
symbols for the value of a function and the function itself.
It is a common abuse of notation in applied mathematics to use
the same symbol for both. Thus f = F(u,v) = FoR(u,v) and

r = R(u,v) as a consequence of assuming that f = F(r). When

~convenient we shall employ the usual abuse of notation.

c f
F
- r y
Figure 8 Functions related to (ru/fz)u = (rv/fz)v.
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Let w(rf = j [F(E)]-zdﬁ. Then ¢ (r) = [1“(1'.')]-2 > 0 hence

w* ekists and is smooth. The value of ¥ is 8 = P(r). We also
define the function- ¥(s) = w*(s) = r. By abuse of notation we
have s, = ru/f2 and s, = rv/fz. ‘Thus equation (4.29) leads to
(4.39) s -8 = 0.

uu vv

‘Equation (4.39) has the general solution

(4.40) s = g(u+v) + h(u-v)

where g and h are arbitrary Bz—functions. We find r to be
given by

(4.41) r = y(s)

¥(g(u+v)+h(u-v)).

Using (4.41) we find the following formulae for the partial
derivatives of r and f (we use h’ = ————— and g’ -——)
(4.42) r = £f(g + h'),

r = £f%(g° - h'),

_ g2 . ’ df, .. ;i\ 2
L £f°[(g” + h"”) + ZfE;(g + h')"1,
- 2 b ” d f . ’ 2
r., = f°[(g" + h") + ZfEF(g - h")71,
. padf .
fu = f a;(g + h'),

£,= £585 - n),

_ p2ldf, . . d [e2df -2 4.2
fuv = f [dr(g h™) + dr(f dr)(g h )]'

Putting these into (4.30) we get

, |
(4.43) [ zgr(fzgﬂ - rzf(%-f:) - f3](g"" - b3
af . af ., _
+ r(raF - f)g" - r(ra; + f)h” - £ = 0.
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Thus, if we find 3 functions f, g, and h so that (4.43) is
satisfied, then we can use (4.41) to define r. This solution
will be a mathematical solution of the field equations‘only—it
still needs to have the nonstatiCity, shear tensor, and energy
conditions checked. Nonstaticity will follow automatically if
g #0.

The first case that we shall study is the simple case when
f = 1. By absorbing the constant of integration in (4.41), we
can write
(4.44) r = g(u+v) 4+ h(u-v).
Equation (4.43) reduces to

(4.45) g2 - n?

+ (g + h)(g” + h”") + 1 = 0.
Differentiating with requct to t = u + v, we find

(4.46) g (g” +h”) + (g + h)g” + 2g°g" = 0.
Differentiating with respect to p = u -~ v, we find

(4.47) h’(g” + h”) + (g + h)h” - 2h'h"” = 0.
Differentiating (4.47) with respect to t gives

(4.48) gh” + g"h = 0.

If g #0 and h' # 0, then h""/h’ = -g7 /g = -\, where A is a

constant of separation. There are three subcases:

(i) A= 0,
(i1 ) -~ *>0,
(iii) A < 0.
For the case A = 0, we have g~ = 0 and h"" = 0 so that we

formally find
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(4.49) . g(u+v)

2
ko + ki(u+v) + kz(u+v) ,

h(u-v)

2
C, + ci(u—v) + cz(u—v) .

Using these solutions in (4.46) and (4.47), we see that

(4.45) becomes

(4.50) g2 -hn%+1=o0.
. Thus the formal solutions (4.50) héve the form

(4.51) g(u+v) = ko + (u+v)sinha,

h{u-v) = C, + (u-v)cosha,
where a is a real parameter. Using (4.51) we find that r is
given by
(4.52) r(u,v) = ¢, + k, + (u+v)sinha + (u-v)cosha.
Unfortunately, together with f = 1, (4.52) leads to the
unreasonable result that u = 0 and p = 0. Thus case A = 0 does

not lead to a solution.

The case A > 0 leads to the system of equations

2 .

(4.53) g = «g,

h”' = —azh',
where we have set A = az, a # 0. This system of equations has
the formal solution
(4.54) g(usv) = k, + k™Y - g ™Y,

h(u-v) = c, = cicos[a(u-v)] + czsin[a(u—v)].
Using (4.54) we can show g” + h” = a’(g - h) + a’(c; - k).
Putting this into (4.46) and (4.47), noting that g~ = azg'

and g # 0, we find that g(ﬁ+v) =z (3ko - co)/4 for all values

of u+v. Since the set of functions {1, eahHV),e_““HV)} is
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linearly independent when a # 0 we see that k1 = k2 = 0 thus

g = 0 which contradicts the hypothesis g # 0. Similarly we
can show that h’ = 0, contradiéting the hypothesis that h’ # 0.
Thus there is no solution for the case A > 0 when g # 0 and

h' # 0.

The case A < 0 leads to the system of equations

.- 2 .
(4'55) g = -x g ,
hlll = azh’ .
where we have set A = -az, a # 0., This system of equations has

a formal solution similar to (4.54) and the same methods may
be used to show that this case has no solution.
If we assume that g° # 0, h’ = 0, then we find that
(4.45) reduces to i
(4.56) gg” + 22+ 1=0
where we have absorbed the constant value of h into ¢.
We set B = g so that g~ = B%g and (4.56) becomes
(4.57) gBB + B+ 1 = 0,
where the prime means differentiation with respect to g. This

equation reduces to the Bernoulli equation

(4.58) B = -B/g - B '/g.

Applying the method in [80] we arrive at the solution

(4.59) B = cg"? - 1,

where C > 0 is an integration.constant. This equation leads to
(4.60) %= cg? - 1.

This equation can be completely integrated to give the
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solution g2,= cC - K2 F 2K(u+v) - (u+v)2 where K is a constant
of integration. The metric has the form
(4.61) Z = -4duedv + [C - K° F 2K(u+v) - (u+v)Z1d6ede
+[C-K>% szu+v) - (u+v)?1sin®ed¢ede].
Since C > 0, there are two values of u+v for which g would
~ be zero. Constraining u+v to lie Strictly between these values
guarantees that gz > 0. The region gz > 0 is an open strip in
the (u,v) coordinate plane hence is homeomorphic to Rz and thus
this solution is stably causal, hence strongly causal, causal,
and chronological.
We now want to check the timelike weak energy conditions.
For>f = 1, and r = g(u+v) we find the energy conditions to be

-2
2 0,

(4.62) b= (1+g%e
which will hold for any g # 0, and
(4.63) U+ p=-22"/2 20.
Taking gz =C - K2 F 2K(u+v) - (u+v)2 and differentiating

twice with respect to u+v we find

(4.64) 2¢" 2% + 2gg” = -2.
Thus
(4.65) gg” = -(1 + g %) <o,

and the timelike weak energy conditions hold for the solution
gz = C - K2 F 2K(u+v) - (u+v)2.
If we apply the dominant energy condition we just have to

check the inequalities

(4.66) u=|p| 20,
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which is equivalent to the three inequalities

(4.67) U = 1/r2 + rurv/(rzfz) + ruv/(rfz)
+ (r £+ rva)/(rfa) - (r rvv)/(erz)
2 0,
(4.68) pw+p= 2(r f_+ rva)/(rfa) - (r  + rvv)/(rfz)
20, '
(4.69) g -p= 2/r’+ 2rurv/(r2f2) + 2ruv/(rf2)
2 0.

The first two are satisfied for the timelike weak energy

conditions. All that remains is to check (4.69). We find

that

(4.70) p-op=2/g°+ 22 %% + 2g7/8°
= 2(1 + g?+ g7)/g’
=0

from (4.65). Thus the dominant energy conditions hold on the

same region as the timelike weak energy conditions.

If we apply the strong energy condition we must check the

inequalities
3 2
(4.71) p+p= 2(rf +r f)/(rf ) - (r ¢ r )/ (rf")
20,
_ 2 _ 2,2, _ 2
(4.72) U+ 3p = -2/r 2rurv/(r £7) 2ruv/(rf )

3 2
+ 4(rufu + rva)/(rf ) - 2(ruu+ rvv)/(rf )
2 0.
Using (4.65) we can show that g + 3p 2 0 on the region where

the solution is defined, thus the strong energy conditions hold
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on this region as well.
The energy conditions, (4.67), and (4.70) show that the

stiff equation of state p = p holds. The expansion scalar is

6 = -2g° /g. The acceleration vector A is identically =zero.
The shear tensor aij is nonzero since %50 = 22" /(3g) # 0. By a

transformation to the coordinates‘t and p it is clear that this

solution is nonstatic since g # 0.

Since f = 1 and r = g(u+v) we see that 6(4) = ga - g; is

also a Killing vector. & is orthogonal to the surfaces u + v

(4)
constant hence this solution, which is not a dust solution, has
the same symmetry as the Kantowski-Sachs [27] dust metrics.

The radial (O = constant, ¢ = constant) geodesic equations

can be easily integrated ﬂor both the null and timelike cases.

The radial null geodesics are

(4-73) u = b,
v = d,
where b and d are arbitrary constants. The radial timelike

geodesics are given by
(4.74) u(r) = aX + b,

v(A) = ch + 4d,

where 4ac = 1 and b and d are arbitrary constants.

The scalar invariants are found next. The curvature scalar is
(4.75) R = -2(1 + g 2)/g?

where gz =C - K2 F 2K(u+v) - (u+v)2. Other invariants

constructed from the Riemann tensor are
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(4.76) - R, RY = ag/g

=41+ g %) %g"

= RZ
and
(4.77) R, R°Y = 1201 + g% %g’

= 3R2,

where gz = C - K2 F 2K(u+v) - (u+v)2, and we have used (4.85)
repeatedly.

For the next example we take f = rt/2, With this
assumption we find that s = ln|r| + c, where c is a constant of
integration. Absorbing c into g where s = g(u+v) + h(u-v) we
find from (4.40) that r is given by
(4.78) r(u,v) = Ce_g('”” + h(u-v)’

where C is a nonzero constant. Using (4.78) in (4.43) we find
after some simplification

(4.79) g2 -n?

+ (g7 + h")/2 + e~
Consecutively differentiating with respect to u+v and u-v we
find that either g = 0 or h’ = 0 for all values of u+v and
u-v. This shows that we cannot have both functions g and h to
be nonconstant. If g = 0 it is easily seen that any solution
which might be derived from (4.79) will be static hence not of
interest in our study. Taking h’ = 0, we find the equation
(4.80) g” + 2g° %+ 2¢79¢C = 0.

Setting p(g) = g and setting U(p) = p2 we find the

differential equation
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(4.81) | %g + 4U + 4e79/C = 0.
Thus p2 = -4e79/(3C) - 4Ke '9/C hence C < 0. There are three
cases: K ¢ 0, K = 0, K > 0.
| If K < 0 we can pérform a quadrature to implicitly

determine g and hence r. Thus
(4.82) D+ (u+v) = (-3¢/4)"2[e’3(1+3Ke™%%) "V %g,
where D is an integration constant. Since p2 = g'z 2 0, we see
that K ¢ 0 imposes a restriction on the domain of the solution.
Using £ = r*’2 and (4.80) in (4.67), we find that
p20if 1 + Cg'zeg 2 0. However the condition u + p 2 0
cannot be satisfied when 1 + Cg'zeg 2 0, hence the timelike
weak energy conditions are not satisfied for the case for any
constant C < 0. Since th%s argument may be applied for the
cases K = 0, and K < 0, we see that no reasonable solutions
arise from f = r .

Another case is given by f = r1/3. We find that s = 3r1/3
+ ¢, where ¢ is a constant of integration. Absorbing c¢ into
g(u+v) we find

(4.83) r(u,v) = [g(u+v) + h(u-v)13/27.

Using this in (4.43) and simplifying gives

2 4/3 4/3, & 1/3

(4.84) 10(g°% - n%/9 + 2r*327/3 + 4ar*n” + '3 = 0.
Let n = h/3, T = g/3, so that f = T + n. Then (4.84) will
reduce to

3, v 2 2 , 2
(4.85) 2(T + M) (T + 2n") + 10T + )™(I"'®" - n") + 1 = 0,

This equation is difficult to solve, so it will be simplified
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by putting n = 0 to get
(4.86) 2r°r~ + 10T ? + 1 = o,

where we use the dot to denote differentiation with respect

to utv., Let ¢« = I" so that I'" = a%%, where o = a(I'). Thus
(4.86) is reduced to
(4.87) oM’ + 10r%2% + 1 = 0,

where we use the prime to denote differentiation with
respect to ' Dividing by « we find

(4.88) 2« + 10T% + o™ = 0,

which we recognize as a Bernoulli equation if we write it as

(4.89) « = -5«¢/T - a '/(2I%).

From [80] we find the solution

(4.90) oH(T) = Y(T) + Y (D)

where

(4.91) Y () = ce®™,

(4.92) (N = -2¢"" e 2r%1ar,
(4.93) ®(T) = zj(-s/r)dr

= —101n|F| + K
where K is an integration constant.

Thus we have

-10

(4.94) Y (T) = cr 7,

(4.95) Y,(I) = -1/(8T%),

so that

(4.96) «(ry = cr'® - 1/(8r%,

where C is a constant of integration. 1In fact C must be
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greater than zero so that az(F) 2 0. The definition of a shows

that

2

(4.97) r2-crt

- 1/(8T%),

-10

Let H(T;C) = cI™'® - 1/(8T%) so that H(T;C) 2 0. We can

write a solution to (4.86) as
(4.98) K # (u+v) = [[H(T50) 17" %r

- J[CF'lo _ 1/(8F2)]'1/2dF.
Thus f =T and r = r? give the solution of the field equations
where T is determined by the quadrature (4.98). The integral
in (4.98) is non-elementary when C # 0.

In terms of ' the mass-energy density p and the pressure p

are given by

(4.99) p= 1/T° + 15T %1%,
and
(4.100) P = _1/1"6 - 15I" 2/1-4 - SF../FS.

From (4.99) and (4.100) we see there is no simple equation of
state for this solution.

The timelike weak energy condition g 2 0 is satisfied by
any solution I' # 0 of (4.86). The energy condition pu + p 2 0
holds if IT" £ 0. Thus the timelike weak energy conditions
are satisfied for a solution of (4.86) if C > 0 and IT” < 0.

2 _1/7(21% < o0

From (4.86) we see that T satisfies IT" = =5I"
thus the timelike weak energy condition u + p 2 0 holds.
For the dominant energy condition we have just to check

the inequality (since the timelike weak energy conditions hold)
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(4.101) Cw-p =2/ 4 2 r /(2PE0) 4 2¢ /(rf?)
2 0.

Using £f =T, r = F3, and (4.86) in (4.101) we find that

(4.101) cannot be satisfied since H-p= -T"% < o.

For the strong energy condition we just have to check
(4.102) U+ 3p = -2/r% - 2rurv/(r2f2) - 2ruv/(rf2)

+ 4(r £+ £ )/(rf)- 2(r + v )/(rf?)
2z 0,
since p + p 2 0 from the timelike weak energy conditions.
Using £f =T, r = Ta, and (4.86) in (4.102), we find that
(4.103)  p+ 3p m 7I"° + sor 2r*
2 0,
thus the strong energy coqdition holds.

Any solution of (4.86) with C > 0 will satisfy the
timelike weak energy conditions and the strong energy
conditions. This solution has shear since %00 = (4/73)T",
nonzero expansion since the expansion scalar is 0 = -7F'/F2,
and zero acceleration since I' is a function of u+v. Writing

the metric in terms of T we have

(4.104) g = -4T%(u+v)duedv + T°(u+v)[dOedd + sin’6déede].
This metric is clearly nonstatic since I" # 0. As the metric

. . _ 93 a .
coefficients are functlons of u+v we see that 5(4) * 35 " 3v is

an additional Killing vector. On each subregion of the (u,v)-
plane where T' # 0 the metric (4.104) is stably causal, hence

strongly causal, causal, and chronological.
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The Ricei scalar is found, using (4.11) and (4.86), to be

(4.105) R = -30T" 2r™* - 5778,

Other invariants constructed from the Riemann tensor are
complicated nonzero expressions of I', I', and T" which we shall

omit.

ar

We next study the case when f = F(r) = e with a # 0.

Equation (4.30) becomes

(4.106) —ezar/r2 - rr /r2 + ar + a(r2 + rz)/r
u v uv u v

- (r + rvv)/(Zr) = 0.

uu
Simplifying (4.106) we find (assuming that r = R(u+v))

(4.107) -e?*" _ r'? 4 ar®r" + 2arr'? - rr" = 0,

which we rewrite as

(4.108) r(ar-1)r" + (2ar-1)r' 2 - e%*" = 0.
We set B =r so that r” = B%g and (4.108) becomes
(4.109) r(ar-1)88 + (2ar-1)p% - e%*" = o,

where the prime means differentiation with respect to r.

Dividing by B and rewriting we get

2ar

(4.110) B B '/[r(ar-1)1

(1-2ar)B/r(ar-1) + e
which is a Bernoulli equation. Equation (4.110) can be written
as

(4.111) B = g(r)B + h(r)p"

‘where g(r) = (1-2ar)/r(ar-1), h(r) = e '/[r(ar-1)1, and

k = -1. If we set

(4.112) AMr) = (1 - k) [g(r)ar,

then the solution of (4.108) is

113



(4.113) o Y - pert) (1-k)e*"’fe‘*"’h(r)dr.

Thus we are left with the first integral
=A(r)

(4.114) r? = M7 o+ 2fe” Ph(ryar].

Evaluating the integral for A(R) we find the following first
integral

(4.115) r? = Dr-z(ar-l)-? + ezar/(azrz).

Let K(r;a,D) = Dr"z(:a.r--l)-2 + ezar/(azrz). We can write
implicitly a solution r to (4.115) as

(4.116) E % (utv) = I[K(r;a,D)]"’zdr,

where E is a constant of integration. The timelike weak energy
conditions become
(4.117) u = Dr *(1+2ar) (ar-1)%"%" + a%r"*(1+ar)?

z 0,

and, using (4.108) and (4.115)
(4.118) u + p = (4arr' 2 - 2rr”)/(r2e?")
| = 2(ar+1)/(a’c") + 2D(2a%r%-1)/0r*(ar-1)7)

2 0.
These inequalities are very complicated depending on the signs
of a, D, r. If we choose D =2 0, then 0 < ar < 2”12 4i11
satisfy both (4.117) and (4.118). Thus there is an open strip in
the (u,v)-coordinate plane on which the timelike weak energy
conditions are satisfied. The metric form of this solution is
(4.119) z = -4e?" "™ 4quedv + r’(u,v)(d6edé + sin’6d¢ede],
where r(u,v) is the function implicitly defined by (4.116).

The mass-energy density is given by (4.117). The pressure is
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given by
(4.120) p = -1/r? - e’ ® ("% - 2rr” - 2arr %1/0°%.

Since the open strip is homeomorphic to R? we see that the
solution is stably causal hence strongly causal, causal, and

chronological. The shear tensor oij is nonzero since

Ooo = 2¢®"r" /(3r) - 2ae’'r’ /3. The expansion scalar is found

to be 8 = -r'e ®/r - ae ®". The metric (4.119) is nonstatic

since both f and r depend on u+v. As the metric coefficients

. _ 90 a .
are functions of u+v we see that 5(4) =357 - 3v is an
additional Killing vector.
The Ricci scalar is given by
(4.121) R = 2e % [r(2+ar)r” + r 2 + r’1/r°.

Another scalar constructeq from the Riemann tensor is

(4.122) R, R = 2e **"(2ar %-r"1%/r? + 2¢7** " r"%[a-1/r1?
+ 2[1 + r? + rrie Zar]Z/r4.
The scalar Rijkﬁfjkl is
(4.123) Rij“Rijkl = tle.‘iar[(Zarr'2 - rr"z)2 + ripr?
+ 4a2piee? 4 (r.z Zar)Z]/
From the previous examples we have seen that setting h = 0
(or 2 = 0) will allow integration of the field equations for

some specific cases. Now we investigate (4.30) more generally
under this hypothesis. Using h = 0 in (4.43), as this will
generate nonstatic solutions, we find the equation

af

2
2d 2df 2 3] .2 df .- _
-r f(—d?] - f]g + I‘(I‘a‘; - f)g - £ = 0.

(4.124) [ dr(f a;)
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Equation (4.41) yields s = g(u+4v) and r = ¥(s) = y(g). From

dy

(4.41) and the Implicit Function Theorem we find Is

= [F(r)12.
Putting this into (4.124), we get

(4.125)

2
[[Fumma + [y(g)]zF(Y(g))(g_fJ - “‘g”zg?(ﬁ%g]g'z

+ 7(g)[F(7(g)) - w(g)ﬁ{-]g" + F((8)) = 0,

where we evaluate %; at y(g). If we prescribe F arbitrarily
and use (4.41) to find r we see that solving the field
equations reduces to solving the second order autonomous

differential equation (4.125) for g. If we define

(4.126) p=g = Pg),
dF

(4.127) Alg) = [7(&)/2][F(7(g)) - Y(S)EI':],

2
(4.128) B(g) = [F(3(2))1° + [v(g)}ZFmg))@—‘-r‘"-)

2d 2dF
- e’ (F°gE),

(4.129) C(g) = F(¥(g)),

(4.125) becomes the Bernoulli equation (for P):

(4.129) A)GTP(2)1% + B()[P()1% + C(2) = O,

We shall analyze (4.129) in two cases: A(g) = 0, and A(g) # O.
If we assume that A(g) = 0, then F(r) - r%% = 0, thus we

have F(r) = cr, where c is a constant of integration. Using

this in (4.128) we find B(g) = 0, thus (4.129) becomes

(4.130) C(g) = 0.
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From (4.130) we must have ¢ = 0 which produces a singular
metric. Thus A(g) = 0 leads to no solutions.

If we assume that A(g) ¥ 0, and let U(p) = [P(g)]z, we

have

duU
(4.131) az * B(g)U/A(g) + C(g)/A(g) = 0.
This equation is linear an can be ihtegrate to find

g ,

(4.132) U(g) = [K - IC(E)M(E)/A(E)dE]/u(g),

g
where u(g) = ef B“)/A“)d{ Since U(g) = [P(g)]2 2 0 we see

that (4.131) imposes some conditions determined by A(g) and
C(g) on the domain of g. Supposing that the domain of g is
nonempty we can find g by a further quadrature. Thus

g
(4.133) D £ (utv) = j [U(E)]~ 1?2

dg’
where D is a constant of %ntegration. We conclude that
assuming that either g or h is identically zero will always
lead to a differential equation of the Bernoulli type
(neglecting the degenerate case when A(g) = 0).

We will apply the above discussion to the study of the
case f = r", where « is a real number. Equation (4.125) becomes
2

(4.134) (1 - )rg” + (1 + a - 29)r%%" 2 + 1 = 0.

We find s = r "2%/(1-2a) and thus

(4.135) r(u,v) = [(1-2a)g(u+v)]/ 172,
Putting r into (4.134), yields
(4.136) (1-o) [(1-20)g] "/ 172 g"
+ CL(1-20)g(usv) 131202 4y - o,

where a # 1, 1/2. The exceptional case a = 1/2 has already
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been considered and has been shown to lead to no reasonable
solutions. The exceptional case « = 1 has no solutions since
putting f = r in (4.30) directly leads to r'¢=-o. |

Now we consider the case when a« = -1, Using f = r’! leads
to s = r3/3 + ¢, where ¢ is a constant of integration. Thus,
.absorbing ¢ into the definition of.g and letting h = 0, we find
from (4.41) that
(4.137) r(u,v) = [3g(u+v)]1'’3.
Putting this into (4.125) leads to
(4.138) 2r’r” 4+ 5r°r' % + 1 = 0.
where we use the dot to denote differentiation with respect
to u+v. Setting B = r so that r” = ﬁ—ﬁ, we get
(4.139) 2r’8p’ + 5rB° + 1 = 0,
where now the prime represents differentiation with respect to

r. Dividing by B and rearranging terms we find the Bernoulli

equation
(4.140) B = -58/2 - B '/(2r%).
From {80] we find the solution of (4.140) to be
(4.141) B°(r) = Y (r) + Y, (r)
where
(4.142) Y (r) = pe" 7, |
(4.143) Y,(r) = -e“"f{e""’/rz]dr,
and A(r) is given by
(4.144) A(r) = zf(-5/2)dr
= =5r + C,

118



with C a constant of integration. Thus we find

-5r
De ’

(4.145) Y, (r)

(4.146) Y, (r) -e-er[esr/rz]dr

Thus the solution of (4.140) is

(4.147) B%(r) = Y,(r) + Y (r)

= De"5r - e-sfj[ésr/rz]dr.
A first integral of (4.38) is
(4.148) r'? = pe”®" - e-srj[esr/rz]dr,

where D > 0 so that (4.148) makes sense on some subregion of
the (u,v)-plane. Let K(r;D) = De'5r - e-srj[esr/rz]dr so that
K(r;D) 2 0. We can write a solution to (4.138) as

1/2
dr.

(4.149) E + (utv) = [[K(r;D)1”
This integral cannot be eYaluated to find r explicitly in terms
of u+v, E, and D. The metric form of this solution in terms of
the implicit function r is
(4.150) z2 = -4r %(u,v)duedv + r’(u,v)[d6ed6 + sin®6d¢ede] .
The mass-energy density g is found to be
(4.151) p=3(2r'? - rr),
and the pressure is
(4.152) p = (2r% - rr”)
so the equation of state p = u/3 holds.
Using (4.138) in (4.67) and (4.68) shows that the
timelike weak energy conditions hold. The dominant energy
con&ition holds since |

_ 2 2,2 2
(4.153) 4-p=2/r + Zrurv/(r £f7) + 2ruv/(rf )
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For the strong energy condition we just show that
2 . 2,2 : 2
(4.154) g+ 3p = -2/r - Zrurv/(r f7) - Zruv/(rf )

+ 4(r £+ rva)/(rfa)- 2(r + rvv)/(rfz)

6(Zr'2 - rr7)
20

holds since we have shown that g + p 2 0 for the timelike weak
energy conditions. Thus the strong energy conditions hold on
the region where the solution in defined.

The acceleration vector is zero since r = R(u+v) and hence
f = F(u+v). Since %0 = 4r'/(3r2) this solution has a nonzero
shear tensor oij. The exp?nsion scalar is 6 = -r'. The
solution is nonstatic since both f and r depend on u+v. As the
metric coefficients are functions of u+v we see 6(4) = %G v
is an additional Killing vector.

The Ricci scalar is
(4.155) R = 4r' 2 + 2rr” + Z/r2

= 1/r% - 5r°°

where we have used (4.138).

Another invariant constructed from the Riemann tensor is

(4.156) R R = 220" + rre1? + 20t + 201/2% + 7+ £ %) 2
z 0.

The invariant RijklRijkl is found to be

(4.157) R. R - 20[2r'2 + rr"]2 + 4r2r"2 + 4[rr” - r'Z]2

ijkl
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z 0.
‘Since the solution is defined only where r'? > 0 we see
that the.solution is stably causal. From the discussion‘of
elementary causality in Chapter 2 we see that the solution is

strongly causal, causal, and chronological.

Now we consider the case when a« = -2, Using f = r we
find that
(4.158) s = r5/5 + c,

where ¢ is a constant of integration. 8Solving (4.158) for r,
setting h =2 0, and absorbing ¢ into the definition of g we find
(4.159) r(u,v) = [5g(u+v)1™’/>.

Instead of using (4.159) in (4.125), we shall put f = r 2
directly into (4.30) to get

(4.160) 3r’r” + 3r'r'? + 1 = o,

where we use the dot to denote differentiation with respect

to u+v. Setting B = r so that r” = ng, we get

(4.161) 3r°pg + 3r'® + 1 = 0,

where now the prime represents differentiation with respect to
r. Dividing by B and rearranging terms we find the Bernoulli
equation

(4.162) g = -B/r - B '/(3r°).

From [80] we find the solution of (4.162) to be

(4.163) B%(r) = Y. (r) + Y (r)
where |
(4.164) Y (r) = pe* (",

121



-A(r)/rS]dr’

(4.165) C¥,(r) = —(2/3)e" 7 [1e
and X(r) is given by
(4.1686) Mr) = -2[rlar

= -2ln|r| + C,
where C is a constant of integration. Thus we find

(4.167) Y (r) = Dr%,

(4.168) Y, (r) (1/3)r" %,

Thus the solution of (4.162) is

H

(4.169) B(r) = Y (r) + Y, (r)

=pr ¢+ (1/3)r %,
A first integral of (4.160) is
(4.170) r?=pr?+ (1/3)07"
Let K(r;D) = pr-? + (1/3)r_-4 so that K(r;D) 2 0. We can write
a solution to (4.160) as
(4.170) C + (utv) = [[K(r;p)) " %ar,
where C is an integrétion constant. This integral can be

evaluated to find r implicitly in terms of u+v, C, and D. The

metric form of this solution in terms of the implicit function

r is

(4.172) g2 = -4r *(u,v)duedv + r’(u,v)[d6edd + sin’6d¢ede].
The mass-energy density g is found to be

(4.173) p = -3ri(rr” + 2r %),

and the pressure is

2

(4.174) P = rz(rr" - 2r 7).

The timelike weak energy inequalities (4.67) and (4.68) become
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(using (4.160))

(4.175) 1/r? 2 3r’r? 2 0,

2

(4.176) ~8r’r'? - 2r" 2 0,

These two inequalities imply that

(4.177) 1 23r'r?%2o0,
~ and
(4.178) rr” < -4r°' % s 0.

The inequality (4.177) shows that as r grows in magnitude that
r' tends to zero. The analysis of the timelike weak energy
conditions may be broken into three cases depending on the sign
of the integration constant D. For the case when the
integration constant D = 0, the mathematical solution does not
satisfy the weak energy cqnditions even for the special subcase
when C = 0, Using D > 0 in (4.170) shows that (4.177) cannot be
satisfied thus D < 0 is the only case left. Using D < 0 in
(4.170) and (4.178) we find that the weak energy conditions will
hold on the region defined by 0 < |r| < (-3D)‘1/2. To check

the dominant energy condition we have to check the inequality

(4.179) u-po=2/r2+ 2rr /(r?f%) + 2r /(rf?
u v uv

4/(3r%)

2z 0,
when D < 0 and we have used (4.173) and (4.174)..For the strong
energy conditions it is straightforward to show that (4.173)

2

and (4.174) imply u + 3p = -6r°r'2 ¢ 0 when D < O.

This solution has nonzero shear tensor Gij on this region
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since %0 " 2r'r °. The acceleration vector is zero since f is
a function of u+v. The expansion scalar 90 = 0.
The Ricci scalar is found to be

(4.180) R = 6D + 4/r2.

The scalar RiJRiJ is given by

(4.181) R, R = 20r7c" + ar?r 212 + 20" - 208 212
+ 2[1/r% + 2" + rr 212
20,
The scalar RUHRijkl is found to be
(4.182) R, RV7* = arfrert 4 4 f1% 4 ar'ser - 20 %®
+ 16r'[rr” - r %1% 4+ 4rbp-?
2z 0,

The final case we shall consider is the case when a = -1/2.
Note that when a = -1/2 that the second term in (4.134) is
eliminated. Using f = r /% we find that
(4.183) s =r%/2 + c,
where c is a constant of integration. Solving (4.183) for r,

setting h = 0, and absorbing c into the definition of g we find
(4.184) r(u,v) = [2g(u+v)] 2,

Since (4.184) implies that r2 = 2g we must have g > 0. When we
find r we will have to consider the possible branches of this
relation. From (4.134) we get

(4.185) 3rg”/2 + 1 = 0,

where we use the dot to denoﬁe differentiation with respect

. 2
to u+v. Since r = 2g we have
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(4.186) " rr =g,
g = 2 4 rro,
thus (4.185) becomes
(4.187) 3r’r” + 3rr' % + 2 = 0,

where we use the branch r, = y2g, thus r, > 0. Note that we

- shall only use the subscript "+" on r for clarity. Setting

B=r so that r” = B%g, we get

(4.188) 3r’gp’ + 3rB° + 2 = 0,

where now the prime represents differentiation with respect to
r. Dividing by 3r28 and rearranging terms we find the Bernoulli
equation

(4.189) g = -B/r - 2B"'/(3r%).

From [80] we find the solqtion of (4.189) to be

(4.190) B°(r) = Y (r) + Y (r)
where
(4.191) Y (r) = D" ‘",
(4.192) Y, (r) = 2e*“”j[-2e'*“”/(3r2)]dr,
and A(r) is given by
(4.193) AMr) = -zjr"dr
= -21n]|r| + C,

where C is a constant of integration. Thus we find

Dr-z,

(4.194) Yl(r)

(4.195) Yz(r) -4/(3r).
Thus the solution of (4.189) is

(4.196) B(r) = Y (r) + Y, (r)
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= pr 2 - (4/3r).

A first integral of (4.187) is

(4.197) r'? = pr’? - (4/3r)
where we must choose D > 0. Let K(r;D) = pr-? - (4/3r) so that

K(r;D) 2 0 defines a region of the (u,v)-plane.. We can write a
.solution to (4.187) as |

(4.198) C # (utv) = [[K(r;D)1""%ar,

where C is an integration constant. This integral can be

evaluated to find ry implicitly in terms of u+v, C, and D. The

metric form of this solution in terms of the implicit function

ry is
(4.199) g = -4r '(u,v)dusdv + r’(u,v)[d68dO + sin’6ddede].
The timelike weak energy inequalities (4.67) and (4.68) become
(4.200) p= 1/r®

20,
and
(4.201) g+ p = 4/(3rd)

2 0,

using (4.185), (4.186), and the fact that r > 0. The pressure
is

(4.202) p = 1/(3r%)

so we see that the equation of state p = u/3 holds. From
(4.200) and (4.201) we see that the timelike weak energy
conditions hold for the branéh ry = yY2g. For the dominant

energy conditions we must check that pu - p 2 0.
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Using (4.187) we find that
(4.203) u-p=2/(3r)
| > 0.

Thus the dominant energy conditipns hold for the r = /E“.
Checking the strong energy condition g + 3p 2 0 we find
(4.204) g+ 3p = 2/r2

> 0.
The Ricci scalar for the branch r = y2¢ is
(4.205) R = 3r 2/(2r)

> 0,

The invariant Rinij for the branch r = y2g is

(4.206) RUR” = 4/(3r?)
> 0.
The invariant Rijkgfjkl f&r the brapch r = Y2¢ is
(4.207) RU“R”“ = 4r' 2+ ar? + 8(r%" + 1/3)°
> 0.

The solution r, has nonzero shear tensor oij on this region
since %0 r'r_alz. The acceleration vector is zero since f is
a function of u+v. The expansion scalar 6 = -(3/2)r'r-1/2.
Since the solution is defined only where r'2 > 0 we see
that the solution is stably causal. From the discussion of

elementary causality in Chapter 2 we see that the solution is

strongly causal, causal, and chronological. The metric (4.199)

is nonstatic since both f and r depend on u+v. As the metric
3 3

coefficients are functions of u+v we see that 5(4) = 3 - 3V is
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an additional Killing vector to those imposed by spherical
symmetry.
Now we consider the other branch of r2 = 2¢ thus r. = —/EE
and we see that r- < 0. Using r- in (4.134) we get
(4.208) -3y2gg” + 2 = 0.
- Using (4.186) we find (4.208) becoﬁes
(4.209) -3r%r" - 3rr'% + 2 = 0.
Setting B(r) = r so that r” = B%g, we get
(4.210) -3r’p - 3rp% + 2 = 0,
where now the prime represents differentiation with respect to

r. Dividing by -3rZB and rearranging terms we find the

Bernoulli equation

(4.211) B = -B/r + 2B7'/(3r).
From [80] we find the solution of (4.211) to be
(4.212) B°(r) = Y (r) + Y, (r)
where
(4.213) Y (r) = pe" ",
(4.214) Y (r) = ze*‘r’f[Ze'*‘r’/(srz)]dr,
and A(r) is given by
(4.215) AMr) = —Zfr-idr
= -21ln|r| + C,
where C is a constant of integration. Thus we find
(4.216) Y (r) = pr %,
(4.217) Y,(r) = 4/(3r).

Thus the solution of (4.211) is
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(4.218) - B%(r) = Y (r) + Y, (r)

= pr 2 + (4/3r).

A first integral of (4.209) is

(4.219) r'?zpr? + (4/3r)

where we must choose D » 0 since r < 0.

-2

Let K(r;D) = Dr - (4/3r) so that K(r;D) 2 0 defines a region

of the (u,v)-plane.. We can write a solution to (4.209) as
(4.220) C % (utv) = J[K(r;n)]"’zdr,
where C is an integration constant. This integral can be

evaluated to find r. implicitly in terms of u+v, C, and D.

The timelike weak energy inequalities (4.67) and (4.68)

become
(4.221) p=1/r?
20,
and
(4.222) g+ p = -4/(3r?
< 0,

using (4.185), (4.186), and the fact that r < 0. Thus the
timelike weak energy conditions do not hold for r. = -/E“.
The dominant energy conditions cannot hold since (4.222) is not
positive. Similarly the strong energy conditions do not hold
for r- = -y2¢g. We will no longer consider r- = -y2¢g.

We have looked at several cases of the field equations for
a perfect fluid in NN-coordinates. 1In each case we see that

the field equations may be reduced to a Bernoulli equation by
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prescribing a functional relationship between f and r. If we
make assumptions which force f and r to be functions of u+v, we
are able in some cases to find reasonable solutions of the
field equations which were nonstatic and which have nonzero
shear tensors. 1In all of the acceptable cases the timelike
weak energy conditions were satisfiéd. The dominant and strong
energy conditions were applied where possible. In all cases
the shear tensor oij was nonzero and the acceleration was is
zero. The expansion scalar 6 was computed for all solutions.
For several of the cases some of the scalar invariants such as
ijkl

R, R. R'J and R. R
ij i

jk1 derived from the Riemann tensor were

computed.

An interesting observation about all the solutions is that
they all satisfy the condition of being in a T-region [27]
since r)ir’i = -rurv/f2 < 0 when r = R(u+v). This is the
result of insisting that f and r are functions of u+v so that
the solutions are nonstatic. The known perfect fluid solutions
in a T-region are those of McVittie and Wiltshire [128] and
Ruban [129,130]. The solution of [128] has an equation of
state p = (1/3)u. The solution of [129] was a dust solution
p o 0, and that of [130] had a stiff equation of state p = u.
These solutions and the one found here share the property of
having the same symmetries as the Kantowski-~Sachs dust

«

solutions. The solutions found here corresponding to f = r,

a = -2, 1/3 do not have simple equations of state. Ruban has
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made several interesting observations about T-regions.

The use of NN-coordinates seems to have some advantage in
the reduction of the field equations. All the calculations
were made with a "generalized comoving" observer. An interest-
ing problem for future work will be to try to use the scheme of
Tupper [18,19] in NN-coordinates to try to find viscous fluid
solutions, A "tilting" observer in NN-coordinates could be

taken to be Ui = (a;b,0,0) where ab = fz.
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CHAPTER V

SPHERICALLY SYMMETRIC ANISOTROPIC FLUIDS IN NN-COORDINATES

Anisotropic Stress-Energy Tensors and Conformal Collineations

In this chapter we shall calculate the field equations for
a spherically symmetric anisotropié fluid in NN-coordinates.
In particular, we shall compute the equations for the case when
the metric tensor admits a timelike conformal collineation
vector parallel to a "generalized cémoving" velocity vector.
From Chapter 2 we recall that the equations which
determine a collineation vector X are

i;] ;i

where ¥ is the scalar conformal factor. Hij is the symmetric

(5.1) X, , + X, =28 +H.,

covariantly constant tensor associated with X and obeys the
following conditions

(5.2) H[ij]

(5.3) Hij;k

0,

0.

If we have the additional condition on the conformal factor w
(5.4) w'ij = 0,

then the collineation vector is "special”.

There are different methods in which conformal
collineations may be used to study the problem of finding
interior solutions. The first method is to prescribe the
collineation tensor Hij,’aséume that the metric admits a

collineation vector Xi with collineation tensor Hi and then

j,
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applying this. symmetry to the field equations. This is the
method used in [89,90,91,92]. This method assumes that the
matter fields constituting the stress-energy tensor partake in
the symmetry and hence leads to difficult problems of "inherit-
ance of symmetry". A second method is to follow the first
method except for the last step of applying the symmetry to the
field equations. 1In both of theée methods the conformal
collineation tensor is chosen in an ad hoc way. A third method
is suggested by a theorem that we will prove later. Suppose
one were able to construct a collineation tensor Hij from the
stress-energy tensor Tij. Then applying the first or second
methods above, we could seek solutions of the field equations
as before. This third method seems to have the advantage of
eliminating the ad hoc ch&ice of the collineation tensor. It
is clear that the third method will available only for very
special stress-energy tensors since Hlj;k = 0 is a very
restrictive condition on the metric gij and Tij.

Duggal [91] notes that the existence of a physical
solution of the field equations which admits a proper conformal
collineation vector (not a conformal motion) is a very diffi-
cult problem. Hall [131] asserts that a proper conformal
collineation exists in a perfect fluid spacetime only for a
stiff equation of'state.

The existence of a conformal collineation vector depends

on the existence of a covariantly constant symmetric tensor Hij
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other than gij. Katzin et al. [132] show that if a space
admits a covariantly constant vector field which is the grad-
ient of a nonconstant scalar field «, and F € g so that

(3)

F 2 0, then we have

(56.5) X, s Fl(a)a

is a conformal collineation vector with collineation tensor
(5.6) H,, = 2F" (0o ,
and conformal factor v = 0.

It is well-known [27] that reducible spacetimes may admit
a covariantly constant second order symmetric tensor other than
the metric tensor, but the spherical spacetimes we are using
are not reducible. This follows from the fact that the
Lorentzian warped product is not reducible unless the warping
factor is trivial. )

In the remainder of this section we present some facts
concerning the third method of using collineations. 1In
interior spacetimes one is motivated to look for a relationship
between the stress-energy tensor and the collineation tensor.
For a nonsingular anisotropic stress-energy tensor such a
relationship may exist if the stress-energy tensor is
recurrent (Tij;k

Walker [133] and Patterson [134] have studied the exist-

= T, V. for some vector V ).
ij k k
ence of covariantly constant second order symmetric tensors on

a semi-riemannian manifold. (Eisenhart [135] studied the case

of riemannian manifolds). Walker [133] proved the following
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Theorem: If (M,g) is a semi-riemannian manifold and if Tij is
(a) symmetric,
(b) not a constant multiple of gij,
(c) nonsingular (det[TiJ] #0),
(d) recurrent,
then Hij - ct(Tij - Xgij) is a symmetric covariantly constant
second order tensor where « is é scalar and A is one of the
nonzero g-eigenvalues of Tij.
If Tij is an anisotropic stress?energy tensor we know that
Tij has Segré class {1,1(11)}, hence has three distinct eigen-
values. Not all Segré class {1,1(11)} tensors satisfy the
condition (c) in Walker’s theorem. A radiating dust is of
Segré class {1,1(11)} but has two zero eigenvalues, hence is
singular. Furthermore, mést stress—-energy tensors are not
recurrent, hence condition (d) is violated in Walker’s theorem
in general. For nonsingulaf recurrent anisotrdpic stress-
energy tensors we are led to the following theorem.
Theorem: A nonsingular recurrent anisotropic stress-energy
tensor Tij in a Lorentzian manifold (M,g)‘may be used to
construct three covariantly constant second order symmetric
tensors of the form
(5.7) HMJ = “A(Ti,- - XAgU)
where the XA is one of the three nonzero g-eigenvalues of

Ti& and czA are certain scalars.

Proof: Following Walker [133] we define ¢ = det[TiJ]/det[gij].
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Since spacetime is assumed to be four-dimensional we see that
¢ is a fourth degree homogeneous polynomial in the components

TiJ with coefficients which are functions of the components of

the metric tensor. Since Tlj and giJ are nonsingular we have

$ # 0. Since T is recurrent, we have T . = T V. for some
ij ij;k ij k

vector Vk. Taking the gradient of ¢ we find that ¢_k o 4¢Vk,
thus V = 1n(¢1/4)‘k and hence is a gradient.
Define S.. = ¢"*T . We claim S., _ = 0. Taking the
ij ij ij; k

covariant derivative of Sij we have

-3/4

-1/4
S, = (/087 e T e 07 T v

- -3/4 -1/4

= -(1/4)9¢ (4¢Vk)Tij + ¢ Tiij

= 0,

Thus Sij is nonsingular, Sij is not proportional to gij, and

. = 0. Consider now the tensor H,,Z & S - pg... Each
ij;k ij ij ij

coefficient tA, A=1,2,3,4, of the polynomial

_ 4 3 2
F(p) = det[Hij]/det[gij] = p 4 TP + TP + TP + T,

is a sum of products of components of Sij and g, . Since Sl

3

and gij are covariantly constant we see that each tA is

J

constant. Thus every root of F(p) = 0 is constant and nonzero

since S, ., is nonsingular. Now define H = S - p g ., where
ij Aij ij A ij

is a root of F(p). It is clear that HA,_ = 0 for each

P ij;k

A

root pA of F(p) = 0. Tij is an anisotropic stress-energy

tensor with three distinct nonzero eigenvalues XA so setting

-1/4 -1/4
p, = ¢ XA and a = ¢ shows HAij = ch(Tij - lAgij)-

We are interested in solutions with shear so we should
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look for a relationship between the shear tensor and the
existence of a conformal collineation. Duggal [91] has found
such a relation between the collineation tensor of a collinea-
tion vector (parallel to the velocity) and the shear tensor of
the velocity. Duggal’s results are summarized in the following
‘theorem.
Theorem: Let X' = lUi, UiUi = —lvand A > 0. A spacetime (M,g)
admits a timelike conformal collineation with symmetry vector
Xi, conformal scalar ¥, and collineafion tensor Hij if and only
if

(8) o, = (20)7'(h' B’ H, - (2/3)6"h, ]

(0) &, =27 x + 2 Ulu 4 H U]
where '

v = (28 - 0)/3,

" = (1/2)10' + H U'U'1,
and oij, 0, and Ai are respectively, the shear tensor, the
expansion scalar, and the acceleration vector of the timelike
flow generated by Ui.

From Mason and Maartens [89] we find that condition (a) in
Duggal’s theorem is more transparently written as

(8') o, = (207" h? - (1/3)hn 1H
The condition (a’) clearly shows the close relationéhip between
the shear of Ui ahd the collineation tensor. Loosely speaking,

(a’) expresses the relationship that 0= is proportional to a

kl

projection of the collineation tensor Hij. Thus to force a
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solution of the field equations have have shear it is
sufficient to assume the existence of a proper conformal
collineation parallel to the velocity. Next we consider the
problem of the existence of a timelike collineation vector X

parallel to the velocity U when we are given Hi the

5
collineation tensor.

Given a second order symmetric tensor Hij which is covar-
iantly constant, and a velocity field Ui, we can determine the
expansion scalar 8 from the kinematics of the congruence of U.
If we seek a timelike collineation vector X = AU we must
determine the scaling factor A. The solution of this problem
is the content of the following theoremn.

Theorem: Let (M,g) be a spacetime and suppose that a second
order symmetric covariantiy constant tensor Hlj and a unit
timelike vector field u' is given. Then there is a scalar A

so that X' = AU' is an affine collineation vector with
collineation tensor Hij.

Proof: In [89] it is shown that under the hypotheses above that
the conformal factor can be expressed aé

v = x;iui + (1/2)HUU‘U",
and

e

3p/A + (1/2l)hin1j.
Substituting the expression for ¥ into the expression for 0 we
have

A = 3y + (1/2)hiniJ_ =3 U+ (3./2)}1”0‘0j + (1/2)h“Hij.
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This last expression is a linear partial differential equation
for A: -x;iui + OA/3 = (1/2)H“_Uin + (1/6)hinij. Linear
partial differential equations can, in principle, always be
solved [136,137]. Thus we have shown that given a covariantly
constant symmetric tensor Hij and‘a velocity vector field, Ui,
we can determine a timelike collineation vector x parallel to
the velocity u! with collineation tensor Hij.

The two theorems just proved show that the third method of
using collineations may be useful. A key question which will

temper the application of this method is the characterization

of recurrent stress-energy tensors.

The Anisotropic Field Equations in NN-Coordinates

In this section we sﬁall write the field equations for a
spherically symmetric anisotropic fluid in NN-coordinates. We
shall assume that the velocity of the fluid has a special form
in NN-coordinates is generalized comoving. We shall also
compute the equations for a timelike collineation vector
parallel to the velocity. We will assuﬁe that the stress-
energy tensor is that of an anisotropic fluid whose anisotropy

vector S is orthogonal to U and orthogonal to the two-

dimensional pressure isotropy surfaces. Since Ui (f,£,0,0)

and the metric is.spherically symmetric we have Si (f,-£,0,0).

Thus the stress-energy tensor has the form

(5.8) T, = (Wq)U U, + ag

;j ¥ (Pp-9)8;S

j’
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where SiSi = 1, UiUi = -1 and SiUi = 0. The eigenvalues of Ti

3
are lo = -4, A, = p, A = q.

1 2,3
The form of the metric tensor we use is:
(5.9) g = -4f%(u,v)duedv + r?(g,v)[deade + sin®6d¢ede],
which we recognize as a spherically symmetric metric in
NN-coordinates. Since the metric is a Type 1 Lorentzian warped
product, the comments of Chapter 4 on elementary causality still
hold. 1In these coordinates the anisotropic field equations
become (independent equations only) ‘
(5.10) w-p=2rr /(r’f%) + 2r  /(rf%) + 2/r7,

(5.11) p+p

4r £ /(rf3) - 2r /(rf?),
v Vv vv

(5.12) g+ p 4rufu/(rf3) - 2ruu/(rf2),

(5.13) q =

r /(rfd) + £ £ /8% - £ /£,
v _ u v vu

u

The conservation equations are

(5.14)

TOi;i = p(r_+ r )/(2rf%) + ar /(rf’) + p(r_ - r )/(2rf?)
+ (u + p)fu/(Zfa) + (u, + pv)/(4f2) + (p, - pv)/(4f2)
= 0,

(5.15)

T = x4 v )/(2rf%) 4 ar /(xf¥) 4 p(r - T )/(2rf)

+(u+ PIE /(20%) + (n, + B )/(4%) + (p, - D )/(4£7).
= 0.
If we assume a timelike collineétion vector X = AU with
a collineation tensor Hij, then we find the equations

(5-16) HOO = 2f)~u - Zlfu,
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- 2
(5.17) H01 = fku + ﬂv + xfu + va + 4f7y,
(5.17) H,, = 2f\ - 2>,
2
(56.18) sz = —rlru/f - rlrv/f - 2r7 Y,
(5.19) H,, = -rxsinzeru/f - rxsinzerv/f - 2r2ypasin’e

. 2
H2231n 0.
Note that we have not specified what Hij is, but are just

writing the right-hand side of H, = X+ X. - 2yg ..
ij i; i;i ij
From the condition Hij.k = 0 in the definition of a conformal

collineation vector we find the following equations

2
(5.20) Hoo;o = Zfluu - Zkfuu + SX(fu) /f - 8fulu,

(5.21) HOO;1 = Zquv - Zkfuv - ZfUXv + valu’

(5.22) H FA + fA  + A  + Af - 2A(Ff )%/f
vu uu vu u

01;0 uu
2
- Zlf“fv/f + 4f L fulv + fvlu,

(5.23) H = fA 4+ fA 4+ AF  + M - 2x(f )%/t
01;1 uv vV uv vv v
-2 M f /f + 4f%p + £ A - £ A,
u v v u v v u
(5.24) H = -rAr f /(2f2%) = rAr £ /(2f%) + rAr £ /f°
02;2 u u u v v u
- rruku/(Zf) - rrukv/(Zf) - rrvku/f
+ Mr )2/Ff + Ar v /f,
u u.v
, 2
(6.25) Hoa;a = sin eHoz;z’
(5.26) Hyyo = 28h - 2ME  + 2f A - 2f A,
2
(5.27) Hy,., = 2£h, - 20+ 8M(f )°/f - BE X,
(5.28) H =rir £ /f2 = rAr £ /(2£%) - rAr £ /(2f%)
12;2 u v v u v v
- rr A /f - rr A /(2f) - TT X /(2f)
+ Mz )%/ + A T /T,
v u v
. 2
(5.29) H13;3 = sin ele;z’
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2 2
(56.30) , sz;o = rlrufu/f + rlrvfu/f - rlruu/f
- rlrvu/f - rrulu/f - rrvlu/f
- 2r2p + Mr )2/f + Ar r /f,
u u u v
~ 2 2
(5.31) sz;1 = rlrufv/f~‘+ rlrva/f - rlruv/f
- rlrvv/f - rrulv/f - rrvlv/f
2 : 2
, | - 2r wv + l(rv) /f + lrurv/f,
. 2
(5.32) Haa;o = sin 6H22;0’
. 2
(5.33) H33;1 = sin 9H22;1. p

These equations, when combined with the field equations,
form a formidable system of partial differential equations.
The equations (5.20) to (5.33) show the severe constraints that
the existence of a conformal collineation place on the
metric.

The kinematic quantities of the timelike congruence

determined by U are calculated next. The she