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ABSTRACT

In this thesis, some numerical modelling methods are developed to compute three-
dimensional flows in shallow seas driven by tides,meteorological forcing or density
gradient, and the convection-diffusion behaviour of dissolved or suspended

substances.

A spectral method employing eddy-viscosity eigenfunctions is used to solve the full
three-dimensional nonlinear hydrodynamic equations for the numerical computation of
flows. An explicit finite elements method is developed to compute the nonlinear
advective terms and an explicit treatment of bottom friction is used. This leads to a
rapidly convergent expansion and relatively few eigenfunctions are required to cbtain
accurate solutions. An Arakawa B-grid is used in the horizontal directions and the
eddy-viscosity eigenpaires are computed using the SLEIGN subroutine. Several
mode! problems have been used to test the accuracy, stability and computational

efficiency of the methods.

A vertical/horizontal splitting method is used to determine the numerical solutions of
the three-dimensional convection-diffusion equation appropriate for the marine
environment. This method splits the horizontal and vertical parts of the process,
treating the horizontal convection and diffusion explicitly and the vertical convection
and diffusion by an implicit finite elements method that is unconditionally stable. The
overall stability conditions on this method are investigated and its accuracy is verified
through a number of test problems whose exact solutions are known.
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INTRODUCTION

Computational fluid dynamics is the science of producing numerical solutions tc a
system of partial differential equations which describe fluid flow. It has become more
and more important in recent years because computational fluid dynamics is more
flexible and more cost-effective than experimental fluid dynamics and because it has
become reliable for the simulation of a large variety of flow problems, and provides
more detailed and comprehensive information than experimental fluid dynamics[1-2].

Although the era of computational fluid dynamics may be marked as beginning from
1922 [3], the real practice only began in the 1950s when the numerical theory has
been developed and the main memory on computers expanded [4]. As computing
power rapidly increased over the last decade larger and larger problems have become
computationally practicable[1].

Within the area of oceanographic flows, early hydrodynamic numerical models were
two-dimensional in that current structure was removed by integrating through the
vertical from sea surface to sea bed, obtaining what are called the shallow water
equations. These models were primarily used to study changes in sea surface
elevation due to tides and meteorological events(storm surge models). A variety of
computational methods have been used to obtain numerical solutions of these
equations, using finite difference schemes(5-10], finite element schemes[11-16],
harmonic analysis in time plus finite elements in space[17-19], the method of
characteristics[20-23], and the vectorized computer implementation[2].

In recent years there has been a considerable interest in developing full three-
dimensional flow models, since more detailed information about the currents is needed
in practice. For example the surface velocity determines the motion of an oil slick and
for a wind-driven flow, for instance, the surface velocity differs very much from the
depth-averaged flow. Also inforination on the three-dimensional wind-induced
circulation in a sea region is required in pollution problems and detailed information on
bottom currents and sediment transport is required in many civil engineering
projects[24-26]. For these purposes, some three-dimensional hydrodynamic
problems and the associated marine pollutant transport problems have been
considered in this thesis.



The first problem we are concerned with is the full three-dimensional nonlinear
hydrodynamic equations with arbitrary variable eddy-viscosity for shallow seas.
Numerical studies of the three-dimensional motion of the sea under the influence of
wind and tide have in recent years been made by several authors using a number of
different approaches[27-32]. Some of the most successful of these approaches make
use of expansions of the two hortzontal components of fluid velocity in terms of a set
of basis functions of the vertical coordinrate[33-41]. By this means the three-
dimensional equations are reduced to a set of two-dimensional modal equations for

the coefficients in these velocity expansions.

The use of a basis of "eddy-viscosity eigenfunctions” for this purpose was first
proposed by Heaps [33-34] to solve the linearized three-dimensional tidal equations.
The significant advantage of this particular basis is that the modal equations are
uncoupled. Since Heaps employed analytic eigenfunctions, his use of the method was
restricted to problems with simple eddy-viscosity profiles. Subsequently, the method
has been extended to more general eddy-viscosities by Davies [35] and Furnes [36].

A more generai Galerkin method was developed by Davies and Owen [37] for the
linearized model and by Davies [38] for the fully nonlinear equations. In these papers
basis sets consisting of cosine functions, Chebychev polynomials and Gram-Schmidt
orthogonalized polynomials (equivalent to shifted Legendre polynomials) were used.
Davies [39] later combined the Galerkin method with use of a basis set of eddy

viscosity eigenfunctions.

The rate of convergence of the expansions in terms of eddy viscosity eigenfunctions
was found by Davies [35,39] to be relatively slow, requiring typically 15-20 basis
functions to obtain the desired accuracy. Much more rapid convergence is obtained
using Chebychev or Legendre polynomials [37] but the disadvantage of these basis
sets is that the modal equations are coupled even in the linear approximation. Using
eddy viscosity eigenfunctions the equations are coupled only through the nonlinear
terms. A later modification of the method that significantly accelerates the
convergence was proposed for the linearized equations by Lardner [40]. With this
modification it was found in one model problem that only 4-5 eddy-viscosity
eigenfunctions were required to give the same accuracy as had previously [35] been
obtained with 20-25 eigenfunctions.The rate of convergence is comparable to that
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obtained using B-splines [41] or Chebychev polynomials [38], and has the advantage
over these approaches of uncoupiing the linear modal equations.

In the first part of this thesis this modified eddy-viscosity eigenfunction method is
extended to the nonlinear hydrodynamical equations. An explicit method is used to
represent the nonlinear bottom friction and an explicit finite element method is used for
the nonlinear advective terms (compared to the explicit time-splitting technique used
by Davies [38]). This treatment of the bottom friction does not add significantly to the
CPU requirements of the algorithm, but we have found, as did Davies, that
computation of the advective terms is by far the most expensive part of the algorithm,
in our case increasing the CPU requirements by a factor of more than 3. The finite
element technique is the most effective method we have found for minimizing this cost.

Most of the finite difference schemes that have been developed for hydrodynamical
modelling have been based on an Arakawa C-grid, starting wiih the two-dimensional
algorithms of Hansen, Leendertse and others [S, 6] down to the more recent three-
dimensional algorithms [26-32] and including the algorithms based on the spectral
method [33-41]. While this choice of grid has the advantage of providing natural
centred-difference approximations to most of the dominant terms and of minimizing
numerical dispersion [42,75-78], it does lead to certain difficulties for some three-
dimensional computations.

The first of these {43] is the occurrence of spurious numerical boundary layers unless
the Coriolis terms are treated carefully. Since the two horizontal velocity compconents
are computed at different spatial points with a C-grid, it is necessary to average the
Coriolis terms in each momentum equation over the four neighbouring points at which
the opposite velocity component is computed. Adjacent to a coast, one or more of
these four points will actually lie on the coast, and the velocity components at such
points are maintained at zero by the usual algorithms. The result is that the four-point
average gives an incorrect value for the interior point, and this leads to spurious
velocities near the coast.

This difficulty does not arise for two-dimensional models based on the depth-
averaged equations, since it is correct within the model to set the depth-averaged
velocity components equal to zero at coastal points. Within the approximations of the
usual three-dimensional models, however, the velocity profile through the water
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column is not zero at a coast: the narrow coastal boundary layer in which the flow
overturns, accommodating itself to the physical boundary condition of zero normal
flow, is not contained within the usual model equations. It is worth noting that the
problem does not arise for certain three-dimensional algorithms of splitting type [46-
47} in which the C-grid is used only for the depth-averaged equations, and the vertical
profiles are computed for both velocity components at the same horizontal grid-points.

It has been pointed out by Jamart and Ozer [42] that for algorithms using a spectral
method this problem may be overcome by averaging the Coriolis terms only over the
adjacent points that are interior to the water body (called the “wet points only”
method). While this method is successful, it has the disadvantage of reducing the
order of the local truncation error at near coastal points, and this may produce a
serious loss of accuracy for a region with an intricate coastline, and consequently a

large proportion of near-coastal points.

A second, and probably more serious, disadvantage of the C-grid that arises for
spectral methods is that it is necessary to use the same basis functions at all grid
points if the four-point average for the Coriolis terms is to give reasonably simple
modal equations. The most efficient choice for the basis functions is to use eddy-
viscosity eigenfunctions [33,34,36], since the modal equations are then de-coupled.
These are independent of position only if the eddy viscosity function has the same
vertical profile at all points, apart from an overall scaling factor, and this is a severe
restriction for a water body with widely varying parameters such as depth or bottom
roughness. If this condition on the eddy viscosity is not satisfied, the Coriolis terms
couple the modal equations.

Because of these problems, it appears worthwhile to consider using an alternative
spatial grid for which both horizontal velocity components are computed at the same
grid points. Of the five grid types described by Arakawa and Lamb [42], those labelled
A,B and E satisfy this requirement, so will certainly be simple to use when the eddy
viscosity has arbitrary spatial variation. Since the two velocity components are
computed at the same point, an additional benefit is that the two momentum equations
can be solved simultaneously rather than sequentially as is necessary for the C-grid.
This allows explicit treatment of the Coriolis terms to be easily avoided.



The A,B and E-grids lead to numerical schemes for the shallow water equations that
have worse numerical dispersion than does the C-grid, particularly at wavelengths
shorter than four grid-lengths. However, the hydrodynamical models with which we
are concerned involve significant damping, through eddy viscosity and bottom friction,
and to the extent we have tested these alternative grids, this does appear to be
sufficient that the anomalous dispersion at short wavelengths does not cause
difficulties. Arakawa’s D-grid has both disadvantages of poor dispersion properties
and velocity components at different points, so we have not considered it.

In chapter 1 the full three-dimensional nonlinear hydrodynamic equations are derived
from the physical equations. Some appropriate boundary conditions and initial values
are specified. In chapter 2 the modified spectral method is developed for the general
equations. In chapter 3 the appropriate numerical schemes for the A, B, C and E-
grids are developed for the basic equations described in chapter 2. The different
schemes are compared using two test problems. In chapter 4 numerical results are
given for a number of problems designed to test the accuracy of the algorithm and
bounds on its stability are determined.

The second problem we are concerned with is the density gradient driven flows. The
density gradients in near-coastal seas are established by such processes as
evaporation, fresh-water run-off and precipitation. While the magnitude of these
currents is usually quite small, compared to the currents driven by tides or
meteorological forcing, they can be a dominant factor in phenomena such as pollutant
transport where long-time drift is concerned.

An estimate of the density-driven currents was made for the Arabian Gulf by Lardner
and co-workers[48] using a simple two-layer, sectionally integrated model, similar 1o
that constructed by Pearson and Winter{49] for the flow in fjords. Later, Lardner and
Das[50] developed an algorithm based on a splitting method to investigate density-
driven currents and applied it to the Arabian Gulf. In this method the surface elevation
and vertically integrated mass transports are computed from the depth-averaged
equations, then the vertical structure of the currents is obtained from the horizontal
momentum equation at each time-step.

In chapter § the spectral method will be used to solve the three-dimensional
hydrodynamic equations with a variable water density. The eddy-viscosity
5



eigenfunctions are used again as a basis of the eigenexpansion, and the SLEIGN code
is used to solve the eigenvalue problems at every horizontal points. The accuracy of
the method is tested on some problems for which the exact steady-state solutions can
be calculated. We found that the results are more accurate than those obtained by the
splitting method used by Lardner and Das[50].

The third probiem we are concerned with is the three-dimensional pollutant trausport
behaviour in shallow seas. Several numerical methods are available for the solution of
the two-dimensional depth-integrated form of the convection-diffusion equation. The
most popular finite-difference methods employed to overcome convection-dominated
difficulties are the upwind and flux-corrected schemes [51,52]. Finite differences or
finite elements combined with the characteristic Galerkin method have alsc been used
[53-55). Another widely used method for this kind of two-dimensional problem is the
split-operator approach in which the convection and diffusion are solved separately by
two different numerical methods [56-59]. But all of these metheds have difficulty in
solving three-dimensional problems, either because of expensive matrix inversions at
each time-step or because of a time-step restricted by the vertical grid, which, for
flows in near-coastal seas is two or three orders of magnitude smaller than the

horizontal grid.

For many purposes, however, it is necessary to compute solutions of the full three-
dimensional equations. For example, permits allowing discharge of effluent from
industrial installations may place restrictions on the density of effluent in the surface
layers of the water column but not at lower levels. The algorithm we shall discuss in
this paper is intermediate between the two extremes of explicit and implicit schemes
mentioned above. It is an extension of a vertical horizontal splitting algorithm [46,47)
that has been developed for solution of the hydrodynamical equations for shallow
seas. The basis of this approach is to treat explicitly the terms in the convection-
diffusion equation that involve horizontal derivatives while the terms involving vertical
derivatives are treated by an implicit finite element algorithm similar to that in [47].
This latter part of the algorithm is shown to be stable under not too restrictive
conditions, so that the major stability restriction comes from the horizontal part.

In chapter 6 the three-dimensional convection-diffusion equation will be recast in a
form suitable for the numerical method. The numerical vertical / horizontal splitting
algorithm is described and some stability properties are also discussed. In chapter 7
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details of some numerical experiments are given. A comparison is also given with the
Monte-Carlo type of algorithm[60], which offers probably the most viable alternative
for this type of problem.



Chapter 1. Governing Equations

1.1 Physical equations

We use xyz as Cartesian coordinates to describe a three-dimensional sea model with
the z - axis pointing verticailly upwards and the xy - plane occupying the undisturbed
position of the water surface. The position of the bottom is takea to be z =~h(x, v)
while the surface at time ris z = {(x, y, ) ( see Figure 1.1).

z=0 (x,.1)

I
\l(x’y)

figure 1.1 shallow sea model



We first consider a viscous incornpressible homogeneous fluid, the water density p is
assumed constant with respect to both position and time (the variable density
problem wiil be considered in chapter 5). The goveming equations are the continuity
equation and the three momentum equations, together with appropriate boundary and
initial conditions (for the details, see {61-62] ).

The continuity equation is

=0 (1.1)

The horizontal momentum equations are

du, du u u_ o 1f 3 dr, 9% O,
x xSy T f"’”p{ x kT oy (1.2)
&N v o d ap OJt, dr, OJt,
at+ -é;-i'Vg‘i‘ -;-——-fu p{"‘-é;'f' a; a;"‘i' 3; (13)

The vertical momentum equation is usually approximated by the hydrostatic pressure

P\ oone
at+gp_0 (1.4)

The kinematical conditions at the sea surface and sea bed are

9, 9 9 . _
-§-='+ -w=0 on Z"‘g (15)
Jh oh

U— +v—+w=0 on z=-k (1.6)

The notation used in these equations is as follows:

hix,y) water depth

{x,y,t) surface elevation at time ¢
ux,y,z,t ,vix y, z,t) horizontal velocity components
w,y,z,t) vertical velocity component



p(x,y, 2,1) pressure in water

g acceleration due to gravity

Taxs Tayr T the stress tensor in x-direction
T Ty T the stress tensor in y-direction
f=2Qsin6 coriolis parameter

where 2 is the earth’s angular rotation speed and @ is latitude.

In the horizontal momentum equations it is usual to neglect the terms involving

Tu> Ty Ty and to make an eddy-viscosity assumption about 7,, and T, :
ou v
Ta = PH—=, T, =PH— 1.7
where 1 is the eddy viscosity. By integrating the vertical momentum equation from z

to the water surface. we have

¢
p(x.y.z,0) = p,(x,y, 1) + j 8pdz

= p,(x,y,0)+gpl{(x,y,0)~ 2] (1.8)

Where Dg is the atmospheric pressure on the water surface. By differentiating (1.8)
with respect to x and y, we have

D b, B b, 0k

Substituting equations (1.7) and (1.9) into the horizontal momentum equaiions, we
combine equations (1.2), (1.3) and (1.4) into following two equations:

. O, u ou_ o 96 1op _‘?_( ou’
VAV T L i [ (1.10)
N v v ov 2l 1dp, J( ov
;{t—+u?9—x-+v5y—+w-£+fu=—gg—;3yt+§(ug) (1.11)

By integrating the continuity equation with respect to z from - h to {, we have
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s{du v
I (gx-véy- z+[w]t, =0

We use the Leibnitz formula:

j c(x z)az-—f --—d +§l—)- (x,b)«--tz%-a?-c(x a)

A
ox o

and get

J d d
b-x-fhudz+ jvd [ -—-—g-u _éygj]“;

--—-[w+§;}1u+£-’-z-v:l =0
ax ay 1z~A

By using the kinematical conditions (1.5) and (1.6) we obtain

9 .9 %4 =0
R ay (1.12)
where
$ §
p=liua a=liva (1.13)

are called the volume transports.
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1.2 Boundary-Initial Conditions

In order to solve equations (1.10)-(1.13) for u, v, w and {, some boundary conditions
and initial values have to be specified. We first give the boundary conditions at the

sea surface and the sea bed.

The surface conditions, evaluated at z = {, are

du o
2=, Z=r
pu Al Pﬁl&z ) (1.14)

where o is the fluid density and 7,° 7,° the components of surface stress. For wind-
induced fiows, they are the components of wind stress acting on the free surface in the
x and y directions, while for density gradient driven flows the surface stress is taken
to be zero. Correspondingly, at the sea bed, z = —h , the conditions are taken to be

b

pug—‘—‘- =1’ pL A
gz ' oz’ (1.15)
where 7., r," denote the x, y components of bottom stress.

In a nonlinear model, it is appropriate to use a quadratic formulation of bottom stress,

thus
T = xp\iZ + v u, , T, = Kp\Uy +v; v, (1.16)

Where x is a constant coefficient of bottom friction and u,, v, are the components of

fluid velocicy at sea bed.

[n many problems, a linear model is suitable, in which case bottom friction can be
linearized [63], giving the linear equivalent of (1.16), namely,

T; = Kply , 1‘:=va, (1.17)

where x is an appropriate coefficient of linear bottom friction.
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An alternative o a slip bottom boundary condition is the application of a no-slip
condition at sea bed, in which case

u,=v,=0 (1.18)
Physically, however, this condition can only be used if the bottom boundary layer is
modelled through an appropriate choice of eddy-viscosity function.

In general, we write the bottom conditions in a form
du _ FN) v 2 2
ﬂb‘z"'[xx"'xz u,"+v, }“bv #'a—zm[xx'*'xz\/“b +V ]VA (1.19)

where x; and X; are the coefficienis of linear and quadratic bottom friction respectively.
A no-slip condition on the bottom is obtained in the limiting case x; and x; — oo,

When a bounded flow field is considered, lateral boundary conditions also need to be
specified. There are two kinds of such boundary conditions. A closed boundary
condidon is applied on coastal boundaries, while an open boundary condition is applied
on parts of the boundary adjacent to another body of water.

On the closed part of the boundary, the usual condition is assumed to be
(p.¢n=0 (1.20)

where n is the outward normai vector to the closed boundary. Physically, condition
(1.20) describes that there is no mass flow through the closed boundary.

On the open boundary, the most commonly used condition is to assume that the
surface level { takes prescribed values. The data needed for this condition are usually
obtained from measurements or from a larger model which encloses the model at hand.
In practice, it appears to be more difficult to measure accurately the velocity than the
clevation. As a consequence velocity data are mainly used for the boundary conditions
if the model at hand is nested in a larger model{2].

Finally, we specify the initial values by assuming the motion starts from some given
values, (&,v)=(uo,vo), {={, at t=0. In practice, this is taken to be state of rest, that is

u=v=0, (=0 at t=0 (1.21)

13



1.3 Sigma Coordinate Equations

The variable z in physical space has a range — hix,y) < z < {(x,y,t) that varies with
horizontal position and time. For numerical work it is better to change to a new
variable that has a fixed range. The usual transformation is

o=(a+b)£—:-{-ﬁ+a, H=2z+{ (1.22)

which transforms the variable vertical interval into a constant region a to b. The
constants a and b are chosen to correspond to the interval over which the numerical
methods are used. The transformarion is similar to the one originally proposed by
Phillips[64] and is often used when both the bottom topography and vertical resolution
are important[45]. In our case, a=0 and b=1 have been chosen. That is

0'=(Z+h)/H (1.23)

From the chain rule, we have following transformations:

Jd .13 g .3 _o% 9

%~ Hoo" x " % Hodo

2,9 1 _JH d

% F T H % a0

c 0 1 oJh dH. d

= =4 === — O =)

dy 71-(3y dy’ do
After using the above relations, the advective terms in the first momentum equation
then become:

W2y WM O

ox dy oz
(st it = OH Jug) + v{uy + (k= oHjug)+ 2,
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and similarly

W
UVt wes W, +vv, + —u,
H

dx Jy

where

w=w-+ulh, — oH )+ v(h — cH ) (1.25)

and the x and y derivatives are now with G held constant.

Now by integrating the continuity equation (}.1) from z=— A to z and using the
kinematical boundary condition (1.6) on z=— h we get

d d ¢
w+— ludz+— jvdz=0
5‘x:[ 8y_-[
ie.
g
w=—-§x—(HJ'udd)—-—-(HB"vdoJ
Using the above chain rule we transform this to 0 instead of z:
a7 1 a{,.¢
=——| H|udo |- —(h, - cH,) H|udo
e ufuto)- o) )
af ¢ 1 J
-~—| Hijvdo |-—{h,—OH, Hlvd
{1ty o) i

and after simplification we have the convenient expression

. a(,.t af, 5
The momentum equations then have the form
ou 1 J du 3{
B st I T Rt L = —pQ— F o]
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dv 1 df ov 2{
e I R =—~g-2+G
= i aa(” a0)+fu 5% (1.28)
where
¢, Ju v, _1dp,
F=-;_—1--é—o:—uu,—-vu, u‘,-—;é;-
G=G{‘-—al—-uv W, ——y _1o,

It is convenient to write the momentum equation in complex form by setting U=u +i v,
Then equation (1.27) and (1.28) can be combined into the form.

3U 20 U 14 4
+ifU - H "‘ao(u 30) (8): +t§)+F (1.29)
where
F.=--§~ -uU,-vU -;}Ua—-l-[%-i- %] (1.30)

Similarly, the boundary conditions (1.14) and (1.19)-(1.20) are transformed inio o -

coordinate as

ué—q—HS on o=1

do

p%;:H(rﬁadel)U on 0=0 (1.31)

where

s=5tin

Wi= Vi +v?|

It is easy to transform the continuity equaticn (1.12) and (1.13) into sigma
coordinates:

16



.QE..;..@.;.QE:O

o dx oy (1.3
and
i i
p=H[udc , q=H[vdo (1.33)
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Chapter 2. Spectral Method

The fundamental idea of the spectral method is to expand the complex velocity U in
terms of some set of basis functions.The use of a basis of "eddy-viscosity
eigenfunctions” was first proposec by Heaps{33-34] to solve the linearized three-
dimensional tida! equaticns. The significant advantage of this particular basis is that
the modal equations are uncoupled. In this chapter, this method will be extended to a
general nonlinear equations with an arbitrary variable eddy-viscosity function.

2.1 Boundary Modifications

In the spectral method, if the basis functions satisfy the boundary conditions of the
problem, the expansion can converge uniformly. We first use a similar modification
technique to that proposed by Lardner{40]. It has been shown that this modification
significantly accelerates the convergence for the linearized equations. In our case, this
modification alsc has another advantage in that it transforms the boundary conditions
into type II conditions, therefore this will simplify the eddy-viscosity eigenvalue

problem.

The modification consists of defining the function

V(o‘):SHL"p?;’ _ % 4o’ +BH J'——((}—\do’ (2.1)

where B(r) = (x, + 1G{UDU|,., (The dependence on x and y has been suppressed to
avoid confusion), Integrating (2.1) from O to 1 gives that

o o(l1- o)
V=1V = -
J; (o)do=H(S B)-([——;(—O-'_)—d 2.2)
This function V(o ) satisfies that
0 aVv
aa(‘“ 5‘) H(E~B) 2.3)

18



ugy-—HS on o=l ,u-r:i‘—/-—HB on o0=0.

oo (2.4)

Then, setting U (0) =V (0) + W (5 ), we obtain the following boundary value

problem for W :
aw 2 a( aw) 14 g)
W-H -~
ERd 30 \M 30 g(ax“a +ha
2.5
+H' (S - B)-%‘i—;fv (2:)
and ua—wzo on 0=0 and o=1L
da (2.6)

Where F,, is defined in (1.30). The essential point in this modification is that the
boundary conditions (2.6) are homogeneous.
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2.2 Speciral Method for vertical direction

In this section, we first consider the general Sturm-Liouville problecin

4 ¢ =
da(p(a) da)+[q(a)+ Ar(o)]e(o)=0 (2.7)

with boundary conditions

a,¢(0) + azp(a)%=0 a c=a (2.8)
d¢ _ _
ﬁ,¢(a)+/32p(cr);;g~ at o=b (2.9)

In the above equations ¢ is an eigenfunction of the Sturm-Liouville problem, and A is
the corresponding eigenvalue, &y, &, , 8, and 8, are arbitrary constants with

o,a, 20 and B,, 0. The coefficients p(0 ), Q(0 ) and (0 ) are assumed to be real
and continuous, with p(o') and (o) also being positive in (a, b). When ¢ and b are
finite, and p(a ) and p(b ) are positive , and q(a ) and q(b ) are bounded, we have a
regular Sturm-Liouville problem.

Several authors have developed algorithms to solve such Sturm-Liouville problems by
using methods based on the Prufer transformation[65-66]. A modified Prufer
transformaticn that offered computational advantages was later proposed by
Bailey!|67]. The transformation was built into the SLEIGN code[68] which was used
in our problems. This code has also been used by Kuzmic[69] in a linearized model of

wind-induced motions in shallow sea.

For our purposes, we consider the eddy-viscosity eigenvalue problem

d( d¢)
031 20009 =0
do\ do ? (2.10)
and

20 wo=0and1 (2.11)

do

20



We denote the eigerpairs by {¢j ©).4;:] =QLZ-‘-} where the lowest eigenpair is Ao
=0, ¢, {0 ) = 1. For a general eddy viscosity, it is necessary to compute the other
eigenpairs numerically. For this purpose we have used the subrcutine SLEIGN [68].
Ve assume the eigenfunctions are normalized so that

o9, @7

0¢j (o)do =1. (2.12)

The eigenfunctions then form an orthonormal system, and in particular, orthogonality
with ¢, implies that

['6,0)d0=0 ;=1 213
In general, these eigenpairs depend on x and y , and also on ¢ if the eddy-viscosity is
time dependent. For the general case they must be determined numerically, and if y
varies in a general way with ¢ this usually makes the method impractical since the
eigenfunctions must be re-determined at each time step for all horizontal points.
Consequently, we shall from now on restrict to the case when i is independent of r.+*

The eigenfunctions can then be determined at the beginning of the computation and
although this can be quite expensive, it only has to be done once.

We now expand W in terms of the eigenfunctions:

W(0)=co+ 3.¢;9,(0).
21 (2.14)

* We are indebted to Dr. Paul Bailey for his help in supplying us with a recent version

of this program.

** The method can readily be extended to the case when the eddy viscosity has the

form
KX,y .0 .8 )= (x .y .0 )iz (1)
that is, at any point g has a similar profile for ali .
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In view of the orthonormality of the eigenfunctions, the coefficients in the expansion

(2.14) are given by
1 _ 1 .
=], Woydo=W, ¢=[ W@)p 0o j21 2.15)

Using the definition of W we have that ¢, = U -V and from equation (2.2) it then

follows that

9) do.
o

B Lol -
=T -~ H(S—B
o S 1(0) (2.16)

Integrating the differential equation (2.5) from 6 =01to 0 =1 and using the boundary
conditions (2.6), we obtain an equation for ¢,. This is equivalent to the usual depth

averaged momentum equation, and it is in fact more convenient to use this equation in
the latter form, which can be obtained more directly by integrating eqn (1.29):

£+W+g(§-§-+i£§—)=&

It Jx dy (2.17)

where
' 1

Multiplying the differential equation (2.5) by ¢;(0) | integrating from o =0t0 0 =1
and using the boundary conditions (2.6), we obtain a system of differentdal equations
for the coefficients ¢; :

~L+a.c. =R,.
o i d (2.19)
where ®; =h A’ +if and the right side is given by

_ N, pV 2 -2y42

with
NL !
Rj =!0FNL¢1 do 2.21)

and
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v ol
R/ =f0 [--ét——sz }«pi do =--§t’——if1,.

(2.22)
provided the eigenfunctions are time-independent, where
1 1
I, sfcv (0)¢; (0)do =-{HS ¢, ()-HB ¢, (0}
i (2.23)

In the numerical sclution of equations (2.17} and (2.19) the terms on the right sides
are treated explicitly. The final small nonlinear term on the right of eqn (2.20) can quite
easily be accommodated on the left side of (2.19), buz the coefficients on the left then
become time-dependent and this adds significantly to the cost of the algorithm.

In order to obtain initial conditions for the system (2.17) and (2.19), we assume the
motion starts from some given velocity, U =U,, att =0. In practice, this is taken to
be a state of rest, U, =0. Thenatt =0, W =-V, so the initial values of the
coefficients are given by

e, =-1V @9, ©)}do =350, )
% (2.24)

where eqn (2.23) has been used together with the fact that B =0att =0.

To summarize the problem that we are now left with, equations (1.12) and (2.17) form
a coupled system for { andp +ig= HU with these variables having zero initial
values. Lateral boundary corditions on the coastal and open portions of the boundary
are required to form a well-posed problem and these can be taken in the same form
usually used for two-dimensional models. The coefficients ¢; that determine the
vertical structure of the fluid velocity are obtained by solving the system (2.19) with
ininal conditions (2.24). In terms of these quantities, the velocity field is given by

l](0’)=17+HST—9—J—d0"+HBJ—-—do’

(o) u(o’)
~H(S-B) i"(l——do“+2c¢(a) 3.25
OJ) j=i ( )

The coupling between the system (1.12),(2.17) and the equations (2.19) occurs only
through the nonlinear and bottom friction terms which are treated explicitly in this
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approach. Such treatment does raise the possibility of potential instability, and this is
one of the questions we shall examine in the tests described in chapter 4

Some differences occur for the no-slip boundary condition (1.18). In the definition of
the function V the final term in eqn (2.5) is dropped and the boundary conditions
(2.11) on the eigenfunctions are changed to

_ 09 _ -
$=0o0on =0 and pao-O on 0=1 @211
There is no zero eigenvalue in this case, so eqn (2.13) does not hold. Eqn (2.25) is
replaced simply by
U(o)=HS| ———do’+ ) c.¢.(o
(0)=HS["—Z 4T X 90

j21

(2.25"

Proceeding as before, we obtain the following system of differential equations for the
coefficients in place of eqn (2.19):

f-)-Cl+az.c.+ % i % |in s Il¢.d0=R.
iti oVi i

o ax oy (2.19Y

where R; is again given by eqns (2.20)-(2.22). However, the right side of egn (2.23)
requires modification to
1 HS [t
I. =)V (0)¢, (0)do = o¢/(0)do.
=Ly @ VL P (2.23)

A corresponding change occurs in the initial condition {2.24).
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2.3 Finite Element Method for nonlinear terms

The computation of the integrals involving the nonlinear terms in eqns (2.18) and
(2.21) is the most expensive part of the algorithm: about two-thirds of the total CPU
time is spent on it. A finite elements method has been adopted for this computation,
which we have found significantly more efficient than to evaluate the integrals by
girect use of the eigenfunction expansions.

Combining eqns (1.30) and (2.21), we have

R =] [0¢, 10,9, do -] [w, wU |9, do (2.26)

with a similar expression with j = 0 for the integral term in eqn (2.18).

We choose L equally spaced nodes {g; } in the interval {0,1] with 6, =0and 0, =1
and spacing Ao =1J(L —1).. Each function of & is approximated piecewise linearly in

each sub-interval, for example, in 6, <0 < 7).,

U@)=U, +g-‘-+-l-:g—'-(a -0, ) (Jd(a)=g_L.tL.__q_L.,
Ac Ao
u (o) =u, +‘.‘._'.tl_—_u!_(g -0,) u?'(O')=u7, +M(o- ~-0))
Ao Ao

where U, is the value of U (o) at node [ and so on. The various terms in eqn (2.30)
are then approximated as follows.

i

) L-]
.[00 Ua¢j do =Z(U:ﬂ =-U, )S »
=]

Ly

1 LA -
Iow U,9;do =§_LZL;-L(UIH_UI )S ,(,z "’gwl U,.-U,)S8 153)

L-1

1
i, w0, |8,do =X (U, w U, )8 O+, U, aw 1T, 1S O
1=

{2
HuU, ULy Uy v U, 0S8 y }
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1 Sra 1 Ta
1) _ @ _ _
S, ===, o9, do, s, o L (0 -0,)¢;do,
1 PN % (O -0 \2
G)"'—— (‘9= m—ﬂ
S, ===, 9, do, S‘j L‘ ( o 9, do,

2
®_|9 04,700 ~-0, 6 _ |7 G‘Gx\
S, [r ( Ao Ao )ofda’ S, '! (Aa }¢1d0'

g,

It remains to compute w from eqgn (1.26). We first use a trapezoidal ap ‘roxination:
(* s do —bao§ % do -4a0
Jq udo=;AaZ[uM+u,‘], , vdo=340,2b ,,+,1
k= k=]

Thenw, can be constructed recursively as

- - . d J
vy =0, Win =W, "%AG{E[H 79 +u1)]+$’[ﬁ ¥ 1n +v1)]}-
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Chapter 3. Scheme Formulation

In the last chapter. by using the modified spectral method for the linear parts and a

finite element method for the nonlinear terms, we transformed the three-dimensional
equations (1.32) and (1.29) into a two-dimensional system (1.32), (2.17) and (2.19)

or (2.19") with the connecting relations (2.25) or (2.25"). In order to discuss the

horizontal discretization next, we write the system in a general form as follows:

3 .9, 9q_

ac; .
St = R,[¢, +iL, |+ R,

3.1 Interior points

3.1

3.2}

Figure 3.1 shows the distribution of grid points at which the variables {, u and v are
computed for the five horizontal grids investigated by Arakawa and Lamb[42]. As
discussed in the Introduction, only the grids A,B,C and E will be considered here. For
the A,B and E-grids, all the variables u, v, p, ¢ and ¢; are computed at the same
points. For the C-grid scheme it is necessary to split equation (3.2) into two real
equations since the real and imaginary parts relate to different grid points, and we set

— . -— X . ’
¢; =a; +ib,, R, =R, +iRy,.

The spatial finite difference approximations to egns (3.1) and (3.2) appropriate for
these four grids are as follows.

Scheme A:

Scheme B:

G —
=+, p) +8,q) =0

ot
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_L+ajcj =RU {(5,;) +i ( ,C) }+R2j'

(3.3A)

(3.4A)



%—ﬂa, p) +@,q) =0 (3.3B)

a:‘- y x
Shyasc, =R, {@.0) +i@,0) | +R,;. (3.4B)

Scheme C:

of .
-;rg-+o‘p+6,q=0 (3.3G)

da, —

Stk g ~fb; =R, 8.0 +R;

ob, _ ‘ (3.4C)
-éi-+kjbj +fa, =R,;6,{ +K;,.

Scheme E:

)
7;%'*5: p+6,¢4=0 (3.3E)

o,
-at++a,c,. =R, {6.{ +i8, L }+R,. (3.4E)

(Tt is worth noting that grid E can be regarded as two interlocking C-grids.)

In these equations the following notation is used for any net function 3 :

6.8)nn=dx " (Buya=Buy.)  (6,8),,=8y"(Buri=B..sy)

B). Hogerbard  (F)~HBry b
o7 .

Also, k; =h™2?, ; =k, +if. It can be seen that the above schemes are all

second order in the spatial grid dimensions at points in the interior of the region. The
treziment of boundary points in the various schemes will be discussed below.
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The time differencing scheme used for all the four grids has been a leap-frog scheme in
which { and ¢; are computed at alternating half-steps with eqns (3.1) and (3.2) being
used alternately (0 update each of these variables in turn [40]. This scheme has the
advantage of being explicit and also second order in the time step, though the size of
the time-step is restricted by the CFL stability criterion.

Since for the A,B and E-grids the two velocity components are taken at the same grid
poiats the differential equations for the ¢; can be solved in complex form. Since this
system is stiff, some care must be used in the choice of integration method. Writing
eqn (3.4A), (3.4B) or (3.4E) in the symbolic form

o,
3‘—+ajcj =G {3.5)

we can update the solution over one time step from ¢ to¢ + T by the approximation
[40]

c;(t+t)=c,(t)e T +J:G (t +s)e™ ®=ds
=c,;(1)e™" +G (1 +37)r, (3.6)
where

1 .7
r,==—[l-e¢ ']
] al

The required value of G is found from { at the intermediate half step, which has
already been determined from the contiruity equation.

For the C-grid the two real equations (293.4C) must be integrated separately, but
similar approximation formuias to (3.6) can be used, with ; replaced by &; and the
Coriolis terms included with G. In order to have a stable treatment of the Coriolis
terms, the two equations (3.4Ca) and (3.4Cb) are used in alternating order on
successive time steps. This also has the advantage of providing a second order
scheme. A similar situation would occur also for the D-grid.
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3.2 Treatment of boundary points

At a coastal boundary, the boundary condition is taken to be that the normal
component of volume flux, p or g, is equal to zero. As discussed ir the Introduction, it
is not assumed that the normal velccity is zero throughout the water column. At an
open boundary, it is assumed for simpiicity that the surface elevation, {, is prescribed.
To illustrate how these boundaries are treated, examples of a left coastal boundary
and a right open boundary are shown in Figures 3.2(a)-(d) for the four numerical
schemes respectively. Scheme C is of course well-known but is included for
completeness. It will be seen that in all the schemes the local truncation error is
increased at the boundary points from second order to first.

Scheme A:

At point 1 in Figure 3.2(a), the boundary condition is p = 0. In order to compute ¢;
from (3.4A) at the adjacent interior point 2 it is necessary to know ¢ at 1. To compute
this, (3.3A) must be modified to have a one-sided difference in the x direction;
furthermore, ¢ is required at the adjacent boundary points, 3 and 4. These values can
be found from (2.25) with ¢; being computed from a modified version of (3.4A) that
uses a one-sided difference in the x direction.

At the open boundary, { is given ai point 5. In order o compute { from (3.3A) at the
adjacent interior point 6 it is necessary to know p at 5. This can be found from (2.25)
with ¢; being computed from a modified version of (3.3A) that uses a one-sided
difference in the x direction.

Scheme B:

At points 1 and 2 in Figure 3.2(b), the boundary condition is p = 0. In order to
compute { at the adjacent interior point 3, (3.3B) must be modified to have a one-
sided average of the ¢ -term in the x direction. In this scheme, g is not computed at
the boundary points 1 and 2 since use of (3.4B) at these points would necessitate an
extrapolation of { values.

At the open boundary, { is given at points 5 and 6 and ¢; can be computed from (3.4B)
without modification at the adjacent interior point 7.
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Scheme C:

At point 1 in Figure 3.2(c), the boundary condition is p =0 and { may be computed
from (3.3C) without modification at the adjacent interior point 2.The quantities a, are
not computed at the point 1. To compute b; from (3.4Cb) at the interior point 3 all that
is needed is to use Jamart and Ozer’s wet points only averaging fcr the Coriolis term,
that is to exclude points such as 1 that lie cn the boundary.

At the open boundary, { is given at point 5. In order tc compute a; at the adjacent
interior point, again (3.4Ca) is modified by including only interior points in the Coriolis
term. The quantities b, are not computed at points such as 7 that lie on the boundary.

Scheme E:

At point 1 in Figure 3.2(d), the boundary condition is p = 0. In order to compute {
from (3.3E) at the adjacent interior point 2 it is necessary to know ¢ at 3 and 4. These
can be found from (2.25) with ¢; being computed at 3 and 4 from a modified version of

(3.4E) that uses an extrapolated one-sided difference of { in the x direction.

At the open boundary, { is given at point 5. In order to compute ¢; from (3.4E) at the
adjacent interior point 6 it is necessary to know { at points 7 and 8. This can be found
from (3.3E) with an extrapolated one-sided difference used for p in the x direction.

The use of extrapolated one-sided differences in this scheme is a potential weakness.
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3.3 Scheme comparisons

(a) Closed rectangular sea

The four algorithins have been compared and tested using two model problems. The
first of these is a simplified storm-surge model of the North Sea used by Owen and
Davies [37] and subsequently by several investigators to test algorithms. The model
region consists of a2 closed rectangular sea of dimensions 400 kms in the x -direction
and 800 kms in the y -direction, with grid spacings Ax = 400/9 kms and 4y = 800/17
kms. The depth is taken uniformly as 65 m. The sea is initially in a state of equilibrium
and starting at ¢+ = 0 is subjected to a constant surface shear stress in the negative y
-direction, with values 7, =0, 7, =-1.5 N/m?2. The values of the other parameters (all
in MKS units) are p = 1025, N =0.065; ¥ =0.002, g =9.81 and f = 1.22x10+. A
time step © = 360 s was used.

Some typical computed results are shown in Table 3.1, where the velocity profiles
after 30 hours at three grid points are tabulated for each of the four numerical schemes.
An analytical solution is not known for this problem, so as a means of testing the
accuracy of the numerical results, the same model preblem has been re-computed
using the B-grid scheme with grid spacings and time step equal to one quarter of
those stated above, and the results of this computation are listed in the first coluran of
the table. Since the algorithms are all second order at interior points and first order at
boundary points, it can be expected that the errors in the first column of the table are
somewhere between one quarter and one sixteenth of the errors in the third column.

Comparing with the “exact” solution in the first column, we can see that the B,C and
E schemes produce much more accurate results than the A scheme. This is not
surprising in fact since the approximations to the spatial derivatives in equations
(3.3A) and (3.4A) involve finite difference over intervals of twice the size of those in
the other three schemes. There appears to be litile difference in accuracy among the
B,C and E schemes.

Secondly, none of the schemes generate spurious numerical boundary layers,
presumably because for the A,B and E schemes the momentum equations are solved
at the same point and averaging is not needed for the Coriolis terms. For the C-
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scheme such boundary layers do occur if the wet-points only averaging is not
employed [43].

Thirdly, the CPU time required per time step of computation is about the same for the
A,B and C schemes, but is approximately twice as much for the E scheme. Again this
is to be expected since, for the same grid spacing, the E-grid has twice as many grid
points as the other three grids, which all have about the same number of points.

(b) Open rectangular sea

The second model problem is one for which an analytical solution can be found. Only
linear equations have been considered here.The region is again rectangular but with
open boundaries on all sides on which the volume transports are specified as given
below. The water depth is uniformly 65 m and the other parameters are given the
same values as in the closed sea problem except that x is zero.

When the bottom friction is zero, the depth-integrated equations form a closed
system. Integrating the linear momentum equations from z =-h toz =0, and using

conditions x =0, we get

0
dq. . _ o (3.7)
> fp = gh&y +s,

where s, =7, /p, s, =t, [ p. Equations (3.7) and (3.1) can be solved for p, ¢ and {.

Analytical sclutions can be found that depend on only cne of the coordinates x or y. If
s, =0, a solution that starts from rest and is independent of y is given by

{=sZ@x,t5l,) p=s,Px,t,l ) gq=50x,1l)

where x runs from O to /, and
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Z (x,t,l)=-l Z [1 co{gﬁﬁ-ﬂco -’L;E-)

n odda)u

l
o).
P(x,t, )= lzd oy n(l )s

& od
[ {w,t)] . nn:x)
1-co§ =~ |{sinf ——
noddnﬂ:wﬂt l 1

Q(x,t,1y==f 1),

where w’ =(fl)* + gh(nm )’. By superimposing two of these solutions, we get a

solution of the form

Cx,y,t)=5.2 (x,t;1 )+s,Z (y.,5:1,)
plx,y,t)=s,Px,t,l.)~-5,0(y,21,)
qx,y,t)=s0 (x,t,1)+s P(y.t,1,)

This solution satisfies the boundary conditions

p=-s0(y,t,l,) onx=0orl,
q=50 (x,1,1,) ony =0orl,.

When the bottom friction is zero, the Sturm-Liouville problem (2.10) and (2.11) has a
zero eigenvalue and the spectral amplitude of the corresponding (constant)
eigenfunction is related to the depth-averaged solution discussed above. In the other
modal equations (3.2), the coefficient R;; =0, and the amplitudes ¢; can be found
independently of the depth-integrated equations. When § and N are independent of ¢
the solution is given by [40]

¢ (t)=—-—a£-i-§-2{zf +k,e '}

i
where k i =h“2ljz, o; =k; +if. In the special case when N is constant,
. 2 . 2 . 2
¢;(0)=V2codjm(1-6)1 A=N(m), k;=N(jz/h),

for j 2 1, and the complete velocity field is given by

p+iq hS 5, codjn(1-0)] ¢
U(o- = s - e ((F ¢ — £Y = 2R S +k % .
)=+ o (07 =) Za A i ke ™)

34



Some typical computed resuits are shown in Table 3.2, where the velocity profiles
after 30 hours at three grid points are tabulated for the analytical solution and for each
of the four numerical schemes. The conclusions that can be drawn are consistent with
those from the first model problem. Scheme A is considerably less accurate than
schemes B,C and E, and in fact is sufficiently inaccurate to be unusable with the
chosen grid sizes. The computational errors from schemes B,C and E are of
comparable maguitudes. The root mean square errors in 4 and v from all the grid
points are almost equal for the B and C-grids, having the values 11 and 13 mmy/s
respectively, and are slightly smaller for the E-grid, being 10 and 11 mm/s.

These differences are probably not significant since the relative sizes of the errors
from the three grids fluctuate from step to step. Figure 3.3 shows the rms error in u
and v combined for the B and C-grids for the first 600 steps. Up to about 240 time
steps (24 hours) the B-grid results are more accurate than those from the C-grid,
between 240 and 450 steps the C-grid produces more accurate results and from 450 to
600 steps the B-grid again becomes the more accurate. The rms errors after 600 sieps
from the B-grid are about the same as after 240 steps, namely 11 and 14 mm/s in «
and v respectively. The errors are almost uniform through the water column in every

case, that is they are concentrated in the lowest mode.

35



“Exact” Scheme A Scheme B Scheme C Scheme E

Level U 1% u v u v u v u v
10] 97 -3851]1-129 375 -98 -397 -97 -387 -94 -395
9| -8 -239 | -116 -229 | -84 -251 -83 241 -80 -248
8] 48 -125 -81 --115] 49 -136 -48 -126 | 45 -133
7 -5 38 -38 29 -6 49 -5 40 -2 47
6 38 24 5 31 36 13 38 22 39 16
5 75 67 43 73 74 56 75 65 76 59
41 102 93 71 97 101 83 102 91 103 87
31 116 106 86 108 114 96 116 104 116 100
21 115 106 89 107 114 97 115 105 115 101
1l 100 93 78 92 99 85 101 91 100 88

“Exact” Scheme A Scheme B Scheme C Scheme E

Level u Y u Y u v u v u Y
10] -144 -338 | -148 -380 | —-148 -349 | -145 -353 | -144 -347
9] -130 193 | -134 -235|-134 -204 | -131 -207 |-130 -202
81 -94 -79 68 120} -98 -89 -95 -93 94  -88
71 -50 5 -52 35§ -53 —4 -50 -8 -49 =3
6 -5 66 -7 26 -8 56 -5 52 —4 57
5 34 106 33 68 31 97 34 93 35 98
4 63 129 64 94 61 121 64 117 63 121
3 80 137 82 105 78 131 82 127 82 130
2 84 133 86 105 82 127 86 124 86 127
1 74 114 76 92 72 110 75 107 75 109

“Exact” Scheme A Scheme B Scheme C Scheme E

Level u v u v ] v u v u y
101 -102 -341 | -111 -372 | -105 -359 ! -100 -354 | -102 -348
9 -88 -195 97 226 | 92 =213 -87 208 | -89 -202
8] -53 -81 -62 -112} -57 99 =52 94| -54 -88
71 -10 4 -18 26| -14 -13 -9 -8 1 -11 -2
6 32 65 24 35 29 48 33 53 31 58
5 69 106 62 76 66 90 71 95 69 100
4 96 131 90 101 93 115 93 120 96 124
31 110 140 105 113 107 126 112 130 110 134
21 110 136 106 111 108 123 111 128 110 131
1 95 117 92 97 94 107 97 110 95 113

Table 3.1. Exact and computed velocity profiles after 300 steps (30 hours) for Test
Problem 1. Units are mm/s. The three tabulations refer to the C-grid points (2,2),
(8,10) and (5,15) respectively. (The region is rectangular, running from (2,2) to

(10,18).)
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Exact Scheme A Scheme B Scheme C Scheme E

Level u v u v u v u v U v
10} 346 606 506 -809 | 339 -586 343 -595 346 -593
91 162 440 321 -643 154 420 158 429 161 427
8 45 =276 204 479 37 256 41 264 44 262
71 21 -125 138 328 | 29 -105 =25 114 | 22 -112
6] -53 4 106 -198 | -60 24 -56 15 ] -53 17
5] -61 110 97 -92 | -69 130 -65 122 | -62 124
41 -57 192 102 -10] -65 212 -61 204 | -S8 205
31 49 250 110 47 1 -56 270 | -52 261 —49 263
21 41 284 117 81 —49 304 -45 295 | 42 297
1{ -39 294 120 92 | -46 315 -42 306 | -39 308

Exaci Scheme A Scheme B Scheme C Scheme E

Level u 1 u 14 u v u 1 u y
10] 339 -580 338 -542 | 316 -582 325 587 324 -592
91 155 -414 154 321 132 416 141 421 140 426
8 38 -249 37 212 15 =251 23 256 23 -261
71 28 99 -29 -61 -51 -101 -43 106 ; 43 -111
6] 60 30 61 68 | -83 28 -74 23 | -74 18
5| -68 137 —69 174 | -91 135 -83 130 | -83 125
47 64 218 -56 256 | -87 217 =79 211 -79 206
3] -56 276 =51 313 | =719 274 =70 269} -70 264
2] 48 310 | -50 348 | -71 308 —63 303 1 -63 298
1] 46 321 -47 359 | 69 319 —60 314 | -60 309

Exact Scheme A Scheme B Scheme C Scheme E

| Level u Y u v u v u Y u v
101 356 -600 403 -546 | 383 -588 354 -583 360 584
9] 173 -433 218 -381 198 423 170 417 i76 418
8 55 -269 107 =216 81 -258 53 -252 59 -253
71 -11 -118 35 65 14 -107 -13  -102 -7 -103
6] -42 11 3 64 | -17 21 -44 27 | -38 26
5f{ -51 117 -5 170 | -25 128 ~53 134 | 47 132
4] 47 199 0 252 | -21 210 | 49 215} -43 214
3] -38 256 7 309 | -13 267 -40 273 | -34 272
21 =31 291 14 34 -5 301 -33 307 { 27 306
1f -28 302 17 355 -2 313 -30 318 | -24 317

Table 3.2. Exact and compuied velocity profiles after 300 steps (30 hours) for Test
Problem 2. Units are mmy/s. The three tabulations refer to the C-grid points (2,2), (6,4)
and (9,6) respectively. (The region is rectangular, running from (1,1) to (10,10).)
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Chapter 4. Numerical Experiments

4.1 One-dimensional channel flow

It is not easy to find exact solutions of the nonlinear equations with which to test the
accuracy of numerical algorithms. One such sclution, however, occurs for the steady
wind-driven flow in a channel of constant depth. If, for such a case of uni-directional
flow, one makes the approximation H = h, the advective terms become identically
zero and the only nonlinearity is the bottom friction. In this case, for constant eddy
viscosity u =N, the final steady solution can be found analytically.

With these approximations, eqns (1.32) and (1.29) reduce, for steady flow, to

D _ 9§ M 29
x o ao(N aa)”g" o

1
where p =hjou do =hua, and the boundary conditions (11) are

ou M

N S==hS on o=l N S==hB =h(x,+x,JulJu on o =0

We take the channel to be closed at its ends, so that the boundary conditions are p
0. Therefore p = 0 for all x. Then the solution of these equations is

u(o)=4u(0)Bo*—60 +2)+(Sh [4N )Go *-20)
¢ [ox = (6Nu(0)+3Sh)[2gh?,

where the bottom velocity is given by

u(©)=(e/2xch){Kh +3N —f(c,h +3N )+ 2610,k |

withe =1ifS 20and € =-1if § <0.
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For the nur-erical solution, the dynamical equations (1.32),(2.17) and (2.19) are
solved fror: an initial state of rest untl the steady flow is reached. In this case, these

equations simplify to

% P _ A "C e
= +2L=0 a =H 'S -B),
Lo w2 DB

while the velocity is obtained from eqn {2.25) as

u(o)=a +—hS+-( 2.y - {(1 -0)’-4 +Zc 9, ().

2N j 2l
k, and K, Level Computed solution at points Exapt
(2) (8) (15) solution
K, =0.002 S —42.94 —42.89 —42.92 —42.96
K = 0.005 M 7.52 7.58 7.55 7.50
B 12.93 12.97 12.95 12.92
K =0.002 S —41.95 —42.01 —42.00 —41.99
K, =0.015 M 7.74 173 71.74 7.75
B 10.98 10.98 10.98 10.98
K, =0.002 S -40.54 —40.56 ~40.55 ~40.53
K; =0.05 M 8.11 8.09 8.10 8.11
B 8.07 8.07 8.07 8.07
K =0 S —45.66 —45.12 —45.44 ~45.78
K, =0.005 M 6.91 7.43 7.12 6.80
B 18.65 18.99 18.78 18.57
K =0 S —43.60 —43.60 —43.60 —43.61
K =0.015 M 7.35 7.36 7.35 7.34
B 14.22 14.23 14.22 14.22

TABLE 4.1. Computed and exact velocities in cm/s for steady wind-driven flow in a
channel with different values of linear and quadratic friction coefficients.
Velocities are given at the surface, mid-point and bottom of the water column.
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The algorithm described in chapters 2 and 3 is easily adapted to these simplified
equations by setting the Coriolis parameter equal to zero and by-passing computation
of the y -component of velocity. All nonlinear terms are suppressed except for the
bottom friction. Some typical results are given in Table 4.1. In these computations, the
values of the various parameters were chosen as A =65 m, Ax =47,059 m, 7 =360
s, N =0,065m%s and g = 9.81 m/?2. Six eigenfunctions were used in the calculations

and the length of the channel was 16 horizontal grids.

The table gives the exact solution in the last column and in the adjacent columns the
computed sciutions at three points spaced along the channel. The velocity is given at
the surface, mid-depth and bottom in each case. Results are given for several
combinations of values of the linear and quadratic friction coefficients k; and ;. It can
be seen that the numerical results are quite accuraie, even for very small drag
coefficients and that the algorithm remains stable for both small and large values of

these coefficients.



4.2 Keciangular sea with constant eddy viscosity

In order to test the algorithm for the full three-dimensional nonlinear hydrodynamic
equations, we have made use of the simplified storm-surge model of the North Sea
used by Davies [37-38] and also several other investigators [e.g. 36,40]. The model
region consists of a closed rectangular sea of dimensions 400 kms in the x -direction
and 800 kms in the y -direction, with grid spacings Ax = 400/9 kms and Ay = 800/17
kms. Figure 4.1 shows the B-grid used for this region. The depth is taken uniformly as
65 m. The sea is initially in a state of equilibrium and starting at ¢ = 0 is subjected to a
constant surface shear stress in the negative y -direction, with values 7, =0, 7, = -
1.5 N/m2 The values of the other parameters (all in MKS units) are p = 1025, N =
0,065, g =9.81 and f =1.22x10*. A time step T = 360 s was used. These parameters
have been chosen to be identical to those used in earlier work [37,39] so that
comparisons >an be made.

An initial series ot computations was designed to tesi the accuracy and stability of the
explicit treatment of bottom friction in a dynamical problem as opposed to th-: steady
proklem of the preceding subsection. Here we zompared the soluticns obtaired for the
linearized equations with those obtained using an earlier algorithm {44] in which the
linear bottom friction is incorporated into the construction of the eigenfunctions, and so
is treated implicitly.

Some typical computed results are shown in Table 4.2. The upper and lower parts of
the table show the numerical solutions computed with the time-step 7 = 360 s using
respectively the present algorithm and the old implicit algorithm of [44]. it is clear that
no significant errors are introduced in this case by the explicit :eatment of the bottom
stress.

A second series of computations was designed to test the rate of convergence of the
eigenfunction expansion in comparison with that obtained by Davies [38]. A quadratic
law of bottom friction was used, with x; =90 and x; = 0.002, and all nonlinear terms
were
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(2,2) (8,10) (5,15)
Surface u -9.86 -14.82 -10.56
velocity v -39.68 -35.03 -35.95
Mid-level u 5.51 1.12 478
velocity v 347 7.67 6.91
Bottom i 9.96 7.28 9.38
velocity v 8.51 10.97 10.63

(2,2) (8,10) (5,15)
Surface u -9.85 -14.85 -10.58
velocity v -39.72 -34.97 -35.98
Mid-level u 5.52 1.11 4.78
velocity v 3.47 7.72 6.92
Bottom u 9.95 7.27 941
velocity v 8.56 11.03 10.72

TABLE 4.2. Computed velocity profiles in cm/ after 30 hours for the linearized
equations. Profiles are given at the three grid points (2,2), (8,10) and (5,15)
(see Figure 4.1). The upper part of the table provides the results from the
present algorithm and the lower part from the implicit algorithm of [44].

retained in the equations. The computation was repeated with 4,6 and 10
eigenfunctions included in the expansion (where the j = 0 ¢igenfunction is also

counted).

Typical resuits are shown in Tabie 4.3 in which are given the components of fluid
velocity at the centre of the rectangular sea and at the surface and bottom of the water
column, as well as the corresponding surface elevation, 30 hours after the onset of the
wind. It can be seen that the expansion converges quite fast: for the expansion
truncated after six eigenfunctions, the maximum error in the computed current (using
the solution with ten eigenfunctions as the standard) is only .04 cm/s. The maximum
difference over the whole rectangle between the values of { compuied usiag 4 or 10
eigenfunctions is 0.1 cm.
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The final row of Table 4.3 lists the CPU times for each computation (using an IBM
3081). The interesting fact here is that the corresponding CPU tmes for the identical
computations except for the omission of the nonlinear advective terms were in each
case less than one-third of the figures listed. Thus the inclusion of the advective terms
increases very significantly the cost of the spectral method.

It is interesting to compare the computaticnal efficiency of the eigenfunction method
with that of the direction-splitting algorithms such as the one described in [46-47).
For this rectangular sea problem, the eigenfunction method with four eigenfunctions
requires slightly less CPU time than the splitting method if the linearized
hydrodynamical equations are used. However for the nonlinear equations, the CPU
requirements of the eigenfunction methed are about fifty percent greater than those of
the splitting algorithm, and of course increase if more eigenfunctions are employed.

c . Number of eigenfunctions

omponen 4 6 10
Surface u ~-19.60 -19.73 ~-19.77
velocity v -31.39 -31.37 -31.37
Bottom u 8.37 8.32 8.31
velocity v 17.08 17.09 17.09
Surface ¢ 149.7 149.7 149.7
elevation

CPU time 180 s 240 s 370 s

TABLE 4.3. Componsnts of velocity in cm /4 after 30 hours at the centre of the
rectangle computed for the fully nonlinear equations with different numbers of
eigenfunctions.

Table 4.4 shows the corresponding results obtained by Davies [38] using Gram-
Schmidt polynomials (equivalent to shifted Legendre polynomials) as basis functions.
The rate of convergence is somewhat slower than that in Table 4.3, the maximum
difference between the velocities computed with 6 and 8 functions being 0.34 cm /4.
Davies found much slower convergence if cosine functions are used, the reascn being
that these basis functions cannot satisfy the surface stress condition, giving a non-
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uniformity there. The Legendre (or Chebychev} basis come from a singular Sturm-
Liouville problem, so the inhomogeneous boundary condition does not disturb the rate
of convergence. It is therefore significant that comparable, or even slightly better,
accuracy can be obtained using the eddy-viscosity eigenfunctions. The Legendre or
Chebychev polynomials have of course the disadvantage of giving modal equations
that are coupled via dominant terms.

The differences between Tables 4.3 and 4.4 in actual current values are probably due
to the different grids used in the two computations. In [38] a C-grid was used which
produces spurious numerical boundary layers [43] and consequent errors of several
percent in flow variables throughout the rectangle while the B-grid used here
automatically avoids such layers. Another possible source of difference is that the
finite element method of computing the advective terms at every time-step may be
expected to be more accurate than the time-splitting method used in [38], particularly
if the higher frequency waves play a significant role in the solution.

B Number of eigenfunctions
Component 4 6 8
Surface u -17.62 -17.58 -17.56
velocity v -29.62 -29.55 -29.56
Bottom u 9.75 9.79 9.45
velocity v 18.41 18.47 18.45
Surface ¢ 140.8 140.8 140.5
elevation

TABLE 4.4. Components of velocity after 30 hours at the centre of the rectangle
computed by Davies {38] using different numbers of eigenfunctions.



x, =0002 | x, =0.002 | K =0 x =0.02

Component | . _ 6 =0002 | 6 =002 | x =002
Surface u ~15.51 ~15.05 14,51 1025
velocity v 3525 _35.64 -36.17 -37.98
Bottom u 6.91 6.48 6.61 1.29
velocity v 21.65 21.69 21.14 26.05
Surface ¢ 140.0 138.2 1335 1367
elevation

TABLE 4.5. Components of velocity in cm /4 after 30 hours at the centre of the
rectangle computed for the fully nonlinear equations with different friction
coefficients.

A final series of computations was designed to examine the effect of different friction
coefficients and in particular to ensure that the algorithm remains stable for large
friction. Typical results are shown in Table 4.5 for several values of x; and x;

We have experimented with large values of x; and x, and small eddy viscosity to
determine the stability limits of the algorithm. Using the time step of 360 s, the
algorithm remains stable for ali physicaily realistic values of these parameters. For
example, with N = 0.065, stability is maintained up to and beyond x; = 0.2 when x; =
Oand upto x; =0.02 when x; = x5, With x; =0and x; = 0.002 stability is
maintained for N 2 0.001 while for x; = 0.002 and x; =0 it is maintained for N 2
0.004. Figure 4.2 shows the regions of stability and instability in the N-x; plane in the
case when x; =0.
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4.3 Rectangular sea with variable eddy viscosity

To further test the algorithm, a three-dimensional nonlinear problem with a more
realistic eddy viscosity function was used. Three cases of variable viscosity were
considered, again following reference [38] for the sake of comparison, as shown in
Figure 4.3. The water depth was taken as 65 m, and the thicknesses d; and d, of the
surface and bottom layers were taken as 11 m. Within these boundary layers N is
assumed to vary linearly with the vertical coordinate, while N is constant through the
rest of the water column. The values used for the parameters in the three cases were:

Case A: N, =0.013 m2/5, N, =0.065 m2/4, N, =0.013 m2/,

Case B: N, =0.117 m*A, N, =005 m?*A4, N, =0.013 m?4,

Case C: N, =0.117 m2/4, N, =0.065 m2/4, N, =0.065m24.

In this case, again for the sake of comparison with [38], a no-slip boundary condition
(2.19) was used The algorithm mast then be modified as indicated in Section 2.2.
Figure 4.4 shows the two components of velocity as a function of vertical coordinate
75 hours after the onset of the wind at the centre of the rectangle for the three eddy
viscosity functions. These were computed using six eigenfunctions. The most striking
feature of these figures is the sensitivity of the near-surface velocities to the value of
N,. The no-slip condition prevents the bottom velocity from being as strongly affected
by N, , although the effect on the velocity gradient is noticeably.

Also in Figure 4.5 we have reproduced the figure given in [38] for the corresponding
Case A. This was computed using four Chebychev or shifted legendre polynomials.
There is substantial but not complete agreement between this figure and that in
Figure 4.4(a). The differences are again probably ascribable to the numerical boundary

layers.



Chapter 5 Density-Driven Flows

In this chapter the density-gradient driven flow problem will be considered. The basic
equations and the model solutions used in this chapter have been taken from Lardner

and Das[50]. The spectral method described in chapter 2 has been used to solve this

problems. By testing two model problems, we have found that this method gives more
accurate solutions than those given by Lardner and Das[50].

5.1 Basic Equations

The equations that form the basis of the model are the usual momentum and mass
conservation equation. Flows driven by density gradients are generally quite slow, so
that the advective terms in the horizontal momentum equations are very small and can
be ignored. These equations then take the form:

The mass conservation equation:

(pu), +(pv), +(pw), =0 (5.1)

The horizontal momentum equations, corresponding to (1.2)-(1.3):

_Q_u___f _______ a(, a'?u)
P&+fpu—-§£+—{ ) 5.3
ot 2\"'3 (5:3)

As usual, the vertical momentum equation is approximated by the hydrostatic

equation

¢
p(xy,2,0) = py + [ gp(x,y,2))dz’ (5.4)

where density p is depends on x, y and z; p, is atmospheric pressure, assumed

constant.

Defining the average density and the components of mass transport by
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¢
_ 1
Pzgipdz (5.5)

¢ ¢
p=[pudz . gq=[pvd: (5.6)
—A -k

and integrating equatiion (5.1) over the water column fromz=-h toz = {, we get,
after using (1.5)-(1.6),

PG+ +q, =0 (5.7)

where p “ denotes the density on the surface.

Substituting (5.4) into equation (5.2)-(5.3), we obtain

du_ o O MY O,
v I MY e FI .,
P:;‘t“*'f u"'g;(l—l:?';)— 3p Cy‘g{“—Pay dz (5.9)

It is convenient to write the equations in ierms of the sigma coordinate in the vertical
direction. By setting o =(z +h )/H, where H=h +{ is the total water depth, the free
surface is then & =1 while the bottom is ¢ =0. Using the chain rule shown in chapter

1, we have.
o , 20 ou
_(;%_PHC - fgv- Hza (ﬂa—)=—gp5,+71 (5.10)
ov a2 d ov
v pHCv + fau-— Hza (u;—)=—gp4,+T (5.11)
where

1
T,=H|[R, - H(1- 0)p,Ho’
. (5.12)

1
T,=H[[R, - H1- o)p,Ho’

48



and
1

R=H{[p(c)-p(c")do’ (5.13)

[+

In addition, we have boundary conditions on ¢ =0 and 1. We assume that the surface
is free of shear traction, so we have the surface condition

u,=v, =0 (5.14)

On the bottom the boundary condition is
Hu, = Hp(x; + Kz\/uf +vou,  pv, = Hp(K, + K, \/”: +v; ), (5.15)

In general it is physically more realistic to use a quadratic dependence on bottom
friction on velocity, but in the present case, where the density-driven flow is
superimposed on other, possibly much larger, flows, such as tidal and wind-driven
currents, it may be more appropriate to use the linear form for bottom friction[25,50],
that is

M(u,,v,)=Hpxw,v) on o=0 (5.16)

Writing the above problem in complex form, U=u + iv, we have

P +p,+q,=0 (5.17)

and

: 20 U : .
pUt—'E%CLUc*'lpr—H 2%‘(#30_-)=—gp(gx+‘€y)+rx+‘7‘y (5.18)

with boundary conditions
U‘,=0 on =1 (5]9)

and
[JUU-——HD—K.U on =0 (520)
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5.2 Eddy-viscosity eigenexpansion

In order to solve problem (5.17)-(5.20), we consider the eddy-viscosity eigenvalue

problem:
o( d
5;(#‘£"J+AP¢(G)=0 (5.21)
u%=0 on 0=0, ﬂgg-xhﬁd;zo on o=1 (5.22)

Using the SLEIGN subroutine to compute the eigenpairs {4 ,¢, (o)} at every point
(x,y), we have the orthogonal eigenfunctions with properties:

: o= 1, when i=j
_!P¢.-¢,- o= 0, whenizj (5.23)

Expanding the current profile U in terms of the eigenfunctions, we obtain

U(es= Y ¢;(x,y,)9,(0) (5.24)

j=l
where
¢,(x.y.0= [ pU(0)¢,(0)do (5.25)

Multiplying (5.18) by ¢; (o) and integrating from =0 to 1, we get

ac, i
-;T’+(y+;2£)c, =R,[(, +il,]+ R, (5.26)

where
1
le = "gj‘op‘deo

1
jo = J'o[T‘ +iT, bjd()'

The initial values for the set of equations (5.26) can be obtained by assuming the
motion starts from a state of rest, then
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U‘l=0 =0

and
o =0 (2.27)
The mass transports can be obtained by combining (5.6) and (5.24) as
1
p+iq=ch(x,y,r)Hfop¢jda (2.28)

j2l

We can compute the steady currents caused by a given density field by solving
equations (5.16) and (5.26) with appropriate boundary conditions and initial values.
The discretization scheme shown in chapter 3 has been used. The horizontal
boundary conditicns are specified as usual. That is, on coastal boundaries, the normal
component of the mass flux vector (p, ¢ ) is taken to be zero; the appropriate
condition on the open part of the boundary is the subject of considerable debate, but
the simplest condition is to set { equal to zero at all open boundary points.
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5.3 Test Problems

The accuracy of the algorithm was tested by using it solve two problem for which the
exact steady solutions can be calculated. These solutions, taken from among those
given by Lardner and Das[50], were designed to test the code's accuracy in handling
two distinct physical features: vertical density variation and Coriolis forces.

Problem 1

For the first problem, we consider a channel occupying the region O<x <L with the end

x=0 being closed and x=L open. The eddy-viscosity u is assumed constant and
bottom drag is assumed linear ( x ,=0). Only longitudinal flow is considered, with v

and f take as zero.
In this case we take the density to have the form

p=py[l+x8(1-20)] (5.29)

and the waier depth h =h (x ) was taken to increasing uniformly from 35m at the
closed end of the channel to 95m at the open end.

For steady flow, equation (5.17) then reduces to p, =0, and since p =0 at x =0, it
follows that p =0 for all x . Therefore,

1
[ pudo=0 (5.30)
Equation (5.18) then reduces to
(uu,), = 8oh*L, ~ Bpog[ K o(1 - 0) + K*i'x(1- 6)*] (5.31)

Taking the boundary conditions (5.19)-(5.20) into account, we obtain the bottom
velocity

Uy == —[1+ 5Bx ~ 2(Bx)* - 52 - Bx)?|

* 15D (5.32)
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Where

U — ﬁgh3p0

244
D =1+2K[2 - Bx +(Bx)* / 2]
K= xlhpo

124

S =4xh'(x)/ h(x)
The rest of the solution is given by

u=u,{1+6k[20- 0 - pro*(1-20/3)]}
+2UG[(1- ) +(1+ 5/ 2)fx(1-20/3)~ S2 - 0)* / 4] (5.33)

Z, =lﬁh{1+5/2— 3K"b}
6 U (5.34)

In the numerical results given below, the channel was taken with the closed end at
grid point m=1 and the open end at m=18.5, the horizontal grid spacing being 6
=40,0060m.

The constants p ,=1.013, B =1/17 ,The other constants used were(in MKS units)
£=9.81, x,;=0.002 and yu =0.065. The time step was 7 =360s, with the computation
being run until a steady solution was obtained (typically, this took about 3000 steps,
corresponding to 12 days of real time). The computed results are given in Table 5.1,
which shows the exact and computed velocity profiles at three positions along the
channel. The solutio: 5 are given at six equally spaced levels form the top to the
bottom of the water colurnn.The two solutions are in very closed agreement.
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Exact Solutions:

I lev\ mi 4 ! 10 | 16 !
N O O -0.173 i -0.987 | -2.696 I
9 | -0.113 ! -G.714 | -1.985 I
7 | -0.005 | -0.156 I -0.480 |
I 5 1 0.072 I 0.372 I 1.013 !
I3 1 0.093 ] 0.661 1 1.868 !
[ B 0.074 I 0.601 | 1.635 I

P T T I R I T T T T T T R i T Sy

I lev\ mi 4 I 10 ! 16 I
S B -0.177 I -0.995 I -2.710 I
9 | -0.115 i -0.714 I -1.989 I
b7 -0.005 | -0.154 I 0.473 I
b5 | 0.075 ! 0.378 I 1.025 I
b3 1 0.095 I 0.665 I 1.870 !
I S 0.076 I 0.601 | 1.623 !

e e e Em o m M e W m e m R m e E N EmEmeEmeowE T T Em e mm e m e eoww oA wow

Table 5.1 Exact and Computed velccity profiles at three points along the
channel, in units of cm/s.
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Problem 2

The second problem is designed to test the accuracy of the computer code's treatment
of the Coriolis terms. We consider a rectangular body of water of constant depth,
occupying the region O<x <L, O<y <M, with lateral boundary conditions p =0 on the
sides x =0, L and ¢ having certain prescribed values, io be given below, on the sides
y =0, M. k', is again zero and f, m and x, constant. We suppose that the density p(x)

is a function of x only, and that all flow variables are independent of y , we define it as
p =p o(1-B x ). In this case, equations (5.10)-(5.11), for steady flow, reduce to

(uu,), +ph’fv - gpi’(, — ph'p’(x)(1- @)= 0 (5.35)
(uv,), —ph fu=0 (5.36)

The continuity equation reduces to p,=0, and in view of the lateral boundary conditions
therefore, p =0. Equation (5.36) implies that v,=0 on ¢ =0, so that the boundary

conditions associated with equation (5.37) are
u,=v, =0 on o=1

v=v =pu, - kKhpu=0 on o=0
The general solution of equations (3.35)-(5.36) has the form

ghp’ hp’
(u,v)=———(a, ) ’ =T
Ip d ¢ [

where

-rg

a=e"’(acosro—bsinrg)+e"’(ccosro +dsinrg)

B=y+1-0c+e“(bcosro+asinrgy+e " °(dcosro ~ csinro)

The terms involving a,b,c and d are of course an Ekman spiral type of solution. These
constants as well as ¥ are determined from the above boundary conditions, which
take the form
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0 1 0 1 [y +1 0

[y

0 1 1 -1 -1 a 1/r
0 A-1 i A+l -1 b |=] O

0 —e'cosr e'sinr e cosr e sinr c ~1/2r
0 € 'sinr e cosr esinr —e"cosr L dj L1/2r ]

where

r=+ph*fi2u , A=xhp/ru

This matrix equation is solved numerically to construct the exact solution.

For the computed solution, we require the boundary values of ¢ on y=0, M, which are
taken from the above exact solution. It is easily seem from (5.35)-(5.36) and the

above solution that

gh’p’ 1. A, ]
= __+-.—_\
q f [y+2 2r a+c)

The solution has been computed for a rectangle of dimensions 600 kms in the x-
direction and 200 kms in the y-direction with a grid spacing of 20,000m. The
parameters were taken as in problem 1 with the addition of f =1.22*10" 57 Table 5.2
gives the exart and computed velocities at three points of the rectangle. There is very
little variation of the final steady solution with x and the accuracy of the computed
solution is about the same throughout the rectangle.
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Exact Solutions:

| \ point | 3,2 I (15,9) I (27,2) |
i level\ ! u v I u v I u v |
| 11 I -16.85 2573 I -16.91 2571 | -16.97 25.69 |
[ 9 I -12.81 23.08 | -12.85 23.06 | -12.90 23.05 1
| 7 I -3.93 16.36 | -3.95 16.35 | -3.96 16.34 |
I 5 I 5.76 837 | 577 837 | 579 8.36 |
I 3 I 12.67 220 | 1271 220 | 1275 220 |
f 1 f 12.61 0.00 | 12.67 0.00 | 1272 0.00 |

- e m e EE R R G AR E G R. e A® S s DG w e S E W a s e e m e e e m e m N m e emw e . .- -

Computed Solutions:

| \ point i 3,2 I (15,9) I (27,2) [
i level \ I u v | u \ ! u v I
| 11 i -16.84 2573 | -16.90 25.71 | -16.95 25.69 |
I 9 | -12.80 23.08 | -12.84 23.06 | -12.90 2305 |
I 7 I -3.94 16.36 | -3.96 16.35 | -3.97 16.34 |
I 5 I 5.77 837 | 579 837 1 579 8.36 |
I 3 I 12.67 220 | 12.72 220 | 1276 220 i
i i I 12.60 0.60 1 12.62 0.60 I 1278 0.00 |

Table 5.2 Exact and Computed velocity profiles at three points in the rectangle region,
in units of cmy/s.
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Chapter 6 Convection-diffusion Problem

6.1. [Introduction and Basic equation

We shall be concerned with mcdelling the behaviour of dissolved or suspended
substances, such as pollutants, in the marine environment. For non-reactive
substances, this is governed by the convection-diffusion equation,

S, +uS, +v§ +wS, =(D,S,),+D,5,), +D,S ), +F,. (6.1)

Here, x,y and z are Cartesian coordinates with the xy - plane horizontal and
occupying the undisiurbed position of the water surface, and the z -axis pointing
vertically upwards. The density of the pollutant at the point (x,y,z ) and time ¢ is
denoted by S (x,y,z,t ) and subscripts of x,y,z ort denote the corresponding partial
derivative. The components of fluid velocity at (x,y,z,t ) are denoted by u,v and w and
D, and D, are respectively the horizontal and vertical diffusivities. F, represents any

source or sink.

The position of the free surface is denoted by z = { (x,y,? ) and that of the bottom by z
= -h (x,y ). It is assumed that { as well as u,v and w are known as functions of their
respective arguments from scme model of the hydrodynamics of the region in question.

In addition to (6.1), § satisfies initial conditions

Sx,y.z,0)=8,(x,y.,z) (6.2)

and boundary conditions on the top and bottom surfaces

S,=bx,y,t)onz={, §, 6 =b(x,y,t)onz=-h, (6.3)

and on the horizontal boundaries
%g-=0 onB, S =0 onB, (6.4)
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Here, B, and B, are the coastal and open boundaries respectively with n the ourward
normal in the xy -plane. In most applications, the fluxes #, and b, wouid be zero, but
they are included for the purpose of certain test problems to be used later.

First, consider the feasibility of using an explicit finite difference method to compute
numerical solutions to (6.1). Ignoring the convection part and the boundary conditions,
the stability condition on such an algorithm would be [72-73]

2 2

T <-éx-— and 7 <éz_ 6
T 40, = 2D, (6.5)

where 7 is the time step, Ax ihe horizontal grid spacing and Az the vertical spacing.
Later in the chapter, more complete stability criteria will be obtained, but these will
suffice for the present preliminary estimates. A typical horizontal grid dimension
would usually be in the range 1-20 km and horizontal diffusivities in the range 10-10C
m? /s, depending mainly on the degree of turbulence. Within these ranges, the first of
the above restrictions on the time-step is, in the worst case, T < 2500s and generaily
it is much less restrictive than this. On the other hand, a typical vertical grid spacing is
5-20m and vertical diffusivity 0.1-1 m? /s, so the second of the above restrictions is, in
the worst case, T < 12.5s.

It is clear from these estimates that the stability limit on the time-step coming from
the horizontal grid coes not present a problem except perhaps for very fine-scale
models of turbulent regions. On the other hand, the restriction from the vertical grid is
often a serious diffic::lty, and effectively prevents the use of an explicit method. This is
the problem that in the next two chapters we want to solve by a vertical / horizontal
splitting method.

The variable z has arange -h <z < { that varies with time. For numerical work it is
betier to change to a new variable that has a fixed range. The usual choice is

oc=+h)JH, H={+h (6.6)

so that 0 = 0 at the bottom and ¢ = 1 at the top. Using the chain ruie repeatedly, we
can then rewrite (6.1) in the form
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1
s —:-g-sa -7 (NS, ), =F 6.7)

t

where
N =D, (X *+Y H+D,,
g =05, —w +D,[X, +Y ] (6.8)
F=D,S,,+S,)+2H "D (XS, , S ,)~uS, v, +F,

and

X =(-0)h, ~-0f,, Y =(1-0)h,-0f, and w=w +uX +7. (6.9)

It has been assumed here that D, and D, are independent of x and y, otherwise
certain extra terms occur in g and F. Note that all derivaiives with respect to x and y
have been included on the left side of eqn (6.7), in accordance with the intention of

treating these derivatives explicitly.

In terms of o the boundary conditions (6.3} take the form

S, =Hb on o=1 S,=Hb, on o=0 (6.10)



6.2. Discretizaiion of the Problem

First we discretize time in eqn (6.7). Let © denote the size of the time-step, § (o)
the approximation to the soluticit at the current step and § *(0) the approximation at
the next time step. We set

§*(0)=AS "(0)+(1~A)S (o), (6.11)

where A is an implicitness parameter, and approximate eqns (6.7) and (6.10) as

S +—S F4 i 1 i _ )
—— = 8g ~ (NS ), =F (6.12)
St =Hb, S$20)=Hh'. (6.13)

The terms in the right side F that involve horizontal derivatives of S are evaluated
explicitly, that is, at the current time level, while the other terms in £ are evaluated
midway between the current and new time-steps in order to minimize the errors.

Treating S * as the new unknown, we can rewrite eqn (6.12) as

g (NS 2y, =F, (6.14)

__g.v‘_._l_
H“’o’ H2

1
HS
where F, =F +5 [At. Once S * is determined, § *(0') can be found from egn (6.11) as
S*o)=[s *@)-(1-1)S (6)YA.

This extrapolation is stable provided that 554 <L

Next, we discretize the vertical coordinate in {(6.4). In order to do this, as in [47] we
replace (6.14) and the boundary conditions {6.13) by the integral identity

1 1 o2 g2 N o1
H Io{v (G{I?S s, }w,,(a);;i-;s,, }da

1 (6.15)
=H jov (@ )F.(0)da +NbV (1)+N&V (0)

where V is an arbitrary differentiable function. Within the class of C? functions, (6.15)
is equivalent to the boundary value problem (6.13},(6.14}.
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This identity is now discretized using finite elements as follows. We choose J equally
spaced nodes, {0, } in the interval [0,1] with 6, =0, g, = 1, and spacing 40 =1/(J -
1). We approximate each function piecewise linearly in each sub-interval, for example,

0,,,—0 c-0,,
/(a)-V, L Al

T VinTag » 0€l00,.)

where V; is the value of V at node j. Then, after evaluating the integrals, we obtain
identity (6.15) in the form

LSV s eds Aoy, a2 +as 1)

ATJ,,[ j=2
7 -l
"Z}’/ {§3/ +%gi+l} in” }Z;/ { 1}(5/1‘511—1)
} = =
1 & A 1 L A a
T AN AN LS S-S )+2_k',,zv N, +N, }s}=-51)

—kZV{ L, +iF, ,H}+k2v {4F.; +4F,, }+N bV, -NpV .

where k = H Ao is the vertical grid spacing in physical units. Equating the
coefficients of each V; we then obtain the system of equations

_Pisil-l *Q/Sj;L —RI.S}."“ W, J=ht, (6.16)

where, for2<j <J -1,

k g g'—l 1 /
T e Tt
:--—k_—. _gi.L+.§.LH.+L(N . +N )
' 6AT 3 6 2k\V I
. (6.17)

forj =1,

62



k g, & 1
R=—r—+=+=24+—(N _+N
' 6AT 3 6 2.’:(2 )
k

=R +—

2, oAt
ylzk{%FcJ*-%Fc.Z}—Nlb;;
and forj =J,

_ k 8 8,1
Pr=—eiz "3 6 TarWiatN,)
Rj =0

k
=P, +—
0, =F, 24T

(6.18)

(6.19)

The system (6.16) can be written in matrix form as AS* =W where A is tri-diagonal.

It is solved by the usual decomposition A = LU where

B
L 1

The elements of L and U are determined recursively from

U = U PiR;_, L —_,_]_)L_ =2
l-Ql'D Jﬂj_ U l y J_ L’- li (.]"' see
] = J -

W) (6.20)

The solution of AS* =W is then obtained in two stages, by the forward elimination,

LY=W,ie,
v,=Ww, Y, =W, -LY,

R b

(J =2%...7)

followed by the back substitution US* =Y ie,,
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RS +R.S 1,
;T U. ’

J

(j =J-1L..,D. (6.22)

Finally, we discretize the horizontal derivatives, which have all been placed in the
right side functions F in eqns (6.7) and (6.8), and are evaluated in terms of the
current value S. The stability restriction arising from this explicit treatment will be
discussed in the next section. The second derivatives are evaluated using a central

difference,
S =S,,+]——ZS,,+S,,1 S =S_ﬁ—2S_+Snj
X Ax 2 ’ ry Ay2 ’

where m and n are the grid indices in the x - and y - directions, while the first

derivatives are evaluated using an up-wind difference,

Su=Sn ifu>0 inﬂifv>0
Ax Ay
Se=\g o LS, =g (6.23)
Bt if 4 <0 l-—"—ﬂ———“ if v <0.
Ax Ay



6.3 Stability restrictions

First we discuss the stability of the factorization and back substitution (6.20)-(6.22).
The theorem given by Smith [73, pp 27-28] cannot be applied to the present case
because the elements P; and R; in A are not necessarily positive. However, a
modification of Smith's argument can be made to show that the forward elimination
(6.21) and back substitution (6.22) are stable provided we make the restriction

Igl mn{———lf——+§£} (6.24)
247 641 =

where N = mjin N, . The proof of this result is rather lengthy and will be given in the

Appendix. It is worth noting that the theorem given by Golub and van Loan [79, Sec.
5.5] can be used to obtain a sufficient condition for the forward elimination (6.21) to be
stable, but this condition does not guarantee the stability of the back substitution
(6.22).

When { =0and h is constart, we have from egns (6.8) and (6.9) that g = -w and
N = D,. More generally, on the basis of the order of magnitude estimates that are
commonly applied to flows in coastal seas, it can be estimated that N =D, and g
always has the same order of magnitude as w. Therefore, the above restriction is
approximately equivaient to

6D
5/( (6.25)

k

W < 1z ° nd | <
In most cases, the first of conditions (6.25) is more restrictive than the second.
Assuming the value A = 0.5, it requires that the convective displacement per time
step should not exceed the vertical grid spacing k. For example, with A = 0.5 and
taking typical values of vertical grid spacing as 5Sm, Dy.= 0.1 m%5 and time step as
1000s, these two conditions are Iw | < 0.005 and 0.026 m /s respectively. These are
not serious restrictions. When the time step is short enough that the second condition
becomes the more restrictive, the bound on Iw | is even less serious. For example if &
= 10m and 7 = 500s, the two conditions are Iw | < 0.02 and 0.019 m/s respectively.

The von Neumann stability of various explicit finite difference schemes for the

multidimensional convection-diffusion equation was investigated by Hindmarsh,
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Gresho and Griffiths [80]. For the two-dimensional up-winding scheme we have
used, their condition (92), which is necessary and sufficient for stability, is

4D,  p+M7"
rs[z;’z“]?‘] (6.26)

When u and v are zero, this is the condition (6.5;) quoted in the Section 6.1, and, as
remarked there, for convection-diffusion in the marine environment, this restriction on
the time step is usually not a severe limitation. However, when 4 and v are
significantly non-zero, the stability condition is different from (6.5;). In particular,
when lu [ and lv | are much greater than 4Dy / Ax, the the stability becomes
convection-limited rather than diffusion-limited and the condition reduces to

Ax
] + | (6.27)

TS

While again this is not usually a severe limitation, it is often more so than the
condition (6.5;). In the typical marine pollution problem the convection and diffusion
contributions to the condition (6.26) are of comparable magnitudes.

The conditions {6.24) and (6.26) have been derived for the separate horizonzal and
vertical convection algorithms, and it is relevant to ask if they are valid for the joint
three-dimensional algorithm. While we do not have a rigorous answer to this
question, we have carried out numerous numerical experiments to obtain at least an
empirical answer. These are reported in Section 7.3.



APPENDIX. PROCFS OF STABILITY THECREMS

In this Appendix we shall give proofs of the stability conditions stated in Section 6.3.
We first prove that the factorization used in the vertical part of the algorithm is stable
provided

k k oN ‘
<——  and g < —— 4+ ——- (A.1)
E<oar &1t sk

wher & = m;;leg,| and N = m,-inlNil

The forward elimination (6.21) 1s stable if IL; | < 1 for all j. From (6.20), we have

P, P
L & B =—-i A2

First, we p:ove thai IL,! £ 1. From (6.18),

k £, 8; 1 k 1
At 5 % (-4 =) +5 (N +N
Ql 3XT+3 +6+2k(N2+N1)>3A,:( 6 12)+2k( 2 1)>0
where we have used (A.1). Then the required condition IL,! < 1 is equivalent to -Q, <
P, £Q, or, -Q,-P, <0< Q- P, . From (6.17) and {6.18), this becomes

k 8 8 1 k 8 .8
eir 6 h T gWNatNIS0s T

and it is easily seen that these inequalities are satisfied if (A.1) holds.

Next, we proceed by induction, assuming that IL; | € 1 and using the recursion formula
(A.21). The denominator here is again positive, since

2k g'+l g'-] 1 y 1
Q’+R"'L’=3At+ 16 - ; +-2—k-(N,.+,+2hj+Nj“,)
ko &, 8 1
+L|———+~+t—+=L~-— (N, +N,
'[ 6AT 3 6 2k(’ "‘)J
k 5¢g 1
2=————=24+—(N.,+N,
e 6 k)
>__k..._._.5_g.+d. 0
2At 6 &k
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where again (A.1) has been used. Finally, we want IL;,, | <1 and from (A.2;) this is
equivalent to —(@, +R, ,L;)-P;,, <0<Q, +R, ,L; -P,,,. From the above and eqns

(6.17), we have
k  Sg

(Q +R _L)+P, 2————=+=—(N;  +N)

+1

L
! 24t 6 2k

ko 8a & . 1
b e 20 2L (N 4N,
[ 6Atr 3 6 2% M '*‘)]

>_£__i&+2_y_>0
34t 3 k
and
k 5 1
(QI.+Rj_le)—}:‘I-+lZE"F'FZ(NH]-FN’-)

as required.

The back substitution (6.22) can be re-written as

Sl."=MijH+Yj/Uj where M, =R, JU,

and therefore is stable if IM; 1 < 1 for all j. From (6.20), we have

R. R
M, =t M. ==L (A.3)
! Q,' "P,'Mj-; ! Ql

First, we prove that IM,| < 1. We already showed that @, > 0 if (A.1) holds. so we
need to prove that -Q, < R, < Q,. From (6.183), the right part of this inequality is

always satisfied, while the left part is equivalent to

k
Rl+m20

Then from (8.187),
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k k £, £ 1
R +—— = +=L+ =24 — (N ,+N
Faar 12 3 6 T Wt

2 l —jﬁl—l&L%(NﬁNlbO

1247 3 6

if (A.1) holds.

Next, we show that if IM;_, | € 1, the denominator in the recursion (A.3|) is positive.
We have

2k g‘+ g‘...
Qj—iz.Mj_l=3M+ ;‘— ’6‘+:2-I;~(N}+,+2N +N,)

k g g'+l
-M. ______+_L+_L. —(N
"‘[ 6At 3 6 ( ¥ )]

> X &L (N +2N,+N,
At 3 2k( i -1)

k g 1
=2 (N, + N,
6AT 2 2k( )

Finally, we show that from (A.3,), it follows that IM,!| < 1. From (A.3;) and (6.173),
this is equivalent to

k k
Pj (1+Mj-l)—2Qj +1—rSOSPj (I-Mj_,)‘f'ﬂ

The right part of this is satisfied, since

P(1-M,,)+ (1—M/._1){ +2L4 J——‘+§I(N, +N)]+-—-—

At 6M 3 6 AT
22[—-’2-—5-]+(0)(N. l+N.)+i
At 2 - 7oAt
2k
=—-g>0
it §
and similarly, for the left part
k 2% 84 8 | |
=P (+M, _)-— = 4t L — (N, +2N +N,
;- F M) At {3,% 6 6 2k( A ! '*‘)J

~

kK 8, & . 1 k
-(+M, - e — (N, 4N )|-—
( "‘{ 6At 3 6 Zk( s ')J At
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from (A.1). This completes the proof.
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Chapter 7 Model Problems

Several numerical examples, chosen because they have analytical solutions, are
presented here. Most of the examples involve the initial condition of a point source
(delta function source). If instead, smooth initial conditions are used, the accuracy of
the computed solution is very considerably improved in all the cases tested. We have
chosen to present the point source results however since they provide a tougher test
for the algorithm and in addition they correspond to a case of practical importance, that
of a pollution accident resulting in a sudden influx of pollutant.

In all the test problems, we take { =0 and h, 4, v, w, D, and D, constant. The value
h = 65m has been used for definiteness and the number of vertical levels used is J =
10.

7.1 Vertical convection-diffusion

This example is designed to test the vertical finite element scheme. All quantities are
assumed independent of x and y, and we set D, = D. Equation {6.1) then becomes

S, +wS, =DS,,.

The initial condition (6.2) for a point source is § (z,0)=Kd (z —z,) which is
discretized as

K[l4 if j=j,
S (O)_{O otherwise

where Az = h Ao is the phyrical grid spacing and j, is the grid point corresponding to
Z,. For an infinite region, the exact solution for this problem is

__ Kk (z —zo—wt)z]
S (z,t)—JMrDt\,x;{ ADr .

This solution can be used for the bounded interval -h <z <0 provided that in the
boundary conditions (6.3) we take
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Z.4W? z,+h +wt
bl—‘-'-S(O,t)-—{’z'E‘-,, b, =S (~h,t)—03':ﬁ—.

It is discretized by setting z —z, =4z (j - j,)-

We have used a vertical velocity w = 0.06005 and diffusion coefficient D = 0.005,
which values lead to roughly equal ime-scales for the convection and diffusion. A time
step of 360s was used. A comparison of the computed and exact soluticns after 100
time steps is shown in Figure 7.1. The maximum relative error between the two

solutions is approximately 1% and occurs at the maximum of S.

Some numerical experiments with large values of w and/or T have been carried out to
check the stability condition (6.24) or (6.25). In these tests the values A =0.5,k =
7.2 and D, =0.005 were used, with a sufficient number of vertical levels o keep the
solution hump within the computation region. Figure 7.4 shows several pairs of values
of w and 7 that lead to stable and unstable solutions as well as the graph of the
condition (6.25). It is interesting that this condition appears to be, at least
approximately, a necessary as well as sufficient condition for stability.
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7.2  Horizontai convection-diffusion

This exampie is designed to test the accuracy and stability of the horizontal explicit
finite difference scheme. All quantites are assumed independent of z and we set D, =
D. Equation (6.1) then becomes

S, +uS, +vSy =D(§,,+5,)).
The initial condition (6.2) for a point source is § (x,y,0)=K8(x —x, 0 (y ~y,)
which is discretized as
Kflaxdy if (m,n)=(mgny)
s., ,.<0)={ faxdy & G v o
. 0 otherwise

where (1, ,n, ) is the grid point corresponding to {(x;.,y, ). For an infinite region, the

exact solution for this problem is

K -_— —— \2+ - - 2
S(x,y,t)=4wtgx4_(x Xo=ut) +(y =y, vt)}

4Dt

This solution is used for the bounded region simply by taking the region large enough
that the solution remains essentially zero at the boundaries for the time interval of the

computation.

We have used a horizontal velocity 4 =v = 0.5, grid spacing Ax = 5000, time step 7
= 360 and diffusicn coefficient D = 104 This value of D is rather large, but is chosen
to give approximately equal time-scales for the convection and diffusion. A
comparison of the computed and exact solutions after 100 time steps is shown in
Figure 7.2. The relative error between the two solutions is not more than 5%.

As remarked above, a considerable improvement in accuracy is obtained if smooth
initial values are used instead of the delta function. For example, if the above solution
is used with the initial value of the numerical solution set equal to the exact solution
after 40 time steps, ihe error after 100 steps is of the order of 2%. It is also the case
that the accuracy is similarly improved even for the delta function source if the
velocitdes u and v are zero. It therefore seems that the major source of the errors in
such results as those shown in Figure 2 is the treatment of the convective terms via
the discretizations (6.23) when the pollutant density S has large gradients.
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Some numerical experiments have been carried out with very large time steps in order
10 verify the validity of the stability limit (6.26). We have found in numerous test
cases that the condition (6.26) is precise. For example, with u =v =0, D, =104 and
Ax = 20,000, (6.26) requires T < 10,000. We found the computation with 7 = 9800
remains stable for at least 1000 time steps but with 7 = 10,200 oscilladons grow and
produce negative densities after about 400 steps. With 4 =v = 0.5 and the other
parameters unchangzad, (6.26) requires 7 S 6667. We found that the computation
remains stable with © = 6600 but becomes unstable if a value T = 6670 is used. Of
course in both these cases, even when stable, the results are not very accurate
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7.3 Three-dimensional convection-diffusion
(a). Comparison with Exact Solution

This example is a combination of Examples (7.1) and (7.2). We define

R
fo(x,tu)= J47rD,. TEY exp{ 4D, (t +1,)

] | [ z-zp-we +to)fJ
f(z.,tw )-‘[4,@ (t +1,) bx‘{ 4D, (1 +1,) .

Then for constant diffusivities and velocities, the homogeneous equation (6.1) has the

following solution for an infinite region:
SG&,y,z,t)=Kf, (x,t;u),(y.t;v)f, (z,0;w).
If ¢4 > 0, this solution has the smooth initial condition
S (x,y,2,0)=Kf, (x,0;u)f,(y,0;v)f, z,0;w)
while if 1 o = 0, there is a point source: § (x,y,2,0)=K6 (x —x)0 (y ~y )0 (z —z,).

As in Examples (7.1) and (7.2), this solution is applied to the bounded region by
suitably choosing the functions b, and b, in conditions (6.3) and by taking the extent
of the region in the xy -plane large enough that the solution remains essentially zero
at the boundaries.

Some typical results are shown in Figure 7.3. For these, we used velocity components
u =v =0.2,w =0, grid spacing Ax =2000,J = 10 vertical levels, time step T = 180
with 1, = 5000 and diffusion coefficients D, =2000 and D, = 0.01. Again, these
values were chosen to give approximately equal time-scales for the horizontal
convection and the two directions of diffusion. The figure shows the solution after 100
time steps on the central level (which is the source level) and on levels 2 and 8. The
maximum relative error in the computed solution is about 4%.

As remarked in Section 6.3, it is important to know if the stability criteria derived
separately for the horizontal and vertical convection-diffusion apply also for the joint
three-dimensional algorithm. We have carried out some experiments to obtain at least
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an empirical aaswer to this question. The values Dy =2000, D, =0.01,u =v =0.2
have been used. Then provided lw | < 0.80167, condition (6.26) is more restrictive
than (6.25). Figure 7.5 shows the graph of the condition (6.26) in the Ax-7 plane as
well as several experimentally determined stable and unstable points. The evidence
from these results indicates that only at extremely long time steps (for which the
numerical solution is very inaccurate) does the vertical part of the algorithm interfere

with the stability condition (6.26).

(b). Comparison with Monte Carlo method

A commonly used method for solving the convection-diffusion equation is the Monte-
Carlo method, in which a cloud of pollutant particles are, on each time step, given
random displacements to simulate the diffusion and in addition are given convective
displacements according to the fluid velocities at their current locations. The resulting
densities suffer from errors due to statistical fluctuations in the random displacements,
and in order to obtain a sufficiently smooth function, a very large number of particles
must be used. The resulting large number of cells on the random number generator

increases the expense of this method.

In order to help resolve the question of the optimal method to use, we have repeated
the computation in Example (7.2) using a Monte-Carlo algorithm. The algorithm
employs the random number generator URAND [74]. In order to achieve errors
comparable to the 5% found in Exampie (7.2), it was necessary in the Monte Carlo
algorithm to use at least 4x104 particles. The resulting CPU time was 257 seconds on
an IBM 3081 machine. (The program was run as a three-dimensional simulation, even
though the vertical diffusion coefficient was zero.)

In Example (7.2), the horizontal grid was 30x30 with 10 vertical levels, the solution
after 100 time steps being significantly non-zero over about half of this region. The
computation in this example required 92 seconds of CPU time. (Again, this represents
a CPU tme for the complete three-dimensional algorithm, even though the solution is
independent of the vertical coordinate.)

It is clear thiat at least in this type of situation, the present algorithm has an

advantage, either in accuracy or speed. For a full three-dimensional simulation, the

advantage would be even greater, since the particles in the Monte-Carlo simulation
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would need to be distributed among the various levels and ccnsequently there would
need to be about J times as many of them to achieve the same accuracy.

On the other hand, if the probiem at hand involves a large sea region in which the
pollutant is concenirated in one small sub-region, a method of the type discussed in
this paper will be inefficient, in that a great many unnecessary calculations are
performed. It may be possible to overcome this difficulty by artificially restricting the

region in which the convection-diffusion equation is solved, but this may not be
possible if the convective displacements are large. The efficiency of the Monte-Carlo
algorithm can aiso be very significantly improved by using a fast "random" number
generator such as RANDU in the IBM Scientific Subroutine Package, although the
lack of complete randomness [74] may be a deterrent to this.
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CONCLUSIONS & REMARKS

In this thesis, we have considered three kinds of problems: nonlinear wind-driven
flow, density-driven flow and the associated marine convection-diffusion problem. In
order to solve these problems, four basic algorithms have been developed.

The first algorithm described in chapter 3 has been developed for the numerical
sclution of the three-dimensional tidal equations using a spectral method in the
vertical dimension and finite differences in the horizontal. Four difference schemes
have been constructed based on the Arakawa A,B,C and E-grids. While the C-grid
has traditionally been used for such hydrodynamical computations, the other three
grids offer significant advantages when a spectral method is used in the vertical,
especially in that they allow eddy viscosity functions to be used that vary quite
arbitrarily with position without introducing coupling among the modal equations.

A second advantage of these three grids is that none of them produces the spurious
numerical boundary layers that can occur for the C-grid unless the Coriolis terms are
treated using “wet-points only” averaging at coastal points [43]. A third benefit is
that the two modal momentum equations can be solved simultaneously in complex
form, allowing explicit numerical treatment of the Coriolis terms to be easily avoided.

Two test models have been designed for comparison of these schemes. The

conclusions reached are as follows.

The numerical errors arising for the A-grid were very significantly greater than those
for the other three grids, the reason being, presumably, that the finite difference
approximations to the various spatial derivatives must use intervals of twice the size.

The numerical errors for the E-grid were generally slightly lower than those for the C-
grid for both test problems. The disadvantage of using the E-grid is that the
computational cost is about twice that of the C-grid for the same grid dimensions. The
computational costs of the B and C-grids are about the same.

The rms numerical errors in the velocity components for the B and C-grids fluctuated
in both relative and absolute magnitudes as the computations progressed. For the
second problem, in which an analytical solution is known, over the first 600 time steps
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(60 hours of real time) the B-grid results were on average slightly more accurate than
those of the C-grid.

It is significant that the errors are alinost uniform through the water column in every
case, that is they are concentrated in the lowest mode. When the bottom friction is
zero, as in the second test problem, the lowest mode is governed by the shallow
water equations in which there 1s no damping. It is therefore a pleasant surprise that
the inferior numerical dispersion properties of the B and E-grids at short wavelengths
[42] do not lead to substantially greater errors in this problem than those for the C-
grid. Both grids lead to stable algorithms for these undamped equations.

For a two-dimensional (depth-averaged) model, the C-grid appears to have no
disadvantages compared to the other grids. This would presumably also be true for a
three-dimensional multi-level or splitting method. For spectral method algorithms,
however, this grid imposes severe limitations on the physical model if the computation
is to be easily feasible. Qur results suggest that the B-grid can provide a viable
alternative at the same computing cost and without imposing such limitations.

The second algorithm has been developed for the numerical solutions of the full
nonlinear three-dimensional tidal equations.The principal features of the algorithm
described in the first two chapters can be summarized as follows.

(a) It is directed towards solving the fully nonlinear hydrodynamic equations as
usually approximated for flows in shallow seas of uniform density, with an eddy
viscosity model of turbulence.

(b)  The numerical approach to the dependence on the vertical coordinate is a
spectral method of Galerkin type, using eddy viscosity eigenfunctions as the
basis set. The advantage of this basis is that the modal equations are not
coupled through the linear terms, which are the dominant ones in most cases.

(c) By an appropriate modification of the velocity before expansion the method
provides a uniformly convergent series that converges rapidly and for which
truncations exactly satisfy the surface and bottom boundary conditions.

(d)  The cost of this modification is an explicit treatment of bottom friction. This
certainly imposes a stability restriction, which, however has not turned out to
be a serious limitation in the problems examined.
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(e) The advective terms are computed explicitly using a finite element method.
This is the most efficient means we have found for this part of the algorithm,
which is by far the most expensive, requiring two-thirds of the total CPU time.

(f) The numerical approach to the horizontal variations is via a staggered B-grid,
which has some advantages over the more usual C-grid when a spectral
method is used.

(g) A leapfrog method is used for the ume-stepping, in which the surface elevation
and the velocity are computed on alternate half-steps. Account is taken of the
stiffness of the system of modal equations.

The performance of the algorithm has been tested satisfactorily on a number of
problems (see chapter 4). For steady wind-driven flow in a channel with nonlinear
bottom friction, good agreement is obtained with the analytical solution. For a
dynamical wind-driven flow in a rectangular sea, the algorithm gives gocd agreement
for the linearized equations with an earlier algorithm that is specifically adapted for the
linear case. For the nonlinear case with constant eddy-viscosity, the stability region
has been determined by a series of computations. For the nonlinear case with variable
eddy-viscosity, the expansions were found to converge at least as fast as those used
earlier with bases consisting of Chebychev or shifted Legendre polynomials (and
these bases lead to large coupling among the modal equations).

The third algorithm described in chapter § has been developed ror the numerical
solutions of the three-dimensional tidal equations driven by density gradients.In this
case, linear equations have been considered. The spectral method for the vertical
direction and B-grid scheme for the horizontal directions have been used to develop
the algorithm. The accuracy of the computer code has been tested by solving two
problems for which the exact steady solutions can be found. These two problems were
designed to test the code's accuracy in handling two distinct physical features: vertical
density variation and Coriolis forces. Both test problems give very accurate results.

The fourth algorithm in chapter 6 and chapter 7 has been developed for the numerical
solution of the three-dimensional convection-diffusion equation in shallow seas. An
implicit finite element discretization has been used for the vertical direction and an
explicit finite difference discretization has been used for the horizontal directions.
These kinds of discretizations lead to be a tridiagonal system which can be easily
solved at every horizontal points in the considered region. The stability restrictions,
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both on the vertical direction and on the horizontal directions, have been determined
theoretically(see chapter 6, appendix). Three problems have been used to test the
accuracy and stability of the algorithm which gives good agreement with corresponding
exact solutions. A comparison also has been made with the Monte-Carlo type of
algorithm.

In the conclusion of this thesis, we give a summary of the basic techniques used in
these four algorithms in the following table:

I \Problems| scheme | nonlinear | density Iconv-diffus. |
| Techniques\ | comparisons | problem | problem | problem |
.................................................................. j
| ime | leapfrog ! X I X I X I I
I I I | I I !
! | explicit ! ! ! I X !
| | implicit I I I ! X [
| hori- | ! ! I ! !
| zontall B-grid i X I X I X I I
I I | I I I i
! | finite-diff. | ! I ! X !
| verti-l | ! I I I
cal | spectral ! X I X ! X I [
I | ! I I | [
I | finite-elem. | | X I ( X I
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