
A CONSTRAINT-BASED REASONING APPROACH FOR

BEHAVIOURAL MOTION CONTROL

IN COMPUTER ANIMATION

by

Sang Mah

B.Sc. Simon Fraser University 1985

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in the School

of
Computing Science

O Sang Y. Mah 1993

SIMON FRASER UNIVERSITY

March 1993

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name:

Degree:

Title of Thesis:

Examining Committee:

Chairperson:.

Sang Mah

Master of Science

A Constraint-Based Reasoning Approach for Behavioural
Motion Control in Computer Animation

Dr. Jiawei Han

Dr. Tom Calvert
Senior Suppvi;~or, Professor of Computing Science

Dr. bill Hdens
Supervisor, Professor of Computing Science

~ r k h n Dill
Supervisor, Professor of Engineering Science

Dr. Gary Ridsdale
Supervisor, Computer Graphics Research,
MacDonald Dehviler & Associates

Dr. Dave Fracchia
External Examiner, Associate Professor of Computing Science

DATE APPROVED: 2 4 ~ ~ 2

page ii

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Slmon Fraser Univers l ty the r i g h t t o lend

my thesis, proJect o r extended essay. (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser Univers i ty Library, and t o make p a r t i a l o r

s ing le copies on ly f o r such users o r i n response t o a request from the

l i brary o f any other university, o r o ther educational i ns t i t u t i on , on

i t s own behalf o r f o r one of I t s users. I fu r ther agree t h a t permission

f o r m u l t i p l e copylng o f t h l s work f o r scholar ly purposes may be granted

by me o r the Dean of Graduate Studies. I t i s understood t h a t copying

o r publication o f t h i s work f o r financial galn sha l l not be allowed

without my w r i t t e n permission.

T i t l e of Thes i s/Project/ExPended Essay

A Constraint-Based Reasoning Approach f o r Behavioural Motion Control

i n Computer Animation.

(name /

(date) /

ABSTRACT

In computer animation, the motion of an object is usually defined at a physical level

and manipulated through mathematical models with kinematics and dynamics. The

observable motion of an intelligent entity, however, is a reflection of its reasoning process

as it reacts to its environment. Thus, the environment and the internal knowledge of how

to handle different environmental factors serve as constraints on the motion and behaviour

of an intelligent entity, and on the motion of an object controlled by intelligent entities.

These constraints are qualitative and cannot be resolved by mathematical techniques for

constraint-satisfaction.

In this thesis, the application of a constraint-based reasoning system in computer

qimation is explored. The reasoning system is used for specification and control of the

behavioural motion. In particular, the proposed framework applies ECHIDNA, an object-

oriented constraint-based expert system, to the animation of a sailing environment. The

motion of a sailboat is controlled by intelligent agents that are responsible for plan

formulation and modification, plan implementation and information extraction from the

environment.

Each agent has a different set of knowledge units, or morsels, which impacts its task

and as a result, defines individualized behaviour for a sailboat. These knowledge units

describe the relationships between the sailboat and its environment (e.g. "right-of-way"

relationships between sailboats), and the relationships between goals and actions. By
using the ECHIDNA reasoning system to define and resolve these relationships, an

alternative, model-based approach for behavioural motion control is provided for computer

animation of multiple entities.

page iii

To Quasirnodo

who sits alone at Jericho
while I do mental tacks, jibes and

man-overboard
maneouvres

page iv

ACKNOWLEDGEMENTS

I would like to thank my family and friends that supported me during this quest,

especially those that fed me when I vowed not to cook until the completion of this thesis!

In particular, I would like to thank my supervisor, Dr. Tom Calvert, for his support,

guidance and good humor throughout this thesis work and other endeavours.

I am also grateful to Miron Cuperrnan in the Expert Systems Lab for his help with Echidna,

to Lars Wilke for his enduring support and encouragement, and to the

members of the graphics research lab for making late-night work a little more cheerful.

My warmest appreciation goes to my mother, my father (in memory),

and my two brothers, Douglas and Herman,

for their unquestioning support of my work and concerns.

This research was funded in part by a Post-Graduate Scholarship Award and research

grants from the Natural Sciences and Engineering Research Council of Canada, and by

grants from the Social Science and Humanities Research Council of Canada.

TABLE OF CONTENTS

Approval
Abstract
Acknowledgements
Table of Contents
List of Figures

Introduction
1.1 Background
1.2 Motivation
1.3 Proposed Work
Related Research
2.1 Motion Control in Generality
2.2 Behavioural Animation
2.3 Animation of Human Behaviour
Background Information
3.1 Problem Solving
3.2 Knowledge Representation
3.3 The ECHIDNA CLP Language
3.4 Classical A1 Planners
Conceptual Design
4.1 Overview
4.2 World Representation
4.3 The Reasoning Component
4.4 The Interface and Display Component
NSAIL Implementation Overview
5.1 Introduction
5.2 The Sailing Model
5.3 NSAIL System Architecture
5.4 World Representation
NSAIL Knowledge Morsels
6.1 Overview
6.2 Boat Morsels
6.3 Reaction Morsels
6.4 Plan Morsels
NSAIL Control and Animation
7.1 Overview
7.2 Knowledge Agents
7.3 Control Hierarchy
7.4 The NSAIL User Interface
Discussion
8.1 The Evolution
8.2 Implementation Issues
8.3 Representation Issues
8.4 Evaluation of Approach
Conclusions

Appendix A: General Terminology
Appendix B: Sailing Terminology and Model
References

ii
iii
v
vi
vii

page vi

LIST OF FIGURES

Figure 2.1 Animation of Boids

Figure 3.1 Desired Characteristics of A1 Planners

Figure 4.1 a Entity and Environment

Figure 4.1 b Entities in the World

Figure 4.2 General Framework for a Constraint-Based Animation System

Figure 4.3 Physical Object Schema

Figure 4.4. Polar Target Schema
Figure 4.5 Morsel Variable

Figure 4.6 Example Morsel

Figure 4.7a Knowledge Agents

Figure 4.7b The Two Sides of An Agent

Figure 4.8 The Planning Agent

Figure 4.9 Basic Planning Algorithm

Figure 4.10 Plan List Hierarchy

Figure 4.1 l a Plan Node

Figure 4.1 1 b Relationship Between Morsels and Plan Nodes

Figure 4.12

Figure 4.13

Figure 4.14

Figure 5.1

Figure 5.2

Figure 5'.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 6.1

Figure 6.2

The Implementation Agent

Basic Animation Algorithm

Goal Achievement Morsel

Having a Hobieday!

Main Sailboat Variables

Boat Symbols

Points of Sail

NSAIL System Architecture

Hobiecat Schema

Boatstate Schema

Boat Heading Target

NSAIL Goal Actions

Motion Unit Structure

Tack from Marchaj64 Figure 229

Other Uses of Motion Units

NSAIL Knowledge Morsels

Boat Morsel Schema

5

19

22

22

24

25

25

27
28

29

29

30
3 1

3 1

32

32

33

34

35

37

38

38

39

40

40

4 1

42

42

43

44

44

45

45

page vii

Figure 6.3
Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9a

Figure 6.9b

Figure 6 .9~

Figure 6.10

Figure 6.1 1

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16

Figure 6.17

Figure 6.18

Figure 6.19

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5

Figure B.l

Figure B.2

Figure B.3

Point Of Sail Morsel

Boat Tack

Sail Angle

Sail Angle Range

Reaction Morsels

Static Object

Collision?

Avoidance I
Avoidance II
Collision Point Relationship

Land Morsel

Right of Way Rules for Sailing

Right of Way Morsel

Plan Morsels

NSAIL Plan Node

Determining Action for a Target Goal

Beating Upwind

Tack Operation Morsel

Rounding a Mark to Port

NSAIL Control Flow

NSAIL Knowledge Agents

Top Level Planning Goals

Replanning

Control Hierarchy

Screen Dump of NSAIL User Interface

NSAIL Animation Display of Hobiecats

An Echidna Tack

The Element Primitive

Hierarchical Coordinate Space

Adaptive World Hierarchy

Polar Target

Equilibrium Model

Velocity Triangle

All-Round Performance for 12 Metre Boat

page viii

INTRODUCTION.

Motion is the act or process of changing places, a movement from one location to

another or from one configuration to another. The observable motion of an intelligent

entity is a reflection of its reasoning processes as it reacts to stimuli from its environment.

Thus, the environment and the internal knowledge of how to handle different

environmental factors serve as constraints on the motion and behaviour of an intelligent

entity, and on the motion of an inanimate object controlled by intelligent entities. Modelling

the constraints or relationships between the entity and its environment empowers the

animator with an alternative high-level approach to behavioural motion specification.

However, these constraints are generally qualitative and cannot be easily resolved by

mathematical techniques for constraint satisfaction [Brown89].

The objective of this thesis is to explore the use of a constraint-based expert system

for knowledge representation and reasoning in computer animation1.*. In particular, the

interest is in using ECHIDNA, an object-oriented constraint reasoning system being

developed at Simon Fraser University [Havens90]. ECHIDNA is the core of the reasoning

component in the proposed conceptual framework for an integrated reasoning animation

system. The interactive system provides high-level control of behavioural motion of

multiple intelligent entities such as those found in a simulated2 sailing environment.

1.1 BACKGROUND.

In computer animation, the description and manipulation of an object in motion is

usually based on mathematical models or techniques. Motion is generated by methods such

as -- interpolation through keyframes, inverse kinematics and dynamics [Calvert82,

Girard85, Isaacs87, Sturman87, Wilhelms851. This is a definition of motion that resides

purely at the physical level, addressing the mechanics, or the how aspect, of the motion

only. This level of interaction awards absolute direction of all components to the animator,

but it can also be needlessly time-consuming and repetitive [Gould89, vanBaerle861.

'words and phrases used in this thesis which may not be considered standard terminology in the field of
~omputing science may be found in the glossary provided in Appendix A.
LThe distinction between animation and simulation, as practiced today. is unclear. Almost every "animation
system" is also a "simulation system", in the traditional sense of the word (for example, [Gomez84, Girard85,
Wilhelms851). Esakov and Badler [Esakov91] distinguish an "animation system" as a system whose primary
purpose is to output animation or motion whereas a "simulation system" is a system whose primary purpose is to
simulate a set of tasks or actions. Ultimately. an animation system may use simulations to specify motion and a
simulation system may use animation to output its results. For purpose of this thesis, the intent is to develop an
animation tool or system to eventually control an underlying motion simulation system.

Chapter 1.0 Introduction

Goal-directed animation systems strive towards user dictation of motion in natural

language commands [Badler92, Drewery86, Korein821. This is a reference to the what

aspect of movement specification. The animator states what action the object should

perform, and the system will automatically create the appropriate output. Goal-directed

systems, based on the directorlactor concept, were introduced in artificial intelligence for

task planning of a robot arm in a blocks world CWinograd721. Goal-directed animation

systems [Bruderlin88, Phillips88,Zeltzer84] are based on the idea that objects can take, or

learn, assigned motor skills and be directed to use those skills. For example, the cue of

"walk to the door" would initiate animation of a figure walking to the door without further

input-from the animator. Once the action is in progress, the object must also know how to

react to changes in its environment. In other words, it must know how to behave.

Behaviour is defined as the response of an individual, group or species to its

gnvironment. Behaviour can be solely reactive, a reflexive response to stimulus from an

object's environment, or it can be an intelligent response driven by an object's internal

desires and experience. For example, the motion of an automobile, at the mechanical

level, can be expressed by the physics governing bodies in motion, but the physics does

not explain why a car turns right or left. The car, like many objects in the world, is

controlled by an intelligent entity whose reasoning process must be represented. This is the

why aspect of motion. Behavioural animation systems [Amkraut85, Reeves83, Renault90,

Reynolds87, Wilhelms90] define the conditions in which an action should be selected.

Such conditions can be structured in a knowledge-based system as production rules with an

"IF <condition> THEN <action>" template [Morawetz89, Ridsdale861, or as another

representational forms [Cercone87].

1.2. MOTIVATION.

Behavioural motion is the consequence of the reasoning process of intelligent objects

as they respond to external stimuli from their environment and their internal goals. The

kinds of problem solving performed by intelligent objects are conducive to approaches that

are declarative and involve heuristically guided searching through a solution space. The

solutions to these kinds of problems cannot be easily computed. They are determined by

refinement of the solution space with constraints imposed by internal and external factors

[Brown89]. Thus, it is advantageous to investigate the use of a declarative approach for

animation of behavioural motion.

Chapter 1 .O Introducfion

The ECHIDNA constraint-based reasoning system provides powerful and efficient

constraint resolution mavens9 11. A constraint logic programming (CLP) language offers a

wider representation range and the efficiency of specialized programs, in addition to the

nondeterminism, relational form and declarative semantics of logic programming

[Clocksin81, VanHentenryck891. With nondeterminism inherent in the language, the

system developer does not have to program tree searching algorithms. The relational form

facilitates the representation of constraints since constraints are basically relationships.

Specialized domain-dependent programs improve search facilities with the inclusion of

heuristics related to the character of the domain. Declarative semantics connote flexibility

since-it is easier to modify and extend declarative knowledge than procedural knowledge

[Gensereth87]. An object-oriented paradigm supports diversity, reuse and structure in

knowledge base development [Havens92]. Integrating the ECHIDNA reasoning system

into a modular animation interface provides a high-level object-oriented framework for

.behavioural animation.

Animation of a sailing environment provides a number of interesting characteristics:

1) multiple objects with similar behaviour; 2) multiple levels of control; 3) multiple levels

of knowledge and reasoning (i.e. planning and reactive); and 4) interaction with

environmental factors and with other objects. The behaviour of a sailboat, which is visible

to people watching from shore, is defined not only by the physical mechanics of a wind-

powered device in response to changing environmental conditions, but also by the character

of the intelligent agent(s) controlling the physical device. Defining the profile or the

knowledge of these agents will have a greqt impact on the resulting animation. The interest

of this thesis is to model not the underlying physical layer of a sailboat, but the knowledge

and decision-making process of the intelligent agents controlling the sailboat under different

enxironmental conditions amidst other agent-controlled sailboats. Animating a complex

domain by manipulating the environment and the declarative knowledge of the associated

agents is a challenging problem [Calvert88, Ridsdale87, Thalmann881, and provides a

novel high-level technique for modelling and manipulating behavioural motion.

1.3 PROPOSED WORK.

The primary objectives of this thesis are to: 1) explore the use of the ECHIDNA

constraint-based reasoning system for behavioural motion control in computer animation;

2) propose a high-level, object-oriented approach to the animation of multiple, intelligent

objects where defining the environment and the behaviour of a single object instance

Chapter 1.0 Introduction

automates motion generation; 3) apply the proposed approach to the implementation of a

sailing interface; and 4) investigate the potential for a generic reasoning tool for animation

of other domains.

The proposed structure for the constraint-based animation system for multiple objects

consists of three main components: 1) planning; 2) implementation of the plan; and 3)
perception-driven modification of behaviour and the plan. Each object, such as a sailboat,

will have agents representing each of the three components. What differs between the

objects is the contents of their knowledge base(s) used for planning and implementation of

the plan. The behaviour of the object is thus defined by the morsels of knowledge

possessed by its agents. The final animation is dependent on specification of the

knowledge profile of objects and the description of the environment being animated. Thus,

control of an animation is done at a much higher level.

The next chapters in this thesis will expand on this proposed approach for a

constraint-based animation system for multiple intelligent objects. Chapter two is a review

of related research, identifying past and current work involving a behavioural approach to

computer animation. Chapter three provides background information on knowledge

representation. In chapter four, the conceptual design for an integrated reasoning animation

system evolves. Chapters five, six and seven present implementation details for the

NSAIL implementation built with the proposed framework. Chapter eight is an evaluation

of the proposed approach, acknowledging successes and difficulties in the design. Finally,

chapter nine presents the conclusions draw? from this thesis research.

RELATED RESEARCH.

Animation of behavioural motion is an

evolving area of interest in computer graphics

research, recently attracting the attention of film

makers [Levy92b]. The objective of behavioural

animation is to create the motion of an aggregate by

defining the behaviour pattern of a prototypical

member. The whole motion, like that of a gestalt,

is more than simply the sum of the parts. The

motion of the aggregate has its own flow and

character that is intriguingly different from the

motion of a single member of the aggregate . 1 Figure 2.1 Animation o f Boid:

Since the members possess "intelligence", the ability to learn, understand or deal with

new or trying situations, research in behavioural animation has naturally lead to an

exploration of artificial intelligence (AI) techniques [Calvert88, Ridsdale90, Thalmann88,

Wilhelms871. One particular area of interest is knowledge-based frameworks for human

figure animation [Badler89, Esakov91, Morawetz89, Ridsdale87, Thalmanns86,

Zeltzer831. In such systems, the primary concern is the representation of knowledge and

the reasoning process, regardless of whether the intelligent entity is controlling the motion

of its own body or that of another physical object. Stimuli from the environment provokes

the entity into action, in a reflexive response or as a conscious response to satisfy a desired

goal. This requires some planning ability by the entity to achieve the goal [Ridsdale87,

Zeltzer833, and the ability to modify or redo the plan during its execution.

-*.

2.1 MOTION CONTROL IN GENERALITY.

An animator usually controls the motion of objects by explicitly specifying the frame

to frame changes needed to create the illusion of movement [Sturman86]. The rate of

display is set at 24 frames per second for film (or 30 frames per second for video) so that

the human eye will perceive continuous motion. This leads quickly to a large number of

frames that must be created and rendered in computer animation systems.

The oldest, and most widely used, method for reducing the number of frames is

keyframing [Burtnyk71]. Keyframing is the basic approach taken in commercial 3D

Chapter 2.0 Related Research

animation systems such as Vertigo [Vertigo], Alias [Alias], etc. In a keyframing approach,

only the frames in which there is a key change in motion are specified. The difference from

keyframe to keyframe should be significant, but not so great that meaningful interpolation

is impossible. Depending on the complexity of the movement, keyframes can be separated

by five or more inbetween frames. The 2D or 3D animation system then interpolates the

inbetween frames using linear, quadratic or cubic splines [Catmu1178, Kochanek84,

Sturman861. Thus, in keyframe animation systems, the animator needs only to specify the

positions at keyframes representing a change in the motion. However, this is still a time-

consuming task: each keyframe can be quite intricate; the number of keyframes is still high;

and the level of interaction is still low for complex motion specification.

Parameterized keyframing provides a slightly higher level of interaction for motion

control [Hanrahan85]. Instead of specifying motion by detailing the positional changes

Trom keyframe to keyframe over time, the animator interactively manipulates parameters for

objects and motions. Restrictions on an object's motion are defined implicitly within the

system. Interpolation of the parameters creates the inbetween frames. This approach is

applied in various areas of figure animation including facial animation [Parke82,

Thalmann88, Zeltzer851. Bruderlin [Bruderlin93] extends the parameterized keyframing

approach to the animation of human walking. The walk animator specifies values for

parameters such as step size, pelvic list, etc. to define individualized gaits (some of which

are very amusing) for a walking human figure.

Other automated approaches include, kinematics* [Calvert82], inverse kinematicsA

[Badler87, Forsey88, GirardM, ~ o r e i n b] , dynamicsA or physically-based simulations

[BruderlinSg, Isaacs87, Wilhelms871. These approaches are still relatively low level where

the --, animator must control the motion by manipulating a single joint or degree of freedom.

Dynamics require the user to input values for forces and torques, or masses and springs

from which forces and torques are calculated. These values do not create an intuitive

platform to view or describe motion. However, the motion automatically generated from

dynamics simulation is based on the laws of physics, and thus, are very realistic. This

sense of realism has to be otherwise captured manually by the keyframe animator.

Researchers are presently looking at better estimation techniques for dynamic parameters

and better interfaces for specifying those parameters [Issacs87, Kass92, Wilhelms891.

Kinematics and dynamics may be combined for better control [Bruderlin90].

Kinematics and dynamics may also be combined with constraints, or constraints may be

Chapter 2.0 Related Research

used alone, for an alternative motion generation technique3. In physically-based

simulations, the motion of an object is completely determined by its initial position and

velocity, and the forces applied along the course. Thus, the animator must provide the

right initial values to move to thefinal state. Control is improved by constraining the final

position as well as the initial, creating a two-point boundary problem that requires more

elaborate computations [Gi1181]. Constraint force methods CBarzel87, Issacs87] define

positional constraints (e.g. constraints on the positions of joints in an articulated body

[Badler87]) to ensure an object moves along a predefined keyframed trajectory in the world

space. For example, positional constraints ensure that a character's feet move along a

given path. This reduces the amount of information that needs to be input, but is likened to

dragging a character around like a marionette [Kass92]. There is no consideration of how

the movement and the controlling forces change over time (i.e. the trajectories must still be

determined manually).

Spacetime constraints [Kass92, Witkins881 adds another layer of control between the

animator and a physically-based model of motion. The spacetime constraint approach

solves for an object's motion over the entire time interval of interest, rather than

sequentially through time as with positional constraints. This determines the necessary

trajectories for the dynamic simulation. Constraints that are placed on the initial,

intermediate and final positions and velocities of the object encode the goals of the motion

over time. An interactive graphical interface is provided to develop complex behaviour by

joining function boxes that hide the underlying dynamic equations [Kass92]. In this

manner, the animator can control, at a higher level of interaction, dynamically-based motion

by articulating the desired characteristics of the motion (e.g. quickly, gracefully, etc.).

2.2' BEHAVIOURAL ANIMATION.

Behavioural animation, a term first introduced by Reynolds [Reynolds87], also

explores higher levels of motion control for an underlying simulation or animation system.

In computer graphics, behavioural animation refers to the animation of a group by defining

the behavioural rules for a prototype member. The animator does not need to animate each

entity individually, which can be a very challenging feat when the population to be

animated is in the hundreds. In traditional approaches, and in currently available

3 ~ o t e that constraints in this context refer to numerical constraints or equations that can be solved by
standard numerical optimization techniques. In a constraint-based reasoning system, constraints are
relationships (which may be equality) and cannot be solved generally by numerical techniques.

Chapter 2.0 Related Research

commercial keyframe systems, this becomes a very exhaustive and rigid approach. Making

even the smallest of changes becomes a horrendous task. Behavioural animation

approaches control the animation of the population by defining the behaviour of its

members.

Particle systems [Reeves831 are collections of large populations of individual

particles, each with its own behaviour. During a particle's limited 1ifespan;they perform

simple behaviours that alter their own internal state, consisting of colour, opacity, location

and velocity. Particle systems have been used to model fire, smoke, clouds and waves .

Reynolds' object-oriented, distributed, scripted flocking system [Reynolds871 is

similar to a particle system. However, the small dot-like particles are replaced with 3D

geometric objects with orientation. The bird-like entities, or boids, in the flock exhibit

kore complex, and interactive, behaviour. Where each particle has only an internal state

and behaves independently of other particles, each boid has an external state as well and

must interact with other boids in order to maintain correct flocking behaviour. Each boid

has three behavioural rules: 1) avoid collisions with nearby flock mates; 2) attempt to match

velocity with nearby flock mates; and 3) attempt to stay close to nearby flock mates. These

rules are known respectively as the collision avoidance rule, the velocity matching rule and

the flock centering rule. There is actually a fourth rule, the migratory rule, which states that

a boid must fly towards a given global target. These rules are processed by the boid brain.

The boid brain is divided into three separate modules: navigational, pilot and flight.

The navigational module is responsible for combining, prioritizing and arbitrating between

conflicting rules. A weighted averaging technique is used to combine the strength of an

acceleration request from each rule that determines the direction and velocity of a boid.

This causes incorrect behaviour in critical situations when two opposing requests cancel

each other (i.e. the boid flies into a brick wall). For example, the collision avoidance rule

and the flock centering rule may dictate opposing directions for flight. Although

"techniques from artificial intelligence, such as expert systems, can be used to arbitrate

conflicting opinions" [Reynolds87], Reynolds employs a priority ordering scheme on the

acceleration requests. The priority ordering scheme assigns priority values to the rules for

different situations. A single acceleration request is then given by the pilot module to the

flight module which guides the flight motion of the boid. During flight, collision avoidance

follows the steer-to-avoid approach rather than the force field approach used in a previous

flock animation [Amkraut851 and in other animation systems [Ridsdale87]. The object-

Chapter 2.0 Related Research

oriented design of the system is based on the actor model for distributed systems [Agha86,

Hewitt771 which has been employed in other animation systems [Reynolds82,

Thalmann851. The modularity of the system design is intended to facilitate expansion of

the flock model to explore mental states, and plug in animation sequences created by a real

animator [Reynolds87]. A mental state is a term referring to more complex motivations

(e.g. find food, avoid predators, etc.) of existing behavioural models [Braitenberg84].

Behavioural animation also includes stimulus-response animation [Lethebridgegg,

Wilhelms89, Wilhelms901. Wilhelms [Wilhelms89] explores an interactive approach to

behavioural animation based on Braitenberg's Vehicles, a book on his work in

neurobiology [Braitenberg84]. An animator controls the animation by mapping sensors

and effectors of objects in a connectionist network. Sensors detect specific characteristics

of objects in the environment. Effectors produce some change in the object or a force that

causes motion. These forces feed into a simple underlying dynamic simulation

[Wilhelms88] to produce the motion of the object. The nodes that connect the sensors and

effectors have particular transfer functions such as love and hate. The nodes quickly

became parameterized to provide a higher level of control to the user [Wilhelms90]. In this

manner, the relationship between objects can be defined, animated and studied.

Other behaviourally controlled animations include Sims' thesis work in animating the

locomotion of jointed objects, such as spaceships, inchworms and quadrupeds, over

complex terrain [Sims87]. Research in using biological or evolutionary simulation for

animation has gained renewed interest. .Artificial life [Langton89, Levy92al controls

animation of populations by modelling simple local rules extracted from biological

behaviour. This area includes work with botanical L-Systems [Prusinkiewicz90], digital

Darwinism [Sims91], PolyWorld's artificial ecology [Yaeger82], and flocking behaviour

[Reynolds87]. In addition, Haumann [Haumann88] describes a testbed for behavioural

simulation of flexible objects. Morawetz [Morawetz90] explores an approach for animating

human secondary movement where behaviour is dependent on user-specified personality

traits (i.e. nervousness, aggression, etc.). Also, Renault [Renault90] proposes a vision-

based approach, based on Reynolds' boids, to human behavioural walking animation.

2.3 ANIMATION OF HUMAN BEHAVIOUR.

Behaviour is the manner in which living organisms react to stimuli from their

environment. The way a person or a personified object behaves reflects its character and

Chapter 2.0 Related Research

intent [Scheflen72]. There is some rationale behind the behaviour, and motion is the

externalization of that rationale. Behaviour has an emotional, cultural and social context.

When an object moves, its movement may be perceived as aggressive, graceful or

amusing. People can attach emotions to the most simple of objects. When an object

moves, it can also indicate its intention to avoid a deep hole, an angry dog or other

obstacles in its surroundings. If the surroundings should change, the motion may also

change. Modelling human behaviour, or intelligent behaviour, from this contextual level

seems naturally related to work in AI. Integrating formalisms for knowledge representation

and reasoning, the control of human behavioural animation advances to a higher level of

interaction. The animator can conceptualize motion in terms of its behavioural

characteristics rather than positional values. Techniques specialized for human movement

and behaviour specification can also be classified according to the level of user interaction,

ranging from guiding tools to program level tools to task level tools [Zeltzer85] and to

behavioural level tools.

Guiding level tools for specification of human movement include keyframing systems

such as LifeForms [Calvert93, Schiphorst903. In keyframing systems, the animator

defines the behaviour of the animated character by creating keyframes through direct

manipulation of joints in an articulated body. The system then interpolates through the

keyframes to produce the movement. The advantage of keyframing systems is that the

systems are easy to learn, the animator has full control of the motion, and the animator

draws on creative skills to choreograph the desired behaviour. The disadvantage is that the

animator has full control, and is responsible for exactly how the motion proceeds at all

levels [Kass92]. This is a disadvantage for especially complicated motion or scenes

[Zeltzer85]. Other guiding tools add recording equipment or procedures (e.g. rotoscoping,

puppets, electrogoniometers) to capture actual human movement [Abe185, Ginsberg83,

Calvert821. Shape interpolation [Gomez85] is the 3D equivalent of 2D keyframing. Key

transformation [Gomez85] is the application of parameterized keyframing to transformation

hierarchies for articulated bodies.

Program level, or animator level, tools refer to the use of special procedures or

programming languages for animation. Animation details are recorded in a script for

automatic generation of motion. Scripting is found in numerous human figure animation

systems [MaiocchigO, Ridsdale901. Notation-based systems [Calvert82] for movement

composition may also be considered a form of scripting. Algorithmic specification systems

such as GRAMPS [ODonnel81] and MIRA (Magnenat861 provide data or functional

page 10

Chapter 2.0 Related Research

abstraction facilities. In GRAMPS, movement at the joints can be constrained to values

input from a dial guiding mechanism. MIRA is a programming paradigm closely related to

the object-oriented system used in ASAS [Reynolds82]. TEMPUS [Badler82], restricted

to positioning and orienting human figures, controls motion interactively through simulated

potentiometers. These program-level tools enhance motion control at the joint-level.

Task-level tools support the animation of intelligent activity. To quote Boden

[Boden77]: "Intelligent action is an act or decision that is goal-oriented, arrived at by an

understandable chain of symbolic analysis and reasoning steps, and is one in which

knowledge of the world informs and guides the reasoning." Task-level tools incorporate

knowledge and reasoning into the animation process so that the animator can specify what

goal or task is desired and the tool determines how. Goals may be articulated through

natural language [BadleSO, Badler92, WebbeI-921, scripts [Morawetz89, Ridsdale901 or

&teractively entered goal values [Bruderlin93]. Goal-directed human behaviour animation

systems include JACK [Badler89, Lee891, GESTURE [Morawetz89], GAITOR

[Bruderlin93]. Other goal-oriented systems also address knowledge-based animation of

complete environments for intelligent behaviour [RidsdalegO, Thalmann88,Zeltzer83].

An early knowledge-based framework for animation of articulated figures emphasized

the following features: a motion control hierarchy from mechanical to behaviorial; separate

data and knowledge bases; blackboards*, scripts* and frames for knowledge

representation; planning and goal-directed motion specification [Zeltzer83]. In this

framework, the object-oriented frameb data structure, first introduced by Minsky

[Minsky75], provides the knowledge representation form. A frame is a type of schema*

used to describe a collection of attributes for a given object [Rich83]. Each slot in a frame,

identifying a characteristic of the object, may be filled by other frames describing these

objects. Procedural information may also be associated with a particular slot [Fikes85].

Zeltzer proposed a frame organization for motion, where the slots represent information

attached to a skill, movement function or preconditions for execution of a skill. Frames

have been applied similarly in other animation frameworks [Drewery86, Thalmann861.

Thalmann [Thalmann88] describes characteristics of an attribute-based system which

adopts the frame-based approach. In an implicit animation system, the behaviour of natural

phenomena would be inherent in the system (e.g. wind, temperature, sun, gravity). The

objects would have natural attributes that are accessed by the system to automatically

calculate the motion of objects under natural forces. This implies generalizing a physically-

page 11

Chapter 2.0 Related Research

based modelling to the extent that it can be included in such a system. It is not clear how

such a generic, all-encompassing system can be implemented, but the complexity due to

multiple and mutually-dependent attributes is acknowledged. Initial work includes

EXPERTMIRA [Thalmann86], a Prolog-based tool for image synthesis and animation

which automates control of lighting and camera movement. Research continues into the

development of an integrated system for synthetic actors [Thalmann88, Thalmann921.

Ridsdale [Ridsdale86] applied a rule-based expert system approach to animation of

human figures from a givenfilm script. The script, describing the actors and their actions

on stage, is translated by hand into a form that is understood by the inference engine

within the program. The declarative knowledge base consists of rules from theatre and film

direction, as well as scene-specific knowledge about characters and the environment.

Direction rules include rules about actor placement and movement direction (e.g. do not

walk in front of the speaking actor). Relational constraints define simple weighted

relationships between actors and objects in the scene (e.g. attraction and repulsion). The

rules, character relationships and script are used to generate scene action. A hierarchical

planner, similar to the task manager in [Zeltzer82] and path finding techniques from

robotics [Brooks83, Lozano831, resolves the actual paths taken by the walking figures.

The planner adopts a divide-and-conquer strategy where the top-level problem (e.g. reach a

particular destination) is broken in to an abstraction hierarchy of smaller subproblems (e.g.

walk around a table). The higher, more general problems in the hierarchy are solved before

the detailed subproblems.

Ridsdale's system, The Director's Apprentice, was later extended to investigate

representation of theatre and film direction knowledge with a logic programming approach

[Ridsdale87]. A more recent version [Ridsdale90] is implemented with an object-oriented

extension to LISP called FROBS [Muehle87] which incorporates frames as the knowledge

representation formalism. Other research that integrates film direction in animation includes

a system for automated presentations in user interfaces and instruction systems [Karp90,

Karp931. Current work in comprehensive animation environments strives toward the

creation of virtual microworlds [Brett89,Zeltzer85].

page 12

BACKGROUND INFORMATION.

3.1 PROBLEM SOLVING

Intelligent behaviour reflects a special kind of computation that is discrete, symbolid

and qualitative. It is characterized by a collection of general strategies that minimize the

inherent complexity of the computation. Intelligent behaviour, such as diagnosis, design or

sailing, may be represented as a problem to be solved by a quantitative computation

technique, but the underlying solution space would have an explosively large number of

parameters, and the solution algorithm would be NP-complete (i.e. no general and efficient

algorhhm exists to solve the problem) [VanHentenryck89]. These types of computations

need to be solved by a class of methods that are "intelligent" in the sense that they explore a

problem space, that has been implicitly defined by a problem representation, with generic

search strategies that exploit qualitative heuristic knowledge about the problem domain

[Brown89]. The essence of The Problem Space Hypothesis [Newel1801 is that humans

engage in this form of problem solving.

3.2 KNOWLEDGE REPRESENTATION.

In modelling intelligent behaviour, the key aspect is knowledge representation. Many

diverse kinds of knowledge are required, including knowledge about objects in the world,

knowledge about processes, and commonsense knowledge about goals, motivation,

causality, time, actions, etc. There are various formalisms in use today for representation

of knowledge: logics (first order logic !is especially important), semantic networks,

procedural representations, logic programming, frame-based structures, production system

architectures and knowledge representation languages. Knowledge representation is an

important part of A1 research because of the frame problem5 [McCarthy69], which is "the

problem of maintaining an appropriate informational context, or frame of reference, at each

stage during the problem solving process" [Cercone86]. Overviews of knowledge

representation for the specialist and the naive may be found in various articles and texts

[Brachman85, Cercone871. For the purpose of this thesis, formalisms applicable to the

development of the proposed integrated reasoning and animation system will be discussed.

4~rom [RichS3]: The heart of A1 research is based on The Physical Symbol System Hypothesis [Newel1761
which states that a physical symbol system has the necessary and sufficient means for general intelligent
action. This provides a significant theory of the nature of human intelligence, and is the basis of the belief
that it is possible to develop programs that can perform tasks done by people that are deemed intelligent.

page 13

Chapter 3.0 Background Information

First-order logic evolved from early work in theorem proving [Nilsson71] and has

been recast into more computationally oriented frameworks including the Planner

formalism [Hewitt72], Smps planning paradigm [Fikes85], and the widely used Prolog

[Colmerauer73] programming language. Concerns about Prolog include the lack of an

explicit scheme to encode knowledge, the poor handling of change and incomplete

knowledge, and the perceived limitations of deductive inference. However, the formal

precision and interpretability of the language permits an expressiveness that other

knowledge representation schemes lack [Cercone86].

Prolog is a "descriptive" as well as "prescriptive" language, viewing problems in

terms of objects and formal relationships between objects. It asks which relationships are

"true" in the solution rather than "prescribing" the sequences of steps to the solution. It is

based on a standard backtracking search which is depth-first with chronological

backtracking (i.e. going back to the first choice point with an untied clause). However,

any search strategy may be constructed in a Prolog program (i.e. generate and test, forward

checking, looking ahead, etc.). Prolog is well-suited for implementing intelligent programs

because it can handle nondeterminism, parallelism and pattern-directed procedure call.

These notions are the core of intelligent programs [Clocksin81]. ~ e s c r i ~ t i v e 6 , or

declarative, forms are also easy to modify and extend since they involve only changes to

the data rather than the program [Rich83].

Akin to the belief that people possess' procedures for the variety of actions that can be

performed, procedural knowledge is a representation that views knowledge in terms of

how it is used. Knowledge embedded in procedures is accessed directly or through pattern

directed piocedure invocation [Hewitt72]. The procedural perspective has been most

influentially championed by Winograd's work with SHRDLU minograd721. Limiting the

domain to a microworld of blocks, hence known as the blocks world, the SHRDLU

system applied procedures to interpret and generate a wide variety of natural language

sentences that pertained to the stacking and unstacking of blocks. Given a goal (e.g. pick

up red block and put in blue box), the system determines the sequence of actions to achieve

the goal. Winograd chose the MICROPLANNER programming language to implement the

'~ercone [Cercone86] offers an amusing illustration of the frame problem with a story about three robots
(RlD1, R2D1 and R2D2) and three bombs.
6 ~ o t e that the comparison of descriptive versus prescriptive languages uses the same conceptual argument,
but different terminology, as the comparison of declarative an4 procedural knowledge [Nilsson711.

page 14

Chapter 3.0 Background Information

interpretation procedures. MICROPLANNER is based on a subset of the PLANNER

formalism from first order logic. MICROPLANNER fell into disuse when its "blind

backtracking" search could not be controlled by its user. Prolog tries to alleviate this

problem with its CUT operator (see Clocksin81), which is used to indicate which previous

choices should not be considered again when backtracking. However, if too many CUTS

are employed to make a Prolog program execute in real time, the program becomes opaque
and intractable [Cercone87].

The classification of knowledge representation frameworks (e.g. logical versus
procedural paradigms) is not clearly defined or mutually exclusive. In fact, representation

frameworks often influence each other and may be integrated for greater expressiveness.

Logic programming (LP) is the combination of logic and procedural representations

of knowledge, which has been the basis of logic programs for automated reasoning and

natural language understanding [Hadley85]. The power of logic programming lies in the

fact that its declarative sentences in predicate calculusA are also programs [Cercone87],

which provides a procedural formalism with strong semantic foundation [Lloyd84].

Simple logic programming examples are given in the introduction of various LP books and

manuals [Clocksin81, Sidebottom92b, Sterling861 and in general A1 texts [Rich83].

Logic programming, with its nondeterminism, relational form and declarative

semantics, is well-suited for solving discrete combinatorial problems such as scheduling,

scene labelling, operations research, etc. Problems in this class are mostly NP-complete,

and are generally solved by searching in a finite discrete space for a point satisfying a set of
--,

constraints. To increase efficiency, specialized programs are employed as the standard

method of solving these problems. However, these programs are time-consuming and

tedious to develop, and hard to maintain and extend [VanHentenryck89].

A common search algorithm in logic languages is generate and test which basically

means to generate a solution (e.g. a point in the problem space) and test if it is in the set of

goal states [Rich83]. Generate and test programs are easy to code, and can be augmented

with control information to increase their efficiency to that of a standard backtracking

search method [Kowalski79]. However, standard backtracking is still inefficient, showing

drastically decreased performance as the problem size grows [VanHentenryck89]. A

page 15

Chapter 3.0 Background information'

refinement using intelligent backtracking [Bruynooghe84] attempts to remedy the

drawbacks of chronological backtracking by analyzing the source of failures to avoid

unproductive choice points. However, there are theoretical limitations implied by using

heuristics to find backtracking points [Wolfram861 and additional program overhead.

Constraints are only used passively to reduce the search space after failure is detected (a

posteriori). They are not used to actively avoid failures [NaishgS]. In contrast, the other

search options, forward checking* and lookaheadA, prune the search space before failure

detection (a priori). Such consistency techniques, based on a priori pruning, are integrated

into logic programming to introduce a knowledge representation formalism known as

constraint logic programming.

3.2.3 Constraint Lopic Proyrammin~,

Constraint logic programming (CLP) languages are based on consistency techniques

that originated from Waltz's filtering algorithm [Waltz72]. The concept is to spend more

time at each node of the search tree evaluating and removing improbable combinations

which will alleviate thrashing [Freuder78, Mackworth771. Thus, the solution space is

reduced before any failure is discovered. Existing CLPs include CHIP [VanHentenryck89]

CLP(R) [Jaffar87] and Prolog I11 [ColmerauerBO]. The intention of the work in CLP is to

solve, within the logic programming paradigm and in an efficient manner, a class of

problems known as constraint satisfaction problems (CSPs).

A CSP is formally defined as follows: Assume there exists a finite set I of variables
(XI, X2, .., Xn) which take their values from finite domains D l , D2, .., Dn and a set of

constraints7. A constraint ~ (X i l , Xi2, .., Xik) between k variables from I is a subset of

the Cartesian product Dil x Di2 x .. x Dik which specifies a compatible set of values. In

othgr words, a constraint defines a relationship between a set of variables in the problem.

CSPs include logic puzzles, edge labelling, and optimization problems. An example of a

typical logic puzzle is the SEND MORE MONEY problem (see Rich83 pages 94-99). In

this problem, digits from 0 to 9 must be assigned to each letter in such a way that the

numerical value for SEND plus the value for MORE is equal to value for MONEY.

7 ~ h e terms constraint and constraint propagation are used widely to refer to different kinds of techniques for
CSPs, unrelated to logic programming, that are used similarly to avoid combinatorial explosion problems.
Amongst examples from qualitative reasoning [Kuipcrs86], planning [Wilkins84] and robotics is a well-
known example from interactive computer graphics- SKETCHPAD [Sutherland63]. Sketchpad uses a kind
of constraint propagation called value inference which labelled variables with constant values, and then used
constraints to find the values of uninstantiated variables from the instantiated variables.

page 16

Chapter 3.0 Background Information

3.3 THE ECHIDNA CLP LANGUAGE.

Constraint logic programming (CLP) has promising potential for application in expert

systems technology. ECHIDNA is a new type of constraint logic programming system for

model-based expert system applications. Representative of the next generation of expert

system shells, it is a synthesis of three technologies: schema knowledge representation,

constraint logic programming, and intelligent backtracking via justification-type reason

maintenance. The objectives of the next generation expert system shells are: 1) to

incorporate richer structured knowledge representation than the flat, unstructured

knowledge bases of the mature rule-based expert system technology IHarmon881; and 2)

provrde more efficient constraint propagation and intelligent backtracking control

structures.

Traditional expert system tools are rule-based. Though this technology is widely

used in many different areas, two major deficiencies have been identified. The first

problem is their inadequacy in representing knowledge for complex tasks. The second is

their procedural inadequacy in applying knowledge [Havens921 . Approaches in rule-

based systems to resolve these deficiencies include focus mechanisms, priority rule

execution, blackboard architectures, frames [Minsky75], and schemata [Rummelhart76].

However, these approaches move away from the declarative adequacy intended by rule-

based programming [Havens921 and introduce knowledge formalisms that are not

semantically strong mayes8 11.

In ECHIDNA, the object-oriented ~chema provides greater descriptive adequacy

through composition and specialization hierarchies that are isomorphic to the structure of

the domain of the task at hand. Thus, the implicit structure of the knowledge can be used

to-tmprove the efficiency of the search process. The underlying logic programming

language establishes a strong semantic foundation. Constraints are applied a priori to

reduce the search space, and solutions to constraints are found by efficient programming

techniques using ECHIDNA primitives INDOMAIN, DELETEFF and DELETEFFC (see

Sidebottom92b), which are based on those found in CHIP [VanHentenryck89]. These

primitives assign values to the most constrained variables first. This reduces the amount of

the backtracking in the system with earlier failure detection. In an overly constrained

situation, the satisfaction of all the constraints will reveal a solution or failure with little or

no backtracking. The intelligent backtracking algorithm in ECHIDNA improves on

traditional backtracking by reusing the portions of the derivation tree that are unchanged by

page 17

Chapter 3.0 Background Information

the retraction [Havens9 11. For more details on these features of ECHIDNA, the reader is

referred to [Havens92, Sidebottom921.

The features of ECHIDNA provide a powerful formalism for representation and

manipulation of knowledge. The schema structure can potentially represent a wider range

of problem domains in a relatively easier and more natural manner. That is, the object-

oriented structure of the knowledge bases is better equipped to reflect the real world view

of the problem domain, using composition graphs and inheritance hierarchies (see

Sidebottom92b page 19). In particular, the interest is in modelling and solving intelligent

behaviour problems identified in the introductory paragraph of this chapter.

3.4 CLASSICAL A1 PLANNERS.

* Intelligent behaviour problems are characterized by general strategies that reduce the

computational complexity inherent in the problem. That is, the solution to the task is found

by utilizing heuristic knowledge of the problem domain. This thesis explores the manner in

which an object-oriented constraint logic programming formalism, specifically that found in

ECHIDNA, may be used for simple planning and reactive behaviour of intelligent entities.

In particular, the planning process for a sailing action is explored.

The classic A1 planner is based on the assumptions made by early planners such as

STRIPS and NOAH from the late sixties. The classical definition of the planning problem

assumes a state-based representation of the,world (i.e. a "snapshot" of the world at a point

in time).8 The inputs to the planner consist of the world state, actions and problems that

need to be solved. The output from the planner is a sequence of primitive actions (i.e.

actions -- for which the planner does not know details but are understood by the agents

performing the actions in the world environment).

The world state input is generally described by a set of sentences, axioms and

constraints. The actions permitted must provide the mapping between the current state of

the world and the state of the world after occurrence of the action. Actions are represented

by operators and axioms. Axioms are rules that describe the components of the world that

are changed by an operator, or not changed by an operator as in the case of frame axioms.
Axioms in the classical BLOCKS world domain describe the state of the world after

operations such as stacking and unstacking. The BLOCKS world consists of a set of

*~lternative representations include event-based representations [Lansky88].

page 18

Chapter 3.0 Background Information

blocks that may be placed on top of each other by a robot am. A BLOCKS world planner

must plan the operations needed to move the blocks from the initial world state to the goal

state. The following is an example of an axiom from a planner for the BLOCKS world:

CLEAR(x,s) and ON(x,y,s) -> HOLDING(x, DO (UNSTACK(x,y), s)) and
CLEAR(y, DO(UNSTACK(x,y),s).

The axiom given describes the changes in the world state after an UNSTACK operation. It

specifies that unstacking block x from block y will clear block y and result in block x being

held by the robot arm. The conditions for this action are that block x must be clear and

block x must initially be on top of block y.

The problems to be solved by the planner are the goals of the planning process. The

classical planning process then requires that the sequence of actions produced as output by

tQe planner, when applied to the initial world state, will achieve the specified goals.

Planning, therefore, is viewed in the classical sense as a search through the space of

operator applications and plan orderings [Wilkins88]. Desired features of a classical A1
planner are given in the table in Figure 3.1.

Causal Theory:

Nonlinearity:

Plan Hierarchy:

Plan Variables: .-

Constraints:

Replanriing:

Desired Features of a Classical A1 Planner from rWilkins881:

A causal theory of a domain is the set of axioms that describe the causal
connections in a domain.

The ability of a planner to handle actions that are unordered with respect to
each other and may possibly be parallel actions. This characteristic is
important for efficiency (i.e. to avoid searching all possible plan orderings).

The ability to reason at different levels of abstraction, both in the planning
process and in the description of the domain. This avoids searching all
possible detailed plans.

Planning variables allow certain entities in a plan to be left unspecified during
the planning process to avoid searching every plan instantiation.

Use of constraints to reduce the search through every possible plan instance.

The ability to reuse or modify the current plan without having to replan from
the start after an unexpected event which is typical of the real world.

Domain Independence: Being domain independent allows a planner to be readily adapted to new
problems? However, domain knowledge is a necessity. Thus, domain
independent planners provide a mechanism (i.e. a knowledge representation
language) to encode domain-specific knowledge.

Figure 3.1 Desired Characteristics of AI Planner.

9~ritics of domain independent planners claim that such an approach is weak and requires a considerable
amount of domain knowledge to do planning. Critics of domain specific systems claim that such "planning
systemsn avoid the real problem related to reasoning about actions in a general manner.

page 19

Chapter 3.0 Background Information

The causal theory is important for deducing the context-dependent effects necessary

to solve the frame problem. One aspect of the frame problem is representing all the facts

that do not change after the action (e.g. tacking a sailboat does not change the colour of the

sky). Also, the facts that do change are context-dependent (i.e. the effects of an action are

dependent on the situation in which the actions are performed). Nonlinear planners have

the additional difficulty of recognizing and resolving conflicts between actions (i.e.

interferences of one action upon another action) in the quest for correct plan generation.

Other approaches to reasoning about actions use unrestricted logics (e.g. circumscription

[McCarthy80]). Though unrestricted logics are more expressive and can withstand more

rigorous analysis, they suffer from inherent computational difficulties and unclear usage.

Some of the early planners, as identified in [Rich831 and [Wilkins88], include

STRIPS, HACKER, ABSTRIPS, NOAH, NONLIN, DEVISER, MOLGEN and SIPES.

~ k e (strict) STRIPS assumption, is the basis of all subsequent solutions to the frame

problem in classical planners. The (strict) STRIPS assumption is that no predicate will

change due to an event unless the operator for the event explicitly states that the value of

the predicate changed. This assumption is the heart of the achieved efficiency, and

limitation, of classical planners. ABSTRIPS introduced hierarchical planning (different

abstraction levels in the planning process). HACKER was the first to introduce multiple

goals. NOAH, the first true classical planner, developed the concept of plan critics for plan

modification due to the complexity of nonlinearity and planning variables. NONLIN built

on NOAH by adding backtracking and more powerful plan critics. DEVISER incorporated

temporal reasoning capabilities into NONLIN. MOLGEN, though domain-specific,

successfully introduced the use of constraints and metaplanning to help control searching.

SIPES, developed in the mid eighties, is the first classical planner to use causal theory,

permit general constraints and do interesting replanning.

Note that the classic A1 planner is not reactive. The classic planner assumes that the

initial world does not change during the plan time when the planning process is being

constructed. The plan time is different from the execution time. A planning system is

reactive if it can react in an acceptable amount of time to any changes that occur in the world

while the system is running. Proponents of reactive systems, reasoning systems without

planning, argue that there is no distinction between planning and execution. That is,

planning is not necessary; only reactive controllers are necessary. Classical planners are

extremely slow and are not effective in real-time environments. As one puts it, "the

classical planner might be run over by a train while it is planning" [Wilkins88]. Additional

page 20

Chapter 3.0 Background Information

evidence of the importance of reactive systems is that humans are often seen as simply

reacting to external stimulus without thinking ahead. It is currently believed that in most

environments both a planning component and a reactive control system are needed.1•‹

In this thesis, the planner for the proposed conceptual framework is implemented in

the constraint logic programming language of the ECHIDNA reasoning system. It does not

strive to achieve the features desired in a classical A1 planner (as listed in Figure 3.1).

However, it does investigate the relationship between planning and plan execution (reaction

component) in a constraint-based implementation and animation environment.

%eactivity is necessary for autonomous agents in the world. However, it is also argued that even reactive
autonomous agents must do some planning in advance.

page 21

CONCEPTUAL DESIGN.

OVERVIEW.

about its world and act in accordance with the Figure 4.Ia Entity and Environmen,
state of its world. "Intelligent entities seem to ,

For animation, capturing this anticipatory behaviour of intelligent agents can be quite

daunting. The interactions between the entity and its world (see Figure 4.1), including

other entities, grow quickly in complexity. In an environment with multiple entities, each

entity's world is slightly different, and thus, each entity's behaviour differs. Animating the

behaviour of a large number of such entities by traditional methods (e.g. keyframing) is

very labour intensive. Also, there is little allowance for alterations or experimentation. To

facilitate the animation task, alternative high-level approaches are needed for behavioural

animation. This chapter proposes a conceptual framework for an integrated reasoning and

animation system for situations with multir;le intelligent entities.

a n t i c i p a t e their environments and the

consequences of their actions. They act as if they

know, in a sense, what the results would be. We

can account for this anticipatory behaviour by

assuming that intelligent entities themselves

possess knowledge of their environments."

[G,enesereth87 page 21

Group animation is automated by defining the behavioural profile of the individual

enikes, thk tasks that they are capable of performing, and the layout of the environment in

which the entities interact. The behavioural profile describes how an object relates to its

environment (i.e. other physical objects, both moving and static, and changes in

environmental factors). The task profile describes the actions that the entity is capable of

performing, and the preconditions* necessary before an action can be undertaken. The

resulting observable motion is then a reflection of the object's behaviour in response to

internal and external stimuli. Different animation scenarios with multiple entities can be

created by changing the behavioural and task profiles of all or some of the objects,

F i ~ u r e 4.1 b Entities in the world

rearranging the layout of the environment and varying the values of environmental factors.

page 22

Chapter 4.0 Conceptual Design

The directive of this thesis work is to model the reasoning process of the intelligent

entities, or agents, controlling the physical object under motion in a specific domain. The

proposed system does not aim to model realistic motion at the physical level. There is a

clear distinction between the physical description of motion and the behavioural

description. The physical description is responsible for providing procedures, or motion

units, for desired movement which may strive to be realistic or impressionistic. The

motion units may be created by keyframing, kinematics, dynamics or statistical simulation

techniques. Motion description at this level refers to manipulation of positions coordinates,

joint angles, forces and torques. These variables pertain to the low-level mechanics of

motion (i.e. the how aspect of an action).

Whereas, the behavioural description of motion is responsible for determining when

particular motion units should be attempted. The knowledge bases encode the criteria and

consequences of enacting a particular action (i.e. the why aspect of motion). Thus, when

given a goal (i.e. what should be attempted), the agents will deduce a feasible plan of

actions since they understand the requirements and effects of each action. During the

animation of the planned sequence of actions, the agents should also determine when to do

plan modification or replanning to ensure the given goal is achieved.

An animation of behavioural motion is characterized by the following properties: 1)

internal motivation and knowledge of the intelligent object is reflected in its course of

action; 2) interaction amongst the objects themselves; 3) interplay between environmental

factors and the object; 4) multiple objects with similar behavioural rules; 5) a dynamic

environment; and 6) a degree of nondeterdnism (i.e. there are many possible outcomes for

a given layout, a number of objects and their behaviour). Examples include scenarios such

as pedestrians in a street scene, rush hour traffic at a controlled intersection, sailboats in a --
race course, etc.

An ideal framework for such an integrated reasoning and animation system should

provide strong knowledge representation and reasoning capabilities in a modular,

expandable and reusable framework. It should also provide facilities for high-level,

interactive and intuitive control of behavioural motion for individuals and groups. The

overall framework consists of two main components: the reasoning component and the

display component. Each component consists of separate modules. The main modules

(see Figure 4.2) are: 1) the reasoning system and knowledge bases; 2) the object and

environment modelling module; 3) the motion description module; 4) output modules for

page 23

Chapter 4.0 Conceptual Design

display; and 5) the interface module which provides the linkage between the separate

modules and particularly between the reasoning and display modules.

I

INTERFACE

1 Figure 4.2 General Framework, for a Constraint-based Animation System

The reasoning system chosen is the ECHIDNA model-based constraint reasoning

system. The knowledge of the agents and formal relationships in the world are encoded

with the ECHIDNA CLP language. The proposed framework provides an object-oriented

structure to handle the complexity of diverse knowledge bases. Furthermore, the proposed

structure attempts to apply various guidelines that may lead to greater efficiency and speed

in constraint processing. An objective of this initial development is to investigate how to

best employ the features of the ECHIDNA CLP language and expert systems shell in

building knowledge bases for animation.

4.2 WORLD REPRESENTATION.

-- The world must be represented in both components (i.e. the reasoning and animation

components) of the constraint-based animation framework. The world consists of static

and moving objects, some of which are intelligent. Each intelligent object has both a
reasoning part and a physical part. The physical part, used by the display component, is

the physical description of the object (e.g. the polygonal model of a human body) and the

mechanics of its motion units (e.g. a sequence of keyframes for a movement such as

jumping). The reasoning part, represented in the reasoning component, controls the
application of the motion units. Both parts of an object contribute to the determination of

the object's motion. The reasoning component part decides which action and how it should

be performed. The display component part enact the underlying details in the motion unit.

Chapter 4.0 Conceptual Design

4.2.1 Obiects,

All objects in the world belong to the generic

schema class PHYSICAL-OB JECT11 (see Figure 4.3)

schema physical-object (
Position.
Object Type.
State.

which is then divided into MOVING-OBJECTS and I I

STATIC-OBJECTS. Each physical object has a position, I Finure 4.3 Physical Obiect Schema

type and state. The position is its current calculated location in the world. State variables

are found through the reasoning process and used to calculate changes in position. The

state represents an object's internal configuration which is dependent on its type. For

example, a moving object has a direction and velocity. States can be further refined in

terms of its specific object type (i.e. the particular kind of moving object). For example, a

sailboat object would have a state variable for its sail setting; a car object would not.

I
B The hierarchical organization of objects for

inheritance and polymorphism* facilitates the handling of

unidentified objects. Each object has default methods for

interacting with generic static and moving obstacles. This

is consistent with the real world where intelligent enti ties

are capable of generalizations of objects. An unidentified

object in this context would be one for which there is no

specific handling information. Thus, when an

unidentified object approaches, generalizations are made

about its size and speed. An appropriate action is then

taken (e.g. get out the way if it is a large and fast).

schema target {
Type.
Radius.
Point.
Endpoint.

1

schema polarTarget: target {
Theta.
Relative-X.
Relative-Y.

1
4.2.2 Tarrreh I ~ i ~ u r e 4.4 Polar Target Schema

-*.

The TARGET schema identifies a point in world space for a desired action. The

generic target schemata are point targets, area targets12 and polar targets (see Figure 4.4).

Targets in general relate the heading of a moving object in world space to a specific point or

area. An area target defines a circular area with a specified radius. The targets are

currently defined as two-dimensional representations.

llFor the purpose of identification, names of schemata and variables in the ECHIDNA knowledge bases are
capitalized in the text of this thesis. Examples given throughout this document are based on the ECHIDNA
CLP language syntax. Readers unfamiliar with ECHIDNA should refer to [Sidebottom92b] for details.
12~rea targets do work when implemented with interval variables. Point targets using intervals are not
truly point targets unless the precision is set high enough. Refer to chapter eight for details.

Chapter 4.0 Conceptual Design

A polar target (Figure 4.4) relates two world points (i.e. point A and end point B) to

each other using angle 0 (i.e. the THETA variable in the POLARTARGET schema in

Figure 4.4) and/or radius r. This representation is useful for defining heading and distance

relationships between two objects. Introducing the notion of a polar target simplifies the

coding of relationships between moving objects involving distance, heading and positions.

4.2.3 Motion Units,

The motion modelling module defines the physical motion of the objects. An object

may have a number of different motion units which correspond to actions in the reasoning

component. For example, a car may have four motion units: drive, turn, start and stop.

The motion units can be created by keyframing or procedural methods with kinematics,

dynamics or statistical models. They are used by the application agents to compute

successive positions of the object in world space over time. In this manner,

computationally intensive calculations are done outside of the ECHIDNA reasoning system

with the most appropriate numerical techniques.

The separation of the position computations enforce a higher view of motion. The

objective is to reason about motion in terms of its descriptive parameters [Morawetz90]

such as its path, rotations, goals or dynamics [Badler86]. The reasoning component only

needs to know the new position and whether the motion is interruptible. This makes it

easier to replace motion units with improved models at a later date. The exact details of

how the motion units are implemented depend on the specific animation domain.

4.3 THE REASONING COMPONENT.

--- The reasoning component, consisting of the ECHIDNA reasoning engine and its CLP

knowledge bases, provides powerful knowledge representation by incorporating

inheritance, overloading and modularity in its knowledge bases [Havens92]. The proposed

knowledge structure takes advantage of this greater expressive power to provide an

environment that is adaptable to different application domains, and makes it simple to add

new objects to an existing application.

4.3.1 Knowled~e Remesentation Structure,

As well as modularity and ease of expansion, the proposed knowledge base structure

strives for efficiency by using interval variables (see Sidebottom92b) and by reducing the

page 26

Chapter 4.0 Conceptual Design

resources consumed by the constraints. One measure of consumption is the cardinality of
the constraint. The lower the cardinality, the lesser the amount of resources used. Simpler

constraints, such as those with fewer variables and smaller domains, are believed to

contribute to faster resolution time because each constraint successively reduces the domain

space of variables involved for the next constraint.

Thus, the knowledge base is organized in small knowledge units called morsels.
Each morsel relates variables and objects to each other, and presents a format to organize

complexity. Morsels are implemented as schema classes, allowing for specialization and

inheritance. The morsels are used by knowledge agents, the agents associated with an

intelligent object. Varying the combinations of morsels for an agent results in different

behavioural motion. In other words, what the agent knows is reflected in its motion.

Knowledge Units.

The behaviour of objects is represented in knowledge

bases as morsels. Morsels have associated ma rse 1
variables which are variables that can be related to other

variables. Each morsel operates on one or more morsel

variables which are bound to corresponding object

variables. In Figure 4.5, OBJECT-VARIABLE-A is

bound to MORSEL-VARIABLE-A so that the morsel

constraints can be applied to the object ,variable. Each

object variable may be bound to multiple morsel variables.

Thus, the relationships between object variables are stated

f OBJECT \

MORSEL

I Figure 4.5 Morsel Variablt

in _multiple smaller constraint expressions defined in a set of morsels. This reduces the

cardinality of the constraints and improves the efficiency of constraint propagation. New

relationships can be added by introducing new morsels to the ECHIDNA knowledge bases.

There are three types of methods associated with the activation of constraints in

knowledge morsels: BIND, APPLY and ASSIGN. The BIND method binds an object

variable to a morsel variable of a specified morsel. The APPLY method applies the

constraints defined in the bound morsel to the object variable. This propagates constraints

to reduce the domains of related object variables. The ASSIGN method assigns values to

variables using INDOMAIN and SPLIT primitives for discrete and interval variables

respectively. Backtracking occurs until a consistent state is found for all object variables.

page 27

Chapter 4.0 Conceptual Design

schema testmorsel: morsel 1
(

int Morsel-Variable. I
morsel(int Object-Var) :-

Morsel-Variable = Object-Var.

order apply.
apply:- Morsel-Variable =:= 10.
apply:- Morsel-Variable < 20.
apply

Figure 4.6 Example Morsel

Morsels can be used to encode priorities and

heuristics as shown in the testmorsel schema (see

Figure 4.6). This provides a mechanism in which

morsels can be somewhat prioritized using the

ORDER function in ECHIDNA. A morsel that
has high priority will have only one APPLY

method, and thus gives no clause for

backtracking. If there is an inconsistency, another

morsel operating on the same object variable with

multiple APPLY clauses will have to backtrack to

satisfy all constraints on the object variable.

The final APPLY definition in the testmorsel schema indicates that the constraints in

thk morsel need not be applied at all and no failure will be outstanding. This represents a

form of heuristic knowledge. Heuristics are "rules of thumb" that are usually true

[Sidebottom92a]. In testmorsel, the heuristic states that MORSELVARIABLE should be

unified with a value of 10. If this leads to an inconsistent state, then assign any value less

than 20. Otherwise do not apply any constraint from testmorsel to the variable.

The primitive morsel schema is the basis for three other categories of morsels: object

morsels, plan morsels and reaction morsels. Object morsels define relationships associated

with the internal operation of the object and with environmental factors that determine its

internal state. For example, a sailboat will ,have an object morsel relating the position of the

sail to the direction of the wind. Plan morsels define the relationships between goals and

actions, and encode the strategic knowledge for planning. These morsels are used in the

planning Erocess to find an appropriate set of actions to accomplish a goal (e.g. reach a

specified destination). Reaction morsels for plan execution define the relationships

between the object and other static or moving objects in the domain. Reaction morsels

include "right of way" constraints to avoid collision with other moving obstacles.

Knowledge morsels can be selectively added to an object. Varying the morsel

composition amongst objects will lead to different behavioural and task profiles. For

example, in animation of car traffic, an automobile object may know the rules for traffic

lights (i.e. green means "go" and red means "stop") but may have no strategic knowledge

for reaching a particular destination. Such a scenario would include a car with a driver who

has no idea of where to travel, and just drives around aimlessly obeying traffic lights.

page 28

Chapter 4.0 Conceptual Design

Knowledge Agents.

Knowledge morsels are used by knowledge agents. AgentsA represent the intelligent
entities controlling the physical object under motion. As shown in Figure 4.7a, there are

three basic types of knowledge agents used in NSAIL: planning, implementation and

perception. The three agents control the behavioural motion of an object by responding to

stimuli from their environment. Overall object behaviour is thus influenced by the

collective knowledge of these agents. It is not necessary to have all three agents associated

with every intelligent object in the animation environment.

Each agent has two sides: a side that resides

in the reasoning component; and a side that

resides in the display component (see Figure

4.7b). An agent may have greater functionality on

one side than on the other. For example, the

planning process performed by the planning agent

occurs on the reasoning component side. The

display component side of the planning agent only

needs to initiate the planning process with the top-

level goal specified by the user.

4.3.2 The Planning Agent.

I Figure 4 . 7 ~ Knowledge Agents 1

The planning agent is responsible for

development of aplan, a set of actions or'motion
I Figure 4.7b The Two Sides o f An Axen1

units needed to attain the top-level goal. The implementation agent is responsible for

exemtingethe plan which constrainds its reasoning process as it reacts to events from its

dynamic environment. It detects goal satisfaction and prepares for the execution of the next

step in the plan. The perception agent monitors the external environment by maintaining a

panic box, which is a list of hazardous objects in the immediate vicinity (e.g. those that

may be on a collision course with the agent's object). The perception agent sends the

contents of the panic box to the planning agent as input into the planner.

A plan goal consists of a destination, an action to be performed at the given

destination, and a post action state (see Figure 4.8). It is possible to specify only an
action or destination as a plan goal. Note that this is a task planner problem in which the

tasks to be performed dictate the path of the object while achieving the given goal.

page 29

Chapter 4.0 Conceptual Design

The high-level goal is assigned to the object by

the display component side of the planning agent.

The generated plan from the backward plannerA used

by the planning agent is a list of plan nodes. The

final plan node in the list is the given goal node (i.e.

plan node PO in Figure 4.8). The first plan node

represents the initial state at the start of the planing

process. The remaining nodes are the plan steps
required for attaining the state of the final goal node

from-the initial state node. The planning algorithm

views each node as a set of constraints on the next

Target

Post-Action State

Plan:

List of Plan nodes

I Figure 4.8 The Planning Agent

node in the list. The basic relationship between two consecutive plan nodes is that they are

not exactly the same in order to avoid infinite looping during planningl3. The remaining

c~nstraints relating plan nodes are from the domain-dependent object and plan morsels.

The skeleton of the planning algorithm is shown in Figure 4.9. It recursively applies

constraints to the plan nodes in the plan list, and assigns values to them until a solution is

found.14 Constraints are defined in the methods contained within morsel schemata. A

method may have multiple clauses, indicating the presence of a choice point in the solution

space. For example, the PLANSTEP method has two clauses, establishing a choice point

with two choices of which only one may be active at any one time. The ORDER primitive

(see Sidebottom92b) ensures that the backtracking order of the clauses for the PLANSTEP

method (see Figure 4.9) corresponds to the order given in the knowledge base. A clause

when found to be inconsistent is marked as "no good" at its choice point and the active

choice is set to a following clause in the knowledge base. If elaboration elsewhere causes

thewno go-od" marker to be removed, the active choice will automatically be reset to that

clause. In general, the active choice is reset to its closest valid choice (i.e. defined earlier in

the knowledge base without a "no good" marker). In this manner, the ORDER primitive

controls when a new plan node is added to the plan list.

PLANSTEP clause B adds another node to the plan list and applies constraints to

relate the new node (identified as plan node PC) to its two neighboring nodes in the list. A

13This is a very simple planner. For more complex planning problems, additional expertise may be needed
to recognize inefficient loops or abnormal situations. This can be done by critics as in classical A1 planners
such as NOAH and SIPE. Critics are domain-dependent and would be implemented as morsels. The
difficulty would be in determining when to apply these morsels.
14Note all constraints must be applied before any values are assigned. The planning algorithm accounts for
this but thrashing can still occur during implementation of the plan. See chapter eight.

page 30

Chapter 4.0 Conceptual Design

new node is only added when there is no plan to be found with the current number of

nodes in the plan list. This means that another action is needed in the plan to accomplish

the given goal. When values are assigned to the plan nodes in the plan list which has the

newly added node, backtracking may occur to relate different constraints to the previously-

created nodes.

The hierarchy of plan nodes given in Figure 4.10 shows the relationship between

nodes in the plan list. Each level in the tree depicts the current contents of the plan list after

a plan step where an additional node is added to the plan list. For example, in Figure 4.10,

the root of the tree consists of the final and initial nodes only. The second level of the tree

shows that a newly created node P2 is related both to node PO and node PI. Node P2 is

the precondition node for the final goal node PO, and is at the same time, the goal node for

initial state node PI. The third level of the tree shows the relationships when node P3 is

added. The actual plan list with four nodes is shown on the right-hand side of Figure 4.10.

Basic Planning Algorithm:

1. Assign goal to plan node PO
2. Create pre-condition node P1
3. Apply constraints to PO and P1
3. Planstep(P0, PI, [PO, PI])

order planstep.

planstep(Pa, Pb, PlanList):
Al. Link Pa -> Pb
A2. Assign values to PlanList

planstep(Pa, Pb, Pcl PlanList]):
B 1. Create new plan node PC
B2. Link Pa -> PC

--. B3. Apply constraints relating Pa & PC
B4. ~ p p l y constraints relating PC & Pb
B5. planstep(Pc, Pb, PlanList)

Figure 4.9 Basic Planning Algorithm

Figwe 4.10 Plan List Hierarchy

Plan hierarchy showing
relationships

between nodes in the plan list

Note: Since this is a backward planner, execution starts with
plan node PI and goes back towards plan node PO in the list
shown above.

u

Plan node
List

page 31

Chapter 4.0 Conceptual Design

Applying constraints in the planning algorithm means binding morsels to the plan

nodes. The morsels, identified in the MORSEL-LIST of each plan node, are assigned

during creation of the physical object. Object morsels constrain the STATE schema

instance in the plan node. The STATE schema instance of each plan node is instantiated

with the specialized STATE schema definition in the associated object. Plan morsels for

the object are bound to the goal plan node (plan node A in Figure 4.1 I), but relate the two

plan nodes to each other. Therefore, plan nodes in the list will be related to each other. A

plan then is an assignment of actions, targets and states that establishes consistency

lmongst active constraints on all plan nodes.

Generic Plan node:

Node Id
Action
Target Location
State
Morsel List
Boat List
Plan List

?igure 4.1 l a Plan Node

Plan Node A LzJ
Object
Morsels Plan 7

, , 1 Morsels)

(Pre-condition)

Object

Figure'4.1 l b Relationship belween Morsels and Plan No&.!

The effectiveness of the planner, as in most classical A1 planners, lies in the

development of the planning knowledge. With the proposed constraint-based planner,

consideration must also be given to the order of constraint application and value

assignment. One guideline in constraint satisfaction problems with ECHIDNA is to apply

proper constraints first to reduce the number of backtracking choice pointsls. Proper

constraints refer to methods with only a single clause, and are defined with other single

clabse methods. Hence there are no choice points introduced. Value assignment should

start with the most constrained variables (using something similar to LABELEFF primitive

in the CHIP language [vanHentenryck89]). Assignment of values to discrete variables

should be performed before assignment of values to interval variables. Splitting an interval

variable adds choice points to the solution spacel6. Thus, the chosen order of assignment

for plan variables is: action, state and target. Within the STATE variable, assignment

begins with discrete variables as well.

15This was discovered at a rather late stage in this thesis work.
l6The splits are binary, and the number of splits is the same as the precision. If the precision is 30, then
each variable does 30 splits. Thus, pruning with constraints is important at higher precision values.

page 32

Chapter 4.0 Conceptual Design

Plan modification and replanning are two desirable features of planners [Wilkins88].

In the proposed framework, these two properties are reflected in the degree of backtracking

that occurs when a plan step fails during execution of the current plan. Since the initial

planning is based on the starting position of the object, replanning produces a new plan

using the current position of the object. The implementation agent signals the planning

agent when a plan step fails at the top level.

4.3.3 The Implementation Agent.

The implementation agent handles execution of the generated plan. The
implementation agent is equally active in both components of the system: the ECHIDNA

reasoning component and the application display component. The resulting animation is

the product of the execution of plans by implementation agents. Execution of the plan

alternates between reasoning and display processes. The implementation agent must first

find a consistent state using its reasoning side, and then calculate and output its new

position using its display side. On the reasoning side, the agent maintains a state that is

consistent with constraints from the plan, object morsels and reaction morsels (see Figure

4.12). The reaction morsels deal with the collision avoidance relationships and the

dynamic environment in which the objects are being animated.

I[Plan ECHIDNA:

Object Morsels 1 (f J-7 \

1mplem;;tion

Reaction Morsels
(Reasoning)

Enviromental
Changes Application:

Implementation
Agent

Position (Animation) I
1 Fixure 4.12 The Implementation ~ x e n t 1

The reasoning and display processes are repeated at each time step of the animation.

That is, at each time step, the implementation agent is responsible for relating the new

position to constraints defined the associated morsels. The actual time between time steps,

represented by time units or ticks of 1/30 of a second, is set by the user for real-time

display or batch playback (i.e. calculate the changes for a particular period of time and play

back after all the calculations are done). Note that real-time display is not yet feasible due

to the high computational time required by the reasoning tasks in the NSAIL system.

page 33

Chapter 4.0 Conceptual Design

The basic implementation algorithm is listed

in Figure 4.13. The animation process is initiated

from the display component side since ECHIDNA

goals can only be undone at the top level of the

ECHIDNA interface. Once the external object

protocol (XOP) connection is established between

the two sides of the implementation agent,

changes in linked ECHIDNA variables associated

with the object state are automatically propagated

to the display component side. The XOP allows

external methods to be activated from the

ECHIDNA reasoning system. External methods

are methods defined outside of ECHIDNA, and

erkoded in the programming language of the

display component (e.g. a procedural language

such as C++ or C). When an external method is

invoked, a persistent data link is created for the

agruments of the method.

Basic Animation Algorithm:

Initialization for each intelligent object:

11. Apply plan node constraints
12. Apply object morsels
13. Apply reaction morsels
14. Establish XOP connection

Loop for each time step:

L1. Undo previous object assignments
L2. Undo previous position goal

L3. For each object, assign values
L4. Calculate change in position (app)
L5. Update animation display
L6. Bind position on ECHIDNA side

Figure 4.13 Basic Animation Algorithn

The implementation agent recognizes when the plan goal is attained. This implies that

the object reached the plan target point, completed the plan action and is consistent with the

post-action plan state. When a goal plan node P is bound to an object (initialization step I1

in Figure 4.13), the object is in a configuration that is consistent with the precondition node

(i.e. the plan node prior to node P in the plan list for the object). Achievement of the goal

is done in two stages using flags set by the display component side to indicate the

completion of each stage.
-*,

Chapter 4.0 Concepfual Design

Goal Achievement Morsel

(1 .. 4) Goal-Flag.

apply :- relateJlag(Goa1-Flag).

relate-flag(1) :- do-target constraints

relate-flag(2) :- do-action constraints

relate-flag(3) :- do-state constraints

relatcflag(4) :- signal goal completion

do-target :-
if position of object =:= target
position, signal application side of
agent to change flag to 2.

lo-?ction:
if action completed, signal applicatio~
side to set flag to 3.

lo-state:
Unify object state with post- action
plan state and signal application to se
flag to 4.

Figure 4.14 Goal Achievement Morse

While progressing towards the

The goal achievement morsel is a reaction

morsel that relates the object state to the current

plan node. To achieve the goal plan, the object

must first move towards the goal target. This is

target achievement. At the target, a signal (via an

external method) is sent to the application side of

the agent. At the next time step, the application

side will undo the top-level flag goal (along with

the position goal) and redo it with the next flag

value (see Figure 4.14). This causes the

constraints for action completion to be activated.

The action completion check is also an external

method since the information is relayed by motion

units on the application side. This is repeated for

the post-action object state and finally, for overall

plan goal achievement. At this final point, the

implementation agent undoes the top-level plan

node goal and retrieves the next plan node from

the plan list.

plan goal, the implementation agent must also

manoeuvre around moving obstacles not considered during the planning stage. This is

handled by the reaction morsels. The implementation agent only processes the objects in its

panic box. The panic box, maintained by'a perception agent, contains obstacles that may

have an impact on the execution of the plan. For each object in the panic box, an

apgropriate reaction morsel is instantiated to apply necessary constraints. Thus, constraints

dealing with a particular object type are only activated upon perception by the agents.

Using flags set externally from ECHIDNA, requires a mechanism for mutual

exclusion. When goals are undone from the display component side, one side effect is

backtracking into flag setting clauses of the RELATLFLAG method. When a flag is set, it

cannot be changed to a previous value. Thus, there needs to be a mechanism to ensure that

backtracking into such clauses only occurs when the position variables are bound and a
valid relationship is defined between the position and target location. Semaphores flags are

used to serve this purpose. The agents on the display component side, sets a semaphore

flag before undoing the GOAL-FLAG or object POSITION variables.

page 35

Chapter 4.0 Conceptual Design

4.3.4 The Perceptual Agent.

The perception agent is responsible for extracting information from the environment

about obstacles that must be handled by the implementation agent. It is only concerned

with objects that have possible impact on its associated object (e.g. those on a possible

collision course). Collision detection is actually performed by the display component half

of the perception agent since path collision computations are easier to program outside of

ECHIDNA. The reasoning half of the perception agent serves as the keeper of the panic

box for the other agents on the ECHIDNA side.

The perception agent checks the panic box at each time step and communicates any

occurrences of change to the other agents. The display component side binds the panic box

as a top-level goal to ECHIDNA. Whenever, the panic box changes (i.e. an object leaves

or enters the panic box), the panic box goal is redone with the new contents. Thus, at each

time step, there may be a series of top-level goals waiting to be redone.

4.4 THE INTERFACE AND DISPLAY COMPONENT.

The application specific interface module on the display component side is closely

integrated with the reasoning component. It is responsible for creating the objects and

environment layout for the animation, handling communication with the ECHIDNA XOP

for the knowledge agents, maintaining the dual nature of the knowledge agents, initializing

objects for planning and animation, calculating the position of objects at each time step

using pre-defined motion units, and updatipg the animation display. It may also provide an

interface to the animator for interactive control of the animation through manipulation of the

environment (e.g. changing environmental factors such as wind velocity and direction).

The interface module is the link with other modules for sophisticated rendering and

modelling capabilities. Its main responsibility though is to present a single interface to the

integrated reasoning and animation system for specifying and controlling behavioural

motion of intelligent entities.

page 36

NSAIL IMPLEMENTATION OVERVIEW.

5.1 INTRODUCTION.

The Sailing Scenario.

It's a gusty day on the bay. Skip checks
the camber of the mainsail and decides that it
should be flatter for the expected wind conditions.
As she tightens the battens of the mainsail, Skip
looks out across the water ... whitecaps at the
mouth of the bay. She will have to tack close at
the second mark and head high to catch the
stronger breeze along the shore of the beach. The
first horn sounds as she pushes the boat into the
waves. Rudders down. Locked. Jib in.
Mainsheets. The hobie picks up speed as it sails
oug of the wind shadow from the wharf. A
sudden gust of wind, and the windward hull lifts.
Skip lets the mainsail out and hikes out on the
trapeze. Boat on port side. Skip heads upwind
and passes behind the oncoming boat. Figure 5.1 Having a hobieday!

5.1.1 Motivation.

NSAIL is an animation interface for a sailing domain. NSAIL is based on the

integrated reasoning and animation framework proposed in Chapter four. The objectives of

the implementation are: 1) test the proposed constraint-based methodology for behavioural

motion control; 2) gain further insight into the use of the ECHIDNA expert system for

computer animation; and 3) create an anin7ation of an interesting, nontrivial environment.

A sailing animation is well-suited for the proposed constraint-based framework since

there is a natural hierarchical view of motion control for a sailboat, and the interaction

between the sailboat and dynamic environment is clearly visible. There are established

navigational objects (e.g. race markers, channel markers, warning buoys, etc.) which

dictate definite relationships between themselves and the boat heading. There are well

defined, if not widely obeyed, rules for determining the right of way when boats approach

each other. The division of responsibilities on a sailboat can be easily represented with the

three knowledge agents for planning, implementation and perception. It should be noted,

however, that the sailing model for NSAIL is greatly simplified in order to demonstrate the

concepts proposed, and does not implement the vast heuristic knowledge in the form of

personal theories regarding sailboat performance and sailing strategy!

page 37

Chapter 5.0 NSAIL Implementation Overview

At the physical level, the motion of a sailboat can be expressed as the result of

complex opposing systems of aerodynamic and hydrodynamic forces. However, the

motion of sailboats as seen by spectators on the beach is not wholly and solely dependent

on the interaction of wind and sail. At a higher level, the course of the sailboat is driven by

the intelligent entities at the helm and winch, who are constantly adjusting the boat heading

and sail shape in response to continually changing environmental conditions. Thus, the

boat, the environment, and the expertise and intentions of the crew impact the observable

motion of the sailboat.

5.2 -THE SAILING MODEL.

5.2.1 The Sailboat,

The NSAIL boat, at the lowest level of

abstraction, is basically a boat heading (see Figure

5.2). All reasoning and manipulations eventually

lead to an adjustment of the boat heading. All other

NSAIL boat variables are dependent on the boat

heading and the wind direction.

Main Sail
Angle

Boat Heading

Figure 5.2 Main Sailboat Varibles 1

The sail angle plays a secondary role. It is related to the wind and boat heading, but

can also be manipulated independently. For example, the boat heading relative to the wind

dictates the side of the boat where the sail should be, but the exact position can be set by the

implementation agent. In NSAIL, the sailangle is used to regulate the speed of the boat,

and to infuse a bit of variation for boat performance. If the sail angle is not optimally set,

the boat sails at less than optimal speed. In some cases, an inappropriate sail setting leads

to% boat kpsize.

I BOAT SYMBOLS 1
Wind Direction

Boat Heading and Wind gives:

True Course
Point of Sail

Figure 5.3a is a list of sailboat-related symbols used in this
document. True course(I3) is the direction of the sailboat in relation
to the wind. Figure 5.3b lists the different variables related to boat
heading and wind. They differ in their range of heading values.
True course is a single value [O0-360'1. Point of sail is a range of
headings within 0' to 180'. And tack is either port (I3 is 0' to 180")
or starboard (l3 is 180" to 360'). (See Appendix B for more
information regarding sailing terminology).

When listing ECHIDNA structures and methods, a modified form of
the ECHIDNA CLP language is used for brevity. In the text of the
document, references to actual names of schemas and variables are
capitalized.

page 38

Chapter 5.0 NSAIL Implementation Overview

5,2.2 Points of Sail,

POINTS OF SAIL:

A = closed hauled
or beating

B = close reach
C = beam reach
D = broad reach
E = running or

downwind

True Course @) is
the- angle between
boat heading and
wind direchon.

Wind

I Figure 5.4 Points of sail 1

The point of sail relates the heading of the

boat in relation to the wind. This is useful for

reasoning because it provides a consistent view of

the sailboat regardless of the true wind direction.

Where the true course angle is the absolute angle

(from 0" to 360") between the boat heading and

the wind direction, the point of sail is a wider

range of headings. For example, if a boat is

heading into the wind, the boat's point of sail is

either close-haul or close reach which means that

the boat must be on a true course angle between

30" to 50" for a close haul or 50" to 80" for a close reach. The points of sail are the same

for both tacks (i.e. starboard and port). Figure 5.4 shows a boat on a port tack (i.e. wind

going across the left side or port side of the boat and sail on the right side).

5.2.3 Sailing Actions,

Different sailing actions are found at each point of sail. In a real boat, sailing actions

are tacks and jibes (and maybe an occasional man-overboard exercise). Otherwise, the boat

moves under continuous adjustment of the heading and sails. In the NSAIL system,

adjustments to the boat heading (i.e. heading up or bearing away without tacking or jibing)

are modelled as actions that change the pojnt of sail: beat, reach and run.

5.2.4 Predictine Sailboat Performance,
--

Predicting the actual performance of the sailboat under given conditions is quite

complex. The NSAE model, since its focus is not on modelling the underlying physics of

sailing, relies on experimental data to compute boat speed. The reader is referred to

Appendix B for more details on performance calculations.

5.3 NSAIL SYSTEM ARCHITECTURE.

As shown in Figure 5.5, NSAIL consists of two components: the ECHIDNA

reasoning component and the sailing application interface which is the display component.

Each sailboat object consists of three agents for planning, reaction and perception. Each

page 39

Chapter 5.0 NSAIL Implementation Overview

agent is represented in both components, and they communicate with their counterpart in

the other component through ECHIDNA'S XOP. Control within NSAIL is shared between

the two components, and there is a close link between the two components of each agent.

The sailing animation occurs in two stages for each boat. The first stage is the planning

stage. The planning starts before any activity actually begins, and may be re-invoked

during the execution of the plan. This corresponds to the onshore pre-race strategic

planning that may occur in a real sailing scenario. The second stage is the animation of the

plan generated by the planning agent.

I Figure 5.4 NSAIL System Architecture

5.4 WORLD REPRESENTATION.

5.4.1 Obiects,

Presently, NSAIL can create sailboat objects, markers and generic static and moving

objects. Sailboat objects are the only intelligent objects modelled in NSAIL (i.e. with

associated knowledge agents). These objects are used to create the set and characters for

the animation piece. There is also a simple rectangular object to represent land mass. The

position and other information about the object is input through the NSAIL user interface.

NSAIL: the hobiecat. The hobiecat is a catamaran- I ' obiectNum Boat-Id.

There is really only one type of sailboat in

boatstate ~oa tS ta t e .
style dingy with a single main sail. Despite the I mgle Main-Sail-Angle.

schema hobiecat
I

suggestion of its appearance, the hobiecat object 1 wOrldPOint

the hobiecat object. On the reasoning side, the I i
Boat-Mo~sel-List.

hobiecat object has a list of object morsels stored in

symbolizes the typical sailboat. For purposes of

rendering, different display models can be attached to

the Boat-Morsel-List variable (see Figure 5.6). F i ~ u r e 5.6 Hobiecat Schemc

agent Tactician.
agent Captain.
agent Lookout.

page 40

Chapter 5.0 NSAIL Implementation Overview

There is currently no special knowledge in the system pertaining solely to hobiecatsl7 (e.g.

a hobiecat cannot sail as close to the wind as a monohull).

=*
-I - .

*@
* C

i
I

b
4

4
I

b
4

4 *
b

4
1 *

I
4

4

c;P b

Figure 5.8 Rounding Mad

The BOATSTATE schema (see Figure 5.7)

contains variables that are used to define the

configuration of the boat. The variables are related to

Markers are used in a sailboat race to identify the segment

or legs of the race course. The sailor knows that the boat must

go around the mark in a particular manner to qualify for

completion of the sailing leg. This is called rounding a mark as

shown in Figure 5.8. Marks must be rounded on the side

dictated by the race committee (e.g. round to port). Handling of

marker objects requires planning since they infer a more

complicated context-dependent relationship than other static

objects floating in the water. Context-dependency is a reference

to the characteristics of the agents controlling the boat and the

current goal being pursued. For example, if the sailboat is not in

a race situation, the marker object can be handled as a generic

schema boastate
(

direction Heading.
tacks Tack.

each other through the boat heading and the wind

direction. These two variables determine the values

for the other variables in the boat state.

static object. It serves as a navigational object only, constraining the boat heading to avoid

collision with the marker object.

pointofsail POS.
truecourse Truecourse.
operation Action.
mffnterval Modifier.

1
Fixure 5.7 BoatState Schema-

- There are other navigational objects found in a sailing domain. In NSAIL,

navigational objects define a desired heading relationship between itself and sailboats. For

example, a channel buoy means to stay on the starboard side when it is flashing green, etc.

The land-mass object in NSAIL also can be seen as a navigational object. The heading of

the boat should avoid beaching the sailboat! As with other navigational objects, the

relationship between boat and land-mass object is represented with a polarTarget schema

(see Figure 5.9).

17'I'his however can be added at a later date by defining a new kind of sailboat object in ECHIDNA and the
application interface. However, no experimental information is available for accurately modelling the different
sailboats. Furthermore. the interest is in animation as opposed to simulation.

page 41

Chapter 5.0 NSAIL Implementation Overview

The heading constraints implied when encountering

a navigational object are represented with a two-

dimensional polarTarget schema instance. In Figure 5.9,

a polar target schema is applied to constrain the heading

(g) of sailboat A to reach object B. The polarTarget

schema simply provides a modular manner for encoding
heading relationships between two objects in

ECHIDNA'S CLP language.
I Figure 5.9 Polar Target

The position of A is unified with the origin of a polar target instance, and the position

of B is unified with the endpoint. In the object-morsel for a navigational object,
appropriate settings will be defined to relate the location of the endpoint to its own location.

5.4.3 Motion Units,
NSAIL GOAL ACTIONS:

- .

sailing motion. They are used to
Figure 5.10 NSAIL Goal Actions

implement the actions to be

Motion units are on the
display component side of NSAIL

animated. Though there may be a one-to-one correspondence between actions and motion

units, NSAIL has four basic motion units: sail-forward, sail-curved, start-boat and

stop-boat. These four motion units are used to implement the NSAIL goal actions listed in

Figure 5.10. Starting and stopping a boat is described by Marchaj [Marchaj88] as a path

with changes in velocity along the path. This is compatiable with the NSAIL

implementation of motion units.

tackOp = (tackToPort, tackToStarboard) .
jibeOp = (jibeToPort, jibeToStarboard 1.
beatop = { portBeat, starboardBeat).
reach@ = (pofieach, starboardReach).

In NSAIL, the motion unit is a path with changes in heading along the path. The

basic structure defines the path of the motion unit using three points and two angles (as

shown by the PATHINFO structure in Figure 5.1 1). The points are relative to the origin of

the movement (i.e. the world point in which the current action began). The angles are

relative to the original boat heading when the action started. They indicate the change to the

boat heading at the corresponding point (i.e. adjustment by tiller to steer the boat in a new

direction). Each point delimits a segment for optional special processing. All motion units

continue moving in the direction of the final heading after point pnt3. This is required to

page 42

Chapter 5.0 NSAIL Implementation Overview

handle the transformation from one action to the next. The points in the motion unit also

identify when an action may be interrupted to execute an evasive maneouvre to avoid an

obstacle. For example, in a tack or a jibe action, point pntl is the point of no return. The

portion of the curvedpath action between points pntl and point pnt3 cannot be interrupted,

permitting representation of actual sailing motion cannot be interrupted once started. There

is a point in a tack or jibe where there is little control over the boat heading if aversive

steering is required. For example, when the sail is luffingB during a tack as it crosses the

wind, there is little power in the sail and hence little maneuverability. In such situations, if

the captain fails to check for oncoming boats beforehand, collision may be unavoidable.

The NSAIL sail-forward motion unit handles sailing at a steady heading for the

different points of sail. It may be interrupted at any time and there is no alteration to the

boat heading along the path. There are no special processing segments for sail-forward so

all points in the path are set to (0,0,0). The boat therefore, when executing a sail-forward

direction, progresses forward in its present boat heading until otherwise directed (i.e. target

reached or obstacle encountered).

The sail-curved motion unit is

used to implement a tack or jibe

action. A curve is fitted18 to the

points in the path of the motion

unit. The boat follows the defined

path during execution of the action.

The distance to the first point refers

to the optional preparation portion

of .- the action. For a tack, this is the

phase where the speed and heading

of the boat is adjusted in

anticipation of the tack.. A boat

must be moving at a certain

minimum speed in order to propel

the boat across the wind.

pntl

Basic Structure of a motion unit path is shown above. It
can be used to represent an action with a linear path in its
default form (ie. angl = ang2 = 0).

Motion
Unit

angl = 0
ang2 = 90

coord3 pntl;
coord3 pnt2;
coord3 pnt3;
int angl;
int ant2;

1

Curved Motion Unit:
Changing angles and
segment lengths will
create different paths.

Figure 5.9 Motion Unit ~tructure]

18~urrent l~ . NSAIL is using CTB curve interpolation [Kochanek84]. However, CTB curves pass through all
keypoints so point pnt2 has to be adjusted accordingly. Curve fitting should be done with Hermite or Bezier
curves since they do not pass through all the given keypoints.

page 43

Chapter 5.0 NSAIL Implementation Overview

In a sail-curved motion, the heading is altered appropriately and gradually as the

action progresses. This is done by the helmsperson at the tiller or wheel. How quickly the

heading should be changed, and how quickly the boat responds, is dependent on current

environmental conditions. For example, in strong winds, jibing the boat can occur very

fast. In lighter winds, tacks must be slow and steady, especially on a hobiecat. Otherwise

momentum is lost and the boat may not be able to complete the tack, leaving the boat in

irons (i.e. luffing straight into the wind and basically going nowhere or possibly

backwards!). This is represented by adjusting the relative distance of the points in the

motion unit path.

Analysis of data from wind tunnel

experiments and sailing races [Marchaj64],

support the division of tack actions into

distinct segments (see Figure 5.12). There

are also fluctuations in the boat speed due to

variation in the aero-hydrodynamic forces

on the sailboat. The sail angle must be

adjusted at different points along the path as

well. This information can be encoded at the

different points of the motion unit path

structure. The changes in heading and sail

angle during the execution of the motion are

not propagated to ECHIDNA until the

motion is in a steady state (i.e. after

pnt3). ECHIDNA does not need to reason

about these changes prior to this point. ..-

The sail-curved motion unit can also

be used to animate a more realistic transfer

from one action to another. An example is

the changing of the boat direction to move

from one point of sail to another, or one

I Figure 5.12 From Marchaj64 Figure 229

t I

Representing
a change in I

sail (e.g. action
changes from
a beat@ to a
reach@). 4

This could be used
for a "chicken jibe"
action or a man-
over-board action.

action to another (see Figure 5.13). If the I Figure 5.13 Other uses of Motion Unit3

heading is to be different at point pnt2, the captain actually starts turning the boat at point

pntl, and the boat arrives at its new heading at point pnt3.

6.0 NSAIL KNOWLEDGE MORSELS.

6.1 OVERVIEW

The NSAIL reasoning component

specifies the motion of a sailboat at the

behavioural level. The behavioural level

represents the reasoning process of the

intelligent entity controlling the mainsail

angle and boat heading. The intelligent

entity is modelled by three NSAIL agents:

the tactician, captain and lookout. The
character of these agents is captured in

ECHIDNA by three kinds of knowledge

morsels: boat morsels, reaction morsels

and planning morsels (see Figure 61 .).

6.2 BOAT MORSELS

When a sailboat is instantiated, its agents are

given a list of morsels to reflect the knowledge of

the world in which they interact. In NSAIL, the

tactician and the captain must have knqwledge

about how a sailboat works in order to accomplish

their respective tasks. This knowledge is encoded

in-boat m~rsels for reasoning within ECHIDNA.

ECHIDNA REASONING SYSTEM

Figure 6.1 NSAIL Knowledge Morsels

Boat morsels are object morsels that relate

the boat state to the wind directionlg. There are

three types of boat morsels: point of sail, tack and

sail. Each morsel type, identified by a unique id,

has the basic structure shown in Figure 6.2.

SAILBOAT MORSELS (boatMorse1):

pointOfSailMorse1
tackMorse1
sailMorse1

Figure 6 . 2 ~ Sailboat Morsels

schema boatMorse1
{

boatstate BState.
boatMorsel(boatstate B) :-

BState = B.
apply :- constraints.

I

bind(ID, boatstate B, boatMorse1 M) :-
M isa boatMorsel(I3).

I Figure 6.2b Boat Morsel Schema

1 9 ~ sailboat moves under the influence of both aerodynamic and hydrodynamic forces (i.e. wind and water). To
reduce complexity, hydrodynamic forces (e.g. waves, tides, etc.) are not considered in NSAIL.

page 45

Chapter 6.0 NSAIL Knowledge Morsels

The POINT-OF-SAILMORSEL schema
defines the interdependency between the boat state

variables and the boat's point of sail. POS (the

point of sail variable) is determined by the true

course (a) of the boat. True course angle is given

as an single value relating wind direction and boat

heading. The point of sail defines the relationship

between the wind direction and boat heading with

a range of values for true course. If the true

course is between 90" and 165" off the wind (area

D in Figure 6.3), the point of sail is then a broad

reach. The points of sail basically describes the

POINTS OF SAIL:

A = closed hauled
or beating

B = close reach
C = beam reach
D = broad reach
E = running or

downwind

True Course @I) is
the angle between
boat heading and
wind direction.

Wind

Figure 6.3 Point o f Sail Morse

major relationships between the boat heading and the wind direction (i.e. upwind, across

the wind or downwind). Sailing behaviour differs significantly at these general points.

rhus, the point of sail morsel also identifies particular sailing actions for each point of sail.

Wind

U1

Figure 6.4 Boat ~ a c k j

-1

.. B

'a
%

Starboard
Tack

Figure 6.5 Sail Anild

'4 I4

Q4
' Port

Tack

The TACK-MORSEL schema defines the relationship

between boat tack and true course (13). The true course is already

related to boat heading in the point of sail morsel. A boat is on a

starboard tack if 13 is 180" to 360" and aport tack if 13 is 0" to 180"

(see Figure 6.4). The TACK-MORSEL schema also relates the

boat tack to appropriate sailing actions (e.g. port beat or starboard

beat).

The SAIL-MORSEL schema (see Figure 6.5) defines the

relationship between the point of sail and the main sail angle (y).
When the boat is sailing upwind the sail is pulled in close to the

centerline. As it bears away (i.e. as it turns downwind from

close hauled to running), the sail should be adjusted accordingly

to maximize boat performance. The adjustment for bearing away

is usually to let the sail out so the sail angle is increased for

optimal wind flow and driving force (see Appendix B).

However, the sail angle is not wholly derived from boat heading

and wind direction as with tack and point of sail. The

SAIL-MORSEL schema only offers the normal mapping

between the sail angle and point of sail.

page 46

Chapter 6.0 NSAIL Knowledge Morsels

Range of values for sail
angle where p=O' means tha
the sail is sheeted in close
to the centreline of the boat
and the point of sail is
usually close hauled.

The implementation agent may choose instead to set the sail

angle differently for various reasons (e.g. to depower the sail and

reduce boat speed). It may choose any value for the sail angle p,
where -90" I p 1 90" (see Figure 6.6). The agent may not know

the best sail position which is dependent on many factors (see

Appendix B). Since the boat speed is affected by the sail angle, it

can be used to model the inexperienced sailor. Thus, the sail

morsel includes a null APPLY method which allows the sail

angle to vary independently of the constraints stated in the

morsel. Excluding the boat morsel from the morsel list leaves the

sail setting totally in the hands of the implementation agent.

The boat morsels essentially relate the boat state variables to the boat heading and the

wind direction. If either one changes, the boat state will be automatically updated by the

backtracking process. Thus, the constraints in the boat morsels identify all the possible

sailboat configurations.

6.3 REACTION MORSELS. staticMorse1 (navigational)
movingMorse1 (navigational)

Reaction morsels (see Figure 6.7) define the landMorse1 (navigational)
rightOfWayMorse1 (sailboat)

relationships between objects in the NSAIL domain, -

Fi~ure 6.7 Reaction ~orse l s ! mainly for collision avoidance. All sailboats have I
morsels to handle generic physical objects, both static and moving, in the domain. For

each object Pi in a sailboat S's panic box ('where 15 i Sn and n is the number objects in the

panic box), a reaction morsel Ri is created to relate the state variables of S and Pi.

.-
The reaction morsel for a generic static object Pi imposes a

constaint on the boat heading(@) to pass on either side of Pi.

Since boat heading is an interval variable in ECHIDNA, the OR

operator is not available. Therefore, the APPLY method for the

reaction morsel will have two clauses, one for each side of Pi. As

the position of sailboat S is updated during the animation phase,

the avoidance headings (angles n: and in Figure 6.8) may be

modified due to unpredictable boat behaviour (i.e. it may stray

off course). In such cases, the persistent reaction morsel will

adjust the heading in response to existing conditions.

Boat Heading(@) must be
(1r5 8) or (@ Zi)

page 47

Chapter 6.0 NSAIL Knowledge Morsels

If sailboat S is on a possible collision course with an

unidentified moving object Pi (see Figure 6.9A), P i will be in

the panic box for S. The relationship between S and P i is

defined by the reaction morsel for generic moving objects.

The generic moving object morsel uses a polar target to

maintain the relationship between the two objects. The position

of the sailboat S is bound to the origin of the polar target, and the

position of object Pi is bound to the endpoint. Thus, the polar

angle (~ 1) constrains S's heading to pass behind Pi (see Figure

6.9B). As Pi moves away, the constraint on the sailboat heading

relaxes (as in Figure 6.9C) until Pi exits S's panic box.

* Aiming to sail behind object Pi is the most cautious way of

avoiding collision. The method works fine for objects that are

fast and close. For objects that are further away, it is more

appropriate to estimate the collision point and constrain the boat

heading for sailboat S to avoid the collision point. This is

encoded in ECHIDNA with multiple polar targets (see Figure

6.10). As depicted, a collision is when the same point (C) is

reached at the same time by two objects. Polar targets PTO and

P T l in Figure 6.10 are effectively encoding two vectors,

representing S and Pi respectively, to identify a moving collision

point over a period of time.

+- CONSTRAINT-BASED COLLISION POINT ESTIMATION:

C
Let PTO and FT'1 be polar targets where (19, 00)
defines PTO and (rl, 01) defines PT1.

Let PTO: endpoint =:= PT1:endPoint which is
represented as point C in the diagram.

P T ~ Let PT0:origin =:= S:position
And PT1:origin =:= P1:position.
Let 01 =:=PI: heading.

Time TO =:= 10 / S: speed.
PTO Time T1 =:= r l / P1:speed.

TO =:= TI.

Figure 6.10 Collision Point Relationship

Sailboat S is on a
possible collision course
with object Pi

I Figure 6.9A Collision?

Boat Heading is constrained
to avoid moving object Pi at
tirnestep t where fi < nl.

1 Figure 6.9B Avoidance I

Zonstraint on boat heading
it time t+l where ~ 2 x 1 .

Figure 6.9C Avoidance 11

page 48

Chapter 6.0 NSAIL Knowledge Morsels

In Figure 6.10, the reaction morsel for handling a moving object Pi now constrains

the boat heading to aim below the collision point C (i.e. boat heading fl c go or fl > 00
where @O is the polar angle for polar target PTo). The exact heading needed to aim below

point C is dependent on the direction of P i . It is also possible to aim forward of the

collision point. If Pi is travelling directly towards or away from S , the boat should head

towards either side of Pi as if it was a static object (refer to Figure 6.7).

I Figure 6.11 Land or sell

A land morsel defines the relationship between sailboat S
and a land object L. In this case, the constraint is simply that the

position of sailboat S not be within the land mass area (see Figure

6.11). For the NSAIL implementation, the land constraint is

further simplified to symbolize a shoreline, expressed as a line

(i.e. x=xo). Thus, the constraints with L operates on only one

coordinate of S's position in world space. The land morsel

schema is introduced in NSAIL to provide an alternative

constraint type (i.e. one that does not directly impact the boat

heading as most other reaction morsels do).

Wind
,'SAME

1 '
,*Leeward boat (S1)

f has right of way.
t 1

' Wind I I Wind

I

?. I
Starboard tack (SI)

*, has right of way
I '*:, over port tack(S2).

I .

OPPOSITE
I TACKS

Overtaken boat(S2) has
right of way. C

uc. OVERTAKING

Figure 6.12(a,b,c) Right of way rules for sailing

The right-of-way morsel defines the right of way rules between two sailboats Sl and

S2 where S2 is in the panic box of Sl (see Figure 6.12). There are basic right of way

rules20 to handle the three possibilities when two boats meet. For boats on the same tack

29here are actually three general sets of rules for sailing: International, Inland and Racing. The International
Rules follow the three basic rules. The Inland Rules include an additional rule: A closehauled boat has the right of
way over a fiee running boat. This is from the days of the square riggers which were more maneouvrable downwind
than closehauled. The Racing Rules allow the opposite tack rule to override the overtaking rule when the situation
occurs. That is, a starboard tack boat does not have to stay clear when it is overtaking a port tack boat. This only
occurs when sailing downwind and the defense is for the boat being overtaken to tack. [Colgate73]

page 49

Chapter 6.0 NSML Knowledge Morsels

(Figure 6.12A), the leeward boat (i.e. the one further downwind) has the right of way.

For boats on opposite tacks, the starboard boat has the right of way (Figure 6.12B). In

overtaking situations, the boat being overtaken has the right of way (Figure 6.12C). In

racing situations, there are additional rules and exceptions to the basic rules which can be

integrated as part of the tactician's strategy to gain an advantage over another boat. For

example, when rounding a mark, the inside boat will try to create an overlapB in order to

gain the right of way. (See Appendix B) Only the basic rules are presently included in the

right of way morsel.

Figure 6.13 Right of Way Morsei (see Figure 6.13) in the morsel for backtracking I

I n NSAIL, if sailboat S1 has the right of

way, it can hold its course by maintaining a right

of way relationship with sailboat S2. Otherwise Sl

must establish a relationship with S2 for collision

aqoidance. These are seDarate APPLY clauses

(i.e. only one clause can be consistent with the boat states of the two boats). For the same

tack rule (Figure 6.12B), the leeward relationship is provided through an external method

for ease of computation. For the third rule (Figure 6.12C), object S1 is overtaking object

S2 if heading of S1 =:= heading of S2, and the speed of Sl > speed S2.

of way morsel:
apply :- S 1 is on starboard tack
apply :- S 1 is leeward of S2
apply :- S 1 is being overtaken by S2
apply :- S1 must avoid S2
apply :- S1 must reduce speed

The collision avoidance clause finds the collision point C (as for a generic moving

object), and constrains the boat heading of Sl to be forward or aft of C. It is left to other

stategic constraints to determine a more definite heading (e.g. an aggressive agent would

pass ahead if the boat velocity is improved). Another technique for collision avoidance is

to slow the boat down by adjusting the sail (i.e. to "spill" wind to depower the sail). This

is -- included as the final option for collision avoidance in the right of way reaction morsel.

6.4 PLAN MORSELS.
PLAN MORSELS:

tackO~erationMorse1

Plan morsels (see Figure 6.14) define the

relationship between adjacent plan nodes in a

strategic plan. Specifically, plan morsels relate

list, node i is the precondition node for node i+l where O<i<n-1 and n is the number of

goal nodes to their precondition nodes. In the

nodes. Plan node n also represents a top-level goal from the NSAIL application interface.

FIxure 6.1 4 Plan Morsels

page 50

proposed planner, for each plan node i in the plan

Chapter 6.0 NSAIL Knowledge Morsels

NSAIL implements only a small subset of possible plan goals (e.g. round mark to
port, tacks, jibes and point of sail variables). This subset, however, is sufficent for the

exploratory nature of the NSAIL application. The most challenging point of sail, beating

upwind, is covered in this planning subset.

is done. Note that the heading of the precondition node is 1 Finure 6.15 NSAIL Plan Node

towards the target of the goal node.

Recall that a plan node (see Figure 6.15) has an

action (represented by the GOALOP variable), plan state

and target point. The plan state is the same as a boat state,

and they are unified during plan execution after the action

- --

Wind A

NSAa PLAN NODE S C H E ~ A

 lan no^ GoalOp.
planstate State.
worldpoint Target.

When the wind is blowing
i o m the north, planned
d o n is a beat operation
:upwind).

m Q
Wind

When wind is blowing
from the south, planned
action is a run operation
(downwind).

Figure 6.16 Determing Action for a Target Goal

Simply using a polar target (as in Figure

6.16) to find the appropriate heading for a target

goal works well except when the target X is too

far upwind of the sailboat S. It is impossible to

sail directly upwind towards X. Some types of

sailboats may be able to head as close as 30" off

the wind, but on average, most boats can only get

as close as 40" [Marchaj88]. In such

circumstances, a series of tacks must be made to

reach the upwind target. Thus, the beat plan

morsel has a clause that constrains the target of the

precondition node (e.g. node N3 in Figure 6.17)

A basic goal for a sailboat is to sail to
a given location in the world space. The top-
level goal plan node specifies only the target
location X. A polar target T is then used to
relate X to the position of the sailboat S. The
boat heading is unified with the polar angle 0.
The endpoint of T is unified with X and the
origin of T is unified with the position of S.
(See part A of Figure 6.16) The current boat
state of S is bound to the plan state. Now
when values are assigned to the two plan
nodes, the polar target T will constrain the
assignment to ensure that the boat heads
towards the target X.

Plan Nodes:

N I

Target =
X

F

N3

Target =
Y -
I

N2
'I'arget =
position

ofS

port .P
Wind

'r S

tack

Fixure 6.1 7 Beating Upwinc

page 5 1

Chapter 6.0 NSAIL Knowledge Morsels

to be the midpoint of the windward distance between the sailboat S and target X. This is

the most optimal point for a tack if there are no interfering obstacles. Therefore, any new

plan node is first heuristically constrained to be halfway between is two neighboring plan

nodes. New plan nodes are added only when there is no other option to satisfy the goal

node N l with precondition node N 2 . A new plan node N 3 is added as the new

precondition node for the goal node N l . Node N l will constrain the heading at node N3 to

aim towards target X, and node N3 will constrain the heading at node N2 towards target Y.

The location of target Y may be further constrained by node N3 and by other morsels (i.e.

boat morsels and reaction morsels for static objects) that are part of the planning process.

I Let N1 be the goal plan node A tack operation means to change the boat tack
Let N2 be rheprecondition nodefor Nl

morsel (see Figure 6.18) relates the plan states of the I ~2:tack(racks TZ),
T1 =I= T2.

from starboard to port (or vise-versa) by turning the

bow of the boat across the wind. The tackoperation
tackOperationMorse1:

Nl:tack(tacks TI),

goal node and its precondition node. Note that the tack

operation requires a heading change of 90". In this

operation also changes the boat tack, but while sailing H1 =:= H2 + 90.

downwind so that the stern turns across the wind.

~ l : p o s (~ o i n t ~ f ~ a i l PI),
N2:pos(pointOfSail P2),
P1 =:= sailingupwind -,

manner, the target variable of node N3 in Figure 6.17

will be constrained to an appropriate location. A jibe

In a sailing race, rounding a mark to port means to go around a race mark with the

~2 =:= sailingupwind -,
Nl:heading(direction Hl),
N2:heading(direction H2),

mark on the port side of the boat (see Figure 6.19). The round mark goal does not really

correspond to a specific action. It is the action taken at its precondition node that actually

moves the boat around the mark when the plan is executed. The roundMarkToPort morsel

strategically - sets the target and plan variables for the precondition node. Rounding a mark

is a very crucial aspect of the race. This is where all the exciting strategy happens in a race:

page 52

Wind

4 4 - . --, -.
' '

@ 'QQ
ROUNDING A MARK

' ' '
TO PORT

"19

Always approach a mark so that you can round it without having
to tack in the process. If you are rounding marks to port, a
starboard tack approach is generally best; you have the right of
way over other boats and can round without tacking. The most
desirable position at the mark is usually on the inside line. If you
can establish an overlap and round closest to the mark you will be

, the windward boat after rounding, in good position to inflict other
boats with your backwind, blanket area and wake! Don't waste
time tacking immediately after rounding the mark. It's best to
maintain course on the same tack; this way you'll have the jump
on boats trailing close behind you. Closely monitor the strategy
of your nearest opponents. When they alter course or tack, you
can too and still stay in front with a clear air advantage. [Gmbb791

Chapter 6.0 NSAIL Knowledge Morsels

Such simple words of strategy can be quite complicated to implement! Currently, in

NSAIL, the only strategic heuristic applied is to be on a starboard tack when rounding a

mark to port. The next easiest strategic heuristic to implement in this framework is to be as

close to the mark as possible. The other points mentioned in the excerpt [Grubb79] are too

complicated to incorporate in NSAIL.

page 53

7.0 NSAIL Control and Animation.

7.1 OVERVIEW

As shown in Figure 7.1, control in

NSAIL is passed from agent to agent for

different functions. The user designs the

environment and specifies high-level

goals. For each sailboat, its high-level

goal; plan morsels and boat morsels are

used by the tactician to produce a plan

list21. The plan list, boat morsels and

reaction morsels constrain the motion of

the sailboat during plan execution by the

captain. Changes in each sailboat's

dynamic environment are stored in their

panic box by the lookout and used to

trigger replanning when necessary.

7.2 KNOWLEDGE AGENTS.

1 I INPUT ENVIRONMENT &PLAN
I

..........
.

TACTICIAN:.:
........ morsels

Replanning
I

Plan List

w
CAPTAIN.:.:.:

m

Panic Box reaction

I Boat Settings & (morsei
I Actions w

I I ANIMATION 1
I Figure 7.1 NSAIL Control Flow

The behaviour of each NSAIL agent follows

the model proposed in the conceptual design

where the tactician is the planning agent, the

captain is the implementation agent and the

loekout is the perception agent (see Figure 7.2).

The knowledge specific to the NSAIL

implementation is captured in the knowledge

morsels used by the agents. The boat morsels and

plan morsels are used by the tactician to produce a

plan which relates the goal of the boat to its initial I Figure 7.2 NSAIL Knowledge Agents

position. A top-level goal (e.g. round mark to port at marker X) is specified when the

sailboat is created by the user via the NSAIL user interface. The planning process is also

controlled by the display component through the tactician. To control the planning

210riginally. the intent was to do a high-level plan of the race course. Hence, the inclusion of the "onshore" kind of
planning expected of the tactician.

page 54

Chapter 7.0 NSAIL Control and Animation

process, the tactician issues the following top-level ECHIDNA goals shown in Figure 7.3.

Note that for each planning agent, the details of steps two and three follow the basic

planning algorithm in Figure 4.9.

1) SETUP-GOAL: Binds and applies boat and plan morsels in anticipation of the
planning activity. This is done for all sailboats before
progressing to the next planning task.

2) PLAN-POSITION: For all sailboats, assign initial position of the boat to the first
plan node.

3) ASSIGN-PSTATE: Assigns values to the plan node variables (i.e. target, plan state
and action).

4) PLANLIST: Application captain binds each plan node in the generated plan
to the boat state for plan execution.

I . Figure 7.3 Top Level Planning Goal:

Once planning is completed, the captain relates the first plan node to the boat

state in preparation for the animation phase. During execution of the plan, replanning

occurs for a particular sailboat if the state of the world is not consistent with its goals.

Therefore, the top-level plan goal will fail and the display component side of the tactician

will initiate the replanning process with the updated location of the sailboat. The first

step is undo all the previous goals in order to deal with the non-monotonic environment.

1) Undo ASSIGN-PLAN-STATE.

2) Undo PLAN-POSITION.

3) Redo PLAN-POSITION goal with current position of sailboat

-- 4) - Redo AS SIGN-PLAN-STATE

5) PLANLIST - bound to new plan node

Figure 7.4 Replannin,

7.3 CONTROL HIERARCHY

The implementation of the plan requires a hierarchical control structure. The

animation cycle (see Figure 4.13) is repeated for each object at each time step. Each

object in turn cycles each of their associated agents through a series of steps for

initialization and screen update. Each agent on the display component side performs a
series of ECHIDNA goals to apply morsel constraints and assign state values to be used

page 55

Chapter 7.0 NSAIL Control and Animation

for calculating the next position of the object. Thus, the agent cycles through its lists of

morsels and requests a series of goals. For example, during the animation cycle, when a

hobiecat object assigns values to

the boat state, it requests that its

agents perform an assignment task.

Each agent sends an ASSIGN goal

to each morsel in its morsel-list.

This is required for binding,

assignment and application of

morsels. This is necessary because

some operations must be done for

Hobiecat c/

I Figure 7.5 Control Hierarch

all objects at one time. For example, all objects must apply the constraints in their

m6rsels before any variable can start assigning values (i.e. all constraints must first be

applied to the object population).

7.4 THE NSAIL USER INTERFACE.

The NSAIL user interface is interactive and is intended to produce real-time control

of the 3D animation. The animation process follows the given steps: 1) design the layout

for the sailing environment (i.e. positions of static objects and land masses); 2) describe

the characteristics of a sailboat by selecting knowledge morsels for each of the

knowledge agents; 3) instantiate multiple sailboats with specified locations, headings and

goals; 4) set the wind characteristics; and 5) initiate the animation display and watch the

motion evolve. Environmental conditions can be changed as the animation proceeds.

The sailboats, through the reasoning component, will automatically respond to such

en~ironmkntal changes (i.e. the wind) as the animator manipulates the values of

environment factors. Boats can be deleted and added, goals can be changed, and the

layout can be rearranged to control the animation. This is the ideal situation.

The current NSAIL interface is implemented in an object-oriented language (GNU

G*) to be consistent with the object-oriented design of ECHIDNA. Both components of

NSAIL, the reasoning the display components, run on Silicon Graphics Iris Indigo

workstations, and communicate through the XOP. The user interface, shown in Figure

7.3, is constructed with the FORMS graphical user interface toolkit. A useful testing

feature is a FORMS panel for entering ECHIDNA goals from the display side.

page 56

Chapter 7.0 NSAIL Control and Animation

Figure 7.3 Screen Dump of NSAIL User Interface

7.4.1 Com~onents of the NSAIL User Interface;

The following is a brief description of the current version of the NSAIL, interface.

1. sailboat creation

2. object creation

3. animation control

4. wind control

A sailboat is created by entering boat information via the
BOATINFO panel. Position, boat heading and other parameters
may be set initially. There are choices for different kinds of
agents (e.g. it is possible to assign only a captain agent to
sailboat). Different agents dictate different behaviour. The
perception range determines the panic box size for the boat.

There are currently only two goals: 1) sail to a user-specified
target; and 2) round mark to port. The target goal is used mainly
for testing.

It is possible to create a marker, a generic static object and a land
mass object. A simple environment is defined by creating and
positioning static objects.

3D viewing control and tracking is available. Any sailboat may
be selected for tracking. The rate of display may be changed,
and playback of stored data is being implemented.

The wind direction and speed may be changed during the
animation. The sailboats in the scene should respond
appropriately to the wind changes.

page 57

Chapter 7.0 NSAIL Control and Animation

Figure 7.5 NSAIL Animation Display of Hobiecat:

The NSAIL user interface provides an interactive way to control the animation oi

the sailboats. It also explored the possibility of real-time animation control where the

animator can view the animation at the same rate as the final display (i.e. at a rate of 30

frames per second for video). However, for more than two boats doing anything more

than reactive motion (i.e. using only reaction morsels), the hobiecats jump more than sail

due to long periods between screen updates. Currently, it is more useful to view the

processing in a step wise manner, requesting the system to calculate changes at specified

time intervals. Providing a batch facility for reasoning and computing changes in

positions of objects is also a possible option.

With current version of NSAIL, an animator can create a simple environment with

multiple sailboats, and communicate with the reasoning agents during animation of the

sailing scene. The hobiecats are capable of determining their appropriate state in relation

to the wind direction. They can set their heading towards a mark, but confusion arises

once they reach their mark (see Figure 7.5). There is a tendency to keep going around the

mark. The engineering of the planning agent and its interaction with the implementation

agent is in progress. The initial results are promising. Incorporating some of the findings

from the discussion to follow will improve the efficiency of the implementation.

page 58

8.0 DISCUSSION.

8.1 THE EVOLUTION.

The development of the proposed integrated

reasoning and animation framework evolved with

the ECHIDNA constraint-based reasoning system.

Both components continue to evolve. In this

chapter, issues related to the current state of the

system are discussed. The implementation issues

address the details of the ECHIDNA constraint

logic programming language and their application

within the proposed animation framework. The

reiresentation issues deal with particulars of the

NSAIL implementation. An evaluation of the

overall conceptual approach is also presented.

8.2 IMPLEMENTATION ISSUES.

Fixure 8.1 An Echidna Tack

8.2.1 Interval Variables.

In computer animation, the world space is a 3D Cartesian coordinate system.

Eventually the motion of animated objects refers to changes in coordinate positions from

frame to frame. In the initial framework, ;he world space is restricted to a 2D coordinate

system. Since the two components of the proposed system are closely integrated via the

ECHIDNA XOP, similar representations of the world space are used within the --
application program and ECHIDNA. Thus, in ECHIDNA, positions of objects are points

in a 2D coordinate system, and participate in constraints. The initial intent was to

represent each coordinate as a discrete variable.

However, for efficiency, the cardinality of a discrete constraint in ECHIDNA is

limited to 1,000,000. The cardinality of a discrete constraint is defined as the product of

the cardinality of the variables that participate in a constraint. The cardinality of a

discrete bound variable is the number af elements in its domain. Thus, the cardinality of

a coordinate (i.e. x or y) is restricted to 1000 if represented as a discrete variable. This is

too low of a granularity for the application side. Furthermore, even at a much lower

page 59

Chapter 8.0 Discussion

cardinality, the slow down in execution time is significant for simple constraints. Given

these considerations, interval variables are used to represent coordinate values and other

parameters in the NSAIL environment. This also serves as study of interval variables

since they are not widely used in other ECHIDNA applications.

Interval variablesA provide the efficiency and the range desired for representation of

world parameters. However, interval variables cannot be used with the inequality

constraint operator (=\=). This requires the definition of masking intervals, using the

NOTIN primitive, to create the desired negation of an interval variable. This can be

difficult and introduce additional choice points229A in the solution. Also, the disjunction

of interval constraints (i.e. OR) has not yet been implemented, and only constant values

can be used with the NOTIN primitive. When applied in a discrete constraint, OR can

eliminate a choice point from the solution. Finally, on the display component side, it is

themidpoint of the interval variable that is used in calculations.

The ITERATE structure is another primitive only available for discrete variables.

ITERATE relates the same constraint to an array of values. By consolidating a series of

constraints into a single node in the resolvent tree, a contribution is made towards greater

processing efficiency. It also improves readability of the code for an ECHIDNA method.

8.2.2 Intervals and Precision.

The precision of an interval variable is the degree to which it is refined. An interval

variable has an associated precision value'which is set by default to the global precision

of the ECHIDNA session. The precision value indicates the number of times an interval

variable is split. Each split introduces a binary choice point into the resolvent tree. As

m6tioned; introducing choice points effects the backtracking process. The higher the

precision, the greater the number of choice points and the greater the effect on

backtracking Thus, a higher precision trades off efficiency. However, the degree of

impact on efficiency is context-dependent. If a large part of the tree is pruned by other

constraints, the impact is reduced. On the other hand, if the precision is too low,

unpredictable results occur.

The PRECISION primitive is intended for use in incremental design problems. By

varying the global precision at successive stages of a design problem, the level of detail

2 2 ~ e e [Sidebottom92b] for a more detailed explanation of choice points.

page 60

Chapter 8.0 Discussion

can be refined [Sidebottom92b]. For most other applications, including NSAIL, the

precision is usually specified at the start of an ECHIDNA session and left unchanged.

However, the global precision value is context-sensitive, and it is not clear what the

optimal setting should be for different kinds of problems. In NSAIL, the significant use

of interval variables enforces the need for careful selection of the global precision.

8.2.3 Interval Segmentation,

Trigonometric functions require careful consideration when used in a constraint

expression with interval variables. Because of the cyclic nature of these functions, an

interval variable may be broken into many segments, increasing the greater complexity in

the constraint network. Thus, the bounds on the interval should be economized to

eliminate unnecessary choice points from segmentation. That is, the bounds of an

interval need to be wide enough that valid solutions are not eliminated, possibly causing

undue failure. While on the other hand, they need to be narrow for efficiency when

related with trigonometric primitives.

8.2.4 Pro~er Constraints and Choice Point&

A proper constraint does not introduce a choice point into the resolvent tree. A

proper constraint is a single constraint expression or a method with a single clause.

Proper constraints serve to actively narrow the search space once they are applied.

Heuristics23 in NSAIL, because of the nature of sailing strategies, introduces choice

points. Thus, it is best to apply proper cbnstraints first to reduce the search space, and

then apply heuristics afterwards. Maximizing the number of proper constraints and

minimizing the number of choice points lead to greater efficiency.
-a.

In the implementation of NSAIL, there is no clear separation between proper

constraints and heuristics. Given the organization of knowledge into morsels, proper

constraints are distributed throughout the database, and applied in an ad hoc manner. To

maximize their effectiveness, a distinction should be made in each morsel between proper

constraints and other constraints such as heuristics. Proper constraints for each morsel

should then be collectively applied first.

23~euristics need not always introduce a choice point in ECHIDNA. However, in NSAIL, heuristics are viewed as
options to be tried to maximize boat performance. If the option is not consistent with other constraints, then another
option is bied or nothing at all. This is encoded as methods with multiple clauses, introducing choice points into the
resolvent tree.

page 61

Chapter 8.0 Discussion

8.2.5 Use of Pre~rocessed K n o w l e w
element({U), <100,400,600,700>, X).

Preprocessed knowledge are known

mappings between values (as shown in Figure 18: p(x,y).
P(l, 100). 8.2). Before introducing the ELEMENT
P(2, 4oo).

Normal encoding without
ELEMENT because X is

primitive, indexing into an array with the P(3,600). not ground so cannot use
P(4.700). ARG primitive.

ARG primitive required a ground value.

Thus, mappings between values are encoded I Figure 8.2 The ELEMENT Primitive

as a method with multiple clauses, corresponding to a choice point (see Figure 8.2B).

The ELEMENT primitive permits unground indices, and sets up a constraint between the

index-and array elements, avoiding addition of another choice point.

8.3 REPRESENTATION ISSUES.

8.3.1 The World Soace,

The representation of the world space for the reasoning module needs to be more

sophisticated. A strict mapping of the coordinate system for animation, the animation

space, to a coordinate space in ECHIDNA, the reasoning space, is not a good approach.

Currently, in NSAIL, there is a translation mapping between the animation space and the

reasoning space. The translation mapping simply maps the location of the objects in the

animation space to a corresponding location in the reasoning space. The reasoning space

uses only the first quadrant of a 2D coordinate system where coordinate values are all

positive. This is necessary to avoid problems with interval arithmetic when relating an

interval variable with negative values to the exponentiation primitive24. Of course, the

animation space can be adjusted to be the same, but it is not necessary, or optimal, to

have -- . the same granularity of representation in ECHIDNA and the application code.

Given this view of the world, the constraints

must also be ordered in hierarchies, or be capable

of operating on different levels of abstraction. In

the hierarchical coordinate space shown in Figure

8.3, a relationship between A and B need not refer

to a relationship between two points; it could also

be a relationship between two grid areas. Thus, at
I Figure 8.3 Hierarchical Coordinate Spact

24~x~onentiation cannot be used in an expression with interval variables that have negative values in their range.

page 62

Chapter 8.0 Discussion

one level, a sailboat may be heading towards a

particular target point while at another level, it is

aiming towards a larger area. The NSAIL

knowledge morsels currently relate only the point

pos i t ions of objects in the world. This is

conducive to the level of granularity needed for

geometric computations on the application side,

but may not be the right level of abstraction for

reasoning. A hierarchical world coordinate space

is an alternative representation that is compatible

with views of the hierarchical organization of the 1 Fixure 8.4 Adaptive World Hierarchy

brain and mind [Rummelhart76, Simon691.

"
The hierarchical structure may also be adapted to the environment (see Figure 8.4),

possibly as seen from a particular agent's view. In a sailing environment, areas of open

water may be grouped together as one chunk in the reasoning space. Areas with a denser

population of static objects are further subdivided into smaller chunks. Perhaps afisheye

or variable zoom view is appropriate [Schaffer93]. Given a hierarchical representation of

the world space, the intelligent objects can reason and respond to different levels of

stimuli from the environment. The agents must also be able to handle the greater

complexity of hierarchical objects and knowledge bases. It is not obvious how to apply

ECHIDNA, or any constraint logic programming language, to represent and reason about

a world that exists simultaneously at different levels of abstraction.

8.3.2 Use of External Methods,
--

In NSAIL, external methods are used for various purposes: to compute the contents

of a sailboat's panic box (i.e. all objects in its range of perception that are on a colliding

course with the sailboat); to determine leewardness (i.e. given two boats, which boat is

downwind of the other); and to calculate new positions based on the active motion unit

for a sailboat. These computations can done with relative ease outside of the reasoning

system. The information returned is then used as part of the reasoning process to relate

other variables. This procedure improved efficiency by pursuing optimal use of the

capabilities of an integrated system.

Brown in his discussion of problem solving by computation verse search space

page 63

Chapter 8.0 Discussion

exploration, emphasizes the need to recognize when one approach is more approach than

another:

If during diagnostic reasoning one needs to know the exact value of
pressure in the reactor chamber, if one has an equation that can be
evaluated for it, and if one has all the information needed to evaluate the
equation, then it is silly to use problem-space exploratory methods. On
the other hand, for a number of problems such as diagnosis and design in
the general case, the underlying spaces can be very large, and solution
algorithms of restricted complexity are generally not available. This is
when A1 methods are appropriate. [Brown89 page 41.

Thus, within an integrated framework, it is important, from a practical point of

view, to recognize when to apply two different kinds of approaches: reasoning with

declarative knowledge and procedural computations through external methods. Though

there seems to be a stronger dependence on declarative knowledge, in living organisms, it

is usually agreed that intelligent machines need both procedural and declarative

knowledge [Genesereth87, Rich831.

8.3.3 Handl in~ Change.

In NSAIL, the top-level position goal for each sailboat is redone at each time step.

This is necessary to handle change in a world which is represented by a nonmonotonic

formalism. In the current version of ECHIDNA'S object-oriented CLP, there is no

mechanism to address the nonmonotonic state change problem [Havens92]. In

ECHIDNA, a schema instance variable may be repeatedly refined towards a ground value

through propagation of constraints and udfication. Its domain can only be elaborated by

backtracking through nondeterministic methods. Once ground, it cannot be reassigned

another value. Thus, it is not possible to change instance variables representing the

sailboat pai-ameters, once they are ground. Thus, at each time step, the top-level goal for

boat position must be undone and redone with the new position to relate the change in

position to'other instance variables.

However, thrashing occurs during backtracking if new constraints are added after

doing SPLITs and INDOMAINs to assign values to instance variables. Undoing a

constraint and redoing it is the same as adding a new constraint. Thus, when the position

goal is redone, it adds new constraints, causing thrashing to occur. To avoid this

problem, all the goals invoking SPLITs and INDOMAINs must be undone at the top level

before the new position goal can be reapplied (see Chapter 7). When a goal is undone,

Chapter 8.0 Discussion

proper constraints are persistent, but backtracking will occur for choice points. In
NSAIL, the degree of backtracking is very high because of the organization of knowledge

as morsels, the use of interval variables and the heuristic nature of the sailing knowledge.

A clearer separation of proper constraints and

choice points may improve the performance of NSAIL,

but a better mechanism is needed for handling state

change in the proposed framework. This may be

provided by primitives in ECHIDNA for handling

nonmonotonicity. Animation is not a monotonic process;

it deals with changes over time. ECHIDNA must be able

to handle not just changes in boat variables but with time

as well. Advancing time cannot be done with undoing I Figure 8.5 Polar Target

the'assignment to the time variable.

In earlier explorations of handling time for NSAIL, time was represented as an

instance variable related to position. Perhaps a feasible approach would be to include

time as another variable in the problem and rely more on external methods for

computationally intensive relations hips^. As a trivial example, a polar target (see Figure

8.5) is used in the knowledge morsels to relate two objects in terms of an angle @ and a

radius r. Object A is a moving object and object B is a static object. If r is then

constrained together with time (e.g. by an external method or simply time =:= distance /
speed), the position of A can be determined by assigning all values of its domain to time

variable t (i.e. by using the INDOMAIN and FAIL primitives).

-- In NSAIL, the positions would actually be determined by external methods because
of the computations needed in the motion units on the application side, but this will

eliminate the need for repeated undoing of top level goals by the application module.

Using the FAIL primitive still means backtracking but less so since only one constraint

with the INDOMAIN primitive on t is failed. However, this option for advancing time

was not used in order to explore the potential for real-time animation controlled from the

display component of the system. this option must also be considered with the additional

complexity of morsels and plan nodes. Furthermore, reasoning about multiple timesteps

would not be possible since only one time step is valid at any instant.

2 5 ~ v e n if the gain in performance is insignificant, there may be a gain in ease of programming.

page 65

Chapter 8.0 Discussion

8.3.4 Planning and Plan Execution,

The planner in the proposed framework is relatively simple and based loosely on

the NOAH backward planner [Rich83]. To achieve a certain goal, the planner starts with

two nodes, the goal plan node and the plan node with the initial state of the sailboat. If it

is impossible to achieve the goal with just two nodes (i,e. there is no single action to take

the boat from the initial state to the final state), a new plan node is added. The constraints

are applied to the new set of plan nodes and an attempt is made to assign actions and state

values to this new set of plan nodes. Thus, in effect, the planner is basically redoing the

planning process at each plan step. In NSAIL, the planner is only used to determine the

sailboat path for sailing upwind on a beat (i.e. when the target is directly upwind of the

sailboat and multiple tacks are needed). The number of nodes required is relatively small.

However, in general, the planning approach may be improved by using heuristics about

goals and actions for specific domains to estimate the number of nodes needed at each

planning step.

A more difficult planning task in NSAIL is the recognition of goal satisfaction. A

plan node is completed when the sailboat reaches a target destination, completes the

planned action and assumes the post-action state in preparation for the next plan step.

Thus, goal achievement is a continuous activity. It not a single state, but a series of states

that must be recognized over time. In NSAIL, this recognition is performed by setting

appropriate flags through top-level goals from the implementation agent on the

application side. At each time step, a flag variable in ECHIDNA is unified at the top

level with a flag value indicating which sate of the plan is currently being executed by

the sailboat26. This is similar to approaches in traditional animation where there are

stages of anticipation, plan action, secondary action and follow through [Lasseter87].
--

8.4 EVALUATION OF APPROACH.

5.4.1 Constraint Logic Pro~rarnmin~ Environment

Representing knowledge in a constraint logic programming language provides an

efficient formalism that is sound and complete (i.e. robust). More importantly, the

declarative nature of the representation lends itself to intelligent problem solving,

including solving the problem of sailing around race markers. This kind of behaviour is

26~ontrol structures are scheduled for implementation in ECHIDNA using the XOP.

page 66

Chapter 8.0 Discussion

characterized by heuristically-based searches through a solution space [Brown891 which

is facilitated by a logic programming language (e.g. inferencing and backtracking

capabilities). In regards to NSAIL, it is possible to implement the sailboat animation
system with a procedural approach adapting priority allocation mechanisms to resolve

conflicting behavioural rules (as in [Reynolds87]), but the complexity of interaction

between the rules will quickly become apparent. Assigning priorities to behavioural rules

would be an expert task.

In NSAIL, the organization of knowledge in terms of morsels and agents favours

the use of heuristics, and unfortunately, decreases the benefits of using constraints to

reduce the search space, However, modifications discussed earlier should improve

performance. It is not clear at this point whether intelligent backtracking influences the

efficiency of the NSAIL reasoning process. In a strongly interconnected solution space,

int6lligent backtracking has less impact. A strongly interconnected space means that all

variables are intertwined through constraints and constraint propagation. Thus, when a

failure occurs, it is impossible to determine the source of the error for intelligent

backtracking.

8.4.2 Constraint Visualization Tools.

The difficulty in determining the effectiveness of constraint logic programming and

intelligent backtracking identifies a lack of development tools for the knowledge

engineer. This is a common deficiency with declarative knowledge approaches in

general. It is hard to follow the flow of the problem resolution process. Tools for

visualization of constraints would be of great benefit. However, it is not obvious what

should be visualized? And perhaps what should be visualized is a domain -dependent --.
task. For example, in NSAIL, an attempt was made to visualize the determination of boat

heading but the degree of backtracking rendered the task useless.

A constraint visualization tool would be extremely helpful, but may have to be

domain dependent since relationships are meaningful, not as abstractions in a resolvent

tree or search tree, but as reflections of their domain. For example, the relationships

between sailboats and the wind would not be useful if visualized as a complex network of

choice points. Designing a general visualization tool would be challenging task. Perhaps

what is needed is a toolkit of visualization primitives for variables and constraints that

will enable the knowledge designer to create domain specific visualizers.

page 67

Chapter 8.0 Discussion

8.4.3 The Pro~osed Animation Framework.

The modularity and potential for diversity is an attractive feature of the proposed

framework for an integrated reasoning and animation system. The benefits of an object-

oriented paradigm is found in both the reasoning and animation display components.

Though the two components are tightly integrated, an attempt is made to clearly identify

the XOP communication points through the structure of the knowledge agents. This is a
step towards a plug-in system organization, where it would be possible to attach different

knowledge morsels and agents for objects on the display component side that have a
particular form and motion. For example, the sailing behaviour in NSAIL may be

plugged into an animation interface for human figures where the boat heading is mapped

to the orientation of the figure and the sail angle to a limb joint. Specialized human

sailing movements can be created, using keyframing, dynamics or any other technique

available in the application, to correspond to the sailing motion in the reasoning system.

The object-oriented constraint logic programming language within the ECHIDNA

reasoning shell is a powerful formalism for knowledge representation. It allows the

model of the world to be generalized, providing inheritance in a manner that supports a

kind of default reasoning. For example, all physical objects in the world are classified as

static or moving objects. Therefore, if there is no specific morsel for defining the

relationship between particular objects, interaction can be deferred to the general case.

This is a reflection of the learning process. Unless there is some acquired experience

with a specific object, it will be handled as a member of a generic class in which it has

been classified. For example, a navigational buoy that indicates a boat should pass on the

starboard side will be treated as a generic static object unless the agent knows that the

buoy signifies that a particular behaviour must be followed. Navigational buoys can be

metaphors for general objects in animation environments.

Planning is a continuous process. Initially, in NSAIL, a tactician may plot a course

before the start of a race but the planning process really continues for the duration of the

race. This implies more complicated interactions between the planning agent and the

implementation agent. The right of way rules control reactive behaviour, and the boat

responds according to these rules when it encounters another boat. However, once the

boat yields or changes course in response to its relationship with the other boat, it must

then replan to find its way back to the previous heading. That is, in the course of its

page 68

Chapter 8.0 Discussion

reactive behaviour, it changes its heading completely, overriding the planned heading.

Execution of the plan is a perception-driven process. Though it may be possible to

include better simulation of vision in the proposed framework, there needs to be a higher

level of organization pertaining to the information collected from the environment. In

NSAIL, perception is a list of objects in the lookout's range of sensitivity. If there are too

many objects in that range, it may not find a state consistent with all the objects in this

range (i.e. there is no single direction that is not on a collision heading with another boat).

Reducing the range of perception will decrease the number of objects that must be

handled simultaneously. In this manner, the sailboat maneuvers around the closest object

before dealing with the next. However, grouping objects into clusters would be

indicative of more intelligent behaviour by the captain. An avoidance course can then be

planned to go around clusters of objects. For example, in sailing, a possible strategy at

thestart of a race is to favour the tack with the least number of boats.

page 69

CONCLUSIONS.

One primary objective of this thesis was to explore the use of a constraint-based

reasoning system for behavioural motion specification and control in computer

animation. In conjunction with the exploration, and as a contribution, this thesis work

developed a conceptual framework for an integrated reasoning and animation system.

The proposed framework served as the basis for NSAIL, a reasoning and animation

system for sailing behaviour. The development of the NSAIL testbed continues to be an

incremental process, feeding back into the design of conceptual framework.

The ECHIDNA object-oriented constraint-based reasoning system provides a

necessary high-level formalism for knowledge representation with a logic programming

language. Furthennore, the object-oriented features of ECHIDNA are well suited for the

conceptual framework. This initial investigation identified some key points in building

an integrated behavioural animation system, and systems in general, using a declarative

formalism. A significant observation is that there needs to be a better understanding of

the kinds of problems suitable for a declarative representation. The general problem of

reasoning and animation of behaviour is conducive to a declarative representation, and to

a constraint-based logic programming representation. However, within the general

problem, there are subproblems that are more compatible with a procedural approach. In

further development of the proposed framework, it is important to choose an appropriate

representation at multiple levels of implementation.

At the detailed level of implementation, it is important to choose the appropriate

representation of variables in the reasoning domain. Intervals can provide efficiency but

they shouId be used selectively due to some of the difficulties in using intervals (i.e.

precision, segmentation, and compatibility with representation on the application display

component side). An understanding of constraints, constraint propagation and intelligent

backtracking contributes to better knowledge base designs. Constraints only help to

reduce the solution space if applied properly. These details of implementation play a

significant role in the efficiency of constraint propagation and intelligent backtracking.

The difficulties in developing a system in a constraint-based logic programming

environment include the lack of tools for the designers of the knowledge bases. In

nontrivial implementations, it is a very challenging task to follow the flow of constraint

page 70

Chapter 9.0 Conclusions

propagation and backtracking. A constraint visualization tool would be extremely helpful

but may have to be domain dependent since relationships are meaningful, not as

abstractions in a resolvent tree or search tree, but as a reflection of their domain.

However, it is not clear what is an appropriate representation for visualization of

constraint domains.

One key point that has risen is the importance of world representation. Not only is

the proper representation needed for the declarative reasoning component, but the

selected representation must be compatible with the application display component.

What-should the link between the two abstraction be? It no longer makes sense to have a

one to one mapping. An appealing possibility is a hierarchical representation of the

world space, the constraints within the morsels and the planning process. This is

conducive to findings in other fields of research including psychology and neural

networks [Rummelhart76]. Since the concern of behavioural motion animation is human

behaviour, research in such areas can contribute towards the development of a better

system integrating reasoning and animation for future work.

Future work includes the application of the proposed reasoning and animation

approach to the animation of human group movement (e.g. pedestrians at a traffic

intersection). The motion units can be created in the LifeForms movement specification

system [Calvert93]. The reasoning component will be given the task of determining

when a particular motion unit should be activated. For example, the system would

reason about when it would be safe to cross the street in a pedestrian crosswalk scenario.

There are many other domains to invest'igate, and the organization of the knowledge

bases and system architecture will facilitate the reuse of existing implementations.

--
In conclusion, the work in this thesis provided insight into the use of the ECHIDNA

constraint-based reasoning system, presented a conceptual framework for an integrated

reasoning and animation system for behavioural control, and completed work towards

pilot implementation of NSAIL, an animation interface for sailing behaviour.

Have a hobie day!

page 71

Appendix A: GENERAL TERMINOLOGY.
The following is an alphabetically ordered list of terms used in this thesis. The terms are
from computer animation and artificial intelligence (particularly knowledge representation
and logic). The terms are defined in the context of this thesis.

Agent An agent is a schema instance in the reasoning component of the
proposed system that is capable of reasoning about the environment
or the state of its associated object. Agents are associated with
intelligent objects and are assigned knowledge morsels which define
their characters. There is a corresponding representation of the
agent on the display component side of the integrated reasoning and
animation system. The integrated agent is responsible for
controlling the motion of the object.

Animation Animation, from the Latin word animare, means literally to give life
to, or to give anima (breathe, soul) or animus (spirit, mind,
courage)27. Animation is the process of representing changes of
movement over time. The illusion of movement is created by
presenting a rapid display of successive images at a rate fast enough
for the human eye to perceive continuous motion. This rate is 24
frames per second for film and 30 frames per second for video.

Articulated Body An articulated body is composed of segments or links (usually rigid)
connected at joints, and can be represented by a tree structure. The
human body is expressed as an articulated body, often for the
purpose of human figure animation in computer graphics.

Backward A backward planner is one that plans from the goal node to the initial
Planner node. In comparison, a forward planner starts planning from the

initial node to the goal node. In the proposed framework, a
backward planner is'used.

Blackboard A blackboard is a shared data structure used to represent knowledge
- accessible to all domain-specific knowledge modules in an A1

program. An example of its use is given in Rich83 on page 278.

Cardinality In ECHIDNA, the cardinality of a discrete bound variable is the
number of elements in the domain. The cardinality of a discrete
constraint is the product of the cardinality of the variables that
participate in the constraint. A good guideline is to keep the domain
of the variables as small as possible to reduce the amount of time
spent in constraint propagation.

Choice Point A choice point is a node in the resolvent tree which has alternatives
or choices. This may correspond to a method with multiple clauses.

2 7 ~ h i s is from the Greek word anernos which means wind. This seems rather appropriate considering the
animation of wind moving sailboats for the proof-of-concept implementation.

page 72

Appendix A: General Terminology

Completeness See soundness.

Conceptualization A conceptualization is a view of a world for the formalization of
knowledge in a declarative form. A conceptualization includes the
objects presumed or hypothesized to exist in the world and their
interrelationships.

Constraint A constraint is a relationship [Mackworth77]. In the ECHIDNA
constraint logic programming language, a constraint is implemented
as a persistent data link that supports the flow of information back
and forth between variables. That is, it is a bi-directional link.

CLP. A CLP is a constraint logic programming language.

Discrete Variables A discrete variable has a domain consisting of a set of values from
one of the three built-in discrete types supported in ECHIDNA:
symbols, integers and reals. A discrete variable is unbound if it is
simply typed. A discrete variable is bound if it is associated with an
explicit domain. And a discrete variable is ground if it has exactly
one element in its domain.

Dynamics This is the study of changes in motion in terms of forces and
torques. The classical definition of dynamics is based on Newton's
Three Laws of Motion.

Forward Checking See search.

Forward
Kinematics

Frame

--

Goal-Directed

External Method

Forward Kinematics involve finding the position of a distal segment
of the body given the joint angles of the proximal segments (e.g.
finding the position of the foot given the angles of the hip, knee and
ankle). See also kinematics and inverse kinematics.

A frame is a structure for knowledge representation introduced by
Minsky [Minsky75]. A frame consists of slots, each of which
describes an attribute, and relationships between the slots. The slots
can form a PART-OF hierarchy, and the frames are organized in an
IS-A hierarchy. For example, a sailboat IS-A vehicle, and the
attribute MAST is PART-OF the rigging.

Specification of motion by assignment of a goal to the entity
performing the movement. Goals can be actions, tasks or target
destinations. This is the same as task-oriented.

An external method is a method that is defined outside of ECHIDNA
and is invoked through the XOP which supports communication
between the reasoning system and other processes (currently only
C++ programs). Invocation of an external method creates a
persistent data link between ECHIDNA and the external process,
enabling the exchange of information.

page 73

Appendix A: General Terminology

Heuristic

Inference

Interpolation

Interval Variables

Inverse
Kinematics

Keyframe

Kinematics

--.

Lookahead

Panic Box

Polymorphism

A heuristic is a "rule of thumb" that is usually true.

The process of deriving conclusions from premises.

Interpolation is the process of determining the set of missing values
between two known values. For example, in curve fitting, the
points forming the curve are found by interpolation through a set of
given key points defining the curve. In keyframe animation,
interpolation finds the set of inbetween frames between keyfrarnes.

A real interval variable has an infinite domain defined by a set of
intervals. An interval variable is bound if it has an associated
explicit interval. It is ground if its domain is refined to the current
ground precision.

Inverse kinematics involve finding all the joint angles of the
proximal segments required to produce a particular absolute position
of a distal segment (e.g. given the position of the foot, find the joint
angles at the ankle, knee and hip, which will place the foot at that
position).

A keyframe is a frame in an animation sequence where there is
significant change in motion. In computer animation systems, the
animator only needs to specify the keyframes, and the system will
automatically produce the inbetween frames that are needed to
generate realistic motion. These frames are interpolated using
splines such as linear, quadratic or cubic splines. This inbetweening
process provides smooth transitions between keyframes.

Kinematics is the analysis or description of movements of bodies or
parts of bodies in time and space independent of the forces that
cause these movem<nts [Wilhelms85]. It involves the calculation of
linear and angular displacements, velocities and accelerations. There
are two problems, originally from robotics, associated with the
kinematics of articulated bodies: the forward kinematics problem and
the inverse kinematics problem.

See search.

In the context of this thesis, a panic refers to the list of objects in the
environment that are on a collision course with the object associated
with the panic box. The panic box is maintained by the perception
agent (i.e. the look in the NSAIL application).

In the object-oriented paradigm, a polymorphic reference is one that
can, over time, refer to instances of more than one schema class.
Communication between schema instances is attained through
message passing. In ECHIDNA, a message is passed to an instance
by colon operator and invokes the operation defined by the method

page 74

Appendix A: General Terminology

named in the message. With polymorphism, a message may be sent
to different instances or classes as defined by the inheritance
hierarchy for classes of objects.

Precondition Precondition is a term from planning literature refemng to
conditions required prior to the selection of an operator.

Predicate Given a conceptualization of the world, an appropriate language is
Calculus needed to formalize knowledge as sentences expressed according to

its rules of the grammar. Predicate calculus is such a formal
declarative language, with a very precise set of grammatical rules for
expressing logical sentences. InJirst order predicate calculus, the
variables used refer only to objects in the universe of discourse (i.e.
variables cannot be functions or relations). Second order predicate
calculus includes functions and relations as variables in logical
sentences.

Resolvent Tree The resolvent tree is a tree of unresolved goals that is maintained by
the interpreter in ECHIDNA. The tree begins with the top-level
query as the single root node. The leaves of the tree contain the
currently unresolved goals at any point in the computation; this set
of current goals is called the resolvent. See page 78 in
Sidebottom92 for a construction example for a resolvent tree.

chema

Script

--.

Search

. schema refers to a way of organizing information about
~mmonly occurring patterns of things. The use of schemata, by
wple as well as programs, exploits the fact that the real world is
ot random [Rich83]. Other kinds of schemata include scripts for
dlection of events, stereotypes for collection of characteristics
:lated to people, and rule models for common features shared
mong a set of rules in a production system.

A script is a knowledge representation formalism used to describe a
common sequence of events such as what happens when one goes
to a restaurant.

VanHentenryck distinguishes the different search strategies as
follows: "Generate and test only tests the constraints when a
complete assignment has been done. Standard backtracking makes
sure that each already assigned variable is consistent with all the
other already assigned variables. Forward checking makes sure that
each not yet assigned variable has at least one consistent value with
the already assigned variables. Looking ahead makes sure that each
not yet assigned variable has at least one consistent value with all the
other not yet assigned variables." ([VanHentenryck89] page 17).

Soundness Soundness and completeness deals with derivability of an inference
procedure (see Nilsson7 1 p. 54). An inference procedure (a way of
making choices and resolutions). Proving derivability is important
because it means that the derivation process can be automated (i.e.

page 75

Appendix A: General Terminology

write a computer program to do it). Soundness means that every
sentence in the "database" can be derived from the logical operators
of the language. Completeness means that the operators specified
for the language can derive all possible sentences found in the
database. This is an indication of how powerful the language is.

Unification Unification is the process of determining whether two expressions
can be can be made identical by appropriate substitution for their
variables. Unification is part of the resolution process for
inferencing. See Genesereth87 for a complete explanation.

Universe of The set of objects about which knowledge is being expressed. That
Discourse is, the objects in the domain of interest.

XOP The external object protocol which is the link between ECHIDNA
and an application program external to the reasoning system.

page 76

APPENDIX B: THE SAILING MODEL

B . l SAILING TERMINOLOGY

The following is a list of sailing terms used in this document. This list is taken from lGru66791.

Abeam

Actual Wind

Aft

Apparent Wind

Bear

Beat

Bow

Close Hauled

Come About

Course

Down wind

Heading

Head Up

Jibe

Lee

Luff

Mark

Overlap

Points of Sail

-- .
Port

Port Tack

Reaching

Sheet

Starboard

Starboard Tack

Stern

Tack

At right angles to the side of the boat.

The direction and force of wind felt on a boat that is not moving (also true wind).

Toward or near the stem.

The direction and force of the wind felt on a moving boat.

To move in a specified direction: 1) bear up means to turn to windward; 2) bear off or
bear away means to turn to leeward or away from the wind; and 3) bear down means to
approach another boat from windward.

To sail to windward.

The front of the boat.

Sailing as close to the wind as possible (i.e. as far as possible upwind or to weather).

To tack by turning the bow of the boat across the wind.

The direction sailed. Also the area and track of a race.

Sailing away from the direction the wind is blowing.

The course of direction in which a boat is travelling.

To steer the boat toward the wind. Also head off which is to steer away from the wind.

To change course by steering the stem of the boat through the eye of the wind.

The side of a boat facing away from the wind.

To head the bow of a boat into the wind, causing the leading edge of the sail to shake.

Designates the turning point at the end of each leg (segment) of a race course.

Refers to two boats in close proximity on the same course line. When the bow of the
rearward boat extends past the'stem of the forward boat an overlap occurs, which can be
a tactical asset.

The three general angles in which a sailboat can move forward: to weather or upwind,
downwind and reaching.

The left side of a boat as you face forward toward the bow.

Sailing with the wind blowing from the left side (port), and the mainsail on the right
(starboard) side.

Sailing with the wind coming essentially abeam.

A line or rope which can be tightened or slackened to control the sail.

The right side of the boat as you face forward toward the bow.

Sailing with the wind blowing from the right side (starboard), and the mainsail is on
the left (port) side of the boat.

The rear of the boat.

To come about, change course by steering the bow of the boat through the eye of the
wind (i.e. across the wind).

page 77

Appendix B: The Sailing Model

Trapeze A wire hanging from the mast which allows, using a harness, the crew and/or skipper
to stand on the windward rail to improve boat trim.

Tiller A handle connected to the rudders which controls their angle and thus steers the boat.
Traveller Horizontal track mounted on the boat to control the trim of the sail.

Trim To set the sails at their most efficient shape and juxtaposition to the wind (necessary
for achieving maximum performance).

Upwind Sailing toward the wind.

B.2 PREDICTING SAILBOAT PERFORMANCE

Predicting the performance of a sailboat requires very complex computations. In fact,

there is no exact method of computing a sailboat's overall performance [Marchaj88]. Boat

performance, in terms of the interaction between aerodynamic and hydrodynamic forces

and moments, is modelled mainly from experimental measurements in wind tunnels and

drag tanks. In this section, the equilibrium between opposing systems of forces on a

sailboat is depicted graphically. This equilibrium model (Figure B.l) and experimental data

are used to find values for the velocity triangle for sailing in Figure B.2. These values are

then plotted as polar performance diagrams. The implementation of NSAL extracts the

information from a polar performance diagram for 12 metre sailing yachts (Figure B.3),

and applies it to the calculation of boat speed given the boat heading and wind direction.

The points of the performance diagram are fit to a curve for interpolation of intermediary

points and wind velocities. Estimation of the impact of the sail angle on boat performance

is based on a similar approach using collected data correlating sail angle to boat speed.

leeway angle

apparent course
center of effort
centerline
lift
drag
heeling force
driving force
apparent wind velocity
total aerodynamic force

drag angle

main sail angle

I Figure B.1 Equilibrium Model

page 78

Appendix B: I he 6allzng Model

A sailboat moves on the boundary between air and water, being partly immersed in

each. Its motion is the result of a complex system of forces acting on the sailboat,

including gravitational, aerodynamic and hydrodynamic forces. This system of forces, in

order to attain equilibrium28, must satisfy the following criteria: 1) the sum of the vertical

forces must equal zero; 2) the sum of the horizontal forces must equal zero; and 3) the sum

of the moments, responsible for the turning effects of the forces, must also equal zero.

The results of experiments in wind tunnels, aerodynamic theory and experimentation
with real sailboats reveal the dependence of the total aerodynamic force (FT in Figure B. 1)

on v ~ o u s factors including the following: 1) the dynamic pressure of the apparent wind;

2) the total sail area; 3) the angle of incidence of the sail(s); 4) the shape of the sail(s) as

defined by its cut and camber; and 5) the quality of the sail material (e.g. stiffness, weight,

porosity, smoothness, etc.). The impact of all these factors on boat performance have been

studied for yacht design, and supply a large volume of data for simulation.

--
r true'course between VT and VS
VT true wind velocity

VA apparent wind velocity

vs boat speed

Vmg speed made good to windward

3 apparent course angle

Figure 8.2 Velocity Triangk
Figure B.3 All-Round Performance for 12Metre Boa

280ne of Newton's Four Laws of Motion, the Principle of Inertia, states: Every body remains at rest or in
uniform motion in a straight line when acted on by a system of forces whose resultant force is zero.

page 79

REFERENCES.

Alias

Robert Abel and Associates. SIGGRAPH Video Review, Issue 20: The Making of
Brilliance. ACM, New York, 1985.

G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
The MIT Press, Cambridge, MA, 1986.

Alias Research Inc. 500-110 Richmond St. East, Toronto, Ont., Canada.

S. Amkraut, M. Girard, and G. Karl. Motion Studies for Eurythmy. SIGGRAPH
Video Review, Issue 21, 1985.

N. I. Badler. Modelling the Human Body for Animation. IEEE Computer Graphics
and Applications 2(9), November, 1982, pp. 6-7.

N. I. Badler. Animating Human Figures: Perspectives and Directions. Proc. of
Graphics Interface 1986, pp. 115-120.

N. I. Badler, K. H. Manoochehri and G. Walters. Articulated Figure Positioning by
Multiple Constraints. IEEE Computer Graphics and Applications, Vol. 7, No. 6,
1987, pp. 39-51.

N. I. Badler. Artificial Intelligence, Natural Language, and Simulation for Human
Animation. State-of-the-Art in Computer Animation, D. Thalmann (ed.), Springer-
Verlag, pp. 19-31, 1989.

N. I. Badler, B. Webber, J. Kalita, J. Esakov. Animation from Instructions.
Making Them Move: Mechanics, Control, and Animation of Articulated Figures. N.
Badler, B. Barsky, D. Zcllzer (cds.), Morgan Kaufmann Publishers, San Mateo,
California, pp. 51-93, 1990.

N. I. Badler. The Use of Nqlural Language in Human Animation. SIGGRAPH
Course Notes (#17): Advanced Techniques in Human Modelling, Animation and
Rendering, July, 1992, pp. 133-178.

R. Barzel and A. H. Barr. A Modeling System Based on Dynamic Constraints.
Proc. ACM SIGGRAPH 88, Computer Graphics 22(4), 1988, pp. 179-188.

M. A. Boden. Artificial Intelligence and Natural Man. Basic Books, NY, 1977.

R. J. Brachman and H. Levesque. Readings in Knowledge Respresentation. Morgan
Kaufmann, Los Gatos, CA, 1985.

V. Braitenberg. Vehicles: Experiments in Synthetic Psychology. The MIT Press,
Cambridge, MA, 1984.

C. Brett, S. Pieper and D. Zeltzer. Putting it all together: An Integrated Package for
Viewing and Editing 30 Microworlds. Implementing and Interacting with Real-time
Microworlds, D. Zeltzer (ed.), SIGGRAPH 1989 Course Notes, Boston, Mass, pp.
5-1 to 5-15.

page 80

References

R. A. Brooks. Solving the Find Path Problem by Good Representation of Free
Space. IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-13, No. 3,
1983, pp. 190-196.

D. C. Brown, B. Chandrasekaran. Design Problem Solving: Knowledge Structures
and Control Strategies. Morgan Kaufmann Publishers, San Mateo, California, 1989.

A. Bruderlin. Goal-Directed, Dynamic Animation of Bipedal Locomotion. Master's
Thesis. School of Computing Science, Simon Fraser University, 1988. (Also
technical report no. CMPT-TR-88- 10.)

A. Bruderlin and T. Calvert. Goal-Directed, Dynamic Animation of Human
Walking. Roc. of ACM SIGGRAPH 89, Computer Graphics, 23(3), 1989, pp.
233-242.

A. Bruderlin. Dynamics + Kinematics = Controllable Realism. Human Figure
Animation: Approaches and Applications, ACM SIGGRAPH 90 Notes for Course
NO. 8, 1990, pp. 136-144.

A. Bruderlin and T. Calvert. Interactive Animation of Personalized Human
Locomotion. Proc. Graphics Interface 1993 (to be published).

M. Bruynooghe and L. M. Pereira. Deduction Revision by Intelligent Backtracking.
Implementations of Prolog, J. A. Campbell (ed.), Ellis Horwood Publishers,
Chichester, England, 1984.

N. Burtnyk and M. Wein. Computer Generated Key-Frame Animation. Journal of
SMPTE 80, 1971, pp. 149-153.

T. W. Calvert, J. Chapman and A. Patla. The Integration of Subjective and
Objective Data in the Animation of Human Movement. Proc. of ACM SIGGRAPH
80, Computer Graphics 14, 1980, pp. 198-203.

T. W. Calvert, J. Chapman and A. Patla. Aspects of the Kinematic Simulation of
Human Movement. IEEE Computer Graphics and Applications 2, pp. 41-50.

T. W. Calvert. The Challenge of Human Figure Animation. Proceedings of
Graphics Interface 1988, pp. 203-210.

T. W. Calvert, A. Bruderlin, S. Mah, T. Schiphorst and C. Welman. The Evolution
of a User Interface for Dance Choreography. Proc. InterCHI 1993 (to be published).

E. Catmull. The Problems of Computer-Assisted Animation. Proc. ACM
SIGGRAPH 78, Computer Graphics 12, 1978, pp. 348-353.

N. Cercone and G. McCalla. Accessing Knowledge Through Natural Language. In
the 25th Anniversary Issue of Advances in Computers. M. Yovits (ed.). Academic
Press, NY, 1986, pp. 1-99.

N. Cercone. Knowledge Representation: An Overview. Indian Journal of
Technology, 25, December 1987, pp. 521-543.

W. F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, Berlin
Heidelberg, 198 1.

page 81

References

S. Colgate. Colgate's Basic Sailing Theory. Van Nostrand Reinhold Incorporated,
New York, 1973.

A. Colmerauer, H. Kanoui, H. Pasero and P. Roussel. Un systeme de
communication homm-machine en Francais. Aix-Marseille University, France,
1973.

A. Colmerauer. An Introduction to Prolog III. Communications of the ACM,
33(7), 1990, pp. 69-90.

K. Drewery and J. Tsotsos. Goal Directed Animation Using English Motion
Commands. Proc. of Graphics Interface 1986, pp. 13 1- 135.

J. Esakov and N. I. Badler. An Architecture for High-Level Task Animation
Control. Knowledge-Based Simulation: Methodology and Application. Springer-
Verlag, Berlin Heidelberg, 199 1, pp. 162- 199.

R. Fikes and T. Kehler, The Role of Frame-Based Representation in Reasoning.
CACM, 1985, pp. 904-920.

D. Forsey and J. Wilhelms. Techniques for Interactive Manipulation of Articulated
Bodies Using Dynamics Analysis. Proc. Graphics Interface 1988, pp. 8-15.

E. C. Freuder. Synthesizing Constraint Expressions. Communications of the
ACM, 21(11), 1978, pp. 958-966.

M. R. Genesereth and N. J. Nilsson. Logical Foundations of Artificial Intelligence,
Morgan Kaufmann, Los Altos, CA, 1987.

P. Gill, W. Murray and M. Wright. Practical Optimization. Academic Press, New
York, N.Y., 1981.

C. Ginsberg and D. Maxwell. Graphical Marionette. Proceedings of ACM
SIGGRAPHISIGART Workshop on Motion, 1983, pp. 172-179.

M. Girard and A. A. ~aciejkwski. Computafional Modeling for the Computer
Animation of Legged Figures. Proceedings of SIGGRAPH 85, 19, pp. 263-270,
July, 1985.

J.E. Gomez. Twixt: 3 0 Animation System. Computer & Graphics 9(3), 1985, pp.
291-298.

R. L. Gould. Making 3 -0 Computer Character Animation: A Great Future of
Unlimited Possiblity or Just Tedious? SIGGRAPH 89 Course Notes: 3D Character
Animation by Computer, 1989, pp. 31-60.

J. Grubb. Hobie Cat Sailing. Airguide Publications, Long Beach, California, 1982.

R. Hadley. SHADOW: A Natural Language Query Analyser. MSc Thesis,
Computing Science. Simon Fraser University, 1983. Also in Computers &
Mathematics. Pergamon Press, Oxford, 1985.

page 82

References

P. Hanrahan and D. Sturman. Interactive Animation of Parametric Models. The
Visual Computer: International Journal of Computer Graphics 1(4), December 1985,
pp. 260-266.

P. Harmon, R. Maus and R. Morrissey. Expert Systems Tools and Applications.
John Wiley & Sons Inc., Toronto, 1988.

D.R. Haumann and R.E. Parent. The behavioral Test-bed: Obtainin Complex
Behavior from Simple Rules. The Visual Computer, 4(6), 1988, pp. 332-347.

W. Havens. Echidna Constraint Reasoning System: Programming Specifications.
Proc. of Computational Intelligence 90, Milano, Italy, September 1990, pp. 24-28.

W. Havens. Intelligent Backtracking in the Echidna CLP Reasoning System. TR
No. CSS-IS-TR-91-07, Simon Fraser University, 1991. Also in The International
Journal of Expert Systems: Research and Applications (in press).

W. Havens, S. Sidebottom, G. Sidebottom, J. Jones and R. Ovans. ECHIDNA: A
Constraint Logic Programming Shell. TR No. CSS-IS-TR-92, Simon Fraser
University, 1992. Also in Proc. of the 1992 Pacific Rim International Conference
on Artificial Intelligence (Seoul, Korea).

P. Hayes. The Logic of Frames. In Readings in Artificial Intelligence. B. Webber
and N. Nilsson (eds.). Tioga Publishing, Palo Alto, CA., 1981, pp. 451-458.

C. Hewitt. Description and Theoretical Analysis of PLANNER. PhD Thesis, MIT,
Cambridge, MA, 1972.

P. M. Issacs and M. F. Cohen. Controlling Dynamic Simulation with Kinematic
Constraints. Proc. of ACM SIGGRAPH 87, Computer Graphics 21(4), July, 1987,
pp. 215-224.

J. Jaffar and S. Michaylov. Methodology and Implementation of a CLP system.
Proceedings of the Fourth International Conference on Logic Programming,
Melbourne, Aust., 1987. .
P. Karp and S. Feiner. Issues in the Automated Generation of Animated
Presentations. Proc. Graphics Interface 1990, pp. 39-48.

P. Karp and S. Feiner. Automated Presentation Planning of Animation Using Task
Decomposition with Heuristic Reasoning. Proc. Graphics Interface 1993 (to be
published).

M. Kass. CONDOR: Constraint-Based Dataflow. Proceedings of SIGGRAPH
1992, Computer Graphics 26(2), pp. 321-330.

D. Kochanek and R. Bartels. Interpolating Splines with Local Tension, Continuity
andBias Tension. Proc. ACM SIGGRAPH 1984, pp. 33-41.

J. U. Korein and N. I. Badler. Techniques for Generating the Goal-Directed Motion
of Articulated Structures. IEEE Computer Graphics and Applications 2(9),
November 1982, pp. 7 1 4 1.

page 83

References

R. Kowalski. Predicate Logic as Programming Language. Proc. of the IFIP
Congress 74, North Holland (ed.), 1979, pp. 569-574.

B. J. Kuipers. Qualiative Simulation. Artificial Intelligence, 29(3), September,
1986, pp. 280-338.

A. Lansky. Localized Event-Based Reasoning For Multi-Agent Domains.
Computational Intelligence: Special Issue on Planning, 4(4), 1983, pp. 319-340.

C. G. Langton (ed.). Artificial Life. Santa Fe Institute Studies in the Sciences of
Complexity, VI, Reading, MA, Addison-Wesley, 1989.

J. Lasseter. Principles of Traditional Animation Applied to 3 0 Computer
Animation. Proc. ACM SIGGRAPH 87, Computer Graphics 21(4), 1987, pp. 35-
44.

P. Lee, C. Phillips, E. Otani and N. I. Badler. The JACK Interactive Human Model.
Concurrent Engineering of Mechanical Systems, Vol. 1, First Annual Symposium
on Mechanical Design in a Concurrent Engineering Environment, University of
Iowa, Iowa City, IA, October 1989, pp. 179-198.

T.C. Lethebridge and C. Ware. A Simple Heuristically-Based Method for Expressive
Stimulus-Response Animation. Computers and Graphics, 13(3), 1989, pp. 297-303.

S. Levy. Artificial Life: A New Quest for Creation. Pantheon, New York, 1992

S. Levy. Artificial Life. Siggraph 92 Panel Discussion, Computer Graphics, 26(2),
July, 1992, pp. 406-407.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, NY, 1984.

T. Lozano-Perez. Automatic Planning of Manipulator Transfer Movements.
Technical Report A1 Memo 606, MIT, 1982.

G. McCalla and N. Cercone, Approaches to Knowledge Representation. Computer
16(10), 1983, pp. 12-16. '

J. McCarthy and P. J. Hayes. Some Philosophical Problems from the Standpoint of
Artijicial Intelligence. In Machine Intelligence 4, B. Meltzer and D. Michie (eds.),
Edinburgh University Press, Edinburgh, 1969.

J. McCarthy. Circumscription: A Non-Monotonic Inference Rule. Artificial
Intelligence, 13, 1980, pp. 27-40.

A. Mackworth. Consistency in Networks of Relations. Artificial Intelligence, 8,
1977, pp. 99-1 18.

N. Magnenat-Thalmann and D. Thalmann. EXPERTMIRA: An A.I. Language for
Image Synthesis and Animation. Technical Report, MIRALab, Universite de
Montreal, 1986.

R. Maiocchi and B. Pernici. Directing an Animated Scene with Autonomous Actors.
Computer Animation 90, N. Magnenat-Thalmann and D. Thalmann (eds.), 1990, pp.
41-60.

References

C. A. Marchaj. Sailing Theory and Practice. Dodd, Mead & Co., New York, 1964.

C. A. Marchaj. Aero-Hydrodynamics of Sailing (Revised and Expanded Edition).
International Marine Publishing, Camden, Maine, 1988.

M. Minsky. A Framework for Representing Knowledge. The Psychology of
Computer Vision, P. Winston (Ed.), McGraw-Hill Publishers, New York, 1975.

C. L. Morawetz. A High-Level Approach to the Animation of Human Secondary
Movement. Master's Thesis. School of Computing Science, Simon Fraser
University, 1989.

C. L. Morawetz. Goal-Directed Human Animation of Multiple Movements. Proc.
Graphics Interface 90,1990, pp. 60-67.

E. Muehle. FROBS: A Merger of Two Knowledge Representation Paradigms.
Master's Thesis. University of Utah, 1987.

L. Naish. Automatic Control for Logic Programs. Journal of Logic Programming,
2(3), October 1985, pp.167-184.

A. Newel1 and H. A. Simon. Computer Science as Empirical Inquiry: Symbols and
Search. CACM 19(3), March, 1976.

A. Newell. Reasoning, Problem Solving and Decision Process: The Problem Space
as a Fundamental Category. Attention and Performance VIII. L. Erlbaum, 1980,
pp. 693-718.

N. R. Nielsen. Application of Artificial Intelligence Techniques to Simulation.
Knowledge Based Simulation: Methodology and Application. P. A. Fishwick and
R. B. Modjeski (Eds.). Springer-Verlag, New York, 1991, pp. 2-19.

Nilsson71 N. Nilsson. Problem Solving Methods in Artificial Intelligence. McGraw-Hill,
New York, 1971.

ODonnel8 1 T. J. O'Donnell and A. J. 0ison. CRAMPS- A Graphical Language Interpreter for
Real-Time, Interactive, Three-Dimensional Picture Editing and Animation. Roc.
ACM SIGGRAPH 81, Computer Graphics, August, 1981, pp. 133-142.

ParRe82 - F. I. Parke. Parameterized Models for Facial Animation. IEEE Computer Graphics
and Applications 2, 1982, pp. 61-68.

Phillips88 . C. Phillips and N. I. Badler. Jack: A Toolkit for Manipulating Articulated Figures,
Proc. ACM SIGGRAPH Symposium on User Interface Software, Banff, Canada,
1988.

Prusinkiewicz90 P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer-
Verlag, NY, 1990.

Reeves83 W. Reeves. Particle Systems: A Technique for Modelling a Class of Fuzzy Objects.
Proc. ACM SIGGRAPH 83, Computer Graphics 17(3), July 1983, pp. 359-376.

page 85

References

0. Renault, N. Magnenat-Thalmann, D. Thalmann. A Vision-Based Approach to
Behavioural Animation. The Journal of Visualization and Computer Animation,
1(18), 1990, pp. 18-21.

C. W. Reynolds. Computer Animation with Scripts and Actors. Proc. of ACM
SIGGRAPH 82, Computer Graphics 16(3), 1982, pp. 289-296.

C. W. Reynolds. Flocks, Herds and Schools: A Distributed Behaviour Model.
Proc. ACM SIGGRAPH 87, Computer Graphics 21(4), 1987, pp. 25-34.

E. Rich. Artificial Intelligence. McGraw-Hill Book Company, New York, 1983.

G. Ridsdale and T. Calvert. The Interactive Specification of Human Animation.
Proc. Graphics Interface 1986, pp. 121-130.

G. Ridsdale. The Director's Apprentice: Animating Figures in a Constrained
Environment. PhD Thesis, School of Computing Science, Simon Fraser
University. TR No. CMPT-TR-87-6, 1987.

G. Ridsdale and T. Calvert. Animating Microworldsfrom Scripts and Relational
Constraints. Computer Animation 90, N. Magenat-Thalmann and D. Thalmann
(eds.), 1990, pp. 107-1 17.

D. E. Rummelhart and A. Ortony. The Representation of Knowledge in Memory.
TR, Center for Human Information Processing, Deparment of Psychology,
University of Califormia at San Diego, LaJolla, CA. 1976.

D. Schaffer et al. Comparing Fisheye and Full-Zoom Techniques for Navigation of
Hierarchically Clustered Networks. Proc. Graphics Interface 1993 (to be published).

A. E. Scheflen. Body Language and the Social Order. Prentice-Hall Inc., Eaglewood
Cliffs, NJ, 1972.

T. Schiphorst, T. Calvert, C. Lee, C. Welman and S. Gaudet. Tools for Interaction
with the Creative Process of Composition. Proc. CHI, 1990, pp. 167-174.

S. Sidebottom. Echidna Constraint Reasoning System Tutorial: Heuristics.
Tutorial Notes for ECHIDNA, 1992.

S. Sidebottom. Echidna Constraint Reasoning System Programming Manual
(version 1.0). Expert Systems Laboratory, Centre for Systems Science, Simon
Fraser University, 1992.

H.A. Simon. The Sciences of the Artificial. MIT Press, Cambridge, MA, 1969.

K. Sims. Locomotion of Jointed Figures Over Complex Terrain. SM Thesis, MIT,
April 1987.

K. Sims. Art@cial Evolution for Computer Graphics. Computer Graphics 25(4),
July, 1991, pp. 319-328.

L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming Techniques.
The MIT Press, Cambridge, Mass., 1986.

page 86

References

Vertigo

Waltz72

D. Sturman. A Discussion on the Development of Motion Control Systems.
Computer Animation: 3-D Motion Specification and Control, SIGGRAPH 87
Notes for Course No. 10, 1987, pp. 3-16.

I. E. Sutherland. SKETCHPAD: A Man-Machine Graphical Communication
System. Cambridge, MA, MIT Lincoln Labs, 1963.

D. Thalmann, N. Magnenat-Thalmann. AI in Three-Dimensional Computer
Animation. Computer Graphics Forum 5, 1986, pp. 341-348.

D. Thalmann, N. Magnenat-Thalmann, B. Wyvill, D. Zeltzer. Synthetic Actors:
The Impact of Artificial Intelligence and Robotics on Animation, Siggraph 88
Course Notes #4, Boston, 1988.

D. Thalmann, N.I. Badler, N. Magnenat-Thalmann, and D. Terzopoulos. Advanced
Techniques in Human Modelling, Animation and Rendering, Siggraph 92 Course
Notes #17, Chicago, 1992.

S. van Baerle. Computer Animation: Combining Computer Graphics with
Traditional Animation. Graphics Interface 86: Tutorial on Computer Animation,
1986.

P. Van Hentenryck. Constraint Satisfaction in Logic Programming. The MIT
Press, Cambridge, MA, 1989.

Vertigo Technology Inc. 1010-1030 West Georgia Street, Vancouver, B.C., Canada.

D. Waltz. Generating Semantic Descriptionsfrom Drawings of Scenes with
Shadows. TR-A127 1, MIT, MA, November, 1972.

B. L. Webber. AnimationffDm NL Instructions. Advanced Techniques in Human
Modelling, Animation and Rendering, ACM SIGGRAPH 92 Notes for Course No.
17, 1992, pp. 146-166.

J. Wilhelms and B. Barsky., Using Dynamic Analysis to Animate Articulated Bodies
Such as Humans and ~ o b o i s . Proc. Graphics Interface 85, May 1985, pp. 197-204.

J. Wilhelms. Toward Automatic Motion Control. IEEE Computer Graphics and
Applications, Vol. 7, No. 4, April 1987, pp. 11-22.

J. Wilhelms and R. Skinner. An Interactive Approach to Behavioural Control.
Proc. Graphics Interface 1989, pp. 1-8.

J. Wilhelms. Behavioural Animation Using An Interactive Network. Proc.
Computer Animation 1990, pp. 95-105.

D. Wilkins. Domain-Independent Planning: Representation and Plan Generation.
Artificial Intelligence, 22, 1984, pp. 269-301.

D. Wilkins. Practical Planning: Extending the Classical A1 Planning Paradigm.
Morgan Kaufmann Publishers Inc., San Mateo, California, 1988.

T. Winograd. Understanding Natural Language. Academic Press, New York, 1972.

page 87

References

A. Witkin and M. Kass. Spacetime Constraints. Computer Graphics, 22, No. 4,
August 1988, pp. 159-168.

D. A. Wolfram. Intractable Unijlability Problems and Backtracking. Third
International Conference on Logic Programming, London, U.K., July, 1986.

L. Yaeger. Interactive Evolution of Dynamical Systems. Proceedings of the First
European Conference on Artificial Life, MIT Press, Cambridge, 1982.

D. Zeltzer. Motor Control Techniques for Figure Animation. IEEE Computer
Graphics and Applications, 2(9), November 1982, pp. 53-59.

D. Zeltzer. Knowledge-Based Animation. Proceedings of SIGGRAPH/SIGART
Workshop on Motion. Morgan Kaufmann Publishers, Inc., San Mateo, California,
1983, pp. 187-192.

D. Zeltzer. Towards an Inlegrated View of 3 0 Computer Animation. The Visual
Computer, 1(4), 1985, pp. 249-259.

page 88

