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Abstract 

SmSe and SmS undergo pressure-induced mixed-valence transitions. In the mixed-valence region 

the Sm ions fluctuate between the 2+ and 3+ valence state on the time scale of the Debye 

frequency. They are usually considered to be homogeneously mixed valent where the Sm- 

chalcogenide ion pairs take a single average separation rather than a dynamically distorted 

distribution with two different equilibrium positions corresponding to the two valence states of the 

rare earth ion. In this thesis x-ray absorption spectroscopy has been used to examine the transitions 

at pressures up to 75 kbar. The experiments were performed at the Sm LIII, LII and Se K edges at 

room temperature on both compounds. In order to reduce the thermal contribution to the dynamical 

motion of the ions, the measurements were also made on SmSe at 77 K. These latter measurements 

represent the first low temperature x-ray absorption spectroscopy measurements to be made as a 

function of pressure. 

Changes in the Sm valence with pressure were determined from the structure of the Sm L edges. 

Sm-chalcogenide pair distribution functions were obtained from the EXAFS spectra. In SmSe the 

EXAFS mean-square relative displacement between the Se and Sm ion pairs is observed to have a 

maximum in the mixed valence region. This maximum is discussed in view of the possible existence 

of two closely spaced Sm-coordination shells. From least-squares fitting in k- and in R-space and 

from a beating analysis of the EXAFS phase we conclude that if the lattice does respond to the 

fluctuation in the valence, then the two Sm-shells are separated by -0.09 A. To obtain this result it 

was first necessary to know the backscattering amplitudes and phase shifts for integer-valent Sm. In 

this thesis they were calculated from first principles according to curved-wave theory. 
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Chapter 1 : Introduction 

In this thesis the x-ray absorption spectra of SmSe and SmS are investigated. Under ambient 

conditions these compounds have two electrons in the conduction band and are therefore divalent. 

By applying pressure both compounds become mixed-valent. In SmS this transition is sudden and 

occurs at -6.5 kbarl whereas in SmSe the valence changes gradually while the pressure increases 

from zero to - 100 kbar. By applying pressure the average occupation of the 4f level of the Sm atoms 

is reduced from 4f6 to 4f5 by promoting a 41-electron into an empty 5d-state. This process makes the 

Sm atoms trivalent. The screening of the nuclear charge and likewise the atomic volume of Sm is 

reduced. Therefore the application of pressure will favour the trivalent state. In x-ray absorption this 

can be studied quantitatively. The high density of empty Sm-5d states shows up in the LII- or LIIl- 

spectra of Sm in SmSe and SmS as a strong absorption peak ("White Line") at the edge. Because of 

the reduced screening by 41-electrons the position Of the trivalent Sm-White Line is shifted by -7eV 

to higher binding energy. The height of the White Line contains information about the relative 

occurence of di- and trivalent Sm atoms. In addition to the resutts from the near-edge region of Sm, 

information about the relative positions of a Se atom and a Sm atom is provided by the pair 

distribution function which is obtained from the extended x-ray absorption fine structure (EXAFS). 

The EXAFS is the oscillatory part of the absorption coefficient after an absorption edge. The pair 

distribution function of for example the Sm atoms contains information about the mean-square 

relative displacement 02 of the Sm atoms with respect to the absorbing atoms. 

The Se and Sm absorption spectra that were measured have the following edge energies: 

For the pressure calibration the K-absorption edges of Cu and Rb were recorded. Their energies 

are: 

I hope that I can be forgiven for employing the old fashioned units kbar and A . They are related to the 
Proper units, Pa and m, by powers of 10: 1 kbar - 0.1 GPa 1 A = 100 pm . 



The contents of each chapter are described in the following. 

Chapter 2 describes the EXAFS equation, emphasizing its connection with the radial 

distribution function. The most important section of this chapter is Section 2.5 which contains useful 

results involving the inelastic mean free path. Further information on EXAFS spectroscopy is 

provided by Refs. 1 to 6. 

In this work we analyze the behaviour of the pair distribution function with respect to the 

possible existence of two different equilibrium positions for the di- and trivalent Sm atoms, i.e. the 

relaxation of the Sm atoms. This result depends on the availability of Sm-backscattering amplitudes 

corresponding to the integer-valent states of Sm. Therefore amplitudes and phases for EXAFS were 

calculated. These first-principles calculations were performed in order to find out whether the 

scattering amplitudes and phases depend on the valence state andfor on pressure. The calculations 

yield the partial-wave phase shifts and hence also allow us to check the validlty of the curved-wave 

theory of Schaich [q and McKale et al. [8-101 which takes into account the fact that the outgoing and 

scattered electron waves are spherical rather than planar. This theory does not include multiple- 

scattering effects though. Curved-wave theory introduces a slowly varying distance dependence of 

amplitude and phase which are now also dependent on the orbital symmetry of the photoelectron, 

i.e. the type of edge (e.g. K or LIII) Chapter 3 describes the calculations in detail. Sections 3.1 to 

3.4 explain the calculational steps leading to the scattering amplitude and phase. Central-atom 

phase shifts are not calculated but Section 3.5 explains how they are extrapolated from Teo and 

Lee's results [I 1 1  in order to cover a bigger k-space range. In Section 3.6 the pressure dependence 

of amplitude and phase are investigated. 

Chapter 4 is a brief introduction to the phenomenon of mixed valence and contains information 

on the Sm rnonochalcogenides in particular. 

Details regarding the experiment are presented in Chapter 5. Most of the experiments were 

Performed at liquid-nitrogen temperature in order to reduce the temperature contribution to the 

mean-square relative displacement a*. Another reason for performing the high-pressure 

experiments at low-temperature is to investigate whether the continuous valence transition in SmSe 

becomes first order [I 2, 131. 



The easiest way to generate the pressure that drives the valence transition is to alloy SmSe or 

SmS with an element whose atoms are small. As the concentration of this element increases the 

lattice compresses and the alloy becomes mixed valent. It has to be noted, however, that this 

"chemical" pressure created by doping is not equivalent to pressure generated mechanically 

[I 4, 151 because the dopant introduces extra electrons in the valence and conduction bands. We 

prefer applying pressure mechanically because in this way we can study a "cleaner" system. 

Because the experiments are also carried out at low temperature a pressure cell that can operate at 

these temperatures had to be built. This is described in Section 5.9. An existing pressure cell that 

generated the pressure hydraulically could not be used because the oil would freeze at low 

temperature. Of the remaining sections in Chapter 5, the most important are 5.6 to 5.8. Section 5.6 

discusses the signal-to-noise ratio and Section 5.7 analyzes in which way the measured absorption 

coefficients are distorted by the presence of harmonics in the x-ray beam and pinholes in the 

sample. Section 5.8 describes how the pressure-volume calibration curves for 77K are obtained 

from those at room temperature. 

A fair amount of EXAFS data analysis has been covered in this work (see Chapter 6 in 

particular). This is so because EXAFS data analysis is still a topic of discussion as evidenced by a 

recent report [16]. The data analysis is not straightforward and if one is not careful one may obtain 

wrong results. A further reason for presenting the data-analysis procedure is to enable the reader to 

follow in detail how the measured data is modified until the final result is obtained (Sections 6.1 to 

6.9). These sections can be omitted on a first reading. The remaining sections should not be 

skipped because they contain information not so readily known. Section 6.10 describes in k- and in 

R-space the fitting procedure and how X2 is evaluated. Section 6.1 1 treats the beating of two 

closely-spaced coordination shells by analyzing the behaviour of the derivative of the EXAFS phase 

shift with respect to the wave vector k, rather than by analyzing the phase shift itself. Sections 6.1 2 

and 6.13 describe the determination of the valence of the Sm atoms. They refer to previous work on 

this subject [17]. Finally, Section 6.14 describes a fast new method for obtaining the pressure from 

normalized EXAFS datasets. 

The remaining four chapters are the most important ones: Chapter 7 contains the results 

obtained for SmSe and Chapter 8 contains those obtained for SrnS. Chapter 9 contains a discussion 

of these results while Chapter 10 is a summary of this work. 



Chapter 2: The EXAFS Equation 

The EXAFS spectrum for a system consisting of one species is given by the following 

expression [S, 18, 191: 
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Here v is the number density, which is defined as the average number of atoms per unit volume. 

If(k,x)l and %(k) are the magnitude and phase of the plane-wave complex backscattering amplitude 

f(k,x) of an atom located a distance R away from the central (absorbing) atom. In the plane-wave 

approximation the backscattering amplitude and the phase shift have no R-dependence. However, 

when curved-wave theory is included and expressed as an effective (complex) scattering amplitude 

then an R-dependence is introduced. This is discussed in Section 3.4 of the next chapter. Multiple 

scattering, which can modlfy amplitude and phase, is not considered in this thesis. SC(k) is the 

central-atom phase shift which for K- or Ll-edge EXAFS is given by 6,(k) = 2 6,  ( k b  . 6, (k) is the 1=1 

partial-wave phase shift (see Sections 3.4 and 3.5). For LII- or Llll-edge EXAFS the central-atom 

phase shift is equal to 2 h(k)  or 2 &(k) where h(k) and &(k) are the 1=0 and 1=2 partial-wave phase 

shifts, respectively. e-2WMk) is a damping tern resulting from the mean free path k(k) and ~ i ( k )  is a 

slowly-varying dimensionless function of k which describes the reduction of the EXAFS signal due to 
2 

multielectron excitations [20, 211. The values of So(k) are 0.7, approximately. g(R) is the radial 

distribution function which describes the R-dependence of the number density, averaged over a 

long period of time. g(R) is normalized such that 

where N = EN, is the total number of atoms in the system. In an ideal solid (no disorder) the atoms 

can be grouped in coordination shells around the central atom and the radial distribution function 

becomes: 



N, is the number of atoms in the jth coordination shell. 

A more realistic description of a solid is obtained by assuming broadened peaks rather than 

&functions. With Gaussian peaks, located at Rj, we obtain for g(R): 

Inserting this expression into Eq. (2.1) and writing sin(x) as lm(eix) produces: 

Here we have introduced the total phase 4(k) = 6,(k)+6b(k) . Since the integration cannot be done 
1 

analytically, we may expand - in a Taylor's series around R,. This, however, becomes rather 
~2 1 

laborious and instead we prefer to approximate - by an exponential which is tangent to it at Ri: ~2 

This approximation will lead to the same modification of the phase (see Eq. (2.8)) as found by others 

[22, 231. Inserting (2.6) into Eq. (2.5) yields after some tedious algebra: 



Values for o, are of the order of 0.1 A. This is much less than a typical coordination-shell radius R, and 

because R, itsetf is much less than the mean free path h, the lower limit of integration can be replaced 

by R, in E q  (2.7). Since the integrand becomes very small at 111 z 3 o, z 0.3 A << R, we can set the 

lower limit to - . Then the integral becomes ?d2n . After taking the imaginary part we have: 

If we assume o, << R, << h then we get the standard EXAFS formula for a one-component system: 

The new term, e-2qk2 , that we now have obtained is the EXAFS Debye-Waller factor which is a 

measure of static and dynamic disorder (see Section 2.4). 

From the condition R, << )L we conclude that Eq. (2.9) will not be reliable near the minimum of 

the mean free path. 

Eq. (2.1) suggests that we could obtain g(R) by inversion of the integral with the help of the 

Fourier transform. Practically the integration will be performed only over a finite interval of positive 

k-values and possibly some form of apodization will be used. We therefore include here a window 

function w(k-ko), which is centered at k ~ ,  and obtain a broadening in R-space: 



Here W(R) is the Fourier transform of w(k). w(k) and W(R) are both real and even. We now write sin(x) 
,ix - e - i ~  

in Eq. (2.1) as 2i and assume for simplicity that the mean free path is independent of k, i.e. 

h(k) -+ . This yields: 

For analytical simplicrty we make the assumption that the total phase 4(k) can be approximated by a 

straight line. This is a reasonable approximation over limited ranges of k if k > 6 A-I . Hence we write: 

Using 

we thus obtain: 

The second &function peaks at a negative distance where g(R) is zero. Therefore this term 

vanishes. (The negative value of pl is insufficient to make this &function peak at a positive value.) 

We then have: 



We see that the pair distribution function g(R), together with the mean free path term, is convolved 

with the Fourier transform of the k-space window function. Since deconvolution methods are 

unreliable no attempt will be made at deconvolution. 

If we employ the rectangular window of width Ak = k,,, - kmin for maximum resolution we 

obtain with 

m 

w w o )  
1 x(k' e14(~) )  = n v . IdR' g(R.) e-2R%) - R-R' (ei2bax(R-Rq)+i2kmin(~-~.)) . 

If(k,n)l - 
(2.15) 

The imaginary part of Eq. (2.15) is given by: 

If kmin = 0 , we obtain: 

OD 

m- ei4(k)) = n v . jdR g(R) e-2R1% 
sin(2km,(R-R')) 

'm ~~(w(k-%) 
- 

~2,(k) Iftk.n)l 4 

R-R' 

As k,,, 4 - ,  the function s~~(~~,,,(R-R'))/(R-R') approaches n 6(R8-R) and the integral 

becomes equal to n g(R) e - 2 w  . It is therefore essential that bin = 0 and k,,.,, become as large 

as possible. For this calculation a rectangular window function was assumed which, however, has the 

disadvantage that large sidelobes are produced when a Fourier transform is performed. It was also 

assumed here that the mean free path is independent of k. 



2.3 The W n t  F- 

A mathematical model for the radial distribution function is the expansion in cumulants [22]. This 

method yields the moments of g(R) e-2R1h(k) and provides the correction terms to the amplitude 

and phase due to disorder. 

Using Eq. (2.1) we can write: 

where the brackets signify the following average: 

The normalization constant B(k) is calculated from: 

Eqs. (2.2) and (2.18) can be employed to obtain an expression for the number density v: 

Following Ref. 24 we can express ~ ( k )  either in terms of the moments or of the cumulants of this 

distribution: 



The wmulants can be expressed in terms of the moments of the distribution: 

C1 = <R> 

C2 = <R2> - <R>2 

C3 = <R3> - 3 cR> <R2> + 2 <W3 

C4 = <FI4> - 3 < ~ 2 > ~  - 4 <R> <R3> + 12 <R2> - 6 <Fb4 

etc. 

These equations can be inverted: 

<R> =C, 

<R2> = C2 + c12 
< R 3 > = c 3 + 3 c 1 c 2 + c 1 3  

< R ~ > = c ~ + ~ c ~ ~ + ~ c ~ ~ c ; , + ~ c ~ ~ + c ~ ~  
etc. 

For ~ ( k )  we obtain: 

x sin I 6t(k) + x k f v 2  (2n-I)! pq2n-1 c 2n-1 . 



Employing Eq. (2.20) we get: 

Thus the even cumulants modify the amplitude and the odd ones modify the phase. 

According to the above, C1 = <R> . In the limit of small disorder the pair distribution function can 

be approximated by a Gaussian and C2 = c? and all higher-order wmulants vanish. In this case, if 

<F12 e2R/h(k) > can be approximated by FI2 e2Wh(k) , Eq. (2.23) reduces to 

Eq. (2.9) for one single shell. (B(k) is a slowly varying parameter.) 

The cumulant expansion is an expansion about k = 0 . The cumulant coefficients C, are 

obtained by fitting ~ ( k )  over a finite interval kmin < k < k,, . According to Section 2.2, it is desirable 

that kmi, = 0 in order to determine g(R). Practically, however, kmi, will always have a finite value. The 

determined cumulant coefficients will therefore depend on the fitting interval. Thus the C, are not 

unique. The cumulant expansion, however, provides a convenient functional form to extrapolate to 

kmin = 0 . One can then use the Splice Method [19,23] to obtain g(R). The method will work if 

multiple scattering does not occur. 

The EmFS Debye-Waller factor is given by e-220j2k2 where oi2 is the mean-square relative 

displacement which is defined as: 

Here the distances are referred to the central atom which is considered as being at rest. According to 



Refs. 23 and 25 one can express oi2 in terms of the phonon spectrum as: 
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Here p is the reduced mass of the absorber backscatterer pair and pi(.) is the projected density of 

phonon modes, i.e. the densrty of modes assuming the central atom is at rest. In many cases this 

density can be approximated by a single &function, G ( c ~ w ~ ~ ) ,  where o ~ i  is the Einstein frequency 

for coordination shell j. Then oj2 is given by: 

For temperatures above approximately the Einstein temperature oj2 increases linearly with T. For 

lower temperatures the behaviour is parabolic with a limiting value of)T.O = & & . In some cases 

the Einstein frequency wEj (or Einstein temperature OE,) can be estimated from force constants but 

it is usually determined from a fit to o j2 (~ ) .  A comparison w lh  resuls of Raman measurements 

showed close agreement of the Einstein frequencies as obtained from EXAFS with the average of 

the symmetrical stretching mode frequencies [26]. The force constant of an absorber backscatterer 
2 

pair, linked by a bond, can then be estimated from f~ = p WE. 

Values for o,2 generally increase wlh distance from the central atom. 

Frequently the Einstein model is employed (e.g., for tetrahedrally coordinated 

semiconductors), but for metals the Debye model may be a better approximation. 

Many body effects cause the decay of the excited state of the absorbing atom. They are 

manifest in the finite mean free path h(k) which results from the excitation of plasmons, electron- 

electron and electron-phonon interactions, and from the creation of electron-hole pairs. 

Muhielectron excitations also play a role in filling up the core hole and they produce a k-independent 

overall reduction of the EXAFS signal. Of these effects the EXAFS equation only contains the one 



due to the mean free path. The mean free path was investigated as a function of energy by Lindau 

and Spicer [2Tj and found to follow a "universal" curve for many elements and compounds. A more 

thorough analysis was presented by Seah and Dench [28]. They investigated elements and 

inorganic compounds and found curves for the two classes when they express h as a multiple of the 

number of monolayers. Converting monolayers into lengths involves the density. Therefore their 

result becomes density dependent. Besides, an extra factor of 2 is included because Seah and 

Dench's values refer to intensities whereas the EXAFS function contains amplitudes [29]. The result 

is then: 

Here a and p have the following values: 

a = 538 ( e ~ ) ~  and p = 0.41 (eV for elements and 

a = 2170 (ev12 and f3 = 0.72 (eV ~ 1 - l ~ ~  for inorganic compounds. 

v is the number density, i.e. the number of atoms per unit volume, and E is the energy of the 

photoelectron. 

For inorganic compounds we found from preliminary curve fits that the mean free path 
2 

according to Eq. (2.27) leads to coordination numbers that are too small, implying that So equals 0.5. 

Seah and Dench [28] investigated only ten inorganic compounds and stated regarding the validity of 

their results that 'The experiments to determine inelastic mean free paths are very difficult and it is 

usually not possible to assess the experimental errors since the most important information, the 

adsorbate morphology, cannot usually be monitored independently." and that "Measurements for 

compounds by several different laboratories would enable the general differences in inelastic mean 

free path magnitude between elements and inorganic compounds to be clarified.". We therefore 

decided to employ for compounds the values a = 538 ( e ~ ) ~  and f3 = 0.41 (eV , 

corresponding to elements. l 

'After completion of the thesis, the program FEFF by Rehr et al. became available. The mean free path calculated 
for SmSe using FEFF was close to the value for copper shown in Fig. 2.1. 



Defining 

and 

we obtain using E = y k2 : 

h as a function of k (or E) exhibits a minimum at some k = ko . Differentiating with respect to k we 

arrive at the following relation for q: 

where hi, = h(b)  

The term k/q dominates h for k > 6 A-I (= 150 eV). For q we obtain: 

For RbCl we have used for the calculation of q its number densw of 34.063 . 1 o - ~  A-3 just after the 

NaCI-to-CsCI phase transition occuring at 5.2 bar .  

The following figure shows the mean free path A for some materials that are of interest in this 

work. The curves are calculated using Eq. (2.27) or (2.30). They are similar for all substances. 



Fig. 2.1 : Inelastic mean free path h as a function of k according to Seah and Dench [28] and 

including a factor of 2 to convert from intensities to amplitudes. The parameten a and p were chosen 

as a = 538 ( e ~ ) *  and p = 0.41 (eV A)-'/* . 

The finite mean free path corresponds to a lifetime re of the photoelectron: 

k 
For k > 6 A-1 we have vk) = - and .re becomes independent of k: 

ll 

AS a consequence the finite lifetime re resulting from many body effects can be incorporated into 



the single-particle EXAFS formula by a Lorentzian broadening with a width re according to 

Heisenberg's uncertainty principle: 

We obtain for re :  

It is instructive to relate the mean free path in the form h(k) = k/q to an imaginary component 

-Vlm of the scattering potential [30]. This gives rise to an imaginary component klm of the wave 

vector. We have: 

We will assume that Vlm << E and therefore klm << k . Then we get: 

Using Eq. (2.36) we obtain: 



Now we can rewrite Eq. (2.35) as T, = VI, in accordance with the assumption VI, << E . 

The Lorentzian broadening, which is described by 

produces in the time domain a multiplication with the Fourier transform of w,(E): 

We can relate time with distance by noting that the photoelectron travels the distance 2R in time 
1 

t = 2 ~ 1 v  . For re we can wnte: T, = 2 b(k)/v . The factor 112 is necessary because b(k) is the EXAFS 

mean free path, which refers to amplitudes. We thus obtain for the factor that multiplies the radial 

distribution function: e-2Wk(k) . 

For very small values of k the k-4-term in Eq. (2.30) becomes important and the width T, 

becomes a function of k (or E). Thus w,(E) is not Lorentzian anymore. We will not consider the 

Fourier transform of this function. At low k we will use instead the above expression e-2Wk(k) with 

h(k) as given by Eq. (2.30). 

The lifetime of the core hole is finite because the hole is filled through radiative and Auger 

transitions. If the core hole is not in the K-shell then Coster-Kronig transitions, which shorten the 

lifetime considerably, also come into play. The finite core-hole lifetime results in a Lorentzian 

broadening of the absorption spectrum with a width Tc: 

Values for r, can be found in Refs. 31 to 33. From Ref. 31 we obtain: 



We see that the core-hole width increases with binding energy, thus corresponding to a 

decrease of core-hole lifetime. We also note that the core-hole widths rc are comparable to the 

widths re describing the finite lifetime of the photoelectron. 

For the sake of completeness, although not needed here, the following formula to calculate the 

width of a core hole in the K-shell of elements with Z > 40 is mentioned (341: 

The twofold convolution of the EXAFS spectrum with the Lorentzians Eqs. (2.39) and (2.41) is 

equivalent to the convolution with a single Lorentzian of width re + T, . The core-hole width Tc is 

obviously independent of k as is the case for re above -6 A-l. Therefore we can absorb the core- 

hole width in the mean free path constant q using Eq. (2.35) 

where y is the constant defined in Eq. (2.28). 

Thus, for k > 6 A-1 the contributions from the finite mean free path as well as from the finite 

core-hole lifetime can both be accommodated in the modified mean free path constant 7/ of 

Eq. (2.43). If this is done the EXAFS equation, Eq. (2.1 ), takes these important many body effects 

into account. 



Chapter 3: Amplitudes and Phases 

In this chapter the calculation of scattering amplitudes and phases will be presented. It is 

convenient for this purpose to use atomic units. This will be done with the exception of Section 3.1 

where relativistic units are employed. For a description of units see Appendix A. EXAFS amplitudes 

and phases have already been calculated by Teo and Lee [ I  I ]  in the plane-wave approximation. The 

present calculation was motivated for three reasons: 

i 

ii ) 

iii ) 

Application of the curved-wave formalism of Schaich [q and McKale [8-101. 

This requires knowledge of the partial-wave phase shifts 4(k) which are not listed in Teo and 

Lee's work. 

Extension of the k-space interval for amplitudes and phases. 

Teo and Lee's tabulations of amplitudes and phases extend from kmi, = 3.78 A-1 to 

k,, = 15.12 A-l while in the present work the scattering amplitudes and phases are 

calculated for an interval of kmin z 1.5 A-l to k,, r 21 A-l . 

Inclusion of crystal potentials. 

It is desirable to include in the calculation crystal potentials to describe a solid, elemental or 

compound, rather than employing potentials for single atoms. We will employ the muff in-tin 

approximation for the crystal potential. 

The procedure for calculating amplitudes and phases is briefly as follows: First atomic charge 

densities are calculated, then a muffin-tin potential is formed, for which the wave equation is solved. 

From the wave function the logarithmic derivative is calculated which immediately leads to the phase 

Shifts. An alternative approach, to be tried in the future, is that of calculating the phase shifts directly 

from the potential, i.e. without logariihmic derivatives, according to the variable-phase method 

135, 361. 

3.1 
. . 

of 

Atomic charge densities are calculated from the time-independent Dirac equation: 



Here W is the energy including the rest energy. P and the three components of a are 4 x 4 matrices 

[37l and is a four-component column vector. The polar form of the Dirac equation is: 

1 
Here a, = - (a.r) and K = (0.1 + 1) and the wavefunction is [38]: r 

( is an eigenfunction of the Hamiltonian and also an eigenfunction of the operators j2, j,, and K with 

eigenvalues j(j+l) , p, and -K, respectively. p runs from -j to +j . K is a non-zero integer and is given 

by : 

P 
For electrons the two upper components of yK are much larger than the lower ones. (The 

Opposite is true for positrons.) Thus g,(r) is called the "large component" while f,(r) is dubbed the 

"small component". Inserting Eq. (3.3) into Eq. (3.2) produces the following two coupled differential 

equations for the radial functions g = g,(r) and f = f,(r) : 



These radial wave functions are normalized such that 

and the local charge density is calculated by adding the contributions of each electron: 

In order to calculate the wave functions of a system of more than one electron we have to solve 

the Hartree-Fock equations: 

The integrations include summing over the spins. HI is the Hamittonian of Eq. (3.1) for an electron at 

position rl. r12 is its distance to another electron at r2. The first summation on the left-hand side of 

Eq. (3.8) is the average Hartree potential, which is the Coulomb energy of an electron at rl caused 

by electrons. This means that the electron at rl is acting on itself too. The second summation, the 

exchange term, corrects this deficiency by keeping electrons of like spins apart.This summation 

results from the use of antisymmetrized wave functions and it leads to a reduction of electrons of like 

spin in the vicinity of a given electron, called the "exchange-correlation hole". Besides this exchange 

Correlation, all electrons are subject to their mutual Coulomb repulsion giving rise to a "Coulomb- 

Correlation hole". The Hartree-Fock equations, however, do not include this latter effect. For 

electrons of like spin, which are already kept apart, Coulomb correlation is not very important but the 



effect is larger for electrons of unlike spin. Eqs. (3.8) hold only for filled shells. Open shells, which 

exhibit a multiplicrty of energy levels greater than one, are much more complicated to calculate. 

The exchange term constitutes the main difficulty in solving the Hartree-Fock equations (3.8) 

because the number of exchange integrals that must be computed increases rapidly with the 

number of occupied orbitals. Slater [39] found that the exchange potential can be simplified by 

proper averaging. Furthermore, he applied the result to a free-electron gas and then obtained the 

following approximation for the exchange potential (see Ref. 40 for a discussion): 

p(rl) is the local charge density given by Eq. (3.7). This means that the exchange potential due to 

Slater replaces the non-local exchange appearing in the Hartree-Fock equations by a local 

exchange. This is not without problems because one Cannot always expect a local potential to 

correctly model the true exchange [41]. The exchange potential should also be energy dependent 

in order to produce good scattering phases (42, 431. Nevertheless Slater's exchange potential has 

been found quite useful. It is a good approximation for low photoelectron energies [3] as confirmed 

by many bandstructure calculations. Note that this exchange potential is attractive. Slater's exchange 

potential formed the basis of the Xa method [44] where the exchange appears as 

a Vexch. with a = 213 and c + , ~ ~ ~ ~ ~ ~ ~ ~  z 0.7 . Values of a have been calculated for a number of 

elements [45]. The results do not differ much from qptimized. Eqs. (3.8) employing (3.9) are also 

referred to as the "Hartree-Fock-Slater" €qJations ['lo]. 

In this work only spherically-symmetric potentials will be considered. Therefore r, can be 

replaced by r. Slater's form of the exchange energy vanishes for large values of r. Consequently, an 

electron far away from the nucleus would experience no force acting on it whereas it should be 

subjected to the attractive force of the nucleus minus the charge of N - 1 electrons, i.e. one 

elementary charge. In order to remedy this discrepancy we modify the exchange potential of Eq. 

(3.9) according to Latter [40, 46): 



2 2 
ro is the position where the function - - intersects Vex,h. (r): - - = V e x  ( r )  . (3.1 1 ) r ro 

The modified potential iexch, (r) has a discontinuous slope at ro but this does not result in 

discontinuities of the radial wave functions or their first and second derivatives at ro. 

The calculations were performed using a FORTRAN program, wntten by J.P. Desclaux (see also 

Ref. 47) and obtained from J.E. Muller. It performs self-consistent Dirac-Hartree-Fock-Slater 

calculations. Initial energy eigenvalues are obtained from Ref. 40. Although later on we will confine 

ourselves to non-relativistic results, it is still advisable to calculate atomic charge densities 

relativistically, particularly those for the heavier atoms. 

For descriptions of multi-configuration Hartree-Fock codes see Refs. 48 to 51. 

We model the crystal potential by placing non-intersecting spheres around each atom. Inside 

these spheres the potential is assumed to be spherically symmetric. In the interstitial region between 

the spheres the potential is constant. This is the well-known muffin-tin model of a crystal potential. It 

becomes a better approximation as the spheres fill up the space. Therefore crystals of fcc, hcp, bcc, 

or sc type are good candidates, whereas open structures, like diamond, cannot be described well by 

muffin-tin models. The maximum filling factors for these crystal structures are: 0.74 (fcc, ideal hcp), 

0.68 (bcc), 0.52 (sc), but only 0.34 for diamond. The NaCl structure, in which the Sm-monochalco- 

genides crystallize, has the same filling factor as the sc structure if equal spheres are assumed. Even 

in a dense structure, like fcc, the muffin-tin potential is not a good approximation to the real potential 

along those directions in the crystal lattice where the (linear) density of muffin-tin spheres is low, for 

example the [ I  1 11-direction in the fcc structure. It is convenient to set the constant interstitial 



potential equal to zero. The energy scale is then referred to the so called "muffin-tin zero". A typical 

muffin-tin potential is sketched in Fig. 3.1. 

Atom A Atom B 
I I Vacuum Level 

Fig. 3.1 : Muff in-tin potential along the [ I  101-direction in the fcc structure. The distance between 

the two atoms is (R.~,~ + RUT B) fi . Inside each atomic sphere the potential is shifted by a 

constant amount. The muffin-tin radii have been chosen such that the unshifted atomic potentials 

would intersect along the [ I  001-direction. Other choices of the radii are possible [52]. 

It is desirable to calculate the potential self-consistently. Satisfactory results can also be 

obtained if one constructs the muffin-tin potential in one of several non-self-consistent ways. One 

procedure is called the Mattheiss prescription [53], in which the potential is constructed in the 

following way [54]. First the atomic charge densities are calculated self-consistently and, preferably, 

relativistically. Then Poisson's equation is solved to determine the atomic potentials. There can be 

different types of atoms present and we call the one whose muff in-tin contribution we are calculating 

the central atom. To the potential of the central atom we now have to add the contributions from the 

neighbouring atoms. This is done by spherically averaging the atomic potentials of the neighbours 

with respect to the central atom and then adding the result to the central-atom potential: 

Here the sum is over the potential tails of the neighbouring atoms, spherically averaged with respect 

to the central atom. In a crystalline solid the neighbouring atoms can be grouped in coordination 

shells around the central atom. For solids consisting of different types of atoms it is possible for a 



coordination shell to contain atoms of different types. For the NaCl structure, however, it turns out 

that this is not the case. All shells are "pure". The same applies to the CsCl structure [55, 561. The 

radii and coordination numbers have been tabulated for various crystal structures [54, 57-59]. 

In the present work only the first 15 coordination shells are considered in the calculation. 

(Loucks (541 employs 14 shells and Rehr et al. [60] use 34 coordination shells in a calculation for Cu.) 

The effect of higher coordination shells is to flatten the crystal potential between the atoms, an effect 

which to some extent the muffin-tin potential already takes care of due to its construction. 

Eq. (3.1 2) constitutes the Coulombic part of the potential. The other part comes from the 

exchange potential: 

We have again employed Slatefs exchange potential. This is necessary for consistency. The effect 

of the exchange potential is sizeable in comparison with the cohesive energy and using different 

formulae for exchange for the calculation of charge density and muff in-tin potential would produce 

the wrong result. The sum in Eq. (3.14) is again over the contributions of the neighbours. We have 

not modified the exchange potential as we did in Eq. (3.10) because now we calculate an 

rdependent exchange potential only for r s RMT << m . Note that unlike our procedure for the 

Coulombic part we now spherically average the charge density instead of the atomic potential. This, 

by the way, constitutes an approximation to Slatefs exchange because only the spherically- 

symmetric part of the charge density is involved. 

The final result for the potential with respect to the central atom is then: 



Now we have to determine the value of the constant potential in the interstitial region. This can 

be done in two ways: One consists of averaging the spherically-symmetric potential at a given site in 

the region from r = RMT to r = RWS , where RMT is the muffin-tin radius and RWS the Wigner-Sertz 

radius [54]. The other, more precise, way consists of calculating the average potential by three- 

dimensional integration over the interstitial region. In the present work both methods are employed. 

For elemental solids the potential is calculated by the first method whereas for compounds, like 

SmSe, we employ the second method which allows us to calculate better the value of the interior 

potential with respect to the muffin-tin constant, i.e. the jump discontinutty of the potential at RMT. 

This discontinuity is adjusted such that the averaged interstitial potential becomes zero. Then the 

potential inside a muffin-tin sphere corresponds to the electronic charge density contained within 

the sphere. The value AVi of the discontinuity for an atom of type i at RMT i is calculated as indicated 

in Ref. 61: 

The first term is the average of the interstitial, or external, Coulomb potential over the surface of 

muffin-tin sphere i and the second term is the average of the external Coulomb potential over the 

volume of the interstitial region. 

The calculation of the average external Coulomb potential can be performed by reducing the 

present problem to the so called "Ewald problem" [62]. Ewald calculated the potential of point 

charges embedded in a constant charge density of opposite polarity such that the net charge was 

zero. We can express the present case as an Ewald problem by calculating the average interstitial 

charge density and continuing it into the muffin-tin spheres. We will consider here only the NaCl 

Crystal structure. The charge contained inside a given muffin-tin sphere is, in units of the elementary 

charge: 



i labels the the two different types of atoms in the NaCl unit cell. The interstitial charge densrty p for 

this structure is: 

a is the lattice constant. We now write for the charge inside the muffin-tin spheres: 

The term outside the brackets is the uniform background of electronic charge extended into the 

muffin tin. Note that p was defined positive. The term in brackets will be called here the Ewald charge 

QEwaldni. It is the value of the point charge located at the position of an atom of type i. 

The Ewald problem for the case of the fcc structure has been described in Ref. 63 (see also 

Ref. 54). The result for the NaCl structure can be obtained by superposition of two fcc results, 

shifted by a12 with respect to each other along the y-axis, say. The Coulomb potential of these 

with 

and 



a is the lattice constant and 1, m, n are the direction cosines: 
X z 

1 - m y ,  n -  . (3.24) 
r '  r r 

The constants are: A. = -4.584850, A4 = -18.687, A6 = -1002.05, A8 = 2326.1 . (3.25) 

The first term in Eq. (3.21) is the Coulomb potential of a charge QEwald,, located at (0,0,0) and the 

Second term is the potential of a charge Q E ~ ~ ~ ~ , ~  at (0.ah.0) . The factor two results from the fad 

that we are using atomic units rather than cgs units as in Ref. 63. Now that the Coulomb potentials 

are known the surface and volume averages for Eq. (3.16) can be calculated. These averages need 

only be performed over 1/48 of an fcc Wigner-Seitz cell centered at (0,0,0). The calculation is 

Complicated by the fact that the second term in Eq. (3.21) is not centered with respect to the sphere 

over which the surface average is to be performed. Therefore the integration is carried out 

numerically. The discontinuity AVi at the muffin-tin radius of atom i can be expressed as: 



Now we have to consider the exchange potential. In the interstitial region we calculate it as: 

p x t .  113 
exch. 

where p is given by Eq. (3.18). Since the exterior exchange potential is taken to be constant one can 

simply subtract it from the total potential inside and outside the spheres. It does not contribute to the 

jump discontinuity at the muffin-tin radius. 

The result for the average interstitial potential is, taking into account Coulomb- and exchange- 

Contributions: 

- ext. 
Vext. = V(RMT,i) - AVi + %xch. . (3.28) 

Mve,. is subtracted from the muffin-tin potential then the potential in the interstitial, or external, 

region vanishes. Within the i-type spheres the shifted potential is: 

Vtotal i (r) is simply the sum of Coulomb- and exchange-potentials, Eq. (3.15). This result should be 

compared to Ref. 65, which differs in some respects. 



Although this discussion focussed on a compound solid like NaCl it is of course also valid for an 

elemental solid like Cu. For Cu, however, one may use the simplified method mentioned before 

where one averages the potential in a shell with inner radius RMT and outer radius R W S  For Cu the 

results of both methods were similar. 

Now we must choose the muffin-tin radius. There is no difficulty in selecting the value of the 

muffin-tin radius for an elemental solid because all muffin-tin spheres have the same radius. For 

touching spheres their radius simply becomes proportional to the lattice constant a. For the fcc 

Structure Rm = 6 . If the solid consists, however, of different types of atoms then one has to 4 
decide on the respective values of their muffin-tin radii. This will be explained for the NaCl structure. 

Essentially, we will determine the radii from the intersection of two potentials centered at the 

respective atom sites. These potentials depend, however, on the muffin-tin radius which is not yet 

known. Thus we start out with equal spheres and construct muffin-tin potentials for each atom type 

according to Eq. (3.29). These potentials are then simply extended beyond their muffin-tin radii in 

order to find their point of intersection. This gives a new set of radii. Then we repeat the above 

procedure until convergence is achieved. For touching spheres in the NaCl structure we always 

have: 

In this case the minimum filling factor of = 0.524 (compare sc) occurs when the two radii are equal 

to . The maximum filling factor of (5 - 3 fi) = 0.793 m r s  when one of the two radii has 

its maximum value of 4 . 

As an alternative to the procedure of determining the muffin-tin radii from the intersection point 

Of the potentials, which is applied here, it is frequently suggested that the radii be chosen such that 

the jump discontinuities AVi become minimal. For SmSe it was found that this leads to one species 

having a much larger muffin-tin radius than the other, thus approaching the situation where the filling 

factor is maximum. If one chooses the muffin-tin radii of Sm and Se according to Norman [52] such 

that their ratio is equal to the ratio of the atomic numbers of Sm and Se then one also obtains a much 

larger radius for the Sm atoms. It would be interesting to compare scattering amplitudes and phase 

shifts for SmSe calculated for different choices of the muffin-tin radii of the Sm and Se atoms. 



Finally we have to take into account that the atomic charge densities and the muff in-tin 

potentials are only given for a set of discrete r-values. These are chosen to lie on a grid suggested by 

Loucks [54]: 

Loucks' logarithmic grid puts more points in the region near the origin where the potentials are 

rapidly varying. The j-scale is thus expanded in that region. To convert to SI units simply multiply R, by 

agohr In this work we only choose muffin-tin radii that lie on Loucks' mesh. This results in cases 

where the spheres do not touch, or, conversely, are allowed to overlap slightly. The muffin-tin radii 

were selected such as to minimize this discrepancy in a least-squares sense. Obviously, one can 

improve on this through interpolation procedures, allowing for r-values that are not on Loucks' grid. 

On the other hand, the precise value of the muffin-tin radius for a given lattice constant is not too 

critical (661. 

With this constraint and according to the method described above, the muffin-tin radii for SmSe 

and for Cu were chosen as: 

Sm2+se: a = 6.200 A = 1.590 A = 1.51 2 A (slghl ovedap) 

- - - - 

Srn3+se: a = 5.7 A RMT,Sm3+ = 1.438 A RMTtSe = 1.368 A 

Cu: a = 3.61 A RMTVCU= 1.238 A 

Indicated in brackets is the corresponding index j of Loucks' mesh, Eq. (3.31). 



In order to match interior and exterior wave functions at the muffin-tin radius one has to require 

that the two wave functions have the same value and slope at RMT. This must be true independent 

of the normalization constant. Therefore one can merely require that for interior and exterior wave 
1 dY 

functions the ratio of slope to value, i.e. - - , be the same at r = RMT . Since this expression Y dr 
resembles the derivative of log Y, it is called the logarithmic derivative. This, however, does not imply 

that Y be always positive. Some of the properties of the logarithmic derivative have been described 

in Ref. 61. 

At the muffin-tin radius there can be a jump discontinuity of the potential. In this case the 

Schadinger equation is not defined at RMT and the requirement that value and slope of the wave 

function be continuous does not follow directly. Nevertheless it can be shown that these continuity 

conditions hold [67]. 

In this work the logarithmic derivative will always be expressed in the dimensionless form 
R m  dY DI(E,RFAT) = - - . At the muffin-tin radius the logarithmic derivative will be matched to the 
Y dr I 

logarithmic derivative for a free electron given by: 

k = 0 corresponds to the constant value of the interstitial potential. jl(x) is a spherical Bessel function 

as defined in Ref. 37. 

In order to calculate the logarithmic derivative inside the muffin-tin spheres one has to solve the 

radial SchrOdinger equation numerically, starting near r = 0 . Loucks' mesh begins at 

r = R, 1.5.10-4 agOh, where the potential has a value comparable to or bigger than the electronic 

rest energy. Hence it becomes necessary to take relativistic effects into account. This is done by 

solving the radial Dirac equation instead. As explained in Section 3.1 this means solving the coupled 

equations (3.5). These two equations are converted to atomic units by multiplying energies by 2/c2 



and lengths by J 2 .  At the same time one has to keep in mind that W contains the rest energy, that is 

W = E + 1 . The result is then [54]: 

V m V(r) is the potential inside a muffin-tin sphere and E is the energy of the electron, which now 

does not include the rest energy. Like Eqs. (3.33) and (3.34) the radial Schrodinger equation, too, 

can be written as a system of two first-order differential equations. When this is done it can be shown 

that Eqs. (3.33) and (3.34) reduce to the non-relativistic case if, besides c -+ m , the following 

relations hold: 

j=1+1/2 and K=-1 -1  . (3.35) 

In the non-relativistic limit g, the large component, approaches the solution of the radial 

Schrddinger equation and f goes to zero. The dimensionless logarithmic derivative is therefore 

calculated from Eq. (3.33) as: 

This equation has to be evaluated at the muffin-tin radius RMT It is convenient to introduce the two 

new variables [54]: 



Furthermore, we put the abscissa on a logarithmic scale: 

x= In r ;  rdx=dr 

and obtain in place of Eqs. (3.33) and (3.34) by using Eq. (3.35): 

dQ - = - ( I  + 1)Q-eX(E-V)P . dx (3.40) 

In terms of the new variables P and Q one obtains for the logarithmic derivative from Eq. (3.36): 

1 dP 
(The left-hand side can be written as p - 1 but this is not needed here.) 

Since we are not interested in effects of the spin we remove the spin-orbit term that 

automatically arises from the Dirac equation. In atomic units the spin-orbit interaction has the form: 

With the choice (3.35) of j and K one obtains 2 L.S = 1 . Using 2 m = 2 (E - v)/$ + 1 , which is 

derived from rnc2 = me$ + E - V , one obtains for V,.,. expressed as a function of x: 

The spin-orbit term will be significant only near the nucleus. V,.,. is suppressed by subtracting it 



from V in Eqs. (3.39) and (3.40). Since the correction is much less appreciable for Eq. (3.39) it is 

applied only to Eq. (3.40). The set of coupled differential equations, that is to be solved, is then: 

The logarithmic derivative, Eqs. (3.36) and (3.41 1, remains unchanged. 

Q 
Note that one can readily obtain a first-order differential equation for the quantdy p which is 

directly related to the logarithmic derivative. Combining Eqs. (3.39) and (3.44) one obtains: 

Q Q 
This Ricatti differential equation for p is not suitable for numerical integration because p can 

develop singularities at certain values of the radial coordinate. We therefore solve the two coupled 

first-order equations (3.39) and (3.44) which constitute an initial-value problem. In order to start the 

integration it is necessary to have starting values PI, Ql for P and Q. Since the system is 

homogeneous one can choose one starting value, PI say, to be arbitrary and determine Q1 from 

= ( )  p . Therefore one needs to know an initial value for p = - . The r-integration begins 
9 

very close to the nucleus where the potential is Coulomb like: 

In this case the spin-orbit term, Eq. (3.42), becomes: 



For 1 # 0 the spin-orbit term dominates for small r over the Coulomb potential. One determines 

then (F) by assuming solutions of Eqs. (3.39) and (3.44) in the form of power series in r (similar to 
1 

Ref. 37, p. 485). The result is a complicated expression that is omitted here. 

However, for the case 1 = 0 , or generally for a mere Coulomb potential, one obtains for the 

initial value of the logariihmic derivative to lowest order (Ref. 68, Eq. (5.71)): 

The energy dependence of the initial value ( )  is weak and therefore not taken into account. 

The final result does not depend sensitively on the starting values. 

Once P1 and Q1 have been given the integration is started using the fourth-order Runge-Kutta 

method [69, 701 for the first six points and then calculating the result for the remaining 244 points of 

Loucks' mesh by the Milne Predictor-Corrector method [54, 711. 

The complex scattering amplitude f can be decomposed into magnitude A and phase $. In this 

Section we follow EXAFS terminology and call the magnitude of the complex scattering amplitude 

simply "amplitude". 

Amplitude and phase depend on the magnitude k of the photoelectron wave vector and on the 

scattering angle 8. They also depend on whether plane or spherical waves are assumed. In the latter 

case the scattering is a function of the distance R between emitter and scatterer. For R + m the 

results of the curved-wave case approach the plane-wave result. The curved-wave modifications can 



all be incorporated into amplitude and scattering phase. The central-atom phase 6, remains 

unaffected. However, the curved-wave modifications of amplitude and scattering phase depend on 

the symmetry of the central-atom phase shift, i.e. on the angular momentum 1 of the photoelectron. 

In the following the plane-wave and the curved-wave cases are discussed. The equations are written 

down for an arbitrary scattering angle 8. For backscattering one has 0 = rc and Pl(cosx) = (-I)/ . 

Amplitude and phase are calculated from the tangent of the phase shift which is given by 

Ref. 37: 

- 
V MT is the constant interstitial potential. The sums that appear in the remainder of this chapter are 

from 1 = 0 to 1 = I,, . Knowing the muffin-tin radius one can estimate the maximum value kmax of k 

for a given maximum value lmax of 1 according to Ref. 37, p. 121 : 

From this equation we can immediately deduce the additional k-space gain Ak for each increase of 

I,,, by one: 

Thus one can divide the k-scale into channels of width Ak, labeled by 1. 

There are other formulae to estimate kmaX, for example [60]: 

d lmax  (lmax+l) ha,+ 2 
%ax = or (see Section 3.6): kma = 

RMT RMT 



a) Plane-Waves 

From elementary quantum mechanics the complex scattering amplitude f(k,8) is calculated 

according to: 

Here 8 is the scattering angle and the 6/(k) are partial-wave phase shifts. It is assumed that the 4(k) 

have been calculated using a real potential. Thus the 61(k) are real functions, too. Eq. (3.52) can be 

cast into a form that involves the partial-wave phase shifts only via tanal(k): 

This form is very useful because according to Eq. (3.49) the phase shifts are calculated in the form 

tar16~(k) from the logafdhmic derivative. Eq. (3.53) shows that the complex scattering amplitude 

depends on 61(k) modulo x, not 2rc. 

The calculation of the partial-wave phase shifts was described in the previous sections. Now 

With al(k) known we can employ Eq. (3.53) to calculate the backscattering amplitude A(k,x) and the 

backscattering phase $(k,x) in the plane-wave approximation. We will show these results for the case 

of copper. At the same time we compare them with the tabulated data of Teo and Lee [ I  11, shown as 

dashed curves. 



Fig. 3.2: Backscattering amplitude for copper metal calculated in the plane-wave approximation. 

The dashed line is the result of Teo and Lee [I I]. Teo and Lee's amplitude is smaller because they 

include inelastic effects through a complex potential. 



Fig. 3.3: Backscattering phase for copper metal calculated in the plane-wave approximation. The 

dashed line is the resuk of Tea and Lee [ I  11. There is a large discrepancy at low k-values which is 

most likely due to differences in the potentials. At larger k-values a small discrepancy in the slopes of 

the two phases occurs. 

The curved-wave formalism of McKale et al. [8-101 is based on the work of Schaich [ T j  and 

Muller and Schaich (721. It has the advantage that the form of the EXAFS equation remains 

unchanged because the curved-wave effects can all be put into amplitude and phase. This formalism 

does not include multiple-scattering contributions. It is argued that the EXAFS spectra can be 

explained by a single-scattering theory down to very low k-values [72]. This cannot always be taken 

for granted though (731. An approach to curved-wave theory, that includes multiple scattering, is 



given by Refs. 74 and 75. Also of interest in connection with curved-wave theory are three papers by 

Barton and Shirley [76-781. 

The main effect of curved-wave theory is to introduce an R-dependence where R is the 

distance from the absorbing atom to the scattering atom. For this reason the complex scattering 

amplitude must now be written as f(k,e,R). The plane-wave case would then correspond to f(k,e,m). 

Note that no R-dependence was considered in the derivation of the standard EXAFS equation in 

Section 2.1. Amplitude and scattering phase also depend on the angular momentum of the 

photoelectron. For K- or LI-shell absorption one has 1 = 0 , whereas for LII- or Llll-shell absorption 

one has 1 = 0 or 1 = 2 . However, 1 = 2 is favoured 50:1 over the case 1 = 0 [I I]. Therefore the 

latter is ignored. 

i )  K- or LI-shell absorption: 

The result for the complex scattering amplitude is [8]: 

h; (x) is an outgoing sphedcal Hankel function. Here it is defined as follows: 

Jl (x) and nl (x) are the spherical Bessel and Neumann functions, respectively. They are defined as in 

Ref. 37. With the definition (3.55) one has: 



Thus the term in square brackets on the right-hand side of Eq. (3.54) becomes in the limit of large R 

equal to ei2kR/(k2~2) and Eq. (3.54) correctly yields the plane-wave result of Eq. (3.52). 

As in the plane-wave case it is useful to express Eq. (3.54) as a function of tanbl(k). The result 

is: 

Al(kR) and Bl(kR) are given by: 

The curved-wave formalism has been programmed according to Eqs. (3.57) to (3.59). (For the 

spherical Bessel and Neumann functions a stable algorithm according to Ref. 79 was employed.) 



Cl(kR) and Dl(kR) are given by: 

(There should be no confusion with the logarithmic derivative, labeled as D,(E,r).) 

The pl and ql are polynomials: 

The square brackets on the upper limits of the summation index signdy the integer part of the term in 

brackets. 

Evaluating the first two of the Cis and Djs yields: 

The functions Cl(kR) are even and the functions D1(kR) are odd. When the argument approaches 

zero Cl(kR) diverges like ( k ~ ) - 2 M  and Dl(kR) diverges like ( k ~ ) * ~ l  . For kR we have 

CI-~Z+I and D1+o. 



The two summations in Eq. (3.60) describe the addition of two sets of I-dependent phasors 

that are orthogonal to each other. The I-dependent amplitude ratio of the second set of phasors with 

respect to the first is given by 2 Dl(kR) tanGl(k)/cl(k~) . From this one can immediately conclude that 

for k -+ 0 the second sum in Eq. (3.60) can be neglected with respect to the first. (Only for I = 0 is it 

in principle possible that tanGo(k) diverges as k approaches zero.) The behaviour of the complex 

scattering amplitude in curved-wave theory as k -+ 0 is then determined by the term 
1 - Cl(kR) tadl(k) . If k is small tanGl(k) behaves like -al kZ+l [80]. Thus for k -+ 0 the complex k 

scattering amplitude behaves like k-2 . This is different from plane-wave theory where the amplitude 

tends to a constant. 

ii) LII- or LIII-shell absorption: 

The result for the complex scattering amplitude is in this case [8]: 

Again, it is useful to express this result as a function of tanGl(k). One obtains: 



Because of the term (-I)/+' , instead of (- I) / ,  there is now an extra minus sign compared to 

Eq. (3.57). Zl(kR) and &(kR) are given by: 

The curved-wave formalism has been programmed according to Eqs. (3.66) to (3.68). 

It is possible also in this case to derive a relation analogous to Eq. (3.60) but this is omitted. 

We will now compare results of our calculations with those that have been published already by 

Teo and Lee [ I  11 and McKale el al. (8-101. This will give an impression about how much different 

Qlculations can deviate. It does not imply that Teo and Lee's or McKale's et al. values are correct. 

These values are frequently employed because no others are readily available. It is in fact rather 

difficult to claim that any calculation produces the "correct" amplitude and phase. If the correct 

backscattering (and central) phase were known, then one couM obtain distances from EXAFS with 

absolute, rather than relative, precision. 

The next figures show some of the results obtained for backscattering amplitude and phase 

from Eq. (3.57). Fig. 3.4 is a plot of the backscattering amplitude for copper metal, evaluated for a 

distance of R = 2.5 A . This value was chosen in order to facilitate a comparison wlh the curved-wave 

Qlculation of McKale (dashed line) which is presented in Ref. 10 for R = 2.5 A and R = 4 A .  



Backscattering amplitude for copper metal calculated in wrved-wave theory for R = 2.5 A 

and K- or Lpdge absorption. The dashed line is the result of McKale [I 01 who employed a real 

Potential, as is done in this work. Therefore there is good agreement for the high k-values. The 

discrepancy below -6 A-1 is due to differences in the potential. 



Fig. 3.5: Backscattering phase for copper metal calculated in curved-wave theory for R = 2.5 A 

and K- or LI-edge absorption. The dashed line is the result of McKale [ I  01. Since the phase is more 

sensitive to the choice of the potential (see Section 3.6), we obtain bigger discrepancies than in the 

previous figure. In particular, we notice that the phase calculated in this work (solid line) is shifted 

upwards by a small amount above k - 10 A-' . According to Section 3.6 below, this may be due to 

the fact that the Cu-potential used in this work may be shifted downwards compared to the potential 

employed by McKale et al., which is not published. 

For SmSe the crystal potential was calculated for two cases. In the first case, ambient pressure 

was assumed. Thus the Sm atoms are divalent and the lattice constant is 6.2 A. 30 partial-wave 

Phase shifts ( I  = 0 - 29) were employed. In the second case, trivalent Sm atoms were assumed for 

the high-pressure phase where the lattice constant is 5.7 A. This time 31 partial waves could be 

employed. For each of these cases the backscattering amplitude and phase were calculated. 



Curved-wave theory was included with nearest-neighbour distances of 3.1 A and 2.85 A, 

respectively. The results are shown in the next two figures. 

Fig. 3.6: Backscattering amplitude for Sm in SmSe in curved-wave theory and for K- or Ll-edge 

absorption. The solid line shows the result calculated for a crystal potential with sm2+ atoms and a 

lattice constant of 6.2 A. The absorber-backscatterer distance is R = 3.1 A . The dashed line is the 

result calculated for a crystal potential with sm3+ atoms and a lattice constant of 5.7 A. The absorber- 

backscatterer distance is R = 2.85 A . The two curves are practically identical. 



k (k') 

Fig. 3.7: Backscattering phase for Sm in SmSe in curved-wave theory and for K- or LI-edge 

absorption. The solid line shows the result calculated for a crystal potential with sm2+ atoms and a 

lattice constant of 6.2 A. The absoder-backscatterer distance is R = 3.1 A . The dashed line is the 

result calculated for a crystal potential with sm3+ atoms and a lattice constant of 5.7 A. The absorber- 

bad<scatterer distance is R = 2.85 A . Above 18 A-l the solid line curves up. This results from the 

fact that in the divalent case only 30 partial waves could be employed. Wih more partial waves 

numerical instability occurred. 

We now see that the results calculated for a crystal potential with divalent Sm atoms are 

essentially equal to those for trivalent Sm atoms. Therefore only one and the same potential is 

Wnployed. We choose the one corresponding to the high-pressure phase (dashed lines in the two 

Previous figures) because in that case the backscattering phase can be calculated to higher 

k-values. The dashed lines, however, were calculated with R = 2.85 A whereas in the I O W - ~ ~ ~ S S U ~ ~  



phase the nearest-neighbour distance is 3.1 A. In the following two figures we therefore compare 

the curved-wave results for R = 2.85 A with those for R = 3.1 A ,  both calculated for a crystal 

potential for trivalent Sm atoms. We see that the modifications due to curved-wave theory can be 

ignored for k-values above -3 A-l. 

Fig. 3.8: Backscattering amplitude for Sm in SmSe in curved-wave theory and for K- or LI-edge 

absorption. ResuNs are calculated for a crystal potential w lh  sm2+ atoms and a lattice constant of 

6.2 A. The solid line refers to an absorber-backscatterer distance of R = 3.1 A and the dashed line is 

the result for R = 2.85 A . 



Fig. 3.9: Backscattering phase for Sm in SmSe in curved-wave theory and for K- or Ll-edge 

absorption. Results are calculated for a crystal potential with sm2+ atoms and a lattice constant of 

6.2 A. The solid line refers to an absorber-backscatterer distance of R = 3.1 A and the dashed line is 

the result for R = 2.85 A . 

The following figures show calculations of the Sm- and Se backscattering amplitude and phase 

for various values of the absorber-backscatterer distance R. Because there is no significant 

difference between and sm3+ crystal potentials, we can employ in the calculations always the 

crystal potential for trivalent Sm atoms. Effects due to temperature are ignored. 

In Figs. 3.10 to 3.13 we compare our results for SmSe with those available from McKale. In 

order to do this we calculated the backscattering curved-wave amplitude for R = 2.5 A , although this 
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distance does not occur in SmSe. It is to be noted that McKale et al. do not list results for Sm, nor for 

Se, but for their neighbouring elements. Thus, for Sm and Se we have to perform an interpolation 

linear in the atomic number Z in order to obtain the proper amplitude and phase. If we had chosen to 

plot the result for the nearest-neighbour distance R1 = 3.1 A of SmSe, then a further interpolation 

(linear in 1 / ~ )  between McKale's et al. result for R = 2.5 A and their result for R = 4 A would have 

been necessary. Furthermore it is to be kept in mind that the (complex) scattering amplitude in 

curved-wave theory depends on the type of edge of the absorbing element. That is, for a Sm 

scatterer the absorber will be Se and we have to consider K- (or LI-) shell absorption. For Se as the 

Scatterer we have to consider an LII- or Llll-absorption edge of Sm. 

Fig. 3.10: Backscattering amplitude for Sm in SmSe calculated in curved-wave theory for R = 2.5 A 

and K- or Ll-edge absorption. The dashed line is the result of McKale et al., obtained as in Ref. 10, 

who employed a real potential, as is done in this work. The discrepancy below - 12 A-l is due to 

different potentials. 



Fig. 3.11 : Backscattering phase for Sm in SmSe calculated in curved-wave theory for R = 2.5 A and 

K- or LI-edge absorption. The dashed line is the result of McKale et al.. The backscattering phase 

Calculated in this work is shifted upwards, probably stemming from the fad that our potential is a few 

eV lower than the one used by McKale et al.. 



Fig. 3.1 2: Backscattering amplitude for Se in SmSe calculated in curved-wave theory for R = 2.5 A 

and LII- or LIII-edge absorption. The dashed line is the result of McKale et al.. The calculations 

agree. 



Fig. 3.13: Backscattering phase for Se in SmSe calculated in curved-wave theory for R = 2.5 A and 

LII- or Lill-edge absorption. The dashed line is the result of McKale et al.. As in Fig. 3.1 1, the 

backscattering phase calculated in this work is shifted upwards. 

The next four figures are a comparison between the results of this work for R = 2.5 A and for 

R = 3.1 A . This difference in R is already larger than the change of the nearest-neighbour distance 

from R = 3.1 A to R = 2.85 A ,  achieved by pressurizing SmSe. The figures show that there is not 

much variation of the backscattering amplitudes and phases for the compressions occuring here. 



Fig. 3.1 4: Backscattering amplitude for Sm in SmSe calculated in curved-wave theory for K- or 

Ll-edge absorption. The solid line is the result for R = 3.1 A and the dashed line corresponds to 

R = 2.5 A .  



Fig. 3.15: Backscattering phase for Sm in SmSe calculated in curved-wave theory for K- or Ll-edge 

absorption. The solid line is the result for R = 3.1 A and the dashed line corresponds to R = 2.5 A . 
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Fig. 3.16: Backscattering amplitude for Se in SmSe calculated in curved-wave theory for L,,- or LIII- 

edge absorption. The solid line is the result for R = 3.1 A and the dashed line corresponds to 

R = 2.5 A .  



Fig. 3.17: Backscattering phase for Se in SmSe calculated in curved-wave theory for LII- or LIII- 

edge absorption. The two solid lines, which differ by 2x, show the result for R = 3.1 A and the 

dashed line corresponds to R = 2.5 A .  It is seen that there is a discrepancy for 4 A-l < k < 6 A-l , 

which is entirely due to curved-wave theory. Similar effects have been observed in Ref. 10 when 

Phases obtained from curved- and plane-wave theories are compared. 

Finally, we study the effect of the different types of absorption edges of the absorbing atom on 

the curved-wave amplitude and phase. We choose Se with R = 3.1 A and compare the results of 

LII- or Llll-edge absorption with those of K- or Ll-edge absorption. 



Fig. 3.18: Backscattering amplitude for Se in SmSe calculated in curved-wave theory (R = 3.1 A) for 

LII- or LIII-edge absorption (solid line) and for K- or LI-edge absorption (dashed line). 



Fig. 3.19: Backscattering phase for Se in SmSe calculated in curved-wave theory (R = 3.1 A) for LII- 

or LIII-edge absorption (solid lines, differing by 2 x )  and for K -  or LI-edge absorption (dashed line). 

For K- or L,-shell absorption the phase shift of the central atom, i.e. of the absorbing atom, is 

given by Ref. 1 1 : 

For LII- or Lilt-shell absorption the 1 = 2 contribution dominates. Therefore the central phase 

involves only this angular-momentum value [I 11: 



6, is obtained from the partial-wave phase shifts S1 or 62. However, one should take the effect of the 

core hole of the absorber into account. It results in the central-atom phase shift decaying more 

rapidly with k than the partial-wave phase shift calculated for a neutral atom. 

No attempt is made to calculate central phases in this thesis. Instead the central phases 

calculated by Teo and Lee (1 I ] ,  which contain the effects of a core hole, are employed. As 

mentioned at the beginning of Section 3.4, these phases are tabulated only for a limited k-range. It is 

therefore necessary to extrapolate towards either side. In order to extrapolate to higher k-values one 

may make use of the Born approximation for the phase shift [37:  

GI,Born(k) = -k. V(r) j, (kr) r2dr . d 
From the behaviour of j,(kr) it follows that for large values of k the behaviour of the phase shift can be 

described by a power series in l /k  omitting the constant term so that the phase shift properly goes to 

zero for k -+ . In order to extrapolate from 15.1 2 to 24 A-l the first three terms of this power 

series are employed to fit Teo and Lee's central phases starting at -5 A-I. The validity of this 

parametrization of the phase shifts at high k-values has been checked by fitting to partial-wave phase 

shifts, calculated for the case without the core hole, and found to be quite satisfactory. 

For low k-values the central phase is extrapolated linearly to -1.5 A-l. It cannot be extrapolated 

in this way all the way to k = 0 because the 1 = 1 or 1 = 2 phase shifts must have zero slope at k = 0 . 

Furthermore, they have to approach an integer multiple of ~c in accordance with Levinson's theorem 

1371. 

The following figures display the central-atom phase shifts for Se and Sm. 



Fig. 3.20: Central-atom phase shift for Se (K or LI edge). The solid line is the fit described in the 

text. The crosses show Teo and Lee's values [ I  I] .  



Fig. 3.21 : Central-atom phase shift for Sm (LII or Llll edge). The solid line is the fit and the crosses 

are Teo and Lee's values (1 1). 

In this sedion we will discuss a scaling relation between the energies and the lengths. Using 

this relation we can show that the scattering amplitude and phase are approximately pressure 

for small pressures, i.e. up to a few 100 kbar. For larger pressures the scattering phase 

will become pressure dependent and for pressures of several Mbar the scattering amplitude will do 

SO to0 (811. 



In a solid the effects of pressure, in the absence of a phase transition, are a broadening of the 

bands and a reduction of the density of electronic states with an associated increase of the Ferrni 

level. When investigating the influence of pressure on the scattering amplitudes and phases one 

has to realize that the atomic unit of pressure is 1 Ry/agoh? = 147 Mbar , where 1 Ry = 13.6 eV . 

The pressures attained here are 1000 times smaller, namely of the order of 100 kbar. Thus the effect 

Of this pressure on the atoms themselves is minute. We will show in this section that the logarithmic 

derivative, and therefore the complex scattering amplitude, are approximately independent of 

Pressure, provided that a scaling relation between the energy scale and the length scale holds. 

The scaling relation between energy and length scales had been suggested by Mijller et al. 

[82] and Natoli [83] (see also Lytle [84]): 

Here V is the inner potential. It is a constant like the muffin-tin zero, which in fact could coincide with 

it. E - V is the kinetic energy of a photoelectron and R is a characteristic length, for example the 

lattice constant. E refers to any feature in the spectrum but is not a variable. When the energy is 

scaled according to (3.72), absorption spectra of, say, Cu and Ni become very similar, with a scaling 

Eq. (3.72) can also be used to relate spectra corresponding to two different pressures. In this 

case one has: 

We assume that a , < a2 . Thus the left-hand side of Eq. (3.73) corresponds to a higher pressure 

than the right-hand side. Applying pressure increases the crystal potential, i.e. makes it less 

attractive. In the core region this increase is very nearly constant. Therefore v1 - v2 is Positive and 

constant, even if and v2 were not. Hence we get: 



Thus for higher pressure the zero of the kinetic energy is shifted to a higher value. The same applies 

to the bottom of the conduction band of metals (see Eq. (3.87) below). 

This is important when estimating the position of the Fermi level as a function of pressure. This 

was studied for the case of Cu where an extensive bandstructure calculation for pressures up to 

several Mbar was available for comparison [81] (see also Ref. 85). In the calculations for this thesis 

the positive shift V, - V2 was obtained as the difference of a muffin-tin potential V M ~  1 (r) at high 

Pressure and a second one at atmospheric pressure, VMT 2(r). This difference was found to be 

Constant in the core region. To this shift the free-electron Fermi energy was added and the 

agreement with the bandstructure result (811 for the Fermi energy was satisfactory. - Changes in the 

z 5.5 e ~ / ~ b a r  Position of the Fermi energy of Cu are very small though. The initial change is - 
A P  

In order to estimate the influence of pressure on the scattering amplitude and phase we 

consider the logarithmic derivative at the muffin-tin radius. At r = RMT the potential is small and can 

be replaced by the inner potential or muffin-tin zero, TMT.  At the muffin-tin radius the spin-orbit term 

can be neglected. Thus Eq. (3.45) can be written as 

Were the term (E - TMT)/c2 has been neglected with respect to 1. Switching back to the variable 

ex and introducing 

one obtains: 

or: 
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With the approximation (E - VMT)/c2 << I , the logarithmic derivative from ~ q .  (3.41) is then: 

Eq. (3.77) holds for a particular value of the muffin-tin radius RMT. This equation can be cast into a 

more general form by employing Eq. (3.72): 

Equivalently one can express this relation as k R M T  = co (3.80) 

where c, is a positive constant. k M ~  refers to any feature in the EXAFS spectrum and its subscript 

"MT" indicates that the inner potential, i.e. the origin of the k-scale, depends on RMT as explained 

above in connection with Eq. (3.74). One obtains using (3.79): 

Introducing the dimensionless variable 

which is small for r z RMT , yields: 

This equation is independent of the muffin-tin radius. Consequently the resultant logarithmic 

derivative Dl = u, + 1 will not depend on RMT either and therefore not depend on pressure. This, of 

course, is true only as long as the scaling relation (3.72) holds. While Dl is independent of pressure, 

Or at least only weakly pressure dependent, the k-scale experiences a small pressure dependence 

because of the change of its origin with pressure. It turns out that the pressure-dependent shift of 

the Potential is small so that this effect can be ignored. 

The fact that the Dl, and Do in particular, are practically independent of pressure leads to an 

@quation for E,, the bottom of the conduction band, in accordance with Eq. (3.72). This can be seen 



as follows. According to Ref. 86, p. 51, one can estimate the position Eo of the bottom of the 

conduction band with respect to the zero of the atomic as: 

as is the scattering length which is obtained from the 1 = 0 phase shift as follows [371: 

1 lim k cot &,(k) = - - . 
k + o  as 

Using Eq. (3.49) one obtains: 

If we consider an fcc metal, like Cu, and touching muffin-tin spheres then we obtain from Eqs. (3.83) 

and (3.85): 

If Do is indeed independent of pressure then we have a relation like Eq. (3.72), namely: 

2 
k R M T = ~ n s t .  . (3.87) 

We can obtain an approximate solution to Eq. (3.82) by neglecting r with respect to 1. This will 

resutt in an approximate equation for the logarithmic derivative. We get: 



Thus, by separation of variables this differential equation can be integrated readily. The result is, 
2 

depending on the value of c, of Eq. (3.79): 

In all three cases the logarithmic derivatives as a function of r have some resemblance to a cotangent. 

This is also true for their energy dependence [61]. K1, K2, K3 are constants of integration 

determining the location of the singularities. In case i ) Dl as a function of r has many poles. This will 

lead to strong variations of the complex scattering amplitude unless successive partial waves of 

higher angular momentum are included. Thus the complex scattering amplitude can be obtained 
1 

Satisfactorily as long as kmax = (lmax+ I )  / Rm . In cases ii ) and iii ) Dl has at most one pole. We can 

"ow calculate DO(VMT,RMT) appearing in Eq. (3.86). Since Do is to be evaluated at the muffin-tin 
2 

Zero, which is the zero of the energy scale, we have c, = 0 and therefore apply the result for case iii ) 

with = 0 and r = RMT obtaining instead of Eq. (3.86): 



Thus E, is positive. Since Kg determines the location of the singularrty, we can conclude: 
2 

If E, RMT > 1 , then K3 > 1 and there are no poles inside the muffin tin. 
2 

If E, RMT = 1 , then Kg = 1 and there is one pole at the muff in-tin radius. 
2 

If E, RMT c 1 , then Kg < 1 and there is one pole inside the muffin tin if K3 is positive. 

If Kg is negative there is no singularrty. Notice that the constant in Eq. (3.92) is positive. This implies 

by comparison with Eq. (3.86) that the expression 

is positive and D ~ ( ~ ~ ~ , R ~ ~ )  does therefore never fall within the interval [ - I ,  01. Note also that the 

scattering length, Eq. (3.85), is positive. 

It is of interest to check in how far Eqs. (3.89) to (3.91) approximate the logarithmic derivatives 

calculated as described in Section 3.6. This will be done in the future. 

For pressures much higher than those occuring in this work the scattering phase does depend 

on pressure. Qualitatively, one can predict what will happen to the partial-wave phase shifts. When 

Pressure is applied the atoms move closer together producing an increased overlap of their 

electronic charge densities. This in turn produces a positive change of the atomic potentials as the 

C~ulomb attraction exerted by the nucleus is reduced. Employing the Born approximation for the 

Phase shifts, ~ q .  (3.71), one concludes, at least for the larger k-values, that the positive change of 

the Potential results in a negative change of all partial-wave phase shifts 6,(k). In the Born 

approximation this can be investigated quantitatively if the potential V(r) changes by a constant 

amount AV. As in Eq. (3.71) the partial-wave phase shift is then: 

RMT 

6 ~ , ~ r n ( k )  + A6,(k) ( V ( r ) + a V )  j:(kr) r 2 d r  



The first integral is the partial-wave phase shift corresponding to V(r). Switching to the integration 

variable k r yields: 

*s,(k) = - $ j: (kr) (kr)2 d(kr) 

For 1 > 0 the integral is given by an identrty that holds for spherical Bessel (and Neumann) functions 

[37]: 

For the Born approximation to hold k must be large. Thus ~ R M T  will be large too and the spherical 

Bessel functions can be replaced by their asymptotic formula [37: 

Inserting into Eq. (3.95) yields: al(k) = - RMT AV 
2 k  ' 

(3.96) 

The importance of this result is that for large k the change of the partial-wave phase shift is 
sin kr -A into ~ q .  (3.94): -. For 1 = 0 one obtains after inserting jO(kr) = k, 

Hence, ~ q .  (3.96) holds for I = O too. 



We can now use these results to estimate the effect of the change AV in the potential on the 

(complex) plane-wave scattering amplitude, Eq. (3.52), which can be written as follows: 

In this equation we have dropped the subscript on AS1(k) because it does not depend on 1. f(k,0) is 

the scattering amplitude corresponding to the original potential V(r) and fA(k,O) is the scattering 

amplitude corresponding to the potential AV: 

Since the potential AV is small compared to V(r) its scattering amplitude fA(k,O) will have a small 

magnitude, too, when compared with lf(k,0) 1 . Therefore, like in the case of the 6,(k), the effect of the 

extra potential AV will be a shift 

of the phase of f(k,e). AS an example, for AV = 0.5 ~y z 6.8 eV , RMT = 4 aBohr G 2.12 A , and 

k = 8 aBohrl 15.1 2 A-l we expect a change of the phase of 2 A6(k) = -0.25 z -14" . (In order to 

transform Eq. (3.99) to the MKSA system, simply divide its right-hand side by y G 3.81 eV A2 , 

h. (2.28).) 

The magnitude of f(k,B) will be practically unchanged. This result is confirmed by caiculations of 

the Scattering amplitude, done during the course of this work. The backscattering amplitude and 

Phase were calculated for Cu in the plane-wave approximation for various pressures, i.e. 

compressions, ranging from a lattice constant of a = 3.61 A at 1 bar to a = 2.5 A at 23 Mbar. It turned 

Out that the pressure dependence of the amplitude was much less pronounced than the one for the 

Scattering phase. Therefore chanaes are are bv the -. 



Chapter 4: Mixed Valence 

This chapter constitutes a very brief introduction to mixed-valence materials, in particular the Sm 

monochalcogenides. For further reading the following list of articles of varying length is included in 

chronological order: 187, 88, 13, 89, 12, 90-993 . 

Mixed-valent compounds are those where one of the constituent atom types occurs in two or 

more valence states. Two cases are distinguished: 

Inhomogeneous mixed valence is the case that occurs when the valence of a given atom 

remains constant in time. Another atom of the same type may have a different valence. This requires 

that the two atoms are located at inequivalent crystallographic positions. Otherwise their valence 

must be the same. It follows that inhomogeneous valence is a statc phenomenon The value of the 

mixed valence is obtained by averaging over the atoms under consideration. 

Homogeneous mixed valence is the case that is of interest here. In this case one and the same 

mixed-valent atom assumes both valence states. This means that its valence has for a certain time a 

given value and then changes to another. In other words, its valence fluctuates. Thus 

homogeneous mixed valence describes a dynamic state of the mixed-valent atom. The value of the 

mixed valence is obtained by a average over a mixed-valent atom. The valence fluctuations 

occur with a frequency of -10'3 Hz [loo, 1011 which is comparable to phonon frequencies. As a 

result, phonon anomalies are observed with mixed-valence transitions. 

Measurements of the MdBbauer isomer shift [I 021 can be used to distinguish between 

inhomogeneous and homogeneous mixed valence because the time scale of MdObauer 

experiments is much smaller than the time scale of the fluctuations of a homogeneously mixed- 

valent material. Therefore one average valence-dependent isomer shift is observed in the case of 

homogeneous mixed valence whereas for inhomogeneous mixed valence two isomer shifts, 

to the integer-valent 2+ and 3+ states, are seen. 



In the following we will consider only homogeneous mixed valence. This phenomenon occurs 

in compounds containing 4f- and 51-elements. 01 these the lanthanides are of interest here, 

samarium in particular. Mixed-valence occurs with rare earth compounds that contain a rare earth 

element that is close to either end of the lanthanide series, like Ce, Pr, Tm, and Yb, or, like Sm and 

Eu, close to the middle of the series. The mixed-valence phenomenon may occur already under 

ambient conditions or it is brought about by variation of an external parameter such as temperature or 

Pressure. 

The reason why (homogeneous) mixed valence occurs stems from the fact that in the 

respective compounds the 41-multiplet lies near the Fermi energy EF. If the 4f-level is still below EF 

then the valence of the rare earth is two. If by variation of an external parameter the 41-multiplet 

moves up and empties one complete electron into the conduction band, which has 6s- and 5d- 

character, then the valence of the rare earth atom has increased by one. Symbolically we write this 

Process as: 

where [Xe] denotes the Xe-core. Referring to the charge of the rare earth core it is common to label 

the divalent state as 2+ and the trivalent state as 3+. Rare earth atoms and the electron sea together 

are, however, neutral. If 0 5 v I 1 is the fraction of trivalent atoms then the valence v is given by 

v = 2 + v . Note that more than two configurations of the rare earth atom are never present. 

The extra valence electron is supplied by the 41-level. In the trivalent state the occupation 

number of the 4f-level is reduced by one in comparison with the divalent case. As a result the 

electronic screening of the nuclear charge of the rare earth atom is reduced. Since with a radius of 

"0.2 A the orbit of the 41-electrons is very close to the nucleus the reduction of screening affects all 

electron states appreciably. This gives rise to a reduction of the size of the rare earth atom in the 

3+ state. This size reduction is appreciable. For the ionic radius of Sm we find [103]: 

The energetically lower electronic energy levels are affected more by the reduction in screening 



than the levels at higher energy [104]. For the 2p levels of the rare earth atoms the energy 

difference for the two valence states is of the order of 7eV. 

The Sm rnonochalcogenides, SmS, SmSe, and SmTe, are compounds that are integer valent 

(or almost integer valent) at atmospheric pressure but become mixed-valent at higher pressure. 

Higher pressure favours the 3+ state because trivalent 41 atoms are smaller than divalent ones. 

Nevertheless, full conversion to the trivalent state has not yet been observed in any of these 

Compounds. In this context it is also interesting to note that according to L-edge spectroscopy (see 

next section) the valence at ambient pressure is not integral either. There seems to exist always a 

non-negligible admixture of the 3+ state. 

The Sm monochalcogenides crystallize in the NaCl structure. Under pressure they undergo a 

Phase transition without change in their crystal structure. At room temperature the transition is of first 

order in SmS and continuous in SmSe and SmTe. The volume reduction is entirely due to the 

change in size of the Sm atoms. Hence the transition is of electronic origin and since all Sm sites are 

equivalent the mixed valence is homogeneous. It has been argued [I 2, 131 that at sufficiently low 

temperature the pressure-induced valence transitions in SmSe and SmTe should become first 

order. From the results of the present work it can be said that at 77K SmSe still exhibits a continuous 

kinsition. This would be expected for SmTe also since its mixed-valence transition occurs more 

gradually than the one of SmSe which has been described as being weakly first order [I 05, 1061. 

The first to investigate such a pressure-induced valence transition was probably Rooymans 

who investigated the continuous phase transition in SmTe. His work was repeated by 

Jayataman et al. [I 081 who also discovered the transitions in SmSe and SmS [I 091. 

The following figure shows the volume change that is brought about by applying pressure. 



Fig. 4.1 : Pressure-volume relations for SmSe (solid line) and SmS (dashed line) at room 

temperature according to Ref. 110. For SmSe the volume collapse is continuous whereas for SmS it 

is Sudden. 

Under ambient conditions SmS, SmSe, and SmTe, are relatively soft as manifested by their low 

Debye temperature of - 1 5 0 ~ .  In the transition region their volumes change such that with increasing 

Pressure these substances become even more compressible (!). This is also described as volume 

collapse. Once the volume collapse is complete the Sm monochalcogenides behave normally, that 

their compressibility decreases with increasing pressure. 

The following figure shows the isothermal compressibility of SmSe. The transition region is 

characterized by a peak in the compressibilrty. 



Fig. 4.2: Isothermal compressibiltty of SmSe at room temperature as derived from the previous 

figure. The data below 12 kbar has been omitted because it is distorted by end effects due to 

smoothing. 

In the low-pressure phase the Sm rnonochalcogenides are semiconductors. The Sm atoms are 

divalent and have the configuration: 

[Xe] 4f6 5d0 6s2 7 ~ 0  . 

According to Hund's rules this state is non magnetic. In the high-pressure phase these compounds 

are metallic. The trivalent Sm atoms, that are present in this phase, have the magnetic configuration: 



Contrary to Hund's rules, however, the compounds are not magnetic in the mixed-valent state [I 1 11. 

Their semiconductor-to-metal transition is reflected in the pressure dependence of the resistivity 

[I 08, 109, 1 12-1 141. At low pressure the resisitivity decreases exponentially with pressure, 

characteristic of a semiconductor. Above a certain critical pressure the resistivity becomes metallic 

and decreases at a much slower rate. For SmS the critical pressure is obviously the pressure where 

the first-order transition occurs. For SmSe and SmTe it can be extracted from a plot of log p vs. 

pressure , where p is the resistivity. The values can be found in the following table. 

Table 4. I : Properties of Sm monochalcogenides: 

SmS SmSe SmTe 

Lattice Constant (A) 
at 300K and 1 bar 

Density (g/cm3) 

(from lattice constant) 

Bulk Modulus (kbar) 

at 300K and 1 bar 

Critical Pressure (kbar) 

(from resistivity) 

High-pressure Valence 

Debye Temp. (K) 

Energy Gap (eV) 

Susceptibility at T=O 

(1 0-3 e.m.u./mol) 



The size reduction that accompanies the valence change of rare earth atoms can be used to 

determine the valence. Methods involving the lattice constant, bulk modulus, magnetic 

Susceptibilrty, and the MdObauer isomer shift are in use. Here we will determine the valence by 

L-edge spectroscopy. This method involves the analysis of the near-edge structure at the LII or Llll 

absorption edge of the rare earth atom (see Section 6.12). The method was introduced by 

Vainshtein et al. [ I  181 who used it to determine the valence of SmB6. It was later applied to a wide 

range of mixed-valent rare earth compounds [I 7, 1 191. 

Since valence fluctuations are on a time scale that is much slower than the characteristic time for 

the x-ray absorption process (1 0-l6 s) the x-ray absorption spectrum of a mixed-valent material is the 

sum of two absorption spectra, one corresponding to the divalent state and another one, shifted to 

higher energy by about 7 eV, from the trivalent atoms. Since the x-ray absorption process is much 

faster than the fluctuations we obtain a snapshot of the distribution of 2+ and 3+ atoms at any instant. 

However, this means also that it is not possible with x-ray absorption spectroscopy to distinguish 

between inhomogeneous (i.e. static) and homogeneous (i.e. dynamic) mixed valence (see also 

Ref. 1 20). 

The shift of about 7 eV between the two states can be detected very easily because the 

Lanthanides have strong absorption peaks at their LII / Llll absorption edges. These peaks, also 

called "White Lines", are due to the large density of unoccupied 5d states in the Lanthanides. The 

White Lines are not too broad and thus their shift due to the valence can be detected. The valence is 

determined from the relative weight of the two absorption profiles. The absorption edge for trivalent 

atoms occurs at higher energy than the one for divalent atoms because in trivalent rare earth atoms 

the screening is reduced leading to increased binding energies. The absolute value of the valence 

depends on the type of lineshape used to fit the data but valence chanaes can be determined very 

well. In other words, the precision of the method is excellent while its accuracy is not very good. 

The following figure shows the measured Sm Lli edge for several pressures at 77K. The edge 

structure changes significantly under pressure. The 3+ structure at higher x-ray energy grows with 

Pressure whereas the 2+ structure decreases. 



Fig. 4.3: Sm L,, absorption edge in SmSe at 77K for several pressures. The spectra are 

normalized to the edge jump. 

In Comparison the Se K edge in SmSe shows practically no pressure dependence as can be seen 

from the next figure. 



Fig. 4.4: Se K absorption edge in SmSe at 77K for the same pressures as in Fig. 4.3. A small 

Pressure dependence of the absorption spectrum can be detected. The correspondence between 

line pattern and pressure is the same as in Fig. 4.3 and the spectra are normalized to the edge jump. 



Chapter 5: Experiment 

In this chapter we discuss experimental aspects of Bragg monochromators, ionization 

Chambers, and high-pressure cells. We also derive equations for optimum sample thickness, signal- 

to-noise ratio, and discuss the effects of artifacts on the measured absorption spectrum. 

5.1 . . 
rotron Radlatlon 

In this section some properties of synchrotron radiation are briefly reviewed. More information 

can be found in Ref. 121. 

Synchrotron radiation has several desirable properties which are listed here: 

a) The intensity is high. 

b )  It is highly collimated. 

c )  The spectrum is broad and continuous. 

d ) It has a high degree of linear polarisation. (In the plane of the accelerated electrons or positrons 

it is 1 0O0/~.) 

e The time structure is well defined. 

f ) The radiation source is chemically clean. 

g ) The properties of synchrotron radiation can be calculated. 

These properties make synchrotron radiation a superior tool in many fields of x-ray work. Since 

the EXAFS is a rather small signal, compared to the jump discontinuity of the absorption edge, 

synchrotron radiation with its high intensity provides an ideal x-ray source. The small sample volume 

Present in high-pressure experiments demands even more a high intensity. High-pressure EXAFS 

experiments can, in fact, only be carried out at a synchrotron source. A further advantage of 

synchrotron radiation is its broad and continuous spectrum. This property, too, is desirable for 

€ U F S  experiments. For the study of single crystals one can make use of the fact that synchrotron 

'adiation is linearly polarized. In the present work, however, no single crystals are investigated and 

therefore this property is not exploited. Likewise, the time structure of the synchrotron-radiation 



Spectrum, resulting from the fact that the charged particles in the synchrotron move in bunches, is 

not exploited here but this property is used in experiments on biological specimens. 

Synchrotron radiation is produced by any accelerated charged particle. In practice, charge 

Particles are accelerated in a circular accelerator. More precisely, the accelerator consists of an 

evacuated tube passing through bending-magnet sections and being straight in between the 

magnets. The radiation is generated at the bending magnets and passes through beam tubes to the 

experimental stations. These evacuated tubes are sealed off by a Be-window. In vacuum ultra violet 

work the vacuum of the experimental apparatus becomes part of the vacuum system of accelerator 

because Be-windows would absorb too much intensity at these low energies. 

In order to obtain a large x-ray intensrty the charged particles are accumulated in a storage ring. 

A storage ring is a synchrotron that is able to store a relatively large particle current (-500 mA). When 

the current denstty is large the x-ray flux is high but beam instabilities can occur. At low current 

densities the particle (and thus the x-ray) beam is stable but its x-ray flux is bw. 

Recently wigglers and undulators have been developed and placed into the straight sections 

of the accelerator. They produce an approximately sinusoidally varying magnetic field which causes 

the charged particles to move transversally in a sinusoidal pass. Thus additional x-ray intensity is 

Produced in the straight sections of the accelerator. Beam line IV at the Stanford Synchrotron 

Radiation Laboratory (SSRL) is a wiggler beam line employing 18 kG wiggler magnets. 

The amount of energy radiated is inversely proportional to the fourth power of the particle's 

mass. Therefore electrons or positrons are accelerated in synchrotrons. Positrons have the 

advantage that they do not combine with the mainly positive ions of the residual gas atoms in the 

vacuum. 

The energy that is radiated in form of x-ray photons is replenished by a microwave-cavtty system 

Inside the accelerator. 



In this section we will discuss properties of doublecrystal Bragg monochromators. We will 

derive formulae for the minimum and maximum energies E* . and E* for the transmitted x-rays 
mln rn ax 

resulting from the geometrical arrangement of the two crystals. After explaining monochromator 

resolution we will discuss harmonics and derive a maximum energy  EL^^ based on resolution. The 

section concludes with a comparison of different Bragg planes used for diffraction and a brief 

discussion about multiple-diff raction effects in Bragg crystals. 

The high-pressure experiments were done on beamline IV-1 at SSRL. The white x-ray beam is 

monochromatized by two Si-single crystals in a non-dispersive arrangement, which means that the 

monochromatic x-ray beam leaves the doublecrystal monochromator parallel to the incoming beam. 

Using Bragg's law the energy of the monochromatic beam is given by: 

h, k, and I are the Miller indices of the Bragg planes employed in the diffraction. The Miller indices 

denote the Bragg planes that are operative in the diffraction of the incident x-rays. In this work these 

Planes are parallel to the crystal surface. For a given energy the Bragg-reflected x-ray occurs at a 

unique angle that depends on the d-spacing of the desired reflection. In the experiment only this 

reflected beam is tracked. Ohkl is the Bragg angle and dhkl is the spacing of the Bragg planes. In 

Wbic crystals it is: 

where a is the lattice constant. The value for Si is: 

h c has the value of 12398.42 evA [I  231. 

Since sinehkls 1 we infer from Eq. (5.1) that there is a minimum energy Emin below which the 

rnon~chromator cannot operate. Emin is given by: 



Due to geometrical effects (see Appendix B) the actual minimum energy is larger than Emir For a 

very small slit width s of the monochromator entrance slit we obtain using Eq. (8.4) of Appendix B: 

Now there is also a maximum energy given by: 

The monochromator crystals are dislocation-free nearly-perfect single crystals. They must therefore 

be described by the dynamical theory of x-ray diffraction. According to this theory, Bragg reflection 

will occur not only at the Bragg angle but in a narrow region around Bhkl as well. Thus the diffraction 

Profile is not a delta function but can be approximated by a rectangle of unit height and width 681 

11 241: 

h = -!lS is the wavelength of the radiation and Fhkl is the structure factor of the unit cell whose E 
volume is V. re is the classical radius of the electron, defined by: 

Applying Bragg's law and using Eq. (5.2) one obtains for 681: 

!! 5 I ~ h k i  
x a h 2 + k 2 + , 2  

tan OM 

Values for So1 at 10 keV are 1.31 eV and 0.57 eV for Si (1 11) and Si (220) crystals, respectively. The 

integrated intensQ (integrated over 0) of the diffracted beam is proportional to 681, which is also 



called the Darwin width. In the above approximation of a rectangular diffraction profile the result is 

simply 6e1. The correct resutt for the integrated intensity valid for negligible absorption is in dynamical 

theory [ I  251: 

Note that the proportionality to the Darwin width implies that the intensrty is proportional to 1 ~ ~ ~ ~ 1 ,  
2 

instead of l ~ ~ ~ ~ l  , as would be the case in kinematical theory 11251. Eqs. (5.6), (5.8), (5.9) are valid 

for a-polarization (electric-field vector perpendicular to the plane of incidence) and for symmetrical 

Bragg reflection (crystal surface parallel to the hkl lattice planes). 

Since there are two monochromator crystals the combined width is determined from the 

COnvolution of the diffraction profile with itself. In the approximation of rectangular profiles the FWHM 

remains unchanged at with the full width at the base of the convolution being broadened to 

2 . FWHM. 

The finite angular range 68, gives rise to an intrinsic resolution of the monochromator. Hence 

resolution cannot be improved beyond &el. A much bigger contribution to the resolution of the 

mOnochromator stems from the divergence of the x-ray beam. If s is the width of the slit in front of 

the monochromator and L the distance to the x-ray source then the vertical angular divergence is 

simply: 

(Sometimes the vertical source dimension is added to s.) s is typically 1 or 2 mm. L is 18 m at SSRL. 

The final result for the monochromator resolution is determined from the relation: 

86 corresponds to an energy width 6E which is calculated by differentiating Bragg's law, Eq. (5.1), 

with respect to ehkl : 



(For convenience we have omitted a subscript hklfor E.) 

If there were no geometrical broadening then 602 would vanish but because of 6e1 there would still 

be a finite resolution (~E/E),~, which only depends on hkl and on the lattice constant and follows 

from Eqs. (5.8) and (5.12): 

This quantity is characteristic of the width of the diffraction profile and therefore of interest. For large 

values of h, k, and I the numerator of Eq. (5.13) decreases and the denominator increases and 

therefore 601 becomes very small. This in turn excludes the use of lattice planes belonging to high- 

Order Miller indices because with a monochromator consisting of two independent crystals the two 

reflections would miss each other unless the crystals are perfectly parallel. Furthermore, mechanical 

vibrations would make it very difficult to operate the monochromator in a higher-order reflection. 

The intensity of the reflections is directly related to  IF^^^, the magnitude of the (complex) 

shcture factor, which is defined by: 

The summation extends over all atoms in the unit cell. The atoms have positions u,, v,, and w,. 

expressed as fractions of the lattice constant a. The f, are atomic form factors. Since only one kind of 

atom is present, i.e. Si or Ge, we can replace f, by f and take it outside the sum. Performing the 

Summation over the 8 atoms in the cubic unit cell of the diamond structure yields the following result: 



a) h, k, I all odd: 
1 Re 7 FMl = 4 ; 

b) h, k, I all even: 
1 Re T Fhk' =8 ; 

For the diamond structure for the permitted reflections all three indices are either odd or they are all 

even with their sum being an integer muttiple of four. 

Hence values for  IF^^^ can quickly be calculated without having to analyze matters for a 

Particular set of Miller indices. Note, however, that the atomic form factor f is different for different 

(hkl) due to its dependence on (sine@ = 1/2dhkl = d h  2+k 2+12 /2a . Values of the atomic 

form factor for Si and Ge can be found in Ref. 126. With this information a table of properties of Bragg 

reflections for Si crystals is set up (Table 5.2 below). The first three crystal types, (1 111, (220), and 

(400) are available at SSRL but only the first two were used. 

Bragg monochromators do not only diffract x-rays by the desired set of hkLplanes but also by 

any set of planes that is parallel, i.e. those planes with Miller indices mh, mk, ml, m = 2, 3, 4, . . . 

Provided the structure factor is non-zero. Since all planes are parallel the Bragg angle is the same for 

each. This gives rise to harmonics and as a consequence the Bragg-reflected beam is not perfectly 

 noc chromatic. Note that the problem of harmonics is aggravated for x-rays due to their linear 

dispersion but is far less a problem for neutrons, say. 

We define the monochromaticity M, 11271, using Eq. (5.9), as: 



Here the J, are the intensities of the mth harmonic. m = 1 denotes the fundamental. If there were no 

harmonics M, would be infinity. Harmonics can be reduced by detuning, i.e. rotating one 

monochromator crystal with respect to the other so that they are not parallel anymore. This 

Procedure is based on the fact that the rocking curve of the harmonics is narrower than the one of 

the fundamental [128]. If this is done then the monochromaticity goes through a maximum, 

independent of the sign of the detuning angle, and then decreases because the intensity of the 

fundamental also decreases. Thus monochromaticity depends on the detuning angle. The subscript 

"0" in Eq. (5.1 6) indicates the case of tuned, i.e. parallel crystals. If we assume that the intenstty of 

the incident x-ray beam is energy independent then we can wriie for the diffracted intensity, which is 

Proportional to MI, Eq. (5.8): 

We define the ratio pm of the integrated intensity of the mth harmonic with respect to the intensity of 

the fundamental plus all harmonics and obtain: 

Note that tan ghMfrom Eq. (5.8) cancels out in Eqs. (5.17) and (5.18) because the Bragg angle is the 

same for the lattice planes that produce harmonics. 

The Bragg crystals of monochromators are not normally driven continuously but in steps of 

fixed size. Thus the increment in Bragg angle is also fixed. Due to Bragg's law increments in energy- 

space will therefore increase with energy. For a given number of steps per degree this will eventually 

lead to unacceptably large increments at small Bragg angles. The stepping motors employed at 



beamline IV-1 at SSRL operate at 4000 steps per degree. A practical requirement is that the energy 

increment per monochromator step not exceed -5 eV. This then defines a maximum energy EL,, 
(see Eq. (5.22) below) above which the sampling in energy space, or k-space, becomes too coarse. 

We write the number of steps as < and obtain: 

Here A0 is in radians. The number of steps per degree is given by: 

We now make use of Eq. (5.1 2) to obtain A E / A ~  . We can expand the square root because 

Emin cc E  . This yields: 

lnsening into (5.19) and writing E;, instead of E  produces: 

+ AE ResuttS for Em, , requiring - = 5 e~/step and taking (5.20) into account, are presented in 
AC 

Table 5.2. 



Table 5.1 : Properties of Principal Reflections and their Harmonics for Si Single Crystals: 



Table 5.2: Properties of Principal Reflections for Si Single Crystals: 

Emin E bin E max * %ax M o 

The minimum and maximum energies Ei in and ~k~~ are calculated according to Eqs. (5.4) and 

(5.5) using the following values: L, =66 rnm , ho = 13 mm , and d, = 10 mm . These energies are 
. .  . only correct if the )c-rav beam on the ro- as in Fig. B. 1 of Appendix B. Otherwise 

Ekin and Ekax may be quite different. Indeed, we have used the Si (1  11) crystals to 17 keV and 

the Si (220) crystals to 33 keV in EXAFS experiments. 

The index triple (1 11) constitutes the lowestader reflection possible. It allows for the largest 

d-spacing which in turn reduces Emin to its smallest value. At the same time, however, the resolution 

1s worst as can be inferred from Eq. (5.12). The biggest advantage of the (1 11) reflection is the 

absence of the harmonic at twice the energy of the regular beam. This is due to the fact that, 

according to the selection rule, Eq. (5.15), the (222) planes do not reflect x-rays. 

("Umweganregungn (= detour excitation) which is the result of consecutive reflections and leads to 

for example a (222) refledion (1291 is neglected here.) The first harmonic that can pass a (1 11) 

crystal is the m=3 harmonic due to the (333) reflection. For a (220) crystal, harmonics at any integer 

multiple of the fundamental energy can occur. This is a clear disadvantage of the (220) crystal but it is 

Offset by the fact that its resolution is better and because of its greater structure factor. Even better 

is offered by the (422) reflection. Reflections like the (440) cannot be used as principal 

reflections because they let the "subharmonic" resulting from the (220) planes pass. Besides, their 

Miller indices are high, resulting in a narrow diraction width 68, as mentioned before. This width is an 

impartant parameter for the selection of crystals. The set of (31 1) planes may be a reasonable choice 

in this respect. Its resolution is slightly better than that of the (220) reflection and not all harmonics 



can pass. Unfortunately  IF^ 1 = 45.8 is a bit small. (31 1) crystals have not been employed on a large 

scale which perhaps may be also due to the fact that Si-single crystal rods are usually not available 

grown with (31 1) end faces but have to be cut from a larger piece of single crystal of (1 11) or (1 10) 

Orientation, which may be too wasteful. At L.U.R.E., however, Si (31 1) crystals are used [130]. They 

are also employed in laboratory EXAFS facilities. See Ref. 131 for a review of these facilities. 

The x-ray monochromator contains two independent single crystals so that they can be slightly 

detuned. This results, however, in the unwanted reduction of intensity of the regular beam as well. 

Employing simple floatglass mirrors is a superior way in comparison (132). Mirrors act as low-pass 

filters for x-rays and can therefore suppress harmonics. Their x-ray reflectivities are as large as 95%. 

The advantage of glass mirrors is that the crystals can remain tuned and therefore the output 

intensity high. By detuning, in comparison, the x-ray intensity is reduced to approximately. 50%. 

Another advantage of glass mirrors is that those crystal glitches (see below) that are associated with 

harmonics are eliminated. 

Crystal glitches occur in monochromator crystals as a result of multiple diffraction of x-rays 

[I 33, 1341. They occur whenever the Bragg condition is fulfilled for one or more extra sets of Bragg 

Planes simultaneously and at the same energy as the regular reflection. This can only occur at certain 

fixed energies. As a result the regular reflected beam loses intensity because suddenly more 

diffraction channels have become available. In principle this does not constitute a problem as the 

beam intensrty is measured before and after the sample. The quantity of interest is the ratio of these 

two intensities and therefore any intensity variation should cancel out. It turns out, however, that the 

intensrty variations due to multiple diffraction effects are drastic so that the ion-chamber detectors do 

not respond linearly. As a result the intensrty variations will not cancel out upon forming the ratio. 

Feedback circuits have been developed in order to reduce these intensity variations (1351. The 

energy-, or Bragg-angle-, spectrum of the glitches depends on the crystallographic orientation of the 

rotation axis. The number of glitches increases with the ratio of wavelength to lattice constant. Thus 

there are many more glitches at higher energy but at the same time they become less severe. 

Conversely, at low energy there are fewer but more pronounced glitches. They can frequently be 

avoided by a proper choice of the rotation axis [133]. A grazing-incidence mirror placed after the 

monochromator will remove many glitches. Since such a mirror acts as a low-pass filter for x-rays this 

indicates that many glitches are due to harmonics. 



In this work only Si-single crystals are used. It is also common to employ Ge crystals. Their main 

advantage is the increased structure factors due to the larger atomic number. They also reach to 

slightly lower energy because their lattice constant is bigger than the one of Si (5.66 A as opposed 

to 5.43 A). Their disadvantages are the lower resolution and, in particular, the Ge K absorption edge 

above which the reflectivity drops drastically. However, for energies below the Ge K edge, which 

Occurs at -1 1 104 eV [136], Ge is a Bragg crystal with a high intensity and has the added advantage 

that those harmonics that are above the Ge K edge have a strongly reduced reflectivity [13T]. 

This section defines the different types of absorption coefficients and how the absorption 

coefficient for a compound is obtained from the absorption coefficients of the constituent elements. 

Also their energy dependence is discussed. 

Absorption of photons is described by an exponential decay of the incident intensity Io: 

x is the sample thickness and p is the linear absorption coefficient. The mass-absorption coefficient 

P, is equal to the linear absorption coefficient, normalized to the density p: 

In order to calculate the absorption of a compound it is useful to define the atomic absorption 

coefficient: I p,,, A/N* . (5.25) 

NA is Avogadro's number and A is the atomic weight. If Vi atoms of species i are present then we 

have: 



The atomic absorption coefficients pa for the elements are tabulated as a function of energy in 

Ref. 138, which also contains the following parametrization of the pa away from absorption edges: 

~ n ( ~ )  barn = C a n  [ln (&)In . 

It turns out that a two-parameter fit with a. and a, will describe most of the energy dependence of pa. 

We obtain then for the mass absorption coefficient: 

NA barn 
h=  A eao (A) keV ' 

a, is roughly equal to -3 (1 391 which yields the first term of the Victoreen formula [I  401: 

At low Z the exponent a, is approximately -3.5 [139]. The fact that a, is approximately the same for 

each element implies that it is impossible to distinguish different elements or compounds on the 

basis of the energy dependence of their absorption coefficients unless absorption edges are 

Present. Furthermore, the absorption coefficient p,(mE) at some multiple of the energy E is simply 

Proportional to p,(E): 

1 1 
For harmonics (m = 2,3, ...) this yields 4,,(2E) = 8 h (3E)  = ~ )4n(E) etc.1 

with a transmission T,, close to unity T, = exp(-f3 p, (E) x /m3) . 

This means that for harmonics the thickness x appears to be reduced by a factor of l / d .  Any 

absorber in the x-ray beam path will therefore preferentially transmit the harmonics rather than the 

fundamental. It does not matter whether the absorber is placed before or after the monochromator. 

Unnecessary absorbers, like for example Al filters, should therefore be avoided. 



The purpose of this section is to relate the measured signal from an ionization chamber to the 

intensity of the incident x-ray beam. 

The x-ray flux, i.e. the number of photons crossing unit area per unit time, is monitored by 

ionization chambers before and after the sample. If the flux of the incident beam were sufficiently 

Constant the first ion chamber would not be necessary. The signal detected by either one of the ion 

chambers is: 

i = 0 refers to the first ionization chamber, i.e. the ion chamber before the sample and i = 1 refers to 

the second ionization chamber, that is the chamber after the sample. No is the intensity of the 

incident x-ray beam and N1 is the intensw of the beam after passage through the sample. The Fi are 

the x-ray fluxes and the 4 are the cross-sectional areas of the x-ray beam when passing through ion 

Chamber i. Normally A. is equal to At but when the pressure cell is placed into the beam the 

respective cross sections may differ. Al is then reduced because of the narrow collimator inserted in 

the pressure cell. The quantities +re proportional to the number of photons &orbed in ion 

chamber i. As a result the +re proportional to Ai and they depend on the species of counting gas 

used. Each ionization chamber is connected to a current-to-voltage converter whose output in turn 

is converted into a "count raten by means of a voltage-to-frequency converter. The respective 

conversion factors are: 

current-to-voltage converter: Scv,i = 1 Oni VIA . (5.32) 

voltage-to-frequency converter [141]: Sd = 100 ~ H Z ~ V  . (5.33) 

For the Keithley picoammeters used in our experiments, ni 5 11 is an integer indicating the size of 

the selected scale factor. Usually no = 9 and n l  = 11 so that the output voltages are around 1 V. 

The dimensionless gain factors gi for the output signal are: Qi e Svf Scv,i . (5.34) 
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e is the (positive) elementary charge. For +e obtain: i i = ~ g i A i ( l - e - p i x i ) .  (5.35) 

K is a dimensionless quantity, which is the same for both ion chambers. It is defined by: 

E is the photon energy. Epair is the average energy required to generate an electron-ion pair. The 

signal detected by ionization chamber i is then: 

We get: 

From the signal of the first ion chamber we can estimate the photon flux Fo of the incident x-ray 

beam. Fo is equal to the current e idgo produced in the chamber (typically 1 nA), divided by the 

charge collected. Therefore we get: 

Epair varies from 41 eV in He to 22 eV in Xe [ I  42, 1431. Values around 30 eV are typical for many 

gases and for different types of radiation. For N2 (or air) and Ar the values are 35 eV and 26 eV, 

respectively [142]. Epair is much greater than the ionization energy because there are also excitation 

Processes taking place which do not result in ionization and consequently increase the average 

energy required to produce an ion pair. m e  positive ions and the electrons can recombine and 

hence reduce the ionization-chamber current. If the operating voltage is increased to a sufficiently 

high value then the ion chamber operates in the saturation or plateau region where all charges 

Produced by the x rays are collected before recombination. Under these conditions the output 

Signal is truly proportional to the incident x-ray flux. The saturation current can be obtained from a plot 



Of 111 versus I / V ~  according to the following equation [144], which holds when diffusion can be 

neglected: 

1 and I, are the ionchamber and saturation currents, respectively. d is the plate separation which 

here amounts to 10 mm. V is the applied voltage and a is a proportionality constant. Saturation sets 

in at voltages such that the strength of the electric field in the chamber exceeds 1 O O V / C ~ .  

Recombination of positive ions with negative ions instead of electrons also occurs. This type of 

recombination is very much faster than with electrons and it happens in gases, like for example 

Oxygen, that readily form anions by attaching electrons. If a gas mixture is used in an ionization 

Chamber then charge-transfer collisions become important. In such collisions a positive ion collides 

With a neutral atom and exchanges an electron. For gas mixtures the resutt is a net transfer of charge 

10 the gas component with the lowest ionization energy. 

The experiments were carried out using parallel-plate ionization chambers operated in current 

mode at a voltage of 300 V. The active region of the first ionization chamber was 11 9 mm long and 

that of the second had a length of 271.5 mm. The first chamber should be as short as possible so 

that not too much intensity is absorbed. The second ion chamber, on the other hand, should be very 

long so that all photons are counted. It is advisable to employ the same gases in both chambers in 

order to have the same diffusion times [145]. Each ionization chamber had two windows of Kapton 

foil, 1 mil (= 25.4 pm) thick. The gases were at atmospheric pressure. 

In this section we derive a criterion for the optimum sample thickness for x-ray absorption 

experiments based on results from counting statistics [ I  46) (see also Ref. 147). 

Considering the counting time T required for a given relative error p of the product p, where p 

is the linear absorption coefficient and x is the sample thickness, we have: 



where T r e-PX is the transmission. We can also express T as: 

Fo = cdz and F1 = cl/z are the fluxes or count rates and co, c1 are the number of counts of photons 

before and after the sample, respectively. For the relative error of the transmission we get: 

S T 2  a T 6 c 0 2  a T S c l 2  k o 2  k l 2  1 1 
(r) = (%T) +(%T) =(G) +(T) = 

In the last step we have employed a resutt from counting statistics: ( 6 ~ ~ ) ~  = Ci (i = 0 1) . (5.44) 

This yields: 

For a fixed count rate Fo = cdz of the incident beam we obtain from Eq. (5.45): 

t ,  plotted versus px, has a minimum determined by: 

If we choose the sample thickness x such that (5.47) holds then we obtain the shortest 

counting time for a given precision p of the measured quantity px . For the optimum, i.e. minimum, 

counting time we get using (5.47): 



We can formulate the condition for an optimum also in terms of the number of photons co by 

rewriting Eq. (5.46): 

We see that the counting time or the number of photons are inversely proportional to the square of 

the relative error in px . 

In order to get an idea of the sharpness of the optimum, it is useful to determine the points 

(px)min and (p),,, where the function z versus px assumes twice its minimum value. The result is: 

Thus the minimum is rather wide and the optimum-thickness criterion not too stringent. 

It turns out that the optimum condition depends also on the absorption in the ion chambers. 

The ion chamber before the sample produces a signal given by 

where I. is determined by co incident photons during a time interval z. Correspondingly, the second 

ion chamber measures the signal 11: 

The first two exponentials in this equation are the transmissions of the first ion chamber and the 

sample, respectively. Al is the cross-sectional area of the beam after passage through the sample. 

Al can never exceed Ao: Al 5 4  . (5.53) 

Forming the ratio we obtain for the transmission of the sample: 



Similar to Eq. (5.44) we have used in the last step the following relations: 

Note that we have included here quantities like the number co of incident photons, the 

absorber materials, and the cross-sectional areas Of the x-ray beam, which all determine the number 

of counts. K, go, and gl , however, are merely gain factors which magnrfy the number of counts and 

their variation by the same factor. For p2 we obtain: 

Nfiing co = Fo T yields an equation similar to Eq. (5.46): 

Because T now depends on px , ~QXO , and ~ 1 x 1  we have to set the partial derivatives of T with 

to these quantities equal to zero in order to find the optimum. We see after a bit of thougM 

that the derivative with respect to plxl of the second ion chamber cannot be equal to zero but 



approaches zero for: PlXl + " . 

Setting the partial derivative with respect to m x 0  equal to zero results in the equation: 

Similarly, setting the partial derivative with respect to p equal to zero yields 

where the last step follows from Eq. (5.61 ). Solving for w0 gives: wo = l n ( d 2 )  . (5.63) 

The optimum counting time is obtained by inserting Eqs. (5.61), (5.62), and (5.63) into Eq. (5.59): 

Applying Eq. (5.61) once again, produces an equation which can be iterated for a given value of 

V l x l  , the optimum being infinity, (5.60): 

Once px is known, p&, is calculated from Eq. (5.63). For p l x l  + = and Al = 4 we obtain: 

In the second step we have used Eq. (5.64) together with Fo = cdr  and Eqs. (5.51) and (5.63). 



These three conditions determine the optimum choice for the absorption-thickness product 

(subscript "opt" omitted) for the two ion chambers and the sample. The result p E 2.56 is not too 

different from the previous one, (5.47), where the absorption of the ion chambers was ignored. Note 

that the result (5.66) is exactly the same as the one in Refs. 5 or 148 which had been obtained in a 

Completely different way. The present criterion includes in addition the dependence on the ratio 

A ~ / A ~  of the cross-sectional areas of the x-ray beam. For p l x l  + m and A1 = 0.5 A. we get 

instead of (5.66): 

Thus, if the cross section of the x-ray beam in the second ion chamber differs, i.e. is smaller than the 

first, then the sample thickness as well as the absorption in the first ion chamber are reduced for 

Optimum conditions. This optimum-thickness criierion, which is based on counting statistics, always 

Produces optimum sample thicknesses exceeding p = 2 . Otherwise Eq. (5.63) yields negative 

values for wo . 

Since p depends on energy, whereas x does not, the product p cannot remain constant. We 

will therefore choose the sample thickness such that the average value of p in the EXAFS region is 

approximately equal to 2 or so. If a sample contains several edges of interest it may occur that the 

averages of px at the corresponding edges cannot both be near 2. If that is the case then the 

thickness cannot be optimized for all edges. In order to check whether simultaneous optimization is 

Possible it is useful to plot the quantrty 21p . A plot of 2/p versus energy is shown in Fig. 5.1 for 

SmSe where the values of p were obtained from the parametrizations in Ref. 138. We see that in this 

case it is possible to optimize for both edges simuttaneously. 



Fig. 5.1 : dpSmSe versus photon energy. The jumps occur at the absorption edges. We see that a 

sample thickness of x E 1 6 . 1 0 ~  m would be a reasonable average thickness suited to measure the 

EXAFS of the Sm L edges as well as the Se K edge. 

In Section 5.7 it will be shown that if harmonics are present then the sample thickness should 

be made as small as possible instead of being such that p r 2 . 

. . 
This brief section describes how a measure of the signal-to-noise ratio in EXAFS is 

obtained. 



As will be shown in Section 6.7 we can decompose the EXAFS function ~ ( k )  into amplitude and 

phase which both depend on k. Therefore we get: 

Pg is the the background, i.e. the slowly varying part of the absorption coefficient. We define the 

Signal-to-noise ratio as 

where the second step follows from Eq. (5.41). Aeff(k) is the effective or rms value of the EXAFS 

signal. We obtain Aeff(k) by assuming that A(k) is slowly varying with k. Hence we only consider the- 

effective value of sin@(k) which we assume is equal to l / f i  , as it would be for a pure sine function. 

This is an approximation because in general there are several shells and @(k) is not proportional to k. 

We obtain: 

As an example, if pgx = 2 has been obtained with a precision of p = 1 O/O and A(k) happens to be 0.1 
0.1 

then the signal-to-noise ratio is S/N = 20 loglo (fi 0.01 . 2) = l1 dB. 

Thus far the equations have been general, but in the following we distinguish two cases. The 

first is that of not considering the ion chambers. Using Eq. (5.46) we obtain directly from Eq. (5.70): 

If we do take ion chambers into account then we obtain from Eq. (5.59) instead: 



In this equation, too, we may replace Fo r by co. We see that the signal-to-noise ratio is proportional 

to the square root of the total number co of photons or, equivalently, to the square root of the 

incident x-ray flux Fo multiplied by the counting time T. Eq. (5.72) differs from the signal-to-noise ratio 

given in Ref. 148, the most important difference being the absence of the derivative of the 

absorption coefficient of the sample with respect to energy. 

In this section we investigate how harmonics, pinholes, and uneven sample thickness affect 

the measured absorption spectrum. In particular, we will investigate the effect of harmonics. We 

derive how a lower bound on hl, the intensity fraction with the fundamental energy, can be 

calculated from the experimentally observed step size, Eq. (5.85). If the transmission of all other 

absorbers, besides the sample, is known then one can actually determine the minimum value of hl, 

Eq. (5.90). After having discussed absorption coefficients we consider the EXAFS which can be 

treated as a small signal on top of the absorption coefficient. A small-signal gain is obtained from the 

derivative of In N ~ N ,  with respect to p(E) ST and it describes the effects on the EXAFS envelope 

function due to artifacts (Eq. (5.93)). An example applying the results to a Cu foil is given at the end 

Of this section. 

Absorption coefficients determined from I ~ ( N ~ N ~ )  are subjected to experimental artifacts 

Such as the presence of harmonics in the beam, pinholes or bubbles in the sample, and an uneven 

thickness when making samples from powders. These effects lead always to an apparent reduction 

Of the experimental absorption coefficient, i.e. I ~ ( N ~ N ~ )  S p x  . Ideally, the equals sign would hold. In 

Order to investigate these artifacts and to find out what can be done about them we first wriie down 

the transmitted intensity for a sample of uniform thickness with no pinholes. 

We begin by considering the effect of harmonics. We may write: 



Here h(E-b is a normalized weighting function describing the variation in energy, which is due to 

harmonics and best described by a sum of &functions: 

~ h u s  ~ q .  (5.73) becomes: N~(E) = N ~ ( ~ E )  hm e-p(mE)x . 
m=l 

We now put any energy dependence of the intensity No of the incident beam into the coefficients 

hm and can therefore assume that No is constant. We can thus write: 

For a powdered sample, such as SmSe, we have to take into account that the thickness x is not 

Constant. Instead there is a thickness distribution characterized by a mean value x and moments Mk 

of higher order. Following Ref. 149 we replace Eq. (5.75) by: 

The integration is over the illuminated cross-sectional area S of the sample. Writing the exponential 

underneath the integral as a series yields an expansion in terms of the central moments Mk 11491: 

with 



We have Mo = 1 and MI = 0 . The thickness distribution of (x-iT) can be assumed to be symmetric 

and therefore the odd central moments will vanish. Provided that moments higher than M2 can be 

neglected we have: 

N1 (E) = No . hm e-F(mE)x [I + % (P(m~).x)'] . 
m ~ l  2 z 

The absorption coefficient at the energies of the harmonics is much smaller than the absorption 

coefficient at the energy of the fundamental. We therefore neglect the former compared to the latter, 

that is p(mE) z 0 for m = 2, 3, 4, ... and obtain: 

m 

Using hk = 1 - hl from the normalization condition. (5.74), we get: 
k=2 

Having made the approximation of transparency of the sample for harmonics we can easily take the 

existence of pinholes into account because if there are pinholes then the sample is more 

transparent, just as it is for harmonics. Therefore we assume in the following that the effect of 

pinholes is contained in hl as well, besides the harmonics. hl, the fraction of intensity at the energy 

of the fundamental, is of interest because it depends on the amount of harmonics and pinholes 

present during an experiment. In the remainder of this section we will therefore investigate in how far 

it is possible to determine hl. 

- 
No and N1 are not the actually measured count rates. Instead IO = ?O No and I1 = KI N1 are 

measured according to Section 5.4 and we obtain In N ~ N ~  as follows: 



The absorption spectrum is therefore obtained by a constant shift of the measured quantly In ldll . 
Therefore differences of In ldll will be equal to differences of In NdNl . If the shtft is known then 

In NdNl can be calculated directly. 

The next figure is based on Eq. (5.81). For results from different treatments of the effects of 

harmonics and pinholes see for example Refs. 150 and 151. 

Fig. 5.2: Measured absorption-thickness product In N ~ N ,  versus the true value p(E) X 

according to Eq. (5.81) and for h, = 0.9 and M2 = 0 . The straight line corresponds to the ideal case. 

The limiting value - In (1 - hl) = 2.30 is indicated by the horizontal line. 



In Fig. 5.2 In NdNl is plotted versus p(E) F for hl = 0.9 and M2 = 0 . We see from the figure that In 

NdNl is atways smaller than the true value p(E) X . Regarding harmonics and pinholes it is therefore 

desirable to make the sample as thin as possible in order to minimize this discrepancy. For large 

values of p(E) F the function approaches its limiting value of - In (1 - hl) if hl < 1 . The existence of 

a limiting value for hl < 1 means that A(ln N ~ N ~ )  = A(ln ld I1)  cannot exceed - In (1 - hl) . This 

implies a lower bound on hl : 

h1 2 1 -e-Dmax with Dm, = ~ ( l n  NO/N1)I = A 1 ~ / 1 ~ )  . 
max rnax 

As was pointed out in connection with Eq. (5.82), differences of In ldI1 , like D,,,, are useful 

quantities. If there are no other energy-dependent terms then t b  difference Dm,, can be evaluated 

at any two energies. Often, however, there are other absorbers, like for example B4C anvil tips or 

simply air, present whose absorption changes with energy. Therefore it is best to evaluate quantities 

like Dm,, at two closely-spaced energy values. At an absorption edge the energy is practically 

unchanged, i.e. Ea E EB . Therefore it will be of advantage to use the size Do of the measured edge 

step in a calculation. Do is given by: 

The lower estimate for hl can now be extended: hl 2 1-e  -0 max 2 l-e-Do . (5.85) 

Eq. (5.85) is important because it allows one to calculate a lower bound on h,, the intensity fraction 

with the fundamental energy, from the experimentally observed step size. 

We now proceed to determine hl . Using Eq. (5.81) we can calculate h, for a thickness X with Do 

and M2 as parameters. Rewriting Eq. (5.81) we have: 

Note that Eq. (5.86) now includes the quantity T which stands for the combined transmission of all 

other absorbers besides the sample, like for example B4C, air, etc.. Writing this equation down for 



the energy Ep above the edge and for Ea below it and forming the ratio yields 

where Do is given by Eq. (5.84). Under ideal conditions we have hl = 1 and M2 = 0 . In this case the 

sample thickness has the smallest possible value: 

According to Eq. (5.87) hl as a function of the sample thickness F possesses a minimum. This is so 

because hl = 1 occurs at the minimum thickness and it must also occur at infinite thickness. The 

minimum of hl (Y) occurs at: 

x,in is given by Eq. (5.88). (For r = 1 the second term happens to be the optimum sample thickness 

determined from contrast maximization of the transmitted intensity at an absorption edge [I 521.) 

Thus the minimum of hl occurs close to some optimum thickness which in turn will be close to the 

actual sample thickness. Inserting this result into Eq. (5.87) yields: 

1 - ~ ( 1  + ;hAppa2) [ - E] exP[ - Pa 
(D, + r P~IP~) 

= 1 +  I . (5.90) 
h1 min eDo - 1 Pp - Pa 

Thus, if the sample thickness is unknown we can still estimate the minimum value hl ,in of hl. 

If we again consider Eq. (5.86) just above and just below the absorption edge and subtract the 

two equations, instead of dividing, then we obtain an equation which can be combined with 



Eq. (5.87) to eliminate the transmission T due to other absorbers. The result is an equation for hl, 

independent of T, but containing now gain factors and cross-sectional areas: 

where r has been defined in Eq. (5.89). Because this equation is independent of T , i.e. of all the 

other absorbers, it should be more reliable for determining hl. Eq. (5.91) contains three unknowns: 

The first fraction, evaluated at the edge, the sample thickness P , and r , which frequently will be 

close to unity. If we assume that in a series of high-pressure scans only iT in Eq. (5.91) changes, 

then the second fraction is invariant under pressure. If the second fraction were exactly zero this 

would indicate that there are no harmonics or pinholes. Practically, however, it will be non-zero and 

as long as the prefactor containing the gain factors is unknown hl cannot be determined. 

The EXAFS is a small variation of the absorption coefficient and we can therefore consider it as 

a small signal. The small-signal gain g is obtained from the derivative of In NdN1 with respect to p(E) 

Z according to Eq. (5.8 1): 

Obtaining N ~ N ~  from Eq. (5.81) one can write equivalently: 

For values of bAA2X2 that are not too large, the right-hand side is positive and for p(E) R += it 



tends to zero. This confirms the known fact that in the presence of harmonics andlor pinholes the 

EXAFS signal decreases with increasing sample thickness. Conversely, if one observes an EXAFS 

signal with the correct amplitude from a thick sample then this implies the absence of harmonics or 

Pinholes (see (5.83)). 

The result of the above equations is shown in Fig. 5.3. It is simply the derivative of the curve 

shown in Fig. 5.2. 

Fig. 5.3: Derivative with respect to p(E) iT of the curve shown in Fig. 5.2. 

The gain g resembles the amplitude reduction obtained in Ref. 150 by a different method. It 

achieves its maximum value hl , independent of M2, at p(E) jT = 0 . Thus in order to maximize the 

amplitude of the EXAFS interference function the sample should be very thin. Since the absorption 

coefficient decreases during an EXAFS scan, the gain will increase approximately linearly with p(E) X. 



Let us now apply these results to calculate the gain of a Cu foil of known thickness x (M2 = 0; 

T = 1). Using Eq. (5.81) we calculate hl from the measured jump Do at the Cu K edge: 

The subscripts a and P refer to the low- and high-energy side of the absorption edge, respectively. 

With Do = 1 , = p ha = 339.46 cm-I . pg = p &,,p = 2589.3 cm-I . and x = 5.10-~ cm we get 

hl = 0.95 . The gain for the EXAFS signal right above the K edge is obtained from Eq. (5.93). The 

value is gp = 0.83 . Using Eq. (5.92) we can follow how the small-signal gain increases during a scan. 

We obtain: 

Writing Eq. (5.95) once again for the particular gain gg at energy Ep just above the edge, subtracting, 

afId solving for g yields: 

with 

This equation means that at least for the case of a foil of known thickness we can determine the 

increase of the gain as a function of energy E or wave vector k. This enhancement of the envelope 

of the measured EXAFS must be removed. If gp = 1 , as in the ideal case, then it is evident from 

Eq. (5.96) that g = gp = 1 . If M, is significant then the above analysis is not so simple. 

In the high-pressure experiments on SmSe the thickness x is not known accurately but it could 

be measured by recording 1, with and without the sample being present. 

Looking at Fig. 5.2 again, one might suspect the generation of integer multiples of the EXAFS 

frequencies due to the curvature, in analogy to harmonic generation in an electronic amplifier. It tums 

out that moderately large values of M2 straighten the curves shown in Fig. 5.2. For M2 = 0 a 

comparison of the second derivative of In NdNl with the first derivative shows that the generation 



of integer muttiples is typically less than 10% but can increase for rather thick samples. Therefore the 

signal at twice the EXAFS spatial frequencies, which occur at 2 (Rj + 0.5 pl) , is about 10% of the 

signal at Rj + 0.5 p l  . 

The assumption made so far that the sample is transparent for the harmonics leads to an 

overestimate of the transmitted intensity N. Hence we write Eq. (5.81) as an inequality: 

The pressure is determined from the EXAFS of a calibration material that is placed in the gasket 

together with the sample. The contact of the calibrant with the sample requires that the two 

substances do not react chemically. Analyzing the EXAFS of the calibrant yields the nearest- 

neighbour distance. In order to convert this distance into a pressure the equation of state of the 

calibrant must be known. To this end it is of advantage to employ isotropic (cubic) calibrant materials. 

It is desirable that the EXAFS extend as far as possible. This requires that the Debye-Waller factor be 

small and that there be no intervening absorption edges from the sample. In order to facilitate the 

data analysis it is desirable for a calibrant to have a well separated first coordination shell and a Debye 

temperature equal to or bigger than the temperature at which the experiment is performed so that 

corrections due to asymmetry are not necessary. Furthermore, a calibrant should be highly 

compressible in order to reduce the error in the pressure determination. For minimizing the effects of 

non-hydrostaticity the calibrant should possess a low shear strength. Finally, its absorption edge 

must be in an accessible energy range and the absorption of the calibrant should be small in order to 

reduce the overall absorption. 

In this work two pressure calibrants are employed: Cu and RbCI. RbCl has one unwanted 

property, namely a phase transition from the NaCl crystal structure to the CsCl structure. The 

transition occurs at 5.2 kbar [I531 which is below the pressures that interest us here. Note that the 

error in pressure determination for RbCl is smaller due to its larger compressibility. The error in the 



EXAFS pressure calibration employed here is still far greater than the error from the ruby 

fluorescence scale which is about 0.5 kbar to 0.1 kbar [154]. This method is not employed here as it 

requires that at least one of the anvil tips be made from diamond. However, in the axial geometry 

used in our experiments, this will introduce Bragg peaks in the EXAFS spectra preventing analysis 

(1551. 

At room temperature the p-V relation for Cu is taken from Ref. 156. The same reference 

contains also data for RbCl but these are discarded because they were obtained from shock 

experiments which are not corrected for the presence of the NaCI-CsCI phase transition. Instead we 

employ the data of Vaidya and Kennedy [153]. Their results, however, only extend up to 45 kbar and 

it becomes necessary to extrapolate to approximately 100 kbar. This is done by fitting the data of 

Ref. 153 in the interval from 5.2 kbar to 45 kbar to a theoretical p-V relation. As suggested in 

Ref. 157 we employ a modified form of Jamieson's equation of state [I 581 which reads: 

B,, S, and a are parameters which are determined from a fit to Vaidya and Kennedy's data (1531. 

Their respective values are: 

B, = 184 kbar ; S = 1.53 ; a = 0.8458 . (5.99) 

With the room-temperature p-V relations known we now have to determine the corresponding 

relations at liquid-nitrogen temperature. In doing this we will assume that the pressure for the NaCI- 

to-CsCI phase transition of RbCl is approximately temperature independent. For a relation like an 

equation of state which involves the three variables p, V, and T we can immediately wriie down the 

following: 

$p a-r av or: 
1 av 

a & ~ l , ~ J r  = -I v = - v y  av T --I v a~ ,, = k p .  

BT is the isothermal bulk modulus and p  is the coefficient of volume expansion. If these two 

Quantities were known the change of pressure with temperature could be calculated. 



When BT fl is not known the Grijneisen relation (see Appendix C) is useful. It is given by: 

YG is the Grijneisen parameter. It depends on volume and temperature. For most substances the 

temperature dependence is weak in the range from 300K to 77K [159-1641 (see Ref. 159 for RbCl in 

Particular). We will therefore ignore it and consider y~ as only volume dependent. Any temperature 

dependence of y~ would be a direct consequence of increased anharmonicity. 

Cv in Eq. (5.101) is the heat capacity at constant volume. In the Debye model it is given by: 

OD is the Debye temperature which is here assumed to be temperature independent. However, OD, 

like y ~ ,  does depend on volume. For Cu these volume dependencies can be found in Ref. 165. 

They are linear in the pressure range that is of interest here. For RbCl the volume dependence of 

the Debye temperature up to 20 kbar is given in Ref. 166. Values for higher pressures are obtained 

by linear extrapolation. The volume dependence of the Grijneisen parameter of RbCl is obtained 

from the Debye temperature using the relation (see Appendix C): 

n 
1 

The quantity A in Eq. (5.102) is the average atomic weight, i.e. 7 = ; , where n is the number of 
i- 1 

atoms per formula unit. R is the gas constant, p the densrty, and fD(e& is the Debye function 

defined by: 

using Eq. (5.101) we can rewrite Eq. (5.100) as follows: 



Integrating, using Eq. (5.102), yields the (negative) change Ap in pressure when the temperature is 

reduced, 

where in the last step we have emphasized the volume dependence of y~ and 00. 

The pressure at liquid-nitrogen temperature is now: 

P(77K) = p(300K) + Ap . 

The results for the calibration are: 



Table 5.3: Pressure versus reduced volume for Cu at 300K and at 77K: 

The results contained in this table are plotted in the next figure. 



Fig. 5.4: Pressure versus reduced volume for Cu. The solid line refers to room temperature and 

the dashed line shows the result for liquid-nitrogen temperature. 



Table 5.4: Pressure versus reduced volume for RbCl at 300K and at 77K: 

The results are shown in the following figure. It was assumed in the calculations that the pressure at 

which the first-order phase transition occurs in RbCl is independent of temperature. 



Fig. 5.5: Pressure versus reduced volume for RbCI. The solid line is the room-temperature result 

and the dashed line refers to liquid-nitrogen temperature. 

We observe that the slope of the pressure-vs.-volume curves at 77K is more negative than the ones 

at 300~: 

or: or: 31 ZJ < o . 
ap TaT p 

It turns out that this is always so. Following an argument of Bridgman [I 67, p. 1751 we write for the 



entropy content of a body: 

The last integral on the right-hand side of this equation thus has an upper bound So. This means that 

must decrease with increasing pressure such that the limit So is not exceeded. If 

1 I c 0 as in Eq. (5.108). Note that because of monotonic then this implies indeed - 

as - - -  I T  - :I c 0 the entropy decreases with pressure. The argument presented here stems from 
P 

the simple fact that the application of arbitrarily high pressure cannot reduce the entropy by more 

than its initial value So. 

If we plot the reduced volume at 77K then it will always be larger than the corresponding one at 

300K: 

In this section a high-pressure cell for use at low temperatures is described and its design 

criteria are explained. The force gain is calculated and Eq. (5.1 25) is derived which specifies the 

angle at which to set the pressure cell before compressing the sample. A formula relating the 

compression to the applied pressure, Eq. (5.133), is derived also. 



In order to carry out high-pressure work a pressure cell was designed for pressures up to 

100 kbar. This cell is shown in Fig. 5.6. The pressure is generated mechanically by compressing a 

gasket placed between two opposing anvils. The gasket is an lnconel disk of - 10 mm diameter which 

contains the sample in a small central hole of -0.7 mm diameter. The anvil flats have a diameter of 

about 3 mm. The axial geometry is employed, where the x-ray beam passes through anvils and 

sample, rather than horizontally through gasket and sample. In the transverse geometry the gasket 

has to be transparent to x-rays but at the same time strong. This makes Be the material of choice but 

there are possible health hazards (see below). In the axial geometry the cross-sectional area of the 

sample that is exposed to x-rays is unaffected by pressure and the sample thickness changes in a 

controlled way. The fact that the x-ray beam has to traverse the anvils has a distinct disadvantage 

though: it is not possible to employ anvil tips that are crystalline because Bragg diffraction would 

produce peaks in the measured absorption spectrum that would contaminate the EXAFS so that 

data analysis would become very difficult or impossible. Hence the anvils are made out of 

Polycrystalline boron carbide, B4C. Due to the lower hardness of this material, compared to diamond, 

the anvil tips have to be 2 to 3 mm in diameter. This in turn requires larger forces in order to produce a 

given pressure. In the future one may consider using sintered diamonds. They are hard and will not 

cause Bragg peaks. 

The pressure cell is intended for low-temperature work. Therefore the anvils are driven 

mechanically rather than hydraulically as in eallier work at room temperature [I 551. This will enable 

one to change the pressure while at low temperature. The entire apparatus is made out of one 

material in order to avoid pmblems with differential thermal contraction. The pressure cell is made 

from a maraging steel (VascoMax T-250) which can be easily machined in the soft condition and can 

be hardened by simple heat treatment without any significant distortion. Maraging (martensite age 

hardening) steels [I681 are carbon-free alloy steels that acquire their high strength through 

Precipitation of intermetallic compounds at -480•‹C. Although of lower hardness than BeCu 

(1.8 wt. Oi0 Be), a maraging steel was preferred because the heat treatment of BeCu and the 

necessary subsequent grinding to final dimensions require the safety measures of a special 

Beryllium machine shop [169]. A disadvantage of maraging steels, not of concern here, is that they 

rapidly lose strength at temperatures above -480•‹C. Since almost all materials embrittle with 

decreasing temperature the pressure cell has been designed with large safety margins applied to 

the room-temperature material specifications. 



In the experiments performed for this thesis the thickness of the uncompressed gasket was 

selected to be in the range from 0.381 to 0.508 mm (15 to 20 mil). The displacement of the anvils 

cannot exceed this value. Therefore the cell is designed only for these small displacements. At the 

same time a large force multiplication is desired. A special constraint at beamline IV-1 at SSRL is that 

the x-ray beam is only 50 mm away from a wall so that the pressure cell has to be narrow along one 

cross-sectional dimension. The pressure cell was modeled after one designed by Syassen and 

Holzapfel [170, 1711 for use with diamond anvils. The present cell, which is shown in Fig. 5.6, is 

bigger due to the larger force required. It has very good alignment stability because the force 

advancing the piston acts strictly axially and the piston is also sufficiently guided in the bore. 

Fig. 5.7 shows a sketch of the pressure cell. Indicated are the lengths L1 and L2 of bracket and 

strut, their respective angles a1 and a2 with the centre line, and various forces. F is the magnitude.of 

the force applied on one side and G is the magnitude of the resulting force that advances the anvil. 

We will first investigate the kinematics. We introduce the quantw q, defined by: 

From the figure we see: 

L1 sin a1 = L2 sin a2 
sin a1 

3 q = -  sin a2 ' 

The angle al can vary from 0•‹ to arcsin q  . This corresponds to a maximum possible displacement 

dm,, of: 

dmJ~1, plotled Venus q  has a maximum at q = 1 / f i  with value & - I = 0.41 4 . The value 

chosen for q  is 40163 0.635 with d,,,/~, = 0.407 , close enough to the optimum. 



Fig. 5.6: High-pressure cell (from Ref. 172). The pressure is generated by turning two gear-set 

threaded spindles (T) . The two spindles are driien by a spur gear (SG) and through brackets (B) 

and struts (S) move the two anvils (A) towards each other via the piston (P) . The anvils compress 

the sample which is contained wlhin the gasket (G) . The end nut (N) is used to set the initial angle 

of the brackets with the cell body. 



Fig. 5.7: Geometry and force diagram for the pressure cell, shown in Fig. 5.6. Turning the spindles 

reduces the distance k, which then moves the two anvils together. Assuming that the right-hand 

anvil is at rest, the left-hand anvil advances from its initial position 5, to the position 5. The initial 

thickness of the gasket is x. 

Analyzing now the forces we obtain from the law of sines: 

!2 sin (90" + a l )  - cos a1 - 
F = sin (a2 - a , )  sin (a2 - a i )  ' 

Using G = F2 cos a2 we get: 



G - - cos a2 cos a1 - 1 - F - sin ( a 2  - a l )  tan a2  - tan a1 
- tan a1 1' . (5.116) 

This equation describes the "force gain" G/F of the pressure cell. We have ignored the small lever 

action due to L3 and L4. This gain only depends on a1 and q. G/F should always be greater than 

one which gives rise to a maximum angle a1 ,,, beyond which the gain is less than one. For 

q = 40163 we obtain a1 ,,,, = 32.g0 . 

The force gain G/F increases with the ratio 11. However, with increasing q the maximum possible 

displacement becomes smaller. Also, for a given length of the cell body the bracket and strut will 

have to become rather long for a bigger q-value. q = 40163 is a compromise in this respect. It can be 

seen from Eq. (5.1 16) that for al -+ 0 the force gain increases to a very large number 

(-, theoretically). 

The diameter of the piston is 45 mm. The pressure cell is designed to produce 100 kbar when 

the anvil-tip diameter is 4 mm. From this we can calculate the total force 2 G on the piston as: 

To be safe the pressure cell is designed for G = 100 kN . Using G = o A we could calculate the cross- 

Sectional area A of brackets and struts required for a given tensile stress o. This, however, does not 

yield an actual design criterion because the effects due to bending are much more pronounced than 

those due to tensile or compressive stress. The top plate as well as the two brackets are the 

members of the pressure cell that bend most easily. As an example we mention here an equation 

that approximately describes the bending of the bracket. From Fig. 5.7 we see that the force F1 acts 

Parallel to the bracket but displaced by a distance s giving rise to a torque that flexes the brackets 

slightly outward when the cell is pressurized. Following for example Ref. 173 we obtain for the 

deflection 6 in the middle of the bracket (at ~ ~ 1 2 )  with respect to either end: 

Here E, w, and t are Young's modulus, the width and the thickness of the bracket. Fl, the force 



acting on the bracket, is obtained from F, = F cos a2 / sin ( a p , )  . The displacement s will be equal 

to the thickness, hence s = t . Young's modulus for the maraging steel used here is 

Em, = 1.86 Mbar (27.0.10~ psi) [168]. Specifying 6 then yields values for the product w t2. We 

chose w = 57.15 mrn (2.25") and t = 9.525 mm (3/8") . With these specifications the brackets still 

visibly bend but this is necessary to provide a "spring action" so that a given pressure is maintained. 

This will also ensure that the pressure changes smoothly. Like the brackets the top plate, too, acts in 

this way. 

The two brackets are pulled together by the action of two gear-set spindles turning in opposite 

directions, which requires right- and left-hand threads. In the design of this mechanism several 

Points had to be considered. First the spindle diameter had to be decided upon. Using a modulus of 

rigidlty for maraging steel of 0.71 Mbar (10.3.10~ psi) [168], it was estimated that a 5/16" UNF fine 

thread with 24 threads per inch would result in a tolerable torsion of approximately 0.01 40/mm. Next 

the spindle length engaged in the threads of the two bolts was determined. Following an example in 

Ref. 174, p. 298, it was found that a bolt diameter of 314" would be safe. The cell is designed such 

that in the case of a thread seizure the two spindles can be cut apart and removed easily together 

with the bolts. For a screw thread with only one thread start one can show that the torque T 

Corresponding to an axial force Fa is given by: 

n = 24125.4 mm is the number of threads per unit length and E is the efficiency of the screw thread. 

E takes care of friction in the thread and a practical value is E z 0.5 . 

We can use Eq.(5.119) to calculate the necessary toque T for an applied pressure pea. 

Referring to Fig. 5.7, the axial force on the spindles is Fa = 2 F , where the factor of two results 

because there are two threads per spindle. The fact that there are two spindles does not matter 

because we only calculate the torque required for one spindle driving the other. Using pea = 2 GIA 

for the external pressure we get: 

T = Fa - - 2 F - 2 F  2 G  1 -- A = Pext A F 
2 x n ~  2 x n e  - 2 x n ~ 2 G  A 2 x n ~ G '  



Using FIG from Eq. (5.1 16) we obtain: 

Pext A Pext A sin a, 
T = (tan a 2  - tan al) = (5.121) 

2 x n ~  ' [\ln2 - sin'a, 

We see that the torque is proportional to the force applied to the area A of the anvil tips and inversely 

proportional to the number n of threads per unit length. The torque increases with the angle a l .  

In order to operate the pressure cell efficiently it is recommended that we make use of the 

maximum force gain. This will make compression easiest. The maximum force gain is achieved by 

starting out with the pressure cell opened by the correct amount. Then, after the two brackets are 

fully closed the gasket is just fully compressed. 

To derive the necessary equations we begin with Eq. (5.1 13), which determines the position of 

the left-hand anvil tip as a function of angle a l .  We start compressing the gasket and sample at the 

angle al ,. After complete compression the final angle is a l .  This can be achieved by properly 

positioning the right-hand anvil tip by means of the backing screw on the very right. We will briefly 

discuss the case in which the final angle becomes zero. Assuming now a1 = O0 at the end we 

calculate the final position 5 of the left-hand anvil tip from Eq. (5.113). We get: 

The angle at the beginning of the compression, when the left-hand anvil tip is at to, is a, , according 

to Eq. (5.1 13). Assuming that we intend to compress a fraction 0 < f <1 of the initial thickness x of 

sample and gasket, we write: 

From Fig. 5.7 we see that the distance L, between the centres of the two bolts is given by: 



At the beginning of the compression we have a, = a1 ,, and L, = LC, . Solving Eq. (5.123) for 

cos a, , and inserting the result into Eq. (5.124) yields the length LC,, which has to be preset such 

that when a1 = 0•‹ the fraction f of the initial thickness x of sample and gasket is compressed. The 

initial centre-to-centre distance L,,, of the bolts is set by means of the end nut. L,,,, expressed as a 

function of f.x , is then: 

It is impractical though to measure kt,. Since the two bolts are not completely round but have flats 

one can easily measure the distance between the two flats with a vernier caliper. The distance LF,, 

between the flats is simply: 

Fig. 5.8 is a plot of L F ,  versus f -x according to Eqs. (5.1 25) and (5.126). For the lengths the 

following values were employed: 

7 = L~/L, has the value 40163. Values for LF,, read from the curve of Fig. 5.8 should be increased 

by some amount for safety. This insures that the arms of the pressure cell are not already closed 

before all the compression has taken place. In this context it is also worthwhile noting that, because 

there are 24 threads to the inch, each full turn of the gears changes L, by 2 . (1124)" = (1112)" = 

2.1 mm . 



Fig. 5.8: Distance LF,, between the two flats that has to be set so that when the arms of the 

pressure cell are fully closed the amount f . x  of the gasket is compressed. 

Fig. 5.9 shows the quantity T / ( ~ , ~  A), as obtained from Eq. (5.121), plotted versus LF. The 

number of threads per inch was n = 24125.4 mm and the efficiency of the thread was taken to be 

E = 0.5 . We see that the torque actually decreases with increasing pressure (decreasing length LF). 

Contrary to Fig. 5.8 the curve shown here does not require that the cell is closed after the desired 

Compression is obtained. In other words, the graph in Fig. 5.9 is independent of the particular 

Starting value for k. This is because the thickness x of sample and gasket does not enter here. 



Fig. 5.9: Torque T necessary to generate the force pefl A , plotted as a function of the distance 

LF between the flats. 

Applying torques on the spindles produces friction in the threads which should be reduced by 

lubrication with graphite powder or with MoS2. This applies to the hinges as well. 

We now develop a formula relating compression and pressure. Starting out from the defining 

equation for the (isothermal) bulk modulus we obtain for constant BT: 

= - V  or, simplified: av T 

The volume contained between the two anvil tips is: 



A is the cross sectional area of the anvil tips. 5, is the initial position of the left-hand anvil tip in Fig. 5.7 

and 5 is its position after compression. 

B d P 
+ dp' = 

0 

Combining the last two equations yields: 

In the last step we have assumed that the bulk modulus is independent of volume. Considering a 

Volume dependence, like for example 6 = B, exp(a AV/V,) with a - 4 and AV r 0 [ I  751, one can 

show that the volume dependence of the bulk modulus constitutes only a second-order effect. We 

ignore here any volume dependence. 

We can employ Eq. (5.1 29) to establish the relation between compression and externally 

applied pressure pext. To this end we consider the balance of the forces acting on sample and 

gasket: 

Pext A = Ps A, + Pg Ag . 

A, is the cross-sectional area of the sample and Ag is the cross-sectional area of the gasket, 

excluding the sample and the uncompressed outer areas. ps and pg are sample and gasket 

Pressures, respectively. 

Introducing 

Yields: Pext = PsP + Pg(1-P) . 

Applying Eq. (5.129) for ps and pg yields eventually: 



f is the (positive) relative compression (see Eq. (5.123)). B, and Bg are the (isothermal) bulk moduli 

of sample and gasket, respectively. Because Bs and Bg may differ p,, will not be constant across 

the area A. We mention here that one could insert the result for f into Eq. (5.125) in order to get the 

corresponding length k,, (or LFv0). 

We obtain further: 

The second step follows from the fact that p << 1 and that usually Bg 2 B, . Thus, if the bulk 

modulus of the gasket is much bigger than that of the sample the sample will only experience a small 

pressure. Conversely, if Bg were much smaller than 8, then the gasket would not contain the 

sample. Ideally, one would like to have Bg a little bit larger than B,. 

When performing the experiment it is difficult to ascertain by how much the pressure has 

increased after turning the spindle by, say, a quarter turn. It has been attempted recently to monitor 

the force acting on the piston by using electrical-resistance strain gauges. In this way it may be 

Possible to get an idea of the approximate pressure. Ideally, one would obtain something like a 

Calibration curve to estimate the pressure. This work is not yet completed. One strain gauge each is 

attached to the two struts. The 120 R single-element strain gauges are attached to the struts 

because the struts do not bend as much as the brackets thus producing a more reliable 

measurement. Under strain the resistance of the strain gauges changes by a very small amount, 

typically a few mQ. These small changes can be measured conveniently with a Wheatstone-bridge. 

Following a recommendation in Ref. 176, p. 232, the circuit is designed with a resistance ratio in 

either arm of the bridge of approximately 9:1. This yields a reasonable circuit sensitivity. A reference 

gauge, attached to the same material and at the same temperature as the active gauges, must be 

included in order to balance temperature effects. Since only small voltage changes (-mV) are 

measured it is also necessary to use a regulated voltage source (-20 V). 



The Wheatstone bridge will be balanced only in the strain-free state. The small nonlineariiy, 

produced when the gauges are under strain, is ignored here. In careful work one will take this 

nonlinearity into account or re-balance the bridge each time. 

It may perhaps be possible to estimate quickly the pressure through the relative volume change 

determined from one measured dataset according to the method presented in Section 6.1 4. 

The cryostat designed to cool the pressure cell to liquid-nitrogen temperature is made out of 

brass and consists of two chambers: One chamber houses the pressure cell and the other is the 

reservoir for the liquid nitrogen. It would be ideal if the reservoir would connect to both sides of the 

pressurecell chamber. However, since beamline IV-1 is a side station, the centre of the x-ray beam is 

only 50 mm away from the hutch wall. Hence the chamber housing the cell can only be cooled from 

one side. For liquid-nitrogen temperatures this does not pose a severe problem though. This 

cryostat is not evacuated. It therefore boils off quite a bit of liquid nitrogen (-5 I/hr). Because of the 

large thermal mass of cryostat and pressure cell it takes about two hours to achieve liquid-nitrogen 

temperature. This implies that the temperature, which was monitored by thermocouples, will only rise 

very slowly. 

To prevent icing up of the whole device the cryostat was covered with a few layers of aluminized 

Mylar and it was enclosed in highly insulating 'blue" styrofoam. The cryostat has a feedthrough for a 

wrench in order to adjust the pressure. When not in use the wrench is partly retracted in order to 

reduce heat losses. 



The setup for an x-ray absorption experiment in transmission mode is shown in the following 

figure. 

Slit 
lonisation Chambers 

Double-Crystal I, Sample 

Monochromator 

Fig. 5.1 0: Schematic setup for an x-ray absorption experiment in transmission mode. 

In the figure an x-ray beam from the synchrotron source is incident onto a doublecrystal 

monochromator. A narrow entrance slit is placed in front of the monochromator in order to reduce the 

angular spread of the incident x-ray beam. The x-ray optics is completed with the exit slit in front of 

the first ionization chamber which can be used to match the cross section of the beam to that of the 

sample. The monochromatic x-ray beam enters the first ionization chamber, passes through the 

sample, and enters the second ionization chamber. The ionization chambers measure the intensities 

lo and I, from which the absorption is obtained through In I ~ I ,  (Section 5.4). 

As explained in Section 5.2 the monochromator is positioned by means of a stepping motor. 

The number 6 of monchromator steps depends linearly on the Bragg angle 0 (in degrees): 

& is an offset which is frequently set to zero. Usually the Cu K edge is used for calibration. We set 

the energy of the minimum, that occurs halfway up the edge, to EC, = 8982.7 eV . At the Cu K edge 

we have: 



For a Si (220) monochromator with 4000 steps per degree we get 0cU = 21.064" . If we set 

hu = 200000 we obtain r, = 115744 . If we set r, = 0 we obtain rCu = 84256 . 

If it happens that the monochromator is miscalibrated by a number A c  of steps then a change 

AE in the energy calibration results. The amount AE of this miscalibration increases with energy. It is 

obtained by combining Eqs. (5 19), (5.20), and (5.21) of Section 5.2: 

If at the Cu K edge a Si (220) rnonochromator is miscalibrated by 1 step (= 1/4000 of a degree) then 

the energy shift at the Cu K edge is 0.102 eV. At the K edge of Y (17038 eV), say, the energy shift 

already amounts to 0.385 eV. The effects of miscalibration are worse for Bragg reflections with small 

Miller indices. 

After the monochromator is calibrated the table carrying the experimental setup is positioned so 

that the centre of the x-ray beam passes through the two ionization chambers. Then table and 

monochromator are linked by computer so that they move jointly when a new x-ray energy is 

selected. This linkage is necessary because the output beam of the two-crystal rnonochromator 

moves vertically when another energy (or Bragg angle) is selected. 

Finally, the two ion chambers have to be flushed with counting gases. Frequently the same 

gases are used in both chambers in order that they have the same characteristics. This reduces 

nonlinear behaviour. 

After this setup has been done the sample is placed between the two ion chambers and the 

actual experiment can begin. Usually three EXAFS scans are taken for later averaging. Then another 

sample is put in the beam or, in pressure experiments, another pressure is selected. The software 

Controlling the experiment was wriien by Andrew Seary and it allows one to perform some on-line 

data analysis in order to determine whether the quality of the data is good enough for EXAFS 

analysis. In pressure scans it is necessary to perform some EXAFS data analysis, for example plotting 



the magnitude of the Fourier transform, in order to find out whether and by how much the pressure 

has been increased by turning the wrench. In the experiments on the mixed-valence compounds, 

SmS and SmSe, pressure changes are confirmed by the change in the valence, readily visible from 

the Sm Llll or Sm LII absorption edge. It is planned to monitor changes in pressure by strain gauges 

attached to the pressure cell. It is also possible to estimate the pressure quickly by applying the 

method explained in Section 6.1 4 of the next chapter. 



Chapter 6: Data Analysis 

In EXAFS spectroscopy it is common to measure a sample three or more times and then 

average the resulting datasets. Compared to a procedure where one would measure just one 

dataset for a correspondingly longer time, this method has the advantage that if the x-ray beam is 

Suddenly switched off one has at least some complete datasets. Also, all experimental parameters, 

like for example beam current, have to be stable for only the approximately 20 minutes that it takes to 

complete one scan. 

The question then arises as to how the datasets are to be averaged. Let us assume that three 

scans of one sample had been taken and let Fo, Go, and Ho be their respective signals of the I. 

chamber and F1, GI, and HI the signals of the I1 chamber. We will average only datasets that are on 

exactly the same x-axis grid with the same number N of data points. Only those data sets will be 

averaged that were taken with the same type of monochromator crystals, i.e. (1 11) or (220). This is 

because different monochromator crystals have a different spectrum of harmonics (see Section 5.2). 

There are then two possibilities to obtain the averaged 1d11 spectrum for any data point i: 

Adding the individual signals: 

In this case I ~ I ~  is obtained by dividing the sum of all I. signals by the sum of all 1, signals: 

with 

and 

Averaging the ratios: 

Here ldll is obtained by averaging the individual ldll signals: 



Eqs. (6.1) and (6.2) are not quite correct yet because the gain settings on the current-to-voltage 

converters have not yet been taken into account. The gain settings may differ from scan to scan. 

Similarly, the entrance slit, or some other aperture, may have been changed in between scans. Thus 

the data of various scans may appear scaled with respect to the first scan, say, and this scaling has to 

be accounted for when the averaging is done. The dataset containing Go and GI and the one 

containing Ho and HI are referenced to the first, which contains Fo and F1. We therefore define 

scaling factors as follows: 

and similarly: 

Hence Eqs. (6.1) and (6.2) will be rewriien as: 

with 

and 



If there were only one scan or if all measurements were exactly the same then, of course, there 

would not be any difference between the two methods. But there are differences from scan to scan 

and accordingly one may determine standard deviations 610ti , &I1 , , and 6 ( 1 d 1 ~ ) ~  : 

where I. i and I1 are given by Eqs. (6.5) and (6.6). 

where is given by Eq. (6.7). 

a) With the first method the relative error of the signal is: 

where 11,, and 6IoPi and 611 ,i are given by Eqs. (6.5). (6.6) and Eqs. (6.8). (6.9). 

b) In the second case the relative error -%d!h is directly given by Eqs. (6.7) and (6.10). 
(10/11 )i 

If all errors are statistical in nature then both methods will yield the same relative error for each data 

Point. It tumed out, however, that relative errors are always smaller in case b ). This is so because 



fluctuations of the I. and 1, signals correlate and cancel out to some extent when ratios are formed, 

as in case b ). As a result, all datasets are averaged according to procedure b ), Eqs. (6.7) and (6.10). 

So far the abscissa of the data is in step numbers, 6 ,  that is the number of stepping motor steps 

needed for positioning the monochromator. As already explained in Section 5.1 1, this scale is 

proportional to the Bragg angle 8: 

c = (stepsldegree) . 8 + 1$ . 

1$ is an arbitrary offset. Writing this equation down for the Cu K edge we get: 

Taking differences we obtain: 

After a bit of algebra we obtain: 

E = C O ~  [ EcU + (s in 4-1-1 . 

Here we have used the following relations: 

The calibration value of 8982.7 eV for ECu refers to the small dip that occurs in the absorption 

spectrum h a h a y  up the edge jump. In order to determine $, the number of steps per degree must 

be known as well as the (arbitrary) step number ku at the Cu K edge. (01 course, ku must be 

chosen such that 6 never becomes negative.) 
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Eq. (6.1 3) thus describes how the x-ray energy E is obtained from the number of steps, [. 

This section describes how ~ ( k )  is obtained from the averaged datasets. 

The first step is the subtraction of a pre-edge background. This means that we fit a function to 

that part of the absorption spectrum which is at a lower energy than the energy of the absorption 

edge. The fitting function of the fit to the pre-edge part of the absorption spectrum is then extended 

over the complete spectrum and then subtracted from the spectrum. Now the pre-edge region 

hovers around zero. The fitting function is a slightly modified Victoreen fit [140]: 

% vanishes for a Victoreen fit. Here, however, it is necessary to include this parameter in order to 

take care of the fact that due to scaling factors contained in I. andlor 1, the measured spectrum may 

be shifted by a constant value. It is possible, actually, that I ~ ( I ~ I , )  is negative. This fact can only be 

accounted for by the extra fit parameter Ao. 

Including the remaining parameters A3 and Aq would produce a three-parameter fit. The pre- 

edge background is, however, rather featureless and resembles more or less a straight line. Thus 

one can only afford two fit parameters. Consequently A4 is set to zero in the present work. If A4 were 

to vary then there would be strong correlations among the three parameters. The fitting function for 

the pre-edge background is therefore: 

The following two figures illustrate the pre-edge fitting. 



Fig. 6.1 : Absorption spectrum of the Cu K edge in Cu metal at 48.4 kbar and at 77K. The data, 

which is an average of two scans, and the pre-edge Victoreen fit according to Eq. (6.16) are shown. 

) is negative due to scaling of I. andlor I1. The pre-edge fit is over the interval from 

8890.4 eV to 8961.73 eV. 
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Fig. 6.2: Absorption spectrum of the Cu K edge in Cu metal at 48.4 kbar and at 77K after 

subtraction of the Victoreen fit shown in the previous figure. 

After the Victoreen fit is subtracted from the spectrum the energy scale must be converted to a 

k-scale. This applies only to that part of the spectrum that is above the absorption edge. Therefore 

the absorption edge has to be located first. This is done conventionally by chosing the first inflection 

Point of the edge jump. This inflection point is easily identified as the position of the first maximum of 

the derivative of the edge jump. This is illustrated in the following figure: 



Fig. 6.3: Energy derivative of the spectrum shown in Fig. 6.2. The first peak defines the poslion 

of the absorption edge. Here it is located at 8979.05 eV, according to the monochromator calibration 

employed. 

The conversion to the k-scale is then performed according to: 

z 3.81 eV A2 is the constant introduced in Eq. (2.28). 



Now we have to estimate the size of the absorption jump. This jump is simply a number that we 

need to know in order to obtain a ~ ( k )  that is properly normalized. The EXAFS signal is proportional to 

the size of this edge jump. We can obtain the step size by fitting a straight line to the spectrum from 

k s 2 8;-' to k z 7 . (The fit may also be performed in energy space.) The value of this straight 

line at k = 0 (or E = EEdge) yields the step size, which will be used later on. Fig. 6.4 illustrates this. 

Fig. 6.4: Straight-line fit to estimate the stepsize at the absorption edge, i.e. at k = 0 . Shown is 

Part of the data of Fig. 6.2 after conversion to k-space. In this example the step size is 0.937. 

Eventually we want to compute the Fourier transform of ~ ( k ) .  This will be done using the FFT 

which requires a uniform grid in k-space. We therefore linearly interpolate the data in its present form 

onto a grid consisting of uniformly-spaced k-values. The number of points for this new grid is equal to 

the number of points of the OM, non-uniform, grid. (Andrew Seary's data-aquisition software takes 

the E-to-k conversion into account by positioning the monochromator such that the data points are 



as close as possible to being on a uniform grid. In this way when the energy scale is converted to a 

k-scale the interpolation error is minimized.) Fig. 6.5 shows the k-space data. 

Fig. 6.5: Full spectrum of Cu after conversion to k-space. At -15 A-' we notice a glitch due to 

multiple-diffraction effects in the Si (1 11) single crystals of the Bragg monochromator (Section 5.2). 

The next step is the fitting of a background to the data. The fit will not start immediately at EEdge 

because of edge features. Instead it will begin at k - 2 A-' . The fit interval frequently extends to the 

last data point. Due to various effects the background frequently exhibits slow variations that do not 

result from the actual absorption coefficient. It is therefore difficult to prescribe a certain functional 

form for this type of background. Various methods are in use, like for example polynomial or spline 

fk [ I  771, and each method has its advantages and drawbacks. In the present work we will use a 

background that results from the sequential smoothing of the data. This type of background has the 

advantage of being rather flexible but still easy to apply. The data is smoothed anywhere from 100 to 



600 times depending on how complicated the background is. Each smoothing pass is calculated 

according to the three-point formula (1781: 

The normalization factor of 114 is necessary so that a constant function would remain unchanged 

after smoothing. Although not explicitly stated, smoothing assumes a uniform grid. Then Eq. (6.18) 

could be called a "triangular" smoothing function because the midpoint is weighted twice as high as 

the neighbours. 

With the above formula there are problems with the endpoints. This means that Y~,,,~ is not 

defined because y,~d,~ does not exist and y n e W , ~  is not defined because there is no yold,~+l  to 

apply Eq. (6.18). These end-eff ect problems are common with smoothing functions. According to 

Ref. 178 the first and last points are therefore defined as 

This prescription leaves the endpoints variable. This, however, is not useful for background 

Subtraction because of the application of very many smoothing passes which cause this end effect 

to migrate inwards from the ends. Thus, after several smoothing passes the background may 

become "disconnected" from the actual data. One way of fixing this problem is by setting 

Yn,,l = yold,l and y,,,,, = you,,, after each smoothing pass. This procedure, however, produces a 

X(k) whose endpoints are tied to zero. 

In order to avoid all of these difficulties, we make the endpoints variables in a two-parameter 

least-squares fit that fits the background to the data for a given number of passes. Because the 

endpoint values do not affect the inner part of the background, only 20% say, of the data range at 

either end have to be considered in this fit. (This also increases the sensitivity of the fit.) We may also 

apply a weighting function of the form kP, where p is some number, for example p=l  . Thus we have 

solved our problem by optimizing the endpoint values of the background by fitting to the data. 



There is so far no way of precisely determining the number of smoothing passes that is 

required. One may, however, judge whether the background is correct by checking whether the 

area of k ~ ( k )  above the zero line is approximately equal to the area below. In addition, a formula is 

given in Appendix D to estimate the required number of passes. Also by examining the magnitude of 

the Fourier transform in the small-R region, it is possible to observe the extent to which the 

background subtraction affects the Fourier components that contribute to the nearest-neighbour 

coordination shell. 

Same data as in Fig. 6.5 but with a background extending from 1.82 A-l to 17.73 A-' 

overlayed. The background was determined by smoothing with 300 passes as described above. 

The background-subtraction method described here has been employed for all datasets. 

There are still some flaws with it which have not yet been solved. It occurs frequently that the number 

of Smoothing passes that are required for the high-k part of the background is much smaller than the 



number of passes needed for the low-k part. This can presently not be taken care of since the 

smoothing passes are always calculated for the entire spectnrm. However, this is only a minor 

problem. The k ~ ( k )  and their Fourier transforms obtained by polynomial background removal were 

practically identical to those obtained by the smoothing procedure. 

It is important to keep in mind that the background extends over all of R-space. If this were not 

the case then there would be coordination shells that could simply be filtered out without previous 

background removal because there is no background component for this shell. Unfortunately, it is 

not possible to circumvent a proper background-subtraction procedure. 

Y - Ybka 
Finally we have obtained a ~ ( k )  given by: ~ ( k )  = step , (6.19) 

where y, ybkg, and step are data, background, and step size, respectively. In the following graphwe 

show k* ~ ( k )  , where ~ ( k )  is obtained according to Eq. (6.19). 



Fig. 6.7: The function k2 ~ ( k )  for Cu extending from 1.82 A-l to 17.73 A-l, as in the previous 

figure. The positive area of k2 ~ ( k )  is 51 .30h and the negative area is 48.7%. The Si (1 11) glitch at 

-15 A-1 either has to bg removed by some method or be excluded by limiting k,,, to 15 A-l, thus 

sacrificing resolution in R-space. 

We have now obtained a normalized ~ ( k )  but we will nevertheless apply a small correction which 

takes the physical variation of the x-ray absorption coefficient with energy into account. This 

correction becomes important above k z 10 A-l . It is applied as follows: 

According to Ref. 138 the mass absorption coefficient pm(E) above the absorption edge is 

computed as a function of energy for the element whose edge is being studied. A corrected ~ ( k )  is 

then obtained through: 



pm(EEdge) is the mass absorption coefficient just above the absorption edge. ~ ( k )  is thus being 

multiplied by a slowly increasing function whose value at EEdge is unity. This correction is applied to 

all datasets. 

The broadening of the spectra due to the finite resolution of the monochromator is small for the 

Sm LII, Llll edges but it becomes appreciable at higher energy. Luckily its effect on the EXAFS is 

not severe and can be easily taken care of. The effect of the monochromator resolution is taken into 

account as described in Ref. 179 where a Gaussian was assumed for the spectrometer function: 

z denotes the width of this Gaussian and it is related to the FWHM according to: 

T = 
FWHM (6.21) 

2 G 2  . 

The width of the spectrometer function as a function of energy is given by Eq. (5.12): 

In this equation we have expressed the photoelectron energy in terms of its wave vector k: 

E r E, + y k2 , where E, is the edge energy and y is 3.81 eV A2 (see Eq. (2.28)). Emin is the 

energy corresponding to 0 = 90' , Eq. (5.3). 

68 is obtained from Eq. (5.1 1) of Section 5.2 but may be approximated by 

where s is the width of the slit in front of the monochromator and L is the distance between the 

 noc chroma tor and the x-ray source. 



According to Ref. 179 the finite monochromator resolution is taken into account by multiplying 

each shell with the following function: 

r is obtained from the resolution 60 using Eqs. (6.21) and (6.22). p,(k) depends on the coordination- 

shell radii R, and on the average slope pl, of the total phase of shell j. 

The above approach has the advantage that a convolution of the data, which always slows 

down the computation, is avoided. 

The Fourier transform is calculated using the Fast Fourier Transform (FFT) [ I  801. For the FFT to 

produce correct results it is necessary that the data be on a uniform grid in k-space. The FFT uses 

only ordinate values. For the k-to-R and, symmetrically, for the R-to-k transform the ordinate is 

multiplied by l / dx  . Thus the Fourier transform H(R) of a function h(k) is calculated as: 

The abscissa in R-space is cahlated as follows: 

~ F F T  is the number of points used for the FFT. It has to be a power of 2. Here nFFT is usually 2048. 6k 

is the distance between two adjacent points in k-space. 6R = d(nFFT6k) , the point separation in 

R-space, contains a faaor of n which combines with I/& to a resultant factor of & for the inverse 

transform. Because the FFT employs only ordinate values its result must be multiplied by 6k for the 

k-to-R transform and by 6R for the inverse transform in order to obtain a result equivalent to the 

analytical transform. Note that there are 1 + nFFT/2 points in R-space for an ~ F F T  -point transform and 

that the R-space signal begins at R = 0 and extends to R,, = d(26k) . The plus sign has been 



chosen in the exponent of Eq. (6.25) so that the imaginary part of the Fourier transform exhibits a 

peak, rather than a minimum, at the abscissa value corresponding to a particular coordination shell. 

Thus one can easily compare peak positions of imaginary part and transform magnitude. 

It may happen that the EXAFS data ~ ( k )  is rather noisy. In this case the interpolation onto a 

uniform grid, needed for the FFT, is questionable because it may add even more noise. One then 

has to employ the conventional Fourier transform. 

The inverse transform is given by: 

Window functions, also called apodization functions, are employed in order to reduce 

interference effects that result from the finite range of the data. They are functions which multiply the 

data that is to be Fourier transfomed. Window functions are usually symmetric with respect to the 

midpoint of the data interval and normally tend towards zero at the endpoints. They are non-negative 

and their maximum value is one. Although a window function will broaden a given peak it does 

Suppress sidelobes that arise after Fourier transformation. In this work window functions are only 

applied when going from k- into R-space. If the inverse Fourier transform, i.e. the R-to-k transform, is 

to be performed then the window function must be removed in k-space after the transformation. This 

is simply done by dividing by the same window function that had been used initially. Therefore we 

require that the window function be nowhere equal to zero. Furthermore, we will only consider 

symmetric window functions. 

The simplest window function is a rectangle of unit height. This is equivalent to not applying any 

window function at all. Sometimes this is permissible when the data is already tapered at the ends of 

the data range. The rectangular window yields the highest possible resolution because it is broad in 

k-space and therefore its Fourier transform will be rather narrow. In order to discuss Fourier 



transforms of window functions it is sufficient to assume that the k-space data is centered at k=O . 

Thus -Ak/2 I k I ~k12 , where Ak -= k,,, - kmi, , and the Fourier transform is a real function. For the 

Fourier transform of a rectangular window function centered at k=O we obtain a function of the form 

(sin x)/x, also called a "sinc function": 

The suppression of the biggest sidelobe is calculated from: 

Sidelobe suppression = 20.10gl 0 [w) dB 

R' is the position where the biggest sidelobe occurs. For the rectangular window the sidelobe 

suppression is only 13dB. 

According to the convolution theorem the multiplication of the k-space data with a window 

function leads to a convolution of the Fourier transform of the data with the Fourier transform of the 

window function. We see from Eq. (6.28) that the sidelobes extend rather far and thus there will be a 

strong admixture of information from adjacent peaks which cannot always be tolerated. A window 

function which achieves a better apodization, i.e. reduces the overlap of the peaks in R-space can 

be constructed by refining the Fourier transform of the rectangular window function. Since we want 

to reduce the spread of the sidelobes one can simply add to W,(R) two other sinc functions shifted 

by a half period dAk in either direction so that these functions interfere destructively with the central 

sinc function. The result is then [181]: 

The central sinc function is weighted by a and the two shifted sinc functions are both weighted by 

(1-a)/2 . For the Hamming window a is chosen such that the first sidelobe of W,(R), i.e. the second 

sidelobe of W,(R)~ , perfectly cancels. This is the case for a = 25/46 = 0.543.. . For the Hamming I 
window a is set to 0.54. In order to determine the form of Eq. (6.30) in k-space we wriie: 

&M(R) = (a - ( 1 - a ) )  wJR) + 2 (1-a) w ~ ( R )  , 



1 1 1 
WN(R). a Wo(R4Ak) + 5 Wo(R) + a Wo(R+dAk) . 

WN(R) has a simple Fourier transform (1801: wN(k) = 0.5 + 0.5 cos(x 2dAk) . 

Thus we obtain for the Hamming window: 

wM(k) = 2a - 1 + 2 (l-a) wN(k) = a + (I*) cos(n 2klAk) = 0.54 + 0.46 cos(x 2dAk) . (6.34) 

Note that this function does not go to zero anywhere. In fact, the Hamming window is a special case 

of the so called "Hanning" window (Don't confuse the two similar names!). The Hanning window is 

obtained when a = 0.5 . Thus WN(R), Eq. (6.32), and wN(k), Eq. (6.33), describe the HaMing 

window. 

The Hamming window wM(k), E q  (6.34), will be used in this work most of the time. Very closely 

related is the Gaussian window function which consists of a Gaussian with endpoint values of 

of its maximum value, i.e. endpoint values of 0.1. The Gaussian window furlctions are defined 

by: 

wG(Ak/2) -- wG(-~k/2) is the value of wG(k) at the endpoints. For a 10% Gaussian we have 

wG(Ak/2) = 0.1 . The Fourier transform of the Gaussian cannot be calculated analytically over a finite 

k-space interval and is therefore omitted. 

Note that the k-space interval and the type of window function determine the minimum peak 

width in R-space. A measure for this width is 2 &, , where R, is the zero crossing of W(R) closest to 

R = 0 . Some results for the window functions discussed here are summarized in the following table: 



Table 6.1 : Properties of window functions: 

TY pe 2 4 Ak Sidelobe suppression 

Rectangle 2 R 13 dB 

Hamming 4 n 43 dB 

Hanning 4n 32 dB 

1 Ooh Gaussian 12.147 34 dB 

For a systematic review of the plethora of window functions that exist see Ref. 181. Choosing a 

window function means finding the best compromise between resolution and sidelobe suppression. 

The Hamming window is a good choice in this respect. 

If kmin k r k,,, instead of -Ak/2 5 k I d 2 .  then the window functions must be shifted by 

k, = (kmin + kmJ2 which means replacing k by k - k, . 

. . . . 
6.7 r F I ~  the Oetermlnatlon of 

Fourier filtering, or filtering in R-space, is effected by selecting an R-space interval for the region 

Of interest and setting all the rest of the Fourier transform to zero. A subsequent transform to k-space 

Yields the filtered ~ ( k ) .  

In more detail, what one does is the following: First the EXAFS function ~ ( k )  is multiplied by 

Some power of k, p ~ ,  say, such that the resulting function kPF ~ ( k )  has very roughly the same 

amplitude everywhere. Then a window function w(k+) is applied in order to suppress sidelobes in 

the Fourier transform. The window function is even with respect to the midpoint kg of the k-space 

interval. For illustrative purposes we will consider the simple case where the distribution of atoms is 

adequately described by a Gaussian and both If,(k,n)l and 4,(k) are assumed to be independent of R. 

Hence we have in k-space: 



where Ai(k) is given by: 

Now the Fourier transform is computed. Each coordination shell that is sufficiently resolved will 

appear as a separate peak in a plot of the transform magnitude versus the coordination-shell radius 

R. (The modulation of the backscattering amplitude of the heavier elements due to the Ramsauer- 

Townsend effect may introduce a small sidelobe peak besides a major peak.) For the coordination 

shell of interest an interval is now selected that encloses the peak. At the interval limits, Rmin and 

R,,, of a well-resolved peak the magnitude of the Fourier transform vanishes (or almost vanishes). 

If we assume that in R-space we have isolated the jth coordination shell then we are left only with the 

Fourier transform of EXAFS of the jth coordination shell, namely: 

for RminsRSRm, 

otherwise . 

According to this equation the Fourier transform outside the interval Rmi, < R < R,,,. is set to zero. 

Rmin and R,,, are never negative.Therefore H,(R) always vanishes for negative R-values. This fact 

can be exploited by using the identity sin x = (etix - eix)/(2i) and writing Hi(R) in the interval 

The first integral in the above equation will peak at R = -Ri (actually slightly shifted due to the 

Presence of the total phase 4,(k) which is approximately linear in k). Because of the application of a 

Window function and because of the 1/f3i2 dependence of A,(k), the peak centered at negative R 



will hardly extend into the the region of positive R-values. Since the first term peaks at a negative 

R-value and because according to Eq. (6.38) the Fourier transform is set to zero for negative 

R-values we are left only with the second integral which peaks at a positive R-value: 

00 

H.(R) = . ( [(- $) w(k-kg) kPF A,(k) e-istj(k) e-zikRj] et2ikR dk for Rmin i R s R, 
.IT2 - 

Hj(R) = 0 otherwise 

Taking the inverse Fourier transform according to Eq. (6.27) yields in k-space a modified EXAFS 

function i,(k) corresponding to the jth shell. This function is now complex because Hj(R) does not 

contain anymore contributions from negative R-values. $k) is obtained from the term in square - 

brackets in Eq. (6.39) after division by the window function and kPF: 

The desired unmodified EXAFS function xi(k) of the jth coordination shell is then obtained as: 

Because it is necessary in the process to remove the effect of the window function by dividing it out 

in k-space, the window function must never be zero anywhere. Hence those window functions that 

taper off to zero at the ends cannot be employed for EXAFS analysis. 

We can also obtain the amplitude A,(k) and the phase 2kRj+qj(k) by employing the following 

relations: 



The last equation can also be written in a form similar to the one given in Ref. 4: 

Because the tangent has a period of n rather than 2n there is an ambiguity with respect to multiples 

of n. This ambiguity is removed by considering the signs of real and imaginary part individually. For 

example the phase 2kRj + q,(k) should be between 0 and d 2  when Re &(k) and lm $k) are 

both positive. Similar conclusions hold for the other quadrants of the unit circle in the complex plane. 

Thus the formulae must be as presented in Eqs. (6.43) and (6.44) above, with no n added or 

subtracted. The phase is, of course, only determined modulo 27~. 

It is important to note that the modified EXAFS function $k) may also be defined to refer to 

several coordination shells instead of only one. This occurs for example with beating when two (or 

more) shells are too close together to be resolved. Then the beating effect can be studied by 

employing Eq. (6.41) or by investigating the amplitude or phase according to Eqs. (6.42) or (6.43). 

It must be kept in mind that Eqs. (6.41) to (6.43) can only be obtained by employing an integral 

transform like for example the Fourier transform. This results in transform artifacts that will always 

appear as end effects. Therefore the filtered EXAFS function, the extracted amplitude or phase will 

not be reliable at the ends. These artifacts may extend up to looh of the available k-space interval on 

each side. 

In EXAFS data analysis one needs a reference backscattering amplitude Ifj(k,n)( and a reference 

total phase qi(k) for each coordination shell j that is to be analyzed. These functions can be taken 

from the plane-wave calculations of Teo and Lee 11 I ] ,  the curved-wave calculations of McKale et al. 

[a-1 01, or they may be calculated as in Chapter 3. Alematively, one may employ empirical amplitudes 

and phases. Hereby one assumes that the amplitude Ifref(k,lc)( and phase q,ref(k) are the same for 

reference compound and for sample. One may for example analyze Ge02 by employing amplitude 

and phase obtained from pure Ge, say. This approach assumes that the amplitudes and phases 



depend mainly on the elements themselves and remain unchanged in a compound or alloy. This, 

however, cannot always be taken for granted. On the other hand it is to be kept in mind that Teo and 

Lee (1 11 also computed their amplitudes and phases only for elements, not for compounds (for 

practical reasons, of course). Assuming now that the amplitudes and phases do not depend 

significantly on the chemical environment we can employ the method described in the previous 

chapter and obtain Aref(k) and the phase Oref(k) = (2kRref + 4,ref(k)) . Assuming that the distance 

Rref of the reference material is known we can obtain the reference phase simply by subtraction: 

For the sample under investigation we obtain @,(k) = (2kRX + i$,(k)) . Using 4,x(k) = qVref(k) we 

can write for the unknown distance Rx of the sample: 

According to this equation R, is best determined by fitting @,(k) - Oref(k) to a straight line that 

passes through the origin. It may be necessary to adjust the k-scale of the sample by shifting AE, 

such that the straight line indeed passes through the origin [4]. From the slope we immediately 

obtain R,. This is the Phase.-Drf ference.  It can be applied for pressure-dependent studies 

because the phase 6 ,(k) remains practically unchanged under pressure. However, the method is 

not employed in this work because the pressure-induced distance changes are simply too small that 

Rx could be determined reliably from a straight-line fit according to Eq. (6.46). The result becomes 

dependent on the choice of the fitting interval. Instead the EXAFS function zx(k) is fitted by least 

Squares (Section 6.1 0) because it is believed that in this way the results for Rx are much less 

dependent on the choice of the fitting interval. 

The empirical amplitudes Aref(k) and Ax(k) are obtained by employing Eq. (6.42) and we can 

write: 



These two relations can be combined to yield: 

Here we have used (fX(k,lr)( 3 (fref(k,x)J . The last two terms on the right-hand side of this equation 

can be neglected compared to the first terms. Then we get: 

We see now that a plot of the left-hand side of this equation versus k2 will yield a straight line. A fit will 
2 

Nx of the coordination numbers as well as the difference ox - ofef of the then provide the ratio - 
Nref 

EXAFS Debye-Waller factors. Eq. (6.48) is the basis for the [ I  821. It is assumed 

that the k-scales of sample and reference were adjusted by a A E ,  shift with respect to each other 

such that their phase difference, Eq. (6.46), passes through the origin. Again, this method is hardly 

applied in this work because Eq. (6.48) is not a very reliable way for determining the EXAFS Debye- 

Waller factor since the result depends on the choice of the fit interval when a: differs very little from 
2 

oref . Again, the fit to ~,(k) is preferred because it gives more consistent results. To make the Log- 

Ratio Method work well it is necessary to weight the straight-line fit to Eq. (6.48) properly (1831. 

Note that the Phase-Difference and Log-Ratio methods are valid only in the case that a single 

shell can be isolated. 

According to the sampling theorem a signal that is bandlimited in Fourier-space need only be 

sampled at a certain rate. The minimum number of points that is needed to describe the sgnal is 

called the number of degrees of freedom, q,, Since the original signal can be in k- or R-space we 

discuss both these cases. 



In k-space, qr,, is given by: 

Here pk is the Nyquist sampling rate. If Fourier filtering is applied then the filtered data is bandlimited 

in R-space and we have for pk (see Ref. 180, p. 87): 

Ak E k,, - kmin is the k-space fit interval and AR = R,, - Rmin is the interval employed for Fourier 

filtering. The square brackets denote the integer part of the argument. For q,,, we then obtain: 

k-space: 

We see that nf,,, increases linearly with Ak. If no filtering is applied then Rmin = 0 and 

R,,, = AR = d(26k)  , Eq. (6.26)' and we obtain: 

In this case the number of degrees of freedom is equal to Mk, the number of data points. 

In R-space, q,,, is given by: 

Since the R-space data is bandlimited in k-space, p ~ ,  the Nyquist sampling rate for R-space, is: 

AR = R,, - Rmin is the R-space fit interval, Ak = k,, - bin is the interval used for the Fourier 



transform and we have for q,,,: 

k,, 

An EXAFS dataset contains contributions from the backscattering of various coordination 

shells. The distances of these shells enter the EXAFS formula in amplitude and phase, where the 

effect on the phase is much more pronounced. In k-space this corresponds to the summation of sine 

functions of different spatial frequencies. In R-space this is seen as an assembly of peaks in the 

Fourier-transform magnitude. Ideally, these peaks are well separated so that each one can be Fourier 

filtered. Thus, in the ideal case, after filtering one would merely have to analyze single shells. This 

analysis can be performed by employing the Log-Ratio Method. Obviously, one can also perform a 

least-squares fit to a single shell. In order to approach the ideal case it is necessary that the EXAFS 

signal extends far enough in k-space. 

Frequently, however, it is not possible that k,,, be very large because the signal has already 

decayed. Closely-spaced coordination shells, in particular, require a prohibitively large k-space 

interval in order to be resolved. Therefore in p~aCtice one normally cannot separate individual 

Coordination shells but groups of shells instead. Typically 2 to 4 shells together can be Fourier 

filtered thus producing a k-space EXAFS signal with a reduced number of coordination shells. When 

there is more than one atomic species present this signal has to be analyzed by least-squares fitting. 

If one wants to avoid the Fourier transform required for filtering, and thus all the artifacts that come 

With it, one can perform a least-squares fit in R-space instead. If the measured EXAFS spectrum 

contains contributions of only a few coordination shells, for example because of large Debye-Waller 

factors, then this spectrum can be fitted directly without having to perform any Fourier transform at all. 

In this work we fit EXAFS spectra to the following expression: 



The first three terms of this sum over the coordination shells j are frequently not included in EXAFS 

analysis. They are, respectively, the monochromator resolution function according to Eq. (6.24), the 

mean-free path term, and the amplitude correction due to a non-zero fourth-order cumulant. The 

next terms in Eq. (6.55) involve the radii R, of shell j having coordination number Ni, the magnitude of 

the backscattering amplitude, the EXAFS Debye-Waller factor, and the sine of the phase which here 

includes a correction term due to a non-vanishing third-order cumulant. Besides, we allow for an 

adjustment of the reference phase Gti(ki) by the parameter aj. If a, is variable then one need not 

necessarily vary the correction AE, of the inner potential for amplitude and phase of shell j. This is so 

because a, acts approximately like AE,. AE, does not appear explicitly in Eq. (6.55) but it is contained 

in the definition of ki: 

with y z --$- - 3.81 eV A2 according to Eq. (2.28). 
8n me 

k is the magnitude of the wave vector of the photoelectron. This is the k-scale of the measured 

EXAFS function and it is never modified for fitting. The AE, are shell-dependent modifications of the 

reference amplitudes and phases. Their effect is most pronounced at low k-values. a, instead is a 

k-independent phase correction. Since AEj and ai are correlated only one of them should be varied 

in a fit. 

As mentioned before, one can perform a fit either in k-space or in R-space. In k-space one 

would fit directly to the EXAFS equation (6.55) which may correspond to the full EXAFS data or to 

Fourier-filtered data. In R-space no Fourier filtering is necessary and one fits the Fourier transform of 

the model to the Fourier transform of the data. Both transforms are calculated in the same way using 

the FFT. T ~ U S  transform artifads will be equally present in both the data and the model. In order to 

compensate for the decrease of the backscattering amplitude with k the data and the model ~ ( k )  are 

muhiplied by kP. The power p of k is chosen to be 1,2, or 3, depending on the type of backscattering 



atom (p could also be fractional.). Thus, in k-space we fit kP ~ ( k )  to kP y where y is the full EXAFS 

data or the filtered data. In R-space we fit Re(FT(kP ~ ( k ) ) )  to Re(FT(kP y)) and simultaneously 

Im(FT(kP ~ ( k ) ) )  to Im(FT(kP y)) , where FT denotes the Fourier transform and Re and Im stand for 

the real and imaginary part, respectively. It is also possible to fit the envelope and phase extracted 

from the data. If one fits them separately then one suppresses any possible correlation among the 

parameters used to fit these two datasets. Therefore it is recommended to fit to the full data, i.e. 

simultaneously to the extracted amplitude and phase. This, however, poses problems as amplitude 

and phase have quite a different kdependence and one cannot decide how to weight the two so 

that they become equally important in the fit. Fitting to the real and imaginary part of the data, 

however, does not present this difficulty because they are both oscillatory functions possessing the 

same envelope. Real and imaginary part are therefore weighted equally. A different method of 

weighting, involving derivatives, is described in Ref. 5. 

In order to perform the fit we have to calculate X2, which is a measure of the deviations of the 

model from the data, at each iteration step. X2 is evaluated depending on whether k-space or 

R-space is selected. In k-space the expression is: 

In R-space the formula becomes: 

MR 

Mk is the number of points in k-space. If the data is Fourier filtered then yi is the filtered data. wk(k) is 

a Weighting function which is the reciprocal of the square of the envelope of kP y . (In order to avoid a 

Possible division by zero the minimum value of the envelope is never less than 10% of its maximum 

value.) If this weighting is applied the effect of kP is practically removed. 



In R-space there are MR points and wR(R) is an R-space weighting function which is the 

reciprocal of the the square of the magnitude of the Fourier transform. (For the weighting function 

the magnitude never goes below 10O/0 of its maximum value, as before.) 

2 If the error oi2 = oi21statistical + oi lsystematic of each data point [I61 is known then the 

weighting functions wk(ki) and wR(Ri) can be replaced by l/oi2 . In this case X2 = 1 will indicate a 

good fit. In this work no weighting is employed. Therefore wk(k) and wR(R) are equal to one. 

n which occurs in Eqs. (6.57) and (6.58) is the number of variable parameters. qree is the 

maximum number of variable parameters and is always 2 n. 

If one fits to MR points of the real and imaginary parts of a Fourier transform, which had been 

obtained from Mk k-space points, then the number of points that are used has changed by a factor 

p s 2 ~ ~ 1 ~ ~ .  This change is artificial because in R-space there is now neither more nor less 

information available than before in k-space. Therefore qree and n have to be weighted by the same 

factor p. Thus the term in front of the summation of Eq. (6.58) is 

X 
If we are fitting the Fourier transform from Rmin = 0 to R,, = - 2 6k and if = [%I, then 

nfree = Mk as before and the factor in Eq. (6.58) becomes 

If we approximate qree as %ee = 1 + 2 Ak AR/X then we can derive the following relation using 

6R 6k = dnFn , where n~~ is the number of points used for the k-to-R Fast Fourier transform: 



If X2 is defined as here then one can compare fits with different number of parameters and therefore 

one can decide whether an added fit parameter actually has any significance. For this to be so we 

require that x2 involving the extra parameter must be reduced by a factor of two. 

In order to perform the fit we employ Marquardt's algorithm (1841 as programmed in Ref. 178. 

This algorithm works very well unless the starting values are extremely far off. The algorithm 

proceeds towards the minimum in parameter space by making use of the following approximation for 

the curvature matrix a, which in k-space is given by Ref. 178: 

+ 
An analogous relation holds in R-space. p , = (pl ,,, ~ 2 , ~ ,  . . . ) is the vector indicating the position in 

parameter space where the derivatives are evaluated. We see that a has been approximated by 

employing products of first order derivatives to avoid the second order derivatives. Note that the 

curvature matrix is 112 times the Hessian. The fitting procedure terminates when 

-4. 2 
~ ~ ~ r e v i o u s  - x2eurrent < 10 X previous . 

One can use the curvature matrii to calculate the error Ap, of a particular fit parameter p,. This 

can be done as follows [185, 1861: 

Eq. (6.61) is frequently employed but in this work we will use a different approach [187, 1881. In 

order to determine the error of a particular parameter p, of an n-parameter fit we will vary the 

Parameter in steps near its optimum value and perform an (n-1)-parameter fit at each step. This will 

Produce X2 as a function of the incremented parameter p,. The error bars for p, are determined from 

the intersection points of the X2 vs. p, curve with a horizontal line at 2 X2min . The factor of two 

results because for a reduced X2, which ideally is equal to one at its minimum, the error is determined 

by going from the minimum to a value of X2min+l , that is to 2. Here, however, we do not obtain a 

reduced X2 and therefore go to 2 xZmi, instead. Error bars determined in this way can be 



asymmetric because X2 is not always parabolic. They contain all effects of parameter correlations and 

are therefore a reliable measure of the qualrty of the fit. 

This method has another advantage because it allows to search for other possible minima of the 

X2-surface. By stepping one parameter (and keeping it fixed at each step) while the other n - 1 are 

adjusted by least-squares fitting we immediately see whether there are other minima of X2 and if any 

one of these is deeper than the one that we have found already. Investigating Ri will in general 

produce several minima when more than one shell is present. 

While the error Ap, determined according to the above description takes all correlations into 

account we do not know which parameters correlate with which ones. This information can be 

obtained from the correlation matrix c which is calculated from the inverse of the curvature matrka: 

The elements of the correlation matrix provide information about the sign and degree of the 

correlation of any two of the variable parameters. Values of (c)~, with absolute values close to unlty 

signify strong correlation whereas ( c ) ~ ~  = 0 indicates no correlation between parameters i and j. 

According to Eq. (6.62) the diagonal elements of the correlation matrix are equal to one. 

A measure of the overall correlation are the global correlation coefficients gk [I  891: 

The least-squares fitting program, which has been written, is too big (more than 5000 lines of 

FORTRAN code) to be listed here. A brief introduction is presented in Appendix E and a detailed 

description is given in Ref. 187. 



Beating has been investigated before [190, 1911, but we will consider the effect here in more 

detail. 

We determine the resulting amplitude A(k) and phase Y(k) when several coordination shells m 

of amplitudes arn(k) and phases \yrn(k) are added. All amplitudes and phases depend only on one 

continuous parameter k. The amplitudes are generalized to contain all terms in front of the sine 

function in the EXAFS formula and the phase is the argument of the sine function, including the 

2kR-term. Beating will occur when two or more coordination shells are close together. 

For simplicity we wnte each shell as a phasor. Adding the shells then gives: 

Beating phenomena are manifest in the amplitude as well as the phase. When beating occurs, the 

amplitude exhibits a local minimum and the phase shows a step. We prefer to investigate the 

behaviour of the phase rather than that of the amplitude because it is analytically easier and because 

jumps in the phase are easier to detect than minima in the amplitude. Strictly, both effects need not 

occur at the same k-value. It must be kept in mind that minima in the amplitude and steps in the phase 

can also result from the k-dependence of the backscattering amplitudes and phases. 

Writing the real and imaginary parts of Eq. (6.64) yields: 

A(k) sin Y(k) = arn(k) sin \yrn(k) 
rn 

For the phase we therefore obtain the relation: 



For the amplitude we have: 

= (C am(k) cos vrn(k)) + (x am(k) sin vm(k)) 

or: 

We now determine the derivative of Y(k) with respect to k: 

~/ ' (k) = (tan ~ ( k ) ) '  cos2~(k) = 
(tan ~ ( k ) ) '  

1 + tan2Y(k) 

Here the prime indicates a derivative with respect to k. Inserting Eq. (6.67) yields: 

This equation forms the basis for our analysis of the beating effect. A2(k) is given by Eqs. (6.68) or 

(6.69). For three or more coordination shells Eq. (6.71) becomes too complicated because all 

Possible differences of distances appear. The equation is therefore evaluated only for the beating of 

N o  shells. To this end we introduce the abbreviations: 

Using Eq. (6.71) we get after some tedious algebra the following formula describing the beating of 

N o  shells: 

I $ ' ( k )  (C(k) - 1 / ~ ( k ) )  - (In ~ ( k ) ) ' s i n  $(k) v' = w ' ( k )  + v2'(k) 2 
2 + 

C(k) + 1 / ~ ( k )  - 2 COS $(k) 



We will use this equation to determine the beating condition. A beat will occur at k-values where the 

two phasors vl (k) and v2(k) are antiparallel. In this case $(k) is equal to an integer multiple of 2x: 

$(k") = 2m, v = 0, 1, 2, ... 

Note that Eq. (6.73) is invariant under the interchange of the two shells, i.e. for C(k) -P 1 / ~ ( k )  

and $(k) -+ $(k) = yl (k) - v2(k) - ~t . A closer inspection of Eq. (6.73) reveals that a divergence will 

occur if C(k,,) -P 1 for k -+k,, . 

The case of C(k) = 1 deserves special attention because then the second term on the right- 

hand side of Eq. (6.73) is undefined at a beating node. Analyzing Eqs. (6.65) and (6.66) for the case 

of equal amplitudes yields the result: 

which is just the first term on the right-hand side of Eq. (6.73). Now, however, there will not be any 

structure in the phase derivative at a beating node. In other words, there is no beating effect in the 

phase when the two amplitudes are equal. This can be understood also in the following way. The two 

coordination shells, which have the same amplitude a(k), add up to: 

This result is well known. The rapidly varying sine term is modulated by a slowly varying cosine term. 

Therefore the term of the right-hand side is also of the form amplitude x sin(phase) and hence 

looks like a slnaie shell with amplitude and phase given by: 

The beating is contained only in the amplitude, not in the phase. The phase is simply the arithmetic 



average of the two individual phases. Therefore, if we have two coordination shells of equal 

amplitude that cannot be resolved in R-space we can still extract their combined phase (Section 6.7). 

If the two shells consist of the same type of atoms (which is almost implied by the condition that their 

amplitudes are identical) then we obtain the distance R = ( R ~  + ~ ~ ) / 2  . Since the two 

amplitudes are never exactly equal, be it only for reasons of numerical precision, there may still be 

peaks, or dips, ocurring in the phase derivative. The important point here is that the two shells with 

equal (or almost equal) amplitudes can be analyzed as one single shell. 

We will analyze beating by fitting to Eq. (6.73). The advantage of employing Eq. (6.73) is that if a 

beat extends only over a small k-range, the amplitude ratio C(k), as well as the phasors yl(k) and 

y2(k), can be assumed to be constant. This means then that no reference amplitudes or phases are 

necessary. However, since the generation of Y(k) involves an integral transform there will be artifads 

and thus a beating node near the high-k end cannot be analyzed. (Beating nodes near the low-k end 

need not be analyzed because they correspond to fairly large distance differences and because 

they are repeated at higher k-values.) Thus the situation here is the same as with the Log-Ratio 

Method. 

For EXAFS the phases yj(k), j = 1, 2, are given as yj(k) = 2kRi + 4,(k) where 6tj(k) is the sum of 

the central and the backscattering phases. With $(h)  = 2 m  we get: 

We can sometimes approximate &(k) - 61, (k) as a straight line (Chapter 2): 

b ( k )  - (k) = (pO2 - pol) + (pl - p1 k . Then we obtain for &: 

If AR is rather small then the first beating node may lie outside the data range. It is thus difficult to 

confirm the existence of beating. If the presence of beating is not realized then wrong bondlengths 

may be obtained [192]. 



2 x The beating nodes are evenly spaced with separation & = 
A + - 

If both shells consist of the same type of atoms then we get exactly k, = 
(2v +1) n 

2A R 

Here we see another advantage of investigating the phase rather than the amplitude: The 

position of the minimum of the amplitude would involve the Debye-Waller factor and the mean free 

path whereas in Eq. (6.77) only the phase shift 4(k) appears. 

We have not considered here the phase change associated with a local maximum of the 

amplitude because it is less pronounced. We also have not taken into account a broadening of the 

phase derivative of the data due to the finite transfom range of the k-to-R Fourier transform 

employed in extracting the phase. 

As explained in Chapter 4, the mixed valence of rare earth compounds can be determined from 

the Lit- or Lit,-absorption edges by fitting two integer-valent edge profiles of the same shape but 

with different weighting to the normalized SpeCtNm. We employ here the same lineshape as was 

used before [17]. Other lineshapes [84, 193-1961 involve a Lorentzian peak superposed onto an 

arctan-shaped background, a lineshape that is based on an early paper by Richtmyer et al. [ I 9 7  who 

assumed a constant density of final states. The lineshape employed here consists of a Lorentzian 

convolved with a Gaussian, also called a Voigt line profile, with the edge jump built in afterwards 

according to Ref. 17, p. 75: 



where K is given by: 

The lineshape peaks at the energy E, with peak height Y,,, 2 1 . T is the Lorentzian half width at 

hatl maximum (HWHM) and a describes the width of the Gaussian contribution. Thus the lineshape is 

characterized by four parameters: b, Y,,, T, and a . In order to fit the white line of a mixed-valence 

material a second equal line profile, shifted in energy by AE, is added. If we write the valence v as 

and assume that the first peak of the white line corresponds to the divalent state then its weight is 

1-v and the weight of the trivalent state is v. Thus in the case of mixed valence we need six fit 

parameters. 



Fig. 6.8: Normalized absorption spectrum of the Sm LIl edge in SmSe at 58.6 kbar and at 77K. 

The solid line is the data, an average of two scans, and the dashed line is the fit. 

'These near-edge fits are excellent as one can see from Fig. 6.8. (Deviations on the high-energy side 

are due to the onset of EXAFS and not of concern in valence determination.) This may be due to the 

fact that the lineprofile employed here is constructed such that it resembles the normalization 

Procedure. Normalization for edges, as opposed to EXAFS, consists of subtracting straight lines in 

energy space from the left- and right-hand sides of the absorption maximum. Subsequently the 

Spectrum is normalized to the absorption step. The good fits insure that the results for the valence 

are sensitive to small changes in the height of the white line. A table of the correlation coefficients for 

the fit of Fig. 6.8 is shown below: 



( E ~ +  and AE specify the energies of the 2+ and 3+ states.) 

With this empirical approach we cannot claim to obtain the valence in an absolute sense, 

though. Other methods will yield different values but should produce the same trends. There is a 

certain amount of correlation between the two width parameters r and a. It is, however, not posdble 

to do without either one of them because the white lines of the rare earths are fairly broad both at the 

top and at the bottom. This is not solely due to finite instrumental resolution which at the Sm LII or 

Llll edge is rather small. In this work the resolution is normally neglected. Otherwise it is taken into 

account by convolving the quantfty Ih, as a function of energy with a Gaussian of full width equal to 

the given instrumental resolution. d1, is obtained by adding to the model the previously subtracted 

background. This procedure is exact if I, is constant. Ideally, one would convolve the individual 

counting rates I and I, but they cannot be obtained from the model. No attempt is made at 

deconvolution of the absorption spectrum because, besides noise, it yields results that are not 

uniquely defined. Note that the actual HWHM of the Voigt line profile has to be determined 

numerically from r and a (1 7, 1981. 

Frequently the second derivatives of the absorption spectra are fitted (199-2011 in order to 

determine better the positions of certain features in the spectrum. For valence determination this is 

not a good method because the valence is contained in the amplitude and the second derivative (or 

even the first derivative) has lost sensitivity to the amplitude. A fit result obtained by fitting to 

derivatives is clearly in error when viewing it in the underiied form. Besides, derivatives always add 

noise to the signal so that smoothing may become necessary. In Chapters 7 and 8 we see that there 

exists a linear dependence of the valence obtained from fits and the energy difference 

AE s ~ 3 +  - E*+ between the positions of the two absorption profiles. This dependence is not an 



artifact since AE and the valence are hardly correlated in the fits. Therefore one should be able to 

determine the valence from AE alone. 

Since the same lineshapes are employed for the two valence states it is not necessary to 

integrate the area underneath the peaks in order to determine the valence. However, when 

comparing different spectra, knowledge of the peak area may be useful. To this end, we provide the 

area A underneath a single peak, Eq. (6.79), excluding the step: 

6.13 Valence In- 

Fractional valences are frequently determined according to Vegard's law [202] by linear 

interpolation between the two lattice constants a2+ and a3+ corresponding to integer-valent states. 

Based on Ref. 203 it has been suggested to interpolate intermediate valences between the integer- 

valent bulk moduli instead [204]. 

2+ 3+ 
One may, however, also treat (~m,,~rn,, ) ~ e  as a mixture and then employ volumes instead 

of lattice constants. This has been done for some al l~ys [205, 2061 and we will adopt this latter ansatz 

and write: 

V = (1 - v ) v ~ + + v v ~ +  

where V2+ is the volume of a unit cell if only srn2 + atoms are present and v3+ is its volume if there are 

only sm3+ atoms. Eq. (6.83) states that the volume of an intermediate-valent state is obtained by 

linear interpolation. 

This model will now be used to examine the limiting behaviour of the pressure dependence of 

the valence, to introduce a valence compressibility K,, and to examine the relationship between the 

inflection point in the valence-vs.-pressure curve and in the volume-vs.-pressure curve. 



Taking the derivative with respect to pressure we get: 

This equation tells us that if &Idp is positive then d ~ / d p  must be negative (because dv2+/dp , 

dv3+/dp , and v3+ - v2+ are all negative). The reverse conclusion does not follow. If &Idp is 

positive then Eq. (6.84) also shows that a transition that has a more rapid change in volume will 

produce a more rapid change in the valence too provided that the pressure dependence of v2+ and 

v3+ remains the same. These conclusions only confirm what we intuitively expected. 

For the compressibility K we obtain from Eq. (6.84): 

The compressibilities K ~ +  and I?+ are defined as: 

For v = 0 we have V = ~ 2 +  and K must become equal to K ~ + .  Therefore we require: 

For v = 1 we have V = ~ 3 +  and for K to be equal to K ~ +  we must require: 

Hence, in this simple model the valence as a function of pressure must approach its limiting values 

with zero slope. 

Eq. (6.85) furnishes the definition of a compressibil~ty K, stemming from the variation of v with 

Pressure: 



In accordance with Eqs. (6.87) and (6.88) we have: 

We can eliminate v3+ by employing Eq. (6.83). This yields: 

This equation is undefined at v = 0 but according to Eq. (6.90) K,, assumes its limiting value of zero 

as v+O. 

By taking the second derivative of the V O I U ~ ~  V with respect to pressure we realize that lh 

of the lnflectlont of the w?luW vs. cuzis~re c u r w l m d m t  col- the lnflectlon - - . . 

t of the valence - vs. - gxfsaue curve: 

d2v d2v 
Inspecting this equation, we see that - = 0 does not imply - = 0 and vice versa. This will 

dp2 dp2 
be shown in Chapter 9. 

By investigating the above equations it was not possible to obtain a useful relation that applies 

to either the inflection point of the volume-vs.-pressure curve or the inflection point of the valence- 

vs.-pressure curve. Neither couM a practical equation involving the position of the maximum of the 

compressibility K be obtained. 



If the application of pressure leads to a uniform compression of the solid, i.e. a scaling of the 

lattice constant, then the k-scale of the EXAFS of the compressed solid is expanded. Therefore one 

may expect that by compressing the k-scale again one can reproduce the original EXAFS spectrum, 

at least as far as its phase is concerned. We now suggest a method in which this idea can be used to 

determine the pressure. 

We define the function g (~ ) ,  with E being a small positive quantity: 

Here ~ ( k )  is the EXAFS of the sample at a reference pressure. i(k) is the EXAFS of the same sample 

at a different pressure which we assume, without loss of generality, is higher. The application of 

pressure leads to an expansion of the k-scale. If the compression is uniform then according to the 

scaling relation, Eqs. (3.72), (3.79), and (3.80), the low-pressure EXAFS measurement ~ ( k )  and the 

high-pressure resutt i(k) should coincide after a proper compression of the k-scale of the latter. This 

compression is indicated in Eq. (6.92) by k.(l +E), which means that for a finite positive E the 

magnitude k of the wave vector has to be smaller. n and "nre powers of k chosen such that ~ ( k )  and 

?(k), respectively, have overall amplitudes that are almost independent of k. It should now be 

apparent that if ~ ( k )  and the compressed 2k)  do coincide, then g ( ~ )  will have a maximum and the 

compression can be determined. 

We introduce 
1 b= - (kmin + km,) and Ak = kmax- kmi, 
2 (6.93) 

and substitute the EXAFS expressions: 



The tilde refers to the high-pressure EXAFS, g(k), and the indices i and j label the coordination shells 

for x (k) and respectively. Note that we have modified k only in the phase of 3k) .  The changes of 

the coordination-shell radii are so small that they can be neglected in the amplitude terms as well. 

Besides, since the compression is so small, it is evident that the integral in Eq. (6.94) will only relate 

coordination shells of the same order, which means i = j . According to Chapter 3 we will assume that 

the backscattering amplitudes and the total phases are independent of pressure, i .e  lii(k)1 s lfi(k)l 

and gIi(k) E qi(k) . By proper choice of the powers n and ii one can minimize the k-dependence of 

the overall amplitudes. We thus assume that these terms are slowly varying functions of k and put 

them in front of the integral: 

where I(&) is defined by: 

We approximate the total phases by straight lines, Eq. (2.12): 

We introduce the abbreviations: 

This yields for the integrand of I(&): 

= sin(a k) sin(5 k) + sir?(b) ms((a + Z) k) + sin(b) cos(b) sin((a + a") k) . 



We now integrate. For this purpose we need the following integral: 

xo+Ax/2  
- . 1 sin(px) sin(qx) dx = cos((p-q) x,) 

sin((p-q) Ax12) 

AX x,-*xi2 (P-4 Ax12 

We obtain for I(E) after some algebra: 

I(E) = cos((a-ii) k,) * - ws((a+g) k0+2 b) 
(a-g) ~ k / 2  (a+a") Ak/2 

Resubstituting the original quantities, (6.98), yields: 

The first term of this integral contains a sinc function, defined as sinc(x) = (sin x)/x . It is centered at 

E = E, where E, is given by: 

The sinc function is thus centered at a (positive) value equal to the relative compression, referred to 

the high-pressure state (hi in the denominator.). For uniform compression of the lattice the relative 

changes of each coordination-shell radius will be all equal and therefore E, is independent of the 

index i. If we ignore the wsirle term, which is close to unity, then the FWHM is: 



ell2 is the argument where the sinc function assumes hatf the value it has at ~ g .  Note that the width, 

as opposed to b, depends on the coordination shell radii hi. Hence each coordination shell 

produces a peak (or valley, depending on the cos prefactor) at the same position but with a shell- 

dependent width. The broadest peak results from the first coordination shell. 

The second sinc function has the same width as the first and is centered at: 

e order i of the coordination shell. The Thus the peak position depends on th 

sinc functions is approximately equal to 2, independent of i: 

separation of the two 

Their widths are approximately 2/Ak , assuming hi hl z 2 A in Eq. (6.1 03). Since normally 

2 / ~ k  << 2 , it will therefore be possible to distinguish the two sinc functions. 

Thus the function g ( ~ )  according to Eq. (6.95) together with I(&) as given in Eq. (6.101) 

constitutes a model-independent method of determining the compression. The widths are less 

useful because g ( ~ )  is a superposition of peaks (or valleys) of varying width and because the 

selected powers of k, n and 5, cannot completely remove the k-dependence of the amplitude. If the 

compression is known and g(e) peaks (or dips) at E,. (Ri - hi)/hi then this is a confirmation that the 

scaling relation mentioned above actually exists. 



Chapter 7 :  Results for SmSe 

We begin the data analysis with the determination of the pressures from the EXAFS of a 

calibrant. Then we investigate the Se K edge EXAFS which provides good R-space resolution. 

Afterwards the EXAFS of the Sm Llll edge in SmSe is analyzed and finally the valence is determined 

from the Sm LII and LIII edges. 

The EXAFS data are always fitted to the following expression [ I  871, which is a detailed form of 

Eq. (2.9): 

x fj(kj,n) e-20fkj2 sin 2 k j  R j  + St,,(k,) + a, - 4 Cgi ki3) . (7.1) 

The index j labels the coordination shells which are located at Ri. Each shell j has its individual k-scale 

which is calculated from the k-scale of the data as follows: 

The function pT(kj) results from the finite resolution of the monochromator and is defined in 

Section 6.4. For theoretical amplitudes f,(k,.n) the mean free path is incorporated as e-2Ri/\ where 

l(k) = k/iJ (Section 2.5). of is the mean-square relative displacement and %,,(k,) the total phase of 

shell j. aj is an offset that can be used to correct the phase if necessary. The terms invoking C3, and 

Cqi are cumulants, taking effects due to asymmetry into account (Section 2.3). Seven parameters 

may thus be allowed to vary for coordination shell j: 

01 course, not all parameters are being varied simultaneously. Furthermore there are the two 

parameters 3 (Eq. (2.43)) and the pre-monochromator slit width s which apply to all coordination 

shells jointly. Here they are always kept fixed. 



For R-space fits the Fourier transform of Eq. (7.1) is fitted to the Fourier transform of the data. 

The data analysis is done separately for each run and in chronological order. The results are 

given in tabular form and important graphs are presented. In all cases where the finite resolution of 

the x-ray monochromator is considered the pre-monochromator slit width is assumed to be 1 mm. 

In all cases a Hamming window (Section 6.6) was employed for the k-to-R Fourier transform. No 

window function was employed for the R-to-k back transform. 

While it is common practice when applying the phase-difference method to have the identical 

k-space range for the unknown and the reference datasets, we have found with the R-space fitting 

procedure (using empirical amplitudes and phases) that small changes of the k-space range have an 

insignificant effect on the fit interval in R-space. 

The tables with the EXAFS results contain also the R-space fit interval, the transform interval in 

k-space, the edge energy, and the value xZmin at the optimum according to Eq. (6.58). The 

numerical results presented in the tables have more significant figures than warranted by our error 

analysis. However, the numbers were entered in this manner in order to permit one to repeat the fit 

results if necessary and also to enable one to see the trends in the results with pressure. 

The pressure for the SmSe datasets is determined from the EXAFS of a calibrant. Here this 

calibrant is either Cu or RbCl and it is pressurized together with the sample. The EXAFS datasets for 

the calibrant are measured for several applied pressures and the interatomic distances are 

determined. With this knowledge the reduced volume V/V, is calculated. Using known calibration 

curves of V/V, vs. pressure one can then interpolate the pressure. In Cu we measure the nearest- 

neighbour distance and in RbCl we determine .both the nearest and next-nearest-neighbour 

distances because it was not possible to separate a single shell satisfactorily. For temperatures other 

than room temperature the pressure calibration curves have to be modified as detailed in 

Section 5.8. This modification is more pronounced for RbCl than it is for Cu. 



In all cases the EXAFS analyses for the pressure calibrants are performed in R-space only. In 

this way the data and the fitting function are both Fourier transformed and thus artifacts are present in 

both cases. If we fitted in k-space the data would have to be Fourier filtered and thus possibly 

exhibiting some artifacts while the fitting function would not have undergone any Fourier 

transformation. 

We can analyze the EXAFS of Cu by, for example, extracting the EXAFS phase shift and then 

applying the phasecomparison method (Section 6.8). However, because the compressibility of Cu 

is not very high the pressure-induced changes in the nearest-neighbour distance are rather small. 

Fitting the phase difference has subjective difficulties because the difference is not a nice straight 

line when changes of the nearest-neighbour distance are minute. The pressure-induced change in 

R that is obtained by using different fit intervals varies and the error bars for the change in R can be 

obtained from approximate error analysis. 

We, however, prefer least-squares fitting. It has the added advantage that the data range is not 

reduced due to Fourier-filtering artifacts as is the case with the phase comparison where 

experimental phases have to be extracted. Also if one fits in R-space rather than k-space the artifacts 

due to fitting to the inverse transform do not exist. The disadvantage with least-squares fitting is that 

the scattering amplitude and phase must be known. It turned out that they hardly change under the 

pressures involved here (see Ref. 81 for Cu). Hence we employ one and the same backscattering 

amplitude and phase for all pressures. 

We also employ the curved-wave theory of Schaich [q and McKale [8-101. Since the changes 

of the interatomic distances are too small to produce any significant variations in the curved-wave 

effects on the backscattering amplitudes and phases we will calculate amplitudes and phases only 

for atmospheric pressure. This calculation has been described in detail in Chapter 3. The central 

phases are those of Teo and Lee (1 11 and no curved-wave effects need to be considered for them. 

For Cu it turned out that one has to subtract d2 from Teo and Lee's central phase because 

Otherwise it is not possible to obtain a reasonable fit. Besides, the nearest-neighbour distance would 

deviate too much from the crystallographic value of 2.553 A. The Cu-backscattering amplitude and 

the total phase are shown in Figs. 7.1 and 7.2 as a function of k. The amplitude is practically identical 



to the one of Fig. 3.4 of Chapter 3 (2.553 A as compared to 2.5 A). The phase displayed in Fig. 7.2 is 

the total phase, that is the sum of the backscattering and the central phase. 

Fig. 7.1 : Backscattering amplitude for copper metal calculated in curved-wave theory for 

R = 2.553 A and K- or Ll-edge absorption. 



Fig. 7.2: Sum of backscattering phase for copper metal, calculated in curved-wave theory for 

R = 2.553 A and K- or Ll-edge absorption, and Teo and Lee's [I 11 central phase extrapolated as 

described in Section 3.5. 

It was not necessary to include asymmetry terms in the EXAFS analysis of copper. 

In the case of RbCl we calculate the CI- and Rb-backscattering amplitudes and phases 

somewhat crudely by using simply the atomic potentials. It would have been better to do a more 

extensive calculation like the one for SmSe but under pressure RbCl transforms very soon (at 

5.2 kbar) from the NaCl structure into the CsCl structure. Because of this different crystal structure it 

Would thus be necessary to go through the whole formalism again. It is assumed that we can also get 

reasonable results for interatomic distances with backscattering amplitudes and phases calculated 

from atomic potentials rather than from muffin-tin potentials. Besides, we are only interested in 



of interatomic distances. For Rb it was not necessary to subtract d2 from Teo and Lee's 

central phase. 

The Fourier transform magnitude of a typical RbCl dataset is shown below. From this figure it is 

clear that the pressure determination for RbCl involves the EXAFS analysis of two coordination 

shells. 

Fig. 7.3: Magnitude of the Fourier transform of k3 ~ ( k )  of RbCl at 42.9 b a r  (CsCI structure) and at 

77K. The solid line is the data and the dashed line is the fit. The abscissa is not corrected for the 

EXAFS phase shift. The insert shows the unfilered data as k3 ~ ( k ) .  



in Figs. 7.4 and 7.5. Figs. 7.6 and 7.7 correspond to the next-nearest-neighbour shell of Rb atoms 

located at R = 3.887 A . 

Fig. 7.4: Backscanering amplitude for CI calculated in curved-wave theory for R = 3.366 A and 

K- or LI-edge absorption. 



Fig. 7.5: Sum of backscattering phase for CI. calculated in curved-wave theory for R = 3.366 A 

and K- or LI-edge absorption, and Teo and Lee's [I 11 central phase for Fib extrapolated as described 

in Section 3.5. 



Fig. 7.6: Backscanering ampllude for Rb calculated in curved-wave theoly for R = 3.887 A and 

K- or LI-edge absorption. 



Fig. 7.7: Sum of backscattering phase for Rb. calculated in curved-wave theory for R = 3.887 A 

and K- or LI-edge absorption, and Teo and Lee's [I I ]  central phase for Rb extrapolated as described 

in Section 3.5. 

In these two-shell fits to RbCl we fix the ratio NdNl of the number of atoms in the second and 

first coordination shells at its clystallographic value of 0.75. When R2/R1 is fixed at a value of 1.17 the 

parameter of interest, R ~ ,  becomes uncorrelated with any other and good fits are obtained. 

R2/Rl = 1 1 7  is sufficiently close to the value of 2/6 = 1.1547 . known from crystallography. 

In order to obtain reliably the changes of interatomic distances with pressure it is important that 

we suppress any correlation of the fitted distance R1 with other fit ParameteE, especially with AE,. 

We first performed fits where AE, was variable. There was no evident pressure dependence in AE,. 



The fluctuation in AE, was 1 to 1.5 eV, approximately. Thus it was sufficient to perform a second 

series of fits in which AE, was fixed at its average value. 

2 
The correlation between al and N1 is strong, too. However, neither of these parameters is 

correlated with R1 and they can therefore be allowed to vary simultaneously, thus improving the fit. 
2 Since ol (and a:. in the case of RbCI) and N1 are varied simultaneously in the EXAFS fits, their 

individual values do not have much meaning and are therefore omitted from the following tables. 

We do not consider any asymmetry effects in RbCl at 77K because they do not improve the fits. 

Asymmetry is important at room temperature in the NaCl phase [15T]. However, in the high-pressure 

CsCI-phase Tranquada [I 571 found it sufficient to do two-shell fits without including asymmetry 

effects. Besides, it is expected that asymmetry terms will decrease with increasing pressure and with 

decreasing temperature. Thus Cgj = 0 and C4j = 0 . 

Before we can analyze the data we have to calculate fi . According to Section 2.5, this quantity 

contains the effects of a mean free path but also those stemming from the finite core-hole lifetime. 

The results are: 

Cu: 

(absorbing element underlined) . 

The following tables contain the results of the pressure calibrations. All fits to the calibrants 

were performed in R-space to the Fourier transform ("FT") of k3 ~ ( k )  . One-shell fits were employed 

for Cu and two-shell fits for RbCI. From the nearest-neighbour distance R1 and a reference nearest- 

neighbour distance R,, indicated in boldface in the tables, one obtains the reduced volume for cubic 

crystals simply through: 



Using known curves of V/V, versus pressure (Section 5.8) one can then determine the pressure. At 

room temperature a hydraulically driven pressure cell is employed and the applied oil pressure POil is 

listed. At liquid-nitrogen temperature the mechanically driven cell, described in Section 5.9, is used 

and the number of turns, NT, is listed in the tables. In this way it is possible to estimate pressures 

based on Poil or NT SO that the EXAFS of the pressure calibrant need not be measured for every 

pressure point. A plot of the calibrant pressure as a function of either Poi( or NT follows each table. 

The error in extracting R1 is determined according to the method outlined in Section 6.10 and 

in Refs. 187 and 188. The error bars are determined by the change of R1 when X2 increases to 

2 . xZmin while the other fit parameters are allowed to vary. Error bars obtained in this way are rather 

conservative. From the error for R1 we obtain the error in the pressure by using the known calibration 

curves. It turns out that the uncertainty in the pressure obtained from a copper calibration is 

approximately 2.5 times greater than the pressure uncertainty resulting from a calibration using ~ b d .  

This is due to the smaller compressibility of copper as compared to RbCI. 



Table 7.1 : Pressure calibration from Cu K edge EXAFS (LOG.CU 1 .B): 

(Dec. '83; Si (1 11); T = 300K) 

One-shell fits in R-space to F T ( ~ ~  X(k)) using theoretical amplitude and phase 

fixed: al = -1 S708; AEl = 1 .036 eV; C31 = 0.0; C4i = 0.0 

variable: 
2 

R1; al; N1 

Fit interval (A) Transform interval (A-l) 

Dataset R1(A) v/vO Pgil(~si) P ( k W  &in '%a b i n  km 

E ~ d ~ e ( e " )  $mi7 (A*) 



Fig. 7.8: Pressure p of a copper calibrant versus the oil pressure Poi, applied by a hydraulic 

pump. The data are those of the previous table. A straight line was fitted excluding the origin. Its 

slope is 3.1 k 0.1 kbar/(100 psi) and the intercept is -1 7 k 2 kbar . 



Table 7.2: Pressure calibration from Cu K edge EXAFS (LOG.CU1 .C) 

(April '84; Si (1 11); T = 300K) 

One-shell fits in R-space to F T ( ~ ~  X(k)) using theor- amplitude and phase 

fixed: al s -1.5708; AEl = -0.924 eV; C3, 0.0; C4, 1 0 . 0  

Fit interval (A) Transform interval (A-l) 

Dataset R1 (A) V/V, P ~ i l ( ~ s i )  P (ba r )  &in Rm km in km 

E ~ d ~ e ( e V )  A" (A*) 

Reference at 300K: R, = 2.542 A (estimated) 

CUCAlO.N20.C 2.538 0.996 1000 5.6 1.342 2.925 1.812 12.946 

8978.71 f 0.004 f 7.8 0.24 

CUCA17.N31 .C 2.5325 0.989 1700 16.4 1.271 2.901 1.812 13.034 

8978.71 f 0.006 f 10.9 0.49 

CUCA20.N59.C 2.521 0.975 2050 38.1 1.271 2.901 1.812 12.882 

8978.71 f 0.005 f 9.7 0.41 

CUCA22.N78.C 2.519 0.973 2250 41.6 1.313 2.912 1.862 12.787 

8978.71 k0.008 f 15.5 1.08 



Fig. 7.9: Pressure p of a copper calibrant versus the oil pressure Poi, applied by a hydraulic 

pump for the data of Table 7.2. The straight-line fit excluded the origin. The slope is 

3.0 * 0.7 kbad(100 psi) and the intercept is -27 * 12 kbar . 

The following table contains the results for the pressure calibration with RbCI. The reference 

nearest-neighbour distance is the distance just above the pressure of the NaCI-to-CsCI phase 

transition at 77K. According to the discussion in Section 5.8 this value is R, = 3.3504 A at a 

pressure of 5.2 kbar. 



Table 7.3: Pressure calibration from Rb K edge EXAFS in RbCl (LOG.RB6.F): 

(June '86; Si (220); T = 77K) 

Two-shell fits in R-space to fT(k3 X(k)) using theoretical amplitudes and phases: 

1st shell: CI; 2nd shell: Rb 

fixed: al = 0.0; AEl = -2.3 eV; CS1 0.0; C41 = 0.0; 

2 2 
variable: R1; al; N1; a2 

Fit interval (A) Transform interval (A-l) 

Reference at 77K: R, = 3.3504 A 
RBCLN2.N30.F 3.209 0.879 1.75 44.2 1.700 4.167 1.850 11.913 

151 99.36 f 0.005 f 2.0 0.028 

RBCLN3.N35.F 3.213 0.882 3 42.9 1.693 4.170 1.858 11.963 

1 5200.27 f 0.006 k2.3 0.041 

RBCLN5.N40. F 3.191 0.864 5 52.0 1.700 4.167 1.850 12.061 

151 99.36 f 0.006 f 2.5 0.046 

RBCLNB.N45.F 3.172 0.848 8 60.1 1.734 4.026 1.858 11.963 

15200.27 f 0.007 f3.2 0.084 

RBCLNS.NS1 .F 3.146 0.828 9 73.2 1.741 4.022 1.850 11.987 

151 99.36 f 0.007 k3.9 0.090 

RBCLNF.N57.F 3.1395 0.823 15 77.0 1.672 4.046 1.858 11.963 

15200.27 f 0.006 f 3.5 0.078 

The next two figures show in one graph data for low and for high pressure. Fig. 7.1 0 shows 

Fourier transform magnitudes and Fig. 7.1 1 shows the same data in k-space. 



Fig. 7.10: Fourier transform magnitude of k3 ~ ( k )  for BhCI at 77K. The central atom is Rb. The solid 

line corresponds to 42.9 kbar and the dashed line to 77.0 kbar. 



Fig. 7.11 : k3 ~ ( k )  for &Cl at 77K for the same data as in the previous figure. The central atom is Fib. 

The solid line corresponds to 42.9 kbar and the dashed line to 77.0 kbar. 



Fig. 7.12: Pressure p of a RbCl calibrant versus the number of turns NT that were applied 

according to the data of Table 7.3. The slope of the straight-line fit, which excluded the origin, is 

2.8 + 0.5 kbarlturn and the intercept is 39 * 4 kbar . The straight line is outside the error bars of the 

data points corresponding to 3 and to 9 turns, respectively. 



Table 7.4: Pressure calibration from Cu K edge EXAFS (LOG.CU1 .G): 

(Dec. '86; Si (1 1 1 ); T = 77K) 

One-shell fits in R-space to F T ( ~ ~  X(k)) using the0re tM amplitude and phase 

fixed : al z -1.5708; AE1 0.846 eV; C3i  I 0.0; C4 i  5 0.0 

variable: 
2 

R1; al; N1 

Fit interval (A) Transform interval (A-l) 

Dataset R1 (A) v /vo  NT P War )  &in Rm b i n  km 

E ~ d ~ e ( e V )  $mi, (A*) 

CUOO.N86.G 

8979.05 

CUOl .N88.G 

8979.05 

CU03.NO3.G 

8979.75 

CU04.NO8.G 

8979.75 

CUSM4T.NBO.G 

8981.14 

CUSM05.N38.G 

8979.05 

CUSM5QN57.G 

8979.05 

CUSM06.N89.G 

8979.05 

CUS11 QN39.G 

8979.05 

Fig. 7.13 shows the Fourier transform magnitudes of the data for low and for high pressure and 

Fig. 7.1 4 shows the same data in k-space. 



Fig. 7.13: Fourier transform magnitude of k3 ~ ( k )  for CU at 77K. The solid line corresponds to 1 bar 

and the dashed line to 72.2 kbar. 



Fig. 7.14: k3 ~ ( k )  for Cu at 77K for the same data as in the previous figure. The solid line 

corresponds to 1 bar and the dashed line to 72.2 kbar. 



Fig. 7.15: Pressure p of a copper calibrant versus the number of turns NT that were applied. The 

data are those of Table 7.4. The slope of the straight-line fit, including the origin, is 

6.4 + 0.4 kbadturn and the intercept is 2 * 2 War . 

In this section we analyze the EXAFS data of the Se K edge, measured at 77K as a function of 

pressure. Most of the data analysis is done by performing one-shell fits with two variable parameters 

to the nearest-neighbour coordination shell, which consists of Sm atoms. Table 7.8, however, 

shows the results obtained by fitting two closely-spaced Sm shells to the nearest-neighbour shell. 

Another series of two-shell fits will be discussed in Chapter 9. Table 7.9 contains the results of a one 

shell fit to the nearest S f t  shell. 



All data are fitted to the Fourier transform of k2 ~ ( k )  . Most of the data are fitted using theoretical 

amplitudes and phases. Tables 7.10 and 7.1 2 contain results obtained with empirical amplitudes and 

phases. For the analysis with theoretical amplitudes and phases curved-wave theory is employed 

and it was found that better fits could be obtained by subtracting d2 from the central phase of Se, as 

was also done for Cu. 

The one-shell fits using theoretical amplitudes and phases are arrived at as follows: The phase 
2 

offset al is set to 4 2 .  The remaining six parameters AEl , R1, C3,, Cdl, ol, and N1 are all varied in 

an initial fit to the datasets considered. Then the values of each parameter are plotted versus the 

values of any other parameter obtained from the datasets under investigation. This is done in order 

to make sure that no possible physical relationship among them is overlooked. Then the one 

parameter which varies the least for all datasets is fixed at its average value and new fits are 

performed with only five variable parameters. The procedure is repeated until it is not physically 

reasonable to reduce the number of parameters further. In this process it is important to observe how 

X2,  which takes the number of parameters into account (Eqs. (6.57) and (6.58)), changes when this 

number is reduced. If X2 increases drastically upon fixing one parameter then this parameter must be 

released again. 

The end result is a two-parameter fit. The nearest-neighbour distance R1 and the mean-square 
2 

relative displacement al are varied. Their correlation in each fit is almost zero which implies that the fit 

results for these two parameters are physically meaningful. Note that for Nl , the number of nearest 

neighbours, we frequently find a value smaller than the correct value of 6. This is not unexpected 

because many body effects reduce the actual coordination number to approximately 7O0I0. 

For the fits employing theoretical amplitudes and phases we take the finite monochromator 

resolution into account and consider the mean free path and core-hole lifetime effects by defining il 

as: 

(absorbing element underlined) 



For the fits employing empirical amplitudes and phases, resolution, mean free path, and core- 

hole lifetime need not be considered for fitting because they are already contained in the reference 

amplitude. This reference amplitude is obtained from one of the datasets (indicated in boldface) in 

the form fl(kl.n) Nl e-2012k12 after multiplication by Fl:/kl . kl is the k-scale, adjusted with AEl 

according to Eq. (7.2). The empirical phase is obtained after subtraction of 2 kl R1 , where R1 is 

obtained from fitting. The method of extracting amplitude and phase is described in Section 6.7 

Since AEl and N1 are already contained in the reference amplitude and phase, all datasets are fitted 

with A E ~  r 0 and N1 m 1 when empirical amplitudes and phases are employed. It is not necessary, 

of course, to subtract rd2 from the phase. Hence the phase offset al is equal to zero. The mean- 

square relative displacement is obtained as a difference with respect to the reference dataset, 

namely Aosl = al - ol 
21ref. 

For Table 7.5 the pressure is found from the oil pressure of a hydraulic pump, given in psi, by 

interpolation using Table 7.1. For Tables 7.6 to 7.10 the pressure is found with the help of Table 7.3 

and for Tables 7.1 1 and 7.1 2 it is determined using Table 7.4. 

For the fits in this section the error bars are determined according to the method presented in 

Section 6.1 0. The error bars for o2 are asymmetric, the positive error bars being the larger ones. The 

listed error bars for 02 are averages of the positive and negative error bars. 

2 
The following table contains the results for R1 and ol at room temperature. In order to improve 

the fits asymmetry was taken into account for the amplitude. 



Table 7.5: Se K edge EXAFS (LOGSE1O.B): 

(Dec. '83; Si (1 11); T = 300K) 

One-shell fits in R-space to F T ( ~ ~  X(k)) using theoretical amplitude and phase 

fixed: al = -1.5708; AEl = -4.0; CS1 = 0.0; C4i = 0.1 07 - lo-3 A4; N~ = 8.4 

variable: 
2 

R1; 0 1  

Fig. 7.1 6 shows the Fourier transform magnitudes of the data for low and for high pressure and 

Fig. 7.1 7 shows the same data in k-space. 





Fig. 7.17: k2 ~ ( k )  for S m a  at 300K for the same data as in the previous figure. The central atom is 

Se. The solid line corresponds to 1 bar and the dashed line to 68.3 kbar. 

2 
Fig. 7.18 shows the fit result. At 300K we see the reduction of a, with increasing pressure 

(decreasing R,) as expected. There may be a small shoulder near 2.95 A but there is no peak as in 

the corresponding graphs for 77K. 



2 Fig. 7.18: a1 versus R, at 300K according to Table 7.5. N1 was set to 8.4. 

The following five tables all contain the same datasets and refer to 77K. They contain results of 

different ways of fitting the data. 

Table 7.6 lists the results when asymmetry is included for the amplitude. 



Table 7.6: Se K edge EXAFS (LOG.SEN13.F2): 

(June '86; Si (220); T = 77K) 

One-shell fits in R-space to Fr(k2 X(k)) using theoretical amplitude and phase 

fixed: al = -1.5708; AE1 0.0; CB1 = 0.0; C4i s 0.16 . lo-4 A4; N1 = 4.2 

variable: R1: 0: 

Including asymmetry for the amplitude and not for the phase may be artificial. Besides, at low 

temperature asymmetry is not expected to be significant. Therefore it is useful to fit the same data 

without asymmetry, accepting increased values of x2rnin. These results are shown in the next table. 



Table 7.7: Se K edge EXAFS (LOG.SEN14.F2): 

(June '86; Si (220); T = 77K) 

One-shell fits in R-space to FT(k2 ~ ( k ) )  using theoretical amplitude and phase 

fixed: al s -1.5708; AEl = 0.0 eV; Cgl = 0.0; C4i r 0.0; N1 = 3.4 
2 

variable: R1 ; ul 

Dataset N~ p (War) R~ (A) u: (1 0 4 3  A2) 

E ~ d ~ d e V )  kmin(A-l) kmax(AW1 ~min(A) Rmax(A) X2rnin (1 o - ~  A*) 

The following two figures are shown to illustrate the fit quality. 



Fig. 7.19: Dataset SESMNS.N38.F (solid line) and R-space fit according to Table 7.7 (dashed line). 

The imaginary part and the magnitude of the Fourier transform of k2 ~ ( k )  are shown. 
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Fig. 7.20: Same data and fit as in the previous figure but the magnitude of the Fourier transform of 

k2 ~ ( k )  is shown. 

The results of the two previous tables are summarized in the following graph. When no 
2 

asymmetry is included N1 is smaller and ol can become smaller, too. With no asymmetry the values 
2  for o1 are simply shifted downwards. The relative changes in 0: remain the same. 



Fig. 7.21 : o: versus Rl at 77K. The *+I symbols refer to the results of Table 7.6, where asymmetry 

for the amplitude was included and N1 was equal to 4.2. The 'x' symbols refer to Table 7.7, where no 

asymmetry was considered and N1 was equal to 3.4. 

The next table contains the results of fitting the first coordination shell with two closely-spaced 

Sm shells instead of one. The R-space intervals as well as the k-space intervals employed for the 

Fourier transform are the same as for the one-shell fits. The parameters describing asymmetry are 

never varied because otherwise the correlation among the parameters would increase too much. 

The AE and 02 values for the two Sm shells are atways forced to be equal. We thus start out with 
2 

initial fits with six variable parameters: AE1, R1, ol , N1, R2, and N2. Reducing the number of variables 
2 

one by one we arrive at the three-parameter two-shell fits presented in Table 7.8, where R1, o, , and 

R2 are varied. The sum of the coordination numbers turned out to be N1 + N2 = 5.5 and Nl was 

equal to 0.8. 



Table 7.8: Se K edge EXAFS (LOG.SEN19.F2): 

(June '86; Si (220); T = 77K) 

Two-shell fits in R-space to F T ( ~ ~  ~ ( k ) )  using j h e o r u  amplitudes and phases: 

1st shell: Sm; 2nd shell: Sm 

fixed: al = -1.5708; AEl a -1.9 eV; C3i = 0.0; C4i = 0.0; N1 = 0.8; 
2 2 a2 = -1 Si'O8; AE2 = -1.9 eV; C32 = 0.0; C42 = 0.0; O2 z o1 ; N2 = 4.7 

2 
variable: R1; ol; R2 

Dataset N~ P w a r )  RI(A) R2(A) o: (1 o - ~  AZ) 

E~dge(eV) kmin(A-') kmax(A-') ~min(A) Rmax(A) x2min A*) 

Because N2 is much larger than N1, the second shell dominates. It exhibits the peak in the 

mean-square relative displacement as a function of R2, known from the one-shell fits. This is shown 

in the next figure: 
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Fig. 7.22: 

0.8. 

o: versus R2 at 77K according to TaMe 7.8. N1 + N2 was set to 5.5 and N1 was equal to 

The first shell constitutes only a small modification of the results of the one-shell fits by creating 

a tail in the radial distribution function on the low4 side. This is expected from the large error bars for 

R,, which signify that R1 is not well defined. Nevertheless, the radial distribution functions obtained 

from these two-shell fits are of interest because even if the fit parameters are not well defined the 

resulting distribution functions may still be correct because they are the combined result of these fit 

Parameters. Because of this integral property we draw the following figure: 



Fig. 7.23: Sm radial distribution functions g(R) with respect to Se at 77K obtained from the two-shell 

fits of Table 7.8. The numbers on the curves indicate the following pressures: 

# I  : 43.7 kbar; #2: 52.0 kbar; #3: 54.7 kbar; #4: 60.1 kbar; #5: 74.15 bar ;  #6: 75.1 kbar 

Comparing the values of X2min from Tables 7.6, 7.7, and 7.8 we notice that in Table 7.7, which 

contains the results of simple one-shell fits, they are usually highest. On the other hand, the fits of 

Table 7.6 (asymmetry for the amplitude included) or Table 7.8 (two shells) produce significantly lower 

values for X2min . This indicates that either the theoretical amplitude andlor phase are not quite 

correct or that the radial distribution function is not Gaussian. 

It is worthwhile investigating the behaviour of the nearest coordination shell around a Se 

atom. Table 7.9 shows the results of one-shell fits in R-space to the Se shell. The R-space fit interval 

begins with the endpoint of the R-space fit interval of the previous one-shell fits. The k-space interval 



used for the Fourier transform is the same as before. N1 turns out to be 7.1, which is 59O/0 of the 

correct value of 12. 

Table 7.9: Se K edge EXAFS (LOG.SEN24.F2): 

(June '86; Si (220); T = 77K) 

Se - Se; kmin, k,, same as before; 

Rmi,(this table) = R,,,(previous one-shell fits, Se-Sm) 

One-shell fits in R-space to FT(k2 ~ ( k ) )  using amplitude and phase 

fixed: al = -1.5708; AEl = -0.8 eV; C31 E 0.0; C4i s 0.0; N~ = 7.1 

variable: 
2 

R1; "1 



Plotting the results yields the familiar behaviour, this time, however, for the Se coordination 
2 2 

shell: a, = ase-se 

2 
Fig. 7.24: a, versus R, at 77K according to Table 7.9. 

So far the analysis of the Se K edge EXAFS employed theoretical amplitude and phase. It is 

also of interest to apply empirical amplitude and phase. Table 7.10 shows these results. Amplitude 

and phase are extracted from the first dataset, which is indicated in boldface. 



Table 7.10: Se K edge EXAFS (LOG.SEN8.F2) 

(June '86; Si (220); T = 77K) 

One-shell fits in R-space to F T ( ~ ~  X(k)) using emolrlcal amplitude and phase 

fixed: al = 0.0; AEl = 0.0; C3i  = 0.0; C41 = 0.0; N1 = 1.0 

variable: 
2 

R1; Aal 

2 Because ol is now defined with respect to a reference we obtain the mean-square relative 

displacement as a difference: AO?. The curve shown below has the familiar shape. 



Fig. 7.25: AO: versus R, at 77K according to Table 7.1 0. Empirical amplitude and phase are 

employed. 

Looking at values for we see that they are generally lower than those of Tables 7.6 or 7.8. 

This could mean that the empirical amplitude and phase are better than the theoretical ones. On the 

other hand, if the radial distribution function is indeed not Gaussian one would not be able to detect 

this because this effect is absorbed in the empirical amplitude and phase. 

The previous graph completes the analysis for the run of June '86. The next two tables, which 

contain results of two-parameter one-shell fits to the nearest-neighbour Sm shell, refer to another 

mn which also was taken at 77K. Its results are not as good as the ones from June '86 but its 

pressure calibration was more reliable. Table 7.1 1 contains the results found with theoretical 

amplitude and phase and Table 7.12 refers to empirical amplitude and phase. Each of these two 



Table 7.1 1 : Se K edge EXAFS (LOG.SE1O.G): 

(Dec. '86; Si (1 11); T = 77K) 

One-shell fits in R-space to Fr(k2 X(k)) using amplitude and phase 

fixed: al E -1.5708; AE1 = -1.73 eV; C31 0.0; C41 = 0.0; N1 = 5.2 

variable: 
2 

R1; 01 

Dataset N~ P w a r )  Rl(A) 0: (1 o 3  A2) 

E ~ d ~ d e " )  kmin(A-') kmax(A-') ~min(A) Rmax(A) x2rnin (1 o - ~  A*) 
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tables has multiple entries for some pressure values. Figures 7.28 to 7.31, which show results of 

Tables 7.1 1 and 7.12, contain, however, only averaged data at these pressures. 

Fig. 7.26 shows the Fourier transform magnitudes of the data for low and for high pressure and 

Fig. 7.27 shows the same data in k-space. 

Fig. 7.26: Fourier transform magnitude of k2 ~ ( k )  for Sm%i at 77K. The central atom is Se. The 

solid line corresponds to 32.6 kbar and the dashed line to 72.2 kbar. 
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Fig. 7.27: k2 ~ ( k )  for S m a  at 77K for the same data as in the previous figure. The central atom is 

Se. The solid line corresponds to 32.6 kbar and the dashed line to 72.2 kbar. 

Fig. 7.28 shows the fit result: 



2 Fig. 7.28: a, versus R1 at 77K according to Table 7.1 1. N1 was set to 5.2. 

In the next table we see empirical amplitude and phase employed. They were extracted from 

the second dataset, which is indicated in boldface. 



(Dec. '86; Si (1 11); T = 77K) 

One-shell fits in R-space to FT(k2 X(k)) using emDlrlcal amplitude and phase 

fixed: al = 0.0; AE1 r 0.0; CS1 = 0.0; C4i = 0.0; Nl = 1.0 

variable: 
2 

R1; Aol 



Fig. 7.29: AO: versus R1 at 77K according to Table 7.12. Empirical amplitude and phase are 

employed. 

Since for the run of Dec. '86 the pressure calibration was reliable we can compare the results for 

R1 versus pressure from Table 7.12 with Jayaraman's data [I 10, 2071. However, no data point at 

room temperature and ambient pressure is available for absolute calibration of the nearest-neighbour 

distances R1. We therefore have to use some of the information that will be presented in the next 

section. Table 7.14 of Section 7.3 contains values for R1 as a function of pressure, measured at 77K 

with respect to the Sm atoms, rather than the Se atoms. The R1 values of Table 7.1 4 can be 

calibrated absolutely by shrfting them by -0.0085 A ,  as discussed in connection with Fig. 7.38. By 

shifting the R, values of m e  7 . E  according to R1 + R1 - 0.023 A they will agree, within 

experimental error, with the calibrated R1 values of Table 7.14 shown in Fig. 7.38. 



Fig. 7.30: Nearest-neighbour distance in SmSe with respect to the Se atoms as a function of 

pressure. The solid line refers to the x-ray diffraction data of Jayaraman et al. [ I  10, 2071 at room 

temperature. The crosses are the data of Table 7.12, obtained at 77K. They were shifted according 

to: R1 -+ R1 - 0.023 A . 

2 
The normal behaviour of ol as a function of pressure (or R1) is to decrease with increasing 

pressure (or decreasing R1) because the atoms have less room to move away from their equilibrium 
2 

positions. For SmSe we find instead that al exhibits a maximum. At large R1-values the mean-square 

relative displacement decreases again. This behaviour could result from the fact that the first 

coordination shell of Sm atoms consists of two closely-spaced Sm shells in the region of the valence 

transition rather than one shell as assumed in our fit model. This point will be investigated in Chapter 
2 

9. Plotting for example the Aa, -values of Table 7.12 versus pressure shows that the peak occurs in 



the region of the valence transition. It coincides with the peak in the isothermal compressibility 

derived from the data of Jayaraman et al. [ I  10, 2071 and shown in Fig. 4.2. 

2 
The final graph of this section shows do, as a function of pressure, rather than R1, at 77K. 

2 Fig. 7.31 : Aa, versus pressure (instead of R1) at 77K according to Table 7.12. Empirical amplitude 

and phase are employed. 

The EXAFS of the Sm Llll edge provides only limited R-space resolution because the Sm LII 

edge intervenes at 7313 eV, thus limiting the k-scale to a maximum value of 12.5 A-l. However, 

there was some Fe contamination present in the anvil tips so the data were even further limited 



because the Fe K edge occurs at 71 11 eV. Thus the maximum of the k-scale was at -10 A-l. No 

attempt was made to subtract the Fe K absorption edge. Because of this limited resolution in 

R-space it was not possible to filter the first coordination shell satisfactorily. Therefore two-shell fits 

were performed. Theoretical Sm and Se curved-wave backscattering amplitudes and phases were 

employed. A phase off set of 4 2  was again introduced and the ratio N*/N~ of the number of next- 

nearest neighbour atoms to nearest neighbour atoms was fixed at the value 2 according to the NaCl 

crystal structure. Furthermore, we assumed the AE values of both shells to be the same. Starting out 
2 2 

by varying the six parameters AE1, R1, ol, N1, and R2 and o2 we obtained the value at which to fix 

N,. AEl can be left variable in these fits because the precision in the determination of R1 or R2 is not 

as stringent as in a pressure calibration. The fits were performed in R-space to the Fourier transform 
2 

of k2 ~ ( k )  with five variable parameters: AE1. Rl. ol . R ~ R ~ ,  and 022 . The finite monochromator 

resolution was included in the fits as well as the mean free path and core-hole lifetime effects. The 

latter effects are included via q which for the Sm Llll edge amounts to: 

(absorbing element underlined) 

The following two tables contain the results from fits to the Sm Llll edge EXAFS at 300K and at 

77K. The k-space interval used for the Fourier transform is indicated by kmin and k,, and the fit 

interval by Rmin and R,,,. Again, muniple entries exist for some pressures but the graphs contain 

only averaged values at these pressures. 

For Table 7.13 N1 turned out to be 4.4. We obtained for the ratio R ~ / R ~  of the radii of the 

second coordination shell to the first the following value: R ~ R ~  = 1.41 20 f 0.0047 . This is in 

excellent agreement with the expected resul of fi . 

Table 7.13: Sm Llll edge EXAFS (LOG.SM4.B): 

(Dec. '83; Si (1 11); T = 300K) 



Two-shell fits in R-space to F T ( ~ ~  X(k)) using t h e o r e w  amplitudes and phases: 

1st shell: Se; 2nd shell: Sm 

fixed: al s -1.5708; C3i E 0.0; C4 i  E 0.0; N1 4.4; 

a2 = -1.5708; AE2 = AE1 ; C32 0.0; C42 5 0.0; N2/N1 2.0 

2 2 
variable: A R 0 ;  R ~ / R ~ ;  o2 

Dataset Po;I(Ps~) P (kbar) AEI (ev) R~ (A) R2(A) o: (1 0-3 A2) o: (1 0-3 A2) 

E~dge(eV) kmin(A-l) kmax(A-' 1 Rmin(A) R,,,(A) X2min (I 0-3 A*) 

SMSEOO.NO0.B 

671 1.40 

SMSEOO.NO1 .B 

6701.44 

SMSEOO.NO5.B 

6701.1 6 

SMSEOO.NO6.B 

6702.86 

SMSE07.Nll .B# 
671 1.40 

SMSE07.Nl3.B 

671 1.40 

SMSE13.Nl4.B 

671 1.97 

SMSEI 8.N20.B 

671 1.97 

SMSE19.Nl7.B 

671 1.97 

SMSE20.N24.B 

6712.54 

SMSE20.bJ34.B 

671 1.40 

SMSE21 .N37.B 

6718.82 

SMSE23.N39.B 

671 8.25 

SMSE27.N42.B 

6718.25 

#: The energy calibration was adjusted for this and the following datasets. 
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Fig. 7.32 shows the Fourier transform magnitudes of the data for low and for high pressure and 

Fig. 7.33 shows the same data in k-space. 

Fig. 7.32: Fourier transform magnitude of k2 ~ ( k )  for W e  at 300K. The central atom is Sm. The 

solid line corresponds to 1 bar and the dashed line to 68.3 bar .  



Fig. 7.33: k2 ~ ( k )  for m S e  at 300K for the same data as in the previous figure. The central atom is 

Sm. The solid line corresponds to 1 bar and the dashed line to 68.3 kbar. 



Fig. 7.34: o: versus R1 at 300K acmrding to Table 7.13. N1 was set to 4.4. Like in Fig. 7.18, which 

also refers to room temperature, no peak in the mean-square relative displacement is present. 

Table 7.14 shows the results at 77K. N1 was set to 4.55. For the ratio R 2 h 1  we obtained 

R 2 h 1  = 1.41 18 r 0.0040 , again close to fi . 

Fig. 7.35 shows the Fourier transform magnitudes of the data for low and for high pressure and 

Fig. 7.36 shows the same data in k-space. 



Table 7.14: Sm Llll edge EXAFS (LOG.SM7.G): 

(Dec. '86; Si (1 11); T = 77K) 

Two-shell fits in R-space to FT(kO ~ ( k ) )  using theoretical amplitudes and phases: 

1st shell: Se; 2nd shell: Sm 

fixed: al s -1.5708; C3i = 0.0; C4i = 0.0; N1 = 4.55; 

a2 = -1.5708; AE2 = AEl ; C32 = 0.0; C42 = 0.0; N2/N1 = 2.0 
2 2 

variable: AEl ; R1; ol ; R2/R1; 02 

Dataset N T P (bar) AEl (eV) ~1 (A) R ~ ( A )  o: ( 10-3 A2) o i  (1 0 3  A2) 

E ~ d ~ d e " )  kmin(A-' kmax(A-' ) ~min(A) Rmax(A) x2rnin (I O* A-2) 



Table 7.14, continued: 

Fig. 7.35: Fourier transform magnitude of k0 ~ ( k )  for m e  at 77K. The central atom is Sm. The 

solid line corresponds to 1 bar and the dashed line to 72.2 bar .  



Fig. 7.36: kO ~ ( k )  for m S e  at 77K for the same data as in the previous figure. The central atom is 

Sm. The solid line corresponds to 1 bar and the dashed line to 72.2 kbar. 



Fig. 7.37: o: versus Rl at 77K according to Table 7.14. N1 was set to 4.55. We see that at 77K 0: 

exhibits a peak. 

Figs. 7.38 and 7.39 are plots of R1 and R2 as fundions of pressure. They are compared with 

the room-temperature x-ray diffraction result of Jayaraman et al. [I 10, 2071. Since distances obtained 

from EXAFS are not absolutely correct, we must shift the data at room temperature and at liquid- 

nitrogen temperature by the same amount such that the room temperature data at ambient pressure 

agree with the crystallographic value. For SmSe the nearest-neighbour distance at room 

temperature and ambient pressure is R1 = 3.100 A and the next-nearest neighbour distance has 

the value R2 = 3.100 A fi = 4.384 A . 



Fig. 7.38: Nearest-neighbour distance in SmSe with respect to the Sm atoms as a function of 

pressure. The solid line is obtained from the result of Jayaraman et al. [I 10, 2071 at room 

temperature. The 'x' symbols refer to the data of Table 7.13 (300K) and the '+' symbols refer to the 

data of Table 7.14 (77K). Both data were shifted by the same amount: R1 + R1 - 0.0085 A . The 

error for Rl was estimated to be kO.01 A. 



Fig. 7.39: Next-nearest-neighbour distance in SmSe with respect to the Sm atoms as a function of 

pressure. The solid line is obtained from the result of Jayaraman et al. [ I  10, 2071 at room 

temperature. The 'x' symbols refer to the data of Table 7.13 (300K) and the '+' symbols refer to the 

data of Table 7.14 (77K). Both data were shifted by the same amount: R2 4 R2 - 0.0007 A . The 

error for R2 was estimated to be M.01 A. 

We see that after shifting R, and R2 such that their room-temperature values at 1 bar become 

equal to the correct values, the data follow Jayaraman's curve rather well. As in Fig. 7.30, the low- 

temperature data points lie above the x-ray diffraction result at high pressures, possibly indicating a 

lower compressibilrty. It may be relevant that our calculations in Section 5.8 for Cu (Fig. 5.4) and RbCl 

(Fig. 5.5) indicated a lower compressibility at 77K. 



Finally we plot R2 as a function of R1 with these values shifted as explained in the previous two 

figure captions. As is evident from the next figure they follow rather closely a straight line, which 

indicates that the frtting is internally consistent. 

Fig. 7.40: Second-nearest neighbour distance R2 (Sm-Sm) versus the nearest-neighbour distance 

R1 (Sm-Se), with R1 and R2 adjusted as explained in connection with Figs. 7.38 and 7.39. The 

'x' symbols refer to the data of Table 7.13 (300K) and the '+' symbols refer to the data of Table 7.14 

(77K). Error bars are fl.01 A. The solid line is the result according to the NaCl crystal structure: 

R ~ = R , &  . 



The valence values are determined by fitting as explained in Section 6.12. The fit parameters 

are the position E2+ of the White Line of the divalent state, the difference AE r E ~ +  - E2+ of the 

positions of tri- and divalent states, the HWHMs of the Lorentzian and Gaussian that are convolved, 

that is r and a 42412 , the amplitude Ymax of the White Line, and of course the valence v. With the 

exception of the two width parameters all other parameters are hardly correlated with each other. 

These six parameters are listed in the following tables as well as the derived quantities "HWHMVoiSt" 

and "Area", which are, respectively, the resulting HWHM of the fitted lineshape and the peak area 

according to Eq. (6.82). The pressure p is found by interpolation from the applied oil pressure POil or 

from the number of tums NT, depending on which pressure cell was used. All these quantities are 

presented here for completeness. 

The results from edge scans are listed separately from those obtained from EXAFS scans. This 

is so because the density of data points in the edge region is higher for an edge scan than for an 

EXAFS scan. Hence it is possible that the peak amplitude Y,, comes out smaller when an 

absorption edge from an EXAFS dataset is analyzed (compare Tables 7.1 6 and 7.17). 

The results are also listed separately for different temperatures and edge types (Sm LII or 

Sm LIII). 

At times the tables contain several entries for the same setting of the pressure cell. In such 

cases the graphs, that correspond to these tables, only contain the average value. Plotting several 

values for one setting of the pressure cell would emphasize certain data points too much. For the 

same reason only averaged values from one pressure point are included when a fit is performed to 

the data. These are fits to AE vs. valence and to the valence vs. pressure . 

Table 7.15 contains the results of Sm Llll edge EXAFS scans at room temperature. The 

pressures were determined according to Table 7.1. By inspection of Table 7.15 one will notice that 

the energy calibration was adjusted after the data for zero pressure had been measured. However, 

this adjustment affects only E*+, the peak position of the divalent absorption line. 



Table 7.15: Valence determination from the Sm Llll edge of EXAFS datasets 

(VAL.SMSEXF.B): 

(Dec. '83; Si ( 1  1 1 ) ;  T = 300K) 

Dataset Po~I(Ps~) P w a r )  v AE (eV) E ~ +  (eV) 

HWHMVO,g (eV) (eV) a 4 2  In2 (eV) Y, Area (eV) 

- 

SMSE 

SMSE 

SMSE 



Table 7.15, continued: 

SMSE23.A39.B 2300 55.1 2.65 6.98 671 3.96 

3.31 1.905 2.1 1 2.25 15.51 

SMSE27 A42.B 2700 68.3 2.73 6.82 6714.14 

3.38 1.91 5 2.18 2.25 15.80 

# :  The energy calibration was adjusted for this and the following datasets. 

The next two tables contain results from the Sm Llll edge of another run, also at 300K. The 

pressures were determined according to Table 7.2. Table 7.16 contains the results from edge scans 

and Table 7.17 lists the results from EXAFS scans. 



Table 7.16: Valence determination from the Sm Llll edge (VAL.Sh4SEED.C): 

(April '84: Si (1 11); T = 300K) 

SMSE 

SMSE 



Table 7.17: Valence determination from the Sm Llll edge of EXAFS datasets 

(VAL.SMSEXF.C): 

(April '84; Si (1 11); T = 300K) 

Dataset Poil(psi) P v AE (eV) E ~ +  (eV) 

HWHMV,,~~ (eV) (eV) o 12.1r-12 (eV) Y- Area (eV) 

SMOOO.OO0.C 

SMSEOO.AO1 .C 

SMSEI O.AO9.C 

SMSE17A26.C 

SMSEl8.AAT.C 

SMSEI 9.A48.C 

SMSE20.A54.C 

SMSE21 .A64.C 

The following two tables correspond to a run at 77K. The pressures were determined according 

to Table 7.4. Table 7.18 contains results from edge scans of the Sm LII edge and Table 7.19 lists the 

results from Sm Llll edge EXAFS scans. 



Table 7.18: Valence determination from the Sm LII edge (VAL.SMSEE2.G): 

(Dec. '86; Si (1 11 ) ;  T = 77K) 

Dataset N~ P (bar) v AE (eV) E ~ +  (eV) 

HWHMVOigl (eV) l- (eV) o d2ln2 (eV) Y, Area (eV) 



Table 7.18, continued: 

Table 7.19: Valence determination from the Sm Llll edge of EXAFS datasets 

(VAL.SMSEX3.G): 

(Dec. '86; Si (1 11); T = 77K) 

Dataset r'c, P (kbar) v AE (eV) E ~ +  (eV) 

HWHMV,jg (eV) T (eV) o a (eV) Y,, Area (eV) 



Table 7.19, continued: 

SMS 

SMS 

SMS 

By plotting all possible combinations of the parameters listed in these tables the most 

pronounced relations were found. These are the valence as a function of pressure (Figs. 7.41 to 

7.43) and the difference AE of peak positions as a function of valence (Figs. 7.45 to 7.47). 

In Figs. 7.41 to 7.43 we compare the pressure dependence of the valence as obtained from 

the LII or Llll edge, at room temperature or at 77K, or as obtained from edge scans or EXAFS scans. 



For EXAFS scans only a few data points are measured near the absorption edge and as a 

consequence some of the fit resutts may be affected. In Figs. 7.41 to 7.43 typical error bars are 

indicated. The uncertainty in the pressure was obtained from the error bars listed with the results of 

the pressure calibrations, Tables 7.1, 7.2, and 7.4. The fit error in the valence determination was 

assumed to be k0.04, based on previous experience with valence determination [17J.  

Fig. 7.41 : Valence versus pressure as obtained from EXAFS scans of the Sm Llll edge. The 

'+' symbols refer to Table 7.15 (300K) and the 'x' symbols refer to Table 7.19 (77K). The valence at 

room temperature is slightly higher. There are not many room-temperature data points in the 

immediate transition region so it is difficult to judge whether the transition at room temperature is 

equally sharp as at 77K. 

Fig. 7.42 shows the transition at room temperature with data from one edge and two EXAFS scans. 



Fig. 7.42: Valence versus pressure at 300K as obtained from scans of the Sm Ll edge. The 

'+' symbols refer to Table 7 15, the 'x' symbols refer to Table 7.17, and the ' ' symbols refer to 

Table 7.16. 

The next figure shows results at liquid-nitrogen temperature. The valence obtained from Sm LII 

edge scans is slightly larger than the valence obtained from Sm LIII EXAFS scans. 



Fig. 7.43: Valence versus pressure at 77K as obtained from a Sm LII edge scan and a Sm EXAFS 

scan of the Llll edge. The '+' symbols refer to Table 7.18 (LII), and the 'x' symbols refer to Table 7.19 

(LIII). The valence obtained from LII edge scans is slightly larger than the valence obtained from 

Sm LIII EXAFS scans. 

In the vicinity of a phase transition the properties of a physical system are described by power 

laws. Therefore the pressure dependence of the valence is fitted to the following equation: 

v = B  for p 5 p, 

for p 2 pc 

This equation contains four parameters: B is a constant background, which is practically equal to the 



valence for p 5 pc , where p, is the critical pressure. A is an amplitude factor and a is a positive 

exponent. - 

With these four parameters being variables in a least-squares fit the following resufts are 

obtained: 

Table 7.15: B = 2.125; A = 0.57; pc = 31.0 kbar; a = 0.44 . 

Table 7.18: B = 2.18; A = 0.50; pc = 31.9 kbar; a = 0.40 . 

Table 7.19: B = 2.13; A = 0.50; pc = 31.6 kbar; a = 0.44 . 

The errors associated with the fit parameters are estimated to be: 

The pressure dependence of the valence as obtained from Tables 7.1 6 and 7.17 is not fitted 

because there are not enough data points above p,. 

The following figure shows as an example the fit to the data of Table 7.19. 



Fig. 7.44: Valence versus pressure at 77K. The '+' symbols refer to Table 7.19 (Llll). The solid line 

is a fit according to Eq. (7.4). 

Apart from the pressure dependence of the valence the dependence of AE on the valence is 

of interest. This relation is established independently of the pressure calibration. AE versus the 

valence is approximately linear as can be seen from the following figures. 

One may argue that this dependence of AE vs. the valence is an artifact of the fitting 

procedure. However, the fitting parameters are not very much correlated and the fitting correlation 

coefficient between AE and the valence is particularly Small. Thus the almost linear relation between 

AE and the valence as obtained from different datasets is meaningful. It is probably due to 

differences in the screening of the sm2+ and sm3+ ions. This will be discussed in Section 1 0.4. 



Valence 

Fig. 7.45: AE versus valence. The '+' symbols refer to Table 7.15 (300K) and the 'x' symbols refer to 

Table 7.19 (77K). 



Valence 

Fig. 7.46: AE versus valence at 300K. The '+' symbols refer to Table 7.15, the 'x' symbols refer to 

Table 7.1 7, and the '0 ' symbols refer to Table 7.16. 



Valence 

Fig. 7.47: AE versus valence at 77K. The '+' symbols refer to Table 7.18 (LII), and the 'x' symbols 

refer to Table 7.19 (LI1l). 

Fitting straight lines to AE as a fundion of the valence v, excluding points with AE exceeding 

approximately 8 eV, yields: 

Table 7.15: AE = 11.6eV - v .  1.75eV or v = 6.63 - 0 .572e~- I  .AE . 

Table 7.1 6: AE = 12.5 eV - v .2.07 eV or v = 6.05 - 0.483 e r l  . AE . 

Table7.17: A E = 1 1 . 4 e V - v . 1 . 6 5 e V  or v = 6.90 - 0.607 e r l  . AE . 

Table7.18: A E = 1 0 . 4 e V - V , 1 . 2 9 e V  0 r v = 8.03 - 0.774 eW1 AE . 

Table7.19: A E = 1 1 . 8 e V - v . 1 . 7 4 e V  or v = 6.75 - 0.573 e r l  . AE . 



Chapter 8: Results for SmS 
- 

This chapter is structured like the previous one. After the pressure calibration the EXAFS of the 

Sm Llll edge in SmS is analyzed, and finally the valence is determined. As before, the EXAFS is 

analyzed in R-space. 

The S K edge EXAFS could not be measured. The doublecrystal monochromator used in our 

experiments can function at energies as low as the S K edge. However, to avoid absorption by air the 

exit beam must travel in helium. But even if this were done, the large absorption of the anvil tips in 

the pressure cell at these low energies would have made the measurement impossible. 

For the SmS datasets the pressure is determined from the EXAFS of a Cucalibrant. As in the 

previous chapter the nearest-neighbour distance is determined from one-shell fits in R-space to the 

Fourier transform of k3 ~ ( k )  . Theoretical amplitude and phase in curved-wave theory are employed 

in the analysis. d 2  is subtracted fmm Teo and Lee's central phase, as before. In the fits we consider 

the finite resolution by assuming that the width of the entrance slit of the rnonochromator is 1 mm. 

Mean free path and core-hole lifetime effects are included with q given by: 

re + rC 4.39eV + 1 6eV = 0.78 A+ 
Cu: 1 =  2, 

= 
2 Y 

The following table contains the pressure calibration. First the pressure is increased, then 

completely released, and finally increased again. 



Table 8.1 : Pressure calibration from Cu K edge EXAFS (LOG.CU1 .A): 

-(Jan. '83; Si (1 11); T = 300K) 

One-shell fits in R-space to F T ( ~ ~  X(k)) using theoretical amplitude and phase 

fixed: al = -1.5708; AEl = 1.531 eV; Cgl = 0.0; C41 = 0.0 

variable: 
2 

R1; al; N1 

Fit interval (A) Transform interval (A-l) 

Dataset R1 (A) ~ 1 ~ 0  P~il(psi) P (bar) bin Rm km in km 

E~dge(eV) $mi.l(A*) 

- 

#: The externally applied pressure was completely released before pressure was apphed for this 

dataset. 



Fig. 8.1 : Pressure p of a copper calibrant versus the oil pressure POil applied by a hydraulic 

pump for the data of the previous table. The arrows indicate the sequence of pressure points. First 

the pressure is increased, then completely released, and finally increased again. A straight-line fit 

(dashed line) was performed for rising pressure only. The slope is 1.1 4 + 0.07 kbarl(100 psi) and 

the intercept is -1.7 k 2.1 kbar . Enor bars are omitted for clanty. The data points for rising pressure 

follow the straight line within their error bars. 

As in the previous chapter the maximum k-value for the EXAFS of the Sm Llll edge is -10 A-1 

and two-shell fits are performed. Theoretical Sm and S curved-wave backscattering amplitude and 

phase are employed. The phase offset is 4 2  and the ratio N~/N, is fixed at 2 according to the NaCl 



structure. We assume that the values for AE are the same for both coordination shells. As discussed 
2 2 earlier in Section7.3, by first varying the six parameters AEl, Rl, ol, Nl , and, R2 and o2 one obtains 

a value of 4.2 at which N1 is fixed. Fits to the Fourier transform of k2 ~ ( k )  are performed with five 
2 

variable parameters: AEl . Rl . ol. R ~ R ~  . and og . The finle monochromator resolution is included 

in the fits together with the mean free path and core-hole lifetime effects. These latter effects are 

included through fi which for the Sm Llll edge in SmS amounts to: 

(absorbing element underlined) . 

The following table contains the results from R-space fits to the Sm Llll edge EXAFS at 300K. 

The k-space interval used to take the Fourier transform is indicated by kmi, and k,,,,, and the fit - 

interval by Rmi, and R,,. We obtain for the ratio R ~ R ,  of the radii of the second coordination shell 

to the first the value R ~ / R ~  = 1.418 + 0.013 deviating some amount from the correct value of fi . 
At 8.6 kbar Table 8.2 contains two entries. Figs. 8.4 to 8.7, which show the results, contain only 

averaged values at this pressure. 



Table 8.2: Sm Llll edge EXAFS (LOG.SM2.A): 

-(Jan. '83; Si (1 11); T = 300K) 

Two-shell fits in R-space to F T ( ~ ~  ~ ( k ) )  using amplitudes and phases: 

1st shell: S; 2nd shell: Sm 

fixed: al I -1.5708; C3i = 0.0; C4i 9 0.0; N1 4.2; 

a2 = -1.5708; AE2 = AEl ; C32 I 0.0; C42 0.0; N2/N1 = 2.0 
2 2 

variable: AE1;Rl; al; R2hl; a2 

Dataset Poil(Psi) P (kbar) AEl (eV) R1 (A) R2(A) o: (1 o - ~  A2) a: (1 0-3 A2) 

Fig. 8.2 shows the Fourier transform magnitudes of the data for low and for high pressure and 

Fig. 8.3 shows the same data in k-space. 



Fig. 8.2: Fourier transform magnitude of k2 y(k) for SmS at 300K The central atom is Sm. The 

solid line corresponds to 1 bar and the dashed line to 45.2 kbar. 



Fig, 8.3: k2 ~ ( k )  for -S at 300K for the same data as in the previous figure. The central atom is 

Sm. The solid line corresponds to 1 bar and the dashed line to 45.2 kbar. 

The next figure shows o: versus R1 . As for SmSe at 300K, no peak is visible. 



2 
Fig. 8.4: a, versus R1 at 300K according to Table 8.2. N1 was equal to 4.2 

The pressure dependence of the nearest-neighbour distance R1 and next-nearest neighbour 

distance R2 is shown in the next two figures. The data is compared to the x-ray diffraction result of 

Jayaraman et al. [I 10, 2071. The values for R1 and R2 from Table 8.2 are shifted such that their 

values at atmospheric pressure become equal to the crystallographic values. For SmS the nearest- 

neighbour distance at room temperature and ambient pressure is R1 = 2.985 A and the next- 

nearest neighbour distance is equal to R2 = 2.985 A & = 4.221 A .  



Fig. 8.5: Nearest-neighbour distance R1 in SmS with respect to the Sm atoms as a function of 

pressure and at room temperature. The crosses are the data of Table 8.2 and the solid line is 

obtained from the result of Jayaraman et al. [I 10, 2071. The data were shifted according to: 

R1 -+ R1 + 0.01 A . The error for R1 is estimated to be k0.02 A. 

We notice that in Fig. 8.5 the values of R1 above the mixed-valence transition deviate 

systematically from the x-ray diffraction resutt. The error bars cannot account for this discrepancy. 

However, the two data points below the phase transition agree with the x-ray diffraction result. Since 

the same phase shifts are employed at all pressures, the deviation is surprising. Furthermore, the 

values of R2 (as shown in Fig. 8.6) do follow very well the x-ray diffraction data. We do not yet know 

why the values of R1 above the phase transition exceed the x-ray diffraction result. 



Fig. 8.6: Next-nearest neighbour distance R2 in SmS with respect to the Sm atoms as a function of 

pressure and at room temperature. The crosses are the data of Table 8.2 and the solid line is 

obtained from the result of Jayaraman et al. (1 10, 2071. The data were shifted according to: 

R2 --+ R2 - 0.044 A . The error for R2 is estimated to be k0.02 A. 

In Fig. 8.7 we compare R2 and R1. This plot is independent of the pressure calibration and it 

should agree with the result for the NaCl structure: R2 = R1 fi . However, because R1 is too large 

above the transition pressure (see Fig. 8.5) the agreement with the crystallographic result is not 

good. 



Fig. 8.7: Second-nearest neighbour distance R2 (Sm-Sm) versus the nearest-neighbour distance 

R1 (Sm-S), with R1 and R2 adjusted as explained in connection with Figs. 8.5 and 8.6. The crosses 

refer to the data of Table 8.2 and the solid line is R2 = R, fi according to the NaCl structure. Enor 

bars are f0.02 A. 

The tables in this section are exactly analogous to the ones in Section 7.4 and therefore need 

not be described. The pressure is determined by interpolation from the applied oil pressure Poi( 

The first table contains the results from edge scans and the second lists those obtained from EXAFS 



datasets. 

- 
Table 8.3: Valence determination from the Sm Llll edge (VAL.SMSX.A): 

(Jan. '83; Si (1 11) ;  T = 300K) 

Dataset Poil(pSi) P w a r )  v AE (eV) E ~ +  ( e ~ )  

HWHMVOg, (eV) (eV) o fi (eV) Y, Area (eV) 



Table 8.3, continued: 

In the next table there are multiple entries at some pressure points. For these pressures the 

graphs and fits will only take into account a single averaged value of valence or AE. 



Table 8.4: Valence determination from the Sm Llll edge of EXAFS datasets 

- (VAL.SMSXAF.A): 

(Jan. '83; Si (1 11); T = 300K) 

Dataset 

SMSOOO.AO1 .A 

SMSOOO.AO3.A 

SMSOOO.Al1 .A 

SMSOOO.Al3.A 

SMSO11 .A1 7.A 

SMSO11 .A1 9.A 

SMS030.A23.A 

SMS036.A30.A 

SMS042.A40.A 

SMS042.144.A 

SMS002.A46.A 

SMS11 .A51 .A 

SMSOl 4.A56.A 

Area (eV) 

In Figs. 8.8 and 8.9 the valence is plotted as a function of pressure. Fig. 8.8 contains the results 

from edge scans and Fig. 8.9 lists the results obtained from EXAFS datasets. The error bars for the 

pressure were obtained from Table 8.1 and the fit error for the determination of the valence was 

assumed to be +0.04. 



Fig. 8.8: Valence versus pressure at room temperature according to Table 8.3. The '+' symbols 

correspond to rising pressure. The 'V' symbols indicate the valence when the pressure is decreasing 

and the 'x' symbols refer to increasing pressure. 



Fig. 8.9: Valence versus pressure at room temperature according to Table 8.4. The '+' symbols 

correspond to rising pressure. The 'V' symbols indicate the valence when the pressure is decreasing 

and the 'x' symbols refer to increasing pressure. 

The dependence of AE on the valence is shown in the next figure. 



Valence 

Fig. 8.10: AE versus valence. The '+' symbols refer to Table 8.3 and the 'x' symbols refer to Table 

8.4. 

Fitting straight lines to AE as a function of the valence v gives: 

Table 8.3: AE = 12.8 eV - v .2.19 eV or v = 5.82 - 0.456 e v l  . AE . 

Table 8.4: AE = 10.4eV - v .  1.23eV or v = 8.405 - 0.81 0 e v l  . AE . 

In Section 10.4 the linear dependence of AE on the valence is discussed in terms of the different 

screening of the sm2+ and sm3+ ions. 



Chapter 9: Discussion 
- 

In this chapter we discuss the peak in the mean-square relative displacement as a function of 

pressure with respect to the possible existence of lattice relaxation in SmSe. We also calculate the 

Grijneisen parameter which is a measure of anharmonicrty. Then we discuss the scaling method, 

introduced in Sections 3.6 and 6.14, with respect to pressure determination. A final section lists 

topics of future work. 

We may wonder whether the maximum in as a function of pressure (or coordination-shell - 

radius) may be due to the presence of two closely spaced Sm coordination shells around a Se atom. 

This may be expected because valence fluctuations occur with phonon frequencies and the 

interaction between valence fluctuations and phonons may result in relaxation of the crystal lattice 

around a Sm atom. This means that the first coordination shell around a Sm atom will have a smaller 

radius when the central Sm atom is trivalent and small. However, the first shell will have a larger radius 

when the central Sm atom is divalent and 0.17 A bigger. Since the x-ray absorption process is much 

faster than phonon or valence fluctuation frequencies, the information contained in an x-ray 

absorption spectrum corresponds to a "snapshot" picture of the atomic positions. For mixed-valent 

SmSe one would therefore expect two slightly different Sm-Se distances corresponding to the 

sampled distribution of di- and trivalent Sm atoms. Since the distance difference is expected to be 

small it is advisable to analyze the Se K edge EXAFS, which can yieM higher resolution than the 

Sm L edge EXAFS. The Sm Llll EXAFS has limited resolution because of the intervening Sm LII 

edge and the Sm Lll edge EXAFS is contaminated by the underlying remnants of the EXAFS of the 

Sm Llll edge. In the same way the Sm LI edge is contaminated by the remnants of the EXAFS of the 

Sm LII edge. 

We now present the results of two-shell fits to the Se K edge EXAFS data. A larger k-space 

domain was used for the fits than was employed in Chapter 7, although the data at high k are not as 

good as at low k. The results are for welaMed two-shell fits in k-sr>ace. The k-space weighting 

function was described in Section 6.10 and consists of the square of the envelope function, raised 



to the power of -1. In this way regions of small amplitude, for example a beat node, have the same 

weight as regions with large amplitude. Trying two-shell fits in R-sDace does not help because the 

high-k end, where a possible beat node would occur, is not weighted sufficiently in a Fourier 

transform with an apodization window. 

The results of these weighted two-shell fits in k-space are presented in Table 9.1 below. 

Although this table is similar to Table 7.8 it is not possible to compare readily the values of X2,i, 

because this time the fits are performed in k-space. The R-space interval used for Fourier filtering is 

indicated by Rmi, and R,,. Mean free path and core-hole lifetime effects are taken into account by 

setting equal to 0.690 A-2, as in Section 7.2. 



Table 9.1 : Se K edge EXAFS (LOG.SEN25.F2): 

-(June '86; Si (220); T = 77K) 

Weighted two-shell fits in k-sDace to k2 ~ ( k )  using theoretical amplitudes and phases: 

1st shell: Sm; 2nd shell: Sm 

fixed: al 5 -1.5708; AEl = -1.9 eV; C3i = 0.0; C41 = 0.0; 

2 2 a2 = -1.5708; AE2 = -1.9 eV; C32 - 0.0; C42 = 0.0; o2 5 ol ; N1 + N2 = 4.6 

variable: R1; o;; N1; R2 

We see that no clear picture emerges regarding N1. Nevertheless, the Sm radial distribution 

function with respect to a Se central atom is useful. In Fig. 9.1 a graph of g(R) is shown for some 



datasets of the previous table. The figure corresponds to Fig. 7.23 of Chapter 7, except that now the 

k-space intervabare larger and the two-shell fits are in k-space. 

Fig. 9.1 : Sm radial distribution functions g(R) with respect to Se at 77K obtained from the two-shell 

fits of Table 9.1. The numbers on the curves indicate the following pressures: 

# I  : 43.7 b a r ;  #2: 52.0 kbar; #3: 54.7 kbar; #4: 60.1 kbar; #5: 74.15 kbar; #6: 75.1 b a r .  

We notice that for the dataset at 52.0 kbar (SESMN5.N38.F) the radial distribution function 

clearly shows two peaks. This was the only dataset that exhibited a radial distribution function with 

two peaks and this dataset also was the one which produced the largest value of a2 in the one-shell 

fits of Chapter 7. Fig. 9.2 shows the fittered k-space data at 52.0 kbar. At k = 18 A-l a beat can 

clearly be seen. At the expense of increasing the correlation between variables, the overall fit could 
2 be improved by changing more than the four variables R1, al , N1, and R2 used in the present fits. 



Fig. 9.2: k2 ~ ( k )  for Sm& for the dataset SESMNS.N38.F at 52.0 kbar and 77K. The central atom 

is Se. The solid line is the data and the dashed line is the fit. 

We notice that the envelope goes almost to zero at k z 18.1 A-1 . Assuming that the two Sm 

shells have the same EXAFS Debye-Waller factor and scattering amplitude we can conclude that the 

two shells have approximately equal weight. This would correspond to the presence of equal 

amounts of 2+ and 3+ Sm atoms and hence a fractional valence of 2.5. The position of the beat node 

yields a distance difference of AR = d ( 2  . 18.1 A-l) = 0.087 A (see Eq. (6.78)), confirmed by the 

least-squares fit result of Table 9.1. 

In order to increase the confidence in the result a fit was also performed to the phase derivative 

of the first coordination shell. This function is shown in Fig. 9.3 together with a fit according to 

Eq. (6.73). Again the effect of the beat node at k z 18.1 A-' can be seen showing that the first 



coordination shell is indeed split into two. The structure at around 8 A-1 stems from the 

Sm backscatteriog phase and has nothing to do with beating. This was not clear originally but could 

be traced back to the Sm phase that had been calculated in Chapter 3. The results from the k-space 

fit and the fit to the phase derivative agree as expected. 

Fig. 9.3: Phase derivative at 52.0 kbar and 77K for the first coordination shell of Sm& with 

respect to the Se atoms. The solid line is the data (SESMNS.N38.F, Table 9.1) and the dashed line is 

the fit according to Eq. (6.73). 

The results of this fit to the phase derivative are: 



2 2 The fit interval extended from kmi, = 4.0 A-l to k,, = 19.5 A-1 and it was assumed that I ol . 

The value for ARis the same as the one found from the fit of Table 9.1. 

It seems then that in the middle of the valence transition two Se-Sm distances are present as 

claimed previously [208]. This can be understood by considering the breathing motion performed by 

the Se atoms around a mixed-valent Sm atom. As the Sm ion changes its valence from 2+ to 3+, say, 

its volume decreases and the nearest-neighbour Se atoms move towards the central Sm atom. This 

relaxation is indicated in the following figure. 

Fig. 9.4: Breathing motion of the Se atoms with respect to the central mixed-valent Sm atom. 



9.2 the Se K EPQe FXAFS 

- 
In this section we calculate the Grijneisen parameter y~ , which appears in the quasi-harmonic 

approximation. In this approximation, anharmoniclty of the pair potential is taken into account by 

introducing a volume (or pressure) dependence to the vibrational frequencies via the Griineisen 

parameter and leaving the pair potential harmonic. y~ is zero for a harmonic potential and positive 

when anharmonicity is present. 

The one-shell fits of Chapter 7 showed that at 77K a2 as a function of R or pressure exhibited 

a maximum, which was f'wt clearly Present at room temperature. According to Tranquada [I57 a 

change in a2 can be related to a change in R according to: 

yG is the Grijneisen parameter. We can rewrite this equation as: 

Thus yG can be determined immediateb fmm the slope of In a2 versus In R , which is very similar to 

02 versus R . We denote the position of the maximum in a2 by R, . Hence for R < R, we have 

normal behaviour, characterized by a positive value of the Grijneisen parameter. According to 

Appendix C a positive value of y~ fneans that the vibrational frequencies increase with a reduction 

in volume, 1.e. compression. For R > R, we find a~omalous behaviour because yG is negative, 

indicating a decrease of phonon frequencies when the volume is reduced. This means that the solid 

becomes "softer" under compression. Unfortunately, there is only one data point above R,. 

Therefore it is not clear whether softening sets in immediately under compression. Probably one will 

find that under compression the solid will initially behave normally and then become soft and then 

become normal again, similar to the behaviour of the bulk modulus or compressibilrty (see Chapter 

4). In fact there is a relation involving the bulk t'n~dulus and the Griineisen parameter (see Appendix 

C, ~ q .  (c.13)). This relation was also used to determine YG from Jayaraman's data [ I  101 but it turned 

out that the derivative involved in determining the compressibility made the result too noisy. Thus 



y~ could not be obtained reliably with this method. Probably one should fit Jayaraman's data to a 

model and then determine y~ from the model. 

According to the Grijneisen relation (Appendix C, Eq. (C.8)), 

A negative value of y~ also implies a negative coefficient of thermal expansion as well as an 

increase of pressure with decreasing temperature. No thermal expansion or specific heat data for 

SmSe was available to compare to y~ via the Griineisen relation. 

The results obtained for nearest-neighbour atom pairs from the slope of In a* versus In R are 

listed in the following table: 
- 

Table 9.2: Grijneisen parameter at 77K, obtained from the data of Tables 7.6 to 7.8 using 

Eq. (9.2): 

R < R ,  R > R, 

%?-an (LOG.SEN13.F2) 2.00 ? 0.09 -1.50 (Asymmetry included) 

Sa-Sm (LOGSEN1 4.F2) 3.28 _+ 0.14 -2.22 

a - (Sm, (LOG.SEN19.F2) 2.26 f 0.26 -1.32 (Two Sm shells) 

The results vary depending on what type of fit was performed. The positive values for the 

Griineisen parameter for the Se-Sm coordination vary from 2 to 3.3. 

No error bars are listed for the results corresponding to R > R, because not enough data 

points were available for an error estimate. Note that determining y~ according to Eq. (9.2) involves 

absolute values of 02. Since a2 is frequently overestimated in the fits, the values in the preceding 

table constitute upper bounds for y~ where y~ is positive and lower bounds where it is negative. 



There are no data to compare these results to, except an investigation of samarium glasses [209] 

where at ambient pressure a Griineisen parameter of -0.615 was found. 

It may be argued that the pressure that we measure is not truly hydrostatic. However, the Sm 

monochalcogenides are rather soft materials so that any pressure inhomogeneity in these samples 

will be small. According to Ref. 21 0, at 50 b a r  the pressure gradient across the sample is -4 kbar. 

The errors in the pressure calibration as obtained from least-squares fitting were found to be as 

large as *8 b a r  for Cu. As described in detail in Section 6.1 0, the error of a particular fit parameter 

was determined by incrementing this parameter in steps around its optimum value and performing 

least-squares fits at each step. In this way the effect of parameter correlations is taken into account 

and one obtains X2 as a function of the parameter in question. Its error bars are determined from the 

intersection points of the x2 curve with a horizontal line at twice the minimum value of X 2 .  However. 

plots of the valence versus pressure indicate a much smaller error in the pressure determination, say 

+4 kbar. If the error were really as large as t8 kbar then it would be impossible to observe the rapid 

valence variation in the transition region. The fact that the error in the pressure is indeed smaller is 

also supported by the slope of the straight-line fit in Fig. 7.15 of Section 7.1. The slope is 

6.4 kbarlturn and if we assume that we may be out by 112 turn then the error is k3.2 b a r .  We 

conclude then that our error bars are very conservative, overestimating the true error by 

approximately a factor of two. 

We now illustrate an approximate method of pressure determination which does not require 

least-squares fitting and is therefore easy to apply. It is based on Section 3.6 where it was argued 

that a scaling relation exists between energies and lengths. In Section 6.14 the quantity 

E E (R, - R ) / R ~  was introduced. E is the relative change of the length scale with respect to a 

reference length R,, which is measured relative to the absorbing atom at a reference pressure, 

usually atmospheric pressure. A function g ( ~ )  was derived which peaks at a value E = E' , with E' 

corresponding to R*, the value of R at the applied pressure. With this information we immediately 

obtain the relative change in volume: 



- 
Using calibration curves we can obtain the pressure from V/V, as usual. This was done for the data 

in Table 7.4. Each dataset was multiplied by k3 prior to calculating g ( ~ )  in order to make the amplitude 

of the EXAFS signals more even. The function g(&), referenced to atmospheric pressure, is shown in 

the next figure for two datasets at different pressures. 

Fig. 9.5: Function g(&) versus E calculated according to Eq. (6.92) of Section 6.1 4. The solid line 

corresponds to a pressure of p = 32.6 kbar as obtained from the fit (Table 7.4) or 6 = 37.5 kbar 

according to the scaling method (Table 9.3). The dashed line is the result for pressures 

p = 72.2 kbar and 5 = 77.7 kbar , respectively. 



From this graph we see that the precision of locating the maximum and hence of estimating 6 
depends on the sharpness of the peak in g ( ~ ) .  The peak will be narrower the larger the k-space 

domain of the data is. 

The next table shows the pressure 6 obtained with the scaling method for the datasets of Table 

7.4. The pressure p obtained by least-squares fitting and listed in Table 7.4 is shown for comparison. 

The domain of data is the same as in Table 7.4. To obtain g ( ~ )  each dataset was muttiplied by k3. g ( ~ )  

is calculated using the first dataset, indicated in boldface, as the reference. 

Table 9.3: Pressure calibration from Cu K edge EXAFS by the scaling method: 

(compare Table 7.4 - Dec. '86; Si (1 11); T = 77K) 

Scaling Fit Domain of data ( k l )  

Dataset (Ro- R4)h, V/V, NT (kbar) p (kbar) b i n  b-m 

CUOO.NB6.G 0 1 0 0 0 1 . 8 2 2  1 4 . 9 4 4  

CU01 .N88.G 0.003 0.991 1 14.0 9.40 1.817 15.045 

CU03.NO3.G 0.007 0.979 3 32.5 24.3 1.824 14.955 

CU04.NO8.G 0.007 0.979 4 32.5 24.5 1.824 15.101 

CUSM4T.N30.G 0.008 0.976 4.75 37.5 31.4 1.764 15.21 6 

CUSM05.N38.G 0.008 0.976 5 37.5 32.6 1.890 15.117 

CUSMSQ.N57.G 0.008 0.976 5.25 37.5 33.55 1.817 15.117 

CUSM06.Nf39.G 0.01 2 0.964 6 57.6 48.4 1.817 14.827 

CUS11 Q.N39.G 0.01 6 0.953 11.25 77.7 72.2 1.817 15.190 

Fig. 9.6 compares the pressures 6 obtained by scaling with p from least-squares fnting. There 

seems to be an offset of the values by about 6 kbar. 



Fig. 9.6: Pressure 6 obtained by scaling versus p obtained by fitting. The straight line corresponds 

It seems then that this method of estimating the compression, and hence the pressure, is fairly 

reliable. Since the method is also very easy to apply, it could be employed to estimate the 

compression of the sample during the course of the experiment. 

As mentioned before, the x-ray absorption process is much faster than the valence 

fluctuations. Therefore, in the case of the Sm LII or Llll edge one would expect that the EXAFS 

spectra each consist of a superposition of two spectra whose energy thresholds differ by AE, that is 



by approximately 7 eV. This has been considered in the work of Krill et al. [211-2131, Wetta [214], 

and Martin et al.{215]. In order to decide whether this is really the case the minimum k-value used in 

the data analysis must be very small. This in turn requires very good amplitudes and phases. At the 

same time one has to extend k,,, to its maximum value of 12.5 A-1 determined by the energy of the 

intervening Sm LII absorption edge. In the present data analysis kmi, was approximately 4 A-l. At 

this k-value a shift of 7 eV in the origin of the k-scale will create a shtft in k-space of -0.2 A-l, which is 

rather small. k,, was limited to 10.2 A-' due to the presence of an Fe contamination. 

Consequently, due to our restricted k-space range, we did not address the question of two energy 

thresholds in our data analysis. 

The results presented thus far suggest further experiments: 

i )  Measuring the valence transition below 77K 

This experiment would decide whether the valence transition becomes indeed discontinuous at low 

enough temperature as predicted by theory (1 2, 131. At 77K no significant sharpening could be 

observed. A cryostat for an experiment at temperatures below 77K has already been designed. In 

order to be able to observe a discontinuous phase transition one has to make certain that no 

significant pressure distribution exists in the sample. 

ii) Measuring the valence at very high pressures 

This experiment could determine whether the phase transition will be completed at a high enough 

pressure. Thus far it is not known whether in the Sm monochalcogenides the Sm atoms become 

fully trivalent. This experiment should be relatively easy to do since it suffices to perform it at room 

temperature. 

In addition to these experiments, improvement in data analysis may be desirable. One problem 

is the determination of the correct EXAFS background. In this work the background was determined 

by smoothing, which yielded good results. Smoothing, however, is not without problems. Regions 



with large signal amplitude require more smoothing passes than those with smaller amplitude. 

Alternatively one-may fit a polynomial to the data and use it as the background. However, when the 

endpoints of the fit interval differ by too much, as is the case in k-space where kmi, ': 3 A-1 and 

k,,, r 15 A-l , then the polynomial develops too many inflection points. Furthermore, it will go to 

+ - at the endpoints. A way around this difficutty may be to fit to polynomials in In E, instead of k. 

(Since the absorption coefl icient varies approximately as E - ~  one should fit the loaarrthm of the data 

to In E.) Another functional form for the background may be a spline fit (1 771. This was not 

investigated in the present work, but one problem with a spline fit is the dependence of the result on 

the choice of the location of the nodes. 

In EXAFS data analysis it is customary to employ the Fast Fourier Transform (FFT). However, the 

FFT requires a uniform k-space grid. In our data collection procedures, the EXAFS portion of the 

absorption spectrum is collected with a k-space grid that is nearly uniform. Since the data is - 

measured versus monochromator step numbers, which are nonlinearly related to the wavenumber k 

of the photoelectron, the conversion to k-space will not produce an exactly uniform grid. Hence 

interpolation onto a uniform k-space grid is always necessary. While this poses no difficulty with good 

quality data there may be distortion of the data when interpolating noisy data. Therefore one may 

consider using the conventional Fourier transform instead which does not require a uniform k-space 

grid. With present computing speeds the slowness of the conventional Fourier transform should be 

no problem. 

The data analysis presented here may be augmented by fits to the Se- the 

Sm-EXAFS. In this way one wuM use constraints such as the nearest-neighbour distance as 

obtained from the Se-EXAFS must be equal to the nearest-neighbour distance as obtained from the 

Sm-EXAFS measured at the same pressure. One may even consider fitting the spectra of a whole 

pressure run by forcing the number of nearest-neighbours to be the same throughout. A possible 

problem with all these "grand fits", apart from computing effort, is the relative weighting of the various 

spectra. Nevertheless, it is worthwhile fitting several spectra at a time. 

The scattering phases calculated in this work contain curved-wave effects. It turns out, 

however, that the scattering amplitude tends to diverge as k approaches zero. This results from the 

curved-wave modifications which contain spherical Neumann functions. These functions diverge at 



k = 0 and apparently the partial-wave phase shifts S1(k) do not prevent this divergence. A divergence 

for k + 0 is, however, unphysical. A measured absorption spectrum does not show signs of a 

divergence at k = 0 . 

In all fits to the Cu K, Se K, or Sm Llll edge EXAFS employing theoretical phase shdts we had to 

subtract d2 from the central-atom phase shifts of Teo and Lee [ I  I ]  in order to obtain correct 

distances. The origin of this artificial phase offset is not clear and should be investigated. 

When fits to asymmetric pair distribution functions are performed it may be better to fit directly to 

the expansion coefficients of the pair potential rather than to the cumulants derived from it. These 

cumulants are related to the expansion coefficients of the pair potential by a set of equations rather 

than corresponding to the expansion coefficients one by one. 



Chapter 10: Summary 

- 
For this thesis we carried out successfully x-ray absorption experiments at high pressure and 

liquid-nitrogen temperature for the first time. The two principal results are a lattice relaxation in SmSe 

and a power-law behaviour of the Sm valence of SmSe as a function of pressure. In this chapter we 

will first summarize these results. We will then briefly mention our first-principles calculations of 

EXAFS amplitude and phase shifts. Finally we will indicate some additional results. 

From a thorough analysis of the EXAFS of the Se K edge we obtained evidence of the 

existence of a split radial distribution function for the nearest-neighbour Sm atoms surrounding the 

Se atoms. This double-peak radial distribution function was not observed when we analyzed the Sm 

Llll edge EXAFS in SmSe or SmS. The split radial distribution function occurred at a pressure of 

52.0 kbar k 2.5 kbar, Fig. 9.1, with the peak separation being 0.09 A + 0.02 A. At this pressure the 

valence has the value 2.50 f 0.04, i.e. the average numbers of divalent and trivalent Sm ions are 

equal. Two different distances may also occur at other pressures but the associated pair distribution 

functions are not resolved. These facts suggest that lattice relaxation exists in the homogeneously 

mixed-valent compound SmSe. 

The EXAFS of the Sm Llll edge is limited to a maximum k-value of 12.5 A-1 due to the 

intervening Sm LII edge. This value of k,,, is too small to detect a distance difference of 0.09 A with 

its associated beat node at -18 A-l but it would be sufficient if the lattice relaxation had its maximum 

possible value of 0.17 A given by the difference of the ionic radii of divalent and trivalent Sm ions 

( 1  031. 

In previous EWIFS experiments on mixed-valence compounds only the rare earth Llll edge 

EXAFS was measured. Martin et al. [215] and Boyce et al. [216] investigated the SmxY1-,S system 

and Krill et al. (21 11 measured the Sm Llll edge EXAFS of the SmS1-,Ox system. In the first system 

the smaller yttrium atoms replace the larger samarium atoms thereby compressing the lattice. 

Similarly, in the SmS1-,Ox system the smaller oxygen atoms replace the bigger sulfur atoms. This 



way of chemically generating pressure has the disadvantage that foreign atoms are introduced into 

the crystal structure. This could result in properties that are not quite like those of SmS. It is therefore 

desirable to measure the EXAFS of SmS by applying pressure externally. This has been done by 

Krill et al. [214 and they find again that only one average nearest-neighbour distance is present in 

SmS. These negative results do not mean that there is no lattice relaxation in SmS but rather that it is 

too small to be detected from the Sm Llll edge EXAFS. Note also that for TmSe, which is mixed 

valent at ambient pressure, the results from the EXAFS of the Tm Llll edge do not show any lattice 

relaxation [218]. (The Se K edge EXAFS was not measured.) 

The present findings of lattice relaxation in SmSe are in contrast to results of a theory by Kohn 

et al. [219] who investigated SmS. They considered the breathing motion of the six nearest- 

neighbour sulfur atoms, which surround each Sm atom, when they respond to the changing size of 

the Sm atom as it undergoes valence fluctuations. Taking into account that for a given valence there 

is a balance between the energy of the conduction electrons, the elastic energy of the lattice, and 

the energy of hybridization of the Sm-4f and conduction electrons they find that the displacement of 

the S ions is small when the hybridization energy is large. With their choice of input parameters Kohn 

et al. conclude that the difference between the sm2+-s and sm3+-s distances is less than 0.05 A. 

However, their result depends sensitively on the magnitude of the hybridization matrix element, 

which is difficult to obtain reliably, and the calculated separation could be larger. It is of interest to see 

what the theory of Kohn et al. I2191 would predict if it were applied to SmSe instead of SmS. 

On the other hand, our result lends support to a theory by Baba and Kuroda [220] and Kuroda 

and Bennemann (2211 who claim that relaxation always occurs, leading to two dynamically distorted 

positions of the anions. The amount of distortion depends strongly on the ratio of phonon 

frequencies to valence-fluctuation frequencies. 

The present high-pressure experiments on SmSe had the advantage that the Se K edge 

EXAFS could be measured to much higher photon energies than the EXAFS of the Sm Llll edge. 

This meant that higher resolution could be obtained. In addition, we performed the experiments at 

liquid-nitrogen temperature. Thereby the thermal contribution to the EXAFS Debye-Waller factor 

due to dynamical motion of the lattice was reduced and the effect of the breathing motion became 

more evident. At 77K this breathing motion of Se atoms surrounding a pulsating Sm atom gives rise 



to a peak in the pressure dependence of the mean-square relative displacement of the Sm-Se atom 

pairs when the data analysis assumes a single nearest-neighbour coordination shell. In SmSe this 

peak is seen either in the EXAFS of the Se K edge (Figs. 7.21, 7.22, 7.25, 7.28, 7.29, 7.31) or the 

Sm Llll edge (Fig. 7.37). In Chapter 9 we found that the maximum of a2, as obtained from the Se K 

edge EXAFS, led to a split radial distribution function of the surrounding Sm atoms at 52 kbar when 

we replaced the nearest-neighbour Sm coordination shell by two closely spaced Sm coordination 

shells. The peak in a*, obtained from one-shell fits, is also seen at liquid-nitrogen temperature for the 

second-nearest neighbour Se-Se atom pairs (Fig. 7.24). 

One-shell fits to the data at room temperature do not yield a peak in a2, at most perhaps a weak 

shoulder (see Fig. 7.18, obtained from the Se K edge in SmSe, Fig. 7.34, obtained from the Sm Llll 

edge in SmSe, and Fig. 8.4, obtained from the Sm Llll edge in SmS). The mean-square relative 

displacement a2 decreases with increasing pressure. - 

The near edge spectra were measured for the Sm Llll and Sm LII edges which exhibit a 

double-peak structure in the intermediate-valent state. From this structure the valence was obtained 

by fttting two single-peak lineshapes, corresponding to integer-valent states. Since the behaviour of 

a system near a phase transition is frequently described by power laws with the exponent being 

characteristic of the system we fitted the pressure dependence of the valence of SmSe to Eq. (7.4): 

for p 2  p, . 

The power-law behaviour of the valence as a function of pressure has not been observed before. 

The exponent a was found to have the value 0.43 k 0.05 and hence is close to the one found in 

the lsing model. There may be a similarrty of the mixed-valence problem to the king model because 

the Sm atoms can exist in one of two possible configurations: they can be either divalent or trivalent. 



The power law also showed that at liquid-nitrogen temperature the mixed-valence transition in 

SmSe is not yetfirst order but still continuous. It has been suggested that the transition would 

become first order at a low enough temperature [12, 131. 

Furthermore, the power law defines a cntical pressure p, at which the mixed-valence transition 

sets in. The value obtained for p, was 31.5 k 1 kbar . This result agrees remarkably well with the 

value of 32 kbar obtained from Raman experiments by Elmiger and WacMer [IS] as the pressure at 

which the 7 ~ 0  -+ 7 ~ 1  transition disappears. This transition vanishes because the 41 multiplet 

reaches the Fermi energy at p, and the 41 electrons are promoted into the conduction band. Our 

value of p, is in agreement with results from measurements of the resistivity as a function of 

pressure. Below the critical pressure the resisitivity decreases exponentially with increasing pressure 

as expected for a semiconductor. Above the criiical pressure the resistivity becomes metallic and the - 

decrease is much slower. From these measurements a cntical pressure of 30 kbar was obtainedl991. 

Finally, in a bandstructure calculation by Farberovich [ I  151 the onset of hybridization of the f band 

with the (Sd, 6s) conduction band is predicted to occur in SmSe at a lattice constant of 6.0 A. With 

6.2 A being the lattice parameter at ambient pressure this corresponds to a reduced volume of 

V/V, = 0.906 . Using the p-V relation for SmSe as measured by Jayaraman et al. [ I  10, 2071 at room 

temperature we arrive at a pressure of 31.9 kbar for the onset of hybridization. 

We can thus summarize that at approximately 32 kbar hybridization sets in, the 7 ~ o  -t 7 ~ 1  

transition disappears, the valence begins to increase, and SmSe becomes metallic. . 

and P t w G M t s  

The analysis of EXAFS data can proceed if there is a suitable reference material from which 

empirical amplitudes and phase shifts can be extracted. Normally the best reference material in a 

pressure-dependent study wouM be the material itself at atmospheric pressure. However, in our 

samples of SmSe and SmS there was always a small 3+ admixture at ambient pressure and a pure 

valence state for the extraction of amplitude and phase was not present. The small trivalent 

contribution may be due to the fact that the samples were not completely stoichiometric. It may also 

result from grinding the crystals to produce powdered samples. 



Moreover, the size of the effect that we were studying in this thesis was expected to be small 

and could have been obscured if the amplitudes and phase shifts were pressure or valence 

dependent. Thus in this work we calculated backscattering amplitudes and phase shlfts from first 

principles. These calculations, which are presented in detail in Chapter 3, were performed for the 

SmSe SQLLd in the muffin-tin approximation rather than for isolated Sm and Se atoms. The atomic 

potentials were not calculated self consistently but the effects of the potentials of the neighbouring 

atoms were included. Furthermore, the potentials inside the muffin tin spheres, which at first are 

defined with the zero of energy at the vacuum level, were shifted such that the averaged interstitial 

potential became zero [61]. In this way the potential inside the muffin-tin spheres corresponded to 

the electronic charge density contained within the spheres. Our calculations showed that there is a 

small pressure dependence of amplitudes and phase shifts. Up to 100 kbar, however, this 

dependence is small. We also found that amplitudes and phases depend only weakly upon the 

valence of Sm. - 

The near-edge analysis of SmSe and SmS also indicated that AE, which is the energy 

separation of the absorption line shapes of the 3+ and 2+ states of the Sm ions, decreases linearly 

with increasing valence. This linearrty has been observed before for other mixed-valence 

compounds [222] but has not been explained. We think that it may be due to a change in the 

screening by the conduction electrons. The Sm3+ ions are more screened by the conduction 

electrons than the sm2+ ions. As the valence increases, more conduction electrons become 

available for screening. This leads to a bigger rise of the L-level of the sm3+ ions than of the L-level 

of the sm2+ ions. As a result, AE becomes smaller. 

The one-shell fits to the Se K edge EXAFS yielded a maximum in the mean-square relative 

displacement. From 02, as a function of the nearest-neighbour Se-Sm distance, we can determine 

the Griineisen parameter y~ . At low pressure y~ is negative meaning that the solid becomes soft. 

This, in turn, indicates a phase transition. Note also that according to Eq. (C.8) of the Appendix a 

negative value of the Gruneisen parameter leads to a negative coefficient of thermal expansion. 



Because of the pronounced pressure dependence of the Sm valence, SmSe could be used 

as a pressure cakbrant in x-ray absorption experiments. A possible disadvantage of SmSe may be its 

relatively large absorption coefficient for x-rays. 

In order to determine the compression of a pressure calibrant like Cu (or perhaps SmSe) one 

may employ the scaling method described in Section 6.14 and discussed in Section 9.3. Without 

having to perform a complete EXAFS data analysis one can obtain the compression and then, as 

usual, determine the pressure from the known p-V relation of the calibrant. This scaling method is 

fast and could be used to approximate quickly the pressure of the calibrant in the course of the 

experiment. 



Appendix 
- 

Rydberg atomic units are obtained from SI units by the following substitutions: 

This means that the Bohr radius, ag = 0.5291772 A ,  is the unit of length. In SI units ag is given by: 

Making all three substitutions of (A.l) one obtains: 

The fine-structure constant is in SI units: 

Using Eq. (A.2) and the first two substitutions of (A.l) yields for the speed of light: 

For the Rydberg constant we obtain by substitution: 

2n 2 e2 5 
RY= ( h )  (&Lo) . 2 = 1 

Thus energy is measured in Rydbergs (1 Ry = 13.6057 eV). 

Sometimes Hartree atomic units are employed. They differ in that the first substitution of (A. 1) is 

e2/4m0 -$ 1 , instead of 2. As a result energy is measured in Hartrees (1 Hartree = 2 Ry). 

The number values were taken from Ref. 123. 



- 
In this section we investigate the range of Bragg angles for which a doublecrystal 

monochromator can operate. Outside the range given by the limiting angles Omin and Om,, part of 

the x-ray beam is lost and the output decreases. Fig. B.l illustrates the situation: 

Fig. B. 1 : Limiting rays for a doublecrystal monochromator. The x-rays are entering from the left. 

The central rays are directed towards the rotation axis, indicated by the circle. 

For simplicrty we assume that the monochromator is stationary and that a perfectly-collimated 

x-ray beam is incident at variable Bragg angles 0. The vertical width of the beam is equal to the pre- 

monochromator slit width s. We will consider only the case where the central ray intersects the 

rotation axis of the monochromator which in Fig. B. l  is at the origin. It is assumed that the two crystals 

are parallel and that each ray strikes each crystal once. Both crystals have length L, and they overlap 

by the amount h,. Without loss of generality we can assume that the overhang h, does not exceed 

6 2  . The projection of the vertical beam width onto the crystal surface is given by dsin0. In order 

that the full beam hits the first crystal it is necessary that this projection does not exceed the crystal 

dimensions. Since h, < L, - h, we have that s/(2.sin0) 5 h, . Thus we obtain the following 

restriction on the Bragg angle: 



The two crystals are separated by the distance d,. In Fig. B.l the two limiting rays determining the 

minimum and maximum Bragg angles, emin and em,, have been indicated. From the geometry we 

can establish the following relations: 

a) minimum Bragg angle: 

Multiplying through by sine, which is positive, yields: 

b) maximum Bragg angle: 

Multiplying by sin0 again gives: 

We see that all lengths scale with d,, the separation of the two crystals. For zero slit wldth we get 

immediately: 

cot 0 . - - b mml%o ds 
and h, 2.ds 

We see that the minimum Bragg angle is determined by d d s  and that Om,, is given by hdd, . 

When the slit width s is finite €Imin becomes bigger and €I,, becomes smaller. Since Eqs. (8 .2)  and 

(8.3) have the same form we can write for both of them: 



where we have written an equals sign instead of "2". Eq. (8.5) can be solved readily for 8: 

- 
C = A sin8 - B cos0 = a .  ~in(8  + p) a = ; tan p = - B/A (B.6) 

Making the corresponding substitutions we obtain: 

The parameters b, h,, and ds for the crystals used at beamline IV-1 at SSRL are: 

(B. 10) 

The pre-monochromator slit width s is typically 1 mm. 

In order to establish an equation of state the pressure is calculated from the Helmholtz free 

energy as p = - qUh$ IT . where the entropy is obtained from S = . Assuming 

0 

small oscillations one can wnte the internal energy in the harmonic approximation as 



where k is the wave vector and s labels the phonon branches. The first term, which is independent 

of temperature, is the internal energy at equilibrium at T = 0 and includes the zero-point energy. The 

second term is the thermal energy due to the lattice vibrations. Inserting Eq. (C.l) into the 

expression for the entropy and integrating by parts finally gives for the pressure and its temperature 

derivative [223]: 

- 

Here we have assumed that the v,(k), like U,, depend only on volume. The quantities fi, are the so 

called "mode gammas" defined by: 

The term following yks in Eq. (C.3) is the specific heat per unit volume for the mode ks: 

The Griineisen parameter y~ is now defined as: 

C C v s ( k )  -- -- 

Yks ' v 

Thus Eq. ((2.3) can be wntten as 



which, when combined with Eq. (5. loo), = BT P , yields the GRlneisen relation: 
V 

In the harmonic approximation the frequencies v,(k) will not depend on volume and thus the mode 

gammas &,, as well as y ~ ,  will be zero. According to Eq. (C.8) p will be zero as expected. A non- 

zero value of y~ therefore is an approximate way of taking modest anharmoniclty into account while 

at the same time retaining the harmonic approximation for the potential energy. This is referred to as 

the quasi-harmonic approximation. It is useful if the temperature is not too high. y~ introduces a 

volume dependence for the vibrational frequencies as a compromise for neglecting anharmonic 

terms. If y~ becomes actually temperature dependent then this means that there is strong 

anharmoniclty. 

One sees that y~ can be calculated either microscopically, Eq. (C.6), or macroscopically by 

using Eq. (C.8). In the Debye approximation all frequencies are proportional to the Debye frequency: 

Therefore all mode gammas are equal to y~ which is given by: 

(C. 10) 

c, is the sound velocrty and the other parameters are the same as in Eq. (5.102). From the 

dependence of VD on c, Slater 12241 established that in the Debye model the Grijneisen parameter 

can be calculated as: 

This formula has a drawback though because yG,slater does not vanish for a harmonic solid. This can 

be seen as follows: The bulk modulus can be written as [225]: 



(C. 12) 

113 2 For a harmonic sold we have P = 0 and U = K (v1I3 - Vo ) . [226], where K is a positive constant. 

This yields: 

Evaluating this expression for the case of no compression yields for yG Slater according to 

Eq. (C.ll): 

This deficiency was corrected by Dugdale and MacDonald (2261, who derived the following - 

expression for y ~ :  

(C. 13) 

I 
For V = V, , i.e. p = 0 , this expression is simply equal to yG Slater - - (Eq. (C.1 I)) . 

3 

Since it correctly reduces to zero for a harmonic solid, Eq. (C.13) should be employed rather 

than Eq. (C. 1 1). 

We will estimate the atomic background by smoothing the EXAFS spectrum until all the 

oscillations have disappeared. The procedure consists in the repeated application of the three-point 

smoothing formula [I 781 given in Section 6.3: 



It is assumed here that the data y, = y(ki) is given on a uniform grid of k-points extending from kl to 

kN. The differenoe of two successive k-points is labeled by 6k: 6k = ki+, - ki , i = 1, 2, ..., N - 1. 

We now want to estimate how the smoothing in k-space affects the result in R-space. We will 

deal with the problem of endeffects, which was mentioned in Section 6.3, by assuming that the 

endpoints are unchanged under smoothing. Actually, the endpoint values of the smoothed function 

are found by fitting but this would be too difficutt to take into account here. Since the endpoint 

values are fixed we simply have: 

The ~ ( k )  that is obtained after subtracting this background will have its endpoints tied to zero. 

The number of smoothing passes will be labeled by s and the ith data point after s passes will 

be denoted by ds) . Since the first and last points are fixed we can write: 

and 

To calculate the effects in R-space we compute the Fourier series: 

Here we have employed the following definitions: 

rr.n R, = 
Ak 

and 

The coefficients A, and 6, are determined by the well-known relations 

Ak 

A,, = Jy(k) cos2kRn dk ; n = 0,1, 2, ... 
0 



which are mentioned here for completeness. They are not needed to determine the change of A, 

and Bn after a smoothing pass. 

We now calculate the resulting Fourier series after one smoothing pass. In k-space we have 

after one pass: 

We can expand each of the three terms appearing on the right-hand side of this equation in a Fourier 

series according to Eq. (0.4). For ybl we obtain for example: 

- ' + ( Ancos2(ki-6k)~, + Bnsin2(ki-6k)~,) ; kkl = ki - W . 
Y i i l  = 2 

n= 1 

Inserting this and the analogous relations for the other two terms into Eq. (D.6) yields: 

After some algebra this formula is brought into the form: 



where 

- 
A!) = A, cos ) R ~ k  ; n = 0 . 1 . 2 . .  

8:' = B, sin ' ( n  R 6k ) ; n = 1 . 2  , . . .  . 

Eq. (D.8) constitutes the Fourier series of y(k) after one smoothing pass. After s passes the Fourier 

coefficients will be: 

One can now calculate the change p, of each frequency component R, as follows: 

(D. 10) 

6k appears here because the effect of the smoothing depends on the density of the data points in 

k-space. The first zero of p, occurs at F$, = d(26k) . This is the Nyquist condition. There is no further 

information beyond Rn 

From Eq. (D.lO) we can calculate the required number of passes s for a desired reduction p, at 

distance R,: 

If it is required. for example, that p, be 0.1 at Rn = 1  A and if 6k = 0.15 A . then the number of passes 

hastobe s =  102. 



If we assume that R is a continuous variable then we can omit the subscript n in Eqs. (D.lO) and 

(D. 1 1). Since in practical cases R.Sk 5 0.3 we can approximate Eq. (D. 1 1 ) as: 

We see that In s versus In (R&) is linear. 

In practice the number of smoothing passes is determined by trials. Eq. (D. 12) is useful 

nevertheless because it allows one to estimate the effect of the k-space smoothing in R-space. 

E 
. . 

es F l t t~ r -~  of FXAFS S D ~  
- 

In this appendix we present a brief introduction to some features of an interactive least-squares 

fitting program that has been written to fit EXAFS data in k- or R-space [187]. 

The program introduced here fits EXAFS data in k-space to the expression (6.55). In R-space 

the program fits the Fourier transform of the data to the Fourier transform of the model. The Fourier 

transform of the latter is calculated numericalty rather than analytically so that artifacts are equally 

present in both Fourier transforms. Reference amplitudes and reference total phases can be read in 

irrespective of their particular k-space grid. Up to nine coordination shells can be fitted which is much 

more than normally needed but may be useful when creating model spectra. The fit parameters are 

as follows (6.55): 

There are two parameters that apply to all shells: The pre-monochromator slit width s (Chapter 5 )  

and the mean-free path constant q (Chapter 2). Each shell is characterized by seven parameters: 

The phase offset a,, the adjustment AE, for the inner potential, the radius R, of the coordination shell. 

the third- and fourth-order cumulants C3, and C4,, the mean-square relative displacement a?, and 

the coordination number N i  Nine shells correspond to a total of 65 parameters. 20 of which can be 

varied. 



Least-squares frtting of EXAFS spectra frequently involves many parameters. It is therefore 

desirable to rest& this number to a minimum. This is achieved by taking any existing physical 

constraints on the parameters into account. Such constraints are, for example, a fixed ratio of 

coordination numbers known from the crystal structure or the same values of A E  for coordination 

shells consisting of like atoms. The fitting routine provides for the following constraints: 

Fixing the difference of phase offset, AE, R, 02, or N for any two shells 

Fixing the ratio of R, 02, or N for any two shells. 

These constraints eliminate superfluous fit parameters. Nevertheless the number of 

parameters can remain quite large, say, eight or so. In order to obtain information about as to whether 

these parameters are meaningful one has to investigate their mutual correlation and estimate their - 

errors. The correlation coefficients are obtained from Eq. (6.62) and provide information about which 

parameters interact with each other. The error estimates for each fit parameter are obtained by 

scanning the parameter in question, as explained in Chapter 6. The program does this automatically. 

In order to be versatile the program offers several built-in window functions: rectangle, Gaussian 

Of arbitrary percentage, Hamming, and Hanning window of arbitrary percentage and also with a 

Central plateau region of arbitrary width specified. For k-space fits Fourier filtering is possible. 

Furthermore the interval over which Fourier transforms are taken can be set and a weighting function 

which is equal to the inverse of the envelope of the k- or R-space data can be applied. Furthermore 

limits can be specified for each parameter. A useful feature is the option to draw the EXAFS due to 

separate coordination shells or due to partial sums of coordination shells. This can be done in k- and 

in R-space. It is also possible to monitor selected parameters in the course of a fit. All parameters 

specifying a fit are written into a parameter file so that the program can easily be restarted without 

having to type them in again. This can also serve for archiving. There are several output files that the 

program generates. Everything that happened during a frtting session is written into a temporary file 

called -LOG. The output is written into the file -OUT. These files exist always. Amplitude and phase 

of the data (if one-shell fit) or the model (if rnultishell fit) can be extracted and wntten into the files 

-AMP and -PHASE. The model itself can be written into a file called -MODEL and Fourier-filtered 

data can be written into the file -DATAF. The Fourier transform of the data including the magnitude 

of the transform can be written into -DATAR. 



F for V- . . 

- 
In order to derive a formula for the valence we write down the values of the fitting function at the 

positions E2+ and E3+ of the two lines. Using Eqs. (6.79) and (6.80) we get [17]: 

1 Y(E~') = (1 -v)  (Y,, - 1) K . 

1 e - ( g - ~ ~ ~ ) ~ / 2 G d ~  + 1 - Y + V  Ym,-, 1 (E-E2+)2 + r2 

The integrals appearing in the two equations are equivalent. Eliminating them, rather than Ymax as in 

Ref. 17, yields after some algebra the following formula for the fractional part v of the valence v: 

v 2 + v , except for Ce compounds where v = 3 + v . F.3)  

Unlike Y(E*+) and Y(E~+), the peak height Y,, of an individual line profile cannot be read from the 

measured spectrum. Usually, however, Ymax z 2 . In this case we get for v: 

In principle it is possible to introduce another function value of the normalized spectrum, like, for 

example, ~((€2++€3+)/2), in order to eliminate Ymax. This will not be pursued here. 



Application of Eq. (F.3) is not limited to estimate rapidly the valence from an absorption edge of 

a mixed-valent compound. It can also be used to analyze the error of the determined valence v. 

In this derivation the effects due to the finite resolution of the monochromator have been 

ignored because even at the highest L edge of a mixed-valent material, that is E:: = 9976 eV . the 

broadening due to resolution is small (2.74 eV for a 1 mm slit and Si (1 11) crystals). 
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