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ABSTRACT 

A Hamiltonian model is advanced which provides a computationally efficient 

means of investigating nuclear many-body effects. The Hamiltonian includes 

both Coulomb and isospin dependent terms, and incorporates 

antisymmetrization effects though a momentum-dependent potential. Unlike 

many other classical and semiclassical models, the nuclei of this 

2 
simulation have a well-defined ground state with a nonvanishing <p >. The 

ground state nuclei produced by the model compare favorably in energy and 

RMS radius with the experimentally observed values. 

The model provides a means to investigate the time scales associated with 

various reaction mechanisms found in heavy ion collisions. In particular, 

the thermalization in heavy ion collisions is investigated by examining the 

kinetic energy distributions and excited state populations predicted by the 

model. It is found that the apparent temperature scales obtained from 

these distributions are different, and their predicted magnitudes are in 

agreement with experiment. 

The model is also used to explore the phase diagram of infinite nuclear 

matter. In the phase diagram study it is found that finite size effects 

for systems of masses typical of heavy ion collision are sufficiently large 

- to prevent one from making any clear association of the fragmentation 

- process with the nuclear phase diagram. 
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I INTRODUCTION 

Heavy ion collision experiments have been used to probe the nuclear 

interaction at both Pow ( 5 - 1 0 ~ o ~ e ~ ~ )  and high (0.1-1OAoGeV) bombarding 

energy2 experiments. Recently, much effort has gone into the study of 

intermediate energy reactions (10-100AoMeV) with the construction of new 

accelerators at Michigan State University and GANIL. These intermediate 

energy reactions have yielded a rich assortment of nuclear phenomena and 

are thought to be a good tool to explore the many-body aspects of nuclear 

systems [GT86,GB871. 

It is useful in the description of nuclear reactions to subdivide them into 

two classes based on impact parameter: central collisions (small impact 

parameter) and peripheral collisions (large impact parameter). The 

peripheral collisions are the least complex. For the most part these 

collisicns result in only a small amount of energy and mass being exchanged 

between the collision pair. Whereas the physics of peripheral collisions 

tends to be insensitive to bombarding energy, the nature of the reaction 

processes in central collisions is qualitatively different for low and high 

bombarding energies. 

For low energy central collisions, the reactions are dominated by the soft 

tails of the nuclear interaction, often called the nuclear mean field. In 

these reactions, for all but very heavy nuclei, the projectile and target 

1 
The notation AoMeV is an energy unit of A times one MeV, where A is the 

number of nucleons in the system under consideration. 

2 
The bombarding energy is the kinetic energy of the centre of mass of the 

projectile as measured in the lab frame. 

1 



fuse together to form an excited compound nucleus. The excitation energy 

is sufficiently small that the system can equilibrate before it decays. 

These decays are statistical in nature and are dominated by particle and 

gamma ray emission. 

At high energies the central collision reaction processes are dominated by 

the hard core of the nuclear interaction, with the nuclear mean field 

having little effect. The physics of these reactions can be described in 

terms of the participant-spectator model, which assumes only the nucleons 

that geometrically overlap during the collision (participants) interact, 

and that the other nucleons (spectators) are largely unaffected. 

A n  intermediate-energy-range central collision produces a rich array of 

fragments. This process, known as multifragmentation, illustrates the 

many-body nature of these reactions and presents an interesting theoretical 

challenge. The energy is mither large enough to justify the 

participant-spectator picture, nor so low that the complete fusion and 

subsequent statistical decay picture is adequate. It is because these 

reactions cannot be modeled in simple ways that they are interesting to 

consider. 

A conjecture that intermediate energy reactions may yield information about 

the nuclear equation of state, which is believed to be dominated by the 

nuclear mean field, also adds to the interest in these reactions. At very 

high energies the mean field affects the reaction only in a small way and 

therefore these reactions yield very little about the equation of state. 

On the other hand, low energy reactions, though dominated by the mean 



field, can only explore the equation of state for low temperatures and 

near-normal nuclear matter densities, Po In the transition from low to 

high energy, where mean field effects are still important, and the system 

can make large excursions from the ground state, there is the possibility 

of exploring the equation of state at points in the T-p plane far away'from 

T=O and p=p . The nature of multifragmentation reactions may yield 

information about the equation of state. 

To begin the discussion of multifragmentation, consider the temporal 

evolution of a colliding nuclear pair at low to intermediate energy. At 

large distance the dynamics of the nuclei are set by the initial bombarding 

energy and the Coulomb interaction. As they approach each other, the nuclei 

slow as they climb over the Coulomb barrier, Once over the Coulomb barrier 

they are drawn into each other by the attractive part .of the nuclear 

potential.- As the nuclei collide they begin to lose their individual 

identity through nucleon-mcleon collisions. The initial bombarding 

energy is converted in part to compressional and thermal energy. By the 

time of maximum overlap of the nuclei, it is reasonable to describe the 

system in terms of a compressed and highly excited compound nucleus, which 

then expands and breaks apart. 

A number of scenarios have been proposed to explain the nature of the 

break-up. One suggestion, often called spinodal decomposition, is that the 

break-up is caused by the compound system expanding into the mechanical 

instability region of the 1 iquid-vapour phase diagram of nuclear matter 

[BS83,LS84]. Another model is based on site-bond percolation where, as the 

system expands, bonds are broken causing the percolated cluster to break 



into fragments [BPD86,DBN871. Fragmentation is also modeled in terms of 

evaporation from hot quasi-equilibrium compound nuclei LBon851. A large 

number of variants of this idea has been proposed. For a review of these 

thermal models see Bas Gupta and Mekjian CDM811. Still another model 

depicts fragmentation in terms of a cold shattering of the nuclei, much 

like the splattering of a mercury droplet upon impact [AHI841. We now 

briefly review these approaches. 

The spinodal decomposition model assumes that the break-up process is 

controlled by the nuclear equation of state [BS83,LS841. By examining the 

distribution of fragments one may learn about the equation of state and in 

particular the liquid-gas coexistence region of nuclear matter (nuclear 

matter denotes an infinite neutral system of nucleons in thermal 

equilibrium). The connection between reaction systems and nuclear matter, 

however, is complicated. One needs to consider Coulomb effects, finite size 

effects am! relaxaticn times in order to make a such a connection. 

A number of approximate models [BG86,GKM84,LS84] of infinite neutral 

nuclear matter have been solved to find the equation of state, from which 

the nuclear phase diagram can be calculated. Fig. 1.1 is representative of 

the equation of state that these models predict [BG861. The conventional 

Maxwell construction can be used to extract the phase diagram of nuclear 

matter from the equation of state (See Fig. 1.2). A number of features of 

the phase diagram are worth noting. First of these to notice is the phase 

boundary (LGC) itself which represents the boundary of thermodynamic 

stability of the homogeneous phase. Inside the boundary the mixed phase of 

gas and liquid is thermodynamically favoured over the homogeneous phase. 



Second, notice the isothermal spinodal (ITS) and isentropic spinodal (IES) 

curves which' represent the solution to the equations (aP/ap)T=O and 

(aP/ap)s=O respectively (P, p ,  T and S denote pressure, density, 

temperature and entropy respectively). These curves delimit the region of 

mechanical stability of the homogeneous phase. A homogeneous system is 

mechanically unstable to the formation of clusters at fixed temperatures 

inside the ITS curve and at fixed entropy inside the IES curve. 

In terms of the liquid-vapour phase diagram the fragmentation process is 

explained as follows. In the compressional phase of the reaction the 

system quickly thermalizes. It then under goes an isentropic expansion, 

but remains in thermal equilibrium. During this process both temperature 

and density drop allowing the system to be driven into the isentropic 

instability region. Once in this region, clusters begin to condense out of 

the vapour and are driven away from each other by both their initial radial 

velocity a d  Ceulomh repulsion. 

The percolation model is typically used in conjunction with a hydrodynamic 

calculation [BPD86,DBN871. During the first part of the expansion, 

fluctuations are small and hydrodynamics is appropriate to describe the 

expansion of the homogeneous droplet. Beyond the onset of cluster 

formation, the assumptions of hydrodynamics are invalid and one resorts to 

the percolation model to describe the fragmentation. 

To specify a site-bond percolation model we need to define p, the ratio of 

occupied sites to total sites, and q, the ratio of bonds left to the 

initial total number of bonds at T=O. A n  infinite system will under go a 



transition from a state with only one cluster (percolation) to a state with 

many clusters (fragmentation), as a function of p and q. Fig. 1.3 show the 

percolation phase diagram lCer881. In applying this model to the expanding 

nuclear system, we imagine that p and q are time-dependent quantities. As 

the system expands, the number of particles, of course, remains fixed. 

However the volume (number of sites) that those particles can occupy 

increases. As well, the thermal energy in the system will change, which 

will alter the number of effective bonds, and hence q, in the system. 

Fragmentation will occur if the trajectory in p-q space crosses the 

percolation transition boundary. 

The cold shattering model is based on nonequilibrium physics IAHI841. The 

fragmentation process is similar to the shattering of glass, though one 

should not take the analogy too far. Fragmentation is modeled as a two 

step process. In the first step the participant nucleons form a fireball, 

ar?d the spectator matter remains cold. in the second step the fireball 

decays. Some participants escape without further collision, mostly in the 

forward direction. Other participants enter the spectator matter and 

deposit energy and momentum, Locally, bonds are weakened and the spectator 

matter is destabilized globally and cracks. Then, the momentum deposited 

and the Coulomb force push the pieces apart. 

All the above scenarios represent very different physical processes, but 

all share the common goal of trying to understand fragmentation in terms of 

a small set of collective variables. The motivation for the development of 

these collective variables models is two-fold: first, to have a simple 

picture of the physical processes to aid one's intuitive understanding of 



fragmentation and second to have a model which is computationally 

tractable. 

The correct answer to what is the essence of fragmentation may be found in 

one of the above models, none of the above or perhaps in a combination of 

several of the above. From an experimental point of view it may be very 

difficult to find a discriminator to choose from these or other models as 

the correct way to view multifragmentation. A computer simulation provides 

the opportunity to probe the nuclear system in detail not accessible by 

experiment and may be a good method to ascertain the essence of the 

fragmentation process. 

Numerical simulations have been used for many years in the study of 

physical many-body systems. Most studies are concerned with properties of 

macroscopic systems, whose large particle numbers prevent the direct 

simtilatlon of the actual system. Typically one simuiates a small finite 

system and extrapolates to get the infinite system properties. On the 

other hand, nuclear systems comprise at most several hundred particles, 

thereby providing a novel opportunity to simulate the system of interest 

directly. Although the simulation of full quantum mechanical models of 

nuclear systems is still beyond present-day computer technology, the rapid 

advancement in computational hardware has made it possible to study a class 

of semi-classical nuclear models. 

In this thesis we develop an A-body model for the description of the 

nuclear system. The model is approximate but we feel that much of the 

essential physics has been incorporated. Furthermore the model is 



tractable by simulation techniques (both Molecular Dynamics (MD) and Monte 

Carlo (MC)). Using these techniques we are able to examine in microscopic 

detail the temporal evolution of our model via MD and explore its 

thermodynamic properties via MC. We are also able to investigate 

relaxation times, finite size effects, and both equilibrium and 

nonequilibrium processes that should be present in real nuclear systems. 

The remainder of the thesis is organized as follows. Chapter I1 reviews 

the various numerical techniques that have been applied to heavy ion 

collisions. In Chapter I11 the assumptions that our model is based upon 

are introduced. These assumptions lead to a mode1 where the 

antisymmetrization effects are mocked-up by a Pauli potential acting 

between classical objects that we call quasiparticles. As a test of the 

model we consider the its predictictions for a number of free fermion 

systems. In the first part of Chapter IV the real space potential between 

the quasiparticles due to the nuclear interaction is introduced. The 

remainder of the chapter presents the model's predictions for the ground 

state properties of finite nuclear systems and makes comparison with 

experiment. The dynamics of the model are examined in Chapter V. In the 

first part of the chapter a collision term is introduced to model the hard 

core of the nuclear interaction. In the last part of the chapter the time 

scales associated with early reaction processes are investigated. In 

Chapter VII the model's predictions for the kinetic and chemical 

temperatures are compared with experimental results. Chapter VII also 

considers the thermodynamic properties and finite size effects of the 

model. As well, the effects of entropy and temperature on the fragmentation 

of finite nuclei are explored. Finally, in Chapter VIII we present our 



conclusions regarding the interplay of fragmentation in nuclear reactions 

and the nuclear equation of state. 



Fig. 1.1. Equation of state predicted for neutral nuclear matter using a 
zero range Skyrme-type interaction. [BG861 

Fig. 1.2. Phase diagram constructed from the isotherms of Fig. 1.1. 
Isentropes of given S/A are shown by the dashed curves. The liquid-gas 
coexistence curve is labeled LGC; the isothermal and isentropic spinodals 
are labeled as ITS and IES respectively. [BG861 
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Fig. 1.3. A schematic percolation phase diagram for a site-bond percolation 
model ICer881. The variable, p, is the probability that a site is occupied 
and q is the probability that a bond is not broken. 
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The study of nuclear reactions within an exact theory, would require at 

least the solution of a time-dependent many-body relativistic quanta1 set 

of equations with particle production and absorption. Such a theory at 

present (as well as the foreseeable future) is not only intractable 

analytically but numerically as well. In light of these limitations, to 

make progress one must introduce approximations. Some possible 

simplifications are: 

1) relativistic j nonrelativistic 

2 1 quantum mechanics classical mechanics 

3 1 time dependent equilibrium 

4 1 many-body properties one-body properties 

5 ) particle production j no particle production 

6 ) many-body interaction isolated two-body collisions 

7 ! fi.icroscopic desciiption --i macroscopic description 

Combinat ions of these simp1 if icat ions have been used to develop numerous 

models whose validity is necessarily restricted by the approximations. 

However, by limiting the detail of the information sought and the range of 

systems to which the models are applied, the effects of the approximations 

can be minimized. 

The various numerical models can be separated into two broad classes based 

on the nature of the physical quantities to be calculated. The earlier and 

computationally least demanding techniques are only concerned with 

extracting one-body information from the calculations. The Internuclear 

cascade model, hydrodynamics, time-dependent Hartree Fock (TDHF), Vlasov 



equation and Vlasov-Uehling-Uhlenbeck equations (WU) are included in this 

class of calculations. Recently much interest has been focused on the 

many-body nature of nuclear reactions. To understand the fluctuations and 

correlations found in nuclear reactions a new set of techniques have been 

developed. A many-body quantum approach is still beyond reach; however, a 

number of classical and semiclassical methods have been developed and do 

provide insight into the many-body nature of nuclear reactions. 

Internuclear Cascade Model 

In the limit that the mean free path h of the nucleons involved in a 

nuclear reaction is large compared to the range of the nuclear interaction, 

simplification 6 )  is justified. In this approximation many details of the 

nuclear interaction are neglected. In its simplest form this method, known 

as the internuclear cascade model, [Seb47,Go1481 consists of a sequence of 

two-body collisions within a set of r?r?cleons moving in a force-free space. 

The nature of the two-body collisions is chosen to reproduce the correct 

experimental free NN cross sections. The model can be extended to include 

both quantum and relativistic effects in an approximate way. The fermionic 

nature of the nucleons can be included by checking if a collision is 

prohibited by the Pauli exclusion principle. As well, modifications 

allowing pion production and absorption can be made. The effects of the 

nuclear potential have been included in a one-body sense in a number of 

variants of the model. A nuclear mean field is defined, and the kinetic 

energy before and after a collision is modified, to reflect the change of 

the particle's potential energy between its current collision position and 

its last collision position. Despite the simplicity of the model, useful 



, / 

information about some aspects of nuclear reactions can be found. In 

particular the emission spectra of high energy nucleons produced in large 

bombarding energy nuclear reactions compare favourably with experiment. 

The obvious failing of the model is that it has no binding of the nucleons. 

One notable problem with the lack of binding is the inability to construct 

ground state nuclei to be used in the reaction. An ad hoc procedure that 

is used in a number of calculations, is to assign momenta to individual 

nucleons based on a degenerate Fermi gas distribution and then spatially 

confine them with an external potential. If the final products of interest 

in the simulation are not sensitive to binding energy and the purpose of 

the potential is simply to ensure the correct initial geometry, then the 

arbitrariness of this procedure is of little concern. 

. Hydrodynamics 

In hydrodynamics, [BL55,BL56,Nix791 the microscopic degrees of freedom are 

integrated out to leave a model expressed in terms of the macroscopic 

degrees of freedom of particle density p(r), energy density e(r), and 

momentum density M(r). The criteria to ensure that the hydrodynamic 

description is valid are: 

1 many degrees of freedom in the system 

2) short mean free path 

3) short mean stopping length 

4) short equilibration time compared to reaction time 

5) short de Broglie wavelength 



The extent to which these criteria are satisfied in a nuclear reaction is 

dependent not only on the type of reaction but on the stage of the reaction 

as well. For zero impact parameter heavy ion collisions with bombarding 

energy per nucleon in the several hundred MeV range, it is reasonable to 

apply a hydrodynamic approach during the compression and initial expansion 

stage of the reaction. However, as the reaction continues, the system 

breaks apart so that the collision rates drop, rendering the hydrodynamic 

approach invalid past this stage. 

The relativistic form of the hydrodynamic equations of a single ideal fluid 

can be written; 

where N, M,and E are the nucleon number density, momentum density and 

energy density respectively as measured in the computational frame of 

reference. The velocity of matter relative to the computational frame is 

denoted by v, and P is the pressure in the rest frame. The computational 

frame quantities N, M, and E can be related to the rest frame number 

density (n), pressure (PI and energy density ( & I  by the relations, 

N = ;yn 

M = ;r2(& + Plv 

E = ;r2(c + PI - P 

2 -1/2 where ;y=(l-v) . 



Both finite difference and particle-in-cell methods have been used to solve 

the hydrodynamic equations of motion. To apply these equations to 

nucleus-nucleus collisions one must deal with the fact that the system will 

go out of equilibrium as it expands and breaks-up. A number of hybrid 

models have been developed that use hydrodynamics in the early stages of 

the reaction and apply statistical models after break-up. For a general 

review of hydrodynamic calculations see the review by Clare and Strottman 

[CS86l. 

Mean field theory -- TDHF and Vlasov equations 

A theory that expresses the time dependence of the one-body density matrix 
A 

p can be developed under the approximation that nucleon-nucleon 

correlations are neglected . This approach leads to a set of equations 

referred to as the time-dependent Hartree-Fock equation. By the nature of 

the appmximation this approach is a mean-fieid theory. In the classical 

limit, the TDHF equation is called the Vlasov equation and has the form of 

a collisionless Boltzmann equation. 

The development of this mean-field theory begins by expressing the quantum 

Hamiltonian in the second quantized notation: 

- The one-body density matrix, p, is defined by its matrix elements 



The time dependence of p is given by the standard equation 
i l 

Under the approximation that correlations can be neglected, the 

four-particle operator can be replaced by the product of single-particle 

densities, 

This allows the equation of motion of the density matrix to be expressed in 

terms of a single particle Hamiltonian, Hw = T + U, 

Then, the single-particle potential U is implicitly dependent on p and is 

given by the expression, 

Equations 2.6 and 2.7 constitute the TDHF approximation. 

A useful representation of the above equation can be made by expressing the 

density matrix in terms of a Wigner function. The Wigner function can be 

expressed as a Fourier transformation of either the coordinate space, or 

momentum space representation of the density matrix, 

If the exchange term is ignored, the Wigner representation of the TDHF 

equation is given by: 



Taking the classical limit h + 0, the TDHF equation reduces to 

This collisionless Boltzmann equation with the self-consistent field U, is 

known as the Vlasov equation. 

In principle one could calculate the mean field, U, from some assumed 

fundamental interaction. Various attempts (see Sec. 40-41 of [FW711) at 

this approach have not yielded completely satisfactory results. For 

example, the predicted binding energies and density of nuclear matter are 

not in agreement with empirical saturation properties. In light of these 

difficulties it is customary to simply assume some form for the effective 

Hamiltonian that satisfies the known empirical results. Common choices for 

the effective density-dependent mean field are; 

U(p) = -124 (p/p 1 + 70.5 (gdpOl2 MeV (2.11a) 
0 

U(p I = -356 (p/p I + 303 (p/p )'I6 MeV 
0 

where p = 0.17 fm-3. 
0 

Both of the above forms for U satisfy the constraint that the ground state 

of nuclear matter has an energy minimum at p = 0.17 fm-3 of E=-15 MeV per 

nucleon. Equations 2.11a and 2.11b are referred to as stiff and soft 

because of their respective coefficients of compressibility of K=380 MeV 

and K=200 MeV. 



The TDHF and 'Vlasov equations' validity are restricted to the low 

excitation energy domain. At low energies the nucleons tend only to sample 

the slowly varying tail of the nuclear interaction and this makes the 

mean-field approximation reasonable. 

Beyond Mean Field -- The Vlasov-Uehling-Uhlenbeck Equation 

For higher energies, the mean-field approximation begins to break down. 

This has been shown graphically in a number of simulations of heavy ion 

collisions in the 100 MeV per nucleon bombarding energy range. For both 

the TDHF and Vlasov equation the incident nuclei pass almost transparently 

through each other with very little scattering of their constituent 

nucleons [SCM81,AS85l0 This failing of the mean-field theory is not 

surprising. At higher energies, the nucleon-nucleon correlations neglected 

in the mean-field approximation wiii become important as it is 

energetically possible for the hard core of the nucleon-nucleon potential 

to be sampled. A natural refinement to the mean field theory would be to 

allow collisions between nearby pairs of particles. 

To introduce the effects of the hard core potential, Vc, into the 

mean-field approximation, a perturbation theory can be used. The full 

Hamiltonian of the system can be split into the mean-field Hamiltonian, 

plus a small correction term, Vc. Within second order perturbation 

theory, the off-diagonal elements of the density matrix evolve according to 

the mean field and the diagonal elements ni=pii satisfy the following 

equation of motion: 



A classical version of this expression can be written by using the Wigner 

representation and introducing the Born approximation for the 

particle-particle scattering cross section s. This yields the total time 

derivative for the Wigner density function f(r,p). 

x ~(P+P~-P,-P,) . (2.14) 

The inclusion of collisions within the mean field theory modifies Eq. 2.10 

by replacing the RHS with Df/Dt. This modification to the Vlasov equation 

was first suggested by Nordheim in 1928 [Nor281 and Uehling and Uhlenbeck 

in 1933 KJU331. 

Though cornputat ionally taxhg,  the solution of the 'vnun"Jequation is within 

the grasp of present day computer hardware. One popular technique is based 

on the particle-in-cell method of numerical hydrodynamics IHAN761. The 

method replaces the phase space density function f(r,p), with a set of test 

particles each with its own momentum and position. The number of test 

particles is normally between 10-100 per nucleon. To evaluate the 

density-dependent forces, the system is divided into a mesh of cells. The 

density of each cell is evaluated by counting the number of test particles 

in each cell and dividing this number by the volume of the cell times the 

number of test particles per nucleon N . Then the force is found by taking 
n 

the numerical gradient 

gives the evolution of 

of the density dependent mean field. This procedure 

the system between collisions. Each test particle 



is only allowed to scatter off 1/N of the other test particles. If the 
n 

trajectories of two test particles allows a pair to collide, a test is made 

to see if the Pauli exclusion principle will prohibit the scattering. This 

is done stochastically by allowing the scattering with probability 

1 - f r 1 p l - f , p ,  where r and r are the positions of the 
1 2 

scattering pair at the time of the collision, and p' and pH are the new 
1 

momenta of.the particles if the scattering is allowed. 

Many Body Physics -- The Classical Approach 

The study of correlations and fluctuations in nuclear reactions requires 

more than just the one-body distribution that the previously discussed 

methods predict. The calculation of two-body and higher order correlations 

within a quantum mechanical framework is most difficult. Most of the 

studies of fluctuations within nuclear systems have involved the study of 

an A-body classical eqgztion of mction within a molecular dynamics 

simulation. 

Classical Dynamics 

In most classical systems it is sufficient to specify a spatially-dependent 

potential to define the equations of motion. A number of different 

phenomenological potentials have been used in various simulations of 

nuclear systems. Infinite hard core potentials were used in nuclear 

simulations by both Amsden et al. [AGH771 and Bondorf et al. 

[Bon76,BFG76,BSG761. Lemard-Jones 6-12 potentials were used by 

Pandharipande et al. [VJPSS,LP86,SP871 in the study of the fragmentation of 
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argon droplets and nuclear droplet analogs. Various potentials consisting 

of sums of attractive and repulsive Yukawa terms have been used to model 

the nuclear interaction by Bodmer and Panos [BP77,BPM801 and by Wilets et 

a1 [WHK77,WYC78,CWY791. In some of the works of Bodmer and Panos the 

potential included momentum dependence to take in account relativistic 

retardation effects. 

Wilets et al. included momentum dependent interactions in their work as 

well, but for reasons very different than Bodmer and Panos. For most 

classical systems the kinetic energy of the ground state vanishes. This is 

certainly true of all classical systems with the momentum only entering as 

a p: term in the Hamiltonian. For a quantum system, particularly one 

containing fermions, the kinetic energy does not vanish in the ground 

state. For nuclear systems the Pauli exclusion principle causes the 

kinetic energy to make nontrivial contributions to the total energy. To 

simulate the effect of Pauli exclusion, Wilets et al. CW771 introduced a 

momentum-dependent interaction into the nuclear potential of the form, 

This approach represented a significant advancement in the simulation of 

nuclear systems. It was the first time within a classical framework that 

both ground state and dynamic properties could be simulated within the same 

model. 

With the success of the WU theory in predicting 

is tempting to consider if fluctuations can be 

Within the original Vlasov approach it is 
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one-body distributions, it 

calculated in the theory. 

not possible to extract 



fluctuation information since all the correlations are neglected. However, 

with the VUU theory, the collision term is introduced to include the effect 

of the correlations and in turn information about the fluctuations may be 

possible to extract. 

Motivated by this possibility, Gale and Das Gupta developed a hybrid model 

to study the fluctuations in nuclear reactions [GD851. During the approach 

and interpenetration phase of the reaction, a cascade model which neglects 

binding is used to propagate the nucleons. At the end of this phase the 

collisions are turned off and the nuclear binding is turned on. At the 

start of the second stage, each nucleon is replaced by a collection of test 

particles spread out in phase space in a gaussian manner. This collection 

of test particles is then allowed to evolve via the Vlasov equation for the 

remainder of the simulation. This procedure has the dramatic effect of 

enhancing the fluctuations introduced in the first stage of this reaction 

and yields cl~sters of various masses. Thereby, in a quaiitative way it 

mimick the multifragmentation processes seen in intermediate energy heavy 

ion collisions. 

Another approach [BBW87,BBG87,BG88,AS87] is to limit the number of test 

particles in the solution of the WU equation to one per nucleon and then 

examine the fluctuations. The potentials used in this calculation are the 

density dependent mean-field potentials. In order to calculate the force 

on the individual nucleons, a procedure for evaluating the density as a 

function of position needs to be developed. There is a certain amount of 

arbitrariness in defining the density of a collection of point particles. 

One procedure is to choose some fixed radius sphere centered on the point 



where the density is to be evaluated and count the number of particles 

within this sphere. The density is simply this number divided by the 

volume of the sphere. Of course, this procedure does not allow 

fluctuations smaller than the radius of the sphere to be studied and has 

the troublesome feature that the density defined in this way is not a 

continuous function of position. Another alternative is to assign a 

smoothing function to each nucleon, (i.e. think of each nucleon as being 

smeared out in space1 so that the density is just the sum of the individual 

smoothing functions. This procedure still has a cutoff to the length scale 

of fluctuations that can be calculated, due to the range of the smoothing 

function, but unlike the previous approach, it is a continuous function of 

position for a continuous smoothing function. A common choice for a 

smoothing function is a gaussian distribution. Such a procedure is used in 

[BBW87 I 

A1 though man of these id .s are ad hoc, we hope to start w tth a quantum 

In the following chapters we develop a mdel that Ssrrows mznj; of the 

successful ideas of the previously discussed models. In particular, a 

momentum-dependent potential is introduced to ensure a well-defined ground 

state with nonvanishing kinetic energy. A density dependent potential, 

much like the mean field of TDHF, is used for the nuclear interaction 

because of its success in modeling the ground state properties. A 

collision term is introduced, to remove the transparency effects associated 

with the mean field. 

mechanical picture and follow along a reasonable, though not exact, path of 

simplifications to develop a microscopic A-body semi-classical model in 



which the ground state and dynarnical properties can be explored. 



111.1 Introduction 

The main motivation for developing this model is the desire to explore the 

physical processes responsible for multifragmentation. Although a model 

that could be applied to all of nuclear physics would be a grand goal, it 

is felt that such a goal would be most illusive. Instead a simpler 

objective is pursued. The model is only required to be applicable in the 

range of energies, densities and times associated with the 

multifragmentation processes. 

The energy scale for multifragmentation is set by the nuclear binding 

energy. Typical binding energies are in the 8 MeVhucleon range. For 

40 40 symmetric heavy ion collisions !i.e. Ca + Ca!, where the bombardirrg 

energy is much lower than 6 MeVhucleon, the projectile cannot overcome the 

Coulomb barrier, so there is no fragmentation. On the other hand, when the 

bombarding energy of the Ca projectile is greater than 200 MeV per nucleon, 

the composite system of projectile and target almost completely 

disintegrates into single nucleon products during a central collision. For 

the high energy collision the binding energy is of little importance, and 

the particle distribution is governed by the nucleon-nucleon cross section. 

The area of interest in multifragmentation is the intermediate bombarding 

energy range of 10-100 MeVhucleon (lab frame) where the many-body effects 

associated with nuclear binding are still important. 



The setting of an energy scale also sets the maximum density of interest. 

Consider the density (p) expansion of the ground state energy per nucleon 

(El, about the equilibrium density (p ; 

E(p) = Eo + K (p/p - 112/18 + higher order (3.1) 

where K is the compressibility coefficient and Eo is the ground state 

energy per nucleon at p = po. Experimental data on giant monopole 

resonances suggest the compressibility coefficient is of the order of 200 

MeV [Bla8Ol. Using this equation we can set an upper bound on the density 

by using the maximum energy that can go into compression. In a symmetric 

heavy ion collision with a projectile bombarding energy of 100 MeV per 

nucleon, the maximum energy available for compression will be 25 MeV per 

nucleon (i.e. bombarding energy of target and projectile as measured in the 

center of mass). From Eq. 3.1 this would correspond to a density 2.5 times 

normal nuclear matter density. 

The minimum density is set by the range of the nuclear interaction. At 1/4 

3 normal nuclear matter density the volume per nucleon would be 25.0 fm 

corresponding to a nearest neighbour distance of 2.9 fm. This distance is 

greater than the range of the nuclear interaction (1.5-2.0 fm) and hence 

densities less than 1/4 po will be of little interest in the study of 

multifragmentation. 

. A number of different time scales exist within a nuclear reaction. Our 

.model focuses on the processes associated with the far-from-equilibrium 

state of the initial impact through the relaxation phase to the 

near-equilibrium state of the reaction. These hadronic processes are short 



lived with most of the relaxation being completed several hundred fm/c 

(10-''sec. ) after the initial impact. The reaction will continue to evolve 

after this time but the study of long-time-frame evaporative processes is 

best handled by a statistical model in which the fragments decay by a 

stochastic method based on excitation energy. 

For the energy, density and time ranges of interest, relativistic effects, 

pion production and photon decay can safely be neglected. The relativistic 

factor ;y is less than 1.1 for 100 MeV nucleons, so relativistic effects 

will be small and a nonrelativistic picture suffices. The onset of pion 

production becomes important if the bombarding energy exceeds 300 MeV, 

which is well above the maximum energy thought to be relevant for 

mu1 t if ragmentat ion. Photon decays occur seconds or longer [Eng66 1 

after the collision, which is long compared to the hadronic decay times. 

Though not thought to be important in understanding multifragmentation 

processes, these decays affect the experimentally measured distribution 

function. 

Having discussed what is not included in the model the question remains of 

what is included. As discussed above, the model neglects the production of 

pions, photons and exotic particles, enabling the description of the system 

completely in terms of nucleon degrees of freedom. In principle the 

nucleons are quantum mechanical particles with two fermionic indices. One 

fermionic index describes the spin of the particle and the other describes 

the isospin. The effects of quantum mechanics are important in nuclear 

systems but a full quantum mechanical treatment of all but the most simple 

systems is beyond today's analytic and computational methods. Hence this 
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model incorporates only some aspects of quantum mechanics. In particular 

the effects of the Heisenberg Uncertainty Principle and the Pauli 

Principle, will be introduced in an approximate way. 

Often, basic symmetries of a system can account for much of the physics 

that is observed. In developing a model to describe a physical system it 

is wise to insure that the model possesses as many of the symmetries, hence 

conservation laws, of the real system as possible. The model developed in 

this thesis incorporates the standard conservation laws of energy, linear 

momentum, and angular momentum. 

A model is sought that also can describe both the dynamics and ground state 

properties in a consistent framework. Many of the previous approaches that 

handled the dynamics only treated the ground states in an ad hoc way. A 

model based on a Hamiltonian formulation would be able to treat both the 

dynamics and ground states. 

A last requirement of the model is that it be tractable from a 

computational point of view. This constraint limits the scope of the model 

2 to one whose energy can be found in no more than O(A 1 operations, where A 

is the number of nucleons in the system. 

111.2 Assumptions 

The development of the mode1 begins with two assumptions. These 

assumptions are made so that some quantum mechanical effects are included 

in the model, yet the model is kept computationally tractable. The first 



of these assumptions includes the Heisenberg Principle, while the second 

approximates the effect of the Pauhi Principle. 

The Heisenberg Principle is incorporated into the model by simply 

associating a wave function with each particle in the system. To keep the 
\ 

calculation simple it is assumed that each nucleon can be represented in 

terms of a fixed-width gaussian wave packet of the form 

where Rk(t) and P (t) are respectively, the expectations of the position 
k 

I S and momentum of the kth particle at time t. Here, x and x are the isospin 

and spin wave functions. 

The simplest antisymmetrization is just the Slater determinant of the A 

single particle $ 's whose wave function has A! terms. Manipulating such a k 

wave function with out approximation is an exceedingly arduous task for 

large A. Instead we assume the completely antisymmetrized wave function of 

the $ k 9 ~  can be replaced by a product state of the form, 

A 

plus some effective potential Veff ,  to mock up the effect of the Pauli 

Principle. 

Given these two assumptions it is sufficient to specify the set 



{(Rk,Pk)Ik=l,..,A} to describe the A-particle system completely. 

Furthermore, as will be shown in Chapter V, these assumptions imply that 

(Rk,Pk) obey classical equations of motion, based on an energy function 

A A 

where H is the Hamiltonian of the quantum mechanical system and Veff' is the 

effective interaction discussed above. Since the dynamics of (Rk,P 1 are k 

particle-like, it is natural to associate a particle with each of the phase 

space coordinates R k P k  TO distinguish these particles from the 

underlying real quantum mechanical particles, they shall be referred to as 

quasiparticles (QP). 

111.3 The Pauli Potential 

ansatz hzis Seen made that the antisymmetrized state could be replaced by 
A 

a product state plus some effective potential, 
"eff. From Eq. 3.4 one sees 

that this effective potential contributes to the quasiparticle energy. 

This contribution, because of its role in mocking up the Pauli principle, 

will be called the Pauli potential Vp. It is worth stressing that Vp is 
A 

the expectation of the quantum operator V and represents an energy 
eff ' 

interaction term in the classical quasiparticle Hamiltonian. 

To gain insight into the form of the Pauli potential, consider a two 

particle system with single particle wave functions + and +b with 
a 

associated quasiparticle (QP) coordinates (R ,P and (R ,P 1 respectively. 
a a b b 

The antisymmetric two particle wave function is 

3 1 



The expectation of the kinetic energy operator with respect to this wave 

function is given by 

where 

The first two terms in the kinetic energy look like the kinetic energy of a 

pair of classical particles, while the third term reflects the fact that 

the gaussian wave packets are spread out in momentum space. The last term 

is identified as the two-body potential .between quasiparticles with phase 

space coordinates (R ,P and (Rb,Pb). This is the Pauli potential for a 
a a 

two particle system. 

The Pauli potential has a number of desirable properties. First, it is a 

function of Xab, which is a measure of the quasiparticle separation in 

phase space. Secondly, as the quasiparticle separation in phase space is 

- made large (i.e. X + 00)  the potential vanishes. Finally, the 
ab 

potential is repulsive for all finite phase space separations. 



Note that the potential does not diverge as X -+ 0. At first thought 
a b 

this may seem unreasonable since the potential allows the two 

quasiparticles to share the same point in phase space. However this does 

not imply that the two quantum mechanical particles share the same region 

in their phase space. The real particles are randomly distributed in 

gaussian fashion about the quasiparticle positions in phase space. Even 

when the two quasiparticles share the same point in phase space, the 

probability that the two real particles share a region of phase space of 

volume v = d3x d3P will be of 0(v2). Therefore after integrating over all 

possible regions in phase space, the total probability of finding two real 

particles in the same volume will be of O(v), which vanishes for small v. 

If the above approach were to be applied to a three particle system, all of 

the above two-body terms would be found plus an additional three-body term. 

Similarly in a four particle system all of the terms of the three particle 

system would-be present with the additirrn nf a feur-body term, and sc sr, as 

larger and larger systems were considered. Proceeding in this fashion 

would quickly depart from the goal of keeping the cost of the computation 

to o ( A ~ )  operations. Instead we choose to include the effects of the 

higher-body terms approximately by rescaling the two-body Pauli potential. 

Motivated by the two particle calculation, the following ansatz is made for 

the Pauli potential; 

where s and xi denotes the spin and isospin repectively of particle i i 
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(i=a,b) and Vs is the scale factor introduced to approximate the effects of 

the higher-body'terms. 

111.4 Ground State Properties of Non-Interacting Systems 

The introduction of a momentum-dependent potential can have a dramatic 

effect on the ground state. In classical models with no momentum-dependent 

interaction, the ground state possesses the property Pi=O for all 

particles. However the introduction of a momentum-dependent term in the 

Hamiltonian can break that symmetry. For example consider the QP 

Hamiltonian for a system of N noninteracting fermions in a periodic box of 

length t .  

The stability of the P =O state can be examined by evaluating the energy 
i 

curvature (with respect to PI matrix M at P =O. In Appendix A this matrix 
i 

is calculated and for the case where the quasiparticles sit on a simple 

cubic lattice with lattice spacing, a, and the eigenvalues A(q) of M are 

found (note q is the eigenvector index). If A(q) > 0 for all q then Pi=O 

is a minimum and is stable. However if there exists a q such that A(q) < 0 

then Pi=O is a saddle point and is unstable. This instability breaks the 

P =O symmetry and the ground state occurs at nonzero momentum. In Fig. 3.1 
i 

for the case V =1 the value of A for qx=qY=qz=q is plotted as a function of 

the product qa. Notice that by adjusting the lattice spacing, a, the 

stability of Pi=O changes. For large aa all A are greater than zero and 



state Pi=O is stable. This is just what one expects, since large aa 

implies a small Pauli term and the ground state should just be the Pi=O 

state. However for small values of aa the value of h changes sign as a 

function of q, hence P =O cannot be the ground state. 
i 

Having shown that the QP ground state can have nonzero momentum it is of 

interest to see if the ground state energy of Eq. 3.8 can approximate a 

free Fermi gas. In making this comparison there are two parameters, a and 

Vs, that can be adjusted to fit the quasiparticle model to the exact 

results. By minimizing the QP Hamiltonian with respect to the 

quasiparticle phase space coordinates (R ,P I the ground state energy of: 
k k 

the quasiparticle system as a function of the parameters a and V is found. 
S 

Then fitting this functional form to the exact T=O free Fermi results over 

the density range of interest, the values of a = 0.5fm-' and Vs = 1.9 are 

found. A comparison of the exact and QP model calculations are shown in 

Fig. 3.2 . As one can see from Fig. 3.2, the fit I s  reasonable ir? the 

density range 1/4 to 4 times normal nuclear matter density. The deviation 

at high density is a reflection of the approximation that is made to 

include the higher-body effects in the Pauli potential (i.e. the 

introduction of Vs). At low densities the failure of the gaussian wave 

packets to represent the true eigenstates of the system is responsible for 

the discrepancy. The true eigenstates of a free Fermi gas are 

nonlocalized, whereas the gaussian wave packets are localized in space. 

This difference becomes important at low densities. Despite the failings at 

high and low densities, the model approximates the correct results in the 

density range important to nuclear reactions at intermediate energy. 



Whenever a model has a number of parameters one must be concerned that the 

similarities between the model and experiment may only be an artifact of 

the functional form's ability to fit an arbitrary function and may have 

little to do with incorporating the essential physics into the model. 

Although one could consider fitting or and Vs for each system under 

consideration, it would be unsatisfactory if this proved necessary. Our 

confidence that the essential physics is represented by the Pauli potential 

is strengthened by the fact that the model is able to reproduce known 

results for a variety of systems without further adjustment of these 

parameters. For this reason these parameters are fixed at the values found 

for the free Fermi gas of or = 0.5 fm" and Vs = 1.9 in all remaining 

calculations. 

As a further check on the validity of the Pauli potential approximation, 

consider the problem of a collection of N noninteracting fermions subject 

2 to a harmonic potential of the usual form kx /2, where k=4.038 MeV/fm. 

This value of k is the same value used in harmonic oscillator fits to 

16 experimental data of the ground state properties of 0 rDW691, and 

therefore should be a representative value for finite nuclear systems. In 

Fig. 3.3 a comparison between the ground state energy per particle of the 

QP model and the exact quantum oscillator is made. The general agreement 

is good, though the the structure in the exact result curve, due to shell 

closing, is not reproduced by the Pauli potential model. 



1.11.5 The T > 0 Properties of Non-Interacting Systems 

The nonzero properties of the Fermi gas are explored by a Monte Carlo 

procedure. The inclusion of the Pauli potential makes the Monte Carlo 

procedure slightly more complicated than most traditional Monte Carlo 

algorithms. Unlike the QP model, many physical models have only quadratic 

momentum terms in the Hamiltonian with no coupling between momentum and 

spatial coordinate. In models whose Hamiltonian has this simple momentum 

dependence, the momentum integrals in the partition function can be done 

explicitly, leaving only the coordinate space integrals to be evaluated via 

Monte Carlo. In contrast, the Pauli potential couples momentum and 

coordinate space, so the Monte Carlo procedure must sample the full phase 

space. 

To explore the finite temperature (T>Ol properties, the standard Metropolis 

algorithm, in the constant volume, temperature and particle number ensemble 

is used, with both position and momentum of the quasiparticle being 

modified for each trial move. The step size of the Monte Carlo move is 

adjusted to keep the acceptance ratio in the range 0.4 to 0.6 and samples 

are collected every 5 Monte Carlo sweeps through the lattice. This 

sampling rate produces a sample that is somewhat correlated. To perform 

the error analysis on a correlated sample set we use the method of Jowett 

and Hannan EMor751 to estimate the variances of the averages. 

As a further validation of the Pauli potential approach, as well as a check 

of the Monte Carlo code, the free Fermi gas is simulated and compared with 

exact results. In Section 111.4 we use a molecular dynamics approach to 



find the ground state energy of a free Fermi gas. The results agree rather 

well with the exact expression. It is now of interest to see how well the 

finite temperature results agree with the exact solution. The energy per 

particle as a function of temperature of a free Fermi gas is estimated by a 

Monte Carlo simulation of a 64 particle QP model. For each T-p data point 

500 samples are generated which is sufficient to reduce the statistical 

error in the energy estimate to less than 1%. By simulating a 128 particle 

system for a number of T-p points the finite size effects are estimated to 

be less that 2%. The Monte Carlo simulation results and the exact free 

Fermi gas results are shown in Fig. 3.4. The figure shows a general 

agreement between the QP model and exact results; however one can see that 

the slope of the E vs. T curve of the QP model is in error at zero 

temperature. The source of the discrepancy lies with the classical nature 

of the model. The continuum of energy states in a classical system results 

in a nonzero value for the T=O specific heat. For comparison, the 

classical free gas result is shown on Fig. 3.4 as well. 

In summary, it has been shown that for a number of noninteracting systems, 

a momentum-dependent Pauli potential seems to reproduce the real behaviour 

of a system of fermions reasonably well. Furthermore it is encouraging 

that the model is able to approximate these systems, without the need to 

alter a and V from their initial values. This leads one to believe that 
S 

the Pauli potential incorporates much of the physics associated with the 

f ermions . Although this is not the first calculation to use 

momentum-dependent potentials to mock up the Pauli principle, the form of 

the potential and motivation for that form are novel. Whereas previous 

approaches [WHK77,DDR871 assumed forms for the Pauli potential merely on 



the grounds that they were repulsive in phase space, we try to extract a 

form, be it only approximate, from an examination of simple quantum 

systems. The beauty of this approach is that not only do we get a form for 

the Pauli potential, but also we are able to develop a picture that relates 

the underlying quantum mechanical system with the classical quasiparticle 

system that we simulate. 





exact result: 

/ 
@ QP results 

Fig. 3.2 Ground state energy per particle for a system of free fermions. 
The solid curve refers to the exact results and the symbols refer to the 
QP results. 



Legend 
Exact Calculation 

Simulation 

Number of Particles 

Fig. 3.3 Ground state energy per particle for a system of noninteracting 
neutrons in a harmonic potential with k=4.038~e~/fm~. The dashed curve 
refers to the exact quantum mechanical calculation, while the solid curve 
is the result from the QP simulation. 

42 



a QP Model 

Classical free gas 

Fig. 3.4. A comparison between the exact free fermion results and the QP 
model's predictions of the energy per particle (E/A) as a function of 
temperature (T) for a number of densities. The energy per particle of the 
classical free gas is shown to illustrate the improvement that the 
inclusion of a momentum-dependent term can make in classical models. 



In this chapter a form is chosen for the nuclear interaction in the QP 

representation. This interaction combined with the Pauli potential and 

quasiparticle kinetic energy is the full nuclear QP Hamiltonian. The QP 

Hamiltonian as presented in Section IV. 1 has a number of free parameters, 

and Section IV.2 discusses how these parameters are chosen. In the final 

section of this chapter the ground state properties of finite nuclear 

systems are presented and compared with experiment. 

IV.l Nuclear Interaction 

The exact form for the nuclear interaction cannot be derived from first 

principles; therefore, simulations must resort to phenomenological 

potentials. A common approach is to assume that the nucleons interact 

through the .zero-range Skyrme interaction [VB721. This results in a 

density-dependent energy density of the form 

where p (r) , p (r) and p(r) are the proton, neutron and total density 
P n 

respectively of the system as a function of position. Normal nuclear matter 

density is denoted by p and the constants a, b, c and gl are to be 
0 

determined. The first term is an attractive term (a<O) which tries to drive 

the system to large densities. The second term is a repulsive term (b>O) 



which favours low densities. The third term is isospin dependent, and 

favours ( 0 0 )  equal proton and neutron densities. The last term couples to 

spatial density fluctuations, and tends to dampen large density 

fluctuations. 

The gradient term is usually not included in most simulation studies, but 

without it one would get the wrong surface tension for finite nuclei. 

Consider the variational problem where a density profile p(r) is sought 

that minimizes the energy of the nuclear system subject to the constraint 

that the total number of particles in the system equals A.  For simplicity 

assume p and p are equal. The total energy of the system includes both a 
la n 

potential and kinetic part. It is often assumed that the kinetic energy 

density of nuclear matter is free-Fermi-like (on a local basis). Under 

this approximation, known as a local Thomas-Fermi approximation, the 

kinetic energy density is 

The total energy functional then has the form 

For infinite nuclear matter, the minimum E(p(r1) occurs for p(r) = 

constant. The parameters a and b are chosen such that the constant density 

solution of the infinite system has the same density as normal nuclear 

matter (i.e. p(r) = p ) ,  with a binding energy per nucleon of 15.68 MeV. 
0 



In the finite case, if the gradient term is neglected, the minimum energy 

solution of Eq. 3.11, subject to the constraint p(rId3r=~, is simply I 
1/3 

r < [ 3 ~ /  (4np0 I] 
p(rI = { e otherwise 

This step-function density profile is highly unrealistic for a finite 

nucleus. Dropping the gradient term causes the surface tension to vanish, 

and hence one obtains an unphysical density profile. To avoid this problem 

the gradient term has been retained in this model. It is useful to use 

2 integration by parts to replace the gradient term (VpI by p~2p in the 

energy density functional. 

Under the assumptions of this model, the total density is the sum of single 

particle densities p (TI-and can be written as 
i 

p(r) = 

Introducing the shorthand notation 

<Q>i = 1 d3r pi(r) Q(r1 
enables us to write the nuclear potential in the form 



where Si= 1(-1) for protons (neutrons). 

Since the density is just a function of gaussian forms it is easy to 

perform the integration associated with the <...> expectation. However 
i 

2 2 the term < p  /po>i results in a three-body interaction between the 

quasiparticles. In order to keep the computational work no more than o ( A ~ )  

the approximation 

is used. The constants gl and g2 multiply the same functional form and 

will be subsumed into g = gl+ g2. 

There is also an interaction between the protons due to the Coulomb 

potential. The functional form of the Coulomb energy between two protons 

with a gaussian charge distribution is given by 



where is the probability error function, 

Evaluating the error function is computationally time consuming, so we 

choose to approximate it by a uniform spherical charge distribution. The 

potential for a uniform sphere of charge is 

e 2 l/lR,-R,I, - - IR.-R..I > R 
A d v"(i~~-~~il = - 4.c 1 [3-( IRl-R:, I/R 12]/(28 1, otherwise 

0 0 0 
(4.10) 

where R is the hard sphere radius. Both the hard sphere and the gaussian 
0 

potentials have the same asymptotic form as the interparticle separation 

becomes large (i.e. v~(R)/v'(R) + 1, as R + 00). These two potentials 
C 

are made to agree at the origin (i.e. R=O) by choosing R = 3 f i / 4 a .  For 
0 

this value of R the relative difference between the two potentials is 
0 

less than 9% over the complete range of R. In any event, the calculations 

performed with the simulations have very little sensitivity to the gaussian 

or hard sphere forms taken for the charge distribution. 



After substituting Eq. 4.8 into Eq. 4.7 and performing the integration, an 

explicit form f.or the nuclear interaction between quasiparticles is found. 

Including this with the Pauli and Coulomb terms, the energy of the 

quasiparticle system can be written as 

where 

and where Vc(R 1 is given by Eq 4.10. 
i 3 

In summary, a classical quasiparticle Hamiltonian with a momentum-dependent 

interaction has been developed. The quasiparticles in themselves do not 

represent the real quantum particles of the systems, however the associated 

gaussian wave packets do. The gaussian wave packets insure that the 

Heisenberg Uncertainty Principle is not violated and that the Pauli 

potential has a form that allows the effects of the Pauli Principle to be 



at least approximated. In the limit of noninteracting systems it has been 

shown that this approximation is reasonably good in the density range of 

interest. Furthermore this model possesses the necessary symmetries to 

ensure conservation of energy, linear momentum and angular momentum of both 

the quasiparticles and the underlying quantum mechanical particles. All of 

this has been accomplished within the context of a model whose energy can 

be determined in 0 ( A ~ )  operat ions. 

IV.2 Parameter Determination 

There are six free parameters (a, Vs, a, b, c and g )  in the QP Hamiltonian, 

Eq. 4.11. The parameters a and Vs are fixed by comparison with the free 

Fermi gas at T=O (See Chapter 111). The parameters a, b and c are 

determined by comparing the results of a local Thomas-Fermi calculation to 

those of infinite nuclear matter. The value of g is the only parameter that 

is set within the context of the complete QP model. It is fixed by 

demanding that the binding energies of intermediate mass nuclei (A s 50 

nucleons), as calculated by the QP model, with agree experiment. Although 

one could try to fit the binding energies over a larger range of mass 

number, A, it is found that fitting in a narrow range about A = 50 is 

sufficient to yield a good fit over the entire periodic table. 

Using the local Thomas-Fermi approximation for the kinetic energy (see Eq. 

3.10) the total energy per nucleon of the system can be written as, 

assuming homogeneity and small w=(p -p ) / p  , 
p n  0 



where & is the Fermi energy at normal nuclear matter density po. Normal 
F 

nuclear matter refers to the preferred state of an infinite, neutral, 

nuclear system at T=O (isospin symmetric). The value of p =O. 17fm-~ is 

found by extrapolation of the mass formula to the neutral and infinite size 

system limit LHof671. Furthermore the extrapolation yields a binding 

2 energy, for small w, of the form B=B +a w where B =15.68 MeV and as=-28.06 
0 S 0 

MeV. Using these expressions for p and B(w), and the fact that normal 
0 

nuclear matter is stable (i.e. the energy is a minimum) the constants can 

be determined. 

The binding energy as defined within the model will be the difference 

between the energy of Eq. 4.1 and the energy !E 1 wheen the particles are 
00 

infinitely separated. Typically it is assumed that p = 0, everywhere for 

infinite separation. Under this assumption a, b and c are determined to 

have the values of -124.11 MeV, 70.06 MeV and 30.54 MeV. However, with 

this model and with real systems the density at infinite separation is not 

identically equal to zero. The finite wave packet widths of Eq. 3.2 gives 

rise to a nonzero Eoo per particle given.by 

3/2- where p =  (a2/(2n)) - 0.00794 fm-3 at a = 0.5 fm-l. 
1 
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For this Eoo the solutions for a, b and c are slightly different from the 

values given above and dependent on g. The QP model now has only one free 

parameter, g, which is determined by matching the binding energies as 

calculated by the model with experimental values for a selection of nuclei. 

The method of calculating the ground states and the values of the ground 

state energies are presented in the next section. However to finish this 

discussion, the results of the parameter fitting are presented now. 

A one parameter fit in g is made by requiring that the difference of the 

calculated binding energy and the experimental value be small for mass Ax50 

systems. A good fit is found for g = 291 ~ev-fm~ and hence a=-129.69 MeV, 

b=74.24 MeV and c=30.54 MeV, 

IV.2 Ground-State Properties for Finite Systems 

The model presented above is phenomenological in nature. All of the 

parameters except one ( g )  are set by comparing the model to infinite 

systems. By examining a variety of finite systems not only is the value of 

g determined but a test is made of' the validity of the model. In the 

remainder of this section the calculational method for determining the 

ground state is described, and a comparison of the calculated ground state 

energies and RMS radii is made with experiment. 

The ground states are found in a dynamical way by inclusion of dampening in 

the equations of motion. The damped equations of motion for a system with 

mass number A,  interacting via the Hamiltonian of Eq. 4.11, are 



where p and p2 are chosen to have the values of 400 (fm-c/MeV) and 0.426 
1 

(MeV/fm-c) respectively. Some care is needed in choosing p and p to 
1 2 

ensure rapid enough convergence without over-dampening the system. 

The initial configuration is constructed by placing the nucleons on a 

body-centred cubic lattice in a compact way until the desired mass A is 

obtained. The nucleons are then randomly labelled as protons or neutrons 

according to the nucleus of interest. The spins of the nucleons are 

assigned in such a way that the magnitude of the sum of the proton spin or 

neutron is never greater than 1/2. The momentum is assigned to each 

nucleon by choosing from a T=O Fermi distribution with Fermi energy based 

on the local density. 

The equations of motion are integrated via an adaptive fourth-order 

Runge-Kutta scheme until r and are sufficiently small. For most systems 

it was found that ; - 10-~c and p - 0.5 MeV/fm after 200 fm/c. The energy 

of the system appears stationary, with a rate of change less than 

MeV-c/fm per nucleon. The calculated binding energy was only slightly 

sensitive to initial conditions. For different starting configurations the 

the energy of these systems after 200 fm/c only differed by a few 

hundredths of an MeV per nucleon. 



To assess the ability of the model to reproduce ground state properties of 

real nuclei the binding energies and RMS radii of a range of elements are 

calculated and compared to the experimentally measured values. The RMS 

radius of the nuclear system is not just the RMS radius of the 

quasiparticle system. The width of the nucleon wave packet needs to be 

included. The RMS radius of a nucleus in this model is given by 

The first term of this expression is just the square of the RMS radius of 

the quasiparticle positions and the second term is the wave packet width 

contribution. 

The comparison begins with a representative sample of elements from the 

periodic table. Table 4.1 compares the binding energy of the model with 

experiment tEng661 and the predictions of Green's mass formula IGre541, 

which has a comparable number of parameters as the QP Hamiltonian. As well 

the table compares the RMS radii of the QP model with the radii extracted 

from a Wood-Saxon fit to data lHof671. 

The agreement between the QP model and the data is in the 5% range for the 

binding energy and 10% for the radius. The agreement with data seems to be 

at the same level as that of Green's mass formula. 

A comparison between model and data of the isospin dependence of the 

binding energy is made in Table 4.2, for two isobaric sequences of 
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intermediate mass systems. The masses of the systems chosen for study are 

A=32 and 51. Again the agreement with experiment is very reasonable. 

Binding Energy per RMS radius (fm) 
Nucleus nucleon (MeV) 

A Z Model Data Green Model Data 

TABLE 4.1 Model calculation of binding energies per nucleon and RMS radii 
of selected nuclei. The predictions for the binding energies are compared 
with both the data and mass formula of Green. The RMS radii are compared 
with that obtained in a Wood-Saxon fit to a range of nuclei. 

Nucleus 

A Z 

Binding energy per nucleon (MeV) 

Mode 1 Data Green 

TABLE 4.2 Isospin dependence of binding energies per nucleon. The 
comparison is made among the model calculation, data and fit to the data. 



The results for light systems are shown in Table 4.3. Light systems are 

the most difficult to approximate with a classical description and even the 

quasiparticle model shows some failings. The nature of the nucleon wave 

function becomes important, and the gaussian approximation begins to break 

down. The effects of shell closing, which the QP model has no way of 

approximating, also become significant. Nevertheless the comparison shown 

in Table 4.1 is not at all unreasonable. All the systems have finite radii 

and for A24 the binding energies are within 20% of the data. The model 

predicts the sharp decrease in the binding energy per nucleon for very 

5 4 
light systems and also that He is significantly less bound than He (as is 

5 8 observed). However both He and Be are known to be unstable whereas the 

QP model predicts that they are stable against particle emission. 

Binding energy per 
Nucleus nucleon (MeV) RMS radius (fm) 

I A 
Z Mcde1 Data Green Model. Data 

2.2 
1.70 
1.63 
unstable 
2.54 
2.40 
unstable 
2.40 
2.45 
2.50 
2.45 
2.65 

TABLE 4.3 Binding energies and RMS radii for light nuclei. The comparisons 
are the same as Table 4.1. 



The ground state energies and radii of the QP model agree with experiment 

within 5-10% ,except for very light systems (As4), where the nuclei are 

overbound and have too large a radius. It is the failure to obtain correct 

5 binding energies for small systems that results in the He and '~e nuclei 

artificially stable. Despite these failings the QP model does have a 

number of unexpected successes. The peak in the binding energy as a 

function mass number not only exists, but occurs in nearly the correct 

location and has the right value. Furthermore the plateau in the RMS radii 

as a function of nucleon number, for light systems, is also reproduced by 

the model and extends over nearly the same observed range with 

approximately the correct value. This agreement with the data on finite 

systems is impressive when one recalls that all but one of the parameters 

are fixed by results from infinite nuclear matter, leaving only one 

parameter (g) to be fit to the finite systems. 



V QUASIPARTICLE DYNAMICS 

In the preceding chapters the QP model is developed and the ground state 

properties discussed. This chapter focuses on the dynamics of the model. 

First the equations of motion are derived. Next a discussion of the need 

for a collision term, and the form of such a term is given. Finally, as an 

example of the utility of the QP model, the time scales associated with 

intermediate energy heavy ion reactions are investigated. 

V.l Equations of Motion 

In Chapter I11 the claim was made that the quasiparticles obey classica 

equations of motion. This claim will be justified now. The assumption has 

been made that the completely antisymmetrized state can be replaced by a 
A 

product state, 3, plus some effective potential, Veff.  The dynamics of the 
A A h 

system is then governed by an effective Hamiltonian: H = W + V 
ef f eff - 

Following an approach similar to the proof of Ehrenfest's Theorem, we write 

the time dependence of a quasiparticle position and momentum in the 

following form: 

Now consider the gradients with respect to R and P of the energy 
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,. 
expectation, 

'Heft- 
>, which is just the QP Hamiltonian H(R,P). 

The partial derivatives of * are easy to evaluate in the real space 

representation. Note that P is a function of (ri- Ri) (see Eq. 3.2 and 

3.3); therefore 

Also m t e  thzt the wave f-wetion'depends on P oniy tnrough the phase 
i 

factor exp(iPi-rim), therefore 

Hence 

and 



which are just the classical equations of motion for the quasiparticle 

Hamiltonian H ( R , P ) .  

A 

The above arguments depend on the existence of VefF which has neither been 

calculated, nor shown to exist. Fortunately for calculational purposes all 

that is needed in this study is the expectation - not the complete 

operator. 

V.2 Nucleon-Nucleon Collision Term 

The density dependent potential used in this calculation resembles the mean 

field potential used in Bo 1 t zmann transport equations 

[BD88,BKD84,Boa87,SG86]. For the collisionless form of these equations, 

called the Vaslov equation, the predicted cross section for an intermediate 

energy nuclear reaction is much too small, allowing colliding heavy ions to 

pass though each other almost transparently. The reason the cross section 

is underestimated is because the correlations have been neglected by the 

mean field approximation. To approximate the effects of these correlations 

a collision term is introduced into the Vaslov equation. These modified 

Boltzmann equations, as they apply to fermions or bosons, are known as the 

Nordheim-Uehling-Uhlenbech (NUU) equation or Boltzmann-Uehling-Uhlenbech 

(BW) equation [Nor28, UU331. 

Given the similarities between the potential used in our calculation, and 

in the Boltzmann-like approaches, it is to be expected that the cross 

section in intermediate energy nuclear collisions will be underestimated. 

As with the Boltzmann-like approach, we therefore include a collision term 



in the the model's dynamics. Although a collision term greatly affects the 

dynamics of the model it will have no effect on the zero temperature 

properties (i.e. the results of Chapter IV) since the quasiparticles are 

stationary in their ground state. 

Although the inclusion of a collision term in the QP model is motivated by 

the Boltzmann equation studies, the form chosen for our study will be 

different than what is generally used in the NUU approach. The common 

elements in any collision algorithm are a specification of when the 

collision occurs and a prescription for determining new momenta for the 

scattering pair. In the algorithm commonly used in the NUU method, the 

collision occurs at the time of closest approach and the new momenta are 

chosen stochastically from a distribution that produces the observed NN 

cross section. This method has the features of conserving energy and 

linear momentum on an event-by-event basis, but conserves angular momentum 

only in an average over many events. 

In this study it is desired to have a model that conserves not only energy 

and linear momentum on an event-by-event basis, but angular momentum as 

well. In developing a collision term for the model, these conservation laws 

are sufficient to determine uniquely the change of momentum once a 

collision geometry is specified. We return to this question below; at this 

point we wish to deal the kinematics. 

The calculation of the change of momentum needs to be done numerically 

because of the momentum dependence of the Pauli potential. Consider the 

collision between two particles labelled 1 and 2. From the conservation of 
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linear and angular momentum the new momentum (PI) is related to the old 
i 

momentum (P ) of.particle i, by the relation 
i 

where R12 is the unit vector along the R - R direction. The scalar, A, 
1 2 

(which has the units of momentum) is determined by energy conservation: 

Notice that Eq. 5.6 has at least one solution, the trivial solution A=O. 

To find the non-trivial root of the above equation a Steffensen iteration 

scheme [CB721 is used to solve the equation 

The initial A used in the iteration method is the value of A for scattering 

without any Pauli potential. Typically the method finds the root within 10 

iterations. In our algorithm if the nontrivial solution is not found, the 

scattering is suppressed and the nonscattered solution A=O is accepted. 

It remains to specify the point at which the collision occurs to complete 

the description of this model's collision process. In the NUU method the 

point of collision is deterministic (i.e. time of closest approach) and the 



new momenta probabilistic. The assignment of new momenta for a collision 

with in the QP model is deterministic, with the conservation laws 

completely specifying the change of momenta. To make the scattering 

stochastic, the point of collision must be probabilistic. This is done by 

assigning a test particle to each quasiparticle. The test particle 

position about its quasiparticle is chosen at random from the gaussian 

distribution of the wave packet associated with the quasiparticle. If the 

distance between test particles becomes less than some given value, 2ro, 

the collision algorithm is invoked. If the trial scattered state is 

accepted (allowing for Pauli blocking of the collision), then a new 

momentum is assigned, and a new test particle position is given to each of 

the scattered quasiparticles. 

The one free parameter, is determined by comparing the model's 

nucleon-nucleon (NN) cross section with experiment. The observed 

differential NN cross section is isotropic in the (24 frame, with a total 

cross section of 28 mb IPDG701 at bombarding energies in the 100-200 MeV 

region. The total cross section in the model is made to agree with 

experiment by choosing r =0.944 fm. The model's differential NN cross 
0 

section, which is calculated using numerical integration (see Fig. 5.1) is 

roughly isotropic, with some enhancement in the backward and forward 

directions. Though this enhancement is not physical, it should be of 

little significance in a heavy ion collision because of multiple 

scattering. Further this enhancement occurs only in a small range of solid 

angle. The effects of varying the NN cross section are being investigated 

separately [BW901 and have not been found to be substantial at low to 

intermediate bombarding energies. .,, 



To consider the NN scattering in the presence of other fermions the free 

scattering NN collision term must be generalized to include the effects of 

phase space occupation.. The fermionic nature of the particles makes the 

scattering sensitive to the occupation of phase space. The scattering may 

be suppressed: if the phase space that a particle is scattering into is 

saturated the scattering is prohibited. In the QP model a test is made for 

this Pauli blocking once a trial momentum is chosen for the scattering 

pair. 

To calculate the probability of Pauli blocking it is convenient to go over 

to a phase space description of the system via Wigner transformations 

[BJ84,HOS841. The Wigner transform of a single particle wave function 

f(r,p) always has norm of unity (i.e. f(r,p)drdp = 1 1, so one is tempted S 
to interpret it as a probability distribution in phase space. Although the 

Wigner transform is normalized for all wave functions, the transform f ! r , p )  

is not guaranteed to be non-negative, making the probability interpretation 

dubious. However, for the gaussian wave packets used in the QP model, 

f(r,p) is always positive so a probability interpretation .is reasonable. 

The phase space distribution of a single particle, as given by the Wigner 

transform of Eq. 3.2, is 

The density of particles with a specific isospin, I, and spin, S, 

combination is given by (under the assumption of a simple product state) 



Now consider the scattering of particle 1. Let f' be its new phase space 
1 

distribution after scattering. Imagine phase space divided into cells of 

volume (2nfi13. The collision is Pauli blocked if particle 1 is scattered 

into a cell that is occupied by a particle with the same quantum numbers 

1,s . The probability that a cell is occupied by some particle other than 

particle 1 is 

where it is assumed that f - f is a slowly varying function in phase space 
T 1 

in the vicinity of (r,p). The probability that the scattering of particle 

1 is blocked is then given by 

I d'r dZp f; (r,p)P 
occupied (r,p) 

the blocking probability pEIOcked for the scattering of the other 

member of the scattering pair (particle 2) can be calculated. The 

probability that a collision is accepted is the probability that both 

,particle 1 and particle 2 are not Pauli blocked, 

P 
accept 

= (1 - p1 
blocked 

1 (1 - p2 
blocked 

1 



The above calculation assumes that the occupation of a phase space cell 

never exceeds unity. Although this is correct for a truly fermionic 

system, it can be violated in the quasiparticle model because of the 

approximations made. This violation of the occupation of the phase space 

cells can lead to a calculated P that is larger than one. If this 
blocked 

is the case, our algorithm assumes that Pblocked= 1, and hence the 

collision is rejected. 

The collision term discussed above, along with the Eq. 5 . 5  completely 

specify the dynamics of our model. Eq. 5 . 5  represents the effect of the 

Pauli potential and nuclear interaction in determining the trajectory of 

the quasiparticles between collisions, If a collision occurs, the temporal 

integration based on Eq. 5 . 5  is suspended, the above collision prescription 

is applied instantaneously, after which the temporal integration is 

resumed. We refer to this model of the dynamics of the quasiparticle as 

QPD in the remainder of the thesis. 

V.3 Reaction Time Scales 

The time scales associated with a heavy ion collision are interesting for a 

number of reasons. First, from a computational point of view, it is 

desirable to know if the calculation will yield anything interesting within 

the limits of available computer time. Secondly, the establishment of 

various time scales of the reaction assists in identifying the physical 

processes responsible for fragmentation. 

We now consider how the computational time requirements scale with system 



size. The numerical scheme used to integrate the equations of motion 

requires the evaluation of the force on each particle at each time step. 

The simplest algorithm's running time then would scale linearly with the 

number of time steps and quadratically with the number of particles. The 

short range of the nuclear force introduces a natural cutoff length that 

can be used to define clusters of interacting particles. Then the nuclear 

force needs only to be calculated between particles within a given cluster. 

On the other hand, no such cutoff exists for the long range Coulomb force. 

Using the cutoff in the calculation of the nuclear force, the computational 

work required to evaluate both the nuclear and Coulomb force at time step 

can be can be written as 

where A is the number of particles in the cluster c, Z is the number of 

protons in the system and the sum is over all clusters. The constants wn 

and wc are the work required to calculate the nuclear and Coulomb forces 

respectively between two particles. The total computational work required 

to integrate the equation of motions for some time tT is then 

where At is the length of one time step. 

40 40 - For a Ca + Ca reaction about 1 cpu minute on a IBM 3081 processor is 

required to propagate the equations of motion for a reaction time of 250 

fdc. Almost all of this time is spent evaluating the nuclear force terms 
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with less then 15% of the time being used to calculate the Coulomb force. 

Of course the total running time for any particular study is much longer 

than this. The statistical nature of the model requires integration of the 

equations of motion many times to ensure there are enough events to have 

reasonable statistics. 

We wish to explore the time scales associated with a heavy ion collision 

for several values of the impact parameter, b, and the bombarding energy. 

Only a few reactions are considered in this study but it is hoped that they 

illustrate the general features. To investigate intermediate energy 

phenomenon, a Ca+Ca reaction is considered. This reaction is studied at b 

= 0, 3 and 6 fm., and 25AoMeV bombarding energy. For each impact 

parameter, 500 events are generated, each for a total reaction time of 250 

fdc. A set of Ar+C reactions are used to explore the low energy fusion 

regime. The Ar+C reaction is simulated at 12AoMeV bombarding energy and 

impact parameter values of b=2, 4 and 6 fm. For each of these systems, 250 

events are generated, each with a total reaction time of 400 fdc. 

The time .dependence of the cluster mass distribution is examined first. 

The following procedure is adopted for determining a cluster's 

characteristics at any given time. First the momenta and positions of all 

the particles of a reaction are written to storage every 10 fdc during the 

simulation. The positions are then analyzed at each stored time step to 

determine which nucleons belong to a given cluster. A cluster is the set of 

all nucleons which can be linked together with separations of no more than 

3.5 fm. For the Ca+Ca reaction at 25AoMeV the time dependence of three 

mass bins is considered: 1-10, 11-40 and 71-80 nucleons. Fig. 5.2 shows 



this dependence for b=O and 6 fm. The figure representing the peripheral 

collisions, indicates that in such collisions the nuclei join to form a 

short lived, large system. This large system breaks up into a pair of 

nuclei each with nearly the same mass the original Ca nuclei, and with 

little exchange of energy between them. The central collision has a much 

different character. This reaction decays with time as well but is much 

more fragmented than a peripheral collision, with 5 times as many light 

fragments, and no heavy fragments. This high multiplicity is interpreted 

as evidence for much a larger excitation of central collision reaction 

products as compared with the large impact parameter reactions. 

Further evidence of the relative mixing of target and projectile nuclei, 

and hence excitation, can be seen by examining the time dependence of the 

FU4S radius of a set of nucleons that eventually emerge as a fragment. To 

calculate this quantity one determines which nucleons belong to a common 

cluster at some time, t chosen such that the rapid decay associated with 
C' 

the initial impact is over. A value of t =I50 fm/c suffices for the Ca+Ca 
C 

reaction at 25AoMeV. Next, for a given cluster, the positions of the 

constituent nucleons are examined for times previous to tc, and the RMS 

radius of the nucleon positions is calculated. This FWS radius is 

averaged over all configurations that emerge as a cluster of a given mass 

A. In Fig. 5.3 the time dependence of the average RMS radii is shown for a 

number of cluster sizes: A=36, 44 and 76 in a Ca+Ca reaction at 25AoMeV. 

The radius of the A=76 cluster is large at first, since the constituent 

nucleons are spread out over both target and projectile. For both the b=O 

and 6 fm reactions, as the two nuclei approach each other the radius 

decreases, as expected. Both reactions also exhibit a growth in this 
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radius after the two nuclei collide. However, the central collision has a 

distinct decrease in growth rate at about 40 fd c  after the time of minimum 

radius, which is not seen in the peripheral reaction. The radius associated 

with this change of growth rate corresponds to a normal (near ground state) 

nuclear system of mass 80. 

For the large impact parameter collisions the data support the conclusions 

that the initial nuclei stay intact and that the growth of the FMS radius 

is just due to the increase with time of the separation of the target and 

projectile centers-of-mass. For central collisions the picture is very 

different. After initial impact, the system is compressed, but then 

expands quickly to the size of a normal mass A=80 nuclear system, followed 

by a much slower expansion due to light particle evaporation. 

These intermediate energy dynamics are now contrasted with the dynamics of 

low energy reactions. In Fig. 5.4 the time dependence of the mass 

distribution in Ar+C reactions at 12AoMeV is shown. The peripheral 

reaction (shown in the lower frame) has the same qualitative behavior as 

the peripheral Ca+Ca reaction of Fig. 5.2, with the target and projectile 

linking together to form a loose system which breaks apart quickly. The 

central collision, however shows a qualitative difference between the 

intermediate and low energy reactions. In the low energy reaction the 

initial nuclei fuse to form an excited system that then de-excites by 

losing a few light particles. This behaviour seems to occur commonly for 

impact parameter b<4 fm. 

In all the reactions discussed thus far there has been light particle 
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emission from the excited system after the collision. It is of interest to 

examine the time dependence of this emission. There are a number of 

possible definitions for particle emission, but the one chosen here is 

based on local density. If the local density in the vicinity of a nucleon 

falls below a cutoff of 0.07 fm-3, the nucleon is said to be emitted. The 

time dependence of the nucleon emission rate for a Ca+Ca reaction at 

25AoMeV is shown for both b=O and 6 fm in Fig. 5.5. The semilog plot shows 

the initial increase of emission as the nuclei overlap, followed by the 

exponential decay of the rate after maximum overlap. As expected, total 

nucleon emission is greater in the central collision, where more of the 

bombarding energy is transferred into internal excitation energy of the 

nuclei. 

From Fig. 5 . 5  one can also extract an emission lifetime from the slope of 

the decay portion of the curve. Both reactions exhibit a long time 

emission 1 ifetime of 9 ~ 1 0 - ~ ~  seconds. I1owsver the central ccllision also 

has a short 1 if et ime component of 3 x 1 0 ~ ~ ~  seconds not found in the 

peripheral collision. This additional component is due to the rapid 

emission of particles during the initial violent impact of the target and 

projectile of the central collision, not found in the peripheral reaction. 

The long lifetime component corresponds to quasiequilibrium emission of 

nucleons for low excitation energy systems found with peripheral collisions 

and with central collisions after the energy loss associated with the 

initial rapid particle emission. 

On the long time scale there are many other possible channels for decay of 

an excited nuclear system. Some of these processes can be described within 



the context of this model, but certainly not all. On the long time scale 

one also needs to consider, for example, photon production, quantum 

tunneling of particles through the Coulomb barrier and fission processes. 

Although one could try to include some of these processes in the model, 

computer resources do not exist to run even the simpler QPD model to those 

times. Since most of the far-from-equilibrium processes have disappeared 

by 250 fm/c it makes sense to take the output of the QPD code and use it as 

input for a statistical decay code, in order to see these very long time 

decays. 

In summary the time scales have been determined for several processes 

associated with the initial impact and separation phase of low and 

intermediate energy reactions. From Figs 5.2 and 5.4 it is seen that a 

quasiequilibrium state is reached between 150-250 fm/c. The QPD model 

lends itself to computer simulation up to this reaction time; however, much 

longer processes are out of the reach of this method. Nevertheless, after 

250 fm/c these systems have relaxed sufficiently that more a efficient 

statistical method, such as one of the models reviewed by Das Gupta and 

Mekjian IDM811, could be used. 
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Fig. 5.1 Associated total NN cross section for the QP model with collision 
term (QPD). The cross section is calculated using a QPD simulation. The 
full curve is from the scattering term only, while the dash curve includes 
the scattering term plus the nuclear potential. 
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Fig. 5.2 Time dependence of the fragment mass distribution in a Ca+Ca 
reaction at 25AoMeV for b=O fm (top) and b-6 fm (bottom). Three mass bins 
are used in the figure, 1-10, 31-40 and 71-80 mass units. 
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Fig. 5.3 Time dependence of the RMS radii of the nucleon positions of 
various fragments of fixed mass in a Ca+Ca reaction at 2SAoMeV for b=O fm 
(top) and b-6 fm (bottom). The masses chosen for display are: 36, 44 and 
76. See text for description of how the radii are determined. 
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Fig. 5.4 Time dependence of the fragme t ass distribution in an Ar+C 
reaction at 12AoMeV for b=O (top), 4-(middle) and 6 fm (bottom). Three 
mass bins are used in the figure, 31-40, 41-50 and 71-80 mass units. 
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Fig. 5.5 Time dependence of nucleon emission rates for the two reactions of 
Fig. 5.2. A nucleon is considered "emitted" when the average local density 
around it falls below 0.07 fm for the first time. 



VI TEMPERATURE MEASUREMENT 

VI.l Introduction 

In Chapter I we introduce the concept that short lived composite systems 

formed in a nuclear reaction can be described in terms of a 

quasiequilibrium system. Although such a simplification would be most 

welcome, its justification is unclear. Nevertheless the notion is popular 

and begs the questions: If the system has thermalized, what is its 

temperature and how would it be measured? A number of experiments have 

been performed to address the question of temperature in nuclear reactions. 

The focus of this chapter is not to address the question of thermalization 

directly, but to make a connection with the analysis of experimental data 

based on the thermal equilibrium assumption. The temperatures we extract 

from our simulation, as well as the temperatures extracted from the 

experiments, may not be temperatures at all; however, for the purposes nf 

this chapter and to make comparison with experiment, we will call them 

temperatures. 

One of the common ways to extract a temperature from the data is to fit a 

Maxwell-Boltzmann distribution as observed in a moving frame to the single 

particle kinetic energy spectra tDM811. The fit yields the velocity of the 

frame and a temperature. We call this the kinetic temperature (1;). 

A number of years ago an alternate method for determining the temperature 

was proposed based on the excitation energy distribution of the fragments 

produced in the reaction iMor841. If the distribution were thermal, one 



could extract a temperature by fitting a Boltzmann distribution to the 

data. We call this the chemical temperature T *. 
E 

Both of the above methods extract a temperature by fitting a distribution 

function to the data. The virtue of the kinetic energy method is that it 

leads to an analytic form of the associated thermal distribution function, 

whereas the thermal distribution of the excitation energy is not known 

analytically. Despite this virtue of the kinetic temperature, the chemical 

temperature is probably a better measure of the thermal energy in the 

system. We address this issue later in the chapter. 

In the Hamiltonian of the system there is no coupling between the centre of 

mass motion of a fragment and its internal degrees of freedom. The 

decoupling of the centre of mass motion and excitation energy causes the 

kinetic and chemical temperatures to be statistically independent. Despite 

being independent, if the system were indeed in thermal ecpilibrim the twc? 

temperatures would have the same value. This is not observed in the 

experiments that have been performed. The kinetic temperature is found to 

be much larger than the chemical temperature tGB871, normally by a factor 

of four [Blo86,Po85a,Po85bl but factors of ten have been observed 

[Mor84,Mor851. 

The temperature determination in nuclear reactions is confused by a number 

of factors. The system is expanding and hence, in principle can not be in 

thermal equilibrium. The hope in doing the thermal analysis of 

experimental data, is that the system is expanding sufficiently slowly so 

that it remains in a quasiequilibrium state and can be characterized by 
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some time-dependent temperature. As the system expands it reaches a point, 

called the freeze-out point, where the interfragment separation exceeds the 

range of the nuclear force. Past the freeze-out point, the individual 

fragments may have a distribution of excitation energies which is similar 

to a thermal equilibrium distribution, but the system as a whole cannot 

stay in thermal equilibrium because of the decoupling of the fragments. 

The temperature of a fragment species is then a measure of the temperature 

of the entire system at the time the fragment breaks away from the system 

(denoted by T ). 
f 

Extraction of Tf, would be experimentally possible if the fragment 

distribution function remained fixed after freeze out. To some extent this 

is true; however long time decays tend to alter these distribution 

functions [Po85a,Po85b,Fie87,HS871. It is also possible to perform a model 

dependent analysis [Blo87,Che871 of the data to try to remove the effect of 

the long time decays, but its removal has only a small effect on the 

predicted temperature and is not sufficient to explain the differences 

between the kinetic and chemical temperatures. 

The QPD model is well suited to explore the temperature questions in 

nuclear reactions. First, it is sufficiently fast numerically that enough 

events may be propagated past the freeze-out point to have reasonable 

statistics. Secondly the model has well-defined ground states so excitation 

energies can be examined. 

To investigate the general features of the temperatures in a nuclear 

reaction, Ca+Ca reactions are studied. The reaction is simulated at 35AoMeV 



and 100AoMeV bombarding energies. Only central collisions are investigated 

since these produce the most fragments, and hence the best statistics. 

4 Also for statistical reasons, only He and 6 ~ i  fragments are considered, 

because of the relatively high number of these fragments produced. 

VI.2 EXCITATION ENERGY DISTRIBUTIONS 

To determine the temperature of a given mass fragment, information is 

needed about its excitation energy distribution. As mentioned in the 

introduction, the excitation energy distribution function is not known 

explicitly, so a Monte Carlo procedure is used to extract this information. 

The 4He nucleus that we consider is the one in which the sum of the proton 

spin and the sum of the neutron spin both vanish. The 6 ~ i  we consider has 

spin such that the magnitudes of the sum of the proton spin and the sum of 

the neutron spin are both equal to 1/2 (which is denoted by 6~i(i/2,i/z) 1. 

As discussed in Chapter 111, the inclusion of the Pauli potential requires 

that the full phase space Monte Carlo procedure be used. Parenthetically, 

4 He has no Pauli term, because of the pairing of the spins, so it would be 

possible to simplify the procedure by doing the momentum space integrals 

analytically. However the 'He nucleus is sufficiently small that the full 

phase space Monte Carlo is not computationally taxing and evaluating the 

statistical properties of this nucleus via the full phase space Monte Carlo 

also provides a way to check the procedure against some analytic results. 

In designing the Monte Carlo algorithm one must keep in mind the comparison 

that is to be made. In this study we wish to extract a temperature by 
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comparing the excitation energy distribution of a given type of cluster 

produced in a reaction with the excitation energy distribution of the same 

type of cluster generated via Monte Carlo. The excitation energy is just 

the excess of the internal energy (i.e. the energy as measured in the frame 

where Ptot = 0) over the ground state energy. To look at this distribution 

the Monte Carlo algorithm must consist of moves that keep R =O and P =O. 
cm tot 

As well, the algorithm must keep the cluster intact since it is the 

temperature of a cluster of a given mass that is sought. 

A trial Monte Carlo move is made by first selecting a particle. Then a new 

phase space coordinate for the particle is drawn from a uniform 

distribution in phase space centred at the old phase space coordinate with 

a width of 0.6fm and 60 MeV/c for each of the position and momentum 

coordinates respectively. The centres of mass and momentum are kept fixed 

by shifting the entire system in phase space such that R =O and Ptot=O. 
cm 

The new move is rejected if it causes the cluster to break up. (see section 

V.3 for the definition of a cluster). The final rejection or acceptance is 

just the standard Metropolis algorithm. The new configuration is 

unconditionally accepted if the change of energy of the system 6E is less 

then zero and accepted with probability exp(-6E/Tl if 6E > 0. Of course 

all probabilistic variables are in fact only pseudorandom. After each 50 

sweeps of the total system, the configuration is stored, which is ample 

separation to insure that the samples are uncorrelated. 

At least 10,000 samples are generated at each temperature. The 500,000 

sweeps made at each temperature is more than what is needed in this study, 

but the systems are small and hence us give the opportunity to make 
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statistical uncertainties very small. For the Monte Carlo work described 

in the next chapter, the large system sizes make it computationally 

prohibitive to make as many sweeps. 

Using this Monte Carlo method the average kinetic and excitation energy per 

4 nucleon for the He cluster can be calculated. The results of this 

calculation are presented in Fig. 6.1. Since there is no Pauli term in the 

4 Hamiltonian for He, it is easy to evaluate the expectation of the kinetic 

energy analytically. The Hqmiltonian is quadratic in the momentum, so each 

1 momentum degree of freedom contributes -T to the kinetic energy (note we 
2 

have set the Boltzmann constant, kg, to equal unity, so T has units of 

energy). The number of momentum degrees of freedom equals 3A-3 (with the 3 

4 
degrees of freedom removed to account for fixing Ptot = 0). For He, A=4, 

so the kinetic energy per nucleon <KE/A>= 2 T. This dependence is 
8 

indicated in Fig. 6.1 by the solid straight line, which is consistent with 

the Monte Carlo data. As a function of temperature the excitation energy 

rises faster than the kinetic energy because of the presence of the 

potential term. At low temperature the quasiparticles make only small 

displacements from their ground state values and it is possible to evaluate 

the low temperature dependence of the excitation energy by expanding the 

Hamiltonian in a second order Taylor expansion. Doing this, we find the 

* 9 average excitation energy per nucleon, <E /A> w - T, for small T. Similar 
4 

results can be obtained for 6 ~ i  and are presented in Fig. 6.2 

The extraction of a temperature from a heavy ion collision using the 

excitation energy distribution of the fragments is complicated by the 

finite lifetimes of some fragments. The decays of these fragments can 
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alter the energy distribution from the distribution at emission, and hence 

the measured temperature. Some of the possible decay processes and their 

4 6 threshold energies for He and Li are shown in Table 6.1. 

React ion E*/A (MeV) 

TABLE 6.1: Threshold values of the excitztion energy per nucleon for 
selected reactions of computational 4 ~ e  and Li (1/2,1/2). 

One can see that both nuclei are completely unbound for excitation energy 

over 7 MeV per nucleon, and there are possible decay channels for lower 

energies. If the decay processes were well understood, the large time 

energy distribution could be used to find the post-emission distribution 

and hence the temperature. Another approach is to focus on an excitation 

energy distribution in the range of energy where the fragments are long 

lived (compared to the time of observation). Though this is not the 

complete distribution, there is sufficient information to extract a 

temperature from it. 

To determine the energy range needed to extract a temperature, the 

4 lifetimes of various energy He fragments are examined. To do this, the 

4 
He configurations generated in the Monte Carlo simulation are grouped 



according to excitation energy into 1AoMeV bins and then propagated (using 

the molecular' dynamics code) for 250 fdc. A cluster search is performed 

every 10 fm/c to determine if the cluster is still connected. The time 

dependence of the fraction of connected clusters for various energy bins is 

shown in Fig. 6.3. 

4 One clearly sees from Fig. 6.3 that the lifetime of He depends upon 

excitation energy. For energies less than the energy of the lowest decay 

mode (3.11 MeV per nucleon), the nuclei are stable, as expected. For 

energies larger than the first decay mode, but less than the energy of 

vaporization (6.24 MeV per nucleon), the decay process appears to have two 

components: one that decays on an intermediate time scale and another with 

4 a very long lifetime. For He nuclei, the 4-5 MeV per nucleon excitation 

energy bin shows the intermediate component has a lifetime of 220 fdc. It 

is not possible to tell if the lifetime of the long lived component is 

finite from the data shown in Fig. 6,3 . However there is enough energy to 

allow the '~e to decay, so all components in this energy range must have a 

finite lifetime. For energies above the vaporization threshold the nuclei 

are short lived, as depicted by the 6-7 MeV per nucleon bin, with a 

lifetime of 28 fm/c. 

The above discussion on lifetimes indicates that excitation energies of 

less than 6 MeV per nucleon will be in the range of interest for extracting 

a temperature from the reaction data. States in this energy range are 

sufficiently long lived, compared to the reaction times of 100-200 fdc, 

that the distribution of states is not altered appreciably by decays. It is 

useful in extracting a temperature from a reaction system to calculate the 



* 
expectation of the exciiation energy subject to the constraint that E /A < - 
6 MeV (denoted by <E*/A>~). This expectation is calculated via Monte Carlo 

simulation for both 4 ~ e  and 6 ~ i  (1/2,1/2) as a function of temperature with 

the results shown in Fig. 6.4. 

In extracting a temperature for the reaction data it is assumed that the 

excitation energy distribution of the fragments is a Boltzmann 

distribution. To check this assumption, the excitation energy distribution 

function is calculated so that a comparison to the reaction data can be 

made. The distribution functions for both 4 ~ e  and 6 ~ i  at temperatures of 

2, 3 and 4 MeV are calculated and shown in Figs. 6.5 and 6.6. Because only 

a finite number of samples can be generated in a Monte Carlo simulation, 

the distribution function has been binned into 1 MeV per nucleon intervals 

to improve statistics. Furthermore the range displayed only focuses on the 

energies of interest (0-6-MeV per nucleon); however the distribution does 

fall off exponentially for higher energies as expected. The figures 

indicate reasonable agreement between the distribution seen in the reaction 

simulation and the distribution obtained for a system in thermal 

equilibrium. 

VI.3 Temperature Determination 

In this section the temperature is extracted from simulated reactions using 

4 the excitation energy distributions of He and 6 ~ i ,  as presented in the 

previous section. The reactions which are studied are Ca+Ca collisions at 

impact parameter b=O and bombarding energies of 35AoMeV and 100AoMeV. We 

choose these two reactions to be typical of the experimental systems 



investigated so far. A total of 7000 events are generated at 35AoMeV and 

4500 events at IOOAoMeV. The higher multiplicity of the 100AoMeV reaction 

over the 35AoMeV reaction allows one to maintain the same statistics with 

fewer events. 

The excitation energy distributions of these fragments are shown in Fig. 

6.5 and 6.6, respectively, for a reaction time about 100 fm/c after maximum 

overlap of target and projectile Ca nuclei. In Table 6.2 the number of 4 ~ e  

and 6 ~ i  clusters at time t=150 fm/c is shown. The trend to notice is that 

the sample size increases with increasing bombarding energy but decreases 

with increasing emission angle and fragment mass. 

As a probe of the degree of thermalization of the system, the angular 

dependence of the excitation and kinetic energies (and their associated 

temperatures) is considered. If the system is completely thermalized these 

quantities should be independent of angle. -The angular dependence is 

studied by separating the fragments into two angular bins, one covering 

0-60 degrees and the other 60-120 degrees. 

Cluster 
Type 

Number of 
Events 

7000 
4500 

Bombarding 
Energy (AoMeV) 

Sample size between angies 

TABLE 6.2: Summary of sample sizes of 4 ~ e  and 6 ~ i  reaction products for 
various bomb~rding energies and emission angles at time t=150 fm/c subject 
to the cut E /A < 6 MeV. 

0 - 60 
375 
1191 ------------- 
80 
42 1 

60 - 120 
27 
205 ------------- 
2 
49 
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A maximum likelihood estimate [Fre711 (MLE) T is made for both kinetic and 

chemical temperatures of the system, by assuming a Boltzmann distribution. 

(See Appendix B) . For a collection of n nuclei of the type of interest 

4 
(i.e. He or the MIE of the kinetic temperature is given by solving 

the equation, 

where K is the center of mass kinetic energy of the ith nucleus and <. . .> 
i 

denotes an expectation with respect to the Boltzmann distribution. The 

evaluation of the expectation of a random variable with respect to the 

Boltzmann distribution is in general difficult; however, the expectation of 

center of mass kinetic energy is easy to calculate analytically and its 

value is shown in Eq. 6.1 as well. 

A 

The MLE of the chemical temperature TE* is given by 

* 
where Ei is the excitation energy of the ith nucleus, drawn from an n-fold 

* 
sample of nuclei satisfying the constraint that E < 6 MeV per nucleon. 

i 

Unlike the kinetic energy, an analytic expression for the expectation of 

the excitation energy is not easy to obtain. In order to evaluate the RHS 

of Eq.6.2 a Monte Carlo procedure is used, as described in the previous 
* 

section. The temperature dependence of <E /A> is shown in Fig. 6.4. 
C 

In this study we examine not only the dependence of these temperatures on 

88 



bombarding energy, emission angle and fragment species (all of which are 

measurable in a reaction experiment) but the time dependence of the 

temperatures as well. The examination of the time dependence provides 

insight, not accessible by experiment, into the reaction mechanisms 

responsible for the setting of these temperatures. The time dependence is 
A 

explored by calculating the MLE T every 10 fm/c. During the first part of 
n 

the reaction the statistics associated with T are poor because of the small 

number of fragments present, however as the reaction proceeds the number of 

fragments grows and statistics improve. Fig. 6.7 shows the relative number 

4 of He nuclei as a function of time for several Ca+Ca reactions. 

4 The temperatures from He emitted at wide angles during a 100AoMeV Ca+Ca 

reaction are considered first, In Fig. 6.8 the time dependence of both 

kinetic and chemical temperatures are shown. The features to notice are: 

the chemical temperature is nearly constant with time, the kinetic 

temperature has a strong initial time dependence (but this dependence 

vanishes for large time), and the chemical and kinetic temperatures differ 

greatly for all times. The asymptotic values of the temperatures set in at 

approximately 100 fm/c, roughly corresponding to the freeze-out time of the 

composite system (see Fig 6.9 for a pictorial representation of the system 

before and after freeze-out). Furthermore, these asymptotic values are 

approximately the temperatures observed experimentally. We conclude from 

the simulation data that the difference between the kinetic and chemical 

temperatures is established relatively early in the reaction (50-100 fm/c 

after the initial impact). Although long term decays are not needed to 

explain the temperature difference, they may lead to further changes in the 

energy distribution of the fragments, and hence changes in the 
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temperatures. 

Now consider the effect of emission angle on the temperature. The upper 

part of Fig. 6.10 shows the temperatures for the same reaction as 

4 considered above, except now He fragments at forward angles are examined 

instead. The qualitative features of Fig. 6.10 are the same as Fig. 6.8: 

the chemical temperature is nearly constant with time, the kinetic 

temperature has a strong initial time dependence, but the dependence 

vanishes for large time, and the chemical and kinetic temperatures greatly 

differ. From a quantitative examination we see the kinetic temperature at 

forward angles is much greater than the wide angle temperature but the 

chemical temperature has changed very little from its wide angle value. 

To address the question of the dependence of the temperature on species, 

consider the energy distribution of the 6 ~ i  fragments in the same reaction 

as discussed in the two previous paragraphs. A complete comparison is not 

possible because the total number of 6 ~ i  fragments produced is much smaller 

4 6 than the number of He; in particular there are too few Li at wide angles 

to have sufficient statistics to extract a temperature. However, the 

situation for forward angles is not as bad, and a temperature can be 

extracted from the 6 ~ i  nuclei. Fig. 6.10 shows both kinetic and chemical 

temperatures as determined at forward angles. The same qualitative 

features exist as seen in the previous temperature plots. Note also the 

close agreement of the upper (4~e) and lower (6~i) parts of Fig 6.10, which 

reflects the insensitivity of the temperatures to species type. 

Finally, the dependence of the temperature on bombarding energy is 



considered, Experimentally, it is observed that the chemical temperature 

shows very little bombarding energy dependence [Che871. To make a 

comparison, Ca+Ca reactions at bombarding energies of 35AoMeV and 100AoMeV 

are simulated. The kinetic temperatures, as expected, show a strong 

bombarding energy dependence whereas the chemical temperatures, in 

agreement with experiments, show very little dependence on bombarding 

energy as shown in Fig. 6.11. 

Examination of the energy distributiop of the fragments is, at best, an 

indirect probe of the temperature. Although a more direct method doesns t 

exist for experiment, one can conceive of more direct ways of determining 

temperatures in simulation studies. With a direct method one could 

consider the temperature of some local region in space and see if it is 

reflected in the emission products. For instance, consider the temperature 

around the position of the centre of mass (i.e. within a volume defined by 

IR-R I < 4 fm) . As a probe of the local temperature, the expectation of cm 

the transverse kinetic energy of free nucleons (i. e. those which are not 

bound in clusters) is used, The free nucleon approximation enables us to 

neglect the momentum dependence of the Pauli potential, making it easy to 

perform the expectation integrals. The temperature is then simply given by 

<pL/2m> where PI is the momentum of a nucleon in the direction transverse 
1 

to the beam. This expression is strictly true only after the system has 

relaxed to equilibrium. By considering the transverse motion the bias 

associated with the energy in the beam direction is at least partly removed 

and thereby provides a better measure of the thermal energy of the system. 

' (The time dependence of temperatures in a model expanding system has been 

investigated analytically in [Aic831). 



The results of the transverse kinetic energy analysis are shown in Fig. 

6.12. Notice that this kinetic temperature is much lower than the 

previously calculated kinetic temperature. Furthermore, its value of 3 MeV 

near the break-up time is not very different from the chemical temperature. 

As the system continue to expand there is a cooling of the central region 

below the 3 MeV value. This is consistent with the picture that the 

chemical temperature is set near the time of break-up. 

VI.4 Discussion and Sunnnary 

The results presented in this chapter describe a physical picture very 

different than the quasiequilibrium description. A simple quasiequilibrium 

picture requires the kinetic and chemical temperatures to be the same. 

Furthermore, an equilibrium state should have no knowledge of its initial 

conditions therefore the temperatures should be independent of emission 

angles, which though true for the chemical temperature is certainly not the 

case for the kinetic temperatures. Some refinements of the 

quasiequilibrium picture have been advanced in an attempt to explain these 

discrepancies. One suggestion [Boa84,Blo88] is that as the composite 

system of target and projectile undergoes a free expansion, the temperature 

in a local co-moving frame drops. The difference between the kinetic and 

chemical temperatures can be explained by imagining that these temperatures 

represent the state of the system at different times. This explanation can 

only account for the difference in the measured kinetic and chemical 

temperatures, it is not intended to explain the angular dependence of the 

kinetic temperature. The chemical temperature, on the other hand, may in 



fact reflect a true temperature of the system. First, it shows little 

emission angle dependence. Second, if we examine the excitation energy 

distribution of the fragments and compare it to the Monte Carlo data (see 

Fig. 6.5 and 6.61, there is a rough agreement. Although an observable of a 

system exhibiting a Boltzmann distribution does not imply a thermal 

equilibrium, (i.e. it is only a necessary condition not a sufficient 

condition), it is suggestive that the observable reflects the thermal 

component of the system. 

The picture that we are advancing is based on the vague notion that there 

are thermal and nonthermal components of the system. For example, consider 

the two incident nuclei long before they collide. Each of these nuclei is 

in its ground state and represents a T=O configuration. Although there is 

no thermal energy in the system, the total "energy is certainly above its 

minimum value. This energy excess is associated with the kinetic energy of 

the relative motion of the nuclei toward each other. We associate this 

directional motion and related energy with the non-thermal component of the 

system. Upon impact the non-thermal energy begins to be converted into 

thermal energy. If this conversion process is fast enough (compared to 

the expansion of the system), or if the collision products were confined to 

a box, all of the energy associated with the directional motion would be 

converted to thermal energy. How to define, let alone measure, the thermal 

and non-thermal components of the energy during the relaxation period to 

equilibrium is not clear. The idea that we use is that the non-thermal 

energy of the system is associated with the directed motion (i.e. motion of 

the centre of mass, relative motion of two approaching nuclei, radial 

motion of expansion, etc) and the thermal energy is associate with the more 



random motion of the particles after the directional motion has been 

removed. 

It is argued above that the chemical temperature is a measure of the 

thermal energy of the system at the break-up point. Both experiment and 

this simulation show this temperature to be on the order of 3 MeV, 

independent of bombarding energy. This would imply, from Fig. 6.1, an 

energy of approximately 6.5 MeV per nucleon. This is on the order of the 

total excitation energy per nucleon (as measured in the centre of mass) of 

8.75 Mev for the 35AoMeV reactions and certainly below 25 MeV for the 

100AoMeV reactions. Therefore, for at least the 100AoMeV reaction, at the 

time of breakup a large portion of the energy must be non-thermal. 

In summary, we have used a computational model which possesses a well 

defined nuclear ground state to investigate the problem of temperature 

measurement in heavy ion collisions. The model is used in a Monte Carls 

calculation to evaluate the fractional distribution of excitation energy of 

4 
He and 6 ~ i  as a function of temperature. These distributions, in turn, 

are used to extract a temperature from a simulation of a heavy ion 

reaction. The reaction studied is Ca+Ca at fixed impact parameter and 

bombarding energies of 35AoMeV and 100AoMeV. The temperatures extracted 

from the simulation show the same characteristics as are observed 

experimentally: the chemical temperature have a value of 2.5-3.5 MeV - much 
lower than the kinetic temperatures and vary only slowly with bombarding 

energy. By examining the time dependence of the temperature, it is clear 

that the differences are established early in the reaction. Decays on the 

of order seconds are not needed to produce this effect. We conclude 



that a significant portion of the bombarding energy has not been 

thermalized. We proposed that the large kinetic temperatures do not 

reflect a temperature of the system but simply indicate the large amount of 

energy associated with directed motion. 



TEMPERATURE (M~V) 

Fig. 6.1 Calculated kinetic energy per nucleon and excitation energy per 
4 nucleon as a function of temperature for computational zero spin He 

nuclei. 



TEMPERATURE (M~V) 

Fig. 6.2. Calculated kinetic energy per nucleon and e%citation energy per 
nucleon as a function of temperature for computational Li(1/2,1/21. 
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a E*/A=2-3 MeV 

x E+/A=4-5 MeV 

TIME (fm/c) 

4 Fig. 6.3. Time dependence of the population of He nuclei with various 
, initial excitation energies: 2-3 AoMeV (symbol A), 4-5 AoMeV (symbol x )  and 

6-7 AoMeV (symbol 0 ) .  The initializations are chosen randomly from the 
phase space associated with a temperature of 2 MeV subject to the cluster 
connection constraint. 



4 
0 He nuclei 

3 4 

TEMPERATURE (M~v) 

Fig. 6.4. Calculated average excitation energy per nucleon subject to 6.0 
6 MeV cutoff for 4 ~ e  and Li in their ground state spin configurations. 
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Ca+Ca at 100 AsMeV 
b=O, 60-120" (cm) 

'lD 

Fig. 6.5. Fractional distribution of excitation energies per nucleon 
4 

' predicted for the computational zero spin He nuclei (subject to cluster 
constraint) for temperatures of 2, 3 and 4 MeV (histograms). The points are 
from the simulated Ca+Ca reaction at 100 AoMeV and b=O fm. All 
distributions have been normalized to unity over the 0-6.0 AoMeV range in 

4 excitation energy. The He nuclei are observed in the 60-120 degree range 
in the cm frame. 



Fig. 6.6. Fractional distribution of excitation energies per nucleon 
6 predicted for the computational L i 1 2 1 2  nuclei (subject to cluster 

constraint) for temperatures of 2, 3 and 4 MeV (histograms). The points are 
from the simulated Ca+Ca reaction at 100 AoMeV and b=O fm. All 
distributions have been normalized to unity over the 0-6.0 AoMeV range in 
excitation energy. 



4 Spin-0 He from 
Ca+Ca with b=O fm 

60-120" (cm) 

35 AmMeV, All energies 

100 A*MeV, All energies 

100 A-MeV, E*/A 5 6 MeV 

TIME (fm/c) 

Fig. 6.7. Time dependence of the number of 4 ~ e  nuclei per event observed in 
the angular range of 60-120 degrees for the Ca+Ca reaction at 35 AoMeV and 
100 AoMeV bombarding energy. The 100 AoMeV populations are shown both with 
and without the 6 AoMeV cut in excitation energy. 



4 Fig. 6.8. Time dependence of the He kinetic and chemical temperatures 
calculated for the Ca+Ca reactions at 100 AoMeV and b=O fm. The * ~ e  nuclei 
are collected in the 60-120 degree range in the cm frame. 



Fig. 6.9. Representation of the quasiparticle positions in the Ca+Ca 
reaction at 100 AoMeV and b=O fm. The upper part of the figure is for an 
elapsed time of 60 fm/c while the lower part is for 120 fm/c. Each 
quasi-particle is represented by a solid sphere of radius 1/2 fm surrounded 
by 100 dots distributed according to a gaussian distribution. 





Ca+Ca at 100 A*MeV 
8 b=O, 0-60" (cm) 

Ca+Ca at 100 AsMeV 
100 b=O, 0-60" (cm) 

TIME (fm/c) 

Fig. 6.10. Time dependence of the kinetic and chemical temperatures for 
nuclei emitted at 0-60 degrees in the Ca+Ca reaction at 100 AoMeV. The 

4 uppe; part of the figure (a) is for He nuclei while the lower part (b) is 
for Li(1/2,1/2). 



TIME (fm/c) 

Fig. 6.11. Comparison of the chemical temperatures obtained in the Ca+Ca 
reaction at 3S4AoMeV and 100 AoMeV bombarding energy. The top part of the 
figure is for He puclei in the angular range of 60-120 degrees, while the 
lower part is for Li in the angular range of 0-60 degrees. 



O < P ~ ~ / ~ ~ Y I > ~ ~ ~ ~ ~ ~ ~  for  nucleons 
4 

Tchemical for  He at  wide angles 

TIME (fm/c) 

Fig 6.12. Time dependence of the free nucleon kinetic temperature in the 
local reference frame centered on the cm position of the reaction system. 
The reaction chosen is Ca+Ca at 100 AoMeV and b=O fm. Shown for comparison 
is the '~e chemical temperature of Fig. 6.8. 



VII.l INTRODUCTION 

In this chapter the interplay of the thermodynamic properties and the 

dynamics of nuclear systems is examined. In particular we wish to explore 

to what extent the fragmentation processes present in heavy ion collisions 

are affected by bulk thermodynamic properties of nuclear matter. To study 

this connection and to see to what extent the assumptions of thermodynamics 

are valid in reaction systems we use the QPD model. 

The chapter is organized as follow: In the next section the T=O properties 

of the QPD model are considered. In Section V11.3 the temperature and 

density dependence of the energy and the specific heat for a number of 

finite system is estimated. From these results, finite size scaling is 

used to construct the liquid-vapour phase diagram of the infinite system. 

The fourth section is used to present the dynamics of excited nuclear 

droplets in terms of thermodynamic variables and in the final section a 

discussion of the connection between the thermodynamics and the dynamics of 

the droplet is made. 

VII.2 T=O Properties of Nuclear Matter 

.We begin the discussion of the thermodynamics of infinite neutral nuclear 

matter by presenting a few ground state properties. Simple energy 

arguments show that T=O nuclear matter is a homogeneous state for p>p and 
0 

a coexistence state for p<p 
0' 

Many analytic calculations [BG86,LS841 



determine the coexistence region by examining the instabilities of nuclear 

matter which is constrained to be homogeneous. In this section both the 

true ground state (coexistence state for p<p 1 and the constrained ground 
0 

state (homogeneous for a11 p) of nuclear matter are found. In particular 

the energy per nucleon, E/A, for finite systems is estimated by 'Monte 

Carlo. Using finite size scaling, these results are extrapolated to the 

infinite system for both the coexistence and homogeneous states. The 

finite size scaling of the energy in the coexistence region enables one to 

also find the T=O surface tension, r(T=O). The compressibility is found as 

well by extracting the curvature of the T=O energy isotherm of the 

homogeneous state (see Eq. 3.1). 

It is worthwhile to introduce some notation. In other parts of this thesis 

we use p =0.17fm-~ to denote the density for which the ground state energy 
0 

is a minimum and hence have identified it as the density of normal nuclear 

matter. In choosing the parameters in the QPD Hamiltonian we have tried to 

ensure that our model also has a minimum at p=p . However this calculation 
0 

was not done using the full QPD Hamiltonian; the expectation of the kinetic 

energy operator was evaluated within the Fermi-Thomas approximation. As 

will be shown below this approximation does have an effect but it is small. 

To avoid confusion, we introduce p 
min 

to denote the density of the minimum 

energy of the full QPD model and let po=O. 17fm'? denote the accepted value 

of nuclear matter density. 

In this section, the ground states of the finite size, isospin symmetric 

QPD model are found with the dissipative equations of motion presented in 

Chapter IV; however the Coulomb term is dropped and periodic boundary 



conditions imposed. It is found that the same damping factors used in 

Chapter IV (pl=400 fm-c/MeV, %=0.426 MeV/fm-c) and integration times 

(t=200 fm/c) also suffice to find the ground states for the periodic 

isospin symmetric version of the QPD model. 

To find the ground state energy of the homogeneous system we use a Lagrange 

multiplier method to impose the constraint that the variance of the density 

distribution is equal to a constant x . 

where ;=MV and p is given by equation 4.5. Since p is a constant (i.e. V 
and A are fixed) this constraint can be more simply expressed as 

I [p~zIp2d3r = C, where ( = x + A;. The ground state of the constrained 

system can be found by minimizing the Lagrange function, #. 

In most Lagrange multiplier calculations A is chosen such that the 

constraint, I[pl = C, is satisfied. In this calculation we wish to choose 

A such that I[pl is a minimum (i.e. the system is homogeneous). For some 

positive value of A=A the system becomes homogeneous and hence I [pl is a 
C 

minimum. For all values of A>A the ground state remains unchanged. It 
C 

therefore suffices to perform the calculation for any value A>Ac. Notice 

that the Lagrange multiplier term in Eq. 7.2 has the same functional form 

as the attractive term in the QPD Hamiltonian of Eq. 4.11. (i.e. the "a" 

term). If A=-a/(2po) then # only has repulsive terms so that the ground 

state is homogeneous, and we can then find the energy of the constrained 

system. 



Of course the calculation of both the constrained and unconstrained ground 

state energy must be performed on a finite system. To extract the infinite 

system values of E/A one must either go to a sufficiently large system so 

that finite size effects are small, or use finite size scaling to extract 

the infinite system values. For a homogeneous state the finite size 

scaling of the energy per particle e(p,.f?) to first order is given by 

where b(p~)1'3 is the periodic length, 6 is the correlation length of the 

infinite system and Cc is an unknown constant. For the coexistence state 

an interface exists, and the scaling of the energy will be given by 

The coefficient C can be related to the surface tension, 

By fitting the finite size data to these forms the 

infinite system ground state energy per particle is found. 

The energy per particle of the homogeneous state is found for system sizes 

of A=32,64,128 and 256 and for densities from O.lpo to 1.5p in O.lp steps. 
0 0 

For p>p the true ground state is homogeneous and we do not need to 
0 

constrain the system. Using Eq. 7.3 the infinite system ground state 

energy per particle is found and displayed in Fig. 7.1. Next we fit a 

quadratic form to this infinite system ground state energy in the vicinity 

of p=po (i.e. 0.8 p/po= 1.2 1 A minimum energy per particle of 

e =-16.20 MeV at p=p =l. O3p is found. Regarding the earlier comment min rnin o 



on the difference of pml, and p we see that the approximation made in 
0 

Chapter IV in estimating the QPD Hamiltonian parameters is quite 

appropriate The curvature of the T=O energy isotherm can be related to the 

compressibility, ~=9p~a~e(p)/a~~ INix791. Using this relation we find 

K=400 MeV, as expected from our choice for the spatial part of the nuclear 

potential, but much larger than the experimentally determined value of 200 

MeV LBGG761 (for a review see [Bla801) base on monopole vibrations. 

In Fig. 7.1 we also present the ground state energy of the coexistence 

state. For the infinite system this energy is simply emin and independent 

of density. For finite systems the surface tension affects the ground 

state energy per particle of the system. From Eq. 7.4 we see that the 

finite size analysis can be used to extract the surface tension of the 

system. To find Cs we fit the data to the following form 

(e (p, LI - e min )All3 = cS + c ~ / ~ ~ "  + C2/A2'3 

A value of 17.2 MeV was found for Cs. This compares favourably with the 

surface term in binding energy formulas of Myers and Swiatecki lMS661, 

where C -18.56 MeV. The value of C =17.2 MeV implies a surface tension of 
S S 

1.1 1 ~ e ~ / f  m2. 

From the zero temperature energy isotherm the zero temperature pressure can 

be found with the relation (valid at zero temperature) 



The pressure at zero temperature, as calculated within the QPD model, is 

displayed in Fig. 7.2 . For comparison the T=O pressure isotherms, as 
calculated in a liquid drop model [NNL88,DBN87], are shown in Fig. 7.2 for 

108 both symmetric nuclear matter and Ag as well. It is interesting that 

there is so little difference between them. 

VII.3 Phase Diagram 

The T-p phase diagram of the liquid-vapour transition is calculated by 

estimating the specific heat at constant volume Cv by Monte Carlo. 

Typically 8000 samples are used in the estimation of Cv, although near the 

critical point 12000 samples are generated. A pseudo-transition 

temperature is associated with the temperature T (p,.!) that maximizes the m 

CV(T,p,.!) of the finite system. The temperature Tm(p,.!) shows large finite 

size effects, so finite size scaling is used to estimate the infinite 

system transition temperature T,(p)=Tm(p,oo). 

The high temperature phase of the system is homogeneous so the asymptotic 

(.t + 00) form of the free energy per particle as a function of t is given 

by : 

where A(T,p) is an unknown function of T and p and f: is the free energy 

per particle of the infinite homogeneous system. At low temperature the 

system is in a coexistence state with an interface existing between the 

coexisting phases. This interface make a contribution to the free energy 

proportional to its area, so the asymptotic form of the free energy per 
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particle as a function of e ,  is given by; 

where B(T,p) is an unknown function of T and p. The crossover from 

coexistence to a homogeneous phase is given by the relation that 

fc(T,p,L)=fh(T,p,.4?). By substituting the finite size scaling form into 

this relation and neglecting the exponential term we find that 

Expanding fc , fh, and B about Tt to first order in l/L we find 

(7.10) 

where 

00 
Using fm= fh at T = Tt(pl and expanding the above equation to first order 

C 

in 1/L, the scaling form for Tm is found to be: 

A least square fit of the data to the finite scaling form is used to 

extract T and the results are summarized in Fig. 7.3. Shown on the figure t 

are both the finite size scaling estimate of the transition temperature Tt 

and the pseudo-transition temperature T for a set of systems of masses 32, 
m 



64, 128, 256 and 512. The phase diagram shares a number of common features 

with other calculations of the T-p nuclear phase diagram CBG86,FP811. The 

T=O coexistence region is over the same range of density (this isn't 

surprising). The critical temperature of 18.5 MeV and the critical 

density of 0 . 3 ~ ~  are close to other model estimates. What is new in this 

study is that the finite size effects are presented and shown to be 

nontrivial in the system sizes typical of systems used in nuclear reaction 

studies. 

As an example of the finite size scaling form Eq. 7.11, we present the 

finite size data and the fits to it in Fig. 7.4a and 7.4b. Notice the 

close agreement between the fitted form and the data, leading one to 

conclude that the system sizes considered are in the scaling regime. 

VII.4 Fluctuation Growth 

We now wish to address the question of the connection between the 

instability region in the liquid-gas coexistence phase and the break-up of 

systems formed during nuclear reactions. A test for a connection between 

these two phenomena can be made by considering the time dependence of the 

density and its spatial fluctuations for two ideal systems. First we 

consider the growth of fluctuations in initially homogeneous nuclear matter 

systems and then compare these results with the fluctuation growth in 

excited 'O*A~ nuclei. 

To study the growth of fluctuations in homogeneous matter the constraint is 

removed from the constrained ground states generated in Sec 7.2 and the 
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evolution of the system is examined. As a measure of the spatial 

fluctuations the quantity I = < V ~ ~ > / < V ~ ~ ~ >  is used. The quantity pl denotes 

the density distribution of a single isolated quasiparticle and the 

expectation <v2f> E 1(v2f )f (r)d3r / k(r)d3r. For small fluctuations I (t) 

should grow exponentially with time (i.e. I(t) - exp(t/tf) 1. To test this 

conjecture and to extract the time constant, z a scatter plot of dI/dt vs 
f' 

I is made for a number of different initial densities, and displayed in 

Fig. 7.5. From the plot it is clear that the data is clustered about a 

single straight line, indicating that the behaviour of I is exponential and 

independent of initial density. Furthermore, the inverse slope of the line 

gives a common z =25 fm/c for all starting densities. This time constant 
f 

indicates the rate at which clusters grow in the instability region. 

108 Now we examine the time evolution and break-up of excited Ag nuclei. 

The nuclei have been excited in one of two ways. The first way directs 

most of the excitation energy into radial motion and the secor?d methnd 

produces a more thermal excitation. Both methods excite the system by 

modifying the momentum of the nuclear ground state. In the first method a 

random radial component is added to each QPD momentum, P, to generate a new 
t A A 

momentum, P =P+AR, where Ri is unit along the direction from the centre of 

mass to the position of the ith particle and the A's are uniformly 

distributed random variables in the interval (ol,o2). The choice of o and 
1 

w2 will be discussed later. The second method randomizes the direction of 

a a the momentum vectors. In this case the new momentum is pla= Sipi, where 

a=x, y ,  or z and the S's are random scale factors which are distributed 

uniformly in the interval (-w,o). 



Both of the above methods generate a distribution of energy states, which 

of course depends on the w's chosen. To consider the dynamics of excited 

states in a given energy range we choose an w that produces these states in 

relative abundance, typically about 1 in 10, and then generate a set of 

several thousand different excited states. This set is then sampled to 

select a collection of a hundred states within the desired energy range. 

Each of the states in this collection is then allowed to evolve for several 

hundred fm/c. 

The evolution of these systems is investigated by examining the time 

dependence of the average central density <p> and central fluctuations 
C 

2 2 <p >C- <P>~. The <. . . > denotes both a spatial average over a sphere of 
C 

radius R =4 fm centred on the centre of mass and an ensemble average over 
C 

the 100 samples. 

In Fig. 7.6 the time dependence of Cp> is shown for a variety of initial 
C 

excitations. In the upper plot the results for the radial excitation are 
* 

shown for E /A = 4, 6 and 8 MeV. For low excitation energy the system 

exhibits a damped oscillation about an equilibrium value of the density. 

The period of this oscillation is about 75 fm/c and the relaxation time 

constant is tT=l10 fm/c. The relaxation time represents the time constant 

associated with thermalization. The period of oscillation is nearly 

208 exactly the same as N ~ G  et al. find for Pb within a liquid drop 

calculation [NNL881, although their calculation shows no damping. The main 

contribution to the relaxation process in the QPD model is due to the 

collision term in the equations of motion. In liquid drop models there is 

no process that can randomize the initial motion of the system, hence the 
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* 
system will never thermalize. For E /A=8 MeV the system becomes unstable 

and breaks apart. During the break-up and expansion of the system, the 

central density <p> decays exponentially with a time constant of te=20 
C 

fm/c* 

In the lower part of Fig. 7.6 results are shown for the random excitation 

initialization. The first thing to notice is that the oscillations of the 

system are greatly suppressed, although the systems do relax. Secondly the 

systems are able to remain stable for much larger initial excitations. 

It is of interest to see if the onset of fluctuation growth indicates the 

break-up of the system. To address this question we consider the 

108 trajectories of the radially excited Ag in fluctuation-density space. 

In Fig. 7.7 a plot is made of p / p  - 1) vs <P>~ for a number of 

different initial excitations. Initially all the systems follow the same 

trajectory. The low energy trajectories split off from this common 

trajectory to follow separate "pig tail" paths to a thermalized state. 

However the large excitation energy system continues to expand and breaks 

apart. It appears that the initial fluctuation growth has little to do 

with the break-up of the system. Furthermore Fig. 7.5 time scales 

associated with fluctuation growth do not appear to depend on initial 

density. The break-up does appear to be sensitive to the initial 

excitation energy. 



VII.5 Summary and Discussion 

We began this chapter by considering the zero temperature properties of the 

QPD model. These properties are consistent with what one would predict 

with liquid drop fits to experimental data. This agreement gives a strong 

indication that the QPD model at least possesses the correct energetics for 

nuclear systems. At nonzero temperatures a Monte Carlo method is used to 

find the phase diagram for the QPD model. The resulting diagram is again 

consistent with the predictions of a number of other reasonable models. 

Given the above agreements we feel that we have developed a model that has 

included most of the physics of the thermodynamic state of nuclear matter. 

The dynamics of fluctuation growth in a initially homogeneous and static 

system is explored next. It is found that the growth is exponential with a 

time constant of the order of zf=25fm/c, for all densities within the 

instability region. This is then compared with the expansion of a'somewhat 

idealized excited ' ' *A~ system. The silver ion is excited in such a way to 

produce an expanding system. This excited state is much simpler and 

resembles more closely the state of expanding nuclear matter, than the 

excited state produced in a heavy ion collision. If the break-up of this 

idealized system is not describable in terms of spinodal decomposition, 

then certainly it will not be sensible to apply such a description to the 

break-up found in heavy ion collisions. 

The spinodal decomposition description requires that the system change in a 

quasistatic way so that thermal equilibrium is maintained. This does not 

appear to be the case. The expansion time (2 120 fm/c) is of the same 
e 



order as the fluctuation growth time ( ~ ~ 2 5  fm/c) and short compared to the 

relaxation time (rT=l10 fm/c), making a quasistatic assumption invalid. A5 

further evidence against the spinodal decomposition description, notice 

that the instability sets in at a density of 0.042 fm-3. This density is 

lower than the critical density of 0.05 fm-3 and therefore cannot be 

associated with any point on the spinodal curve. In particular, at low 

temperatures investigated here, the spinodal line lies closer to 0.1 fn3. 

The break-up density which we observed, -0. 25po, is similar to that found 

in classical argon-like droplets by Lenk and Pandharipande ILP851. 

However, our conclusions as to the role of the spinodal decomposition are 

very different from theirs. 

In conclusion we have used the QPD model to explore both the statics and 

dynamics of nuclear systems. In this exploration we have examined the 

influence that the thermodynamic state has on the break-up of heavy ions in 

a reaction study. Our simulation results show multifragmentation in the 

same bombarding energy range as is observed experimentally, and do not show 

spinodal decomposition as the source of multifragmentation. 
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7.1. The ground state energy per nucleon (E/A) as function of the 
reduced density (p/p ) as predicted by the QPD model for both nuclear matter 

0 
. and finite systems. The data points represent the unconstrained minimum 

energy states of a number of isospin symmetric finite nuclear systems. The 
solid line marked "Coexistence State" indicates the minimum energy of 
unconstrained nuclear matter (infinite system) and the solid line marked 
"Homogeneous State" indicates the minimum energy of nuclear matter subject 
to the constraint that it is homogeneous. 
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7.2. Pressure vs. reduced density (p/po) at zero temperature for a 

number of different models. LD refers to the liquid drop calculations of 

~g; et al. [NNL88,DBN871. 
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Fig. 7.3 The temperature (TI vs. reduced density (p/po) phase diagram of 

nuclear matter as calculated by extrapolating the temperature of the peak 
in the specific heat (Cv) at fixed density of the finite QPD system to 

infinite size. As well the locations of the peak in the specific heat for 
the finite systems are shown. 



f i t  

Fig. 7.4. A n  illustration of the goodness of fit of the Tm data to the 

scaling form, Tm(p,L) = Tt(p) + A/!, for a number of different densities. 

The y-intercept represents the infinite system transition temperature Tt(p) 

as shown in Fig. 7.4. 



Fig. 7.5. Scatter plot of dI<dt vs I, where I is a measure of the 
fluctuations of the system (see text for definition of I ) .  The fit to the 
straight line demonstrates the small time exponential growth of the 
fluctuations with time constant t=25 fm/c. 
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Fig. 7.6. The time dependence of the average central density ( < p  > I  of 
108 

C 
excited Ag nuclei. The upper diagram illustrates the behaviour for a 
radially outward directed excitation and the lower diagram illustrates the 
behaviour for a more random initial excitation. 



Radial Motion 

E*/A (MeV) 

108 Fig. 7.7. The trajectories of the radially excited Ag nuclei in 
density-fluctuation space. 



The motivation for developing the QPD model is to have at our disposal a 

computationally efficient nuclear model that is applicable to the study of 

intermediate energy heavy ion reactions. To be computationally tractable, 

models must have energy and force algorithms which can be evaluated within 

o ( A ~ )  operations. This condition limits the model to be classical or 

semiclassical in nature. 

A completely classical picture of nuclear reactions is unable to describe 

much of the physics, so it is necessary to include at least some quantum 

mechanical aspects. To these ends, the development of our model begins 

with a wave function for the system, which ensures that the Heisenberg 

Uncertainty Principle has been incorporated. The wavefunction is then 

simplified by assuming that the state of the system can be expressed in 

terms of a product of single-particle fixed-width gaussian wavepackets. 

Each wavepacket's temporal evolution can be completely expressed by 

specifying its mean position R(t1 and mean momentum P(t1. It is therefore 

natural to associate with each gaussian wavepacket a classical particle 

with phase space coordinate (R,P). To distinguish this particle from the 

underlying quantum mechanical particle we refer to it a quasiparticle. A 

natural generalization of the model would be to relax the restriction that 

wavepacket width a be fixed and allow it to be a dynamical variable. 

However in this work it has been fixed at a constant value of a d  fm-l. 

To include the fermionic nature of the nucleon, the wave function must be 

antisymmetrized. The introduction of the quasiparticle notion into a 
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two-body fermionic system leads to a momentum-dependent interaction between 

quasiparticles, which we have called the Pauli potential, to represent the 

expectation of the energy of the fermion pair. For an A-particle system 

the expectation of the kinetic energy includes two-body through to A-body 

terms and is difficult to evaluate. To simplify the potential, the effects 

of the higher order terms are approximated by rescaling the magnitude 

two-body term. The ability of this potential to reproduce 

antisymmetrization effects is tested by considering a number of free 

fermion systems. The energy of a free gas of quasiparticles is calculated 

using the Pauli potential and compares well with the free Fermi gas for 

both zero and nonzero temperatures over the density range applicable to the 

study of intermediate energy reactions. As an example of fermions in a 

field, the Pauli potential is applied to fermions in a harmonic potential 

and predicts the energetics of this system with good accuracy compared to 

the exact quantum mechanical results. 

In Chapter IV a Skyrrne interaction is applied to the quasiparticle wave 

function to produce a density-dependent interaction. The gaussian forms 

allow the integrals associated with the density-dependent interaction to be 

evaluated and hence an explicit interaction term between quasiparticles can 

be determined. This interaction can be evaluated in o(A~) operations, in 

keeping with the goals for the model. Having found the form of the 

quasiparticle Hamiltonian (Pauli potential + Nuclear interaction), 

predictions are made for the ground states of real nuclei. By minimizing 

the QP Hamiltonian with respect to the QP phase space coordinates, ground 

state binding energies and RMS radii are predicted to be within 5-10% of 

the measured values over the entire periodic table, except for very light 



systems. 

The density-dependent term in the assumed nuclear interaction is of much 

the same form as the mean-field potential used in VUU calculations. For 

the same reason (transparency effect) that a collision term was introduced 

into the VUU calculations, a collision term is also introduced in to the QP 

model. The form of this collision term is not exactly the same as the WU 

collision term but does share some similar features. The term is similar 

in that it involves stochastic instantaneous collisions that incorporate 

Pauli blocking. However, the QPD collision term ensures that not only are 

energy and linear momentum conserved but angular momentum is also conserved 

on an event-by-event basis. The Pauli blocking factor of the collision 

term is a further way in which the Pauli exclusion principle has been 

included in the model. This collision term reproduces reasonably well the 

nucleon-nucleon scattering data and removes the transparency characteristic 

of the Vlasov equation. 

The first question that we use the QPD model to address is that of coarse 

time scales associated with intermediate nuclear reactions. The purposes 

of this investigation are two-fold; first, a computational determination 

of the model's ability to explore interesting physics and second, an 

investigation of the time scales associated with various stages of nuclear 

reactions. For a variety of intermediate energy reactions, it is found 

that the violent interaction associated with the initial impact of the 

colliding nuclei has disappeared by 100 fm/c after maximum overlap. It is 

clear that much of the fragmentation associated with intermediate energy 

heavy ion collisions occurs relativity early in the reaction (i.e. before 



200 fm/c). To understand the modification of the fragmentation by long 

time decays, as well as to understand other long-time processes, it is not 

efficient (or even possible in some cases) to use the QPD model. Though 

the model can generate good data sets for reaction times of 100-500 fdc, 

the many orders of magnitude increase in simulation times needed to see 

long-time processes is beyond present day computer hardware. However, the 

QPD model is successful in evolving the nuclear system through the initial 

far-from-equilibrium phase of the reaction to the quasiequilibrium state 

that has set in by 200 fdc. A more efficient and desirable approach to 

understand the long-time processes is to use the output of the QPD model as 

input into a statistical decay model. 

The QPD model has been used by a number of groups to investigate various 

nuclear reactions. R. Korteling of Simon Fraser Univ. has used the model 

108 to investigate proton-induced reactions on Ag. For bombarding energies 

of 300 MeV the model reproduced the proton and neutron inclusive cross 

sections reasonably well [Kor891. Boa1 and Wong [BW901 have used the model 

14 to explore gamma-ray polarization in N + lS4sm reactions at 35 AoMeV. 

The inclusive cross sections for protons, deuterons and tritons they 

calculate have reasonable agreement with experiment. W. Bauer of Michigan 

State Univ. has investigated low energy C+C collisions with QPD and 

measured the single particle inclusive cross section lBa891. The low 

energy portion of the cross section is well reproduced by model, but the 

model under predicts the higher energy part of the distribution. 

The ability of QPD to treat ground state and dynamical properties within a 

consistent framework makes it well suited to study excitation energy 



distributions and temperature questions associated with nuclear reactions. 

A number of different measures of temperature have been proposed and 

applied to experimental systems. It is satisfying to see that the QPD 

model predicts both kinetic and chemical temperatures that are consistent 

with experiment. For intermediate energy reactions the chemical 

temperature is in the 2.5-3.5 MeV range, much lower than the kinetic 

temperature, and has only a small dependence on bombarding energy. The 

difference between the kinetic and chemical temperature is found to be 

established early in the reaction, thus demonstrating that long-time decays 

are not necessary to produce this effect. 

Lastly, we consider the bulk properties of nuclear systems and how they 

effect fragmentation in nuclear reactions. We begin with zero temperature 

properties. The T=O isotherm is found to have a minimum of -16.20 MeV at 

p=1.03p , and the compressibility is approximately K=400 MeV. The value of 

the compressibility is consistent with the form chosen for the nuclear 

interaction (i.e. stiff equation of state) but larger than the commonly 

accepted value of K=200 MeV. Next the T-p phase diagram is constructed by 

examining the temperature dependence of the specific heat. The phase 

diagram is consistent with a number of other analytical calculations. The 

agreement suggests that the QPD model is appropriate for investigating 

phase transition effects in nuclear reactions. 

A n  interesting feature noticed in constructing the T-p diagram is the 

strong finite size effect. For example, the infinite-system transition 

temperature can be a factor of two greater than the pseudo-transition 

temperature (as defined by the peak in the specific heat at constant 



volume) for system sizes typical of nuclear reactions. In light of this 

strong size effect the relationship between nuclear reaction phenomena, 

such as fragmentation, and bulk properties of phase transitions and 

spinodal decomposition is not transparent. 

The role that thermodynamics has in describing phenomena of intermediate 

nuclear reactions is further investigated by considering the various time 

scales associated with decay times of excited nuclei. It is found that the 

expansion time and the fluctuation growth time are of the same order. 

Further, both of these time scales are short compared to the relaxation 

time, making the assumption of quasi-equilibrium invalid. In conclusion it 

appears that bulk thermodynamics has little to do with describing the 

physics of the highly excited systems that are produced in intermediate 

energy nuclear reactions. 

One could proceed in a number of different directions to further this 

approach to nuclear dynamics. There are many simulations of interest to 

the experimentalist that can done and which would help define the 

reliability of the model. The calculation of particle-particle correlation 

functions and comparison with experiment are of particular interest. The 

questions sf the existence and forms of Pauli potentials are areas which 

deserve more attention. Related concerns exist with the choice of the 

single-particle wave ,functions. What effect would it have on the model if 

the widths of the gaussian wavepackets were allowed to be dynamic 

variables. In all, we believe there are many interesting problems that the 

model can be used to explore and also there are many ways in which it can 

be improved. 



APPENDIX A STABILITY OF THE ZERO MOMENTUM MODE OF THE QP MODEL ON A CUBIC 

LATTICE 

Most classical systems possess a zero momentum ground state. However the 

introduction of a momentum-dependent interaction may cause the P=O mode to 

become unstable. In this appendix it is shown that the P=O mode of the QP 

model of noninteracting fermions can be unstable. For simplicity the 

quasiparticles are restricted to lie on a cubic lattice in real space with 

lattice spacing a. 

The stability of the P =O will be determined by considering the curvature, 
i 

with respect to ki=Pi/h, of the QP Hamiltonian H(R,P) (see Eq. 3.8 for the 

definition of HI. The curvature matrix M of H is defined as 

where 

For a lattice model with periodic boundary conditions all lattice sites are 

equivalent, therefore the sum over particle label can be replaced by a sum 

over lattice sites: 



Defining 

I -f (Ix2) , otherwise 
2 

Eq.A.l can be rewritten as 

- h2 
M 
1p;mV 

- - 6 Q(IRI-R 1") 
m I.l" m 

It will be demonstrated that 

X Y Z  fl is an eigenvector of M for all q=(q ,q ,q 1,  q E (-n/a,n/a). 

Replacing the sum over particles with the sum over lattice sites, 

where 



Hence V(q) is an eigenvector of M with eigenvalue A(q) .  The stability of 

the P=O mode is determined by the sign of, A. If h(ql>O for all q then the 

zero momentum mode is stable. However if A(q) < 0  for some q  then P=O is a 

saddle point and unstable, hence the ground state will have a nonzero value 

of the momentum. In Fig. 3.1, h ( q )  is shown for Vg=l and various a's along 

z the line qx=qy=q . For aa<2.2, the minimum value of A is less than zero 

and the P=O mode is unstable. 



The determination of the distribution that generated a given data set is a 

common statistical problem. Often a functional form of the distribution is 

known, but the determination of a number of unknown parameters is required 

to completely specify the distribution. The method of maximum likelihood 

provides a way to estimate these unknown parameters. The particular 

problem that this appendix addresses, will be how to make a maximum 

likelihood estimate (MLE) of the temperature, T, from a data set that is 

assumed to have a Boltzmann distribution. 

The MLE of a set of unknown parameters is made by finding the value of 

these parameters that would maximize the probability of observing the given 

data set. More specifically, for a given data set (x x 1 the MLE 
1' n 

estimate is found by maximizing the value of the Joint probability 

distribution f (x,, . . . , x ;a . . , ak) with respect to the unknown parameters 
n 1'' 

For the purposes of this appendix it is adequate to consider the case of 

one unknown parameter, a. Further, we assume that (xl, ..., x )  are a set 
n 

independent identically distributed random variables with distribution 

g(xi;a). The independence of the observation allows the joint distribution 

to be factorized, 

A 

To find the value of a, which will be denoted by a, it is common and 



A 

convenient to use the fact that a will maximize both f and h ( f ) .  The 
A 

value of a can 

A 

The MLE a, of 

be found by solving the equation 

the parameter, a, has a number of desirable statistical 

properties. First it is a sufficient estimator of a and secondly it is 

asymptotically (n -+ 00)  a minimum variance unbiased estimator of a as well 

(See page 267 of [Fre711). 

The Boltzmann distribution of a system is given by 

where Z(T) is the partition function. Given some set of observed energies 
A 

(El,. . . ,E an equation for the MLE, T, of the temperature, T, can be found 
n 

by substituting Eq. B.3 into B . 2 ,  

Using 

where < > represents the full ensemble average, Eq. B . 4  is simplified to: 



Typically <E(T)> is not known analytically, however a Monte Carlo procedure 

normally can be used to evaluate it. 

.To extract a temperature from a data set, a MLE based on the centre of mass 

kinetic energy also can be used. For many systems, including the QP model, 

the centre of mass kinetic energy, K, decouples from the rest of the 

Hamiltonian. This allows one to find an analytic form for the distribution 

function of K, and hence the expectation of the kinetic energy, <K(T)> = 

3 -T. Using this relationship an additional MLE of the temperature is found. 
2 



References 

[Aic831 J. Aichelin, Nucl. Phys. A411, 474 (1983). 

LAGH771 A.A. Amsden et al. Phys. Rev. 38, 1055 (1977). 

[AH1841 J. Aichelin, J. Hiifner and R. Ibarra, Phys. Rev. c a ,  107 (1984). 

[AS851 J. Aichelin and J. Stocker, Phys. Rev. Lett. 165B, 59 (1985). 

[AS861 J. Aichelin and J. Stocker, Phys. Lett. 176B, 14 (1986). 

[Bau89] W. Bauer , (private commuication) . 

[BBW871 G.E. Beauvais, D.H. Boal and J.C.K. Wong, Phys. Rev. C35, 545 
( 1987 1. 

LBBG871 G.E. Beauvais, D.H. Boal and J. Glosli, Nucl. Phys. A471, 427c 
(1987). 

[BD881 G. Bertsch and S. Das Gupta, Phys. Rep. 160, 673 (1988). 

LBFG761 J.P. Bondorf, H.T. Feldmeier, S. I.A. Garpman, and E.C. Halbert, 
Phys. Lett. s, 321 (1976). 

LBG861 D.H. Boal and A. L. Goodman, Phys. Rev. C33, 1690 (1986). 

LBG881 D.H. Boal and J. Glosli, Phys. Rev. C37, 91 (1988). 

IBGG761 J.P. BPaizot, B. Gogny and B. Grammaticos, Nucl. Phys. m, 315 
(1976). 

[BJ841 N.L. Balazs and B.K. Jennings, Phys. Rep. 104, 347 (1984). 

lBKD841 G. Bertsch, H. Kruse and S. Das Gupta, Phys. Rev. C a ,  673 (1984). 

[BL551 S.Z. Bertini and L.D. Landau, Usp. Fiz. Nauk 56, 109 (1955). 

IBL561 S.Z. Bertini and L.D. Landau, Nuovo Cimento Suppl. 3, 15 (1956). 

LBla801 J.P. Blaizot, Phys. Reports 64, 171 (1980). 

[Blo861 C. Bloch et al., Phys. Rev. C34, 850 (1986). 

iBlo871 C. Bloch et al., Phys. Rev. C z ,  203 (1987). 

LBlo881 C. Bloch et al., Phys. Rev. C37, 2469 (1988). 

[Boa871 D.H. Boal, Annu. Rev. Nucl. Part. Sci. 37, 1 (1987). 

[Boa841 D.H. Boal, Phys. Rev. C30, 749 (1984). 

140 



[Bon761 J.P. Bondorf, J. Phys. Suppl. 37, C5-195 (1976). 

[Bon851 J.P. Bondorf et al., Nucl. Phys. A443, 321 (1985). 

[BP771 A.R. Bodmer and C.N. Panos, Phys. Rev. Cl5, 1342 (1977). 

[BPD861 W. Bauer, U. Post, D.R. Dean and U. Mosel, Nucl. Phys. A s ,  699 
(1986). 

[BPM80] A.R. Bodmer, C.N. Panos and .A.D. MacKellar, Phys. Rev. C22, 1025 
(1980). 

[BS831 G. Bertsch and P.J. Siemens, Phys. Lett. 126B, 9 (1983). 

[BSG761 J.P. Bondorf, J.P. Siemens, S.I.A. Garpman, and E.C. Halbert, 
Z. Phys. A. 279, 385 (1976). 

[BW901 D.H. Boa1 and J. Wong, Phys. Rev. CQ (in press). 

[CB721 S.D. Conte and C. Boar, Elementary Numerical Analysis, McGraw Hill, 
New York (1972). 

iCer881 C. Cerruti et al., Nucl. Phys. A476, 74 (1988). 

lChe871 Z. Chen et al., Phys. Rev. C x ,  2297 (1987). 

[CS861 R.B. Clare and D. Strottman, Phys. Rep. 141, 179 (1986). 

lCWY791 D.J.E. Callaway, L. Wilets and Y. Yariv, Nucl. Phys. A m ,  250 
(1979). 

CDBN871 J. Eesbois, R. Soisgard, C. Ng6 and J. Nemeth, Z .  Fhys. A=, 101 
(1987). 

LDDR871 C. Dorso, S. Duarte and J. Randrup, Phys. Lett. 188B, 287 (1987). 

[DM811 S. Das Gupta and A.Z. Mekjian, Phys. Rep. 72, 423 (1981). 

[DW691 T.W. Donnelly and G.E. Walker, Phys. Rev. Lett. 22, 1121 (1969). 

bg661 H.A. Enge, Introduction to Nuclear Physics, Addision-Wesley, 
Massachusetts (1966). 

[Fie871 D.J. Fields et al., Phys. Lett. 187B, 257 (1987). 

[FP811 B. Friedman and V.R. Pandharipande, Nucl. Phys. A s ,  502 (1981). 

Ere71 1 J. E. Freund, Mathematical Statistics, Prentice-Hall, New Jersey, 
(1971 1. 

[FW711 A.L. Fetter and J.D. Walecka, Quantum Theory of Manv-Darticle 
Systems, McGraw-Hill, New York (1971). 

[GD851 C. Gale and S. Das Gupta, Phys. Lett. 162B, 35 (1985) 



LGB871 C.K. Gelbke and D.H. Boal, Prog. Part. Nucl. Phys. 19 (1987). 

EGKM841 A.L. ~oodman, J.I. Kapusta and A. Mekjian, Phys. Rev. Ca, 851 
(1984). 

[Go1481 M.L. Goldberger, Phys. Rev. 74, 1269 (1948). 

[~~861 C. Gregoire and B. Tamain, Ann. Phys. Fr. ll,,323 (1986). 

[Gre541 A.E.S. Green, Phys. Rev. 95, 1006 (1954). 

[HAN~~I F.H. Harlow, A. A. Amsden and J.R. Nix, J. Comp. Phys. 20, 119 
(1976). 

[Hof671 R. Hofstadter, in Nuclear Phvsics Technolonv, Springer-Verlag, 
Berlin (1967). 

IHOS841 M. Hillery, R.F. 0' Connell, M.O. Scully and E.P. Wigner, Phys. Rep. 
106, 121 (1984). - 

[HS871 D. Hahn and H. Stocker, Phys. Rev. C35, 1311 (1987). 

[Kor891 R. Korteling, (private comrnunicat ion). 

ILP861 R.J. Lenk and V.R. Pandharipande, Phys. Rev. C a ,  177 (1986). 

ILS841 J.A. Lopez and P.J. Siemens, Nucl. Phys. A s ,  728 (1984). 

LMS661 W.D. Myers and W. J. Swiatechki, Nucl. Phys. 81, 1 (1966). 

:Nor751 P.A.F. Koran, Biometrika 62, i (i975). 

CMor841 D . J .  Morrissey et al., Phys. Lett. 148B, 423 (1984). 

IMor851 D. J. Morrissey et al. , Phys. Rev. C34, 761 (1985). 

[~ix791 J.R. Nix, in Progress in Particle Nuclear Phvsics (Vol 21, 
Pergamon Press, Oxford and New York (1979). 

[ N N L ~ ~ I  C. ~ ~ 6 ,  H. ~ ~ 6 ,  S. Leray and M.E. Spina, preprint (1988). 

[Nor281 L.W. Nordheim, Proc. R. Soc. London, Ser. A 119, 689 (19281, 

[PDG701 Particle Data Group, Lawrence Radiation Laboratory Report 
UCRL-200000NN, 1970. 

lPo85aI J. Pochodzalla et al., Phys. Rev. Lett. 55, 177 (1985). 

LPo85bI 3 .  Pochodzalla et al., Phys. Lett. U B ,  275 (1985). 

lSer471 R. Serber, Phys. Rev. 72, 1114 (1947). 

[SG861 H. StockerandW. Greiner, Phys. Rep. 137, 277 (1986). 

142 



[SCM811 H. Stocker, H. Cusson, J.A. Maruhn and W. Greiner, Prog. Part. 
Phys. Lett. 101, 379 (1981). 

LSP871 T.J. Schlagel and V.R. Pandharipande, Phys. Rev. C3&, 162 (1987). 

[UU331 E.A. Uehling and G.E. Uhlenbech, Phys. Rev. 43, 552 (1933). 

lVB721 D.Vautherin and D.M. Brink, Phys. Rev. C5, 626 (1972). 

WJP851 A. Vicentini, G. Jacucci, and V.R. Pandharipande, Phys. Rev. C3l, 
1783 (1985). 

IWHK771 L. Wilets, E.M. Henley, M. Kraft and A.D. MacKellar, Nucl. Phys. 
A282, 341 (1977). - 

[WYC781 L. Wilets, Y. Yariv and R. Chestnut, Nucl. Phys. A=, 359 (1978). 

[YF79] Y. Yariv and 2. Fraenkel, Phys. Rev. C20, 2227 (1979). 

IYF811 Y. Yariv and 2. Fraenkel, Phys. Rev. C24, 488 (1981). 


