MULTICONFIGURATION SELF CONSISTENT FIELD
THEORY USING NON-ORTHOGONAL ORBITALS

BERYLLIUM ATOM

by
A.V. ANANTARAMAN

B.Sc., Madras University, 1950
M.Sc., Madras University, 1956
Ph.D., Calcutta University, 1962

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in the Department
of

Chemistry

(:) A.V, ANANTARAMAN

SIMON FRASER UNIVERSITY

January 1974

All rights reserved. This thesis may not be reproduced in

whole or in part, by photocopy or other means, without
permission of the author.



APPROVAL

Name:

Degree:

Title of Thesis:

Examining Committee:

Chairman:

ii

A.V. Anantaraman

Doctor of Philosophy

"MULTICONFIGURATIONAL SCF THEORY
USING NON-ORTHOGONAL ORBITALS"

B. L. Funt

M. L. bBenston

Senior Supervisor

Y. L. Chow
Committee

E. M. Vdigt
Committee

I.. E. Ballentine
Committee

D. P.M@EengT'Extegzal Examiner
Assocliate Profess
University of British Columbia

Date Approved: Eﬁé g} 1979‘

h e g 4



PARTTATL COPYRTCHT ILICENSE

I hereby grant to Simon Fraser University the right to lend

my thesis or dissertation (the title of which i{s shown below) to users
‘of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library
of any other university, or other educational institution, on its own
behalf or for one of its users. I further agree that permission for
multiple copying of this thesis for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying
or publication of this thesis for financial gain shall not be allowed

without my written permission.

-_— - TR -
Title of Tuesis/Diss

- -
LLacaiovii,

(8]

Multi-configuration Self Consistent Field Theory

Using Non-orthogonal Orbitals., Beryllium Atom

Author:
(signature)

A, V. Anantaraman

{(name)

April 1, 1974

(date)



ABSTRACT

The thesis presents a comprehensive analysis of Multi-
Configurational Self Consistent Field Theory using non-ortho-
gonal orbitals based on the formalism proposed by Benston and
Chong (Mol. Phys. 14,449,1968). Their prescription for obtain-
ing a pseudo-eigenvalue equation is shown to be inconsistent and
a modified approach to the solution of the Fock equations is
described. The "coupling operator" methods such as that of
Birss and Fraga are incomplete and do not afford a practical
meand of arriving at a satisfactory convergent solution.

The modified scheme 1is applied to the calculation of
the ground state energy of Beryllium atom. A complete MC-SCF
program using non-orthogonal orbitals has been developed and
implemented. Some of the existing configuration interaction
calculations on Be atom are analyzed and it is shown that a
partial relaxation of the orthogonality constraint on the orbi-
tals has a pronounced effect on the ground state energy of Be
atom.

An additional aspect of the present theory concerns
the non-orthogonality parameter V. The problem of obtaining V
has not been adequately exposed by Benston and Chong. A method
is proposed for the evaluation of the parameter V from physi-
cally acceptable overlap matrices W. The effect of V on the

total energy is also discussed.
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CHAPTER I

REVIEW OF CLASSICAL METHODS



1.1 INTRODUCTION

The electronic structure and properties of any atom in
the ground state can be determined, in principle, by solving the
Schrddinger equation. In the non-relativistic quantum theory of
many particle systems, the Schrdodinger equation refers to a con-
figuration space having a dimension proportional to the number of
particles. Apart from the formidable task of finding a solution
to this problem, the resulting wave function may be too compli-
cated to have any physical significance. Although there have been
many attempts to reduce the problem by the use of density matrices,
a satisfactory understanding of many particle systems still re-
mains a challenge both to physicists and chemists.

Quantum mechanics of one- and two- electron systems may
be caid to be reasonably well understood4with the possible excep-
tion of relativistic effects. Attempts to extend these methods to
many electron systems have been less successful.

The question is one of finding approximate eigenfunctions
and energies that come reasonably close as solutions of the Schro-
dinger equations and which also provide some insight into the
actual physical situation. Although the total energy is not in
any sense a complete index as to the accuracy of the approximation,
it is a simple and perhaps the.best place to start. There are a
number of reasons for this: the most important being (a) the
convenience of the variational principle, (b) the general good
correlation between reasonable values for the energy and those

for various other properties calculated with energy optimized



wave functions and (c) the interest that the stationary state
energy holds for chemists,

In the past few years it has become clear that the
classical Hartree-Fock method represents an unbalanced situation
when we consider the dynamics of electrons, It is true that the
Hartree-Fock approximation gives "reasonable" values for the
energy and a high degree of physical insight. However the energy
cannot be calculated to a sufficient accuracy to lead to chemi-
cally interesting effects. A considerable stabilizing influence
is imparted to an atomic or molecular system by the electronic
correlation energy which is not taken into account by the Hartree-
Fock method, Recently a number of methods have been proposed to
include electron correlation into the Hartree-Fock scheme
through such expansion methods as configuration interaction or
multi-configurational self consistent field. Even with the
use of sophisticated computers, these methods have certain
fundamental difficulties, particularly the number of configurations
required to achieve a desired accuracy, makes physical inter-

pretation difficult and computation lengthy.
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By using non-orthogonal orbitals, we have achieved
a significant improvement in the convergence of the configu-
ration interaction expansion, that is, the number of configu-
rations required to achieve a desired degree of accuracy in
the energy. This is a major improvement over the existing
Configuration Interaction (CI) or Multi-Confugurational Self
Consistent Field (MC-SCF) methods using orthogonal orbitals,
In the following sections we outline the various methods of
improving the Hartree-Fock scheme and then describe the MC-SCF

method using non-orthogonal orbitals.

1.2 INDEPENDENT PARTICIE MODELS

Perhaps the most widely used and most succéssful app-
roach to quantum theory of many electron systems is the indepen-
dent particle model. The Hartree-Fock approximation is simply
a variational formulation of this intuitive concept. ‘Physically
this approximation amount to the assumption that each particle
moves in an average field of the other particles. Mathematically
one approximates the state function as the simplest anti-

symmetrized product of one-particle functions.
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(a) HARTREE-FOCK METHOD' +222+%

In view of the fundamental importance of the Hartree-Fock
model, it may be appropriate to start with a brief review of this
approximation. Essentially, the Hartree-Fock wave function is
the best wave function (in the variational sense) that can be
constructed based on a one-to-one correspondence between particles
and orbitals.

The Hamiltonian for a system of N electrons, in atomic

units, can be written as
N

N A e
i o} k#i ik

where r; is the distance of the electron i from the nucleus a
and L is the distance between electrons i and k. In atomic
units, the unit of length is the bohr where 1 bohr = 5,2917 x 1072
cm., and the unit of energy is the hartree where 1 hartree is equal
to twice the ionization potential of hydrogen, that is, 27.210 eV.
According to the Hartree-Fock model, the trial wave function is

taken as the Slater determinant

® (x) o (x) - - - oyx)
o (x)) @ (x ) - - - oyx)
l.,2.2
;- (1.2.2)
QPI(XN) cpa(XN) - = - wN(XN)
In this expression ¢ , we s = = - Py are N linearly independent
1

spin orbitals of the form



o(X) = g () { gég;
(1.2.3)
The Hamiltonian operator of eqg. (1.2.1) is
X = z fi +'z gij
* 1> J (1.2.%4)

where fi is the Hamiltonian of electron i moving in the field of
the nucleus and gij is the electrostatic interaction between

electrons i and J. The energy of the system is given by

E = (& |x]| &)

(1.2.5)
where the orbitals are chosen by variational method so as to give
1is minim ion of energy resulting
from a single determinant wave function eq. (1.2.2) gives a set
of integro-differential equations called the Hartree-Fock equations.

It is convenient to define two operators Ji and Ki’

called coulomb and exchange operators respectively, associated with

a particular orbital i

I (Mo (1) = wk(l)jwi(g)*riz :(2) AV, (1.0.6)
G (Wee(1) = 3 (D)]es(2) 57— 9 (2) av,

(1.2.7)
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The energy expression (1.2.4) can now be written as

E

i

(e |lx| &)

QZH:-L + 2(2 Jiy - Kiy)
AL

- (1.2.8)
where the integrals are defined by
Hy = Cop | T oog)
Jig = Koyl Il oy = Col Iy | @)
Kig = Cog |l Kl og) = Cogl X5 | 01
(1.2.9)

The factor 2 in eq. (1.2.8) appear because of the double occu-
pation of the orbitals. The one particle funetions are

determined by means of the variational principle

s (s |x]|] &)y =0
(1.2.10)
and we obtain the condition
Zfi + Z(QJi - KJ) ®3 =2€Jicpj
i J J
(1.2.11)

where the Lagrange multipliers €y are inclﬁded in order to také
account of the orthogonality of orbitals. If we define the
Hartree-Fock operator as
i = f. + - K
Fop(l) 2: 1 Ea(g I3 J)

1 (1.2.12)

the Hartree-Fock equation can be written as



op®i ) 319
J (1.2.13)
since the coulomb and exchange operators are invariant against
arbitrary unitary transformation of the "occupied" orbitals g,
the Fock Hamiltonian itself is invariant against unitary trans-
formation. This important property allows us to make a further

simplification of the equations. We multiply eq. (1.2.11) by

Z tik’ where tik is the (i,k)th element of a unitary matrix T,
k
and put

Tix Pk

=1 =1

) bk ed
J

(1.2.14)
As a result we obtain relations of the form (1.2.11)in which ®
and ¢ are simply replaced by ¢' and ¢'. In matrix notation eq.

(1.2.14%) can be written as

- -1
loeag = T eyl T

(1.2.15)
so that the Hermitlan matrix || ¢' || can be made diagonal by
suitable choice of matrix T. We can label the diagonal elements

which are real as € and dropping the primes

Fop @ = ek 9
(1.2.16)



Equation (1.2.16) is the final form of the Hartree-Fock equations.
The Hartree-Fock equations are usually treated in the
eigen-value form (1.2.16) and the solutions are referred to as
"Hartree-Fock equations”". They are characterized by the fact
that they are delocalized over the entire system. It may be
noted that a wave function defined by a Slater determinant of
the form (1.2.2) is invariant under linear transformation of the
set @, 9, " " "oy and depends only on the linear manifold
spanned by this set.
The Hartree-Fock equations represent systems of non-
linear integro-differential equations. The self consistent field

scheme can be shown as

(1.2.17)

where vy is called the Hartree-Fock potential given by the cou-
lomb terms, and Heff is the sum of kinetic energy and coulomb

terms.

(b) EXPANSION METHODS5’6 - (Hartree-Fock-Roothaan)

In attempting to solve the'Hartree-Fock equations (1.2.16)
it has been found convenient to expand the Hartree-Fock fuhctions
in the set

¢ N { ?, % - - -9 }

(1.2.18)
as linear combinations of the form



M
¢ = X Q
K Z Mouk
W (1.2.19)
or
» = xQ
(1.2.20)

where Q@ 1s a rectangular matrix of order M XN. Assuming the basis

to be non-orthogonal, we can write

(x | xy =.8
(1.2.21)
where S is the overlap matrix and is a measure of non-orthogo-
nality. Since the effective Hamiltonian is self-adjoint, the
eigenfunctions of eq. (1.2.16) are orthonormal.

Since the Hartree-Fock wave function is invariant to a

unitary transformation we can write

(o'l o'y = atsq =1 |
(1.2.22)
If the effective Hamiltonian is considered as fixed one

nay solve the eigenvalue problem (1.2.16) by means of the varia-

tional method

8 ( Hypp > = O

(1.2.23)
leading to a set of linear equations

H - = 0
z ( v EMYAN
N

(1.2.24)
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where

Hy = (o D Herr | oy (1.2.25)

This system of equations has non-trivial solution only if the

secular equation

det {Heff - es} = 0
(1.2.26)

is satisfied and this gives the orbital energies ¢. Once the ¢'s
are known, the equation can be solved for @’s. The best deter-
minantal wave function, within the limitation of a truncated basis
set, is obtained by varying the expansion coefficients Quk . In

the limit of infinite basis set, this wave function approaches

the Hartree-Fock function.

In 1951, Roothaan and Hall 6,7 independently proposed a

systematic approach to the expansion method. According to the

Roothaan formalism, the iterative cycle 1is

{Quk} — Hepr = {Huv}__{Quk}
(1.2.27)
Much of the current atomic and molecular calculations make use of
the Roothaan method.

The important simplification in the Hartree-Fock method
lies in the expression (1.2.2) which consists of products of single
particle functions. There is a one-to-one correspondence between
particles and one-particle wave functions which impart a conside-

rable amount of physical meaning to the Hartree-Fock model. The
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expression contains only occupied states and not the complete

system of single particle functions and hence cannot provide a
rigorous solution. A pure product function is inadequate chiefly
pecause here the position of an electron which is described by its
function ¢ () 4is completely independent of the other electrons,
while the electrons are really connected with each other through
coulomb interaction. This correlation in motion which thus arise

is excluded in single particle product functions. It would for
example be quite possible for several electrons to be located in
the same position whilst the effect of coulomb repulsion is to

keep them apart. Because of this repulsion the coulomb potential
e2/r12 becomes infinite at r;2 = 0 which means that each electron
is surrounded by a "Coulomb hole" with respect to other electrons.
On the other hand a certain amount of correlation appears with a
determinantal expression since this takes account of Pauli principle.
However this correlation has nothing to do with coulomb interaction.
On the whole therefore, in the Hartree-Fock treatment, the electron
correlation is hardly taken into account. However it has become
evident in recent years thét electron correlation is of fundamental
importance in chemical binding and therefore the one-electron
approximation is inherently too inaccurate to provide a satisfactory
basis for an understanding of problems of chemical interest. The
problem of electron correlation has been discussed extensively by

9-

Lowdin8 and others
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A further limitation of the Hartree-Fock method is that

it is not in general applicable to open shell gystems. An open

shell system requires more than one configuration and gives rise
to off-diagonal Lagrange multipliers which cannot be easily

eliminated.

1.3 IMPROVED METHODS OF DETERMINING ELECTRONIC STRUCTURE
OF ATOMS

So far we have confined ourselves to the basic Hartree-
Fock formalism in a form applicable to atoms whose wave functions
can be developed in terms of closed shell configurations so that
the quantum numbers mL and mg do not have to be specified. The

resulting wave function is a singlet and satisfies certain so

talled equivalence restrictions 10. An example of the equivalence

restrictions is that the spatial part of the orbital ¢1(r) a and

,l(r) g must be identical. The equivalence restrictions are satis-

‘iéd whenever the radial part of the orbitals are independent of
Iy and mL quantum numbers and the orbitals are associated with
efinite 5 quantum numbers. This means that the resulting wave
unction is an eigenfunction of S%, L2 and 5, , L,.

The Hartree-Fock method in which the equivalence restric-

ions are satisfied or are imposed is known as "restricted"

artree-Fock method. A single determinant of doubly occupied

rbitals represent a totally symmetric 'S state, and a state that

an be represented in this manner is called a closed shell state.
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Tf the orbitals are singly occupied ( i,e., partially occupied )
such a state is called an open shell. 1In general both closed-
and open-shell variational wave functions are based on indepen-
dent particle model having certain symmetric properties consistent
with the effective Hamiltonian. 1In the closed shell case the
radial orbitals of spin paired electrons are constrained to be
identical while in the open shell case this condition is relaxed.
The proper symmetry can always be obtained in the closed shell
procedure with a single determinant, but in the open shell proce-
dure a multideterminantal wave function may be required.

Based on the equivalence restrictions, several modified
schemes have been attempted on the conventional Hartree-Fock method.

The important cases are discussed by Nesbet 1%_and Nesbet and

Watson 12. In the case of configurations arising from open shells,
Slater 13 has proposed dropping the restriction that the radial
functions be independent of mg - This means that orbitals of
opposite spins need not have the same spatial functions. This
variant is called spin-polarized Hartree-Fock method.

If the trial function which is a single determinant is

free from all restrictions other than the variational principle

s (e¢)lxle)y = O (1.3.1)

me obtains the so called unrestricted Hartree-Fock scheme.
Another variation of the Hartree-Fock method is one where
he trial function is obtained from the Slater determinant of an

14

pen shell configuration by use of L? and S® projection operators
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Here the total wave function can be written as

Y =~ P 3@ (1.3.2)

where P denotes the desired projection operator and § is a single

determinant wave function. The energy is given by

1-
xy = LM PHPI®)
I aw @|P|®

(1.3.3)

Neither the Hartree-Fock method nor those related methods
that satisfy one or other of the many equivalent restrictions can

iccount for electron correlation in many electron systems. In

rder to overcome this fundamental deficiency, we have to go beyond

she Hartree-Fock scheme. -

There are three "Classical" variational methods of intro-
lucing correlation in a wave function

() Open Shell Procedure

(b) Configuration Interaction

(¢) Interelectron coordinates Ty 4 in the wave function.

a)

OPEN SHELL PROCEDURE - (Generalized Hartree-Fock-Roothaan)

Among the three methods, the open shell procedure is the
implest but the most limited in scope since it cannot be extended

er se to yield any desired accuracy. In general the effect of

pen shell calculation is to improve the corresponding closed shell

nergies by an amount approximately independent of the number of
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electrons N while on the other hand the correlation energy increases
rather rapidly with increasing N. Fram the practical standpoint,
it is more difficult to obtain SCF wave functions for open shells

15

than for closed shell systems In most cases the open shell
procedures are direct generalizations of the closed shell method.
An important shortcoming of this approach is that the resulting
wave function is not an eigenfunction of S2, but is a mixture of
wave functions with different spin multiplicities. Nevertheless
the open sheli procedure provides a supplimentary technique for
gaining some correlation when used in conjunction with other types
of correlation methods.

16,17

The generalized Hartree-Fock-Roothaan formalism makes a
limited improvement on the wave function and energy of closed shell
atoms and extends the Hartree-Tock formalism to include open shell

atoms and molecules. There are a number of difficulties associated

#ith open shell systems and these are discussed by several authors

18,19

A symmetry operator, operating on any determinantal wave
‘unction & gives a new funétion §'. In the case of doubly occupied
wwbitals (closed shell), the new function §' are linear combina-
lons of orbitals in the 0ld function §. In other words a closed
hell determinant describes a totally symmetric slate if the
rbitals ¢ ¢_ - - - y Provide a basis for representation of any

1 T2 N
ymmetry point group.

In general an open shell single determinant wave function does
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not represent a totally symmetric state and will not be an eigen-

sunction of total spin operators SZ and S2. However a linear

combination of determinants can be made to satisfy these conditions.
The total wave function y is, in general a sum of several

glater determinants

y = Zx L, &, (1.3.%)

where each 2 is an antisymmetrized product of spin orbitals and
the coefficients are determined by the above-mentioned symmetry
requirements.

Since an open shell implies the presence of both doubly
occupied and singly occupied orbitals, it is convenient to assign
an occupation number Nix to a particular shell. Here i refers to
the orbital and ) refers to the symmetry species. The density
natrices corresponding to a general shell, closed shell (c¢) and

>pen shell (o) can be written as

Diy = Ny, Q4 Qy (1.3.5)
Dcx - z; Dkx
Dy, = E; Dy

lere the expansion coefficients Qi are given by

D

©; = E; X , 1.3.6)
Hha pre YiAp (




-17-

o denotes the symmetry subspecies. In eq. (1.3.5) the indices

k = c closed shell and m = i c open shell. Since C is a column
vector, cct represents a matrix.

In order to bring out the basic idea of the formalism, the
energy can be written as the sum of two terms corresponding to the

one-electron contribution and the two electron contribution:

g = () 4 gle) (1.3.7)
The first term E(i) can easily be obtained as

gl1) - (e | £ ] &) (1.3.8)

B Z< ZK Nk qu fapa Faka @ ke

W - % - N
Ly N lpq 5pa® amp® ymg)

+

In matrix notation, this reduces to
E(l) = D + H D (1.3.9)
_ Hi Ch A O\
= H DTA

There we have used

DT)\ = DCX + Dox (1.3.10)
D = , D and D - D
A
c {z K\ o\ /rn m\

t may be noted that E(l) does not depend on the symmetry of

ub-species a but only on i\
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The two electron Hamiltonian is more difficult since in
this case the matrix elements will depend on the subspecies and
the coifficients Ly will have to be considered. The problem is
relatively simple for a closed shell where the contribution to
the two-electron energy is given by

g2 - 1 ot pp (1.3.11)
c c c
where P is a supermatrix whose elements are the two-electron
integrals.

In extending these ideas to open shell systems, we follow
the method of Roothaan and Bagusgo. The following points should
be noted:

1. The total wave function is in general a sum of several anti-
symmetrized products each df which contains a doubly occupied
closed shell core &c and a partially occupied open shell chosen
from a set 8, the different antisymmetrized products containing

different subsets of Qo' The combined set of orbitals is given by
8 ) (1.3.12)

and is assumed to be orthonormal. Egq. (1.312) assumes that each
configuration y contains a doubly occupied closed shell core &c

and partially occupied open shell chosen from a set 8-

2. The expectation value of the energy would contain interac-

tion contributions from the closed-shell, the open-shell and
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closed-shell-open-shell.

In the form initially reported by Roothaan, certain restric-
tions were imposed on the symmetry and occupation of the open shells
e.g. only one open-shell was considered and for half closed shells
the spins were assumed parallel. Huzinaga21 extended this forma-
1ism to include two open shells of general symmetry species. We
follow the Roothaan-Bagus procedure which is completely general.

The idea is the following: As in the case of a closed shell
we construct a supermatrix P, but subtract out another supermatrix
Q which represents fictitions interaction terms that were added in
the P matrix. In this way, we express the energy E(2) in terms of
two supermatrices, the P supermatrix for the case of the closed-
shell configurations and the o supermatrix for the case of open-

shell-open-shell interactions.

A+ ]
P = 4° - 3 A K)\\’
APA,y TS APA,yTrs i AUV pa,,rs
VA - (1.3.13)
s 2&:}.}.)‘} v l%'l'u‘ v
- - 1 K
APA,urs L ALV prq,urs 2 Kkuv APA,, s
v=o v=[A |
(1.3.14)
where g and g are elements of coulomb and exchange
APA,y TS APQ,yrs
Supermatrices § and R respectively. ) and K are the vector

AV AUV
coupling coefficients which vary from state to state and configu-

ration to configuration and are the standard coulomb and exchange

integrals. For atoms or ions belonging to the same symmetry species,
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that is, for » = , these coefficients are not unique 22. For a
closed shell, supermatrix P is the only one that occurs, and in

i ase J = 0,
this ¢C ALV

Analogous to the closed shell, we can therefore write down
the expression for the two-electron energy in terms of supermatrix

P and 0, and density matrices D

(2)_11‘ - 1 |
E = $DLP Dy - %D, 0D

(1.3.15)

Equation (1.3.14) expresses the energy of a system with a wave-
function of appropriate symmetry and determinant of known spin
properties. Our task now is to incorporate this idea in a prac-

tical way into the Hartree-Fock formalism.

Self Consistent Field Technique

Assuming that we have chosen a set of satisfactory basis
functions, the usual procedure makes use of the variational method
‘or the density matrices so that the energy is stationary. In
‘act, a proper choice of the basis function, is by no means easy,
nd requires an optimization of the orbital exponent. However
t the moment, we will assume this has been done. The best func-
ion for a given basis set, is the one that minimizes the energy

XPression

(1.3.16)
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We subjJect every orbital ®i to an infinitesimal variation 8¢, ;
gince the basis set is fixed, this is tantamount to an infini-
tesimal variation on the expansion coefficients Q&. Further-
more since the orbitals ¢; are constrained to be orthogonal, the
variation 6Qixp is réstricted by those conditions which are
obtained by subjecting eq. (1.3.1) to an infinitesimal variation.
we take the sum of all possible orbital constraints, 2; for all
possible symmetries » and multiply the resulting expgession

by the Lagrange Multipliers 6 and g and we get

A Ji A1

2 E;iqu 6951 | Spq Yay Ot
(1.3.17)
where S is the overlap matrix between basis functions.

The standard procedure is to add the term (1.3.16) to the
variation in energy §E. The resulting term gE' = 0 for any choice
of the 3Q, without any restriction and at the same time should
glve suitable values for the undertermined Lagrange multipliers.

It is important to realize that for the general case of
pen shells, we shall have Lagrange multipliers between orbitals
n closed shells, between orbitals of open-shells and between
rbitals of closed and open shells. In the closed shell case,

he orbitals can always be subjected to a.unitary transformation

(i = U
(1.3.18)

iich brings the matrix of Lagrange multipliers into diagonal form.

ooy
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when this has been done, the orbitals all reduce to a simple
pseudo eigenvalue equation. In the presence of open shells, we

have available only a unitary transformation of the form

$c T . U 95 = 95 U

(1.3.19)
which transforms the open and closed shells within themselves.
Such a transformation can eliminate only the off-diagonal multi-
pliers 01 and 81m but not the multipliers Ok and 01 ° which
couple the closed and open shells. There is however one exception
to this, namely, when the closed and open shell orbitals belong
to different symmetry; in that case Onk and elm vanish automati-
cally.

There are methods of eliminating the off-diagonal Lagrange
multipliers of the type mentioned above 23. Roothaan adopts a
different procedure for removing the off-diagonal multipliers
where he introduces a new set of operators Rc and RO for closed
and open shells which result in absorbing those terms in a set of
regular pseudo eigenvalue equations for closed and open-shells.
The advantage is that these coupling operators Rc and RO can be

expressed in terms of previously defined quantities such as P and

0.

R = - 0 ,
C,APq [ch/(ch Nox)] z;( z;wsxpu Qlku AWq lew

+ E;W O)\pu Qixu Slwq lew >

(1.3.20)
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* Zuw Oqu QDAU Skwq Qn.)\w J (1.3.21)

Both the operatoars Rc and RO are Hermitian by definition. If we

define

F H +
c,\Pa APd Apa 0,\APq

F = H + P + R -0
0,\Pq A P4 APd c,APq A\ P4 (1.3.22)

the basic Hartree-Fock equations reduce to the following form

F Q, S Q. 8. 4.
C,APq g lng AP "AQl A1k

q

F S
0,Apq “mg an apa “aan Smn (1.3.23)

By making a unitary transformation on the closed and open shells
separately, we can bring the g matrices into diagonal form. By
designating as ©my. the diagonal elements of the transformed g

matrices, we can finally arrive at

Zq Feara fg T e Xq Svpa g
Zq Fopa “mq = em Z} S\pa “mq (1.3.24)
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whiCh in matrix notation can be written as
F Q = e S Q
Fo Q = e S Q _ (1.3.25)

Equations (1.3.25) are the Hartree-Fock equations for closed and
open shellé, They are called pseudo eigenvalue equations because
the matrices Fc and FO depend on the solution Q. This demands

an iterative procedure and éelf-consistency is achieved when

the same vectors from which these matrices are constructed accor-

ding to equations (1.3.24),are solutions of equations (1.3.25).

(b) CONFIGURATION INTERACTION 24

Probably the most widely used method of improving the Hartree-
Fock approximation is configuration interaction (CI), in which a

state function is expressed as a linear combination of Slater

determinants

U2 PO ij Cx ' (1.3.26)

vhere Qo is the Hartree-Fock solution. The other determinants
lan be constructed from the Hartree-Fock orbitals, including
’hose not occupied in the ground state.
There are theor¥tical reasons to believe 25 that the CI
€thod and the Hylleraas procedure are both general methods capable
f Yielding variational solutions which converge to the exact non-

elativistic energy for any desired degree of accuracy by the addition
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of sufficient number of terms.
A determinantal confi

by one spin orbital is said to be singly excited; one differing by

two spin orbitals is doubly excited and so on. Assuming that the

Hartree-Fock orbitals are orthonormal, we can write

ﬁ \_, k' kv \—\ﬁ ﬁ k’ 19 k' 19
E = (8 |xle ) + il C, (& |38y ) * L ey C 1 <Ellay 1)

(1.3.27)
where Qi' denotes a singly excited configuration in which an orbi-
tal k from the Hartree-Fock determinant is replaced by an orbital
k', and similarly for the double notation. It i1s not necessary
that the orbitals used to represent the excited states be them-
selves eigenfunctions of the Hartree-Fock operator. The fact that
the solutions of the Hartree-Fock equations form a complete set of
orthogonal functions demands that the excited orbitals be ortho-
gonal to the occupied orbitals. Purthermcre these solutions can be
divided into two sets, those occupied in the ground state and those
not occupied in the ground state, which span mutually orthogonal
subspaces26.

There are some fundamental restrictions on the determinants
that appear in the CI function. The various configurations that
are included in eq(1.3.27) should be symmetry adapted, that is,
the chosen linear combination of determinants must possess all the

Symmetry properties of the Hamiltonian. A further restriction

arises from the so-called Brillouin theorem which states that

- Mmatrix elements of the Hamiltonian operator between the Hartree-

o7,28

Fock and all the singly excited determinants are zero



I -26-
t
'

r
| dgop X #g dr = O (1.3.28)

v

Here ¥g differs from SacF by a single spin orbital. An important
corollary to Brillouin theorem is that singly excited configura-
tions constructed from spin-orbitals orthogonal to the occupied
Hartree-Fock orbitals give no first order contributions to the
total energy 29.

As a consequence of Brillouin theorem the second term in

eq. (1.3.27) vanishes so that

Eo= Byp ECorr (1.3.29)
where
Bgp = (3] 3¢ ]8)) (1.3.30)
and
_ v k' k'1'
Boore = ) L (Bolwler 10007 (1.%.31)
k>1k'>1'

) 1
The matrix elements of the Hamiltonian between § and Qﬁ i: can be
0 .|

expressed in terms of spin orbitals

Il

k l' [} ] 4
(el 3¢ |8 P = (k1| g X1 - (Kl| g |1k ) (1.3.32)

vhere

I

(13 ] g k1) = [[1x(Q)g*(2) £]1 k(1)2(2)ar ar
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1t may be pointed out that Brillouin theorem does not say that
gingly excited configurations do not contribute to the total energy
gince 1t is possible that matrix elements between singly excited
configurations do not vanish and thus contribute to the total
energy. |

Although the correlation energy has been expressed in terms
of a seemingly simple integral (1.3.32), the actual computations
are difficult. The expansion coefficients Ck of eq. (1.3.26) are

determined by variational methods and leads to the secular equation

Il
@]

(B - mI)C (1.3.33)

where H is composed of matrix elements between configurations

Hyp = Jepxegadr (1.3.34)

The solution of eq. (1.3.33) is greatly simplified if one notes
that matrix elements HIJ-between configurations I and J of diffe-
rent symmetries are zero. This means that we need consider only
such configurations which have the total symmetry of the particu-
lar electronic state being investigated. Special methods for

solving dimensionally large equations of the type (1.3.33) are

available 30’31.

Difficulties in the CI Method

The expansion of a state function in terms of Slater deter-
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minants, eq. (1.3.26) in principle can lead to the exact solution
of the correlation problem, provided one includes all possible
configurations in the expansion. This difficulty is what is
usually referred to as "convergence problem" in configuration
interaction approach, that is, many configurations must be super-
posed in order to achieve a significant lowering of energy. In
practice, one truncates the expansion, taking only a finite set
of orbitals and builds all the determinants that belong to a given
irreducible representation of the symmetry group. However one
often finds that such "symmetry-adapted" functions can no longer
be represented by a single determinant and may often be linear
combination of Slater determinants.

Apart from symmetry considerations, one reduces the size of
the CI expansion by discarding cdnfigurations which seem unlikely
to contribute significantly to the total energy. Unfortunately
there 1s no general rule available for choosing such configurations
and one usually resorts to intuition. The "length" of the expan-
sion (that is the number of terms whose coefficients are substan-
tial) is found to be criticélly dependent on the choice of spin
orbital basis (ml, o, =~ - - ) from which the Slater determinants
¢ are constructed 32. The fundamental problem is to find the best
set of orbitals that lead to accurate CI functions of moderate

length corresponding to rapidly convergent expansions.
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(C) HYLLERAAS METHOD

In a series of papers33 Hylleraas presented three differ-
ent methods for studying electron-electron correlation

1. Superposition of configurations

2. Correlated wave functions

3. Different orbitals for different spins
The method that is more often attributed to him is (2) where
electron correlation is introduced through a parameter that is
related to the distance between electrons.

In his pioneering work on Helium atom, Hylleraas showed
that the explicit use of r,, as one of the variables improved the
accuracy of the wavefunction substantially and gave results of
much higher accuracy for the eigenvalues than the Hartree-Fock

approach. The Hylleraas type of wavefunction is of the form

1 R

¥y = Ne—KS Z.Clmn kl+m+n ot m _ n

t" u" (s, s,) (1.3.35)

where s, t and u are related to the distances rys To and Tyo

of the two electrons from the nucleus and from each other

respectively by

S = I‘l —+ I‘2
t = I‘2 - rl (103036)
4 = Ty

N is a normalizing constant and o(s is a spin function.

1 Sp)
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k and Clmn are constants to be adjusted so that the energy is
minimized.
The ground state of the Helium atom is a 'S state and is

an eigenfunction of L® and LZ with zero as the eigenvalues of

poth these operators. The operator associated with LZ is

A o
0 (o * ) (1.3.37)

if this operator is to have zero as the eigenvalue, 1t implies
that the wave function should depend on the difference between
the azimuthal angles and not individually on @1 and @2. In other
words, the wave function should depend on the angle between the
radius vectors to the two electrons and not separately on the
angle to each radius vector. By applying the same argument to the
X and y axes, it follows that the wave function for an atomic S
state should depend on the relative positions of the two electrons,
but not on the orientation of the system in space. The relative
positions of the two electrons with respect to the nucleus may be
described by rl, r2, 912 of alternatively by rl, r2 and r12
For large values of r the deviation of the expression
Fwi/ei¢i from unity gives a measure of the accuracy of the wave
function. A sensitive test for the region r » o is the "cusp"
value <§¢i/ar

of r 5 speeds up convergence not because it describes the cusp
- 1

8)r > o0 * According to Gilbert34 the introduction

conditions better but because the coulomb hole has relatively

slmple structure when viewed relative to one of the electrons.
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on the other hand the coulomb hole has a rather complex structure
when considered to a fixed set of axes, and this may be the

reason why configuration interaction method is slowly convergent.

The most accurate wave functions for two-electron systems

have been obtained by the use of ro, 35. The Hylleraas method
has been applied with remarkable success not only for the ground
state of Helium atom, but for some excited states of Helium,

ground states of two-electron ions such as H , Li+, Be++ etc.36.
However the method has not been extended to atoms beyond Be because

of the difficulty of evaluating complicated integrals involving

many particle systems.

1.4 MORE RECENT METHODS

>
ta) NATURAL ORBITALSZ'r38:3 |

The concept of natural orbitals was first introduced by
Lowdin, and provides a practical approach to the calculation of
CI wave functions. The idea was developed in terms of density
matrices and an excellent tréatment of this can be found in the
review by McWeenyuO

The one-electron density matrix pl(xlxl) is given by
pl(x1 x;) = N J o> (X1X2 - xN) ¢ (x2x3 - XN) dx_--- dxy

(1.4%.1)

Where the integration has been done over the coordinates of all but

the first electron. If we write the total wave function as
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o «,m«...-u-ﬂ

plx ---xy) = EK °k * G, === )

(1.4.2)

where

QK(x1 ——— xN) = (N!)_% det {¢k(xj)}
gubstituting (1.4.2) in (1.4.1) we get

plx x!) = Ek’lcpl(xl) v (1K)gp(x!)
where

y(1]k) = i%:E;,CK C* ayp (k|1)
where (1.4.3)

*
bep(kl1) = JQK(Xl_—Xk—l Xper ™ Xy) B (X ==Xy _gxg g --xy)ax

(1.4.4)

The set of natural spin-orbitals is defined as that orthogonal
basis, in terms of which the first order reduced density matrix
1s diagonal. Since the matrix formed by the coefficients Y(l\k)
is hermitian, it can be reduced to the diagonal form by an unitary
transformation
Uy vt = n
(1.4.5)

where n is a diagonal matrix with eigenvalues nl, na, -—

Introducing a new basic set {Xk} defined by

Xk ~ E; Uka Do
(1.4.6)
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or in matrix form

= U
X ? (1.4.7)
the inverse transformation of (1.4%.7) is
v = UTX
(1.4.8)
gubstituting these in (1.4.3), we get
x! = 1 = xtu 1
p(x x!) ® Yo YU x
= * 1
ZK e g (1) e (%))
(1.4.9)
The functions X, X "7 are known as natural spin orbitals asso-

ciated with a given state. The first function X, has the highest
occupation number possible, the second function X, has the same
property within the class orthogonal to X, and so on. From eq.
(1.4.9) the basic set Xk has the occupation number n,_ and since
these are eigenvalues of y , they have extremum propertiesul.

If we substitute (1.4.6) in (1.4.2) we get the following

expansion of y into configurations of natural orbitals

v = (Nz)‘%z Oy det { XXy~ }
K
(1.%.10)
Eq. (1.%4.10) is called the natural expansion.
The reason for the importance of natural orbitals arises
from the fact they give the most rapidly convergent CI expansion;

any spin orbital whose population is negligible may be omitted
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from a CI expansion without affecting the accuracy of the expansion.
The mathematical Justification for the above ideas has been
given by Coleman42
The concept of natural orbitals affords an excellent basis
for configuration interaction calculations. However, it mﬁst be
pointed out, that the existence of rapidly convergent expansions
for CI does not necessarily mean that they can be found easily.
The reason for this can be found in the very definition of natural
orbitals, which are derived through an exact density matrix. This
means that we should perform a complete CI or some such related
scheme for energy optimization which in turn can lead to the exact
one-particle density matrix. Nevertheless it has been found that
by diagonalization of an approximate single particle density matrix
at any stage ¢f a CI calculation and includihg only those configu-
rations that correspond to large occupation numbers, lead to a
considerable decrease in the number of terms in thé CI expansion%B’au
There exist a number of calculations on the ground state of
the Helium isoelectronic series using natural orbita1s45’u6’u7’u8.
Most of these papers discuss the convergence properties of quanti-
tles other than the energy. The general conclusion is that the
Quantity 1"12'1 is reduced by correlation by about twice the energy
Improvement and (-} vf - £ V2> is increased by about half as much38.
Attempts to extend the same approach to systems with more than
two electrons have been less satisfactory. The only advantage of
hatural orbitals for these systems appears in a shortened CI expan-

Si0n50. Hhrley51 has reported natural orbitals for carbon



_35_

monoxide and Barnett, Linderberg and shu11*? have calculated
natural orbitals for Be using the data of several workers.
smith and Fogel53 have analyzed Watson's Be data, using natural

54

orbitals. Kouba and 6hrn have reported a configuration inter-
action study of boron carbide using natural orbitals.

The major problems in a CI calculation are the choice of
orbitals and the selection of appropriate configuartions. Both
these problems are far from being simple. Furthermore, in order
to be able to use natural orbitals, a good initial guess would be
required. Three different schemes have been proposed:

(1) Lowdin and Shull method”?

(ii) Natural orbitals using Hylleraas type functionsuu

(1ii) Direct calculation from Schrddinger equatione4

physical meaning to the CI method, the difficulty in implimenting

the scheme far out-weighs this advantage, particularly for sys-

tems for more than two electrons.

(v) MANY ELECTRON THEORY OF SINANOGLU>C:29:60

In the previous sections we presented methods of improving
the independent particle model. In principle the configuration
interaction treatment can yield an accurate solution but in
Practice the rate of convergence is slow. The Hylleraas method
1s very appealing from this point of view, but extension to sys-
tems containing more than two electrons has proved to be difficult.

Sinanoglu's approach tries to combine the advantages of these two
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methods within the framework of the Hartree-Fock method.

The exact wave function can be expressed in the form

b= e+ X
(1.4.11)
where éo is the Hartree-Fock function
LI A c‘)1 c‘)2 T cpN (1.4.12)
and y 1s orthogonal to QO. @1, P, ==~ PN denote one particle

orbitals and are eigenfunctions of the Hartree-Fock operator

Fop cPi = €i cPi

where 7

< a
F (i) = = 3¢5 - ) w7 +Y e
op ) 2 1 L'ard,l ;L)} glJ (1 .4 . 13)

The total Hamiltonian is then expressed in terms of a perturbation

N
K = Z H, + ZgiJ
1=1

ieq (1.4.1%)

H + H
o) 1

N
H = Z(Hi + Vs (1)
i=1 (1.4.15)

for the independent electrons in the total Hartree-Fock potential

Vi and N

N
lezgij - )V (k)
ic k=1

N
= ) ey - 8;(3) - 54(4)
i< (1.4.16)
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is a residual fluctuation potential part. The total Hartree-

Fock potential 1s thus separated into those of orbital

N
) Ve(x) = ﬁ%ﬁ)+§%ﬁ)

k i<J i<
(1.4.17)
where Si(j) is the coulomb-exchange operator defined by
— -1
8;(3) = [ @3 77} (1-Pyy) o dry
(1.%.18)

where Pij is a permutation operator which interchanges coordinates

i and jJ.

According to Sinanoglu, the Hartree-Fock potential,
eq. (1.4.17) takes the long-range correlation into account, and
the difference of the actual Hamiltonian and the Hartree-Fock
one is composed of "fluctuating potentials" m., which are of short

iJ

range. These fluctuating potentials are defined as

(1.4.19)

where JiJ and KiJ are the coulomb and exchange integrals respec-
tively.
The correction to the Hartree-Fock function can be

expanded in the form

R CORD RN P

(1.4.20)
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where
{%i} = A (1,2 - - -N) £ (i)
- -1
{vi;}= a2---Mu, (r2oe))

(1.4.21)

where fi(i)_1 refers to the inverse of the normalization integral
with components (i,1). In the language of configuration interac-
tion, the first term in eq. (1.4.20) corresponds to the set of
singly excited configurations, and the second term corresponds to
doubly excited configurations and so on. The role of %i is to
modify the starting orbitals and in the case of Hartree-Fock orbi-
tals, thelr importance 1s quite small. The dominant term is the
one that involves ;ij > the two-particle linked cluster. In
terms of cluster expansion, Sinanoglu discusses the relative
contribution from various terms and that contributions from
"unlinked clusters" are the most important. For example, in a

A~

four electron system, U.

i3 of eq. (1.4.20) is given by

~ A A A ~ ~ L)

. = A + w +
iJ ( Wio Yay Wis Yoa Wia wzs)

(1.4.22)

Physically this means that the probability of finding three or more
electrons in the neighborhood of the same point is very small. The
probabllity of finding two electrons with same spin around the
same point in space is small (Fermi hole). With three or more
electrons, the spins of at least two are parallel, so the anti-

symmetry principle prevents the occurrence of large clusters. The
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fluctuating potential is of short range and its effect is appre-
61

ciable only over a range which is smaller than the Fermi hole

As a practical means of evaluating wyg s Sinanoglu

writes for the correlation energy

B~ By ot ) el
(1.4.23)

where the pair energy for the orbitals 1 and j is given by

C o 2<p(,3)]myglwg (3,3) F oy g(E,3) ey + ey +myfug s (£3))

€s =

i3 1+ Cwy5(1,3)]wy 4(1,3))
. - 1 :

where P (i,3) = /2 ( P; ®5 - 9504 )

and ey = h; - ey

(1.4.24)
The basic problem now is to optimize the wave function by
variational adjustment of the pair functions Wiy >

condition that they remain strongly orthogonal to the occupied

subject to the

orbitals in the Hartree—Foék function

A

(1.4.25)

The most significant aspect of the method appears to be the

decomposition of the correlation energy into pairwise contributions.

" Similar cluster expansion techniques have been given by Szasz62

63

and McWeeny and Steiner -.



CHAPTER II

MULTI - CONFIGURATIONAL

SELF CONSISTENT FIELD THEORY
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2.1 INTRODUCTION

The most physically meaningful methods of calculating
atomic wave functions have been those that refer to an independent
particle model. On the other hand, single determinantal wave
functions are inherently incapable of describing the correlation
associated with the mutual repulsion of electrons. Although the
configuration interaction scheme offers in principle, a method of
refining the wave function to any degree of accuracy, progress
along this path has been unsatisfactory due to the notoriously
slow convergence of the CI expansion.

In the multi-configurational SCF method, one approximates
the total wave function of an N-particle system by using M one-

particle functions (M > N)

y

Il

M { L9 T T Ty }
(2.1.1)

this allows us to construct ( % ) Slater determinants QK corres-
ponding to ordered configurations K = (k1 k2 - - - kN). The
total wave function which is an eigenfunction of the Hamiltonian
K can be expressed in the form eq. (1.3.26). Keeping ¢M fixed,
the optimum coefficients CK are determined using variational

principle § ( X ) = O which gives

Y(K- - Es _)c = 0

#K KL KL L

(2.1.2)

 If one simultaneously varies the set y and the C's for fixed M,
M
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one obtains better and better energies until finally a certain
minimum is achieved. This formalism leads to the multi-configu-
rational self consistent field (MC-SCF) method and was first
suggested by Frenkel6u. The motivation for doing a multiconfi-
gurational SCF calculation is to give the most rapidly convergent
configuration expansion functions. This is accomplished by
minimizing the energy not only with respect to the configuration
mixing coefficients but also with respect to the orbital
expansion coefficients. Recently, there has been a revival of
interest in this approach and has been studied from a variety of
points of view65’66’67’68’69’70.

Wahl and Das71 have developed a MC-SCF formalism that
omits the changes in the core functions as a function of inter-
nuclear distance. In their method called the optimized valence
configuration method ( OVC ) one builds up the molecule according
to the Hartree-Fock formalism. The valence orbitals are then
adjusted by introducing appropriately optimized valence configu-
rations which are constructed by promoting a valence electron pair
from the Hartree-Fock ground state to an allowed excited state.
Slight readjustments in the added valence orbitals and the
‘unchanged core orbitals is achieved through the usual SCF procedure.
This method has been primarily used with a view to explaining the
nature of chemical binding72’73.

Another method which is very appealing also from a chemical

74,69

point of view has been suggested by Adams Adams' procedure

involves the construction of a projection operator that projects
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the multiconfigurational N-particle wave function y from a set of
M spin orbitals. The spin orbitals and y are optimized so as to
make

Wlxlw
(V| ¥y

(2.1.3)

stationary. For a fixed set of spin orbitals, the Schrtdinger

equation with an effective Hamiltonian can be written as

OKXOy = EVY

(2.1.4)
where O 1s the projection operator. This equation (2.1.4) has as
many different eigenfunctions as there are different Slater deter-
minants of the M orbitals. Any variation in the orbitals will
correspond to a change in the projection operator. To extremize
the energy, Adams derives an equation in terms of a fundamental
invariantgh and the first- and second- order density matrices,
for the vanishing first order correction to the energy

(1-p)0[h Y; # Tr (Vv _1.)] = O

(2.1.5)

‘Here Y1 is the one particle density matrix, r12 represents the
two particle density matrix, p1 is the fundamental invariant
(which is also a projection operator) and h1 and V12 are the one-
and two- electron operators respectively. By means of some simple

modification this equation can be expressed as a Hartree-Fock
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pseudo eigenvalue equation. These equations can be solved self
consistently starting with a set of trial coefficients for the
determinants. These coefficients correspond to density matrices
which in turn can be identified with the orbitals.

Gilbert” has given a general formalism for MC-SCF where
he attempts to obtain the best possible eigenfunction by simulta-
neous variation of linear expansion coefficients for the determi-
nants and for the orbitals. The intradeterminantal orbitals are

not assumed to be orthogonal

3 F

i
g
VR
s
3
L O
t
=3
w2
i)
18]
—/
Q
3

where the total energy E is given by (2.1.0)
E = (Cy* % y )
4w
and Hpq = ; K Vg ),
and Shq = ( ¢p* Vg 7

For a finite expansion, the variational principle can be applied
so that the energy be stationary with respect to the linear
expansion coefficients and simultaneously of the orbitals.

The intramanifold orbital overlap constraints may be

taken into account in terms of an energy functional (within a
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determinantal manifold p)

_ p* ,.p P
1J (2.1.7)

where in are Lagrange multipliers. The variational equations are

30 _ 0
*
an (2.1.8)
o}
__..._:5._).(_. = 0
ag}

(2.1.9)

While eq. (2.1.8)1leads to the familiar eigenvalue problem
of eq. (2.1.6), there is no simple way of solving eq. (2.1.9)
Gilbert expresses eq. (2.1.9) in a form resembling the Hartree-
Fock equation

P ,D
¢J kji

9= (2.1.10)

P _
G @E =

n~1=

where the one-particle operator G can be written as

*

c c 9P g1 AP
1Y ap q p p
- c. G + (1 -5 )
y ¥y q=1 Ja ° Pq )
pa
+ (1- H__-ES c. P
( °pq) [lpg™®9pgd Cq ¢
S
pa
where G' is the Hartree-Fock operator (2.1.11)
r - - ap
G = h + (V(lPiy)p)
S
joe|

(2.1.12)
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n and v are one- and two-particle operators, pqp is the kernal

of first order density matrix and P,z is the permutation operator.
Although eq. (2.1.10) appears to be simple, the form of

the variational functibnal is complicated. 1In a later paper76

Gilbert has reformulated the problem in slightly different manner

by including the concept of localized orbitals in the MC-SCF

scheme and derives the equation.

(' -

pp G' pp *G) @5 =2y @
(2.1.13)
where the localization potential A is defined as
A = - G'+G
(2.1.14)

and p is the first order density operator.

The method proposed by Yutsis and coworkers is based on
numerical Hartree-Fock formalism and has given satisfactory

65

results for simple atoms
Based on the open-shell SCF procedure, Hinze and Roothaan77

have given a general MC-SCF formalism for orthogonal orbitals.

This method is computationally feasible and has been applied to

a number of systems by Sabelli and Hinze78. Further generaliza-

tion of this procedure has been done by Huzinaga79.
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2.2 GENERAL THEORY OF MC-SCF

Following the ideas of Lowci:i.nebr and Slater,25 Benston
and Chong80 proposed a general formalism for multiconfigura-
tional SCF theory with non-orthogonal orbitals. The general MC-
SCF procedure when applied to all configurations simultaneously
is cumbersome, expensive and slowly convergent. It is hoped that
use of non-orthogonal orbitals would achieve a more rapid conver-
gence and hence somewhat more intuition to the CI expansion,

As in the Hartree-Fock approximation, the many electron
wave functions are constructed from one-electron orbitals. These
orbitals are classified according to symmetry and are not assumed

to be orthogonal. In what follows we will use @ to denote such
~general orbitals.

_ -1
I (r, 9. ®8) = r R Y (6 @)

. (2.2.1)
I dr in (r) ij (r) = Sij

The index ) denotes the symmetry species, i and j denote the
orbital labels that are not distinguishable by symmetry. The spin
orbitals are obtained by multiplying the spatial orbitals by the
appropriate spin functions.
From the spin orbitals we obtain determinantal wave func-

tions which are non-orthogonal. Each of the Slater determinants

can be identified by the spin-orbitals that are used in forming
| the particular Slater determinant. This allows us to define an

Ooccupation number of a particular electron shell as the number of
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occupied spin-orbitals of that shell. The occupation number of

a closed shell Ay is equal to (44X + 2). Otherwise it corresponds
to an open shell., The collection of all Slater determinants that

have the same occupation numbers constitute an electron configura-

tion. The total wave function, called configuration state function

(CSF) is expressed as a linear combination of determinantal functions.

= Q Y
q’K ZA A AK
(2.2.2)

The MC-SCF wave function is a linear combination of several CSF's.

¥ =Z‘”KAK=ZZ°AYAKAK=’ZQACA
K K A Y .
(2.2.3)

It may be pointed out that in the classical Hartree-Fock method,
the wave function for each component of a degenerate atomic state
is approximated by a single determinant CSF; the Hartree-Fock
orbitals are those orbitals for which the total energy calculated
from the single determinant CSF has a minimum. Accofding to the
Present scheme, the total energy is optimized with respect to the
functional form, (or in practice with respect to the expansion
coefficients) and simultaneously with respect to the expansion
coefficients of the CSF's.

This method is also distinct from the usual configuration
Interaction where the orbitals are determined such that they yield

an extremum for the energy for a single configuration state function.
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Since in CI, the functional form of the orbitals are not subjected
to the variational principle, the orbitals cannot adjust them-
selves to the best possible form in the actual electronic environ-
ment. The present method allows this additional degree of freedom.

The energy of a system represented by a multiconfigura-

tional wave function vy 1is given by

E = (vl x] v¢v)

= ZC (8, | x| 85y C
A ! B B
AB A (2.2.4)

In the MC-SCF method, two independent variations of the energy are
performed one with respect to the orbitals through the expansion

coefficients and the other with respect %o

the configuration
mixing coefficients. Strictly speaking these two variations are
not independent; however we assume that the two variational para-
meters are not strongly coupled and can be treated separately.
Furthermore since both these parameters are determined self-consis-
tently, we believe that this procedure is Justified.

Equation (2.2.4) is suitable for the variation of confi-
guration mixing coefficients and leads to the familiar eigenvalue

equations

(2.2.5)

‘where T denotes the overlap matrix between configurations,
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pp - LEal¥oeg) (2.2.6)

and ¢ 1is the column vector of the expansion coefficilents.

~

Using the Hamiltonian of eq. (1.2.4) we obtain

A B AB AB (2.2.7)
where
ﬁ; B
h = E) D K]
) ; p (1,3) Dy (1,9) (5.5.8)
A B A B
g = 3 v ) ) q(i,d.k,1) D _ (i,5,k,1)
AB i 5§ % I
(2.2.9)
p<i>j): (Cpl\h|fPJ.>
a (i,3,k,1) = | @, (1) o (2) r ] 0, (1) o, (2))
(2.2.10)

In the above equations 1,J,k,1 refer to orbitals, DAB (i,3) and
DAB (k,j,k,1) are the first- and second-order cofactors of the
determinant of transitional overlap matrix between the orbitals in

§, and ig- This transition overlap matrix rAB is defined by

Lap(i507) = 0pp37.07) = dpiawy

1l

- L= Lt
- Ip(itudn) Il 537) = 0 (2.2.11)
where 1 and J refer to purely spatial orbitals ®; and @y Includ-

ing spin explicitly in eq.(2.2.8) we can write



A B A B
_ L+ + .+ - - -
hag = L) ) (5 g (5T v ) Y e (707 by (70T
it il
A B A B
_ + b o + 4 o T +.,+
en =), ) ) La NN Dy (175NN 4 ) s (51
17 gt kt 1t
A B A B +
Y Y a (T5T) py (1Y) 4
AB
i 37Tk 1T

(2.2.13)

The A factors are introduced so as to eliminate terms arising from

m =n

(2.2.14)

The summation sign E: denotes that summation is carried out over
spin orbitals < QAl
Applying the variational principle, varying each orbital

by an infinitesimal amount §¢; in eq. (2.2.4) , we obtain

¥*
5 B = 2 ZCA Cp [ shpyg + 68, ]
A B (2.2.15)
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Details of the algebra for the expansion of eq. (2.2.15) in
terms of orbitals are given in Appendix I.

Following Benston and Chong,80 we can define an operator

Rig ~ ; %CA* Cy { NaH(1) NgH(3) [ Apt(L,3) + Bygt(1,3) ]

+ N (1) N () 0 Apg (1,3) + Byg (1,9) 1}

(2.2.16)
where AAB* (1i,3) is given by

Apgt (1,3) = Dyg(i* s*)n +1 ZP (i* g%) ao (i* k%) 5 (gri*)
K

1

DAB(i* J* k.‘t li) +Z ZP(J‘* '_3:‘:) D (iijtk:hlﬂ:)

& 5 AB
(2.2.17)
Similarly BAB*(i,J) can be defined as
A B
Bugt(1,0) = ) ) {2 pypr(atsEita®) 4 (JEE) o (i%E) ¥ (KkE1%)

B
lq (mEntiE1¥) DAB"(md:n:l:ktld:i:hJ:b) A (mEkEi%) p (nEigE)

A B
+y ;q (m* of k* 1%) D " (¥ nF Kk 1F aF gE) a4 (F 1) 5 (1%5)}




+
ﬁ;f”1>
_A—‘
AV}
v/

'_J
+I
o

where

(2.2.18)
At (a,b,c)

= (l - 5ab) (1 -

DAB" (a,b,c,d,e,f) is the cofactor of
minant D,.!

bpe) (1 - 65,)
AB

p(e,f) in the deter-
(a,b,c,d)and Y (k* 1*)==J¢k*(

.[\l\
2) £(1,2) ¢ (2) dr

In terms of the operator Ri
the variation in energy corresponding to eq.

J
8 E = E: N

.» the expression for
7,
i

(2.2.15) becomes

- L Csen Y wg sy
i j

RN

*
ZRij wj )
1 J

(2.2.19)
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If we define an operator

31 % Eﬂi'j\cpj Yoy |
/ (2.2.20)
then eq. (2.2.19) becomes

5 E = ) (bwy 33 030 t) (8@ Iy @3 0%
i i
(2.2.21)

adding eq. (A.I.16) to (2.2.21), we get

s BT = z (< 895 33 93 ) -ze3i<6wilcp3 )]
i J

PL D¢ seg 35 e v - ) ey by | 9y )*1 = 0
J 4

(2.2.22)

For equation (2.2.22) to be true, we should have

|
(@]

<6cpj_ 31291) - 23631(5@1‘@3)

i
o

( 8 I3 @4 >*-23 €ij ( 8e; | 3 >*
(2.2.23)
Taking the complex conjugate of the second of eq. (2.2.23) and

subtracting from the first, we get the well known relation
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or

(2.2.24)

It may be pointed out that eq. (2.2.24) is not a
relation that was derived and found to be satisfied by the
variational equations. On the other hand, it is fundamental
to the very method of Lagrange Multipliers that they be symme-
tric. The Lagrange multiplier method is concerned with the
problem of finding the stationary points of a real function of

n variables subJect to a set of m conditions.

(2.2.25)

This is equivalent to solving a system of m + n equations in

m + n unknowns (n number of x's and m number of A's)

m m
CH 381
A =g = 0
3K 21 % iJ %
g5 5 (x1 ----x)=0

(2.2.26)
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The two equations in (2.2.23) are equivalent and should
hold true for the variation of any of the orbitals. We thus

obtain the MC-SCF equations for non-orthogonal orbitals

31 91 7 ZJ €31 @9
(2.2.27)

2.2 SOLUTION OF THE SCF EQUATIONS BY COUPLING OPERATOR METHODS

In eq. (2.2.27) we have reduced the non-linear variational
problem of determining the orbitals s to the solution of a
set of pseudo linear equations, one for each orbital ¥ * The
non linearity occurs in the operators R and, as descrlbed in
connection with the Hartree-Fock equations iﬁ p. 19, in general
the solution is attempted by means of iteration until self-consis-
tency is achieved.

Unlike the single determinantal Hartree-Fock problem, eq.
(2.2.27) cannot be reduced to simple eigenvalue form for the same
reasons that the equations derived for the open shell case cannot,
that 1s, the Hartree-Fock operator in such cases is not invariant
to a unitary transformation.

There are two main approaches that have been suggested for
solving equations such as (2.2.27). One, which involves reducing
eq. (2.2.27) to pseudo eigenvalue form using some coupling operator,
will be discussed in this section. The other, the one used in this
calculation,involves a direct attack on the equation in the form

given and will be discussed in the following section.
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Following the early ideas of Roothaan16, a nﬁmber of general
SCF methods involving the use of coupling operators have been

proposed17’210 82,83

Birss and Fraga proposed a coupling operator
for generali SCF methods, which they claimed to be independent of
the number and nature of open shells. In devéloping their theory,
Birss and Fraga make no distinction between closed and open shells
which, although satisfactory in principle, may lead to difficulty
in applying the variational princip1e37. Dyadyusha and Kuprievich59
have pointed out that the Birss—Fraga formalism satisfies only the
necessary but not sufficient condition for a proper variational
energy extremum. Other difficulties in these early formulations
arise from improper mixing of the various orbitals and hence
inadequate form of the coupling operators.

81 and Dahl et, al.ug have pointed out that the

Goddard et.al.
coupling operator approach for obtaining SCF equations for open
shell systems and MC-SCF methods are incomplete and unsatisfactory.
The difficulty arises from the fact that for the general case of
open shells, the wave function {§ involves a number of excited
states that do not necessarily form a complete set. A proper
orbital variational representation must téke into account mixing
among occupied orbitals, mixing among virtual orbitals and mixing
between occupied and virtual orbitals. By identifying the total
Fock space in terms of two mutually orthogonal subspaces consisting
of occupied orbitals and unoccupied orbitals respectively, Dahl

et. al and Goddard et. al derive the necessary conditions on the

Hartree-Fock orbitals for correct general variational form as
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(°P)\|Si|<9i> = (Qils)\lCP)\) (2-3-1)
where A and i belong to different sub-spaces, and

e 13310 = < 19 1oy (2.3.2)

where the subscripts k and i belong to the same sub-spaces.

This simply means that the elements defined as

fl

CHRSL (2.3.3)

*
ki = Bik -

Most of the workers in the field have proposed coupling

Sk

form a Hermitian matrix, that is, §

operators which assume that the conditions (2.3.1) and (2.3.2)
are already satisfied before convergence 68’72’82. This assump-
tion 1s incorrect and may explain some of the difficulties in
solving the general SCF equations by pseudo eigenvalue methods.
Hunt et.al.52have proposed an alternative method called
orthogonality constrained basis set expansion {(OCBSE) method,
where the basis set expansion for a given orbital is constrained
so that it remains orthogonal to all of the other occupied orbitals.
OCBSE appears to be a direct and relatively efficient method for
solving open shell problems. In this procedure, separate Hamil-
tonians are defined for open and closed shells and the corres-
ponding Hartree-Fock equations for each are solved over a
reduced space until convergence is achieved. Another simple
method proposed by Peter556 involves the idea of solving the gena-
- al SCF equations in two steps iteratively, first the open shell

eigenvalue equations and then the closed shell equations until
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a convergence criterion is met. The OCBSE and Peters methods
have certain similarities. However, Albat and Gr'uen104 have
shown thét neither of these methods allows a general variation
in the occupied orbitals and unoccupied orbitals.

The general ideas concerning coupling operators in SCF theory
have been elegantly discussed by Huzinaga57. There 1s no parti-
cular advantage in unifying the open shell and closed shell eigen-
value equations by means of a coupling operator, for this does
not guarantee any recipe for a quick solution to the problem.
Huzinaga has reformulated the Birss-Fraga coupling operator
although it appears that the variational requirement on the Lagrange
multipliers has not been properly included inthe formalism.

Hirao and Nakatsuji96 have proposed a coupling operator which

they claim takes into account the variational tconditions on

the
orbitals and Lagrange multipliers satisfactorily. Their formalism
appears to be general and seems to offer a means of expressing
the MC-SCF Fock equations in a pseudo eigenvalue equation form.

In general, however, coupling operator methods offer no
particular advantage other than mathemastical generallity and a
certain physical significance to the Fock equations. The most
serious difficulty appears to be the fact that in many cases the

usual methods of solving eigenvalue problems do not lead to
114,115

80

Benston and Chong™  have derived a pseudo eigenvalue equation

converged solutions

from eq. (2.2.27) using the Birss-Fraga approach. Besides the

general difficulties assocliated with the Birss-Fraga and coupling
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operator methods, Benston and Chong's equation (27) suffers from

a fundamental inconsistency. This arises from the method of

.

" which is artificially built from

(1)

construction of the matrix

different columns of the matrices F belonging to different

orbitals.

The result of this is that F is in general a non-Hermitian
matrix. Benston and Chong then use a similarity transformation
to obtain an explicit identity between F in an orthogonal basis
(%) and the matrix of the Lagrange multipliers in the same basis.
Since the latter must be Hermitian and F in general is not, their
equation (27) is clearly inconsistent. This relationship has
been used in ohbtaining a pseudo eigenvalue equation (Benston and
Chong eq. 31).

It may be possible to circumvent the inconsistency in Benston-
Chong method by a different set of operations and obtain a matrix
to take the place of Fj; however, the general problems of using
coupling operators would still remain.

For these reasons, we choose to attack the equation (2.2.27)
directly. We transform this equation into a set of matrix equations
in terms of orbital expansion coefficients and solve these by

means of an iterative method.

2.4 SOLUTION OF SCF EQUATIONS BY AN ITERATIVE METHOD

It may be noted that the operator §,; in eq. (2.2.27) has been
defined in terms of a specific orbital i. The non-orthogonal

orbitals ¢; can be expanded in a basis set {yx}

P17 %XP Spi (2.4.1)
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so that equation (2.2.27) becomes
. X_. B_. = B .
31 Ep p “pi ZJZP %o Ppy g1
(2.4.2)

The complete set of basis functions form a row vector and can

be written as

E. - ( X1 Xz - Xp )
(2.4.3)
Equation (2.3%.6) reduces to
. = B . R
31 X By 3 X 2y €31 (2.4.4)
where Bi is a column vector of expansion coefficients
B, B B - - -
1+ 11 12
B2i
B. = B =
~
B .
pi
| y
b P
(2.4.5)

Equation (2.3.8) now becomes, after multiplication by x*
. B, = 2 B, ¢ s
CX[3a)x 0 B Sl xo By ey

| Define
hy = ()g|31|2s) (2.4.6)
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where hi represents a matrix having elements of the form

(hi)yy = gt xg (2.4.7)

then, equation (2.2.27) can be expressed as

h, B, = 8§ ,Eg €51 (2.4.8)

J
where S 1is the overlap matrix between basis functions.

The method that we propose to use for solving the

84

SCF equations is based on a hybrid method given by Levenberg
and Marquardt85. Powell86 later modified the method in a series
of papers and we have adopted Powell’s algorithm. The actual
method is a combination of Newton-Raphson and steepest descent
methods.

The principies of the Newlon-Raphson method used by
Roothaan and Bagus and the method of steepest descent used by
McWeeny have been described elsewherell8’ll9. The basicC idea
in both methods 1s the following:

Starting with a certain set of vectors Bi in equation
(2.4.8) we consider all changes resulting from a change in these
vectors. The first order correction to these vectors are
included in the next iteration and the process 1s continued
until the SCF cycle converges to the true solution. It is
important to note that the elements of the vectors Bi are

non-linear variables of the integrals involved in constructing

the Fock matrix and can only be determined by
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methods which involve corrections both in direction and
magnitude.

In deriving the non-linear equations which determine
the correction vectors, following Hinze and Roothaan?7we consi-
der only one symmetry at a time. This means that we neglect in
each cycle of i1teration the effects on the Fock matrix caused
by changes in the vectors which belong to different symmetry.
The only Jjustification for this procedure that we offer is the
fact that because of strong orthogonality between orbitals of
different symmetry (such as s and p) there is little or no
coupling between them. This results in a considerable simpli-
fication of the Newton-Raphson equations, since these can be
solved in blocks of different symmetry. In the following it is
implied that the set of equations are applied to one symmetry

at a time.

Equation (2.4.8 ), namely,

oy
I

1R T SEJ By ega

represents a set of simultaneous equations in the expansion
coefficients Bi' Furthermore, they are non-linear and are
actually cubic in the coefficients Bi‘ Since the present
formalism assumes the orbitals to be non-orthogonal, the expan-

sion coefficients Bi do not form an orthonormal set.
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Equation (2.4%.8 ) represents the fundamental equation that
we are attempting to solve by means of an iterative procedure.
Note that hi is a matrix corresponding to the orbital 1 and so we
get one such equation for each orbital.

Starting with an initial guess of vectors B{, the corrected

set of vectors are obtained as

B = B; + 8B; (2.4.9)

~1 ~

where the superscript® refers to the starting values.

If we define W as the overlap matrix between non-orthogonal orbi-

tals

<@i!¢5> = Wy (2.4.10)
then we can write
° S B° = W, o.4,11)
AL g iJ (

h., = h; + gh (2.4.12)

B, S§B, + B, S 8B, = Oz (2.4.13)
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where Op denotes térms of second and higher order in the correction

. . 1 -~ .
vector §B. In deriving eg. {2.4.127) we have used the relation
B SBY = B, SB, = W
~1 =J ~1 =J iJ
(2.4 .14)

Since the Lagrange multipliers have to be symmetric, we need

the further constraint that ( we assume only real values )

€xi (2,4.15)

However in the course of the iterative process, the constraint
(2.4.15)may be violated and may eventually lead to divergence.
For this reason, we include a mathematical set up to enforce this

condition. Multiplying eq. (2.4.,8) by B

K
+ - +
Be by By o= B B ZJ. By en
= Wpepees 7 ZJ Wy €31
J#k

(2.4.16)
If W is assumed to be a unit matrix, the second term on the right
hand side can be taken to be zero and the first term becomes €11

" This enables us to express the Lagrange multipliers simply as
Bf h. B, =

Sk P42 T eki (2.4.17)

“and similarly
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(2.4.18)

The approximations involved in eq. (2.4.17)and (2.4.18) are
valid if one considers an orthogonal vector space. As W deviates
from a unit matrix, the validity of this approximation becomes
questionable. Nevertheless, we have used this approximation even
when W was quite different from a unit matrix. As will be discussed
below, in view of the fundamental requirement of maintaining
linear independence among the vectors, we have obtained approximate
solutions to eq. ( 2.4.8) in terms of orthogonal vectors. Because
of this constraint on the solution vectors, the expressions (2.4.17)
and (2.4.18) are used in the following derivation.

For starting values of the Lagrange multipliers, we use

(o] . Cx [¢]
exi = B Py By

(2.4.19)

and in order to maintain the condition (2.4.15) we have taken

_ " +
ei = (B h; B + Bjh; B)

€xi K i =i

(2.4.20)

Since ¢4, 's depend on B's, corrections similar to (2.4.1) will

have to be applied to €ik

(2.4.21)
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Expanding eq. (2.4.8 ) using eq. (2.4.9) and eq. (2.4.12)we get

(g + sn ) (B; + 8B) =

SZJ ‘la'@J hy By + By by EJ)

(2.4.22)
Eq. (2.4.22) can be reduced to
he o T o no _
1 B1 - SLJ €51 By = &oB
(2.4, 23)

where g represents the Jacobian of the left hand side of eq.
(2.4.23).

Equation (2.4.23) then provides the basis for an approximate
solution of eq. (2.4,8) by our iterative procedure. Details
of this hybrid of Newton—Raphson and steepest descent methods
are given in section 3.3.

We replace an estimate Bi of the solution of equation

k ok .
hy By - SZJ Byeys = O
(2.4.24)
by the estimate
kK + 1 k k
~1 = Bt 62&
(2.4, 25)

where QB? solves the linear system of equations

Tk kK _k
h; By - SZJEJ €51 - 8 8By = O
(2.4.06
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The reason for obtaining orthogonal solutions arises because
there are certain conditions which we would like to maintain and
which we have introduced in the iterative algorithm. The search
direction of our displacement vector 5Bi is a linear combination
of the steepest descent direction and the Newton direction. The
problem of optimizing a function of n-dimensions (with n large) is
extremely difficult. Given a hyperspace of n dimensions, it is
difficult to find satisfactory and economical multi-dimensional
search procedures. The difficulty resides in the fact that we
must search each minute fractional volume of the n dimensional
space if we hope to find an optimum value for the function. The
choice of appropriate directions for the displacement vector 5Bi
is primarily decided by the fundamental requirement of linear
independence among the vectors. A simple way to fulfill this
requirement is to maintain near orthogonality between the sets

of vectors. Although there may be methods that retain linear

independence without any need for orthogonal search directions,
such methods are likely to be more difficult to implement and

may have poor convergence.

Particularly when the non-orthogonality is small, it 1is
believed that our procedure is a reasonable one. Even for large
values of the overlap, this method appears to be satisfactory
(with the possible exception of results in Table XII)as indicated
by the results based on this procedure.

Since the solution vectors are obtained in mutually orthogonal

form, it is probably more appropriate to call the vectors that
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result from the iteration by another symbol Q. The orthogonal
orbitals which we will call @, can be expanded in the basis

functions

9 = E; ¥p Qpi
(2.4%.27)
and it is the Qi that are obtained as solutions of our equation.

If we define a transformation matrix pA relating orthogonal and

non-orthogonal orbitals by

$; = E; P Mgt
(2.4.28)
then we get the relationship
B = QV
(2.4.29)

Using (2.4.29) we transform the output matrix Q into non-orthogonal
form B, and then proceed to the next iteration.

It may be recalled that the starting Fock matrix hi constructed
from initial vectors Bi is wupdated during each cycle of iteration.

The final Fock matrix hi is given by

(2.4.30)

_ where 5hi is given by



1 .

(2.4%.31)
where Jij represents an element of the matrix of Jacobian.

Apart from the approximations involved in obtaining solutions
in orthogonal space, we have used an approximate Jacobian in the
process of optimization. This latter procedure was adopted because
of the fact that a test run using an exact Jacoblan did not affect
the convergence point. It 1s possible that there may be other
situations where an approximate Jacobian would not be satisfactory.
However, an input parameter DSTEP in the algorithm prevents any
large changes in this approximation and attempts to make the

necessary corrections.



CHAPTER IIT

PRINCIPLES OF COMPUTATION
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2.1 GENERAL COMMENTS

Hartree-Fock equations can be solved in two ways, either
by numerical integration or by matrix methods of the integrated
Hartree-Fock equations. We have used the latter method which is
ldentified as the Roothaan procedure.

It may be appropriate to make a few general comments
about the numerical vs analytical procedures. While the Roothaan
method depends heavily on the nature and number of basis functions
used, the numerical method is not limited by the basis functions.
Despite this difficulty most of the current atomic and molecular
calculations make use of the analytic procedure. One important
reason for this 1s the fact that numerical integrations take
excessive time and since most of the calculations require the
evaluation of multicentre integrals, the numerical method may be
expensive. Yet another reason is that numerical wave functions
are essentially tabulations of numbers vs electron coordinates
and apart from being voluminous and cumbersome,they do not offer
any physically intuitive meaning.

The Roothaan method on the other hand is well suited
for the calculation of multicenter integrals. A further advan-
tage is that in a configuration interaction calculation the
Roothaan method provides an easy means of choosing a starting
wave function.

The analytic procedure involves a number of matrix
manipulations and an iterative process so as to arrive at an

appropriate solution. The numerical method on the other hand
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performs a numerical integration during each cycle of iteration
until self consistency is achieved. One serious difficulty with
the Roothaan procedure is the proper choice of basis functions.
This problem is not at all simple and require a number of trial
calculations. Any practical calculation in general is limited to
a relatively small number of basis functions because of computer
time.

A multi-configurational wave function y for a N-electron
system is a linear combination of Slater determinants Qk of spin

orbitals @y As has been mentioned in the theory, this involves

two sets of coefficients

voo= ) Ot { e )

(3.1.1)

In elaborating the practical aspects of the problem, it is con-
venient to separate the procedure into two categories:

(i) Configuration interaction part in which we build
configurations‘from linear combination of deter-
minants.

(ii) Self consistent field theory part in which the
various determinants are built up from basis

functions and expansion coefficients.

We will consider the computational aspects of each of the steps

separately. The overall scheme can be summarized as follows:
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INPUT DATA
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GET CONFIGURATION MIXING COEFFICIENTS

N

SCF CALCULATION
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ORBITAL EXPANSION COEFFICIENTS

NOTS?ONVERGED

CALCULATE ENERGY >

\/
CONVERGED

END
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3.2 CONFIGURATION INTERACTION

A major question in any truncated CI procedure is what
type of exclted configurations have to be mixed in the total
wave function in order to obtain the most significant improvement
in energy. The situation is relatively simple in two-electron
systems where the inclusion of a few lower excited configurations
is able to account for a large part of the correlation. The
problem becomes more difficult as the number of electrons in
the system increases.

No definite guidelines are available in determining the
dominant configurations among the many that are possible. Second
order perturbation theory has been used in obtaining energy
estimates, but such estimates were found to be poor87 . Most of

87,

the authors have depended on results of previous calculations
88- The magnitude of the eigenvectors of each configuration
can provide an accurate value for the energy contribution from
each configuration. If one is interested in accurate wave
functions, it would be necessary to include such configurations
that have large eigenvectors. But the problem is difficult and
involves a considerable amount of experimentation.

From the available spin-orbitals, we construct Slater
determinants to obtain a N-electron wave function. Each Slater
determinant is completely characterized by the spin orbitals
that are used for its construction. The number of occupied

spin orbitals of a shell in a particular Slater determinant is

called the occupation number of the shell in that Slater determinant.
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The collection of all Slater determinants which have the same

shell occupation numbers constitute an electron configuration.
This enables us to define a configuration in terms of a set of
occupation numbers.

We construct configuration state functions (CSF) which
are specific linear combinations of Slater determinants with
the coefficients chosen such that the CSF's correspond to the
same symmetry species and subspecies as the state for which the
total wave function is to be constructed. Since we do not
assume any orthogonality property for the orbitals, the same

applies for the configuration state functions

( ¥1 ‘ ¥ ) = b3
(3.2.1)

According to the analytical procedure the spin orbitals
are expanded in terms of basis functions. In order to solve
the CI problem, we must therefore start with a set of appropriate
orbital expansion coefficients and construct the one- and two-
electron integrals over basis functions. Details of this pro-
cedure can be found in Roothaan's paper and is discussed
briefly in Section (1.2). The sequence of computational proce-

dures may best be described by means of a flow chart.
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FLOW CHART OF CI PART
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H o= ) £(1) +) &(1.9)
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SOLVE THE EIGENVALUE EQUATION USING
SUITABLE ORTHONORMALIZATION PROCEDURE

N2

TRANSFORM THE SOLUTION TO THE NON-
ORTHOGONAL BASIS
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FIND THE ENERGY AND LINEAR COEFFICIENTS
FOR THE CSF'S
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Choice of Basis Sets

One of the most important considerations in evaluating
the reliability of an electronic structure calculation is the
choice of basis set. There are three main criteria for a good
basis set.

(2) The functions must be of correct general behavior.

(b) The functions must lead to integrals that can be

evaluated.

(c) The number of functions needed must be small.

To stress the importance of the third condition, it
becomes clear if we consider a basils of m real atomic functions.

In such a case, we will have to perform n = 2 m (m + 1) distinct

integrals of each type ( xplxq Y and ( Xp'h|Xq Y and k = 1 n(n+l)
dis egrals of the type ( Xp Xqig|xr Xg ) The calcu-
lation and storage of such a large number of values can be
tedious.

As for the functions themselves, exponential or gaussian
functions are the most common. The use of exponential function
was first suggested by Slater and functions of the type

Ar De”5T
(3.2.2)

are usually called Slater type orbitals, where A is a normalizing
constant, n is the principal quantum number, and £ is the orbital
exponent or screening parameter. Note that a function of this

- kind gives only a radial dependence and angular dependence is

introduced through spherical harmonic functions.
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To cbtain accurate results without an excessively large
number of basis functions, the individual functions must be
chosen with great care; +this is accomplished by variation of
the parameter g . In fact, there is no easy way of obtalning
an optimum basis set except by repeated calculation using
different values of g

As indicated before, the main difficulty arises from
the calculation and storage of two-electron integrals. Analy-
tical methods have been developed in order to evaluate certain
types of repulsion integrals by Coulson and Barnett 89 and
Harris and Michelsgo

The most advantageous choice of basis functions can
generally be obtained by two different methods: (a) choose as
many basis functions as possible (saturation) and do not opti-
mize the basis function exponents (b) choose a small set of
basis functions and optimize the exponents carefully. Most

often the choice falls on (b) for the following reasons:

1. A smaller basis set gives a more compact
wave function
2. The convergence in the solution of the SCF
equations is more stable with few basis functions.
3. From the computational stand point, a smaller

basis 1s more economical.
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5.5, THE SELF CONSISTENT ¥FIELD PART

The orbital optimizat

clearly represented by means of a flow chart.
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4

SOLVE THE FOCK EQUATIONS FOR EACH
SYMMETRY BY NEWTON-RAPHSON-STEEPEST
DESCENT METHOD

\V

COMPARE THE INPUT AND OUTPUT ORBITALS.
USE THE NEW CONVERGED ORBITALS AS
INPUT IN THE CI CALCULATIONAND COMPARE
THE INITIAL AND FINAL ENERGY

\%

IF THE ENERGY IS HIGHER, REPEAT THE
CYCLE. OTHERWISE THE COMPUTATION IS
FINISHED

Solution of the CI eigenvalue problem as outlined in
the previous section gives the ground state energy and the eigen-
vectors corresponding to this energy. Since the orbitals are
allowed to be non-orthogonal, we arbitrarily assign an input

matrix V which 1s essentially a non-orthogonality parameter

(3.3.1)

where W 1s the overlap matrix between orbitals.
The total wave function is expressed as a linear combi-

nation of determinantal functions (CsF's),eq. (3.1.1)
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The presence of a certain determinant in the total wave function
is indicated by the occupation numbers NA’ NB - - - which are
used in the construction of the Fock like operator.

The actual computation follows the theory which is
described in the previous section. In the following we will
describe the computational aspects of the method of solving the
Fock equations.

The Fock operator is obtained in orbital form, one for
each orbital and is transformed to the basis vector space by
means of expansion methods. The matrix hi which occurs for
each orbital i is constructed from a set of initial guess expansion
coefficients. The Newton-Raphson equations are formed using

these initial vectors

Il_i

P35

€s 4 O
ij
=1

J

|
&w
|
>~1=

(3.3.2)

where i and j refer to orbitals and the summation is over all
the orbitals. Since the Lagrange multipliers €31 are explicitly
dependent on the expansion coefficients, the former must be
reconstructed after each iterative correction of the latter.
These equations are treated in sets of symmetry blocks,
that is, orbitals of s symmetry are not mixed with p, d, etc.
This means that the number of equations in each block will be
equal to (n x m) where n is the number of orbitals of that
particular symmetry and m is the number of basis set used.

The method used to solve the Fock equations (3.3,2) is
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based on a scheme suggested by Powellgl. It i1s a hybrid method
in the sense that the algorithm selects elther the Newton-
Raphson method or the steepest descent method depending on the
values of certaln parameters.

The classical Newton-Raphson method of solving a set

of simultaneous equations

£y (x) = £y (x1 X - - - xn) = 0
(3.3.3)
i1s explained in many texts on numerical analysiSII? An initial
guess of the set of variables x x =~ - - Xn 1s replaced by a
1 2
corrected estimate
x Kt = x.k + 5.k
i 1 i
(3.3.4)

where the correction terms éi solve the linear system of

equations
n
k (k) . (k) _
£,(x) o+ ZJlJ\ 6 = 0
= (3.3.5)
Here Jij i1s the Jacoblan defined by
.
(k) _ 71
iy B 3% x = x&)
(3.3.6)

Analytically one approximates the function f (x) in the vicinity
of X by its first order Taylor expansion and then seeks the

zero of the linear function (3.3.5).
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Newton-Raphson method suffers from two serious disadvan-
tages from the point of view of practical calculations. The
first of these is the difficulty of computing the Jacobian
matrix. Even if the functions fj are sufficiently simple for
their partial derivatives to be obtained analytically, the
amount of labour required to evaluate all n® of these may be
.S are

J

far too complicated for this and an approximation to the

excessive. In the majority of problems, however, the f

Jacobian matrix must be found numerically. This is often carried
out directly, i.e., afj/axk is computed by evaluating fj for two
different values of Xy while holding the remaining n-1 indepen-
dent variables constant. Although this direct approach gives

an immediate approximation to the partial derivative, it is not

without its disadvantages

oo +he m
- ~e FY b\/“, A Ry Y

riocus of which is the
amount of labour involved. For in order to compute the Jacobian
in this manner, the vector function f must be evaluated for at
least n + 1 sets of independent variables.

The second disadvantage of the Newton-Raphson method is
the fact that without some modifications it frequently fails to
converge. Conditions for convergence are well known but they
rely on the initial estimate of the solution being good, a
requirement that is often impossible to realize in practice.

Despite these disadvantages, the method has much to
cammend. The algorithm is simple even though it does require

. the solution of n linear equations at every step, it has a

sound theoretical basis and for many problems it is rapidly con-

vergent.
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Descent techniques of functional minimization involve
iterations which consists of three parts: first, a direction 5k
is found, then a descent step length Xk is determined and finally
the descent step

xk+1 = xk + Ak 5k (3.3.7)
The descent direction is an n-dimensional vector

) (3.3.8)

At the k th iteration, the direction vector 5k originates at the

s = (&g - - - 8,

current point xk. The value of the objective function fi(x) decre-
ses from xk to a point at some distance in that direction. A unit

vector 5k is said to be a descent direction with respect to the

k

objective function fj(x) at x© if there is a A'>0 such that for

all ) satisfying ' =\ > O we have

() = ek e as) < £ () (3.3.9)

f.
1 1

; 5 1r
It féx) is differentiable, 5 is a descent direction if

1im £ (X 4 36%) —r () | £+ ™)
A0 A - - A A=
k k
= (85 v (2 < o (3.3.10)

where vf&ﬂxk) denotes the gradient of the objective function fi(x)
k
)

2

evaluated at the point xk. If this directional derivative, vfi(x
exists, and is negative, then 5k is a descent direction.

The descent techniques differ from each other in the type
of descent directions and in the st;ategy used to determine the
lengths of the descent steps. They also differ in the order of
'partial derivatives of fi(x) involved in the computation.

While the convergence rate of Newton-Raphson method is

quadratic, that of the steepest descent is linear. If only a poor
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initial estimate of the solution is available, Newton’s method
becomes unpredictable and always fails if the Jacobian at any
stage becomes singular. For some problems where a good initial
estimate of the solution is not available, the method of steepest
descent has been found to be effective and for this reason,
hybrid algorithms based on the method of steepest descent
followed by the application of Newton-Raphson method have been
recommended. In the present algorithm we retain the fast conver-
gence of Newton's method, but we modify the iteration so that it
is progressive even if the guess x is far from the solution. A
detailed description of the algorithm is given by Powell 91.

92

Haselgrove observes that it is often worthwhile to
use the correction §, calculated from equation (3.3.5) as a
search direction in the space to the variables: Haselgrove's
iteration replaces x by (x + A 6§ ) where the vélue of the para-
meter ) 1is calculated by a search process, which tries to make

the estimate (x + ) & ) better than the estimate x, the crite-

rion being the inequality

F(x +x 6 ) ( F(x)

(3.3.11)
where F(x) is the sum of squares of residuals
n
F(x) = i: [ f,.(x) ]2
k=1
(3.3.12)
85 84 91
Following Marquardt and Levenberg, Powell modifies

‘the Newton iteration so that it converges from a poor initial
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estimate of the required vector x , by introducing a parameter

1* into the "normal least square" formulation of equation (3.3.5)

n n
YUY T ey - ) g g
=1 k=1 k=1

(3.3.13)
Specifically, a correction vector g§* is obtained by solving the

set of linear equations

n n n
* 5 - i =
D T e O i
k=1
(3'3-1”‘)

where I is the unit matrix. The lLevenberg - Marquardt iteration
changes an estimate of x to the estimate (x + §*), the length
of the correction being regulated by the value of ) *. The

inegusglity
1\/\1\&\ e UJ

F (x +8%) ( F (x)

(3.3.15)
can be achieved if »*, the positive parameter, 1s sufficiently
large provided that the functions fk(x) have continuous first
derivatives and that the components of the gradient of F(x)
are not all equal to zero at the initial estimate x of the
iteration.

To begin the k o0

iteration, an estimate of the solution
x(k), a step length A(k) and two numbers E and M are required.

The step length can be changed on each iteration and its purpose
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k+1 k) in

is to restrict the length of the displacement (x - X
order that the iteration decrease the value of F(x). However,
provided F(x) is decreased substantially, Ak may be kept large
as otherwise unnecessarily large number of iterations would be
applied. The numbers E and M are assigned fixed positive values
before the iteration begins and they govern the conditions for
completing the i1teration process. It finishes if the value of
F(x) is reduced to less than E or alternately if the gradient of
F(x) is so small that the distance from x to a solution is pre-

dicted to exceed M. Therefore E is set to a very small value

in order that the condition

n
E: Efi(x)]z ( E
i=1

(2 2 1K()
(P )

impliegs that x is acceptably close to the nonlinear equations
and M is usually set to an overestimate of the distance from

(1)

X to the solution
First the k th iteration calculates the elements of the
Jacobian matrix (%,%.6) at xX and then it evaluates both the full

(k) (

Newton-Raphson correction § by solving the linear system of
equations (3.3.5) and also the gradient g(k) of F(x) at x(k),

by calculating the components

(k) _ 3
&; [3}3 F(X)} .- x(k)

(3.3.17)
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It then tries the test

(x), 1, (%)

F(x*"’) =2 Mg

| (3.3.18)

and if it holds we finish iterating because of the likelihood that
the sequence of estimates of x(k) is converging not to a solution
of the equations, but to a local minimum of F(x). This test is
justified because Hg(k)H2 is the steepest slope of F(x) at x (k)
and therefore it seems that the length of the change in x(k)that
is needed to reduce F(x) to zero will have to exceed M which is

wrong if M 1s specified in the recommend way.

If the condition (3.3.18) does not hold then we calculate
the displacement é(k) to add to the vector x(k). This displace-

ment is the classical correction &) 1 a(K) I é(k)H .
e

put ir A(K) < a(k)H2 then we make the length_ 5(K) equal to

A(k). In this case the displacement has the form

=(k k k

6( ) - a 6( ) + 61 g( ) (3.3.19)
where al and Bl are scalars. In fact we let oy =.0 1f the step
along the steepest descent vector of F(x)

(k) - _ (k) (x k |

sk) = - k) Gl gy, (3.3.20)

does not go beyond the predicted minimum of F(x) along the steep-

est descent vector from x(k). This predicted minimum is at the

R 1 I A A O (3.3.21)

so we try the condition
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2 () < 3 g(k)HZ A g(k)Hi (3.3.22)

and if (3.3%.18) and (3.3.22) hold good, then 5(k) is defined by
equation (3.3.20). In the case that condition (3.3.18) holds,
but condition (3.3.22) does not, then we let the point { x(k) +
g(k)} be on the straight line joining the point (3.3.21) to the

k)

point { x(k) + a(k) }, the actual components of 6( being deter-

mined using the extra condition || g(k)H = A(k).
2

The next stage of the iteration is to try to estimate

( x(k) + g(k)) » SO we calculate the functions fi(x) , (1 =1,

--- n ) at this point. If the expected inequality

r( x(K) s (k)y o gy () (3.3.2%)
holds, then the iteration defines x¥t1) - x(¥) 4 5(%) 414 we
try the convergence test (3.3.15) at x(k+1). However if (3.3.23)

(k+1) _

fails we let x x(k) and test (3.3.2%4)

F( <) 4 5(k)) > (1-¢)F (X(k)) + ¢ 5 (k)
(3.3.24)

leads to a reduction in the step length A(k). Thus the iter-
ation revises the estimate x(k) using only one calculation of

the left hand sides of the system of equations (3.3.3).

The last stage of the iteration revises the step length

A(k). This calculation depends on the predicted value of the sum

of squares of the residuals at x(k) + 5(k), namely

g (k) X L) g, 00 4 (3.3.25)

|
~—
'—ﬁ
b
i
+
=
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which is less than P(x¥)). Ir it is found that this prediction
is so bad that the actual value of the sum of squares satisfies
the inequality (3.3.24) then it is assumed that the linear appro-
ximations to the functions fi(x), derived from the Jacobian ele-
ments (3.3.6) are not adequate over the distance || 5(k)H2 .

Therefore A(k) is reduced and is multiplied by a constant in the

interval [0,1].

To begin an iteration, the following data are required:
(a) a vector of variables x which‘is an estimate of the solution
of the equations (3.1.3) and the corresponding function
values fi(x) (i=1, - - - n) ,

(b) an approximation to the Jacobian J
1

3

s

(d) a matrix Q of n directions in the space of variables and
an associated vector of integers w

3

(e) a step length A ,

The iteration process is outlined in the flow chart .
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wear eguations
For the majority of practical problems it is not possible
to express the Jacobian explicitly and in these cases it is
necessary to use an approximation J to the Jacobilan. A simple
method for obtaining this is by using the forward difference

formula to approximate the partial derivative. If J = Jij

f.(x + DSTEP . ej) - f.(x)

— 1 i
Ji3 = DSTEP (3.3.26)

where ej is the normalized Jj th coordinate vector.

A fundamental difficulty inherent in this form of appro-
ximation is the choice of DSTEP. This parameter has been chosen
arbitrarily, but required adjustment by trial and error so that
it 1s not so small as to cause rounding error or so large to

cause truncation error. In order to begin the k th iteration

(k)
J

which can be defined as the

we require the matrix elements of Ji and we also require the

(k)

elements of the inverse of J

matrix

rl) {Jij(k)}i (3.3.27)

Before the first iteration, J(l) is obtained from finite differ-

(1)

ences along the coordinate directions and then H is calculated

using a matrix inversion subroutine.
Given the elements Ji.(k) and Hi (k) and given the other

J J

gquantities that are needed to commence an iteration, we first
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calculate the components

1\

{ 1.} v\
g1y = 2 ) £(x*) g (=1, - - -n) (3.3.28)

and then instead of solving the linear system of equations (3.3,

5), the components of 6(k) are calculated by using the formula

(k) _ (k) (k)
5, F) — _.21 H e () (3.3.29)
J=

The method of revising the Jacobian approximation depends on the

vector 6 and on the differences Yk
o= r (x4 b) - £, (x) (k = 1,- - - n) (3.3.30)
The revised matrices J* and H are
= g+ (y-38)8 /6|2 (3.3.31)
H = H+(6-Hy)s H/ (6 Hy) (3.3.32)

The method used for revising the Jacobilan requires that
the correction vector & are iinearly independent. In the course
of iterations it might happen that the dependent directions are
introduced and it is necessary that the program maintains a linear
independence.

In any set of linear equations the solution when it exists
is the point of intersecton between the straight lines. Further-
more a unique solution exists if and only if the lines are not
parallel or equivalently if and only if their normals are linearly

'independent or non-collinear, In particular one may have diffi-
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culty if the lines are nearly parallel because the solution may

be highly sensitive lo small changes in the posilions of the lines
caused by round off errors in computation. Diagrammatically, for
the set of two equations
a..X, + a, X~ =D
1171 1272 1
(3.3.33)

2171 2272 2

error spread

error spread
in b
error Epreag 1 ‘

a11x1+a12x2=b

- g 2171 %oty spread in
] 5;¢r ,M,/~”f;// " solution
' AN - = |
LT TKEp PR % T P g
,,,,, {
\
shaded area is error |
spread in solution \
Ax =D '
q
Well conditioned case | T11 conditioned case

This kind of numerical instability might lead to poor resolution
of the solution of the problem. With this in mind, we ensure
that the correction vector & is independen% of a set of direc-
tions only if the least angle between & and some vector in the

space spanned by the directions is not less than, say, 30 degrees.
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Since we start with a set of orthonormal vectors, the problem can
be simplied and we ensure that the new directions are also ortho-

normal.

3.4 THE PARAMETER V

An important aspect of the present method concerns the
parameter V and its evaluation. The orbital overlap matrix W is
related to V by eq.(2.2.15)

w o= v

\
For a given W, there are infinite values of V and choice of the
optimum V from among them is difficult. On the other hand for a
given V there is only one unique value for the overlap matrix W;
however the initial choice of V is difficult.

In view of the fact that W is physically meaningful, we
have follcocwed a method by which a V is obtained from an arbitrary
W by a diagonalization procedure. It must be pointed out that

such a choice of V may not lead to an optimum value of the para-

meter with respect to the total energy.




CHAPTER IV

APPLICATION TO BERYLLIUM
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4.1 GENERAL COMMENTS

Viewed {rom the broad perspective, a theoretical under-
standing of the many body problem obviously requires a fundamen-
tal knowledge of the electronic structure of atoms. Although
complex in itself, considerable progress has been made in the
calculation of the electronic properties of simple atoms, parti-
cularly those with few electrons. With the help of high speed
computers it is now possible to calculate almost any electronic
property of two electron systems with a high degree of accuracy.

The problem becomes more complicated as the number of
electrons in the system increase. The Hylleraas method which
has been so successful for two electron systems becomes computa-
tionally formidable for systems with Z > 3. On the other hand
the CI method offers a better scope in terms of computational
feasibility, but the limits of accuracy depend on the number of
configurations included in the expansion. Because of this con-
vergence difficulty the CI wave function loses much of the physi-
cal meaning attributed to the Hartree-Fock model on which it is
based.

As a test of our MC-SCF formalism with non-orthogonal
orbitals, we have calculated the ground state energy of Be atom.
Beryllium was chosen for the following reasons:

(a) As a test case, Be retains all the complications of a many
body problem beyond the simple He atom;
(b) A number of highly sophisticated calculations on Be exist

making it possible for a meaningful comparison with our
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.2 PREVIOUS WORK ON BERYLLIUM
Boys93 in his pioneering work on configuration inter-

action has published a 10 configuration wave function for Be.
By a careful choice of exponents and configurations, Boys was
able to obtain nearly two-thirds of the correlation energy and
reported an energy of -14.637 a,u,

Kibartas, Kavetskis and Yutsis65 used a numerical Hartree
-Fock procedure in their three configuration calculation. Their
surprisingly close value of -14,642 accounts for about T0% of
the correlation energy. From the point of view of the present
work, the result of Kibartas et.al. is particularly significant
because the three configurations they used are non-orthogonal.
Another important aspect of their calculation is the excellent
choice of configurations involved in the build up of their total
wave function. Apart from the basis 1s22s2, the other two con-
figurations are 1s2p§ and 252p§I where the p; is a.numerical
Hartree-Fock one-electron solution for a p function in Be 1s2p§
and similarly for the P -

Another calculation involving non-orthogonal orbitals has
been reported by Brigman et.al?4 where singlet open shells are
formed by linear combination of s-type Slater determinants. Of

particular interest to us are the following:
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TABLE I
Configuration Energy(a.u)
. . 122

Hartree-Fock single config. -14.570
15°25° 14,557
1525 25t * ~14.558
1s 1s' 2s° -14.580
1s 1s' 25 2g! -14,5815

It may be noted that the opening of the 1s level makes an appre-
ciable improvement in the energy whereas opening of the 2s level

makes little improvement.

Szasz and Byrne95 have used the Hylleraas method with
a starting Hartree function for Be and obtained an energy of
-14.6175 a.u. Only binary correlations are included in their
calculation and even in this case the mathematical complexity
of evaluating the integrals is apparent.

A number of configuration interaction calculations
on Be have been done by various authors and these are summarized

in table IT.

* The primes indicate orbitals that are virtually identical
to the corresponding unprimed ones, The overlap between
the 2s and 2s', for example, would be large, probably of
the order of 0.9.



TABLE IT
Method Type of Number of | ¢ corr-| Energy
orbitals configs. elation| (a.u)
Boys93 Orthogonal 10 66 -14,637
Yutsis65 Non-orthogonal 3 73.4 -14,642
Matsen94 Non-orthogonal 1 -14,5815
8
Watson 7 Orthogonal 37 89.5 -14,6574
weiss?7 Orthogonal 55 94,5 -14,6609
Yutsis98 Non-orthogonal 96.5 -14,666

There are some second order perturbation calculations
which are of poor accuracy in comparison with the CI methodgg’loo.

Recently there have been several calculations on the
correlation energy of Be atom using perturbation theory or Bethe-
Goldstone procedure, where generally only pair correlations are
included. Although the results obtained by these methods are
undeniably more accurate, there are some fundamental questions
that may be raised regarding the validity of the addivity of pair
functions. The separation of the total correlation energy into
bintra— and inter shell correlations does not seem to be unique

and strongly depends on the order in which the correlating con-

figurations are added78.

S L awabas o
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TABIE TIII

Comparison of Be atom calculations using perturbation methods

Method "~ Correlation energy Total % Energy
152 | 2s2 1s-2s. ~ (a.u)
Kelly2? 0.04212|0.04387 [0.00497 | 0.09096 | 96.5 | -14.66307
100

Nesbet 0.04183] 0.04535 [0.00586 | 0.09212 | 97.6 | -14,66514

Ge11er18%.a1 0.04208} 0.0442810.00497 | 0.09143 | 97.0 | -14.66439
Byronlg%.al 0.0%25  0.0448 |0.0052 |0.0925 |97.9 | -14,6655

One of the first exhaustive CI studies of Be atom was
carried out by Watson87 using 37 terms in the expansion and
taking 1s2 252 Hartree-Fock function as the leading term. The
orthogonal basis included 6 s-type functions, 5 p-type functions ,
4 d-type functions, 2 f—tjpe functions and 2 g-type functions.
The final wave function gives an energy of -14,65740 correspon-
ding to about 89.5% of the correlation energy.

Weiss97 has published a 55 term configuration interaction
study of Be using 7 of s-type, 5 of p-type, 3 of d-type and 2 of
f-type functions. In this case the basis functions are non-
orthogonal. Weiss obtains an energy of -14,66090 corresponding
to about 93% of the correlation energy.

Sims and Hagstrom103 have recently carried out an exten-
sive calculation on Be using a combination of Hylleraas and CI

- methods. Their method is a hybrid one in the sense that an
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additional correlation factor riJ is introduced in the configu-
ration that make the largest contribution to the total wave fun-
ction. Only unlinked type of interelectronic coordinates have
been considered. Using 107 configurations, Sims and Hagstrom
were able to obtain an energy of -14,66654% which differs from
the exact value by only 0.0002 atomic units, Although their
results are the most accurate to date, such a large number of
configurations are included that physical intuition becomes par-

ticularly difficult to apply in trying to understand their re-

sults.

TABLE IV

Results of Sims and Hagstromlo3

Number of terms Type Energy(a.u)
59 term Hylleraas -14,66325
92 term Hylleraas -14,66358

107 term Hylleraas + CI -14,66654

One of the most sophisticated and rapidly convergent config-
uration interaction wave function for Be has been obtained by
Bungelou. Bunge’s calculations are based on natural orbital
concepts and involve a number of new ideas. As a first step,

" Bunge makes an ordinary SCF calculation using a large set of
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Slater type basis functions. Then a CI calculation is carried
out including the restricted Hartree-Fock configuration 1lsa 1sB
2sa 2sB plus all possible doubly excited configurations whose
orbital occupancies may be specified XiXJQS2 and 1s2xixj where
X. and Xj are all orbitals in the basis set other than the SCF
orbitals 1ls and 2s. From the expansion coefficients of this
wave function the density matrix is formed which is dlagonalized
to give a set of natural orbitals.

One of the most difficult aspects of a CI calculation is
the choice of configurations that make important contributions
to the total wave function. Bunge uses perturbation methods in
the search for such important configurations and performs a CI
calculation using 180 configurations and the natural orbitals
obtained in the first step of the calculation.

Bunge’s calculation suggests an important application of
natural orbitals in performing a CI calculation. Although his
calculation accounts for 99.6% of the correlation energy, this
requires inclusion of p,d,f and g type of orbitals in achieving
the claimed accuracy. Conseguently physical insight about the
nature of the wave function is lost. Furthermore, the calcula-
tions are very complicated and inconceivable without the aid of
a large computer.

The most important single configuration has been found
to be 1s22p® in agreement with the results of Wafson. Bunge’s
~detailed analysis enabled him to assign upper limits to the energy

and correlation energy.
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TABLE V

Contributions of orbitals with different £ valﬁes

to the correlation energy of Be

Energy ( s limit ) -14,59202 a.u
¢ Correlation energy 20,3
Energy ( sp limit ) -14,66080 a.u
¢ Correlation energy 94,0
Energy (spd limit ) -14,.66453 a,u
¢ Correlation energy 98.0
Energy (spdf limit ) -14,66570 a.u
% Correlation energy 99.3
Energy ( spdfg limit ) -14,66598 a.u
% Correlation energy 99.6

* , 120

Exact non-relativistic energy = -14,66731a,u

Sabelli and Hinze78 have performed an MC-SCF Calculétion
on a number of atoms including Be. Their calculations are based
on the MC-SCF formalism of Hinze and Roothaan77. Using 10 con-
figurations Sabelli and Hinze obtain an energy of -14,6546k4a.u
corresponding to 86.5% of the correlation energy. Apart from
the 1s22s2, the major contribution arises from the configuration
1s2op2" | (

* (Obtained by subtracting relativistic corrections from the
experimental value,
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In concluding this section, we may say that MC-SCF cal-
culations in general are able to improve energy valuesland show
excellent agrecment with experimental results. Unfortunately
the accuracy of the results seem to demand inclusion of a large
number of independent configurations in the wave function. Apart
from being computationally expensive, fundamental questions re-
garding the significance of many "virtual configurations" remain
unanswered,

Most of the Be calculations we have reviewed use ortho-
gonal orbitals., It is hoped that our non-orthogonal MC-SCF

formalism may provide answers to some of these questions.

4.3 DETATLS OF THIS CALCULATION

As described in the theory, the MC-SCF procedure involves

solution of two self consistent equat ions

N
hy B, = 8 % BJ. €54 (4.3.1)
H C = ETC (4.3.2)

The notations are the same as mentioned before and are given in
pertinent sections.

Since the matrix elements of the operatqr hi and the
Hamiltonian X are constructed from one- and two-electron inte-
grals, our main purpose in this section is to describe the method
used in evaluating these integrals. The rest of the calculation

is straightforward and follows the theory very closely.
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Consider a set of basis functions of the form

X, = R (a)/my | ¥ (8,0) 0, (s) (4.3.3)
where Y is a spherical harmonic and ¢ 1is a spin function with
eigenvalues m, = +3 or -z. The radial functions RIX(T) can be
completely arbitrary except that they are assumed to be linearly
independent within sets of common symmetry A (angular quantum

number ). These functions are chosen to be of the Slater type

and are of the normalized form

_ s+l -C.r
ij = Nj r¥ T eT g (4.2.4)

4 1s lhe angular momentum guantum number, gj and n,j are assigned
parameters and N. is the normalization constant given by
J

(2C p ) 2{,+2nj+3

N, = -—d 4,3.5)
J (2t+2ns+3) 1 (

The choice of the various parameters (particularly the screening
parameter () for a particular £ value is by no means simple.

The determination of optimum values of gj is difficult and gener-
ally requires the computation of energies for several values of
QJ’S followed by an interpolation. There appears to be no way
of avoiding these repeated calculations to obtain a truly opti-
mum orbital exponent. This obviously increases the labour of a

CI calculation. Unfortunately it appears that accurate CI wave
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functions using small numbers of basis functions require near
optimum values of C105.

For the ground state of Beryllium, the spherical
symmetry of the atomic wavefunction allows the separation of
the Hartree-Fock equations so that they depend on a single radial
variable only. This statement is precisely true only in closed

shell configurationslo’11

, but it is generally a good approxi-
mation for atoms to express the orbitals as products of radial
functions Ra(r), spherical harmonics Yzm(e’®) and spin eigen-
functions, so that we would use the same approximation even for
excited state calculations on Be atom. Furthermore, use of the
spherical symmetry enables ué to apply the j-Jj coupling scheme
in evaluationg the two-electron integrals.

In general the cholice of the various parameters for a
particular calculation relies heavily on earlier work by others.
In the present calculation we have used the basis functions
given by Watson in his CI calculations on Be atom. This implies
that we have adopted a modified form of option (a) mentioned in
page 78, that is, that of éhoosing not very well optimized (’s
and a relatively large number of basis funétions. The values

87,111 are based on earlier work on He

for { used by Watson
atom. Watson’s results indicate that optimization of { is not
very critical in the case of Be atom, provided one includes a
sufficiently large number of basis functions. Additional care

must be taken to ensure that no two basis functions are similar.
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Having made a choice of basis functions, the next task
is to assign appropriate coefficients BiJ to these functions to
form initial guesses for the corresponding one electron orbitals,
In the present calculation, we have used the expansion coeffi-
cients given by Watson87’lll.

The various parameters used in our calculation are

summarized in tables VI and VII,

Evaluation of Integrals

In calculation the integrals, we have followed the

method suggested by Nesbet106 and Boyslo7. Atomic units are

used throughout.

In order to make the notation clear, let us define the
following:
. . *
Gkl = [ xg ") k(1) x,(1) ar
’ (4.3.5)
. . * *
ciglelkdy =[x % (@) al1,2) x3(1) xq(2) arqdr,

(4.2.7)

The matrix elements between orbitals can be easlily expressed 1in
terms of the primitive integrals (4.3.6) and (4.3.7)

and expansion coefficients Bij of eq.(2.4.1). For the one-electron
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integral between orbitals @, and @, we have

CHE LRI ;4 By Brp Cxp(1) IR %, (1))
(4.3.8)
Similarly for the two electron integrals between orbitals, we
have
o laleo) = V0, B B B B (x; (1)x; (2)]a(1,2)]
PRGUREY T L L4 Tipis jaBer ¥1 X ;
X 5 (1) (2)) (4.3.9)

In view of equations (4.3.8) and (4.3.9 ), we need consider only
details of the evaluation of primitive integrals.

Using eq.(%4.3.3) we can write for the overlap integral

(i) 113)

i

JXi Xy dr o
-5, , b 5 [ R.(r) R,(r) ar

S . -+ J
o (4.3.10)

Similarly the one-electron integrals can be expressed in terms

of the radial functions.

2 . [+2] d2
<i|”%1\j> = by 2 Sm, m, °m m I Ry l_ arz "
i7J L.4 S: S. 0
1iJ 1 J
2
+1 .
VAT Z
iizlsy = 8 8 8 [ 2 12 |r a?
r £L.4. m m m_, m i r g ar
i J Li &J S5 Sj o \ J

(4.3.12)
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The two-electron operator Q = 1/rij is more difficult

to handle, In this case, in addition to the trivial orbital

expansion coefficients, we will have to include the vector coupl-

ing coefficients., The derivation of these equations can be

found in Condon and Shortley109 or Rose110 In terms of the

_radial functions, the integral can be written as

(3 (1x ()1 Q(1,2) % (1)x,(2)) = -
5 5 5 z
m m m,.m m, +m, ,m, +m
1 Sy Sj 84 &l &j Lk &l k=0
k k K.
C (L my ,Lk Ly ) C (:z,l *'1’&3%3) R (ij,k1)
(4.3.13)
where B
K, .. K
R (ij,k1) = R (n TR zz, > Dyt nlzz,l)
k
I =
= ) - R. (I‘ j(rg)Rk(rl)Rl(rz)—;Y_Fl drldrz
> (4.3.14)

The sum over k does not go infinity since k + 4 + £’ must be
even and |4 - '] sk < |4 +2'].
The coefficients Ck are integrals of products of three

Legendre functions and are given by

k ’ _ 2 r ’ .
o) A
(4.3.15)
. The Gaunt coefficients Ck are related to the Wigner coefficients

by
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. ) l ot +1 3 ki1 e Y )
C(u%{'W/) - ‘TTTT_| AOO o] m, -l T, s
m
{4 2& +1
= (-1) ' ’ < -m, m, -m,, m, )

, L ki
L oo0o0 (4.3.16)

The main advantage of this formulation is that the angular inte-
grals need be evaluated only once. Values of Ck are stored in
3 dimensional array.

From the foregoing discussion we find that two types of

integrals have to be evaluated.

(€113) = | am R (1) k(1) Ry (1)

and RS(ij,k1).

When the operator X is unity, the integral gives the overlap.
When K is equal to —%‘72 or Iyr, the integral represents the
one electron integral.

The actual evaluation of the integrals is done by means

of recursion formulae106’1o7. Define a function T(x.y)
T(x,y) = xiyy<t (4.3.18)
T(0,y) = Yy (4.3.19)
T(x+l,y) = |(xl)y | T(x+y) (4.3.20)

- If we rewrite the basis function in a slightly condensed form

_ A+4 ~C. r
Rjz = er e” >j (4.3.21)
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the overlap and one-electron integrals can be written as

(1115) = T(A+Brat+2, ¢ ) (4.3.22)
1. - 1
( = 1i5) T(A+B+2L+1, gi+gj) (4.3.23)
204 - -
(-39 113) %Iging(A+B+2&+2, gi+gj§ (Agj+Bgi)T(A+B+
24+1, ¢ +C.) + ABT(A+B+2L, ( +( )
Similarly the two-electron integrals are given by
M+1 )
RE(1j,k1) = ). {ﬁ—ﬂl—;v L ., T(PrQi3-r, utv) +
r=0 u
N+1 )
N+1)! 1
foy = T(P+Q+3-S, u+v)
sZo WI-5) S+l (4.3.25)
where
M = P -k _—
N = Q -k
P = A+B+4, + 4,
i J
Q = C+ D+ &k + Ll
u = (¢, + ¢,
i J
v = Qk + cl
We define a recursion formula
v, (0m) = & (4.3, 26)
VM(r+1,u) [ (M-r)/ul Vy(r,u) (4.3.27)

which allows us to express equation(4.3.25) as a sum of terms of

the form
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1i

RS(14,%k1) ZVM(r,u) T( ) (4.3,28)
r

The normalization constants can easily be calculated from eq. (4.

3.22), <(3l1]3> = N, , and are stored separately. The one- and

two electron integrals will have to be multiplied by Nqu and

N N N

g rNS respectively.

The program requires for each value of £, lists of nj

and Qj for the basis functions. These are taken from Watson87’111
and are given in table VI, for calculations involving s-type fun-
ctions only, and table VII, for calculations involving p-type
functions also.

TABLE VI87

Be basis function parameters

For the constructicn IFor the construction
of s functions(4 = 0) of p functions(4 = 1)
J n, Cj J ny CJ

1 1 6.0 10 1 9.0

2 1 1.0 11 1 1.5

p) 2 6.0 12 2 9.0

4 2 1.0 13 2 1.5

5 3 6.0 14 3 9.0

6 o} 1.0 15 3 1.5

7 4 6.0 16 4 9.0

8 h 1.0

9 5 6.0
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111
TABLE VIT

Be basis function parameters

For the construction For the construction
of s functions(4 = 0) of p functions(4 = 1)
J n, Qj J ny Cj

1 1 6.8783 8 2 2.7633

2 1 4, 4293 9 o 1.3601

3 1 3,1111 10 2 0.9909
4 2 2.6147 11 2 0. 6044

5 2 1.5166

6 2 0.9681

T 2 0.6425

In eq.(%#.3.14) orbitals i and j have the same quantum number Ly
and orbitals k and 1 have the same quantum number LB. Hence
only two kinds of integrals are present: direct integrals of the
form.(LaLG}Q|LBLB) and exchange integrals of the form
(LG&B‘X‘&GLB). The entire set of two electron integrals that
contribute to the Fock operator can be classified into blocks
with common values of La and LB. A natural ordering of these
blocks is to arrange them in order of increasing index pairs

(LQLB) where ¢ = g The sequential ordering of elements in

' these blocks takes advantage of the fact that (1J|Qlkl) is sym-
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metric in (i,J), symmetric in (k, 1), and symmetric in (ij), (k1)
whenever the corresponding 4 quantum number is the same.
To deal with the overlap matrix T in the eigenvalue

equation arising in the CI part, eq.(4.3.2), a Lowdin transfor-

i
]

mation matrix T is constructed in the following way.

Using an arbitrary unitary matrix U, diagonalize T such

that

UTU = A ' (4.3.29)

where X\ are the corresponding eigenvalues. Then it is easily

seen that
1

3 .t -5
UNZ2U T (4.3.30)

-
o

where A~ ° is the inverse of A%, This method avoids the problem
of convergence that is often encountered in the binomial expan-
sion suggested by Lowdin14 .

In each iterative cycle, the Hamiltonian matrix of the

eigenvalue equation (¥.3.2) is transformed into

-1 .
H = T72§H (T %)+ (4.3.31)
whose eigenvectors satisfy'the standard linear eigenvalue equa-
tion

(4.3.322)

A fast Jacobi method is used for this procedure. The eigen-
vectors in the old basis of eq.(4.3., 2) obtained by the trans-

formation

C = T°% ¢! (4.3, 33)
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4. U SCF PROCEDURE FOR SOLVING THE HARTREE-FOCK EQUATIONS

117

AL

The method that we have adopted is due to Powell
and has some advantages over similar iterative techniques proposed

by other workers77’112’113

It belongs to the class of
least square methods and uses a Newton-Gauss iteration where the
search direction is biased in the steepest descent direction.
Details of implimentation of the method are given in section 3.3
and the algorithm closely follows the description.

As an initial step, the algorithm calculates a corre-
ction 8B to apply to B. This correction is a compromise between
a Newton iteration and the steepest descent method. The balance
between these two methods is governed by the step length A,
so that if A 1is large, the correction is a pure Newton step
and the convergence is quadratic. For verv small values of A
the vector §B 1s exactly a multiple of the predicted gradient
of F(B) and in general the correction is such that the sum of the
squares F(B+sB) is predicted to be less than F(B). However

the non-linearity in the function f, (B) may influence the above

i ¢
prediction. Besides, a very small step length means an unnecess-
arily large number of iterations. Therefore the algorithm
includes a method of revising the step length A so that the

condition
F(B+s8B ) <« F(B) (4.4.1)

is always maintained.
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The choice of the input parameter DSTEP 1s important
since its magnitude determines the limit in the course of revi-
sion of A. Our choice of DSTEP is based on a large number of
trials and is performed for each new wavefunction.

Another important point is that the method of revising
the Jacobian J depends on the displacement vector §B and on the

differences

y = T (B+38B) -~ (B) (4.4.2)

K il

These differences are liable to be dominated by round off errors
if §B 1is too small, so we include the precaution of setting 3
to a special value | & || < A

Iterative methods such as these could fail if the

-
i a)
ular, Our methed of revising

comes sgin

matrix of the Jacobhian b

(D

the Jacobian is such that we should avoild linear dependence in
the directions that are generated by the successive iterations of
the algorithm. The revised Jacobian is required to satisfy the

conditions

ka 5Bj = Yy (4.4%.3)

Wi~ 5

J=1

which would hold if the Jacoblan were exact. According to

*
Broydenlgl, the new Jacobian J 1is obtained from the formula

T= T (Y- T6B) B/ 8 I1° (4.4.4)



-117-

Formula (4.4.4) demands that we insure sufficient independence

of successlive displacement §B.

k.5 METHOD OF OBTAINING THE PARAMETER V

An integral part of the present method 1s the choice
of a sultable V which is the parameter that occurs in the
inverted form as a transformation matrix in eq.(2.4.28). The
overlap matrix W Dbetween the orbitals is related to this

parameter by
W= vy (.5.1)

Initial cholce of an acceptable V 1s difficult; on the other
hand W 1s physically meaningful and an acceptable choice of W
1s relatively easy. We have therefore used the following pro-
cedure to obtain the parameter V. The overlap matrix can be

written as
= vy (4.5.2)

where U 1is any arbitrary unitary matrix. The right hand side

of eq.{4.5.2) is Hermitian regardless of V, since (VTV)T vvT.
This necessarily implies the existence of W being Hermitian.
If V is non-singular, then, so is W and we get
-1
U = v(w=) (4.5.3)
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Furthermore since W is Hermitian, it is semisimple and its eigen-
values are real,

Equation (4.5.3) enables us to obtain a Vv

v - vt (4.5.%)

i

1
where W ® is the inverse of W<,

It 1s easy to see that W is positive definite (apart
from the fact that W is the overlap matrix; this may be treated

as a special case) since for any non-null matrix X we have
xwx = xvivyt = xvHetot - v

which is real and positive and Y is non-null as long as X is.

Hence the eigenvalues of W are positive, This justifies the
1

definition of W® ag

-1

o

= 8 [diag( Nqshos= = - xn)]s
(4.5‘5)
2 2 2 . .
where kl, Xg, - - - xn are the eigenvalues of W and S is
unitary.
There is an important theorem which proves that a positive
definite Hermitian matrix has a unique square root that is also

positive definite,



CHAPTER V

RESULTS AND DISCUSSION
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5.1 RESULTS AND DISCUSSION

Watson’s data on the configuration interaction study of
Be atom forms the basis for comparison with the results of our
calculations96’111. As shown in table II, Watson’s 37-term
expansion accounts for 89.5 % of the correlation energy of Be
atom,

Apart from the Hartree-Fock orbital 1s22s2, the most
important s-type single configuration appears to be 2s2s§.
Table VII shows our results for a two configuration calculation

both for the orthogonal and non-orthogonal cases.

TABLE VIIT
Configuration: 15%25° + 252s¥%_
Value of ,<1sls}> Energ&(a.u)
0.00000 . -14.58370
0.03103 -14,58265
0.08923 -14,58282
0.10596 -14,58401
0.12232 -14,58576
0.13828 -14,58815
0.15408 -14.58548

In general, the primed orbitals are obtained from the corresponding

unprimed Watson orbitals. Fdr example, the starting orbital expan-

1

coefficients for the sI orbital are obtained from Watson’s sI data
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by slight adjustment and subsequent renormalization. The s S

I’ "I’

etc. are virtual orbitals with s-type symmetry.

Removal of the orthogonality constraint on the 1s orbital
results in a significant improvement in energy. This means that
the charge densities of 1s and 81 orbitals are not strictly loca-
lized in their respective orbital regions. It is worthwhile to
compare our results with that of Brigman et.al.94 shown in table
I. Although they claim to have used non-orthogonal orbitals, our
results are superior, which among other things may be due to a
better choice of basis functions. Brigman et,al,’s paper is only
sketchy and a detailed'analysis and comparison is not possible.

From Watson’s calculations we find that the total contri-
butions to energy from all the s-type orbitals including single
and double substitution configurations add up‘%o a total of
-14,58640 a,u. Using non-orthogonal orbitals we are able to
obtain a much more rapidly convergent energy. For example, with

non-orthogonal orbitals a two configuration 1s22s2 + 2sgs§

provides most of the correlation energy that Watson has reported

with all the s-type configurations: 1s2252 + ngsi + 1s2552 +

I

2.2 2 2 2 2.2 .
2s sttt 2s s{S17 * 2s S111S IV + 2s S 1S v + 2s S1ye This con-

‘clusion is already known from the results of Kibartas et.al.65

where their 3 configuration calculation is found to show compa-
rable total energy to Watson’s 37-term value.

We have done a number of calculations involving non-

-orthogonal s-type orbitals. The main aspects of these results
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are shown below and detailed tabulations are given in appendix IIT.

TABLE IX
Configuration: 1s22s2 + 1s’2s§
Value of (1ls|i1s") Energy(a.u)
1.00000 -14,57303
0.96610 -14,57347
0.87731 -14,57489
0.85503 -14,57528
0.80682 -14,57616
0.77705 -14.57671
0.76516 -14.57671
TABLE X
Configuration: 1s22s2 + 2s2s§ + 1s’2s§
Value of (1s|1ls") Energy(a.u)
1.00000 -14,58486
0.96610 -14,58519
0.85503 -14,58608
0.80682 -14,58645
077705 -14 58666
0.76516 -14 .58664

The results of our entire calculations are summarized in table XVI.
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TABLE XI
Configuration: 1s22s2 + 2s2s£2—+ Estii
Value of (s%|s}p) Energy(a.u)
0.00000 -14.58484
0.02128 -14.58309
0.03723 -14,58592
0.04654 -14.58773
0.06776 -14.59247
0.07140 -14.,60486
0.08084 ~-14 .60057
TABLE XII B |
Configuration: 1s22s2 + 2s2s§ + 1s2si§ + 2s2si§
Value of (1s|sy;) Energy(a.u)
0.00000 -14.58636
0.01884 -14.58430
0.05629 -14.58349
0.07493 -14.58732
0.09345 -14.58369

. As shown in tables XI and XII, we have obtained energy values below

the so-called "limits" set by Bunge in table V. The value reported
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by Yutsis et.a198 in table II, presumably using only s- and p-
type orbitals, is also below the sp limit shown in table V. Per-
haps, such rigorous limits can only be established for orthogonal
orbitals.

Among all the configurations considered by Watson, the

most important contribution comes from 1s22p2. This fact has

65,104

been reported by many authors , and 1s believed to be due

to a strong mixing of the 152252 and 1522p2 configurations aris-
ing from the near degeneracy of the 2p and 2s orbitals.

In the case of two electron systems such as helium and
its isoelectronic species, the discrepancy between the Hartree-
Fock and the "true'" wavefunctions can be satisfactorily accounted
for in terms of two particle correlations and the correlation ener-
gy is nearly independent of nuclear charge. Early estimatés of -
the correlation energy of many electron systems led to the belief
that the correlation energy can be expressed in terms of pair
correlations. Furthermore, it was believed that the correlation
energy per pair of electrons is a constant for electrons that
differ only in their mg values. This view was strengthened by the
observation that the correlation energy of Be is almost twice that
of a two electron system. This view was shown to be wrong by the

65 117 87

“studies of Kibartas et.al. -, Linderberg and Shull

The superposition of the configuration 1s22p2 to the Hartree-Fock

152252 improves the energy by 0.04116 a.u. corresponding to 43.5 4

and Watson

of the correlation.

Watson has performed a two configuration calculation111

on Be with
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2,2 )

y = a( 1s“2s 22p° )

+ b( 1s2p

and obtained an energy of -14.61652 a;u. Although this calculation
uses only 7 basis functions (table VII), the resulting energy is
lower than an earlier calculation using 9 basis functions(table VI).
This is perhaps due to a better choice of orbital exponents.

We have performed a number of calculations using two

configurations

2,.2

vy = A( 1s"2s 2pp° )

) + B( 1s'“2p

with 1s and 1s' non-orthogonal to each other. The results of
these calculations are shown in table XIII. A very important
conclusion that is apparent from the table is that the removal

of orthogonality constraint does not lead to a lowering of the

energy as might be expected.

TABLE XIII
Configuration: 1s22s2 + 1s'22p2
Value of (1s|ls') Energy(a.u)
1.00000 -14 .61652
0.99925 -14.61321
0.99625 -14.60790
0.99607 -14.60353%
0.99479 -14 ,60386
0.96835 -14 .58021
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This 1s the only calculation where removal of the ortho-
gonality constraint does not lead to a lowering of energy. It may
be because of the approximation involved in obtaining solutions
to the SCF equations. However, we would to rule out this possi-
bility and accept this as a valid observation. The major argu-
ments in support of this belief are as follows:

As has been mentioned in an earlier paragraph, the
major contribution to the Hartree-Fock energy comes from the
configuration 1522p2 and has been interpreted as being due to
the near degeneracy of the 2s and 2p orbitals. This is shown

in figure 1. Following Watson111 we may classify the correlation

energy of Be atom as

(a) correlation from 1s shell
(b) correlation from mixing of 152252 and 1522p2 configurations

(¢c) correlation arising from 2s shell or additional inter-shell

mixing.

It must be pointed out that unlike the Hylleraas or
Sinanoglu methods, a CI fofmalism does not offer a clear and
unique method of separating the correlation energy into inter-
shell and intra-shell contributions. The maJor part of electron
correlation comes through the radial part of the wavefunction
and hence depends on the nature of the orbitals and the configu-
rations that are included in the wavefunction. The above

" classification of the correlation energy should not therefore
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be taken too seriously and is melely a point of view. Although
a direct comparison of the CI results and the results obtained
from methods such as those of Hylleraas, Sinanoglu or Bethe-
Goldstone is not justified because of the role of pairwise
interaction and their additivity in the latter methods, it is
worthwhile to consider the correlation energy contributions for

Be atom obtained from perturbation methodslog.

TABIE _XIV

Contribution of each electron pair to the total

correlation energy

1st 1s! -0.0425 a,u
1lst 2s! -0.0052 a,u
2st 2s| -0.0448 a.u

Though the major contribution arises from intra-shell electrons,
the inter-shell correlation energy is significant.

It appears from oﬁr results that the upper bound is
reached in the case of a two configuration, 1s22s2 + 1s22p2
- with the orbitals being orthogonal. Both the 1ls - ls correlation
and the 2s - 2s correlation seem to have attained a maximum by
mixing of 1s2252 and 1522p2 configurations. According to our

scheme, the orbitals are not constrained to be orthogonal and

- it may be possible to obtain a certain amount of inter-shell
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correlation, (ls - 2s), by an appropriate choice of an orbital

1s in the wavefunction

Yy o= 152252 + 18'22p2

Our attempts to extract this additional correlation energy with
only two configurations proved to be unsuccessful. We believe
that in the simple two configuration case, it is likely that any
attempt to improve the intershell correlation results in decreas-
ing the intra-shell correlation. Since the overall magnitude

of the intra-shell correlation energy is larger by an order of
10, it is possible that attempts to gain a small amount of
inter-shell correlation results in a large loss of intra-shell
correlation so that there is a net increase in energy.

Tri +ho ~eiAnfs
Sd L Lo A LS PR 2 N

tion interaction approach, one lmproves
the correlation energy by increasing the number of configurations
in the total wavefunction. We therefore studied the three

configuration wavefunction

1
v = 1s°2s° +_1322p2 + 28 Cop? (5.1.1)

where the 25' orbital is chosen to resemble the 2s orbital., The

results of our calculations are shown in table XV,
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TABLE XV
ConfigUfation:' 182252 + 152ép2'¥'éér22p2
Value of (2s|2s'> Energy(a.u)
1.00000 -14.61660
0.99465 -14.61676
0.98342 -14 .61702
0.98078 -14.,61945
0.94086 -14.62323
0.89684 -14,64519
0.89103 -14,61688

It can be seen from table XV that addition of a third
configuration, keeping the orbitals orthogonal, does not signi-
ficantly improve the total energy. Removal of the orthogonality
constraint markly improves the energy. This probably arises
from the fact that the 1s and 2s correlations could be obtained

independently, thereby extracting some additional inter-shell

correlation energy .

The results of our calculation clearly demonstrate the
improved convergence due to the relaxing of orthogonality cons-
traints. vOur three configuration function of equation (5.1.1)

gives a slightly better energy than a function with the four
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configurations:

¥ = 1s22s2 + 1522p§ + 2522p§I + 2828? (5.1.2)

We mention in passing that we recalculated Watson’s results for
this configuration of equation (5.1.2) and obtained an energy

of -14,6451% a.u. There is a discrepancy between our calcula-
tion and that reported by Watson ( -14.6425% a.u. ) which may
be attributed to improved methods of the present calculation and
possible round off errors in Watson’s computations.

The four configuration calculation uses two different
p-functions. Computationally, this demands more time than using
the single p-function of equation (5.1.1). The only other compa-
rable three configuration calculation with presumably non-ortho-
gonal orbitals, is by Yutsis et.al65. Their paper, based on the
numerical Hartree-Fock method, reports an energy of -14.642 a.u.

which is slightly worse than ours. Moreover, their calculation

requires the use of two different p-functions.
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Finally we wish to make a few remarks about the influ-
ence of lhe parameter V on the results of the present calicula=-
tion. As has been pointed out before, we have preferred to
create V from an arbitrarily chosen overlap matrix W. This
means that there are infinite possible choices for V, all of
which are related by unitary transformations.

The question may be raised, is there an optimum V
for each wavefunction that corresponds to the lowest energy?

In order to find an answer, we studied the effect of various V’s
- (all of which give the same overlap W for a particular case)
- on the total energy. These various V’s were obtained by
multiplying the initially chosen V Dby a class of unitary mat-
rices. The results seem to point out that while the total energy
is very sensitive to the orbital overlap matrix W , it is
relatively unaffected by the parameter V. In other words, the
energy tends to reach an optimum depending upon the overlap
matrix W and the dependence on V appears to be small if any.

A more emphatic statement about the dependence of
energy on the parameter V . would require a systematic calcu-

lation of the energy with respect to a variation of V.
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5.2 SOURCES OF ERROR AND ACCURACY OF THE CALCULATIONS

n . doa

A few remarks avout the sources of errors and accuracy
of the present calculations would be appropriate. As in any
computer calculations, two major sources of error that are
inherent are truncation errors and round off errors. The former
arises due to the finite storage capacity of computers and in-
finite decimal quantities that have to be appropriately truncated.
Round off errors can arise even with numbers with finite decimal
representation. It is the accumulation of such errors that is
the major source of error in atomic and molecular calculations
such as the present one. An example of a calculation where this
difficulty occurs 1s in the computation of two-electron integrals.
Unfortunately it is often impossible to eliminate round off
errors.

The present method of calculation is not adapted to
make convergence statements similar to those made in numerical
Hartree-Fock calculations where it is‘often the practice to
write the percent change in a wavefunction from one Hartree-
Fock iteration to the next. Instead, we have used the calcu-
lations based on orthogonal orbitals as indices for the magni-
tude of errors in other calculations.

The overlap integrals between different occupiled
orbitals of the same 4 value (for orthogonal orbitals) never
exceed 2.0 x 1077, Tt is believed that this is a reasonable

indication of the accumulated error in one electron integrals.
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Most of the error in calculations of this kind occurs
in the course of evaluation of the two electron integrals. Our

values are in excellent agreement with those reported by Watson111

to within 5.0 x 10_6. It is however difficult to compare the
accuracy of the present calculation with those of Watson, but

a general survey of calculations of this kind togéther with
considerations of the software of the particular computer, seem
to indicate that our calculations are accurate at least to the
seventh decimal place. The main point to note is that our cal-
culations have converged to an apparently stable energy.

The calculations were all done on IBM 370/155 Computing

System using double precision mode.

5.3 CONCLUSIONS

In the foregoing sections, we have presented the theory
of Multi-Configurational Self Consistent Field using non-ortho-
gonal orbitals and a practical implementation of the method to
the calculation of the ground state energy of Beryllium atom.

The traditional Configuration Interaction or MC-SCF procedure
when applied to all configurations simultaneously 1s cumbersome,
expensive and slowly convergent. This thesis presents a method
of surmounting some of the problems in the traditional approach.
The major conclusions are:

(a) The use of non-orthogonal orbitals results in a significant

improvement in the convergence of the CI expansion. The three
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configuration function represented by equation (5.1.1) and
reported in table XV , appears to give the 1owést energy of any
three configuration calculation to date on Beryllium. In view:
of this result and the arguments presented in pages 125 - 126,
relaxation of orthogonality constraint on orbitals appears to

be justified from the chemical point of view.

(b) The pseudo-eigenvalue approach proposed by Benston and
Chong 1s inconsistent and cannot be satisfactorily applied in
the form given. With one possible exception, the orbitals which
result from our scheme, give substantial lowering of the energy
and hence the approximation we have used appears to be quite
good.

(c) While the total energy is very sensitive to the orbital

overlap matrix W , it appears to be much less sensitive to the

< w 5 -

parameter V.
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Additional information as to the degree to which the
wave function describes the exact electronic configuration could
possibly be obtained from expectation values of various one- and
two-electron operators. Such calculations are not included in
the present study for two reasons: (1) The major point of this
investigation is to try to assess the advantages of non-ortho-
gonal orbital expansions as compared to the orthogonal ones.
Among the many calculations on Be atom, only Sabelli and Hinze78
have reported values for anything other than energy. This would
not provide sufficient grounds for comparison, especially since
(2) the one-electron operators which are relatively easy to
calculate are quite insensitive to the degree of approximation
in the wave function. The two-electron operatdrs which are
more difficult to calculate are too sensitive to give any un-
ambiguous trends in the light of such limited sources for com-
parison. Besides, such calculations would involve a consider-

able amount of computation and can constitute a major study

in itself,.
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The general variation in energy with respect to orbitals

is given by eq;(2;2;15)

8E = z Z c; Cp [ 80y + 88, ) (A.1.1)
A B
where
N . * * .
Shyp = zi-Li ( DAB(liJi) (6p.+ h cpjﬂ + (tpi:!: h cpJ>6DAB(1*J*) ]
7

+ z:!: 2:!:[ DAB(i*,ji) (cp;.:i h 6:de:>
i

? hq’j*“DAB(iif) ] (A.1.2)
seys = 0, L L, L U Dpp(E S (F1)sa(et it e?)
J

(e, (FEE Enhid ) 1+

F“£\4
m

»q(iijik;lx)bDAB(iijik:Fl;) ] +2 z 2
iF 57 ki

Dyp( LI )0q (17 R T) + q(1FIF1%)6D, (17577 1) )

+ 2 2 z [ DAB(fJ*k*f.)A(fk*)A(fl*)aq'(i*fk*f)
' K

+a(FSEE e (FAE )t )a ) 1+
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Vv [ D (KPR g (2 £xFIF) +
KF 1F

L

S g

q( £ 5 kFIT)o D, L (1% 5 1FLF) ] 4

z Z 2 Ei [ DAB(iT~J‘$kﬂ:1§:)6q'(i4=Jq:kzl:ld:) N
1

17 5F
Q(1FJRETE )60, L (1737 1) ) (A.1.3)
where A B
+ 4+ \ 4+ o+ " t .+ +._+
oD 5) =, Zi Dag( K1) (151 )a (55 1% Yo m, (1 1E) +
K 1 .
A B
[ -
ZA z Dyp(1 J kF1¥)8 T, o (kF1¥) (A.I.%)
k¥ 1¥ —
*
8T, n(kF1F) = (écpklcpl) (A.1.5)

B
) Dug( 15 551K 15)8 (5515 )8 (55 1% )s T,k 15) +
e

1

R
7 D £ FkF1F)6 7, (kF1F) (A.1.6)
1

GTAB(kili) = <cp;|6cp1> (A.T.7)

sq(if A at) = sq(if FxF1T) (A.T.R)
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= (69(1) 9, (2) g(1,2) 9 (1) py(2)) +

(p3(1) b9y (2) g(1,2) ®,(1) 9,(2))

sq° (i it 1®) sq” (1 FuF1F) (A.1.8)

= (95(1) 9, (?) &(1,2) 89,(1) ,(2) +

¥*

(931(1) 9,(2) 8(1,2) (1) sp,(2))

+ +
Ag md;/
N + + % + 4 + i
8D, (1 5K 1) = §; Z} Dpp( 1 S K 17)A (5K i )A( it )6T
m n

it 1E 1 EnFnF Fn¥
+z z DAB( mtn )GTAB(mn)
mT nF

(A.I.9)
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A B
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Because of the HWermitian character of h and g, the primed quanti-
ties are simply the complex conjugates of the unprimed ones;

Since the operators are Hermitian, the variation in energy can be

written as

8E = ; %CZ Cy L ; %i { <6cpiﬂ: h cpf) DAB(i*Ji') +

el

p(1* 5*)6D, (1 *) } +Ziz YY) { sa(#fiEr)
. g Ji
D, (£ 5 K%Y a (L5 ) a(sfat) + (i )

6D, (1" KE1%) } +) ) ) 1 { sa(sFsmcr®)

1F 3F & 1

. g - - . + .+ T +.+
DAB( iFJF 1) + q(ifitK 1F) 6DAB(1+J¥1«: 17) } +

{ (6037 1 0,90, (475%) + p(3F5F) 6D, (1757) }* +

2 }“ z z {6q(iﬂ:J.:l:k:l:lﬂ:)DAB(i:l:Jikd:lﬂ:)A(iikﬂ:)A(Jd:l:t)
T T T

I j k1 :

+ q(£f R 15) epy (1 Y} 4

1F %% zi %ﬂ: { 6q(iﬂ;kili)DAB(i;‘ﬁkili) ’

q(1FJFETY) 8D, (17 5T 1Y) }* (A.1.12)
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The complex conjugates are denoted by the symbol *; In writing

eq.(A;I.12) we have made use of the Hermitian property

(pslolee) = (oo lole)” (A.1.13)

Relation (A.I.13) is subjected to the orbital optimization condi-

tion

<6¢i| ¢j> + <¢il 6¢J> = 0 (A.I.1%)

Note that the first term involves the variation of ®y while the

second term involves the variation of wJ.' We now define an arbi-

trary set of Lagrange multipliers eij and sum over both i and j.
— N\
o e ) -
) eJiC (spy] #p) + <oy 80) ) = 0
1=1 j=1 (A.I.15)
¥*
Using the relation (mil 6¢J) = <6mJ| 9y we get

_2 2 eji<6cpi| cpj> - 2 2631 <6_cpi| cpJ} =0
1=1 j=1 =1 j=1 P
(A.I.16)

 Equation (A.I.16) is now added to eq.(A.I.12). The necessaty but
not sufficient condition that E reach its absolute minimum is that

8E = 0 for any arbitrary choice of variation 6mi in the

orbitals, We finally get
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APPENDIX IT

II. 1 PROPERTIES OF DETERMINANTS

Let A = aaB be a n x n matrix. The determinant of A

is defined by

det A = ZE(G;B:_ - —) alaae - - - a (A'II°1)

B nd

where ¢(a,B,---) refers to the permutation (sign) of the deter-
minant. The determinant A can be expanded in terms of the matrix

elements of the row g explicitly

det A = z a g (Cof aaB) (4.11.2)
B

where the cofactor Cof a , is a number and depends on the matrix
“
elements in other rows.

A determinant vanishes if it has two identical rows or

two identical columns. Using this property we can write

ZaaB(Cof a g) = det A s .  (A.II.3)
B
Expanding the cofactors aaB in eq.(A.II.2) in terms of row vy,
we get
det A = Z z Byg 2yg (COT By ) (A.II.4)
B 6
Cof aaB v6 is a general cofactor of order 2 and depends on matrix

elements on other rows. The proof is as follows:
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Let the o th row move up to become the first row and the
vy th row move up to become the second row. Then by the usual
Laplace expansion of a determinant

a - - -
aal

o2 .
_ _ a-1 _131Y-2 L :
det A = ( 1) g 1) 89 Byp - (A.II.5)

Expanding from the first two rows we get
aaB Bad

- (L \OHY=3 B+l
det A = (-1) (-1) ag g

M(G'JB.;Y :6)
(A.I1.6)
where M(a,B;Y,8) is the minor of a,B and y,6. Note that we

have assumed that o < y and B < §.° Equation (A.II.6) can be

written as

a a
det A = (_1)G+B+Y+6 z af “ad (A.II.7)
8,6 | Zyg Fys
= 2 2 208 ys (COF 2yg v (A.11.8)
B 6

Making use of the property (A.II.3) we can rewrite eq.(A.II.8)

as

det A = ) ) 8ap Byp (COF 8gsg o 2p)
B 6

= det AL 6. 6 0 =8, b gr ] (A.11.9)

Equation (A.II.9) exhibits the property that a determinant vani-

shes if two rows are identical and changes sign if two rows a
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and Yy are exchanged.

Another important property which is of use to us is the
following., If A is non singular, that is, det A # 0 , the
inverse of A is given by

-1 1

= adj A A,II.10
A det A ° / ( )

where the adjoint of a square matrix A is the transpose of the
matrix of cofactors of A

n

Aadjas = | E; I bkJ ' (A.II.11)
k=1
where bkj is the kj th element of adj A, that is, Ajk'
Therefore A adj A = | E: Ay Ajk ‘
' k=1 -
= det A, I (A.II.12)
Since det A # 0, we have
A 1 . adj A = I
aet A
or Al o | adja (A.II.13)
det A

In terms of the components (a_l)BOL of the matrix A'l, we can

write eq.(A.II.10) as

(Cof a_,)
-1 . - uB’ 14
(2™ )gq — (A.II.14)
or (Cof aas) = (a"l)sa. det A (A.II.15)
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That is, the inverse matrix is ( 1/det A) times the transpose of

the matrix whose elements are the cofactors of the elements of the

original matrix. This statement can be generalized so as to

include eq.(A.II.4) and we can write

(Cof aﬁB,Yé) = det A[ (a—l)ya(a_l)as - (a'l)YB(a'l)aa ]

(A.II.16)

IT. 2 MATRIX ELEMENTS OF OPERATORS ON DETERMINANTAL FUNCTIONS

We are interested in matrix elements of the general form

W= (#(1,2,---W)|Q(1,2,---N)|¥(1,2,---N))

(A, IT.17)

where & and Yy are antisymmetric functions of N electrons and

1 is a Hermitian N-electron operator. The operator Q may be

written as

N N N N N N
A1) = Yoy +Y Yo tY ) YAyt - -
i i< i< j<k

(A.I1.18)

where Qij represents an operator in electrons i and j etc.' In

the following we will be concerned with only one- and two particle

‘operators.

(a) Overlap of two Slater determinant functions:

In terms of the one particle functions, the Slater deter-

minant QO may be written in abbreviated form
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= 0, 0x)ep(xp) - - - () (A.11.19)

and similarly for YO. The corresponding antisymmetrized Slater

determinant wave function is defined by

o= Ny DR (A.II.20)
(8ly) = Ny Ny <®§0|®YO> - (A.II.21)
= Lo N, T elase - - m)og (Dlhg, (1)) X

(og (2)]¥g (2)) = = - @ (M] ¥4 (V) (A.II.22)
- L N N, det{ o] ¥g. ] (A.TI.23)

In deriving the above relation we have used the fact that the

antisymmetrizer ® 1is a projection operatcr and hence idempotent.

The normalization constant is given by

2

(vlv 1 = %! N, det{ ¥, ¥y}

Il

N, At det{Cy 1y ] (A.TII.2L)
Combining eq.(A.II.23) and eq.(A.II.24) we get

ely) = adet{(p 1y} (detilay ey} det{(¢a|ya.>}>_%
(A.II.25)

(v) Matrix elements of a one electron operator
A .

Let F = Z:fa where ﬂa acts only on the coordinates
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of the electron «

(3| Fly)

(D ¢O|F|® YNy N,

Ny Ny ), (R I502 )
o

Ny N, ; (fqéoli) ‘yo) (A.I1.26)

The wave function faéo is obtained from & by replacing single
o

particle function g (x,) by facpa(xa).- Hence the right hand

side of eq.(A.II.26) may be evaluated using eq.(A.II.23). It is

only necessary to replace the matrix elements (cpalwa.> in the

‘o th row of det{{py |0} by (foo lv > = (o f l¥ ). The

modified determinant may be evaluated by using cofactor expan-

‘sion. Hence the terms a in the sum (A.II.26) must be
2 “pa‘ t wa'> Caa!

where c » is the cofactor of (cpa]wd.) in det{(cpalq:a.H.

Finally using (A.II.15) and (A.II.23) we get

(¢|Fly) = <¢|w>_z Aoy [ £ (B-l)aa. (A.I1.27)
ao
where B , = <°alq’a'> and B! is the inverse of B.
(c) Matrix elements of two electron operator
Let V = ZVO.B where VB acts only on the coordinates

a<p
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Xy and XB of the electrons @ and B. By an argument similar to
that given in the case of one electron operator, we can

establish

@IVl = BN N, ) Cogeel vV k) c(aB,vs)
(A.II1.28)
where c(aB,yd) are the generalized cofactors defined in (A.II.

15). Using (A.II.16) we can write

Gl = Bl ) (el vlv L™ L (BT -

(57) 45 (371, (A.II.29)
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APPENDIX III

RESULTS
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CONFIGURATICN:  1S2 2S2 + 252 S1i2

D S e S ————— ————— ——— — D W N —— ———

OPTIMIZED EXPANSION CCEFFICIENTS

1S

0.48484699
0.21760690
0.2641660%
-0.26830193
C.16E225C0
0.1675F440
0.04512770
~C.0452E€75C
0.06688270

1.00000000
0.0
0.C3102888

28

-0.08112921
-0.14734551
-0.051149¢1

1.33291181
-0.04106392
-0.38678023
-0.00752240

0.22482%522
-0.02764300

0.0
1.00000000
C. 13675427

SI

-0.54140142
-0.40747615
-0.51197534
0.48963974
1.87747533
~-C.27€75481
-0.087¢2587
C.05847970
-0.127€2148

ORBITAL OVERLAP MATRIX

 ——————— - —— v —— A —

0.02102888
0.13975427
1.00000000

CONFIGURATICN MIXING COEFFICIENTS

152 252 282 S1'2

C 0.59983543 -0.01814147

CCMPARISON CF RESULTS

ORTHOGGONAL NCN-0ORTHOGONAL

ENERGY -14.58370000 -14.5€26471F

|
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CCNFIGURATION: 1S2 252 + 252 SI2

182 252 2582 S1'2
c 0.99983500 -0.01816792
CCMPARISON QOF RESULTS
ORT EOGONAL NON-ORTHOGONAL
FNERGY -14.5€E370C00 ~14.582€2283

1S 28 SI
0.484846G9 -0.08112932 -C. 90758842
0.21760690 -0.14734552 -0.329284053
C.264166CS -0.05114961 -0.49358635
-0.726830192 1.23291181 0. 3328¢€87¢&
0.16822500 -0.04106391 1.91008474
C.16758440 -0.38¢17¢8C23 -0.26681440
0.04512770 -0.00752240 -0.£84417855
~0.0452€75C 0.22482522 0.05637924
0.06688270 ~0.027€480C0 -0.12304724
ORBITAL OVERLAP MATRIX
1.CCCCCCO0 0.0 0.€8623167
0.0 1.00000000 0.C0€158¢52
0.08923167 0.00615852 1.00000000

CONFIGURATICN MIXING COEFFICIENTS
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CONFIGURAT ION:z 1S2 2S2 + 2S2 S12

. - - - — T —— —— —— A —— T — —— N = —

1S

0. 484E466GS
0.21760690

-0.08112932
~-0.14734552

-0.89799461
~0.38E6€755

0.26416609 -0.05114961 -0.48826882
~-C.26£83019? 1.23291181 C.33035932
0.16822500 -0.0410£€390 1.90S571446
C.1675¢€44C -0.38€78023 ~0.26399399
0.0451277) -0.00752240 -0.(8358556
-0.04528750 0.22482522 0.05578328
0.C6688270 -0.02764800 =0.12174655

- FNERGY

CRBITAL COVERLAP MATRIX

——— i Y — i S it S . Y — T ———— —

l1.CCCCCOCC 0.0
0.0 1.00000000
0.1059¢683 0.00731353

0.10596683
0.00721353
1.0C000000

CONFIGURATION MIXING COEFFICIENTS

- ———— T —— - —————— o ——— - ——— - -—— - -

152 252 2582 S1'2

C 0.99975270 -0.019323¢€9

COMPARISON OF RESULTS

ORT+OGONAL NON-ORTHOGONAL

-14.5€37CCOC -14.5€84C0531
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CNNFIGURATION: 152 252 + 252 S12

. — . — ———— - — T —— - -~ ———

CPTIMIZED EXPANSION COEFFICIENTS

. g . A — ————— " — . —— - > omh —

1S 2S SI
0.484F40656 -0.C8112%32 -0.88835701
0.21760690 -0.14734552 -0.38451641
0.76416609 ~0.05114961 -0.48212747
-0.26832192 «3232911¢1 C.32681380
0.16822500 ~0.0410£390 1.508826¢¢
0.1675€44¢C -0.38€78023 -0.26116072
0.04%12770 -0.C075224¢C -0.08268849
-0.04528750C 0.22482522 C.05£18459

0.C66R8270

~0.02764800

-0.12043993

CRBITAL CVERLAP MATRIX

1.CC00C000 0.0 0.12231821
0.0 1.06C0CCOO0 0.C0844206
0.12231821 0.00844206 1.0C000000

152 252 282 SIt'2
C 0.99678417 -0.02071542
COMPARISON OF RESULTS
ORTHOGONAL NON-ORTHOGONMAL
FNERGY ~14.58370000 ~14.58575%32

CONFIGURATICON MIXING COEFFICIENTS

. ——— . ——— A — — ——— T ———— —— —
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CCNFIGURATION: 152 252 + 252 St12

1S 2S SI
0.48484699 -0.081129°28 ~0.878€9257
€C.?2176(C6S0 -0. 14734550 -C.38C33305
0.76416609 -0.05114959 -0.477€7152
-0.26830200 1.33291179 0.32325596
0.16822592 ~0.0410€390 1.9C745516
0.167584473 -0.38678022 -0.258216¢E8
C.C4%172770 -0.00752240 -0.08178892
-0.04572E1757 0.22482522 C.CE45€385
C.06688200 -0.02764800 -0.119129¢€3
ORBIT AL OVERL AP MATRIX
1.C0000000 0.0 0.13828591
C.C 1.00€0C000 0.00954410

0.13828591 0.00854410 1.CCCCCOCO

CONFIGURATION MIXING COEFFICIENTS

152 252 252 SIt2

C 0.99974262 -0.C226¢8672

COMPARISON OF RESLLTS

ORTHOGONAL NCN-CRTHOGONAL

FNERGY -14.58370000 -14.58814¢€4(C
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CONFIGURATION: 152 2S2 + 252 SI2

—— A —— —— — T, —— ——— —— . v S —— A Y — o =

- — — - ——— — . ——— o —— — —— - —————— - —

1S

0.50197895

-0.08112171

-0.£657451¢55

0.72250(C1189 -0.14734210 ~0.37102282
0.727345605 -0.Cc511454¢ -C0.46633311
-0.27458738 1.33290757 0.31390538
€.13397741 -0.04106096 1.90301070
0.17726(793 -0.38677160 -0. 25165417
0.04671769 -0.00752169 ~-0.07581556
-C.046346569 0.2248245¢C 0.05300522
0.06919868 -0.02764¢€S5 -0.11623547

ORBITAL OVERLAP MATRIX

. — . ———— —————————— — - " ———

1.CO0CC000 0.0 0. 1540756S
c.0 1.0000920090 0.0106€914
C.154L756S 0.010¢€€S14 1.C000000G0
CONFIGURATICN MIXING COEFFICIENTS
1S2 2S2 252 S11'2
C 0.99960634 -0.02805646
CCMPARISCN OF RESULTS
ORTHOGONAL NCN-ORTHOGONAL
FNERCY ~14.58370000 -14.5£8548CC(



1S

0.484736£38
0.22002307
C.?26411496
-0.76994251
0.16723587
0.168020C2
0.04511736
-C. 4556396
0.C6688922

l.(ccceccece
$.00000005
0.5661(804
0.00000015

ENFRGY
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CONFIGURAT ICNS:

152 2S2 + 1§87

S12

-0.0813¢€57%5
-0.14555985
=-0.05126%63

1.33140€54
~-0.04185799
~C.38¢€4(€53
-0.00754445

0.22457187
-0.02765971

0. 38236385
0.48757265
0.20833724
~0.21374696
0.13152590
0.13274388
0.03558727
-0.03604495
0.C52771828

ORBITAL OVERLAP MATRIX

L —— G - - " — —— T ——— o~ —— v

C. 0C00COCS5
0.99999999
0.23473689
0. C0coQacl

152 282

0.59596101

C.S661C804
0.23475689
1.00000000
0.C6032881

CONFIGURATION MIXING COEFFICIENTS

N . T T - . . —— G . — - > ———————— o —

152 S12

~0.€0434513

CCMPARI SCN OF RESLLTS

- — -

ORTHOGCNAL

=14 .57302493

NCN-CRTHOGONAL

=14.57347122

S1

=0.954197172
-0.41245117
-0.51893186
0.35053957
1.90272717
-0.28037855
-0.08881697
0.05919099
-0.1293630C

0.00000015
0.C0C00001
0.06032881
0.99999960
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CONFIGURATICNS: 152 2S2 + 1S*'2 Sl12

CPTIMIZED EXPANSICN CCEFFICIENTS

- —————— — — - —— — —— ——— — —— — — — —— — — - ———

1S 2S 15 S1
0.4848B4697 -0.08112000 0.26570115 -0.55417666
0.2176C517 -0.14734251 0.70128807 -0.4130054S
0.?2€64166C7T -C.C5114565¢ 0.14476574 -0.51892306
-0.268298G8 1.33290932 -0.14702117 0.351027¢C

C. 16822550 -0.0410€538 0.09218892 1.90295349
0.16758358 -0.3861776567 0.CS1E37£S -0.28051041
0.045127170 ~0.00752246 0.02473045 -0.08881500
-0.04528701 0.2248248C -0.02481784 0.05927325
0.06688266 -0.027€4806 0.03€6¢€5239 -0.1293¢6349

ORBITAL OVERLAP MATRIX

0.€2000015

1.€0C0CCO00 0.00000005 C.E87172C756

0.€00309205 0.99999999 0.43652201 0.€0C00001
C.Fi13C75¢ 0.43€52201 1.CCCC0000 0.11216257
0.00000015 0.00000001 0.59999960

0.1121¢€2°%7

CONFIGURATION MIXING COEFFICIENTS

. - —— A —— - S G WP W . o —— —— - W yn-—————

1§2 252 1s'2 SI2
C 0.99996400 -0.00€460CC
COMPARISON OF RESULTS
ORTHOGONAL NCN-ORTHOGCRMAL
FNERGY -14.51302493 -14.574886171
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CCNFIGURRATIONS:

1S 2S 1S*
0.48484702 -0.08112944 0.24204198
0.2176C657 ~-0.1473448¢ 0. 73754360
0.76416611 ~-0.05114968 0.131&7518
-C.26F3C127 1.33291128 -0.13393971
0.1€6822501 ~-0.C410£426 0.08257962
C.167584213 -0.38678011 0.C836€030
C.C4512770 -0.00752241 0.02252834
-0.045728739 0.22482%13 -0.022¢C€8CS
0.06688269 -0.02764801 0.03338872

CRBITAL CVERLAP MATRIX

1.00000000 0.00000005 0.85502999
C.CCCCCOCS 0. 99699999 0.47168785
0.8550239456 0.47168785 1.CCCCCaC00
{.C000NJ15 0.00000001 0.12119550

CONFIGURATION MIXING COEFFICIENTS

- — — — - ———— - W T . - - —— - —— -

1S2 2§82 1S'2 Si2

C 0.99995721 -0.00927112

COMPARISON QF RESULTS

e ——— - —— — - —— > W=

ORTHOCGONAL NON-ORTHOGONAL

FAFRGY =-14.573024S3 —14.57528142

1S2 282 + 1S*2 SI2

S1

-~0.95417669
-0.41300527
-0.518923C9
0.3510274¢
1.90295340
-0.28051028
-0.08881500
0.€5927323
-0.12936349

0.CC00001%
0.000%0001
0.1211955¢C
0.9999996C
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CONFIGURAT IONS: 1S2 2S2 + 1S'2 SI2

1S 2S 1S°*
0.484E4656 ~-0.C8112938 0.19464520
0.2176C700 -0.14734%23 C.80385027
0.7264166C8 -0.05114964 0.10605132
~-C.7683C1ES le 23291156 -C. 10771204
0.16822497 ~0.04106407 0.C675349¢
0.1€6758438 ~0.38678018 0.06727803
0.04€12770 ~0.C0752241 0.01811683
-0.04528749 0.22482518 -0.01818105
C. (6688269 ~0.027648G1 0.02685053

CREBITAL CVERLAP MATRIX

1. COCCO0000 0.00000005 0.80682313
0.C0C00005 0. 66¢566¢5¢56 0.53737258
0.80682313 0.53737258 1.00000000

C. 0000015 0. CCC0CO01 0.13807251

CONFIGURATICN MIXING COEFFICIENTS

——— . — —— ——  — " T ——— — —— —— ———— | —— ——— -

152 252 15'2 S12
C 0.99G94114 -0.01082497
CCMPARISCN CF RESULTS
ORTHOGONAL NGN-ORTHOCOANAL
ENFRGY -14.57€16114

-14.57302493

S1

~0.95417671
~0.41300584
-0.51892310
0.35102791
1.50295361
~0.2805105C
-0.08881500
0.0592733¢C
-0.12936350

0.00000015
0.00000001
0.13807251
0.99999960




-161-

CCNFIGURAT ICNS: 1S2 2S2 ¢ 1S¢Z SI?

- - - ——— —— — —— - ————————— ————— > - ——

pm———

OPTIMIZED EXPANSICN CCEFFICIENTS

1S 2S 18! S1
0.4R84R46G6 -0.C0€112¢33 0.16735524 ~0.95417671
0.21760702 -0.14734556 0.83846699 ~-0.4130059%
C.26416608 -0.051149861 0.09118254 ~0.51892310
-0.76830199 1.33291184 -0.06261022 0.35102804
C.16822499 -0.04106385 0.0580¢646 1.50295367
C.16758442 -0.38€7EC24 C. 05784536 -0.28051054
0.04512770 ~0.00752240 0.C1557679 -0.088815CQ0
-0.0457€762 0.22482522 -0.015€63198 0.05927332

0.C668827C

-0.027€48C1

0.C€2308599

CRBITAL OVERLAP MAYRIX

VD A - - — - —————— — ————— —

C.77705204

=0.12936350

l.cCCCCcCcoo C.C0cCoCCCS 0.00000015
0.00000005 0.99599539 0.572521¢9 C.C0000001
C.77705204 0.57252169 1.00000000 0.14710371
€.C0000015 C. coceccol 0.14710371 0.99999960
CONFIGURATICN MIXING COEFFICIENTS
152 2S2 15'2 S12
C 0.99593221 -0.C1166525
CCMPARI SCN OF RESLLTS
ORTHOGONAL NCN-CRTHOGONAL
ENERGY -14.57302493 -14.57671104
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COCNFIGURATICANS: 1S2 2S2 + 1St*2 SI2

- ——— ————— A — ———— — ——— —————— —— —— ———— ————

OPTIMIZED EXPANSICN CCEFFICIENTS

- - —— > —— - -

1S 2S 1s? S1
0.48484702 -0.08112933 C.15€75502 -0.55417672
0.2176(748 -0.14734512 0.85120086 -0.41300519
0.76416611 -0.C51149¢€1 C.C8542887 -0.51892311
-0.726830237 1.33291146 ~0.CBET€E714 0.35102742
0. 16822466 -0.0410¢€406 0.05440198 1.90295335
0.16758453 -0.3867¢8014 0.CE419547 -0.280510317
0.04512770 -0.00752240 0.01459388 -0.08881500
~-C.C4572F758 0. 22482516 -0.C14€4570 0.05927322
0.06688271 -0.02764800 0.02162925 -0.1293¢€350
ORBITAL OVERLAP MATRIX

S —— o ——— D - ———— - ————

1.0c00C0000 0.000300C5 C.765156%S3 0. €C0C0C00S
0.€CC000NNOS5 0.99999999 0.58562641 0.00C00005
C.16515663 C.58£¢€2¢€41 1.C8cCcCCOo00 0.15047084
0.00000009 0.00000005 C.15047084 0.999959¢£0

CONFIGURATICN MIXING COEFFICIENTS

—— o ——— - —— - —— Y — A —— . —— ——— — ——

152 252 1s*2 SI2
C 0.999927818 -0.C1158CCE
COMPARISGN QOF RESULTS
ORTHOGONAL NCN-QORTHOGCNMAL
FNERGY -14.57302493 -14,57671324
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CONFIGURATIINS: 152 282 + 2S2 S12 + 1S*2 SI2

. —— - —— i —_— i —  — ———— —— ———— D — > ———— — — i ——

- - S S En A TES A T e Y W

1S 2S5 1S S1
0.48471211 -0.08137212 0.28223583 -0.65420636
C.220C0555 ~-C.14857¢¢( C.48754268 -0.41257141
0.264101175 -0.05127218 0.2C€22162 -0.518937C¢
~0.26992778 1.33142545 -0.21372149 0.35063609
0.1672€7%2 -0.C418373¢ C.13158841 1.90276992
C.16801127 -0.38641286 0.12272142 -0.280407C8
0.C45115C¢S -0.00754505 0.03558466 ~-0.08881777
-0.04556148 0.22457472 ~0.C03€C40¢6 0.€592072¢
0.C6688586 -0.02766076 0.05277439 -0.12936237

CRBITAL OVERLAP MATRIX

- — - —— ————— T~ ——————— T —————— v

0.C000001¢

1.€0000090 0.000092005 0.96€10804
C.CCCCCGCS 0.99696G699 0.23479689 0.00000001
C.C6€1CR04 Ce2347¢<¢89 1. C0CCccocCe 0.C603288C
C.{0000015 0.00000001 0.06022880 0.599999¢0.
CONFIGURATICN MIXINC COEFFICIENTS
182 282 252 S12 15'2 S12
C 0.99979299 -0.01972811 -0.00372713

CCMPARISON OF RESULTS

- ORT HOGONAL NCN-ORTHOGONAL

ENERGY ~14.504€6221 -14.58519112

@t



CONFIGURATIONS:

1S

C. 48B4F 4665
0.71760643
D.72€416607
-0.2683C1C8
0.16822518
0.1675¢F416
0.04512770
~0.04528736
0.C66887268

1. C0Q0CCCO
€.00000205
0.85502999
€. (0000015

ENERGY

-164-

1S2 2S2 + 2582 SI12 + 1S*2 SI2

A O e e e —— - —— ——— ——— —— T —— T ——

CPTIMIZEC EXPANSION COEFFICIENTS

—— . - —————— — ———— ———— ——— - > - — =

2S 1S°* S1

-0.C8112952 0.24204187 -0.95417671
-0.147344176 0.73754349 -0.41300569
-0.05114972 0.13187512 -0.51892311
« 23291118 -0.13393957 0.35102777
~0.0410¢€425 0.08298013 1.90295355
-0.38¢€7€C1Q0 0.08366024 -0.28051047
-0.00752242 0.C2252833 -0.088815C0
0.22482511 -0.02260807 0.C592732¢8
~0.027648C2 0.03338870 -0.12936350

CRBITAL OVERLAP MATRIX

£.0000000 6.85502955 "0.00000015
0.55555559 0.47168785 0.00000010
0.47168785 1.00000000 0.12119550
G. CO00CO10 0.12119550 0.99999960
CONFIGURATICN MIXING COEFFICIENTS
152 252 252 S12 152 SI2
0.95975531 ~0.01906110 -0.00688023

CCMPARISCN OF RESULTS

ORTHOGCGNAL NCN-ORTHOCONAL

-14.58486271 -14.5£€(83212
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CONFTGURATIONS: 1S2 252 + 2S2 SI2 + 1S'2 S1I2

OPTIMIZED EXPANSICN CCEFFICIENTS

1S 25 1S S1
0.484846G8 -0.C8112¢36 Ce154€4523 -0.95417670
0.71760707 -0.14734523 0.803285040 -0.41300575
C.2641€6CS -0.05114963 0.10605133 -0.51892319
-0.76830187 1.3329115¢ ~C.107712C7 0.35102785
0.16822496 -0.04106405 0.€6753492 1.50295358
C.167£8439 -C.38€¢7¢€C17 0.C67278C5 ~-0.28051049
0.04512770 -0.00752241 0.018116¢4 -0.C88815C0
-C.0452F75C 0.224382518 -0.01818105 0.05927329

0.06688270 -0.C027€48C1 0.C2685053 ~-0.1293¢€350
CRBITAL OVERLAP MATRIX
1.€0CCCCCC g.CCCCCCCS 0.80682313 0.00000015
0.60000005 0.99599999 «£3137258 0.C0C00001
C.80682313 0.53737258 1.C00920000 0.13807251
C.00000015 0.C0COCCC1 0.13807251 0.99999960
CONFIGURATICN MIXING CCEFFICIENTS
182 252 252 S12 1S*2 S1I2
C 0.96679522 -C.01866222 -C. 00780245
COMPARI SON OF RESLLTS
ORTHOGONAL NCN-CRTHOGCNAL
ENFRGY -14.58486221 ~14.58645412
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CONFIGURATIONS: 1S2 2S2 + 2S2 S12 + 1S'2 S1I2

1S 2S 1S S1
0.48484701 ~0.08112628 C.1672E527 -0.55417617¢C
0.721760303 -0.147345¢€3 0.83846753 -0.41300589
0.26416611 -0.C€51149¢%9 0.CS118256 -0.51892310
~0.26830785 1.332912C7 ~0.092€10174 0.3510280°%
C.168272443 -0.0410¢381 0.C5806609 1.90295363
0.16758467 -~-0.38€7€C320 C.C57€4548 -0.28051054
0.04512770 ~0.00752240 0.01557679 -0.08881500
~-0.C452F766 C.22482%26 -0.01563205 0.05927332
0.06688271 -0.02764800 0.02208600 -0.12936350
CRBITAL OVERLAP MATRIX
1.00000000 0.00C00305 C.77705%52C4 0.€000000CS
C.CCCCCOCS 0.99699599 0.57252169 0.00000005
0.77705204 0.57252169 1.CCo0COCO 014710371
€.CCCO00009 0.00000005 0.14710371 0.9999996C
CONFIGURATICN MIXING COEFFICIENTS
152 28> 252 S12 1S*2 SI2
C 0.99979534 -0.01845091 -C.C08296¢€5
CCMPARISCON OF RESULTS
ORT FOGCNAL NON-ORTHOGONAL
FNERGY ~14.5€4E€221 -14.5€8¢€6589¢



-167~

COCNFTCGURATIONS: 1S2 2S2 + 252 SI2 + 1S*2 SI2

—— - P D - —— . —-—— - - —— A —— — T — - ———

CPTIMIZED EXPANSION COEFFICIENTS

1S

Co 4FGEAL4TCH
D0.21760748

25

-0.€8112933
-0.14734512

1S

0.15679502
C.8£12CCe86

S1

-0.95417673
-0.41300516

0.76416611 -0.05114961 0.C8542887 -0.51892311
-0.76630237 1. 23291146 -C.C8676714 0.35102742
0.16872467 -0.0410€406 0.C544C15S 1.902953134
0.16758452 -0.38€678C14 0.05419546 -0.28051037
0.04512770 -0.C00757224C 0.01459388 -0.08881500
-0.C4578758 0.22482516 —0.014€45€6 0.05927322
0.C6688271 -0.C2764800 0.02162925 -0.12936350
CREBITAL OVERLAP MATRIX
1.C0C00000 0.0C000005 0.76515693 T 0.00020009
0.€00C0005 0.565556669 C.56562641 0.00000005
0.76515693 0.58562641 1.00000000 0.15047084
€.CCCOCACS 0.00C00005 0.15047084 0.99999960
CONFIGURATICN MIXING COEFFICIENTS
182 252 252 S12 1§12 SI2
c C.95575560 -0.01835293 -0.00848109

- CCMPARISCN CF RESULTS

CRTHOGCNAL NCN-ORTHOGONAL

FNERGY -14.58486221 ~14.56€€4172



-168-

COCNFIGURATION: 1S2 2S2 + 252 SI2 + 2S2 S112

i —— T — — - S — ——————— T — - = S — - —— - o

CPTIMIZ2ED EXPANSICN CCEFFICIENTS

——— . ———— — . G ————— > " —— — — — " ——— -

18 25 S1 SI1
048484668 ~0.€811252C -C.954176¢7 ~0.06774234
0.71760689 —0.14734551 -0.41300552 0.10874702
C.264166CS -0.05114960 ~0.51892325 -0.02813516

~0.75830185 1.3379117S C.351028C3 ~1.57815512
0.16822500 -0.0410€391 1.90295364 034661743
C.16758438 -0.33€67£023 ~C.28C51059 0.42657336
0.04512770 -0.00752240 ~C.CRER1502 -0.00634123

—0.04528753 0.22482522 0.05927329 1.22929378
0.06688270 -0.027648CC -0.12536354 0.01129780

ORBITAL OVERLAP MATRIX
1.0CCCCOaCe 0.CCCOCCCS 0.0 0.0
0.00000005 0.99555959 CoC 0.0
0.0 0.0 1.00000000 0.0
0.0 0.0 .0 0.99999960
CONFIGURATICN MIXING COEFFICIENTS
1€2 252 252 S['2 252 S11'2
c 0.95580329 ~0.01982602 ~C.00055155

CCMPARISCN CF RESULTS

ORTHOGCONAL NCN~-CRTHOGCANAL

ENFRGY -14.58483730 0.0



F -169-~

CONFTGURATION: 1S2 252 + 252 SI2 + 252 Sl1I2

1S 25 SI S11
0.484846S8 -0.08112620 ~0.594140142 -0.068867C0
0.2176(68S -0.14734551 ~0.40747616 0.19601148
0.26416608 -0.€5114S¢0 -C.511€7525 -0.02859921
-0.2683C187 1.33291181 0.485639175 -1.€0492604
C.1€8727501 -0.04106392 1.87747533 0.35251448
0.16758439 -0.38£7€023 ~0.27€754¢€1 0.43381453
0.04512770 ~0.00752240 ~0.087€2587 -0.00644663
-C.C45728150 C.224825290 C.C5847970 1.35182500
0.06688270 -0.02764800 ~0.127¢€32148 0.C1149252

ORBITAL OVERLAP MATRIX

1.Cc0CCQ00 0.00C00005 0.02102888 0.C4838169
C.CC0O0005 0.999999G9 0.13975429 0.C06405532
C.C31C28RKA C. 13675426 1.CCC00000 0.02128534
0.04838169 0.06405522 0.€2128534 0.69999960
CONFIGURATION MIXING COEFFICIENTS
1S2 2§82 252 S1'2 252 SII*2
C 0.99981¢€83 -0.01£8132111 -C.C0€12970

COMPARISON OF RESULTS

NDRTHOGONAL NCN-ORTHOGONAL

ENERGY -14.58483730 -14.58308818



-170-

CONFIGURATION: 1S2 2S2 + 2S2 SI2 + 2S2 SI12

- — A e -~ ————— —— —————— 0 S G e —— A - S -

1S 28 SI
C.484846G8 -0.08112930 ~0.90758842
0.7176C68S -0.14734551 -C.292840¢%3
0.2641660S ~0.05114960 ~-0.493258€¢35
-C.?26€E30187 «332911¢€2 (.33388876
0.16822501 -0.041063292 1.91C0¢€474
0.16758439 -0.38€78023 -0.26€681440
0.04512770 ~0.€075224C ~C.(8447855
-0.04528751 0.22482520 0.05€327924

C.C6688270

~0.021648C0

~0.12304724

CRBITAL CVERLAP MATRIX

1.CCC0G0GC 0.00C00GG5 008923167
0.C0C00005 €.96996599 0.C0€15852
0.08923167 0.00615352 1.00000000
C.CE53117C 0.11301C84 0.03723544

CONFIGURATICN MIXING COEFFICIENTS

——— — — —— — ———— - —— D ———— - — —— i~ -

152 252 2582 SIt2

C C.96670482 ~-0.01809263

CCMPARISCN CF RESULTS

————— — . G —— —— — - — —

ODRTHGGONAL NCN-ORTHOGONAL

FNFRGY -14.58483730 -14.,58£52C0C

SII

-0.069427C8
0.26218441
-0.C288318C
-1.61797845
0.35538140C
0.43734262
-0.00649906
1.262819C4
0.0115860C

0.0853117C
0.11301084
0.03723544
0.99999960

252 SII'2

-0.01621536



-1171-

CONFIGURATION: 1S2 2S2 4 252 SJ2 + 252 S1I2

—— — - — —— - —— — . — —— — —— - — G . T . —— ———— - - =

CPTIMIZED EXPANSICN CCEFFICIENTS

18 2S SI SII
0.48484696 -0.08112631 -C.888357C3 -0.06747971
0.21760688 -0.14734551 -0.38451642 0.10837359
C.264166(C8 -0.051145¢1 —-0.48312748 -0.02802309

~0.768301386 »23291180 C.32€6€1381 -1.57259538
C.16822505 -0.0410£390 1.90882656 0.429357C6
C.1675R438 -C.38¢€7¢€C23 -C.26116072 0.42507549
0.04512770 -0.00752240 ~0.C82€8849 -0.00631677

-0.C452E75C 0.22482522 0.05518459 1.32459297

0.06688266

-0.027648C0

-C. 12042993

0.0112610G3

CRBITAL OVERLAP MATRIX

- - ——— — ——— ———— — ——— ———

0.07492983

laCCCCCCCC 0.CCCcCcls 0.12231821
0.€0000005 0.9965996G9 0.0C0844206 0.C0516478
0.172231821 C.00844206 1.00000000 0.0465357¢
0.07492983 C.00F1¢478 C.04£53576 0.99999960
CONFTIGURATICN MIXING CCEFFICIENTS
182 282 2S2 S1'2 252 ST11*2
C €C.96¢7C2C6 -C.02C65340 -C.01294511

CCMPARI SCN OF RESLLTS

ORTHOGCNAL NCAN-CRTHOGCANAL

ENFRGY -14.58483730 -14.5€817730CC



CONFIGURATION

1S

C.4R8484697
0.2176(68E
0.26416608
-C.26E3(186
0.16822503
0.16758438
C.C4512773
-0.0452728757?
0.06688270

1.{00000060
C.(CCOCCCS
0.10596633
0.11187390

-172-

152 282 + 252 S12 + 282 SII2

2¢ S1 SII
-0.08112930 =0.89799462 -0.C6718442
-0.14734551 -C.38868766 0.10789911

-0.051149¢€0

-0.4£€2¢€883

-0.02750053

1.33251180 0.33035936 -1.56571089
-0.6410€3261 1.5CS71445 0.46926663
-0.38678023 -0.2€399430 0.423221457
-0.00752240 -0.08358556 -0.00628909

0.22482¢521 C. (5578325 1.31879442
-0.02764800 ~-0.12174655 0.01121115

CRBITAL OVERLAP MATRIX

0.00003005 0.1059¢€6€3 ‘6.11187390
€.569995999 0.00731353 0.00771458
0.007213¢3 1.0CCCCOCC 0.C6775968
0.00771458 0.06775968 0.99999960
CONFIGURATICN MIXINC COEFFICIENTS
182 252 282 SI1'2 282 SII?
0.99946189 -0.01899804 -C.02673958

ENFRGY

CCMPARISON CF RESULTS

ORT FOCONAL

~-14.5848372C

NON-ORTHOGONAL

-14.56247C0C



-173-

CONFIGURATION: 1S2 2S2 + 252 S12 + 2S2 SII2

- - ———— ——————— - — D A - — —— —— - — -

CPTIMTZEC EXPANSION COEFFICIENTS

1S 2S S1 SII
C. 46484687 -0.08112930 ~0.95281687 -0.06685409
0.271760688 -0.147345¢1 -C.41241722 0.10736885
0.26416508 -0.05114960 -0.51818357 -0.02776329
~-C.?2683018¢ «332S11¢€C C.38663028 -1.55801565
0.16822503 -0.0410€3291 1.6CC24162 0.50147350
0. 1€675¢438 -0.38€7¢€C23 ~-C.28011074 0.4211345¢
0.04%812770 -0.C075224C -0.(8868843 -0.00625820
-0.04528751 0.22482%521 0.C5918882 1.212312¢1
C.C668E217C -0.027€48C0 -0.12917914 0.01115662
CRBITAL OVERLAP MATRIX
1.C00CCaN0 0.0C00C0CS 0.00781681 0.14210780
0.€Q060aCSH 0. 96666556 0.03820647 0.00980127
0.00781A81 0.035206417 1.06000000 0.C71401327
0.1421C78C 0.C€0880127 0.07140137 0.99999960
CONFIGURATICN MIXING COEFFICIENTS
182 252 252 SI*2 282 SII®
C (.3G6865109 -0.01878056 -C.04176126

CCMPARISCN CF RESULTS

ORTHOCGCNAL NCN-ORTHOGONAL

ENFRGY -14.58483720 -14.€048640C



CONFIGURATION: 1S2 2S2 ¢+ 252 S12 + 2S2 S1I2

e . —— . — — ——— —— " ——— - . S T " ——— ————— - —— - =

CETIMIZEC EXPANSICN CCEFFICIENTS

1S 2S ST SII
0.484846G¢ ~0.0€112521 -C.88E35703 -0.06699440
0.21760688 ~0.14734551 ~0.38451642 0.10759417
C.264166C8 -0.05114961 -0.48312748 -0.02782156
-0.76830185 1.23291186 C.22€E1384 -1.56128538
0.16822504 -0.04106390 1.50882¢€55 0.48877471
0.16758438 -0.38676C23 -C.26116073 0.42201837
0.04512770 -0.00757240 ~0.C8ZEEB4S -0.00627135
—0.0452€751 0.22482522 0.05518457 1.21506659
0.06688769 -0.027€48C0 -0.12043963 0.01118004%
|
} CRBITAL OVERLAP MATRIX
|
1.CGCCCCO0 C.CCCOCCCS G.12231821 0.13014102
0.00000005 0.995699999 0.CC844206 0.C0897534
0.17231821 C.008442Cé 1.00000000 0.08084273
0.13014102 0.C089 7534 C.C8CR4273 0.995999 60

CONFIGURATICN MIXING COEFFICIENTS

——— . ———— — — . - ——— - - — T ———

152 282 252 S1It2 252 SI1t2
C €C.9691¢873 -C.02034977 -C. 03532327
COMPARI SON OF RESLLTS
ORTHOGONAL NCN-CRTHOGCNAL
ENFRGY -14.58483730 -14.6005729C



B

CONFIGURA

-117

TICN: 1S2 2582

5=

+ 252 S12 + 1S2 S112 + 252 SI1I2

- —— ——— — ——— . ———— —  —— T —— ——— — Y~ ———— - ——— S = ————

1S

0.48484699
0.2176(C686G
N.7641€61C
-0.7683C183
C.145F224G1
0.16758438
0.0451277)
-0.04%28156
0.06688270

gacccoo

ENFRGY

28 S1 SI1
~0.08112632 —0.55417679 ~0.C6774393
—0.14734552 -0.41300617 0.10874649
~0.C51145€1 -C.51892319 -0.02813803

1.33291180 0.35102182 -1.578155732
-0.04106391 1.90295310 0.34662313
~0.3867£032 -C.28C51161 0. 42657355
-0.00752240 -0.C8881501 ~0.00634149

0.22482522 0.C56279C8 1.32929419
-0.02764800 -0.1253€356 0.01129745

ORBITAL OVERLAP MATRI X

0.0 0.0 0.¢C

1.00002000 0.0 0.0

0.0 1.0C0C0000 0.0

0.0 .0 1.C0000000

0.0 0.0 0.0

CONFIGURATICN MIXING COEFFICIENTS
152 252 252 SI12 152 SIT'2

0.95931819 -0.01977479 —0.03111847
CCMPARISCN CF RESULTS -
ORT HOGONAL NCN-ORTHOGONAL

-14.5€3860C0 0.0

SITI

-2.33884042
-1.1340¢€1¢4

4.793551¢€0

227366100
—-2.21169604
-1.08119036
-0.217¢6832
-0.13442125
-0.335141729

[ NeoleoNoYel
[} e & o
OO0

000CCCO

2582 SIII2

-0.00193873



~176-

CCNFTGURATTION: 1S2 2S2 + 2S2 SI2 + 1S2 SII2 + 2582 SIII2

. . WD G- - D T A - ————— - ——— N  ——— ———— A — Y — — — . ———

15 28 ST SIT
C. 4848465 -0.08112932 -0.90758840 -0.C6770398
0.721760690 0.14734552 -C.25284052 0.10873373
0.26416609 -0.05114961 -0.49158637 -0.02811623
~C.2683C197 1.23291181 0.33388878 -1.57782145
0.16872530 -0.0410£291 1.510CE475 0.3676163¢6
C.16756440 ~0.38676C23 -0.26681441 0.42648810
0.04512770 ~0.C075224C ~C.CB8447855 -0.00633777
-0.C4528750 0.22482522 0.05637922 1.32896487
0.CEHREDTC -0.02764800 -0.12304724 0.01129845
CREITAL CVERLAP MATRIX
1.€000C000 0.0 0.08923167 © 0.01883826
0.0 1.0000CCCO C.00615852 0.00129348
0.08973167 0.00615352 1.00€00000 0.C1108897
0.C1883328 0.00129348 0.01108897 1.00000000
0.0 0.0 0.0 0.C0C00995
CONFIGURATION MIXING COEFFICIENTS
1$2 252 252 SI'2 152 ST1v2
c 0.96927257 -0.01811734 -C. 03038261

COMPARI SON OF RESLLTS -

- ——— ———— ——— o ——

ORTHOGCNAL NCN-CRTHOGCMAL

ENFRGY -14.58636000 -14.5843C00C

SIII

—~2+3388410°
=1.134060¢

4.793551%z

2.273645¢
—~2.211692¢<
~1.0811€¢€2°
~-0.2176682"
~0.3351470=

282 SI112

-0.C00195762




CONFIGURATION:

-171-

1S2 2S2 + 252 SI12 + 1S2 SII2 + 252 S1112

18

0.4834846G9
0.2176C690
0.2€4166CS
-0.76830193
C.168225CC
0.16758440
0.04512770
~-0.C452€750
0.06688270

1.CC0O0CGCCO
0.0
N.05461608
0.05628967
€. C

FANFRCGY

0.96936320

OPTIMIZED EXPANSICN CCEFFICIENTS

2S

-0.081126322
-0.14734552
-C.CE1145¢€¢1

1.33291181
-0.041C¢390
-0.38€7¢023
-0.00752240

0.22482£522
-0.02764800

SI

C.S2€57136
-0.40105711
-0.5(391014

0.34C87234

1.90913313
-(.272395C¢
-0.08€24549

C.C5755845
~C0.125€2088

ORBITAL OVERLAP MATRIX

0.0
1.00300000
C.COZT7€64¢
0.00381830
0.0

1S2 252

CCMFARISCN

ORTHOGCNMNAL

-14.58636000

-0.01727724

- - —

C.CE4&16C8
0.0037€946
1.CCCCC000
C.031265CS
0.0

CONFIGURATICN MIXING COEFFICIENTS

—— — ——————— i — A T WS - —— W - —— -

2S2 S11'2

CF RESULTS

NCN-ORTHOCONAL

-14.5€349CCC

-C.03096561

SII

-0.06758406
0.10854124
-0.0280664%9
-1.£57502819
0.40899282
0.425733C8
-0.00632655
132664211
0.01127845

0.£56283S7
0.00387830
0.03129509
1.0000000C
0.00000973

12 SIi'2

SIII

-2.33884106
-1.134060¢2

4479355154

227364612
-2.21169277
-1.08118634
-0.,21766833
-0.13440871
-0.335147C9

0C00973
9995996

0.0
0.0
0.0
0.0
0.9

252 SI112

-0.C0195954




CONFTGURATION:

1S

0.484846G%
0.21760690
C.2€4166CS
-0.276830134
C.16822501
C.1675F44]
D.04512770
-0.04528151
0.0668827C

1.CCCLCCOC
0.0
0.12231821
0.07492G83
0.0

FNERGY

-178-

1S2 2S2 + 252 SI2 + 1S2 SII2 + 2S2 S11it2

—— " ———— — - — ——— . W S —— . T " o r———

2s S1 SII
-0.C8112528 -C. 88835700 -0.06747973
-0.14734550 ~0.38451641 0.10837361
-0.0511495% -0.48312750 -0.02802313
1.232911£0 .22681382 -1.57259571
-0.04106391 1.50882656 0.42935717
~0.38€76C22 ~C.26116072 0.42507558
-0.00752240 —0.CE2€EB4S -0.00631678
0.22482520 0.05518459 1.32459324
~0.C27€48C0 -0.12043993 0.01126104
CRBITAL OVERLAP MATRIX
c.0 C.12231821 T 0.07492983
1.00000000 0.0C84420¢ 0.00516478
0. 0C844206 1.00600000 0.0465357¢
0.0051€4178 0.C4653576 1.00000000
0.0 0.0 0.C0000973
CONFIGURATICN MIXING COEFFICIENTS
182 252 282 SIt2 1S2 SI11'2
0.99924061 -0.02072459 -0.032937¢€3
COMPARTSON OF RESULTS -
ORTFOGONAL NCN-ORTHOGC NAL
-14.58636000 -14.58732000

SIII

-2+33884105
-1.134060¢?2

TR T

4,79355134

2427364617
~2.2116927+
-1.08118632
-0.2176€82
-0.1344CE6¢
-0.33514706

00060973
5999965

252 SII12

-0.C0194543



-179-

CONFIGURATION: 1S2 2S2 + 2S2 SI12 + 1S2 SII2 + 2S2 SIII2

W —— — L —— T —— — . —— ——— —— . ———— — ——————— - —— . ———— . —— —— ———————

D ettt e ——

1S ) S1 S11 STI1
0.48484699 ~-0.08112932 -0.92€57126 -0.06734628 -2.338841C- .
0.2176C65C -0.147345%2 -0.4C105711 0.10815948 -1.13406C5":
0.726416609 -0.051149¢€1 -C.£0291014 -0.C2719677¢ 4.793551 322
~0.26E3(163 1.33291181 0.34(087234 -1.56948811 2.273€46C7
0.168225C0 ~0.C41C€35¢C 1.90913313 0.44944345S =2.21169272
0.1675R440 -0.38678023 ~C.272395C5 0.4242355S -1.C8116637
C.C4k1277¢C -0.00752240 -0.08624509 -0.00630429 -0.217€683:
-0.04528750 0.22482822 0.C5755844 132197572 =0.13442867
0.06688270 -0.02764800 -0.12562088 0.01123877 -0.335147( -
CRPITAL CVERLAP MATRIX
1.60000C00 0.0 0.05461608 0.C934539°% 0.0
0.0 1.00006000 0.00376946 0.00644327 0.0
0.05461608 0.0027¢€946 1l.CCCCCCCC 0.C5167269 0.0
0.09345395 0.00644327 0.051972¢9 1.C00000030 0.0080¢CS7:
c.C 0.0 0.0 0.00000973 0.9999G9¢:
CONFIGURATICN MIXING COEFFICIENTS
1£2 252 282 SI'2 1S2 SII'2 ¢S2 SIII2
C 0.9661¢€821 -0.01727363 ~€.03688718 -0.C0195914
CCMPARISCN CF RESULTS -
ORTHOGGONAL NCN-CRTHOGCAAL
FNERGY -14.58636000 -14.5826900C



=180~

CCNFIGURATION: 1S2 2S2 + 1S2 2P2 + 2S%'2 2P2

CPTIMIZED EXPANSICN CCEFFICIENTS

- ——— . — - ———— — — —— —————— D GRS >

18 25 2s!
0.04574680 ~-0.00874865 0.C
0.26213913 -0.034940176 0.0
0.7402¢787 -0.1€338SE ¢ 0.0

-0.08317441 -0.08125703 0.01551497
C.C1791133 0.19720545 -0.13002356
-0.00845937 C.86446£170 l. 16€858¢C
0.0024€533 0.03438955 ~0.£8992748

CREITAL OVERLAP MATRIX

—— T ———— ———— ——— o ——e -~

0.$9999387 0.00000008 0.0
t.CCCCCOCR 0.69965989 0.0 -
0.0 0.0 0.¢GG6SCESES

CONFIGURATION MIXING COEFFICIENTS

A - ——— o —— o — o ———— Y — —— T — ———

152 282 152 2pP2 252 2P2

C 0.94G654026 C.180382(C5 C. 00038749

CCMPARISCN CF RESLLTS

ORTHOGCNAL NCN-CRTHOGCNANAL

ENERGY ~-14.61660000 0.0
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CONFIGURATION: 1S2 2S2 + 1S2 2P2 + 2512 2P2

T M e e - ——— — — T — — — — — — T - ———— —— — — - ——— -

CPTIMIZED EXPANSICN CCEFFICIENTS

1S 2S 2S5 2P
0.04574647 -0.0087%163 -0.0C44E823 0.0
0.76213723 -0.03500110 ~0.01797452 0.0
C.74026733 ~-0.16237¢27 -C.(8374821 0.0
-0.05316749 -0.08099393 ~0.04138579 0.01551497
C.C1786626G 0.19663453 0.13051017 -0.1300235¢
-0.C0844044 0.86492229 C.S53€583¢3 1.1868588C
0.00246272 0.03429037 0.01752779 -0.08692748
CRBITAL OVERLAP MATRIX
1.€0000000 0.0 0.102152z=1 0.0
C.0 1.00C000¢CO 093464877 --0.0
C.10215231 C.5G464817 1.CcCCgaco 0.C
g.0 0.0 0.0 1.C00000CO
CONFICURATICN MIXINC COEFFICIENTS
152 252 152 2pP2 25'2 2P2
C 0.34993600 0.17944161 0.00108669
CCMPARISCN OF RESULTS
ORTHOGONAL NCN-ORTHOGONAL
FNERGY -14.616€CCCO -14.€167600C

¢t e A O Gt
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CONFTICURATION: 1S2 2S2 + 1S2 2P2 + 2S*'Z 2P2

G — - - ———————— T D T W ———— T W — et A S ——

1S 25 2s* 2P
C.Cati468(C -0.008&74865 -0.00627665 0.0
0.76213910 -0.03494056 -0.0250¢€724 0.0
€.740726783 -0.1633859¢8 -0.11721897 0.0
-0.052117440 -0.C812¢%¢¢1 -0.05825485 0.01551497
0.01791185 0.19723763 0.4€34(C826 -0.1300235¢
-C.(CE4BGST 0.8644668% 0.62018185 1.1868588C
0.0024¢533 0.0343€548 0.02467155 -0.(8992748
CRBITAL OVERLAP MATRIX
1.¢(CCCccnc 0.0 0.128337¢€5 0.0
D.D 1.00000000 €.G8242401 -0.0
C.12833785 0.98342401 1.00G00000 0.0
0.0 0.C 0.0 1.00000000
CONFIGURATICN MIXING COEFFICIENTS
182 282 152 2pP2 2512 2P2
C 0.94903208 0.18192378 0.004054€0

CCMPARTSCN CF RESLLTS

————— . W M e o —————

ORTHOGONAL NCN-CRTHOGCNAL

FNERGY ~14.61660000 -14.61702C0C




CCNFIGURA

1S

0.04574674
0.26213840
0.7402G742
-0.05317217
C.C179C634
~0.00845113
0.00246446

1.C0000000
C.C
0.157285807

C.0

ENFRGY
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TIIN: 1S?2 2S2 + 1S2 2P2 + 2S*'2 2P2

s ————— —— T — — — o — ———— T —— Y —

25 25°® 2P
-0.00874965 -C.CCCe18€73 0.0
-0.03495843 ~0.00248578 0.0
-0.1633¢€15¢ -0.01153535 0.0
-0.08118258 -0.00565992 0.015514917

0.15704429 0.01375666 -0.1300235¢
0.86459705 €.G66202282 1.186858¢8C
0.0343¢€154 0.00239905 -0.£899274¢8
GRBITAL OVERLAP MATRIX
0.0 0.19289802 0.0
1.0000C0CO 0.98C78505 0.0
€.58C78¢E05 1.CCCCCCCC 0.C
0.0 0.0 1.€00000C0O
CONFIGURATION MIXING COEFFICIENTS
182 252 152 2P2 2512 2P2
0.9501€144 0.17658936 €.003287C7

COMPARISON OF RESULTS

ORT FOGONAL NCN-DORTHOGONAL

-14.,61€€0CCC -14.61645GC00
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CONFICURATION: 1S2 2S2 + 152 2PZ + 2§13 2P 2

T AR S e A —— D ————— - - —— o o —— — - - ——— — - =

T D e i o s L T Wl A e A e e . s o s s . 2 —

1S 2s 25 2p

C.C457468C -0.C0E74855 -0.00388309 0.0

0.26213912 -0.034940176 -C. 01550754 0.0

C. 74025787 -0.16338966 -0.07251816 0.C
~0.052174417 -0.C8125¢69 -0.036C€464 0.01551497
0.01791154 0.1572C584 0.68903794 -0.1300235¢
~C.CCF45GE4 0. 86446840 0.38368096 1.18685880
0.0024£533 0.03438955 0.0152€330 -0.€8992748

ORBITAL OVERLAP MATRIX

1.cccccece 0.0 €.23579531 0.0

0.0 1.00000000 C.54C8€133 0.0

€.23976531 0.940€€133 1.00000200 0.0
0.0 0.0 0.0 1.00000000

CONFIGURATICN MIXING COEFFICIENTS
152 2S2 152 2p2 2512 2p2
c €.95C71459 €.17379753 C. 00435571

CCMPARI SCN CF RESLLTS

- ——— —— -

ORTHOGGCNAL NCN-CRTHOGCANAL

ENERGY =14 .61660000 -14.623€3000

3 T e S o e g
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CONFIGURATION: 1S2 2S2 + 1S2 2P2 + 2S%2 2P2

T G T S e e G ——— —— — . — —— — - — A~ — ——— s G — —— -

CPTIMIZED EXPANSICN CCEFFICIENTS

1S 28 28°*
0.046103273 -0.0060€258 -C.C022¢€769 0.0
0.26460028 ~-0.037117814 -0.£€984908 0.0
0.74525488 -C.1681¢<¢€CS -0.0365C040 0.0
-0.05630778 -0.0787¢382 -0.01475311 0.€1551497
-€.0C873313 0.21862966 0.83789640 -0.13002356
0.01543472 0.84€02420 0.207216SS 1.1868588C
0.CC350847 0.03357918 0.006860¢2 ~-0.0899274¢
CREPITAL OVERLAP MATRIX
1.CCCCCOOO 0.0 0.21309516 0.0
0.0 1.00000C00 0.85684120 -0.0
0.3130S516 0.89€84120 1. CCCCCO0O0 0.0
0.0 0.0 0.0 0.99999989
CONFIGURATICN MIXINC COEFFICIENTS
152 252 152 2P2 25t2 2pP2
C 0.37477023 0.27688319 0.03993382

CCMPARISCN NF RESULTS

ORTFOCGONAL NGN-ORTHOGONAL

ENFRGY -14.61€€CCCQC -14.6451700C
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CONFICURATION: 1S? 2S2 + 1Sz 2P2 + 2S5+*2 2P2

CPTIMIZED EXPANSION COEFFICIENTS

—— — — ——— . T A U SAD G M e —— o — - - -

18 28 | 25 2P
C.04575468¢( -0.00874896 -0.00003756 0.0
0.26213915 -0.03494079 -0.C0C14955 0.0
C.740726797 -0.16338968 -0.00C70140 0.0

—0.05217447 ~0.081257C7 ~0.00C34882 0.01551497
€.01761133 0.19720554 0.00084656 -0.1300235¢

-0.CCE4593G C. 86446911 0.00371067 1.18685880
0.00246537 0.03428901 0.95€34530 -0.(8992748

CREBITAL OVERLAP MATRIX

——— A — —— - ———

1.CQc0C0CC C.C C.1CC8€8¢<3 0.0
C.0 1.00000000 C.89102400 0.0
C.1CCEERSS C. 89103400 1.60CCG0CO 0.0
0.0 0.0 0.0 1.€0000000
CONFIGURATION MIXING COEFFICIENTS
182 252 152 2pP2 252 2P2
C 0.949485C7 0.1811¢7¢€7 C.00280347

COMPARISON OF RESULLTS

ORTHOGNONAL NCN-ORTHOGCNAL

FNERGY -14.6166CC00 -14.61688000
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Fig. 1 Be one-electron 2s and 2p charge densities
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