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ABSTRACT 

Photoresists and photomasks are two of the most critical materials in microfabrication 

and micromachining industries. As the shift towards shorter wavelength exposure continues, 

conventional organic photoresists and chromelquartz photomasks start to encounter problems. 

This thesis investigates and presents an alternative to organic photoresists and chromium 

photomasks which overcomes their intrinsic problems. A bimetallic thin film, such as BilIn and 

SnIIn, creates an inorganic thermal resist with many interesting properties. Both experiments and 

simulations demonstrate that this class of thermal resists can be converted by laser exposure with 

wavelengths from 213 nm to 830 nm, showing wavelength invariance. Simulations of the 

projected wavelength response show that BiIIn thermal resist works down to the 1 nm X-ray 

range. Exposed bimetallic thermal resists can be developed in two different acid solutions with 

excellent selectivity. A standard etch (RCA2) can strip the unexposed bimetallic film when 

photoresist rework is needed. Exposed bimetallic films are resistant to Si anisotropic wet etching 

and fluorine, O2 and chlorine plasma etching. The Bi/In thermal resist is the first reported resist 

that works for both wet chemical anisotropic Si etching and dry plasma etching. All these features 

make the bimetallic film a complete thermal resist. Another very important property of bimetallic 

thin films is the largest change in the optical absorption ever reported in the literature (3.0 OD 

before exposure and 0.22 OD after exposure, 365 nm), with the exposed areas becoming nearly 

transparent. The transmission of the exposed films depends on the laser writing power. Thus, 

BilIn resist and its class can be utilized as a direct-write photomask material for both binary and 

grayscale photomasks. Binary photomasks and grayscale photomasks were successfully created. 

2D and 3D structures were successfully generated in Shipley organic photoresists using a 

mercury lamp mask aligner with exposure conditions identical to those for conventional chrome 

masks. Material analyses show that the transformation after laser exposure of bimetallic thermal 

resists is an oxidation process. Laser-converted BilIn and S n h  oxides have a structure similar to 

that of indium tin oxide films. 

... 
1 1 1  
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Chapter 1 
Introduction 

1.1 General 

This thesis presents a novel class of inorganic, bimetallic, thin-film, thermal resists, 

including BiIIn and SdIn, as alternatives to conventional organic photoresists and photomask 

materials for micromachining and microfabrication. 

BiIIn is the first reported inorganic, thermal resist that can be exposed by laserllight 

sources with a wide range of wavelengths, that can be developed by acid solutions, and that can 

act as both a wet chemical, anisotropic, Si etch masking layer, and a dry CF4/CHF3 plasma Si and 

Si02 etch masking layer. Simulations of Airy Summation optical modelling and experimental 

results showed that this resist can operate from X-ray (1 nm) to infrared (IR 830 nm) 

wavelengths. Thermal modelling and experimental results indicate that a 15115 nm Bi/In bilayer 

has a sensitivity of 7mJlcm2 with 4 ns pulses at the Nd:YAG (Neodymium-doped Yttrium 

Aluminium Garnet) 266nm wavelength, the same sensitivity as current organic photoresists. 

An extremely large optical absorption change was also observed in SdIn and BiIIn 

bilayer films, with the exposed areas becoming nearly transparent over the 900 nm to 365 nm 

wavelength range. This suggests that SdIn, BiIIn and others of this type can be used as a direct- 

write photomask material. Tests showed that SdIn and BiIIn are two excellent direct-write 

materials in terms of optical absorption change: from 3 OD (optical density, refer to Section 

1.2.2.1 for OD - transmission rate conversion equation) before laser exposure to 0.22 OD after 

laser exposure [1,2]. Some other unique features have also been explored. 



This chapter introduces the issues that current lithography has with organic photoresists 

and photomasks, and the reason why BiIIn and its class are promising alternatives. Subsequent 

chapters will discuss these subjects in detail. 

1.2 Background 

The revenue of the global semiconductor industry (microfabrication) reached US$140.7 

billion for 2002, making it one of the largest manufacturing industries in the world. Its revenue 

has increased by - 20% per annum for two decades [3]. The cost of materials used in chip 

fabrication is high. The 2002 global semiconductor materials market reached US$23 billion 

according to Semiconductor Equipment and Materials International (SEMI) [4]. The value of 

fabrication (wafer fab) materials is US$14 billion. Among them, microlithography formed 30% of 

the total materials expenses: photoresists cost US$1.5 billion and photomasks US$2.7 billion. An 

upward trend is also seen in the MEMS (Microelectro-Mechanical System, or micromachining) 

industry, where worldwide MEMS revenue is forecast to grow from $3.9 billion in 2001 to $9.6 

billion in 2006 [5]. 

1.2.1 Microlithography 

Microlithography, also called photolithography or just photo by engineers in wafer fabs, 

is a critical process which transfers integrated circuit or micro-mechanical patterns onto wafers 

for micromachining and microfabrication. Conventional microlithography includes three 

important parts: a) photomasks which have the patterns for various circuit or mechanical levels; 

b) photoresists that are sensitive to a certain kind of radiation, such as laser, X-ray, electron, ion, 

etc., that can faithfully replicate the photomask patterns and act as etching masks in subsequent 



Device layer 

C Silicon wafer 
(a) Si wafer with devices made from previous processes. 

Spun-on photoresist 

(b) Photoresist is spin-coated on the wafer. 

Laser Exposure 

Photomask with Chromium patterns 

(c) Photoresist is exposed with UV illumination through 
the photomask. 

/Smallest Feature 

(d) Chemical properties of resist change in exposed area. 

(e) For a negative photoresist, exposed areas are retained 
after development. The pattern is transferred to the 
resist. The arrows show the smallest feature patterned. 

(f) Dry or wet etch transfers the pattern from resist to the 
device layer underneath. 

(g) The last step is photoresist removal where the photo- 
resist remain is chemically or plasma-etched. 

~ - 

Figure 1.1 Microlithographic and etching processes of negative photoresists for micromachining 
and microfabrication. 
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etching processes; and c) exposure tools, such as steppers and mask aligners. This thesis 

investigates and proposes an alternative to the first two parts. Microlithography is the key 

technology in micromachining and microfabrication, because it is repeated in a process sequence 

that depends on the IC and MEMS designs. It determines the device dimensions, the production 

yield and the manufacturing cost. 

Figure 1.1 shows the typical microlithographic and etching techniques that are currently 

used during micromachining and microfabrication manufacturing. The silicon wafer, with devices 

made from previous processes, is prepared for photoresist coating, as shown in Figure 1.1 (a). In 

order to enhance the adhesion of the photoresist to the layer underneath, special precursor 

chemicals (priming agents such as HMDS: hexamethyldisilazane) are often dispensed onto the 

wafer before photoresist coating. Liquid organic photoresist is applied to the wafer, and spun off 

to form a thin layer, typically 0.7 pm to 1 pm thick depending on the process integration 

requirements, as shown in Figure 1.1 (b). The resist is soft-baked at 80 - 110 OC for 1 - 20 

minutes to remove the resist solvent and relax stress [6]. The photoresist layer is then patterned 

with an image illuminated by a UV light (Hg vapour or Excimer laser) through a photomask 

(Figure 1.1 (c)). Chromium-on-fused silica has been the choice of photomask material for the 

industry for many years. The exposure systems that are commonly used in the industry are 

steppers, which project the pattern images on the photomasks to the wafer with a 4 to lox 

reduction. After exposure, a photolysis process causes a change in the chemical properties of the 

exposed area (Figure 1.1 (d)). It is chemically different enough that the exposed and unexposed 

areas of the resist have different dissolution rates in aqueous, alkaline-base developers. For a 

negative photoresist, the unexposed area dissolves quickly in the developer, and the exposed area 

is insoluble (shown in Figure 1.1 (e)). Figure 1.1 (a) to (e) illustrate the basic microlithography 

process steps employed in the industry. 



After the patterns have been transferred from the photomasks to the photoresists on the 

wafer, dry (plasma) or wet chemical etching is carried out to transfer the patterns into the device 

layer underneath. As shown in Figure 1.1 (f), the area covered by the photoresist is protected 

from being etched away because the photoresist is resistant to the etching chemicals or plasma 

(hence the generic name "resists"), while the "open" area not covered by the resist is etched away 

by the chemicals or plasma. The whole microlithography 1 etching cycle ends with the stripping 

of the photoresist, as shown in Figure 1.1 (g). Dry O2 plasma ashing or wet solvent stripping is 

usually used to remove the resist residue. To make a typical 64 MB DRAM chip, the 

microlithographic and etching process cycle is repeated 20 to 30 times. 

The smallest feature (also called geometry size, technology node or critical dimension - 

CD, as shown in Figure 1.1 (e)) that can be patterned by the microlithographic process determines 

the device density, speed and power consumption of a chip. As the need for high-speed, low- 

power and high-density ULSI (Ultra-large Scale Integrated) devices from multimedia, 

communication and computer systems grows, the feature size keeps shrinking. Current 

technology (Year 2003 - 2004) has reached a 0.09 pm geometry size using an ArF excimer, 193 

nm laser exposure source [7,8]. The geometry size is controlled by many factors in the 

microlithographic process. Among them, laser sources and photoresists play major roles. 

The minimum Line Width (LW) of a feature printed in a photoresist by a projection 

system is given by the famous Rayleigh equation: 

where kl is a constant related to the mask and resist process, h is the laser source wavelength, and 

NA is the numerical aperture of the optical system [9]. As one can see from Equation (1.1), in 

addition to increasing the NA value, using a shorter-wavelength laser source and improving 



photoresist performance can reduce the feature size. Looking for advanced photoresists for 

shorter wavelengths is always a grand challenge to the semiconductor industry [lo]. 

Although organic photoresists and chromium / quartz photomasks have been the 

workhorses for micromachining and microfabrication for decades, more and more problems are 

appearing as the lithography technology moves from 248 nm deep ultraviolet (DUV) to 193 nm 

and 157 nm extreme ultraviolet (EUV) nodes, and in future, to 13.4 nm soft X-ray wavelength. 

This will be discussed in the next sections. 

1.2.2 Issues with Organic Photoresists 

Organic photoresists consist of three components: resin, photoactive compound (PAC) 

and solvent [27]. For example, almost all of the positive photoresists for near-UV, g-line (435 

nm) and I-line (365 nm) lithography in the micromachining and microfabrication industries are 

DNQ (diazonaphthoquinone) 1 Novolac resists. Novolac is the resin and DNQ is the PAC. As 

shown in Figure 1.2, when DNQ is exposed to light, it produces an unstable intermediate, a 

ketene, through the Wolf rearrangement [28]. The ketene (indene shown here in Figure 1.2) 

immediately reacts with a water molecule in the resist matrix to form indenecarboxylic acid 

(ICA) [ l l ] .  The Novolac resin is soluble in the alkaline developer. However, DNQ prevents it 

from dissolving. This inhibition is removed after DNQ is exposed to light and converted into 

ICA, which is highly soluble in alkali developers. Due to the high solubility of ICA in alkali, the 

fully exposed resist dissolves even faster than the unexposed resin. 
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Figure 1.2 Photochemical reaction of organic photoresists: the DNQ / Novolac group [ll]. 

Generally, organic photoresists should have the following four technical features. (1) 

High transparency: to obtain a high-resolution resist pattern with a steep profile; one has to use a 

resist film that is nearly transparent to the illumination light source. (2) High sensitivity: resists 

with high sensitivity are desirable due to the power limit of laser sources and the production 

throughput requirement. (3) High dry-etching resistance: this is essential in order to transfer the 

photoresist patterns to the substrates. And (4) Aqueous developable: Aqueous-developers are safe 

and easy to handle [ 1 11. 

With some modifications of the composition, the DNQ/Novolac resist has been improved 

significantly in its resolution capability and has met the requirements of g-line and I-line exposure 

applications. However, with the trend towards shorter wavelengths ( D W  248 nm), as shown in 

the wavelength spectrum in Figure 1.3, DNQ/Novolac resist encounters a problem: the polymer 

transparency decreases sharply at shorter wavelengths. The transmission rate of DNQ/Novolac 

resist drops to around 10% at 248 nm [ l l ] .  As shown in Figure 1.4, when the transparency of the 

resist is low, the exposure dose at the top of the film is higher than that at the bottom. The resist 

profiles after development no longer have steep sidewalls. They are narrower at the top for 

positive resists and wider at the top for negative resists. This will no doubt cause problems for 

line width control on the substrate. To solve this problem, a new generation of photoresists was 

developed. Research shows that polymethylmethacrylate (PMMA), polydimethylglutarimide 



(PMGI) and polyhydroxystyrene (PHs) have over 30% transmissivity at 248 nm wavelength and 

exhibit good resist profiles [ l l ] .  However, PHS and PMGI do not work for the 193 nm node as 

they have extremely low transmissivity at this wavelength. 
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1.3 The spectrum of electromagnetic field suitable for microlithography. 
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As the wavelength moves to next generation 157 and 13.4 nm nodes, one of the biggest 

challenges in microlithography is the photoresist. Because many organic compounds are opaque 
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Figure 1.4 The influence of the transparency of a resist film on the resist profile after 
development. 



at 157 nm, designing transparent photoresists at this wavelength has become a difficult task. It is 

reported that the incorporation of fluorine in polymers is very effective at reducing the optical 

absorbance at 157 nm [29]. The organo-silicon related "Top Surface Imaging" process, which 

converts the top silicon-containing organic layer into silicon dioxide, which in turn has its pattern 

transferred to a thicker protective layer underneath, uses a top layer with an entirely different 

chemistry [30]. Although a large number of researchers are working on developing new resists 

and great progress has been made, recent tests carried out at Intel shows that there is still a lot of 

work that needs to be done before a 157 nm photoresist can be used in manufacturing [31]. 

Conventional organic photoresists only cater to a limited number of etching processes. 

They work well with dry plasma etches using different chemistries, but they cannot withstand the 

heated silicon anisotropic wet chemical etchants, such as KOH, TMAH and EDP, which are 

classic etchants for bulk silicon micromachining. Masking layers such as Si02 or Si3N4 must be 

deposited on top of the silicon wafer for such etching processes. Literature indicates that no photo 

or thermal resists withstand heated KOH, TMAH and EDP; and no resists work for both dry 

plasma etching and wet chemical silicon anisotropic etching. 

Organic photoresists are also sources of organic contaminants in wafer processing. Fab 

experiences show that photoresist residues can cause furnace contamination, and particle issues. 

Hence, thorough wet cleans, including acid baths, solvent cleaning and long DI water rinse, are 

needed before subsequent process steps. Since they are all in liquid form, and are applied to 

wafers by spin-coating, organic photoresists are not compatible with an all-dry manufacturing 

process. Fabrication facilities, such as a space fab, where the wafers are handled and processed 

completely in vacuum in order to maintain an even cleaner microfabrication environment, have 

been proposed by Professor Glenn Chapman at Simon Fraser University [32]. 

The exposed image on the photoresist, also called the latent image, is not visible before 

development. Thus, the CD (critical dimension) and overlay registration checks can only be done 
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after development. It would shorten lithographic process time if the image could be seen right 

after the exposure. Thus, photo rework could be done without development in the case where 

metrology inspection fails. 

So far, none of the photo or thermal resists in use are electrically conductive. This is not a 

serious issue. However, a resist with fair conductivity may open doors to some new applications, 

such as using the resist as a seed layer for electroplating. 

In summary, organic photoresists are facing three major issues. Firstly, they are 

wavelength sensitive, that is, one type of photoresist works only for a light source of one specific 

wavelength. A brand new series of resists needs to be developed for each new generation, shorter 

wavelength light source. This is always costly and time-consuming. Inadequacies in resist 

performance and supply have already led to a slowdown in the pace of advances in lithography 

[33]. Secondly, no organic photoresist can withstand both dry plasma etching and wet alkaline- 

based silicon anisotropic etching. Thirdly, organic photoresists are sources of wafer 

contamination; hence extensive cleaning is needed before the next process step. Finally, they are 

incompatible with an all-dry process, a promising future microfabrication environment [32]. With 

such intrinsic issues in organic resists, it is worth investigating an alternative approach: an 

inorganic thermal resist which is activated by optically-driven, thermal processes. 

1.2.3 Alternative to Organic Resists: Inorganic Resists 

In order to avoid these organic resist problems, people have looked into inorganic resists 

as alternatives. There have been studies and reports in the literature for decades. The main 

advantages of inorganic resists are listed in Table 1.1. However, these are not the only ones. This 

thesis will, in coming sections, present some new features unique to inorganic resists. According 



to the activation mechanism, inorganic resists can be generally categorized into two groups: 

inorganic photo resists and inorganic thermal resists. 

Table 1.1 Comparison between inorganic resists and organic resists. 

I Fire / Toxicity I No, fireproof and non-toxic I Yes, solvent is used I 

Inorganic resists 

Deposition process 

Baking 

I Thickness of resist I Thin layer used in process (< 200 nm) -0.2 pm-  1 . c l  

Organic resists 

Dry (CVD, Sputter, Evaporation in vacuum) 

Not needed 

I Source of contamination I To be evaluated (Chapter LO) I 

Wet (spin-coating) 

Pre- and post-baking needed 

Shelf life of exposed / 
unexposed material 

1.2.3.1 Inorganic Photo Resists 

Months, even years (BiJIn, Sn/In) 

Just like silver iodide (AgI) in films for black and white photography, there are many 

inorganic resists that are photosensitive. The most widely used among them are chalcogenides, 

such as GeSe, and As2S3. The imaging abilities of chalcogenide layers and chalcogenide-metal 

structures were first reported in two primary publications [34,35] in the mid-1960's. Both effects 

result in substantial changes in the chalcogenide layer solubility, which make the production of 

relief images possible. Numerous publications and patents that followed have shown ways for 

their practical application in microlithography for micromachining and microfabrication [36-411. 

With the addition of silver, Ag-chalcogenide inorganic resists, such as Ag2Te/As2S3, and 

Ag2Se/GeSe2, can have very high exposure sensitivity: 3 - 10 d l c m 2  at 248 nm [38]. 

Conventional organic resists at 248 nm require 10 - 50 d l c m 2  [33]. However, it is well-known 

that Ag is poisonous to silicon devices, as it creates traps and kills carrier lifetime. Thus, it is 

suitable for micromachining and data storage [42], but not for microfabrication applications [43]. 



1.2.3.2 Inorganic Thermal Resists 

Instead of being photochemically sensitive to light, inorganic thermal resists are activated 

by heat from a light, electrons (e-beam), ions (ion-beam) or X-ray that is absorbed by the resist 

films. Since the conversion process requires simply a temperature change, thermal resists are 

more wavelength invariant than organic or inorganic photoresists. 

One of the first proposed inorganic thermal resist was an amorphous, iron oxide film 

deposited by chemical vapour deposition (CVD) [44]. When irradiated, the film crystallized if the 

temperature exceeded 820•‹C. The area where the temperature was less than 820•‹C remained 

amorphous. The unexposed amorphous area of the iron oxide film dissolved in acid solutions 

much faster than the crystallized area. Thus, this thermal resist could be developed as 

conventional organic photoresists. However, the high conversion temperature of the iron oxide 

film required over 100 ~ l c m ~  of energy, much higher than conventional organic photoresists 10 - 

50 mJlcm2, thus making it impractical for microfabrication and micromachining applications. 

Bozler reported another metal-oxide, thermal resist: AVO [45,46]. The AVO thermal 

resist is prepared with vacuum evaporation methods, such as evaporation of A1 in an O2 

atmosphere. The as-deposited film is a mixture of metallic A1 and oxide Alz03, about 30 nm 

thick. It is shiny, smooth and electrically conductive. When exposed to a single 20 ns W laser 

pulse with 40-100 mJlcm2 energy, the exposed area absorbs a portion of the laser energy and 

heats the film above a threshold temperature, where the film transforms from an electrically 

conducting metallic phase to an electrically insulating "black" phase. The converted regions are 

much more insoluble in phosphoric acid I H20  etchants than the unexposed area. Thus, the 

exposed film can be developed in such acid solutions, and then used as a masking layer for R E  

plasma etching in CHF3 chemistry. Although AVO thermal resist was claimed to be more 

sensitive than the iron oxide film, it still requires about 100 rnJlcm2 for film conversion, several 

times higher than conventional organic photoresists. This is obviously due to the high melting 
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point of Al, which is 660•‹C. It is also noted that the high reflectance of the as-deposited film 

makes the film less absorbing. The film also has high thermal conductivity (237 W/mK), which is 

3 times that of indium and 30 times that of bismuth. The conversion temperature can still be close 

to 800•‹C [45]. 

Despite all these shortcomings, FeIO and AVO thermal resists, based on an oxidation 

mechanism, gave us three very clear guidelines for choosing a more sensitive inorganic metallic 

thermal resist system. First, the metal or metals in the thermal resist system should have as low a 

melting I reaction temperature as possible. Compared to Al, Fe has too high a melting point 

(1535•‹C). That is the reason why Fe/O has much lower sensitivity than AVO, although Fe has a 

much lower thermal conductivity (73W/mK), giving it less heat dissipation. To obtain an even 

lower melting point, we can choose a binary metal system with a local minimum eutectic point. 

Second, the material system should have a low thermal conductivity, which causes less heat loss 

during the irradiation process. Finally, the single or bilayer metallic film should be highly 

absorbing. 

Gelbart has proposed a microlithography process called TREOL: the Thermal Resist 

Enhanced Optical Lithography process which utilizes the threshold property of thermal resists to 

reduce the minimum geometry of a microlithographic system [47,56]. The TREOL process 

proposes that multiple sub-field masks should be used, each of which exposes only small sections 

of the total mask so that diffracted light from neighbouring features does not interfere. No 

resolution improvement should be observed in photoresists using the TREOL method, as organic 

photoresists are reciprocal: the exposure results are the same whether the exposure was carried 

out in many steps or in one single step, with the same total dosage. The diffraction effect in the 

area between neighbouring features will affect the image resolution. However, thermal resists are 

non-reciprocal or partially non-reciprocal. When a small section is exposed, the resist is heated up 

by the laser and converts in the area where the temperature exceeds the conversion threshold. The 



resist in the diffraction region whose light intensity is lower does not convert, and the heat 

dissipates away. When the neighbouring section is then exposed, the same diffraction area will 

not convert either, due to the lower exposure intensity. No heat can be accumulated in the 

diffraction region due to the heat dissipation. Thus, geometry enhancement can be achieved with 

the TREOL process by using current exposure systems with slight modification and a thermal 

resist. 

1.2.4 Photomasks 

Photomasks are integral components in the lithographic process of semiconductor and 

MEMS manufacturing. Conventional photomasks are made of high-purity quartz or glass plates 

containing precision images of integrated circuits or MEMS parts. They are used as masters to 

optically transfer these images onto substrates coated with photoresists. IC chips and MEMS 

devices are manufactured layer by layer, and each layer requires a unique photomask. The current 

generation of semiconductor devices has 25 or more layers; thus a chip needs 25 or more masks. 

According to the type of image transferred to the substrate, photomasks can be categorized into 

two groups: binary and grayscale photomasks. The image transferred from a binary mask to the 

substrate is a 2-dimensional (2D) structure, while the image from a grayscale mask is 3- 

dimensional (3D). 

1.2.4.1 Binary Photomasks 

Binary photomasks consist of two types of image regions: opaque and nearly completely 

transparent areas. Both the opaque and the transparent areas have spatially constant transmission 

so that the light intensity does not change after shining through them: light is either completely 

blocked or transmitted. Binary photomasks are normally used to expose substrates which are in 



focus. This kind of photomask has been and will still be widely used in micromachining and 

microfabrication, and the importance of photomasks in both industries is growing. For example, 

binary photomasks have been widely used together with mask aligners for the past four decades 

to produce features larger than 1 pm on substrates. Steppers typically reduce the mask image by 

10 or 5x, thus mask feature sizes are 5x larger than those on the wafers. As exposure wavelength 

has been reduced: from I-line (365 nm) to deep-W KrF-excimer laser (248 nm), ArF-excimer 

laser (193 nm) and F2 laser (157 nm); mask magnification has been reduced from 5x to 4x to 

cope with increasing chip size. Six-inch-square, 0.25-inch-thick quartz plates are commonly used 

in steppers for both I-line and KrF exposure. The use of nine-inch-square plates has also been 

considered for future scanner applications [10,11]. 

While photomasks used for micromachining and microfabrication industries are less than 

ten-inch-square plates, a large area binary photomask has been attracting attention recently. That 

is the photomask for liquid crystal display (LCD) patterning. LCDs play a crucial role in our daily 

lives as the interface between people and digital technology. High resolution, various sizes of 

LCDs have been widely used as cell phone panels, laptop and desktop screens, camera monitors, 

and even large TV displays. Manufacturing of LCD displays requires large size photomasks. 

Currently, companies like SK-Electronics are developing photomasks with less than 1 pm 

resolution on 2 metre square masks [12]. 

A mask blank consists of an opaque film on a substrate. Quartz is usually used as a 

substrate material due to its high transmission at wavelengths shorter than W (Newport Crystal 

~ u a r t z @  has 85% transmission at 175 nm wavelength [13]), its low thermal expansion coefficient 

(0.52 x ~ o ' ~ / K ) ,  and its chemical stability. The opaque film should have an optical density OD > 3 

(less than 0.1% transmission). Equation 1.2 shows the formula to calculate optical density from 

transmission: 



where T is the transmission of the material. An optical density larger than 3 means that the 

transmittance of the light must be less than 0.1%. The opaque film should also have the 

following properties [ l  11: 

High chemical stability, 

High durability against irradiation, 

Strong adhesion to the substrate, 

Moderate electrical conductivity, and 

Ease of preparation and patterning. 

Of all the materials with these properties, chromium and its compounds are those most 

widely used [ l  1,14,15,16]. Pure Cr has high reflectance on both the film side and the glass side of 

a photomask, which causes trouble due to stray light. To solve the problem an anti-reflection 

coating (such as CrO,N,) is used on one side or both sides of the Cr film, as shown in Figure 1.5. 

Cr 80 nm 

Quartz ? 
Figure 1.5 Structure of binary-intensity photomasks. (a) single-layer, (b) bi-layer, and (c) tri-layer. 

The manufacturing process of conventional photomasks is similar to that of the 

microlithography and etching of silicon wafers shown in Figure 1.1, which involves many of the 

same steps such as resist coating, resist patterning, development, etching, etc. Figure 1.6 shows a 

typical process flow for the preparation of a photomask [ l l ] .  The details of the main steps which 

are different from those for wafer processing are described as follows. 



Mask Blank w 
Raster EB writer Q 1 OKV 
Vector EB writer Q 20KV or 50KV 
Laser writer Q 363.8 nm 

Post-exp Bake k--- 
1 Development 

Wet or dry process 

Resist stripping 

Cleaning 

Measurement of Cr pattern width, position 

1 Inspection and Repair 1 

Figure 1.6 Process flow chart of mask manufacturing. 

Resist coating: Photo resist with a target thickness of 300 - 500 nm is spun on the blanks 

with an accuracy of 3 - 5 nm, except within 5 mrn of the edges [ I l l .  

Resist patterning: Patterning is done with a raster or vector scan beam exposure system 

that converts a CAD design file into the structures for that layer. Electron beam (EB) writers are 

mainly used in production. However, laser writers have also taken up an important role both 

historically and recently. As the device geometry gets smaller, the EB diameter must shrink, 

lowering the throughput of the system. For example, one study has shown that, to make a 4 Mb 

DRAM mask (0.7pm technology), a 0.5 pm beam diameter is needed and the throughput is 1.3 

masklhour; but for a 256 Mb DRAM mask (0.25 pm technology), a 0.05 pm beam diameter and 

the throughput drops to 0.0125 masWhour [ l l ] .  



Etching: Wet-etching is commonly used. An aqueous acid solution of ceric ammonium 

nitrate, (IVl&)2Ce(N03)6, and perchloric acid, HC10, is used as the etchant. However, the use of 

dry etching has increased [ l l ] .  

CD-control, position accuracy, inspection and pelliclization: CD-control is to ensure 

the accuracy of the feature sizes in the pattern. Position accuracy, also called placement or 

registration accuracy, is the correctness of the pattern placement in a single mask and among a set 

of masks for a device. Mask inspection detects defects created during the mask making process. 

Each type of mask has a minimum intolerable defect size, flaws larger than which should either 

be removed or repaired. Pelliclization involves the mounting of a pellicle on the Cr film side of 

the mask to prevent foreign materials from adhering to it. All these post-patterning steps are to 

ensure the quality of the mask, which will influence the microlithographic process in production. 

In summary, the making of conventional Cr binary photomasks requires 5 - 9 process 

steps. The EB writing systems are expensive and will have lower throughput as design rules 

become smaller. 

1.2.4.2 Greyscale Photomasks 

Different from binary masks, grayscale photomasks generate spatially variable 

transmission with many transmission values (grayscales). Greyscale photomasks have attracted 

much attention recently for the application of making three dimensional micromachined 

mechanical, electrical and optical devices, using a modification of conventional IC manufacturing 

photolithography and reactive ion etching (RE). There are two main categories of grayscale 

photomasks: binary (or digital) grayscale masks, and analogue grayscale masks. 

Halftone grayscale masks are the typical digital grayscale masks, and are manufactured 

like typical binary Cr masks, and have been utilized by the industry for many years [17,18,19,20]. 

The masks use photographic emulsions or chrome as the light absorbing 1 blocking material, and 

18 



are made with conventional photomask making processes, which include chrome deposition, 

photolithography, etching of patterns and photoresist strip. As shown in Figure 1.7, a state-of-the- 

art halftone chrome mask consists of a mixture of 0.5 pm chrome square or round equal size spots 

which are totally opaque (light blocked by Cr film) and spots which are completely transparent 

(area not covered by Cr film) on the glass photomask substrate. The grayscale in a halftone 

chrome mask is determined by the ratio of the number of opaque spots to transparent spots within 

a grayscale resolution unit. For a grayscale chrome mask having 4 grayscale levels, a grayscale 

resolution unit must have 4 spots (or a square of 4 binary spots). When all 4 binary spots in a 

grayscale resolution unit are opaque, the grayscale resolution unit is totally opaque (0% 

transmission). When one spot is transparent, the transmission is 25% or (114). With the increase 

of the number of transparent spots, the transmittance increases linearly in steps of 25%. Thus, a 2- 

bit, 4 level grayscale photomask is obtained. It is noticed that the dimension of each unit increases 

as the grey level increases. For example, as shown in Figure 1.7, a 2-bit, 4 level grayscale 

resolution unit is 1 pm x 1 pm, a unit of 4-bit, 16 grayscale levels is 2 pm x 2 pm, and a unit of 

8-bit, 256 grayscale levels will be 4 pm x 4 pm. The exposed resist surface is placed at a certain 

defocused position, where the scattering and the diffraction of the spots can be ignored, and the 

dots merge to create an exposure intensity that replicates the corresponding grayscale image. 

A single greyscale unit fc 
a 4 level greyscale 

A single greyscale unit for 
a 16 level erevscale - .  

A small portion of a halftone digital greyscale mask 

Figure 1.7 Halftone grayscale photomask. 



Figure 1.8 Example of a halftone grayscale picture. 

Figure 1.8 is an example showing how halftone grayscale works. The left picture is an 

original 8-bit grayscale bitrnap image. The middle is the binary halftone grayscale image. The 

right is the enlarged detail of the halftone picture, with the tiny square as the single unit. As 

mentioned earlier in this section, it is necessary to blur the mask image on the photoresist surface 

during exposure. The defocus distance is about 80 pm in the example cited [21]. More defocus 

gives a smoother resist surface, but also causes lower lateral resolution. On the other hand, the 

original binary pattern will appear if enough defocus is not used. It is always time-consuming to 

find the best exposure position. High laser power is another problem with halftone grayscale 

masks, which will be discussed later. 

In comparison, analogue grayscale masks have a continuous tone of grey level, as shown 

in Figure 1.9 (a). Instead of being either fully transparent or completely opaque as in a digital 

grayscale mask, each grayscale unit in an analogue grayscale mask can be at any grey level. The 

total number of grayscale levels is dependent on the analogue grayscale mask material. So far, 

some special glass materials have been developed [2,22]. Wu proposed HEBS (High Energy 

Beam Sensitive) glasses [2] whose optical density changes with the electron beam dosage and 

acceleration voltage. He claimed that more than 1000 grey levels can be assigned to each spot. 

Since HEBS glass is a direct-write material, this simplifies the grayscale mask manufacturing 

process. Defocusing of the substrate is not necessary as the light intensity is directly modulated 



by the mask material (Figure 1.9 (b)). Figure 1.9 (c) shows a slope is created on a positive 

photoresist after being exposed with the grayscale mask in (b). 

Greyscale material Exposure Illumination 3D structure on photoresist 

Figure 1.9 Analogue grayscale photomask: (a) an analogue grayscale mask material has 
continuous grey tone; (b) during exposure, defocusing of substrate is not needed; and (c) a 3D slope 
made on a positive photoresist. 

1.2.4.3 Direct- Write Photomask 

Direct-write photomask refers to a new mask making process where an e-beam or laser 

beam is used to directly write the mask pattern in a material whose transparency can be varied 

with exposure. In the previous two sections, two types of photomasks (binary and grayscale 

masks) were discussed. Chrome binary and grayscale mask patterning requires several multi-step 

processes that include direct e-beam or CW laser scanning of resist layers, followed by resist 

development and sample etching to form the desired pattern. To simplify the mask making 

process, people have looked into different processes and materials that allow direct image 

formation on quartz substrates. 

Laser ablation is one of the direct-write approaches that can potentially shape high- 

resolution structures in a single processing step. Direct writing of thin chrome layers for 

photomasks has been studied by Venkatakrishnan using a Ti:sapphire chirped-pulse amplified 

ultra fast laser [23]. As a matter of fact, ultra fast lasers are currently used at IBM for photomask 

repair [24,25], taking the advantage of the short-pulse interactions to avoid damage to the 

underlying quartz substrate. However, an expensive short-pulse laser system is needed for this 



technique. Furthermore, the damage thresholds, debris control, ablations rates, and incubation 

processes are still major unsolved issues preventing this direct-write method from being used 

widely. 

Using materials whose optical density changes after exposure to certain radiation, is 

another way of direct-writing photomasks. Drexler [26] heated up an exposed silver-halide 

emulsion to 250•‹C, and the emulsion became visually transmissive to yellow-orange light in both 

silver and non-silver clear areas, but opaque to ultraviolet wavelengths in the silver areas. 

However, due to the low transmission at < 500 nm, this emulsion material cannot be used for 

current UV exposure systems. 

1.2.5 Issues with Conventional Photomasks 

As described earlier, the typical Cr binary photomask manufacturing process involves the 

blank mask preparation: Cr and Cr oxide deposition, photoresist coating, resist baking, laser or e- 

beam direct-writing, resist development, metal layer dry or wet etching, resist stripping and 

cleaning. There are many issues with the current photomask and its preparation processes. Firstly, 

it is difficult to minimize defects, as there are 5 - 9 operation steps involved in making a 

photomask and each step can introduce process defects and particles. Secondly, mask damage 

from ESD (Electro-Static Discharge) has long been a concern. Although effort has been spent in 

making the photomask and the pellicle set conductive by adding conductive films, conductive 

frames, conductive dust pellicles, etc.[48,49], ESD damage can be more problematic due to the 

shrinkage of feature size. Furthermore, masks for 157nm lithography will be kept in ambient 

atmospheres nearly free of water, which will increase the risk of ESD damage [50]. Thirdly, 

although Cr dry etching has become a standard mask-making process step, the loading effect is 

still a serious problem. The chrome etch rate changes with the ratio of clear area to opaque area 



on the mask, which can seriously affect Critical Dimension (CD) control [51]. Fourthly, the cost 

of mask-making is escalating. A 0.18 pm binary photomask for critical layers costs $8000 - 

$22,000, and those for non-critical layers cost $18,000 - $20,000. OPC (Optical Proximity 

Correction) and PSM (Phase Shift Mask) add substantially to these prices[52]. In order to solve 

all these issues, people in the semiconductor industry must explore new processes and new 

materials. For example, Takaoka, et a1[53], proposed a sol-gel combined with a DTR (diffusion 

transfer) process. A liquid containing metal oxide is applied to the substrate, and this dried and 

heated coating acts as a physical development nucleus layer into which a silver complex 

compound is diffused to form a silver film at the unexposed area. Plasma etching is not necessary. 

However, it still involves more than 5 steps. 

Gray-scale photomasks, especially the digital type, have problems similar to those of 

binary Cr photomasks. Furthermore, the out-of-focus process requires increased illumination 

levels, and mask deterioration is observed when the laser intensity is greater than 200 rnTlcm2 

[54]. HEBS is one of the most popular analogue grayscale mask materials. However, specific 

CAD tools are required for the generation of mask data of the e-beam drawing system. The e- 

beam conversion process takes an extremely long time and requires very powerful e-beams [2], 

hence it is very costly. Also the best working wavelength of the mask is around 500 nm, at which 

HEBS glasses give the largest optical density difference before and after the electron beam 

irradiation. This is incompatible with current deep UV lithography systems. These two drawbacks 

prevent HEBS glasses from being widely used in the industry. 

1.2.6 An Alternative to Conventional Photomasks 

To solve all the problems mentioned in previous section, this thesis will present a novel 

single step direct-write photomask made from bimetallic thermal resists, including BiIIn and 



SdIn. Unlike lithographic steps for patterning conventional photomasks, bimetallic thermal 

resists themselves are thermally activated optical materials. Hence, patterns can be directly 

written onto the films, causing the exposed area to become more transparent. The optical density 

of the films substantially decreases with laser exposure, going from highly absorbing (3 OD) to 

nearly transparent (0.26 OD). Mask defects can be drastically reduced since many fewer steps are 

needed in the preparation process. Moreover, because both the exposed and unexposed Bi/In are 

conductive, there is inherently no ESD problem with this type of photomask. Obviously the 

manufacturing cost of bimetallic thermal resist photomasks will be much lower than conventional 

masks. This mask material is targeted at I-line or mask aligner applications. 

Since the optical density of the bimetallic films decreases nearly linearly with the laser 

power, both Sn/In and BiIIn films can be used as direct-write analogue grayscale photomask 

materials which have much better features than HEBS and any of the other grayscale mask 

materials available on the market. 

1.3 Thesis Objectives 

This thesis will present a new class of bimetallic thermal resist that is compliant with an 

all dry process and requires exposure energy doses comparable to current organic photoresist. 

Because the conversion process is thermally activated, the bimetallic resist maintains the 

wavelength invariance characteristic of other inorganic thermal resists while increasing the 

exposure sensitivity. Three different bimetallic resists will be studied: BiIIn, SdIn and single 

metal In. Features unique to each one of them will be shown. Excellent results will be presented 

to demonstrate that these bimetallic thermal resists are promising resist and photomask materials 

for micromachining and microfabrication. 



Chapter 2 introduces the concept of bimetallic thermal resists and describes the concept 

and initial development of a BiIIn thermal resist. This builds on the work done previously by 

Prof. Glenn Chapman and his graduate student Mr. Marinko Sarunic. It will be extended with 

some new supporting data and analysis in this thesis. 

Chapter 3 models the optical interaction of an incident light with bimetallic films using 

the Airy Summation method and presents the wavelength invariance theory for these new resists. 

Prof. Chapman and Mr. Sarunic set up a two-metal-layer optical model in 1999. They explored 

the film optical performance only down to 193 nm. In this research, the wavelength invariance 

will be explored over a wider range from IR to X-ray using this model. Also, an extended three- 

layer optical model will be investigated. 

Chapter 4 describes the preparation of the bimetallic thermal resists and the experimental 

setup, which include the laser exposure system, the plasma etch system and the analysis tools. 

Chapter 5 demonstrates that a bimetallic thin film is a completely functional thermal 

resist that can be exposed, developed and stripped. 

Chapter 6 studies the material structures of the thermal resist films before and after the 

laser exposure, and presents a structural mechanism of the laser conversion. 

Chapter 7 continues to show that, after development, a bimetallic thermal resist can act as 

an etching mask layer for both wet and dry etching, which is not possible for conventional resists. 

Other unique features are also presented. 

Chapter 8 explores the applications of bimetallic thermal resists as direct-write 

photomask materials for both binary and grayscale masks. 

Chapter 9 models the thermal conversion process of the bimetallic films when exposed to 

laser radiation. 



Chapter 10 discusses the contamination compatibility of bimetallic films with silicon 

processes. 

Chapter 11 presents conclusions and discusses future work that should be done to 

improve the performance of bimetallic thermal resists. 



Chapter 2 
Creating Sensitive Bimetallic Thermal Resists 

2.1 Introduction 

This chapter introduces the underlying strategies behind bimetallic thermal resists and 

their applications in micromachining and microfabrication. As discussed in the preceding chapter, 

previously investigated inorganic metallic thermal resists are too insensitive to be exposed by 

conventional laser exposure systems and thus have no practical value. A thermal resist should 

have five basic characteristics: 

1) It should be sensitive to and fully converted by sufficient illumination; 

2) The conversion caused by irradiation should produce significant chemical changes in 

the resist film so that it can be developed by wet or dry methods with good selectivity; and 

3) The developed resist should be resistant to wet andlor dry etching. No resists are 

currently known to be resistant to both Si anisotropic wet etching and dry plasma etching. 

4) The resist should be removed easily (stripped) when dry or wet etching is done or 

when photolithography rework is needed. 

5) The resist should be compatible with silicon processes and not poisonous to silicon 

devices. 

In this chapter, the prerequisites for a sensitive, inorganic, metallic thermal resist will be 

investigated, including the melting point, the thermal conductivity of the material, the optical 

properties of the deposited film, the energy of the metal-oxygen chemical bonds Do, and the 

reduction potential E0 of the metal. The latter two are mentioned because, as found in Chapter 6, 



the laser conversion is an oxidation process, and the film's chemical stability before and after 

laser exposure is important. Based on these requirements, a material selection is then conducted 

to locate the best material or material combination. Finally, the thermal resist film structure is 

discussed (i.e., should it be a single layer, bilayer or multilayer structure). 

2.2 Requirements for a Sensitive Metallic Thermal Resist 

2.2.1 Exposure: Sensitive to Irradiation 

Since a thermal resist is sensitive to and converted by heat, two questions are asked when 

it is exposed to a laser beam: how much heat is needed to fully convert the resist; and how 

efficiently does the resist film absorb the light energy and convert it into heat. 

It is obvious that the less heat required the more sensitive the thermal resist. The 

experience with previous metallic oxide thermal resists Fe/O and A110 tells us that a lower 

melting point metal gives us better sensitivity, since the conversion can start at a lower 

temperature. Since the melting point of a eutectic phase of a binary alloy is lower than either of 

the two metals, higher sensitivity is expected by using eutectic bimetallic systems. Thus, both low 

melting point single metal and bi-metal systems can be our choices. Figure 2.1 shows a typical 

binary phase diagram of A and B metals, with one eutectic point. One can see, the eutectic point 

at E is lower that the melting points MA and MB of A and B, respectively. 

An additional possible advantage of using a bilayer eutectic systems is that when an area 

is exposed to radiation and undergoing eutectic thermal conversion, it is surrounded by single 

metals with higher melting points. This could help enhance the image resolution. 

However, even with a significantly low melting point, the thin film resist cannot be 

converted if it does not absorb laser light efficiently. Thus, materials with a high optical 

absorption coefficient are desired. The optical absorbance of a thin film is determined by its n and 
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k values, film thickness, film structure (single layer or multilayer) and the light wavelength. 

Chapter 3 will discuss this issue in detail with an optical model. 

Heat dissipation is associated with the thermal resist conversion process. A much higher 

energy density is needed to expose thermal resists with conventional CW lasers (I-line and longer 

wavelength sources) compared to pulsed lasers, since the heat dissipation rate is close to or 

comparable with the energy input rate. This means that a significant portion of the energy is 

wasted, making thermal resists less applicable for industrial applications. With the UV and D W  

pulsed laser sources now being used in the industry, thermal resists become a feasible process 

since the energy input rate is now much faster than the heat dissipation rate. Hence, much less 

energy density is needed for the exposure of thermal resists, making it nearly as sensitive as 

organic photoresists. 

0 1 I 
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A Atomic Per cent B B 

Figure 2.1 Typical binary phase diagram with one eutectic point. 

The thermal conductivity of metals tends to be much higher than that of organic or 

semiconductor materials. This could be a problem for metallic thermal resists, since too much 

heat dissipation will not only lower the sensitivity, but also reduce the image resolution. Lower 

thermal conductivity is preferred when we search for thermal resist candidates [47]. 



In order to create an all-dry inorganic thermal resist, the selected material should also be 

compatible with PVD (Physical Vapour Deposition) and / or CVD (Chemical Vapour Deposition) 

processes. The deposited film should not have any physical or chemical changes under the typical 

storage conditions in a manufacturing environment for an acceptable period of time before the 

next process step. For example, conventional organic photoresists are stable for dozens of hours 

after soft bake and before exposure. Hence, metals with melting points close to room temperature 

are not suitable for a thermal resist application, as it is difficult to prepare thin films of these 

materials before they melt in normal environment. 

2.2.2 Development: High Dissolution Ratio of Exposed and Unexposed Regions 

When organic photoresists are exposed to a light of certain wavelength, photochemical 

reactions cause the rearrangement of chemical bonds, and hence the significant difference in 

chemical properties of the resists between the exposed and unexposed areas. This results in a 

modification of dissolution properties in alkaline solutions, enabling the development of a relief 

image. While an etch rate ratio (often called dissolution ratio in organic photoresists) of 10 is just 

sufficient to get a decent exposed pattern, the resolution of the lithography increases with the ratio 

[ I  11. 

An inorganic metallic thermal resist must exhibit a larger than 10 development 

selectivity. To achieve this ratio, laser conversion should induce substantial physical and 

chemical changes in the exposed areas. For a single metal resist film, phase change of the 

material and / or chemical reaction with the atmosphere is expected after exposure. For a 

bimetallic film, besides the above two transformations, alloying is also possible. A special 

solution (developer) should accordingly be made available for wet development, which 

preferentially removes the exposed area (or the unexposed), and retains the unexposed area (or 



the exposed). Most of the conventional organic and inorganic resists (photo and thermal) are 

developed by wet acid or alkaline solutions. In order to have an all-dry process, it is desirable that 

the exposed inorganic metallic thermal resists could also be developed with dry plasma etching. 

2.2.3 Etching: Good Resistance to Dry and / or Wet Etching 

The essential function of an exposed and developed resist pattern is to allow the transfer 

of the pattern into the layer underneath, and at the same time provide a protection layer to the 

covered areas. The underneath substrates / layers that need patterning in the micromachining and 

microfabrication industries are silicon, silicon dioxide, silicon nitride, titanium nitride, copper, 

aluminium, tungsten, etc.. In order to ensure proper pattern transfer from the resist to these 

substrates, the etch rate of the resist should meet the requirement of the process. For 2D 

patterning, the etch rate of the resist should be sufficiently lower than that of the substrate; while 

for 3D structure transferring, the resist etch rate can be equal to that of the substrate, or tuned to 

meet the process specification. This thesis will focus on metallic thermal resists for 2D 

applications. 

The required etch selectivity for semiconductor manufacturing is dependent on the 

thickness of the underlying layer that the resist pattern will be transferred onto, and also the 

thickness of the coated resist. Although, the selectivity varies with different layers, a selectivity 

larger than 1:3 is preferred by the process engineer [6] .  Nevertheless, much higher selectivity is 

requested by micromachining, as much deeper and longer etching is necessary to make bulk- 

machined structures. Deep reactive ion etching (RE) requires selectivity as high as 1:80, in order 

to make power electronics and harsh environment MEMS with an etch depth of 100 pm [%I. 

It was discussed in the previous chapter that none of the current organic photoresists are 

compatible with silicon anisotropic etching, since most organics are eroded away quickly in 



heated alkaline solutions. However, it is desirable to have an inorganic thermal resist that works 

with both wet and dry etching. This "almighty" resist, together with a process combination of wet 

etch and dry etch, can enable one to create some special structures that are not possible by other 

processes. 

2.2.4 Resist Removal 

Resist removal or stripping is the last step of the lithography process, after dry or wet 

etching is completed. Before the next functional layer can be deposited onto the silicon wafer, the 

resist residues must be removed, as they are a source of contamination to semiconductor devices 

and subsequent processes. Conventional organic photoresists are removed either by solvent or O2 

plasma etching. After stripping, thorough cleaning, such as an RCA clean, is required. When CD 

or overlay registration check fails after exposure, photolithography rework is inevitable. In the 

rework process the resist, together with the developed image (relief pattern), is removed either by 

solvent or O2 plasma etching. A new inorganic metallic thermal resist should also have the 

property of being easily stripped off. 

CD and overlay check is done after development, because the latent image (the exposed 

pattern in a resist before development) in conventional organic photoresists is not visible. Thus, 

whether photo-rework is needed is only known after the resist is developed. Several process step 

and considerable cycle time could be saved, if the latent image is visible. This thesis will show 

that our new bimetallic thermal resist exhibits this advantageous feature. 

2.2.5 Compatibility with Silicon Processing 

Sub-micron device technologies are highly susceptible to contamination, such as particles 

and chemical impurities which are present during the silicon process. Among the most well- 
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known contaminants, metallic impurities are a major source of performance failure in IC devices 

including increased p-n junction leakage, degradation of gate oxide breakdown voltage and 

reduced carrier lifetime. As critical device geometries continue to shrink below 0.13 pm, strict 

control of contaminants in the whole process cycle has become mandatory. Thus, metals 

including Ag, Au, Cu, Na, and K, should not be considered for metallic thermal resists. 

Reactions with silicon substrates, such as alloying and the formation of inter-metallic 

compounds should be avoid, as these changes will also poison the silicon devices. However, a 

thick amorphous carbon film can be used as an intermediate protection layer between the metallic 

thermal resist and the substrate to solve this problem. Marinco Sarunic discussed this carbon 

protection layer process in his thesis [56].  

2.3 Materials Selection 

2.3.1 Metals with Lower Melting Points 

The initial exploration of materials for potential bimetallic thermal resists was pretty 

much done by Mr. Sarunic and Professor Chapman in 1999. Details can be found in Sarunic's 

master thesis [56].  In this thesis we extend that work with newer experimental and theoretical 

understanding of the resist process. Figure 2.2 is a comparison of melting points of some of the 

widely used metals. Fe has a very high melting point, hence a high Fe/O resist conversion 

temperature. A1 melting point is less than half of that of Fe. Thus, one can see a sensitivity 

improvement for AYO resist. There are three metals (excluding Hg) whose melting points are 

lower than that of In and are very close to room temperature: Rb, Ga and Cs. Actually Rb and Cs 

are in liquid state at room temperature. Li has a melting point slightly higher than In. However, 

these four metals are not suitable for metallic thermal resists applications. Li, Rb and Cs are 

chemically unstable (the metals with * in Figure 2.2), as they all react fiercely with water at room 



temperature. Thus, the three metals that most likely meet the requirements for a sensitive metallic 

thermal resist are In, Bi and Sn. 

2000 , 

Cr Fe A 1  Sb Te Zn Pb Cd Bi Sn *Li I n  * R b  Ga * C s  
Metal Element 

Figure 2.2 Comparison of melting points of some metals. (Data from [%I) 

It is worth mentioning here that alloying of two metals was first speculated to be the 

bimetallic thermal resist exposure conversion mechanism, and much of the effort was focused on 

searching for suitable two metal systems. However, as will be discussed later in Chapter 6, 

oxidation is essentially what happens during the laser exposure. Therefore, both single metal and 

bimetal systems can be metallic thermal resist candidates, as long as they meet the requirements 

stated in Section 2.2. 

Bismuth is the most attractive metal as it has a low melting point, the lowest thermal 

conductivity (as shown in Figure 2.3) and also a low reflectivity. Unfortunately, as will be 

discussed in Chapter 6, Bi does not form a continuous film after laser exposure, thus, it is not a 

good single metal resist candidate. Nevertheless, it is still suitable to be the top layer for a 

bimetallic thermal resist. Indium is clearly the best choice as a single metal thermal resist, with 

the lowest compatible melting point and moderate thermal conductivity. Indium is also the best 

option as the bottom layer of a Bi/In bimetallic thermal resist, as Bi and In form three low 

temperature eutectics, as shown in Bi-In phase diagram in Figure 2.4. Bi is a Group V element 

and In is a Group I11 element. If there is any unwanted doping effect with Bi/In resist, the p-type 

In doping can be cancelled by the n-type Bi doping [56]. Besides Bi and In, Sn also shows 
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promising properties including a low melting point, low thermal conductivity, and forming 

eutectics with In, as shown in the Sn-In binary phase diagram, Figure 2.5. 

Al Zn Cd Cr In Fe Sn Pb Sb Te Bi 
Metal Elements 

Figure 2.3 Comparison of thermal conductivity of metals. (Data from [58]) 
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Figure 2.4 Bi-In binary phase diagram [57]. 
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Figure 2.5 Sn-In binary phase diagram [57]. 



2.3.2 Chemical Properties of Metals 

Table 2.1 Comparison of reduction potentials EO (Volts) of important reactions [58]. 

One point not understood at the time of Sarunic's thesis was that, which will be discussed 

in Chapter 6, the laser conversion is not only a process of melting the metal or metals, but also a 

chemical reaction. Thus, chemical stability of the metals before laser exposure is critical. Bi, In 

and Sn must be very stable under normal environment: they should not oxidize, or react with 

water. Table 2.1 lists the reduction potential EO of some metal reduction reactions at 25OC and 1 

atmosphere. The reduction potential is the quantitative tendency for a half reaction to occur in the 

reduction direction, or the tendency of a half reaction to accept electrons. A reaction will be 

exergonic if the half reaction acting in the electron accepting direction has a reduction potential 

that is more positive than the one acting in the oxidation direction. It is the inherent tendency of a 

compound or element to act as an electron donor or an electron acceptor. Measured in volts, the 

more negative the reduction potential, the easier the element will lose electrons, and thus oxidize. 

Li' + e = Li has a reduction potential of -3.04 V, indicating that Li is very active, unstable and 

likely to oxidize. On the other hand, the element has a stronger tendency to accept electrons if it 

-3 -2 -1 0 1 2 3 Reduction 
Reaction 

Reduction 
Potential (V) 



has a more positive reduction potential value. The reduction potential of F2 + 2e = 2F- indicates 

that F2 is also a very active and unstable gas. Reduction potential is a good meter to determine the 

stability of an element: the lower the absolute value the more stable the element. Bi, In and Sn 

have absolute value reduction potentials i 0.5 V, showing that these metals are very stable under 

normal conditions. Shelf tests of as-deposited Bi, In and Sn discussed in Chapter 5 confirms this 

prediction. 

Chemical stability of the converted material after laser exposure is also vital to a 

lithography process, as it ensures that the exposed pattern will not deform due to chemical 

reactions in the subsequent processes. Chapter 6 reveals that laser conversion is actually an 

oxidation process. Metal oxides, such as In203, Bi203 and SnO are generated after laser exposure. 

The stability of a metal oxide is, to some extent, reflected in the metal-oxygen bond strength, 

which measures how much energy or enthalpy is needed to break a chemical bond. Figure 2.6 is a 

comparison of metal-oxygen bond strengths. Bi-0 and In-0 have similar, medium bond strength, 

higher than Cu-0 and lower than A1-0. This implies that In203 and Bi203 could be more stable 

than CuO, although not as stable as A1203. Sn-0 has a bond strength even higher than A1-0. In 

summary, metal-oxygen bond strength data indicate that laser converted material: Bi, In and Sn 

oxides are chemically stable. Shelf test experiments of laser converted Bi, In and Sn presented in 

Chapter 5 are consistent with these predictions. 

S n - 0  ACO Ca-0 Fe-0 Bi-0 In-0 Cu-0 Na-0 Ag-0 Zn-0 
Bond 

Figure 2.6 Comparison of metal-oxygen bond strength [58]. 



2.4 Thermal Resist Film Structure 

Section 2.3 discussed the three metals that likely meet the criteria for a sensitive thermal 

resist. How will the material be arranged in a film? It is easy for a single metal thermal resist: a 

single layer of the metal will be deposited on a substrate. How about a bimetallic thermal resist 

such as BiIIn or Sn/In? Should the resist be prepared as a bilayer structure or a single mixed metal 

layer, as shown in Figure 2.7? How thick should the thermal resist be? 

SingleMetal- One Layer Two Mehl - Bilayer Two Metal - OE Layer 
Figure 2.7 Metallic thermal resist film structure. 

From the point of view of film preparation, a bilayer structure is preferred. DC- or RF- 

sputtering, which will be used to put metal films onto a substrate, will be more efficient to deposit 

two layers of different metal films onto the substrate from two separate targets than to co-sputter 

two targets to get one mixed metal layer. One can have a much more accurate control over the 

composition of the bimetallic films with a bilayer structure than with a single mixed layer. It is 

also easier to vary the composition. Optical modelling of light absorption by as-deposited film, 

which will be discussed in Chapter 3, reveals that a two-layer structure has better light absorption. 

Thus, it is more thermal-sensitive than a single layer structure. And this is in agreement with 

experimental results shown in Chapter 5. 

The sensitivity of the thermal resist and the influence of thickness on the vertical profile 

are the two major issues that should be considered when we choose the resist film thickness. 

Modelling using a 2D finite element, linear heat conduction analysis, discussed in detail in 

Chapter 9, reveals that thinner thermal resist is more sensitive than thicker resist. Thinner resist 



has also better sidewall profile than thicker ones, and that the CD control should also be more 

accurate for thinner film. It is obvious that the metal films should be very thin, on the order of 10 

(to form continuous metal film) to 100 nm, in order to be exposed at a low laser energy level and 

to have a good profile. 

Will such thin thermal resist provide enough protection during wet or dry etching 

process? This question will be answered positively in Chapter 7. Even if the answer were no, we 

still could use a carbon protection layer process proposed by Chapman and Sarunic [56] after 

Bozler [45], as shown in Figure 2.8 to solve this problem. 

Figure 2.8 Thick carbon film as a protection layer in a thin inorganic thermal resist process. 

The first layer deposited on the substrate is an a-C:H film, which can be prepared by 

PVD method in a hydrogen atmosphere, as shown in Figure 2.8 (a). The thickness of the carbon 

protection layer can range typically from 0.5 to 2.5 microns [59], according to the process 

requirement. If BiIIn thermal resist is used, the two metal films are then deposited on top of the 

carbon layer. The metallic thermal resist is first patterned and developed, as shown in (b). The 

pattern on BiIIn film is then transferred to the carbon protection layer through oxygen plasma 

etching, as shown in (c). As it is known to be resistive to many reactive ion plasma and wet 

chemical etching [59], carbon film can be used as a plasma etching protection layer for longer 

etching. (Refer to Chapter 7 for further discussion) 



2.5 Summary 

This chapter introduced the criteria for a sensitive metallic thermal resist: low melting 

point, optically absorbing and low thermal conductivity. Eutectic alloying is a good way to 

further bring down the melting point. To be a complete thermal resist, physical and chemical 

properties should change enough after laser exposure, so that the exposed pattern can be 

developed by wet dissolution or dry plasma etching. The laser converted material should also be 

resistant to wet and 1 or dry etching for pattern transfer from the resist to the underneath substrate. 

Material search based on these requirements gives promising results. Bi, In and Sn are three of 

the best metals suitable for thermal resist applications. Oxygen bond strength and reduction 

potential data indicate that these three metals are chemically stable before and after laser 

conversion. BiIIn and SnIIn are good candidates for bimetallic thermal resists with lower eutectic 

points than each of the single metal. Primary analysis shows that a bimetallic thermal resist with 

thin bilayer structure is preferred. The next chapter will investigate the optical model of the 

bimetallic films. 



Chapter 3 
Optical Modelling and Wavelength Invariance 

3.1 Introduction 

Since thermal resists are converted by heat during laser exposure, it is important to 

understand how an incident laser beam interacts with the thermal resists, how much of the laser 

energy is absorbed to heat the sample, and how the energy absorption changes with film 

thickness, laser wavelength, film structure or different types of material. In this chapter, an optical 

model will be used to compute the light transmitted (T )  through, reflected (R) and absorbed (A) 

by the as-deposited thermal resist during the laser exposure. The main purpose here is to use the 

model to investigate and explore the main advantage of inorganic bimetallic thermal resists: 

wavelength invariance from X-ray to IR. The influence of film structure on the sensitivity of 

thermal resists will also be calculated. 

3.2 Optical Modelling: Laser Interaction with As-deposited Resists 

This work extends a computer model developed by Sarunic [56]. Since he gave a 

complete description in his master's thesis, the optical model will only be discussed briefly. The 

significant difference between most other optical models and this bimetallic optical model is that 

the materials are highly absorbing. The refractive index of an absorbing material is defined in a 

complex number g: 

n = n -ik - (3.1) 

where n is the real part of the refractive index and k is the absorption index, which is the 

imaginary part of the complex refractive index [60]. For a completely transparent (non-absorbing) 

medium, k is zero, and for an absorbing medium, k is larger than zero. 
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The light absorption in a medium is governed by Beer's law. The light intensity has 

following relationship with the thickness of the film, light wavelength and the material property: 

where If is the light intensity after the light travels through a distance of d in the film, lo is the 

4d incident light intensity, h is the wavelength of the light, k is the absorption index, and a, = - is 
II 

called the absorption coefficient. This equation can be rewritten in the following format to 

represent the attenuation rate of the electric field amplitude of light inside the medium: 

where EJ is the amplitude of electric field of the light after it travels through a distance of d in the 

film, Eo is the amplitude of electric field of the incident light, and a the electric field attenuation 

rate. 

Note that when metal films are exposed to laser illumination under a chemically active 

environment, such as oxygen or air, two additional effects may need to be considered: the 

modification of the optical properties of the exposed area, and the additional heat release due to 

exothermic reactions. These two effects can influence, sometimes even totally control the reaction 

process. In this section, as we are only interested in the heat conversion right before the chemical 

reaction, these two effects are ignored to simplify the optical model. It is further assumed that the 

metal films are optically uniform in thickness and have sharp interfaces with each other and with 

the substrate. Three interactions will be taken into account when light shines on a bimetallic 

thermal resist film: absorption when laser travels through the film, reflection and refraction at the 

film interfaces. 



Sarunic compared two widely used methods for the calculation of the electric field 

magnitude in a film: the matrix method and the Airy summation. He found that only Airy 

summation can give reflection and transmission at each film interface, and also the energy 

deposited as a function of film thickness [56]. Airy summation adds up all the electric field 

vectors reflected and refracted at each interface of a multilayer film. Although it requires more 

calculation, the Airy summation has the advantage of giving light intensity at any point inside the 

film. As shown in Figure 3.1, the laser beam reflects and refracts at each of the interfaces inside 

the bilayer film on a glass substrate. Each reflected and refracted beam will further reflect and 

refract at the interfaces. The Airy summation adds the refracted electric fields on the air side, and 

together with the first reflection, it becomes the total reflection R. The sum of the refracted 

electric fields on the glass side becomes the total transmission T. The absorption A can be easily 

obtained by the following: 

Figure 3.1 Laser beam reflects and refracts at each of the interfaces in a 
deposited on glass substrate. (After Sarunic's thesis Figure 2.4 [56]) 

bilayer structure 

If we assume a light beam perpendicular to the film surface, the reflection and refraction 

of the electric field at the film interfaces between two different films of refractive complex 

indices and nl, are expressed by the Fresnel coefficients: 
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where rol is the reflection when light travels from medium 0 to film I ,  to, is the refraction when 

light travels from medium 0 to film 1[61]. The Fresnel coefficients r and t describe the behaviour 

of the electric field. The actual light intensity Fresnel coefficient is the coefficient times its 

conjugate. The light reflection R and transmission Tare as follows: 

T = t o1 t~ ,  ; for media no and n,, T = 
4n; 

(no + n, IZ 

Figure 3.2 Airy Summation: Electric field Eo splits into reflection rolEo and refraction tojEo at the 
interface when it travels from medium 0 to 1. E field tojEo attenuates when it travels in medium 1 and 
further splits at interface 1 12. 

Knowing the Fresnel coefficients and attenuation rate, one can easily calculate the 

electric field after each interaction with the medium or media. Figure 3.2 demonstrates the first 

few rounds of reflection and refraction, and how the electric field changes at each interface. The 

light starts with the incident electric field Eo. It splits into a reflected rolEo and a refracted tolEo 

beam, with the modifications of electric fields by the Fresnel coefficients. The first refracted E 



field, tolEo, attenuates when it travels inside medium 1. It becomes altolEo after reaching interface 

1 / 2. Reflection and refraction take place again at the 1 / 2 interface: r12altolEo is the reflected 

part, and t12altolEo is the refracted part of altolEo. rI2altolEo attenuates and becomes alr12altolEo 

after it reaches interface 0 / 1. The refracted component of alr12altolEo is tloalr12altolEo. The total 

reflected electric field ER and refracted electric field ET are as follows: 

ER = rolEo + tloalr12altolEo + .........( all Efields travelling into medium 0) (3.9) 

ET = t12altOlE0 + t 1 2 a l r 1 ~ ~ r 1 2 a l t 0 ~ E 0  + .. . .. . .. . (all Efields travelling into medium 2 )  (3.10) 

It is the light energy or intensity that interests us, rather than the amplitude or phase of the 

electric field. Interference in the films is expected to modify the energy fluxes in addition to the 

electric field wave fronts. Thus, we should convert the electric field into energy flux. 

Electromagnetic theory defines the energy flux as the Poynting's vector: 

where E and H are the electric and magnetic vectors. Applying boundary conditions to the 

solutions of Maxwell's equations, one can get the following expressions for E and H [61]: 

where u is a unit vector along the x direction, Eo is the amplitude, o = 2$(f is the frequency), po 

is the permeability of vacuum, z is the distance along the z direction, and k is the propagation 

vector, along the wave propagation direction. 

Substituting the E and H in Equation (3.11) with the Equation (3.12) and (3.13), one 

obtains the Poynting's vector for a non-magnetic material, when light travels into air as follows, 

wi thn= 1: 



The time averaged Poynting's vector can be written as: 

which we can also take as the intensity of the reflected or transmitted light. Here n is the 

refractive index of the film. 

Assuming Io, IR, IT and IA are the incident light intensity, the reflected light intensity, the 

transmitted light intensity and the absorbed light intensity, respectively, we have the following 

RAT (reflection, absorption and transmission) definition satisfying the law of conservation of 

energy: 

Sarunic compared the Airy summation simulation results of a multilayer optical film 

MgFdGelglass with some published results. They gave a perfect match, demonstrating that this 

model works fine. 

3.3 Influence of Thermal Resist Film Structure on Absorption 

In a previous chapter, a question was raised as to how thermal resist film structures would 

affect resist sensitivity. With the Airy summation optical model, one can easily calculate and 

compare the absorption of films with a single metal, single mixed (co-sputtered) and 2-layer 

structures. When Chapman and Sarunic first developed the optical model [62], we jointly used 



that to explore the bimetallic film optical behaviour from 1064 to 248 nm. This thesis extends that 

work considerably. In this section, RAT curves are calculated for different wavelengths: 830 nm 

(GaAs IR laser diode), 514 nm (argon ion laser), 248 nm (DUV), 157 nm (EW),  13.4 nm (Soft 

X-Ray) and 1 nm (X-ray). The 1064 nm RAT curves will not be re-plotted here (refer to 

Sarunic's thesis [56]). There are four plots in each of the following wavelength figure group. The 

first plot at each wavelength is a 50at.% I 50at.% Bi/In, 2-layer structure. The film thickness is 

chosen such that the atomic compositions of the elements are equal. It is found that equal 

thickness of Bi and In layers gives almost equal atomic compositions of the two elements. The Bi 

is on the top of the In film. The x-axis is the thickness of each metal layer. The y-axis is the light 

intensity. The second and the third plots are for single In and Bi layers, respectively. The fourth is 

a single mixed (50at.% - 50at.96 co-sputtered) Bi-In film. All the optical properties n and k are 

from published literature [63,64]. For the n and k values for the mixed alloy (50% - 50% co- 

sputtered Bi-In film), we assumed we could use an average of the n and k values of single Bi and 

In films. As the x-axis of the first plot is the thickness of each metal layer, and the x-axis in the 

other plots is the total thickness of the single layer, the RAT readings in the first plot should be 

compared with those at twice the thickness of the second, third and fourth plots. 

Figure 3.3 shows the results for 830 nm [65], the wavelength of a GaAs IR laser diode, 

which is widely used in the industry [66]. The absorption of a 2-layer BiIIn (Bi on the top of In 

and In on substrates) is - 29% at 20 I 2 0  nm, less than that of Bi, but greater than a single 40 nm 

thick In film - 1296, and the mixed Bi-In single film - 20%. This clearly shows that a 2-layer 

Bi/In structure with the same total thickness has better absorption than single In or mixed Bi/In 

films. 

It is noted that Bi has - 34% absorption at 40 nm. As Bi has a very low thermal 

conductivity, theoretically, Bi should be a very optically sensitive material. However, we will 

show from materials analysis, discussed in Chapter 6, that Bi films melt and agglomerate to form 



round shaped dots after laser exposure. Also exposed Bi patterns cannot be developed by simple 

acid solutions (discussed in Chapter 5), and converted Bi film is not resistant to dry and wet 

etching (discussed in Chapter 7). 

All these drawbacks prevent Bi from being a thermal resist candidate. When the film total 

thickness reaches 80 nm, the absorption of a 2-layer Bi/In film is - 37%, similar to single Bi - 

38%, while single In is - 12%, and single mixed Bi-In 20%. 
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Figure 3.3 (d) 
Figure 3.3 RAT curves at wavelength 830 nm of (a) 2-layer Binn, (b) single In and (c) Bi film, and 
(d) single layer co-sputtered Bi-In (50% mixed) film. 
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Figure 3.4 (c) Figure 3.4 (d) 
Figure 3.4 RAT curves at wavelength 514 nm of (a) 2-layer Binn, (b) single In and (c) Bi film, and 
(d) single layer co-sputtered Bi-In (50% mixed) film. 

Similar results were obtained for 514 nm (Figure 3.4), the argon laser wavelength, which 

is used mainly in our lab, and for 248 nm and 157 nm [65,67]. Bilayer Bib has a higher 

absorption than that of single In and single Bi-In mixed film. For the 514 nm wavelength, at 40 

nm total film thickness, bilayer Bib is - 39%, mixed Bi-In -27%, and single In only - 12%. At 

80 nm total film thickness, bilayer BiIIn is - 45%, mixed Bi-In still - 27%, and single In still - 

12%. Absorption becomes comparable between bilayer BXn and single Bi film when the total 

thickness reaches 40 nm. 
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Figure 3.5 (c) Figure 3.5 (d) 
Figure 3.5 RAT curves at wavelength 248 nm of (a) 2-layer Binn, (b) single In and (c) Bi film, and 
(d) single layer co-sputtered Bi-In (50% mixed) film. 

For 248 nm, the common KrF excimer exposure tool wavelength, at 40 nm total film 

thickness, bilayer BUIn is - 6696, mixed Bi-In -41%, and single In only - 15%. At 80 nm total 

film thickness, bilayer Bi/In is - 70%, mixed Bi-In still - 41%, and single In still - 15%. 

Absorption becomes comparable between bilayer Bi/In and single Bi film when total thickness 

reaches 20 nm. 
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Figure 3.6 (c) Figure 3.6 (d) 
Figure 3.6 RAT curves at wavelength 157 nm of (a) 2-layer BiAn, (b) single In and (c) Bi film, and 
(d) single layer co-sputtered Bi-In (50% mixed) film. 

Extending this work deeper into the UV range, let us consider the 157 nm wavelength, 

the proposed F2 laser exposure tool wavelength. At 40 nm total film thickness, bilayer Bi/In is - 

64%, mixed Bi-In -50%, and single In only - 20%. At 80 nm total film thickness, bilayer Bi/In is 

- 65%, mixed Bi-In still - 51%, and single In still - 20%. Absorption becomes comparable 

between bilayer BiIIn and single Bi film when total thickness reaches 30 nm. 
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Figure 3.7 RAT curves at wavelength 13.4 nm of (a) 2-layer Binn, (b) single In and (c) Bi film, and 
(d) single layer co-sputtered Bi-In (50% mixed) film. 
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Figure 3.8 (d) - 
RAT curves at wavelength 1 nm of (a) 2-layer Ban ,  (b) single In and (c) Bi film, and (d) 

co-sputtered Bi-In (50% mixed) film. 

As the wavelength moves further into the extreme W and the X-ray range, the 

absorption difference between different film structures gets smaller [68]. At 13.4 nm, the 

proposed EUV exposure system wavelength, bilayer BiIIn has - 60% absorption when the total 

film thickness is 20 nm, while single In is - 59%, Bi-In mixed - 60% and single Bi - 61%. When 

the total thickness is 40 nm, all of the four structures absorb - 81% of the incident light, a 25% 

increase over the absorption at 248 nm. At 1 nm, as the n and k values of Bi and In films are 

almost identical, there is actually no absorption difference between the four structures. A film 

with 40 nm total thickness absorbs - 18% of the incident X-ray. 
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Figure 3.9 RAT curves of 2-layer In/Bi at wavelength (a) 514 nm and (b) 248 nm, respectively. 
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Figure 3.10 (a) Figure 3.10 (b) 
Figure 3.10 RAT curves at wavelength 248 nm of (a) 3-layer Bi/In/Bi, and (b) 3-layer In/Bi/In films. 

All of the 2-layer simulation results presented so far are with Bi on top of In and In on the 

substrate (Bi/In/substrate). How about an In/Bi/substrate structure? Unfortunately, due to In's 

high reflectivity, an In-on-top 2-layer structure (In/Bi/substrate) has a much lower absorption than 

does a Bi-on-top structure (BiIWsubstrate). The two RAT plots in Figure 3.9 showed that 

absorption for 40 and 80 nm total thick films are lower than 20% for both 514 nm and 248 nm 

wavelengths, while reflection is more than 80 %. 

Simulations were also carried out on 3-layer structure films to search for thermal resists 

with a higher sensitivity. The two RAT curves in Figure 3.10 illustrate the optical performance of 



two kinds of 3-layer structures: Bi/In/Bi/substrate and In/Bi/Idsubstrate, at 248 nm. Compared to 

a 248 nm 2-layer Bi/In, Bi/In/Bi 3-layer film has a 60% absorption at a 40 nm total film 

thickness, 6% lower. The difference between the absorption of the two film structures decreases 

as the film thickness increases. When the total film thickness reaches 80 nm, absorption is 70% 

for both structures. Meanwhile, an In/Bi/In 3-layer film has a much lower absorption than a 2- 

layer Bi/In films, indicating that it is not suitable for practical applications. 
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Figure3.11 The simulation results of Sn/In from the optical model. The three plots are the 
reflection, transmission and absorption curves versus film thickness at wavelength (a) 830 nm, (b) 
514 nm and (c) 248 nm. 

Similarly, the absorption of S d n  does not change very much from 830 nm to 514 nm 

and from 5 14 nm to 248 nm, as shown in Figure 3.11 [65]. It is noticed that SdIn has only half of 

the BiIIn absorption. As will be shown in Chapter 8, this is confirmed by the experimental results, 



which show that in order to get to the saturated optical density, twice as much laser power for 

BiIIn is needed to expose SnlIn. 

In summary, bilayer BiIIn thermal resist does show better absorption, hence higher 

sensitivity, than single mixed (co-sputtered) Bi-In film and single In film. As 2-layer Bi/In films 

are easier to deposit than mixed Bi-In, bilayer metallic Bi/In, and later SnlIn films, are prepared 

and used in this thesis. 

3.4 Wavelength Invariance: Simulation Results 

As discussed in Chapter 1, organic photoresists currently used in the semiconductor 

industry operate by photochemical processes, and they are wavelength sensitive, which means 

that photoresists that work under current 248 nm exposure systems will not work under 157 nm. 

This is always true for photo resists as the chemical reaction rate and film optical absorption is 

highly wavelength sensitive. However, bimetallic thermal resists are activated by the heat that the 

resist films generate by the absorption of the laser exposure. This has lead us to propose an 

important new characteristic of bimetallic thermal resists: near wavelength invariance for 

exposure values. 

What is important is that since the optical parameters (RAT) change slowly with the laser 

wavelength, and a thermal resist Bi/In depends only on the energy deposited in the films, it shows 

near wavelength invariance in the exposure energies. Plots (a) in Figure 3.3 to Figure 3.8 

demonstrate this with simulated Reflection, Transmission and Absorption (RAT) curves versus 

film thickness at wavelengths 830 nm, 517 nm, 248 nm (current microfabrication exposure 

systems), 157 nm, 13.4 nm and 1 nm (X-ray). Optical simulations suggest that BiIIn absorption 

varies little from 514 nm to 248 nm. Simulation suggests exposure is almost unchanged from 248 

nm down to 157 nm (in Figure 3.12), the proposed next generation exposure tools, with 



absorption varying less than 3.5% over all thickness. When these simulations are extended from 

248 nm to 13.4 nm the absorption increases by 24% (as shown in Figure 3.13) at the thickness 20 

nm of each layer (from 65% at 248 nm to 81% at 13.4 nm), and reflectivity becomes very small 

(<I%), indicating an even better sensitivity. This is important as no organic resist successfully 

works over this range. 

Thichness (nm) of each layer 

Figure 3.12 RAT difference between 157 nm and 248 nm for a bilayer Binn film. The difference 
between these two wavelengths is very small (<*5 %). 

Thickness (nm) of each layer 

Figure 3.13 RAT difference between 13.4 nm and 248 nm for a bilayer Binn film. The absorption 
improves when the laser wavelength moves from 248 nm to 13.4 nm. 

There is very little change in the 50 nm to 10 nm exposure range. Newer X-ray exposure 

systems are using laser-generated plasmas that produce X-ray of 1 nm with pulse durations of 

about lnsec. Wavelength response simulation (Figure 3.8 (a)) projected into the 1 nm X-ray range 



shows that there is still 15% absorption for 20 nm per layer films and this absorption increases 

nearly linearly with thickness until -100 nm. Using the previous measured sensitivity at 266 nm 

and extrapolating the absorption to 1 nm this suggests an X-ray sensitivity of -35 mJlcm2 using a 

15115 nm BilIn thermal resist [68]. Compared to one of the most sensitive X-ray photoresists 

reported [69], which is 100 mJlcm2 for 200 nm thick films, our bimetallic film is expected to be 

much better. This high sensitivity could definitely improve the X-ray photolithography 

throughput and make X-ray litho-process practical. 
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Figure 3.14 RAT versus wavelengths of the incident beam in 20120 nm Binn film deposited on glass. 

Figure 3.14 shows the RAT performance at different wavelengths from IR (1066 nm) to 

X-ray (1 nm) for a 20120 nm BilIn film deposited on a glass substrate. From 1066 nm (IR) to 250 

nm (DUV), the absorption slowly increases. Then from 250 nm to 100 nm the absorption remains 

nearly constant. Below 150 nm the reflection drops significantly. From 100 nm to 10 nm, the 

absorption first drops at around 80 - 70 nm, and then increases and peaks at - 24 nm (95.5%). 

The reflection drops until 50 nm when it reaches 0.3%, and stays at that level into X-ray range. 

From 10 nm to 1 nm (X-ray range), the absorption varies from 15% to 35%, while the 

transmission is high (>60%) and the reflection very low (0.2% - 3.0%). This plot demonstrates 



again that BilIn (20120 nm) maintains >15% absorption over this wide wavelength range, 

showing its wavelength invariance. However, the exposure sensitivity (determined by the 

absorption) of the film does vary slowly with the wavelengths. The optical model predicts that a 

BiIIn (20120 nm) film maintains >50% absorption within the 400 nm to 10 nm range, higher than 

that of the rest of the wavelengths. Thus, it should be more sensitive in this wavelength region. 

BiIIn experimental results (will be presented in Chapter 5) confirm that Bi/In thermal 

resists can be exposed by 830 nm solid state IR laser (Chapter 8), 533 nm Nd:YAG 2nd harmonic 

laser, 5 14 nm argon laser, and 266 nm Nd:YAG 4th harmonic laser. There are also indications that 

X-ray radiation can cause changes in the BilIn bimetallic films. 

3.5 Summary 

This chapter described an optical model that is used to calculate the reflected, transmitted 

and absorbed light intensity. Based on Airy summation, the model sums all the electric fields that 

leave the medium and travel along the opposite direction of the incident beam into a reflected 

electric field. And, it adds all the electric fields leaving the medium and travelling in the same 

direction as the incident beam as the transmitted electric field. With the Poynting vector, one can 

easily calculate light intensity from the electric field. The sum of the light intensity of reflection, 

transmission and absorption should be 1. Comparison between the simulation results and 

published results shows that the optical model is accurate. Using this optical model, we calculated 

and plotted the RAT curves versus film thickness and light wavelength (from 830 nm to 1 nm), 

and compared results for different film structures. This introduces the concept of the bimetallic 

thermal resists showing something very new: near wavelength invariance. For the first time, the 

investigation of bimetallic films was extended into the EUV and X-ray range. It was found that 2- 

layer BilIn film has a better absorption than other film structures, indicating that bilayer metallic 



thermal resists are more sensitive than co-sputtered single layer Bi-In films. Simulation results 

also showed that the film absorption changes slowly as light wavelength gets shorter, showing the 

property of wavelength invariance. The next chapter discusses the resist experimental preparation 

and equipment. 



Chapter 4 
Resist Preparation and Experimental Setup 

4.1 Introduction 

Materials selection in Chapter 2 identifies that Bi, In and Sn are the best candidates for 

sensitive inorganic metallic thermal resists. The simulation results of the Airy summation optical 

model discussed in the previous chapter show that bimetallic thermal resists have a higher 

sensitivity than other film structures, and exhibit a wavelength invariance attribute. In this 

chapter, the preparation processes will be described for the bimetallic thermal resists on different 

kinds of substrates: the standard RCA cleaning, and the DC- and RF-sputter deposition. Two 

kinds of laser systems will be described that were used to expose the bimetallic films: argon laser 

and Nd:YAG laser. The important equipment for patterning, the computer-controlled X-Y-Z 

table, will also be introduced. As lots of applications in wet and dry etching will be explored, the 

wet bench system used for KOH, EDP and TMAH anisotropic etching, and the dry plasma Axic 

PECVDIRIE dual chamber etcher with CF4/CHF3 will be described. Different pieces of analysis 

equipment were used in the thesis work, including a profilometer, UV spectrometer, X-ray 

diffractometer, scanning electron microscope and transmission electron microscope. 

4.2 Resist Preparation and Sputtering System 

Bimetallic thermal resist coating is a completely dry process using PVD (physical vapour 

deposition) method. In this thesis work, DC- and RF-sputtering are used to deposit thin films 

from target materials onto substrates. 



4.2.1 Characterization of As-Deposited Single Film 

As discussed in Chapter 2, a bimetallic thermal resist at a eutectic composition has a 

much lower melting point than do  single metals. and hence potentially a higher sensitivity. Thus. 

film deposition with accurately controlled film thickness is key to making the best bimetallic 

thermal resist. This section will investigate the deposition rate of each metal, and the relationship 

between thickness ratio and the atomic ratio of the bimetallic films. 

The thin film DC-/RF-sputtering system in our laboratory is made by Corona Vacuum 

Coaters (as shown in Figure 4.1). The system is equipped with a 24" deposition chamber with 

multiple sample holders, a Varian 6-inch oil-diffusion pump combined with a 2-stage mechanical 

roughing pump. The sputter system rack holds the vacuum gauges. DC power supply (Advanced 

Energy MDX-lK), RF  power supply (Advanced Energy RFX-600 with an ATX-600 matching 

system), substrate heating element controller, the computer control interface box and also the 

switches for pumps. A butterfly throttle valve and mass flow controller are used to control the 

chamber pressure during the deposition. 
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Figure 4.1 Corona thin tilm sputtering system. 
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The deposition chamber can accommodate 5 targets: four 2" in diameter round targets 

and one 4"x 6" rectangular target. This allows the deposition of multilayers without an air break. 

The metal Bi, and In targets used in film deposition were 2 inch in diameter and 118 inch thick, 

99.99% purity powder pressed targets. A Sn target was 99.85% purity. Deposition starts after 

sample substrates are loaded and the base pressure reaches 0.8 - 1x10-~ Torr. Argon is used as 

the sputtering gas, and the chamber pressure is usually kept at 4 mTorr during sputtering. 

Glass slides, quartz and silicon wafers are used as substrates to deposit thermal resist for 

various purposes. Before being loaded into the deposition chamber, all the substrates have to go 

through a standard cleaning process in order to remove organic and metallic contaminants. Table 

4.1 lists the process steps and four solutions used in our lab for substrate cleaning. 

I 4 I RCA2 I HCl : H?O? : DI-H?O = 1 : 1 :6 1 80•‹C 110min I 

Table 4.1 Solutions used to clean substrates before film deposition. 

Substrates are usually cleaned with RCAl and RCA2 (see Table 4.1), followed by 5 

minutes of DI water rinse and then baked in a 120•‹C oven for 20 min to remove moisture. When 

Process Step 
1 
2 
3 

5 
6 

the process requires it, the Piranha and HF dip steps are carried out before RCA cleaning, 

especially for silicon wafers. Piranha removes organic contaminants and also creates a thin oxide 

layer. It is normally followed by an HF dip which then removes the oxide layer, together with 

contaminants. The RCAl cleaning also removes organic contaminants and the RCA2 cleaning 

SolutionIName 
Piranha 
HF dip 
RCA 1 

Chemical Content 
H2SO4 : H202 = 4: 1 
HF: H20 = 1:10 
NH30H : H202 : DI-H20 = 1 : 1 :5 

removes metallic contaminants. 

DI water rinse 
Oven Baking 

In order to determine the film deposition rate (in unit of &w.m), glass slides were used as 

Temperature 
100•‹C 
25•‹C 
80•‹C 

the substrates. Film thickness was measured with a Tencor Alphastep 500 profiler after each 

deposition. Table 4.2 lists the DC- and RF-sputtering rates of each of the metal films. 

Duration 
15 min 
30 sec 
10 min 

H20 
- 

25•‹C 
120•‹C 

5 min 
20 min 



It is known that most deposition techniques produce films with densities that deviate 

from the bulk density [70-721. Gas inclusion and / or crystalline disorder may produce pores in 

the films, and an increased concentration of vacancies in the crystals reduces the film density. 

Low film densities have been reported to influence film properties such as the refractive index, 

the film adhesion, and the crystallization behaviour. However, thin-film density is difficult to 

measure directly, primarily due to the small amount of material involved. Although X-ray 

reflectivity has been reported to be the most accurate method [73], in practice, thin-film density is 

often determined indirectly by making separate measurements of mass, film area and thickness. 

To calculate the film density, the glass slide was weighed before and after film deposition. Then 

the area and the thickness of the deposited film were measured. The film density can be obtained 

easily by the following formula: 

where df is the film density, mf is the mass of the film, Vf is the volume of the film, mz and ml are 

the glass slide masses after and before film deposition, Af is the area and tf is the thickness of the 

film. 

Shown in Table 4.3 are the measurement and calculation results. Note that 80 wmin of 

Bi and 240 wmin of In were sputtered on glass slides separately. According to the deposition 

rates in Table 4.2, sputtering should deposit equal thickness films of around 960 + 160 8. of Bi 

and 960 + 144 8. of In, respectively. The actual thicknesses of Bi and In films are higher than 

calculated. Besides the sputtering current I voltage fluctuation, the spreading of sputtered 

materials to the neighbour substrates could also be the reason for thicker deposited films. The 

measured film densities of Bi and In are lower than their bulk values: 82.84% of bulk for Bi and 

74.13% for In. The entry "Mol of metal I cm2" is how many moles of Bi or In exist in 1 cm2, the 

ratio of which indicates the atomic ratio of the equal thickness Bi/In films. The measurements 



show that an equal thickness Bi/In thermal resist has 46.53at.% Bi and 53.47at.% In, and the 

atomic ratio is therefore 1:1.15. For more accurate film thickness and atomic ratio control during 

the deposition, cross deposition over neighbouring substrates should be taken into account and it 

is recommended that one sample holder be used for each pump-down. Table 4.4 lists the single 

film density of Bi, In and Sn, compared to their bulk density values. 

- -- - 

Table 4.3 Bi and In film densitv and atomic ratio for eaual thickness B a n  film. 

Table 4.2 Single metal film sputter rates (A/w.min) 
Film I DC rate RF rate 

tf - Average film thickness (hi) 
Af - Total area in cm2 
Vt - Total volume cm3 
df - Film density g/cm3 
7% of bulk density 
Mol of metal 1 cm2 
Equal thick Bihn atomic % 
Atomic ratio = 

4.2.2 Bimetallic Film Preparation 

1258 
19.97196 
2.5 1297E-04 

Table 4.4 Single metal film density, compared to its bulk value. 

Since the sputter system used in our laboratory has multiple targets, Bi/In two-layer 

thermal resists can be deposited in the vacuum without an air-break by sequential sputtering of In 

then Bi (only one pump down is needed). This reduced the level of contamination or oxidation at 

1190 
19.85017 
2.36217E-04 

8.1 1788 
82.84% 
4.88770E-07 
46.53% 

5.41 875 
74.13% 
5.61601E-07 
53.47% 

% of Bulk 
Density 
82.84% 
74.13% 
87.95% 

Element 

Bi 
In 
Sn 

1:1.15 

Bulk Density 
(g/cm3) 

9.80 
7.31 
7.30 

Atomic 
Weight 
208.98 
114.82 
1 18.69 

Film Density 
<dcm3> 

8.12 
5.42 
6.42 



the interface of the two metal films. The two-layer BiIIn thin film thermal resists were of 

Bi/In/substrate structure (Bi on top), unless otherwise specified. The sputter process is simple: let 

the substrate face the In target for a pre-set period of time, and then change the position of the 

substrate and let it face the Bi target for sputtering. The nominal thickness of each layer was 

calculated and set using the sputter rates listed in Table 4.2. When sputter power was fixed, 

sputter duration was used to control the film thickness, and also the atomic ratio. 

In order to deposit single layer, Bi-In mixed thin films, two-target co-sputtering was used. 

During co-sputtering, Bi and In targets were fired up and the substrate was arranged to move over 

each one of the targets alternately. The faster the movement was, the more even the film would 

be, yet also the slower the deposition rate. The sputter power ratio, in this case, determined the 

atomic ratio of the film, and sputter time influenced the total film thickness. 

4.3 Inorganic Thermal Resist Exposure System 

After the bimetallic thermal resist was prepared, the sample was then transferred to the 

thermal resist exposure system. The exposure system includes mainly three sections of 

equipment: X-Y-Z table, control computer and laser sources, as shown in Figure 4.2. 

4.3.1 X-Y-Z Table and Control Computer 

The X-Y-Z table is used to position the samples under the laser beam. The X-Y-Z table, 

as shown in Figure 4.3, is mounted on an air vibration isolated 2.5 ton granite base to minimize 

vibration. The table positioning was controlled by 633 nm laser interferometry using an HP 

5517B Laser Head, together with an Anorad laser controller. The positioning accuracy of this 

table is &0.05pm over a 25 x 25 cm area. The moving speed of the table along the X and Y 



direction can be set from 1 p d s  to 25 cm/s. A video camera, which is connected to a microscope, 

sends the laser exposure live video to the control computer screen. The thermal resist coated 

sample is placed on an aluminium sample holder, which is mounted on a Z-axis stage. The Z-axis 

stage offers the great convenience of focusing the laser beam on the sample. 
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Figure 4.2 Thermal resist exposure system: X-Y-Z table, control computer and laser sources. 
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Figure 4.3 X-Y-Z table and part of the argon laser system. 

The control computer is the central part of the whole system. It runs Microsoft Windows 

2000 as the operating system and proprietary laser table control software written by Professor 

Glenn Chapman and his group (refer to James Dykes' and Andrew McPherson's [74] theses). The 

computer communicates with the laser sources, X-Y-Z table, the electro-optical shutter and 



mechanical shutters through a multiple-port PC1 card. As the diameter of the laser beam is small, 

a raster-scan was often used to expose large areas and make patterns on the thermal resists. The 

control computer can take either command scripts or an 8-bit, bitmap image file as the input. The 

X-Y-Z table movement is controlled by the computer during the raster-scanning, while the laser 

beam stays stationary, as shown in Figure 4.2. 

4.3.2 Laser Sources 

Two laser systems were used as our light sources: a Coherent Innova 300 CW Argon Ion 

Laser and a Coherent Infinity Nd:YAG laser. 

4.3.2.1 Argon Laser 

The Coherent Innova 300 argon ion laser normally runs at 488 or 514 nm wavelengths, 

and the laser power can be continuously tuned from 0.06 W to over 6 W. Figure 4.4 shows the 

setup of the exposure optics using the argon laser. The laser beam was first reflected by a 

dielectric mirror into an electro-optical shutter. The shutter can not only operate at On (at which 

state the shutter lets over 85% laser go through) and Off (at which state the shutter lets only less 

than 1% laser go through) states, but also adjust the laser through rate smoothly from 1 - 85% 

according to the input from the function generator. This allows a continuous control of laser 

power, which is critical for grayscale mask preparation, discussed in Chapter 8. The shutter can 

also turn on and off at a very fast rate, controlling the laser exposure duration from minimum 2 ps 

to an arbitrary period of time. After passing through the shutter, the laser beam was focused by a 

converging lens (either a 50 mm lens, a 5x objective lens, or a 50x objective lens) before it hit the 

surface of a resist-coated sample. 
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Figure 4.4 Coherent Innova 300 CW argon laser and its exposure optics. 
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Figure 4.5 Knife edge test set up. 

Laser beam profile tests were carried out using a knife edge method to check the laser 

beam shape and size, as they are important to the exposure of thermal resists. Figure 4.5 shows 

the test setup. A blade was placed on a micro-movement stage, and the stage moved along the 

direction perpendicular to the laser beam. The test started with the blade either blocking the 

whole beam, so that the sensor read 0 W, or the reverse. The stage moved a fix step along one 

direction. The laser power was measured by a sensor, which was connected to a meter, at each 

point. 



In an ideal TEMoo mode, a laser beam has a simplified one dimension Gaussian intensity 

distribution of the following: 

where, A is a constant related to the peak intensity I - , u is the centre position of the 
- A J ~  

beam and o is the standard deviation and also half of the beam radius at l /e2 of the peak intensity. 

The beam radius is commonly defined as the point where the beam intensity drops to l /e2 of its 

peak value. Integrating f(x) gives the error function as follows, and P(x) is the measurement from 

the knife edge test. Note that this is a simplified one dimension model, depicting the cross-section 

of a laser beam. 

In this test, the argon laser power was set to 0.08 W on the console, and the laser was 

further attenuated to 0.0127 W by a neutral density filter of 0.8 OD. The micro-movement stage 

moved 50 steps and each step was 48 pm. Figure 4.6 shows the measured laser power vs. the 

error function fitted curve, with u = 1143.2 pm, o = 394.4 pm, and A = 76.8 Wlm. The beam l /e2 

diameter is 40 = 1.6 mm. Figure 4.7 is the argon laser Gaussian profile with the error function 

fitting parameters. 
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Figure 4.6 The knife edge test: power measurements of the argon laser vs. Z distance with an error 
function fitted curve. 
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Figure 4.7 The argon laser Gaussian profile curve using the error function fitting parameters: 
~ 1 1 4 3 . 2  pm, a=394.4 pm, and A=76.8 W/m. 
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Figure 4.8 The influence of argon laser beam intensity on the size of exposure on the thermal 
resist. 

It is noticed that the laser beam diameter is not defined according to the absolute power 

intensity value, but an intensity ratio. Shown in Figure 4.8, the two Gaussian beams have 



different peak power density, but they have the same beam size. However, as thermal resists are 

sensitive to absolute power density (the total amount of heat absorbed per area), laser beams with 

different power densities will create exposure areas of different sizes. Figure 4.8 reveals that, 

assuming the sensitivity threshold of a thermal resist is 7.5 w/m2, a laser beam with I. = 

26.2w/m2 creates spots 50% larger than a laser beam with I. = 1 3 . 1 ~ / m ~ .  The relationship 

between the laser power and the laser exposure size on a resist is important when laser direct- 

writing is used to expose thermal resists, and is critical when fine features need to be created. 

4.3.2.2 Nd:YAG Laser 

As most of the modem exposure systems used in wafer fabs are now steppers equipped 

with pulsed laser sources at wavelengths 248 nm or 193 nm, a special Nd:YAG (Neodymium 

doped Yttrium Aluminium Garnet) laser was used in our lab to make pulsed exposures on BUIn 

and its class of bimetallic thermal resists. Figure 4.9 shows the structure inside the Nd:YAG laser 

system. It is equipped with three harmonic crystals: 2nd, 4b and 5th HG. The system is rotated 90" 

counter-clock-wise with reference to Figure 4.10. The major difference between CW lasers and 

ultrafast (pulsed) lasers is that the latter can deliver laser of much higher power density. As the 

power density influences the heat flow in the resist thin film, thermal resist performance can be 

quite different under pulse laser exposure than under CW lasers. Figure 4.10 shows the optical 

system of the Coherent infinityTM Nd:YAG laser in our lab. The laser has a diode pumped 

Nd:YAG unit (or DPMO: diode pumped master oscillator), and an IR (1064 nm) flash lamp 

pulsed amplifier. The collimating lens, thin film polarizer, spatial filter, vacuum cell, etc., are 

used to modify the laser beam wave form and shape. 



Figure 4.9 Inside the Nd:YAG laser box. 
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Figure 4.10 The Coherent infinityT" Nd:YAG laser system [75]. 

The fundamental laser wavelength of this Nd:YAG system is 1064 nm. After the second 

harmonic crystal, as shown in Figure 4.10, the laser frequency is doubled and laser wavelength is 

halved to 533 nm. If a fourth harmonic crystal is added after the second harmonic the laser 

wavelength will be further halved to 266 nm. Similarly, a fifth harmonic crystal will reduce the 

laser wavelength to 213 nm. Table 4.5 lists the wavelengths available on our Nd:YAG laser 

system with the corresponding harmonic crystals, pulse duration and maximum power. The pulse 

repetition rate can be changed from 0.1 - 30 Hz. The optical table system inside the Nd:YAG 



laser box is designed to permit rapid changes between these wavelengths. The Nd:YAG laser 

beam was reflected and sent to the sample stage by dielectric mirrors of corresponding 

wavelengths. 

1 5" Harmonic I 213 25 4 

Table 4.5 Coherent Infinity Nd:YAG laser output wavelength and power. 

A knife-edge test was also carried out to study the Nd:YAG laser beam profile and beam 

spot size. The test result would help understand the source of a distortion in the direct-pattern or 

projected image. The experiment setup was the same as in Figure 4.5. Figure 4.11 is a plot of the 

measured laser power from the sensor versus distance across the laser beam. 
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Figure 4.11 Laser power measured from the thermal sensor versus distance across the Nd:YAG 
533nm laser beam along the Y direction. 
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An error function curve fitting was carried out, and the result showed that the best fit was 

when A = 7.05 Wlmm, u = 2.81 rnrn, o = 1.29 mm. Figure 4.12 shows the fitting curve versus the 

measurement. From the fitting result one can see that the laser power intensity has a normal 

distribution. The corresponding Gaussian distribution is shown in Figure 4.13. The beam l /e2 

Max Power (mJ/pulse) 
640 
500 
100 

Pulse Duration (ns) 
4 
4 
4 



diameter was 40 = 5.16 mm, and the centre was at 2.81 rnrn. The knife edge test result shows that 

the highest intensity is at the centre of the beam, showing no skew. 
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Figure 4.12 Nd:YAG 533 nm laser spot: Gaussian distribution curve fitting of laser power versus 
the Y position measurement. 
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Figure 4.13 The Gaussian distribution curve of Nd:YAG 533 nm laser spot that corresponds to the 
fitting parameters: A = 7,05W/mm, u = 2.81 mm, a = 1.29 mm. 

4.4 Regular Photoresist Exposure Tool: Mask Aligner 

The Quintel 4 Inch Mask Aligner is a top and bottom side contact lithography exposure 

tool for fine lines down to 1 micron or better. It uses a mercury arc lamp, and is capable of 

processing 4 inch substrates. The mask aligner, as shown in Figure 4.14 consists of several 

coordinated, inter-related systems including: 

1. Substrate loading, holding and unloading system. 



2. The mask supporting system. 

3. The substrate/mask/align system. 

4. The viewing system (microscope and illuminators). 

5. The exposing system. 

The exposure power is approximately 10.0 to 12.5 m ~ l c m '  for I-line (365 nm). Exposure 

time can be set to 0.1 - 99.9 sec in 0.1 sec increment. 

Figure 4.14 Quintel 4 inch mask aligner with a Hg arc lamp as light source is used to expose regular 
organic photoresists. 

4.5 Wet Chemical Benches 

Wet chemical benches (as shown in Figure 4.15) were used extensively in this research 

for four processes: RCA cleaning before deposition, oxidation and diffusion, thermal resist 

development after exposure (discussed in Chapter 5), electroplating using bimetallic thermal 

resists as seed layers, and alkaline-based silicon anisotropic wet etching (both discussed in 

Chapter 7). All wet processes were carried out in fume hoods with negative pressure (-0.2 Water 

inch) so that no chemical fumes would spread out. 



Figure 4.15 Wet chemical bench. 

The equipment used for RCA cleaning was quite simple: two 2-litre beakers which could 

clean eight four-inch wafers at one time, and a hot plate for heating up the RCA chemicals. As the 

wet development of exposed thermal resist and electroplating were done at room temperature, hot 

plate was not needed. 

Silicon anisotropic etching was carried out in heated (80 - 95OC) KOH, TMAH or EDP 

solutions. A stirring hot plate with the agitation from a magnetic stirring bar. a water cooling 

vapour condenser and a 2-litre beaker were used for the etching process, as shown in Figure 4.16. 

r '  
Figure 4.16 The setup for silicon anisotropic etching. 



4.6 Plasma Etching Tool 

As will be discussed in Chapter 7, bimetallic thermal resists were found to be resistant to 

fluorine-based dry plasma etching, and O2 plasma etching. Extensive plasma etching experiments 

were also carried out using the Axic Benchmark-I1 PECVDRIE dual chamber system, as shown 

in Figure 4.17. Basic components in the Benchmark 800-II@ system include a Windows-based PC 

controller with recipe storage, two process chambers: one for PECVD deposition and the other 

for R E  (reactive ion etching). The R E  process chamber is made of aluminium. The upper 

portion contains the top electrode and is available with in-situ variable electrode spacing. The 

lower pol-tion contains the substrate electrode without a heating element. Both electrodes are 

made of stainless steel. The upper electrode contains the "showerhead" gas delivery system and 

the spacing between the upper and lower electrodes can be continuously varied between 1"  and 

3.5". The RIE cathode is supplied with a dark space shield, confining the plasma between the two 

electrodes. An automatic hoist raises the upper portion of the chamber for easy access to the 

lower electrode for sample loading. The plasma sources are solid state and air cooled. The RF 

frequency is 13.56 MHz and the maximum power is 600 watts, with auto matching networks. 

Three channels of gases, CF4, CHF3 and 02, are connected to the chamber and controlled by mass 

flow controllers. 



4.7 Film Analysis Tools 

In order to investigate the basic materials characteristics of bimetallic thermal resists 

before and after the laser exposure, different kinds of analysis tools have been employed in this 

thesis work. 

A Varian Cary 3E UV-Vis spectrometer, at the Chemistry Department in Simon Fraser 

University, was used to test the optical transmission of as-deposited and laser exposed thermal 

resist films. It has a built-in dual beam system which can eliminate the influence of the substrates. 

The scanned wavelength range is from 190 nm to 900 nm. 

Film thickness measurement was one of the most important tests in the lab, as it was 

closely connected to the resist sensitivity and optical transparency. A Tencor Alpha-Step 500 

Profiler was used for this purpose. The profiler is a computerized, high-sensitivity surface profiler 

that measures roughness, waviness, and stop height in a variety of applications. It uses a moving 

stylus and features the ability to measure vertical structures ranging from 100 8, to - 0.3 rnrn, 

with a vertical resolution of 1 or 25 8,. It can also measure micro-roughness with up to 18, 

resolution over short distances as well as waviness over a full 10 mrn scan. 

4.8 Structural Analysis Tools 

Material analyses tools at the Physics Department in Simon Fraser University have been 

heavily used throughout this research to understand what had happened during each of the 

processes. X-ray diffraction 8-28 scan (XRD, Cu Ka,) analysis has been frequently used in this 

research to evaluate the thin film compositional and micro-structural characteristics. 

Transmission electron microscopy (TEM, Hitachi 8000, 200 kev) was used to investigate the 

grain size and the film crystal structure. Scanning electron microscopy (SEM, FEI 235 Dualbeam 



with Focused Ion Beam) was used to study the film surface morphology, and various thermal 

resist application results. AFM (atomic force microscopy) was used to test the thermal resist 

surface roughness. SAM (scanning Auger microscopy), RBS (Rutherford Back Scattering, at 

Western Ontario University) and XPS (X-ray photoemission spectrometer) analyses played 

important roles in understanding the laser conversion mechanism 

4.9 Summary 

This chapter described the preparation procedure of bimetallic thermal resist, using DC- 

and RF-sputtering. Single metal films were studied to determine the sputtering speed and the film 

density. Bi had the fastest sputter rate (12.0 hw.min) and In the slowest (4.0 &w.m). Film 

density was over 80% of bulk material for Bi and Sn and - 74% for In. The laser exposure system 

included mainly three components: X-Y-Z table, laser sources and control computer. The control 

computer could take either 8-bit bitmap file or command script text file as an input for pattern 

writing. Argon and Nd:YAG lasers were used as the laser sources, which offered a wide range of 

wavelengths from 213 nm to 533 nm. The wet bench tools and the dry plasma etcher were also 

introduced, as many wet and dry etching experiments were conducted on bimetallic thermal 

resists. Analysis tools were also briefly presented. A Varian Cary 3E UV-Vis Spectrometer, 

Tencor thin film profiler and an X-ray diffraction system were the three major analysis tools used 

throughout the thesis. The next chapter uses the deposited samples and measurement tools of this 

chapter to investigate the behaviour of the bimetallic thermal resists. 



Chapter 5 
Bimetallic Thin Film as a Thermal Resist 

5.1 Introduction 

For a complete photo or thermal resist, the material should be successfully exposed by 

sufficient irradiation, developed by dry plasma or wet solutions, able to protect underneath layer 

during etching, and stripped off easily when rework is required or lithography process is done. 

This chapter examines the attributes of the bimetallic thin films as thermal resists. The exposure 

process will be studied using several sources, starting with pulsed and CW argon laser. Nd:YAG 

laser, with different wavelengths, have also been used to make pulsed exposures on the bimetallic 

thin films. While direct-writing is the common method for pattern creation on the thermal resists 

in the lab, image projection has also been tried out. Development is an important step in 

photolithography to complete the pattern transfer from the mask to the resist. Two simple acid 

solutions will be introduced to develop the exposed thermal resists with high selectivity. Shelf 

tests will also be carried out to determine the film stability under extreme conditions. 

5.2 Thermal Resist Exposure 

Bi/In and its class of thermal resists have been exposed by several types of laser sources 

at 5 different wavelengths, and with different exposure methods. This section investigates the 

changes of physical property after exposure. The exposures described here were made on thermal 

resists deposited on glass slides, as described in Chapter 4. 



5.2.1 Pulsed Argon Laser Exposure 

The first experiment on any new film combination is to create a matrix of spots to 

establish the resist exposure condition. The experimental setup for argon laser pulsed and 

continuous exposure is shown in Figure 4.4. The laser beam was focused by a 50 rnrn converging 

lens. Exposing the thermal resists with single argon laser pulses was extensively investigated by 

J. Dhaliwal [76] and M. Sarunic [56] on Bib and BiISn. As Innova 300 argon laser is a 

continuous laser, so the pulse was created by an electro-optical shutter. The shutter gives the 

fastest on and off cycle down to lops, and the pulse can be adjusted to any longer duration, 

including CW. Working in conjunction with the X-Y-Z table, the exposure system made an array 

of exposure spots on a B i b  (50% Bi, 300 nm thick) film, with power ranging from 0.1W to 

1.25W and pulse duration ranging from 10 ps to 20 ms. Figure 5.1 shows two pictures, front-lit 

and back-lit, of the same spots exposed by pulsed argon laser with different pulse duration, from 

left to right, 100 ps, 30 ps and 10 ps, and with different power, from top to bottom, 1.25 W, 1.0 

W and 0.9 W. No surface reflectivity or colour change was observed when using 10 ps and 

0.08W exposure parameters. However, with the increase of the laser power and pulse duration, 

black spots were observed. The spot sizes increased with the laser power and pulse duration. It is 

very interesting to notice that the exposed area became more transparent than the unexposed area, 

as checked by a back-lit illumination. This indicated obvious physical characteristics changes, 

and suggested even chemical property changes were incurred by the laser exposure. 



Figure 5.1 The array of spots on Billn, made by pulsed exposures using argon laser with electro- 
optic shutter. Front-lit picture shows reflectivity changes on the exposed spots, and back-lit shows the 
exposed spots are transparent [56]. 

5.2.2 CW Argon Laser Exposure 

In order to create continuous exposed lines, large exposed areas and designed patterns for 

various applications and analyses, raster-scan exposure using continuous argon laser and X-Y-Z 

table was elnployed in this research. The setup is shown in Figure 4.2. A 48/48 nm BiIIn on glass 

substrate was place on the X-Y-Z table. The X-Y-Z table moved back and forth along X 

direction, and took a small increment step along Y direction after each X swipe. The laser beam 

was kept stationary during the raster-scanning and focused by a 50 mm converging lens onto the 

sample surface. The table moving velocity along the X-direction was usually set at 10 mmds 

unless otherwise specified. In order to ensure that the raster-scan process would create an even 

exposure on the thermal resists, the Y-direction incremental step (Y-step) was set according to the 

laser spot size and the laser power. When using a 50 mm converging lens, the Y-step was set to 

10 pm, as the exposed area on the resist was measured to be 16 pm wide for a single X swipe. 

When using a 5Ox objective lens, as the laser spot size was reduced, the Y-step was set to < 2 pm. 



c--. 
Figure 5.2 Laser exposed lines on RiIIn film made with continuous argon laser raster scanning. 
(glass substrate, 0.2 W laser focused by 50 mm lens) 

Figure 5.2 shows a front lit picture of a group of parallel, single-scan lines exposed with 

0.2 W laser beam focused by a 50 mm focal length converging lens. The thermal resist was a 

48/48 nm BiIIn film deposited on glass. The correspondent back lit picture shows that the lines 

turned out to be transparent, as were the single pulse exposed spots in Figure 5.1. The line width 

was about 18 pm. 

Figure 5.3 40140 nnl Bib: an argon laser raster-scanned area (the upper grey part), exposed with 
0.5 W beam, focused by a 50 mm focal length converging lens. The lower part is the unexposed shiny 
bimetal film. (800 x optical micrograph) 

Shown in Figure 5.3 is part of a large raster-scanned area (0.3 inch x 1 inch) made on a 

40140 nm BiIIn film, using a 0.5 W laser beam focused by a 50 mm focal length converging lens 

before hitting the film surface. The 800x optical image shows a continuous laser exposed film 

(the upper portion of the picture), a smooth interface line, and the shiny, unexposed bimetallic 



film (the lower portion of the picture). The scanning speeds along X and Y directions were set to 

10 rnrnlsec, and the lateral step size was 10 pm. The picture clearly shows that there were no 

obvious stripes caused by the raster-scan process. 

It is noticed that the bimetallic films, such as Bi/In and SnIIn, and the single metal Bi, In 

and Sn films, are very soft. Scratches can be easily made on the unexposed films by finger nails. 

Thus, surface protection is critical to this bimetallic thermal resist process. 

5.2.3 Exposure with Pulsed Nd:YAG Laser 

In order to meet the high throughput requirements, laser sources of high power are 

needed in the micromachining and microfabrication industry. It is easy to calculate how much 

light power is needed from the sensitivity of a photoresist and the exposure time of a required 

throughput [6]. A typical I-line (365 nm) photoresist requires an optical energy density of 100 

mJlcm2 for its exposure. A minimum optical power density of 200 mw1cm2 is necessary if the 

exposure is set to 0.5 second. Usually light sources (e.g. mercury vapour lamps) with 2.5 to 5 

times the requested minimum power are supplied. Taking the total illuminated area as 8 cm2, 

which is common for stepper systems, a total power of 4 to 8 W is required. This is a significant 

amount of laser power. 

The photo exposure systems that are most widely used in modem microlithography are 

steppers with high power (2 - 20 W) pulsed excimer lasers, with the wavelength ranging from 

248 nm to 195 nm (may be extended to 157 nm in the future), and pulse duration from 4 ns to 50 

ns depending on the laser type. Photoresists for these wavelengths are exposed at the level of 5 - 

50 mJlcm2. Another laser light source, Nd:YAG laser, has the great potential applications in the 

lithography: the two useful wavelengths are 4' harmonic 266 nm and 5' harmonic 213 nm, with 

very good optical characteristics and a similar pulse duration. However, the successful 



introduction of 248 nm and the great progress made in development of 193 nm excimer laser 

lithography has attracted much of the attention away from the Nd:YAG laser [6]. Nevertheless, 

Nd:YAG laser is similar to an excimer: both are pulsed lasers and with comparable wavelengths. 

As excimer lasers require complex optical systems to correct their poor optical characteristics, 

Nd:YAG is the ideal alternative to an industrial level exposure system. The Nd:YAG system used 

in our lab was described in Chapter 4. Since it can provide laser beams with four different 

wavelengths (while excimers have only one), the Nd:YAG system gives the research wavelength 

flexibility to investigate wavelength invariance characteristics of the bimetallic thermal resists, 

and the minimum energy needed to convert the bimetallic thermal resists at different 

wavelengths. 

Two kinds of exposure methods were employed in the Nd:YAG pulse experiment: 

proximity and projection exposure. In the proximity exposure test, the beam from the Nd:YAG 

laser, with a diameter of approximately 5 rnrn, was used without any additional lenses to focus the 

beam. A series of tests were done with nested L type exposure structures (see Figure 5.4) at 

various laser powers for several film thicknesses. A 1501150 nm thick BiIIn imaging layer 

converted to the low absorbing material with a minimum energy pulse of approximately 

40mJlcm2 with 533 nm light (very close to the wavelength of the argon laser). SEM and optical 

microscope inspection showed that the imaging layers exposed with the short pulse were identical 

in appearance to exposures with the CW argon laser. For a thinner BiIIn sample, 15nd15nm 

thick, deposited on glass, the minimum exposure energy at 533 nm was measured at about 7 

mJlcm2. The diameter of the 266 nm laser remained at about 5 mm and no lenses were used to 

focus the light. Again using a sample of the 15 n d 1 5  nm thick BiIIn imaging layer deposited on 

glass, the 266 nm exposure converted the resist to the low absorbing material at a power density 

of about 6 - 7 m ~ l c m ~ ,  similar to the 533 nm light, illustrating the wavelength invariance property 

of the resist, that is, the exposure condition varies little with the wavelength. 



In addition to just exposing the thermal resist with the Nd:YAG laser spots, images have 

also been made on 35/35 nm Bi/In films as shown in Figure 5.4. A normal chrome mask with fine 

structures of various sizes was placed 0.5 mm above the B i h  film. 2nd harmonic 533 nm was 

used as an illuminating source. with a power density of 2.5 m~lcm', and repetition rate of 2 

pulses/sec. One to ten pulses were used to make an image. 

This result also shows that the conversion reaction time is < 4 nsec. Hence. the necessary 

exposure time is set by the laser heating rate of the film (i.e., the time needed to reach the 

tlireshold temperature), not the reaction rate. 

--- 
1 7  -- . .- 

Figure 5.4 Images were made on a Billn 35/35 nm film, "sing 533 nm Nd:YAG laser at 2.5 mllcm2, 
3.5 nslpulse. The line width is 150 pni in (a) and 30 gm in (b) (50 x optical micrograph). 
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Figure 5.5 The optical setup for Nd:YAG to make a prqjected image on the Binn thermal resist. 
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Figure 5.7 An image made on a 45/45 nm Binn film. (a) is a front-lit microscopic view of a 
projected pattern, and (b) is the back-lit view of the same image. The line width is 20 pm. 

The optical setup for projection exposure is shown in Figure 5.5.  It consisted of a beam 

expander, a condensing lens and a photo mask in between. The Nd:YAG lasers running at the 2nd 

harmonic (533 nm green), 4'' (266 nm UV) and 5Lh (213 nm UV) were used as the projecting light 

source. The photomask was full of the pattern shown in Figure 5.6, with feature widths from 50  to 

150 pm. Figure 5.7 (a) and (b) are the front and back-lit microscopic pictures of the projected 

images projected on a 45/45 nm BiIIn film. It was noted that the projected image had some 

unwanted exposures between the patterned lines. This was caused by the poor uniformity of the 

Nd:YAG laser beam. 

It is important to notice that the laser exposed areas on the thermal resist, either exposed 

by argon laser or Nd:YAG lasers of different wavelengths, show a substantial change in optical 



characteristics: the exposed areas are more transparent than the unexposed films, so that the 

projected pattern is visible. This demonstrates an important advantage of these thermal resists: the 

exposed pattern is directly seen after imaging. It is known that the latent images made on 

conventional photoresist after exposure are not visible, and the inspections such as CD 

measurement, overlay registration, can only be done after development, when the relief images 

are generated. Photo re-work has to be done if serious defects are found. With the unique feature 

that the latent images patterned on the thermal resists are visible, bimetallic films will save 

process cycle time, as inspections can be carried out before development. For our experimental 

design, this visibility was extremely important. As will be discussed in Section 5.3, when a 

visible pattern appeared on the film, it could be successfully produced as a developed structure 

(relief image). Thus, it was only necessary to visibly inspect the films after exposure to determine 

whether the exposure levels required were obtained. In comparison, no organic photoresists can 

be inspected before development. 

Unlike conventional organic photoresists, which should be handled only under the 

standard photolithography yellow safelights, the bimetallic films do not show exposure under 

regular illumination for any given period of time. It is only when the laser energy is delivered in a 

short enough pulse and exceeds the thermal threshold are these films exposed. This makes 

thermal resists more flexible in the environment of expensive fabs. 

5.2.4 Wavelength Invariance: Experimental Results 

RAT simulations presented previously in Chapter 3 suggest that exposure sensitivity 

(absorption) changes slowly from 514 nm, 248 nm, 157 nm to 13.4 nm and lnm. Experimental 

results in the previous section show that single pulse exposures of -7 mJ/cm2 can successfully 

create exposed images on BiIIn films of 15/15 nm to 45/45 nm thick at 213 nm, 266 nm and 533 



nm. Argon lasers with 514 nm and 488 nm wavelengths have also successfully exposed the 

bimetallic films. This confirms the optical calculations predicting wavelength invariance. 

It is also worth noting that simulation suggests that Bib films of 15/15 nm thickness still 

absorb -12% of the total exposure light in the X-ray range (lnm) (refer to Chapter 3). Compared 

with about 60% of the light absorption at 248 nm. Based on the measured 266 nm Nd:YAG 

exposure sensitivity, which is 7 mJlcm2, this projects that BiIIn resist could have a single pulse 

exposure sensitivity of -35 mJlcm2 at the X-ray range. 

Given the fact that it can be exposed by IR 830 nm GaAs diode laser beam, which will be 

discussed in Chapter 8, both theoretical modelling and experimental results demonstrate that 

bimetallic thermal resists operate from IR to the EUV, and even into X-ray range, showing the 

wavelength invariance property. 

5.3 Thermal Resist Stripping and Development 

5.3.1 Resist Stripping 

Being able to be stripped from the substrate is one of the fundamental requirements of a 

good photoresist. Organic photoresists are usually stripped by solvents such as acetone and O2 

plasma. But organic contamination is always a problem. Hence, chemical cleans (e.g. RCA) are 

often done between layers. For inorganic metallic thermal resists, RCA2 (HC1:H202:H20 = 1: 1:6) 

at 80•‹C has been chosen as the stripper after the patterning is done with defects or there is a need 

for reworking. The reason that RCA2 is used is that it has been the classic cleaning solution to 

remove metallic contaminants in the microfabrication industry for decades. It is silicon process 

compatible. 

To test the effectiveness of RCA2 stripping, a silicon wafer was first deposited with 

1201120 nm BiIIn film. Laser raster-scanning (0.15 W argon laser focused by 50x objective lens, 
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y direction increment 0.4 pm) was then carried out to created a 1 x 1 cm2 exposed area. The 

whole wafer was subsequently processed with an RCA2 clean (1:1:6 at 80•‹C). It was observed 

that the unexposed area dissolved in RCA2 in less than 10 seconds. The exposed area dissolved in 

about 4 minutes. After a full cycle of RCA2 cleaning for 10 minutes, the wafer was rinsed 

thoroughly with DI water. Auger test was carried out to analyse the wafer surface before and after 

the cleaning on both exposed and unexposed areas. As shown in Figure 5.8, Bi and In peaks were 

seen on as-deposited film. An oxygen peak appeared after laser exposure. After RCA2 stripping, 

only Si and 0 peaks showed up, indicating that Bi and In had dropped below the Auger test 

detectable limit. 

R C A 2  cleaned 
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Figure 5.8 Auger analysis shows that RCA2 can strip exposed (0.15W, 50x objective lens) and 
unexposed Binn film effectively. Lased and RCA2 cleaned curves was shifted by +4000 and -2800 
counts, respectively, for display purpose. 

It was also noted that RCA2 cleaning could not remove the exposed film effectively 

when it had been exposed with very high laser power (> 0.35W 50x objective lens on the same 

silicon wafer). HF dip was needed in order to completely remove the layer. Refer to Chapter 7 

and 10 for the discussion of the possible cause of this phenomenon. 



5.3.2 Resist Development 

Resist development is an essential process for modem microlithography, in which either 

the laser exposed area (positive resists) or the unexposed area (negative resists) should be 

selectively removed so that the retained will form a lithographic mask for subsequent processes. 

The development selectivity results from the change of the chemical and physical properties of 

the resist after exposure. It was noted that BiIIn deposited on glass and quartz substrates was 

converted to a significantly less optically-absorbing material when exposed to laser irradiation. 

Such considerable optical change suggested that the converted materials have significantly 

different physical and chemical characteristics than the unconverted materials. In wafer 

fabrication industry, an etch selectivity ratio > 20:l (the ratio between the etch rate of the 

unexposed and exposed layers) is preferred when developing hard masks. 

Two types of developer can be examined: one is to selectively eliminate the unexposed 

area of the metallic resist, making it a negative resist; the other is to selectively remove the 

exposed area, making it a positive resist. A BiIIn film deposited on SiOz (100 mm diameter wet 

oxidized wafer) with equal thickness of 45/45 nm was used in this test. A series of lines with 

different widths were first made by argon CW laser raster-scanning (0.2 W focused by 50x 

objective lens). The sample (for good comparison, one wafer was cut into pieces and each time a 

small piece was tested.) was then dipped in the developing solution for 5 sec to over 15 min and 

rinsed thoroughly with DI water. A profiler was used to measure the film thickness at the exposed 

and unexposed areas before and after the development. Different acid solutions with different 

concentrations and acid combinations were tried out, including nitric acid, hydrochloric acid, 

acetic acid, sulphuric acid, phosphoric acid, mixtures of nitric acid and hydrochloric acid, nitric 

and acetic acid, sulphuric and hydrochloric acid, and phosphoric and acetic acid. 

Most of the acid solutions and acid mixtures did not meet the developer requirement. 

However, it was found that a solution of DI water, nitric acid and acetic acid with the ratio of 
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HNO3:CH3COOH:Hz0 = 1:3:6 at room temperature removes the unexposed area much faster 

than the exposed, thus making the resist a negative one. It gave a good etch selectivity of exposed 

to unexposed area of larger than 65:l (refer to Table 5.1). The etch rate of unexposed area is 

about 26 k sec .  However, nitric acid solution has a scum problem: it cannot remove the trace 

metal residue in the unexposed area within the nominal development time according to the etch 

rate, as shown in Figure 5.9. To solve this problem, usually longer development is applied and 

followed by a dilute RCA2 clean up for 10 to 30 seconds. 

The chemical reactions during the development are not fully understood at this moment. 

It is speculated that HN03 is the major etchant. The role of acetic acid (CH3COOH) in the 

developer is complex. It is frequently substituted for water as the dilutent. It has a lower dielectric 

constant than water (6.15 for CH3COOH versus 81 for HzO), which produces less dissociation of 

the HNO, and yields a higher oxidation power of HN03. Also acetic acid is less polar than water 

and can help in achieving proper wetting of the metal surface [77]. With the increase of nitric acid 

concentration, the etch speed of both exposed and unexposed films increases. But the develop 

selectivity decreases. Figure 5.10 shows the relation between the develop selectivity and the nitric 

acid : acetic acid : DI water ratio. The x-axis is the number of parts of nitric acid in the solution, 

y-axis is that of acetic acid, where the total of nitric acid, acetic acid and DI water should be 10. It 

shows that the 1:3:6 ratio yields the highest selectivity. 

The RCA2 stripping process lead to the finding that the solution of HC1:H202:Hz0 = 

1:1:48 at room temperature is an even better developer for Bi/In resist. Instead of using the 

HC1:Hz02:Hz0 solution at a much higher concentration and at the temperature of 80•‹C for 

stripping, the exposed films were developed in a much dilute formula and at room temperature. 

From the slope of these lines, the selectivity is above 60: 1, and the etch rate is 65 k sec ,  which is 

faster than nitric acid solution (Table 5.1). It also has good descumming capability, and no 

remnant material was left behind after the development, as shown in Figure 5.1 1. Figure 5.12 



shows the result from an etch comparison experiment. One can notice that the thickness of the 

unexposed area of the film reduces rapidly, while that of the exposed area changes slowly with 

time. 

Figure 5.9 Residue was seen after exposed Bi/In was developed by nitric acid solution. (30130 nm 
film exposed by 0.2 W argon laser focused by 50 mm lens, developed for 1 minute) 

Table 5.1 Development solutions 
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Figure 5.10 Develop selectivity vs. nitric acid : acetic acid : DI water ratio. 
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Figure 5.11 Developed with dilute RCh2 solution, no residue was seen on the sample. 
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Figure 5.12 Development rate comparison between nitric acid solution and HCI:H202:H20 solution. 
The thickness of Bib films reduces as the etching time increases. 
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Figure 5.13 Line width reduces with the developing (dilute RCA2) time. It saturates at 45 pm. 

As a wet development process is not anisotropic etching, the width of the exposed lines is 

expected to decrease with the development time. A 45/45 nm BiIIn film was exposed with 65 pm 



wide lines using CW argon laser raster-scanning (0.2 W and 50 mm lens). The sample was 

developed in a HC1:H202:Hz0 solution for different durations (5-150 seconds). The width of the 

lines was measured using an optical microscope line width system. As shown in Figure 5.13, the 

line width dropped quite fast for the first 20 seconds. and then saturated at 45 pm. There are 

many possible causes to this line width reduction phenomenon. One of the most likely reasons is 

that since the argon laser intensity across the laser beam follows a Gaussian distribution, the 

thermal resist exposed to the beam edge is not converted as completely as is the centre of the 

beam. Also the heat dissipation along the lateral directions in the resist film could partly convert 

the film to the exposed state when the film thickness is greater than 30 nm [78]. This is due to the 

long duration (- 1 msec) argon laser pulse, and would not occur in the shorter 20 nsec excimer 

laser pulses of current DSW (direct-step-on-wafer) exposure tools, since the exposure is too short 

for the heat to flow more than 1 nm. (See Chapter 9 thermal modelling) 

In order to make an anisotropic development, plasma etching of the bimetallic thermal 

resist is a viable method as ions in the plasma can be guided in one direction. Also, successful 

plasma development will make Bi/In thermal resist a completely dry lithographic process 

material. 

Figure 5.14 SEM picture of the developed 2 prn wide HVIn lines with 10 pm spacing. 



Figure 5.15 A 45' tilted SEM picture of developed Binn lines on Si02/Si wafer. 
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Figure 5.16 Profile of a developed Binn line. 

Figure 5.14 is an SEM picture of a developed Bi/In line pattern on a S i02  layer on a 

silicon wafer. These are 2 pm wide lines with 10 pm spacing made by CW argon laser (5 14 nm at 

0.05 W, 50x objective lens) raster scanning on a 45/45 nm Bi/In film. The sample was developed 

in a HC1:H202:H10 solution for 60 sec. Figure 5.15 shows a 45" tilted SEM picture of the 

developed Bi/In lines. Figure 5.16 shows the profile of a developed Bi/In line on the same 

sample. The total thickness of the film was -0.12 pm. 

5.4 Stability of As-deposited Bimetallic Thermal Resists 

A shelf lifetime test was conducted to investigate the stability of the as-deposited Bi/In 

films. A Bi/In 50/50 nm film was deposited on a glass slide. Then the slide was cut into 4 pieces. 

XRD analysis and UV spectrum were carried out on each of the slide pieces before the shelf test. 



A multi-purpose stainless steel oven was used for the shelf test. The oven temperature was kept at 

50+loC , >90% humidity for 10 days (Table 5.2). 

The four samples were taken out of the oven separately according to the time schedule in 

Table 5.2, and then XRD and UV spectrum tests were immediately conducted. Figure 5.17 is the 

combined result of pre and post oven test XRD (Refer to Chapter 6 for more discussion of XRD 

analysis). The film properties do not change after around 10 days in the humid, hot environment. 

UV-Spectrometer result shows the same result, as in Figure 5.18. As a matter of fact, the BiIIn 

films can still be exposed and developed even after being stored on our lab shelf for 3 years. 

SnIIn films exhibit the same stability characteristics. Bimetallic thermal resists are extremely 

stable under normal environment conditions. By comparison, the life time of a typical organic 

photoresist is about 7 days if it is to operate properly as a resist. Older photoresists are also much 

harder to strip. 
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Table 5.2 Shelf test conditions. 

Figure 5.17 XRD spectra for shelf test on the same 50150 Binn film. From the bottom to the top are 
curves of 1) as-deposited, 2) after 66 hours, 3) 117 hours, 4) 158 hours and 5) 233 hours of oven time. 
No detectable changes were observed. 
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Figure 5.18 UV-Spectrometer results of shelf test. From bottom to top are 1) after 0 hours, 2) 66 
hours, 3) after 117 hours, 4) after 158 hours and 5) after 233 hours of shelf test. 

The experiments on Bi/In films first started in 1999. We have samples of unexposed and 

exposed bimetallic resists which are over 4 years old. No notable changes in these films are 

found. Since stripping is a chemical etch process, it is also unaffected by age. This long lifetime is 

another advantage to Bi/In and its class of thermal resists. 

5.5 Electrical Properties of Exposed Bimetallic Resists 

Relative to organic resists Bi/In has the unusual property of being electrically conductive 

instead of insulating both before and after exposure. This in turn opens the possibility of several 

interesting applications which will be discussed in Chapter 7 and 8. 

Organic photoresist layers, from the process point of view, are sacrificial layers, which 

must be removed after the patterns are transferred to the structural layers below. Bimetallic 

thermal resists are totally different. Not only can it be used as a lithographic layer for patterning, 

but also as a structural film for subsequent processes. Another significant difference, which can 

be explored, is that the bimetallic thin film thermal resist is conductive both before and after 

exposure. This electrical conductivity opens the door to many potential applications. The sheet 



resistance of exposed and unexposed samples was measured using an MP0705A four-point probe 

from Wentworth Labs, which was connected to an HP 3478A multimeter. The 4 probes are 

arranged in a line with 1 mm spacing between each another. Electric current flows between the 

outer two probes, and the voltage drop across the film is measured by the inner two probes. To 

ensure the accuracy of the measurement, it is required that the conducting film thickness be less 

than 40% of the spacing, and that the edges of the film be more than 4 times the spacing distance 

away from the measurement points. The sheet resistance measurement was carried out on a series 

of single and bilayer thin films deposited on glass substrates. The Bi/In bilayer film was 30130nm. 

It was first measured on the unexposed Bi/Jn film (BilIn 30130 U in Table 5.3), and then on the 

argon laser raster-exposed film (BilIn 30130 E in Table 5.3). The laser power was 0.20 W. The 

exposed sample was dipped in HC1:H2O2:H2O solution for 40 sec for development, and its sheet 

resistance was measured after a N2 blow-dry (Bi/In 30130 D in Table 5.3). The resistances of 

single layer Bi and In films of thickness 15 nm, 30 nm, and 45 nm were also measured. It is 

noticed that the resistivity of the thinner Bi and In films was higher than that of bulk materials, 

dropping significantly as the films got thicker. This can be attributed to the fact that the oxidized 

part of the film is likely more significant in thinner films than in thicker films. It is noticed that 

the exposed films were slightly more conductive than unexposed films. A surprising finding is 

that the developed resist is conductive. It is known that I T 0  (indium tin oxide) is a conductive 

and transparent oxide, and it has been widely used as a conductive optical film for decades. 

Indium bismuth oxide is clearly a new type of conductive and transparent oxide. This indicates 

that the Bi/In thermal resist can not only be used as a patterning material, but also as an 

electroplating seeding layer (refer to Chapter 7 for the electroplating application). This has the 

potential to simplify the manufacturing process since separate resist removal and seeding 

processes are not required. The developed film is more conductive than most of the current 

barrier layer films and silicide films. For example, the resistivity of the most conductive silicide 



TiSi, is about 1.6x10-' Ocm, and TaN, the barrier layer used for copper plating, is about 2.5~10.'  

SZcm [79]. 

Table 5.3 Sheet resistance/resistivity of as-deposited and exposed Bi/In films (0.2 W, 50 mm lens). 
I Bi I Bi I Bi I In 1 In 1 In I Binn I Binn I Bfin 1 

Sheet 
resistance 
(nlsq) 
Film 
resistivity 

5.6 Summary 

(15nm) 

484.7k39 

(S2cm) 
Bulk 
resistivity 
(Q cm) 

The main focus of this chapter was to reveal that bimetallic thermal resists are complete 

resists: they can be exposed, developed and stripped, just like conventional organic photoresists. 

Experimental results confirmed that bimetallic thermal resists are wavelength insensitive, as 

predicted by the optical model. Different laser sources (argon and various Nd:YAG lasers) and 

different exposure methods (proximity and projection exposures) were applied to convert the 

bimetallic thermal resists. Shelf life tests demonstrated that as-deposited bimetallic films are very 

stable under normal environments. An interesting finding was that exposed bimetallic films are 

still conductive, which could open the door to some new applications. Although BiIIn was mainly 

reported here, SdIn and single In metal films have identical exposure and development 

characteristics. The next chapter will discuss the structural analysis of the bimetallic thermal 

resists before and after laser exposure. 
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Chapter 6 
Structural Analysis of Bimetallic Resists 

6.1 Introduction 

Bimetallic thermal resists have shown, in previous chapter, unique features and 

promising applications in micromachining and microfabrication industry. They can be laser 

exposed, wet developed, are resistant to wet and dry etching, and more transparent after laser 

exposure, which makes them potentially a commercially viable direct-write photomask material. 

But why the bilayer thin film becomes etch-resistant and transparent after laser exposure? To 

understand the laser conversion mechanism of bimetallic thermal resists, extensive material 

analyses will be carried out in this chapter. First, single metal films will be studied by XRD and 

surface profiler before and after the laser exposure. The test results will give one some idea of 

intrinsic behaviour of each metal film under laser exposure. Then Auger, XPS, RBS, XRD 

analyses will be carried out to investigate the structural changes in bimetallic films. It is well- 

known that microfabrication is extremely susceptible to contaminants. An important question on 

bimetallic thermal resist process is: is the thermal resist poisonous to silicon devices? The 

successful manufacturing of solar cells with bimetallic thermal resist process gives a positive 

sign. In this chapter, this issue will be further inspected from a different angle: material analysis. 



6.2 Analyses of Single Film Laser Exposure 

6.2.1 Bismuth Films 

It is advantageous to look into the laser exposure of single film system as i t  is much 

simpler than that of a bilayer system. Single layer Bi and In 40-48 nm films were DC-sputtered 

separately on glass slides. These experiments used the same Argon laser system with the beam 

focused by a 50 mm lens. 
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Figure 6.2 Profile test shows comparatively smooth as-deposited Bi area on the left of the plot and 
balling up on the exposed Ri area on the right of the plot. 

The exposed Bi film started to show "transparency" at very low laser powers (75 mW). 

This is in agreement with the fact that the Bi thermal conductivity is lower than any metal, except 
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mercury, and is also in agreement with our optical modelling, indicating that Bi film absorbs 

more energy from the incident light, although Bi has higher melting point than In. However, it 

was found that the Bi film melted and agglomerated to form round shape dots. It was not 

continuous, as shown in Figure 6.1. Profilometry confirmed this discontinuous characteristic 

(Figure 6.2). This is totally unlike the single In films which remain contiguous. 

6.2.2 Indium Films 

More interestingly, it was found that In film turned transparent at 225 mW, twice as 

much power needed to make BiIIn bilayer transparent. Since there is no other metal in this single 

In system, alloying is not likely the main process in bimetallic thermal resist laser conversion. 

Under the microscope it  was found that converted In film was even and continuous (Figure 6.3). 

Profilometry test showed that as-deposited In film was rough, as in Figure 6.4 (a). The film 

became even rougher as the film thickness increased. The roughness remained pretty much the 

same after In film is laser exposed, and the film is still continuous and even. However. significant 

growth in film thickness was observed, as in Figure 6.4 (b). Film thickness increase (from 48 nm 

to 148 nm) indicates a possible reaction process, and this was confirmed by XRD analysis. 

I I 
Figure 6.3 In film after lascr scanning. The grey area is laser raster-scanned. It is transparent, 
even and continuous. The white area is as-deposited 48 nm thick In. (800x optical) 
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Figure 6.4 (a) Profilometry result of 48 nm thick, as-deposited, single layer In on silicon substrate. 
On the left side of the high peak is the Si substrate and the right side is the In film, Ra = 218 A. (b) A 
profile across the exposed and unexposed area of 48 nm In film. Area on the left side of the high step 
is exposed, while the right is unexposed. 

6.2.3 X-ray Diffraction of Bi and In films 

X-ray diffraction analysis was carried out on the Bi and In laser-exposed films to 

investigate how single film structure changes with laser power. In order to get strong XRD peaks 

from the single metal films, thick films (120 nm) of Bi and In were DC-sputtered on glass slides. 

The argon laser was used to raster-scan the samples to make large laser-converted area. As per 

Sections 6.2.1 and 6.2.2, XRD was performed on areas scanned with different laser power. The 

XRD peaks were indexed by calculating the crystal plane distance d from the diffraction angle of 

the peak 0 using Bragg's Law equation, and checking against the JCPDF (Joint Committee for 

Powder Diffraction Files) cards 5-519, 5-642, 14-699 and 6-416 [go]. The Bragg's Law shows 

that 

nl  = 2d sin 8 (6.1) 

where d is the crystal plane distance, 8 is the diffraction angle, l is the wavelength of the X-ray, 

and n is an integer. 

Although Bi thin film melted to form round shape dots, XRD analysis showed that Bi 

was actually also oxidized after laser exposure. As shown in Figure 6.5, no oxidation was 



observed in as-deposited film. With lower power laser exposure, Bi203 started to grow. With 

exposure of 0.9 W laser power, all Bi peaks disappeared and only one Bi203 peak was seen, 

indicating that laser conversion of Bi film is an oxidation process, and that the exposed Bi film 

was arranged along a preferred orientation <121>. The hump from 15" to 35" in the XRD curve 

was caused by the glass substrate. 

Figure 6.6 shows three XRD curves of In samples: as-deposited film (0 W), scanned with 

0.4 W and with 0.9 W laser. As expected, the as-deposited film displays typical diffraction peaks 

of powder indium. All the major peaks show up. From left to right, the peaks are (101) (002) 

(1 10) (1 12) (103) and (21 l),  respectively. No preferred orientation is observed. With the increase 

of laser power to 0.4 W, In was oxidized and two h203 peaks appeared. When In film was laser- 

scanned with 0.9 W laser power, all the In peaks disappeared, indicating that the film was 

completely converted into a non-metal structure. It is interesting to notice that even indium oxide 

peaks no longer existed. This may be due to an orientation change of the converted film, or, most 

likely, its conversion to an amorphous material. Powder diffraction analysis on the high power 

laser converted film will be carried out to confirm whether the film is crystalline or amorphous. 

6.2.4 Single Metal Process 

These single metal film results give an important clue to the process of bimetallic thermal 

resists. The X-ray results are very clear because these peaks are well known in the literature. It is 

noted that as there is only one metal laser exposed, there can be no metal alloying reaction. The 

clear presence of metal oxide peaks demonstrates that oxidation is an important part of the 

metallic thermal resist process. By extension, this helps us understand the probable behaviour of 

the bimetallic films as Bi-In alloy oxide X-ray data are not available in the literature. 
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Figure 6.5 X-ray diffraction of Bi films: as-deposited (0 W), 0.1 W and 0.9 W laser exposed. The 
laser conversion is an oxidation process. 
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Figure 6.6 X-ray diffraction of In films: as-deposited (0 W), 0.4 W and 0.9 W laser exposed. With 
the increase of laser power, In is oxidized and becomes amorphous. 

6.3 Analyses of Bilayer Film Laser Exposure 

Single metal film tests showed that oxidation and film re-orientation are the two major 

structural modifications due to laser exposure. With the addition of another metal layer, the 

situation becomes a little more complicated. 



6.3.1 Analysis of Binn Laser Conversion 

6.3.1.1 Profile Test 

Single film analysis showed that Bi film was smooth with Ra = 20 8, (Ra is the average 

roughness), while single In layer was very rough with Ra = 218 8,. Figure 6.7 shows a profile test 

across the exposed and unexposed area of a 40140 nm Bi/In film (raster-scan laser power = 1.5 W 

with 5x objective lens, scan speed = lcmlsec, and Y direction increment = 5 pm). Due to the 

roughness of In, Bi/In was much rougher than Bi, yet smoother than an In layer, with Ra = 100 8,. 

The laser scanned BUIn film on the left became rougher than the unexposed film on the right, 

with Ra = 200 A. A slight film thickness increase (-300 A) was observed on the exposed side, 

which is unlike the In film that showed a significant film volume increase after laser exposure. 
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6.3.1.2 XRD Analysis 

X-ray diffraction (Cu, Ka,) was used to identify the structural components in the Bi/In 

bimetallic films before and after the laser exposure. Bilayer Bi/In films of different thickness 

were deposited on glass substrates. Figure 6.8 shows the XRD results of the as-deposited and 

0.5W laser scanned 15/15 nm Bi/In. It was surprising to find that the Bi-In alloy InBi was the 

major component in the as-deposited film. There was one weak Bi peak, showing the existence of 

single Bi metal, but no single metal In peaks were observed, indicating that most of In had 
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alloyed with Bi. From the 15/15 nm Billn XRD result, one can see that there is slightly more Bi 

than In in the film. This may be due to the fact that the sputter rate of Bi is faster than that of In, 

and it is not constant through out the sputter process. However, quantitative analysis with X-ray 

data is difficult as this can only be taken as an indication, not a measurement of the ratio 

difference. 

It is important to point out that indexing the peaks of the XRD scan of Bi/In films is 

difficult, because the 28 I d spacing values of many of the peaks from different phases are close to 

each other (see examples in Table 6.1). This is even more obvious when indexing laser scanned 

Bi/In films. After the 15/15 nm Bi/In was laser exposed, all the InBi alloy peaks disappeared, and 

some new peaks appeared. It is hard to tell whether the strong peak of the 0.5W exposure is Bi or 

Bi203. Referring back to the findings in the previous section on single metal analysis, one could 

infer that it could be an oxide peak. The same problem occurs to most of the other peaks in the 

0.5 W curve. 

I 

10 30 50 70 

2 theta (degree) 

Figure 6.8 X-ray diffraction results of 15/15 nm Binn films on glass substrates: as-deposited and 
0.5 W laser scanned. 

Figure 6.9 shows the XRD curves of a thicker, 90190 nm BiIIn when it was as-deposited, 

scanned with 0.8 W, and 1.0 W laser powers. Similar to the thinner sample, 90190 nm Bi/In had 
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mostly InBi alloy peaks in the curve, but In and Bi peaks were also spotted. After laser exposure, 

most of the peaks disappeared and new peaks appeared. Checking against the JCPDF (Joint 

Committee for Powder Diffraction Files) cards, one can see In203 peaks, and also note that not all 

of the new peaks can be indexed. It is rational to assume that some new material, possibly ternary 

alloy oxides were formed after laser exposure. 

Table 6.1 E e to each other. 

10 30 50 70 

2 theta (degree) 

Figure 6.9 X-ray diffraction results of 90190 nm BiOn films on glass substrates: 
and 1.OW laser scanned. 

as-deposited, 

BiIIn films were also deposited on silicon (either 100 or 11 1 oriented) wafers to use Si 

XRD peaks as the reference. Similar results were obtained, indicating that errors caused by the X- 

ray instrument were negligible. In summary, XRD 8-28 scans found Bi-In alloy in the as- 
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deposited BiIIn films, and indium oxide and bismuth oxide in the laser-exposed films. There were 

new peaks that could belong to new ternary alloy oxides in the laser-exposed films. 

6.3.1.3 TEM Analysis 

A great advantage of Transmission Electron Microscopy (TEM) is the capability to 

observe, by adjusting the electron lenses, both electron microscope images (information in real 

space) and diffraction patterns (information in reciprocal space) for the same region. Bragg's law 

is also used to index diffraction patterns. Unfortunately, the preparation of a TEM sample of laser 

exposed BilIn films was not successful. 

Figure 6.10 BiIIn (12112 nm) film: plan-view TEM BF (bright field) and SAD (selected area 
diffraction) patterns of (a) as-deposited on SiO-coated copper grids, and (b) 246•‹C annealed in air. 

As the laser exposure of Bi/In is a thermal process, furnace annealing of BilIn films were 

carried out in air at 150, 200 and 246•‹C for 3 hours in order to compare them to the laser exposed 

samples. As shown in Figure 6.10 (a), TEM of the same thickness bilayer deposited directly onto 

SiO-coated Cu grids showed a polycrystalline, island morphology (150 nm average diameter). 

Analysis of the electron diffraction pattern found that the film was an InBi alloy, in agreement 



with XRD results. Figure 6.10 (b) shows a planview TEM results from a similar bilayer deposited 

onto a SiO-coated copper grids that was furnace-annealed in air at 246•‹C. The film is still 

polycrystalline and the grain size is similar to that of as-deposited. Indexing of the SAD patterns 

by Mahshid Karirni [8 11 showed the development of Bi and In oxides, as shown in Figure 6.1 I. It 

was noted that the Bi/In film turned slightly transparent after annealing at 246•‹C for 3 hours. 

However, it  was much less transparent than a laser exposed Bi/In film, indicating probably a 

different process than the laser conversion. Figure 6.12 (a) shows the UV-Vis spectrum test 

results of 35/35 nm Bi/In films on glass annealed for 25 minutes at different temperatures in the 

open air. With increasing annealing temperature, the film optical density dropped. However, it 

saturated at 200•‹C. One can see that the spectrum curves for 200•‹C and 246•‹C overlapped with 

each other. Figure 6.12 (b) is a re-plot of (a) at the wavelength of 688 

double-arrow line). 

nm (as indicated by the 

Figu 
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Ire 6.11 Indexing SAD pattcrns of Bi/In film furnace-annealed at 246"C, shown in Figure 6.10 
(by. In and Bi oxides were fodnd. 



300 500 700 

Wavelength (nm) 
0 100 200 300 

Temperature (C) 

Figure 6.12 Optical density of Binn vs. furnace annealing temperature. (a) the UV-Vis spectrum of 
Binn films annealed at difference temperatures for 25 minutes; (b) the Binn film absorption vs. the 
furnace annealing temperature at 688 nm wavelength. 

Different preparation methods have been tried out in order to make a good TEM sample 

of laser-exposed film. We tried to thin down an exposed film on silicon substrate using ion- 

milling, but later found that the film had been damaged along with the Si substrate. Wet chemical 

method using HF solution to etch the exposed film away from glass substrates showed that the 

exposed film reacts with HF to form some new compound. Bimetallic films were also directly 

DC-sputtered on SiO- and formvar-coated TEM copper grids, followed by argon laser exposure. 

However, due to the thermal effect (which melts the formvar) and the high heating up rate 

( 2 . 5 ~ 1 0 ~  "CIS, which causes the SiO film to crack), the trial was not successful either. One of the 

important future works is to continue working on TEM sample preparation. In particular, ways of 

reducing the grain size of the bimetallic thermal resist films should be explored. 

6.3.1.4 RBS (Rutherford Backscattering Spectroscopy) 

Rutherford backscattering spectroscopy (RBS) is one of the most powerful techniques for 

measuring elemental depth profiles. It allows quantitative and non-destructive analysis with a 

reasonable depth resolution. In conventional RBS (combination of 1 - 4 MeV He ions with a 

silicon surface-barrier detector), the typical depth resolution is about 10 nm. Sensitivity of 



lOOppm can be easily obtained for heavy elements in light hosts although analysis of light 

elements in heavy hosts is difficult. 

The RBS analysis (2 and 3 MeV Hett), and nuclear reaction analysis (NRA, 160(d,p)'70) 

were done, in collaboration with Prof. K. Kavanagh at Simon Fraser University and Dr. W. 

Lennard at University of Western Ontario, on as-deposit, laser-exposed, and furnace-annealed 

BiIIn films at 150, 200 and 246•‹C. All the samples were 1201120 nm thick on silicon substrates. 

The results for the as-deposited films in Figure 6.13 clearly show that In is detected on 

the surface even though it is deposited first, next to the substrate. This is consistent with the 

severe roughness observed with the profilometry of In film and the InBi alloy formed from XRD. 

The simulation results showed that the as-deposited film had a 2.5 nm h203 surface layer and a 

200 nm thick BilIn1.400.06 average film composition beneath it, as shown in Figure 6.14. It is 

interesting to notice that after furnace-annealing at 150, 200 and 246•‹C for 3 hours, the film 

structure does not change (as shown in Figure 6.15, Figure 6.16 and Figure 6.17), except that the 

top In203 layer gets a little thicker, which is 18, 15 and 28 nm, respectively. After laser exposure 

oxidation of the films was detected as seen in Figure 6.18. The simulated spectrum was generated 

by a target film with a 2.5 nm thick surface layer of In203 and a BiIno.606 /Bio.31n06 bilayer of 

average thickness 200 - 245 nm below it. 

25 JUT 20112 Channel  No. 
3 0 0  3 5 0  400 4 5 0  5 0 0  5 5 0  600 6 5 0  

Energy  (keV) ( l o 3 )  

Figure 6.13 The experimental and simulated RBS spectra of as-deposited B i b  on Si. 

114 



Bi,, In,, O,, thickness (average) - 200 nm 
(ranges from 90-310 nm over -1 mm distance) 

Figure 6.14 A schematic of the as-deposited Binn film, with assumed target non-uniformity used in 
the RBS simulations and the layer compositions. 
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Figure 6.15 The experimental and simulated RBS spectra of BiAn on Si, furnace-annealed at 
150•‹C. 
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Figure 6.16 The experimental and simulated RBS spectra of Binn on Si, furnace-annealed at 
200•‹C. 
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Figure 6.17 The experimental and simulated RBS spectra of Binn on Si, furnace-annealed at 
246•‹C. 

2s r d  :IIV Channel No. 

Figure 6.18 The experimental and simulated RBS spectra of Binn on Si, laser exposed with 0.95 W 
power and laser beam focused with a 50x objective lens. 

Table 6.2 summarizes the oxygen content obtained from both the NRA and RBS data. 

There was considerably more oxygen in the laser-exposed films, almost ten times more than that 

of furnace-annealed samples. Furnace annealing below 246•‹C does not cause as much 
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1 0 1  RBS 

(10'~ at./cm2) 
0.27 
0.84 

0.7 

1.3 

13.5 

Sample 

as-deposited 

150" furnace anneal 
200" furnace anneal 
250" furnace anneal 

Laser exnosed 

[Ol NRA 
(1017 at./cm2) 

0.22 
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0.8 

1.5 
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modification in the thermal resist films as does laser exposure. This was also confirmed by earlier 

observation on the degree of film transparency of furnace-annealed Bilin sample. Preliminary 

furnace-annealing experiments at higher temperature (500•‹C) were also conducted. W - V i s  

spectrometer test showed the 500•‹C annealed sample was more transparent than those annealed at 

246"C, but still far less transparent than laser exposed ones. 

These results may indicate that the laser exposure have possibly created a meta-stable 

film with a high concentration of oxygen, as the laser exposure heats up the film rapidly (- 2x10~ 

Ws, refer to Chapter 9), and the film also cools down quickly after exposure. Such fast thermal 

cycle cannot be achieved by conventional furnace heat treatments. 

6.3.1.5 XPS Analysis 

X-ray Photoelectron Spectroscopy (XPS) is a surface analytical technique, which is based 

upon the photoelectric effect. A core electron can escape from its atom (called photoelectron) 

when the energy of an incident x-ray photon is large enough. The binding energy of the core 

electron is give by the Einstein relationship: 

where h v  is the x-ray photon energy; E, is the kinetic energy of the photoelectron, which can be 

measured by the energy analyzer; and @ is the work function induced by the analyzer. Thus, the 

binding energy of the photoelectron can be determined as all the items on the right side of the 

equation are known. The photoelectron of an element has a unique binding energy. Thus, almost 

all elements, except for hydrogen and helium, can be identified via measuring the binding energy 

of its photoelectron. Furthermore, the binding energy of the photoelectron is very sensitive to its 

chemical bonding state. The same atom bonded to different chemical species leads to a change in 

the binding energy of its photoelectron. The variation of binding energy results in the shift of the 
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corresponding XPS peak, ranging from 0.1 eV to 10 eV. This effect is termed a "chemical shift", 

which can be applied to studying the chemical status of elements in a surface. 

XPS (Mg, Ka @ 54.7") was used to investigate the chemical state of Bi and In before and 

after laser exposure in BiIIn films. The penetration depth was 10 - 15 A, without profile 

sputtering. For the pure metal state (not bonded with other atoms), the Bi photoelectron 4f7,2 

binding energy, as shown in Table 6.3, should be around 156.8 - 157 eV. If Bi is bonded with 

oxygen, the binding energy shifts to around 159.2 - 159.8 eV. Similar shifts occur when In 

becomes oxidized, as shown in Table 6.3. Pure In has the energy of 443.5 - 444 eV, and oxidized 

In has 444.3 - 444.8 eV 

1 Ex ose 

1 5 8  1 6 2  1 6 6  

E n a r w  ( a v )  

1 7 0  4 3 5  4 4 0  4 4 5  4 5 0  4 5 5  4 6 0  
E n a r w  ( a V )  

Figure 6.19 XPS analysis results for metals in exposed and unexposed 15/15 nm BiDn film: (a) Bi 
and (b) In. 



XPS analysis was carried out on a BVIn film (15115 nm on glass, laser scanned with 

0.2W 50 mm lens focused beam, Y increment = 10 pm). Figure 6.19 (a) shows the binding 

energy of Bi 4f7,, and 4f5/, photoelectrons in both unexposed and exposed areas. Both pure Bi and 

showed up in the unexposed film. This was not unexpected, as the penetration depth was only 10 

to 15 A, and the top 1 or 2 Bi atom layers were oxidized. After laser exposure, all the pure Bi 

peaks were gone and only Bi203 peaks were detected, showing an oxidation was associated with 

the laser exposure process. Figure 6.19 (b) shows the binding energy of In 3d5/, and 3d3/, 

photoelectrons in unexposed and exposed BiIIn films. No pure In peaks showed up in the 

unexposed film. This is in agreement with the RBS result that about 25 A of the top layer was 

In203, which is thicker than the XPS penetration depth. After laser exposure, there was no 

obvious In peak shift observed, indicating, at least at the top layer, In was in the form of In203. 

XPS depth profile test is very useful for understanding the metal status in the exposed 

BVIn films. This result strongly reinforces the concept that oxidation is important for the 

bimetallic resist process. 

6.3.1.6 Auger Analysis 

Auger analysis, often called SAM (Scanning Auger Microanalysis), provides elemental 

and chemical composition for all elements with an atomic number greater than helium. Its 

sampling depth of 2-3 nm allows films as thin as a few monolayers to be analyzed. Auger also 

produces images of the distributions of elements along the surface and produces profiles of 

composition vs. depth from 1 to 2000 nm. In many aspects, XPS and SAM are similar to each 

other. Table 6.4 shows the comparison of XPS and SAM. The Auger analysis tool used in this 

research was a semi-customized Scanning Auger Microscope Model 25-120 manufactured by 

Physical Electronics Industries, which was equipped with a Model 04-303 sputter ion gun. 
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Table 6.4 Comparison of XPS and SAM 
XPS SAM 

Analyzed Signal 
Sampling Depths 
Detection Limits 

Figure 6.20 is the Auger spectrum of the surface of as-deposited 1201120 nm BilIn film 

on silicon substrate. After a partial sputter to remove carbon, chlorine and other contaminants, the 

bimetallic film showed pure Bi and In, and the atomic ration is 1:1.17. Figure 6.21 shows the 

depth profile of the same Bi/In film after laser exposure with 0.8 W argon laser focused by a 50x 

objective lens. The Y direction increment was 0.4 pm. The profile shows Bi, In, 0, Si, C and C1 

concentration changes with the argon ion sputter time, which is directly proportional to the depth. 

0 was present in the exposed film, which is in good agreement with XRD and RBS. The Bi 

concentration gradually decreased with the sputter time. In, as also found by RBS, already existed 

on the film surface. No sharp interface between Bi and In layers was observed. What is important 

is that for laser-exposed samples we see Bi, In and 0 at all depths, which is consistent with an 

oxidation process. 
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Figure 6.20 Auger spectrum of 1201120 nm as-deposited Bi/h film on silicon substrate. 
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Figure 6.21 Auger spectrum of laser exposed 1201120 nm Binn film on silicon substrate. 

Figure 6.22 In before and after laser exposure: MNN Auger electron kinetic energy comparison. 
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Figure 6.23 Bi before and after laser exposure: NO0 Auger electron kinetic energy comparison. 



A shift in the kinetic energy of Auger electrons was observed after the argon laser 

exposure. Figure 6.22 shows that the pure In MNN (410 eV) shifted to 406.4 eV, which is exactly 

the value for the In MNN in In203. Here, the MNN Auger electron is created in the following 

Auger process: when an M-level electron is ejected by the primary beam, an N-level electron 

drops into the vacancy, and another N-level electron is ejected. Figure 6.23 reveals that pure Bi 

NO0 (101 eV) shifted to 98 eV, which is also the value for the Bi NO0 in Bi203. This again 

confirms the XPS test result that In and Bi were oxidized in the form of Bi203 and In203. 

It is also noted that the depth profile, shown in Figure 6.21, has a broad interface region. 

One scenario is that In had diffused into the silicon substrate after laser exposure, and this was 

actually what had happened at the interface. However, this may not be the case, as the silicon 

should have shown a steep concentration increase at the interface, as In does not have high 

solubility in silicon, or form an alloy with silicon. The other possibility is the interface was sharp, 

and the broadening of the interface was caused by argon ion sputtering in the Auger microscopy. 

Kosiba, et a1 [85], found that the sputtering angle of argon ions played a crucial role in the sputter 

behaviour of InN, which is similar to In203, and was very important for the proper sputter depth 

profiling procedure. The sputtering at 0•‹ and 60" with respect to the surface normal caused the 

surface to become rougher due to the build-up of indium droplets, and thus the interface was 

broadened. The sputtering angle of argon ions used in our Bi/In test was 60". Future work in 

Auger analysis will be to use higher incident angle, such as 80•‹, for sputtering. This could 

alleviate the broadening problem. This Auger work again confirmed that the laser formed Bi/In 

resist appears to have undergone an oxidation process. 

6.3.2 Analysis of SdIn Laser Conversion 

XPS and Auger analyses confirmed that both Bi and In were oxidized after laser 

exposure. On the other hand, IT0  (indium tin oxide) has been widely studied [86-891 for decades. 
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The extensive materials analysis on IT0  can be used as a reference for us to study the laser 

conversion of SdIn. In this section, XRD analysis was carried out on bilayer SdIn films before 

and after the laser exposure and the results was compared with IT0  data. 

Figure 6.24 shows the XRD patterns of 120 nm thick, 10wt.% SdIn film, the typical IT0  

ratio (refer to Appendix C). The diffraction curve of the as-deposited SdIn film is similar to that 

of pure In film, as shown in Figure 6.6. No metallic Sn peaks are observed. This is obviously due 

to the low concentration of Sn. When the film was exposed to 0.1 W argon laser, indium oxide 

peaks (222) and (400) started to appear. With the increase of the laser power, metal indium peaks 

retreated and the indium oxide peaks (222) and (400) became stronger. Other oxide peaks also 

showed up. However, with further increase of the laser power, only a weak In203 (222) peak was 

seen, indicating strong orientation along the e l  11> direction. Figure 6.25 shows the XRD results 

of 120 nm, 50% SdIn  film. Metal Sn peaks could be seen besides In peaks. When the film was 

exposed to laser beam, Sn was oxidized first, as shown by the curve at 0.085 W. As the laser 

power increases, tin oxide peaks disappeared, and indium oxide peaks (222), (400) and (440) 

appeared, and the intensity increased as well. This is similar to the reports [89-911 that the IT0  

(222) intensity changes with the oxygen flow rate and the deposition power 1 deposition rate 

when I T 0  films were grown. Figure 6.26 is the typical XRD pattern of an IT0  film. Normally, 

only two peaks (222) and (400) are seen, and the intensity of the two peaks is sensitive to 

preparation parameters. 
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Figure 6.24 XRD results of 10% 120 nm thick S f l n  film exposed with different laser power. 

The XRD results imply that the fully laser-converted SdIn films are similar to IT0  films. 

While IT0  films may have different preferred orientation < I l l >  or <loo>, laser converted S n h  

films tend to have only one preferred orientation < I l l> ,  which is the most densely packed 

structure. This is probably part of the reason why exposed SnIIn or Bi/In is resistant to plasma 

and wet chemical etching. X-ray results also indicate that more metal is oxidized when exposed to 

laser of higher power. 

Classic I T 0  films are prepared by various PVD methods [86-891. Laser conversion of 

Sn/In bimetallic films is clearly a new technique for creating IT0  films. The biggest advantage it 

offers is the direct-write patterning feature. 
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Figure 6.25 XRD results of 50% 120 nm thick Snnn film exposed with different laser power. 
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Figure 6.26 The typical XRD pattern for IT0  [80,88-911. The intensity ratio of (222) to (400) varies 
with processing parameters. Other peaks do not always show up. 

6.4 XRD and Auger Analysis of Bimetallic Resist Development 

It is the attribute of being developable that makes Bi/In a complete bimetallic thermal 

resist. Dilute RCA2 and nitric acid solutions can selectively remove the unexposed area and 



retain the exposed area, making BiIIn a negative resist. It is interesting to determine if the 

chemical developing process removes or creates materials, besides removing unexposed metallic 

layers. 

A 60160 nm BiIIn film was deposited on glass substrate, followed by laser exposure 

(50mm lens focused, 487.5 mW, argon laser beam). The laser scanning speed was lcrnts, and the 

Y direction increment was 10 pm. The exposed pattern was then developed in dilute RCA2 

(1:1:48) for 100 seconds at 25OC. Figure 6.27 illustrates the XRD patterns before and after 

development. As expected, the laser exposed film consisted of In203 and Bi203. Due to the fact 

that Bi was deposited on top of In, and Auger revealed that Bi existed on the top half of the 

exposed films, one can see much stronger Bi203 peaks that In203 ones. After development, it is 

observed that all the Bi203 peaks disappeared, showing that bismuth oxide is not resistant to 

dilute RCA2 etching. All the In203 peaks remained. Auger analysis of the same developed 

sample, shown in Figure 6.28, revealed that there was still about 8.9% of Bi in the developed 

film. This amount of Bi in the In203 can be considered as a dopant material, as is Sn in IT0  films, 

not detectable by the X-ray detector. 

XRD and Auger analysis results indicate: laser exposure of BVIn alloy film causes phase 

separation of two oxide phases: one the Bi-doped In oxide, the other Bi oxide. The dilute RCA2 

development removes metallic BVIn on the unexposed area, as well as the Bi203 on top of the 

exposed area. We can infer that it is the In203 possibly doped with Bi that is resistant to dilute 

RCA2, alkaline solution, and CF4/CHF3 plasma etching, and this is in good agreement with single 

In and single Bi experiment results discussed in Chapter 7. 
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Figure 6.27 XRD patterns before and after dilute RCA2 development. 
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Figure 6.28 Auger analysis of dilute RCA2 developed Binn film. 

6.5 Oxidation and B a n  Resist 

One puzzling aspect to these oxidation results was that previous experiments [68] had 

shown that BilIn resist did convert even under non-oxidizing atmosphere, such as nitrogen, 

vacuum (10.~ Ton) and forming gas (5% Hz in N2). Yet the clear evidence in this section shows 

that oxidation is the important process and that there is only a small amount of oxygen in the film 

after deposition. What this previous results suggest is that the oxidation is quite aggressive. Only 

a small amount of oxygen from the residual 0 in the gases 1 vacuum or the trapped water 

molecules in the system are necessary. 



6.6 Indium Bismuth Oxide (IBO) as a New Material 

For decades, IT0  (tin doped indium oxide) film has been widely used for applications 

such as touch panels, LCD displays, plasma displays, gas sensors, photovoltaics, etc., due to its 

conductive and transparent properties[86-891. This research has demonstrated that the laser 

converted indium bismuth oxide (IBO) is a new type of transparent and conductive material, 

which is comparable to IT0  film. Material analyses show that it has a structure similar to that of 

ITO. As IT0  has been widely studied, this similarity can help us further understand the behaviour 

of IBO and project the possible conductivity and transparency that it can achieve. Moreover, its 

value as a transparent conductive oxide should be studied further. The shelf life tests described in 

Chapter 5 showed IBO was extremely stable. It was noted that no degradation of optical or 

electrical performance was observed even after long exposure to laser in DI water or saline 

solutions, while I T 0  films tend to degrade under these conditions [92]. 

6.7 Summary 

Different analysis tools have been utilized to investigate the changes of film material 

properties incurred by laser exposure. It was interesting to find that Bi and In form a Bi-In alloy 

in the as-deposited resist film. XRD and TEM indexing revealed that bimetallic thermal resists 

were oxidized after laser exposure. Auger, XPS and RBS confirmed that both Bi and In were 

oxidized, showing that laser exposure is an oxidation process. Analysis of the conversion of SdIn 

films revealed that laser converted SdIn films have identical material structures as do I T 0  films. 

The next chapter looks at applications of the bimetallic resists. 



Chapter 7 
Applications of Bimetallic Thermal Resists 

7.1 Introduction 

The fundamental task of a photoresist or a thermal resist is to successfully transfer a 

pattern into the underneath functional layer, and at the same time, offer a shielding mask to the 

etching of the resist covered areas. That is the reason why these materials are called "resists". 

Either wet chemical or dry plasma etching is used to "cut" into the layer below. In order to 

achieve a near-perfect transfer, the masking resist layer should etch or erode at worst at the same 

rate, and ideally much slower than the substrate material. In other words, the exposed thermal 

resist should be resistant to the etching. As the bimetallic resists are thin film imaging resists, 

their full use would involve the addition of a lower thick protection layer patterned by the thinner 

layer. However, the exploration for direct applications of the bimetallic thermal resists is actually 

searching for etching processes that bimetallic thermal resists are resistant to. This chapter 

presents first a proposed thin film imaging process, then the application of BiIIn used as a 

patterning and masking layer for silicon anisotropic etching for micromachining, application as 

masking layer for fluorine-base plasma etching for microfabrication, and the novel combination 

of wet and dry etching to create special structures. As the exposed and developed bimetallic 

resists are conductive, BiIIn has also been successfully used as a seed layer for metal 

electroplating. 



7.2 Thin Film Imaging Process 

As mentioned in Chapter 1, the thickness of the organic photoresists used in conventional 

lithographic processes is typically from 7000 8, to 1 pm. This thickness serves two purposes. One 

is for planarization which provides a relatively level, smooth surface for better focusing during 

the exposure, as shown in Figure 7.l(a). The other is to provide enough mask protection for 

subsequent plasma etching. Bimetallic thin film thermal resists, however, are much thinner than 

organic photoresists for lithographic applications. Bi lh  resist of 15 - 150 nm thick may not 

provide enough step coverage for the edges of areas, as shown in Figure 7.l(b). Its resistance to 

all types of plasma etching is also unknown at this point. Furthermore, it is not clear whether the 

heat flow and the lasing temperature during the thermal resist exposure can cause a negative 

impact on the layer underneath. A prototype thermal resist has been devised to address these three 

issues. 

Spun-on photoresist 

Sputtered Bimetallic Resist 

Figure 7.1 Comparison of organic photoresist and thin film bimetallic thermal resist. 

The prototype bimetallic thermal resist consists of two layers: the Bi/In imaging layer and 

a thick protection layer, as shown in Figure 7.2. The bottom layer is a thick 0.5 - 2.5 pm 

protection layer of amorphous hydrogenated carbon. The bimetallic imaging layer is first 

patterned with laser exposure. The protection layer provides a thermal insulating boundary to the 

substrate. After developing the imaging bimetallic resist, the pattern is transferred to the thick 

protection carbon layer using a reactive ion etch in oxygen (02  RE) which attacks the carbon 

strongly and minimally affects the metal imaging layers [59]. This will be confirmed by an O2 



plasma test in Section 7.4. The development etch, sketched in Figure 7.2, leaves a high aspect 

ratio mask on top of the substrate which can be used for various microfabrication processes. 

Bilayer resist before imaging Resist after exposure and development protection layer etched in oxygen plasma 
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Figure 7.2 The proposed thin film imaging process: BiAn as imaging resist and amorphous carbon 
as protection layer. After the resist is exposed, the imaging layer is developed. The pattern is 
transferred from the imaging layer to the carbon protection layer by using an O2 RIE.[93] 

The prototype thermal resist structure would be applied to tackle lithography on wafers 

with complex morphology. However, it is still valuable to explore the features of bimetallic 

thermal resists as a single imaging and masking layer (without carbon protection layer) for 

planarized surfaces, such as bare silicon wafer and CMP processed oxide film. Furthermore, the 

unusual characteristics of BiIIn and its class of thermal resists allow us to explore applications not 

possible with organic resists. This is the primary goal of this thesis. Thus, this protection layer 

concept was not attempted in this research. The next section describes Bi/In as a patterning and 

masking layer for Si anisotropic etching. 

7.3 BiIIn as a Patterning & Masking Layer for Si Anisotropic Etching 

7.3.1 Background 

Significant progress has been made in the last decade with micro sensors and micro 

actuators due to the advances in both bulk and surface micromachining technologies. One of the 

most important bulk processing techniques is alkaline-based, anisotropic silicon etching on ( 100) 
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and { 110) orientation wafers, which produces v-shape grooves with { 11 1 ) sidewall 54.7" to 

{ 100) plane, and { 11 1 ) sidewalls 90" to { 110) plane, respectively [94,95,96]. Some reports 

[97,98] also show that alkaline solutions can be used for "isotropic" etching with porous silicon 

as the sacrificial layer. Some of the typical applications of this bulk etching technique are the 

fabrications of fluidic systems 1991, sensors [99,100,101], actuators [I021 and surface-textured 

high-efficiency solar cells [103]. 

The liquid etchants commonly used in current micromachining industry and research are 

inorganic aqueous KOH (potassium hydroxide), organic TMAH (tetramethyl ammonium 

hydroxide) and EDP (ethylene diarnine pyrocatechol) due to their good etch rate, high selectivity 

on crystal directions and silicon doping levels, and also the alkaline characteristics [104,105]. 

Unfortunately, these etchants attack rapidly standard organic photoresists, requiring the creation 

of a deposited or grown masking layer patterned by regular resists. Despite the etch rate 

difference for different masking materials, the classic silicon anisotropic etching process has 

identical masking layer preparation and etching steps, as shown in Figure 7.3, 

a) masking material deposition, such as CVD of Si02 or Si3N4; 

b) photo resist coating; 

C) exposure to transfer patterns from photomask to the photo resist; 

d) resist development; 

e) masking layer etching; 

f )  photoresist stripping; 

g) alkaline Si anisotropic etching; and 

h) masking layer Si02 or Si3N4 stripping. 
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Figure 7.3 Conventional silicon anisotropic etching (bulk micromachining) process 

One of the most frequently used masks for silicon anisotropic etching is SiO? as i t  is not 

only easy to be prepared by thermal oxidation or CVD method, but also easy to be stripped by HF 

or BOE [105,106]. However, SiO? still shows a finite etch rate in these etchants [104,105]. I t  has 

been seen that the etch rate for silicon dioxide is about 1.25 n d m i n  in 35wt.% KOH at 60•‹C, and 

7.7 n d m i n  in 50wt.% KOH at 80•‹C [105,107]. The Si02 etch rate is about four orders of 

magnitude lower than those of { 100) and { 110) [104]. In order to make a hole through a wafer, 

silicon dioxide mask layer of 4 to 5 pm thick has to be deposited, which is difficult to do. 

By comparison, silicon nitride, which is also widely used in the industry, is etched at an 

extremely slow rate, making i t  a good etch masking material [104,105]. Table 7.1 shows the etch 

rates of silicon, Si3N4 and SiOz in KOH. TIMAH and EDP. Si3N4 is difficult to make and etch 



itself. Si3N4 CVD deposition often produces films with varying stoichiometry and thus etch rate, 

which is difficult for etch control. 

Table 7.1 Comparison of Si anisotropic etchants. [107,108] 
(~tchant btch temperatur&nisotropic Bi02 Etch Rat&i3~4 Etch Rat4 

The point here is that current anisotropic etch methods involve many steps to implement 

and use mask materials that have their own disadvantages. 

7.3.2 Proposed BiIIn Resist Process for Si Anisotropic Etching 

Bi/In bimetallic film as both a thermal resist for patterning and an etch masking material 

for alkaline-based silicon anisotropic etch has been investigated in this section. This new Bi/In 

process has fewer steps than conventional SiOz or Si3N4 processes. 

The Bi/In process includes 5 steps as shown in Figure 7.4: 

a) The preparation of DC-sputtered Bi/In (30 nm to 90 nm thick for each layer) 

films on RCA-cleaned (100) silicon wafers (Figure 7.4 (a)); 

b) Argon laser raster-scan exposure (Figure 7.4 (b)); 

c) Pattern development (Figure 7.4 (c)); 

d) Anisotropic etching (Figure 7.4 (d)) and 

e) BiIIn stripping (Figure 7.4 (e)). 
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Figure 7.4 B i h  for anisotropic etch process. (a) Bi and In sputtered on a (100) silicon wafer. (b) 
Binn exposed. (c)  Binn developed. (d) Developed Binn layer as an etch mask in KOH, TMAH or 
EDP a t  80 - 85•‹C. (e) Ri/In mask stripped off by RCA2 cleaning and HF dipping. 

7.3.3 Bi/In Lithography 

In order to find out the laser-exposed and developed BiIIn etch rate in KOH, TMAH and 

EDP. BiIIn was first deposited on glass slides. The glass samples were dipped in the etchant 

solutions for different durations after laser exposure and development, and the Bi/In pre- and 

post- thicknesses were measured by a profiler. The glass etch rate was also taken into account 

when calculating the BiIIn etch rate. 

In this Si anisotropic BiIIn lithography DC-sputtering of Bi/In bimetallic film was done 

on silicon substrates, argon laser exposure to create patterns on the thermal resist, and BifIn resist 

development in dilute RCA2 solution, which have been described in previous chapters. The 

details will not be repeated here. Nevertheless. it was observed that the laser power for exposure 

of B i h  films on silicon substrates was higher than that on glass substrates. Obviously, this is due 

to the fact that silicon has much higher thermal conductivity (149 WImK) than glass (0.8 WImK). 

More heat is lost in silicon during the exposure process, especially for CW or long duration laser 

exposure. Argon CW laser was used to expose the B2In films. The laser beam was focused by 

different objective lens (5x, 50x, instead of the 50 mm focal length converging lens) before i t  hit 

the sample. The waist of the focused beam was from 2 pm to 6 pm. The power of the Argon laser 
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used for the scanning was from 0.16 W to 0.32 W when using the 50x objective lens. Note that if 

shorter pulse duration exposures were used, this effect would be much smaller as much less 

thermal diffusion would occur during the exposure. (refer to Chapter 9 for further discussions) 

7.3.4 Exposed Bi/In Etch Rate in Anisotropic Etchants 

In order to find out the etch rate of the inorganic resist in KOH, TMAH and EDP, BVIn 

(1201120 nm) was DC-sputtered on glass slides. Laser raster-scanning was then carried out to 

make lines of different width (32 pm - 3 mm) with 1 mm spacing. The slide samples were 

developed under the same condition, as were the silicon samples. A Tencor AS500 profiler was 

used to measure the thickness of the lines before and after the etching in different etchants with 

different durations (20 sec to 10 hours). Figure 7.5 shows the thickness measurement results of 

the developed Bib films on glass slide samples after being etched for different durations in KOH 

at 85•‹C. As one can see the BVIn film thickness reduces with the etching time. However, the 

etching is very slow: about 120 nm of the developed film was removed after 2 hours of KOH 

etching. The etch rate is about 1 n d m i n  (obtained from the slope of the line in Figure 7 . 3 ,  which 

is slower than that of the silicon oxide etch rate in 50wt.% KOH at 80•‹C. The silicon etch rate in 

KOH at 85•‹C is about 420 n d m i n .  In comparison, Bi/In etch rate in TMAH is much slower than 

that in KOH. Figure 7.6 shows that 250 nm Bi /h  film was etched away in TMAH in 10 hours 

time which gives less than 0.5 n d m i n  etch rate, while the silicon etch rate is about 400 ndrnin  

in 25%TMAH at 85•‹C. The BVIn etch rate in EDP is similar to that in KOH, which is 0.9 

ndmin ,  as shown in Figure 7.5. It is noted that TMAH has a much higher silicon to BVIn etch 

rate ratio (800: 1) than KOH or EDP, making it a better anisotropic etchant for BilIn process. This 

means that a Bi /h  layer as thin as 630 nm would provide protection for etching through a full 

wafer. The glass slide substrate etch rate (5 h n i n )  in all the three etchants has been compensated 

when calculating the BilIn etch rate. 
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Figure 7.5 Binn film thickness with time in KOH and EDP. 
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Figure 7.6 Binn film thickness with time in TMAH. The etch rate is around 0.5 nmlmin. 

7.3.5 BiAn Patterning Alkaline-Based Anisotropic Etching 

All three alkaline anisotropic etchants, KOH, EDP and TMAH, were tried in this 

research. The KOH etchant solution and EDP used for the anisotropic etch were commercial 

products PSE-200 (33wt.% KOH, 1 mil / 3 min @ 100•‹C, <loo>) and PSE-300 (25 prnlhr 

@ 100•‹C, <loo>), respectively, from Transene Company. The TMAH (25%) was from Moses 

Lake Industries Inc. All the etchants were kept at 85OC with mechanical agitation. The etch time 

tried ranged from 2 minutes to 10 hours. The samples were DI water rinsed for 5 minutes after the 

etching. These conditions are the same as those used in the traditional oxide mask, anisotropic Si 

etching processes carried out in our lab. 
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Different patterns were successfully etched on silicon wafers. Figure 7.7 shows a set of 

square channels 10 p i  wide and 20 pm spacing on a (100) plane after KOH ctching, before Bi/In 

stripping. The Bi/In film was 45/45 nm thick and raster-scanned with 0.32 W laser power and an 

incremental step of 0.25 pm along the lateral direction. The development time after BiIIn laser 

exposure was 100 sec in dilute RCA2 and the sample was etched in the KOH solution for 3 

minutes at U•‹C. The diagonal lines seen on the picture was caused by the laser dwelling when 

the X-Y-Z table changed its moving direction, which is not related to the etching process. 

-- . - ------.r- - 

Figure 7.7 Channels were made on (100) Si wafer. The grooves are 3 pm deep and the central 
square is 20x20 pm. The picture (a) is a higher magnification of (b). A dangling membrane of Bi/In 
mask can clearly be seen at the corner. (75" tilted SEM images) 

Figure 7.8 (a) V-shape channels etched in KOH at 85•‹C which were about 3 pm deep. (45" tilted 
SEM picture). (b) 11 pm deep v-groove was made on (100) silicon wafer after 30 minutes of TMAH 
etching at 85•‹C. 45 nm / 45 nm BiIIn was used as the patterning and masking layer. 

Figure 7.7 (b) is a higher magnificent SEM image of Figure 7.7 (a). The thin masking 

layer can be clearly seen at the corner of the square, with an undercut on the (1 11) silicon plane 



underneath which is due to the etchant attack from both sides of the comer. Figure 7.8 (a) is the 

SEM picture of a set of parallel channels etched in KOH. The (1 11) plane is clearly seen, 

showing a typical anisotropic etch. Similar results were also obtained from TMAH and EDP 

etching. Figure 7.8 (b) shows the patterns etched in TMAH. The profile test of the structures 

shows a 11 pm deep V-groove and a 20 pm deep trench were created by TMAH etching (Figure 

7.9). The stripping of Bi/In masking layer, as mentioned in earlier chapter, can be easily done by 

RCA2 cleaning. HF dip is needed for stripping Si02 and hot H3PO4 is needed to strip the Si3N4 

layer. 

Bi/In has proven to be the only known direct resist for anisotropic etching of Si structures 

with all three etchants (KOH, EDP and TMAH). This also shows that Bib is a complete resist 

with exposure, development and etch mask features. In section 8.7, this process will be used to 

create V-groove solar cell devices. 
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Figure 7.9 Profile of anisotropically etched trenches 

10 30 50 70 

X axls (urn) 

as shown in Figure 7.8 (b). 

7.4 BiIIn as Masking Layer for CF4 I CHF3 I O2 Plasma Etching 

7.4.1 Background 

Although wet chemical etches are still widely used in micromachining and 

microfabrication, dry plasma etching is increasingly employed to achieve dimensional control in 



etching small geometries, which is necessary for advanced micromachining. Plasma etching has 

several advantages over other techniques: 1) it can transfer photoresist patterns into the substrates 

accurately; 2) the etching process is clean and free of contaminants such as K+, and compatible 

with vacuum processing technologies, 3) it is IC process compatible, and 4) it can achieve etch 

anisotropy without using the crystal orientation [109]. Since Bi/In resists form oxides (discussed 

in Chapter 6), their protective capabilities for plasma etching are expected to be vastly different 

than those of classic organic resists. In this section we investigate their resistance to fluorocarbon 

and oxygen plasma etches for silicon, silicon dioxide, and organics. Also plasma etching is 

required for the thin film imaging process discussed in Section 7.2. 

7.4.2 Proposed Bi/In Resist Process for Plasma Etching 

The plasma etching process with Bi/In as the patterning and masking layer is identical to 

wet anisotropic etching process, as shown in Figure 7.10. However, we have one more choice of 

etching after pattern development. The thermal resist deposition, exposure and development 

processes are the same as those in the wet anisotropic etching. 

After Development 

P---J7 

After Dry Plasma Etch 

After S u ~ p  
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Figure 7.10 The Binn microlithography and silicon/silicon dioxide etch process steps. (a) Binn is 
DC-sputtered on a silicon wafer. (b) Binn is patterned with a 0.3 W of Argon laser beam focused by a 
SOX objective lens. (c) Binn is developed. (d) The developed BiDn layer acts as a mask for CF4 / CHFj 
plasma etching. (e) OR: the developed Binn layer can be used for wet chemical anisotropic etch. ( f )  
The Binn mask is stripped after RCA clean andlor HF dip. 



7.4.3 CF4 / CHFJ / Oz Plasma Etching 

Plasma etching was carried out using an Axic Benchmark 800-11 PECVDRIE dual 

chamber etcher with CF4/CHF3/02 after the wet development of the exposed Bi/In. The substrate 

chuck is made of stainless steel without heating or cooling system, i.e., the temperature of the 

substrate cannot be controlled. As most of the plasma etching lasts less than 20 minutes, the 

chuck temperature is maintained below 30•‹C. Thus, the substrate temperature is assumed to be 

kept at room temperature throughout the etching process. After the sample was loaded, the 

chamber was pumped down to 15 mTorr with a roughing pump. Table 7.2 shows the typical 

recipes for Si and Si02 plasma etch and the 0 2  ashing recipe to remove organic photoresists. 

Plasma etch time was 4 to 15 minutes. The Bi/In etch masking layer was stripped off with RCA2 

cleaning after plasma etching. 

Figure 7.11 shows a tilted cross-section SEM picture of a Si sample etched with a Si etch 

recipe O2 = 6 sccrn, CF4 = 50 sccm, Pressure = 150 mTorr, RF Power = 200 W. The trench is 8 

pm wide and 2 pm high. Bi/In patterned Si02 was also etched with CF4 plasma. Figure 7.12 

shows the cross-section of Si02 after 10 minutes of plasma etch. The etch recipe is O2 = 10 sccm, 

CF4 = 75 sccrn, Pressure = 150 mTorr, RF Power = 200 W. The 6300 A Si02 layer was grown 

with wet-ox on a (100) silicon wafer. Profiler and SEM show that the side wall of the Si and Si02 

trenches is sloped and rounded, not vertical, as shown in Figure 7.13. This is related to the 

anisotropy of the plasma etching and is not caused by the Bib resist. The anisotropy of plasma 

etching can be improved by adding CHF3 and argon gas into the etch recipe. 

Table 7.2 Plasma Etch Recipes 
Si etch recipe 

O2 = 6 sccm 
CF4 = 50 sccm 
CHF3 = 0 - 5 sccm 
Pressure = 150 mTorr 
RF Power = 100 - 200 W 
Substrate Temperature = 25 "C 

SiOt etch recipe 
O2 = 10 sccm 
CF4 = 75 sccm 
CHF3 = 0 - 5 sccm 
Pressure = 150 mTorr 
RF Power = 100 - 200 W 
Substrate Temperature = 25 "C 

O2 ashing recipe 
O2 = 20 sccm 
CF4 = 0 sccm 
CHF3 = 0 sccm 
Pressure = 100 mTorr 
RF Power = 200 W 
Substrate Temperature = 25 "C 



Figure 7.11 Binn as the thermal resist and plasma Si etch masking layer to make structures on a 
(100) Si wafer. The trench shown in this SEM picture is 8 pm wide and 2 pm high and tilted a t  14". 

h -~ i  substrate 

Figure 7.12 90190 nm Binn used as the patterning and etch masking layer for SiOz plasma etching. 
The SEM picture shows the cross-section of SiOz after etched with CF4 plasma for 10 minutes. The 
etch recipe was O2 = 10 sccm, CF4 = 75 sccm, Pressure = 150 mTorr, RF Power = 200 W. 

As an argon gas line is not available at this moment in the lab, plasma R E  bombardment 

is not as directional as in common industrial recipes. However, this anisotropy can be improved 

by adding CHF3 into the etching chemistry. Figure 7.14 shows an improved Si profile after 

etching with a recipe 0, = 6 sccm, CF4 = 50 sccm, CHF3 = 5 sccm, Pressure = 150 mTorr, RF 

Power = 100 W. The profile can be further improved with the addition of argon gas. 
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Figure 7.13 Profile of Bi/In patterned, masked and CFj plasma-etched Si trenches, showing slightly 
curved side wall. The anisotropy is due to the plasma chemistry. 

Figure 7.14 Profile of Binn (90190 nm) patterned, masked and CFS/CHFJ02 plasma etched Si 
trenches, showing improved side wall profile and etching anisotropy after addition of CHF3. 

7.4.4 Exposed BVIn Etch Rate in Fluorine Plasma 

Mass weighing and profiler test results show that normal glass slides are etched away 

extremely slowly under CFJ/CHF31O1 plasma in our system. Etch loss of these glass slides is not 

detectable even after hours of etching. Hence, glass slides can be used as perfect reference 

substrates for BilIn etch rate analysis. Figure 7.15 shows the thickness changes of the exposed 

BiJIn film and conventional photoresist Shipley SPR2FX-1.3 with plasma etch time. The starting 

thickness of BiJIn film was 850 A. After 60 min of plasma etching (Si etch, recipe is 02= 6 sccm, 



CF4 = 50 sccm, Pressure = 150 mTorr, RF Power = 100 W), 30 8, was etched away, giving an 

etch speed of 0.05 ndmin ,  which Figure 7.15 shows to be nearly linear with time. Under the 

same etch condition lpm thick Shipley resist was totally etched away in 22 minutes, and the etch 

rate is 50 ndrnin. This means that the Bi/In resist is 1000 times more resistant to CFdCHF3/02 

plasma etch than regular organic resists. Typical etch rate for Si (100) under this plasma condition 

is 30 - 50 nmlmin and Si02 50 - 80 ndmin .  This suggests that 30 nm resist patterns are sufficient 

for typical 0.5 micron layers; -100 nm BiIIn resist layers would give protection under those 

conditions for etching 100 pm deep Si patterns, and 500 nm BiIIn for etching the whole wafer. 

Hence, this suggests an application of BiIIn as a possible resist for Deep RIE etching processes 

should be considered in future research. 
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Figure 7.15 Etch rate (Si etch recipe) comparison between exposed Bi/In and conventional Shipley 
photoresist. The left Y axis is the thickness of exposed Bi/In, and the right Y axis is the thickness of 
Shipley resist. Note that B a n  was almost unchanged and the organic resist strongly eroded by the 
plasma. 

It is estimated that, with the Si02 plasma etch recipe ( 0 2  = 10 sccm, CF4 = 75 sccm, 

Pressure = 150 mTorr, RF Power = 100 W), the erosion of BiIIn should appear no worse than 

with the Si etch recipe, while the resist removal is 66% higher due to the higher 0 levels, thus 

creating an even higher Bi/In to organic resist etch ratio. 
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Figure 7.16 Plasma RF power vs. exposed BiIIn thickness after 2 minutes of plasma etch, with 02, 
CF4 and Pressure fixed. 0 2  = 6 sccm, CF4 = 50 sccm, CHFj = 0 sccm, Pressure = 150 mTorr. The 
starting film thickness was 850 A. 

Experiments were also carried out to study the influence of plasma power on the etch rate 

of exposed BUIn film. Bib was first deposited on glass slides. After laser exposure and wet 

development, the samples were etched for 2 minutes under the same condition except the RF 

power was varied. Film thickness was tested before and after the plasma etching. The starting 

film thickness was 850 A. Figure 7.16 shows the result after exposed BiIIn was etched under 

plasma with RF power from 100 W to 600 W. One can see that the etch rate of exposed BUIn 

increases almost linearly with RF power. The etch speed is only 0.05 ndrnin at 100 W (this is 

likely due to the re-deposition of sputtered material at a lower sputtering power), and it changes 

to 12 n d m i n  at 200 W, and 42 n d m i n  at 600 W. Other parameters of the recipe were O2 = 6 

sccm, CF4 = 50 sccm, CHF3 = 0 sccm, Pressure = 150 mTorr. The etch rate of Si02 is 50 - 

80ndmin at 100 W, 120 - 200 n d m i n  at 200 W and -300 nrnlmin at 600 W. Si etch rate is 60 - 

70% of that of SOz .  



7.4.5 O2 Plasma 

Test results show that 0 2  plasma etching (ashing) has little effect on exposed BiIIn films. 

The ashing recipe is O2 = 20 sccm, Pressure = 100 mTorr, RF Power = 200 W. It took just 1 min 

to remove 1.3 pm Shipley SPR2FX - 1.3 organic photoresist. But no etch loss was observed after 

20 minutes of etching an exposed BiIIn films, suggesting an etch rate of less than 0.05 nmlmin. 

This is an etch ratio of greater than 26,000 times that of organic resists. Indeed this is really a 

lower limit as no resist removal was detected within the measurement limits of the profiler (-1 

nm). Figure 7.17 shows the comparison between the ashing rates of exposed BiIIn and Shipley 

photoresist. This suggests that very thin BiIIn layers can protect and pattern organic material that 

are susceptible to oxygen plasmas, such as Myler. This lack of response to oxygen plasma is 

probably due to the Bi/In having been fully oxidized during the laser exposure, and hence no 

further oxidation happens during the O2 ashing. 
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Figure 7.17 Ashing rate ( 0 2  ashing recipe) comparison between exposed Binn and conventional 
organic photoresist by plasma. 0 2  plasma strongly erodes the organic resist. 

The strong resistance of exposed BiIIn to O2 plasma etching makes the thin film imaging 

method (discussed in Section 7.2) a viable process. This will be further investigated by patterning 

BiIIn on graphite substrates. 



7.4.6 Preliminary Clz Plasma Etching Study 

Chlorine-based plasma has been generally used for metal and polysilicon etching in sub- 

and deep-submicron fabrication. The advantage of chlorine plasma over fluorine plasma is that 

C12 plasma creates less undercut [110-1121. As we do not have C12 plasma sources in our lab, we 

did some preliminary studies on C12 plasma with Christina Kaiser at University of British 

Columbia (UBC). 

BiIIn (30130 nm) was deposited on glass substrates and was raster-scanned with 0.15 - 

0.35 W argon laser focused by a 50 mrn lens. One group of samples were developed after laser 

exposure, and the resistance of exposed BiAn to C12 plasma etching was studied. The other group 

of samples were not developed after laser exposure, so that we could explore the feasibility of 

developing Bi/In with dry plasma etching instead of with wet dilute RCA2. The facility we used 

at UBC is an ECR plasma etcher (electron cyclotron resonance), in which a microwave was used 

to generate the plasma, and an RF field was applied to the sample chuck to build up a negative 

DC bias. The etch recipes were as follows: 

Cl2 1 2 sccm 
BCl, 1 2 sccm 

Total Pressure 
Microwave power 
RF bias power 

10 mTorr 
100 W 
50 W (-100 volt DC) 

- Before a 2  plasm 

Ar 
Etch time 

15 40 65 90 
X axis (urn ) 

20 sccm 
30 - 120 seconds 

-After C12 plasm 

100 125 150 175 

X-axis (urn) 

Figure 7.18 Profile of Binn lines before and after 120 seconds of C12 plasma etching. 
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Figure 7.19 Colour change was observed after Clz plasma etching of patterned Binn film. (a) before 
plasma etching and (b) after Clz plasma etching. 

Figure 7.18 shows the profile of developed BiIIn lines before and after the C17 dry plasma 

etching. With this etching recipe, no obvious erosion was observed. However, more experiments 

with different recipes need to be carried out to confirm the resistance of exposed BiIIn to Clz 

plasma etching. Figure 7.19 shows optical microscopy images before and after C12 plasma 

etching. Colour changes were observed after the plasma etching (developing), which could be 

observed from the change in the contrast of the grayscale image. The unexposed metal part was 

not removed. However, no concrete conclusion could be drawn from this test yet, as only one C12 

plasma etching recipe was tried out. Further study should be conducted to explore the possibility 

of developing BiIIn with dry plasma etching. 

7.4.7 Plasma Etch Summary 

The results of this section suggest that bimetallic resists can provide sufficient resist 

protection for an underlying layer, and may offer some significant advantages over regular 

organic resists for the plasma etching of silicon, silicon dioxide and organics. These experiments 

have not answered questions about edge roughness due to the limitations of the exposure system. 

Furthermore, it is clear that the etch recipes required to achieve the desired sidewall profile will 

be different for these bimetallic resists than for regular organic resists. The erosion of organic 



resists, with its change in the resist pattern edge and the resulting re-deposition of some organic 

compounds on the sidewalls during the etch, are important factors in obtaining the desired line 

and hole profiles. The result that BiIIn resists almost do not erode suggests some obvious 

advantages in maintaining pattern and reducing etch related problems, especially in the case of 

via or contact cut holes. There the re-deposition of organics creates difficulties in making 

metal/poly contacts. These results suggest this would probably not occur for the BiIIn resists and 

hence it may give better results for vialcontact cuts. Since Bi/In erosion during the plasma etch is 

small, the possibility of plasma etch chamber contamination should be low. Future studies will be 

carried out on this. 

7.5 Creating Special Structures with Drymet Etch Processes 

Conventional wet, anisotropic etch masking layers, such as Si3N4 and S O z ,  are known to 

be very stable under KOH, TMAH or EDP. However, they cannot be used as CFJCHF3 plasma 

masking layers as the plasma etch rates of the two layers are very fast. On the other hand, 

conventional organic photoresists, which are widely used for plasma etching masking layers, 

cannot work with wet anisotropic etchants. BUIn thermal resists are unique in being a good resist 

and masking material for all three alkaline anisotropic etchants, KOH, EDP and TMAH for Si 

anisotropic etching. In the previous section, we have also shown that BUIn resists are also good 

for plasma etching. This enables us to use a single resist layer for both wet and dry etching. BiIIn 

is the first resist that can be used as both a wet anisotropic etch masking layer and a dry plasma 

etch masking layer. This unique feature gives Bi/In the capability of patterning and building 

structures that cannot be made by any other photoresists or masking layers. 

Figure 7.20 (f) shows a special structure: a V shape groove with vertical side wall. This 

structure cannot be created by conventional photoresists or masking layers, but can be made by 



utilizing BdIn as both a wet and dry thermal resist masking layer. First, 1201120 nm BdIn film is 

deposited on an RCA-cleaned (100) silicon substrate. Laser exposure makes patterns on the BilIn 

film. After development the sample is etched with alkaline-based solutions such as TMAH to 

create V-groove structure in the silicon, as shown in Figure 7.20 (d). This is followed by a 

CFdCHF3 plasma dry anisotropic etch shown in (e). After stripping off Bi/In layer, the V shape 

trench with straight side wall is done. 

Thermal Resist Deposition 

Wet Anisotropic Etch Dry Anisotropic Etch 

After Resist Development 

Resist Stripped 

Figure 7.20 Binn patterned mask with combined Si anisotropic and plasma etch. Six steps are used. 
(a) deposit Binn, (b) laser expose the film, (c) develop the exposed resist, (d) do wet anisotropic etch, 
(e) plasma dry anisotropic etch, and (f) Binn resist layer is stripped off with RCA2 cleaning. 

We have successfully produced this structure on a (100) silicon wafer to prove that this 

process is feasible. Figure 7.21 shows the profile of the V shape trench right after wet anisotropic 

etching (thin solid line) in 85•‹C TMAH for 30 minutes and the profile after CFdCHF3 plasma 

etching (02 = 6 sccm, CF4 = 50 sccm, Pressure = 150 mTorr, RF Power = 200 W) for 7.5 minutes 

(thick line). Figure 7.22 is the cross-section view of the double-etched trench, showing straight 

side walls. About 1 pm deep straight sidewalls can be clearly seen on both sides of the V trench. 

It is noticed that the top corner of the trench is not straight. Again this anisotropy can be 

improved by adding argon and CHF3 gases into the etch recipe. 
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Important here is that the BiIIn thermal resist has clearly demonstrated a single layer 

being resistive to both anisotropic Si etch and plasma etching. From the literature it appears that 

no other photoresists or thermal resists can accomplish this. This opens new potential process 

combinations for micromachining fabrication. 
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Figure 7.21 Profile of BiDn masked anisotropic V groove and vertical plasma etched structure. The 
thin line is the profile after TMAH etching. The thick line is after TMAH etch and CFdCHF3 plasma 
etching. 

c 
Figure 7.22 The cross-section of a trench masked by Binn on (100) Si wafer after a combination of 
wet anisotropic etch and dry CFJCHF3 plasma etch. The white bar is 20pm. 



7.6 BiIIn as an Electroplating Seed Layer 

It is amazing to discover that the metallic bilayer thin film thermal resist is conductive 

both before and after exposure. This special feature opens the door to many potential applications 

in the micromachining and microfabrication field. The developed film is more conductive than 

most of the current barrier layer films and silicide films. This indicates that the BiIIn thermal 

resist can not only be used as a patterning material, but also as a direct-write electroplating resist 

and as transparent electrodes. By comparison a standard MEMS electroplating process requires 

deposition of a metal seed layer, spinning on of photoresist, baking, patterning the resist, 

development, etching, resist and the seed layer stripping and cleaning before electroplating can 

begin. 

Exposure Development Electroplating 

Figure 7.23 Bi/In as both masking and seeding material. Bi/In is first patterned and the exposed 
area is converted. Resist development removes the unexposed area, and the exposed is retained. It 
acts as both the patterning and the seed layer for Cu plating. 

Conventional metal deposition methods, such as PVD and CVD, have the disadvantage 

of not being able to deposit thick films (> 1.5 pm) on the substrate due to film stress and the low 

deposition rate. By comparison, metal electroplating can not only put several microns, even 

dozens of micron thick films on the substrate, but also fill high aspect ratio vias and contacts. As 

shown in Figure 7.23, the BiIIn resist can be deposited and directly written on with the laser, and 

it will act as both a patterning material after development and a seeding layer for electroplating. 



By comparison considerable efforts have been made to achieve high-aspect ratio structures in the 

micromachining area. Using X-ray lithography, standard LIGA (lithographic electroforming and 

moulding) process can be used to fabricate very thick structures (as thick as 1 rnm) with sub- 

micron lateral accuracy [113]. However, the high cost of using a synchrotron X-ray source 

prevents it from being a common micromachining process. With Bi/ln as both a patterning and 

seed layer, one can easily plate thick films to achieve high aspect ratio structures. Conductive 

bimetallic thermal resist offers a new type of LIGA process. 

Cu and Ni plating was carried out on developed BiIIn layers on various substrates such as 

Si wafers, glass slides, wet-oxidized wafers. The Bi/In resist, 15/15 to 60160 nm thick was first 

exposed to argon laser by raster-scanning exposure patterns, such as lines and square areas. The 

advantage of using the laser scanning method is that it allows us to change the exposure patterns 

easily without having to make photomasks. Laser power varied from 0.05 W to 0.35 W with 

different lenses (50 mrn, 5x objective lens and 50x objective lens). The films were then 

developed in HC1:H202:H20 solutions for 40 to 100 seconds to remove unexposed areas. The 

conductive pads for plating connections were made during the laser scanning period. Table 7.3 

shows the chemical ingredients of the metal solutions that were used for the electroplating 

experiments [114]. Cu plating was carried out at room temperature and Ni at 55•‹C. Figure 7.24 

shows several Cu lines inside a square Cu window, the space between two Cu lines is 10 pm. To 

make this pattern on BiJIn, the large window frame was first raster-scanned with argon laser on 

the X-Y-Z table. Then the lines were made again by Argon laser using a single scan. As shown 

here, as copper plating continues, a high aspect ratio structure can be achieved. Figure 7.25 (a) is 

the SEM picture of a Cu square electroplated on Si with an opened window, and (b) is the Cu 

lines. Depending on the electroplating time, the copper layers range from 3 to 35 pm thick as 

measured by profilometer. The two SEM pictures in Figure 7.26 are tilted view and cross-section 

of Cu lines on glass substrate. It is clearly shown in (a) that the Cu lines grow upon the Bi/In 



seeding layer. The cross-section of Cu lines in (b) is close to a half moon shape. However, the 

growth along lateral directions is faster than along the vertical direction, as shown in the copper 

profile plot in Figure 7.28. 

Figure 7.27 (a) is a Ni mesh plated on a Si substrate. Each square is 10x10 pm. (b) shows 

a densely plated area. The space between two Ni lines is 5 pm. (c) is a small Ni pattern; the thin 

line is 2 p m  wide. The plated nickel layer is 1 - 4 p m  thick. The electroplated nickel line has a 

straighter side wall compared to copper lines, as shown in the nickel profile plot in Figure 7.28. 

A potential and unique application of the direct-write metal plating is to apply metal 

connections to finished chips to provide circuit modifications for rapid design debug or create 

new devices with thicker metal layers than given by current processes. Compared to the FIB 

techniques which are widely used by design companies, direct-write metallization is much faster 

and more cost effective. 

Figure 7.24 An optical picture of plated Cu on SOz. The spacing between two lines is 10 p m  

Table 7.3 Cu and Ni plating parameters 

Cu 
Ni 

1 liter plating solution 

CuS04.5H20 =I00 g, H2S04=10 ml 
NiS04.6H20=150 g, NiCI.6H20=60 g, H3B03=37.5 g 

Plating 
Temperature 
25•‹C 
55•‹C 

Typical Plating 
Current Density 
10-50 ,Wm2 
10-50 Nrn' 
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Figure 7.25 (a) 
pm thick. 

SEM picture of a Cu square an1 
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d (b) SEM picture of Cu lines. The copper layer is 3 

Figure 7.26 (a) Cu lines grow upon the Bi/In lines. (b) Cu grows faster along lateral directions than 
along the vertical direction. 

Figure 7.27 Electroplated Ni grown on patterned BiAn resist on Si wafer. (a) Ni mesh. The spacing 
between two lines is 10 pm (SOX optical). (b) densely plated Ni lines with 5 pm spacing (100x optical) 
and (c) a small pattern of 4 pm square with 2 pm wide line (800x optical). 
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Figure 7.28 Profile of electroplated copper and nickel lines on Binn seed layers. 

7.7 In and SdIn as Thermal Resists 

Until now, much of the focus of application exploration has been on Bi/In. How about 

other bimetallic thin films, like SnIIn, and even In single metal film? Since it appears the 

conversion is an oxidation process, these may work as well. Interestingly, it was found that 48 nm 

DC-sputtered, In single metal film turned transparent at an argon laser exposure of 225 mW, 

twice as much power needed to make BUIn transparent (50 rnm lens, 1 cmls scan rate). This is 

consistent with a higher melting point for indium compared to the InBi eutectic alloys. Thus, 

BiIIn films are more sensitive to laser exposure than In films. After laser exposure, an In sample 

(on a Si substrate) was developed by dilute RCA2 solution. Unexposed In films disappeared in 

seconds. However, exposed In film remained unchanged even after 15 minutes, as shown in 

Figure 7.29. This shows that indium films exhibit thermal resist characteristics. 

Wet Si anisotropic etching tests showed that exposed In film was also resistant to 

alkaline-based anisotropic etchants, although KOH and EDP attack exposed In faster than 

exposed BUIn. As shown in Figure 7.30, after 40 minutes of etching in 85•‹C TMAH, exposed In 

film remained unchanged as an etch masking layer. The SEM cross-section picture shows a 40pm 

wide trench in a (100) silicon substrate. These test results show that single In film has similar 

physical and chemical properties as do bimetallic BiIIn films. 
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Figure 7.29 Exposed In The dark lines are In 
exposed with different laser power. The white area is Si, which had been covered by unexposed In 
that was removed by dilute RCA2. (50x optical) 

Figure 7.30 48 nm In film used as the patterning and etch masking layer. The cross-section picture 
shows a trench into (100) silicon wafer after etched in TMAH at 8S•‹C for 40 minutes. 

Experiment was also carried out to investigate whether SnIIn bimetallic film has thermal 

resist properties. As expected, Snlln can be exposed, developed as BiIIn and In films, and it is 

also resistant to wet silicon anisotropic etch and dry CF4 plasma etch. Figure 7.31 shows the 

profile of a CF4 plasma etched trench in silicon substrate, with SnIIn as the etching mask layer. 

Exposed SnIIn film was etched away faster than exposed Bi/In film with the Si plasma 

etch recipe, as shown in Figure 7.32 (a). About 30 A was etched away in 26 minutes, giving the 

etch rate of 1.2 A/min. Exposed In film was eroded even faster than SnIIn, with an etch rate of 2.3 



h i n .  Identical to exposed BiIIn film, both exposed SnIIn and In films can barely be etched 

under the O2 ashing plasma. Figure 7.32 (b) shows the O2 ashing results for exposed SnAn and In. 

0 V 1 

265 290 315 340 365 
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Figure 7.31 A 2.5 pm deep trench etched into silicon substrate with S d n  as the masking layer for 
silicon CF4 plasma etch. 

Tests on single Bi film showed that laser exposed Bi film was not continuous (discussed 

in Chapter 6). Both exposed and unexposed Bi film dissolve within 60 seconds in dilute RCA2 

development solution. All these results show that single Bi film is not suitable for thermal resist 

applications. 
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Figure 7.32 (a) Etch rates (Si etch recipe) of exposed SdIn  and exposed single In film. Both S n h  
and In film thickness changes slowly with the plasma etch time. (b) Exposed S d n  and In ashing 
rate. The O2 ashing has little effect on the two films. 



7.8 Summary 

A prototype thin film imaging process (with a thin imaging layer and a thick carbon 

protection layer) has been proposed. Bi/In and its class of bimetallic thermal resists are the first 

reported resists that are resistant to both alkaline-based silicon anisotropic etching and fluorine- 

based plasma etching. The etch rate of exposed BiAn film in KOH, EDP and TMAH is slower 

than that of SOz .  TMAH etches exposed Bi/h at half of the rate of KOH, making it the best 

anisotropic solution for BiDn process. CFdCHF3/02 plasma etching results show that Bi/h etches 

1000 times slower than regular organic resists. With the combination of anisotropic etching and 

plasma etching into one single process flow, one can create some special features that are not 

possible by other methods. Unlike organic photoresists, BiIIn thermal resist is conductive even 

after development, making it a potential material for direct-write electroplating and for 

transparent electrodes. The combination of anisotropic etch resistance and acting as an 

electroplating seed layer makes it a very useful MEMS resist. Chapter 8 will discuss applications 

involving the transparency aspect of films of Bi/In and its class. In the next chapter, we explore 

bimetallic resists for photomask applications. 



Chapter 8 
Application of Bimetallic Resist as Direct-write 
Photomask and Data Storage Materials 

8.1 Introduction 

The large optical property change between the exposed and unexposed bimetallic thermal 

resist Bi/In films is attractive since this can be utilized in many fields, such as optical storage and 

direct-write photomask materials. It was observed that light transmission through converted resist 

increases rapidly with laser exposure power. This Chapter will focus mainly on photomask 

applications. A single-step, direct-write photomask making process will be studied using 

bimetallic thermal resists as the photomask covering or imaging material. The application of 

bimetallic films for grayscale masks will be examined. It is found that Sn/In exhibits better 

optical performance for binary and grayscale mask applications than BiIIn does. Finally, to 

demonstrate the applications of Bi/In as a thermal resist, a Si anisotropic etching mask material, a 

direct-write photomask material, and its compatibility with conventional CMOS processes, 

surface-textured, solar cell test device will be fabricated. 

8.1.1 Photomasks 

Photomasks with smaller features, better line width control, fewer defects, no ESD 

(electro static damage) issue and lower cost are required by the microfabrication and 

micromachining industries. A conventional photomask consists of a transparent substrate, and a 

surface covering and patterning film. Quartz and glass have been extensively used for decades as 

the mask substrates. Many different kinds of materials have been used as the surface imaging 



layer, but the most commonly used is chromium thin film. Emulsion has also been used widely in 

labs for non-critical applications. However, as we discussed earlier in Chapter 1, Cr/quartz 

photomasks face a lot of problems. 

Direct-write photomask material is attracting more and more attention recently. The 

initial state of a direct-write material should be either highly transmitting (low OD) or highly 

absorbing (high OD). The optical density of the material should change significantly when 

exposed to certain physical (or even chemical) processing. In order to achieve the resolution 

requirement set by modern microfabrication, electron or laser beams are usually used to write the 

pattern. As discussed in Chapter 1, HEBS glass darkens (high OD) upon e-beam exposure [2]. 

Physical Optics Colporation proposed a high-resolution laser-beam, mask-pattern-writing 

technology on a thin layer of ion-exchanged glass medium. The ion-exchanged layer of the 

special glass plate was pre-darkened and written by laser-induced local heat erasure (making it 

transparent and low OD). The write beam was a laser beam visible from 400 to 700 nm. It was 

claimed that high resolution (- 0.2 pm) was achievable [115]. However, none of the reported 

direct-write photomask materials can fully satisfy the demands of the microfabrication industry. 

8.1.2 Direct-write and Data Storage Materials 

In the optics information storage industry, alloying and phase change materials are 

widely used. Due to the prevalent applications of CD-R (compact disk - recordable) and CD-RW 

(compact disk - rewritable) both at home and in the office, developing new types of recording 

media with higher sensitivity and better signal to noise ratio has generated a great deal of interest. 

Optical recording is achieved by changing the optical properties before and after laser irradiation, 

and optical reading is achieved by taking the advantage of the contrast difference between the 

laser exposed and non-laser exposed area. There are 2 types of optical storage media: write-once 

and write many. The basic requirements of thin film media as optical storage media are high 
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laser-writing sensitivity, sharp conversion threshold, good optical contrast and stability. The 

recording mechanism has also been well studied and categorized into the following 6 types [1 161: 

1) ablation, 2) phase/ microstructure change, 3) chemical reaction, 4) particle coalescence, 5) 

topography change and 6) magnetization change. Among all of the optical recording materials, 

Te-based alloys and doped Te oxide films are the most thoroughly studied media [117]. Because 

of the low melting point (452"C), low thermal diffusivity, and high optical absorption coefficient 

(a = - 4.9~10'  cm-' at 830 nm for Te), Te and its alloys have been considered to be among the 

most sensitive materials for ablation optical recording. The typical phase/microstructure change 

media for storage are TeOl,l, Ge and Sn doped TeOl,l, Sb2Se3 on Bi2Te3, and some other 

chalcogenide films. Watanabe et a1 [ I  181 reported that the optical characteristics of Sb2Se3 and 

Sb2Te3 films were changed due to an amorphous-crystalline phase transition below 200•‹C. The 

respective reflectivity of 400 A Sb2Se3 and 300 A Sb2Te3 films, each on a Te reflective layer 

increased from 10% to 30% and from 45% to 65% by laser radiation. Media in the chemical 

reaction category are usually composed of 2 thin layers, such as Pd-Si, Pt-Si and Rh-Si bilayer 

films [116,119,120]. The initial reflectivity was first made low by choosing the proper thickness 

for each layer so that the antireflection condition was achieved. After laser irradiation the 

reflectivity became significantly higher due to the detuning of the antireflection condition, and a 

silicide compound was formed. In some cases ablation also happened during the process. The 

large optical property changes before and after the laser exposure in this class of bimetallic 

thermal resist films put them in this same class of optical storage materials. 

8.2 Optical Characteristics of Exposed BiIIn and Sn/In 

In this section the change in the BiIIn and SnIIn resists and optical characteristics are 

measured. 



8.2.1 Transmission Analysis of BiIIn Films 

To characterize the optical properties of BiIIn films before and after laser exposure a 

Varian CARY 3E spectrometer was used to measure the absorption through the argon CW raster 

scanned area and the unexposed area of the film. Figure 8.1 shows the Optical Density (OD) 

versus the transmission light wavelength for a 40 / 40 nm BilIn film on a glass slide after 

exposure to argon laser of different powers. The top curve is the as-sputtered 40 1 4 0  nm BilIn 

film, which is around 2.6 - 2.8 OD from 400 nm to 800 nm wavelength. The second, third, fourth 

and fifth curves are the OD's of films exposed to argon laser of 150, 300, 450, and 600 mW, 

respectively, with argon laser focused by a 50 rnm lens (10 pm spot size) and a raster-scan rate of 

lcm/s. As the power of the laser exposure increases, the OD of the exposed area reduces, and 

saturates at a minimum level where all of the material in the layers is converted. The absorption 

spectrum for the converted layers in the range from 400 nm to 800 nm reaches a minimum value 

of less than 0.1 OD at an exposure intensity of 600 mW. This shows a change in the OD of larger 

than 2.5 orders in terms of transmitted light power. An ideal direct-write photomask for I-line 

applications should have - 3 OD for the unexposed (blocking) area and < 0.25 OD for the 

exposed (transmitting) area. The OD of unexposed 40140 nm Bi/In at 365 nm (I-line) is 2.94 and 

that of area exposed with 600 mW argon laser is 0.43 OD. It is also noticed that the OD rises 

rapidly at 365 nm. Please note that no heat treatment was carried out on these samples before the 

laser raster scan. 

Before we move on to improving the optical properties, it should be pointed out that the 

laser powers used for thermal resist and photomask applications are significantly different. It is 

known that Bi/In thermal resist has a high exposure sensitivity and that a 15/15 nm BilIn film can 

be fully exposed for thermal resist application (to successfully develop a relief image in the 

thermal resist with dilute RCA2 solution) by a single 4 ns pulse with only a 7 mJlcm2 energy 

density. However, in order to achieve maximum transparency in the exposed film, laser exposure 



with much higher energy density is required. Using the following argon laser photomask writing 

condition: 

Argon laser power = 500 mW; 

Focused by 50 mm lens with 10 pm beam spot size; 

X-Y table moving speed = 1 crnls; 

we can estimate that the writing energy density is - 500 ~lcm'. On the other hand, thicker films 

(-40140 nm) are used for photomask application than for thermal resist applications (15115 nm). 

Thus, the starting power for laser conversion is much higher. In addition, the slow speed (CW 

argon laser) means much higher thermal conduction. Finally, at the slower exposure rates it is 

clear that during the laser illumination the film is becoming more transparent, which in turn 

reduces the exposure, and increases the exposure time required. 

300 400 500 600 700 800 
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Figure8.1 Optical absorption (300 nm to 800 nm) through 40140 nm (non-annealed) Bi/In 
deposited on glass slide exposed by Ar laser with different power. From top to bottom: 0, 150, 300, 
450, and 600 mW. The sample was not heat-treated. 
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Figure 8.2 Absorption through 50150 nm Binn exposed with the argon laser at different powers. 
From top to bottom: 0,50,100,300,500,700 and 900 mW. The sample was heat-treated for 72 hours 
at 50•‹C prior to laser exposure. 

8.2.2 Improving Optical Performance 

In order to improve the transparency of the exposed area while keeping the high OD of 

the unexposed area, many methods are under investigation, including adding different gases and 

elements during film sputtering, varying substrate temperatures during exposure, and finding the 

optimized film structure (thickness and order of deposition). 

It is found that annealing the BilIn samples at -90•‹C for a period of time in air before 

laser exposure helps reduce the optical density of the subsequent exposed area. Figure 8.2 shows 

the optical density of a heat-treated 50150 nm BUIn film as a function of laser power. Optical 

transmission was significantly increased when compared to non-heat-treated samples. In order to 

quantify the improvement, an experiment comparing the OD of the oven-annealed and non- 

annealed samples was carried out. Two different BiIIn samples were used: one was 40140 nm and 

the other was 15115 nm film, all deposited on glass slides. Each sample was cut into 2 halves for 

comparison. One half was Ar laser scanned as-deposited and the other half was heat-treated at 

90•‹C for 72 hours before laser scanning. In this way the influence of the fluctuation of film 

thickness from sample to sample was eliminated. Table 8.1 lists the experiment results measured 



at the I-line wavelength. The "Laser Power" column shows the Ar laser power that was used to 

expose the films. The "OD (Non-annealed)" column shows the OD of the films that were exposed 

as-deposited with different laser power. The "OD (Annealed)" is the OD of the films that were 

first heat-treated and then exposed with different laser power. The last column shows the 

percentage of OD reduction from non-annealed films. One can see that the OD of 40140 nm film 

after 600 mW laser exposure dropped 8.42% from 0.435 to 0.398, while the unexposed area only 

dropped 0.81% and was still above 2.9. Similar results were also found for 15/15 nm films, 

although the OD drop for unexposed area (23.21%) was much larger than that of 40140 nm film. 

The annealing mechanism that brings down the OD of films both before and after exposure is not 

fully understood at this moment. It could be related to an increase of grain size after annealing. 

As its optical absorption starts to increase rapidly below 450 nm, glass slides are no 

longer suitable substrates for UV and shorter wavelengths. Bi/In was deposited on quartz 

substrates in order to make photomasks for I-line applications. Tests showed that with quartz as 

the substrate the OD of exposed area was 0.260 and unexposed area 2.9 1 1 at 365 nm wavelength. 

Figure 8.3 shows the OD of unexposed and 600 mW laser-exposed areas of annealed B i h  on 

quartz sample, which is in the wavelength range of 300 nm to 400 nm. It is also seen that the 

optical absorption of annealed quartz sample at 300 nm is much lower than that of the non- 

annealed glass sample. 

Table 8.1 Comparison of Optical Density (OD @ I-line) between oven-annealed and non-annealed 
Bib films deposited on glass slides. 

I Film Type 1 Laser Power (mW) I OD (Non-annealed) 1 OD (Annealed) 1 OD Reduction % I 

40 I 4 0  nm 
Binn 

15 I  15 nm 
Binn 

300 
450 

75 

150 
300 

450 

0.726 

0.492 

0.504 

0.299 
0.227 

0.170 

0.515 

0.43 1 

29.13% 

12.34% 

0.499 

0.266 
0.155 

0.158 

0.98% 

11.18% 
3 1.84% 

7.14% 
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Figure 8.3 Optical absorption through annealed 40140 nm Binn on quartz substrate, in the 
wavelength range of 300 nm to 400 nm. The top curve is the OD for unexposed, and the bottom is 
exposed with 600 mW Ar laser. 
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Figure 8.4 40140 nm Sfln deposited on glass slides exposed by Ar laser with different power at a 
10 mmls scan rate. 
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Figure 8.5 40140 nm Binn and SdIn  films optical absorption vs laser power at a wavelength of 365 
nm. Absorption drops drastically at around 100 mW laser power and gradually saturates after 300 
mW. (laser power in logarithm) 



8.2.3 Optical Transmission of Sn/In 

Similar spectrum tests were carried out on exposed SnIIn films, and the results were 

encouraging. Figure 8.4 is the optical transmission data of a heat-treated 40140 nm SdIn after 

exposure to different powers of argon laser. It is noted that while keeping the unexposed film at 

3 0 D  at the I-line, we obtain 0.22 OD for exposed films even on glass substrates. As expected, the 

laser power used to achieve high transmission for SnIIn is nearly twice as much as that for Bib, 

due to the higher melting point and lower absorption for Sn/In (discussed in Chapter 3). 

Figure 8.5 shows the curves of optical absorption versus laser writing power at the 

wavelength of 365 nm, important for determining the direct-write laser power requirements. It is 

noticed that when the laser is below 50 mW the Optical Density (OD) of the film does not 

change. The absorption drops sharply around 100 mW writing power and quickly saturates from 

300 mW onwards. The optical density stabilizes around 0.26 OD for BiIIn on quartz substrates 

and 0.22 OD for Sn/In on glass slide. 

The substantially higher transmission for Sn/In makes it a better candidate for some 

photomask processes. The fact that a higher laser power is needed to convert Sn/In films than 

BiIIn films makes Snnn mask material more stable under industrial mask exposure conditions. 

8.2.4 Stability of Exposed Films 

It is important to ensure that both the exposed and unexposed films are optically stable 

during conventional photomask application, i.e., the laser irradiation from conventional DSW 

steppers and mask aligners will not change the bimetallic thin film properties. Since the X-Y-Z 

table moves with a speed of 10 mrnlsec and the laser beam is focused to a small spot 10 pm in 

diameter using a 50 mm lens, 50 mW of Ar laser power will yield a power density of around 

5 0 ~ l c r n ~  (for exposure times of milliseconds). Photomasks made from BiIIn and Sn/In are stable 



to exposure during mask applications as the mask making powers are much higher than typical 

industrial DSW exposure system power density at the mask (0.1 - 100 mJlcrn2) and far below 

those of mask aligners which have much lower power densities for longer exposures. Note again 

thermal resists, unlike organic photoresists, do not accumulate exposure energy, so repeated 

illumination below the threshold power has no conversion effect. Because the organic photoresist 

exposure time is much shorter, the Bi/In and S n h  film temperature is raised far less than during 

the mask making exposures, thus the photomask stability and reliability will be maintained. 

A shelf test was also carried out in order to test the stability of the exposed area under 

normal environments. The Bi/In films raster-scanned with different Ar laser power were kept in 

an environment of 70•‹C and -100% humidity for 7 days. The optical spectrum was measured 

before and after the shelf test. As shown in Figure 8.6, the spectrum curves before and after the 

shelf test overlap each other. The transmission barely changed and the optical properties are 

stable as is required for photomasks. 

The shelf tests on both as-deposited (done in Chapter 5) and laser exposed bimetallic 

films reveal that both areas are very stable. This is important to photomask applications. 
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Figure 8.6 Laser converted Bib films: optical spectrum before and after the shelf test. The 
spectrum lines before and after the shelf test overlap with each other, showing that the film optical 
properties are stable. 



8.3 Creating Binary Photomasks with Bimetallic Thermal Resists 

The optical density changes due to the laser exposure, shown in the previous section, 

clearly indicate that bimetallic thermal resists are promising materials for direct-write photomasks 

for industrial purposes in the I-line or longer wavelength ranges. To demonstrate that the BYIn 

and SdIn bilayer films can be used as a direct-write material for practical fabrication 

applications, and that the bimetallic films can be written by lasers with a wide range of 

wavelengths, several photomasks have been made on glass slides and quartz substrates, with the 

argon laser in our lab and a CREO's flatbed IR thermal-imaging system. 

8.3.1 Writing Bimetallic Resists with Argon Laser 

The first test mask was a duplicate of a chromium mask pattern containing typical chip 

exposure test structures. These contain nested L lines and spaces from 30 to 200 pm in size. 

There are also some 2 pm small test areas. Figure 8.7 - Figure 8.11 show the first mask. It was 

made with the following conditions: 

0 A 40 140 nm BiIIn or SnIIn deposited on quartz or glass slide; 

Heat treated for 72 hours at 90•‹C (open air); 

Argon laser raster-scan power = 600 mW for BYIn and 1125 mW for SdIn; 

50 mm lens used to focus Argon laser before hitting the film to a 10pm spot size; 

The X-Y table moving speed (along the x-direction) = 1 c d s e c ;  

Raster-scan increment (along Y direction) after each scan = 8 pm. 

Figure 8.7 is a front-lit picture of the whole 1x1.6 cm direct-write BYIn photomask. The 

laser-scanned areas are darker than the unexposed area from the front-lit picture. Figure 8.8 is a 



back-lit image of the mask, showing clearly the patterns. Figure 8.9 is an enlarged front-lit picture 

showing one of the patterns of a 51  pm line and space exposure structure. Figure 8.10 was taken 

with both front and back lights on, showing vertical lines in the exposed area that were generated 

by the laser raster-scan for a 25 pm line and space test structure. However, the raster-scan lines 

disappeared when only the back-light was on, as shown in Figure 8.1 1 ,  and are not visible in 

exposed regular organic resist patterns from this masks (see Figure 8.13). One can also clearly see 

the smallest feature in the back-lit picture which is a 2 pm wide space. This width is really only 

the limits of the mask creation program not that of the resists. Although we have not carried out 

experiments to find out the smallest feature size possible with the BilIn film, TEM (Transmission 

Electron Microscopy) analysis showed that the grain size of the BilIn film is 150 nm, indicating 

that the smallest feature could be - 150 nm (refer to Chapter 6). 

Figure 8.12 demonstrates both the direct-write feature of SnIIn film and the powerful 

pattern drawing capability of our proprietary picture writing software. The argon laser power used 

was 1125 mW and the y-direction increment was 5 pm. The object is 362 p m  x 726 pm. The dark 

area has an optical density of 3 OD and the transparent area 0.22 OD. 

Figure 8.7 40140 nm Billn Direct-write binary photomask made on a quartz plate using an argon 
laser. The bilayer film was heat-treated for 72 hours at 90•‹C before laser exposure. (front-lit iniage, 
area = 1x1.6 cm) 



Figure 8.8 Back-lit image of the same Binn mask in Figure 8.7. 
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Figure 8.9 Enlarged front-lit picture of the direct-write Binn photomask in Figure 8.7. The width 
ofthe line at the middle is 51 &. 

Figure 8.10 Front+back-lit image of a pattern on the Binn mask (Figure 8.7) with 
Vertical raster-scanned lines can be seen in the exposed areas. However, the scan 
on exposed photoresist. 

25 pm wide lines. 
lines are not seen 
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Figure 8.12 Binary Ar laser exposure. 

8.3.2 Exposing Organic Resist with a BiIIn Direct-write Mask 

The true test of a photomask is how i t  exposes a photoresist. In order to test the direct- 

write photomask, a Quintel 4" mask aligner with a 365 nm Hg source was used to expose a 

Shipley SPR2FX-1.3 photoresist coated on a chrome film. With a 15 second exposure time and a 

10 mw/cm2 light intensity, a good pattern was made in the photoresist. These are comparable 

exposure parameters to those required for processing a chrome mask with the same features. 

Figure 8.13 shows the pattern on the Shipley photoresist after development in Shipley MF-319 

developer for 30 seconds. 
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mask of Figure 8.1 1. 
Figure 8.13 Pattern In wlpley w K L r x - l . . c  aevelopea w ~ t h  MF-319. Resist was exposed with the 

8.3.3 Writing Bimetallic Resists with an Industrial IR Laser 

Currently, most photomasks are written using UV laser or e-beam single beam systems. 

For the maximum resolution these short wavelength sources may be needed for the exposure of 

resists, but for many other applications larger spot sizes are acceptable. The near wavelength 

invariance property of these bimetallic thermal resist films suggests that it would be possible to 

use near Infrared (NIR) laser diodes, which relative to UV lasers have longer lifetime, much 

lower cost, and are available in laser diode arrays allowing for much faster mask production. As 

the mask sizes are growing substantially to fit the needs of the LCD and other industrial 

applications, writing the pattern with parallel beams could substantially speed up mask 

fabrication times. To  test this possibility, we also patterned the Bi/In thermal resist films using n 

flatbed thermal-imaging tool, a raster-scan system created by CREO Inc 1661. This multi-head 

system is similar to the laser exposure system we have at Simon Fraser University (X-Y-Z table 

and argon laser setup, refer to Chapter 4). The CREO system, as shown in Figure 8.14, is 

equipped with 160 independently controlled light spots using an 830 nm IR laser diode array 

which writes the pattern in a 0.8 mm wide swath. The spot size for each pixel is 5x5 p m  The 



substrate sits on an X table which moves only along the x-direction. and the laser head can move 

along Y direction. The X and Y movements work in accordance to raster-scan the desired pattern. 

The X table speed can be set to 0.1 d s  - 1 d s .  The laser head is also equipped with an auto 

focusing system with a 670 nm laser and focusing speed is 5 d s .  The maximum power of the 

830 nm writing laser is 15 W. 

The writing parameters were X table speed 0.2 d s ;  laser power 14 W; the correspondent 

energy density was 6573.5 m ~ / c m ~ .  In the initial tests, the Bi/In resists used were both 45/45 nm 

and 30130 nm thick. From the results shown in Figure 8.15 and Figure 8.16 an 830 nm IR laser 

can expose the films. Good patterns were written on Bi/In films with this industrial thermal- 

imaging equipment for the first trial with resolutions reaching the level that was expected by the 

writing tool. 

While big changes in OD were obtained, maximum transparency was not yet achieved 

due to the restrictions in the laser power/writing speed of the flatbed thermal-imaging tool, which 

was not designed for this particular application. The two important results here are first the 

extension of wavelength invariance for bimetallic thermal resist films to the near IR range. 

Secondly, the successful writing of patterns with good resolution using the multi-head laser diode 

concept. Experiments in this area are continuing. 

IR Laser Diode Array lilli Y 
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Figure 8.14 CREO Flatbed IR Thermal Imaging System for large area (LCD) masks. 



Figure 8.15 Patterns on a 30130 nm Bifln film raster-scanned by CREO's 
imaging system. The thickest line is 40 pm, the thinnest 15 pm. (Back-lit image) 
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8.3.4 Results of BiIIn and SnAn Binary Photomasks 

We have demonstrated BiIIn and S d I n  binary masks with the largest OD range (3 OD to 

0.22 OD) for a direct-write, no develop mask for I-line applications that have so far been 

reported. The laser diode writing results showed the feasibility of new ways of creating masks 

which are not possible with standard resist and Cr mask processes. This is important, since I-line 

and mask aligners are still widely used. Indeed, current LCD flat panel lithography uses very 



large masks of 1 - 5 pm resolution. Hence, large area bimetallic resist (200x200 cm) may have 

many potential applications in this area. 

8.4 Creating Greyscale Photomasks with Bimetallic Thermal Resists 

Three-dimensional (3D) microstructures with specified profiles are of great interest for 

optical, mechanical, fluidic and electronic devices. Various 3D fabrication techniques have been 

reported to create gradient height structures. However, many of the techniques either require 

costly, unconventional process equipment, or are not suitable for repeatable batch process [121- 

1251. On the other hand, grayscale photomasks have attracted much attention recently as they are 

cost-effective and easy to implement, when used together with a modified, conventional IC 

manufacturing photolithography and reactive ion etching. As discussed earlier in Chapter 1, 

grayscale photomasks can be categorized into two groups: binary (or digital) grayscale masks, 

and analogue grayscale masks, both of which have intrinsic problems. 

0 50 100 150 200 250 
Laser Power (mW) 

Figure 8.17 Linear plot: Binn and S d n  film optical absorption versus laser power at the 
wavelength 365 nm. From 50 mW to 200 mW, the behaviour is nearly linear. The slope of both 
curves is -0.02 ODImW. 



Looking at Figure 8.5, one can note that the optical density (OD) of both BiIIn and SnIIn 

films drops from -3 OD to -0.22 OD over a range of laser power. Figure 8.17 expands the OD 

vs. laser power curves, showing the curves from 0 to 250 mW plotted with a linear power scale. 

From about 75 mW to 200 mW the absorption of the films drops nearly linearly with laser power. 

This indicates that by controlling the laser power one can achieve different absorption in the 

exposed area and hence different grayscale. 

Figure 8.18 shows the setup for making grayscale masks from BiIIn and SnIIn films. It is 

the same as the setup mentioned in Chapter 4. However, the controller computer this time reads 

an 8-bit grayscale bitmap file, as shown on the left. According to the grayscale value of each 

pixel, the computer sends out a signal to the optical shutter which in turn controls the amount of 

laser light that passes through i t .  The shutter is fully open when the grayscale value is 0 (black in 

the bitmap image) and the shutter is fully closed when the value is 255 (white in the bitmap 

image). The computer also controls the table movement in accordance with the shutter so that the 

aspect ratio of the bitmap image is maintained. 
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Figure 8.18 The setup for making grayscale masks from B i h  and SdIn  films. 
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Figure 8.19 Comparison of making binary and grayscale photomasks with bimetallic thermal 
resists: (a) Thin film deposition on quartz or glass with a bilayer structure. (b) When making binary 
masks, Sn and In are converted into a new transparent material after exposure to laser with a 
constant power, and the unexposed area remains opaque. (c) Use as a binary photomask with 
uniform illumination. (d) When making grayscale masks, the bilayer film is exposed to laser with 
modulated power, according to the grayscale value. (e) Use as a grayscale mask with uniform 
illumination. More light goes through the more transparent area. (0 Photoresist is patterned with 3D 
structures. 

Figure 8.19 illustrates the process differences between the preparation of a direct-write 

binary photomask and a direct-write grayscale photomask using bimetallic thermal resists as the 

covering material. Sn/In exhibits characteristics similar to Bi/In. It also turns out to be more 

transparent after laser exposure, as shown in a previous section, compared to BVIn films. In this 

section, we will use both Sd In  and Bi/In as the photomask materials. The SnlIn metallic bilayer 

thermal resist, the same as Bi/In film, is DC-sputtered (15-150 nm) onto the substrate, as shown 

in (a). The S d I n  binary phase diagram has a eutectic point of 120•‹C at 46ur.96. The thickness 

ratio of the two films is chosen to match these eutectic compositions when preparing the Sn/In 

thermal resist. When a binary photomask is prepared, the film is exposed to direct laser scan at a 

constant power level (as in (b)), and the exposed area will absorb the light energy and turn 



transparent. The unexposed film will retain the bimetallic structure and remain opaque. Thus, a 

direct-write binary photomask can be successfully made for photomask application (as in (c)). 

When a grayscale photomask is manufactured, the laser power is modulated according to the 

grayscale value in the bitmap file (as in (d)). The optical density of the exposed film changes 

nearly linearly with the laser power, as depicted in Figure 8.17. Thus. the grayscale is transferred 

to the film. For an even illumination applied to the grayscale mask during a microlithography 

process, the intensity of the light that transmits the bimetallic grayscale mask will vary according 

to the grayscale (optical density) level (as in (e)). Hence, a modulated irradiation is deposited 

onto the organic photoresist. After development a 3D structure is created in the photoresist (as in 

Figure 8.20 (a) An 8-bit grayscale bitmap image as the computer input file. Two grayscale bars are 
shown here. (b) The back-lit image of the grayscale mask made on Bi/In 40140 nm according to the 
bitmap file on the left. The white bar is 200 pm long. 

Figure 8.20 shows a successful example of making grayscale masks from Bi/In films. 

Figure 8.20 (a) is an 8-bit grayscale bitmap file showing two grayscale bars. (b) is a back-lit 

image of the grayscale mask made according to the bitmap file. 



Figure 8.21 More conlplicated &ayscale photo was successfully made on a Snnn substrate: (a) the 
original 8-bit grayscale bitmap file; (b) the front-lit image of picture written on Snhn film; and (c) 
the back-lit image. 

Pictures in Figure 8.21 show a more complex example of making a grayscale image on 

SnIIn film. Figure (a) is an 8-bit grayscale bitmap file. It was used as an input file for the 

computer-controlled writing system. The parameters used to make the grayscale picture are listed 

as follows. Figure (b) is the front-lit and (c) is the back-lit image of the written pattern on SdIn .  

Due to the shining surface the front l i t  image produces a positive while the backlit illumination 

shows the true negative grayscale image. 

Argon laser power = 155 mW, and 50 mm lens used to focus laser beam; 

Laser writing speed = 500 p d s ;  

Sd In  thickness = 15/15 nm, 5% SdIn;  

Raster-scan Y direction increment = 5 pm; 

Picture size is 360 pm x 320 pm. 

8.5 Creating 3D Structures 

Creating 3D structures in substrates is the main goal for grayscale masks. But first a 3D 

structure has to be produced in the conventional photoresist. In order to test the grayscale 
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photomasks. a Quintel 4-inch mask aligner was used to expose a Shipley SPR2FX-1.3 photoresist 

coated on bare silicon wafers and thermally oxidized wafers. With an exposure time of 6 to 10 

seconds and a 10 r n ~ l c r n ~  light intensity, 3D patterns were successfully made in the photoresist. 

Shown in Figure 8.22 (a) is an &bit grayscale bitmap image for making concave structures. 

Figure 8.22 (b) is the back-lit image of a mask made on BiIIn film according to (a). Figuse 8.23 

shows the profile of a concave structure made in the resist with the grayscale mask in Figure 

8.22(b). 

Figure 8.24 is a back-lit image of a grayscale mask made on SnIIn with 5 different 

grayscale strips. Each strip is 60 pm wide. Figure 8.25 shows a 2-step structure made on Shipley 

SPR2FX-1.3 resist with similar grnyscale photomask. The resist is 1.1 pm thick and the substrate 

is SiOz. One can notice that the Shipley photoresist patterned by the SnIIn mask is much 

smoother than the one patterned by the BiIIn mask, as illustrated in Figure 8.23 and Figure 8.25. 

This difference may be because as-deposited SdIn film is smoother than as-deposited BiIIn film. 

Work needs to be done to improve the BiIIn film smoothness. 

Figure 8.22 (a). An 8-bit grayscale bitmap image of the computer input file in order to make a 
concave structure. (b). Back-lit image of a grayscale mask made on Bill11 according to the bitmap file 
shown on the left. The white scale bar is 200 pm. 



Figure 8.23 The profile of the 3D pattern made on Shipley SPR2FX-1.3 photoresist using the Binn 
grayscale mask with Quintel 4" mask aligner (I-line 365 nm Hg source). 

Figure 8.24 Back-lit image of a grayscale mask made on Sdln  with 5 different grayscale strips. The 
white scale bar is 200pm. 

Figure 8.25 The profile of a 2-step structure made on Shipley SPR2FX-1.3 photoresist with a 3 
grayscale strip photomask. 

Now that a 3D structure has been successfully made in the photoresist through 

conventional semiconductor lithography, plasma etching process will transfer it into the substrate. 

We used CF4 plasma etching to transfer the pattern in Figure 8.25 to the thermally oxidized 



silicon wafer substrate. The etch recipe is: O2 = IOsccm, CFj = 50 sccm, Chamber Pressure = 

IOOmT, RF Power = 200W, etch time = 3'301', and Si02 etch rate = 750 A/min. Figure 8.26 shows 

the profile of the 2-step structure in Si02 after stripping the photoresist. One can see that the same 

2-step structure was successfully created. In order to transfer the exact 3D profile of the 

photoresist to the substrate, the plasma etch recipe should be tuned so that both the photoresist 

and the substrate have the same plasma etch rate. 

Figure 8.27 Concave and convex structures were successfully made on Shipley photoresist. (a) is the 
original bmp file; (b) is the back-lit image of the grayscale mask made on 5% SnIIn; and (c) is the 
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The next example is the creation of an array of concave and convex structures. Figure 

8.27 (a) shows an 8-bit bitmap image with several arrays of circles, each 65 pm in diameter, with 

grayscale changing gradually from the centre to the outside. With this bmp image, we intended to 

make concave and convex mirror-like structures on the photoresist. The writing parameters were 

the same as for writing the grayscale image in Figure 8.21. Figure 8.27 (b) is the grayscale 

0 50 100 150 200 

x (urn) 

Figure 8.26 The profile of the 2-step structure etched in SiOz with CF4 plasma. 



photomask. Shipley SPR2FX-1.3 photo resist was spin-coated on a bare silicon wafer at 2500 

rpm to a thickness of about 1.3 pm. With a 6 - 8 seconds exposure time and a 10 rnw/cm2 light 

intensity, good patterns were made in the photo resist, as shown in Figure 8.27 (c). 

These experiments showed clearly that we could create true grayscale images and 3D 

structures with the bimetallic grayscale masks. 

8.6 Calibrating the Grayscale Mask Writing Process 

When creating 3D structures in a photoresist using the bimetallic grayscale photomasks, a 

question to be answered is whether the profile we obtain in the substrate or photoresist is what we 

designed? Or, is the grayscale value of each point in the bitmap image translated directly into the 

height (profile) in the photoresist? 

Function F 
Bitmap file Generator 

n 

Figure 8.28 From grayscale bitmap image to 3D structure in photoresist. 

185 



To answer these questions, let us have a close look at the whole process flow from the 

grayscale bitmap image to obtaining a 3D structure in a photoresist, as shown in Figure 8.28. 

There are six process data transfer operations. 

Step 1: Grayscale value reading and conversion: the control computer reads the grayscale 

value of each pixel, converts it into a 12-bit resolution signal and sends it to a function generator. 

Step 2: Translation of digital signal into voltage signal: the function generator translates 

the computer digital signal into a voltage and sends it to the electro-optical shutter. 

Step 3: Laser Writing: the electro-optical shutter modulates the power of the laser beam 

according to the voltage signal received from the function generator. The relationship between the 

voltage and the laser power through rate can be found out by experiments. 

Step 4: Bimetallic Film Conversion: the bimetallic film responds - turning transparent to 

the laser irradiation. As explained earlier, there is a nearly linear relationship between the film 

optical density and the laser exposure power within a certain power range. 

Step 5: Photoresist Exposure: the photoresist is exposed with the grayscale photomask. 

This step is expected to be nonlinear. When using the grayscale mask in the photolithography 

process, transmission is more convenient than OD. 

Step 6: Photoresist development: photoresist is developed with a developer. The process 

of developing a latent image into a relief image is likely a nonlinear process. 

The 3D structures created from the first batch of grayscale photomasks prepared without 

any calibration during the writing process revealed that there was significant discrepancy between 

the designed grayscale profile and the structure in the photoresist, as shown in Figure 8.29. The 

desired cone shape with straight walls was rendered into a concave structure. Thus, to create 

accurate 3D structures, calibrating the grayscale photomask and the whole mask-writing process 

is required. 
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Figure 8.29 From grayscale to 3D structure. (a) Bitmap grayscale profile of a centre-dark circle in 
Figure 8.27 (a). (b) Profile of the concave mirror structures in the Shipley resist. 

As one can see, Step 2 is the best place to carry out the calibration of the whole grayscale 

photomask writing process. A computer data file can be created that relates each bitmap grayscale 

value with a specific calibration code for the function generator. The function generator has a 12- 

bit resolution (2047 to -2048) and typically has its voltage ranging from 0 V to -3.9 V. Thus, a 

calibration code of 2047 is equivalent to 0 V for the shutter while a value of -2048 is equivalent 

to -3.9 V. Because the relationship between the laser power and the OD / Transmittance / 

Photoresist Depth is not always linear, as mentioned earlier, a 12-bit shutter voltage resolution is 

required to control the laser power. The 12-bit control on the laser power is needed to enable the 

8-bit grayscale range to be directly related to the OD / Transmittance / Photoresist Depth. The 

12-bit shutter voltage resolution also allows us to make several different calibration files for the 

same 8-bit bitmap. Each calibration file is unique and designed for a particular mask, laser 

power, table raster-scan velocity, and photolithographic process. In addition, the resulting 

relationship between the OD / Transmittance / Photoresist Depth and the 8-bit grayscale will 

change significantly depending upon the calibration file used. 

In order to create a calibration file, each bitmap value must be related to a particular 

property to be controlled for the mask. This controlled property can be the optical density or 

transmittance of the mask itself, or the resulting photoresist depth after exposure and 



development. Having chosen the property to be controlled, the next step is to identify the 

relationship between that property and either the laser exposure power or the calibration codes. 

Interpolation is then used to create the calibration file. Depending on the property being 

controlled, two different methods were used. 

8.6.1 Calibrating for OD/Transmittance 

In the case of creating a calibration file to control the mask's optical density or 

transmittance, we first had to identify the mask's optical density response to laser exposure 

power. This has been discussed in Section 8.2.1. In the case of controlling a mask's transmittance, 

using the formula T =lo-"", the bimetallic film transmittance can be easily calculated from the 

measured optical density. Figure 8.30 presents a typical OD vs. laser exposure power plot for an 

8Onm thick loat.% SnIIn film with a table raster-scan velocity of 1 cmls. 

Having identified the relationship between the mask film OD and the laser exposure 

power, this information can then be used to determine what properties are obtainable for a 

particular mask. Next step is to decide how the grayscale value will relate to the OD and 

Transmittance of the mask. To illustrate, let's create a calibration file for a mask where the OD is 

linearly related to the grayscale value, as shown in Figure 8.31. 
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Figure 8.30 OD vs. Laser Exposure Power for an 80 nm, loat.% Snnn Thin Film. 
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Figure 8.31 OD vs. Grayscale: Desired relationship. 

In order to create the calibration file, each grayscale value must be related to the correct 

shutter voltage. However, the relationship between the laser exposure power and the shutter 

voltage must first be identified. Using a Coherent FieldMaster GS Power/Energy Analyzer with a 

thermal detector head, the relationship between the shutter voltage and the laser exposure power 

was measured for several different commanded laser powers, as shown in Figure 8.32. The 

commanded laser power is the commanded power output for the laser and will always be higher 

than the measured laser power. 
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Figure 8.32 Laser Exposure Power vs. Shutter Voltage. 

From the OD vs. Laser exposure power results illustrated in Figure 8.30, to achieve the 

minimum of 0.26 OD from Figure 8.31, the measured laser power must be at least 1 W. Based on 



the Laser exposure power vs. shutter voltage results illustrated in Figure 8.32, to achieve 1 W of 

measured laser power while attempting to get the lowest power at -3.9 V, the commanded laser 

power should be set to 1.75 to 2 W. 

calibration Code 

Figure 8.33 OD vs. Calibration Code. 

Figure 8.34 Calibration Code vs. Grayscale: Calibration File. 

Using a mathematics program such as MatLab, the OD vs. Laser Exposure Power in 

Figure 8.30 and the 2 W Laser Exposure Power vs. Shutter Voltage curve in Figure 8.32, the 

relationship between the mask's optical density and the shutter voltage can be interpolated. Since 

the shutter voltage and calibration codes are linearly related, the shutter voltage values are easily 

replaced with their equivalent calibration codes to obtain the relationship shown in Figure 8.33. 

Having the OD vs. Calibration Code plot, the last step is to use the desired OD vs. 

Grayscale curve in Figure 8.31 to interpolate the results for the calibration file shown in Figure 

8.34. 
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8.6.2 Calibrating for Photoresist Depth 

In the case of creating a calibration file to control the resulting photoresist structure, the 

relationship between the resulting resist depth and the laser exposure power or more specifically 

the calibration codes must be identified. As mentioned previously, the calibration codes have a 

12-bit resolution from -2047 to 2047. If we were to follow the method described for the OD and 

Transmittance calibration, we would need to create several square patterns on a test mask at a 

fixed laser power. We would then need to expose regular photoresist with the mask and measure 

the depth of each square on the developed photoresist. However, using a profilometer and the 16- 

step v-groove shown in Figure 8.35, we can obtain more data in less time. 

X Dlrectlon (uml 

Figure 8.35 16-step V-groove. 

First, in order to use the 8-bit grayscale 16-step v-groove bitmap, we need to break-up the 

4096 calibration codes into chunks of 256 (8-bit in length). Once broken up, each calibration 

code is mapped to a single bitmap grayscale value using a test calibration file. This process 

results in the creation of 16 test calibration files shown in Table 8.2. 

Table 8.2 Test Calibration Files: 16 files break-up and map the 12-bit range of the Calibration 
Codes into the 8-bit grayscale value range of the bitmaps. 

Calibrat 
Bitmap 

Grayscale 

n File #l 
Calibration 

1792 

Graysc;le Code 
... 0 -1792 

1 - 1793 
. . . . . . 

255 -2047 



Choosing a particular commanded laser power, each calibration file is used to write a 16- 

bit v-groove pattern, resulting in 16 patterns on one mask. After using the mask to expose a 

photoresist, a profilometer is used to measure the resulting structure for each v-groove pattern. 

From the measurements, depth values are obtained for 256 (16 patterns by 16-steps) of the 

calibration codes. Thus, from this method of using the profilometer and the 16 v-groove patterns, 

we obtained the same results as 256 squares using the OD and Transmittance method. We could 

have used a 256-step v-groove to get even more data; however, identifying the depth for a 

specific step becomes much more difficult. Having measured the resulting depth for each step in 

the v-groove structures, a relationship between the calibration codes and the resulting depth in the 

photoresist is thus obtained. 

The last step is to use the desired Depth vs. Grayscale and the Depth vs. Calibration Code 

curves to interpolate the final calibration file. Furthermore, knowing the Laser Exposure Power 

vs. Shutter Voltage shown in Figure 8.32 and the linear relationship between the shutter voltage 

and the calibration codes, we can also interpolate results relating the photoresist depth to the 

shutter voltage and laser exposure power. 

8.6.3 V-Groove Grayscale Structure 

V-groove grayscale structures have been successfully created using Clariant AZ-5214E 

photoresists. The grayscale photomask is a 80 nm, 5at.% SdIn thin film and raster-scanned using 

0.8 W laser power with a 50 mrn lens, a scanning speed of 2000 prnls, and an X-direction step 

size (laser spot size) of 10 pm. The photoresist is spun onto a RCA-1 cleaned wafer at 4000 rpm 

for 45 seconds. The expected thickness of the photoresist is -1 pm. The wafer is soft-baked at 

100•‹C for 60 seconds before exposure. The photoresist is exposed under an I-line mask aligner at 

12 mJlcm2 for 4 seconds, and developed in Clariant AZ-327 MIF solution. Hard-bake is carried 



out at 120•‹C for 10 minutes after development. Profilometry measurements using the Tencor 

Alphastep 500 profilometer were then carried out. Several sizes of a V-shaped groove have been 

created using the 8-bit gradient bitmap file shown in Figure 8.36. 
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Figure 8.36 256-step V-groove. 

The darkest spot of the bitmap image is at the centre and corresponds to the maximum 

power intensity through the electro-optical shutter. Both the leftmost and rightmost edges 

contained the brightest spots of the bitmap image, and they correspond to the minimum power 

intensity through the electro-optical shutter. There are total of 511 pixels created horizontally 

with the edges starting with a grayscale level of 255 (white) and decreasing by 1 grayscale level 

for each pixel until the two sides converge at the grayscale level of 0 (black) at the centre. With 

the appropriate calibration file, the resulting structure will be a v-groove. Figure 8.37 illustrates 

the profile of a V-groove structure created in Clariant AZ-5214E photoresist. The straight line 

indicates the desired photoresist profile from the SdIn grayscale photomask. Figure 8.38 shows 

the depth of V-groove structure in the photoresist compared to the grayscale curve. Note that with 

current research, it is not clear how much of the roughness in Figure 8.37 is due to the mask, and 

how much from the variations in the organic photoresist itself. Recent tests with another type of 

thicker resist did show much smoother sidewalls in the resist. Nevertheless, it appears these are 

the best grayscale direct-write mask in terms of OD range and simplicity of fabrication of any 

reported in the literature. 
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Figure 8.37 Profilometry of the V-groove structure in the photoresist. 
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Figure 8.38 Photoresist Depth of the V-groove structure vs. Grayscale Curve. 

8.7 Making Solar Cells with a Bimetallic Thermal Resist Process 

Making surface-textured silicon solar cells is an example of combining micromachining 

and microfabrication processes, as it involves silicon bulk etching, thin film deposition, and 

diffusion. J. Zhao, et al, used silicon anisotropic etching to create reversed pyramids on a silicon 

surface to enhance the light absorption [103]. Here we make solar cells with a Bi/In process so as 

to demonstrate its compatibility with conventional silicon processes. It is also an example of 

combining Bi/In thermal resist application and direct-write photomask application into one device 

making process. As shown in Figure 8.39, parallel V-grooves were first created by Bi/In 

patterning and masking process on a (100) n-type 100 rnm silicon wafer, followed by standard 

cleaning and HF dip. Boron diffusion was then carried out after wet oxidation and lithography. 



finger (Al) -E 

V-groove 

n-silicon 
- ,  u -. - - - 2  

rear contact (Al) 
Figure 8.39 V-groove surface textured solar cells are made on a (100) n-type silicon wafer by using 
Binn as the patterning and masking material. 

BiIIn was used as the direct-write photomask for the lithography of the oxidation and 

metallization layers. The masks were created under the same conditions as those in Figure 8.7. A1 

was deposited on both sides of the wafer as metal contacts. In order to pattern the Al layer, a 

direct-write dark-field Billn mask was used together with a negative photoresist (AZ-5214). The 

process is as following: 

Spin-coat 1.4 pm thick AZ-5214 onto the wafer; 

Soft bake at 120•‹C for 60  seconds; 

Exposure Bi/In mask for 30 seconds at P365nm = 10 mWlcm2; 

Hard bake at 120•‹C for 45 seconds; 

Flood exposure (without mask) for 10 seconds at P365nm = 10 mWlcm2; 

Developed in MIF for 30 seconds. 



Table 8.3 Process flow for making V-grooved solar cells with B a n  as the patterning & masking 

Process Name Purpose 
Starting Wafer Process begins 

BilIn as 
patterning and 

BiIIn Deposition masking layer 
for building 
grooves 
Make parallel 

Laser Exposure strip patterns on 
BilIn 

BilIn Generate groove 
etch masking 

Development ( layer 
Create 
anisotropic v- 

alkaline-based 

Pre-oxidation 
Cleaning 

Important 
cleaning before 
oxidation to 
remove metallic 
and organic 
contaminants 

for device 

diffusion 
maskin 

-- 

Operation Detail 
(100) n-type, Resistivity = 5-15 Qcm, Thickness = 525 * 50 pm, 

120 nm I 120 nm of BilIn was deposited, 

Laser power = 0.8W, 50x objective lens, beam waist = 1 pm, 
scanning speed = lcm/sec, lateral scanning step = 0.4 pm, mask 
width = 6.4 pm, V-groove width = 8 pm, 

Developed in HC1:H202:H20= 1 : I:48 for 18 minutes, 

Etched in TMAH @8S•‹C for 30 minutes, mechanical agitation, 

Processed in the following order 
1. Piranha H2S04:H202 = 4:l @ 100•‹C for 15 minutes 
2. HF dip HF:H,O = 10: 1 for 10 minutes 
3. RCAl NH,0H:H202:H20 = 1:1:5 @ 80•‹C for 10 

minutes 
4. HF dip HF:H20 = 10: 1 for 3 minutes 
5. RCA2 HC1:H202:H20 = 1 : 1 :6 @ 80•‹C for 20 

minutes 

40 minutes of wet-oxidation @ 1100•‹C to get 0.52 pm of oxide 1 
open diffusion windows, 

Boron diffusion @ 1000•‹C for 40 minutes, 
Drive-in @ 1000•‹C for 40 minutes, 
Open contact and deposit 500 nm Al. 

Table 8.3 is the detail of the process flow. Figure 8.40 shows the V-groove surface 

texture of the solar cell. Measurement results show that the 1.5 cm2 V-grooved solar cell gives 

202 mV open circuit output voltage and 8 rnA short circuit current under normal florescent tube 

light at 25•‹C which is a fully functioning solar cell. In order to provide a reference to compare 

with, normal solar cells were also produced on the other half of the same silicon wafer without 

being patterned with Bi/In films. Measurement results show that the solar cells behave the same 

in either process. 



What is important here is that both BiIIn resist processes and BiIIn mask processes were 

demonstrated in the same structure and produced devices that work the same as those with other 

processes. 

~~~s~~~--+ 
Figure 8.40 Solar cell V-groove surface. (SEM picture) 

8.8 Conclusions 

Optical properties of bimetallic BiIIn and S d I n  films were studied. It was found that 

40140 nm heat-treated BiIIn and S d I n  could have -3 OD before laser exposure and 0.26 OD and 

0.22 OD, respectively, after high power laser exposure at the I-line wavelength, which are desired 

for making direct-write binary photomask. Wavelength invariance was proven one more time by 

writing photomask patterns on B i h  films with IR (830 nm) wavelength diode laser and a 5 14 nm 

argon laser. The transition slope of thc OD vs. laser power curve from opaque to trmsparcnt 

allows us to create analogue grayscale photomasks by modulating the laser power. Both binary 

and grayscale photomasks were successfully produced. Tests showed that a 12-bit resolution 

function generator is necessary to create an 8-bit grayscale resolution in the photomask and the 

photoresist. 3D structures were also successfully generated in organic photoresists and various 

substrates. Effort was made to try to find the relationship between grayscale value in a bitmap 



image and the profile of the pattern in the photoresist. Surface-textured solar cells were 

manufactured successfully with Bi/In as the patterning and etch masking layer and as a direct- 

write photomask material, exemplifying that the bimetallic thermal resist process is a working 

process that it is compatible with conventional silicon processes. The next chapter investigates a 

thermal model of the bimetallic thermal resist exposure process. 



Chapter 9 
Thermal Modelling of Bimetallic Thermal Resists 

9.1 Introduction 

Unlike organic photoresists which are transformed by photochemical reactions, thermal 

resists such as BiIIn and Sn/In are converted by heat that is absorbed from a laser beam. A heat 

conduction model will help understand how the heat is distributed in the resist film and the 

substrate, how the substrate affects the exposure, what the conversion temperature of the film is, 

what the resist profile will be after development, and also the thermal resist exposure behaviour 

when exposed to long (1 msec) and short laser pulses (c10 nsec). In this chapter, an effort will be 

made to establish a heat transfer model to describe the laser exposure process. ANSYS 5.7", a 

piece of powerful finite element analysis software, will be used as the numerical tool to calculate 

the temperature in the thermal resist film and in the substrate. Experimental results will be 

compared with simulation results to verify the model. The influence of various laser exposure 

parameters (such as laser power density, energy density and pulse duration) on thermal resist 

heating and the resolution limit of laser imaging will be investigated. The laser-induced 

interaction at the interface between a thermal resist and a substrate will be discussed. This will 

help us understand the difference between a thermal resist exposure, a conventional laser-assisted 

diffusion and a laser-induced annealing after dopant implantation. 



9.2 Heat Transfer Model 

9.2.1 A Complex Process 

When the laser beam hits the thermal resist film, reflection, transmission and absorption 

occur. Our Airy summation optical model, discussed in Chapter 3, shows that for a 15/15 nm 

BVIn film deposited on a glass slide, 35% of the laser light energy is absorbed at 514 nm 

wavelength, -60% is reflected and -5% transmitted through the film. Most of the absorbed 

energy is transformed into heat and the temperature of the exposed area goes up. According to the 

Bi/In phase diagram (refer to Chapter 2), a 50at.% film melts at a eutectic temperature of 110•‹C. 

Thus, when the thermal resist film is heated to or above this threshold, a phase change will occur, 

and the chemical and physical properties will change. Prokhorov [I261 pointed out that two 

effects should be considered: the modification of the optical properties of the irradiated area, and 

the additional heat release due to exothermic reactions when metals are exposed to laser 

exposures in chemically active environments, such as oxygen and air. XRD and RBS (Rutherford 

Back Scattering) analyses (See Chapter 6) show that large amounts of oxygen was found in the 

BiIIn film which was laser-exposed in air. Thus, oxidation is occurring under our laser exposure 

conditions. 

Let's first do an estimation of the additional heat release due to the exothermic metal 

oxidation. The Standard Molar Enthalpy (heat) of Formation Af H "  (W l mol) [58] for In203 and 

Bi203 are -925.8 Wlmol and -573.9 Wlmol, respectively. Assuming a 50150 nm BVIn film, a laser 

beam spot size of 1.6 pm in diameter, that the metals under the area exposed to the laser will be 

fully oxidized to form stoichiometric metal oxides (In203 and Bi203), and the total volume of the 

exposed material being 1x10-l3 cm3 for In and Bi, we can calculate that the total heat released 

from the oxidation of Bi and In is - 1x10-~ J (Refer to Appendix B for the density and mole 

weight of Bi and In). For comparison, the lowest power density (using argon CW laser) needed to 



heat a 50150 nm BiIIn film on glass substrate to about 298S•‹C is 4x10.' w/m2 (simulation and 

experimental results indicate this is the laser conversion temperature, refer to Section 9.3). With a 

typical exposure time of 1 . 6 ~ 1 0 . ~  second and a 48.7% film absorption percentage, the heat 

induced by an argon laser exposure is - 1x10.~ J. Thus, the heat released by oxidation is 

negligible. However, when the laser exposure duration is in the nanosecond range, the heat 

induced by laser exposure and oxidation becomes comparable. For example, a 4 ns, 7mJlcm2 

Nd:YAG laser pulse on a 1.6 pm spot only transfers -1x10-'~ J energy, which is even lower than 

that created from oxidation process. 

9.2.2 ANSYS Model 

Our purpose of setting up a thermal model is to find out the conversion temperature of the 

thermal resist film, or the highest temperature the film reached during the exposure process. It is 

known that the film gets much more transparent after laser exposure, and the absorption should 

drop significantly. In order to simplify the model, we will not take into account of the heat 

generated by metal oxidation, and the optical property changes of the metal films. This enables us 

to consider the heat transfer process as a conventional transient, nonlinear thermal process (phase 

change energies will be taken into account). 

The heat diffusion equation for an incompressible and non-convectional media is [127]: 

where k is the thermal conductivity, p is the density (g/cm3), c, is the specific heat ( J / ~ ~ . K ) ,  T is 

temperature, t is time, and 4 is the heat generation rate per unit volume. 

Assuming that the thermal resist and its substrate are homogeneous, and isotropic, and 

that there is no mass transport of heat, we have the following equation: 

20 1 



or in a more familiar form: 

It is easier to analyze the heat transfer in the laser exposure system in cylindrical 

coordinates, as shown in Figure 9.1. The following is the differential equation for heat conduction 

for a homogeneous, isotropic solid: 

When a laser beam shines on the film, the heat flow is in cylindrical symmetry, thus not 

dependent on p. This allows us to simplify the heat-conduction differential equation as follows, 

and will convert the 3D problem into a much simpler 2D model. 

/ 
Figure 9.1 The heat flow and temperature distribution should be in cylindrical symmetry when a 
laser beam shines on a sample. 



There are many kinds of finite element analysis software on the market. ANSYS 5.7 was 

chosen to build the thermal model and to do finite element calculation, as it has a type of 

axisymetric, harmonic 8-node thermal solid element, which uses 2D models to solve axis- 

symmetric problem, such as Equation (9.5). The modelling ends up just taking one slice of plane 

along the radius direction from the cylinder in Figure 9.1. The thermal model was set up with 

following conditions: 

Both the thermal resists and the substrate are homogeneous and isotropic; 

No convection is considered as exposure duration is 1 0 ' ~  to 10 '~  second; 

Chemical or other thermodynamic reactions are not taken into account; 

Optical property changes are not taken into account; 

The thermal conductivity of BiIIn and the substrate are constant; 

The laser source is a uniform circular shaped source. 

Figure 9.2 Simplified 2D model using ANSYS 5.7 axisymetric harmonic 8-node thermal solid 
element. It is a slice of area along the radius direction shown in Figure 9.1. 

As shown in Figure 9.2, the laser beam was applied on top of the two metal layers, at the 

axis. The laser beam size was from 1.6 pm to 10 pm in diameter after a 2.4 rnrn Argon laser was 

focused by a 50x objective lens or a 50 mm focal length converging lens. Ideally, the dimension 



of the substrate and the film in the model should be the actual sample size. But this will generate 

too many elements for ANSYS5.7 to handle (our academic version of ANSYS57 can handle, at 

most, 128000 elements), as the substrate (e.g. a glass slide) thickness is 10' times thicker than that 

of the metal films. It was also noticed that the exposure time was short and that the heating only 

happened in a small local area. Thus, to further simplify the model, a 20 by 12 pm substrate was 

used. This reduced the calculation time. Analysis showed that if the dimension was doubled to 40 

by 24 p m  (this simulation time increased by 10 times), the final result changed by ~ 1 % .  Figure 

9.3 shows a typical meshing result of a 20x12 p m  thermal model, with 50150 nm BiIIn on a glass 

substrate; laser beam is assumed to be 1.6 p m  in diameter. 

Harmonic ANSYS model. The laser beam is 1.6 pm in diameter. 

Figure 9.4 ANSYS simulation result showing a temperature profile, with an argon laser beam of 
typical power ( 0 . 5 ~ 1 0 ' ~  W/mZ, or 10 mW focused down to 1.6 pm spot in diameter) applied at the 
upper left corner shown in Figure 9.2. 
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Figure 9.5 An enlarged plot of the laser beam irradiated area in the thermal model shown in 
Figure 9.4. Temperature at the centre of the top of the bilayer is 653.7K, and the bottom is 638.1K. 

Figure 9.4 shows the temperature profile after the 50/50 nm Bi/In on glass sample was 

exposed to the argon laser power: 0 . 5 ~ 1 0 ' ~  w/m2, or a 10 mW focused to a 1.6 pm spot in 

diameter. The exposure time was 1 .6~10"  second. The hottest spot was at the top of the BiIIn, i.e. 

the upper-leftmost corner, which was 653.7K, and the bottom of the BiJIn was 438.1K. Figure 9.5 

is the enlarged temperature profile plot of the laser beam exposed area, showing the temperature 

profile in the Bi/In film. 

9.3 Simulation Result I: Binn Resist Conversion Temperature 

Since i t  is difficult to accurately measure the temperature of the thin film during the laser 

exposure, without disturbing the temperature distribution, we cannot compare the simulated 

temperature with the real temperature on the film at this moment. It was experimentally observed 

that with the same 50/50nm Bi/ln film, the optimum exposure power changed when different 

kinds of substrates were used. Much higher power was needed to expose Bi/In directly on silicon 

wafers than on glass substrates as silicon has over 100 times more thermal conductivity than does 

glass (see Appendix B). The power required for samples with 80081 and 400081 wet oxide on the 

silicon wafers fell in between. 
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Figure 9.6 The laser exposure power affects the formation of latent and relief images. 

Before setting up a critical exposure point as the reference for thermal model simulation, 

let us have a look at the exposure and development process, as shown in Figure 9.6. If a low 

power is used to expose the film, the film is not fully exposed to the bottom. Thus, the conversion 

is not complete, and no relief image will form on the substrate after development since dilute 

RCA2 will strip away unconverted film. Profilometry tests will not be able to detect a pattern 

profile. If a high laser power is used, the exposed area is fully converted along the film normal 

direction. The profilometry of the developed image will show the full height of the converted 

film. If the threshold laser power is applied, so  that the film is just fully converted to the bottom 

of the film, as shown in Figure 9.6, profilometry will start to show signs of a developed pattern 

profile. This laser power is the critical laser power to fully expose the film. This power varies 

with the thickness of the resist film and the type of substrate. However, i t  is reasonable to assume 

that the conversion temperature at the bottom of the film under the critical laser power should be 

a constant which is not dependent on the film thickness or the type of the substrate, and it is the 

minimum conversion temperature of the thermal resist. If a whole series of exposure is done in 

single line scan style using different power, and followed by dilute RCA2 development and 

profilometry test across the lines, one can easily locate the critical laser power. 

In order to find the minimum laser power needed to fully expose a 50150 nm BiIIn film 

on each substrate, a series of power (Argon laser 0.1 mW - 1000 mW, focused by 50x objective 



lens, with wf = 1.6 pm) was used to expose the film. The laser exposure time was 1.6x10-' 

second. The film was then developed in dilute RCA2 solution and followed by a profilometry test 

to measure the thickness of the developed film. Figure 9.7 shows the profilometry result from this 

laser power test on glass substrate. From right to left, the laser exposure power increased 

gradually from 0.1 mW to 200 mnW, and each line had a 180 pm spacing. The 10' line from the 

left is the first to show the sign of a relief image profile. It was exposed with an S mW argon laser 

beam focused by a SOX objective lens. The co~responding power density is 4 x 1 0 ~  w1m2. Figure 

9.8 illustrates the laser power versus thickness of developed Bi/In film on the four different 

substrates. It is seen that the thickness of the developed BiAn increases rapidly with the laser 

power and saturates after the film is fully exposed. Figure 9.9 shows the minimum laser power 

that is needed to fully expose 50150 nm BiIIn on four different substrates. With the thermal 

model, one can easily calculate the temperature at the bottom of the resist film under these 

minimum laser powers, and it should give similar temperature results for all four substrates. 
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Figure 9.7 Profilometry test across developed, scanned lines exposed with different laser power. 
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Figure 9.9 Minimum laser power used to fully expose the Bi/In films on four substrates. Data were 
extracted from Figure 9.8. 

Table 9.1 shows the simulation results and the experimental conditions: the film 

thickness, the laser used to expose the film, the minimum laser power needed to fully expose the 

film, the laser absorption by BiIIn and the exposure time, that were used to expose the Bi/In on 

the four different substrates. The simulated temperatures at the bottom of the resist films, which 

were just fully exposed on all four substrates, fell into a very small range (268.3"C - 315.3"C). 

This indicates that the model works for the Bib thermal resist exposure. Taking the experimental 

errors into account, we take the average of the four calculated results as the nominal B i /h  laser 

conversion temperature, which is 287 + 23•‹C. This should be considered as a high estimation of 



the resist conversion temperature, as the optical property changes during the laser exposure 

process and other energy losses were not taken into account. 

Table 9.1 Experiment conditions and simulation results. 
1 Substrate Si I Si-Si07 800A I Si-Si074000A I Glass I 

I Laser wavelength (nm) 1 514 1 514 1 514 1 5 1 4  1 - 

I Binn thickness (nm) 
I I I I 

1 50150 1 50 1 50 

I Exposure Time (second) 
I I I I 

I 1 .60~10-~  I 1.60x10-~ I 1.60x10-" 1.60x10-~ 

50 / 50 1 50150 

Laser beam size (pm) 
Laser Power for Full Exposure (w/m2) 
Laser Absorption by Binn Film 

9.4 Simulation Result 11: Influence of Pulse Duration on Exposure 
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One of the most important performance parameters of a thermal resist is its sensitivity. 

As noted in Chapter 7, BiDn has a sensitivity of 6-7 mJlcm2 with 4 ns pulses at the Nd:YAG 

266nm. Thermal modelling shows that a 15/15 nm BiIIn film can be heated to 340.1•‹C and 

322.2"C at the top and the bottom of the resist film, respectively, with a single 4 ns, -6 mJlcm2 

266 nm Nd:YAG short pulse (laser spot size 1.6 pm in diameter, on a glass substrate). It was 

assumed that Bi/In absorbs 60% of the laser energy. If the same 15/15 nm Bi/In sample is 

exposed to X-ray (1 nm), a single 16 mJ/cm2 1 ns pulse can heat it up to 329.g•‹C and 308S•‹C at 

the top and the bottom of the resist film, assuming a 12% absorption percentage. 

Simulated Temperature ("C) 

Figure 9.10 shows the simulation result of power density versus exposure time that can 

fully expose a 15/15 nm Bi/In film. It is assumed that the film is fully exposed when heated to 

over 287.7"C at the bottom of the resist. It is expected that the exposure time increases as the 

power density drops. However, there is a minimum power density that is required to expose the 

15/15 nm Bi/In film which is 8 . 1 ~ 1 0 ~  w/cm2. Below this level no matter how long the resist is 

exposed to a light source, it will not be converted. That is why sunlight (0.1 w/cm2), mask aligner 

(0.01 w/cm2) or lamp light cannot expose BilIn resist. Based on the same simulation result, 
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Figure 9.11 is the exposure time versus exposure level in mJ/cm2, showing that the exposure 

density increases with exposure time. Note that these results agree with the sensitivity of short 4 

nsec pulse experimental results of 7 mJ/cm2. 
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Figure 9.10 Power density vs. exposure time for a 15/15 nm Binn. 
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Figure 9.11 Exposure level vs. exposure time for a 15/15 Binn. 

Due to thermal conduction, laser exposures on thermal resists cause unwanted heating in 

areas surrounding the exposed features. In order to investigate the influence of laser pulse 

duration on the lateral heat conduction, simulations were carried out on a 15/15 nm Bib film 

which was exposed with a 266 nm laser beam. Two circular spots were exposed on the film: one 

is r = 0.8 pm and the other r = 0.05 pm. Different powers were used to make 0.1 ns to 10 ps 



exposures. Figure 9.12 shows the simulation results for a half of the 0.8 pm spot. The X axis is 

the distance from the spot centre. It shows that with a 1 ns pulse the lateral heat dissipation is the 

least. The temperature drops quickly within a short range (-0.09 pm). With longer pulse duration 

one can see that the lateral thermal flow increases and the exposed area gets smaller. Figure 9.13 

is the temperature profile of the 0.05 pm spot, showing that even shorter pulses are needed in 

order to minimize the lateral thermal flow. What is unknown as of yet is how narrow a 

temperature window is the threshold for the reaction. That would determine how sharp the 

exposed edge is. 
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Figure 9-12 Simulated temperature profile of an r = 0.8 pm circular spot, with different pulse 
durations. 
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If we take 287•‹C as the exposure threshold, the 0.1 ns exposure in Figure 9.13 will yield 

an exposed spot with r = 0.0375 pm, 1 ns pulse will give a spot of r = 0.043 pm and 10 ns pulse 

will create a spot of r = 0.05 pm. This shows that the feature size will grow with increasing laser 

pulse duration. The difference caused by a pulse duration variation can be predicted by thermal 

modelling and can be minimized by feature size compensation. Since this change is small, only 

12 nm for a 100 times change in pulse duration, it will be easy to compensate for. It is common in 

semiconductor industry that a pattern on a photomask is modified to achieve the desired feature 

size and shape in the photoresist depending on the behaviour of the resist for a given exposure 

system. 

For a few nano-second pulses, an important fact is that the heat contributed by the 

oxidation of the bimetallic film, as noted previously, is even larger than the energy absorbed from 

the laser exposure. A 4 ns, 7 mJ/cm2 pulse transfers 1x10-lo J onto a 1.6 pm diameter area, while 

the oxidation in the same area on a 15/15 nm film creates 1x10-~ J. This could be a significant 

factor in the resolution of the system. 

9.5 Summary 

A thermal model has been established using the ANSYS5.7 finite element analysis tool. 

A special axisymetric harmonic element was chosen so that the original 3D model was simplified 

to a 2D model, which should be more accurate, and more efficient. Simulation results show that 

the minimum Bi/In laser conversion temperature is 287"C, which is consistent with experimental 

results. It was found that the laser pulse duration has a great influence on thermal resist exposure. 

This is due to the heat dissipation along the lateral directions during the laser exposure. Model 

calculation show that the shorter the pulse duration, the less lateral heat flow, and thus the better 



the pattern profile, and the less the exposure energy needed. The next chapter discusses the 

compatibility of bimetallic thermal resist with silicon processing. 



Chapter 10 
Evaluation of Substrate Contamination 

10.1 Introduction 

During the exposure process, bimetallic thermal resists convert into some new materials 

under raised temperature. Previous chapters discussed the material transformation that happened 

in the thermal resist films. How about the substrates? Does the metal diffuse into the functional 

layer? Are there any contamination issues associated with the bimetallic resist exposure process? 

In this chapter, we will investigate these problems. 

Laser irradiation on dopant and metal-coated silicon substrates has been studied for 

decades [128-1351. Fairfield [128] reported in 1968 that silicon diodes were successfully made by 

laser irradiation on a phosphorous-coated silicon (1 11) wafer, using a ruby pulsed laser source 

(694.3 nm, 5 msec duration). With 10 '~  ~/cm' of energy density, the exposed surface area was 

melted and a p-n junction formed to depth of up to 1 pm. Since then many works have been 

reported on using laser irradiation for doping and annealing or diffusion after implantation. 

Harper [I291 used focused Nd:YAG pulse laser (1.06 pm wavelength, 0.2-3.0 d, pulse duration 

240 - 500 nsec) to make a p-n junction by locally alloying a vacuum-evaporated A1 film into n- 

type Si. Kachurin, et al, used a high-power CW argon laser (514 nm, 3-15 W, spot size from 100 

to 200 pm in diameter, exposure duration 50 msec) to raster-scan arsenic implantation-doped 

silicon for annealing purpose [130]. Broutet, et al, did laser-induced diffusion tests on Bi and In. 

Using a 20 ns pulse ruby laser, he found a dopant distribution profile with a surface disordered 

layer. A cellular structure was observed in the surface of the treated sample, which was similar to 

laser-annealed, ion-implanted silicon [13 11. 



These reports show that it is important to investigate the possibility of diffusion or 

contamination of thermal resist metals into substrates during laser exposure. This subject will be 

discussed using the experimental data and simulation results. 

10.2 Literature Study 

Material analysis of laser exposed BiIIn and S n h  films indicates that this process is an 

oxidation and that the oxides generated are similar to IT0  films. Before moving to the evaluation 

of contamination by bimetallic thin film processes, we can study some previous research work on 

In, Bi, Sn and IT0  contaminations to silicon substrates. 

It was first noticed that the diffusion coefficients of In, Bi and Sn in silicon are quite low, 

as compared to B and P and many other metals (Table 10.1, calculated from [136-1401). With the 

exposure conversion threshold around 300•‹C, none of the thermal resist metals can diffuse into 

silicon substrate significantly. 

We can do a standard diffusion calculation to see how far indium can diffuse into a 

silicon substrate, using the following constant source diffusion for approximation [140], where 

N(x,t) is the impurity concentration at time t  and a distance x from the surface, No is the surface 

concentration of the impurity, D is the diffusion coefficient of the impurity. 

Table 10.1 Diffusion coefficients of In, Bi and Sn, compared with B and P. 
Diffusion coefficient 
D (cmz/s) at 300•‹C 
D (cm2/s) at 700•‹C 

Sn 
2x10"~ 
1x10-'~ 

In 
1 x lo-3z 
5x10-'~ 

B 
1x10"~ 
3x10-" 

B i 
1x10"~ 
1 x 1 O-Lo 

P 
l x 1 0 - ~ ~  
3x10-" 



If an indium film is exposed to an argon laser for second, and assuming the laser 

conversion temperature is 300•‹C, we can estimate the indium diffusion distance as: 

This actually means indium cannot diffuse into silicon within such a short period of time at this 

temperature. A much smaller value is expected if we use an Nd:YAG pulse. 

Yang, et a1 [138], studied the interaction of indium on a silicon surface in a Si molecular 

beam epitaxy system. Indium was evaporated onto Si at 20•‹C for 2 min (7 nm thick), and then 

was annealed at 700•‹C for 50 min under ultra-high vacuum (5x10"~ Tom). It was found that both 

interstitial and substitutional inter-diffusion occurred at the silicon-indium interface. However, 

due to its low diffusion coefficient (Table 10.1) at 700•‹C, diffused indium atoms were restricted 

to the vicinity of the interface. At the end of the annealing, instead of diffusing into the silicon 

substrate, indium atoms desorbed from the substrate surface due to its high vapour pressure. 

Similar results were also reported by H. Li, et a1 [139]. The authors found that over 90% of 

indium out-diffusion happens within 1 sec of soak time in the RTA (rapid thermal annealing) 

process (in N2 atmosphere) after indium implantation. The indium tends to segregate to the 

oxide/Si interface or evaporate to the ambient. 

H. Ryu, et a1 [141], proposed using In and Sn as a diffusion barrier layer in a 

polycrystalline Si, thin film transistor, LCD to reduce the contact resistance. 5 nm thick In and Sn 

films were thermally evaporated between the I T 0  film and poly-silicon layer. The samples were 

then annealed at either 200•‹C or 250•‹C in a N2 atmosphere. It was found that, as a barrier layer, 

Sn was very stable and no significant diffusion into silicon was noticed. Diffusion of indium into 

silicon after 5 minutes of annealing at 250•‹C and a drastic contact resistance increase were 

noticed. Interestingly, no further resistance increase appeared after annealing longer than 5 

minutes. The diffusion depth was not revealed and the oxygen concentration was not reported at 



the interface after annealing. It is suspected that this indium diffusion could be caused by indium 

oxidation at the interface. 

Diffusion analysis of bismuth in silicon (1 11) [I421 showed that bismuth has one of the 

lowest diffusion rates in silicon. The solid solubility limit is only 3-20x10" ~ m - ~ .  in the 

temperature range of 1190 - 1394•‹C. Hence, it would be much lower at 300•‹C. 

In addition, I T 0  I silicon solar cell systems have been extensively studied. Goodnick, et 

a1 [143], studied the thermal degradation of 400 nm thick I T 0  I p-silicon solar cells. No 

degradation in cell performance was observed after annealing at 200•‹C for 2000 hours. No 

significant changes of I-V curve, open circuit voltage or short circuit current were noticed after 1 

hour annealing at 255•‹C. No open circuit voltage or short circuit current changes were observed, 

and only a slight degradation of I-V characteristics was noticed after 1 hour of annealing at 

420•‹C. Further analysis indicated that the cause of the degradation was a growth of additional 

Si02 at the ITO/silicon interface which limited the tunnelling current. And the growth of Si02 

was not caused by the decomposition of ITO, but rather by oxygen diffusion through the I T 0  

film. 

Ow-Yang, et a1 [144], investigated the stability of the interface between an indium tin 

oxide thin film and a silicon substrate. Capacitors were fabricated in the I T 0  on p-type Si. The 

structures were then annealed in ultra-high pure N2 for 30 min at 1058K to obtain a gate oxide of 

-5 nm. A typical C-V curve was obtained by scanning the gate bias from -5 to +5 V. The authors 

concluded from the C-V test results that no significant diffusion of In into the substrate had 

occurred. 

While most papers reporting that no diffusion of In, Bi or Sn into silicon substrates was 

noticed within the 600 - 1000 K temperature range, and that I T 0  films are stable at the 

ITO/silicon interfaces, significant doping was indeed observed for laser exposures of ultra-high 



power. Fogarassy, et a1 [145], claimed that solar cells were made by laser irradiation of 20 - 

~ O O A  thick Bi or In film deposited on Si (11 1) in vacuum. A shallow (~4000  A) but heavily- 

doped P-N junction was formed. It is important to note that a 20 ns, 1.5 - 2 ~ / c m ~  high energy 

ruby laser pulse (1 cm in diameter spot size) was needed to create this junction. This equals to 

1x10'~ w/m2 laser power, which is ten times higher than what we used to expose BiIIn on silicon 

substrate using argon laser, and 280 times more than the Nd:YAG exposure values. More 

importantly, the laser exposure of this solar cell laser doping was carried out in a vacuum 

environment. No oxidation was involved. 

10.3 Experimental Evaluation 

10.3.1 Auger Test on Resist Stripped Sample 

When developed Binn on silicon substrates demonstrated resistance to the 85•‹C alkaline- 

based anisotropic etching, it was first suspected that Bi, In or both diffused into the silicon 

substrates after the laser scanning and that the metal-diffused area formed a high-doping 

concentration etch stop layer. It has been reported that the etch rate of a high boron concentration 

(higher than 10~'cm-~) area would be 1000 times lower than that of undoped or lightly-doped 

silicon [146,147]. An Auger surface analysis was carried out to study the surface concentration of 

bismuth and indium in the silicon substrate after the laser exposure. The sample was exposed with 

0.32W Argon laser, focused with a 50x objective lens, and was then cleaned with Piranha 

(H2S04:H202=4:1) at 100•‹C for 15 min, RCAl (N~0H:H2O2:H20=1:1:5) at 80•‹C for 10 min, 

followed by a 25% HF dip for 15 min, and RCA2 (HC1:H2O2:H20=l:1:6) at 80•‹C for 10 min. 

Figure 10.1 shows the Auger result. It is noted that no typical Bi (102 eV) or In (404, 410 eV) 

could be detected. The same sample was also etched in KOH at 85•‹C for 2 minutes, and no 

etched pattern was found. This result implies that a high doping concentration is not the etch-stop 



mechanism. The other possible mechanism is that the etching resistance comes from the Bi and In 

oxides. It is observed that the Bi/In is soft before laser exposure and gets much harder afterwards. 

Although this result does not disapprove the possibility of Bi or In diffusing into silicon, at least 

one knows that the doping concentration should be much lower than loz0 ~ m - ~ ,  if diffusion did 

happen. It should be pointed out that the sensitivity of conventional Auger Electron Spectrometry 

is O.lat.%, which is 5 ~ 1 0 ' ~ c m - ~  when silicon is the substrate. 

5  0  1 5 0  2 5 0  3 5 0  4 5 0  5 5 0  

Kinetic  Energy (eV) 

Figure 10.1 Auger surface analysis result. The sample first exposed with argon laser was then 
cleaned with Piranha, RCA1, HF dip and RCA2 before the test. Bi and In were not detectable. 

10.3.2 Solar Cell Test 

In Chapter 8, surface-textured silicon solar cells were successfully manufactured by using 

Bi/In patterning and masking process on a (100) n-type 100 rnrn silicon wafer. Test results 

showed that the solar cells worked as well as normally processed solar cells. This is a positive 

sign that BiIIn bimetallic thermal resist is not deadly poisonous to silicon devices. 



10.3.3 Oxidation Process 

Structural analysis shows that laser exposure of bimetallic thermal resists is an oxidation 

process and that the oxidation happens in a very short period of time (- 4 ns, refer to Chapter 5 

and 6). This indicates that most of the metals are oxidized even before they could diffuse 

significantly into the silicon substrate. Once oxidized, the metals (within the structure similar to 

ITO) become very stable and no diffusion should be noticed under normal conditions. 

10.4 Thermal Model Simulation 

It was noticed that, for laser-induced diffusion or annealing purposes, silicon substrates 

were heated to a high temperature, even to over the melting point, when exposed to lasers of high 

energy. Fairfield et al. observed surface areas with the appearance of having flowed slightly 

during localized melting [128]. Harper et al. reported that melt puddles formed after laser 

exposure, and found that undamaged melt puddles resulted in a comparatively good rectifying 

junction [129]. However, a melting appearance was not observed on any of the exposed Bib and 

SnIIn thermal resist samples. Figure 10.2 shows the surface condition after high power argon 

laser exposure and thermal resist strip. This sample was part of the V-groove solar cell. The dark 

areas were silicon V grooves that were anisotropically etched. The white areas had been exposed 

to argon laser, and then were Bi/In mask-protected so that no anisotropic etching could occur. No 

melting or flowing of surface was observed in the white area. Nevertheless, the key point here is 

the actual surface temperature for laser annealing and for bimetallic thermal resist laser exposure. 

It is easy to use the heat transfer model to calculate the actual silicon surface temperature 

according to the laser power, exposure duration and exposed area reported by the authors. 
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Figure 10.2 Silicon surface after RiIIn was str -ipped off when 
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silicon anisotropic etching was done. 

Using Harper's parameters: laser power density = 5 . 0 9 ~ 1 0 ' ~  ~ l m ' ,  exposure duration = 

500 ns and spot size 25 - 50 pm in diameter, we get the maximum surface temperature is 1578"C, 

noting that silicon melting point is 1410.2"C. Kachurin used lasers of different spot sizes to raster 

scan the sample. With a 15 W argon laser and a 30 pm spot size, a 50 msec exposure can bring 

the suiface temperature up to 1996•‹C. With a larger spot of 200 pm, the sample surface will still 

be heated up to 670.3"C, which is 382.6"C higher than the bimetallic film conversion 

temperature. This temperature is also the surface temperature of the substrate. These results show 

that the laser annealing or diffusion reported by others happens at a much higher temperature than 

required for the bimetallic thermal resist exposure. 

10.5 A Hypothesis about Indium Contamination 

Although the substrate surface temperature is below 300•‹C under normal thermal resist 

operation, i t  still could reach the Si melting point, if high laser power is used. The Auger analysis 

result shown in Figure 6.21 demonstrates that In was found in the silicon substrate, and that 

oxygen was present too, indicating that the inter-diffused layer between In and silicon could be a 



mixture of In203 and SOz.  This assumption is in agreement with some test results that when 

silicon samples were exposed with higher laser power, the exposed Bi/In could not be stripped off 

using RCA2 cleaning alone, and HF dip was needed (refer to Chapter 5). This means that silicon 

oxide had formed. 

10.6 Summary 

This short chapter is intended to bring attention to possible metallic contaminations in the 

substrates after laser exposure of bimetallic films. The successful manufacturing of solar cells 

points out that Bi or In was not poisonous to silicon device. Bi and In were not detectable by AES 

on samples that were laser exposed first and then cleaned and stripped with standard cleaning. 

Thermal model computation shows that laser annealing and diffusion on silicon substrates happen 

at a much higher temperature than thermal resist exposure does. It is suspected that when thermal 

resist coated samples were exposed to laser of higher power, oxidation and diffusion happened at 

the same time. Indium existed in silicon in the form of an oxide. The next chapter is the last of the 

whole thesis: the conclusions and future work. 



Chapter 11 
Conclusions and Future Work 

11.1 Thesis Conclusions 

Conventional organic photoresists have started to see many problems as the wavelength 

of the microlithography laser source moves towards 157 nm and below. The current 

chromium/quartz binary photomask is subject to ESD, and is becoming too costly due to its 

complicated and long preparation process. In order to address these issues, this research proposed 

bimetallic thermal resists as an alternative. 

This thesis explored the concept of a bimetallic thermal resist. A sensitive metallic 

thermal resist should have three properties: a low melting point, optically absorbing and low 

thermal conductivity. This work showed eutectic alloying is a good choice to further bring down 

the melting point. The metallic resist should be developable and resistant to wet and 1 or dry 

etching. Three metals: Bi, In and Sn were identified as the best metals suitable for thermal resist 

applications. Bi/In and SnIIn are promising candidates for bimetallic thermal resists with lower 

eutectic points than each of the single metal. 

An optical model based on Airy summation was used to calculate the reflected, 

transmitted and absorbed light intensity when a laser beam shines on the bilayer thermal resist. 

With this model, one can calculate the RAT curves vs. film thickness and light wavelength, and 

compare results of different film structures. It was found that a 2-layer Bib film has higher 

absorption percentage than other film structures, indicating that bilayer metallic thermal resists 

are more sensitive than single layer co-sputtered Bi-In films. Simulation results show that the 



thermal resist film absorption changes slowly as the light wavelength gets shorter, showing the 

new property of wavelength invariance. 

11.2 Thermal Resist Applications 

Bimetallic thermal resists were DC- or RF-sputtered onto different substrates. Film 

density was over 80% of bulk material for Bi and Sn and - 74% for In. The thermal resist 

exposure system used in this thesis research included three major equipment: the X-Y-Z table, the 

laser sources and the control computer. 8-bit bitmap file or command script text files can be taken 

as an input for pattern writing. Argon (514 nm) and Nd:YAG (533 nm, 266 nm and 213 nm) 

lasers were used as the laser sources. 

This research developed processes by which bimetallic thermal resists can be exposed, 

developed and stripped, just like conventional organic photoresists. For short duration exposures 

the BilIn thermal resist had a sensitivity of 7 mJlcm2. This makes it the first inorganic thermal 

resist to have organic resist level sensitivity. It was experimentally and theoretically proved that 

bimetallic thermal resists have a unique feature: wavelength invariance. A wide range of laser 

sources (argon 514 nm to Nd:YAG 5" HG 213 nm) and different exposure methods (proximity 

and projection exposures) were successfully utilized to convert the bimetallic thermal resists. 

Writing patterns on BilIn with the CREO IR (830 nm) wavelength diode laser array proved once 

again the wavelength invariance property of bimetallic thermal resists. Exposed bimetallic 

thermal resist can be developed using one of the two acid solutions which remove the unexposed 

material with good selectivity, making the resist negative tone. For resist rework, both exposed 

and unexposed films can be stripped away with an RCA2 clean. As-deposited bimetallic films are 

stable under ordinary conditions. Exposed bimetallic films are still conductive, which could be 

employed for some new applications, such as a patterned seed layer for metal electroplating. 



Materials analysis showed that Bi and In form Bi-In alloy in the as-deposited resist film. 

XRD, TEM, Auger, XPS and RBS confirmed that laser exposure is an oxidation process. Study 

on the conversion of Sn/In films indicated that laser exposed Sn/In films have identical material 

structures as IT0 films do. A new interesting material, indium bismuth oxide (IBO), was created, 

and is a promising transparent and conductive oxide film. 

These inorganic resists proved to have new features in etch resistance. No conventional 

organic photoresists, no common protective etch masks (such as Si203 and Si3N4) can withstand 

both wet anisotropic Si etching and dry etching. However, Bi/In and its class of bimetallic 

thermal resists are the first reported resists that are resistant to both alkaline-based silicon 

anisotropic etching and fluorine-based plasma etching. Exposed Bi/In film has a slower etch rate 

in KOH, EDP and TMAH than SiOz. For plasma dry etching, BilIn erodes 1000 times slower in 

CF4/CHF31O2 plasma than regular organic resists. Special structures, not possibly made by other 

methods, can be created with the combination of anisotropic etching and plasma etching. It was 

demonstrated that BilIn thermal resist is a potential material for direct-write electroplating and for 

transparent electrodes, like ITO, as it is conductive even after development. 

11.3 Direct-write Photomask Applications 

One of the most important applications of bimetallic thermal resists, making direct-write 

binary and grayscale photomasks, is based on the optical property changes after laser exposure. 

The study of optical properties of bimetallic films BiIIn and SdIn showed that 40140 nm heat- 

treated Bi/In and Sn/In could have -3 OD before laser exposure and 0.26 OD and 0.22 OD after 

high power laser exposure at the I-line wavelength, desired for making the best reported direct- 

write binary photomask. Analogue grayscale photomasks can be produced by modulating the 

laser power, as the optical density of the resist film decreases almost linearly with the increase of 



laser power within a certain range. Both binary and grayscale photomasks were successfully 

produced. Compared to HEBS glass, which is the best direct-write photomask material available 

on the market, bimetallic thin film direct-write photomask materials have demonstrated much 

wider OD change range and better transmission rate at the I-line and shorter wavelengths. 3D 

structures were also successfully generated in organic photoresists and various substrates. 

Functioning solar cells with surface-texture were prepared successfully with Bib as patterning, 

etch masking layer and as direct-write photomask material, demonstrating that bimetallic thermal 

resist process is compatible with conventional silicon processes. 

A two-dimension ANSYS5.7 finite element model was set up to calculate the conversion 

temperature of bimetallic thermal resist under different laser exposure conditions. Matching with 

experimental results, simulation shows that the minimum Bi/In laser conversion temperature is 

287.7"C. Model computation shows that laser pulse duration has a great influence on thermal 

resist exposure: the shorter the pulse duration, the less lateral heat flow, and thus the better the 

pattern profile, and the less exposure energy needed. 

Both the literature and our experimental results showed that the diffusion of In, Bi and Sn 

into silicon substrates at the laser exposure temperature (600K) and duration (4 ns - s) range 

is totally negligible. This is confirmed by Auger surface analysis which found no detectable Bi or 

In after laser exposure, development and stripping. This indicates that bimetallic thermal resist 

process is compatible with conventional silicon processing. Furthermore, the fast and aggressive 

oxidation process during the laser exposure creates metal oxides similar to ITO, which ties up 

metal atoms and makes diffusion even more difficult. Literature shows that IT0 films are widely 

used transparent and conductive films for solar cells and are very stable under normal conditions. 

Our successful preparation of solar cells with BiIIn as both the patterning and the etch masking 

layers demonstrated that the bimetallic thermal resists are not poisonous to silicon devices. 



11.4 Suggested Further Work 

This research work has explored, for the first time, several aspects of the bimetallic 

thermal resists. The resist applications for wet and dry etching process are encouraging results 

that have opened doors for much new research. 

11.4.1 Improving As-deposited Film Quality 

There are two issues with current films: the need to improve the adhesion of as-deposited 

film to the substrate (not the exposed film) and the roughness. Adhesion directly affects the 

applications as a thermal resist and for photomasks. Careful handling is required as scratches can 

be easily made on the films. Roughness brings negative impact on patterning resolution for both 

applications. Thus, improving film quality is mandatory. All the metallic films used in this 

research were DC- or RF-sputtered at room temperature. The following are some suggested 

methods for possible improvement: 

Try different target materials; 

Cool down or heat up substrates during deposition to get a smaller grain size; 

Try other deposition methods: high vacuum evaporation or electron beam 

evaporation; 

Try vacuum annealing right after deposition. 

The film with improved quality should have a higher film density (closer to bulk density) 

and much smoother surface (check with profilometry). 



11.4.2 Improving Resist Resolution 

The thermal resist resolution is determined by two things: the resolution of the optical 

exposure system and the resist film resolution (film quality such as smoothness and grain size). 

New optical system and laser exposure methods should be explored. Preliminary exposures using 

laser diffraction method generated 0.3 pm wide line features. This is one of the directions for us 

to follow to explore the resolution limit of the thermal resists. The items mentioned in Section 

11.4.1 for film quality improvement are also valid for this purpose. 

11.4.3 Improving Optical Transparency 

The most immediate promising application for micromachining and microfabrication is 

the direct-write photomask process. We have achieved a 3 OD to 0.22 OD change, at 365 nm 

wavelength, on 5%, 80 nm SdIn film, which was deposited on glass substrates and with 1125 

mW argon laser exposure. However, while closer than any other materials, it is still a little distant 

away from the industrial target of 3 OD to 0.1 OD. The immediate improvement that can be made 

is to use quartz as the substrate for the same SnlIn film. Further improvement is possible by 

improving the quality of as-deposited films; 

modifying the exposure process, such as exposure with different gas atmosphere, 

exposure under raised temperature environment; 

applying ARC (anti-reflection coating) film underneath the thermal resists. 

11.4.4 Further Research on Thin Film Imaging Process 

The Thin Film Imaging Process proposed in Section 7.2 is an important and promising 

resist application that needs to be extensively studied. It is proposed that first graphite substrates 
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should be used to simulate a thick carbon protection layer. Bimetallic thermal resists will be 

sputtered on a graphite substrate, patterned with laser exposure and developed with dilute RCA2 

developer. O2 plasma etching will be carried out to pattern the graphite substrate and one can 

study the feasibility of this process. The second stage of the research will be patterning Si wafers, 

thick Si02 and metal layers with this imaging process. 

11.4.5 Further Study on Contamination 

As mentioned in earlier chapters, metallic contamination to silicon devices is a concern 

for microfabrication. Although experiments and calculations have given no indication of 

contamination, this still needs to be more completely explored. SIMS (secondary ion mass 

spectroscopy) is a good method to answer this question. Due to the unavailability of this tool, we 

could not carry out this test during the thesis research. Planning is under way to send samples to 

other institutes for such analysis. The other good way is silicon device tests. Extensive tests 

should be carried out to investigate the influence of bimetallic films on I-V characteristics and on 

carrier life time. 

11.4.6 Understanding the Oxidation Process 

Materials analyses show that the laser exposure of bimetallic thermal resists is an 

oxidation process. Optical density change is also observed. Thermal modelling indicates that the 

oxidation happens around 287•‹C. However, neither obvious optical changes, nor oxides were 

observed in the BiIIn film after being furnace-annealed in air at 245•‹C (this is the highest 

temperature the oven can reach). It is necessary that the annealing be carried out at higher 

temperatures for further study. Nevertheless, one should aware that there is a significant 

difference between furnace annealing and laser exposure, i.e., the heating rate. Taking the argon 
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raster scanning as an example, a typical BdIn exposure can achieve > 1 . 5 8 ~ 1 0 ~  "Clsec heating 

rate, while conventional furnaces can ramp up only at a speed of 200"CIsec. It will be critical to 

future research if we understand the difference in structural changes caused be laser exposure and 

conventional annealing of bimetallic thermal resists. Plan-view TEM analysis of exposed 

bimetallic films was still not successful due to the difficulty of sample preparation. Argon laser 

had been used to prepare the sample. Due to the slow exposure process (CW laser), heat 

dissipation possibly caused the cracking of the supporting films (formvar and SiO). It is worth 

trying Nd:YAG laser to convert the film on formvar or SiO, as heat dissipation is minimized. 

11.4.7 Understanding the Etch Resistance Mechanism 

It is still not clear yet why exposed and developed BilIn and SnIIn are resistant to both 

wet silicon anisotropic and dry etching. One hypothesis is that In203 is the material that is 

resistant to etching. Several experimental results support this. But it needs to be confirmed by 

doing simple bulk material tests. The results of a first chlorine plasma etching test were 

promising. Further study needs to be carried out and as chlorine plasma etch is more widely used 

in the industry than is fluorine plasma etch. 

11.4.8 Deep RIE and Cryo-etching Applications 

Deep reactive ion etching ( R E )  of many materials to depths ranging from 10 pm to more 

than 100 pm is often required for the fabrication of power electronics and MEMS devices. The 

common selectivity to the etch mask is from 40:l to 80:l [148]. This thesis research has shown 

that bimetallic thermal resists, under optimized plasma etching recipes, exhibit -1000:l 

selectivity. This is valuable for Deep R E  processes to make features with depths beyond 100 pm. 



It has been reported that cryogenic cooling of a substrate during silicon R E  can enhance 

etching anisotropy by suppressing any thermally initiated etch reactions, particularly on the 

etched sidewalls [149]. The stress and etching performance of bimetallic films under low 

temperature should be investigated, and the applications in this area should be explored. 

11.4.9 Protection Layer for Mask Applications 

As-deposited bimetallic thin films are quite soft, thus scratches can be easily made during 

the applications, especially for proximity exposures. A thin, hard and transparent layer, e.g., a 

SiOz thin film, is desired to protect the mask from being damaged. Spin-on-glass (SOG) was 

examined as a protection layer for Bi/In films before and after laser writing. The test was not 

successful. Due to the low conversion temperature of 40140 nm BilIn films, SOG curing was 

carried out at a temperature (120•‹C) lower than the product specification (300•‹C). While cracks 

were observed in the SOG film during the laser-writing of an SOG-coated Bi/In sample, the 

transmission dropped significantly for a Bi/In film on which an SOG layer was coated after laser- 

writing. New materials and processes, such as sputtered SiOz, should be explored for this 

protection purpose. 

11.5 Summary 

At the start of this thesis we set out to see if the bimetallic materials could act as good 

thermal resists. The BilIn material has been shown to be capable of the full resist cycle. 

Moreover, it has important properties that regular organic resists do not have: wavelength 

invariance, anisotropic etch resistance, high plasma etch resistance, and very easy stripping. In 

addition, the optical changes give it an application in photomasks and grayscale masks no other 

materials show. At the I-line (365 nm), it creates the best direct-write material known in the 
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literature. This means this new resist material and process have many possible applications and 

are worth further exploration. 
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Appendix A. Optical 
[63,641 

Properties of Bi, In and Sn 



Appendix B. Material Parameters for Thermal 
Modelling [58] 

Bi: Thermal conductivity = 7.92 W/m.K 
Specific Heat (solid) = 0.123 J/g-K 
Specific Heat (liquid)= 0.152 J/g-K 
Density = 9.80 g/cm3 
Enthalpy = 11.30 KJ/mol 
1 mol = 208.9804 g 
melting piont = 544.5 K 

In: Thermal conductivity = 81.8 W/m.K 
Specific Heat (solid) = 0.233 J/g.K 
Specific Heat (liquid)= 0.275 J/g.K 
Density = 7.31 g/cm3 
Enthalpy = 3.263 kJ/mol 
1 mol = 114.82 g 
melting point = 429.81 K 

G1ass:Thermal cond. = 1.4 W/m.K 
Specific Heat (solid) = 0.84 J/g.K 
Density = 2.5 g/cm3 

Si: Thermal Conductivity = 149 W/m-K 
Specific Heat (solid) = 0.71 J/g-K 
Density = 2.33 g/cm3 

(0.546 - 1.6 W/m.K) 
= 840 J/kg-K 
= 2500 kg/m3 (varies) 

50%BiIn: Thermal cond. = 45 W/m.K 
Specific Heat (solid) = 180 J/kg.K 
Density = 8600 kg/m3 
Enthalpy = 4.21E-10  urn^ (according to 66%Bi vs 34%In) 

Heat Flux = 6.36638 w/m2 (0.2W focused down to q=20 um beam) 
Heat Flux = 9.947310 w/m2 (0.2W focused down to w=1.6 um beam) 

50/50 nm Bi/In on glass, silicon and silicon dioxide substrates has 
48.7% absorption at 514 nm wavelength. 

Standard Molar Enthalpy (heat) of Formation: A , H 0 ( k J l m o l )  [581 



Appendix C. Typical IT0 Composition [88-911 

Typical IT0 composition is 10wt.96 Sn02. Knowing the atomic weights as follows: In = 

114.82 gm; 0 = 16 gm and Sn = 118.69 gm, we can calculate the atomic weights of In203 = 

277.64 gm and Sn02 = 150.69 gm. Thus, assuming IT0 is composed of stoichiometric Sn02 and 

In203, lOwt.96 Sn02 is equal to 9.3at.96 Sn or 9.6wt.96 Sn in a Sn:In ratio. 




