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ABSTRACT 

In tkis thesis, some numerical modzlling methods are developed to compute three- 

dimensional flows in shallow seas driven by tides,meteorologica~ forcing or density 

gradient, and the convection-diffusion behaviour of dissolved or suspended 

substances. 

A spectral method employing eddy-viscosity eigenfunctions is used to solve the full 

three-dimensional nonlinear hydrodynamic equations for the numerical computation of 

flows. An explicit finite elements method is developed to compute the nonlinear 

advective terns and an explicit treatment of bottom friction is used. This leads to a 

rapidly convergent expansion and relatively few eigenfunctions are required to cbt-ain 

accurate solutions. An Arakawa B-grid is used in the horizontal directions and the 

eddy-viscosity eigenpaires are computed using the SLEIGN subroutine. Several 

model problems have been used to test the accuracy, stability and computational 

efficiency of the methods. 

A verticaVhorizonta1 splitting method is used to determine the numerical solutions of 

the three-dimensional convection-diffusion equation appropriate for the marine 

environment. This method splits the horizontal and vertical parts of the process, 

treating the horizontal convection and diffusion explicitly and the vertical convection 

and diffusion by an implicit finite elements method that is unconditionally stable. The 

overall stability conditions on this method are investigated and its accuracy is verified 

through a number sf test problems whose exact solutions are known. 
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INTRODUCTION 

Computational fluid dynamics is the science sf producing numerical solutions to a 

system of partial differential equations which describe fluid flow. It has become mare 

and more important in recent years because computational fluid dynamics is more 

flexible and more cost-effective than experimental fluid dynamics and because it has 

become reliable for the simulation of a large variety of flow problems, and provides 

more debailed and comprehensive information than experimental fluid dynarnics[l-21. 

Although the era of computational fluid dynamics may be marked as beginning from 

1922 [3], the real practice only began in the 1950s when the numerical theory has 

been developed and the main memory on computers expanded [4]. As computing 

power rapidly increased over the last decade larger and larger problems have become 

computationally practicable['l]. 

Within the area of meanographic flows, early hydrodynamic numerical models were 

two-dimensional in that current structure was removed by integrating through the 

vertical frofm sea surface to sea bed, obtaining what are called the shallow water 

equations. These models were primarily used to study changes in sea surface 

elevation due to tides and mete~rologicd events(stom surge models). A variety of 
csmpuational methcds have k e n  used to obtain numerical solutions of these 

equations, using finite difference schemes[5-lo], finite element schemes[l l-161, 

harmonic analysis in time plus finite elements in space[l?-191, the method of 

c haracteristics[28-231, and the vectorized computer implementation [ 2 ] .  

In recent years there has been a considerable interest in developing full three- 

dimensional flow models, since more detailed information abut  the cumnts is needed 

in practice. For example the surface velocity determines the motion of an oil slick and 

for a wind-driven flow, for instance, the surface velocity differs very much fmm the 

depth-averaged flow. Also infonnation on the three-dimensional wind-induced 

circulation in a sea regi~n is required in pollution problems and detailed information on 

bottom currents and sediment transport is required in anany civil engineering 

projectsC24-261. For these purposes, some three-dimensional hydrodynamic 

problems and the associated marine pollutant transport problems have ken  

considered in this thesis. 



The first problem we are concerned with is the full three-dimensional nonlinear 
hydrodynamic equations with arbitrary variable eddy-viscosity for shallow seas. 
Numerical soudies of the three-dimensional motion of the sea under the influence of 
wind and tide have in recent years been made by several authors using a number of 
different approacRes[27-321. Some of the m s t  successful of these approaches make 
use of expansions of the two horizontal components of fluid velocity in tenns of a set 
of basis functions of the vertical cwr&nate[33-411, By this means the three- 
dimensional equations are reduced to a set of two-dimensional modal equations for 
the coefficients in these velocity expansions. 

The use of a basis of "eddy-viscosity eigenfuncbons" for this purpose was first 
proposed by Heaps [33-341 to solve the linearized three-dimensional tidal equations. 
The significant advantage of this particular basis is that the modal equations are 
uncoupled. Since Heaps employed analytic eigenfunctions, his use of the method was 
restricted to problem with simple eddy-viscosity profiles. Subsequently, the method 
has k e n  extended to more general eddy-viscosities by Davies [35] and Fumes 1361. 

A more general Galerkin method was developed by Davies and Owen [37] for the 

linearized &el and by Davies [38] for the fully nonlinear equations. In these gapers 
basis sets consisting of cosine functions, Chebychev polynomials and GramSchmidt 
orthogonalized polynomials (equivalent to shifted Legendre polynomials) were used. 
Davies [39] later combined the Galerkin methd with use of a basis set of eddy 

viscosity eigenfunctions. 

The rate of convergence of the expansions in terms of eddy viscosity eigenfunctions 
was found by Davies [35,39] to be relatively slow, requiring typically 15-20 basis 
functions to obtain the desired accuracy. Much more rapid convergence is obtained 
using Chebychev or Legendm polynomials [37] but the disadvantage of these basis 
sets is that the nmsdal equations arc coupled even in the linear nrppaoximation. Using 
eddy viscosity eigenfunctions the equations art coupkd only through the nonlinear 
tenns. A later modification of the method that significantly accelerates the 

convergence was proposed for the linearized equations by Lardner [ a ] .  With this 
modification it was found in one model problem that only 4-5 eddy-viscosity 

eigenfunctions were required t~ give the same accuracy as had previously [35] ken 
obtained with 20-25 eigcnfunctions.The rate of convergence is comparable to that 



obtained using B-splines [41] or Chebychev polynomials [38], and has the advantage 
over these approaches of uncoupiing the linear modal equations. 

In the first part of this thesis this modified eddy-viscosity eigenfunction method is 

extended to the nonlinear hydrodynamical equations. An explicit method is used to 

represent the nonlinear bottom friction and an explicit finite element method is used for 

the nonlinear dvectivc terms (compared to the explicit time-splitting technique used 

by Davies [38]). This treatment of the bottom friction does not add significantly to the 

CPU requirements of the algorithm, but we have found, as did Davies, that 

computation of the advective terms is by far the most expensive part of the algorithm, 

in our case increasing the CPU requirements by a factor of more than 3. The finite 
element technique is the most effective method we have found for minimizing this cost. 

Most of the fmite difference schemes that have been developed for hydhudynamical 

modelling have been based on an Arakawa C-grid, starting with the two-dimensional 

algorithms of Mansen, Leendertse and others 15, 61 down to the more recent three- 

dimensional algorithms [26-321 and including the algorithms based on the spectral 

method [33-411. While this choice of grid has the advantage of providing natural 

centred-difference approximations to most of the dominant terms and of minimizing 

numerical dispersion [42,75-781, it does lead to certain difficulties for some three- 

dimensional computations. 

The first of these [43] is the occurrence of spurious numerical boundary layers wlcss 

the Coriolis terms are mated carefully. Since the two horizontal velocity components 

are computed at different spatial points with a C-grid, it is necessary to average the 

Coriolis terms in each m m n m m  equation over the four ncighbouring pints at which 

the opposite velocity component is computed. Adjacent to a coast, one or more of 

these four points will actually lie om the coast, and the velocity components at such 

points are maintained at zero by the usual algorithms. The result is that the bur-point 

average gives an incorrect value for the interior point, and this leads to spurious 

velocities near the coast. 

This difficulty does not arise for twcrdimensiond d e l s  based on the depth- 

averaged equations, since it is correct within the model. to set the depth-averaged 

velocity components equal to zero at coastal points. Within the approximations of the 

usual &-dimensional models, however, the velocity profile through the warn 



coium is not zero at a coast: the narrow coastal boundary layer in which the flow 
overturns, accommodating itself to the physical boundary condition of zero normal 
flow, is not contained within the usual a l e 1  equations. It is worth noting that the 

problem does not arise for certain three-dimensional algorithms of splitting type [46- 

471 in which the C-grid is used only for the depth-averaged equations, and the vertical 

profiles are computed for both velocity cornpnents at the same horizontal grid-points. 

It has been pointed out by Jamart and Bzer [42] that for algorithms using a spectral 

method this problem may be overcome by averaging the Coriolis terns only over the 

adjacent points that are interior to the water body (called the "wet points only" 

method). While this method is successful, It has the disadvantage of reducing the 

order of the local truncation error at near coastal points, and this may produce a 

serious loss of accuracy for a region with an intricate coastline, and conseqciently a 

large proportion of near-coastal points. 

A second, and probably more serious, disadvantage of the C-grid that arises for 

specrral methods is that it is necessary to use the same basis functions at all grid 
points if the four-point average for the Coriolis terms is to give reasonably simple 

modd equations. The most efficient choice for the basis functions is to use eddy- 

viscosity eigenfunctions [33,34,36], since she modal equations are then de-coupled. 

These are independent of position only if the M y  viscosity function has the same 

vertical profile at all points, apart from an overall scaling factor, and this is a severe 
restriction for a water body with widely varying parameters such as depth or bottom 

roughness. If this condition on the eddy viscosity is not satisfied, the Coriolis terms 

couple the modal equations. 

Because of these problems, it appears worthwhile to consider using an alternative 

spatial grid for which both horizontal velocity components are computed at the same 

grid pints. Of the five grid types described by m w a  and Lamb [42], those labelled 

A,B and E satisfy this requirement, so will certainly be simple to use when the eddy 
viscosity has arbitrary spatial variation. Since the two velocity components are 

computed at the same point, an additional benefit is that the two momentum equations 
can be solved simdtaneously rather than sequentially as is necessary for the C-grid. 
This allows explicit treatment of the Coriolis terms to be easily avoided. 



The A,B and E-grids lead to numerical schemes for the shallow water equations that 

have worse numerical dispersion than does the C-grid, particularly at wavelengths 

shorter than four grid-lengths. However, the hydrodynamicd models with which we. 

are concerned involve significant damping, through eddy viscosity and bottom friction. 

and to the extent we have tested these alternative grids, this does appear to be 

sufficient that the anomalous dispersion at short wavelengths does not cause 

difficulties. Arakawa's D-grid has both disadvantages of poor dispersion properties 

and velocity components at different points, w we have not considered it. 

In chapter 1 the full three-dimensional nonlinear hydrodynamic equations are derived 

from the physical equations. Some appropriate boundary conditions and initial values 

are specified. In chapter 2 the modified spectral method is developed for the general 

equations. In chapter 3 the appropriate numerical schemes for the A, B, C and E- 
grids are developed for the basic equations described in chapter 2. The different 

schemes are compared using two test problems. In chapter 4 numerical results are 

given for a number of problems designed to test the accuracy of the algorithm and 

bounds on its stability are determined. 

The second problem we are concerned with is the density gdienr  driven flows. The 

density gradients in near-coastal seas are established by such processes as 
evaporation, fresh-water ~ n - o f f  and precipitation. While the magnitude of these 

currents is usually quite small, compared to the currents driven by tides or 

meteorological forcing, they can be a dominant factor in phenomena such as pollutant 

transport where long-time drift is concerned. 

An estimate of the density-driven currents was made for the Arabian Gulf by Lardner 

and co-workers[48] using a simple two-layer, sectionally integrated model, similar to 

that constructed by Peablson and Wintm[49] for the flow in fjords. Later, Lardner and 
Das[50] developed an algorithm based on a splitting method to investigate density- 

driven currents and applied it to the Arabian Gulf. In this method the surface elevation 

and vertically integrated mass transports are computed from the depth-averaged 

equations, then the vertical structure of the currents is obtained from the horizontal 

momentum equation at each he-step.  

In chapter 5 the spectral method will be used to solve the three-dimensional 

hydrodynamic equations with a variable water density. The eddy-viscosity 

5 



eigcmfunctions are used again as a basis of the eigenexpansion, and the SEEIGN code 

is used to solve the eigenvalue problems at every horizontal points. The accuracy of 

the method is tested on some problems for which the exact stedy-state solutions can 
be calculated. We found that the results are more accurate than those obtained by the 

splitting method used by Lardner and Das[50]. 

The thud problem we are concerned with is the thrw-dimensional pollutant transport 

behaviour in shallow seas. Several numerical methods are available for the solution of 

the two-dimensional depth-integrated form of the convection-diffusion equation. The 

most popular finite-difference methods employed to overcome convection-dornina ted 

difficulties are the upwind and flux-corrected schemes [51,52]. Finite differences or 
finite elements combined with the characteristic Galerkin method have also been used 

153-551. Another widely used method for this kind of two-dimensional problem is the 

split-operator approach in which the convection and diffusion are solved separately by 

two different numerical methocis 156-591. But all of these methods have difficulty in 

solving three-dimensional problems, either because of expensive matrix inversions at 

each tirnc-step or because of a time-step restricted by the vertical grid, which, for 

flows in mear-coastal seas is two or three orders of magnitude smaller than the 

horizontal grid. 

For many purposes, however, it is necessary to compute solutions of the full three- 
dimensional equations. For example, permits allowing discharge sf effluent from 
industrial installations may place restrictions on the density of effluent in the surface 

layers of the water column but not at lower levels. The algorithm we shall discuss in 

this paper is intermediate between the two extremes of explicit and implicit schemes 

mentioned above. It is an extension of a vertical horizontal splitting algorithm [46,47] 

that has been developed for solution of the hydrodynaxnical equations for shallow 

seas. The basis of this approach is to treat explicitly the terns in the convection- 

diffusion equation that involve horizontal derivatives while the terms involving vertical 

derivatives arc treated by an implicit finite element algorithm similar to that in [47]. 
This latter part of the algorithm is shawn to be stable under not tos restrictive 

conditions, so that the major stability restriction comes from the horizontal part. 

In chapter 6 the three-dimensional convstion-&'fusion equation will be mast in a 

form suitable for the numerical method. The numerical vertical / horizontal splitting 

algorithm is described and some stability properties are also discussed. In chapter 7 



details sf  some numerical experiments are given. A comparison is also given with the 
Monte-Carlo type of &gorithm[60], which offers probably the most viable alternative 
for this type of problem. 



Chapter 1. Governing Equations 

l .I Physical equations 

We use xyz as Cartesian coordinates to describe a three-dimensional sea model with 

the z - axis pointing vedcdly upwards md ?he xy - plane occupying the undisturbed 
position of the water surface. The position of the bottom is takm to be z = -h(x, y )  

while the suxface at time d is z = &x, y,  t )  ( see Figure 1.1). 

figure 1.1 shallow sea model 



We first consider a viscous in-,~rnpressible homogeneous fluid, the water density p is 

assumed constant with respect to both position and time (the variable density 

pmblem wiHi be consiciered in chapter 5). The governing equations are the candnuity 

equation and the three momentum equations, together with appropriate boundary arid 

initial conditions (for the deiails, see [61-622 ). 

The continuity equation is 

The horizontal mementurn equations are 

The wrtical momentum quation is usually a.pproximated by the hydrostatic pressure 

The kinematical conditions at the sea surface and sea bed are 

The notation used in these equations is as f~llows: 

h C ~ , Y  1 water depth 

C (x, Y ,  t 1 surface elevation at time t 

u @, y, 2, t j, v {x Y ,  2,  t 1 horizontal velocity components 

w (x, Y ,  z , t  1 vertical velocity component 



p (1, y ,  zJ) pressure ia water 

8 accelerixior: due to gravity 
z,, r,, rp the stress tensor in x-direction 
r Y x 9  zY19 Z;r the stress tensor in y-direction 
f = 212sint3 coriolis puibfp1eeer 

where R is the earth's angular rotation speed and 8 is latitude. 

In the horizontal momentum quations it is usual to neglect the terns involving 
a. 

f , ,  I,, rfl and so make an eddy-viscosity assumption about Tm and 7, : 

where ji is the eddy viscosity. By integrating the vertical momentum equation from z 

to the water surface we have 

Where B, is the atmospheric pressure on the water surface. By differentiating (1.8) 

with respect to x and y, we have 

Substituting equations (I.?) and (1.9) into the horizontal rnon1enkz-n equations, we 

combine equations (1.2), (1.3) and (1.4) into following two equations: 

By integrating the continuity equation with respect to z from - h to 6, we have 



We use the keibnits. formula.: 

and get 

By using the kinematical conditions (1.5) and (1.6) we obtain 

where 

i 
F = , ,  u d r ,  q = k , v  dz 

u e  called the volume transports. 



in order to sohe equations (1.10)-(1.13) for u, v ,  w and {, some boundary conditions 

and initial values have to be specified. We fust give the boundary conditions at the 
sea surface md the sea bed. 

The surface conditions, evaluated at z =. 51, are 

where p is the fluid density and z: z; the compnents of surface stress. For wind- 

induced fiows, they are the components of wind stress acting on the free surface in the 

x and y &rectisns, while for density gradient driven flows the surface stress is titken 

to be zero. Comespondingly, at the sea bed, z = -h , the conditions are taken to be 

b b 
where g , 5 denote the x,  y components of bottom smss. 

In a nonlinear model, it is appropriate to use at quadratic fornulation of bottom stress, 

thus 

Where K is a constant coefficient of bottom friction md Y, vb are the components of 

fluid velmiiy at sea M. 

In many problems, a linear model is suitable, in which case Bottom friction can be 
linearized [63], giving the linear equivalent of (1.16), namely, 

where K ~ S  ikn appropriate coefficient of kear bottom Eiicrion. 



An alternative to a slip b m m  boundary condition is the application of a neslip 
condition at sea bed, in which case 

ub = vb = 0 (1.18) 

Physically, however, this coraditisn can only be used if the bottom b~undiuy layer is 

modelled thr~ugh an appropriate choice of eddy-viscosity function. 

In general, we write the bottom conditions in a form 

where K~ and x2 are the coefficients cf linear and quadratic bottom fiction respectively. 

A no-slip condition on the bottom is obtained in the limiting case K! and K~ -. 

When a bounded flow field is considered, lateral boundary conditions also need to be 

specified. mere are two Ends of such bunchy conditions. A closed boundary 

condition is applied on coastid boundaries, while 6m open boundary condition is applied 

on parts sf the boundary adjacent to mother body of water. 

On the closed part of the boundary, tlhe usual con~tion is assumed to Be 

where 11 is the outward n o d  vector to the closed boundary. Physically, condition 

(1.20) describes that there is no mass flaw through the closd FssundlaPy. 

On the open boundary, the most mmonlly used condition is to assume that !he 
surface level 5: takes prescribed values. The data needed for this condition are usually 

obtained from measurements or from a larger &el which encloses the model aa hand. 

In practice, it a p p m  to be more difficult to measure accurately h e  velocity than the 

elevatim. As a consequence velocity data are mainly used for the boundary conditions 

if the &el at hand is nested in a larger model[2). 

Finally, we specify the initial values by assuming the motion stans from some given 
values, (u,v)=(u,,v,), c=C, at t=O. In practice, this is taken to be state of rest, that is 



1.3 Sigma Coordinate Equations 

The variable z in physical space has a range - hfx,y) S z 5 c(x,y,t) that varies %with 

horizontal psidon and time. For numerical work it is better to change to a new 
variable that has a fixed rarige. The uswl transformation is 

which transforms the variable vextical interml alto a constant region a to b. The 

constants a and b are chosen to comspnd to the i n ~ ~ a l  over which the numerical 
methods are us&. The transfomarion is similar to the one originally proposed by 

PhilTips[64] and is often used when both the bottom topography and vertic J resolution 

we imprtmt[45]. In our case, a 3  and b=l have been chosen. That is 

From the chain rule, we have following t~ansf~mations: 

After using the above relations, the advcctive terms in the fast momentum wadon 

then become: 



and similarly 

where 

G =  w+u(hX - ~ N , ) + v ( h ,  -OH,) 

and the x and y derivatives are now with o held constant. 

Now by integrating the continuity equation (1.1) from z=- h to z and using the 
kinematical boundary condition (1.6) on z- h we get 

Using the above chain rule we transform this to a instead of z: 

and after simplification we have the convenient expression 

The momentum equations then have the form 



where 

It is convenient to write the momenturn quation in complex form by setting U=u +i v. 
Then equation (1.27) and (1.28) can be combined into the form. 

where 

Similarly. the boundary conditions (1.14) and (1.19)-(1.20) are transformed inio o- 
coordinate as 

where 

It is easy to transform the continuity equation (1.12) and (1.13) into sigma 
coordinates: 



and 



Chapter 2. Spectral Method 

The fundamental idea of :he spectral mtkd is to expand the complex velocity U in 

terms of some set of basis functions.The use of a basis of "eddy-viscosity 

eigenfunctions" was first proposed by Heaps133-341 to solve the lineaxized three- 

dimensional tidal equaticns. ?'he significant dvantqe of this particular basis is that 

the modal equations are uncoupled. In this chapter, GUS ~erhod will be extended to a 
generai nonlinear quatioris with an arbitrary variable eddy-viscosity function. 

In the spectral method, if the basis functions satisfy the boundary conditions of thc 

problem, the expansion can cowerge uniformly. We first use a similar modification 

technique to that proposed by h&er[$O]. It has been shown that this modification 

significantly accelerates the convergence for the linearized equations. In our case, this 

modification alsc has another advanage in that it transfoams the boundary conditions 

into type IP condidsns, therefore this will simplify the eddy-viscosity eigenvalue 

problem. 

The mmiificztion consists of defining the function 

where = ( K ~  + K~(,Iu/)UI ,.O (?'he dependence on x and 
avoid confusion), Integrating (2.1) from 0 to 1 gives that 

This function V(a ) satisfies that 

(2.1) 

y has been suppressed to 



Then, setting U (0) = \/ (a) + W (0 ), we obtain the following boundary value 

problem for W : 

and 

ifv. + H- ' (S -B) - - -  
dt 

dW - 0  on a=O and o=l. %- 

Where F,, is defined in (1.30). The essential p in t  in this modification is that the 

boundary conditions (2.6) are homogeneous. 



In this section, we first consider the general Sturrn-Liouville problem 

with boundary conditions 

In the above equaeoris @ is an eigenfunction sf the Sum-Liouville problem, and A, is 
the corresponding eigenvalue, a , a , , and P , are arbitrary constants with 

a, ct, 20 and PI& SO. The coefficients p(a ), q(o ) and r(a  ) are assumed to be real 

and continuous, with p(a)  and r (a )  also king pssitive in (a, b). When a and b are 

finite, and p(a ) and p(b ) are positive , and q(a ) and q(b ) are bounded, we have a 

regular Stm-Lisuville problem. 

Several authors have developed algorithms to solve such Stm-Liouville problems by 

using methods based on the Prufer transformation[65-661. A modified h f e r  

transformation that offered computational advantages was later proposed by 

Bailey[67]. The transformation was built into the SLEIGN code[68] which was used 

in our problems. This code has also been used by Kumic[69] in a linearized model of 

wind-induced motions in shallow sea. 

F9r cur purposes, we consider the eddy-viscosity eigenvalue problem 

and 
d@ p - = Q  at a 4  and 1 
d o  



We denote the eigenpairs by ( @ j  @),A, : j  =~12--} where the lowest eigenpsir is .&I 

= 0, & (0) = 1. For a general eddy viscosity, it is necessary to compute the other 
eigenpairs numeaicaliy. For this purpose we: have used the subrcutine SLEIGN [68]*. 
We assume the eigenfunctions are normalized so that 

The eigenfunctions then fom an orthonormal system, and in particular, orthogonality 
with #,, implies that 

In general, these eigenpairs depend on x and y , and also on t if the eddy-viscosity is 

time dependent. the general case they must be determined numerically, and if j~ 

varies in a general way with t this usually makes the method impractical since the 

eigenfunctions must be re-determined at each time step for all horizontal points. 

Consequently, we shall from now on restrict to the case when p is independent of t:* 

The eigenfunctions can then be determined at the beginning of the computatian and 

although hiis can be quite expensive, it only has to be done once. 

We now expand W in terms of the eigenfunctions: 

" We are indebted to Dr. Paul Bailey for his help in supplying us with a recent version 

of this program. 

** The method can readily be extended to the case when the eddy viscosity has the 

f m  

p (x: ,Y , d , t  )=p& ,Y %d)*(t) 

that is, at any point p has a similar profile for dl r. 



In view of the orthonarmality of the eigenfu~ctions, the coefficients in the expansion 

(2.143 are given by 

Using the definition of W we have that co = 0 - rand  from equation (2.2) it then 

follows that 

Integrating the differential equation (2.5) fram o = 0 to 0 = 1 and using the boundary 
conditions (2.6), we obtain an equation for c,,. This is equivalent to the usual depth 

averaged momentum equation, and it is in fact more convenient to use this quation in 

the latter form, which can be obtained more directly by integrating eqn (1.29): 

where 

Multiplying the differential equation (2.5) by ej (0 )  , integrating fmm a = 0 to o = 1 

and using the boundary conditions (2.61, we obtain a system of Gitiersential equations 
for the coefficients cj : 

-2 2 where aj = h  4 +if and the right side is given by 

with 

and 



provided the eigenfunctions are time-independent, where 

In the numerical soliltion of equations (2.17) and (2.19) the terms on the right sides 

are treated explicitly. The final small nonlinear term on the right of q n  (2.20) can quite 

easily be accormmdated on the left side of (2.19), but the ccxfficients on the left then 

become time-dependent and this adds significantly to the cost of the algorithm. 

In order to obtain initial conditions for the system (2.17) and (2.19). we assume the 

motion starts h r n  some given velocity, U = Uo, at t = 0. In practice, this is taken to 

be a state of rest, Uo = 0. Then at t = 0, W = -V, so the initial values of the 

coefficients are given by 

where eqn (2.23) has been used together with the fact that B = 0 at t = 0. 

To summarize the problem that we are now left with, equations (1.12) and (2.17) form 

a coupled system for andp + i p  = Hr with these variables having zero initial 

values. Lateral boundary conditions on the coastal and open portions of the boundary 

are required to f m n  a well-posed problem and these can be taken in the same form 

usually used for two-dimensional models. The coefficients cj that determine the 

vertical structure of the fluid velocity are obtained by solving the system (2.19) with 

initial conditions (2.24). In terns of these quantities, the velocity field is given by 

The coupling between the system (1.12),(2.17) and the equations (2.19) occurs only 

through the nonlinear and bottom friction terms which are treated explicitly in this 



approach. Such treatment does raise the possibility of potential instability, and this is 

one sf the questions we shall examine in the tests described in chapter 4 

Some differences occur for the no-slip boundary condition (1.18). In the definition of 

the function V the final term in eqn (2.5) is dropped and the boundary conditions 

(2.1 I )  on the eigenfurxtions are changed to 

a @ = O  on o=O and p-=O on a = l  
da 

There is no zero eigenvdue in ihis case, so eqn (2.13) does not hold. Eqn (2.25) is 
replaced simply by 

Proceding as before, we obtain the following system of differential equations for the 

coefficients in place of eqn (2.19): 

where Rj is again given by eqns (2.20)-(2.22). However, the right side s f  eqn (2.23) 

requires modification to 

A corresponding change wcurs in the initial condition (2.24). 



2.3 Finite Element Method for nodinear teams 

The computation of the integrals involving the nonlinear terms in eqns (2.18) and 

(2.21) is the most expensive part of the algorithm: abu t  two-thirds of the total CPU 
time is spent on it. A finite elements rnethd has been adopted for this computation, 

which we have found significantly more efficient than to evaluate the integrals by 

direct use of the eigenfunction expansions. 

Combining eqns (1.30) and (2.21),  we have 

with a similar expression with j = 0 for the integral term in q n  (2.18). 

We choose 15 equally spaced nodes [q ) in the interval [0,1] with oI = 0 and oL = I 
and spacing Aa =1/(L -I).. Each function of u is approximated piecewise iineariy in 

each subinterval, for example, in q 5 o S a; + ,, 

where Ul is the vdue of U ( a )  at node I and so on, ?Ire various terns in eqn (2.30) 
are then approximated as follows. 





Chapter 3. Scheme Formulation 

In the last chapter, by using the modified spectral method for the linear parts and in 

finite element method for the nonlinear terms, we transformed the three-dimensional 

equations (1.32) and (1.29) into a two-dimensional system (1.32). (2.17) and (2.19) 

or (2.19') with the connecting relations (2.25) or (2.25'). In order to discuss the 
horizontal discretization next, we write the system in a general form as follows: 

3. P Interior points 

Figure 3.1 shows the distribution of grid points at which the variables c, u and v are 
computed for the five horizontal grids investigated by A d a w a  and hrnb[42]. As 

discussed in the Introduction, only the grids A,B,C and E will be considered here. For 

the A,B and E-grids, all the variables u, v, p, q and c, are computed at the same 

pints. For the @-grid scheme it is necessary to split equation (3.2) into two real 

equations since the red and imaginary parts relate to different grid points, and we set 

llhe spatial finite difference approximations to eqns (3.1) and (3.2) appropriate for 
these four grids are as follows. 

Scheme A: 

Scheme B: 



Scheme E: 

(It is wonh noting that grid E can be regarded as two interlocking C-grids.) 

In these equations the following notatlorn is uscd for any net function P : 

-2 2 Also. I., = h A, . a, = t , +if. It can be seen that the above schemes are all 

second order in the spatial grid dimensions at points in the interior of the region. The 
trenxment of bundary points in the various schemes will be discussed below. 



The time differencing scheme used for all the four grids has been s leap-frog schenme in 

which g and cj are computed at alternating hdf-steps with q n s  (3.1) and (3.2) being 

used alternately to update each of these variables in turn [a]. This scheme has the 
advantage of being explicit and also second order in the time step, though the size of 

the time-step is restricted by the CFL stability criterion, 

Since for the A,B and E-grids the two velocity components are taken z? the same grid 

points the differential equations for the c, c m  be solved in complex form. Since this 

system is stiff, some care must be used in the choice of integration method. Writing 

eqn (3.4A), (3.433 or (3.4E) in the symbolic fam 

we can update the solution over one time step from t to t + a by (he approximation 

C4QI 

where 

The required value of G is found from C at the intermdate half step, which has 

already been d e t e d n d  from the continuity equation. 

F Q ~  the C-grid the two red equations (293.4C) must be integratai separately, but 

similar approximation fomulas to (3.6) can be used, with a, replaced by k, and the 

Corislis terms included with 6. In order to have a stable treatment of the Coriolis 

terms, the two equations (3.4C.a) and (3.4Cb) are used in alternating order on 
successive time steps. This also has the advantage of providing a second order 

scheme. A similar situation would occur also for the D-grid- 



3.2 Treatment of boundary points 

At a coastal boundary, the bunefary  condition is taken to be that the nomd 
component of volume flux, p or q, is equal to zero. As discussed in the Introduction, it  

is not assumed that the normal velccity is zero throughout the water column. At an 
open boundary, i t  is assumed for simplicity hat the suiface elevation, is prescribed. 

To illustrate how these boundaries ,we treated, examples of a left coastal boundary 

and a right open boundary are shown in Figures 3.2(a)-(d) for the four numerical 
schemes respectively. Scheme C is s f  course well-known but is included for 

completeness. It will be seen that in all the schemes the local truncation error is 

increased at the boundary p i n t s  from second order to first. 

At point 1 in Figure 3.2(a), the boundary condition is p = 0. In order to compute cj 
from ((3.4A) at the adjacent interior point 2 it is necessary to know C at 1. To compute 

this, (3.3A) must be modified to have a one-sided difference in the x direction; 

filnhermore, q is required at the adjacent boundary points, 3 and 4. These values can 

be found from (2.25) with cj being computed fiom a modified version of (3.4A) that 

uses a one-sided difference in the x kc t ion .  

At the open boundary, 6 is given at point 5. In order to compute 6 from (3.3A) at the 

adjacent interior point 6 it is necessary to know p at 5. This can be fomd from ( 2 2 5 )  
with ci being computed from a rn&d version of (3.3A) that uses a one-sided 

difference in the x direction. 

Scheme B: 

At points 1 and 2 in Figauc 3.2@), the boun- condition is p = 0. In order to 

compute 5. at the adjacent interior point 3, (3,3B) must 'be modified ta have a one- 
sided average of the q -term in the x direction. ? .  this scheme, q is not computed at 

the boundary points 1 and 2 since use of (3.4B) at these points would necessitate an 

extrapolation of 5. values. 

At the open boundary, C is given at points 5 and 6 and Cj can bc computed from (3.48) 
without modification at the adjacent interior point 7. 



At p in t  1 in Figure 3.2(c), the boundary condition is p = 0 and 6 may be computed 
from ( 3 . 3 3  without modification at the adjacent interior p in t  2.The quantities a, are 

not computed at the point 1. To compute b, h m  (3.4Cb) at the intzrior point 3 all that 
is needed is to use Jamart and Ozer's wet pints only averagkg fat the Coriolis term, 

that is to exclude pints  such as 1 that lie on the boundary. 

At the open boundary, C is given at p in t  5. In order to compute a, at the adjacent 

imerior point, again (3.4Ca) is modified by including only interior points in the Coriolis 

term. The quantities bj are not computed at points such as 7 that lie on the boundary. 

At p in t  1 in Figure 3.2(d), the boundary condition is p = 0. In order to compute $ 
from (3.3E) at the adjacent interior point 2 it is necessary to know q at 3 and 4. TRese 
can be found from (2.25) with c, being computed at 3 and 4 from a modified version of 
(3.4E) that uses an extrapolated one-sided difference of in the x direction. 

At the open boundary, [ is givec at point 5. In order to compute c, from (3.4E) at the 

adjacent interior p i n t  6 it is necessary to know [ at points 7 and 8. This can be found 

from (3.3E) with an extrapolated one-sided difference used for p in the x direction. 

The use of extrapolated one-sided differences in this scheme: is a potential weakness. 



The four algori~hns have been compared and tested using two model problems. Tine 
fust of these is a simplified stom-surge mdel  of the North Sea used by Owen and 

Davies I371 and subsequently by several investigators to test algorithms. The model 

region consists of a closed rectangular sea of dimensions $00 kms in the x -direction 

a d  800 h s  in the y -dimtion, with grid spacings Ax = 480A irms and Ay = 800/17 

knks. ?'he depth is taken uniformly as 65 m. The sea is initially in a state of equilibrium 

and starting at t = 0 is subjected to a constant surface shear stress in the negative ): 

-direction, with values z, = 0, z, = -1.5 N/m*. The values of the other parameters (all 

in MKS units) are p = 1025, N = 0.865, K = 0.002, g = 9.81 and f = 1.22~104. A 

tinre step 2 = 360 s was used. 

Some typical computed results are shown in Table 3.1, where the velocity profiles 

after 30 houri at three grid points are tabulated for each of she folar numerical schemes. 

An andyticd solution is not known f ~ r  this problem, so as a means of testing the 

accuracy of the numerical results, the same model problem has been re-computed 

using the B-grid scheme with grid spacings and time step equal to one quarter of 

hose stated above, and the results of this computation are listed in the first column of 

the table. Since the algorithms are a l l  second order at interior points and first order at 

boundary points, it can be expected that the errors in the fust column of the table are 
somewhere between one quarter and one sixteenth of the errors in the third column. 

Comparing with the ''exact" solution in the first coiumn, we can see that the B,C and 

E schemes produce muck snore accurate results than the A scheme. This is not 

surprising in fact since the approximations to the spatial derivatives in equations 

(3.3A) and (3.4A) involve fanite difference over intervals of twice the size of those in 

the other three schemes. There appears to be little difference in accuracy among the 

B,C and E schemes. 

Secondly, none of the schemes generate spurious numerical bornday layers, 
presumably 

at the same 
because for the A,B and E schemes the momentum equations are solved 

point and averaging is not needed for the Cofiolis terms. For the C- 



scheme such boundary layers do occur if the wet-points only averaging is not 

employed [43]. 

Thirdly, the CPU time required per time step of compkitation is about the same for the 

A,B and C schemes, but is approximately twice as much for the E scheme. Again this 

is to be expected since, for the same grid spacing, the E-grid has twice as many grid 

points as the other three grids, which all have about the same number of points. 

(b )  Open rectangular sea 

The second model problem is one for which an analytical solution can be found. Only 

linear equations have been considered here.The region is again rectangular but with 

open boundaries on d l  sides on which the volume transports are specifid as given 

below. The water depth is uniformly 65 m and the other parameters are given the 

same values as in the closed sea problem except that K is zero. 

When the bottom friction is zero, the depth-integrated equations form a closed 

system. Integrating the linear momentum equations from z = -h to z = 0, and using 

conditions K = 0, we get 

where s,  =7, / p ,  s y  =ry / p .  Equations (3.7) and (3.1) can be solved forp, q and C. 

Analytical solutions can be found that depend on only one of the coordinates x or y. If 

s, = 0, a solution that starts fiom rest and is independent of y is given try 

where x runs fiorn 0 to I, and 



where o,,? =(f l ) '  + gh (nn y. By superimposing two of these solutions, we get a 

solution of the form 

This solution satisfies the boundary conditions 

When the bottom frictiorr is zero, the Sturm-Liouville problem (2.10) and (2.1 1) has a 

zero eigenvalue and the spectral amplitude of the corresponding (constant) 
eigenfunction is related to the depth-averaged solution discussed above. In the other 

modal equations (3.2), the coefficient Rlj  = 0, and the amplitudes c, can be found 

independently of the depth-integrated equations. When S md N are independent of t 
the solution is given by [40] 

C ,  ( t )  =- 
u 4 j  (1) 

{ i f  + k j e  } a, a; 

-2 2 where k ,  = h A, , a, = k , +if . In the special case when N is constant, 

for j 2 1, and the complete velocity field is given by 



Some typical computed results are shown in Table 3,2, where the velocity profiles 
after 30 hours at three grid points are tabulated for the analytical solution and for each 

of the four numerical schemes. The conclusions that can be drawn are consistent with 

those from the first model problem. Scheme A is considerably less accurate than 
schemes B,C and E, and in fact is sufficiently inaccurate to be unusable with the 

chosen grid sizes. The computational eriors from schemes B,C and E are of 

comparable magnitudes. The root mean squarc errors in u and v From all the p d  

points are almost equal for the B and C-grids, having the values I I and 13 mm/s 

respectively, and are slightly smaller for the E-grid, king '10 and 11 m d s .  

These differences are probably not significant since the relative sizes of the errors 

from the three grids fluctuate from step to step. Figure 3.3 shows the rms error in u 

and v combined for the B and Gads for the first 600 steps. Up to about 240 time 

steps (24 hours) the B-grid results are more accurate than those from the C-grid, 
between 248 and 450 steps the C-grid produces more accurate results and from 450 to 

600 steps the B-grid again becomes the more accurate. The m s  errors after 600 seeps 

from the B-grid are about the same as after 248 steps, namely 11 and 14 m d s  in u 
and v respectively. The errors are almost uniform through the water column in every 

case, that is they are concentrated in the lowest mode. 
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Level - 

10 
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7 
6 
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Level 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 - 
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Level - 
10 
9 
8 
a 
6 
5 
4 
3 
2 
1 - 

"Exact'! 
U v 

-97 -385 
-83 -239 
4 8  -125 
-5 -38 
3 8 24 
7 5 57 

102 93 
116 106 
115 106 
100 83 

"Exact" 
U v 

-144 -338 
-130 -193 
-94 -79 
-50 5 
-5 66 
34 106 
63 129 
80 137 
84 133 
74 114 

"Exact" 

Scheme 
U b 

-129 -375 
- 2  16 -229 

-81 --I15 
-38 -29 

5 3 1 
43 7 3 
7 1 97 
86 108 
89 I07 
78 92 

Scheme A 
U v 

-148 -380 
-134 -235 
-98 -120 
-52 -35 
-7 26 
33 68 
64 94 
82 105 
86 105 
76 92 

Scheme A 
U V 

-111 -372 
-97 -226 
-62 -112 
-18 -26 
24 35 
62 76 
90 101 

105 113 
106 1111 
92 97 -- 

Scheme PI 
U r, 

-98 -397 
-84 -251 
-49 -136 
-6 -49 
36 13 
74 56 

101 83 
114 96 
114 97 
99 85 

Scheme B 
U v 

-148 -349 
-134 -204 
-98 -89 
-53 -4 
-8 56 
3 1 Srt 
61 121 
"9 131 
82 127 
72 110 

Scheme B 
U v 

-185 -359 
-92 -213 
-57 -99 
-14 -13 
29 48 
66 90 
93 115 

107 126 
108 123 
94 107 

Scheme C 
U v 

-97 -387 
-83 -241 
4 8  -126 
-5 -40 
3 8 22 
75 65 

102 9 1 
116 104 
115 105 
101 9 1 

Scheme C 
U v 

-145 -353 
-131 -207 
-95 -93 
-50 -8 
-5 52 
34 93 
64 117 
82 127 
86 124 
75 107 

Scheme C 
U v 

-100 -354 
-87 -288 
-52 -94 
-9 -8 
3 3 5 3 
7 1 95 
93 120 

112 130 
111 128 
97 110 

Scheme E 
U v 

-94 -395 
-80 -248 
-45 -133 
-2 -47 
39 16 
76 59 

103 87 
116 180 
115 181 
100 8 8 

Scheme E 

Scheme E 
U v 

-102 -348 
-89 -202 
-54 -88 
-1 1 -2 

3 1 5 8 
69 100 
96 124 

110 134 
110 131 
95 113 

Table 3.1. Exact and computed velocity profiles after 300 steps (30 hours) for Test 
Problem 1. Units are d s .  The three tabulations refer to the C-grid points (2.2), 
(8.10) and (5.15) rcspoctively. (The region is rectangular, running frdm (2,2) to 
(10,181.) 



Level - 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 - 

I Exact I Scheme A 

Scheme E 
14 V 

324 -592 
140 -426 
23 -261 

-43 - 1 1 1  
-74 '1 8 
-83 125 
-79 206 
-70 264 
-63 298 
4 308 

Scheme E 
U 1 

360 -584 
176 -418 
59 -253 
-7 -103 

-38 26 
-47 132 
-43 214 
-34 272 
-27 306 
-24 317 

Table 3.2. Exact and compuzed velocity profiles after 300 steps (30 hours) for Test 
Problem 2. Units are mm/s. The three tabulations refer to the C-grid points (2,2), (6,4) 
and (9,6) respectively. (The regiori is rectangular, mining from (1,l) to (10,10).) 



ter 4. Numerical Experiments 

4.1 One-dimensional channel j lbw 

It is not easy to find exact solutions of the nonlinear equations with which to test the 

accuracy of numerical algarihis. One such sclution, however, occurs for the steady 

wind-driven flow in a channel. of constant depth. If, for such a case of uni-directionid 

flow, one makes the approximation H = h, the advective terns become identically 

zero and the only nonlinearity is the bottom friction. In this case, for constant eddy 

viscosity p =N, thc final steady solution can be found analytically. 

With these approximations, eqns (1.32) and (1.29) reduce, for steady flow, to 

1 
where p = h leu do = hu: and the boundary conditions (1 1) are 

We take the channel to be closed at its ends, so that the boundary conditions are p = 

0. Therefore p = 0 for dl x. Then the solution of these equations is 

where the bottom velocity is given by 



For the nurerical solution, the dynamical equations (1.32),(2.17) and (2.19) are 
solved fpor ! an initial state of rest until the steady flow is reached. In this case, these 

equations simplify to 

while the velwirj is obtained frnm eqn (2.25) as 

Computed solution at points 

TABLE 4.1. Computed and exact velocities in cm/s for steady wind-driven flow in a 
channel with different values of linear and quadratic friction coefficients. 
Velocities are given at the surface, mid-point and bottom ~f the water column. 



The algorithm descriQed in chapten 2 and 3 is easily adapted to these simplified 

equations by setting the Coriolis parameter equal to zero and by-passing computation 

of they -component of velocity. All nonlinear tern are suppressed except for the 
bottom fiction. Some typical results are given in Table 4.1. In these computations, the 

values of the various parameters were ch~sen as h = 65 m, = 47,059 rn, 2 = 360 
s, N = 0.065 m% and g = 8.81 m/s2. Six dgenfunctions were used in the calculations 

and the length of the channel was 16 horizontal grids. 

The able gives the exact solution in the last column and in the adjacent columns the 

computed sduticsns at three points spaced dong the channel. The velocity is given at 

the surface, mid-depth and bottom in each case. Results are given for several 
combinations of values of the linear and quadratic friction coefficients K, and rc2. It can 

be seen that the numerical results are quite accuraie, even for very small drag 
coefficients and that the algorithm remains stable for both small and large values of 

these coefficients. 



4.2 Reciarngub sea with canst~nb eddy viscosity 

En order to test the algsrihm f3r the full three-dimensional nonlinear hydmiynamic 
eqrrauons, we have made use of the shpl i fmi  stom-surge model of the North Sea 

used by Davies 137-383 aid alm several nther investigators [e.g. 36,401. The model 
region consists of a closed rectangular sea of dlianensions 400 kms in the x -direction 

and 8QQ h s  in the y -chcdorn, with grid spacings Ax = W/9 h s  and Ay = $0/17  

h s .  Figure 4.i shows the B-grid useu for this region. The depth is takern uniformly as 

65 m. Twe ssa is initially in a state of equilibrium and starting at t = 0 is subjected to a 

constant sudzce shear stress in the negative y -direction, with values z, = 0, z, = - 

1.5 PJ/m2. The values of the ether parameters (dl in MKS units) are p = 1025, N = 

3,065, g = 9.81 and f = 1.22~104. A time step z = 360 s was used. These parameters 

have been chosen to be identical to those used in earlier work [37,39] so that 

cc.mparisons san be mada 

An initial series 02 computations was designed to test the accuracy and stability of the 

explicit treatment s f  bottom friction in a dynamical problem as opposed t~ th : steady 

problem of the preceding subsection. Hew we sompmed the solutions obtairred for the 

linearized equations with those obtained using an earlier algorithm [44] in which the 

linear bottom friction is incorporated into the construction sf ihe eigenfunctions, and so 
is treated implicitly. 

Some typical computed results are shown in Table 4.2. The ljpper and lower parts of 

the table show the numerical solutions computed with. the time-step z = 360 s using 

respectively the present algorithm and the old implicit dg~rithrn of [44]. i t  is clear arkit 

no significant errors are inimiuced in his case by the explicit Leatment of the bottom 

stress. 

A second series of computations was designed to test the rate sf convergence of the 

eigenfunction expansion in comp~son with that obtained by Davies [38]. Ph quadratic 

law of bottom friction was used, with q = O ad K2 = 0.002, and all nonlinear terms 
were 



T A B U  4.2. Computed velocity profiles in cm/s after 30 hours for the linearized 

equations. Profiles are given at the three grid p i n s  (2,2), (8,lO) and (5,15) 
(see Figure 4.1). The upper part of the table provides the results from the 
present algorithm and the lower part from the imp'licit algorithm of [a]. 

retained in the equations. The c~mputation was repeated with 4,6 and 10 
eigenfunctions included in the expansion (where the j = 0 eigenfunction is also 
counted). 

Typical results are shown in Table 4.3 in which are given the components of fluid 

velocity at the cenrre of the rectangular sea and at the surface and bottom of the water 
cslumr,, as well as the corresponding surface elevation, 38 hours after the onset of the 
wind. It cm bt seen that the expansion converges quite fast: for the expansion 
truncated after six eigenfunctions, the maximum e m r  in the computed c m n t  (using 
the solution wi& ten eigenfunctions as the standard) is ody Ci04 crn/s. The maximum 
difference over the whole rectangle between the values of [ compux& usfag 4 or 10 
eigenfunctions is 0.1 cm. 



The final row of Table 4.3 lists the CBU times for each computation (using an IBM 
3081). The interesting fact here is that the corresponding CPU times for the identical 

computations except for the omission of the nonlinear advective terms were in each 

case less than one-third of the figures listed Thus the inclusion of the advective tentns 

increases very signifrcandy the cost of the spectral method. 

It is interesting to compare the computational efficiency of the eigenfunction method 
with that of the direction-splitting algorithms such as the one described in [46-471, 

FOP this %ec~anguEar sea problem, the eigenfurrctisn method with four eigenfunctions 

requires slightly less CPU time than the splitting method if the linearized 

hydrodynamical equations are used. However for the nonlinear equations, the CPU 

requirements of the eigenfunction methad are about fifty percent greater than those of 

the splitting algorithm, and of course increase if mote eigenfunctions are employed. 

Number of eigenfunctions 

TABLE 4.3. Cornpontnts of velocity in cmk after 30 hours at the centre of the 

rectangle computed for the fully nonlinear equations with different numbers of 

Table 4.4 shows the corresponding results obtained by Davies 1381 using Gram- 
Schmidt polynomials (equivalent to shifted Legendre polynomials) as basis functions. 

The rate of convergence is somewhat slower than that in Ta3e 4.3, the maximum 

difference between the velocities computed with 6 and 8 functions being 0.34 cm/s. 

Davies found much slower convergence if cosine functions are used, the reasun being 

that these basis functions cannot satisfy the surface stress condition, giving a nsn- 



unifomity there. The Legendre (or Chebychev) basis come fmm a singular S m -  
Liouville problem, so the inhomogeneous boundary condition does not disturb the rate 
of convergence. It is therefore significant that comparable, or even slightly better, 
accuracy cm be obtained using the eddy-viscosity eigerafunctions. The Legendre or 
Chebychev polynomials have of c o u r ~  the disadvantage of giving modal equations 
that are coupled via dominant terms. 

The differences between Tables 4.3 and 4.4 in actual current values are probably due 

to the different grids used in the two computations. In 1381 a 6-grid was used which 

produces spurious numerical boundary layers [43] and consequent errors of several 

percent in flow variables throughout the rectangle while the B-grid used here 

automatically avoids such layers. Another possible source of difference is that the 

finite element methodl of computing the advective terms art every time-step may be 

expected to be more accurate than the time-splitting method used in [38], particularly 

if the higher ffequency waves play a significant role in the solution. 

Number of eigenfunctions 
Cornpnea t I I 6 8 I 

TABLE 4.4. Components of velocity after 30 hours at the centre of the rectangle 
computed by Davies [38] using different numbers of eigenfunctions. 



TABLE 4.5. Components of velocity in c m k  after 30 hours at the centre of the 

rectangle csmplited for the fully nonlinear equations with different friction 

coefficients. 

A final series of computations was designed to examine the effect of different friction 

coefficients and in particular to ensure that the algorithm remains stzble for large 
friction. Typical results are shown in Table 4.5 for several values of K, and K2 

We have experimented with large values of K, and K2 md small eddy viscosity to 

determine the stability limits of hie algorithm. Using the time step of 360 s, the 

algorithm remains stable for di physically realistic values of these parameters. For 

example, with N = 0.065, stability is maintained up to and beyond x2 = 0.2 when K, = 

0 and up to K~ = 0.02 when K, = K~ With K, = 0 and K2 = 0.082 stability is 

maintained for N 2 0.001 while for K, = 0.082 and K~ = 0 it is maintained for N 2 

0.004. Figwe 4.2 shows the regions of stability and instability in the N- K2 plane in the 

case when K, = 0. 



4.3 Rectangular sea with varhble eddy viscosiSy 

To further test the algorithm, a three-dimensional nonlinear problem with a more 
realistic eddy viscosity function was used. Three cases sf variable viscosi~j were 
considered, again following reference [38] for the sake of comparison, as shown in 

Figure 4.3. The water depth was taken as 65 m, and the thicknesses d,  and d2 of the 

surface and bottom layers were taken as 11 m. Within these boundary layers N is 

assumed to vary linearly with the vertical coordinate, while N is constant through the 

rest of the water column. The values used for the parameters in the three cases were: 

Case A: N, = 0.013 m2/s, N, = 0.06% m2/s, Nb = 0.013 m2/s, 

Case B: N, = 0.1 ;'3 rnzh, N, = 0.055 m2/s, Nb = 0.013 m2/s, 

Case C: N, = 0.1 17 m2/s, N, = 0.065 m2/s, Nb = 0.065m2A. 

In this case, again for the sake of comparison with [38], a no-slip boundary condition 

(2.19) was used The algorithm m s t  then be modified as indicated in Section 2.2. 
Figure 4.4 shows the two components of velocity as a function of vertical coordinate 

75 hours after the onset of the wind at the centre of the rectangle for the three eddy 

viscosity functions. These were computed using six eigenfunctions. The most striking 

feature af these figures is the sensitivity of the near-surface velocities to the value of 

N,. The no-slip condition prevents the bottom velocity fiom being as strongly affected 

by Nb , although the effect on the velocity gradient is noticeably. 

Also in Figure 4.5 we have regruducd the figure given in 1381 for the corresponding 

Case A. This was computed nsing fo-ar Chehychev or shifted legendre polynomials. 

There is substmtial but not complete agreement between this figure and that in 

Figwe 4.4(a). Tlht differences are again probably ascribable to the numerical boundary 

layers. 



Chapter 5 Density-Driven Flows 

In this chapter the density-gradient driven flow problem will be considered. The basic 

equations and the model solutions used in this chapter have been taken from Lrudner 

and Bas[SO]. The spectral me thd  described in chapter 2 has k e n  used to solve this 

problems. By testing two model problems, we have found that this method gives more 

accurate solutions than those given by Lardner and Das[SO]. 

5.1 Basic Equations 

The equations that form the basis of the model are the usual momentum and mass 

conservation equation. Flows driven by density gradients are generally quite slow, so 

that the advective terms in the horizontal momentum equations are very small and can 

be ignored. These equations then take the form: 

The mass conservation equation: 

The horizontal momentum equations, corresponding to (1.2)-(1.3): 

As usual, the vertical momentum equation is approximated by the hydrostatic 

equation 

where density p is depends on x, y and z; p, is atmospheric pressure, assumed 

constant. 

Defining the average density and the components of mass transport by 



and integrating equation (5.1) over the water c~lurnn from z = - h to z = c ,  we get , 

after using (1 5)-(1.6), 

(I) where p denotes the density on the surface. 

Substituting (5.4) into equation (5.2)-(5.3), we obtain 

It is convenient to write the equations in terns of the sigma coordinate in the vemcd 

direction. By setting a =(z +h )/H, where H=h +c is the total water depth, the free 

surface is then o =1 while the bottom is a 4. Using the chain rule shown in chapter 

1, we have. 

where 
1 

T, = H J[R, - ~ ( 1 -  o)pI)id 
0 



and 

In addition, we have boundary conditions on a 4 and 1. We assume that the surface 

is free of shear traction, so we have the surface condition 

On the bottom the b u n d a y  condition is 

In general it is physically more realistic to use a quadratic dependence on bottom 

friction on velocity, but in the present case, where the density-driven flow is 

superimposed on other, possibly much larger, flows, suck as tidal and wind-driven 

currents, it may be more approphiate to use the linear form for bo t t~m friction[25,50], 

that is 

Writing the above problem in complex form, U=u + iv , we have 

p"'5t + Px + Q* = 0 

and 

with boundary conditions 

U,=O on a=l  

and 



5.2 Eddy -viseosify eigenexpanswn 

In order to solve problem (5.17)-(5.28), we consider the eddy-viscosity eigenvalue 

problem: 

Using the SLEIGN subroutine to compute the eigenpairs ( I  j,#j (o ) } at every point 

(x,y), we have the ohogonal eigcnfunctions with properties: 

1 1 ,  w h e n i = j  
j~mi# jdo= { 
o 0 ,  when i # j  

Expanding the current profile U in terms of the eigenfunctions, we obtain 

where 

Multiplying (5.18) by t$ ( 0 )  and integrating from 04 to 1, we get 

where 
I 

4, = -gj0p@,da. 

The initial values for the set of equations (5.26) can be obtained by assuming the 

motion starts from a state of rest, then 



and 

The mass transports can be obtained by combining (5.6) and (5.24) as 

We can compute the steady currents caused by a given density field by solving 

equations (5.16) and (5.26) with appropriate boundary conditions and initial values. 

The discretization scheme showir in chapter 3 has been used. The horizontal 

boundary conditions are specified as usual. That is, on coastal boundaries, the normal 

component of the mass flux vector ( p  , g ) is taken to be zero; the appropriate 

condition on the open part of the bundary is the subject of considerable debate, but 

the simplest condition is to set [ q u d  to zero at all open boundary points. 



5.3 Test Problems 

The accuracy of the algorithm was tested by using it solve two problem for which the 

exact steady solutiorls can be calculated. These solutions, taken from among those 
given by Lardner and Das[SO], were designed to test the code's accuracy in handling 
two distinct physical features: vertical density variation and Coriolis forces. 

Problem 1 

For the first problem, we consider a channel occupying the region O a  d, with the end 

x=O being closed and x=L open. The eddy-viscosity p is assumed constant and 
bottom drag is assumed linear ( ~ , = 0 ) .  Only longitudinal flow is considered, with a, 

and f take as zero. 

In this case we take the density to have the form 

p=p0[l+@(l-2a)]  

and the water depth h =h (x ) was taken to increasing uniformly from 35m at the 

closed end of the channel to 95m at the open end. 

For steady flow, quation (5.17) then reduces to p, 4, and since p =O at x 4, it 

follows that p =O for all x . Therefore, 

Equation (5.18) then reduces to 

Taking the boundary conditions (5.19)-(5.20) into account, we obtain the bottom 

velocity 



Where 

The rest of the solution is given by 

In the numerical results given below, the channel was t,&en with the closed end at 

grid paint m=l and the open end at m=18.5, the horizontal grid spacing being 6 
=40,008m. 

The constants p ,=1.013, P =I117 ,The other constants used were(in MKS units) 

g=9.81, K ,=0.002 and p =0.065. The time step was z =360s, with the computation 

being run until a steady solution was obtained (typically, this tmk abu t  3000 steps, 

corresponding to 12 days of real time), The computed results are given in Table 5.1, 

which shows the exact and computed velocity profiles at three positions along the 

channel. The solutio 3 are given at six equally spaced levels form the top to the 

bottom of the water colurm.The two solutions are in very closed agreement. 



Exact Solutions: 

Computed Soh tions: 

- - - - - - - - - - - - - -  
Table 5.1 Exact and Computed velscity profiles at three points along the 

channel, in units of cmh. 



Problem 2 

The second problem is designed to test the accuracy of the computer code's treatment 
of the Coriolis terms. We consider a rectangular body of water of constant depth, 

occupying the region Ous 4, Cky 4 4 ,  with lateral b u n d w  condid~ns p =O on the 

sides x =0, L and q having certain prescribed values, to be given below, on the sides 
y =0, FA. K, is again zero and f, rn and K , constant. Vje suppose that the density p(x)  

is a function of x only, and that all flow variables are independent of y , we define it  as 
p =p  o(l-p x ). In this case, equations (5.10)-(5.11), for steady flow, reduce to 

The continuity equation reduces to ,ox+, and in view of the lateral boundary conditions 

therefore, p 3. Equation (5.36) implies that v,=O on a =0, so that the bunda~y 

conditions associated with equation (5.37) are 

The general solution of equations (3.35)-(5.36) has the form 

where 
a = era(acosra- bsinra)+c+"ccosraadsinrrr) 

p = y + 1 - o.e e"(bcssaa + asin roj  + e-'a(dcosra - csin m) 

The terms involving a,b,c and d are of course an E h a n  spiral type of solution. These 

constants as well as y are determined from the above boundary conditions, which 

take the form 



where 

0 1 0 1 

1 X - 1 -I  

A-1 i a + l  - 1 b 

- a' cos r e' sin r e-' cosr e-' sin r c 

ersinr ercosr e-'sinr -e-'COST d 11 2r 

This matrix equation is solved numerically to construct the exact solution. 

For the computed solution, we require the boundary values of q on y 4 ,  M, which are 

taken from the above exact solution. It is easily seem faom (5.35)-(5.36) and the 

above solution that 

The solution has been computed for a rectangle of dimensions QOO h s  in the x- 

direction and 200 h s  in the ydirection with a grid spacing of 20,OMhn. The 
4 -1 

parameters were taken as in problem 1 with the addition off =1.22*10 s . Table 5.2 
gives the exact and computed velocities at three points of the rectangle. There is very 

little variation of the final steady solution with x and the accuracy of the computed 

solution is about the same throughout the rectangle. 



Exact Solutions: 

.- 

I \ p o i n t  I (3, 2) I (15,9) I (27,2) I 

I level \ I u v I u v I u v I 

Computed S o h  tions: 

- - 

I \ point i (3, 2) I (15.9) I W l 2 )  I 

i level \ I u v I u v I u v I 

Table 5.2 Exact and Computed velocity profiles at three points in the rectangle region, 

in units of c d s .  



Chapter 6 Convection-diffusion Problem 

6.1. Inh.oduction end Basic eqrcatwn 

We shall be concerned with mcdelling the Behaviour of dissolved or suspended 

substances, such as polllutants, in the marine environment. For non-reactive 

substances, this is governed by the convection-diffusion equation, 

Mere, x,y and z are Cmesian coordinates with the xy - plane horizontal and 

occupying the undisaurbd position of the water surface, and the z -axis pointing 

vertically upwards. The density of the pollutant at the point (x,y,z ) and time t is 

denoted by S (x,y,z,t ) and subscripts of xy,z or t denote the corresponding partial 

derivative. The components of fluid velocity at (x,y,z,t ) are denoted by u,v and w and 

D, and D, are respectively the horizontal ald vertical diffusivities. F, represents any 

source or sink. 

The psition of the free surface is denoted by z = 6 (x,y,t ) and that of the bottom by z 

= -h (x,y ). It is assumed that 6 as well as u,v and w are known as functions s f  aheir 
respective arguments from some model of the hydrodynamics of the region in question. 

In addition to (6. l), S satisfies initial conditions 

and boundary conditions on the top and bottom surfaces 

and on the horizontal boundaries 



Here, B ,  and B, are the coastal and open boundaries respectively with n the outward 

normal in the xy -plane. In most applic::.tions, the fluxes b, and b, would be zero, bur 

they are included for the purpose of certain test problems to be used later. 

First, consider the feasibility of using an explicit finite difference method to compute 
numerical solutions to (6.1). Ignoring the convection part and the boundary conditions, 

the stability esnQitisn on such an algorithm would be [72-731 

A x Z  r 5- 
A z 2  

and z I - 
43, 20" 

where z is the time step, dr ihe horizontal grid spacing and Aa the vertical spacing. 

Later in the chapter, more complete stability criteria will be obtained, but these will 

suffice for the present preliminary estimates. A typical horizontal grid dimension 

would usually be in the range 1-20 kin and horizontal diffusivities in the range 10- 100 

m2 IS, depending mainly on the degree of turbulence. Within these ranges, the first of 

the above restrictions on the tirne-step is, in the worst case, 2 5 2500s and genedly 

it, is much less restrictive than this. On the other hand, a typical vertical grid spacing is 

5 - 2 h  and vertical diffusivity 0.1-1 m2 /s, so the second of the above restrictions is, in 

the worst case, z 5 12.5s. 

It is clear from these estimates that the stability limit on the time-step coming from 

the horizontal grid G a s  not present a problem exccpt perhaps for very fine-scde 

models of t-xbulena regions. On h e  other hand, the resmction from the vertical grid is 

often a serious diffic:Ay, and effectively prevents the use of an explicit method. This is 

the problem that in the next two chapters we want to solve by a vertical 1 horizo~ral 
splitting method. 

The variable z has a range -h 5 z I that varies with time. For numerical work i t  is 

better to change to a new variable that has a fixed range. The usual choice is 

so that o = 0 st the bottom and o = 1 at the top. Using the chain ruie repeatedly, we 

can then rewrite (6.1) in the form 



where 
N =D,(X 2+Y ' )+Ow,  

and 
X = ( l - o ) h , - a ( , ,  Y = ( l - ~ ) h , - $ ,  and G = w + u X + c ; ' .  (6.9) 

It has been assumed herz that D, and D, are independent sf x and y, otherwise 
certain extra terms occur ilt g and F. Note that all derivatives with respect to x and y 

have been included on the left side of eqn (6.7), in accordance with the intention of 
treating these derivatives  explicit!^. 

In terms of a the boundary conditions (6.3) take the form 



Firs; we discretize time in  eqn 15.7). Let r denote the size of the time-step, S (o ) 

the approximation to the soiuti~in at the current step and S '(a) h e  approximation at 

the next time step. We set 

S Q ( B ) = ~  *(b)f (l-).,)~ ( D ) ,  (6.1 1 ) 

where k is an implicitness parmeter, md  approximate eqns (6.7) and (6.:0) as 

The terms in the right side 6; that involve horizontal derivatives of S are evaluated 

explicitly, that is, at the current time level, while the other terms in F are evaluated 

midway between the current and new time-steps in order to minimize the errors. 

Treating S a as the new unknown, we can rewrite q n  (6.12) as 

where Fc = F  +S /Ar. Once S is determined, S "(a ) can be found from eqn (6.1 1 ) as 

This extrapolaaon is stable provided that 5 A 5 1. 

Next, we discretize the vertical coordinate in (6.4). En order to do this, as in 147) we 

replace (6.14) and the boundary conditions (6.1 3) by the integral identity 

where V is an arbitrary differentiable function. Within the class sf CZ functions, (6.15) 

is equivalent to the boundary value problem (6.13),(6.14). 



This identity is now discretized using finite elements as  follows. We choose J equally 

spaced nodes, (a, 1 in the interval [0,1] with 0, = 0, a/ = 1,  and spacing A a  =l/(J - 

I ) .  We approximate each function piecewise linearly in each sub-interval, for example, 

where V, is the value of V at node j. Then, after evaluating the integrals, we obtain 

identity (6.15) in the form 

where k = H A a  is the vertical grid spacing in physical units. Equating the 

coefficients of each V, we then obtain the system of equations 

where, for 2 5 j 2 J - 1, 

forj = 1, 



and for j = J ,  

The system (6.16) can be written in matrix form as AS' = W where A is tri-diagonal. 
It is solved by the usual decomposition A = LU where 

The elements of E and U are determined rwcusively from 

The solution of AS' = W is then obtained in two stages, by the forward elimination, 
LY = W, i-e., 

Y,=W,,  Y ,  =W, -L,Y,- , ,  ( j  = 2  ..., J )  (6.2 1 ) 

followed by the back substitution US" = Y ,  i.c., 



Finally, we discretize the horizontal derivatives, which have all been placed in the 

right side functions F in eqns (6.7) and (6.8). and are evaluated in terms of the 

current value S. The stability restriction arising from this explicit treatment will be 
discussed in the next section. The second derivatives are evaluated using a central 

difference, 

where m and n are the grid indices in the x - and y - directions, while the fust 

derivatives are evaluated using an up-wind difference, 



6.3 Stabile restrictions 

First we discuss the stability of the factorization and back substitution (6.20)-(6.22). 

The themern given by Smith [ 4 3 ,  pp 27-28] cannot be applied to the present case 

because the elements P, and Rj in A are not necessarily positive. However, a 

modification of Smith's argument can be made to show that 

(6.21) and back substihltion (6.22) are stable provided we 

the fow& elimination 

make the restriction 

where N = min N ,  . The proof of this result is rather lengthy and will 'be given in the 
I 

Appendix. It is worth noting that the theorem given by Golub and van Loan [79, Sec. 
5.51 c m  be used to obtain a sufficient condition for the forward elimination (6.21) to be 

stable, but this condition does not guarantee the stability of the back substitution 

(6.22). 

When 6 = 0 and k is constam, we have from eqns (6.8) and (6.9) that g = -w and 
N = D,. More generally, on the basis of the order of magnitude estimates that are 

commonly applied to flows in costal seas, it can be estimated that N =Dy and g 

always has the same order s f  magnitude as w. Therefore, the above restriction is 

approximately quivaient to 

In most cases, the fust of conditions (6.25) is more restrictive than the second. 

Assuming the value A, = 0.5, it requires that the convective displacement per time 

step should not exceed the vertical grid spacing k. For example, with 2 = 0.5 and 

taking typical values of vertical grid spacing as Sm, DY.= 0.1 m% and time step as 

lWs,  these two conditions are Iw I < 0.005 and 0.026 xn/s respectively. These are 

not serious restrictions. When the time step is short enough that the second condition 

becomes the more restrictive, the bound on Iw I is even less serious. For example if k 

= 10m and z = 500s, the two conditions are Iw I < 0.02 and 0.019 m/s respectively. 

The von Neurnann stability of various explicit finite difference schemes for the 

multidimensional convection-diffusion equation was investigated by Mindmarsh, 
65 



Gresho and Griffiths ($0). For the two-dimensional up-winding scheme we have 
ased, their condition (92). which is necessary and sufficient for stability, is 

When u and v are zero, ehis is the condition (6.51) quoted in the Section 6.1, and, as 

remarked here, for convection-diffusion in the marine environment, this restriction on 

the time step is usually not a severe limitation. However, when u and v are 
significantly non-zero, the stability condition is different from (6.51). In particular, 
when iu C and Iv I are much greater than 4DH / dr, the the stability becomes 

convection-limited rather than diffusion-limited and the condition reduces to 

While again this is not usually a severe limitation, it is often more SQ than the 

condition (6,51). In the typical marine pollution problem the convection and diffusion 

contributions to the condition (6.26) are of comparable magnitudes. 

The conditions (6.24) and (6.26) have been derived for the separate horizontal and 

vertical convection algorithms, and it is relevant to ask if they are valid for the joint 
three-dimensional algorithm. While we do not have a rigorous answer to this 

question, we have carried out numerous numerical experiments to obtain at least an 
empirical answer. These are reported in Section 7.3. 



APPENDIX. PROOFS OF STABILITY THEOREMS 

In this Appendix we shall gwe proofs of the stability can&tions stated in Section 6.3. 

We fist prove tiat the fac'srization used in h e  vertical part of the algorithm is stable 

provided 

( A .  1 )  

The forward elimination (6.21) IS stable if Ikj I 5 1 for all j. From (6.20), we have 

First, we p v e  that 1%, 1 4 1. From (6.18), 

where we have used (A.l). Then the required condition lLzl 5 1 is equivalent to -el 5 
P2 5 Qi, or, -el- B, S O  5 Q1 - P, . From (6.17) and (6.18), this becomes 

and it is easily seen that these inequalities are satisfied if (A. 1) holds. 

Next, we proceed by induction, assuming that ILl I 5 1 and using the recursion formula 

(A.21). The denominator here is again positive, since 



where again (A.1) has been used. Finally, we want K j + ,  I 5 1 and from ( A . ~ I )  this is 
equivalent to -@, + R , 4 L ,  I O S Q ,  +R,&, - P i + , .  Fr~rn the above and eqns 

(6.17). we have 

and 

1 
5 g + - ( ~ , + 1 + ~ , )  (Q, + R , - , L , ) - P , + ,  2 --- 

2ilr 6 2k 

as required. 

The back substitution (6 .22)  can be re-written as 

5'; = M , S ; , + Y , / U ,  where M ,  = R ,  /U, 

and rherefore is stable if IM, 1 4 1 for all j. From (6.20), we have 

First, we grove that IM, 1 4 1. We already s h o w 4  that Q, > 0 if ( 8 . 1 )  holds. so we 
need to prove that -Q1 S R, I el. From (6.1 83), the right part of this inequality is 
always satisfied, while the left part is equivalent to 

R, +- 20. 
8A.f 

Then from (8.1 g2), 



if (A. 1 )  holds. 

Next, we show that if IM,- I < 1 ,  the denominator in the recursion (A.3,) is positive. 

We have 

------ Ir I (N,,, + N,) 
6a.5 2 2k 

Finally, we show that from (A.31), it follows that iM, I 5 1 .  From ( A . ~ I )  and (6. !73) ,  

this is equivalent to 
k k 

P, (1+M I . -1 )-2Q, +-SO 2 P, ( I -M ,-!)+-. 
A7 A7 

The right part of this is satisfied, since 

and similarly, for the left part 



from (A. 1 ). This completes the proof. 



Chapter 7 Model Problems 

Several numerical examples, chosen because they have analytical solutions, are 

presented here. Most of the examples involve the initial conchtion of a point source 

(delta function source). If instead, smooth initial conditions are used, the accuracy of 

the computed solution is very considerably improved in all the cases tested. We have 

chosen to present the point source results however since they provide a tougher test 

for the algorithm and in addition they correspond to a case of practical importance, that 

of a pollution accident resulting in a sudden influx of pollutant. 

In all the test problems, we take = O and h, u, v, w, D, and D, constant. The value 

h = 65rn has been used for definiteness and the number of vertical levels used is J = 

10. 

7.1 Vertical convection-d~fusi~n 

This example is designed to test the vertical finite element scheme. All quantities are 

assumed independent of x and y, and we set D, = D. Equation (6.1) then becomes 

The initial condition (6.2) for a point source is S (z ,0)= K6 (z - z ,) which is 

discretized as 

K/& if j = j ,  

othenvisc 

where Az = h Aa is the phycical grid spacing and j, is the grid point corresponding to 

zo. For an region, the exact solution for this problem is 

This sdution can be used for the bounded interval -h 5 z 5 0 provided that in the 

b o u r . h y  conditions (6.3) we take 
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It is discretized by setting z - z, = Az ( j  - j , ) .  

We have used a vertical velocity w = O . W S  mil diffusion coefficient D - 8.005, 

which values lead to roughly equal time-scales for the convection and diffusion. A dime 

step of 360s was used. A comparison of the computed and exact soludcns after 100 

time steps is shown in Figure 7.1. The maximum relative error between the w s  

solutions is approximately 1% and occurs at the maximum of S. 

Some numerical experiments with large values of w and/or z have been carried out ro 

check the stability condition (6.24) or (6.25). In these tests the values 2, - 0.5, k = 

7.2 and D, = 0.QO5 we= used, with a sufficient number sf vertical Bevels to keep the 

solution hump withi.n the computation region. Figure 7.4 shows several pairs of values 
of w and z that lead to stable and unstable solutions as well as the graph af the 

condition (6.25). It is interesting that this condition appears to be, at least 

approximately, a necessary as well as sufficient condition for stability. 



This example is designed to test the accuracy and sability of the horizontal explicir 

finite difference scheme. All quantities are assumed independent of z md we set D, s 

D. Equation (6.1) then becomes 

The initial condition (6.2) for a point source is 5 (X , y ,O)- X 6  (x - x @  ( y  - y ,) 

which is discretized as 

K l d x A y  if (m,nj=(mO,no)  
otherwise 

where (mo ,no ) is the grid point corresponding to (xo.yo ). For an i n f  nite region, the 

exact solution for this problem is 

This solution is used for the bounded region simply by taking the region large enough 

that the solution remains essentially zero at h e  boundaries for the time interval of the 

computation. 

-We have used a horizontal velocity u = v = 0.5, grid spacing Ax - 5000, time step z 
= 360 and diffusion coefficient D = 104. This value sf 6 )  is rather large, but is chosen 

to give approximately equal he-scales for the convection and diffusion. A 

comparison of the computed land exact solutions after 1QO time steps is shown in 

Figure 7.2. The relative error between the two solutions is not more than 5%. 

As remarked above, a considerable improvement in accuracy is obtained if smooth 

initial values are used instead of the delta function. For example, if the above solution 

is used with the initial value of the numerical mliadon set equal to the exact solution 

after 40 time steps, the e m  after 100 steps is of the order of 2%. It is also ?he case 

that the accuracy is similarly improved even for the delta fu~ction source if the 

velocities u and br are zero. It therefore seems that the major source of the errors in 

such results as those shown in Figure 2 is the treatment of the convective terms via 

the discretizations (6.23) when the pollutant density S has large gradients. 



Some numerical experiments have been carried out with very large time steps in order 

to verify h e  validity of the stability limit (6.26). We have found in numerous test 

cases that the condition (6.26) is precise. For example, with u = v = 0, D, = 104 and 

Ax = 20,003, (6.26) requires 7 S 10,000. We found the computation with z = 9800 

remains stable for at least 1 0 0  time steps but with Z = 10,200 oscillations grow and 

produce negative densities after about 4OQ steps. With u = v = 0.5 and the other 

parameters unchanged, (6.26) requires 7 5 6667. We found that the computation 

remains stable with r = 6600 but becomes unstable if a value z = 6670 is used. Of 

course in btfa these cases, even when stable, the results are not very accurate 



7.3 Three-dimensional convection-diffusion 

(a). Comparison with Exact Solution 

This example is a combination of Examples (7.1) and (7.2). We define 

Then for constant diffusivities and velocities, the hornogeneoms equation (6.1) has the 

following solution for an infinite region: 

If t o  > 8, this solution has the smooth initial condition 

whileif to=O,  there is apoint source: S (x,y,z,0)=#8(x -xo)6(y -yo)6(z - 2 , ) .  

As in Examples (7.1) and (7.2), this solution is applied to the bounded region by 

suitably choosing the functions 6, and 6, in conditions (6.3) and by taking the extent 

of the region in the xy -plane large enough that the solution remains essentially zero 

at the boundaries. 

Some typical results are shown in Figure 7.3. FOP these, we used velocity components 

u = v = 0.2, w = 0, grid spacing Ax = 2(300, J = 10 vertical levels, time step z = 180 

with to  = 5OMl md diffusion coeficients D, = 2000 and Dv = 0.01. Again, these 

values were chosen to give approximately equal time-scales for the horizontal 

convection and the two directions of diffusion. The figure shows the solution after 100 

time steps on the central level (which is the source level) and on levels 2 and 8. The 

maximum relative error in the computed solution is about 4%. 

As remarked in Section 6.3, it is important to know if the stability criteria derived 

separately for the horizontal and vertical convection-diffusion apply also for the joint 

three-dimensional algoiithm. We have canied out some experiments to obtain at least 



an empirical axwer to this question. The values DH = 2000, Dv = 0,01, u = v = 0.2 
have been used. Then provided Iw I < 0.00169, condition (6.26) is more restrictive 

than (6.25). Figure 7.5 shows the graph of the condition (6.26) in the Ax-z plane as 

well as several experimentally determined stable and unstable points. The evidence 

from these results indicates that only at extremely long time steps (for which the 

numerical solution is very inaccurate) does tie vertical part of the algorithm interfere 

with the stability condition (6.26). 

(b). Comparison with Monte Carlo method 

A commonly used method for solving the convection-diffusion equation is the Monte- 

Carlo method, in which a cloud of pollutant particles are, on each time step, given 

random displacements to simulate the diffusion and in addition are given convective 

displacements according to the fluid velocities at their current locations. The resulting 

densities suffer from errors due to statistical fluctuations in the random displacements, 

and in order to obtain a sufficiently smooth function, a very large number of particles 

must be used. The resulting large number of cells on the random number generator 

increases the expense of this method. 

In order to help resolve the question of the optimal methcd ta use, we have repeated 

the computation in Example (7.2) using a bf~nte-Carl0 algorithm. The algorithm 

employs the random number generator UMND [74]. In order to achieve errors 

comparable to the 5% found in Exampie (7.2), it was necessary in the Monte Carlo 

algorithm to use at least 4x104 particles. The resulting CPU time was 257 seconds on 

an IBM 3081 machine. (The program was ru~l as a three-dimensional simulation, even 

though the vertical diffusion coefficient was zero.) 

In Example (7.2), the horizontal grid was 30x30 with 10 vertical levels, the solution 

after 100 time steps being significantly non-zero over a b u t  half of this region. The 

computation in this example required 92 seconds of CPU h e .  (Again, this represents 

a CPU time for the complete three-dimensional algorithm, even though the solution is 

independent of the vertical coordinate.) 

I? is clear tkar at least in this type of situation, the present algorithm has an 
advantage, either in accuracy or speed. For a full three-dimensional simulation, the 

advansage would be even greater, since the particles in the Monte-Carlo simulation 
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would need to be distributed among the various levels and ccnsequently there would 

need to be about J times as many of them to achieve the same accuracy. 

On the other hand, if the problem at hand involves a large sea region in which the 

pollutant is concentrated in one smdk sub-region, a method of the type discussed in 

this paper will be inefficient, in that a great many unnecessary calculations are 

performed. It may be possible to overcome this difficulty by artificially restricting the 

region in which the convection-diffusion equation is solved, but this may not be 

possible if the convective displacements are large. The efficiency of the Monte-Carlo 

algorithm can also be very significantly improved by using a fast "random" number 

generator such as MMDU in the D M  Scientific Subroutine Package. although the 

lack of complete randomness [74] may be a deterrent to this. 



CONCLUSIONS & REMARKS 

In this thesis, we have considered thee kinds of problems: nodinear wind-driven 

flow, density-driven flow and the asscziatd marine convection-diffusion problem. In 

order to solve these problems, four basic dgorhhrns have k e n  develop&. 

The first algorithm described in chapter 3 has been developed for the numerical 

solution of the three-dimensional tidal equations using a s p e c ~ d  method in the 

vertical dimension and finite differences in the horizontal. Four difference schemes 

have been constructed based on the Arakawa A,B,C and E-grids. While the C-grid 

has traditionally been used for such hydrdynamical computations, the other three 

grids offer significant advantages when a spectral method is used in the vertical, 

especially in that they allow eddy viscosity functions to be used that vary quite 
arbitrarily with position without introducing coupling among the modal equations. 

A second advantage of these three grids is that none of them produces the spurious 

numerical boundary layers that can occur for the C-grid unless the Corislis terms are 
treated using "wet-points only" averaging at coastal p~ints  1431. A third benefit is 

that the two modal momentum equations can be solved simultaneously in complex 

form, allowing explicit numerical treatment of the Coriolis terms to be easily avoided. 

Two test models have been designed for comparison of these schemes.Thc 

conclusions reached are as follows. 

The numerical errors arising for the A-grid were very significantly greater than those 

for the other three grids, the reason being, presumably, that the finite difference 

approximations to the various spatial derivatives must use intervals of twice the size. 

The numerical errors f ~ r  the E-grid were generally slightly lower than those for the C- 
grid for both test problems. The disadvantage of using the E-grid is that the 

computational cost is about twice that of the C-grid for the same grid dimensions. The 

computational costs of the B and C-grids are about the same. 

The rms numerical errors in the velocity components for the B and C-grids fluctuated 

in both relative and absolute magnitudes as the computations progressed For the 

second problem, in which an analytical solution is known, over the fmt 600 time steps 



(60 hours of real time) the B-grid results were on average slightly more accurate than 

those of the C-grid. 

It is significant that the errors are almst uniform through the water column in  every 

case, that is they are concentrated in the lowest mode. W e n  the bottom friction is 

zero, as in the second test problem, the lowest mode is governed by the shallow 

water equations in which there is no damping. It is therefore a pleasant surprise that 

the inferior numerical dispersion properties of the B and E-grids at shon wavelengths 

[42] do not lead to substantially greater errors in this problem than those for the C- 

grid. Both grids lead to stable algorithms for these undamped equations. 

For a two-dimensional (depth-averaged) model, the C-grid appears to have no 

disadvantages compared to the other grids. This would presumably also be true for a 

three-dimensional multi-level or splitting method. For spectral method algorithms, 

however, this grid imposes severe limitations on the physical model if the computation 

is to be easily feasible. Our results suggest that the B-grid can provide a viable 

alternative at the same computing cost and without imposing such limitations. 

The second algorithm has been developed for the numerical solutions of the full 

nonlinear three-dimensional tidal equations.The principal features of the algorithm 

described in the first two chapters can be summarized as follows. 

It is directed towards solving the fully nonlinear hydrodynamic equations as 

usually approximated for flows in shallow seas of uniform density, with an eddy 

viscosity &el of turbulence. 

The numerical approach to the dependence on the vertical coordinate is a 

spectral method of Galerkin type, using eddy viscosity eigenfunctisns as the 

basis set. The advantage of this basis is that the modal equations are not 

coupled through the linear terms, which are the dominant ones in most cases. 

By an appropriate modification of the velocity before expansion the method 

provides a uniformly convergent series that converges rapidly and for which 

truncations exactly satisfy the surface and bottom boundary conditions. 

The cost of this mcation is an explicit treatment of bottom friction. This 

certainly imposes a stability restriction, which, however has not turned out to 

be a serious limitation in the problem examined. 



The advective terms are computed explicitly using a finite element method. 

This is the m s t  efficient means we have found for this part of the algorithm, 

which is by far the most expensive, requiring two-thirds of the rod CPU time. 

The nurntxical approach to the horizontal variations is via a staggered B-gnd, 

which has some advantages over the mare usual C-grid when a spectral 

method is used. 
A leapfrog method is used for the time-stepping, in which the surface elevation 

and the velocity are computed on alternate half-steps. Account is taken of the 

stiffness of ehe system of modal equations. 

The performance of the algorithm has been tested satisfactorily on a number of 

problems (see chapter 4). For steady wind-driven flow in a channel with nonlinear 

bottom friction, gomi agreement is obrained with the analytical solution. For a 

dynamical wind-driven flow in a rectangular sea, the algorithm gives gmd agreement 

for the linearized equations with an earlier algorithm that is specifically adapted for the 

linear case. For the nonlinear case with constant eddy-viscosity, the stability region 

has been determined by a series s f  computations. For the nonlinear case with variable 

eddy-viscosity, the expansions were found to converge at least as fast as those used 

earlier with bases consisting of Chebychev or shifted Legendre polynomials (and 

these bases lead to large coupling among the m d  equations). 

The third algorithm described in chapter 5 has ken  developed rbr the numerical 

solutions of the three-dimensional tidal equations driven by density gradientsh this 

case, linear equations have been considered. The specad method for the vertical 

direction and B-grid scheme for the h~rizontal directions have been used to develop 

the algorithm. The accuracy of the computer code has been tested by solving two 
problems for which the exact steady solutions can be found. These t w ~  problems were 

designed to test the code's a c c m y  in handling two distinct physical features: vertical 

density variation and Coriolis forces. Both test problems give very accurate results. 

The fourth algorithm in chapter 6 md chapter 7 has been developed for the numerical 

solution of the three-dimensional convection-diffusion equation in shallow seas. An 

implicit fiite element discretization has Been used for the vertical direction and an 
explicit fmitc difference discretization has been used for the horizontal directions. 

These kinds of discretizations lead to be a tridiagonal system which can be easily 

solved at every horizontal points in the considered region. The stability restrictions, 



both on tihe vertical direction and on the horizontal directions, have been determined 
theoreticdy(see chapter 6, appendix). Three problems have been used to test the 

accuracy and stability of the algorithm which gives gotxi agreement wish corresponding 
exact solutions. A comparison dso has been made with the Monte-Cario type of 

algorithm. 

In the conclusion of this thesis, we give a summary of the basic techniques used in 

these four algorithms in the following table: 
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