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ABSTRACT 

IEEE standard 802.1 1 a supports the new high rate physical layer OFDM (Orthogonal 

Frequency Division Multiplexing) wireless LAN system for operation in the 5GHz 

unlicensed national information infrastructure (U-NII) band. The OFDM physical layer 

specifies PPDU (PLCP protocol data unit) frame format that consists of PLCP (Physical 

Layer Convergence Procedure) preamble, the PLCP header, PSDU, Tail bits and Pad bits. 

The PLCP preamble is the major component for synchronization, and it consists of 10 

"Short" OFDM symbols and 2 "Long" OFDM symbols. This project focuses on 

researching robust synchronization methods for 802.1 l a  OFDM systems using the PLCP 

"Short" and "Long" training symbols. Monte Carol simulations are applied to evaluate 

the performance of the proposed methods of synchronization in AWGN (Additive White 

Gaussian Noise) channel and indoor residential channel using JTC (Joint Technical 

Committee) wireless channel model. 
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1. INTRODUCTION 

Reliable and effective communication depends on successful transmission and 

reception of information data through an imperfect channel. In wireless communication 

systems, transmitters and receivers are not physically connected and that introduce lot 

more difficulties in establishing effective communication links. A wireless channel 

introduces unwanted noises on the data during transmission, and the signal levels 

fluctuate with noises depending on the strengths of the signal and the surrounding 

interferences. In addition, wireless Local Area Network (WLAN) systems involve high 

volumes of digital data that require more reliable synchronization clock systems and 

robust frame synchronizers in order to establish effective communication links by 

reducing the inter symbol interference (ISI) and inter carrier interference (ICI) of the 

data. The higher the speed of the data, the more accurate the clocks and carrier 

frequencies are required for synchronization. 

1.1 Orthogonal Frequency Division Multiplexing 

Orthogonal Frequency Division Multiplexing (OFDM) is a bandwidth efficient 

signalling scheme, which has been in existence for decades, and was first proposed by 

Chang for digital communication [I]. Recently, OFDM techniques are highly deployed in 

high-speed digital data transmission world, such as in Asymmetric Digital Subscriber 

Line (ADSL), High-speed Digital Subscriber Line (HDSL), Digital Audio Broadcasting 

(DAB), Digital Video Broadcasting (DVB), High Definition Television (HDTV) 

terrestrial broadcasting, Wireless LAN, and Cable systems. 



OFDM is a form of Multi-carrier Modulation (MCM), that is an approach to 

divide a single serial transmission channel into a number of orthogonal parallel 

subchannels or subcarriers to optimize the efficiency of data transmission. Orthogonal 

Frequency Division Multiplexing (OFDM) and Discrete Multi-tone (DMT) are different 

forms of MCM. 

In a single carrier modulation system, serial data is modulated in a high frequency 

carrier and transmitted through a single channel. The data rate is limited by the serial 

operation during transmission. In order to overcome the limitation in the single carrier 

modulation, MCM is to divide a single serial transmission channel into a number of 

orthogonal parallel subchannels or subcarriers for data transmission. 

OFDM gives an optimum spectrum efficiency using mutually overlapped carriers 

[5]. OFDM signalling is proven to be an effective way to combat the negative effects of 

fading and multipath by dividing the frequency selective fading channel into a number of 

flat fading subchannels corresponding to the OFDM subcarrier frequencies [4]. 

In OFDM systems, IS1 and ICI can be entirely eliminated by the simple expedient 

of inserting between symbols a small time interval known as a guard interval (GI). The 

length of the guard interval is made equal to or greater than the time spread of the 

channel. If the symbol waveform is extended periodically with the guard interval, the 

orthogonality is maintained over the symbol period, thus eliminating ICI. IS1 is also 

eliminated by the non-overlapping symbols due to the guard interval 151. 

When OFDM systems are compared to single carrier systems, channel 

equalization is less complex, and sensitivity to channel estimation, and frame 

synchronization error is reduced [4]. 



However, the major weakness of OFDM systems is highly sensitive to frequency 

offset in the channel than in single carrier systems. Therefore, a reliable synchronization 

method is significant to OFDM systems. 

1.2 OFDM Synchronization 

In designing OFDM systems, time and frequency synchronization are crucial in 

order to achieve a high performance of data transmission. One issue is the unknown 

arrival time of the OFDM symbol. Time shift of the received OFDM data frame causes 

frame synchronization errors. A symbol timing offset causes a linear phase rotation of the 

receiver FFT outputs and introduces IS1 [4][8]. However, insertion of Guard Interval 

eliminates the overlapping between successive symbols to improve ISI. 

The second issue is the frequency offset in the channel caused by tuning oscillator 

inaccuracies and Doppler shifts. The frequency offset causes the reduction of signal 

amplitudes in the output of the filters matched to each of the carriers, and introduces ICI 

from the other carriers that are now no longer orthogonal. The tolerable frequency offset 

is a very small fraction of the channel bandwidth due to the OFDM carriers are inherently 

closely spaced in frequency compared to the channel bandwidth. Maintaining sufficient 

open loop frequency accuracy is difficult in mobile radio links that introduce significant 

Doppler shift [5]. 

OFDM synchronization refers to maintain the orthogonality, and to combat 

against IS1 and ICI between the multiplexed signals by tackling time offset error and 

carrier frequency offset (CFO) error. A robust synchronization scheme in OFDM systems 

provides an optimum performance by correctly estimating the arrival time of the signal, 



the start position of data frames, and the time offset error to align the frame reception of 

symbols with successfully guard interval removal; and tracking the carrier frequency 

offset precisely. Redundancy in the OFDM frame structure and special training symbols 

provide means for synchronization. 

Frequency synchronization is usually performed in two stages - frequency 

acquisition and frequency tracking - to reduce overall complexity. Frequency acquisition 

generates a coarse frequency estimate in a quick manner, and frequency tracking handles 

locking and tracking tasks in an accurate manner [6]. 

In the past years, several papers have been published to tackle the subject of 

synchronization for OFDM systems. Paul H. Moose [5] proposed Maximum Likelihood 

Estimation (MLE) Algorithm for carrier frequency offset estimation; Van de Beek [7] 

provided another solution using Joint Maximum Likelihood Algorithm for symbol time 

and carrier frequency. Timothy M. Schmidl [9] mentioned in his paper the importance of 

finding the start of the frame, and he introduced a timing metric to determine the start of 

the frame in addition to his algorithm to estimate the symbol timing and carrier frequency 

offset. Therefore, the estimation of the start of the frame, symbol timing and carrier 

frequency offset are the major elements in designing a robust OFDM system. 

1.3 Wireless OFDM System 

Wireless systems face more challenging problems in a multipath channel. In a 

multipath channel, the direct path signal and many reflected signals arrive at the receiver 

at different time delays with random phase distortions. The multipath signals cause ISI, 



especially in high data rate transmission, when a symbol is distorted by the previously 

transmitted symbol. 

In a wireless OFDM system, the technique used to combat against the multipath 

fading channel is converting a high-speed data channel into several slow parallel 

narrowband subchannels; or in other word, the technique lengthens the symbol period. As 

a result, the delay spread of multipath signal is suppressed to within a symbol period. 



2. IEEE 802.11A STANDARD 121' 

OFDM has been exploited extensively in digital communication world. IEEE 

Wireless LAN Working Group proposed and released a new standard 802.1 la  for 

wireless LAN system in 1999. The following has been summarized from the IEEE 

802.1 1 a Standard. 

The 802.1 1 a standard supports the new high rate physical layer OFDM 

wireless LAN system for operation in the 5GHz unlicensed national information 

infrastructure (U-NII) band. The OFDM system provides a wireless LAN with data 

payload communication capabilities of 6,9,  12, 18,24,36,48, and 54 MbitJs. The 

support of transmitting and receiving at data rates of 6, 12, and 24 Mbitls is 

mandatory. The system uses 52 subcarriers that are modulated using binary or 

quadrature phase shift keying (BPS WQPSK), 16-quadrature amplitude modulation 

(QAM), or 64-QAM. Forward error correction coding (convolutional coding) is 

used with a coding rate of 112,213, or 314. 

The PPDU (PLCP protocol data unit) frame format defines the data packet 

structure in the 802.1 l a  standard. A special training structure defined in the PLCP 

(Physical Layer Convergence Procedure) preamble field of the PPDU frame format 

is used for synchronization. The PLCP preamble consists of 10 "Short" symbols 

and 2 "Long" symbols. The 10 "Short" symbols are used for signal detection, 

AGC, diversity selection, coarse frequency offset estimation and timing 

I From IEEE Std. 802.1 1 a- 1999. Copyright 1999 by IEEE. All rights reserved. This description is reprinted 
and summarized by permission of IEEE, "Supplement to IEEE standards for information technology 
telecommunications and information exchange between systems - local and metropolitan area networks - 
specific requirements. Part 1 1 : wireless LAN Medium Access control (MAC) and Physical layer (PHY) 
specifications: high-speed physical layer in the 5 GHz band." The IEEE disclaims any responsibility or 
liability resulting from the placement and use in the described manner. 



synchronization. The 2 "Long" symbols are used for channel and fine frequency 

offset estimation. 

2.1 IEEE 802.1 1 a Physical Layer 12J 

2.1.1 PPDU Frame Format 

I PLCP H e a k  I 

m 
LENGTH U T E  Resen.4 Parity Td SERVICE 
12 bits 4 bits 1 bit 1 bit 6 bits 16 bits 

PSDU 1 6 Tad k t 4  l~adbitr  
--. 

Figure I - 802. I l a  PPDU Frame Format, 0 1  999 IEEE Std. 802.Ila-l999, by permission 

The OFDM physical layer described in IEEE 802.1 1 a 5GHz OFDM 

WLAN system consists of two protocol functions - a physical convergence 

function and a PMD (physical medium dependent) system. The PLCP supports a 

physical convergence function. PLCP defines a method of mapping the IEEE 

802.1 1 a physical sublayer service data units (PSDU) into a framing format suitable 

for sending and receiving user data and management information between two or 

more stations using the associated PMD system. A PMD system function defines 

2 From IEEE Std. 802.1 1 a- 1999. Copyright 1999 by IEEE. All rights reserved. This description and figure 
(Fig. 107 in the original) are reprinted and summarized by permission of IEEE, "Supplement to IEEE 
standards for information technology telecommunications and information exchange between systems - 
local and metropolitan area networks - specific requirements. Part 1 1 : wireless LAN Medium Access 
control (MAC) and Physical layer (PHY) specifications: high-speed physical layer in the 5 GHz band."The 
IEEE disclaims any responsibility or liability resulting from the placement and use in the described manner. 



the characteristics and method of transmitting and receiving data through a wireless 

medium between two or more stations, each using the OFDM system. 

PPDU frame format, described in Figure 1, includes the OFDM PLCP 

preamble, OFDM PLCP header, PSDU, tail bits, and pad bits. The PLCP header 

contains the following fields: LENGTH, RATE, a reserved bit, an even parity bit, 

and the SERVICE field. The SIGNAL field is composed of the information bits 

containing the LENGTH, RATE, reserved bit, and parity bit (with 6 "zero" tail bits 

appended); and the SIGNAL is transmitted with BPSK modulation and a coding 

rate of R = 112. The DATA field contains the SERVICE field of the PLCP header 

and the PSDU (with 6 "zero" tail bits and pad bits appended); and the DATA may 

constitute multiple OFDM symbols that are transmitted at the data rate described in 

the RATE field. The tail bits in the SIGNAL symbol enable decoding of the RATE 

and LENGTH fields immediately after the reception of the tail bits. The RATE and 

LENGTH are required for decoding the DATA part of the packet. 

2.1.2 OFDM Training structure3 

w c c t e l e c r .  - n - i d * e * q  p-+ LEKGTB sm.-~.mtnATA DATA 
A i x  ~ f f m  csnmat~ afhct rmmmw RATE 
mremr?' sd-on T U I K ~ ~  5+m&ro- 

Figure 2 - 802. I l a  OFDM Training Structure, 0 1  999 IEEE Std. 802.1 la-1999, by permission 

From IEEE Std. 802.1 1 a-1 999. Copyright 1999 by IEEE. All rights reserved. This description and figure 
(Fig. 1 10 in the original) are reprinted and summarized by permission of IEEE, "Supplement to IEEE 
standards for information technology telecommunications and information exchange between systems - 
local and metropolitan area networks - specific requirements. Part 1 1 : wireless LAN Medium Access 
control (MAC) and Physical layer (PHY) specifications: high-speed physical layer in the 5 GHz band."The 
IEEE disclaims any responsibility or liability resulting from the placement and use in the described manner. 



The PLCP preamble field, shown in Figure 2, consists of totally 12 

symbols, including 10 "short training sequence" and 2 "Long training sequence", 

are designed for synchronization between the transmitter and the receiver. Each 

"Short training sequence" represents an OFDM "Short" symbol of 0 . 8 ~ s  long, and 

each "Long training sequence" represents an OFDM "Long" Symbol of 3 . 2 ~ s  long. 

The ten repetitions of the "Short training sequence" are used for signal detection, 

AGC convergence, diversity selection, timing acquisition, and coarse frequency 

acquisition. The two repetitions of a "Long training sequence", preceded by a 

guard interval (GI), are used for channel estimation and fine frequency acquisition 

in the receiver. 

The guard interval is used for shifting the time to create the "circular 

prefix" used in OFDM to avoid IS1 from the previous frame. The "Short training 

sequence" has no guard interval. The "Long training sequence" has the longest 

guard interval of 3 . 2 ~ s .  The guard intervals in the "Signal" and "Data" fields are 

only 1 . 6 ~ s .  

The Summary above provides a brief introduction of the IEEE 802.1 1 a OFDM 

system, and describes the details of the frame structure and the OFDM training structure 

for synchronization. The following study about the system synchronization utilizes the 

frame structure and the training structure described in the IEEE 802.1 l a  OFDM standard. 



3. OFDM SYSTEM MODEL 

3.1 Model Structure (1 01 

Wireless Channel 

4 

an 
f \ f / \ 

Figure 3 - OFDM System Model 

An OFDM system modelled as in Figure 3 has N subcarriers spaced by the 

frequency distance Af . Thus, the bandwidth of the system is B = N . Af . All subcarriers 

are mutually orthogonal within a time interval of length T, = 1 / Aj . Since the bandwidth 

equals to N - Af , the sampling time of the system must be At = 1 l (N A f )  . The samples 

of the OFDM signal s,, at discrete time i = O,l, ..., N - 1 are represented by 

IQ rn,i 
Modulation 

Data 
source 

L J \ / 

+ 



where S,,, is the OFDM symbol data at the k -th subcarrier of the n -th frame, i is the 

i -th discrete time slot, k is the k -th subcarrier, and N is the total number of 

subcarriers. 

Generation of the OFDM samples takes place at the transmitter through several 

conversions. Firstly, a serial data bit stream, in forms of BPSK, QPSK, 16-QAM, or 64- 

QAM subsymbols, is converted to parallel data. The subsymbols are in form of complex 

baseband data consists of in-phase and quadrature components An,, and B,,, respectively. 

Then, taking the Inverse Discrete Fourier Transform (IDFT) of the parallel baseband data 

generates the OFDM signal samples. Inverse Fast Fourier Transform (IFFT) is a common 

conversion method for IDFT. Finally, the Cyclic Prefix, also known as the Guard 

Interval, is added to the parallel OFDM samples before converting them back to serial 

data for transmission. Insertion of Cyclic Prefix is achieved by attaching a number of 

samples, that equals to the length of the Cyclic Prefix, from the end portion of the parallel 

IDFT converted data to the front of itself. 

3.2 Time Offset 

Detection of the arrival of the OFDM data frame depends on searching the 10 

repetitive training "Short" symbols for synchronization. Estimation of the frame start 

position determines the alignment of the FFT-window to detect the OFDM symbol in the 



receiver. A false estimate leads to IS1 which may disturb the orthogonality of the system 

and cause essential degradation due to ICI [12]. 

The uncertainty in the arrival time of the OFDM symbol is modelled as a delay in 

the channel impulse response S(i - Si) , where Si is the unknown time of arrival (TOA) of 

a symbol [7]. Si is assumed to be rounded off to integer multiples of the data sampling 

time that equals to As long as the OFDM data frame arrives within the Guard 

Interval, no IS1 occurs. However, if a time offset appears in the alignment of the OFDM 

data frame due to the incorrect detection of the TOA, phase shifts appears to the 

subchannel data. The amount of phase shift caused by the time offset in each subchannel 

increases with the subchannel index as Equation (3). In addition, the channel response 

and the additive channel noise distort the signal significantly. The channel output is a 

multiplication of the channel response H k  at each subcarrier of the OFDM signal. The 

channel response H ,  can be considered as a complex constant within the duration of the 

OFDM symbol time if the symbol time is much smaller than the coherence time of the 

channel. The channel noise w,, is assumed to be an additive white Gaussian noise 

(AWGN) with power spectral density of No / 2 .  The distorted OFDM signal at the 

receiver contains the channel response, the additive channel noise, and the phase shift 

caused by the carrier frequency offset, and can be expressed as below. 

In order to receive the OFDM signal correctly, detection and estimation of the 



TOA is significant to align the OFDM data frame and set up the FFT-windows for 

detecting the OFDM data. 

3.3 Carrier Frequency Offset 

In a wireless system, the oscillator of the RF receiver may not be tuned exactly to 

the transmitting RF carrier frequency f, . The tuned frequency of the receiver oscillator 

contains a small frequency error f4 , that is the carrier frequency offset. The carrier 

frequency offset introduces a phase shift equals e I 2n.for4 after down-converting the 

received signal to the baseband OFDM signal. In a digital system, the phase shift can be 

j2r..for+Al expressed in term of time index by e 

The distorted OFDM signal at the receiver contains the channel response, the 

additive channel noise, and the phase shift caused by the carrier frequency offset, and can 

be expressed as below. 

1 N - 1  2 dl 
I- 

where c ,  = - 1 S,,, H ,  e JN k=O 

Assume the carrier frequency error equals a fraction of the frequency distance between 

subcarriers, i.e. J,,, = & .  Af . Equation (5 )  is expressed in term of & as below. 

2 n6kr 
I-  

where yl = e N 



The carrier frequency offset causes a phase rotation that is expressed in yl Since 

y,  is independent of k but dependent on i , the carrier frequency offset cannot be lumped 

into subchannel responses or removed after FFT during reception. However, we can 

estimate fof in term of 63rc by introducing a training sequence in order to compensate the 

phase change of the OFDM signal to improve the reception of data frames. 

When both time offset and carrier frequency offset appear in the OFDM system, 

the synchronization becomes a complicated problem. 

2d6 6k 
J- j2x.(1+61).- 

where Gk = e .e  N 

A synchronizer cannot distinguish between phase shifts introduced by the channel 

and those introduced by symbol time delays [7]. In order to tackle the problem, the frame 

alignment should be achieved before estimating the frequency offset. 



4. SYNCHRONIZATION FOR 802.11A OFDM SYSTEMS 

This project focuses on analyzing the structure of the PLCP "Short" and "Long" 

training symbols and researching methods to synchronize OFDM systems for indoor 

residential applications. In order to propose a robust system with a low BER, the major 

tasks to be resolved include the estimation of the symbol timing to determine the 

beginning of the symbol block, the estimation of the frame starting position, and the 

estimation of the carrier frequency offset. 

The first task to do is analyzing the OFDM training structure that consists of 10 

"Short" training symbols and 2 "Long" training symbols in order to understand their 

characteristics and usages as described in IEEE 802.1 l a  standard. 

4.1 "Short" Training Symbols (21 

A "Short" OFDM training symbol consists of 12 subcarriers, which are modulated 

by the elements of the sequence S ,  given by 

The multiplication factor of f i  is used to normalize the average power of the 

resulting OFDM symbol, which utilizes 12 out of 52 subcarriers. The 52 subcarriers plus 

a dc channel of the sequence S are mapped into the IFFT converter with a length of 64- 

sample inputs. After completing the IFFT conversion, the mapped sequence of S is 



converted to a 64-sample sequence, which represents a single period, in time domain. The 

64-sample sequence in time domain is extended periodically to a 161 -sample sequence. 

Windowing is applied, by multiply 0.5 to the fist sample and the last sample of the 

extended sequence, to obtain the final extended sequence of 161 samples in time domain. 

The final extended sequence, which is called "Short training sequence" in the 

following paragraphs, represents 10 "Short" symbols in total, and each symbol has 16 

samples. 

Table 1 shows the "Short training sequence" consists of 10 "Short" symbols, and 

the shaded data illustrates a single period of the IFFT conversion of the mapped sequence 

of S. 
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Real Irng 

0 023 0 023 

-0 132 0 002 

-0 013 -0 079 

0143 -0013 

0 092 0 000 

0 143 -0013 

-0 013 -0 079 

-0 132 0 002 

0 046 0 046 

0 002 -0 132 

-0 079 -0 013 

-0013 0143 

0 000 0 092 

-0013 0143 

-0 079 -0 013 

0 002 -0 132 

Symbol #7 

#96-111 

Real Irng 

0.046 0.046 

-0 132 0.002 

-0.013 -0.079 

0.143 -0.013 

0 092 0 000 

0.143 -0 013 

-0.013 -0 079 

-0 132 0.002 

#16-31 

Real Irng 

0.046 0.046 

-0.132 0.002 

-0.013 -0.079 

0.143 -0.013 

0.092 0.000 

0.143 -0.013 

-0.01 3 -0.079 

-0.132 0.002 

0.046 0.046 

0.002 -0.132 

-0.079 -0.01 3 

-0.013 0.143 

0.000 0.092 

-0.013 0.143 

-0.079 -0.013 

0.002 -0.132 

Symbol #8 

#112-127 

Real Irng 

0.046 0.046 

-0.132 0.002 

#3247 

Real Irng 

0.046 0.046 

-0.132 0.002 

-0.01 3 -0.079 

0.143 -0.013 

0.092 0.000 

0.143 -0.013 

-0.013 -0.079 

-0.132 0.002 

0.046 0.046 

0.002 -0.132 

-0.079 -0.013 

-0.013 0.143 

0.000 0.092 

-0.013 0.143 

-0.079 -0.01 3 

0.002 -0.132 

Symbol #9 

#l28-143 

Real Irng 

0.046 0.046 

-0.132 0.002 

-0.013 -0.079 

0.143 -0.013 

0.092 0.000 

0.143 -0.013 

-0.013 -0.079 

-0.132 0.002 

0.046 0.046 

0.002 -0.132 

-0.079 -0.013 

-0.013 0.143 

0.000 0.092 

-0.013 0.143 

-0.079 -0.01 3 

0.002 -0.132 

#48-63 

Real Irng 

0.046 0.046 

-0.132 0.002 

-0.013 -0.079 

0.143 -0.013 

0.092 0.000 

0.143 -0.013 

-0.013 -0.079 

-0.132 0.002 

0.046 0.046 

0.002 -0.132 

-0.079 -0.013 

-0.013 0.143 

0.000 0.092 

-0.013 0.143 

-0.079 -0.013 

0.002 -0.132 

Symbol #10 

#l44-159 

Real Irng 

#64-79 

Real Irng 

0.046 0.046 

-0.132 0.002 

-0.013 -0.079 

0.143 -0.013 

0.092 0.000 

0.143 -0.013 

-0.013 -0.079 

-0.132 0.002 

0.046 0.046 

0.002 -0.132 

-0.079 -0.013 

-0.013 0.143 

0.000 0.092 

-0.013 0.143 

-0.079 -0.013 

0.002 -0.132 

#l6O 

Real Irng 

#80-95 

Real Irng 

0.046 0.046 

-0.132 0.002 

-0.013 -0.079 

0 143 -0.013 

0.092 0.000 

0.143 -0.013 

-0.013 -0.079 

-0.132 0.002 

0.046 0.046 

0.002 -0.132 

-0.079 -0.013 

-0.013 0.143 

0.000 0.092 

-0.013 0.143 

-0.079 -0.013 

0.002 -0.132 

Table 1 -" Short Training Sequence" in Time Domain 
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The plots in Figure 4 and Figure 5 show the characteristics of the "Short" OFDM 

symbols in I-Q diagram, in time domain and in frequency domain. The "Short" OFDM 

symbols are BPSK data that have high peak-to-average power ratios (PAPR), but have 

rapid phase and amplitude changes in time domain. The 10 "Short" training symbols are 

made up of 16 samples per symbol in time domain. They are repeating themselves 

periodically every 16 samples spacing. 

lllustrat~on of the SHORTTralnmg Sequence 

2s 

Spectrum of the SHORT OFDM Tra~n~ng Sequence 

Figure 4 - "Short Training Sequence" in Frequency Domain 



Magn~tude of me SHORT Tra~nmg Sequence In T~me Dorna~n 

O '"1 

Figure 5 - "Short Training Sequence" in Time Domain 



The "Short training sequence" has 10 repetitions in time domain samples and has 

a high PAPR in frequency domain samples. Therefore, it is possible to use time domain 

samples, or to use frequency domain samples, or to use both to look for an accurate time 

or frame synchronization. Non-coherent differential detection can be used to estimate 

CFO by forming the correlations with time domain samples. 

4.2 "Long" Training Symbols (21 

A "Long" OFDM symbol consists of 53 subcarriers, which are modulated by the 

elements of the sequence 1 ,  given by 

The 52 subcarriers plus a dc channel of the sequence P are mapped into the IFFT 

converter with a length of 64-sample inputs. After completing the IFFT conversion, the 

mapped sequence of 1 is converted to a 64-sample sequence, which represents a single 

period, in time domain. The 64-sample sequence in time domain is extended periodically 

to a 161 -sample sequence, which includes a 32-sample guard interval. The guard interval 

contains the last 32 samples of the single period sequence. Windowing is applied, by 

multiply 0.5 to the fist sample and the last sample of the extended sequence, to obtain the 

final extended sequence of 161 samples in time domain. 

The final extended sequence, which is called "Long training sequence" in the 

following paragraphs, represents a 1.6 ps "Long" guard interval and 2 "Long" symbols. 



Table 2 shows the "Long training sequence" consists of a 1.6 ps "Long" guard 

interval and 2 "Long" symbols, and the shaded data illustrates a single period of the IFFT 

conversion of the mapped sequence of 1. 

Guard Interval 

#O-15 

Real Irng 

-0.078 0.000 

0.012 -0.098 

0.092 -0.106 

-0.092 -0.1 15 

-0.003 -0.054 

0.075 0.074 

-0.127 0.021 

-0.122 0.017 

-0.035 0.151 

-0.056 0.022 

-0.060 -0.081 

0.070 -0.014 

0.082 -0.092 

-0.131 -0.065 

-0.057 -0.039 

0.037 -0.098 

#96-111 

Real Irng 

#16-31 

Real Irng 

0.062 0.062 

0.119 0.004 

-0.022 -0.161 

0.059 0.015 

0.024 0.059 

-0.137 0.047 

0.001 0.1 15 

0.053 -0.004 

0.098 0.026 

-0.038 0.106 

-0.115 0.055 

0.060 0.088 

0.021 -0.028 

0.097 -0.083 

0.040 0.1 11 

-0.005 0.120 

S Y ~  
#112-127 

Real Irng 

Symbol # l  

#32-47 

Real Irng 

0.156 0.000 

-0.005 -0.120 

0.040 -0.111 

0 097 0.083 

0.021 0.028 

0 060 -0.088 

-0.1 15 -0.055 

-0.038 -0.106 

0.098 -0.026 

0.053 0.004 

0.001 -0.115 

-0.1 37 -0.047 

0.024 -0.059 

0.059 -0.015 

-0.022 0.161 

0.119 -0.004 

#48-63 

Real Irng 

0.062 -0.062 

0.037 0.098 

-0.057 0.039 

-0.131 0065 

0.082 0.092 

0.070 0.014 

-0.060 0 081 

-0.056 -0.022 

-0.035 -0 151 

-0.122 -0.017 

-0.127 -0.021 

0.075 -0.074 

-0.003 0.054 

-0.092 0 115 

0.092 0.106 

0.012 0.098 

#64-79 

Real Irng 

-0.156 0.000 

0.012 -0.098 

#I60 

Real Irng 

0.078 0.000 

#80-95 

Real Irng 

Table 2 - "Long Training Sequence" in Time Domain 



The plots in Figure 6 and Figure 7 show the characteristics of the "Long" training 

symbols in I-Q diagram, in time domain and in frequency domain. The "Long" OFDM 

symbols are BPSK data that change slowly in phase compared to the "Short" training 

symbols, but change rapidly in amplitude in time domain. The "Long" training symbols 

are made up of two symbols of 64 samples, repeating themselves periodically every 64 

samples spacing. Since 52 subcarriers contain data compared to 12 subcarriers in the 

"Short" symbols, using "Long" training symbols is expected to have a better estimation 

of carrier frequency offset. 

Spectrum of the LONG OFDM Training Sequence 

s 

lllustrat~on of the LONG Trainmg Sequence 

Figure 6 - "Long Training Sequence" in Frequency Domain 
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Figure 7 - "Long Training Sequence" in Time Domain 



5. PROPOSED SYNCHRONIZATION METHODS 

5.1 Time/Frame Synchronization 

The timetframe synchronization process consists of two steps including 

acquisition and time tracking. Acquisition is the first step to determine the existence of 

the "Short" symbols by searching for periodic structure within the OFDM signal [12]. 

Time domain information should be used for fast and reliable acquisition. After knowing 

that the "Short" symbols appear, the next step is time tracking that accomplishes the data 

frame alignment by estimating the time offset error and the actual time of arrival of the 

OFDM data frame. The carrier frequency offset is unknown during the frame 

synchronization. 

The Mean Square Error (MSE) approach described in [12] can be applied 

similarly for detecting the TOA of the "Short" symbols. A periodicity metric is defined as 

below. 

where W is the length of observation window which is chosen to cover the length of the 

10 "Short" symbols, L ,  is the length of each "Short" symbol, and 6i is the unknown time 

offset. The metric computes the MSE between two "Short" symbols separated by the 

length of 16 samples. 



Observation Window 

Arrival 
of the 1 st 

"Short" 
symbol 

I Threshold 

arne Arrival of  the 10 Periodic Short Symbols Cur 

Figure 8 - Periodicity Metric for Detecting the Arrival of 10 "Short" Symbols 

Mininizing the periodicity metric in (12) leads to an estimate for the right position of the 

FFT window [12]. 

Referring to the Figure 8, the periodic structure of the OFDM signal presents when there 

is a minimum region in the periodicity metric. Since the "Short" symbols are periodic, the 

minimum region of the metric can identi@ the presence of the "Short" symbols. 



5.1.1 Acquisition 

When the OFDM data stream goes into the receiver, the periodicity metric is 

computed and monitored. During the stage of acquisition, the periodicity metric is used to 

identify the presence of the periodic signal if the periodicity metric shows a minimum 

region. Graphically, the minimum region can be easily identified; however, the task is 

difficult to be achieved quantitatively when the noises present. A threshold comparison is 

applied to determine the minimum region appears in the periodicity metric. The choice of 

the threshold is critical to the result under a noisy system. Since the minimum region of 

the periodicity metric varies depending on the signal strength, an absolute threshold is 

inappropriate. Therefore, a proposed solution is choosing the threshold with reference to 

the max range of the periodicity metric during the observation window. The max range is 

defined as the range between the maximum and the minimum of the periodicity metric. 

Referring to the Figure 8, the slope region at the left indicates the periodic signal, 

the first 16-sample "Short" symbol, is arriving. The lower portion of the slope contains a 

higher certainty of the arrival of the first symbol. Therefore, the threshold is better to be 

chosen at the lower portion of the slope, that is the time region when a half of the first 

"Short" symbol has arrived. After finding the first location of the first "Short" symbol 

drops below the threshold, the receiver keeps monitoring the following 16 samples if they 

are below the threshold. If there is a region consecutively below the threshold for a length 

equal to or longer than a single "Short" symbol, the presence of the two "Short" symbols 

is assumed. In order to confirm the arrival of the "Short" symbols, the receiver takes a 

FFT conversion using the 64 received time domain samples to validate the result. To 

avoid the uncertainty of the start of the minimum region in the periodicity metric, the 



FFT window is set at 16 samples after the first location drops below the threshold, that is 

within the arrival time of the second "Short" symbol. Once the "Short" symbols are 

recognized with the metric, tracking the time offset of the actual TOA of the first "Short" 

symbol will be the next step for the timelframe synchronization. 

5.1.2 Tracking 

Since the FFT window is randomly picked by the threshold comparison, the 

absolute time of the start of the FFT window should be determined in order to estimate 

the TOA and align the OFDM frame properly. The time offset creates phase shifts or 

rotations of the frequency domain data. By studying the shifts of the frequency domain 

data, the start of the FFT window can be found corresponding to the 16 time slots of one 

"Short" symbol. The absolute time of the FFT window can be determined since the 

window starts within the second "Short" symbol. A look-up table easily accomplishes the 

task. Taking a 64-sample FFT conversion of an expected "Short" Symbol with rotating 

the start of the FFT window creates the look-up table in Table 3. Minimum MSE 

detection is used to determine the best match of the look-up table as follow. 

N-I A 

M ~ E  = C Isn,i-sn,i12 
/=o 

Once the absolute time of the FFT window is determined, the TOA can be estimated 

accordingly, that is 16 time slots before the start of the FFT window. 





Table 3 - The Look-up Table for Tracking (Continued) 



Data # 

1 

2 

3 

4 

Start at 7th 
Position 

-0.0230 - 0.0230i 

-0.0063 - 0.0319i 

0.0124 - 0.0301 i 

0.0270 - 0.0181 i 

Start at 8th 
Position 

-0.0230 - 0.02301 

-0.0032 - 0.03241 

0.0181 - 0.0270i 

0.031 1 - 0.0094i 

Table 3 - The Look-up Table for Tracking (Continued) 

5 2.1 142 - 0.OOOOi 

6 0.0270 + 0.0181i 

7 0.0124 + 0.0301i 

8 -0.0063 + 0.0319i 

Start at I I th 
Position 

-0.0230 - 0.0230i 

0.0063 - 0.0319i 

0.0301 - 0.0124i 

0.0270 + 0.0181 i 

Start at 9th 
Position 

-0.0230 - 0.02301 

0 - 0.03251 

0.0230 - 0.0230i 

0.033 

Start at 12th 
Position 

-0.0230 - 0.0230i 

0.0094 - 0.031 1i 

0.0319 - 0.0063i 

0.0206 + 0.0251 1 

Start at 10th 
Position 

-0.0230 - 0.02301 

0.0032 - 0.03241 
0.0270 - 0.0181i 

0.031 1 + 0.0094i 



Start at 10th Start at 11 th Start at 12th 
Position Position Position 

0.0230 + 0.02301 -0.0230 - 0.02301 0.0230 + 0.02301 

-0.0032 + 0.03241 0.0063 - 0.03191 -0.0094 + 0.031 11 

-0.0270 + 0.01811 0.0301 - 0,01241 -0.0319 + 0.00631 

-0.031 1 - 0.00941 0.0270 + 0.0181 1 -0.0206 - 0.0251 1 

-0.0124 - 0.03011 -0.0000 + 0.03251 0.0124 - 0.03011 

0.0153 - 0.02871 -0.0270 + 0.01811 0.0324 - 0.00321 

0.0319 - 0,00631 -0.0301 - 0.01241 0.0181 + 0.02701 

0.0251 + 0.02061 -0.0063 - 0.03191 -0.0153 + 0.02871 

-0.0000 - 2.0491 1 -1.4490 + 1.44901 2.0491 - 0.00001 

-0.0251 + 0.02061 0.0319 + 0.00631 -0.0153 - 0.02871 

Table 3 - The Look-up Table for Tracking (Continued) 



Data # 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

2 1 

22 

23 

24 

25 

26 

27 

28 

29 

30 

3 1 

32 

Start at 16th 
Position 

-0.0230 - 0.0230i 

0.0206 - 0.0251 i 

0.0270 + 0.0181i 

-0.0153 + 0.02871 

-1.9533 - 0.8091 i 

0.0094 - 0.031 1 i 

0.0319 + 0.0063i 

-0.0032 + 0.03241 

-2.1 142 - 0.OOOOi 

-0.0032 - 0.03241 

0.0319 - 0.0063i 

0.0094 + 0.031 1 i 

1.8932 - 0.78421 

-0.0153 - 0.02871 

0.0270 - 0.0181i 

0.0206 + 0.0251i 

1.4490 - 1.44901 

-0.0251 - 0.0206i 

0.0181 - 0.0270i 

0.0287 + 0.0153i 

0.7842 - 1.89321 

-0.031 1 - 0.0094i 

0.0063 - 0.0319i 

0.0324 + 0.0032i 

-0.0000 - 2.0491 i 

-0.0324 + 0.0032i 

-0.0063 - 0.031 9i 

0.031 1 - 0.0094i 

0.0124 + 0.0301i 

-0.0287 + 0.0153i 

-0.0181 - 0.0270i 

0.0251 - 0.0206i 

Table 3 - The Look-up Table for Tracking (Continued) 



Table 3 - The Look-up Table for Tracking 

Start at 16th 
Position 

0.0230 + 0.0230i 

-0.0206 + 0.0251 i 

-0.0270 - 0.01 81 i 

0.01 53 - 0.02871 

0.0301 + 0.0124i 

-0.0094 + 0.031 1 i 

-0.0319 - 0.0063i 

0.0032 - 0.0324i 

-2.0491 + 0.OOOOi - 
0.0032 + 0.03241 

-0.0319 + 0.0063i 

-0.0094 - 0.031 1 i 

1.9533 - 0.8091 i 

0.01 53 + 0.02871 

-0.0270 + 0.0181 i 

-0.0206 - 0.0251 i 

-1.4490 + 1.44901 

0.0251 + 0.0206i 

-0.0181 + 0.0270i 

-0.0287 - 0.0153i 

0.8091 - 1.95331 

0.031 1 + 0.0094i 

-0.0063 + 0.0319i 

-0.0324 - 0.0032i 

0.0000 - 2.1 142i 

0.0324 - 0.0032i 

0.0063 + 0.031 9i 

-0.031 1 + 0.0094i 

0.7842 + 1.89321 

0.0287 - 0.01 53i 

0.0181 + 0.0270i 

-0.0251 + 0.0206i 

'Continued) 



5.2 Carrier Frequency Offset Estimation 

As 802.1 1 a standard describes that the "Short" symbols are for coarse estimation 

of the carrier frequency offset error and the "Long" symbols are for the fine estimation, 

this project approach also follows the same principle to research for an approach in 

estimating the carrier frequency offset. 

As the previous description about carrier frequency offset, Equation (6) shows the 

effect of the frequency offset. Estimation of f, in term of Skis by the mean of a special 

training sequence. 

Assume L samples of a training sequence that contains 2 identical symbols 

starting with i . A correlation is formed as below. 

Substituting Equation (6)  and taking a similar correlation as above, the correlation 

at the receiver is 



The expected value of the correlation at the receiver is 

Taking the argument of ~ { i , ) ,  the carrier offset is obtained by 
- 

2 

Finally, the carrier frequency offset is estimated by 

where N equals the length of FFT, and L is the total length in time of the two identical 

symbols. 



5.2.1 Coarse Estimation 

As the property of the "Short" preamble, there are 10 repetitions of 16 samples 

per symbol. Therefore, the same correlation approach can be applied to the "Short" 

preamble between two adjacent symbols. 

L 
Let - = 16 be the sample length in time of a "Short" symbol. The receiver 

2 

computes the correlation between two adjacent symbols according to 

By computing the argument of the correlations, the carrier frequency offset is estimated 

where N = 64 ,  and L = 32 

Since there are totally 10 symbols in the "Short" preamble, maximum 9 

correlations can be taken from the preamble samples. Therefore, averaging 9 estimates 

gives a more precise carrier frequency offset estimate. 

Figure 9 - 9 Correlations from 10 "Short" Symbols 

3 6 

I I + 
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I 
SYMZ SYM3 SYM4 SYM 5 



Similarly, another approach is suggested by using two symbols with larger 

separations between them as the correlation arrangements as in Figure 10. 

Figure 10 - 5 Correlations from 10 "Short" Symbols 

I 

The receiver computes the correlation between two adjacent symbols according to 

By averaging the 5 estimates from 5 correlations, the final estimate is given by 

Since the "Short" preamble can also be interpreted as the structure similar to the "Long" 

symbols that consists of two 64-sample symbols plus a guard interval, the conventional 

correlation approach as Schrnid17s method [9] is also examined as a reference for 

4 4 
SYM9 SYM7 SYM 8 SYM 1 

comparison. 

SYM 10 

L 
The conventional method uses - = 64 be the sample length for the correlation. 

2 

SYM 2 

The receiver computes the correlation between two adjacent symbols according to 

SYM 3 SYM 4 SYM 5 SYM6 



Compared to the conventional approach, the proposed algorithm in Figure 9 

simplifies the number of data involved in correlations but increases the number of 

correlations; the proposed algorithm looks promising to improve the accuracy of 

estimation. 

5.2.2 Fine Estimation 

The plots in Figure 7 show the "Long" preamble contains only 2 symbols and 

each symbol has 64 samples. The carrier frequency offset can be estimated using the 

same approach above. Since there is a 32-sample guard interval, the total usable length of 

the "Long" symbols is 128 samples for 2 symbols. 

The receiver computes the correlation between two "Long" symbols according to 

and estimates the carrier offset by 

where N = 64,  and L = 128 

The coarse estimation uses the "Short" symbols to calculate the coarse carrier 

frequency offset value. Once a coarse estimate is obtained, the fine estimation fine-tunes 

the value to obtain a more precise estimate. The proposed approach to tackle the fine 

estimation uses the relationship below. 

Estimation,,, = Estimation,,,, + Estimation,,, 



The fine-tuning process means to estimate the error between the true value and the coarse 

estimated value of the carrier frequency offset. The suggested fine estimation approach 

applies the coarse estimate obtained from the "Short" symbols to partially get rid of the 

carrier frequency offset exits in the "Long" symbols. Since the carrier frequency offset is 

not completely removed, the correlation in Equation (26) is used to compute the 

remaining carrier frequency offset that is the estimation error in Equation (28). 



6. SIMULATION MODELS AND APPROACHES 

6.1 Generation of OFDM Signal 

6.1.1 "Short" Preamble and "Long" Preamble 

The "Short" and "Long" preambles are created by taking the IFFT conversion 

with windowing of the "Short" sequence S and the "Long" sequence L? as described in 

the paragraphs in section 4.1 and 4.2 respectively. 

6.1.2 Signal and Data Fields 

For simplicity reason, the "Signal" and "Data" fields are generated from a set of 

random data and periodically extended with the addition of the 16-sample guard 

intervals. The "Signal" field contains 80 OFDM signal samples, and each single "Data" 

field contains 80 OFDM signal samples. 

6.2 Indoor Radio Channel Model (31 

In a mobile wireless system, Doppler shift and multipath fading are the major 

contributions cause the rapid fluctuation of the received signal amplitudes. Doppler shift 

is caused by the movement of the mobile terminal towards or away from the base 

terminal. In a multipath system, the received signals arrive from multiple paths with 

different phases, and the phases change rapidly when the mobile terminal is moving. The 

phase differences are caused by the different distances of travelling to the receiver 

through different arriving paths. The phase changes are commonly modelled as random 

variables with the Rayleigh distribution or Ricean distribution. The Rayleigh fading 



model assumes that all signals suffer nearly the same attenuation in different arriving 

paths. The Ricean fading model considers a system has a strong Line of Sight (LOS) 

signal component. 

In a wideband system, the transmitted signals are narrow pulses, and they arrive 

with different amplitudes and time delays. IS1 happens if the multipath delay spread is 

comparable to or larger than the symbol duration. The amplitudes and time delays are 

random variables, and can be modelled as the delay power spectrum given by the impulse 

response 

where a, is a Rayleigh distributed amplitude of the multipath with a mean local strength 

E{a,) = 2oI2 rl is the delay time of the multipath arrival, ql is the phase of the multipath 
, 

arrival, which is assumed to be uniformly distributed in (0,2n) . 

Delay 

Figure I 1  - Delay Power Spectrum 

4 1 



The general characterization of a multipath channel is described by the scattering 

function. 

where Q ( z )  is the delay power spectrum and D(A) is the Doppler Spectrum. 

Joint Technical Committee (JTC) proposed wideband multipath channel models 

using the delay power spectrum models. The suggested models provide the relative time 

delays and the mean square values of the amplitudes for indoor commercial buildings, 

indoor office buildings, and indoor residential buildings. There are channel A, B, and C 

models associated with good, medium, and bad conditions respectively for each type of 

indoor environments. 

Table 4 - JTC Multipath Indoor Residential Buildings Models 

Tap 

1 

2 

3 

4 

5 

6 

Channel A 

Doppler 

Spectrun 

D(I) 

FLAT 

FLAT 

FLAT 

FLAT 

FLAT 

FLAT 

Channel C 

Rel 

Delay 

(nSec) 

0 

100 

Channel B 

Rel 

Delay 

(nSec) 

0 

100 

200 

400 

500 

600 

Avg 

Power 

(dB) 

0 

-1 3.8 

Rel 

Delay 

(nSec) 

0 

100 

200 

300 

Avg 

Power 

(dB) 

0 

-0.2 

-5.4 

-6.9 

-24.5 

-29.7 

Avg 

Power 

(dB) 

0 

-6 

-1 1.9 

-17.9 



This project focuses on indoor residential applications; and therefore, the JTC 

wideband multipath channel B model in Table 4 for indoor residential buildings is 

applied in the simulations. Assuming that the Doppler Spectrum is flat and equals to 1, 

the JTC channel B model for indoor residential buildings is a 4 tapped delay lines model 

in Figure 12. 

- - 

Figure 12 - Tapped Delay Lines Model 

3 

where a, - s(t) represents the LOS components, xa, . s(t - r,) . eJ" represents the NLOS 
r = l  

(Near Line of Sight) components, a, = ,/=is the amplitude of the i - th arriving 

path, 9, is the random phase, which is uniformly distributed in (0,27r), of the 

i - th arriving path. 



6.3 A WGN Channel (11 J 

At the beginning of the simulation, energy per bit to the noise power density, 

Eb/No, is specified in dB to determine AWGN channel condition. Based on the Eb/No 

ratio, the signal power and noise power is determined by Equation (32) below. 

where Eh is the energy per bit, R is the bit rate in bithec, No is the noise power density, is 

the modulation bandwidth in Hz. The modulation bandwidth equals to a half of the 

transmission bandwidth B,. 

Symbol rate, in symbol/sec, is defined as 

where 1 is the number of bits per symbol. 

Symbol time, in sec, of M-ary Phase Shift Keying equals 

Transmission bandwidth of MPSK equals to 

1 
B,. = 2 .- 

T 



Therefore, the modulation bandwidth can be determined and equals to 

The modulation bandwidth is used for calculating the signal to noise power ratio defined 

in Equation (32). 

Signal Power 

where L is the length of the samples, s , ,  is the signal level of the i -th sample of the 

OFDM symbol , and s *,,, is its conjugate. 

Noise Power 

or if Eb / No is in dB, 

Since the noise level is determined by taking the square root of the noise power, 

an attenuation factor G is defined here for calculating the noise levels of OFDM signal 

samples introduced by the AWGN channel using the relationship below. 



The simulation uses RANDN function to generate a set of Pseudo-random 

numbers for the additive AWGN noise. The Pseudo-random numbers are chosen from a 

normal distribution with zero mean, variance and standard deviation equals one. Multiply 

the attenuation factor with the Pseudo-random numbers generates the random noise data 

points. Finally, adding the random noise to the original sequence creates the noisy 

version of the OFDM sequence. 

C, D, R 

Noisc Gcncrator 

Figure 13 - A  WGN Channel Model 



7. SIMULATION AND RESULT 

7.1 Time Offset Estimation 

Figure 14 shows the simulation model to evaluate the performance of the 

proposed timelframe synchronization algorithm. 
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Figure 14 - Time Synchronization Simulation Model 

The simulation generates a random number that is within 1 to 64 to determine the 

TOA of a current OFDM data frame starting with 10 "Short" symbols, and consists of 2 

"Long" symbols, "Signal", and "Data" fields. Attaching a randomly generated "Data" 

symbol, as the data in a previous frame, to the current data frame according to the random 

TOA creates an OFDM data stream for simulations. The OFDM data stream goes through 

JTC channel with the addition of AWGN noise and carrier frequency offset Sk . The 

receiver computes the periodicity metric and monitors the arrival of the "Short" symbols 

by a threshold detection. 



After the receiver detects the presence of the "Short" symbols during acquisition, 

the simulations continue tracking the start position of the FFT window determined by the 

threshold detection. Tracking the start position of the FFT window is an important step to 

estimate the TOA and align the OFDM frame. Comparing the frequency domain data 

samples with the look-up table in the Table 3 using Minimum MSE by Equation (14) 

determines the start of the FFT window, and the TOA can be estimated accordingly. 

The time offset estimation algorithm is evaluated with Monte Carlo approach with 

running 5000 times for each simulated conditions. The simulations study different 

threshold settings, including the levels at 113, 114, 115, 118 of the maximum range of the 

periodicity metric, in order to determine the best choice of the threshold at which the 

receiver can detect the periodic "Short" symbols most effectively during acquisition 

under different signal strengths and carrier frequency offsets. The simulations count for 

the number of times that the "Short" symbols detections are missed, and the success rates, 

in percentage, of the "Short" symbols detection during acquisition are presented after the 

simulations in order to determine the effectiveness of the detection under different 

threshold settings. 

The simulations apply the best choice of the threshold, based on the simulations 

result during acquisition, and count for the number of times that the TOA estimations are 

incorrect under the influence of the carrier frequency offsets and different signal 

strengths. The mean and the standard deviation of the estimation errors of the TOA are 

computed. For evaluating the performance, the simulations present the success rate, in 

percentage, of estimating the actual TOA of the "Short" symbols; as well as, the mean 

and the standard deviation of the estimation errors. 



7.1.1 Result 

802.1 1 a Frame Synchronization During Acquisition 
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Figure 15 - "Short" Symbol Detection During Acquisition 

Figure 15 shows the result that the algorithm can obtain the highest success rate at 

OdB signal strength if the threshold is set to 113 of the maximum range of the periodicity 

metric. Under a poor signal strength condition, the success rate of detecting the "Short" 

symbols is higher when the threshold is set higher. However, the performance is getting 

poorer as the signal strength is getting stronger because of the wrong detection that 

caused by the threshold is set too high and hits the region contains uncorrelated signal. If 

the threshold is set to 114 of the maximum range of the periodicity metric, the results 

show that the algorithm can obtain a higher success rate when the signal strength is at or 

above 5dB. From the simulations, the results conclude that the optimum set point for the 

threshold is at the quarter point of the maximum range. Since the acquisition is the first 
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stage of the timelframe synchronization, the success of detecting the TOA and aligning 

the frame correctly depend on the highest success rate of detecting the arrival of the 

"Short" symbols. The following simulation results during tracking are based on setting 

the threshold to the quarter point of the maximum range of the periodicity metric. 
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Figure 16 - Time of Arrival Estimation During Tracking 
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Figure 16 shows the results that the proposed algorithm for the timelfiame 

synchronization works successfully. The estimation errors of the TOA reduce as the 

signal strength increases, and the algorithm performs effectively with the signal to noise 

ratio is greater than 1 OdB. Also, the influence of the carrier frequency offset causes a 

slightly degradation of the TOA estimate during the acquisition and tracking stages. At 

20dB signal strength, the success rate of the TOA estimation is 99.94% with the carrier 

frequency offset equals to 0.25 of the frequency distance between subcarriers. The mean 

errors and the standard deviation errors of the TOA estimates show that the estimation is 

accurate with small spreads; in addition, the influence of the carrier frequency offset 

causes a slightly degradation of the mean errors and the standard deviation errors. At 

20dB signal strength, the mean error is less than 0.01 of a sampling time, and the 

standard deviation error is less than 0.4 of a sampling time. The estimation errors are 

acceptable and may not cause a serious problem of detecting the OFDM frame data. 



7.2 Carrier Frequency Offset Estimation 

Figure 17 shows the Monte Carlo simulation approach on the proposed carrier 

frequency offset estimation algorithms. 

Carrier Frequency 
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Figure 1 7 - CFO Simulation Model 

Each simulation runs 2000 times for each simulated condition to obtain the mean 

estimates, the standard deviation of the estimates, the mean errors, the root mean square 

errors, the bit error rates (BER), and the frame error rates (FER) to evaluate the 

performance of different estimation methods. The simulations compare three methods for 

the coarse estimations and for the fine estimations of the carrier frequency offset. 

The first method is the conventional method, which is named as "Method 1" in 

the simulation. This method coarsely computes the carrier frequency offset using two 

"Short" symbols with 64 samples for the correlation, and fine-tunes the estimates using 

both the coarse estimates and the correlation between two "Long" symbols of 64 samples 

each. 



The second method is named as "Method 2" in the simulations, which coarsely 

computes the carrier frequency offset by averaging 9 correlations between two adjacent 

"Short" symbols. The fine estimation in "Method 2" applies the same method as in 

"Method 1 ", but uses a different method to obtain the coarse estimates. 

The third method is named as "Method 3" in the simulations, which coarsely 

computes the carrier frequency offset by averaging 5 correlations between two "Short" 

symbols with 80 samples spaced between them. The fine estimation in "Method 3" also 

applies the same approach as in the other two methods. 

The BER and FER analyses use a OFDM frame structure that consists of ten 

"Short" symbols, two "Long" symbols, one "Signal" symbol, and five "Data" symbols in 

addition of guard intervals. For the simplicity of the simulations, the data in "Signal" and 

"Data" fields are randomly generated in forms of QPSK without any coding scheme, and 

the OFDM data frame is assumed to be correctly synchronized in time and in frame. The 

main idea for the BERIFER simulations is to compare the number of error bits or frames 

when the "Signal" and "Data" fields in a data packet are compensated with carrier 

frequency offset estimates based on the three methods using both the "Short" and "Long" 

symbols. The simulations examine both a small quantity and a large quantity of carrier 

frequency offsets, and two sets of results are posted in Figure 18 and Figure 19. 
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Figure 19 - Simulation CFO=0.25 x subcarrier frequency spacing 

In Figure 18 and Figure 19, the results show that "Method 2", which coarsely 

computes the carrier frequency offset by averaging 9 correlations between two adjacent 

"Short" symbols, obtains the coarse estimates with the smallest mean errors compared to 

the other two methods. However, the spread of the coarse estimates in the "Method 2" 

increases compared to the "Method 1" if the signal to noise ratio drops below 1OdB. The 

coarse estimates obtained from the "Method 1" has the smallest spread even through 

under a weak signal strength. The performances of the "Method 1" and the "Method 2" 

are compatible under the signal strength is greater than 10dB. The "Method 3" performs 

poorly compared to the other two methods. 



The results also show that the proposed fine estimation approach improves the 

estimation of the carrier frequency offset, and the improvement has about 4 dB gain in 

signal to noise ratio compared to the coarse estimations of all the three methods. In 

addition, the "Method 2" obtains the fine estimates with the smallest mean errors 

compared to the other two methods. This observation indicates that the proposed fine 

estimation approach also depends on the coarse estimates. 
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Figure 20 - BER / FER Simulations with CFO=O.l x subcarrier frequency spacing 
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Figure 21 - BER / FER Simulations with CFO=0.25 x subcarrier frequency spacing 



The results of measuring the BER and the FER in Figure 20 and Figure 2 1 shows 

that the performance of the "Method 2" is compatible with the conventional "Method 1" 

and is better than the "Method 3". 

In conclusion, "Method 1" is the best choice, and the proposed "Method 2" can be 

an alternative method to obtain the coarse and the fine estimations of carrier frequency 

offset in 802.1 l a  OFDM systems. The shorter length of corrections is the major 

advantage of the "Method 2". 



8. CONCLUSION 

The simulations in the project successfully show the effects of the carrier 

frequency offset on the timelframe synchronization and on the detection of the OFDM 

symbols in an 802.1 l a  OFDM system under the AWGN and the JTC channels for an 

indoor residential environment. The simulations show the proposed algorithm for the 

timelframe synchronization performs well with high success rate of detecting the arrival 

of the "Short" symbols with acceptable errors in estimating the actual TOA. 

The proposed coarse estimation algorithm as in the "Method 2", by averaging 9 

correlations between two adjacent "Short" symbols, can be an alternative method for the 

carrier frequency offset estimations. The shorter length for correlations is the major 

advantage of the "Method 2", and the performance of the "Method 2" is compatible with 

the conventional "Method 1" after applying the proposed fine estimation algorithm. The 

fine estimation algorithm, which uses both the coarse frequency offset estimate and the 

correlation between two 64-sample "Long" symbols, improves the carrier frequency 

offset estimation significantly with less errors under a poor signal to noise ratio 

environment. 

In an 802.1 1 a system, the accuracy of the symbol timing and the correct 

alignment of the data frames are significant in reducing IS1 and ICI. Therefore, the 

timelframe synchronization and the carrier frequency offset estimation work closely 

together in order to perform robustly in system synchronization. 



Further research on synchronization suggested here is in the area of channel 

estimation using the "Long training sequence", which is mentioned in the 802.1 l a  OFDM 

training structure. In addition, a study of the same synchronization algorithms under an 

outdoor wireless channel is also an interesting area. 
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