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"ABSTRACT

Small amounts of sn; 200 to 5000 ppm, were added to
Au+.03 at .% Fe thermocouple wire. The thermopower of thesé
alloys was measured from helium to room temperatures. Below
100K, the Nordheim-Gorter rule fits the data well even though
the conditions for its validity are not strictly obeyed. This
justifies use of the Nordheim-Gorter rule when inelastic spin-
flip scattering contributes to the thermopower. |

An appendix describes the search for superconducting
behavior of Pb impurities in Au-Fe and pure Au wires through
magnetoresistance and ﬁagnetothermopower measurements. None

was found. This disagrees with some results of Walker (1971).
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CHAPTER I

~ INTRODUCTION

The thermopower of Au-Fe alloys has been extensively
covered in the literature. Oneparticular aspect, however, has
not received much attention. Referring to Figure 1.1 (Berman
et al. 1964) and Figure 2 (Berman and Kopp 1971) one sees the
characteristic Kondo peak and also that the temperature of this
peak is not particularly concentration dependent. However, the
magnitude of this peak is different for alloys of similar con-
centration, especially égf¢.03 at .% Fe.

The usual explanation of this feature is to invoke the
Nordheim-Gorter rule. Nordheim and Gorter (1935) proposed the |
following rule for the observed thermopower, S, in metals

where different electron scattering mechanisms are present:

S = Lp:S./Ip.
it ti?t (1.1)

Si and p; are the characteristic thermopower and electrical
:esistivity respectively due to the i-th scattering mechanism.
In Au-Fe there are three scattering mechanisms: non—Fe'impuri-
ties and imperfections, phonons, and Fe. Since the thermo-
power of pure Au (Figure 1.8) is small at low temperatures, and

the lattice resistivity is also small, equation (1.1l) reduces

to
g = L Fe SPE
Ppe t pimp
assumi_ng'Slmp PP is small.

pFe + pimp
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Thus if some of the iron present is oxidized the observed
thermopower will be reduced in magnifude, assuming that the
rule is indeed valid. Since the rule has not been ekperi-
mentally verified for alloys of this type, we did the following
experiment.

This thesis deals with the validity of the Nordheim-
Gorter rule for Au+0.03 at .% Fe with added Sn impurities. The
Au-Fe is commercially available in wire form as a thermocouple
element, and Sn is readily introduced into the wire. The
thermopowers of such alloys were measured from He to room
temperatures for Sn concentrations of about 200 ppm to 5000
ppm. Before describing the experiment, however, it is worth-
while to go through the derivation of the Nordheim-Gorter rule

keeping track of the assumptions made.
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I-1 Standard Transport Theory’

Let f(k, r, t) be the probability of finding an
electron in a state with'wavevector‘g at position r at time t,
the distribution function. "k is the electron wavevector and r
is the position. In the absence of éollisions, the equation

of continuity for f may be written

ot~ or at 3k dt

- -y 2E gk af 3. &
L 5 B SEACEEEE N

For Bloch electrons hv=gradkE is independent of position, and

dk/dt = (e/h) (E + (1/c)vxH) involves k only through a

~gradient, leaving

ot ~ = dr dt 3k
To this is added a collision term. In the steady state %% = 0,
and what remains is the Boltzmann equation,

E = v . _ai + g’.‘;ls_"og.g

ot/scatt. — 3r = dt 3k (1.2)

To simplify solving this equation, it is common to
linearize it, taking only the first non-vanishing terms
assumingAthe departure from equilibrium is small. f is
assumed to vary with position only through temperature gradi-

ents.

VetV s o= s

d

I<
|
it

IR

of _ 3f 3T 3f° or
3

La}

£° is the equilibrium distribution function for Fermi-Dirac

statistics. The term due to external fields can also be



simplified to first order

o g0 . ag©
0f~ _ 3f < JE _ of
25k "3 3K - Y IE

ks

since £f° is a function of energy and temperature only. If a
magnetic field were present this approximation would vanish
(ve(v x H) = 0), but only the case of no magnetic field will
be considered here. With these approximations, one has the

linearized Boltzmann equation,

of _ 2£C BT 8f°>

§E)scatt. A (Tf_ T * eE 3 (1.3).
where it is implicit that only the first order terms in devia-
tion from equilibrium will be considered in the collision term,
the higher order terms on the right having already been
neglected.

Three types of scattering processes will be considered

here: normal impurity scattering (elastic), the electron-

phonon interaction, and magnetic spin-flip scattering. All

these play a role in the Au-Fe-Sn system studied.

(a) Elastic Scattering

Here the probability of an electron being scattered from

- state k to k' in the range dk' is given by
p(k, k')dk' = £(1-€")0(k,k')dk'

where Q(k,k') is the intrinsic scattering probability neglect-

- ing Fermi statistics. The inverse process is

p(k',k)dk' = £'(1-£)0(k', k) dk’
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f and f' are the distribution functions for the regions of

k space being considered in the collision. By the principle of
microscopic reversibility, Q(k,k') = Q(k',k) so that the total
transition rate is given by

of , . : : o
§E>scatt. = S[EQ1-£')-£ (1’f)1Q(E,5_)d£ =

JE-£%) - (£'-£2")) (k,k") dak'  (1.4)

since £° =Af°' when scattering is elastic. £© and £°' are the
distribution functions at equilibrium in the absence of
external gradients. Note that this equation contains only
first order deviations from equilibrium. It is sometimes con-
venient to make a formal transformation of equation (1.4) by'
defining a function ¢ such that £-£° = ¢8f°/8E. Then the
scattering term is in tk so-called canonical form,

of -1 ' 1 '
—5£>scatt. T kT J(¢-9") P(k,k')dk (1.5)

where P(k,k') is the equilibrium transition rate;

Q(k, k") £2(1-£),

(b) The Electron-phonon Collision Term

Here the sCattering term depends on the phonon distribu-
tion function, Ng' In the scattering process a phonon is
either created or destroyed. The number of electrons scattered

out of k per unit time is

' odk" ' k! v =
SrfE-£n (g + 1)Q_%_- + £(1-£1)N O Jdk'd =

' qk' k! '
JTEQ-£") (n, + LIOR= + NOp jdk'dg
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Similarly for inverse processes
' - ; - — v'q.~ -

I/ £1(1-£) [(Ng+,1)oi. + Ny QE,g]dk dg
In the absence of external fields all these processes should
yield no net gain or loss of electrdns in any volume element of
phase space. Applying the principle of detailed balance one
obtains

O ,q_¢0, o gk' o', O ok _

£°(1-£ )[Ng+1]0§ 22" (1-£%) N7 0F, = 0
These two equations can be combined in a manner analogous to

the following section to give

of k'

= 1 ‘ - ]_(.' - - ' q []
§'E>scatt. kT {” (Ot ogq=0y 1) PRt (0 =0y 'V PE= dk aq

to first order in deviations from equilibrium where PE q is
’

the total transition probability when a phonon is destroyed.
The presence of the phonon distribution function in this
formula represents the coupling of the two Boltzmann equations
for electrons and phonons. This obviously intractable
situatioq is remedied by making the Bloch assumption: 1In
metals, the phonons are in thermal equilibrium. That is,
¢g = 0. This means that the phonons carry no heat. This is
nof the case when phonon drag effects are observed in the

thermopower.

(c) Magnetic Spin-flip Scattering

Kondo (1965) provided the first satisfactory explanation
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for the anomalously large thermopower of dilute magnetic
alloys. He considered all the first order processes that
cduld happen to an electron with spin scattering off a transi-
tion metal impurity with spin and a localized magnetic field,
H . A scattered electron.can have its spin flipped or, left
alone while the Zeeman energy of the scattering magnetic
impurity may be increased, decreased or unchanged.
Symbolically, k* -+ k't and EiMn+l, where * denotes the spin
direction of the carrier electron and Mn denotes the component
of the impurity spin in the localized magnetic field.

There are twelve such processes, and assuming that the

scattering is isotropic,

of

Ef)scatt. 2:{W(E' t > kt) + W' -~ £+& (g' - f&-+

=k'

+ {W(k'+M +k +M + 1) + Wk' - M ‘*k+M+1)}f'(1-\-f’)
Tk - n - n - 'n - n

- -> |‘ - ’.+ | I - ] -
YnL‘k'{W(5+Mn k' M- 1)+ WO+ M k- - L £0-EY)

+ (similar terms)

The first term describes processes where there is no change in
the Zeeman energy. This scattering is elastic and analogous to

the expression of part (a). The other term can be simplified.
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Consider inverse processes such as

5 {W(&'-Mn+§an+l)f'(I—f)-W(Ean+gf-Mn+l)f(l-f'&
nk'

At equilibrium detailed balance reqﬁires that this term vanish.

3 W(k'-M _-k+M +1)£°0 (1-£°) W (k+M_~k'-M _+1) £°(1-£°") = 0
m— n w— n — n - n )
n\

This eliminates four of the transition probabilities giving an

expression like

£91 (1-£°)

3

2 W(k'-M k+M +1) %f'(l—f)- f(l-f')g =

nk' £° (1-£%)
D, W(k'-M_-k+M_+1) gfo'(l—fo) £' (1-f) f(l-f')1$
k' T "7 % £°(1-£°) £2(1-£%1)

This can be simplified to terms first order in £-£°, (Van

Peski~-Timbergen 1963).

‘ ’ o o)
Y W(k'-M kM +1) £°7 (1-£°) Of"f ; - of'f .
Tk n=on £ (1-£0")  £(1-£f)

(1.6)

For spherical Fermi surfaces where a relaxation time exists,

the Boltzmann eqguation has a solution of the form

£=£ -k F(E)éﬁg
: X 3E (1.7)
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with electric fields and temperature gradients in the x -
direction. (Wilson 1953, p. 210). This makes f - £° an odd
function of k so that the primed term in equation (1.6)

vanishes when summed over k'. What is left is just

: o
£ _¢O '
g%-ﬂga— (f~-f YWk Mn+Ean+l)

Kondo's final expression then reads

iﬁ =_(f_fo)‘
ot /scatt. T (E)

1/t(E) =3 [W(l{_’++}_<_+) + W(k'"=+k+]]
kl

. |
- £ 1 "o }
%c)' 5 {wui M KM +1) 4 W(K M kM +1)
£91
Y = {W(k'+M Sk+M_-1) + W(k'-M_-k+M —1)}
fo -— n-—-—n — n — n
nk'

Kondo did hot explain why a relaxation time should exist
for this type of inelastic scattering. Egquation (1.7) is the
form of a trial function for electrical conduction in the
variational method, so maybe it is a good approximation
(Z2iman 1960). 1In general a relaxation time can be defined if
it is the same for both thermal and electrical processes. This

is the case if the scattering is quasi-elastic (Blatt 1968).
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This is usually true if |E-E'|x<kT.
The scattering term for spin-flip scattering can be put

into canonical form, for if

o
o _ “9fT 1 O,,_¢°
fE-f ¢ =g £ (1-£7)0

equation (l1.6) becomes

L -> o' - ° '.- .—_.-!'__.. L. -> L.
n§'W(l<_ M Sk+M 1) £70 (1-£7) (¢-9) kTr%'P(g M 1_<_+Mn+1’)v(¢ $)

Doing this to all the terms yields

of 1 ' —h T '
§E>scatt.— kT P(k,k') (¢-¢")dk

where P(k,k') is again the total equilibrium transition rate
for all the processes.,
The general transport coefficients involve electrical and

thermal currents, i and u. Per unit volume they are

i -:/é\_{_fd_]g_ (1.8)

u

i

fg(E-—vu)fd.]_c_ (1.9)

u is the chemical potential or Gibbs free energy per electron,
"and f is the solution of the Boltzmann equation. Since the

c s s . . . o . . '
equilibrium distribution £~ gives rise to no current, we can
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replace f in the above equations by f - £°. Where there is no

temperature gradient, it is convenient to define

where A(k) is the so-called vector mean free path. The

Boltzmann equation with a relaxation time becomes

or
TV = A .

Putting equation (1.10) into (1.8)

(o]
= -FeoflE- 9f
u= E%Eu)Y.AQE

Hi
lie-
|t

Now the relation between E and J is well known,

+E or E=gl-j

(]
il
a

(1.10)
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(1.11)

is the Peltier coefficient of thermoelectricity.
From the Kelvin-Onsager relatiohs, the thermopower, s, is

given by
s = (transpose of s )v= g/T.

g is easily found from equations (1.10) and (1.8).

O
=e? Sy Ay

JE

a
]

ax

Where a relaxation time exists, and the metal is con-

sidered to be isotropic

(o)
* -k

/1 v? 3f°/3E dk

1 S (E-u)T v
eT

Changing over to integration over energies,

v . 3¢
Lo .1 J T(E) (E-0) p(E)V? =z dk!= 1/ (B-wo(E)dE
T U7 cmemv: lag ) T T EE
(1.12)
where p (E) =Ml3 Iéﬁ?zkl is the density of states. (Kittel
8l . £

1966) .
A physically satisfying way of obtaining an expression for

the Peltier coefficient was discussed by Fritzsche (1971). If



-13=

the conductivity is written
0(E) = J o(E)dE
then o0(E) is the percentage of the cohductivity in the energy

range dE. If each electron contributes to the energy transfer

as to the charge transfer then

m(e) = -{Eu) o(E)

is theenergy carried in the energy range dE per unit charge.

— o _ 1 " o(E) .
J M(E)QE = T =, ST = - 2 f(E—u) —== dE

This agrees with equation (1.11). Thus I has the simple
physical interpretation as the average energy carried by con-
duction electrons per unit charge.

If F = 1(E)p(E)v? in the numerator and denominator of
equation (1.12) are expanded in a power series about u, then

S = ; kT/u < < 1 (1.13)

% k®r 3ln o(E)
3 e . oE E=u
to first order in kT/u. The details are worked out in Mott and
Jones (1936). It is valid at temperatureswhere the impurity
resistance is larger than the thermal resistance and above the

D:ebye temperature because it is based on the relaxation time
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approximation. The Nordheim-Gorter rule can be derived from

this equation if Matthiessen's rule holds.

6o 3lno _ _ 9dlmp _ _ _1_-(3p1 . 3p2)
4 5E 3E  Pp\GE  OE

- _ 1 “9lnpa "éinpé
= (pl_TE"*pz'__a )

. l .
or S = -p- (p1S1 + DZSZ).
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I-2 The Connection Between Thermal: Resistivity and Thermopower

From a variational procedure Kohler (1949) derived the
fdllowing expression relating the thermopower and thermal

resistances due to independent scattering mechanisms:

=1
S = W‘% wJ._si (1.14)

The physical basis of the variational procedure lies in the
thermodynamics of irreversible processes. Expressions for
entropy production due to scattering and fields are found to be
equal. The distribution satisfying the Boltzmann equation is
the one which maximizes the entropy production.

The theory starts with the canonical Boltzmann equation.
. A scattering operator is defined, and from it the entire varia-
tional procedure follows. A reasonable guess is madé for the
trial function ¢ previously defined. The violent behavior of
f - £° was ironed out by factoring out af°/aE which is sharply
peaked at the Fermi surface so that a good trial function is
not hard to find.

Kohler used a trial function of the form

n
o = c(E)kx =§£ N (E-u)Tk

and worked out expressions for the transport coefficients in
terms of ratios of infinite determinants which converged

rapidly. 1In particular, he found that WiSi was proportional
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to an integral containing the cdllision operator linearly.
Thus if the different scattering mechanisms present in a

metal can be added together, then
WS = W,S: + W2S, - (1.15)

to a good approximation. The additivity of coliision processes
is possible if they don't occupy each other's intermediate or
final states.

Matthiessen's ruleisbased on exactly the same reasoning
as Kohler's rule as Kohler himself pointed out. The expression
is not exact because the solution ¢ for a scattering operator
P=P;+P, is not necessarily the solution for P, and P, separate-
ly. Kohler showed that deviations from Matthiessen's rule
should be small using the same variational procedures  (Kohler
1949a). (Ziman 1960). One might say that equation (1.14) is
the Matthiessen's rule of thermoelectricity.

In his derivation Kohler assumed that the lattice thermal
conductivity is negligible compared to that of the eiectrons,
and that the lattice is in thermal equilibrium, the Bloch
assumption. As stated before this assumption is not valid
~when phonon drag components in the thermopower become impor-
tant. He also assumed that alloying did not affect the
density of conduction electrons.

Gold et al. (1960) have given a derivation of Kohler's
rule which is intuitively appealing. If thg different

scattering mechanisms giving thermal and electrical resistance
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[ 3 3 k3 . L3
in a metal can be treated as two conductors in a series with

O

= M . =
then AT1 = m AT H ATz =

-

C We

Wi+Ws AT

V = SAT = V1+V, = S51AT:1 + S';;_ATz =. %(W15i+W252)AT .

They justify this derivation with essentially the same assump-
tions as used by Kohler.

Since a relaxation time can be defined for elastic
scattering that is the same for thermal and electrical currents,

the Wiedemann-Franz law is valid.

e

]

| o
-

=]
3

Substituting into equation (1.14) one has the Nordheim-Gorter

rule:

S =

Ol

20,8, .
h .

This was previously derived using equation (1.13) and Matthies-
sen's rule but with less generality since above Matthiessen's

rule is not assumed.
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The scattering of phonons at high temperatures is quasi-
elastic so that the Nordheim-Gorter rule should hold for
T>0. At low temperatures; WL&TZ and pLde for the lattice
phonon scattering. If the metal is pure enough so that at
low temperatures, T<<0, the latticé cbntribution to thermal
and electrical resistivities dominates the impufity scattering,
the Nordheim-Gorter rule should thus fail badly. In this case,
Kohler's rule is much more useful. If sufficient impurities
are present to dominate the scattering up to the Debye tempera-

ture, the Nordheim-Gorter rule should apply unless the impurity

scattering is inelastic.
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I-3 Kondo's Expression for‘the'Thermopower of Dilute Magnetic

Alloys

The nature of the scattering term in the Boltzmann equa-
tion for Kondo's treatment of the thermopower of dilute mag-
netic alloys has already been treated. Kondo worked out an
explicit expression for the scattering probabilities using
perturbation theory and the second Born approximation. For

the unperturbed Hamiltonian he used ;

*
H = E(k + 2 E:H *S
o gg (k) agsaks “¥p e

including the Zeeman energy of the n-th impurity atom feeling

an effective field, En' with spin of §n' The perturbing

Hamiltonian included both a static perturbing potential, V, and

the spin-spin exchange integral, J. From equation (l1.12) one
sees that only odd powers of energy will give non-vanishing
contributions fo the thermopower. The first term to do this
is a J%V term.

Kondo arrived at a first order expression for the thermo-

power of

R
S = R F(T) (1.16)

where F(T) tends to a constant at high temperatures and to

- zero at low temperatures, Rmagd J25(s+1) and RaV?+J2S(S+1l).

Rmag is the resistivity due to the exchange energy alone, and

R is the total resistivity due to the Fe. The 1nT temperature
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dependence of ¢ was neglected in the denominator of equation
(1.12) as it is not so rapidly varyihg a function of T as the
numerator. Also o(E) and V(E) were replaced by their values at
the Fermi surface. Qualitatively, equation (1.16) should hold
when phonon and non-magnetic impurities are present if R is
taken as the total resistivity, according to Kondo. Thus at
low temperatures where the diffusion component of thermopower
is small, equation (1.16) reduces to the Nordheim-Gorter rule.

The question may bevasked as to how inelastic the above
scattering is. In an earlier calculation, Kondo (1964) treated
the case of magnetic spin-flip écattering neglecting the change
in energy the impurity atom might undergo. That is, the

unperturbed Hamiltonian was

= 3 *
Hy /E‘E(]-(-) 8 s Zks

This means that the scattering was cénsidered elastic. An
extra resistivity proportional to 1nT came out due to the fact
that spin operators don't commute when considering intermediate
states. It appears that in alloys where the Zeeman energies
are small, ie. dilute alloys, the scattering can be considered
quasi-elastic. The Wiedemann~Franz law should then be valid
to a good approximation. Kohler's expression would reduce
' to the Nordheim-Gorter rule in this case.

Garbarino and Reynolds (1971) measured the thermal and
electrical conductivities of dilute solutions of Fe in Au from

1K to 4.2K in temperature as shown in Figure 1.,3. For dilute
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enough allOYS,_C ~ -027 at .% Fe, the Lorentz ratio is
conétant, although about 4% higher than Lo' At higher concen-
trations L flattens out at higher temperatures. This indicates
that in the temperature range and Fe concentration of this
- experiment the scattering is quasi-elastic. Jha and Jericho
(1971) performed similar measurement§ on’ég—Mn alloys and

found similar results for the Lorentz ratio of these alloys.
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I-4 Application of the Nordheim-Gorter Rule to Experiment

For two independent scattering processes the Nordheim-

Gorter rule may be written as

[92]
"

%(0151 + p2S2) = %(0151 + [p-p1l1S2)

S, + %l(sl-sz). (1.17)

If py is held constant, by adding type 2 imputities a plot of S
versus 1/p should yield a straight line whose intercept is the
characteristic thermopower of that impurity iﬁ that solvent
metal. |

Deviations should occur whenever alloying distorts the
Fermi surface or changes the density of conduction electrons,
the scattering becomes significantly inelastic, or the Fermi
surface is not approximately spherical. KXohler's expression
is expected to be a much better relation when the scattering is
inelastic, failing only when the lattice is not in thermal
equilibrium. |

The Nordheim-Gorter rule has been of great value in
- separating out the effects of trace impurities in "pure"
metals. It points out that it is the relative, not the
absolﬁte,amount of impurities that determines which character-
istic thermopower dominates. Gold et al. (1960) applied the
rule to pure Cu with a number of impurity solutes. See Figure

1.4.
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The plot for Fe is of special intérest. Note the high
value of the characteristic thermopower of Fe. The 1/p = 100
point is for "pure" Cu put into a reducing atmosphere to
remove any oxygen from impurities. The fact that this point
fits on this plot indicates that this impurity is Fe. The
straight line; however, depends strongly on this one point
for its position.

MacDonald et al. (1962) have applied the rule to pure Au
with Sn and Cu impurities. See Figure 1.5. Note that Cu and
Sn are both non-magnetic and have approximately the same very
small characteristic thermopower. The high value of about
4uv/ K for pure Au is probably due to Fe impurities.

Blatt and Lucke (1967) made an interesting extension of
the applicability of the Nordheim-Gorter rule. They noted

that the thermopowers of Cu with Ga, Ge, and As solutes 6beyed

-the rule even when deviations from Matthiessen's rule were

quite severe. See Figures 1.6 and 1.7. They were able to
extend the expected validity of the rule to cases where the
alloy obeyed the Bloch-Gruneisen approximation for the total
resistivity less the residual resistivity but with a different
Debye temperature from the pure metal. p;/p is replaced by
plA/p where p1A = p) S0 2. A denotes the values for the alloy.

a

When alloying distorts the Fermi surface severely, the rule is

still expected to fail.
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" I-5 The Effect of Phonon Drag

Phonon drag is a result of coupling between electrons and
phonons. An applied temperature gradient will cause the
lattice to be in thermal disequilibrium. If there is a
transfer of momentum to the conductioﬁ electrons, the thermo-
power can be considerably enhanced. In the steady state this
transfer of ﬁomentum is balanced by an opposing electric

field. This leads to an expression of the form (MacDonald

1962a)

Sy = e &y (1.18)
where Sg is the thermopower due to phonon drag, N is the
density of conduction electrons and Cg is the lattice specific
heat per unit volume.

Equation (1.18) was derived assuming that electrons do all
the phonon scattering. In reality phonons scatter off lattice
defects, impurities and other phonons. To take this into

account, MacDonald (1962a) made the following approximation:

~ where Toe is the phonon-electron relaxation time and o is

the phonon relaxation time due to all other processes. If Tpi
decreases inversely with impurity concentration, a reasonable
assumption for small amounts of impurity, then since pi

increases linearly with impurity concentration




1/1:pl =~Api = Cp;

s =k _ "o _x "pe
g e T_+T1 e A_+A
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where A's are the transition probabilities

K 'Ape"' K- ‘épe' 7"App+ApE' o So"‘Ao
e A__+A_.+A e A__+A A_.+A__+A - g [}
PP P1 Ppe PP P€ "pP1 pp pe Cpi+A

where A° and Sgo are the phonon transition probability and
_phonon drag thermopower respectively before the addition of
impurities. , Thus phonon drag might be expécted to decrease

in magnitude with increasing impurity COncentration.
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I-6 The Effectiof‘Anisotrogy'onfthe'Validity of the

" Nordheim-Gorter Rule -

For spherical Fermi surfaces and elastic scattering the
Boltzmann equation has an exact solution for thermal processes
with the trial function ¢ = (E-u)k = 2 where’ﬁ is a unit
vector parallel to the applied external gradient. Since it is
an exact solution regardless of the particular scattering
mechanism, Kohler's law should hold exactly. Since the varia-
tional procedure is not particularly sensitive to the form of
the trial function, Kohler's rule should still be a good
approximation when the conditions for an exact solution are not
met.

To take into account the known anisotropic Fermi surface
of Ay, Guenault (1972) has suggested a two band model with
anisotropic relaxation times. Dugdale and Basinski (1967)
accounted for deviations in Matthiessen's rule in dilute Cu and
Ag alloys using the same model. One band consists of the
“belly" electrons while the other consists of the "neck"
electrons. These two independent groups of electrons have
different scattering relaxation times for different processes.
Guenault appealed to an equivalent circuit analogy after that

of Gold et al. (1960).

Wi, 51 W2, S2
Impurity Phonon , Neck, Ty
W3, S, Wy, Sy

AVA/\AVF————‘ Belly, 1q

AT

7
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If the thermal gradient is proportioned out to the impurities in
each leg as [Wl/(W1+W2)]AT=AT1 where W is the thermal resistivity,
then V3 = 81 T1 is the voltage developed. By the ladder theorem
of electrical circuit theory the circuit (a) is equivalent to

circuit (b) where

R ‘
"‘—Awﬂﬁr—<:::}1 R
o] R, < -3 o NAAAV————<::>——4
*-_vavb—{:::}J | (b)
(a)

V= (Vi/R; + Vz/Rz)/(%i+.%é)

Applying this to the above thermal circuit and further assuming
that the scattering is elastic so that the thermal resistivities

may be replaced by the electrical resistivities,

(R1S1 + R2S2)/(R1 + R2)? + (R3S3 + RuS4)/(Rs + Ry)?2
1/(Ry + R2) + 1/(R3 + Ry)

S =
(1.19)

At low temperature the phonon contribution is negligible,

(Wap WysW3i, W3) and this reduces to

S, = (S1/R1 + S3/R3)/(1/Ry + 1/R3)

In the isotropic case TN/TB is the same for impurity and
. R1 R
.and phonon scattering and thus ﬁ;-=.§: . (The center of

the equivalent circuit can be shorted.) Then equation (1.19)
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+

reduces to the Nordheim-Gorter rule. For dilute alloys at
high temperatures where R; <<’ R, and R; << Ry, one gets with
some algebra

SRR

S = —=——— (S.p, + Slp )
pL + pO L"L o' o

except that Sé is no longer the characteristic thermopower of
the impurity. Sé depends on So’ S2, Su and TN/TB; That is, a
plot of S versus 1/p will give a straight line but with a
different interpretation ffom the Nordheim-Gorter rule. For
cencentrated alloys, the Nordheim-Gorter plot will be curved.
With so many parameters available one can, of course,
come to agreement with a great variety of data. Guenault
tréats Ag alloys where Fe cdntamination is less of a problem
than with other noble host metals. He measured the thermopower
of vafioﬁS"alloys at very low temperatures and fitted an

equation of the form
S(T) = AT + BT?® + CT/(T + TO)

to experimental data for diffusion, phonon drag and Kondo

- thermopower respectively. He found that C was very small and
deduced from A the characteristic thermopower of various
~impurities in Ag. He then compared these values with those
from intercepts of Nordheim-Gorter plots from other sources.

For Ag-In and éngl there was agreement; for‘gngu and
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Ag-Ge the Nordheim-Gorter plots‘géve about twice the value.
That is;_the'éxperimental'eVidence'is scarce and inconclusive
for this problem. Furthermore, for very concentrated'gngu
alloys, refer to Figure’l;Q; the Nordheim-Gorter rule hangs on
for much longer than the two band modelbwhich experimentally
determined parameters predict. The two band model does, how-
ever, make interpretation of the iptercept of 'a Nordheim-

Gorter plot open to question.
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Figure 1.JAbsolute thermopower of several
dilute gold-iron alloys. Vertical lines
represent typical uncertainties.

1: 99:99 per cent pure Au + 0-02 per cent (at.) Fe
2: 99:97 per cent pure Au + 0-035 per cent (at.) Fe
3:99:995 per cent pure Au + 0-06 percent (at.) Fe
4: Spec. pure Au + 0-03 per cent (at.) Fe
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Figure 1.2 The thermoelectric power of Au-Fe
alloys for various Fe concentrations. @110 ppm;
A 300 ppm; @1100 ppm; w1900 ppm.
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Figure 1.4 Nordheim-Gorter plot of various dilute alloys

of copper
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Figure 1.5 Absolute thermo-electric power (S) of dilute Au + Sn Alloys at 1°K as
a function of inverse residual resistance ratio.
The oxperimental point marked with
a solid circle indicates tho nominally * pure’ starting specimen of gold. Plotting thermo-
electric power in this way (the* Nordheim-Gorter rulo’—cf. for example, Gold ¢t al. 1960)
enables one to determine readily the characteristic thermo-electric power due to a given
solute, The intercept on tho ordinate when tho abscissa tends to zero should give this
-characteristic thermo-clectric power and with Cu and Sn as solutes it is clear that this is
very small at 1 °K (S - 0 approx. as the abscissa tends to zcro).
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Figure 1.6

Modified Gorter-Nordheim plots at 290°k for solid solutions of (a) gallium,
(b} germanium, and (c} arsenic in copper. o
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Figure 1.7

Per cent deviation from Matthicssen’s rule at 200°x as & function of residual
resistivity for Cu-Ga —(Q—, Cu-Ge —[]—, and Cu-As — A— alloys.
(After Crixp et al. 1964.)
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Figure 1.9 Nordheim-Gorter plots for dilute Ag alloys
at 300 K. ; i Full curve, theoretical,

calculated from equation (3) using parameters proposed for AgAu (see text); X data of
Crisp and Rungis (1970) for AgAu; chain curve, schematic form of graph obtained for a
heterovalent Ag alloy (data of Késter and Rave (1964), after Foiles (1970)); @ indicate
values of xo and x5 (see text). ’
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CHAPTER TII

II-1 ' Sample Preparation

All the‘énge—Sn alloys were madé from Johnson Matthey
thermocouple wire .08 mm in diameter with nominal 0.03 at .
$ Fe concentration. The residual resistance ration, R4.2/
R295-R4.2) was .1l45 corresponding to about 360 ppm Fe using
data from the literature (MacDonald 1962). The varnish coating
was removed with Strip-X, a commercially available product.
Concentrated formic acid was easier to use but left behind a
slight residue.

About 30 cm of the above wire was coiled and suspended
about 10 cm above the Ta boat of a small evaporator. Small
amounts of pure Sn were evaporated onto the Au-Fe alloy at a
pressure of about 4x10”" Torr. The wire was placed in a
smali quartz glass tube, 7 cm x 1 cm, pumped down to 10”° or
10”° Torr, and sealed off. The tube was then placed in an
electric oven at 850C for 24 hours. Au melts at 1063C.

The_Sn disappeared from the surface sometime before the
oven reached full temperature, so 24 hours was deemed enough
time to give uniform'distributioh of the Sn throughout the
‘Au. 'A more rigorous argument using the diffusion equation is
given in Appendix I. The oven was turned off with the
specimen tube still inside and left to cool down for an anneal.

The residual resistance ratio was measured by mechanically
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clamping about 5 cm of the samplé into a simple four probe dip
cryostat. A wrapping of teflon tape provided most of the
pfessure; To check for uniformity; one sample was measured in
5 cm segments along its entire 30 cm length and found to be
uniform to about one percent;

The approximate Sn concentration was found using data of
MacDonald et al. (1962) who found that the increase in
residual resistance ratio due to Sn in Au was 1.365 per at .%.
If the increase in resistivity is due entirely to Sn, and
Matthiessen's rule is obeyed, the Sn concentration can be
calculated. The results of the above sample preparation are
surmarized in Table i. A justification of Matthiessen's rule
is given in Appendix II. Sample VI wéé the highest concentra-
tion attemped since the solubility of Sn in Au is about 0.2 at.
¢ at 200 C (Hansen 1958).

The samples were submitted to Cantest Limited for a guanti-
tative flame spectrographic analysis. This firm overestimated
its equipment's resolving power and was unable to detect the Sn

in such small samplés.
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TABLE 1
Rgsidual Resistance and Approximate Sn

Concentrations of the Au-Fe-Sn Specimens

Sample r =R, 2/(R295-R4 2) - Ar Sn conc. (ppm
I .148 ~ 0 0

II 177 ".029 212

ITI .188 .040 293

IV .231 .083 608

A% .404 .256 1875
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II-2 Thermopower Measurement

The cryostat used for the present experiments is shown
in Figure 2.1. It was inserted through an O-ring seal into a

wide neck He dewar for the temperature range 4.2 to 77K and

into LN, for higher temperatures. The temperature was varied
by changing position relative to the liquid level and applying
small amounts of heat to the upper block. About 2 mm pressure
of He exchange gas was used.

The Au+.03 at .% Fe versus chromel thermocouple used to
measure temperature was calibrated to 100K against a
Germanium resistance thermometer with factorycalibration.
That is

273,2

V=/[ (s )ar
T

chromel_sénge

was measured using the resistance thermometer to obtain T.

The thermocouple was used for determining temperatures instead
of the resistance thermometer because it is easier to use,
cheaper, and less fragile. Its disadvantages will be mentioned
later.

Temperatﬁre versus voltage tables were obtained by fitting
parabolas to successive small segments of the raw data. The
values obtained differed somewhat from other sources, indicat-
ing that at the present state of quality control among manu-

facturers, it is necessary to cdlibrate Au-Fe thermocouples
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yourself., The present énge theimocouple wire was obtained
from Johnson Matthey; the'same wire used to make the Au-Fe-Sn
alloys.

By differentiating the small parabolic segments of the

voltage versus temperature graphs, (S } was

chromel_SQE;Fe
determined. To measure the temperature gradient between the
upper and lower blocks of the cryostat, a differential thermo-
couple was made from the same wire. Then

T+AT

V(AT) = f (s S. . _)aT = (S
T

chromel ~ “Au-Fe chromel-SZ_JxE.--Fe)AT

gives a direct reading of the temperature gradient if AT is
sufficiently small.

The samples whose thermopower was to be measured were
encased in teflon spaghetti and folded into small bundles.
About 5 cm on each end was wrapped onto the binding posts of

the cryostat over cigarette paper and glued with GE 7031
varnish for a thermal bond. The differential voltages were
read directly off a Keithley 148 nancvoltmeter, an oil
immersed low therﬁal switch changing from the specimen to the
differential thermocouple.

The difference in thermopower between the untreated and
alloyed Au-Fe was measured directly using untreated Au-Fe
leads up to the volémeter. The absolute thermopower of the
untreated énge was determined using 99.9999% pure Pb as a

sample. The absolute scale of Christian et al, (1958) for
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The Pb wire

Pb was subtracted from this data, giving SAu—Fe’

used was relatively thick; ;25 mm in diamezzk, and a fair length
96 cm, was found necessary to reduce its thermal conduction.
When the sample has a thermal conductivity on the order of the
thermal contacts through the cigarette paper, the temperature
gradients are considerable.

Since the thermopower of the untreated Au-Fe was used as a
reference for all the differential measurements of Spu-Fe~

S it was necessary to know its value with confidence.

Au-Fe-Sn'
The specimen leads up to the cryostat were changed from Au-Fe
to Pb and a specimen of chromel was mounted into the cryostat.

From this S was determined which can be combined with

chromel

the data from the differential thermocouple calibration to give

an alternate determination of S .
Au-Fe

Two different temperature gradients were set up between

the upper and lower blocks for each differential measurement.

The two voltages obtained were subtracted to obtain V(AT) and

the specimen voltage, V V(AT) was typically 25pu V. This was

g
done to lessen the effect of thermals. That is, when V(AT) =
0, Vg # 0. If large temperature gradients are used, the effect
is negligible, but large gradients mean fast temperature drifts
if no external heat is supplied. Too much external heat would
cause the temperature of the temperature-sensing thermocouple
to be different from that at the specimen, a fact noted when

calibrating the thermocouple against the Ge resistance

thermometer.
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As it turned out, it was d;fficulf to keep the temperature
constant for two different differential readings, so that the
two methods are probably equivalent in usefulness, at least in
this cryostat. If the exchange gas were pumped out, the.temper-
ature drifts would slow down. It was thought that if some of
the temperature gradient was maintained through the exchange
~gas, it would lessen the errors due to heat conduction through
the sample.

The main sources of experimental error were due to the
alloying procedure and the apparatus. It was hoped that adding
Sn to the Au-Fe would do nothing to any oxidized Fe in the
wire. When the plated Au-Fe wire was removed from the evapora-
tor, surely some of the sSn oxidized. For the most dilute
alloys, perhaps 20% of the Sn was oxidized if oxidation occurred
for a couple of monolayers. SnO probably has a different
characteristic thermopower from Sn. It may have helped to have
subjected all the samples to a reduction process such as heat
treatment with H, of Co. It is also to be noted that annealing
increased the residual resistance of the unplated Au-Fe.
Whether this is due to reducing Fe oxides, redistributing the
Fe, or just inhombgeneous wire is unknown.

As for the apparatus, the main errors come from thermals.
If the Au-Fe or chromel wires were not uniform along their
length, different thermal envioronments would give changing
voltage readings. That is,

-275,2 : 273,2 LA
Vv=717 . As(r, T(X)AT = [ AS(x, T(r)%EdE
T T -
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would no longer be independent of the temperature distribution.
That this was the case with this thermocouple was certified
when upon pulling the cryostat up slightly from the He bath,
the apparent temperature went down. A possible error #2K
could have arisen in this way. For the V(AT) measurement
similar thermals could occur due to slow drifts, but the
subtraction of voltages should have minimized this.

It was also found that V(4.2K) varied slightly from experi-
ment to experiment, although never more than half a percent.
The ratio V(4.2 observed)/V(4.2 tables) was used to calculate
the temperature in this case.

As mentioned earlier, the cigarette paber and GE varnish
is not a perfect thermal contact. The only time it gave real
trouble was when pure Pb was used as a specimen where it was
found necessary to use 90 cm. The thermal conductivity of
Au-Fe is appreciable, and could have affected the results in an
unknown way, giving persistent errors in the thermopower
determination. However, one Au-Fe-Sn specimen was mounted

 twice giving the same results for the thermopower.
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 CHAPTER TIII

" EXPERTMENTAL RESULTS

III-1 The Thermopower of Au-Fe-Sn Alloys

The thermopower of the untreated Au-Fe alloy was determined
in two independent ways. It was measured directly against Pb.
The thermopower of chromel was also measured against Pb and

then subtracted from the tables of (S )} constructed

chromel—sénge
for the differential thérmocouple. This gives a check on the
other data. The two sets of data were combined and smoothed
out with a least squares parabolic fit of small segments of °
data. The parabolic constants were used to calculate a table
of 8, ,-pe Versus temperature. |

The measured values of (SAu-Fe_Sénge-Sn) were subtracted

from this table and plotted di;;Etly. A french curve was used
to draw in a smooth interpolation. The results are shown in
Figure 3.1. The thermopower of the most concentrated alloys
was obtained from subtracting two numbers of equal magnitude

and exhibit the most scatter. One sees that the effect of

adding Sn is to reduce the thermopower.
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. III-2  The Resistivity of: Au-Fe-Sn Alloys -

Although the residual resistance ratio of the'éﬁfFe—Sn
alloysat 4.2K and 295K was measured, the resistivity as a
function of temperature was not. The question is whether one
can add this on unabashedly to the ideal resistivify at other
temperatures. That is, how valid is Matthiessen's rule for
this particular ternary alloy. Since the literature does not
abound with discussions of the resistivity of ternary alloys,
it is here assumed that deviations will not exceed those

typical for binary alloys. Then

o (T) PL(T) . 0{4.2) N QL(T) ' r
pL(295) = pL(295)_ p(.2.9‘5)"p(zr-2) = DL(295)

2

Refer to Appendix II for a discussion of the validity of this

procedure. is the ideal lattice resistivity.

Py,
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III-3 ° The Nordheim-Gorter Plots -

Combining the results from the previous sections the
measured absolute thermopower can be plotted versus
pL(295)/p(T). The thermopower was read directly off Figure 3.1l.
p(T) = p(4.2) + pL(T) by assumption. Temperatures ranged from
6K to 100K. See Figures 3.2, 3.3, and 3.4.

Error bars for uncertainty in resistance were determined
from an estimated 5% possible deviation from Matthiessen's
rule. Since deviations from this rule are invariably positive,
the error bars lie to the left of all the points. Above 100K
the range of 1/p is small and the plots are too scaﬁtered to be
of any useful interpretation. | |

It is evident that the plots are all best fit by straight
lines. At lower temperatures the range of 1/p is much larger,
making for a more compelling fit. What scatter is present is
most likely due‘predominantly to alloying problems or a
different persistent error for each alloy, as the experimental
points are consistently over or under the straight line fit.

An example of a persistent error would be poor mounting of a
specimen so that the temperature gradient across the specimen
would be.different from that across the differential thermo-
couple. An alloying problem would be the presence of oxygen in

the quartz tube affecting the Fe.



-50-

14

. - ¢ — : . 0
S B R D A e A O A Lo
RS PREAS TR NS B B o ¥nlvezawar s i T T ,r_x-r-H..-"..,-.L_l,; -
, . : ] T oo : O . P ; :
N - . . A “ i _ .

; SR
T T T T T ey gy
P e o e )t e e e - - m———) e e e i W g
_ R T A
SRS RPLINS SR U S ST S 30

wdd 086t 1A

t.l.r..tl.ml! '_...l...

i

: s

!

i Lo L
D A

” h .
S S BRI

.

e S

PR

)
=
g _
8l A . : 5
809 Al o
X . . : . ) ’ =
s S e e et ...!..lwl £62 _= — A .. . . . : . am - d
. - - u : . wdd z12 " . R Lot m - : g . =
rl.ulux”‘.l..ll)“lo'vlm-c. - ) wdd 0 — - RS e NS S ..!.CM... e s e frem e IW\ - 3= Gl~
L P P U A AT ! Lo ! 3
“ T SO O TSI S 0 N S L S I T L
T e s e B ot e L S L 1 S SN
—— m . i : .w e ¥ S . i i . . ! .
: : ! 1o ! oy - P Py : oo ‘ .
. - OO S R O - .*.l.w..l;;,.w T o R i I LI STS - . - —
e SV S L i L SRR S . ST U R .
; e v i B T ST NP foeel i i :
m AN 1 UV 5 5 0 SN 5 o S N ER O L O o

3801V

Y3din

3L sns

3N S

AOTTV ug-a4

vid

O YIMOdOWYHIHL 31NT0STY




0oL

-51-

s - e v e

GL8L x
wdd 086t +

o —d o

!
|

=i
i
)

; ' .
’. ! .
U :
Ll :

.
. N § B
o !

JR IO RO SUU

i

'
! . s
R Ittt

" H .

: ¢ t

! [
T FURDI IR DR

! !

* =

bt e .

1

SRS r~ dedeedn
NI
i T

B
_.:.4.. 4.

...%.._.’....?.__._..-T._, -

: i
' . H ] .. .
: BRI SRR PRPIORDY SRS SN SR
; Pt : : 1
. . N e b P S
: ! Lo ; i
. . . . 3 Ql
4
. . H . H .
Cod P Lo R R
JUR T PPV SRS S STUR R UG S S
T R [ R
S it . :
- D T - ——
; : : :
! { : i OO “ ‘_ . e
I B R el M °
. M . 3 H ' 1 b . M - A
IR SR S S SRS S
R : A ”
ST S P SN e e ! EEE A o
: T P 1
—— o k- e
;
} : v .
PR, b RO )
; ; ! : _ i 4 :
N P i :
e IDUUEOE & ! .-
: : . - :
i i v S toegds
F SRR NS AP N
. R ‘ , X
! | 0L S YRR U B

LS PR

1 i

N i
H

1 (7]
! >
-l =
{ “n
l.l_Vl ) —(
. [ s
i 3 =
i , —
- —
<
. by -
)
< -
4=
HR .
voos i
SCE PR U

JYNLVYIJNIL SNSYIA SAOTIV Us-34

-nyY 40 ¥




-Bh2=

v . .
b H .
M : [ !
PO N Do i
) R \
H ' ' R i
' i . 1 A .
.ot
JR R S SR S .
P I -
S LI S
H P, A H
SO SEU SO SN SO PIY
== i T
L

e e .

P S T

S lmuil.u.ln

: : '
et e ad b - g = — .
T
R " m 4
- e
i

K

* SAOTIV U

1 PRI ARt Y N bt PO S
S-a3-ny 804 S107d ¥31YOD-WIHGYON 3

gnt

vY3diN3L M




-53-

ooL

o
b
o

v ) 3
I3 ] . + B
! b ] R ) : \
T .t H . N . .
Pl ' .
e . -
I .
' H ' i . e e
1 1 H ' i B B
T : I
S FO S S B S
P . !
; :
w\ b3

— »
. >
R
T8 .
Lo ot N,
Y raguriail v+ -
Lo : i L
i ! : ! R ) R
PR N S _Ix.,ll L -
FE B .
T T 1 - ] © liOhl.
THENEN N . R R N LI I O O T O =
B S S L Rl Bt DT o I F T I T R X e T IO A T A RO
[ I i R 4 ! = |
{ t 1 ta oy T . . . N i B N N B AN . P ‘ 4o .}
RS FU S I .l,.c.l.hn’m.. —
i i 5 s . :
. o i : : —ta
B fon w- -
T Lo o
R : oo
N S N N et e e
: - e : A i
ErE— - m Cat H !
T T v
N u;,m..m,||..l~!..|l
o : R L i ‘s
- . "'lllull,'JI"dI,lil"ll"ll
R N ' i
SPNNDIPU JHUEE UL NN S RIS .mi.n R b
e R R ! ”
N PR S S - .
; i : ! : :
._1. e be .«. ...... “.n.:
“ H N “ [l i { °
lllll T.nm.x,.. B S B e
A R I DA T O N
b PR . B . ! B
4 I R IR IR R N S T ! s N

FRSEIFE0) ERET EINSE SR R Ll L
NSZT LV SAOTIV us-33-ny 40 1071d ¥3LYOO-WIIHQYON




-54-

adh 4

—de
: o~
-
(=]

R PG

== D
-
b
b
(=]
v

T T

. f. o Lo
SRS WP SIS S0S SRS S
oL P

e i (1)d /(s62) 4 el : - -
FUDOTDU SRR SO RROULIPON N ,
! H | o
- o -
vuw.i “ m _ ’ o ‘lr . ....y L
ERERERE T
T SR
it b, woom -
.LLL?-Y: XSt w — - L
..... S T T Lok
ﬂ Rl Sl -
H - - "
s
! < .
' oy
®
- — ? -
5
e T L
- =
oot -
R : N e . .
. ..m _ q!_..o_vw.f _.ﬂ ..m _v w . “¢ ] ”
- s., IR SO0 IO S _. _— i .“v m- SR TR S R u!..iv.mi.b.l m..XI
: ” H g “ . i Ty : N B
o _ e ; ' _ N S : _ e | _ |
R SR ST I G N Y - R Rt
) ~.w I f : . ) - L b
m m ) _ . ~ “l__' I T Dl - R = -
R AN S O I N I
;_ _.NA W _:W._ i IR I 0 IR A A Tv.;.;_.;_.-“. I I : :
S3UNLVY34WIL ILVIQINEILNI 1V SAOTTV us-23-nY 40 S107d 431409-W1FHAY0




=55

" CHAPTER IV

" DISCUSSION' AND CONCLUSIONS

In the temperature range 6K to 100K the Nordheim-Gorter
rule provides a good explanation for the effect of Sn impurifies
on the thermopower of‘éEf.OB at .% Fe even thbugh the conditions
for its validity are not strictly observed. At low temperatures
it is the Fe which is responsible for almost all of the thermo-
power, so it is evident that the scattering of Fe impurities in
this range of Fe concentration and temperature is predominantly
elastic. This is in agreement with measurements of the Lorentz
ratio, L = p/WT, performed byGarbarino and Reynolds (1971) for
Au-Fe alloys of this concentration from 1K to 4.2k.

At higher temperatures phonon drag and inelastic phonon
scattering are expected to cause deviations from the rule.

Some measure of the relative contributions expected from
inelastic (phonons) and quasi-elastic (impurity) scattering

is to compare the electrical resistivities. At around 65K for
the most dilute alldys up to 250K for the most concentrated .
alloy, the ideal resistivity is equal to the residual resistiv-
City.

Thus for the more concentrated alloys, the ones on the
left of the Nordheim-Gorter plots, the total scattering of the
electrons is predominantly elastic up to 100K. The high value
- of SAu-Fe(lOOK) =_-3.2pV/K where pLgZDFe’ indicates the Fe»is

still contributing significantly to the thermopower at this
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temperature. For pure Au SL'é O;8ﬂV/K referring to Figure 1.8.
Thus using Kohler's rule which is of greater value for inelas-

tic scattering,

WS = WpeSpe + WS + Wg, Sgy
pg = PFe - PLSL . PenSsn
Tt Sret Tt T
Fe L Sn
But Lpe = LSn = L, = L since Fe, Sn and the total scattering

are predominantly elastic. Then the above becomes

}- (pn.S + panS +. Lop
F i ' 2 7
0 e"Fe Sn“sn L LSL)
L
o

5P
L ¥, °L

i

el

(PpeSpe * PgnSsn 5p)

=

R

. _ AL
5 (PpeSpe * PgpSen + (1 f;)pLSL)

=

R

5 (PpeSpe * PgnSsn + PLSL)

assuming AL/Lo is small. At 100K, AL/Lo ~ 0.1 so that the
phonon scattering is becoming quasi-elastic with the higher
temperature. At 50K, AL/Lo = 0.3, but ey, is reduced enough to
- make pLSL small.

The linearity of the higher temperature plots is probably

indicative of this and of being able to neglect the phonon_dfag
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contribution. The phonon drad contribution is also expected
to decrease with increasing impurity scattering as mentioned
in section 1.5.
Recalling equation (1.17),
: ipél;l_éFé '
§ = Sg, t —5— (SéEfFe-SSn)

the intercept of the plots at 1/p = 0 is interpreted as the
characteristic thermopower of Sn in Au-Fe. The trend of the

plots is for S to increase positively with temperature from a

Sn
very small value, <0.5 V/K at temperatures of 25K and below.
There is nothing here to disagree with the data of MacDonald

et al. (1962) for Sn impurities in pure Au. (See Figure 1.5).
Experimental scatter is enough to make really accurate
determination of SSn versus temperature impossible.

Using a formula given by MacDonald (1962a), one can make
a guess for the chafacteristic thermopower at low temperatures

L 2+.2
S = TT3§ET
F

At T = 6K, use of this formula gives S = -0.03uV/K for impuri-

ties in Au, a small number that agrees with our results. At

100K this formula gives S = -0.5uV/K which agrees in magnitude
~with our results but unfortunately not in sign.

Suggestions for Further Experiments

!
¢
%’
5’

If a consistent process for making Au-Fe alloys could be
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found, there are interesting things one could do. For more
concentrated Fe content the Zeeman energieS'of the impurities
beéome larger so that at low enough temperatures, the spin-
flip scattering would be significantly inelastic. See

Figure 1.3 for the depressions of the Lorentz ratio for higher
Fe concentrations, indicative of inelastic scattering.

One could also look for deviations from the Nordheim-
Gorter rule much as one looks for deviations from Matthiessen's
rule. At high temperatures this would be easier to do with
binary alloys since the alloying problem would be lessened.

At low temperatures, the phonon contribution dies, and a
ternary alloy is necéssary. As mentioned in section 1.6 on

the basis of the two band model with anisotropic scattering,
the thermopower is expected to obey a Nordheim-Gorter-like rule
but with a different interpretation of the intercept for dilute
alloys.

The process here described for putting Sn into the Au-Fe
wire could be used to make Au-Sn alloys. The characteristic
thermopower of the Sn in Au could be obtained from Nordheim-
Gorter plots at various temperatures. The literature has few
such measurements. Here the phonon drag peak would not be
'swamped by the Fe scattering and the rule might fail at this

témperature.
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" APPENDIX I

" THE DIFFUSION OF Sn IN SOLID Au

Ceresara et al. have solved the diffusion equation,

for the case where the solute metal is deposited on the surface
of a wire of radius a at t = 0 and left to diffuse in. Their

results are summarized in Figure I.l, where

X = r/a ' and Y =

Af T = Dt/a? = 0.2 one sees that the concentration is almost
uniform throughout the specimen.

The‘value of D for the Au-Sn system was not to be found
in either Jost's book (1960) or in the journal, Diffusion
Data. At T = 850C similar systems have diffusion coefficients
as follows:

D(Au-Cu) = 1.36 x 10—9cm2/sec (Diffusion Data. 1967.
.J;. NO. l, 8.)

D(Cu-Sn) = 1.93 x 10~ "cm?/sec (ibid. 1967. 1. No. 3,18)

i

D(Au-Sb) = 1.16 x 10 "cm?/sec ‘(ibid. 1968. '3, 127.)
For the smallest diffusion coefficient, D(Cu-Sn), with 0.08 mm
wire, T = 0.2 corresponds to t = 1.6 x 10" seconds = 0.18 days.

Thus a 24 hour treatment at 850C should be enough time to
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achieve uniform distribution of Sn throughout the Au wire

used in this experiment.
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" APPENDIX II

THE VALIDITY OF MATTHIESSEN'S RULE IN TERNARY ALLOYS

Stewart and Huebener (1970) have carefully studied
deviations from Matthiessen's rule for Au with various
solutes. Some of their results are shown in Figures II.1 and
I1.2. A(T) is the deviation from Matthiessen's rule and pj is
the residual resistivity. For non-magnefic impurities the
worst case of A(T)/(pj + pL(T)) is about 8% for Au+.1l% Pt at
40K for alloys with less than 0.5% impurity concentration.

From Stewart's curves one sees that Matthiessen's rule
fails most severely when the ideal lattice resistivity, Pr,s is
of the same order of magnitude as the residual resistivity.
This is quite a general result and has been discussed by
Kohler (1949a) and Ziman (1960) where from a variational.
principle one expects

pipz
1 + Bap2

p = (p1 + p2) = B1B2 Y

where B; and B, are small, p is the actual resistance and p;
and p, are the resistances of the two scattering mechanisms
t;ken separately. This is referred to as the Kohler-Sondheimer-
Wilson equation in the literature. |

Stewart and Huebener also found a sharp addition to this
peak for low concentrations of impurity which could not be.

fitted to an eQuation of this type. They attributed this to
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higher order terms in the Boltzmann equation as discussed by
Sondheimer (1950).

For Fe impurities in Au;_Domenicali and Christensen
(1961) have studied the'temperature dependence of the resis-
tivity over a wide temperature range as shown in Figure II.3.
At the higher temperatures there is a small hump of about 5%
magnitude in the resistivity occurring at lower temperatures
for lower Fe concentrations. Again this is quite consistent
with the general theory of deviations from Matthiessen's rule.
Extrapolating down in concentration to Fe in Au wiﬁh a
residual resistance ratio of .148, the-peak'should occur at
around 60K.

At low temperaturés for dilute alloys of Fe in Au there
is the famous resistance minimum which has been weli studied
in the literature. As Kondo (1964) pointed out, this resuits
not from departures from Matthiessen's rule but from tempera-
ture dependent scattering. Kopp (1969) measured the resistivity
of Au+.03 at .% Fe finding about a 2% minimum relative tb the
resistivity at 4.2K at around 9K. Starting at temperatures
slightly below the minimum the resistivity from which the
ideal resistivity was subtracted showed a small deviation from
the expected 1nT behavior. This was attributed to deviations
from Matthiessen's rule and higher order effects in the Fe

resistivity. The error

p = (py + pg)
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had about cancelled itself out at 11K due to the rise in
resistivity up from the minimum. Kopp's measurements ended at
this temperature. The deviations would most likely reach the
same magnitude as Domenicali's 0.14% alloy but at a lower
temperature, about 60K, as mentioned above.

.Loram‘gt_gl. (1970) found that deviatione from
Matthiessen's rule in dilute magnetic alloys could be satisfied
as a relation of the form

"‘BLpLBipi‘ 0.45

i Biops
BLpL + Bipi i7"

Therefore in a Cugghu, g alloy where 0y is large, Bi is small
and when the Pr, term dominates, the error is very small. Figure
II.4 shows the extension of the approximate 1nT behavior to
much higher temperatures than pure Au-Fe and Cu-Fe alloys.
Impurity resistivity is swamping out the deviations from
Matthiessen's rule due to the lattice resistivity. Their Au
concentration is much higher than any Sn concentrations in the
present experiment and these results may not hold for dilute

alloys.

It is probably unlikely that abmore dilute ternary

alloy of Au-Fe-Sn would exhibit any startling deviations from
Matthiessen's rule. The Kohler-Sondheimer-Wilson relation
seems to give reasonable agreement for most binary alloys and
can be extended easily to ternary alloys. In the present

experiment Matthiessen's rule probably holds to within 5%.
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This was used for the error bars in Figures 3.2, 3.3, and 3.4,
For the intrinsic lattice resistivity of pure Au the data
of White and Woods (1959) were used. It was divided by the
resistivity at 295K and added on to the residual resistance
ratio of the Au-Fe-Sn alloys to obtain the total resistivity as

a function of temperature.
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" APPENDIX TIII

' THE EFFECT OF SUPERCONDUCTING Pb -

" IMPURITIES ON' THE MAGNETOTHERMOPOWER

- AND MAGNETORESISTANCE OF PURE Au AND Au-Fe ALLOYS

While studying the magnetic field dependence of the thermo-
power of dilute alloys of Fe in Au, Walker (1971) observed an
interesting effect for small fields. The percentage change in
thermopower with applied field is shown in Figure III.l. For
small enough fields Walker argued that AS/S versus H should be
parabolic in H. The dashed lines in the figure show the good
parabolic fit for higher fields and the continuation to smaller
fields. One notes the‘rather sharp deviation from parabolic
behavior at these lower fields. Taking the midpoint, H., of
this sharp transition, Walker made the plot of H, versus
temperature shown in Figure III.Z2.

For zero field the critical temperature extrapolates to
around 7.2K. Walker reasoned that this effect was due to a
superconducting transition in Pb impurities in his alloy since
the superconducting transition temperature of Pb is 7.19K.
Since the thermopowerin this region is dominated by the Fe
impurities, Walkef explained this effect in terms of the
Nordheim-Gorter rule and change in resistivity of the wire as
the suspected Pb impurities went normal. About 3 ppm of Pb
impurity would explain this effect; a reasonable figure in

light of an NRC spectrographic analysis of a wire from the same
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spool indicating a Pb concentration of about 15 ppm.

To explain why the Pb should have a superconducting state
Walker assumed the Pb to be present in the form of small
occlusions. Since Pb is almost completely insoluble in Au
below 500C, this is quite possible. Upon annealing, the alloy
would become two phase, the Pb perhaps separating out into
small regions.

To test Walker's hypothesis that the resistivity changed
as a result of a superconducting transition, the magneto-
resistance of various alloys was measured. In addition, it was
thought that such measurements would yield interesting informa-
tion about the minimum size necessary for superconducting be-
havior and general size effects as a fraction of magnetic
field. When the size of the occlusions is reduced to the
order of the coherence length, the critical field should
increase in magnitude.

All the specimens were in the form of 0.08 mm diameter
wires mounted essentially in a transverse magnetic field. The
55KG Nb-Ti superconducting magnet was from Oxford Instruments.
It was used at large fields with an Hewlett Packard (HP)
HP6387A DC power supply. For small fields, less than 6KG,

a reversible bipolar operational power supply, Kepco BOP 72-5 m,
waé used in order to sweep the field through zero and minimize
nysteresis effects. Voltages were measured using an HP419A DC
'Null voltmeter and Tinsley 5590B potentiometer feeding an

HP7030A X-Y recorder. Specimen current was supplied by an
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HP6186B DC current source.

Figures TIII.3 and III;4 show the low field magnetoresist-
ance traced directly from the plotter trace for two Au+0.03 at.?
Fe alloys, one a small piece from Walker's specimen used to
obtain Figure III.l; the other from‘a spool of Johnson Matthey

thermocouple wire dated April 1971 used to make the Au-Fe-Sn

alloys described earlier in this thesis. The temperature was

around 4.2K. One is immediately struck by the absolute

absence of anything resembling a superconducting transition

anywhere near the 0.25% magnitude observed by Walker. Apparently

Walker's explanation was wrong. |
Undaunted by this, we attempted to put Pb into Au wires,

arriving finally at the procedure described in Chapter II of

this thesis. Nothing in the way of a superconducting transitio:

was observed in the raw magnetoresistance plots. The results

of these experiments is summarized in Figure III.5. Sample I

is Cominco 99.9999% pure Au. Sample II is the above with

around 1300 ppm added Pb impurity snatched out of the oven at

850C ahd calledunannealed. Sample III is Sample II subjected

to the more gradual cooling of turning off the furnace. This

- figure is in the form of a Kohler plot, successful in

explaining the effect of impurities on the magnetoresistance

of many metals. Kohler's rule may be stated as

AR/R = FC%) ; F(X) is a function of X. p is

electrical resistivity.
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Figure 111.5 Reduced Kohler plot of Au and Au-Pb alloys
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The ratio H/p is important;'npt the abgolute value of the
magnetic field. Note that Kohler's rule is well satisfied in
this experiment for the annealed specimen. Even subject to a
slow anneal, the Pb impurities exhibit no unusual beﬁavior.

Well, there was nothing left to do but measure the
magnetothermopower of Walker's original specimen (minus the
small piece chopped off to perform the magnetoresistance
experiment). The cryostat used was very similar to that
described in Chapter II but with Ag normal voltage leads. Ag
normal has a very small magnetothermopower and thermopower at
low temperatures and so is well suited for the present purpose.
A Keithley 148 nanovoltmeter fed the X-Y plotter. About a
10uV thermoelectric voltage was set up and the magnet swept
from 6KG north through zero to 6KG south. Figure III.6 is
tfaced directly from the plot. The width of the plot is
attributed to an interference effect caused by the second
harmonic‘of the 93 HZ voltmeter chopping frequency beating
with the third harmonic of the 60 HZ line frequency. The
slight assymetry is probably due to slow drift in the He |
level causing temperature drifts as the plot took over half an
hour to make. The results here on Walker's very own specimen
indicate either that he was observing an apparatus effect or
that time has altered his specimen.

About 1100 ppm Pb was added to Au+0.02 at .% Fe thermo-
couple wire. The magnetothermopower was measured and at low
fields nothing resembling Walker's results was found as is

shown in Figure III.7, traced directly from the experimental
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plot.
In conclusion one can only state that while Walker

definitely measured something; it was not to be found again.

It also appears that getting Pb to separate out of Au into
small occlusions is not easy for concentrations around 1000
ppm Pb as evidenced by the regular behavior of the Kohler plot,
Figure III.5. If such a specimen full of tiny Pb occlusions
could be prepared it would be interesting.to study the thermal

and electrical scattering and general superconducting behavior.
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